
The Propagation Depth of Local Consistency

Christoph Berkholz

RWTH Aachen University, Aachen, Germany

Abstract. We establish optimal bounds on the number of nested prop-
agation steps in k-consistency tests. It is known that local consistency
algorithms such as arc-, path- and k-consistency are not efficiently par-
allelizable. Their inherent sequential nature is caused by long chains of
nested propagation steps, which cannot be executed in parallel. This
motivates the question “What is the minimum number of nested prop-
agation steps that have to be performed by k-consistency algorithms on
(binary) constraint networks with n variables and domain size d?”

Itwas knownbefore that 2-consistency requiresΩ(nd) and 3-consistency
requires Ω(n2) sequential propagation steps. We answer the question ex-
haustively for every k ≥ 2: there are binary constraint networks where any
k-consistency procedure has to perform Ω(nk−1dk−1) nested propagation
steps before local inconsistencies were detected. This bound is tight, be-
cause the overall number of propagation steps performed by k-consistency
is at most nk−1dk−1.

1 Introduction

A constraint network (X,D,C) consists of a set X of n variables over a domain
D of size d and a set of constraints C that restrict possible assignments of the
variables. The constraint satisfaction problem (CSP) is to find an assignment
of the variables with values from D such that all constraints are satisfied. The
constraint satisfaction problem can be solved in exponential time by exhaustive
search over all possible assignments. Constraint propagation is a technique to
speed up the exhaustive search by restricting the search space in advance. This
is done by iteratively propagating new constraints that follow from previous ones.
Most notably, in local consistency algorithms the overall goal is to propagate new
constraints to achieve some kind of consistency on small parts of the constraint
network. Additionally, if local inconsistencies were detected, it follows that the
constraint network is also globally inconsistent and hence unsatisfiable.

The k-consistency test [8] is a well-known local consistency technique, which
enforces that every satisfying (k − 1)-partial assignment can be extended to a
satisfying k-partial assignment. At the beginning, all partial assignments that
violate a constraint were marked as inconsistent. Then the following inference
rule is applied iteratively:

If h is a consistent �-partial assignment (� < k) for which there exists a
variable x ∈ X such that h ∪ {x �→ a} is inconsistent for all a ∈ D, then
mark h and all its extensions as inconsistent.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 158–173, 2014.
c© Springer International Publishing Switzerland 2014

The Propagation Depth of Local Consistency 159

After at most nk−1dk−1 propagation steps this procedure stops. If the empty
assignment becomes inconsistent, we say that (strong) k-consistency cannot be
established. In this case we know that the constraint network is globally incon-
sistent. Otherwise, if k-consistency can be established, we can use the propa-
gated constraints to restrict the search space for a subsequent exhaustive search.
There are several different k-consistency algorithms in the literature, especially
for k = 2 (arc consistency) and k = 3 (path consistency), which all follow this
propagation scheme. The main difference between these algorithms are the un-
derlying data structure and the order in which they apply the propagation rule.
It seems plausible to apply the propagation rule in parallel in order to detect
local inconsistencies in different parts of the constraint network at the same
time. Indeed, this intuition has been used to design parallel arc and path con-
sistency algorithms [15,16]. On the other hand, the k-consistency test is known
to be PTIME-complete [10,11] and hence not efficiently parallelizable (unless
NC=PTIME). The main bottleneck for parallel approaches are the sequential
dependencies in the propagation rule: some assignments will be marked as in-
consistent after some other assignments became inconsistent.

For 2-consistency the occurrence of long chains of sequential dependencies
has been observed very early [6] and was recently studied in depth in [4]. There
are simple constraint networks for which 2-consistency requires Ω(nd) nested
propagation steps. Ladkin and Maddux [14] used algebraic techniques to show
that 3-consistency requires Ω(n2) nested propagation steps on binary constraint
networks with constant domain. We extend these previous results and obtain
a complete picture of the propagation depth of k-consistency. Our main re-
sult (Theorem 1) states that for every constant k ≥ 2 and given integers n,
d there is a constraint network with n variables and domain size d such that
every k-consistency algorithm has to perform Ω(nk−1dk−1) nested propagation
steps. This lower bound is optimal as it is matched by the trivial upper bound
nk−1dk−1 on the overall number of propagation steps. It follows that every par-
allel propagation algorithm for k-consistency has a worst case time complexity
of Ω(nk−1dk−1). Since the best-known running time of a sequential algorithm
for k-consistency is O(nkdk) [5] it follows that no significant improvement over
the sequential algorithm is possible.

2 Preliminaries

As first pointed out by Feder and Vardi [7] the CSP is equivalent to the structure
homomorphism problem where two finite relational structures A and B are given
as input. The universe V (A) of structure A corresponds to the set of variables
X and the universe V (B) of structure B corresponds to the domain D. The
constraints are encoded into relations such that every homomorphism from A to
B corresponds to a solution of the CSP. For the rest of this paper we mainly stick
to this definition as it is more convenient to us. In fact, our main result benefits
to a large extend from the fruitful connection between these two viewpoints.

In the introduction we have presented k-consistency as a propagation proce-
dure on constraint networks. Below we restate the definition in terms of a formal

160 C. Berkholz

inference system (which is inspired by the proof system in [1] and is a gener-
alization of [4]). This view allows us to gain insight into the structure of the
propagation process and to formally state our main theorem afterwards. At the
end of this section we provide a third characterization of k-consistency in terms
of the existential pebble game, which is the tool of our choice in the proof of the
main theorem.

