
Case Study: Constraint Programming

in a System Level Synthesis Framework

Shuo Li and Ahmed Hemani

Department of Electronic Systems
School of Information and Communication Technology

Royal Institute of Technology
Isafjördsgatan 39, 16440, Stockholm, Sweden

{shuol,hemani}@kth.se

Abstract. This article presents a case study of using a constraint pro-
gramming solver in a system level synthesis framework called SYLVA.
The solver is used to find the repetition vector of a synchronous data flow
graph and serving as the design space exploration engine, which rapidly
finds qualified system implementations by solving a constraint satisfac-
tion optimization problem. Each system implementation is a combina-
tion of a number of function implementation instances and their cycle
accurate execution schedules. The problem to be solved is automatically
generated based on the user inputs: 1) a system model to be synthesized,
2) a library containing all the usable function implementations, 3) the
performance/cost constraints, and 4) the optimization objectives. Use of
constraints programming technique enabled a low cost development of
design space exploration engine in addition to gaining ease of use.

Keywords: System Level Synthesis, Design Space Exploration,
Constraint Programming.

1 System Level Architectural Synthesis (SYLVA)

System level hardware synthesis is an evolutionary next step after the high-level
synthesis. It synthesizes abstract Digital Signal Processing (DSP) sub-systems
like modems and codecs, e.g. WLAN, LTE mode, etc. modeled as Synchronous
Data Flow (SDF) graphs [1] in terms of pre-characterized Function Implementa-
tions (FIMPs). SYLVA [2] is a system level hardware synthesis framework under
development in our group. Currently, SYLVA only supports acyclic SDF. It ex-
plores the design space in terms of a) number and type of FIMPs, b) number of
buffers for each FIMP, and c) pipeline parallelism among them. It also automat-
ically generates the global interconnect and control logic to glue the FIMPs and
buffers together into a working system. The design flow based on SYLVA has
four steps of which the first two are the focus of this paper. 1) SDF to HSDF con-
version 2) Design Space Exploration (DSE) 3) Global interconnect and control
synthesis, and 4) Code generation

The key difference with the existing work on CP methods for scheduling tasks
on processors, e.g. [3], is that of hardware synthesis vs. software compilation.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 846–861, 2014.
c© Springer International Publishing Switzerland 2014



Constraint Programming in System Level Synthesis Framework 847

Processors can host multiple tasks that are scheduled. In the hardware synthesis
case (SYLVA), a FIMP (corresponding to a processor) is a dedicated hardware
implementation for a specific function like FFT and only one instance of it can
be executed at a time. The scheduling in the context of SYLVA is the relative
ordering of the HSDF nodes that are mapped to FIMP instances. The relative
order decides the number of FIMPs but not the type. The type selection has
been formulated as a CP problem.

Another key difference is that in software compilation, the critical path is
known because the arithmetic parallelism of each task is fixed because the pro-
cessor hardware is fixed. Whereas in case of SYLVA, critical path is not fixed.
It depends on the FIMP types that the CP tool evaluates as part of the design
space exploration. FIMP types vary in the degree of arithmetic parallelism and
can change the total number of cycles that a particular path takes.

1.1 SDF to HSDF Conversion

In this step, the system modeled as SDF graph is converted into a Homogeneous
SDF (HSDF) graph [1].

An SDF graph is a directed graph S = {A,E}. Each vertex is called an actor
a ∈ A that represents a DSP function. The number of data tokens produced or
consumed by each actor on each invocation is specified a priori. Each communi-
cational edge e ∈ E represents a data dependency between two actors. By this
definition, two communicating actors as (the source) and ad (the destination)
may have different producing and consuming data rates (data token per invoca-
tion). Therefore, as and ad have to be invoked at different frequencies to match
the data rate of each other. An example SDF graph with four actors is shown
in Fig. 1(a), where a, b, c, and d are names of four DSP functions and the data
rates are not matched at all.
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Fig. 1. SDF to HSDF Conversion
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An HSDF graph in this article is an SDF graph that all the data rates for all
data producer and consumer actor pairs are matched as formulated in 1, where
se and de are the source and destination actors for edge e, respectively.

