
Adaptive Parameterized Consistency

for Non-binary CSPs by Counting Supports�

Robert J. Woodward1,2, Anthony Schneider1, Berthe Y. Choueiry1,
and Christian Bessiere2

1 Constraint Systems Laboratory, University of Nebraska-Lincoln, USA
{rwoodwar,aschneid,choueiry}@cse.unl.edu

2 CNRS, University of Montpellier, France
bessiere@lirmm.fr

Abstract. Determining the appropriate level of local consistency to en-
force on a given instance of a Constraint Satisfaction Problem (CSP) is
not an easy task. However, selecting the right level may determine our
ability to solve the problem. Adaptive parameterized consistency was re-
cently proposed for binary CSPs as a strategy to dynamically select one
of two local consistencies (i.e., AC and maxRPC). In this paper, we pro-
pose a similar strategy for non-binary table constraints to select between
enforcing GAC and pairwise consistency. While the former strategy ap-
proximates the supports by their rank and requires that the variables
domains be ordered, our technique removes those limitations. We em-
pirically evaluate our approach on benchmark problems to establish its
advantages.

1 Introduction

There is an abundance of local consistency techniques of varying cost and prun-
ing power to apply to a Constraint Satisfaction Problem (CSP), but choosing
the right one for a given instance remains an open question. In a portfolio ap-
proach [22,11,7], we typically choose a single consistency level and enforce it on
the entire problem (or a subproblem). Heuristic-based methods have been pro-
posed to dynamically switch, at various stages of search and depending on the
constraint, between a weak and a strong level of consistency, AC and maxRPC
for binary CSPs [20] and GAC and maxRPWC for non-binary CSPs [18]. The
above-mentioned approaches do not allow us to enforce different levels of consis-
tency on the values in the domain of the same variable. To this end, Balafrej et
al. introduced adaptive parameterized consistency, which selects, for each value
in the domain of a variable, one of two consistency levels based on the value of a
parameter [1]. That parameter is determined by the rank of the support of the
value in a constraint (assuming a fixed total ordering of the variables’ domains),

� This research was supported by NSF Grant No. RI-111795 and EU project ICON
(FP7-284715). Woodward was supported by an NSF GRF Grant No. 1041000 and a
Chateaubriand Fellowship. Experiments were conducted on the equipment of the Holland
Computing Center at the University of Nebraska–Lincoln.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 755–764, 2014.
c© Springer International Publishing Switzerland 2014

756 R.J. Woodward et al.

and updated depending on the weight of the constraint [5]. Their study targeted
enforcing AC and maxRPC on binary CSPs.

In this paper, we extend their mechanism to enforcing GAC and pairwise-
consistency on non-binary CSPs with table constraints. Our approach is based
on counting the number of supporting tuples, which is automatically provided
by the algorithms that we use. Thus, we remove the restriction on maintaining
ordered domains and the approximation of a support’s count by its rank. We
establish empirically the advantages of our approach.

The paper is structured as follows. Section 2 provides background informa-
tion. Section 3 describes our approach, and Section 4 discusses our empirically
evaluation on benchmark problems. Finally, Section 5 concludes the paper.

2 Background

We first summarize the main concepts and definitions used.

2.1 Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is defined by a tuple (X ,D, C), where
X is a set of variables, D is a set of domains, and C is a set of constraints. Each
variable xi ∈ X is associated a finite domain dom(xi) ∈ D. We denote a variable-
value pair as 〈xi, vi〉, where vi ∈ dom(xi). Each constraint cj ∈ C is defined in
extension by a relation Rj specified over the scope of the constraint, scope(cj),
which is the set of variables to which the constraint applies. For readability,
we refer to the scope of a relation scope(Rj) = scope(cj). A tuple τ ∈ Rj is a
combination of allowed values for the variables in scope(Rj). τ [xi] is the value
that the variable xi takes in τ . We denote cons(xi) as the set of constraints that
apply to variable xi, and neigh(cj) the set of constraints whose scopes overlap
with cj . When |scope(cj)| = 2, cj is said to be a binary constraint, otherwise,
it is non-binary. A solution to the CSP assigns, to each variable, a value taken
from its domain such that all the constraints are satisfied. Deciding the existence
of a solution for a CSP is NP-complete.