2.1 CSP-Refutations

Given two σ-structures A and B, every line of our derivation system is a partial
mapping from V (A) to V (B). The axioms are all partial mappings p : V (A) →
V (B) that are not partial homomorphisms. We have the following derivation
rule to derive a new inconsistent assignment p. For all partial mappings p′i ⊆ p,
x ∈ V (A) and V (B) = {a1, . . . , an}:

p′1 ∪ {x �→ a1} · · · p′n ∪ {x �→ an}
p

(1)

A CSP-derivation of p is a sequence (p1, . . . , p� = p) such that every pi is either
an axiom or derived from lines pj, j < i, via the derivation rule (1). A CSP-
refutation is a CSP-derivation of ∅. Every derivation of p can naturally be seen
as a directed acyclic graph (dag) where the nodes are labeled with lines from the
derivation, one node of in-degree 0 is labeled with p and all nodes of out-degree
0 are labeled with axioms. If pi is derived from pj1 , . . . , pjn using (1), then there
is an arc from pi to each pj1 , . . . , pjn .

Given a CSP-derivation P , we let Prop(P) be the set of propagated mappings
p ∈ P , i. e. all lines in the derivation that are not axioms. We define the width
of a derivation P to be width(P) = maxp∈Prop(P) |p|.1 Furthermore, depth(P)
denotes the depth of P which is the number of edges on the longest path in
the dag associated with P . This measure characterizes the maximum number
of nested propagation steps in P . Since CSP-derivations model the propagation
process mentioned in the introduction, there is a CSP-refutation of width k − 1
if and only if k-consistency cannot be established.

Furthermore, every propagation algorithm produces some CSP-derivation P .
The total number of propagation steps performed by this algorithm is |Prop(P)|
and the maximum number of nested propagation steps is depth(P). Let A and
B be two relational structures such that k-consistency cannot be established.
We define the propagation depth depthk(A,B) := minP depth(P) where the min-
imum is taken over all CSP-refutations P of width at most k − 1. Hence, the
depthk(A,B) ≤ |V (A)|k−1|V (B)|k−1 is the number of sequential propagation
steps that have to be performed by any sequential or parallel propagation algo-
rithm for k-consistency.

1 Note that this implies |p| ≤ width(P) + 1 for all axioms p used in the derivation P .
However, the size of the axioms can always be bounded by the maximum arity of
the relations in A and B.

The Propagation Depth of Local Consistency 161

2.2 Results and Related Work

Our main theorem is a tight lower bound on the propagation depth.

Theorem 1. For every integer k ≥ 2 there exists a constant ε > 0 and two
positive integers n0, m0 such that for every n ≥ n0 and m ≥ m0 there exist
two binary structures An and Bm with |V (An)| = n and |V (Bm)| = m such that
depthk(An,Bm) ≥ εnk−1mk−1.

We are aware of two particular cases that have been discovered earlier. First,
for the case k = 2 (arc consistency) the theorem can be shown by rather simple
examples that occurred very early in the AI-community. The structure of this
exceptional case is discussed in deep in a joint work of Oleg Verbitsky and the
author of this paper [4]. Second, for k = 3 Ladkin and Maddux [14] showed
that there is a fixed finite binary structure B and an infinite sequence of binary
structures Ai such that depth3(Ai,B) = Ω(|V (Ai)|2). They used this result to
argue that every parallel propagation algorithm for path consistency needs at
least a quadratic number of steps. This is tight only for fixed structures B,
Theorem 1 extends their result to the case when B is also given as input.

Other related results investigate the decision complexity of the k-consistency
test. To address this more general question one analyzes the computational com-
plexity of the following decision problem.

k-Cons

Input : Two binary relational structures A and B.
Question: Can k-consistency be established for A and B?

Kasif [10] showed that 2-Cons is complete for PTIME under LOGSPACE re-
ductions. Kolaitis and Panttaja [11] extended this result to every fixed k ≥ 2.
Moreover, they established that the problem is complete for EXPTIME if k is
part of the input. In [3] the author showed that k-Cons cannot be decided in

O(n
k−3
12) on deterministic multi-tape Turing machines, where n is the overall in-

put size. Hence, any algorithm solving k-Cons (regardless of whether it performs
constraint propagation or not) cannot be much faster than the standard propaga-
tion approach. It also follows from this result that, parameterized by the number
of pebbles k, k-Cons is is complete for the parameterized complexity class XP. It
is also worth noting that Gaspers and Szeider [9] investigated the parameterized
complexity of other parameterized problems related to k-consistency.

2.3 The Existential Pebble Game

In this paragraph we introduce a third view on the k-consistency heuristic in
terms of a combinatorial pebble game. The existential k-pebble game [12] is
played by two players Spoiler and Duplicator on two relational structures A
and B. There are k pairs of pebbles (p1, q1), . . . , (pk, qk) and during the game
Spoiler moves the pebbles p1, . . . , pk to elements of V (A) and Duplicator moves

162 C. Berkholz

the pebbles q1, . . . , qk to elements of V (B). At the beginning of the game, Spoiler
places pebbles p1, . . . , pk on elements of V (A) and Duplicator answers by putting
pebbles q1, . . . , qk on elements of V (B). In each further round Spoiler picks up a
pebble pair (pi, qi) and places pi on some element in V (A). Duplicator answers
by moving the corresponding pebble qi to one element in V (B). Spoiler wins the
game if he can reach a position where the mapping defined by pi �→ qi is not a
partial homomorphism from A to B.

