
Barry O’Sullivan (Ed.)

 123

LN
CS

 8
65

6

20th International Conference, CP 2014
Lyon, France, September 8–12, 2014
Proceedings

Principles and Practice
of Constraint Programming

Lecture Notes in Computer Science 8656
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Barry O’Sullivan (Ed.)

Principles and Practice
of Constraint Programming
20th International Conference, CP 2014
Lyon, France, September 8-12, 2014
Proceedings

13

Volume Editor

Barry O’Sullivan
Insight Centre for Data Analytics
School of Computer Science and Information Technology
University College Cork
Western Road, Cork, Ireland
E-mail: barry.osullivan@insight-centre.org

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-10427-0 e-ISBN 978-3-319-10428-7
DOI 10.1007/978-3-319-10428-7
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014946201

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 20th International Conference on
the Principles and Practice of Constraint Programming (CP 2014), which was
held in Lyon, France, from September 8–12, 2014. A comprehensive web-site
about the conference is available at http://cp2014.a4cp.org.

The CP conference is the premier annual international conference on con-
straint programming. It is concerned with all aspects of computing with con-
straints, including theory, algorithms, environments, languages, models, systems,
and applications such as decision making, resource allocation, scheduling, config-
uration, planning, etc. The CP community is very keen to ensure it remains open
to interdisciplinary research at the intersection between constraint programming
and related fields such as search, satisfiability, knowledge representation and rea-
soning, machine learning, multi-agent systems, and operations research.

The CP 2014 program included presentations of high-quality scientific re-
search papers and applications of constraints technology. In addition, for the
first time, the program included a journal presentation track that was designed
to provide a forum to discuss important results in the area of constraint program-
ming that appeared recently in relevant journals, but had not been previously
presented at CP, CPAIOR, or any other major AI conference.

The review process for CP 2014 relied on a multi-tier approach involving
a senior Program Committee, dedicated regular Program Committees for both
the main technical and application tracks, along with a set of additional review-
ers recruited by Program Committee members. Authors chose to submit either
long or short papers to either the main technical track or the application track.
Alternatively, authors submitting to the journal presentation track submitted
abstracts for review by a dedicated committee. All submissions to the technical
track were assigned to a member of the senior Program Committee and three
members of the Program Committee. All submissions to the application track
were assigned to the chair of that track and three members of its Program Com-
mittee, which was the same approach adopted for the journal presentation track.
Authors were given an opportunity to respond to reviews before a detailed dis-
cussion was undertaken at the level of the Program Committees, overseen by
the Program Chair, the senior Program Committee member or track chair, as
appropriate.

A meeting of the senior Program Committee was held at University College
Cork at the end of May, chaired by the Program Chair, where the reviews,
author feedback, and discussions on every paper were discussed in detail. The
principle under which these discussions took place was that all papers deemed
to be of sufficient quality were accepted into the program. The result of this was
that the acceptance rate for the technical track was a little over 50% while the
application track accepted 66% of papers. Abstracts submitted to the journal

VI Preface

presentation track that satisfied the requirements for that track were accepted.
Overall, the quality of submissions to the conference was very high, and the
final program, as evidenced by these proceedings, was excellent. We selected a
set of prize-winning papers, which are presented later in the front matter of
the proceedings, including a best technical track paper, a best application track
paper, a best student paper, and a runner-up best student paper.

The conference included four invited talks from distinguished scientists: Maria
Fox, Patrick Prosser, Louis-Martin Rousseau, and Vijay Saraswat. Abstracts of
these talks are included in the proceedings. We also benefitted from an excellent
program of tutorials and workshops; these are also detailed further in the front
matter of these proceedings.

Two elements of the conference program that are not reflected in the pro-
ceedings are the doctoral program and the 20th anniversary celebration. The
doctoral program provided an opportunity for PhD students to meet each other
as well as senior researchers in the field. The focus of the program was on men-
toring students and providing a forum for them to exchange ideas, get feedback
on their research, and benefit from a specially designed tutorial program. To
mark the 20th anniversary of the conference, a special celebratory session at the
conference was organized.

The task of producing an excellent scientific program for a conference like
CP 2014 is a truly international undertaking, involving a large number of people
from around the world. I would like to sincerely thank the members of the senior
Program Committee, who not only took responsibility for overseeing the review-
ing of a number of papers, but also took time out from their busy schedules to
attend a weekend meeting in Cork in May. I would like to thank the members of
the Program Committee, and the additional reviewers they recruited, for provid-
ing high-quality reviews and discussions on each and every paper submitted to
the conference. A special word of thanks goes to the authors of all submissions
to the conference.

I was very fortunate to work with a great team of people who chaired as-
pects of the conference: Mark Wallace (Application Track Chair), Justyna Petke
and Andrea Rendl (Doctoral Program Chairs), Michela Milano (Workshop and
Tutorial Chair), Francesca Rossi (Journal Track Chair), Pascal Van Hentenryck
(20th Anniversary Celebration Chair), and Pierre Schaus (Publicity Chair). A
very special thanks is deserved by Yves Deville and Christine Solnon, the Con-
ference Chairs, who managed all aspects of the local arrangements, logistics,
finances, and sponsorship. They were the very generous hosts of the conference
itself, and provided exceptional hospitality to the delegates.

I would like to thank the Association for Constraint Programming, who en-
trusted the scientific program of the conference to me. It was a huge honour
for me, as well as a career highlight. I would like to thank the many sponsors
who provided generous financial support for the conference. A complete list of
sponsors is provided later in these proceedings. Without the support of these
sponsors the conference would not have been financially viable.

Preface VII

Finally, on a personal note, I would like to dedicate my work on this confer-
ence and this volume to the memory of my late uncle and godfather, Alan Lee
(August 17, 1942 – November 7, 2013).

September 2014 Barry O’Sullivan

Prize-Winning Papers

Following the reviewing process and the senior Program Committee (SPC) meet-
ing, a small committee of (S)PC members was established to assist the program
chair in the selection of the best papers from the technical track of the con-
ference. The committee for best technical track paper and best student paper
comprised Nicolas Beldiceanu (TASC(CNRS/Inria), Mines Nantes), Peter Jeav-
ons (University of Oxford), and Ian Miguel (University of St. Andrews). The
best application track paper was recommended by the application track chair,
Mark Wallace (Monash University and Opturion), who worked closely with Hel-
mut Simonis (University College Cork). The best papers for CP 2014 are listed
below. A runner-up was also deemed appropriate in the case of best student
paper.

Best Technical Track Paper

On Broken Triangles
Martin Cooper, Achref El Mouelhi, Cyril Terrioux, and Bruno Zanuttini

Best Application Track Paper

Using CP in Automatic Test Generation
for ABB Robotics’ Paint Control System
Morten Mossige, Arnaud Gotlieb, and Hein Meling

Best Student Paper

On Compiling CNF into Decision-DNNF
Umut Oztok and Adnan Darwiche

Runner-Up Best Student Paper

A Complete Solver for Constraint Games
Thi-Van-Anh Nguyen and Arnaud Lallouet

Tutorials and Workshops

A feature of the CP 2014 conference program was a set of tutorials and work-
shops. Tutorials were expected to give an in-depth presentation of emerging and
exciting topics that are relevant to a broad swath of the constraint programming
community. On the other hand, the workshops provided an informal venue where
participants were given the opportunity to present, discuss, and brainstorm on
new ideas, technical topics, exciting new application areas, and cross-fertilization
with other domains. The Workshop and Tutorial Chair for CP 2014 was Michela
Milano (University of Bologna) who, with the Program Chair, selected the fol-
lowing tutorials and workshops for inclusion in the conference program. Each
tutorial and workshop was submitted in response to an open call for proposals,
and each was subjected to peer review.

Tutorials

The Past and Future of csplib.org : Why and How to Contribute?
Christopher Jefferson

Automated Reformulation of Constraint Models in Savile Row
Peter Nightingale

Social Choice
Francesca Rossi, Kristen Brent Venable, and Toby Walsh

MiniZinc 2.0
Peter J. Stuckey and Guido Tack

Workshops

ModRef 2014 - the 13th International Workshop on Constraint Modelling and
Reformulation
Carlos Ansótegui

Constraint Programming Meets Verification 2014
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Pierre Flener, Arnaud Gotlieb,
and Justin Pearson

Constraint-Based Methods for Bioinformatics
Simon de Givry and Nicos Angelopoulos

Bridging the Gap Between Theory and Practice in Constraint Solvers
Philippe Jégou, Martin Cooper, Lakhdar Sais, and Bruno Zanuttini

Cloud Computing and Optimization
Jean-Charles Régin and Bertrand Le Cun

Conference Organization

Conference Chairs

Yves Deville UCLouvain, Belgium
Christine Solnon LIRIS, INSA Lyon/CNRS, France

Program Chair

Barry O’Sullivan University College Cork, Ireland

Application Track Chair

Mark Wallace Monash University and Opturion, Australia

Doctoral Program Chairs

Justyna Petke University College London, UK
Andrea Rendl NICTA and Monash University, Australia

Workshop and Tutorial Chair

Michela Milano University of Bologna, Italy

Journal Track Presentation Chair

Francesca Rossi University of Padova, Italy

20th Anniversary Celebration Chair

Pascal Van Hentenryck NICTA and University of Melbourne, Australia

Publicity Chair

Pierre Schaus UCLouvain, Belgium

Senior Program Committee

J. Christopher Beck University of Toronto, Canada
Nicolas Beldiceanu TASC(CNRS/Inria), Mines Nantes, France

XIV Conference Organization

Christian Bessiere CNRS and University of Montpellier, France
Ken Brown University College Cork, Ireland
Berthe Y. Choueiry University of Nebraska-Lincoln, USA
David Cohen Royal Holloway, University of London, UK
Yves Deville UCLouvain, Belgium
Jimmy Lee The Chinese University of Hong Kong,

SAR China
Ian Miguel University of St. Andrews, UK
Michela Milano University of Bologna, Italy
Barry O’Sullivan University College Cork, Ireland (Chair)
Patrick Prosser Glasgow University, UK
Jean-Charles Régin Université de Nice-Sophia Antipolis, France
Francesca Rossi University of Padova, Italy
Christian Schulte KTH Royal Institute of Technology, Sweden
Helmut Simonis University College Cork, Ireland
Christine Solnon LIRIS, INSA Lyon/CNRS, France
Peter Stuckey NICTA and the University of Melbourne,

Australia
Mark Wallace Monash University and Opturion, Australia
Toby Walsh NICTA and UNSW, Australia

Technical Track Program Committee

Carlos Ansótegui Universitat de Lleida, Spain
Hadrien Cambazard University of Grenoble Alpes, G-SCOP, France
Hubie Chen Universidad del Páıs Vasco and Ikerbasque,

Spain
Geoffrey Chu NICTA VRL, University of Melbourne,

Australia
Remi Coletta CNRS and University of Montpellier, France
Martin Cooper IRIT, University of Toulouse, France
Rina Dechter University of California at Irvine, USA
Boi Faltings EPFL, Switzerland
Pierre Flener Uppsala University, Sweden
Ian Gent University of St. Andrews, UK
Diarmuid Grimes University College Cork, Ireland
Emmanuel Hebrard LAAS-CNRS, France
Brahim Hnich Izmir University of Economics, Turkey
Peter Jeavons University of Oxford, UK
Philippe Jégou Université d’Aix-Marseille, LSIS, France
Peter Jonsson Linköping University, Sweden
George Katsirelos INRA, Toulouse, France
Zeynep Kiziltan University of Bologna, Italy
Javier Larrosa UPC, Spain

Conference Organization XV

Christophe Lecoutre Université d’Artois, France
Inês Lynce INESC-ID, IST, Universidade de Lisboa,

Portugal
Felip Manya IIIA-CSIC, Spain
Radu Marinescu IBM Research, Ireland
Christopher Mears Monash University, Australia
Deepak Mehta University College Cork, Ireland
Amnon Meisels Ben-Gurion University, Israel
Pedro Meseguer IIIA-CSIC, Spain
Laurent Michel University of Connecticut, USA
Nina Narodytska University of Toronto, Canada
Alexandre Papadopoulos Université Pierre et Marie Curie (Paris 6),

France
Justin Pearson Uppsala University, Sweden
Gilles Pesant Ecole Polytechnique de Montreal, Canada
Justyna Petke University College London, UK
Luis Quesada University College Cork, Ireland
Claude-Guy Quimper Université Laval, Canada
Andrea Rendl NICTA, Australia
Michel Rueher University of Nice Sophia Antipolis, France
Lakhdar Sais Université d’Artois, France
Pierre Schaus UCLouvain, Belgium
Thomas Schiex INRA Toulouse, France
Kostas Stergiou University of Western Macedonia, Greece
Guido Tack NICTA, Monash University, Australia
Johan Thapper Université Paris-Est, Marne-la-Vallée, France
Michael Trick Carnegie Mellon University, USA
Willem-Jan van Hoeve Carnegie Mellon University, USA
Gerard Verfaillie ONERA, France
Roland Yap National University of Singapore, Singapore
Yuanlin Zhang Texas Tech University, USA
Roie Zivan Ben-Gurion University of the Negev, Israel
Stanislav Zivny University of Oxford, UK

Application Track Program Committee

Theirry Benoist Innovation 24, France
Lucas Bordeaux Microsoft Research, UK
Mats Carlsson SICS, Sweden
H̊akan Kjellerstrand Malmo, Sweden
Laurent Perron Google, France
Siddhartha SenGupta Tata Consultancy Services, India
Paul Shaw IBM, France
Helmut Simonis University College Cork, Ireland

XVI Conference Organization

Willem-Jan Van Hoeve Carnegie Mellon University, USA
Mark Wallace Monash University and Opturion, Australia

(Chair)

Journal Presentation Track Program Committee

Christian Bessiere CNRS and University of Montpellier, France
Jimmy Lee The Chinese University of Hong Kong,

SAR China
Patrick Prosser Glasgow University, UK
Francesca Rossi University of Padova, Italy (Chair)
Helmut Simonis University College Cork, Ireland
K. Brent Venable Tulane University, USA
Toby Walsh NICTA and UNSW, Australia

Additional Reviewers

Arbelaez, Alejandro
Beyersdorff, Olaf
Bistarelli, Stefano
Bova, Simone
Carbonnel, Clément
Cire, Andre
Davies, Jessica
Di Gaspero, Luca
Duck, Gregory
Fontaine, Daniel
Gabàs, Joel
Gao, Yong
Gavanelli, Marco
Gay, Steven
Grinshpoun, Tal
Gutierrez, Julian
Gutierrez, Patricia
Hartert, Renaud
Jabbour, Said
Janota, Mikoláš
Kell, Brian
Leo, Kevin
Lhomme, Olivier
Li, Chu-Min
Li, Wei
Likitvivatanavong, Chavalit
Lombardi, Michele

Mairy, Jean-Baptiste
Marques-Silva, Joao
Martins, Ruben
Mauro, Jacopo
Mengel, Stefan
Michel, Claude
Monette, Jean-Noël
Nattaf, Margaux
Neveu, Bertrand
Nightingale, Peter
Okamoto, Steven
Paparrizou, Anastasia
Prestwich, Steve
Pérez, Jorge A.
Rollon, Emma
Roy, Pierre
Saint-Guillain, Michael
Schutt, Andreas
Siala, Mohamed
Slivovsky, Friedrich
Tabary, Sebastien
Terrioux, Cyril
Tjandraatmadja, Christian
Van Gelder, Allen
Vismara, Philippe
Wahbi, Mohamed
Zytnicki, Matthias

Conference Organization XVII

Sponsors

CP 2014 is very grateful to the following sponsors for their generous support of
the conference.

AIMMS
Artificial Intelligence Journal (Elsevier)
Association for Constraint Programming (ACP)
Association Française pour la Programmation par Contraintes (AFPC)
Cadence
Centre National de la Recherche Scientifique (CNRS), France
Faculté des Sciences et Technologies, Université Lyon 1, France
Graduate School in Computing Science, Belgium (Grascomp)
ICTEAM/UCLouvain, Belgium
INSA Lyon, France
Laboratoire d’Informatique en Image et Systèmes d’information (LIRIS), France
Quintiq

The Association for Constraint Programming

The Association for Constraint Programming (ACP) aims to promote constraint
programming in every aspect of the scientific world, by encouraging its theoreti-
cal and practical development, its teaching in academic institutions, its adoption
in the industrial world, and its use in applications. The ACP is a non-profit asso-
ciation that uses the funds raised from its events to support activities for the CP
community. Further information about the ACP, its activities, and membership,
is available from its website at http://www.a4cp.org

Executive Committee

The current Executive Committee, which was formed on January 1, 2013, has
the following membership:

Officers

President – Helmut Simonis (elected 2011)
Treasurer – Thomas Schiex (elected 2011)
Secretary – Willem-Jan van Hoeve (elected 2013)
Conference Coordinator – Pierre Flener (elected 2013)

Other Members

Yves Deville (elected 2011)
Guido Tack (elected 2013)
Roland Yap (elected 2011)

Ex-Officio Members

Past President – Barry O’Sullivan

Table of Contents

Invited Talks

A Modular Architecture for Hybrid Planning with Theories 1
Maria Fox

Teaching Constraint Programming . 3
Patrick Prosser

One Problem, Two Structures, Six Solvers, and Ten Years of Personnel
Scheduling . 4

Louis-Martin Rousseau

Concurrent Constraint Programming Research Programmes – Redux . . . 6
Vijay Saraswat

Best Technical Track Paper

On Broken Triangles . 9
Martin C. Cooper, Achref El Mouelhi, Cyril Terrioux,
and Bruno Zanuttini

Best Application Track Paper

Using CP in Automatic Test Generation for ABB Robotics’ Paint
Control System . 25

Morten Mossige, Arnaud Gotlieb, and Hein Meling

Best Student Paper

On Compiling CNF into Decision-DNNF . 42
Umut Oztok and Adnan Darwiche

Runner-Up Best Student Paper

A Complete Solver for Constraint Games . 58
Thi-Van-Anh Nguyen and Arnaud Lallouet

Technical Track

Encoding Linear Constraints into SAT . 75
Ignasi Ab́ıo and Peter J. Stuckey

XXII Table of Contents

Efficient Application of Max-SAT Resolution on Inconsistent Subsets . . . 92
André Abramé and Djamal Habet

Sequential Time Splitting and Bounds Communication for a Portfolio
of Optimization Solvers . 108

Roberto Amadini and Peter J. Stuckey

Scoring-Based Neighborhood Dominance for the Subgraph Isomorphism
Problem . 125

Gilles Audemard, Christophe Lecoutre, Mouny Samy-Modeliar,
Gilles Goncalves, and Daniel Porumbel

Linking Prefixes and Suffixes for Constraints Encoded Using Automata
with Accumulators . 142

Nicolas Beldiceanu, Mats Carlsson, Pierre Flener,
Maŕıa Andréına Francisco Rodŕıguez, and Justin Pearson

The Propagation Depth of Local Consistency . 158
Christoph Berkholz

The Balance Constraint Family . 174
Christian Bessiere, Emmanuel Hebrard, George Katsirelos,
Zeynep Kiziltan, Émilie Picard-Cantin, Claude-Guy Quimper,
and Toby Walsh

Experimental Comparison of BTD and Intelligent Backtracking:
Towards an Automatic Per-instance Algorithm Selector 190

Löıc Blet, Samba Ndojh Ndiaye, and Christine Solnon

Solving Intensional Weighted CSPs by Incremental Optimization with
BDDs . 207

Miquel Bofill, Miquel Palah́ı, Josep Suy, and Mateu Villaret

On Backdoors to Tractable Constraint Languages . 224
Clément Carbonnel, Martin C. Cooper, and Emmanuel Hebrard

Nested Constraint Programs . 240
Geoffrey Chu and Peter J. Stuckey

Beyond Consistency and Substitutability . 256
Martin C. Cooper

Subexponential Time Complexity of CSP with Global Constraints 272
Ronald de Haan, Iyad Kanj, and Stefan Szeider

A New Characterization of Relevant Intervals for Energetic
Reasoning . 289

Alban Derrien and Thierry Petit

Table of Contents XXIII

A Declarative Paradigm for Robust Cumulative Scheduling 298
Alban Derrien, Thierry Petit, and Stéphane Zampelli

Improving DPOP with Branch Consistency for Solving Distributed
Constraint Optimization Problems . 307

Ferdinando Fioretto, Tiep Le, William Yeoh, Enrico Pontelli,
and Tran Cao Son

Constraint-Based Lagrangian Relaxation . 324
Daniel Fontaine, Laurent Michel, and Pascal Van Hentenryck

Loop Untangling . 340
Kathryn Francis and Peter J. Stuckey

Discriminating Instance Generation for Automated Constraint Model
Selection . 356

Ian P. Gent, Bilal Syed Hussain, Christopher Jefferson,
Lars Kotthoff, Ian Miguel, Glenna F. Nightingale, and
Peter Nightingale

Aggregating CP-nets with Unfeasible Outcomes . 366
Umberto Grandi, Hang Luo, Nicolas Maudet, and Francesca Rossi

The StockingCost Constraint . 382
Vinasétan Ratheil Houndji, Pierre Schaus, Laurence Wolsey,
and Yves Deville

Scalable Parallel Numerical CSP Solver . 398
Daisuke Ishii, Kazuki Yoshizoe, and Toyotaro Suzumura