2.2 Local Consistency Properties

CSPs are typically solved with backtrack search. To reduce the severity of the
combinatorial explosion, CSPs are usually filtered by enforcing a given local
consistency property [2].

A variable-value pair 〈xi, vi〉 has an arc-consistent support (AC-support)
〈xj , vj〉 if the tuple (vi, vj) ∈ Rij where scope(Rij) = {xi, xj} [16,3]. A CSP is
arc consistent if every variable-value pair has an AC-support in every constraint.
Generalized Arc Consistency (GAC) generalizes arc consistency to non-binary
CSPs [16]. 〈xi, vi〉 has a GAC-support in constraint cj if ∃τ ∈ Rj such that
τ [xi] = vi. A CSP is GAC if every 〈xi, vi〉 has a GAC-support in every con-
straint in cons(xi). GAC can be enforced by removing domain values that have

Adaptive Parameterized Consistency for Non-binary CSPs 757

no GAC-support, leaving the relations unchanged. Simple Tabular Reduction
(STR) algorithms not only enforce GAC on the domains, but also remove all
tuples τ ∈ Rj where ∃xi ∈ scope(Rj) such that τ [xi] /∈ dom(xi) [21,13,14].

A CSP is m-wise consistent if, every tuple in a relation can be extended to
every combination of m−1 other relations in a consistent manner [8,10]. Keeping
with relational-consistency notations, Karakashian et al. denoted m-wise consis-
tency by R(∗,m)C, and proposed a first algorithm for enforcing it [12]. Their
implementation finds an extension (i.e., support) for a tuple by conducting a
backtrack search on the other m− 1 relations, and removes the tuples that have
no support. After all relations are filtered, they are projected onto the domains of
the variables. Pairwise consistency (PWC) corresponds to m=2, R(∗,2)C≡PWC.
Lecoutre et al. introduced the algorithm extended STR (eSTR) [15], which en-
forces PWC on a CSP using the STR mechanism [21]. eSTR maintains counters
on the intersections of two constraints to determine if a tuple is pairwise consis-
tent or not. In this paper, we enforce PWC using the algorithm for R(∗,2)C [12],
and not eSTR, because it is prohibitively expensive to continuously maintain the
counters of eSTR in a strategy where PWC is only selectively enforced.

2.3 Adaptive Parameterized Consistency

Balafrej et al. introduced the distance to the end of value vi for variable xi as:

Δ(xi, vi) =
|domo(xi)| − rank(vi, dom

o(xi))

|domo(xi)|
where domo(xi) is the original, unfiltered domain of xi, and rank(vi, dom

o(xi))
is the position of vi in the ordered set domo(xi) [1]. In Figure 1, borrowed from
[1], Δ(x2, 1) = 0.75, Δ(x2, 2) = 0.50, Δ(x2, 3) = 0.25, and Δ(x2, 4) = 0.00.

Further, for a given parameter p, they defined 〈xi, vi〉 to be p-stable for AC
for cij where scope(cij) = {xi, xj} if there exists an AC-support 〈xj , vj〉 with
Δ(xj , vj) ≥ p for cij . Figure 1 illustrates an example for the constraint x1 ≤ x2

with p = 0.25. 〈x1, 1〉,〈x1, 2〉,〈x1, 3〉 are all 0.25-stable for AC for the constraint,
but 〈x1, 4〉 is not, because its only AC-support, 〈x2, 4〉, has distance 0.

x1

1

2

3

4

x2

1

2

3

4

p=0.25

ac support

(4-1)/4 = 0.75

(4-2)/4 = 0.50

(4-3)/4 = 0.25

(4-4)/4 = 0.00

Δ (x2,vi)

Fig. 1. The constraint x1 ≤ x2. 〈x1, 4〉 is not 0.25-stable for AC [1]

The parameterized strategy p-LC [1] enforces, on each variable-value pair,
either AC or some local consistency (LC) property strictly stronger than AC

758 R.J. Woodward et al.

depending on the value of the parameter p. The idea is to enforce LC only on
the variable-value pairs with few supports, approximated with the rank (< p)
of the first found AC-support. We focus on the constraint-based version, pc-LC,
where 〈xi, vi〉 is pc-LC if for every constraint cj ∈ cons(xi), 〈xi, vi〉 is p-stable
for AC on cj or 〈xi, vi〉 is LC on cj . In pc-LC, the value of p is given as input. In
the adaptive version, apc-LC, it is dynamically determined for each constraint cj
using the weight of cj , w(cj), which is the number of times cj caused a domain
wipe-out like in the variable-ordering heuristic dom/wdeg [5]:

p(cj) =
w(cj)−minck∈C(w(ck))

maxck∈C(w(ck))−minck∈C(w(ck)) + 1
. (1)

In [1],apc-maxRPCwas experimentally shown to outperformACandmaxRPC [6].