se = de ∀e ∈ E (1)

Each HSDF actor represents an execution of a DSP function, while each SDF
actor represents a DSP function. And the SDF to HSDF conversion will increase
the number of nodes. For example, the SDF graph shown in Fig. 1(a) can be
converted into the HSDF graph with 11 actors shown in Fig. 1(b), where a0
is an execution of a, {b0, b1} are two executions of b, {c0, c1, c2, c3} are four
executions of c and, {d0, d1, d2, d3} are four executions of d.

SDF to HSDF Conversion can be done by finding the null space of the
topology matrix [1]. In SYLVA, we compute the null space by solving a simple
Constraint Satisfaction Problem (CSP). The number of variables equals to the
number of actors (|A|) in the original SDF graph. The possible values of each
variable are set to integers from 1 to 232 − 1. Although the number of possible
values is large, experience shows that only a few branches are enough to get the
result. For all the experiments in this article, one branch is enough to get the
number of SDF actor repetitions and the solver runtime is similar to computing
the null space using C# program. The details of the CSP modeling and solving
can be found in section 3.

1.2 Design Space Exploration (DSE)

After the first step, we have a number of function executions (HSDF actors) to
be implemented by hardware (Function Implementations - FIMPs, which will
be explained later in this subsection). The second step is to find the optimal
system implementation (solution) in a reasonable time. Each solution specifies
the type and number of FIMPs, the number of buffers for each FIMP, and the
cycle accurate schedules for them.

The design space can be quite large, since for each HSDF actor, we need to
determine following parameters: 1) the FIMP instance to execute it (multiple
HSDF actors may share the same FIMP instance in a time-multiplexing fashion)
2) the buffer usage (if each function execution has its own output buffer or not),
and 3) the cycle accurate execution schedule (when to start function execution
to achieve the desired parallelism) The total number of solutions is the size of
the design space |D| and it can be calculated by 2.

|D| =
|A|−1∏

i=0

(2Mi · (Tmax − ti · fi)). (2)

|A| is the number of SDF actor.Mi is the number of possible FIMPs for the ith
SDF actor (ai). The term 2Mi represents the decision of having output buffer for
each HSDF actor or each FIMP instance. Tmax is the maximum system latency
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constraint and ti is a horizontal vector that contains the execution times for all
the FIMPs for ai. The jth element in ti is the execution time of the jth FIMP
for ai. fi is a vertical vector that represents the FIMP assignment decision. The
values of each element in fi can be only 1 or 0 and only one element equals 1
(∀i fi ∈ {0, 1} and

∑
fi = 1). The jth element represents the decision of using

the jth FIMP (1) or not (0) to implement ai. The term Tmax − ti · fi represents
the number of possible schedules. In most of the cases, we have more freedom
on the schedule side and less freedom on the FIMP type selection side.

If |A| = 10, Mi = 5 for all actors, Tmax = 100 and all FIMPs have the same
execution time of 10 clock cycles (∀i ti · fi ≡ 10), the total number of solutions
|D| will be (2 ∗ 5 ∗ (100 − 10))10 = 90010 = 3.49 × 1029. In this example, the
schedule term 100 − 10 contributes much more than the FIMP type selection
term 2 ∗ 5. The Constraint Satisfaction Optimization Problem (CSOP) model
will be explained in detail in section 3.

FIMP represents an implementation of a DSP function in terms of three views:
interface view, execution view and implementation view. In the rest of this article,
a FIMP in a library is called a FIMP while a FIMP instantiated for executing
one or more HSDF actors is called a FIMP instance.