Tree-Decompositions with Connected Clusters for Solving Constraint
Networks . 407

Philippe Jégou and Cyril Terrioux

CIP and MIQP Models for the Load Balancing Nurse-to-Patient
Assignment Problem . 424

Wen-Yang Ku, Thiago Pinheiro, and J. Christopher Beck

On the Erdős Discrepancy Problem . 440
Ronan Le Bras, Carla P. Gomes, and Bart Selman

Towards Practical Infinite Stream Constraint Programming:
Applications and Implementation . 449

Jasper C.H. Lee and Jimmy H.M. Lee

An Increasing-Nogoods Global Constraint for Symmetry Breaking
During Search . 465

Jimmy H.M. Lee and Zichen Zhu

XXIV Table of Contents

Memory-Efficient Tree Size Prediction for Depth-First Search
in Graphical Models . 481

Levi H.S. Lelis, Lars Otten, and Rina Dechter

Higher-Order Consistencies through GAC on Factor Variables 497
Chavalit Likitvivatanavong, Wei Xia, and Roland H.C. Yap

Incremental QBF Solving . 514
Florian Lonsing and Uwe Egly

Incremental Cardinality Constraints for MaxSAT . 531
Ruben Martins, Saurabh Joshi, Vasco Manquinho, and Inês Lynce

Reducing the Branching in a Branch and Bound Algorithm for the
Maximum Clique Problem . 549

Ciaran McCreesh and Patrick Prosser

Core-Guided MaxSAT with Soft Cardinality Constraints 564
Antonio Morgado, Carmine Dodaro, and Joao Marques-Silva

The IntSat Method for Integer Linear Programming 574
Robert Nieuwenhuis

Automatically Improving Constraint Models in Savile Row through
Associative-Commutative Common Subexpression Elimination 590

Peter Nightingale, Özgür Akgün, Ian P. Gent,
Christopher Jefferson, and Ian Miguel

Improving GAC-4 for Table and MDD Constraints 606
Guillaume Perez and Jean-Charles Régin

Improvement of the Embarrassingly Parallel Search for Data Centers . . . 622
Jean-Charles Régin, Mohamed Rezgui, and Arnaud Malapert

Stochastic MiniZinc . 636
Andrea Rendl, Guido Tack, and Peter J. Stuckey

Decomposing Utility Functions in Bounded Max-Sum for Distributed
Constraint Optimization . 646

Emma Rollon and Javier Larrosa

Insights into Parallelism with Intensive Knowledge Sharing 655
Ashish Sabharwal and Horst Samulowitz

The Non-overlapping Constraint between Objects Described by
Non-linear Inequalities . 672

Ignacio Salas, Gilles Chabert, and Alexandre Goldsztejn

Table of Contents XXV

Improving Relational Consistency Algorithms Using Dynamic Relation
Partitioning . 688

Anthony Schneider, Robert J. Woodward, Berthe Y. Choueiry,
and Christian Bessiere

Domain Views for Constraint Programming . 705
Pascal Van Hentenryck and Laurent Michel

Global Constraints in Distributed CSP:
Concurrent GAC and Explanations in ABT . 721

Mohamed Wahbi and Kenneth N. Brown

The Impact of Wireless Communication on Distributed Constraint
Satisfaction . 738

Mohamed Wahbi and Kenneth N. Brown

Adaptive Parameterized Consistency for Non-binary CSPs by Counting
Supports . 755

Robert J. Woodward, Anthony Schneider, Berthe Y. Choueiry,
and Christian Bessiere

Application Track

Proactive Workload Dispatching on the EURORA Supercomputer 765
Andrea Bartolini, Andrea Borghesi, Thomas Bridi,
Michele Lombardi, and Michela Milano

Scheduling B2B Meetings . 781
Miquel Bofill, Joan Espasa, Marc Garcia, Miquel Palah́ı,
Josep Suy, and Mateu Villaret

Solving a Judge Assignment Problem Using Conjunctions of Global
Cost Functions . 797

Simon de Givry, Jimmy H.M. Lee, Ka Lun Leung, and Yu Wai Shum

Worst-Case Scheduling of Software Tasks:
A Constraint Optimization Model to Support Performance
Testing . 813

Stefano Di Alesio, Shiva Nejati, Lionel Briand, and Arnaud Gotlieb

Continuous Casting Scheduling with Constraint Programming 831
Steven Gay, Pierre Schaus, and Vivian De Smedt

Case Study: Constraint Programming in a System Level Synthesis
Framework . 846

Shuo Li and Ahmed Hemani

XXVI Table of Contents

Scheduling Agents Using Forecast Call Arrivals at Hydro-Québec’s Call
Centers . 862

Marie Pelleau, Louis-Martin Rousseau, Pierre L’Ecuyer,
Walid Zegal, and Louis Delorme

Deployment of Mobile Wireless Sensor Networks for Crisis Management:
A Constraint-Based Local Search Approach . 870

Cédric Pralet and Charles Lesire

Air Traffic Controller Shift Scheduling by Reduction to CSP, SAT and
SAT-Related Problems . 886

Mirko Stojadinović

Journal Presentation Track

Optimization Bounds from Binary Decision Diagrams
(Extended Abstract) . 903

David Bergman, Andre A. Ciré, Willem-Jan van Hoeve,
and John N. Hooker

Reformulation Based MaxSAT Robustness (Extended Abstract) 908
Miquel Bofill, Dı́dac Busquets, and Mateu Villaret

Probabilistic Constraints for Nonlinear Inverse Problems
(Extended Abstract) . 913

Elsa Carvalho, Jorge Cruz, and Pedro Barahona

Multivalued Decision Diagrams for Sequencing Problems
(Extended Abstract) . 918

Andre A. Ciré and Willem-Jan van Hoeve

Robustness and Stability in Constraint Programming under Dynamism
and Uncertainty (Extended Abstract) . 923

Laura Climent, Richard J. Wallace, Miguel A. Salido,
and Federico Barber

Monotone Temporal Planning: Tractability, Extensions and
Applications (Extended Abstract) . 928

Martin C. Cooper, Frédéric Maris, and Pierre Régnier

Anytime AND/OR Depth-First Search for Combinatorial Optimization
(Extended Abstract) . 933

Lars Otten and Rina Dechter

View-Based Propagator Derivation (Extended Abstract) 938
Christian Schulte and Guido Tack

Author Index . 943

A Modular Architecture for Hybrid Planning
with Theories�

Maria Fox

Dept. Informatics, King’s College London, UK
maria.fox@kcl.ac.uk

Planning technology has made huge strides, alongside other combinatorial optimisation
solving technologies, over the past decade. Automated planning systems now exist for
temporal and metric problems, including management of continuous time and concur-
rency, continuous numeric resources and action costs [3,1,2,12,7,8,11,9]. There is an
increasing interest in combining planners with specialised solvers, such as optimisation
alogorithms, to achieve a hybrid form of planning. In this context, the relationship be-
tween planning and model-checking, planning and constraint-solving and planning and
control are all being clarified.

Synergies between different optimisation modelling and solving paradigms can be
exploited to achieve new capabilities and improved performance of solvers. An exam-
ple of this is recent work exploiting the developments in SAT solving, SAT Modulo
Theories, in which atoms can be built from predicates, functions and constants whose
interpretations are provided through external theory modules [10,5]. In planning, ex-
tension to support external modules allows a much richer expression of preconditions
and state variables. A motivation for exploring this idea is that the increased expressive-
ness can allow planners to work with models of application domains using specialised
solvers, necessary for reasoning within those applications, alongside the generic solv-
ing cores developed in the planning community. Since this is a common requirement of
planning applications, it is important to provide clean and well-understood methods for
linking planners to external libraries, choosing heuristics and exchanging constraints.

In this talk we present the Planning Modulo Theories paradigm, first proposed in
2012 [6], describing how the paradigm has been extended to incorporate the latest
advances in temporal planning. We discuss how the use of constraint reasoning can
provide an additional source of powerful solving capabilities within this framework.
In general, constraint solvers prune choices from the search space by inference, while
most modern planners focus on heuristic guidance of the search towards good choices.
Complex interactions in resource-constrained models can be obscure, making heuristic
evaluation of states much more difficult, while at the same time offering more oppor-
tunity for leverage from inference [13]. We consider, with reference to two real appli-
cation domains, how constraint solving can contribute to making planners suitable for
deployment in applications with demanding requirements.

One of the important challenges in extending the capabilities of planners is to con-
tinue to be able to efficiently validate plans and domain models. We will describe how

� Thanks to my generous collaborators and co-authors who have contributed to this work.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 1–2, 2014.
c© Springer International Publishing Switzerland 2014

2 M. Fox

the VAL system [4], developed incrementally over the last 10 years for validation of
plans and domains in the mixed discrete-continuous expressiveness of PDDL+, is now
being extended to cope with richer behaviours encountered in the PMT framework.

References

1. Coles, A., Coles, A., Fox, M., Long, D.: COLIN: Planning with continuous linear numeric
change. Journal of Art. Int. Research 44, 1–96 (2012)

2. Coles, A.I., Fox, M., Long, D., Smith, A.J.: A Hybrid Relaxed Planning Graph-LP
Heuristic for Numeric Planning Domains. In: Proc. 18th Int. Conf. on Automated Planning
and Scheduling (ICAPS) (2008)

3. Coles, A.J., Coles, A.I., Fox, M., Long, D.: Forward-Chaining Partial-Order Planning. In:
Proc. 20th Int. Conf. on Aut. Planning and Scheduling, ICAPS (2010)

4. Fox, M., Howey, R., Long, D.: Validating plans in the context of processes and exoge-
nous events. In: Veloso, M.M., Kambhampati, S. (eds.) Proc. Nat. Conf. on AI, AAAI,
pp. 1151–1156. AAAI Press / The MIT Press (2005)

5. Gao, S., Kong, S., Clarke, E.: Satisfiability Modulo ODEs. In: Proc. Formal Methods in
Computer-Aided Design, FMCAD (2013)

6. Gregory, P., Long, D., Fox, M., Beck, J.C.: Planning Modulo Theories: Extending the Plan-
ning Paradigm. In: Proc. 22nd Int. Conf. on Automated Planning and Scheduling, ICAPS
(2012)

7. Ivankovic, F., Haslum, P., Thiebaux, S., Shivashankar, V., Nau, D.: Optimal planning with
global numerical state constraints. In: Proceedings of 24th Int. Conf. on Aut. Planning and
Scheduling, ICAPS (2014)

8. Lipovetzky, N., Burt, C.N., Pearce, A.R., Stuckey, P.J.: Planning for Mining Operations with
Time and Resource Constraints. In: Proceedings of 24th Int. Conf. on Aut. Planning and
Scheduling, ICAPS (2014)

9. Löhr, J., Eyerich, P., Winkler, S., Nebel, B.: Domain Predictive Control Under Uncertain
Numerical State Information. In: Proc. 23rd Int. Conf. on Automated Planning and Schedul-
ing (ICAPS) (2013)

10. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From
an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J. ACM 53(6),
937–977 (2006)

11. Ono, M., Williams, B.C., Blackmore, L.: Probabilistic Planning for Continuous Dynamic
Systems under Bounded Risk. Journal of AI Research (JAIR) 46, 511–577 (2013)

12. Penna, G.D., Intrigila, B., Magazzeni, D., Mercorio, F.: Upmurphi: a tool for universal plan-
ning on pddl+ problems. In: Proc. 19th Int. Conf. on Automated Planning and Scheduling
(ICAPS), pp. 19–23 (2009)

13. Vidal, V., Geffner, H.: Branching and pruning: An optimal temporal pocl planner based on
constraint programming. Artif. Intell. 170(3), 298–335 (2006)

Teaching Constraint Programming

Patrick Prosser

School of Computing Science, University of Glasgow, UK
pat@dcs.gla.ac.uk

How do we do research? We start with a question. Then we read books, journal
and conference papers, maybe even speak to people. Then we do our own work,
make our own contribution, maybe coming up with an improved technique or a
greater insight. We then write up our findings, maybe submit this to a conference,
present our work and get feedback, and this results in further research. This is
a feedback loop, open to scrutiny by our peers.

And what about teaching? You teach yourself and become competent. You de-
cide how to teach your subject. You then teach and mark students. You analyze
students’ performance and use this to modify what you teach. You continue to
learn your subject and use this new knowledge to modify your teaching. Again,
there is a feedback loop. But it is a closed loop, in the sense that no one really
gets to critique what you do. If you are teaching Constraint Programming (CP)
it is unlikely that there are many teaching colleagues who can actually evaluate
what you are doing, other than looking at the final exam marks. So you can
wander off topic, away from the target and this can be dangerous.

I am fortunate enough to be allowed to teach CP to final year and masters
students at Glasgow University. I have been doing this for about 10 years. What
I teach and how I teach has evolved over time. I now recognize some things that
I did that were clearly wrong and some things that I did that were really good. I
know that I do not teach in a vacuum, that my students take many other courses.
So I try and identify stuff that I think a Constraint Programmer should know
that is not being taught in other courses. Consequently, my CP course contains
stuff that might be considered unusual. I also expect that there’s stuff that I
should teach but do not.

In my talk I will describe the content of my CP course (the stuff of it), some
things I have done wrong and some things that really work well. I will cover
lecture material, assessed exercises and even exam questions! In essence, I will
open my feedback loop allowing you to give me feedback on what I teach.

Acknowledgments. I would like to thank my students.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, p. 3, 2014.
c© Springer International Publishing Switzerland 2014

One Problem, Two Structures, Six Solvers,

and Ten Years of Personnel Scheduling

Louis-Martin Rousseau

CIRRELT, École Polytechnique de Montréal, Montréal,
C.P. 6128, succ. Centre-ville, Montréal, H3C 3J7,Canada

louis-martin.rousseau@polymtl.ca

The shift-scheduling problem was originally introduced by Edie in 1954 [8] in
the context of scheduling highway toll booth operators. It was solved a short
time later, by Georges Dantzig [6], using a set covering formulation. However,
the Multi-Activity Shift Scheduling (MASSP) version of that problem, where
one not only needs to schedule when employees are working or resting, but more
precisely, what activity they are performing, still remains a challenge. During
this invited lecture, we will recall the turning points of this 60-year journey,
focusing particularly on the efforts of the last decade to solve MASSPs.

The first breakthrough came from Constraint Programming (CP), with the
introduction of the Regular Language Membership Constraint [13,1], which en-
abled us to specify shift regulations through Deterministic Finite Automata.
Two years later, the Context-free Grammar Constraint [15,18] was introduced,
shortly followed by both a decomposed formulation [16] and incremental filter-
ing algorithm [11]. From these constraints it is possible to identify two network
structures (paths in a layered directed acyclic graph for Regular and hyper-paths
in a hyper-graph for Grammar).

Using these graph structures, Mixed Integer Programming (MIP) models were
initially proposed [3] to address the MASSP. Thanks to Orbital Shrinking [9],
a new MIP formulation [4], and hybrid CP-MIP branch and bound [17] were
proposed which allowed us to solve these models more efficiently.

Dynamic Programming (DP) algorithms were also developed to optimize (find
the shortest paths and hyper-paths) for both Regular and Grammar given that
marginal costs are associated with performing certain activities at a given time.
These costs can be estimated manually during a Large Neighbourhood Search
(LNS) [14] or obtained through dual values in the context of a Branch-and-Price
approach [7,5]. Finally Lazy-Clause Generation (LCG) within CP [10] has shown
to produce very good results for a subset of the benchmark originally introduced
in [7].

From a practical point of view, the concepts of [5] were implemented into
commercial software (Planora), while the models using the decomposition of
Regular were used in case studies involving a major fashion retailer [2] and
Hydro Québec’s large call center [12].

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 4–5, 2014.
c© Springer International Publishing Switzerland 2014

Ten Years of Personnel Scheduling 5

References

1. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from con-
straint checkers. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 107–122.
Springer, Heidelberg (2004)

2. Chapados, N., Joliveau, M., L‘Ecuyer, P., Rousseau, L.M.: Retail Store
Scheduling for Profit. European Journal of Operations Research (2014),
doi:10.1016/j.ejor.2014.05.033

3. Côté, M.C., Gendron, B., Quimper, C.G., Rousseau, L.M.: Formal languages for
integer programming modeling of shift scheduling problems. Constraints 16(1),
54–76 (2011)

4. Côté, M.C., Gendron, B., Rousseau, L.M.: Grammar-based integer programming
models for multiactivity shift scheduling. Management Science 57(1), 151–163
(2011)

5. Côté, M.C., Gendron, B., Rousseau, L.M.: Grammar-based column generation
for personalized multi-activity shift scheduling. INFORMS Journal on Comput-
ing 25(3), 461–474 (2013)

6. Dantzig, G.: A comment on Edie’s traffic delay at toll booths. Journal of the
Operations Research Society of America 2, 339–341 (1954)

7. Demassey, S., Pesant, G., Rousseau, L.M.: A cost-regular based hybrid column
generation approach. Constraints 11(4), 315–333 (2006)

8. Edie, L.: Traffic delays at toll booths. Journal of the Operations Research Society
of America 2, 107–138 (1954)

9. Fischetti, M., Liberti, L.: Orbital shrinking. In: Mahjoub, A.R., Markakis, V.,
Milis, I., Paschos, V.T. (eds.) ISCO 2012. LNCS, vol. 7422, pp. 48–58. Springer,
Heidelberg (2012)

10. Gange, G., Stuckey, P.J., Van Hentenryck, P.: Explaining Propagators for Edge-
Valued Decision Diagrams. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp.
340–355. Springer, Heidelberg (2013)

11. Kadioglu, S., Sellmann, M.: Grammar constraints. Constraints 15(1), 117–144
(2010)

12. Pelleau, M., Rousseau, L.-M., L’Ecuyer, P., Zegal, W., Delorme, L.: Scheduling of
Agents from Forecasted Future Call Arrivals at Hydro-Québec’ s Call Centers. In:
Principles and Practice of Constraint Programming, CP 2013, Springer, Heidelberg
(2014)

13. Pesant, G.: A regular language membership constraint for finite sequences of vari-
ables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004)

14. Quimper, C.G., Rousseau, L.M.: A large neighbourhood search approach to the
multi-activity shift scheduling problem. Journal of Heuristics 16(3), 373–392 (2010)

15. Quimper, C.G., Walsh, T.: Global grammar constraints. In: Benhamou, F. (ed.)
CP 2006. LNCS, vol. 4204, pp. 751–755. Springer, Heidelberg (2006)

16. Quimper, C.G., Walsh, T.: Decomposing global grammar constraints. In: Bessière,
C. (ed.) CP 2007. LNCS, vol. 4741, pp. 590–604. Springer, Heidelberg (2007)

17. Salvagnin, D., Walsh, T.: A hybrid MIP/CP approach for multi-activity shift
scheduling. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 633–646. Springer,
Heidelberg (2012)

18. Sellmann, M.: The theory of grammar constraints. In: Benhamou, F. (ed.) CP
2006. LNCS, vol. 4204, pp. 530–544. Springer, Heidelberg (2006)

Concurrent Constraint Programming Research
Programmes – Redux

Vijay Saraswat

IBM TJ Watson Research Center, Yorktown, Heights, NY, USA

At the first PPCP conference in 1995, I was honored to be one of the invited speakers.
Twenty conferences later, much has changed in the computational world. We have seen
the penetration of the Internet in every aspect of human life; the establishment of the
multi-core era; the arrival of petaflop high performance computing; the rise of big data,
analytics and machine learning; and the emergence of the planet-wide computer (the
“cloud”).

With this backdrop, we review the many developments in CCP over the last twenty
years, and revisit the core idea behind this framework: the use of constraints for com-
munication and control in concurrent programming languages. Surprisingly, in this age
of concurrency and big data, these ideas remain foundational. CCP remains the pre-
mier framework for determinate concurrency. By supporting the notion of concurrent
composition as intersection of sets of (constraint) stores rather than shuffling of sets of
interleaved store sequences, it offers interesting new ideas (declarative debugging [9,1],
diagnosis [7]) to deal with the problem of debugging concurrent programs running on
tens of thousands of cores. Interestingly, these ideas work even in the presence of global
non-monotonic change (and hence support “constraint imperative programming” [8]);
this is accomplished by introducing a temporal modality in a principled fashion [15]
and using soft constraints [2].

Concretely, we review the goals of the C10 project, being started in collaboration be-
tween researchers at IBM TJ Watson and many universities world-wide. C10 is intended
for use in the areas of constraint-solving, probabilistic programming, machine learning,
and big data analytics. It is a pure, declarative, implicitly concurrent, statically-typed,
object-oriented, timed, probabilistic [11,10] realization of the CCP framework. C10 is
intended to be compiled to the high-performance, multi-node, concurrent programming
language X10 [5], but does not itself have any explicit concurrency or distribution con-
structs. C10 permits recursive queries against the constraint store (based on [12]), thus
subsuming pure (constraint) logic programming. It proposes new indexicals (cf [17]),
including set-forming operations that make it easy to write ad hoc queries over large
data sets. It exploits random variables ([11,10]) to represent various probabilistic graph-
ical models (Bayesian networks, Markov networks, probabilistic CP nets [4,6]) directly
as programs.