3 Modifying apc-LC for Non-binary CSPs

For binary CSPs, p-stability for AC of 〈xi, vi〉 estimates how many supports
are left for 〈xi, vi〉 in other constraints using the rank of the AC-support in the
corresponding domain. This estimate should not directly applied to non-binary
table constraints because the GAC-support of 〈xi, vi〉 is a tuple in a relation
that is unsorted, which would make the estimate way too imprecise. Consider
the example with 〈xi, vi〉 and a relation Rj of 100 tuples. Assume that the only
tuple τ ∈ Rj supporting 〈xi, vi〉 appears at the top of the table of Rj . The
estimate would indicate that there are many supports for 〈xi, vi〉 because there
are 99 tuples that appear after it. However, in reality, 〈xi, vi〉 has a unique
support. Below, we introduce p-stability for GAC, which counts the number
of supports for each variable-value pair. Then, we introduce a mechanism to
compute p-stability for GAC, and finally give an algorithm for enforcing apc-
LC, which adaptively enforces STR or LC. In this paper, we study R(∗,2)C as
LC, and discuss the implementation of apc-R(∗,2)C.

3.1 p-Stability for GAC

We say that 〈xi, vi〉 is p-stable for GAC if for every constraint cj ∈ cons(xi),
|σxi=vi(Rj)|

|Ro
j |

≥ p(cj),

where σxi=vi(Rj) selects the tuples in Rj where 〈xi, vi〉 appears, and Ro
j is the

original, unfiltered relation. A CSP is p-stable for GAC if every variable-value
pair is p-stable for GAC for every constraint that applies to it.

Figure 2 gives the relation for the constraint x1 ≤ x2. 〈x1, 1〉 and 〈x1, 2〉 are
0.25-stable for GAC. Indeed, σx1=1 returns four rows {0, 1, 2, 3} in the table, and
〈x1, 1〉 is 0.25-stable: 4

10 ≥ 0.25. Similarly, 〈x1, 2〉 also is 0.25-stable: 3
10 ≥ 0.25.

〈x1, 3〉 and 〈x1, 4〉 are not 0.25-stable, because 2
10
≥ 0.25 and 1

10
≥ 0.25. This
example illustrates how, on binary constraints, and for a given p, p-stable for
AC does not guarantee p-stable for GAC. (Recall that 〈x1, 3〉 is 0.25-stable for
AC in Figure 1).

Adaptive Parameterized Consistency for Non-binary CSPs 759

x1 x2
0
1
2
3
4
5 2 3
6 2 4
7 3 3
8 3 4
9 4 4

gacSupports[Rj](x1,1)={0,1,2,3}
gacSupports[Rj](x1,2)={4,5,6}
gacSupports[Rj](x1,3)={7,8}
gacSupports[Rj](x1,4)={9}

gacSupports[Rj](x2,1)={0}
gacSupports[Rj](x2,2)={1,4}
gacSupports[Rj](x2,3)={2,5,7}
gacSupports[Rj](x2,4)={3,6,8,9}

Fig. 2. The relation of x1 ≤ x2. 〈x1, 3〉 and 〈x1, 4〉 are not 0.25-stable for GAC.

3.2 Computing p-Stability for GAC

For each constraint cj , we introduce for every 〈xi, vi〉 a set of integers indi-
cating the position of the tuples returned by σxi=vi(Rj), which is similar to the
data structure in GAC4 [17]. We denote this table gacSupports[Rj][〈xi, vi〉]. The
check for p-stable can be verified by using |gacSupports[Rj][〈xi, vi〉]|. Figure 2,
shows the gacSupports[Rj] for the constraint x1 ≤ x2. For each relation, the
space complexity to store each gacSupports[Rj] is O(k · t), where k is the maxi-
mum constraint arity and t is the maximum number of tuples in a relation. The
time complexity to generate gacSupports[Rj] is O(k · t), by iterating through
every tuple.