The interface view provides the unique function name, and the input/output
data structure of the FIMP. The unique function name defines the name of the
DSP function that can be executed by the FIMP. For example, if a FIMP has
name = FFT 64, this FIMP can only be used to execute 64-point FFT function,
i.e. the HSDF actors derived from the SDF actor whose name = FFT 64. The
input and output data structure provides the number of producing/consuming
data tokens on each invocation. Three data structure examples with different
degrees of parallelism are shown in Fig. 2. All of them has 64 data tokens. Each
data token is a 32-bit complex numbers (16-bit fixed point for real and imagi-
nary components). In Fig. 2(a), all 64 numbers are input simultaneously (fully
parallel). In Fig. 2(b), all 64 numbers are input one by one (fully sequential). In
Fig. 2(c), all 64 numbers are input four by four (partially parallel). At present,
two communicating FIMP instances, source and destination, should share same
data structure or an explicit data structure conversion should be applied.

The execution view provides a) the function execution timing model (Fig. 3),
b) the energy consumption in nJ (nanojoule), and c) the area usage in equiv-
alent gate count. The timing model and the energy consumption are for single
execution. In Fig. 3, ts is the FIMP start time. tie is the input end time. All
input data should be read up by the FIMP till tie. tos is the output start time.
From tos, the FIMP starts sending the output data. te is the FIMP end time.
Everything is done for one execution till te. tie, tos and te are relative times
referring to ts. All of these times are in number of clock cycles and used in the
CSOP model.

The implementation view provides a) the implementation style (e.g. ASIC,
FPGA, or a specified CGRA) and b) the implementation template (e.g.
VHDL code, CGRA configware) for the computation and the output buffer.
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Fig. 3. Function Execution Timing Model

For example, the implementation view of an 64-point FFT can be either a com-
putation core with SRAM in VHDL for ASIC or a MATLAB function for a
CGRA to be compiled by the CGRA specific compiler to a configware. This
view is not involved in DSE.

Cycle accurate schedule defines the execution schedule of an HSDF actor on
a FIMP instance. It consists of a function execution timing model (in terms of
ts, tie, tos and te) and an output buffer end time tbe (when the output buffer
is released by the data consumer HSDF actor). For example, the HSDF in Fig.
1(b) can have the cycle accurate schedule shown in Fig. 4(a) and (b).

Fig. 4 also illustrates the influence of the output buffer on the FIMP execution
schedule. In Fig. 4(a), the FIMP instance B0 has only one data buffer. Therefore,
the second execution of B0, which is HSDF actor b1, cannot start until the output
buffer of B0 is released by FIMP instance C0 and C1 (HSDF actors c0 and c1).
The overall system latency is 22 clock cycles. In Fig. 4(b), each of the HSDF
actors that are executed by FIMP instance B0 has its own data buffer. In this
case, b1 can start directly after b0. The overall system latency becomes 20 clock
cycles. The decision of having output buffer for each FIMP instance or each
HSDF actor is made be solving the DSE CSOP problem.

1.3 Other Steps

In these steps, the FIMP interconnection and control logics are automatically
generated. and the final system implementation is generated. The details can be
found in [4] and [5].
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Fig. 4. Cycle Accurate Schedule Example

2 Why Choose Constraint Programming

SYLVA is a research project in which new ideas are constantly emerging and
we need a system which enables a high level formal modeling of the problem
with minimal effort. This led us to choose the Constraints Programming (CP)
framework. Specifically, we list three main motivations:

1) CP has much lower modeling complexity compared with other approaches.
2) CP is suitable for solving scheduling problems, which is critical for us.
3) CP is easy to integrate with other components (e.g. code generator).