We expect C10 to bring into focus several implementation challenges. Besides the
traditional challenges of implicit parallelism (statically and dynamically chunking fine-
grained parallelism into sizes adequate for efficient exploitation on today’s multi-core
architectures, [16]), C10 requires the development of efficient, incremental constraint
query procedures over the constraint store (cf query compilation challenges of [3,13]).
It requires the integration of multiple, efficient, probabilistic inference procedures into

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 6–8, 2014.
c© Springer International Publishing Switzerland 2014

Concurrent Constraint Programming Research Programmes – Redux 7

the run-time. Based on the query being asked, the model, and the training data available,
the right combination of inference procedures to use may have to be determined dynam-
ically (e.g. using ideas from work on automatic algorithm configuration and selection
procedures [14]).

References

1. Ajiro, Y., Ueda, K.: Kima: An Automated Error Correction System for Concurrent Logic
Programs. Automated Software Engg. 9(1), 67–94 (2002)

2. Bistarelli, S., Montanari, U., Rossi, F.: Soft Concurrent Constraint Programming. ACM Trans.
Comput. Logic 7(3), 563–589 (2006)

3. Boag, S., Chamberlin, D., Fernandez, M., Florescu, D., Robie, J., Simeon, J.: XQuery 1.0: An
XML Query Language. Technical report, W3C (2003), http://www.w3.org/TR/xquery

4. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A Tool for Rep-
resenting and Reasoning with Conditional Ceteris Paribus Preference Statements. J. Artif.
Int. Res. 21(1), 135–191 (2004)

5. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun,
C., Sarkar, V.: X10: an Object-Oriented Approach to Non-uniform Cluster Computing. SIG-
PLAN Not. 40(10), 519–538 (2005)

6. Cornelio, C., Goldsmith, J., Mattei, N., Rossi, F., Venable, K.B.: Updates and Uncertainity in
CP-nets. In: Proceedings of the Australian Conference on Artificial Intelligence, pp. 301–312
(2013)

7. Falaschi, M., Olarte, C., Palamidessi, C., Valencia, F.: Declarative Diagnosis of Tempo-
ral Concurrent Constraint Programs. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS,
vol. 4670, pp. 271–285. Springer, Heidelberg (2007)

8. Freeman-Benson, B.N.: Kaleidoscope: Mixing Objects, Constraints, and Imperative Pro-
gramming. In: Proceedings of the European Conference on Object-oriented Programming
on Object-oriented Programming Systems, Languages, and Applications, OOPSLA/ECOOP
1990, pp. 77–88. ACM, New York (1990)

9. Fromherz, M.P.J.: Towards Declarative Debugging of Concurrent Constraint Programs. In:
Fritzson, P.A. (ed.) AADEBUG 1993. LNCS, vol. 749, pp. 88–100. Springer, Heidelberg
(1993)

10. Gupta, V., Jagadeesan, R., Panangaden, P.: Stochastic Processes as Concurrent Constraint
Programs. In: Proceedings of the 26th ACM SIGPLAN-SIGACT on Principles of Program-
ming Languages, POPL 1999, San Antonio, TX, January 20-22, pp. 189–202. ACM Press,
New York (1999)

11. Gupta, V., Jagadeesan, R., Saraswat, V.: Probabilistic Concurrent Constraint Programming.
In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 1–4.
Springer, Heidelberg (1997)

12. Jagadeesan, R., Nadathur, G., Saraswat, V.: Testing Concurrent Systems: an Interpretation
of Intuitionistic Logic. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp.
517–528. Springer, Heidelberg (2005)

13. Khatchadourian, S., Consens, M., Siméon, J.: Chuql: Processing XML with XQuery Using
Hadoop. In: Proceedings of the 2011 Conference of the Center for Advanced Studies on
Collaborative Research, CASCON 2011, Riverton, NJ, USA, pp. 74–83. IBM Corp. (2011)

14. Kothoff, L., Malitsky, Y., O’Sullivan, B.: Advances in Algorithm Selection and Configuration
for Constraint Solving and Satisfiability. In: Tutorial at IJCAI 2013 (2013)

http://www.w3.org/TR/xquery

8 V. Saraswat

15. Saraswat, V., Jagadeesan, R., Gupta, V.: Timed Default Concurrent Constraint Programming.
Journal of Symbolic Computation 22(5-6), 475–520 (1996); Extended abstract appeared in
the Proceedings of the 22nd ACM Symposium on Principles of Programming Languages,
San Francisco (January 1995)

16. Ueda, K., Morita, M.: Moded Flat GHC and Its Message-oriented Implementation Technique.
New Gen. Comput. 13(1), 3–43 (1994)

17. van Hentenryck, P., Deville, Y., Saraswat, V.: Design, Implementation and Evaluation of the
Constraint Language cc(FD). Journal of Logic Programming 37(1-3), 139–164 (1998)

On Broken Triangles�

Martin C. Cooper1, Achref El Mouelhi2, Cyril Terrioux2, and Bruno Zanuttini3

1 IRIT, University of Toulouse III, 31062 Toulouse, France
cooper@irit.fr

2 LSIS, Aix-Marseille University, 13397 Marseille, France
{achref.elmouelhi,cyril.terrioux}@lsis.org

3 GREYC, University of Caen Basse-Normandie, 14032 Caen, France
bruno.zanuttini@unicaen.fr

Abstract. A binary CSP instance satisfying the broken-triangle property
(BTP) can be solved in polynomial time. Unfortunately, in practice, few
instances satisfy the BTP. We show that a local version of the BTP allows
the merging of domain values in arbitrary instances of binary CSP, thus
providing a novel polynomial-time reduction operation. Extensive exper-
imental trials on benchmark instances demonstrate a significant decrease
in instance size for certain classes of problems. We show that BTP-merging
can be generalised to instances with constraints of arbitrary arity and we
investigate the theoretical relationship with resolution in SAT. A direc-
tional version of the general-arity BTP then allows us to extend the BTP
tractable class previously defined only for binary CSP.

1 Introduction

At first sight one could assume that the discipline of constraint programming
has come of age. On the one hand, efficient solvers are regularly used to solve
real-world problems in diverse application domains while, on the other hand,
a rich theory has been developed concerning, among other things, global con-
straints, tractable classes, reduction operations and symmetry. However, there
often remains a large gap between theory and practice which is perhaps most
evident when we look at the large number of deep results concerning tractable
classes which have yet to find any practical application. The research reported
in this paper is part of a long-term project to bridge the gap between theory
and practice. Our aim is not only to develop new tools but also to explain why
present tools work so well.

Most research on tractable classes has been based on classes defined by
placing restrictions either on the types of constraints or on the constraint hyper-
graph whose vertices are the variables and whose hyper-edges are the con-
straint scopes. Another way of defining classes of binary CSP instances consists
in imposing conditions on the microstructure, a graph whose vertices are the
possible variable-value assignments with an edge linking each pair of compat-
ible assignments [9,12]. If each vertex of the microstructure, corresponding to a

� Supported by ANR Project ANR-10-BLAN-0210.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 9–24, 2014.
c© Springer International Publishing Switzerland 2014

10 M.C. Cooper et al.

variable-value assignment 〈x, a〉, is labelled by the variable x, then this so-called
coloured microstructure retains all information from the original instance. The
broken-triangle property (BTP) is a simple local condition on the coloured mi-
crostructure which defines a tractable class of binary CSP [5]. Inspired by the
BTP, investigation of other forbidden patterns in the coloured microstructure
has led to the discovery of new tractable classes [1,4,6,8] as well as new reduc-
tion operations based on variable elimination [2].

For simplicity of presentation we use two different representations of con-
straint satisfaction problems. In the binary case, our notation is fairly standard,
whereas in the general-arity case we use a notation close to the representation
of SAT instances. This is for presentation only, though, and our algorithms do
not need instances to be represented in this manner.

Definition 1. A binary CSP instance I consists of

– a set X of n variables,
– a domainD(x) of possible values for each variable x ∈ X ,
– a relation Rxy ⊆ D(x) ×D(y), for each pair of distinct variables x, y ∈ X , which

consists of the set of compatible pairs of values (a, b) for variables (x, y).

A partial solution to I on Y = {y1, . . . , yr} ⊆ X is a set {〈y1, a1〉, . . . , 〈yr, ar〉}
such that ∀i, j ∈ [1, r], (ai, aj) ∈ Ryiyj . A solution to I is a partial solution on X .

For simplicity of presentation, Definition 1 assumes that there is exactly one
constraint relation for each pair of variables. The number of constraints e is the
number of pairs of variables x, y such that Rxy �= D(x) × D(y). An instance
I is arc consistent if for each pair of distinct variables x, y ∈ X , for each value
a ∈ D(x), there is a value b ∈ D(y) such that (a, b) ∈ Rxy .

In our representation of general-arity CSP instances, we require the notion of
tuple which is simply a set of variable-value assignments. For example, in the
binary case, the tuple {〈x, a〉, 〈y, b〉} is compatible if (a, b) ∈ Rxy and incompatible
otherwise.

Definition 2. A (general-arity) CSP instance I consists of

– a set X of n variables,
– a domainD(x) of possible values for each variable x ∈ X ,
– a set NoGoods(I) consisting of incompatible tuples.

A partial solution to I on Y = {y1, . . . , yr} ⊆ X is a tuple t =
{〈y1, a1〉, . . . , 〈yr, ar〉} such that no subset of t belongs to NoGoods(I). A solution
is a partial solution on X .

2 Value Merging in Binary CSP Based on the BTP

In this section we consider a method, based on the BTP, for reducing domain
size while preserving satisfiability. Instead of eliminating a value, as in classic
reduction operations such as arc consistency or neighbourhood substitution,

On Broken Triangles 11

we merge two values. We show that the absence of broken-triangles [5] on two
values for a variable x in a binary CSP instance allows us to merge these two
values in the domain of x while preserving satisfiability. This rule generalises
the notion of virtual interchangeability [11] as well as neighbourhood substitu-
tion [10].

It is known that if for a given variable x in an arc-consistent binary CSP in-
stance I , the set of (in)compatibilities (known as a broken-triangle) shown in
Figure 1 occurs for no two values a, b ∈ D(x) and no two assignments to two
other variables, then the variable x can be eliminated from I without chang-
ing the satisfiability of I [5,2]. In figures, each bullet represents a variable-value
assignment, assignments to the same variable are grouped together within the
same oval and compatible (incompatible) pairs of assignments are linked by
solid (broken) lines. Even when this variable-elimination rule cannot be ap-
plied, it may be the case that for a given pair of values a, b ∈ D(x), no broken
triangle occurs. We will show that if this is the case, then we can perform a
domain-reduction operation which consists in merging the values a and b.

�

�

�

�

•

�

�

�

�

•

�

�

�

�
•

•
�������
�
�
�

x

a

b
y

d

z

e �
�
�
�
�

Fig. 1. A broken triangle on two values a, b for a given variable x

Definition 3. Merging values a, b ∈ D(x) in a binary CSP consists in replacing
a, b in D(x) by a new value c which is compatible with all variable-value assignments
compatible with at least one of the assignments 〈x, a〉 or 〈x, b〉. A value-merging
condition is a polytime-computable property P (x, a, b) of assignments 〈x, a〉, 〈x, b〉 in
a binary CSP instance I such that when P (x, a, b) holds, the instance I ′ obtained from
I by merging a, b ∈ D(x) is satisfiable if and only if I is satisfiable.

We now formally define the value-merging condition based on the BTP.

Definition 4. A broken triangle on the pair of variable-value assignments a, b ∈
D(x) consists of a pair of assignments d ∈ D(y), e ∈ D(z) to distinct variables y, z ∈
X \ {x} such that (a, d) /∈ Rxy, (b, d) ∈ Rxy , (a, e) ∈ Rxz , (b, e) /∈ Rxz and
(d, e) ∈ Ryz . The pair of values a, b ∈ D(x) is BT-free if there is no broken triangle on
a, b.

Proposition 1. In a binary CSP instance, being BT-free is a value-merging condition.
Furthermore, given a solution to the instance resulting from the merging of two values,
we can find a solution to the original instance in linear time.

12 M.C. Cooper et al.

Proof. Let I be the original instance and I ′ the new instance in which a,b have
been merged into a new value c. Clearly, if I is satisfiable then so is I ′. It suffices
to show that if I ′ has a solution s which assigns c to x, then I has a solution. Let
sa, sb be identical to s except that sa assigns a to x and sb assigns b to x. Suppose
that neither sa nor sb are solutions to I . Then, there are variables y, z ∈ X \
{x} such that 〈a, s(y)〉 /∈ Rxy and 〈b, s(z)〉 /∈ Rxz . By definition of the merging
of a, b to produce c, and since s is a solution to I ′ containing 〈x, c〉, we must
have (b, s(y)) ∈ Rxy and (a, s(z)) ∈ Rxz. Finally, (s(y), s(z)) ∈ Ryz since s is
a solution to I ′. Hence, 〈y, s(y)〉, 〈z, s(z)〉, 〈x, a〉, 〈x, b〉 forms a broken-triangle,
which contradicts our assumption. Hence, the absence of broken triangles on
assignments 〈x, a〉, 〈x, b〉 allows us to merge these assignments while preserving
satisfiability.

Reconstructing a solution to I from a solution s to I ′ simply requires check-
ing which of sa or sb is a solution to I . �

We can see that the BTP-merging rule, given by Proposition 1, generalises
neighbourhood substitution [10]: if b is neighbourhood substitutable by a, then
no broken triangle occurs on a, b and merging a and b produces a CSP instance
which is identical (except for the renaming of the value a as c) to the instance
obtained by simply eliminating b from D(x). BTP-merging also generalises the
merging rule proposed by Likitvivatanavong and Yap [11]. The basic idea be-
hind their rule is that if the two assignments 〈x, a〉, 〈x, b〉 have identical com-
patibilities with all assignments to all other variables except concerning at most
one other variable, then we can merge a and b. This is clearly subsumed by
BTP-merging.

The BTP-merging operation is not only satisfiability-preserving but, from
Proposition 1, we know that we can also reconstruct a solution in polynomial
time to the original instance I from a solution to an instance Im to which we
have applied a sequence of merging operations until convergence. It is known
that for the weaker operation of neighbourhood substitutability, all solutions to
the original instance can be generated in O(N(de + n2)) time, where N is the
number of solutions to the original instance, n is the number of variables, d the
maximum domain size and e the number of constraints [3]. We now show that
a similar result also holds for the more general rule of BTP-merging.

Proposition 2. Let I be a binary CSP instance and suppose that we are given the set
of all solutions to the instance Im obtained after applying a sequence of BTP-merging
operations. All N solutions to I can then be determined in O(Nn2d) time.

Proof. Let I ′ be the CSP instance which results after performing a single BTP-
merging operation of values a, b ∈ D(x) in I . As we saw in the proof of Proposi-
tion 1, given the set of solutions sol(I ′) to I ′ we can generate the set of solutions
to I by testing for each s ∈ Sol(I ′) whether sa or sb (or both) are solutions to
I . This requires O(n) time per solution to I , since there are at most n − 1 con-
straints to be tested involving the variable x, and at least one of sa or sb is a
solution to I .

On Broken Triangles 13

The total number of BTP-merging operations performed to transform I into
Im is at most n(d− 1). Therefore, the total time to generate all N solutions to I
from the set of solutions to Im is O(Nn2d). �

�

�

�

�
•

•

�

�

�

�
•

•

�

�

�

�
•

•������������
�
�
�
�

�
�
�
�

�
�
�
�
�
��

�
�

	
	
	
	
	
		

x

(a)
y

z

b

a a′

b′

�

�

�

�

•

�

�

�

�
•

•

�

�

�

�
•

•
�������
�
��

�
�
�
�
��

	
	
	
	
	
		

x

(b)
y

z

c
a′

b′

Fig. 2. (a) A broken triangle exists on values a′, b′ at variable z. (b) After BTP-merging of
values a and b in D(x), this broken triangle has disappeared.

�

�

�

	
•
•
•

�

�

�

	
•

•

�

�

�

	
•
•
•����������������

�
�
�
�
��

�
�
�
�
�
�
�
�

�
�
�

	
	
	
	
	
	
	
	

x

(a)
y

z

b

a a′

b′
�
�
�
�
�
��

�
�
�
�

��������

�
�
�
�
��

�
�
�
�
�
��

�

�

�

	
•

•

�

�

�

	
•

•

�

�

�

	
•
•
•����������������

�
�
�
�
��

�
�
�
�
��

�
�
�
�
�
�
�
�

�
�
�

	
	
	
	
	
	
	
	

x

(b)
y

z

c a′

b′

��������

�
�
�
�
��

�
�
�
�
�
��

Fig. 3. (a) This instance contains no broken triangle. (b) After BTP-merging of values a
and b in D(x), a broken triangle has appeared on values a′, b′ ∈ D(z).

The weaker operation of neighbourhood substitution has the property that
two different convergent sequences of eliminations by neighbourhood substi-
tution necessarily produce isomorphic instances Im1 , Im2 [3] . This is not the
case for BTP-merging. Firstly, and perhaps rather surprisingly, BTP-merging
can have as a side-effect to eliminate broken triangles. This is illustrated in the
3-variable instance shown in Figure 2. The instance in Figure 2(a) contains a
broken triangle on values a′, b′ for variable z, but after BTP-merging of values
a, b ∈ D(x) into a new value c, as shown in Figure 2(b), there are no broken
triangles in the instance. Secondly, BTP-merging of two values in D(x) can in-
troduce a broken triangle on a variable z �= x, as illustrated in Figure 3. The
instance in Figure 3(a) contains no broken triangle, but after the BTP-merging
of a, b ∈ D(x) into a new value c, a broken triangle has been created on values
a′, b′ ∈ D(z).

14 M.C. Cooper et al.

3 Experimental Trials

To test the utility of BTP-merging we performed extensive experimental tri-
als on benchmark instances from the International CP Competition1. For each
instance not including global constraints, we performed BTP-mergings until
convergence with a time-out of one hour. In total, we obtained results for 2,547
instances out of 3,811 benchmark instances. In the other instances the search for
all BTP-mergings did not terminate within a time-out of one hour.

Table 1. Results of experiments on CSP benchmark problems

domain no. instances no. values no. values deleted %age deleted
BH-4-13 6 7,334 3,201 44%
BH-4-4 10 674 322 48%
BH-4-7 20 2,102 883 42%
ehi-85 98 2,079 891 43%
ehi-90 100 2,205 945 43%
graph-coloring/school 8 4,473 104 2%
graph-coloring/sgb/book 26 1,887 534 28%
jobShop 45 6,033 388 6%
marc 1 6400 6,240 98%
os-taillard-4 30 2,932 1,820 62%
os-taillard-5 28 6,383 2,713 43%
rlfapGraphsMod 5 14,189 5,035 35%
rlfapScens 5 12,727 821 6%
rlfapScensMod 9 9,398 1,927 21%
others 1919 1,396 28 0.02%

All instances from the benchmark-domain hanoi satisfy the broken-triangle
property and BTP-merging reduced all variable domains to singletons. After
establishing arc consistency, 38 instances from diverse benchmark-domains sat-
isfy the BTP, including all instances from the benchmark-domain domino. We
did not count those instances for which arc consistency detects inconsistency by
producing a trivial instance with empty variable domains (and which trivially
satisfies the BTP). In all instances from the pigeons benchmark-domain with
a suffix -ord, BTP-merging again reduced all domains to singletons. This is be-
cause BTP-merging can eliminate broken triangles, as pointed out in Section 2,
and hence can render an instance BTP even though initially it was not BTP. The
same phenomenon occurred in a 680-variable instance from the benchmark-
domain rlfapGraphsMod as well as the 3-variable instance ogdPuzzle.

Table 1 gives a summary of the results of the experimental trials. We do not
include those instances mentioned above which are entirely solved by

1 http://www.cril.univ-artois.fr/CPAI08

http://www.cril.univ-artois.fr/CPAI08

On Broken Triangles 15

BTP-merging. We give details about those benchmark-domains where BTP-
merging was most effective. All other benchmark-domains are grouped to-
gether in the last line of the table. The table shows the number of instances
in the benchmark-domain, the average number of values (i.e. variable-value
assignments) in the instances from this benchmark-domain, the average num-
ber of values deleted (i.e. the number of BTP-merging operations performed)
and finally this average represented as a percentage of the average number of
values.

We can see that for certain types of problem, BTP-merging is very effective,
whereas for others (grouped together in the last line of the table) hardly any
merging of values occurred.

4 Generalising BTP-Merging to Constraints of Arbitrary Arity

In the remainder of the paper, we assume that the constraints of a general-arity
CSP instance I are given in the form described in Definition 2, i.e. as a set of in-
compatible tuples NoGoods(I), where a tuple is a set of variable-value assign-
ments. For simplicity of presentation, we use the predicate Good(I, t) which is
true iff the tuple t is a partial solution, i.e. t does not contain any pair of distinct
assignments to the same variable and �t′ ⊆ t such that t′ ∈ NoGoods(I). We
first generalise the notion of broken triangle and merging to the general-arity
case, before showing that absence of broken triangles allows merging.

Definition 5. A general-arity broken triangle (GABT) on values a, b ∈ D(x) con-
sists of a pair of tuples t, u (containing no assignments to variable x) satisfying the
following conditions:

1. Good(I, t ∪ u) ∧ Good(I, t ∪ {〈x, a〉}) ∧ Good(I, u ∪ {〈x, b〉})
2. t ∪ {〈x, b〉} ∈ NoGoods(I) ∧ u ∪ {〈x, a〉} ∈ NoGoods(I)

The pair of values a, b ∈ D(x) is GABT-free if there is no broken triangle on a, b.