3.3 Algorithm for Enforcing apc-LC

With the gacSupports data-structure, we can apply STR by verifying, for each
constraint cj , that every variable xi ∈ scope(cj) and vi ∈ dom(xi) has a non-
zero |gacSupports[Rj][〈xi, vi〉]|. Living-STR (Algorithm 1) does precisely this
operation (ignoring Lines 1 and 1, which apply to the apc-LC operation intro-
duced next). past(P) denotes the variables of the CSP P already instantiated by
search, and delTuples(Rk, S, level) deletes all the tuples in the subset S ⊆ Rk,
and marks their removal level at the level of search level. When deleting a
tuple from the relation Rk, ck’s neighboring constraints, neigh(ck), should be
re-queued to be processed with Living-STR. Initially, all constraints are in the
queue. Living-STR is similar to STR3 in that it iterates over variable-value
pairs rather than over tuples. However, it does not use as much book-keeping
for optimizing the number of STR checks as STR3 [14]. Instead, Living-STR
uses the same data structures as STR and STR2(+) to manage tuple deletions
in a relation [13,21].

Including Lines 1 and 1 in Algorithm 1 yields apc-LC, which adaptively ap-
plies LC. The adaptive level p(cj) is defined by Balafrej et al. [1] and recalled
in Equation (1). The local consistency technique used here is the implemen-
tation of R(∗,2)C [12], apc-R(∗,2)C. Apply-R(∗,2)C (Algorithm 2) takes as
input the list of tuples of a constraint on which R(∗,2)C must be enforced.

760 R.J. Woodward et al.

Algorithm 1. Living-STR(ci): set of variables

Input: cj : a constraint of P
Output: Set of variables in scope(cj) whose domains have been modified
Xmodified ← ∅1

foreach xi ∈ scope(cj) | xi /∈ past(P) do2

foreach vi ∈ dom(xi) do3

if |gacSupports[Rj](〈xi, vi〉)| �= 0 and
|gacSupports[Rj](〈xi,vi〉)|

|Ro
j |

�≥ p(cj)4

then
Apply-LC(Rj , gacSupports[Rj](〈xi, vi〉))5

if |gacSupports[Rj](〈xi, vi〉)| = 0 then6

foreach ck ∈ cons(xi) do7

delTuples(ck, gacSupports[Rk](〈xi, vi〉), |past(P)|)8

dom(xi)← dom(xi) \ {vi}9

if dom(xi) = ∅ then throw INCONSISTENCY10

Xmodified ← Xmodified ∪ {xi}11

return Xmodified12

Algorithm 2. Apply-R(∗,2)C(ci, tuples)
Input: ci: a constraint; tuples: a set of tuples from the constraint ci
Output: The tuples are either R(∗,2)C or deleted
foreach τ ∈ tuples do1

foreach cj ∈ neigh(ci) do2

if SearchSupport(Ri, τ, {Rj}) returns inconsistent then3

delTuples(ci, {τ}, |past(P)|)4

SearchSupport(Ri, τ, {Rj}) on Line 2 of Algorithm 2 searches for a support
for the tuple τ ∈ Ri, the pairwise check [12].

Theoretical analysis: Let k be the maximum constraint arity, d the maximum
domain size, and δ the maximum number of neighbors of a constraint. The time
complexity of Algorithm 1 is O(k · d). Algorithm 2 is O(δ · t2) because it makes
O(δ · t) calls to SearchSupport, which is O(t) in our context. The correctness
of Algorithms 1 and 2 can be shown in straightforward manner by contradiction.

4 Empirical Evaluations

The goal of our experimental analysis is to assess if apc-R(∗,2)C effectively selects
when to apply STR and R(∗,2)C when used in a pre-processing step and in a
real full lookahead strategy [9] during backtrack search to find the first solution
to a CSP. In our experiments, we use the variable ordering dom/wdeg [5]. The
experiments are conducted on the benchmarks of the CSP Solver Competition1

1 http://www.cril.univ-artois.fr/CPAI08/

http://www.cril.univ-artois.fr/CPAI08/

Adaptive Parameterized Consistency for Non-binary CSPs 761

with a time limit of two hours per instance and 8 GB of memory. Because STR
and R(∗,2)C enforce the same level of consistency on binary CSPs [4], we focus
our experiments on 21 non-binary benchmarks2 consisting of 623 CSP instances.
We chose these benchmarks because they are given in extension and at least one
algorithm completed 5% of the instances in the benchmark.