2.1 Low Modeling Complexity

CP model supports logical constraints (e.g. logical AND and logical OR) and
a full range of arithmetic expressions such as minimum, maximum, or an ex-
pression which indexes an array of values by a decision variable. By using CP,
constraints can be easily ported from the specification in human language to the
solver supported format. In contrast, if we use another approach (e.g. integer
linear programming, simulated annealing, genetic algorithm or any other evolu-
tionary algorithms) we need to model the problem in a more complex manner
and also define the searching strategy in detail. For example, if integer linear
programming is used, we need to formulate the constraints by using linear equa-
tions or inequalities, and we cannot use a variable to index another variable
or perform logical operations. If an evolutionary algorithm is used, we need to
model the problem as well as define the searching strategy by assigning parame-
ters for searching (e.g. randomness simulated annealing or mutation function in
genetic algorithm). These parameters have strong impact on the quality of the
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result and the time required for searching. Finding a good search parameter is
in itself a complex problem and there are no default values to be used. If CP
is used, the modeling is much more flexible than other approaches and we can
benefit from the default constraint propagator and searching strategies.

The low modeling complexity of CP gives us the opportunity to have very
fast prototyping and high maintainability. We could try out our new ideas and
set up new experiments just by adding/deleting/modifying a few constraints or
selecting another search strategy among the built ones. For example, finding
an ASAP (As Soon As Possible) schedule can be achieved by searching from
the lowest value, and finding an ALAP (As Late As Possible) schedule can be
achieved by searching from the largest value.

2.2 Suitable for Scheduling Problem

As stated in section 1, the schedule term (Tmax − ti · fi in 2) contributes much
more than the FIMP type selection term (2Mi in 2) to the number of solutions
(|D|). Since CP is suitable for finding solutions to scheduling problems, it is
suitable in our case.

2.3 Easy to be Integrated

Since CP is a programming paradigm and it is rooted in computer science, a
CP solver usually has interfaces to a number of programming languages. For
example, in the SYLVA project, we choose the CP solver from Google’s or-tools
[6]. It has interfaces to C++, JAVA, Python and C#. Another popular solver
GECODE [7] has interfaces to ECLiPSe, AMPL, YAP Prolog, Python, Haskell,
Ruby and Common Lisp.

In our case, most of the SYLVA components are implemented in C#. If the
DSE problem modeling and solving is also implemented in C#, model trans-
lation (converting CSOP model in C#to the format the solver supports) and
the resulting deserialization (converting CSOP solution to an C#object) can be
eliminated.

3 Constraint Satisfaction Optimization Problem Model

In SYLVA, we have two Constraint Satisfaction Optimization Problem (CSOP)
models. The first one (named as P1) is for the SDF to HSDF conversion. The
other one (named as P2) is for the Design Space Exploration (DSE). In the rest of
this section, we use the following annotations. The number of actors in the SDF
graph is denoted as |A| and the number of edges in the SDF graph is denoted as
|E|. The ith SDF actor is denoted as ai and the jth SDF edge is denoted as ej .

3.1 P1, SDF to HSDF Conversion

Variables in P1 are the set of function execution countsX . The ith variable xi ∈
X represents the number of executions of the ith SDF actor ai. ∀i xi ∈ N≥0
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(N≥0 stands for Natural number that greater or equal to zero). The number of
variables |X | equals to the number of SDF actors |A|. In our model, we constraint
the possible values to be less than 232−1. Although the number of possible values
is large, the constraints will result in a small amount of branches when solving
P1, since we only need the simplest valid solution. It can be found by taking
the smallest value in the domain of the variable associated with the root node,
propagating this choice and iterating. For example, the conversion in Fig. 1 only
has one branch.

Constraints in P1 are such that all edges have matched data rate. Denoting
the set of constraints of P1 as C1, the number of constraints |C1| equals to the
number of SDF edges |E|.

Before explaining the implementation of the constraints, we need to introduce
topology matrix T . T is a |E| × |A| matrix. Each row of T represents one edge
and each column of T represents one SDF actor. The ith row of T is denoted
as Ti and the jth element in Ti is denoted as Ti,j. Ti,j is the number of data
tokens produced or consumed by the jth SDF actor aj on the ith edge ei. Also
denoting as,i as the source actor in ei and ad as the destination actor in ei, the
value of Ti,j is defined in 3.

Ti,j =

⎧
⎪⎨

⎪⎩

si aj = as,i

−di nj = ad,i

0 nj �= as,i and nj �= ad,i

(3)

The SDF to HSDF conversion constraint can be expressed by 4.