Observe that Good(I, t∪{〈x, a〉}) entails t∪{〈x, a〉} /∈NoGoods(I). Hence to
decide whether there is a GABT on a, b in a CSP instance, one can either explore
all pairs t ∪ {〈x, b〉}, u ∪ {〈x, a〉} ∈ NoGoods(I), as suggested by Definition 5,
or, equivalently, explore all pairs t ∪ {〈x, a〉}, u ∪ {〈x, b〉} of tuples explicitly al-
lowed by the constraints in I . Whatever the representation, a pair t, u can be
checked to be a GABT on a, b by evaluating the properties of Definition 5, all
of which involve only constraint checks. Hence deciding whether a pair a, b is
GABT-free is polytime for constraints given in extension (as the set of satisfy-
ing assignments) as well as for those given by nogoods (the set of assignments
violating the constraint).

Definition 6. Merging values a, b ∈ D(x) in a general-arity CSP instance I consists
in replacing a, b in D(x) by a new value c which is compatible with all variable-value

16 M.C. Cooper et al.

assignments compatible with at least one of the assignments 〈x, a〉 or 〈x, b〉, thus pro-
ducing an instance I ′ with the new set of nogoods defined as follows:

NoGoods(I ′) = {t ∈ NoGoods(I) | 〈x, a〉, 〈x, b〉 /∈ t}
∪ {t ∪ {〈x, c〉} | t ∪ {〈x, a〉} ∈ NoGoods(I) ∧

∃t′ ∈ NoGoods(I) s.t. t′ ⊆ t ∪ {〈x, b〉}}
∪ {t ∪ {〈x, c〉} | t ∪ {〈x, b〉} ∈ NoGoods(I) ∧

∃t′ ∈ NoGoods(I) s.t. t′ ⊆ t ∪ {〈x, a〉}}

A value-merging condition is a polytime-computable property P (x, a, b) of assign-
ments 〈x, a〉, 〈x, b〉 in a CSP instance I such that when P (x, a, b) holds, the instance
I ′ is satisfiable if and only if I is satisfiable.

Clearly, this merging operation can be performed in polynomial time
whether constraints are represented positively in extension or negatively as no-
goods.

Proposition 3. In a general-arity CSP instance, being GABT-free is a value-merging
condition. Furthermore, given a solution to the instance resulting from the merging of
two values, we can find a solution to the original instance in linear time.

Proof. In order to prove that satisfiability is preserved by this merging oper-
ation, it suffices to show that if s is a solution to I ′ containing 〈x, c〉, then ei-
ther sa = (s \ {〈x, c〉}) ∪ {〈x, a〉} or sb = (s \ {〈x, c〉}) ∪ {〈x, b〉} is a solution
to I . Suppose, for a contradiction that this is not the case. Then there are tu-
ples t, u ⊆ s \ {〈x, c〉} such that t ∪ {〈x, b〉} ∈ NoGoods(I) and u ∪ {〈x, a〉} ∈
NoGoods(I). Since t, u are subsets of the solution s to I ′ and t, u contain no as-
signments to x, we have Good(I, t∪u). Since t∪{〈x, c〉} is a subset of the solution
s to I ′, we have t ∪ {〈x, c〉} /∈ NoGoods(I ′). By the definition of NoGoods(I ′)
given in Definition 6, and since t ∪ {〈x, b〉} ∈ NoGoods(I), we know that �t′ ∈
NoGoods(I) such that t′ ⊆ t ∪ {〈x, a〉}. But then Good(I, t ∪ {〈x, a〉}). By a
symmetric argument, we can deduce Good(I, u ∪ {〈x, b〉}). This provides the
contradiction we were looking for, since we have shown that a general-arity
broken triangle occurs on t, u, 〈x, a〉, 〈x, b〉.

Reconstructing a solution to the original instance can be achieved in linear
time, since it suffices to verify which (or both) of sa or sb is a solution to I . �

Relationship with Resolution in SAT

We now show that in the case of Boolean domains, there is a close relationship
between merging two values a, b on which no GABT occurs and a common
preprocessing operation used by SAT solvers. Given a propositional CNF for-
mula ϕ in the form of a set of clauses (each clause Ci being represented as a set
of literals) and a variable x occurring in ϕ, recall that resolution is the process
of inferring the clause (C0 ∪ C1) from the two clauses ({x̄} ∪ C0), ({x} ∪ C1).

On Broken Triangles 17

Define the formula Res(x, ϕ) to be the result of performing all such resolutions
on ϕ, removing all clauses containing x or x̄, and removing subsumed clauses:

Res(x, ϕ) = min
⊂

({C | C ∈ ϕ;x, x̄ /∈ C}∪{(C0∪C1) | ({x̄}∪C0), ({x}∪C1) ∈ ϕ})

It is a well-known fact that Res(x, ϕ) is satisfiable if and only if ϕ is.
Eliminating variables in this manner from SAT instances, to get an equisat-

isfiable formula with less variables, is a common preprocessing step in SAT
solving, and is typically performed provided it does not increase the size of the
formula [7]. A particular case is when it amounts to simply removing all occur-
rences of x, which is the case, for instance, if x or x̄ is unit or pure in ϕ, or if all
resolutions on x yield a tautological clause.

Definition 7. A variable x is said to be erasable from a CNF ϕ if

Res(x, ϕ) ⊆ {C | C ∈ ϕ;x, x̄ /∈ C}∪{C0 | ({x̄}∪C0) ∈ ϕ} ∪ {C1 | ({x}∪C1) ∈ ϕ}

A CNF ϕ can be seen as the CSP instance Iϕ on the set X of variables occur-
ring in ϕ, with D(x) = {�,⊥} for all x ∈ X , and NoGoods(Iϕ) = {C | C ∈ ϕ},
where ({x1, · · ·xp, x̄p+1, · · · , x̄q})={〈x1,⊥〉, . . . , 〈xp,⊥〉, 〈xp+1,�〉, . . . , 〈xq ,�〉}.

Proposition 4. Assume that no GABT occurs on values ⊥,� for x in Iϕ. Assume
moreover that no clause in ϕ is subsumed by another one2. Then x is erasable from ϕ.

Proof. Rephrasing Definition 5 in terms of clauses, for any two clauses ({x̄} ∪
C0), ({x} ∪ C1) ∈ ϕ we have one of (i) ∃C ∈ ϕ,C ⊆ (C0 ∪ C1), (ii) ∃C′ ∈
ϕ,C′ ⊆ (C0 ∪ {x}), or (iii) ∃C′′ ∈ ϕ,C′′ ⊆ (C1 ∪ {x̄}). Moreover, in Case (ii) C′

must contain x, for otherwise the clause ({x̄} ∪ C0) would be subsumed in ϕ,
contradicting our assumption. Similarly, in Case (iii) C′′ must contain x̄.

In Case (i) the resolvent (C0∪C1) of ({x̄}∪C0), ({x}∪C1) is subsumed byC in
Res(x, ϕ), and hence does not occur in it. Similarly, in the second case (C0 ∪C1)
is subsumed by the resolvent of ({x̄} ∪ C0) and C′, which is precisely C0. The
third case is dual. We finally have that the only resolvents added are of the form
C0 (resp. C1) for some clause ({x̄} ∪ C0) (resp. ({x} ∪ C1)) of ϕ, as required. �

We can show the converse is also true provided that a very reasonable prop-
erty holds.

Proposition 5. Assume that ϕ satisfies: ∀({x} ∪ C) ∈ ϕ, �C′ ⊆ C, ({x̄} ∪ C′) ∈ ϕ
and dually ∀({x̄}∪C) ∈ ϕ, �C′ ⊆ C, ({x} ∪C′) ∈ ϕ. If x is erasable from ϕ, then no
GABT occurs on values ⊥,� for x in Iϕ.

Proof. Assume for a contradiction that there is a GABT on values ⊥,� for x in
Iϕ, let t, u be witnesses to this, and write t ∪ {〈x,�〉} = ({x̄} ∪ C0), u ∪ {〈x,⊥
〉} = ({x} ∪ C1). Then the clause (C0 ∪ C1) is produced by resolution on x.

2 This is without loss of generality since such clauses can be removed in polytime and
such removal preserves logical equivalence.

18 M.C. Cooper et al.

Since x is erasable, (C0 ∪C1) is equal to or subsumed by a clause C ∈ Res(x, ϕ),
where (applying Definition 7 in reverse) either C, or ({x}∪C), or ({x̄}∪C) is in
ϕ. The first case contradicts Good(Iϕ, t∪u), so assume by symmetry ({x}∪C) ∈
ϕ. From C /∈ ϕ and C ∈ Res(x, ϕ) we get ∃C′ ⊆ C, ({x̄} ∪ C′) ∈ ϕ. But then the
pair of clauses ({x}∪C), ({x̄}∪C′) ∈ ϕ violates the assumption of the claim. �

5 A Tractable Class of General-Arity CSP

In binary CSP, the broken-triangle property defines an interesting tractable class
when broken-triangles are forbidden according to a given variable ordering.
Unfortunately, the original definition of BTP was limited to binary CSPs [5].
Section 4 described a general-arity version of the broken-triangle property
whose absence on two values allows these values to be merged while pre-
serving satisfiability. An obvious question is whether GABT-freeness can be
adapted to define a tractable class. In this section we show that this is possi-
ble for a fixed variable ordering, but not if the ordering is unknown.

Definition 5 defined a general-arity broken triangle (GABT). What happens
if we forbid GABTs according to a given variable ordering? Absence of GABTs
on two values a, b for the last variable x in the variable ordering allows us to
merge a and bwhile preserving satisfiability. It is possible to show that if GABTs
are absent on all pairs of values for x, then we can merge all values in the do-
mainD(x) of x to produce a singleton domain. This is because (as we will show
later) merging a and b, to produce a merged value c, cannot introduce a GABT
on c, d for any other value d ∈ D(x). Once the domainD(x) becomes a singleton
{a}, we can clearly eliminate x from the instance, by deleting 〈x, a〉 from all no-
goods, without changing its satisfiability. It is at this moment that GABTs may
be introduced on other variables, meaning that forbidding GABTs according to
a variable ordering does not define a tractable class.

Nevertheless, we will show that strengthening the general-arity BTP allows
us to avoid this problem. The resulting directional general-arity version of BTP
(for a known variable ordering) then defines a tractable class which includes
the binary BTP tractable class as a special case.

Note that the set of general-arity CSP instances whose dual instance satisfies
the BTP also defines a tractable class which can be recognised in polynomial
time even if the ordering of the variables in the dual instance is unknown [8].
This DBTP class is incomparable with the class we present in the present paper
(which is equivalent to BTP in binary CSP) since DBTP is known to be incom-
parable with the BTP class already in the special case of binary CSP [8].

5.1 Directional General-Arity BTP

We suppose given a total ordering < of the variables of a CSP instance I . We
write t<x to represent the subset of the tuple t consisting of assignments to
variables occurring before x in the order <, and V ars(t) to denote the set of all
variables assigned by t.

On Broken Triangles 19

Definition 8. A directional general-arity (DGA) broken triangle on assignments
a, b to variable x in a CSP instance I is a pair of tuples t, u (containing no assignments
to variable x) satisfying the following conditions:

1. t<x and u<x are non-empty
2. Good(I, t<x ∪ u<x) ∧ Good(I, t<x ∪ {〈x, a〉}) ∧ Good(I, u<x ∪ {〈x, b〉})
3. ∃t′ s.t. V ars(t′) = V ars(t) ∧ (t′)<x = t<x ∧ t′ ∪ {〈x, a〉} /∈ NoGoods(I)
4. ∃u′ s.t. V ars(u′) = V ars(u) ∧ (u′)<x = u<x ∧ u′ ∪{〈x, b〉} /∈ NoGoods(I)
5. t ∪ {〈x, b〉} ∈ NoGoods(I) ∧ u ∪ {〈x, a〉} ∈ NoGoods(I)

I satisfies the directional general-arity broken-triangle property (DGABTP) ac-
cording to the variable ordering < if no directional general-arity broken triangle occurs
on any pair of values a, b for any variable x.

We will show that any instance I satisfying the DGABTP can be solved in
polynomial time by repeatedly alternating the following two operations: (i)
merge all values in the last remaining variable (according to the order <); (ii)
eliminate this variable when its domain becomes a singleton. We will give the
two operations (merging and variable-elimination) and show that both opera-
tions preserve satisfiability and that neither of them can introduce DGA bro-
ken triangles. Moreover, as for GABT-freeness, the DGABTP can be tested in
polynomial time for a given order whether constraints are given as tables of
satisfying assignments or as nogoods. Indeed, in the former case, using items
(3) and (4) in Definition 8 we can restrict the search for a DGA broken triangle
to pairs of tuples satisfying some constraint (there must be a constraint with
scope V ars(t′ ∪ {x}) since there is a nogood on these variables by item (5), and
similarly for u′). This is sufficient to define a tractable class.

5.2 Merging

Let x be the last variable according to the variable order <. When values a, b
in the domain of variable x do not belong to any DGA broken triangle, we
can replace a, b by a new value c to produce an instance I ′ with the new set of
nogoods given by Definition 6. Since x is the last variable in the ordering <,
DGA broken triangles on a, b ∈ D(x) are GA broken triangles (and vice versa).
Thus, from Proposition 3 we can deduce that satisfiability is preserved by this
merging operation. What remains to be shown is that merging two values in
the domain of the last variable cannot introduce the forbidden pattern.

Lemma 1. Merging two values a, b into a value c in the domain of the last variable
x (according to the variable order <) in an instance I cannot introduce a directional
general-arity broken triangle (DGABT) in the resulting instance I ′.

Proof. We first claim that this operation cannot introduce a DGABT on a vari-
able y < x. Indeed, assume there is a DGABT on d, e ∈ D(y) in I ′, that is, that
there are tuples v, w such that

1. v<y and w<y are non-empty
2. Good(I ′, v<y∪w<y) ∧ Good(I ′, v<y∪{〈y, d〉}) ∧ Good(I ′, w<y∪{〈y, e〉})

20 M.C. Cooper et al.

3. ∃v′ V ars(v′) = V ars(v) ∧ (v′)<y = v<y ∧ v′ ∪ {〈y, d〉} /∈ NoGoods(I ′)
4. ∃w′ V ars(w′) = V ars(w) ∧ (w′)<y = w<y ∧ w′ ∪{〈y, e〉} /∈NoGoods(I ′)
5. v ∪ {〈y, e〉} ∈ NoGoods(I ′) ∧ w ∪ {〈y, d〉} ∈ NoGoods(I ′)

If v′ contains the assignment 〈x, c〉 then, by construction of NoGoods(I ′) (Defi-
nition 6), ∃v′′ ∈ {(v′\〈x, c〉)∪{〈x, a〉}, (v′\〈x, c〉)∪{〈x, b〉}} such that v′′∪{〈y, d〉}
/∈NoGoods(I). If v′ does not contain 〈x, c〉 then let v′′ = v′. Define w′′ in a simi-
lar way. Now considering the last item, if v contains 〈x, c〉 then by construction
of NoGoods(I ′) there is v′′′ assigning a or b to x and otherwise equal to v, such
that v′′′ ∪ {〈y, e〉}was in NoGoods(I), and if v �� 〈x, c〉 we let v′′′ = v. We define
w′′′ similarly. Then:

1. (v′′′)<y = v<y and (w′′′)<y = w<y are non-empty
2. Good(I, (v′′′)<y ∪ (w′′′)<y) ∧ Good(I, (v′′′)<y ∪ {〈y, d〉}) ∧ Good(I,

(w′′′)<y ∪ {〈y, e〉}) (since x is the last variable, (v′′′)<y = v<y and (w′′′)<y =
w<y)

3. V ars(v′′) = V ars(v′′′) ∧ (v′′)<y = (v′′′)<y ∧ v′′ ∪ {〈y, d〉} /∈ NoGoods(I)
4. V ars(w′′) = V ars(w′′′) ∧ (w′′)<y = (w′′′)<y ∧ w′′∪{〈y, e〉} /∈NoGoods(I))
5. v′′′ ∪ {〈y, e〉} ∈ NoGoods(I) ∧ w′′′ ∪ {〈y, d〉} ∈ NoGoods(I)

that is, there was a DGABT on d, e in I , contradicting our assumption.
We now show that a broken triangle cannot be introduced on x. Observe

that since x is the last variable, for all tuples t not containing an assignment to
x, t<x = t holds. We use this tacitly in the rest of the proof. Suppose for a con-
tradiction that I contained no DGABT, but that after merging a, b ∈ D(x) in I to
produce the instance I ′, in which a, b have been replaced by a new value c, we
have a DGABT on c, d. Then there is a pair of non-empty tuples t, u (containing
no assignments to variable x) satisfying in particular the following conditions:

(1) Good(I ′, t ∪ u) (4) t ∪ {〈x, d〉} ∈ NoGoods(I ′)
(2) Good(I ′, t ∪ {〈x, c〉}) (5) u ∪ {〈x, c〉} ∈ NoGoods(I ′)
(3) Good(I ′, u ∪ {〈x, d〉})

We show that there was a DGABT in I either on a, d, on b, d or on a, b.
Since merging only affects tuples containing 〈x, a〉 or 〈x, b〉, (1) implies that

Good(I, t∪ u) and hence Good(I, t∪ u′) for all u′ ⊆ u. Similarly, (3) implies that
Good(I, u ∪ {〈x, d〉}) and hence Good(I, u′ ∪ {〈x, d〉}) for all u′ ⊆ u. Similarly,
(4) implies that t ∪ {〈x, d〉} ∈NoGoods(I).
There are three possible cases to consider:

(a) Good(I, t ∪ {〈x, a〉}),
(b) Good(I, t ∪ {〈x, b〉}),
(c) ∃t1, t2 ⊆ t such that t1 ∪ {〈x, a〉}, t2 ∪ {〈x, b〉} ∈ NoGoods(I).

case (a): By Definition 6 of the creation of nogoods during merging, (5) implies
that ∃u′ ⊆ u such that u′ ∪ {〈x, a〉} ∈ NoGoods(I). We know that u′ is non-
empty since u′ ∪ {〈x, a〉} ∈ NoGoods(I) but Good(I, t ∪ {〈x, a〉}) (and hence
Good(I, {〈x, a〉})). We have Good(I, t ∪ u′), Good(I, t ∪ {〈x, a〉}) (and hence
t ∪ {〈x, a〉} /∈ NoGoods(I)), Good(I, u′ ∪ {〈x, d〉}) (and hence u′ ∪ {〈x, d〉} /∈

On Broken Triangles 21

NoGoods(I)), t∪ {〈x, d〉} ∈ NoGoods(I), u′ ∪ {〈x, a〉} ∈ NoGoods(I) and hence
there was a DGABT on a, d in I .
case (b): Symmetrically to case (a), there was a DGABT on b, d in I .
case (c): We claim that Good(I, t1 ∪ {〈x, b〉}). If not, then we would have ∃t3 ⊆
t1 such that t3 ∪ {〈x, b〉} ∈ NoGoods(I) which would imply t1 ∪ {〈x, c〉} ∈
NoGoods(I ′) which is impossible since, by (2) above, we have Good(I ′, t ∪
{〈x, c〉}). By a symmetrical argument, we can deduce Good(I, t2 ∪ {〈x, a〉}).
Since Good(I, t∪u) and t1, t2 ⊆ t, we have Good(I, t1 ∪ t2). Since t1 ∪{〈x, a〉} ∈
NoGoods(I) and Good(I, t2 ∪ {〈x, a〉}) (and hence Good(I, {〈x, a〉})), we must
have t1 �= ∅. By a symmetric argument, t2 �= ∅. We therefore have non-empty tu-
ples t1, t2 such that Good(I, t1∪t2), Good(I, t1∪{〈x, b〉} (and hence t1∪{〈x, b〉} /∈
NoGoods(I)), Good(I, t2 ∪ {〈x, a〉}) (and hence t2 ∪ {〈x, a〉} /∈ NoGoods(I)),
t1 ∪ {〈x, a〉} ∈ NoGoods(I), t2 ∪ {〈x, b〉} ∈ NoGoods(I) and hence we have a
DGABT in I on a, b.

Since in each of the three possible cases, we produced a contradiction, this
completes the proof. �

5.3 Tractability of DGABTP for a Known Variable Ordering

Theorem 1. A CSP instance I satisfying the DGABTP on a given variable ordering
can be solved in polynomial time.

Proof. Suppose that I satisfies the DGABTP for variable ordering < and that
x is the last variable according to this ordering. Lemma 1 tells us that DGA
broken triangles cannot be introduced by merging all elements in D(x) to form
a singleton domain {a}. At this point it may be that {〈x, a〉} is a nogood. In
this case the instance is clearly unsatisfiable and the algorithm halts returning
this result. If not then we simply delete 〈x, a〉 from all nogoods in which it oc-
curs. This operation of variable elimination clearly preserves satisfiability. It is
polynomial time to recursively apply this merging and variable elimination al-
gorithm until a nogood corresponding to a singleton domain is discovered or
until all variables have been eliminated (in which case I is satisfiable).