Table 1 summarizes the results in terms of number of instances solved. Im-
portantly, apc-R(∗,2)C completes the largest number of instances (552). Consid-
ering the instances solved by all algorithms (485 instances), apc-R(∗,2)C has the
smallest average and median CPU time. Row 3 indicates the number of instances
STR solved but R(∗,2)C and apc-R(∗,2)C did not solve (18 and 11 instances,
respectively), thus showing that apc-R(∗,2)C, although it may have enforced
R(∗,2)C too often, outperformed R(∗,2)C and missed fewer instances than it
(11 vs. 18). Row 4 exhibits similar results showing the number of instances that
R(∗,2)C could solve, but that were missed by STR and apc-R(∗,2)C (64 and 6 in-
stances, respectively). Here, apc-R(∗,2)C did not enforce R(∗,2)C often enough,
but managed to outperform STR missing significantly fewer instances than STR
(6 vs. 64).

Table 1. Number of instances completed by the tested algorithms

STR R(∗,2)C apc-R(∗,2)C
1 #instances completed by 504 550 552
2 #instances completed only by 10 5 0

3 #instances solved by STR, but missed by 0 18 11
4 #instances solved by R(∗,2)C, but missed by 64 0 6
5 #instances solved by apc-R(∗,2)C, but missed by 59 8 0

Average CPU time (sec.) over 458 instances 328.41 378.12 313.31
Median CPU time (sec.) over 458 instances 7.23 17.35 7.21

Table 2 gives a finer analysis of the data, showing the number of completions
and average and median CPU time per benchmark. Averages computed over only
the instances completed by all techniques are shown in the column All. We split
the table into four categories based on the average CPU time of apc-R(∗,2)C:
a) apc-R(∗,2)C performs the best (5 benchmarks); b) apc-R(∗,2)C is compet-
itive, performing between STR and R(∗,2)C (13 benchmarks); c) apc-R(∗,2)C
performs the worst (2 benchmarks); and d) STR does not solve the benchmark
but R(∗,2)C and apc-R(∗,2)C do (1 benchmark). The best average CPU time
appears in bold face in the corresponding column. The median CPU time of
apc-R(∗,2)C is bold faced when its rank differs from that of the average CPU
time (on which the four categorized are based). On TSP-20, apc-R(∗,2)C ranks
bottom on average CPU time but between STR and R(∗,2)C on median CPU
time. On aim-100, jnhUnsat, rand-8-20-5, and ukVg, apc-R(∗,2)C is between
STR and R(∗,2)C for average CPU time, but best for median CPU time.

2 Aim-(50,100,200), allIntervalSeries, dag-rand, dubois, jnh(Sat/Unsat), lexVg,
modifiedRenault, pret, rand-10-20-10, rand-3-20-20(-fcd), rand-8-20-5, ssa,
travellingSalesman-20, travellingSalesman-25, ukVg, varDimacs, wordsVg.

762 R.J. Woodward et al.

Table 2. Results of the experiments per benchmark, organized in four categories

#Completed Average CPU time (sec) Median CPU time (sec)

Benchmark #
In

st
a
n
c
e
s

S
T
R

R
(∗

,2
)C

a
p
c
-R

(∗
,2
)C

A
ll

S
T
R

R
(∗

,2
)C

a
p
c
-R

(∗
,2
)C

S
T
R

R
(∗

,2
)C

a
p
c
-R

(∗
,2
)C

a) apc-R(∗,2)C is the best

aim-50 24 24 24 24 24 0.04 0.07 0.04 0.02 0.04 0.03
allIntervalSeries 25 22 22 22 22 7.09 141.85 6.00 0.13 0.31 0.12

jnhSat 16 16 16 16 16 13.07 357.66 11.74 8.15 142.24 7.21
modifiedRenault 50 50 50 50 50 6.39 11.17 6.29 7.24 8.79 6.98

rand-3-20-20 50 31 43 41 31 1,666.10 939.88 932.77 1,211.50 822.54 811.74

b) apc-R(∗,2)C is competitive

aim-100 24 24 24 24 24 0.38 0.26 0.41 0.18 0.25 0.16
aim-200 24 22 24 24 22 414.48 6.52 286.27 2.39 1.37 2.60