X · Ti = 0 ∀ 0 ≤ i < |A| (4)

For example, the topology matrix T of the SDF graph illustrated in Fig. 1(a)
is listed in 5. The first row is for the edge from a to b. The second row is for the
edge from d to b. The last row is for the edge from b to c. The solution for the
SDF graph shown in Fig. 1(a) is v1 = [1, 2, 4, 4].

P =

⎡

⎣
2 −1 0 0
0 −2 0 1
0 2 1 0

⎤

⎦ (5)

HSDF Construction can be done by the pseudo-code shown in Algorithm 1.
It has two steps. The first step (line 6 to 8) is to create HSDF actors based on the
value of X . The second step (line 9 to 31) is to create edges based on the original
SDF graph. Note that in this article, we assume that we only have multiple source
actors to single destination actor or single source actor to multiple destination
actors data communications. It is formulated by 6, where xs,i and xd,i are the
number of executions of the source and destination actors for ei.

(xs,i − �xd,i/xs,i	 · xs,i) · (xd,i − �xs,i/xd,i	 · xd,i) ≡ 0 ∀ 0 ≥ i < |E| (6)
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3.2 P2, Design Space Exploration

In the current development stage, the number of used FIMP instances is not
decided using CP but an exhaustive search. All the load balanced SDF schedules
(which FIMP for which HSDF actors) are checked from the most parallel one
(each FIMP instance executes one HSDF actor) to the most serial one (each
FIMP instance executes all HSDF actors for the same SDF actor).

The load balance is defined as that HSDF actor executions should be dis-
tributed equally or approximately equally on proper FIMPs. It is formulated by
7, where Ai,f is the set of HSDF actors to be executed by the fth FIMP for
SDF actor ai and Fi is the set of FIMP instances for executing all HSDF actors
derived from ai.

0 ≤ |Ai,f | − �xi/|Fi|	 ≤ 1 ∀ 0 ≤ i < |A| and 0 ≤ j < |Fi| (7)

The algorithm to generate the load balanced SDF schedules is shown in Al-
gorithm 2 line 1 to 10. The used functions: PossibleNumbers, Modify and
Generate are defined in line 12 to 23. Each SDF schedule produced by the
Generate function is for further design space exploration.

Variables in P2 are denoted as V and it has four parts, which are FIMP type
selection matrix FT , buffer usage indicator vector BU , execution start time
vector Ts and buffer end time vector Tbe.

The first part FT represents the FIMP types. FT is a Mmax × |A| matrix,
where Mmax is the maximum number of FIMPs for implementing one function.
The ith row fti represents the FIMP type selection vector for SDF actor ai. The
possible values of the elements in FT are 0 (the FIMP is not used) or 1 (the
FIMP is used). All the FIMP instances for the same SDF actor are in the same
FIMP type. For the SDF graph example in Fig. 1(a), if the numbers of possible
FIMPs to implement actors [a, b, c, d] are [4, 3, 2, 5]. Thus, Mmax = 5.

The second part BU represents the output buffer usage. The ith element is
bui and it represents the buffer usage for SDF actor ai. BU is a vector with |A|
elements. The value of each element in BU can be 0 (one FIMP has one output
buffer) or 1 (one HSDF actor has one buffer).

The third part Ts represents the execution start time for all HSDF actors.
It is a vector and |Ts = |AH . For the ith element ts,i in Ts, its value is set to
integers from 0 to Tmax − ti,max, where ti,max is the maximum execution time
of ai and it is determined by the FIMP types for implementing ai. Since other
time values (tie, tos and te in Fig. 3) are in constant relation to ts, we do not
need to search them as well.

The fourth part Tbe represents the time to free the output buffer of each HSDF
actor. It is a vector and |Tbe = |AH . The ith element in Tbe is denoted as tbe,i
and its value can be integers from 0 to Tmax − 1.