The connection between the existential k-pebble game and the k-consistency
heuristic was made by Kolaitis and Vardi [13]. They showed that one can es-
tablish k-consistency by computing a winning strategy for Duplicator. Going a
different way, the next lemma states that there is also a tight correspondence
between Spoiler’s strategy and CSP-refutations. The proof is a straightforward
induction over the depth and included in the full version of the paper [2].

Lemma 2. Let A and B be two relational structures. There is a CSP-refutation
for A and B of width k − 1 and depth d if and only if Spoiler has a strategy to
win the existential k-pebble game on A and B within d rounds.

Using this lemma it suffices to prove lower bounds on the number of rounds
in the existential pebble game in order to prove Theorem 1. To argue about
strategies in the existential pebble game we use the framework developed in [3].
We start with a formal definition of strategies for Duplicator.

Definition 3. A critical strategy for Duplicator in the existential k-pebble game
on structures A and B is a nonempty family H of partial homomorphisms from A
to B together with a set crit(H) ⊆ H of critical positions satisfying the following
properties:

1. All critical positions are (k − 1)-partial homomorphisms.
2. If h ∈ H and g ⊂ h, then g ∈ H.
3. For every g ∈ H\ crit(H), |g| < k, and every x ∈ V (A) there is an a ∈ V (B)

such that g ∪ {x �→ a} ∈ H.

If crit(H) = ∅, then H is a winning strategy.

The setH is the set of good positions for Duplicator (therefore they are all partial
homomorphisms). Non-emptiness and the closure property (2.) ensure that H
contains the start position ∅. Furthermore, the closure property guarantees that
the current position remains a good position for Duplicator when Spoiler picks
up pebbles. The extension property (3.) ensures that, from every non-critical
position, Duplicator has an appropriate answer if Spoiler puts a free pebble on
x. It follows that if there are no critical positions, then Duplicator can always
answer accordingly and thus wins the game. Otherwise, if Spoiler reaches a
critical position, then Duplicator may not have an appropriate answer and the
game reaches a critical state. In the next lemma we describe how to use critical
strategies to prove lower bounds on the number of rounds.

Lemma 4. If H1, . . . ,Hl is a sequence of critical strategies on the same pair of
structures and for all i < l and all p ∈ crit(Hi) it holds that p ∈ Hj \ crit(Hj)
for some j ≤ i+ 1, then Duplicator wins the l-round existential k-pebble game.

The Propagation Depth of Local Consistency 163

Proof. Starting with i = 1, Duplicator answers according to the extension
property of Hi, if the current position p is non-critical in Hi. Otherwise, p is
non-critical in Hj for some j ≤ i + 1 and Duplicator answers according to the
extension property of Hj . This allows Duplicator to survive for at least l rounds.

��
The two structures A and B we construct are vertex colored graphs. They are

built out of smaller graphs, called gadgets. Every gadget Q consists of two graphs
QS and QD for Spoiler’s and Duplicator’s side, respectively. Hence, QS and QD

will be subgraphs of A and B in the end. The gadgets contain boundary vertices ,
which are the vertices shared with other gadgets. To combine two strategies
on two connected gadgets we need to ensure that the strategies agree on the
boundary of the gadgets. Formally, let a boundary function of a strategy H on a
gadget Q be a mapping β from the boundary of QS to the boundary of QD such
that β(z) = h(z) for all h ∈ H and all z in the domain of β and h. We say that
two strategies G and H on gadgets Q and Q′ are connectable, if their boundary
functions agree on the common boundary vertices of Q and Q′. If G and H are
two connectable critical strategies on gadgets Q = (QS , QD) and Q′ = (Q′

S , Q
′
D)

it is not hard to see that the composition

G H = {g ∪ h | g ∈ G, h ∈ H}
is a critical strategy on QS∪Q′

S and QD∪Q′
D with crit(GH) = crit(G)∪crit(H).

Intuitively, playing according to the strategy G H on Q and Q′ means that
Duplicator uses strategy G on Q and strategy H on Q′.

3 The Construction

3.1 Overview of the Construction

In this section we prove Theorem 1 for k ≥ 3. We let k := k−1 ≥ 2 and construct
two vertex colored graphs An and Bm with O(n) and O(m) vertices such that
Spoiler needs Ω(nkmk) rounds to win the existential (k + 1)-pebble game. We
color the vertices of both graphs such that the colors partition the vertex set into
independent sets, i. e. every vertex gets one color and there is no edge between
vertices of the same color. The basic building blocks in our construction are sets
of vertices which allow to store nkmk partial homomorphisms with k pebbles.

x1
1 x1

n xk
1 xk

n x1
0 x1

m xk
0 xk

m

An Bm

Fig. 1. Basic vertex blocks. Two vertices xi
j and xi′

j′ get the same color iff i = i′.