jnhUnsat 34 34 34 34 34 13.61 294.77 13.95 10.74 153.50 9.78
lexVg 63 63 63 63 63 69.81 341.87 338.74 0.50 1.38 0.89
pret 8 4 4 4 4 117.89 347.03 136.04 115.81 354.82 145.70

rand-3-20-20-fcd 50 39 48 47 39 928.06 546.84 615.23 501.30 422.24 464.00
rand-8-20-5 20 9 20 20 9 2,564.94 355.57 372.76 1,987.35 314.26 261.68

rand-10-20-10 20 12 12 12 12 6.72 1.67 2.76 6.40 1.66 2.75
ssa 8 6 5 6 5 64.60 100.64 69.59 1.51 1.60 1.58

TSP-25 15 13 10 13 10 232.38 1,072.72 743.33 69.00 211.41 131.69
ukVg 65 37 31 34 31 166.82 796.90 421.35 36.29 54.65 30.39

varDimacs 9 6 6 6 6 89.23 587.55 319.20 1.56 6.43 2.94
wordsVg 65 65 58 58 58 119.76 532.05 400.22 0.39 0.95 0.59

c) apc-R(∗,2)C is the worst

dubois 13 7 8 6 6 1,000.54 451.91 1,456.01 552.13 255.25 779.57
TSP-20 15 15 15 15 15 101.20 318.37 335.13 23.32 61.55 46.34

d) Not solved by STR

dag-rand 25 0 25 25 0 - 123.70 149.64 - 124.47 151.33

Table 3 shows the average number of STR and R(∗,2)C checks that apc-
R(∗,2)C performs per benchmark. In allIntervalSeries, no calls are made to
R(∗,2)C because the instance is solved backtrack free with STR alone. For apc-
LC, no call to LC is done during pre-processing because the weights of all the

Table 3. Number of calls to STR and R(∗,2)C by benchmark

Benchmark STR checks R(∗,2)C checks Benchmark STR checks R(∗,2)C checks

a) apc-R(∗,2)C is the best b) apc-R(∗,2)C is competitive
aim-50 456,823 39,491 aim-100 7,731,585 894,353

allIntervalSeries 38,281,694 0 aim-200 1,160,334,482 163,177,907
jnhSat 22,119,135 599,080 jnhUnsat 51,688,166 1,918,781

modifiedRenault 4,618,778 601,641 lexVg 564,010,457 2,180,503,026
rand-3-20-20 489,441,126 3,480,216,943 pret 422,987,946 13,973,748

rand-3-20-20-fcd 455,664,100 2,956,467,994
c) apc-R(∗,2)C is the worst rand-8-20-5 77,470,561 184,764,543
dubois 3,343,830,604 4,668,288 rand-10-20-10 72,608 3,972
TSP-20 622,949,698 991,590,957 ssa 156,631,370 11,689,961

TSP-25 2,903,953,315 3,947,391,769
ukVg 341,565,892 1,002,334,753

d) Not solved by STR varDimacs 720,843,958 84,123,204
dag-rand 359,248 21,870 wordsVg 514,840,737 2,052,367,934

Adaptive Parameterized Consistency for Non-binary CSPs 763

constraints are set to 1 (giving p(cj) = 0 for all cj ∈ C) and updated only during
search. For dag-rand, there is a smaller number of R(∗,2)C calls than STR calls
(21,870 vs. 359,248). However, those few calls allow us to solve all the instances
of this benchmark whereas STR alone could not solve any instance. This result
is a glowing testimony of the ability of apc-R(∗,2)C to apply the appropriate
level of consistency where needed.

5 Conclusions

In this paper, we extend the notion of p-stability for AC to GAC, and provide
a mechanism for computing it. We give an algorithm for enforcing apc-R(∗,2)C
on non-binary table constraints, which adaptively enforces GAC and R(∗,2)C.
We validate our approach on benchmark problems. Future work is to investigate
other adaptive criteria for selecting the level of consistency to apply, in particular
one that operates during both pre-processing and search. To apply our approach
to constraints defined in intension and other global constraints, we could use
techniques that approximate the number of solutions in those constraints [19].