Therefore, |V | = Mmax · |A| + |A| + |AH | + |AH |. In the example shown in
Fig. 1, |V | = 5 ∗ 4 + 4 + 10 + 10 = 44.
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Algorithm 1. HSDF Construction

1: A is the actor set of the SDF graph
2: E is the edge set of the SDF graph
3: AH is the actor set of the HSDF graph
4: EH is the edge set of the HSDF graph
5: initialize AH = EH = empty array
6: for all actor ai in A do
7: for j in 0 to xi − 1 do
8: AHi,j = ai

9: for all edge ei in E do
10: p is the index of the source actor as in ei
11: q is the index of the destination actor ad in ei
12: si is the number of source data token of ei
13: di is the number of destination data token of ei
14: if xs > xd then
15: for j in 0 to xd − 1 do
16: for k in 0 to xs/xd − 1 do
17: add a new edge en to EH

18: sn is the number of source data token of en
19: dn is the number of destination data token of en
20: as of en is AHp,j∗xs/xd+k]
21: ad of en is AHq,j

22: sn = dn = si
23: else
24: for j in 0 to xs − 1 do
25: for k in 0 to xd/xs − 1 do
26: add a new edge en to E
27: sn is the number of source data token of en
28: dn is the number of destination data token of en
29: as of en is AHp,j

30: ad of en is AHq,j∗xd/xs+k]
31: sn = dn = di

Constraints in P2 can be sorted into six categories. They are automatically
generated based on the user input.

1. The first category is data dependency for execution. A function can only
start its execution after all the dependent functions are complete. For example
in Fig. 4, the actor b0 should start execution after actor a0 is complete. This
category of constraints is formulated in 8, where ts,d is the execution start time
of the destination HSDF actor and te,s is execution end time of the source HSDF
actor. For the example, it is expressed as ts,b0 > te,a0 .

ts,d > te,s ∀ edges in EH . (8)

There are |EH | number of constraints in this category. |EH | is the number of
edges in the HSDF graph.
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Algorithm 2. HSDF Schedule

1: A is the actor set of the SDF graph
2: F is the FIMP instance set for the SDF graph
3: ∀ 0 ≤ i < |A|, Fi is the set of FIMP instances used for ai

4: Fmax is the set of maximum numbers of FIMP instances used for A
5: for all actor ai in A do
6: Fmax,i = xi

7: for all actor ai in A do
8: |Fi| = Fmax,i

9: for all n in PossibleNumbers(Fmax,i) do
10: Modify(i, n)
11: Generate()

12:
13: PossibleNumbers(u):
14: output an array of numbers {n | 0 < n ≤ u and �u/n� ∗ n = u}
15:
16: Modify(i, n):
17: if |Fi| > n then
18: ratio r = Fi/n
19: for all actor aj in A do
20: Fi = �Fi/r�
21:
22: Generate():
23: for all actor ai in actor set of the SDF graph do
24: equally and linearly assign HSDF actors that are derived from ai to Fi FIMPs

2. The second category is data dependency for output buffer. The producing
and consuming actors cannot output and input at the same time to/from the
output buffer. For example in Fig. 4, the actor b0 should complete its input
phase before the buffer end time of actor d0. This category of constraints is
formulated in 9, where tie,d is the input end time of the destination HSDF actor
and tbe,s is output buffer end time of the source HSDF actor. For the example,
it is expressed as tie,b0 ≤ tbe,d0 .

tie,d ≤ tbe,s ∀ edges in EH . (9)

There are |EH | number of constraints in this category.
3. The third category is resource dependency for execution. Only one actor

can be executed on a FIMP instance at a time. For example in Fig. 4, the actor
b1 should start execution after actor b0 is complete. This category of constraints
is formulated in 10. Ai,j is the HSDF actors that are executed on the jth FIMP
instance for executing SDF actor ai. ts,p+1 is the execution start time for the
actor ap+1, which is the p+ 1th actor in Ai,j . te,p is the execution end time for
actor ap, which is the pth actor in Ai,j . For the example in Fig. 4, Ad,1 has d2
and d3, and both of them are executed on FIMP instance D1.

ts,p+1 > te,p ∀ ap ∈ Ai,j . (10)
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There are |AH |−|F | number of constraints in this category. |AH | is the number
of HSDF actors and |F | = ∑

Fi (0 ≤ i < |A|) is the total number of used FIMP
instances and it is determined in the HSDF scheduling step.