We introduce vertices xi
j (i ∈ [k], j ∈ [n]) in An and vertices xi

j (i ∈ [k],

j ∈ [m] ∪ {0}) in Bm. For every i ∈ [k] the vertices xi
j form a block and are

164 C. Berkholz

colored with the same color (say Pxi), which is different from any other color in
the entire construction. The vertices xi

0 in structure Bm play a special role in
our construction and are visualized by instead of in the pictures. However,
they are colored with the same color Pxi as the other vertices xi

j . Because of

the coloring, Duplicator has to answer with some xi
j′ whenever Spoiler pebbles

a vertex xi
j . Since there are nm positions for one pebble pair on vertices in

one block, we get nkmk positions if every block has exactly one pebble pair on
vertices. The vertices are used by Duplicator whenever Spoiler does not play

the intended way. That is, if Spoiler pebbles a vertex in block i that he is not
supposed to pebble now, then Duplicator answers with xi

0. The construction will
have the property that this is always a good situation for Duplicator.

To describe pebble positions on such vertex blocks, we definemappings a : [k] →
[n] and b : [k] → [m] and call the pebble position {(xi

a(i), x
i
b(i)) | i ∈ [k]} valid. If

such valid position is on the board, then Duplicator answers with xi
b(i) if Spoiler

pebbles xi
a(i) and with xi

0 if Spoiler pebbles xi
j for some j �= a(i). We also need

to name positions where Duplicator answers with xi
0 for every vertex in block i

and let T be the set of blocks where this happens. For a : [k] → [n], b : [k] → [m]
and T ⊆ [k] we call q = (a, b, T) a configuration. The configuration q is valid if
T = ∅ and invalid otherwise. For every configuration q and a set of xi

j vertices
as in Figure 1 we define the following homomorphism that describes Duplicator’s
behavior:

hx
q(x

i
j) =

{
xi
b(i), if j = a(i) and i /∈ T,

xi
0, otherwise.

By hx
0 we denote the homomorphism hx

0(x
i
j) := xi

0 for all i ∈ [k], j ∈ [n]. We say
that a position of (at most k+1) pebble pairs on these vertices is invalid if it is a
subset of hx

q for some invalid configuration q. For valid configurations q = (a, b, ∅)
we say “q on x” to name the valid pebble position {(xi

a(i), x
i
b(i)) | i ∈ [k]}. Note

that valid pebble positions are not invalid.2

In the entire construction there is one unique copy of the xi
j-vertices, which

are denoted by xij . Our goal is to force Spoiler to pebble every valid position on
x before he wins the game. He is supposed to do so in a specific predefined order.
To fix this order we define a bijection α between valid configurations (a, b, ∅)
and the numbers 0, . . . , nkmk − 1:

α(q) := mk
k∑

i=1

(a(i)− 1)nk−i +

k∑
i=1

(b(i)− 1)mk−i.

Thus, α(q) is the rank of the tuple (a(1), . . . , a(k), b(1), . . . , b(k)) in lexicograph-
ical order. If α(q) < nkmk − 1, we define the successor q+ = (a+, b+, ∅) to be
the unique valid configuration satisfying α(q+) = α(q) + 1. In the sequel we
introduce gadgets to make sure that:

2 There are pebble positions on the xi
j vertices that are neither valid nor invalid.

However, such positions will not occur in our strategies.

The Propagation Depth of Local Consistency 165

– Spoiler can reach the position α−1(0) on x from ∅,
– Spoiler can reach α−1(i + 1) on x from α−1(i) on x and
– Spoiler wins from α−1(nkmk − 1) on x.

If we have these properties, we know that Spoiler has a winning strategy in the
(k+1)-pebble game. To show that Spoiler needs at least nkmk rounds we argue
that this is essentially the only way for Spoiler to win the game.

↑ INIT

y10 ykm

↓ WIN

x1
0 xk

m

↑ INC left
1 ↑ INCright

k
x1
0 xk

m

y10 ykm

x1
0 xk

m

y10 ykm

↑ switch ↑ switch
x1
0 xk

m

y10 ykm

x1
0 xk

m

y10 ykm

↓ switch
y10 ykm

x1
0 xk

m

xkm

y10 ykm

x10

Fig. 2. The graph Bm. The boundaries of the gadgets are connected as indicated by
the dotted lines (which need to be contracted). The arrows point from the input to the
output vertices of the gadgets.

We start with an overview of the gadgets and how they are glued together to
form the structures An and Bm. The boundary of our gadgets consists of input
vertices and output vertices. For every gadget the set of input (output) vertices
is a copy of the vertex set in Figure 1 and we write xi

j (yij) to name them. This
enables us to glue together the gadgets at their input and output vertices. The
overall construction for the graph Bm is shown in Figure 2. The schema for An

is similar, it contains Spoiler’s side of the corresponding gadgets which are glued
together the same way as in Bm (just replace m by n and drop the vertices).
There are four types of gadgets: the initialization gadget, the winning gadget,
several increment gadgets and the switch.

The initialization gadget ensures that Spoiler can reach α−1(0) on x, i. e. the
pebble position {(x11, x11), . . . , (xk1 , xk1)}. This gadget has only output boundary
vertices and is used by Spoiler at the beginning of the game. There are increment

166 C. Berkholz

gadgets INCleft
i and INCright

i for all i ∈ [k]. The input vertices of every increment
gadget are identified with the x vertices as depicted in Figure 2. The increment
gadgets (all together) ensure that Spoiler can increment a configuration. More
precisely, for every valid configuration q with α(q) < nkmk − 1, there is one
increment gadget INC such that Spoiler can reach q+ on the output of INC
from q on the input. Every increment gadget is followed by a copy of the switch.
The input of 2k switches is identified with the output of the 2k increment gadgets
and the output of these switches is identified with a unique block of y-vertices
and the input of one additional single switch (see Figure 2). The output of this
switch is in turn identified with the unique block of x-vertices. The switches are
used to perform the transition in the game from α−1(i) on x to α−1(i + 1) on
x. Spoiler can pebble a valid position through one switch: from q on the input
of a switch Spoiler can reach q on the output of that switch. Hence, Spoiler
can simply pebble the incremented position α−1(i + 1) from the output of an
increment gadget through two switches to the x-block.