To complete the proof of correction of this algorithm, it only remains to show
that elimination of the last variable x cannot introduce a DGA broken triangle
on another variable y. For all tuples t, u and all values c, d ∈ D(y), none of
Good(I, t<y ∪ u<y), Good(I, t<y ∪ {〈y, c〉}) and Good(I, u<y ∪ {〈y, d〉}) can be-
come true due to the variable elimination operation described above. On the
other hand it is possible that t ∪ {〈y, d〉} or u ∪ {〈y, c〉} becomes a nogood due
to variable elimination. Without loss of generality, suppose that t ∪ {〈y, d〉} be-
comes a nogood and that t′ ∪ {〈y, d〉} is not a nogood for some t′ such that
(t′)<y = t<y. Then by construction there was a nogood t ∪ {〈y, d〉} ∪ {〈x, a〉}
before the variable x (with singleton domain {a}) was eliminated, and t′ ∪
{〈y, d〉} ∪ {〈x, a〉} was not a nogood. But then there was a DGA broken tri-
angle (given by tuples t ∪ {〈x, a〉}, u on values c, d ∈ D(y)) before elimination
of x. This contradiction shows that variable elimination cannot introduce DGA
broken triangles. �

22 M.C. Cooper et al.

5.4 Finding a DGABTP Variable Ordering Is NP-Hard

An important question is the tractability of the recognition problem of the class
DGABTP when the variable order is not given, i.e. testing the existence of a
variable ordering for which a given instance satisfies the DGABTP. In the case of
binary CSP, this test can be performed in polynomial time [5]. Unfortunately, as
the following theorem shows, the problem becomes NP-complete in the
general-arity case.

Theorem 2. Testing the existence of a variable ordering for which a CSP instance
satisfies the DGABTP is NP-complete (even if the arity of constraints is at most 5).

Proof. The problem is in NP since verifying the DGABTP is polytime for a given
order, so it suffices to give a polynomial-time reduction from the well-known
NP-complete problem 3SAT. Let I3SAT be an instance of 3SAT with variables
X1, . . . , XN and clauses C1, . . . , CM . We will create a CSP instance ICSP which
has a DGABTP variable-ordering if and only if I3SAT is satisfiable. For each
variable Xi of I3SAT , we add two variables xi, yi to ICSP . To complete the set
of variables in ICSP , we add three special variables v, w, z. We add constraints
to ICSP in such a way that each DGABTP ordering of its variables corresponds
to a solution to I3SAT (and vice versa). The role of the variable z is critical: a
DGABTP ordering> of the variables of ICSP corresponds to a solution to I3SAT

in which Xi = true⇔ xi > z. The variables yi are used to code Xi: yi > z in a
DGABTP ordering if and only if Xi = false in the corresponding solution to
I3SAT . The variables v, w are necessary for our construction and will necessarily
satisfy v, w < z in a DGABTP ordering. Each clauseC = l1∨l2∨l3, where l1, l2, l3
are literals in I3SAT , is imposed in ICSP by adding constraints which force one
of l1, l2, l3 to be false. To give a concrete example, if C = X1 ∨ X2 ∨ X3, then
constraints are added to ICSP to force y1 < z or y2 < z or y3 < z in a DGABTP
ordering. If the clause C contains a negated variable Xi instead of Xi, it suffices
to replace yi by xi.

We now give in detail the necessary gadgets in ICSP to enforce each of the
following properties in a DGABTP ordering:

1. v, w < z
2. yi < z⇔ xi > z
3. yi < z or yj < z or yk < z

We introduce broken triangles in order to impose these properties. However,
it is important not to inadvertently introduce other broken triangles. This can
be avoided by making all pairs of assignments 〈x, a〉, 〈x′, a′〉 from two different
gadgets incompatible (i.e. {〈x, a〉, 〈x′, a′〉} ∈ NoGoods(ICSP)). We also assume
that two gadgets which use the same variable x use distinct domain values in
D(x). To avoid creating a trivial instance in which the gadgets disappear after
establishing arc consistency, we can also add extra values in each domain which
are compatible with all variable-value assignments in the gadgets.

On Broken Triangles 23

We give the details of the three types of gadget:

1. The gadget to force v, w < z in a DGABTP ordering consists of values
a0 ∈ D(z), b0, b1 ∈ D(v), c0, c1 ∈ D(w) and three nogoods {〈z, a0〉, 〈v, b0〉},
{〈z, a0〉, 〈w, c0〉}, {〈v, b1〉, 〈w, c1〉}. The only way to satisfy the DGABTP on
this triple of variables is to have v, w < z since there are broken triangles on
variables v and w.

2. To force yi < z ⇔ xi > z in a DGABTP ordering we use two gadgets, the
first to force yi > z ∨ xi > z and the second to force yi < z ∨ xi < z.

The first gadget is a broken triangle consisting of values a1, a2 ∈ D(z),
d0 ∈ D(xi), e0 ∈ D(yi) and two nogoods {〈z, a1〉, 〈xi, d0〉}, {〈z, a2〉, 〈yi, e0〉}.
In a DGABTP ordering we must have yi > z ∨ xi > z.
The second gadget consists of values a3, a4 ∈ D(z), b2 ∈ D(v), c2 ∈ D(w),
d1 ∈ D(xi), e1 ∈ D(yi) and four nogoods {〈z, a3〉, 〈v, b2〉, 〈xi, d1〉}, {〈z, a4〉,
〈v, b2〉, 〈xi, d1〉}, {〈z, a4〉, 〈w, c2〉, 〈yi, e1〉}, {〈z, a3〉, 〈w, c2〉, 〈yi, e1〉}. We
assume that we have forced v, w < z using the gadget described in point
(1). The tuples t = {〈v, b2〉, 〈xi, d1〉}, u = {〈w, c2〉, 〈yi, e1〉} then form a DGA
broken triangle on assignments a3, a4 ∈ D(z) if xi, yi > z. If either xi < z or
yi < z then there is no DGA broken triangle; for example, if xi < z, then we
longer have Good(ICSP ,t<z ∪ {〈z, a3〉}) since t<z ∪ {〈z, a3〉 is precisely the
nogood {〈z, a3〉, 〈v, b2〉, 〈xi, d1〉}. Thus this gadget forces yi < z ∨ xi < z in
a DGABTP ordering.

3. The gadget to force yi < z or yj < z or yk < z in a DGABTP ordering
consists of values a5, a6 ∈ D(z), b3 ∈ D(v), c3 ∈ D(w), e2 ∈ D(yi), e3 ∈
D(yj), e4 ∈ D(yk) and five nogoods, namely {〈z, a6〉, 〈v, b3〉, 〈yi, e2〉, 〈yj , e3〉,
〈yk, e4〉}, {〈z, a5〉, 〈w, c3〉}, {〈z, a5〉, 〈yi, e2〉}, {〈z, a5〉, 〈yj , e3〉}, {〈z, a5〉,
〈yk, e4〉}. The tuples t = {〈v, b3〉, 〈yi, e2〉, 〈yj , e3〉, 〈yk, e4〉}, u = {〈w, c3〉}
form a DGA broken triangle on a5, a6 ∈ D(a) if yi, yj , yk > z. If yi < z or
yj < z or yk < z, then there is no DGA broken triangle; for example, if yi <
z, then we longer have Good(ICSP ,t<z ∪ {〈z, a5〉}) since {〈z, a5〉, 〈yi, e2〉} is
a nogood. Thus this gadget forces yi < z or yj < z or yk < z in a DGABTP
ordering.

The above gadgets allow us to code I3SAT as the problem of testing the exis-
tence of a DGABTP ordering in the corresponding instance ICSP . To complete
the proof it suffices to observe that this reduction is clearly polynomial. �

Our proof of Theorem 2 used large domains. The question still remains
whether it is possible to detect in polynomial time whether a DGABTP vari-
able ordering exists in the case of domains of bounded size, and in particular in
the important case of SAT.

6 Conclusion

This paper described a novel reduction operation for binary CSP, called
BTP-merging, which is strictly stronger than neighbourhood substitution. Ex-
perimental trials have shown that in several benchmark-domains applying

24 M.C. Cooper et al.

BTP-merging until convergence can significantly reduce the total number of
variable-value assignments. We gave a general-arity version of BTP-merging
and demonstrated a theoretical link with resolution in SAT. From a theoretical
point of view, we then went on to define a general-arity version of the tractable
class defined by the broken-triangle property for a known variable ordering.
Further research is required to find optimal algorithms for BTP-merging and
to investigate the tractability of applying BTP-merging in instances containing
global constraints.

References

1. Cohen, D.A., Cooper, M.C., Creed, P., Marx, D., Salamon, A.Z.: The tractability
of CSP classes defined by forbidden patterns. Journal of Artificial Intelligence
Research 45, 47–78 (2012)

2. Cohen, D.A., Cooper, M.C.: Guillaume Escamocher and Stanislav Živný, Vari-
able elimination in binary CSP via forbidden patterns. In: Proceedings of IJCAI,
pp. 517–523 (2013)

3. Cooper, M.C.: Fundamental properties of neighbourhood substitution in constraint
satisfaction problems. Artificial Intelligence 90(1-2), 1–24 (1997)

4. Cooper, M.C., Escamocher, G.: A dichotomy for 2-constraint forbidden CSP patterns.
In: Proceedings of AAAI, pp. 464–470 (2012)

5. Cooper, M.C., Jeavons, P.G., Salamon, A.Z.: Generalizing constraint satisfaction on
trees: Hybrid tractability and variable elimination. Artificial Intelligence 174(9-10),
570–584 (2010)

6. Cooper, M.C., Živný, S.: Tractable Triangles and Cross-Free Convexity in Discrete
Optimisation. Journal of Artificial Intelligence Research 44, 455–490 (2012)

7. Eén, N., Biere, A.: Effective Preprocessing in SAT Through Variable and Clause
Elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75.
Springer, Heidelberg (2005)

8. Mouelhi, A.E., Jégou, P., Terrioux, C.: A Hybrid Tractable Class for Non-Binary CSPs.
In: Proceedings of ICTAI, pp. 947–954 (2013)

9. Jégou, P.: Decomposition of Domains Based on the Micro-Structure of Finite
Constraint-Satisfaction Problems. In: Proceedings of AAAI, pp. 731–736 (1993)

10. Freuder, E.C.: Eliminating interchangeable values in constraint satisfaction
problems. In: Proceedings of AAAI, pp. 227–233 (1991)

11. Likitvivatanavong, C., Yap, R.H.C.: Eliminating redundancy in csps through merg-
ing and subsumption of domain values. ACM SIGAPP Applied Computing
Review 13(2) (2013)

12. Salamon, A.Z., Jeavons, P.G.: Perfect Constraints Are Tractable. In: Stuckey, P.J. (ed.)
CP 2008. LNCS, vol. 5202, pp. 524–528. Springer, Heidelberg (2008)

Using CP in Automatic Test Generation

for ABB Robotics’ Paint Control System

Morten Mossige1,3, Arnaud Gotlieb2, and Hein Meling3

1 ABB Robotics, Norway
morten.mossige@no.abb.com

2 Simula Research Laboratory, Norway
arnaud@simula.no

3 University of Stavanger, Norway
hein.meling@uis.no

Abstract. Designing industrial robot systems for welding, painting, and
assembly, is challenging because they are required to perform with high
precision, speed, and endurance. ABB Robotics has specialized in build-
ing highly reliable and safe robotized paint systems based on an inte-
grated process control system. However, current validation practices are
primarily limited to manually designed test scenarios. A tricky part of
this validation concerns testing the timing aspects of the control system,
which is particularly challenging for paint robots that need to coordinate
paint activation with the robot motion control.

To overcome these challenges, we have developed and deployed a cost-
effective, automated test generation technique based on Constraint Pro-
gramming, aimed at validating the timing behavior of the process control
system. We designed a constraint optimization model in SICStus Prolog,
using arithmetic and logic constraints including use of global constraints.
This model has been integrated into a fully automated continuous inte-
gration environment, allowing the model to be solved on demand prior
to test execution, which allows us to obtain the most optimal and diverse
set of test scenarios for the present system configuration.

After three months of daily operational use of the constraint model in
our testing process, we have collected data on its performance and bug
finding capabilities. We report on these aspects, along with our experi-
ences and the improvements gained by the new testing process.

1 Introduction

Developing reliable software for Complex Industrial Robots (CIRs) is a complex
task, because typical robots are comprised of numerous components, including
computers, field-programmable gate arrays (FPGAs), and sensor devices. These
components typically interact through a range of different interconnection tech-
nologies, e.g. Ethernet and dual port RAM, depending on delay and latency
requirements on their communication. As the complexity of robot control sys-
tems continues to grow, developing and validating software for CIRs is becom-
ing increasingly difficult. For robots performing process-intensive tasks such as

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 25–41, 2014.
c© Springer International Publishing Switzerland 2014

26 M. Mossige, A. Gotlieb, and H. Meling

painting, gluing, or sealing, the problem is even worse as their dedicated process
control systems is loosely coupled with the robot motion control system. A key
feature of robotized painting is the ability to perform precise activation of the
process equipment along a robot’s programmed path. At ABB Robotics, Norway,
they develop and validate Integrated Painting control Systems (IPS) for CIRs
and are constantly improving the processes to deliver more reliable products to
their customers.

Current practices for validating the IPS software involve designing and exe-
cuting manual test scenarios. In order to reduce the testing costs and to improve
quality assurance, there is a growing trend to automate the generation of test
scenarios and multiplying them in the context of continuous testing.

In this paper, we report on our work to use Constraint Programming (CP)
over finite domains to generate automatically timed-event sequences (i.e., test
scenarios) for the IPS and execute them within a Continuous Integration (CI)
process [1]. Building on initial ideas sketched in a poster [2] one year ago, we
have developed a constrained optimization model in SICStus Prolog clpfd [3]
to help test the IPS under operational conditions. Due to online configurability
of the IPS, test scenarios must be reproduced every day, meaning that indis-
pensable trade-offs between optimality and efficiency must be found, to increase
the capabilities of the CI process to reveal software defects as early as possible.
Using CP to generate model-based test scenario is not a completely new idea
[4,5], but, according to our knowledge, this is the first time that a CP model and
its solving process been integrated into a CI environment for testing complex
distributed systems.

Organization. The rest of the paper is organized as follows: Section 2 presents
some background on robotized painting, with an example serving as a basis
for describing the mathematical relations involved ; Section 3 describes ABB
Robotic’s current testing practices of the IPS and the rationale behind our val-
idation choices ; Section 4 presents the CP model with its decision variables,
test objectives and optimization principle ; Section 5 explains how the model
and its solving process are implemented and included in the CI process ; Finally,
Section 6 discusses some lessons learnt and summarizes the impact of using CP
in ABB Robotics’s industrial context.

Notation. Throughout the paper a constant in the CP model is prefixed with a
∗, as in ∗SeqLen. This is typically a value set by a validation engineer or queried
from the system under test prior to launching the model.

2 Robotized Painting

This section briefly introduces robotized painting, and highlights some of the
challenges faced when testing such systems. A robot system dedicated to painting
typically consists of two main parts: the robot controller, responsible for moving
the mechanical arm, and the IPS, responsible for controlling the paint process.
That is, to control the activation and deactivation of several physical processes

Using CP in Automatic Test Generation 27

such as paint pumps, air flows, air pressures, and to synchronize these with the
motion of the robot arm. A spray pattern is defined as the combination of the
different physical processes. Typically, the physical processes involved in a spray
pattern will have different response times. For instance, a pump may have a
response time in the range 40-50 ms, while the airflow response time is in the
range 100-150 ms. The IPS can adjust for these differences using sophisticated
algorithms that have been analyzed and tuned over the years to serve different
needs. In this paper, we focus on validating the timing aspects of the IPS.

2.1 Example of Robotized Painting

We now give a concrete example of how a robot controller communicates with
the IPS in order to generate a spray pattern along the robot’s path. A schematic
overview of the example is shown in Figure 1, where the node marked robot
controller is the CPU interpreting a user program and controlling the servo
motors of the robot in order to move it. The example is realistic, but simplified,
in order to keep the explanations as simple as possible.

Robot
Controller

IPS master
PreT ime
PostT ime

C2
D+

2 ,D−
2 ,K2

C1
D+

1 ,D−
1 ,K1

C3
D+

3 ,D−
3 ,K3

MoveL p1;

SetBrush 1 \x := 200;

SetBrush 2 \x := 300;

PaintL p2, v800;

User program

L1,1 L1,2 L1,3

L2,1 L2,2 L2,3

L3,1 L3,2 L3,3

L =

(Bi, ti)

(LB,1
, ti,1

)

(LB,2, ti,2)

(L
B,3 , ti,3)

Lookup(Bi) (LB,1, LB,2, LB,3)
LB,1@to,1

LB,2@to,2

LB,3@to,3

Fig. 1. Logical overview of a robot controller and the IPS

The program listing of Figure 1 shows an example user program. The first
instruction MoveL p1 moves the robot to the Cartesian point p1. The next two
SetBrush instructions tells the robot to apply spray pattern number 1 when the
robot reaches x = 200 on the x-plane, and to apply spray pattern number 2
when it reaches x = 300. Both SetBrush instructions tell the IPS to apply a
specific behavior when the physical robot arm is at a given position. The last
instruction (PaintL) starts the movement of the robot from the current position
p1 to p2 and activates the painting process. The v800 argument of PaintL gives
the speed of the movement (i.e., 800 mm/s).

28 M. Mossige, A. Gotlieb, and H. Meling

Assuming the path from p1 to p2 results in a movement from x = 0 to x = 500.
The robot controller interprets the user program ahead of the actual physical
movement of the robot, and can therefore estimate when the robot will be at a
specific position. Assuming that the movement starts at time t = 0, the robot can
compute that the two SetBrush activations should be triggered at t1 = 250 ms
and t2 = 375 ms.

The robot controller now sends the following messages (a.k.a. events) to the
IPS master: (B1 = 1, t1 = 250), (B2 = 2, t2 = 375), which means apply spray
pattern 1 at 250 ms, and spray pattern 2 at 375 ms. The messages are sent around
200 ms before the actual activation time, or at ≈ 50 ms for spray pattern 1, and
at ≈ 175 ms for spray pattern 2. These messages simply convert position into
an absolute global activation time. Note also that the IPS receives the second
message before the first spray pattern is bound for execution, which means that
the IPS must handle a queue of scheduled spray patterns.

IPS Master: When the IPS receives a message from the robot controller, it
first determines the physical outputs associated with the logical spray pattern
number. Many different spray patterns can be generated based on factors like
paint type or equipment in use. In the IPS each spray pattern is translated into
3 to 6 different physical actuator outputs that must be activated at appropriate
times, possibly different from each other.

Figure 1 shows three different actuator outputs (C1, C2, C3). The value of
each actuator output for a given spray pattern is resolved by using a brush table
(L). In this example, L(B1 = 1) returns (L1,1, L1,2, L1,3), while L(B2 = 2) results
in (L2,1, L2,2, L2,3). The IPS master now passes these values to each actuator
output along with its activation time, which may be different from the original
time received from the robot controller. Possible modifications can be formalized
as follows:

t′i =

{
ti − PreT ime if L1,Bi−1 = 0 ∧ L1,Bi �= 0

ti − PostT ime if L1,Bi−1 �= 0 ∧ L1,Bi = 0
(1)

What equation (1) shows is that the activation time of each actuator output may
be adjusted by a constant factor (PreT ime, PostT ime), depending on changes
from other actuator outputs. This is done because small adjustments may be
necessary when there is a direct link between the timing of different actuator
outputs. In our example, the timing on C2 is influenced by changes on C1.

Activation of Actuator Outputs: Referring to Figure 1, we now present how
messages are processedwhen sent from the IPSmaster to a single actuator output.
Let us assume that message (L, ti) is sent, and the current actuator output is L′.
Since painting involves many slow physical processes, the actuator output com-
pensates for this by computing an adjusted activation time to, that accounts for
the time it takes the physical process to apply the change.

The IPS can adopt two different strategies to compute this time compensation.
The first one is to adjust the time with a constant factor: D+ for positive change,

Using CP in Automatic Test Generation 29

and D− for negative change. The second one is using a linear timing function
to adjust the change of the physical value.

Equation (2) combines these strategies into a single compensation function,
where ∗Min (resp. ∗Max) is the physical minimum (resp. maximum) value
possibly handled1 by some actuator output.

to = ti −

⎧⎪⎨⎪⎩
D− · (L−L′

∗Max−∗Min)
K if L′ < L

D+ · (L′−L
∗Max−∗Min)

K if L′ > L

0 otherwise

(2)

Physical Layout of the IPS: Figure 1 only shows the logical connections in a
possible IPS configuration. In real applications, each component (IPS master,
C1, C2, C3) may be located on different embedded controllers, interconnected
through an industrial-grade network. As such, the different components may be
located at different physical locations on the robot, depending on which physical
process it is responsible of.

3 Testing the IPS

Having a distributed control system such as the IPS mounted on a physical
robot makes its validation unnecessarily complex, and current testing practices
involve a considerable amount of manual work, including setup and collecting
observations. If while developing a new version of the IPS software, test scenarios
are only run when approaching the release date, then development costs can grow
substantially, as correcting software defects late in the development process may
require developers to dig into the early stages of development. Even worse, if
a software failure is observed during operation (i.e., by the customer), costs
become even higher since corrections may need to take place at the customer
site.