4. The fourth category is resource dependency for output buffer. One output
buffer can only be written by one HSDF actor at a time. For example in Fig.
4(a), the actor b1 cannot start writing data into the output buffer before it is
freed by c0 and c2. This category of constraints is formulated in 11. tos,p+1 is
the output start time for the actor ap+1, which is the p+1th actor in Ai,j . tbe,p
is the output buffer end time for actor ap, which is the pth actor in Ai,j . Ai,j

is the HSDF actor set that is derived from the SDF actor ai and executed on
the jth FIMP instances ai. For the example in Fig. 4(a), tos,b1 should be larger
than tbe,b0 since no extra buffer is used (bub = 0). While in Fig. 4(b), tos,b1 can
be smaller than tbe,b0 since extra buffer is used (bub = 1). There are |AH | − |F |
number of constraints in this category.

(tos,p+1 > tbe,p or bui) = True ∀ ap ∈ Ai,j . (11)

5. The fifth category is cost constraints. There are area, energy and timing
cost constraints.

The total area usage AREA can be computed by 12, where |Fi| is the number
of FIMP instances for executing SDF actor ai, areai is a vector that represents
the area usage for all the FIMPs for executing SDF actor ai and fti is the ith
row of FT (FIMP type variables for ai). The term areai · fti is the area usage
for the used FIMP instance for ai.

AREA =

|A|−1∑

i=0

(|Fi| · areai · fti). (12)

The total energy cost ENERGY can be computed by 13, where energyi is a
vector that represents the energy cost for all the FIMPs for executing SDF actor
ai. The term energyi · fti is the energy cost for one execution of ai.

ENERGY =

|A|∑

i=0

(xi · energyi · fti). (13)

The timing costs consist of system latency LATENCY (the time between the
first input data token is consumed till the last output data token is produced)
and system sample interval INTERVAL (the time for one system iteration).
They can be computed by 14 and 15, respectively. AH is the actor set of the
HSDF graph. aq and a0 are the last and the first HSDF actor, respectively, in
Ai,j , which is a actor set containing all HSDF actors that are derived from SDF
actor ai and executed on the jth FIMP instance for ai.

LATENCY = max(te,p) ∀ ap ∈ AH (14)

INTERVAL = max(tbe,q − tos,0, te,q − ts,0) ∀ aq, a0 ∈ Ai,j (15)
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In the example shown in Fig. 4(a), LATENCY = 22 and INTERVAL = 14.

INTERVAL = max(te,a0 − ts,a0 , tbe,a0 − tos,a0 , ...)

= max(6, 7− 4, 13− 2, 14− 4, 17− 6, 21− 7)

= max(6, 3, 11, 10, 11, 14) = 14

The area, energy and timing cost constraints are shown in 16.

AREA ≤ Amax,
ENERGY ≤ Emax,
LATENCY ≤ Tmax,
INTERVAL ≤ Rmax.

(16)

In SYLVA, providing values to Amax, Emax, Tmax and Rmax is optional. If
any of them is not provided by user, the default value 264−1 will be used. There
are 4 constraints in this category as shown in 16.

6. The sixth category is the FIMP type constraint. Only one FIMP can be
used to implement an SDF actor ai. This constraint is shown in 17, where fti,j
is usage of the jth FIMP for implementing ai

Mmax∑

j=0

fti,j = 1 ∀ 0 ≤ i < |A| (17)

There are |A| number of constraints in this category.
The number of constraints in P2 is |C2| = 2 · |EH |+2 · (|AH | − |F |) + 4+ |A|.