Finally, the winning gadget ensures that from α−1(nkmk−1) on x Spoiler wins
the game. The winning gadget has only input vertices, which are identified with
the x-vertices. From α−1(nkmk − 1) on the input, Spoiler can win the game by
playing on this gadget. On the other hand, the gadget ensures that Spoiler can
only win from α−1(nkmk − 1) on x and Duplicator does not lose from any other
configuration on x.

3.2 The Gadgets

We now describe the winning gadget and the increment gadgets in detail and
provide strategies for Spoiler and Duplicator on them. Afterwards we briefly
discuss the switch and the initialization gadget. In the next section we combine
the partial strategies on the gadgets to prove Theorem 1.

The winning gadget is shown in Figure 3. On Spoiler’s side there is just one
additional vertex a, which is connected to xi

n for all i ∈ [k]. On Duplicator’s
side there are k additional vertices ai, i ∈ [k]. Every ai is connected to all input
vertices except xi

m. We use one new vertex color to color the vertex a and all
vertices ai. From the position {(x1

n, x
1
m), . . . , (xk

n, x
k
m)} “α−1(nkmk − 1) on x”

Spoiler wins the game by placing the (k + 1)st pebble on a. Duplicator has to
answer with some ai (because of the coloring). Since there is an edge between xi

n

and a in WINS but none between xi
m and ai in WIND, Spoiler wins immediately.

It is also not hard to see that for any other position where at least one pebble
pair (xj

n, x
j
m) is missing Duplicator can survive by choosing aj .

The increment gadgets enable Spoiler to reach the successor q+ from q.
Recall that we identify every valid configuration q = (a, b, ∅) with the tuple
(a(1), . . . , a(k), b(1), . . . , b(k)) ∈ [n]k× [m]k and define α(q) to be the rank (from
0 to nkmk−1) of this tuple in lexicographical order. Let q be a valid configuration
with α(q) < nkmk − 1 and successor q+ = (a+(1), . . . , a+(k), b+(1), . . . , b+(k)).
We use two types of increment gadgets, left and right, depending on whether
the left-hand side of the tuple changes after incrementation or not. There are k
increment gadgets of each type. Spoiler uses them depending on which position

The Propagation Depth of Local Consistency 167

x1
1 x1

n xk
1 xk

n

a

x1
0 x1

m xk
0 xk

m

a1 ai ak

WINS ⊆ An WIND ⊆ Bm

Fig. 3. The winning gadget

the last carryover occurs. If

q = (a(1), . . . , a(k), b(1), . . . , b(�− 1), b(�) < m, m, . . . ,m) and hence

q+ = (a(1), . . . , a(k), b(1), . . . , b(�− 1), b(�) + 1, 1, . . . , 1),

then Spoiler uses the increment gadget INCright
� to reach q+ on the output from

q on the input. If

q = (a(1), . . . , a(�− 1), a(�) < n, n, . . . , n, m, . . . ,m) and hence

q+ = (a(1), . . . , a(�− 1), a(�) + 1, 1, . . . , 1, 1, . . . , 1),

then Spoiler uses INCleft
� . Thus, for every valid configuration q with α(q) <

nkmk−1 there is exactly one applicable increment gadget. The increment gadgets

x<�
1

x<�
n x�

1 x�
n x>�

1
x>�
n x<�

0
x<�
m x�

1 x�
m x>�

0
x>�
m

y<�
1 y<�

n y�1 y�n
y>�
1 y>�

n
y<�
0 y<�

m y�1 y�m
y>�
0 y>�

m

INCright
� S ⊆ An INCright

� D ⊆ Bm

x<�
1

x<�
n x�

1 x�
n x>�

1
x>�
n x<�

0
x<�
m x�

1 x�
m x>�

0
x>�
m

y<�
1 y<�

n y�1 y�n
y>�
1 y>�

n
y<�
0 y<�

m y�1 y�m
y>�
0 y>�

m

INCleft
� S ⊆ An INCleft

� D ⊆ Bm

Fig. 4. The increment gadgets

168 C. Berkholz

are shown in Figure 4. All input vertices xi
j have at most one output vertex

yij′ as neighbor. Furthermore, if the gadget is applicable to a valid configuration

q = (a, b, ∅), then the unique neighbor of xi
a(i) is y

i
a+(i) and the unique neighbor

of xi
b(i) is yi

b+(i)
. This enables Spoiler to reach q+ on the output from q on

the input by the following procedure. First, Spoiler places the remaining pebble
on y1a+(1). Since this vertex is adjacent to x1

a(1), Duplicator has to answer with

y1
b+(1)

, the only vertex that is adjacent to x1
b(1). Afterwards, Spoiler picks up

the pebble pair from (x1
a(1), x

1
b(1)). On the second block Spoiler proceeds the

same way: he pebbles y2a+(2), forces the position (y2a+(2), y
2
b+(2)

) and picks up the

pebbles from (x2
a(2), x

2
b(2)). By iterating this procedure Spoiler reaches q+ on the

output.
If Spoiler tries to move a configuration through one increment gadget that is

not applicable, then Duplicator can answer with an invalid configuration on the
output as follows. On the one hand, if the gadget is not applicable because some
b(i) does not have the specified value, then xi

b(i) is adjacent to yi0. On the other

hand, if some a(i) has the wrong value, then xi
a(i) is not adjacent to an output

vertex. In both cases Duplicator can safely pebble yi0 if Spoiler queries some yij
and hence maintain an invalid output position. The next lemma summarizes the
strategies on the increment gadget.