3.1 Continuous Integration

CI is a software engineering practice aimed at uncovering software defects at the
earliest stage of development, by regularly building the system and executing
tests automatically [1].

A good engineering practice requires developers to submit only small source
code changes frequently, instead of large sets of changes occasionally. Together
with this practice, CI has been shown to be a very efficient way of uncovering
defects when developers are geographically distributed or large teams are in-
volved. Typically a CI infrastructure includes tools for source control repository,
automated build servers, and testing engines.

1 These values are determined by the physical equipment involved in the paint process
(pumps, valves, air, etc.).

30 M. Mossige, A. Gotlieb, and H. Meling

3.2 Testing in a CI Environment

We have developed an automated testing framework for the IPS as an integrated
part of ABB’s CI environment, where we have used CP to generate both the
configuration for the IPS, the test sequence, the brush table and the output of
each actuator output and finally execute the test as part of a CI cycle.

Compared to traditional software testing, running a test scenario in a CI envi-
ronment has additional requirements. In particular, as pointed out by Fowler [1],
mastering the total round-trip time is crucial for a successful CI deployment.
Here, round-trip time refers to the time it takes for a developer to submit a
change to the source control repository and get feedback from the build and test
processes. Thus in order to keep the round-trip time as small as possible, we
have identified a few areas where special care must be taken:

– Test complexity: In CI, a less accurate but faster test will always be pre-
ferred over a slow but accurate test. In practice, a test must satisfy the
so-called good enough criterion, frequently used in industry [6].

– Solving time:Constraint-based optimization is most often a time-consuming
task, especially if a global optimum solution is sought [7]. Thus, when used
in CI, it becomes imperative that a time-contracted optimization procedure
be used. In other words, it is important to have precise control over the time
needed to compute the optima, by sacrificing the solution quality.

– Execution time: We observe that test execution time is dependent on the
length of the test sequence, i.e., the number of test scenarios. This must be
accounted for, together with the time needed to generate the test sequence.

In essence, balancing between the length of a test sequence (its execution time)
and the time needed to generate the test sequence (its solving time) is a way to
find the appropriate trade-off to fully integrate CP into a CI process.

4 CP Model of the IPS

We now present our CP model for the IPS. We emphasize that test models, as
proposed in model-based testing [8], are usually limited in their scope. They are
not intended to reflect the full behavior of the system they represent. In our
case, we confine ourselves to modeling the timing aspects of the IPS in order to
build an efficient CP model for generating test scenarios.

4.1 Decision Variables and Domains

While still referring to Figure 1, we now assume that the number of actuator
outputs is a constant input parameter C, instead of 3. The decision variables for
our problem can be divided into three distinct groups: the variables of the input
sequence I, the configuration variables C, and the variables of the brush table L.
In principle, a solution of the CP model is formed by an instantiation of these
variables, in addition to the so-called test oracle O, which is the expected output

Using CP in Automatic Test Generation 31

computed by the system formed by each actuator output and its corresponding
time.

Formally, the test input sequence I corresponds to ((B1, t1), . . . , (BN , tN)),
whereN = ∗SeqLen and eachBi ∈ [0, ∗BTabSize] and each ti ∈ [0, ∗MaxT ime].
The configuration C contains parameter variables for each actuator output and
for the IPS master:

C = [PreT ime, PostT ime,D+
1 , D

−
1 ,K1, . . . , D

+
∗C , D

−
∗C ,K∗C]

The domain of the variables in C is given by configurable constants to the
CP model. In the brush table L, the number of columns corresponds to the
number of actuator outputs, i.e., ∗C, and the number of rows is a constant
∗BTabSize. The domain of each variable in L is extracted from ∗Min and
∗Max for the corresponding actuator output. The test oracle O corresponds
to the physical output of each actuator output with its corresponding time.
Each actuator output has output and time corresponding to a single input:
(Bi, ti) �→

(
(L1,i, t1,i), . . . , (LC,i, tC,i)

)
for i ∈ [1, N].

4.2 Test Scenarios

We have identified several distinct test scenarios, and we present three of them
here, as shown in Figure 2. Scenarios overlap and kill brush represent failure
conditions, where the IPS is forced into an error state. When generating such
scenarios it is our interest to check whether the IPS can respond correctly (i.e.,
shutdown, error messages, etc.). On the contrary, the scenario normal represents
acceptable behavior and they are targeted to check whether the IPS behaves
as expected. Whenever the CP model is solved, a scenario is given as a test
objective to the solver, and the solving process intends to find an assignment of
variables that can drive the execution of the IPS in the corresponding scenario
status. The overlap scenario is used throughout the paper, as it is the hardest to
find and therefore, it corresponds to the most difficult objective to solve for the
CP model. Let us explain it in more details. As explained in Section 2.1, the IPS
can queue up a sequence of actuator output changes. However, a sequence spray
pattern number sent to the IPS can cause one or several of the actuator outputs
to come out of order with respect to time. This can be due to changes over time
between spray patterns, or due to usage of PreT ime/PostT ime configuration or
else due to different configuration of the actuator output. In principle, the IPS
must handle these issues by sending an appropriate error message to the control
system.

4.3 Avoiding Trivial and Enforcing Diversity

An additional objective in test sequence generation for the IPS is to introduce
diversity in the test input sequence

(
(B1, t1), . . . , (Bi, ti)

)
, in the values of the

brush table (L) and in the configuration parameters for each actuator outputs
(D+, D−,K). By diversity, we mean variations in the test scenarios so that the
chances to discover an error-prone scenario are greater.

32 M. Mossige, A. Gotlieb, and H. Meling

R

C3

C2

C1

(a) Normal

R

C1

(b) Overlap

R

C1
STOP

(c) Kill

Fig. 2. Test scenarios considered as test objectives. Horizontal axis represent time and
black dots correspond to output activation. A specific spray pattern is a collection of
output activations, and is visualized by a line connecting the black dots.

As solving the CP model is a deterministic process, introducing diversity is
a way to cope with the possible generation of useless scenarios. Let us consider

the setup in Figure 1 where configuration L =
0 0 0
0 0 0
0 0 0

, D+
j = 0, D−

j = 0 and

Kj = 0, j ∈ 1..3 is given, we see that no matter what the input sequence
(. . . , (Bi, ti), . . . ,) is, the actuator output output is always (0, ti). This is of
course a solution, but it has no practical interest, as it does not correspond
to a possible behavior of the IPS. Using randomization in the CP model, in
order to introduce diversity, has clearly been discarded. In fact, one of our initial
requirements is to maintain a reproducible process. When testing the IPS, it
is important to document failure cases and to help debug the system with the
generated test scenarios.

4.3.1 Variation in I Values
Let I = ((B1, t1), . . . , (BN , tN)) be an input sequence to the IPS. Significant vari-
ation on values for ti is not interesting, as the only requirement is that time must
increase monotonically with a minimum step (∗MinBrushSep). More interesting
is the variation in Bi. Obviously, enforcing a change in two successive brush ele-
ment selections is important, i.e., ∀i, Bi �= Bi+1, but this is not sufficient to guar-
antee that all indexes in the L are tested. Diversity on sequence B = B1, . . . , BN

could be implemented by using global constraint nvalue(LenLookupTab, B),
enforcing that every index is present at least once. But, it will not be sufficient
for our testing purposes.

Let us define the notion of diversity entropy (DE): given a sequence of
integers, DE is the product of the number of occurrences of each value in
the sequence. For example DE([0, 1, 0, 1, 0, 1, 0, 1, 2, 3]) = 4 · 4 · 1 · 1 = 16, while
DE([0, 1, 2, 1, 2, 3, 1, 3, 2, 3]) = 1 · 3 · 3 · 3 = 27. With this example, we see that
the first solution, respecting both previously mentioned constraints, has a diver-
sity entropy lower than the second solution. We therefore come up with another
solution in which we use the global_cardinality constraint. By specifying the
minimum number of times an index of L must appear in the input sequence,

Using CP in Automatic Test Generation 33

we increase the diversity entropy of the solution. For example, given ∗SeqLen =
10, ∗BTabSize = 4, variation in the input sequence is enforced by using

global_cardinality([B1,...,B10], [1-N1,2-N2, 3-N3, 4-N4])

N1 #>= Ob, N2 #>= Ob, N3 #>= Ob N4 #>= Ob

where Ob is a given constant input parameter of the CP model. This implemen-
tation is flexible enough to consider solutions with a satisfactory DE.

4.3.2 Variation in L Values
Variation in L is equally important. When the validation engineers create these
tables manually, they try to enforce that each actuator outputs ∗Min and ∗Max
is part of the L, and that the whole operating area of the actuator output is
used. If each entry in L is regarded as coordinates in an Euclidian space, RC ,
an approach could be to maximize the distance between each point, i.e., each
entry in L. However, we observed that this approach is too costly to compute
in practice, and we prefer a more light-weight approach. For each row in L,
(R1, . . . , R∗BTabSize), we exploit the global constraints minimum(∗Minj, Rj)
and maximum(∗Maxj , Rj) to enforce usage of extremal values. In addition, the
all_min_dist [9] constraint is used to make sure the values are spread out.

To introduce variation between the entries in L, additional constraints are
used to enforce at least one transition where all except one value is changed. For
example, from Figure 1, if two entries is [L1,i, L2,i, L3,i] and [L1,j , L2,j, L3,j] then
there should exist i and j such that L1,i < L1,j∧L2,i ≥ L2,j∧L3,i ≥ L3,j, and so
on other entries. This is clearly far away from maximizing the Euclidian distance
between each entry, but this approach turns out to perform fairly well together
with the scenarios presented earlier. Of course, there is room for improvement
here in further work.

4.3.3 Variation in C Values
The generated configuration for a specific test scenario includes both the values
for each actuator output (D+, D−,K) and the value for IPS master (PreT ime,
PostT ime). In many setups, validation engineers select these values manually
without questioning the error-proneness of a given configuration with respect
to another. By adding simple constraints for each actuator output, such that
D+ �= D− ∧ D− �= 0 ∧ D+ �= 0, we offer an opportunity for the CP model
to introduce diversity in the configuration values as well. By using global con-
straint all_different (D+

1 , . . . , D
+
C),etc, we also enforce diversity between actu-

ator output values. For the PreT ime and PostT ime values, a similar strategy
is employed: PreT ime �= PostT ime ∧ PreT ime �= 0 ∧ PostT ime �= 0.

It is worth noticing that these variation strategies have served well the good
enough principle, as introducing diversity is important but not at the cost of
losing efficiency.

4.4 Search and Optimization

We now briefly present the optimization function and the search heuristics used
in our model. In our framework, finding optimal solutions that respect the set

34 M. Mossige, A. Gotlieb, and H. Meling

of above-mentioned constraints is the most interesting. Optimal solution here
means a sequence of timed events I = ((B1, t1), . . . , (BN , tN)) of the smallest
execution time, i.e., where tN is minimized. By doing this, we increase the cap-
abilities of the CI process to execute more tests during a limited period. Of
course, reaching exactly the global minimum over tN is interesting from an in-
tellectual perspective, but not really necessary in our industrial setting.

As mentioned in Section 3.2, managing the time needed to generate and exe-
cute test sequences when running tests in a CI environment is of crucial impor-
tance. Considering a test sequence I = ((B1, t1), . . . , (BN , tN)), and the fact that
each spray pattern is sent approximately 200 ms before execution, as explained
in Section 2.1, we see that the execution time of the test can be roughly esti-
mated to be tN . This means that the total time used is roughly ts + tN , where
ts correspond to the solving time of the model.

Knowing that the constrained optimization model tends to minimize tN , the
goal is therefore to control the time needed to find an optimal solution. CP
offers means to control the time taken to optimize by using a branch-and- bound
procedure. That is, we can give a contract of time to this procedure, and it
returns the current feasible solution after the contract of time has passed. We
found this option very useful to compromise between the time spent on search
and solving, and the time spent on execution of the test.

4.5 Search Heuristics

When searching for solutions, many heuristics can be employed or programmed
in CP. Observing the absence of evident structure in our CP model, we have con-
sidered variable orderings as the first element to examine systematically. In order
to extract useful information, we considered 72 distinct static variable orderings
depending on rearrangements of the decision variables (I,L,C). In addition to
this systematic exploration, we took as a reference two well-known dynamic
variable orderings, namely first-fail and first-fail constraint [3]. We also tested
up and down which dictates the direction the domain is searched (ascending or
descending). This analysis and the experiments revealed two points:

1. Even if first-fail and its variation are efficient for timed sequences containing
few events, they quickly become unusable for larger sequences. This can
be easily explained by the necessary computation of comparison between
domain sizes during the search, which becomes intractable as soon as the
number of variables grows.

2. Looking at search heuristics with static variable orderings, we can group the
result into three groups: H1, H2 and H3.
H1 = (C,L, I′), (L,C, I′) (C,LT, I′),(LT,C, I′),H2 = (C,B,L,T), (B,C,L,T),
(B,L,C,T), (C,B,LT,T), (B,C,LT,T), (B,LT,C,T), H3 = The other 62
tested combinations, where I′ = (t1, B1, t2, B2, . . .), B = (B1, B2, . . .), T =
(t1, t2, . . .) and LT = transp(L). H1 is the only heuristics able to produce a
solution within an acceptable timeframe for small values of ∗BTabSize com-
bined with large values of ∗SeqLen, e.g. ∗BTabSize = 10, ∗SeqLen = 200.

Using CP in Automatic Test Generation 35

For configurations of large values of ∗SeqLen combined with large values of
∗BTabSize, e.g. ∗BTabSize = 40, ∗SeqLen = 600, H2 is the only heuris-
tic able to generate a solution within reasonable time. The result for H3 is
either no solution at all, or only solution for small ∗BTabSize and small
∗SeqLen. Understanding precisely why H1 and H2 performs so well is part
of our planned further work.

5 Implementation and Exploitation

This section details our implementation of the CP model [10] with SICStus
Prolog and its clpfd library [3], and its exploitation in the CI process at ABB
Robotics. It also gives some insights on the rationale behind the selection of CP
instead of other possible techniques.

5.1 Selection of CP and the CP Solver

The mathematical model of the IPS could have been implemented with other
techniques than CP, including SAT- or SMT-solving [11], local search techniques
for test data generation [12], or Mixed Integer Programming (MIP) [13]. We
briefly review the reasons why these other techniques have been discarded2:

1. The selected technique had to be flexible enough to accommodate the many
alternatives in the dynamic configuration of the IPS. CP offers a higher
degree of flexibility to handle disjunctive constraint systems, by authorizing
the usage of backtracking, reification, or constructive disjunction [14] ;

2. Time-constrained optimization was essential in our industrial context in or-
der to accommodate with the CI process. SAT- and SMT-solving are very
efficient to handle boolean and theory-based satisfiability problems [11], but
they are not tuned to solve optimization problems (i.e., to minimize a cost
function in a given contract of time). Even if extensions exist to handle opti-
mization problems, classical off-the-shelf SMT-solvers do not provide imple-
mentations of these extensions. On the contrary, CP integrates time-aware
optimization methods on discrete combinatorial problems ;

3. As the model is used to predict the expected outputs of the IPS, using exact
methods was mandatory. Despite the efficiency of local search techniques for
test data generation [12], the absence of guarantee on the satisfiability of the
constraints (e.g., no possible detection of unsatisfiability or no guarantee on
the determination of satisfiability for complex constraint sets) was sufficient
to discard these techniques ;

4. Input formats of the constraint solver had to be easily tunable to accommo-
date the high-level tuning of IPS parametrization. SAT- and SMT-solvers
takes specific formats as inputs (e.g., SMTLIB formats) while CP-solvers
are usually hosted by a programming language (e.g., Prolog, Java or C++)
which includes high-level programming features such as predicate/method
invocation, recursivity, inheritance, and so on ;

2 Note that no general claim is made, just specific claims to illuminate our choice of
CP in the case of validating the IPS.

36 M. Mossige, A. Gotlieb, and H. Meling

5. The availability of global constraints to implement diversity in test sequences
was a strong advantage, even if, to be honest, we discovered it after our choice
was made.

We found that SICStus 4.2.3 in combination with clpfd responded well to our
industrial requirements and decided to use it as back-end, and Python 2.7 as
front-end.

5.2 Overall Implementation

The complete system contains around 2k lines of Prolog code, 300 lines of C code
(an interface DLL between Python and SICStus), and finally around 3k lines of
Python code. A schematic overview of the implementation and how it is executed
can be found in Figure 3.

Source
control

repository
1. Build

2.Upgrade
software

3. Configure

4. Query

5. Run test

Test Server
Python Test Scripts

Python Test
Framework

Python – Prolog DLL

SICStus Prolog

Physical IPS setup

Fig. 3. Integration between the test server and IPS

The modeling part of the project has started early in 2013 ; at the beginning, just
by using the user interface of SICStus. In April 2013, a first running model was
available on a desktop for testing IPS, running over a single embedded board.
In May, the model was integrated into the source control repository and the
first automatic test running in a full CI environment was executed. From May
to October 2013, the system was further extended to also cover testing over
complete distributed systems (i.e., several embedded boards) of the IPS. Today,
the model is used in the CI process and solved daily. It generates test sequences
for 11 different physical embedded IPS boards. For testing on the full-distributed
setting, we currently run the model on one single physical setup, but we run 10
different configurations on this setup. To summarize, the number of measurable
activations of physical actuator outputs shows that around 20.000 distinct test
scenarios are executed during each individual CI cycle. It means that these test
scenarios are executed at least once every 24 hours.

Using CP in Automatic Test Generation 37

5.3 Execution of the Model

Test execution is typically triggered by a build server upon a successful build of
the IPS software. These steps are illustrated in Figure 3 and explained below.

1. Build: Building the software is scheduled to run every night, or a developer
can trigger a build manually.

2. Upgrade: Upgrade all connected embedded controllers with the newly built
software. A failure in this step aborts the complete cycle.

3. Configure: Configuration fetched from the source control repository is
loaded onto the IPS. The configuration describes the interconnections of
embedded boards and the properties of this specific paint-setup.

4. Query and Solve Model: Data retrieved from the IPS is fed into the CP
model. This enables us to keep the generated test in sync with changes in
the newly built software or changes in the configuration.

5. Run Test: Finally, the actual test is executed by applying the generated
test sequence, and comparing the actuator outputs with the model generated
oracle, O.

5.4 Using the Flexibility of CP

As described in the previous sections, we have designed the model to be flexible
enough and to be able to generate realistic test sequences. In particular, intro-
ducing diversity by applying global constraints between variables has been a key
factor for satisfying our industrial requirements. However, the CP model can also
handle specific parameter values, directly given by the validation engineers not
having a strong knowledge of CP. This is simply implemented by guarding the
posting of each constraint with some groundness conditions. For example, using
(var(X), var(Y)) -> X \#= Y ; true to guard the posting of X \#= Y. Thanks
to the Prolog commodity, our Python front-end can give value to any variable
in the model and avoid posting spurious constraints that would slow down the
solving process, or prevent a solution.

5.5 Performance of Model

Recalling that H1 and H2 represent two different groups of variable orderings
with similar performance, Figure 4a compares the total time for a test execution
(ts + tN) for H1 and H2 with two different sizes of ∗BTabSize.

When used only to find a solution to the constraints (i.e., without optimiza-
tion), H1 gives better results for ∗BTabSize = 10, while H2 performs better
for ∗BTabSize = 40. This experiment revealed 1) that H1 usually produces a
relative small value for tN , by using more time than H2 and 2) that H2 usually
produces a larger value for tN but faster than H1.

We also compared H1 and H2 when minimizing the overall time of a test
sequence, i.e. minimize(tN). Figure 4b shows that H2 provides the first solution
faster than H1, and that the quality of solution is better when more time is

38 M. Mossige, A. Gotlieb, and H. Meling

0 200 400 600

0

100

200

300

∗SeqLen

t N
+

t S
[s
]

H1,∗BTabSize=10

H2,∗BTabSize=10

H1,∗BTabSize=40

H2,∗BTabSize=40

(a) Total time (ts + tn)

1 10 30 60 300 900

10

20

30

ts [s]

t N
[s
]

H1,∗BTabSize=10,∗SeqLen=100

H2,∗BTabSize=10,∗SeqLen=100

H1,∗BTabSize=40,∗SeqLen=200

H2,∗BTabSize=40,∗SeqLen=200

(b) Optimization, minimize(tN)

allocated to the search for optimality. For H1, Figure 4b shows that there is no
gain in minimizing tN .

For the setup ∗SeqLen = 100, ∗BTabSize = 10 we see that the solver must
run for ≈ 60 s beforeH2 gives a smaller tN than forH1. For the setup

∗SeqLen =
200, ∗BTabSize = 40 the solver must run for ≈ 600 s before a break-even occurs.

From the results on Figure 4a and Figure 4b, no strong conclusion can be
drawn when it comes to select between H1 and H2. If a test sequence is gener-
ated for multiple uses, i.e. reusing the same test sequence multiple times, then
using H2 is beneficial at the price of allocating more time to the optimization
procedure. On the contrary, if a single usage is targeted, as is in the CI process,
then using H1 should be preferred by considering than the total time ts + tN is
the actual target of our test generation and execution procedure. Consequently,
at ABB Robotics, we decided to keep the choice between these two heuristics
as an option in our CP model. From a practical point of view, it permits the
validation engineers to tune the test generation process according to their needs.