In the example shown in Fig. 1, |C2| = 2 ∗ 10 + 2 ∗ 6 + 4 + 4 = 40.

Optimization Objective is to minimize the total cost C, which is calculated
by 18. KA, KE , KT and KR are four predefined constants for optimizing the
solution in terms of area usage, energy cost, system latency and system sample
interval, respectively. They can be provided by user or be the default value ([0,
1, 0, 0] for [KA, KE , KT , KR]).

C = KA ·AREA+KE ·ENERGY +KT ·LATENCY +KR ·INTERV AL (18)

3.3 Solving CSOPs

In SYLVA, P1 and P2 are modeled and solved in C# by using the CP solver in or-
tools from Google. For branching strategy, we set the solver to always select the
first unbound variable (INT VAR DEFAULT) and assign the minimum possible
value first (ASSIGN MIN VALUE).

The efficiency and efficacy of SYLVA are evaluated by synthesizing five ex-
amples (Fig. 5): 1) a sub-system composed of two FIR filters feeding an FFT, 2)
a correlation pool (part of UMTS rake receiver), 3) a sigma delta demodulator,
4) a JPEG Encoder for 1920 × 1080, and 5) a simplified MPEG2 Encoder for a
720 × 480 @25 frames per second.
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Fig. 5. Examples for Experiments

The individual components of the SYLVA flow have been implemented in
C# and integrated at script level. This script was invoked for each of the five
examples (in the form of SDF graphs) with the maximum sampling interval
(Rmax) and the maximum total latency (Tmax) as command line parameters.
The experimental result shows that on average, the SYLVA runtime for the five
examples are 15s, 13s, 20s, 74s, and 97s, respectively, and for all the examples,
only one branch is required to find the SDF repetition vectors. They are much
faster than the commercial high level synthesis tool we compared with. SYLVA
gets speed advantage compared to commercial synthesis tools because of its use
of very large grain design objects (FIMPs) that are 2-3 orders smaller than the
objects used by commercial tools. This dramatically reduces the design space
for SYLVA. The details of the quality of result comparison can be found in [2].

4 Conclusion and Future Work

4.1 Development Cost

Learning Cost: Before coding SYLVA, one of the authors has taken a CP
course, which lasts for two months. The author also spent an additional month
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to get familiar with the C# port of the CP solver in Google’s or-tools. Time
Cost:By using CP, the first SYLVA release came out after one month of intensive
coding in C#. The time spent on the Design Space Exploration (DSE) CSOP
model is only one week and it includes coding, debugging and experimenting. By
using CP, modifying and maintaining the DSE model are quite straightforward
and simple. We only need to add/remove/modify the concerned constraints.
Software Cost: The used software copies are all free. The text editor and or-
tools from Google are free software and the Windows SDK is also free to use.

4.2 Usage Difficulty

Using SYLVA to synthesize a system SDF graph into a hardware description is
quit simple and does not require any knowledge of CP. The user is required to
provide an SDF graph. Providing Amax, Emax, Tmax, Rmax, KA, KE, KT and
KR are all optional. In most of the cases of hardware design, the final system
implementations should be optimized to have minimal area or energy. In this
case, KA and KE should be 1, while KT and KR are 0’s.

4.3 Conclusion

By using CP, we saved a lot of time on implementing the model of the problem.
Compared to other approaches, e.g. integer linear programming or evolutionary
algorithms, CP provides a straightforward framework for modeling and solving
problems. After three months of non-intensive learning of CP fundamentals and
a CP solver, we were able to write a complex CSOP model, which has four
categories of variables and six categories of constraints in a short time. We hope
the work in this article could serve as a good application example of CP.

4.4 Future Work

Currently, we are updating SYLVA to support more features, such as scenario-
aware SDF that supports dynamic streaming and signal processing applications,
and I/O data structure matching that match not only the number of data tokens
but the data structure of the data tokens to improve the timing performance of
the system.
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