Lemma 5. Let q = (a, b, T) be a configuration and INC an increment gadget.

1. If INC is applicable to q, then Spoiler can reach q+ on the output from q on
the input.

2. If INC is applicable to q, then there is a winning strategy for Duplicator with
boundary function hx

q on the input and hy
q+ on the output.

3. If INC is not applicable to q, then there is a winning strategy for Duplicator
with boundary function hx

q on the input and hy
qinv

on the output for an invalid
configuration qinv.

The switch is an extension of the “multiple input one-way switch” defined
in [3] (which in turn is a generalization of [11]). The difference is that the old
switch can only be used for the case n = 1. It requires some work to adjust
the old switch to make it work for the more general setting. But since these
modifications require a deeper inspection into this technical construct (and are
not the main contribution of this paper), we refer to the full version of the paper
[2] and use the switch as black box at this point.

We briefly explain the strategies on the switch and provide them in Lemma 6.
As mentioned earlier, Spoiler can simply move a valid position from the input
to the output of the switch (Lemma 6(i)). Duplicator has a winning strategy
called output strategy, where any position is on the output and hx

0 is on the
input (Lemma 6(ii)). This ensures that Spoiler cannot move backwards to reach
q on the input from q on the output. Hence, this strategy forces Spoiler to play
through the switches in the intended direction (as indicated by arrows Figure 2).
Furthermore, for every invalid qinv Duplicator has a winning strategy where

The Propagation Depth of Local Consistency 169

hx
qinv

is on the input and hy
0 is on the output (Lemma 6(iii)), which ensures

that Spoiler cannot move invalid positions through the switch. This strategy
is used by Duplicator whenever Spoiler plays on an increment gadget that is
not applicable. By Lemma 5, Duplicator can force an invalid configuration on
the output of that increment gadget and hence on the input of the subsequent
switch.

To ensure that Spoiler picks up all pebbles when reaching q on the output
from q on the input, Duplicator has a critical input strategy with q on the input
and hy

0 on the output (Lemma 6(iv)). The critical positions are either contained
in an output strategy, where q is on the output, or (for technical reasons) in
a restart strategy. If Duplicator plays according to this input strategy, the only
way for Spoiler to bring q from the input to the output is to pebble an output
critical position inside the switch (using all the pebbles) and force Duplicator to
switch to the corresponding output strategy.

Lemma 6. For every configuration q = (a, b, T), the following statements hold
in the existential (k+ 1)-pebble game on the switch:

(i) If q is valid, then Spoiler can reach q on the output from q on the input.
(ii) Duplicator has a winning strategy Hout

q with boundary function hx
0 ∪ hy

q.
(iii) If q is invalid, then Duplicator has a winning strategy Hrestart

q with boundary
function hx

q ∪ hy
0.

(iv) If q is valid, then Duplicator has a critical strategy Hin
q with boundary func-

tion hx
q ∪hy

0 and sets of restart critical positions Crestart-crit
q,t (for t ∈ [k]) and

output critical positions Cout-crit
q such that:

(a) crit(Hin
q) =

⋃
t∈[k] Crestart-crit

q,t ∪ Cout-crit
q ,

(b) Crestart-crit
q,t ⊆ Hrestart

(a,b,{t}) and

(c) Cout-crit
q ⊆ Hout

q .

At the beginning of the game we want that Spoiler can reach the start con-
figuration α−1(0) on x, which is the pebble position {(x11, x11), . . . , (xk1 , xk1)}. To
ensure this, we use the initialization gadget and identify its output vertices yij
with the block of xij vertices. As for the switch, this gadget is an extension
of the initialization gadget presented in [3] and we use it as a black box here.
The strategies on this gadget are provided in Lemma 7, the proof of Lemma 7 is
given in the full version of the paper [2]. The main property of the gadget is that
Spoiler can reach the start position q at the boundary (i) and Duplicator has a
corresponding counter strategy (ii) in this situation. Furthermore, if an arbitrary
position occurs at the boundary during the game, Duplicator has a strategy to
survive (iii). This is only a critical strategy, but Duplicator can switch to the
initial strategy (hence “restart” the game) if Spoiler moves to one of the critical
positions.

Lemma 7. Let q = α−1(0). The following holds in the existential (k+1)-pebble
game on INIT:

(i) Spoiler can reach q on the output.

170 C. Berkholz

(ii) There is a winning strategy Iinit for Duplicator with boundary function hy
q.

(iii) For every (valid or invalid) configuration q′ there is a critical strategy Iinit
q′

with boundary function hy
q′ and crit(Iinit

q′) ⊆ Iinit.

3.3 Proof of Theorem 1

The size of the vertex set in every gadget is linear in n on Spoiler’s side and linear
in m on Duplicator’s side. Since the overall construction uses a constant number
of gadgets it follows that |V (An)| = O(n) and |V (Bm)| = O(m). To prove the
lower bound on the number of rounds Spoiler needs to win the existential (k+1)-
pebble game we provide a sequence of critical strategies in Lemma 8 satisfying
the properties stated in Lemma 4. For a critical strategy S we let Ŝ := S\crit(S).

Lemma 8. Spoiler has a winning strategy in the existential (k+1)-pebble game
on An and Bm. Furthermore, there is a sequence of critical strategies for Dupli-
cator Gstart,F1,G1,F2,G2, . . . ,Gnkmk−2,Fnkmk−1 such that

crit(Gstart) ⊆ F̂1,

crit(Gi) ⊆ F̂i+1 ∪ Ĝstart, 1 ≤ i ≤ nkmk − 2,

crit(Fi) ⊆ Ĝi ∪ Ĝstart, 1 ≤ i ≤ nkmk − 2.