6 Lessons Learned and Conclusions

This section concludes the paper by presenting some lessons learned at ABB
Robotics from our experience with introducing CP in our CI process.

6.1 CP for Validation Engineers

As previously stated, validation of robotized painting involves a fair amount
manual, labour-intensive work. Therefore, replacing parts of this validation pro-
cess with automation is necessary, and is perceived by validation engineers as a
means to strengthen the process. However, it also comes with some drawbacks.

Using CP in Automatic Test Generation 39

Two factors must be distinguished: (1)The automation through the CI pro-
cess including automatic building of software, software upgrade, test execution
and results reporting, and (2) Test generation through use of CP, which
permits validation engineers to focus on validating other parts of the CIRs.

Point (1) does not have any drawbacks except the effort required to set up
the CI process. From an industrial perspective, point (2) is the most critical,
especially because (a) validation engineers are not yet sufficiently trained in CP,
to change the model without help ; (b) validation engineers are usually reluctant
to trust any tool that produces results, that are very difficult to compute by hand
or with an easily understandable process. It is also recognized [15,16] as a concern
that many optimization problems require expert knowledge. In order to reduce
the risks, we decided to build a Python front-end to our CP model, so that some
details can be hidden from the validation engineers. We also organized basic
training in CP with simple and understandable examples in order to facilitate
the adoption. Of course, we do not claim that these actions form a recipe for
adopting CP in general, but we observe that it worked well in the context of
ABB Robotics IPS validation.

6.2 Actual Defects Found with the CP Model

After the model was put into production at ABB Robotics, it immediately de-
tected two new unknown defects related to timing aspects of IPS. These defects
were however classified as non-critical, as they correspond to very unlikely sce-
narios. Digging into the causes of these defects, we saw that they had been
present in the IPS for several years without any significant consequences and
that they had been spotted by the CP model through enforcing diversity in the
selection of test sequences. These defects were corrected and the test sequences
used for spotting them were introduced into our non-regression test suite.

For validating the CP model, we also reintroduced five old, historical, defects
into the source control repository. These defects were known by the validation en-
gineers to be extremely hard to find. After a round of experiments, the CP model
produced test sequences that spotted all the five defects. This was considered as
a strong justification for the continued use of the CP model in production.

6.3 Return on Investment with the Use of CP

Computing the ROI for the use of CP for ABB Robotics’ IPS validation is not
easy. Possibly, one can measure the number of defects found with and without
the CP model during the validation of a new IPS release. It is also possible to
compare the human effort required in both cases. However, another important
factor is the increased confidence of the engineers to the validation process,
which is a factor that is very difficult to measure. After the introduction of
the CP model in production, we observed a much higher confidence among the
engineers to the testing framework and their appetite to perform necessary code
re-factoring is now higher. They are more willing to make critical, but needed,

40 M. Mossige, A. Gotlieb, and H. Meling

changes in the software and they rely on the test framework to detect undesired
side-effects. If a side-effect is discovered, they can simply roll back the change.

In the long term, we expect to see the benefits of using CP being recognized
as a way to increase the general quality of the testing process, since necessary
re-factoring will be performed before the technical depth grows beyond control.

6.4 Further Work

In the previous section, we mentioned at least two main points to dig into, in
order to get a better understanding of the benefits of the CP model in ABB
Robotics’ IPS validation. Firstly, as introducing diversity in the selection of test
sequences is crucial in our application, more dedicated global constraints could be
built to capture the needs of validation engineers. In particular, constraining the
variables of the brush table to take balanced values is highly desirable. Secondly,
a deep understanding of the reasons why our heuristics H1 and H2 perform
significantly better than other variable ordering choices would help us improving
the constraint model by refining constraint posting.

Acknowledgements. We thank the anonymous reviewers for their comments.
This work has been realized with the partial support of the Research Council of
Norway, as part of the Industrial PhD of Morten Mossige, ABB Robotics and
Certus SFI - Project 8.

References

1. Fowler, M., Foemmel, M.: Continuous integration (2006) (accessed August 13,
2013)

2. Mossige, M., Gotlieb, A., Meling, H.: Poster: Test generation for robotized paint
systems using constraint programming in a continuous integration environment.
In: 2013 IEEE Sixth International Conference on Software Testing, Verification
and Validation (ICST), pp. 489–490 (2013)

3. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292,
pp. 191–206. Springer, Heidelberg (1997)

4. Di Alesio, S., Nejati, S., Briand, L., Gotlieb, A.: Stress testing of task deadlines: A
constraint programming approach. In: 2013 IEEE 24th International Symposium
on Software Reliability Engineering (ISSRE), pp. 158–167. IEEE (2013)

5. Balck, K., Grinchtein, O., Pearson, J.: Model-based protocol log generation for
testing a telecommunication test harness using CLP. In: Design, Automation and
Test in Europe Conference and Exhibition (DATE), pp. 1–4 (2014)

6. Stolberg, S.: Enabling agile testing through continuous integration. In: Agile
Conference, AGILE 2009, pp. 369–374. IEEE (2009)

7. Marriott, K., Stuckey, P.J.: Programming with constraints: an introduction. MIT
Press (1998)

8. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach.
Morgan Kaufmann Publishers Inc., San Francisco (2007)

Using CP in Automatic Test Generation 41

9. Régin, J.C.: The global minimum distance constraint. Technical report, Technical
report, ILOG (1997)

10. Mossige, M.: Prolog Model of ABB’s Paint Control System for test case generation
(2014), http://www.ux.uis.no/~mortenm/ips/trigdev_bt.pl

11. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

12. McMinn, P.: Search-based software test data generation: A survey. Software Test-
ing, Verification and Reliability 14, 105–156 (2004)

13. IBM, ILOG Labs, I.: IBM CPLEX: High-performance software for mathematical
programming and optimization (2006), http://www.ilog.com/products/cplex/

14. Rossi, F., Beek, P.V., Walsh, T.: Handbook of Constraint Programming (Founda-
tions of Artificial Intelligence). Elsevier Science Inc., New York (2006)

15. de la Banda, M.G., Stuckey, P.J., Van Hentenryck, P., Wallace, M.: The future of
optimization technology. Constraints, 1–13 (2013)

16. Francis, K., Brand, S., Stuckey, P.: Optimisation modelling for software developers.
In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 274–289. Springer, Heidelberg
(2012)

http://www.ux.uis.no/~mortenm/ips/trigdev_bt.pl
http://www.ilog.com/products/cplex/

On Compiling CNF into Decision-DNNF

Umut Oztok and Adnan Darwiche

Computer Science Department, University of California,
Los Angeles, CA 90095, USA

{umut,darwiche}@cs.ucla.edu

Abstract. Decision-DNNF is a strict subset of decomposable negation
normal form (DNNF) that plays a key role in analyzing the complexity
of model counters (the searches performed by these counters have their
traces in Decision-DNNF). This paper presents a number of results on
Decision-DNNF. First, we introduce a new notion of CNF width and
provide an algorithm that compiles CNFs into Decision-DNNFs in time
and space that are exponential only in this width. The new width strictly
dominates the treewidth of the CNF primal graph: it is no greater and
can be bounded when the treewidth of the primal graph is unbounded.
This new result leads to a tighter bound on the complexity of model
counting. Second, we show that the output of the algorithm can be con-
verted in linear time to a sentential decision diagram (SDD), which leads
to a tighter bound on the complexity of compiling CNFs into SDDs.

1 Introduction

Decision-DNNF is a tractable propositional language that is a strict subset of
DNNF. One key role of this language is in the complexity analysis of modern
model counters. We will therefore start with a motivation of model counters.

Model counting is the problem of counting the number of satisfying assign-
ments of a Boolean formula. It has various applications, such as inference in
Bayesian networks [1,5]. Although model counting has been shown to be a hard
problem (#P-complete [21]), there are two common approaches that have proven
effective in practice.

One approach is based on DPLL [11,10], which is a family of algorithms that
were initially developed for SAT: the problem of deciding whether a Boolean
formula has a satisfying assignment. In essence, it is a systematic search algo-
rithm that searches the space of truth assignments until finding a satisfying one
or identifying that such an assignment does not exist. This search method can
easily be extended to compute the number of satisfying assignments of the for-
mula. Simply, by not stopping the search when a single satisfying assignment is
found, and exhaustively continuing to look for all other satisfying assignments,
one can obtain a naive model counter. To make this approach more practical, var-
ious sophisticated techniques were incorporated into the core exhaustive DPLL
algorithm, such as component analysis [13] and formula caching [14,1,20].

Another approach for model counting is based on knowledge compilation. The
basic idea of knowledge compilation is to compile a Boolean formula represented

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 42–57, 2014.
c© Springer International Publishing Switzerland 2014

On Compiling CNF into Decision-DNNF 43

in a source language into a target language that supports model counting in
polytime. Negation normal form (NNF) circuits have been established as the
basis of a number of such languages [9]. These circuits have and nodes (repre-
senting conjunctions) and or nodes (representing disjunctions) as internal gates,
and literals or constants as inputs (see Fig. 1(c)). In [9], two fundamental prop-
erties on NNF circuits are identified to ensure the tractability of model counting:
decomposability and determinism. Decomposability is a property of and nodes,
requiring that the children of and nodes share no variables. Determinism is a
property of or nodes, requiring that each two children of an or node be mu-
tually exclusive (i.e., contradict each other). Determinism and decomposability
characterize deterministic-DNNF (d-DNNF), a strict subset of DNNF [6], which
includes other languages such as sentential decision diagrams (SDD) [8], free
binary decision diagrams (FBDD) [3], and ordered binary decision diagrams
(OBDD) [4]. Although d-DNNF is the most general language known that sup-
ports efficient model counting, a strict subset, Decision-DNNF, has been used in
state-of-the-art model counters based on knowledge compilers [7,15].

Although the approaches described above look conceptually different than
each other, a strong connection between them has been established [12]. In par-
ticular, the traces1 of the searches performed by state-of-the-art model counters
has been shown to be in Decision-DNNF. In other words, model counters based
on exhaustive DPLL effectively generates the compilation of the Boolean for-
mula in Decision-DNNF. By this result, Decision-DNNF has the role of bridging
model counters and knowledge compilers. More importantly, any new result per-
taining to Decision-DNNFs will have a possibly significant further impact on
model counters. For instance, the relationship between Decision-DNNFs and
FBDDs has been recently studied in [2]. Accordingly, Decision-DNNFs can be
converted into FBDDs with only a quasipolynomial increase in the representa-
tion size. This result allowed the authors to show new exponential lower bounds
on Decision-DNNFs, by leveraging the existing lower bounds on FBDDs, which
are immediately applicable to model counters.

In this work, we present new results on Decision-DNNFs. First, we introduce
a new notion of width for CNFs, called decision-width. We show a compilation
algorithm that can compile CNFs into Decision-DNNFs in time and space that
are exponential only in decision-width. This new width is no greater than the
treewidth of the CNF primal graph, and can be bounded while the latter is
unbounded. This result not only improves the existing complexity results on
d-DNNF compilation but also the existing results on the complexity of model
counting. Second, we show that Decision-DNNFs constructed by our algorithm
can be converted to SDDs in linear time. SDD is a recently discovered tractable
language that is a strict superset of the influential language OBDD. It comes
with many interesting properties, including a polytime Apply2 operation and
canonicity, which are two key features underlying the success of OBDDs. Our
result leads to a tighter bound on the complexity of compiling CNFs into SDDs.

1 See Section 4 for a detailed discussion of the trace of an exhaustive search algorithm.
2 Apply takes two SDDs and uses a binary operator to combine them.

44 U. Oztok and A. Darwiche

The rest of the paper is organized as follows. Section 2 starts with technical
preliminaries. Section 3 then introduces decision-width and discusses a compila-
tion algorithm that can compile CNFs into Decision-DNNFs in time and space
that are exponential only in this width. This is followed by a comparison of
decision-width and the treewidth of the CNF primal graph. Next, Section 4 dis-
cusses the importance of Decision-DNNFs in model counting by reviewing in
detail the strong connection that has been established between Decision-DNNFs
and model counters. Section 5 shows that the output of our algorithm for com-
piling CNFs into Decision-DNNFs can be transformed in linear time to SDDs.
We close with a discussion of related work and some concluding remarks. Due
to space limitations, some proofs are delegated to the full version of the paper.3

2 Technical Preliminaries

Upper case letters (e.g., X) will denote variables and lower case letters (e.g., x)
will denote their instantiations. Bold upper case letters (e.g., X) will denote sets
of variables and bold lower case letters (e.g., x) will denote their instantiations.

A Boolean function f over variables Z maps each instantiation z of variables
Z to true or false. The conditioning of f on instantiation x, written f |x, is a
subfunction that results from setting variables X to their values in x. A conjunc-
tion is decomposable if each pair of its conjuncts share no variables. A disjunction
is deterministic if each pair of its disjuncts are mutually exclusive. A negation
normal form (NNF) circuit is a rooted DAG whose internal nodes correspond
to disjunctions and conjunctions, and whose leaf nodes correspond to literals
or the constants � (true) and ⊥ (false). An NNF circuit is decomposable and
deterministic (called a d-DNNF) iff each of its conjunctions is decomposable and
each of its disjunctions is deterministic; see Fig. 1(c). We will identify an NNF
circuit by its root node N , use V ars(N) to denote the set of variables mentioned
by circuit N , and F (N) to denote the Boolean function represented by N . The
size of NNF circuit N , denoted |N |, is the total number of edges in the circuit.

The literals of variable X are denoted by x and ¬x. A conjunctive normal
form (CNF) is a set of clauses, where each clause is a disjunction of literals, and
the set represents the conjunction of its clauses (e.g., {x ∨ ¬y ∨ ¬z, y ∨ z, ¬x}
represents the Boolean formula (x∨¬y∨¬z)∧(y∨z)∧¬x). Conditioning a CNF
Δ on literal �, denoted Δ|�, amounts to removing literal ¬� from all clauses and
then dropping all clauses that contain literal �.

3 Compiling CNFs into Decision-DNNFs

The purpose of this section is to show an algorithm that compiles CNFs into
Decision-DNNFs with a complexity guarantee. To analyze the complexity of the
algorithm, we will also introduce a new notion of width and study its properties.

3 Available at http://reasoning.cs.ucla.edu.

http://reasoning.cs.ucla.edu.

On Compiling CNF into Decision-DNNF 45

1

X 5

3

Y Z

Q

(a) A vtree

or

and

¬x α

and

x β

(b) A decision node

or

and

x and

or

and

y z

and

¬y ⊥

�

and

¬x and

or

and

y ⊥

and

¬y ¬z

q

(c) A Decision-DNNF

Fig. 1. A vtree, a decision node, and a Decision-DNNF

3.1 Decision-DNNF

A decision node is a special form of an or node, which is depicted in Fig. 1(b)
where X is a variable, and α and β are arbitrary NNF nodes. A d-DNNF is
called a Decision-DNNF iff each of its or nodes is a decision node; see Fig. 1(c).
In this case, determinism is always ensured by the decision nodes.

3.2 Decision Vtrees

Both the width and the compilation algorithm we will present in this section are
driven by a tree-structure, which is introduced next. A vtree for a set Z of vari-
ables is a rooted, full binary tree whose leaves are in one-to-one correspondence
with variables in Z. Figure 1(a) depicts an example vtree. We will use vl and vr

to refer to the left and right children of an internal vtree node v. We will also use
V ars(v) to denote the set of variables at or below a vtree node v. A vtree node
is called a Shannon node iff its left child is a leaf. A vtree in which every node is
a Shannon node will be called right-linear. Given a vtree v, we will sometimes
refer to v as the root of the vtree.

A vtree for a CNF is a vtree over the CNF variables. Our focus is on a special
type of vtrees, defined next.

Definition 1 (decision vtree). A clause is compatible with an internal vtree

node v iff the clause mentions some variables inside vl and some variables inside
vr. A vtree for CNF Δ is said to be a decision vtree for Δ iff every clause in Δ
is compatible with only Shannon nodes.4

Figure 1(a) depicts a decision vtree for the CNF {y ∨¬z, ¬x∨ z, x∨¬y, x∨ q}.
We will later show that one can always construct a decision vtree for any CNF.

4 A unit clause (one containing a single literal) is not compatible with any vtree node.
Hence, a unit clause trivially satisfies the condition of being compatible with only
Shannon nodes.

46 U. Oztok and A. Darwiche

{¬x ∨ z, x ∨ ¬y, x ∨ q}

X ∅

{y ∨ ¬z}

Y Z

Q

Fig. 2. Distributing the clauses of CNF {y ∨ ¬z, ¬x ∨ z, x ∨ ¬y, x ∨ q} over a vtree

3.3 A Compilation Algorithm

We will next present an algorithm that compiles a CNF into a Decision-DNNF
using a decision vtree for the CNF. This compilation method is given by Al-
gorithm 1, which takes a decision vtree v and an auxiliary CNF S over the
variables of vtree v (S is initially empty). The CNF Δ to be compiled is passed
with the vtree as follows. Each clause of Δ is assigned to the lowest vtree node
that contains the clause variables. Figure 2 depicts an example of how clauses
are assigned to vtree nodes. Note that the (non-unit) clauses are assigned only to
Shannon nodes as the vtree is a decision vtree. We use Clauses(v) to denote the
clauses assigned to a vtree node v. We also use CNF (v) to denote the clauses
assigned to all nodes in the vtree rooted at v. A recursive call c2d(v, S) will
return a Decision-DNNF for CNF (v)∪S. The algorithm keeps a cache at every
vtree node, which is indexed by S.

Consider now a run of Algorithm 1. An or node can only be constructed on
Line 4. Accordingly, each or node created by this algorithm is a decision node.
Using this fact with an inductive argument is enough to prove the soundness of
the algorithm.

Lemma 1. Let v be a decision vtree for CNF (v). Let S be a CNF over V ars(v)
whose clauses are compatible with only Shannon nodes of v. The call c2d(v, S)
to Algorithm 1 returns a Decision-DNNF equivalent to CNF (v) ∪ S.

Proof. The proof is by induction on vtree nodes. The base case is when v is a leaf
node. This case is trivially satisfied by Line 2. Assume now that v is an internal
node. As an induction hypothesis, consider that for each vtree node v′ below v,
the call c2d(v′, S′) computes a Decision-DNNF equivalent to CNF (v′) ∪ S′,
where S′ is a CNF over V ars(v′) whose clauses are compatible with only Shannon
nodes of v′. During the call to v, we will compute a Decision-DNNF equivalent
to CNF (v)∪S by utilizing the following decomposition of a Boolean function f
(known as Shannon decomposition): f = (x ∧ f |x) ∨ (¬x ∧ f |¬x). Note that
in our context f = CNF (v) ∪ S. Assume v is a Shannon node. Then vl is a
leaf node (with variable X). The possible clauses that can be assigned to vl

are {x} and {¬x}. Lines 4–4 consider all four possible assignments of those two

On Compiling CNF into Decision-DNNF 47

Algorithm 1. c2d(v, S)
cache(v,Δ) is a hash table that maps v and Δ into a Decision-DNNF.
terminal(Δ) returns the literal or constant equivalent to Δ.

Input: v : a vtree node, S : a CNF over V ars(v).
Output: A Decision-DNNF for CNF (v) ∪ S.

1 if cache(v, S) �= nil then return cache(v, S) C ← Clauses(v)
2 if v is a leaf then return terminal(C ∪ S) if v is a Shannon node then
3 X ← variable of vl

4 if {x} and {¬x} assigned to vl then α ← ⊥ else if {x} assigned to vl then

α ← x ∧ c2d(vr, (C ∪ S)|x) else if {¬x} assigned to vl then
α ← ¬x ∧ c2d(vr, (C ∪ S)|¬x) else
α ←

(
x ∧ c2d(vr, (C ∪ S)|x)

)
∨
(

¬x ∧ c2d(vr, (C ∪ S)|¬x)
)

5 else

6 S1 ← clauses in S that only mention variables in vl

7 S2 ← clauses in S that only mention variables in vr

8 α ←
(
c2d(vl, S1) ∧ c2d(vr, S2)

)
9 cache(v, S) ← α

10 return α

clauses to vl: (1) both {x} and {¬x} are assigned and f = ⊥, (2) only {x}
is assigned and f = x ∧ f |x, (3) only {¬x} is assigned and f = ¬x ∧ f |¬x,
and (4) no clause is assigned and f = (x ∧ f |x) ∨ (¬x ∧ f |¬x). Except for the
first case, in which f is trivially computed as ⊥, by the induction hypothesis,
c2d(vr, (C ∪ S)|x) and c2d(vr, (C ∪ S)|¬x) compute Decision-DNNFs for f |x
and f |¬x, respectively.5 Note that we construct an or node only in the last
case, which is a decision node. So, when v is a Shannon node, we compute
a Decision-DNNF equivalent to CNF (v) ∪ S. Assume now that v is a non-
Shannon node. In this case, C must be empty because the vtree is a decision
vtree. Thus, CNF (v) = CNF (vl)∪CNF (vr). Also, S cannot contain any clause
that mentions variables from both vl and vr as no clause in S can be compatible
with v. Then, by the induction hypothesis, on Line 8, we compute a Decision-
DNNF equivalent to CNF (v) ∪ S. ��

Corollary 1. Let v be a decision vtree for CNF (v). The call c2d(v, {}) to Al-
gorithm 1 returns a Decision-DNNF that is equivalent to CNF (v).