References

1. Balafrej, A., Bessiere, C., Coletta, R., Bouyakhf, E.H.: Adaptive Parameterized
Consistency. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 143–158. Springer,
Heidelberg (2013)

2. Bessiere, C.: Constraint Propagation. In: Handbook of Constraint Programming,
pp. 29–83. Elsevier (2006)

3. Bessière, C., Régin, J.C., Yap, R.H., Zhang, Y.: An Optimal Coarse-Grained Arc
Consistency Algorithm. Artificial Intelligence 165(2), 165–185 (2005)

4. Bessière, C., Stergiou, K., Walsh, T.: Domain Filtering Consistencies for Non-
Binary Constraints. Artificial Intelligence 172, 800–822 (2008)

5. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting Systematic Search by
Weighting Constraints. In: Proc. ECAI 2004, pp. 146–150 (2004)

6. Debruyne, R., Bessière, C.: From Restricted Path Consistency to Max-Restricted
Path Consistency. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 312–326.
Springer, Heidelberg (1997)

7. Geschwender, D., Karakashian, S., Woodward, R., Choueiry, B.Y., Scott, S.D.: Se-
lecting the Appropriate Consistency Algorithm for CSPs Using Machine Learning
Techniques. In: Proc. of AAAI 2013, pp. 1611–1612 (2013)

8. Gyssens, M.: On the Complexity of Join Dependencies. ACM Trans. Database
Systems 11(1), 81–108 (1986)

9. Haralick, R.M., Elliott, G.L.: Increasing Tree Search Efficiency for Constraint Sat-
isfaction Problems. Artificial Intelligence 14, 263–313 (1980)

10. Janssen, P., Jégou, P., Nougier, B., Vilarem, M.C.: A Filtering Process for General
Constraint-Satisfaction Problems: Achieving Pairwise-Consistency Using an Asso-
ciated Binary Representation. In: IEEE Workshop on Tools for AI, pp. 420–427
(1989)

11. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-
rithm Selection and Scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp.
454–469. Springer, Heidelberg (2011)

764 R.J. Woodward et al.

12. Karakashian, S., Woodward, R., Reeson, C., Choueiry, B.Y., Bessiere, C.: A
First Practical Algorithm for High Levels of Relational Consistency. In: Proc.
AAAI 2010, pp. 101–107 (2010)

13. Lecoutre, C.: STR2: Optimized Simple Tabular Reduction for Table Constraints.
Constraints 16(4), 341–371 (2011)

14. Lecoutre, C., Likitvivatanavong, C., Yap, R.H.C.: A Path-Optimal GAC Algorithm
for Table Constraints. In: Proc. of ECAI 2012, pp. 510–515 (2012)

15. Lecoutre, C., Paparrizou, A., Stergiou, K.: Extending STR to a Higher-Order Con-
sistency. In: Proc. AAAI 2013, Bellevue, WA, pp. 576–582 (2013)

16. Mackworth, A.K.: Consistency in Networks of Relations. AI 8, 99–118 (1977)
17. Mohr, R., Masini, G.: Good Old Discrete Relaxation. In: European Conference on

Artificial Intelligence (ECAI 1988), pp. 651–656. W. Germany, Munich (1988)
18. Paparrizou, A., Stergiou, K.: Evaluating Simple Fully Automated Heuristics for

Adaptive Constraint Propagation. In: Proc. of ICTAI 2012, pp. 880–885 (2012)
19. Pesant, G., Quimper, C.G., Zanarini, A.: Counting-Based Search: Branching

Heuristics for Constraint Satisfaction Problems. JAIR 43, 173–210 (2012)
20. Stergiou, K.: Heuristics for Dynamically Adapting Propagation. In: Proc. of ECAI

2008, pp. 485–489 (2008)
21. Ullmann, J.R.: Partition Search for Non-binary Constraint Satisfaction. Informa-

tion Sciences 177(18), 3639–3678 (2007)
22. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-Based Al-

gorithm Selection for SAT. JAIR 32, 565–606 (2008)

	Adaptive Parameterized Consistencyfor Non-binary CSPs by Counting Supports
	1 Introduction
	2 Background
	2.1 Constraint Satisfaction Problem
	2.2 Local Consistency Properties
	2.3 Adaptive Parameterized Consistency

	3 Modifying apc-LC for Non-binary CSPs
	3.1 p-Stability for GAC
	3.2 Computing p-Stability for GAC
	3.3 Algorithm for Enforcing apc-LC

	4 Empirical Evaluations
	5 Conclusions
	References