Proof (Proof of Theorem 1). For k = 2 the theorem follows from [4]. For k ≥ 3
consider the structures An and Bm (for k = k − 1) defined above. By Lemma 8
Spoiler wins the existential k-pebble game on An and Bm. Furthermore, it follows
via Lemma 4 that Spoiler needs at least Ω(nk−1mk−1) rounds to win the game.
To get structures with exactly n and m vertices we take the largest n′,m′ such
that |V (An′)| ≤ n, |V (Bm′)| ≤ m and fill up the structures with an appropriate
number of isolated vertices. ��
Proof (Proof of Lemma 8). To show that Spoiler has a winning strategy it suffices
to prove the following three statements:

(1) Spoiler can reach the position α−1(0) on x from ∅,
(2) Spoiler can reach α−1(i+ 1) on x from α−1(i) on x (for i < nkmk − 1) and
(3) Spoiler wins from α−1(nkmk − 1) on x.

Assertion (1) follows from Lemma 7 and (3) is ensured by the winning gadget.
For (2), Spoiler starts with the position q = α−1(i) on x. Since i < nkmk − 1
there is exactly one increment gadget applicable to q. Spoiler uses Lemma 5 to
reach q+ = α−1(i + 1) on the output of that gadget. By applying Lemma 6.(i)
twice, Spoiler can pebble q+ through the two switches to the x vertices.

To define the sequence of global critical strategies we combine the partial
critical strategies on the gadgets using the -operator. There are three types
of strategies: Gstart, Fi and Gi. To define Gi we let q = α−1(i). Duplicator
plays according to hx

q on x and according to hy
0 on y. She plays according to this

The Propagation Depth of Local Consistency 171

strategy in the case when Spoiler reaches “q on x”. The critical strategy Gi is the
combination of the following (pairwise connectable) strategies on the gadgets:

– The critical strategy I init
q on the initialization gadget (Lemma 7).

– The winning strategy with boundary hx
q and hy

q+ on the increment gadget

applicable to q (Lemma 5).
– The critical input strategy Hin

q+ on the switch following the applicable incre-

ment gadget (Lemma 6).
– The winning strategy with boundary hx

q and hy
qinv

on the other increment
gadgets not applicable to q (Lemma 5).

– The winning strategy Hrestart
qinv

on the switches following the inapplicable in-
crement gadgets (Lemma 6). Here, qinv is the invalid configuration on the
output of the corresponding increment gadget.

– The output winning strategy Hout
q on the single switch (Lemma 6).

If in the above setting Spoiler increments q through the applicable increment
gadget and moves q+ = α−1(i + 1) through the subsequent switch, then Du-
plicator switches to the strategy Fi+1. To define Fi we fix q = α−1(i). In this
strategy, Duplicator plays according to hx

0 on x and according to hy
q on y. This

critical strategy is the combination of the following strategies on the gadgets.

– The critical strategy I init
0 on the initialization gadget.

– The winning strategy with boundary hx
0 and hy

0 on the increment gadgets.
– The output strategy Hout

q on the switches following the increment gadgets.

– The critical input strategy Hin
q on the single switch.

The critical positions in the strategies Gi and Fi are inside the switches and the
initialization gadget. Recall that by Lemma 6.(iv) the critical positions on the
switch can be divided into restart critical positions and output critical positions.
Furthermore, all output critical positions of Gi, which are inside the switch fol-
lowing the applicable increment gadget, are contained as non-critical positions
in Fi+1. All output critical position in Fi, which are inside the single switch, are
contained as non-critical positions in Gi. Now we define Gstart, which contains
all other critical positions of Gi and Fi. The critical strategy Gstart is the union
of several other global strategies. The first one is Ginit, which is defined as G0

except that it contains the winning strategy I init on the initialization gadget.
Thus, by Lemma 7, it contains every critical position on the initialization gadget
as non-critical position. Note that the output critical positions of Ginit are con-
tained as non-critical positions in F1. Since Ginit handles the critical positions
on the initialization gadget and we discussed the output critical positions on the
switches, it remains to consider the restart critical positions of the strategies.
For this we construct a strategy Grestart

i to handle the restart critical positions
of Gi (for i ≥ 1) and of Ginit (for i = 0). Furthermore, we define for every i ≥ 1
a strategy F restart

i to handle the restart critical positions of Fi.
For 0 ≤ i ≤ nkmk − 2 and t ∈ [k] we let q = α−1(i) = (a, b, ∅) and qt be the

invalid configuration (a, b, {t}). The global strategy Grestart
i,t is the combination

of the following strategies on the gadgets.

172 C. Berkholz

– The critical strategy I init
qt

on the initialization gadget.

– The winning strategy with boundary hx
qt

and hy
qinv

on the increment gadgets.
Note that, since qt is invalid, no increment gadget is applicable to qt.

– The winning strategy Hrestart
qinv

on the switches following the increment gad-
gets. Again, qinv is the invalid configuration at the output of the preceding
increment gadget.

– The output winning strategy Hout
qt

on the single switch.

Finally, we let Grestart
i :=

⋃
i∈[k] Grestart

i,t . Note that by Lemma 6.(iv) every restart

critical position of Gi is contained in Grestart
i and every restart critical position

of Ginit is contained in Grestart
0 . Now we define for 1 ≤ i ≤ nkmk − 2, t ∈ [k],

q = α−1(i) = (a, b, ∅) and qt := (a, b, {t}) the strategy F restart
i,t analogously. It

consists of the following partial strategies.

– The critical strategy I init
0 on the initialization gadget.

– The winning strategy with boundary hx
0 and hy

0 on the increment gadgets.
– The winning strategy Hrestart

0 on the switches after the increment gadgets.
– The winning strategy Hrestart

qt
on the single switch.

In the end we let F restart
i be the union of all F restart

i,t . Note that every restart
critical position of Fi is contained as non-critical position in F restart

i . Finally, let

Gstart := Ginit ∪
⋃

0≤i≤nkmk−2

Grestart
i ∪

⋃
1≤i≤nkmk−2

F restart
i .

To conclude the proof note that the critical positions of Grestart
i and F restart

i are

inside the initialization gadget and hence contained in Ĝinit. Thus they are not
critical positions of Gstart. Hence, crit(Gstart) = crit(Ginit) ⊆ F̂1. ��

4 Conclusion

We have proven an optimal lower bound of Ω(nk−1dk−1) on the number of nested
propagation steps in the k-consistency procedure on constraint networks with n
variables and domain size d. It follows that every parallel propagation algorithm
has to perform at least Ω(nk−1dk−1) sequential steps. Using (n+ d)O(k) proces-
sors (one for every instance of the inference rule), k-consistency can be computed
in O(nk−1dk−1) parallel time, which is optimal for propagation algorithms. In
addition, the best sequential algorithm runs in O(nkdk). The overhead compared
to the parallel approach is mainly caused by the time needed to search for the
next inconsistent assignment that might be propagated – and this seems to be
the only task that can be parallelized.

Although we have proven an optimal lower bound in the general setting, it
might be interesting to investigate the propagation depth of k-consistency on
restricted classes of structures. Especially, if in such cases the propagation depth
is bounded by O(log(n + d)), we know that k-consistency is in NC and hence
parallelizable.

The Propagation Depth of Local Consistency 173

References

1. Atserias, A., Kolaitis, P.G., Vardi, M.Y.: Constraint propagation as a proof system.
In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 77–91. Springer, Heidelberg
(2004)

2. Berkholz, C.: The Propagation Depth of Local Consistency. ArXiv e-prints (2014),
http://arxiv.org/abs/1406.4679

3. Berkholz, C.: Lower bounds for existential pebble games and k-consistency tests.
Logical Methods in Computer Science 9(4) (2013),
http://arxiv.org/abs/1205.0679

4. Berkholz, C., Verbitsky, O.: On the speed of constraint propagation and the time
complexity of arc consistency testing. In: Chatterjee, K., Sgall, J. (eds.) MFCS
2013. LNCS, vol. 8087, pp. 159–170. Springer, Heidelberg (2013)

5. Cooper, M.C.: An optimal k-consistency algorithm. Artificial Intelligence 41(1),
89–95 (1989)

6. Dechter, R., Pearl, J.: A problem simplification approach that generates heuris-
tics for constraint-satisfaction problems. Tech. rep., Cognitive Systems Laboratory,
Computer Science Department, University of California, Los Angeles (1985)

7. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic snp and
constraint satisfaction: A study through datalog and group theory. SIAM Journal
on Computing 28(1), 57–104 (1998)

8. Freuder, E.C.: Synthesizing constraint expressions. Commun. ACM 21, 958–966
(1978)

9. Gaspers, S., Szeider, S.: The parameterized complexity of local consistency. In: Lee,
J. (ed.) CP 2011. LNCS, vol. 6876, pp. 302–316. Springer, Heidelberg (2011)

10. Kasif, S.: On the parallel complexity of discrete relaxation in constraint satisfaction
networks. Artificial Intelligence 45(3), 275–286 (1990)

11. Kolaitis, P.G., Panttaja, J.: On the complexity of existential pebble games. In:
Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 314–329. Springer,
Heidelberg (2003)

12. Kolaitis, P.G., Vardi, M.Y.: On the expressive power of datalog: Tools and a case
study. J. Comput. Syst. Sci. 51(1), 110–134 (1995)

13. Kolaitis, P.G., Vardi, M.Y.: A game-theoretic approach to constraint satisfaction.
In: Proc AAAI/IAAI 2000, pp. 175–181 (2000)

14. Ladkin, P.B., Maddux, R.D.: On binary constraint problems. J. ACM 41(3),
435–469 (1994), http://doi.acm.org/10.1145/176584.176585

15. Samal, A., Henderson, T.: Parallel consistent labeling algorithms. International
Journal of Parallel Programming 16, 341–364 (1987)

16. Susswein, S., Henderson, T., Zachary, J., Hansen, C., Hinker, P., Marsden, G.:
Parallel path consistency. International Journal of Parallel Programming 20(6),
453–473 (1991), http://dx.doi.org/10.1007/BF01547895

http://arxiv.org/abs/1406.4679
http://arxiv.org/abs/1205.0679
http://doi.acm.org/10.1145/176584.176585
http://dx.doi.org/10.1007/BF01547895

	The Propagation Depth of Local Consistency
	1 Introduction
	2 Preliminaries
	2.1 CSP-Refutations
	2.2 Results and Related Work
	2.3 The Existential Pebble Game

	3 The Construction
	3.1 Overview of the Construction
	3.2 The Gadgets
	3.3 Proof of Theorem 1

	4 Conclusion
	References