For instance, when the vtree in Fig. 2 is passed to Algorithm 1, it computes
the Decision-DNNF in Fig. 1(c). To analyze time and space complexities of the
algorithm, we next introduce a new notion of width.

5 If a clause is not compatible with a vtree node v then every conditioning of the
clause will also not be compatible with v.

48 U. Oztok and A. Darwiche

3.4 Decision-Width

Before defining the new notion of width, we will introduce two concepts.

Definition 2. Consider a CNF and a corresponding vtree. Let v be an inter-
nal vtree node. The context clauses of v are the clauses that mention variables
inside v and outside v.

For example, consider the CNF {y ∨ ¬z, ¬x ∨ z, x ∨ ¬y, x ∨ q} and the vtree
node v = 5 in Fig. 1(a). The context clauses of v are {¬x ∨ z, x ∨ ¬y, x ∨ q}.
Definition 3. Consider a CNF Γ and a set of variables V. We denote by
CNFs(Γ,V) the set of CNFs that is obtained from conditioning Γ on each
instantiation v of V.

Consider the CNF Γ = {x ∨ y ∨ z, x ∨ y ∨ q, ¬x ∨ ¬y ∨ z, x ∨ ¬y ∨ z} and the
set of variables V = {Y }. Then,

Γ |y = {¬x ∨ z, x ∨ z},
Γ |¬y = {x ∨ z, x ∨ q},

CNFs(Γ,V) = {{¬x ∨ z, x ∨ z}, {x ∨ z, x ∨ q}}.

We are now ready to introduce the new notion of width.

Definition 4 (decision-width). Consider a CNF Δ and a corresponding de-
cision vtree. Let v be an internal vtree node with context clauses Γ . Let Y be
variables outside v. Then, the width of v is the ceiling of log(|CNFs(Γ,Y)|),
where log 0 is defined as 0. The decision-width of the decision vtree is the largest
width of any of its internal nodes minus 1. The decision-width of the CNF is the
smallest decision-width attained by any of its decision vtrees.

For instance, consider the vtree in Fig. 1(a). Assuming that the vtree corresponds
to the CNF {y ∨ ¬z, ¬x ∨ z, x ∨ ¬y, x ∨ q}, the width of node v = 5 is 1, and
the decision-width of the vtree is 0.

Having defined decision-width, we can now establish the complexity of Algo-
rithm 1.

Theorem 1. If decision vtree v is over n variables and has decision-width w,
and if CNF (v) has size m, then the call c2d(v, {}) to Algorithm 1 takes time in
O(nm2w) and returns a Decision-DNNF whose size is in O(n2w).

Proof (Sketch). Each distinct call to a Shannon node (Lines 2–4) takes time in
O(2m): we perform at most two conditionings of C ∪ S, which has at most m
clauses, on a single literal. This process contributes to the size at most three
nodes, each having two children. Each distinct call to a non-Shannon node
(Lines 5–8) takes time in O(m): we partition the set S, which has at most
m clauses, into two subsets. This case contributes to the size one node with two
children. Also, due to caching, the number of distinct calls to a vtree node v
is at most 2k where k is the width of v. As there are O(n) nodes in the vtree,
Algorithm 1 takes time in O(nm2w) and returns a Decision-DNNF whose size
is in O(n2w). ��

On Compiling CNF into Decision-DNNF 49

¬y ∨ z

a ∨ b a ∨ ¬b

y y ∨ ¬z ∨ x

(a) A dtree

{Y, Z}

∅

∅ {A,B}

∅ ∅

∅

∅ {X}

(b) Cutsets of the dtree

Y

Z

A B

X

(c) A vtree

Fig. 3. A dtree, its cutsets, and a vtree for the CNF {y, ¬y∨z, y∨¬z∨x, a∨b, a∨¬b}

3.5 Relationship to Treewidth

One of the classical parameters for characterizing the structural properties of
a CNF is treewidth [19]. This is a property of some graph abstraction of the
CNF, such as the primal, dual or incidence graph. We will now compare decision-
width with the treewidth of the CNF primal graph, and show that decision-width
strictly dominates the treewidth.

The primal graph of a CNF is obtained by treating CNF variables as graph
nodes, while adding an edge between two variables iff they appear in the same
clause. We will use twp to denote the treewidth of the primal graph.

We will now compare decision-width with twp. First, we will show that
decision-width dominates twp.

Theorem 2. Consider a CNF whose primal graph has treewidth w. We can
construct a decision vtree of this CNF whose decision-width is no greater than w.

Proof (Sketch). The primal graph must have a tree decomposition in the form of
a dtree [6] that has width w. A dtree of a CNF is a rooted, full binary tree whose
leaves are in one-to-one correspondence with the CNF clauses; see Fig. 3(a). We
define the cutset of an internal dtree node d as the variables that appear in the
left child of d and in the right child of d but not in any cutset of the ancestors
of d. Also, the cutset of a leaf dtree node d is defined as the variables of d
that do not appear in any cutset of the ancestors of d. Figure 3(b) shows the
cutsets of a dtree. We construct decision vtrees from dtrees using the following
recursive procedure. At a leaf dtree node d, we construct a right-linear vtree
from the variables appearing in the cutset of d. At an internal dtree node d, we
recursively construct a decision vtree vl for the dtree dl, and a decision vtree
vr for the dtree dr. We then create another vtree node v by assigning vl as v’s
left child and vr as v’s right child. Finally, we create and return a right-linear
vtree using the variables in the cutset of dtree node d, with vtree node v as the
right-most child of this right-linear vtree. Due to cutset properties, the resulting
vtree is a decision vtree. Figure 3(c) shows a decision vtree obtained from the
dtree in Fig. 3(a) using the method we just described. The full paper shows that
the decision-width of the resulting decision vtree is no greater than w. ��

50 U. Oztok and A. Darwiche

The above result shows that decision-width dominates twp. It also implies that
one can always construct a decision vtree for any CNF. We will next show that
decision-width can be bounded when twp is unbounded.

Theorem 3. The CNF Δn = {x1 ∨ . . . ∨ xn}, n ≥ 1, has a primal graph with
treewidth n− 1 and decision-width 0.

Proof. The primal graph of Δn is a complete graph, and complete graphs are
known to have unbounded treewidth, which is n − 1 in this case. Consider the
right-linear vtree induced by the variable ordering X1, . . . , Xn. That is, the left
child of the vtree root v is X1. The left child of vr is X2, and so on. Consider a
vtree node v′ whose left child is Xi. Let Γ be the context clauses of v′. If i = 1,
then Γ is empty and the width of v′ is 0. Otherwise, Γ = {x1 ∨ . . .∨ xn}. Let Y
be the variables outside v′. Then, the set of CNFs that are obtained from Γ |y is
{{}, {xi ∨ . . . ∨ xn}}. The width of v′ is then 1. The decision-width of the vtree
is then 0. ��

The best known upper bounds for the complexities of compiling CNFs into
both Decision-DNNFs and d-DNNFs are exponential in the treewidth of the
CNF primal graph [12]. As decision-width strictly dominates treewidth, and
also Decision-DNNFs is a strict subset of d-DNNFs, by Theorem 1, we obtain
a tighter upper bound both for Decision-DNNF and d-DNNF compilation. Fur-
thermore, as the traces of most model counters are in Decision-DNNF (see next
section), this result also provides a tighter bound for model counters based on
Decision-DNNFs (under some assumptions to be discussed next).

4 Decision-DNNFs and Model Counters

In this section, we will discuss the close relationship between Decision-DNNFs
and model counters based on exhaustive DPLL.

The original DPLL algorithm was developed for SAT. It is a systematic search
algorithm that searches the space of truth assignments until finding a satisfying
one or identifying that such an assignment does not exist. In particular, given a
Boolean formula f , it chooses a variable X of the formula, and then considers
two cases recursively, which correspond to f |x and f |¬x. It then decides that
the formula f is satisfiable when at least one of f |x and f |¬x is satisfiable. This
method can easily be extended to compute the number of satisfying assignments
of the formula by not stopping the search when a single satisfying assignment
is found. That is, by exhaustively continuing to look for all other satisfying
assignments, one can obtain a naive model counter.

The tree in Fig. 4(a) shows all the paths that are traversed during an exhaus-
tive DPLL on a Boolean formula. Each circled node represents a variable on
which two decisions are performed: the variable is set to false (dashed edge) or
set to true (solid edge). This way, paths from the root to leaf nodes represent
(partial) variable assignments. Each leaf node then represents the result of the
search when the variable assignment on the path from the root to the leaf is ap-
plied on the Boolean formula, with the label unsat being unsatisfiable and the

On Compiling CNF into Decision-DNNF 51

X

Y

unsat Z

unsat sat

Y

Z

unsat sat

sat

(a) Termination tree

or

and

or

and

⊥ ¬y

and

y
or

and

⊥ z

and

¬z �

¬x

and

x
or

and

or

and

⊥ z

and

¬z �

¬y

and

y �

(b) Equivalent NNF circuit

Fig. 4. The trace of an exhaustive DPLL

label sat being satisfiable. This tree is called the trace of the search performed
by an exhaustive DPLL [12]. Note that one can think of each circled node of the
tree as an or node, by utilizing the following conversion:

X

α β

or

and

¬x α

and

x β

Figure 4(b) is the NNF circuit obtained from Fig. 4(a) using the above conver-
sion, and also replacing each sat with �, and each unsat with ⊥. One can always
interpret the trace of an exhaustive DPLL as an equivalent NNF circuit, which
turns out to satisfy both decomposability and determinism. In fact, the traces
of the searches performed by such model counters correspond to FBDDs [12].
Moreover, when these model counters are augmented with component analysis,
their traces correspond to Decision-DNNFs [12].

This connection has two implications. First, it allows one to translate Decision-
DNNF lower bounds immediately into lower bounds on the complexity of model
counters. Second, but under some assumptions, it allows one to translate
Decision-DNNF upper bounds into ones on the complexity of model counters.
For example lower bounds, it was recently shown that Decision-DNNFs can be
converted into FBDDs with only a quasipolynomial increase in size [2]. As a
result, known lower bounds for FBDDs immediately translate into lower bounds
on model counters whose traces are in Decision-DNNF (see [2] for examples).

Translating upper bounds on Decision-DNNF to upper bounds on arbitrary
model counters, however, is not as direct. Here, one needs, for example, to assume
that the traces of the model counter are optimal, and that the time complexity
of the counter is polynomial in the size of the trace. Under these assumptions, an

52 U. Oztok and A. Darwiche

upper bound on Decision-DNNF translates directly into an upper bound on the
model counter. Interestingly enough, Algorithm 1 satisfies the second condition.
The algorithm does not satisfy the first condition, but we know that its traces
(i.e., compilations) are bounded exponentially only by the decision-width. Since
this width dominates the primal graph treewidth, we now have a tighter upper
bound on model counting in general (realized by Algorithm 1). We also have a
tighter upper bound on any model counter that satisfies the previous conditions.

5 From Decision-DNNF to SDD

We finally show a new complexity result on compiling CNFs into SDDs.6 The
existing upper bound on SDDs is exponential in the treewidth of the CNF primal
graph. We show a tighter bound that is exponential only in decision-width, which
strictly dominates treewidth as shown in Sect. 3.5. We will obtain this result by
showing that Decision-DNNFs generated by Algorithm 1 can be converted into
compressed and trimmed SDDs in linear time and by at most doubling the size.
That is, Algorithm 1 is effectively compiling SDDs.

Note that the output of Algorithm 1 is a special form of Decision-DNNF. In
particular, the vtree used in the compilation provides the generated Decision-
DNNF with a specific structure. That is, every node N in the Decision-DNNF
is associated with some vtree node v in the following way:

– an andnode is associatedwith vwhen V ars(N l) ⊆ V ars(vl) and V ars(N r) ⊆
V ars(vr), and

– an or node, (x∧α)∨ (¬x∧β), is associated with v when X ⊆ V ars(vl) and
V ars(α ∪ β) ⊆ V ars(vr).

For instance, each node of the Decision-DNNF in Fig. 1(c) is associated with a
vtree node in Fig. 1(a).

Algorithm 2 shows how to convert a Decision-DNNF into an SDD. It takes
a Decision-DNNF that is constructed by Algorithm 1 and computes two com-
pressed and trimmed SDDs that are equivalent to the Boolean functions rep-
resented by N and the negation of N . The conversion is done in a bottom-up
fashion. Terminal SDDs are obtained from leaf nodes (Line 1). Then, an or node
(Lines 1–3) or an and node (Lines 4–6) is obtained from the results of recursive
calls. To prevent redundant calculations, the results are cached (Line 7). The fol-
lowing theorem establishes the soundness and the complexity of the algorithm.

Theorem 4. If N is a Decision-DNNF generated by Algorithm 1 and has sizem,
then the call d2sdd(N) takes time in O(m), and returns two compressed and
trimmed SDDs for F (N) and ¬F (N), whose sizes are in O(m).

Proof. The proof is by induction on NNF nodes. The base case is when N is a
leaf node, which is satisfied by Line 1. As an induction hypothesis (IH), assume

6 The definition of SDD and some of its properties are delegated to Appendix A.

On Compiling CNF into Decision-DNNF 53

Algorithm 2. d2sdd(N)
cache(N) is a hash table that maps N to an SDD.
terminal(N) returns the terminal SDD equivalent to F (N).
unique(α) removes an element from α if its prime is ⊥. It then returns s if
α = {(p1, s), (p2, s)} or α = {(�, s)}; p1 if α = {(p1,�), (p2,⊥)}; else the
unique SDD node with elements α.

Input: N : a Decision-DNNF generated by Algorithm 1.
Output: Two compressed and trimmed SDDs equivalent to F (N) and ¬F (N).

1 if cache(N) �= nil then return cache(N) if N is a leaf node then return
terminal(N), terminal(¬N) if N = (x ∧ N1) ∨ (¬x ∧ N2) then

2 s1,¬s1 ← d2sdd(N1), s2,¬s2 ← d2sdd(N2)
3 α ← unique({(x, s1), (¬x, s2)}), ¬α ← unique({(x,¬s1), (¬x,¬s2)})
4 else // N = N l ∧ Nr

5 p,¬p ← d2sdd(N l), s,¬s ← d2sdd(Nr)
6 α ← unique({(p, s), (¬p,⊥)}), ¬α ← unique({(p,¬s), (¬p,�)})
7 cache(N) ← α,¬α
8 return α,¬α

that for every NNF circuit whose root N ′ is below N , and whose size |N ′| is k,
the call d2sdd(N ′) takes time in O(k), and returns two compressed and trimmed
SDDs for F (N ′) and ¬F (N ′), whose sizes are in O(k). Suppose that N is an or
node, (x ∧ N1) ∨ (¬x ∧ N2), where N1 and N2 are NNF nodes. Let |N1| = m1

and |N2| = m2. Then, m = 6+m1+m2. By the IH, the call d2sdd(N1) (Line 2)
takes time in O(m1), and returns the SDDs for F (N1) and ¬F (N1), whose sizes
are in O(m1). Similarly, the call d2sdd(N2) (Line 2) takes time in O(m2), and
returns the SDDs for F (N2) and ¬F (N2), whose sizes are in O(m2). Then, using
the structure of N , we construct the SDD for F (N) (Line 3), whose size is at
most 2 + O(m1) + O(m2) = O(m). To compute the SDD for ¬F (N), we just
need to negate the subs of the SDD for F (N), which are already computed
by the recursive calls. So, the call to an or node takes time in O(m). Assume
now that N is an and node, N l ∧ N r, where N l and N r are NNF nodes. Let
|N l| = m1 and |N r| = m2. Then,m = 2+m1+m2. By the IH, the call d2sdd(N l)
(Line 5) takes time in O(m1), and returns the SDDs for F (N l) and ¬F (N l),
whose sizes are in O(m1). Similarly, the call d2sdd(N r) (Line 5) takes time in
O(m2), and returns the SDDs for F (N r) and ¬F (N r), whose sizes are in O(m2).
We then construct the SDD for F (N) (Line 6) by making use of the following:
F (N) =

(
F (N l) ∧ F (N r)

)
∨
(
¬F (N l) ∧ ⊥

)
. Thus, the constructed SDD has size

at most 2+O(2m1)+O(m2) = O(2m). Again, the SDD for ¬F (N) is computed
by negating the subs. Thus, the call to an and node takes time in O(m). ��

For instance, when we pass the Decision-DNNF in Fig. 1(c) to Algorithm 2, the
algorithm computes the compressed and trimmed SDDs in Fig. 5.

54 U. Oztok and A. Darwiche

5

 Q ⊥

3

Y Z ¬Y ⊥

3

¬Y ¬Z Y ⊥

3

¬Y Z Y ⊤

1

¬X

X

(a) An SDD

5

 ¬Q ⊤

3

Y ¬Z ¬Y ⊤

3

¬Y ¬Z Y ⊥

3

¬Y Z Y ⊤

1

¬X

X

(b) Negation of the SDD in (a)

Fig. 5. An SDD and its negation (both defined over the vtree in Fig. 1(a))

The result we obtained in this section shows that we can compile CNFs into
SDDs in time and space that are exponential only in decision-width. As the
best known upper bound for compiling CNFs into SDDs is exponential in the
treewidth of the CNF primal graph [8], we obtain a tighter upper bound on the
complexity of SDD compilation.

6 Related Work

The notion of decision-width is closely connected to another notion of width that
we introduced recently [16], called CV-width. In this latter work, an algorithm
was provided for compiling CNFs into structured DNNFs, based on vtrees, with
space and time guarantees that are exponential only in CV-width. This width
was defined over arbitrary vtrees. However, when restricted to decision vtrees,
it reduces to the notion of decision-width defined in this paper. In fact, when
the compilation algorithm of [16] is passed a decision vtree, it reduces to the
compilation algorithm given in this paper. This is an interesting phenomenon,
where language fragments are generated by restricting the type of vtrees passed
to a compilation algorithm. In fact, in [16], we also showed that when right-linear
vtrees are used, the compilation algorithm yields OBDD compilations (with new
complexity bounds that improve on what existed before).

When the current work is considered from the viewpoint of [16], it corresponds
to identifying a class of vtrees (decision vtree), together with a corresponding
notion of width (decision-width) and a corresponding fragment of structured
DNNF. These vtrees are particularly important given their role in model count-
ing and sentential decision diagrams.

Interestingly enough, decision vtrees and the method for constructing them
have been used twice in the past, yet without realizing the corresponding prop-

On Compiling CNF into Decision-DNNF 55

erties and guarantees that we discussed [18,8]. Moreover, no specific notion of
width has been defined before based on this restricted type of vtrees. In [18],
these vtrees were used to show an upper bound on the compilation of structured
DNNFs. Similarly, in [8], these vtrees were used to show an upper bound on
the compilation of SDDs. In both cases, the bounds were in terms of the primal
graph treewidth. In this work, we used these vtrees to provide an upper bound
on a subset of Decision-DNNF, which is included in both structured DNNF and
SDDs. Moreover, our bound (based on decision-width) is tighter than the ones
based on the primal graph treewidth. More importantly though, we have iden-
tified decision vtrees as a distinct class of vtrees for the first time, explicated
their characteristic property (clauses are compatible only with Shannon nodes),
equipped them with a corresponding notion of width, and characterized their
corresponding compilations (as a subset of Decision-DNNF).

7 Conclusion

In this paper, we presented new results on Decision-DNNFs. We showed a com-
pilation algorithm that compiles CNFs into Decision-DNNFs. To analyze the
complexity of the algorithm, we defined a new notion of width, called decision-
width, and showed that the algorithm has time and space complexities that
are exponential only in decision-width. To better evaluate decision-width, we
compared it with the treewidth of the CNF primal graph, and showed that
decision-width strictly dominates treewidth. Not only did we obtain a tighter
upper bound for compiling CNFs into d-DNNFs (through Decision-DNNFs) but
we also obtained a tighter upper bound on model counting, for which the pre-
viously best known bounds were both exponential in the treewidth. We finally
showed that Decision-DNNFs compiled by the algorithm can be transformed
into SDDs in linear time. This led to a tighter upper bound on compiling CNFs
into SDDs, for which the previously best known bound was exponential in the
treewidth of the CNF primal graph.

Acknowledgements. This work has been partially supported by ONR grant
#N00014-12-1-0423 and NSF grant #IIS-1118122.

A Sentential Decision Diagrams

Consider a Boolean function f(X,Y) with disjoint sets of variables X and Y. If
f(X,Y) = (p1(X)∧s1(Y))∨. . .∨(pn(X)∧sn(Y)), the set {(p1, s1), . . . , (pn, sn)}
is called an (X,Y)-decomposition of the function f and each pair (pi, si) is
called an element of the decomposition [17]. The decomposition is further called
an (X,Y)-partition iff the pi’s form a partition [8]. That is, pi �= ⊥ for all i;
and pi ∧ pj = ⊥ for i �= j; and

∨
i pi = �. In this case, each pi is called a

prime and each si is called a sub. An (X,Y)-partition is compressed iff its subs
are distinct, i.e., si �= sj for i �= j [8]. Compression can always be ensured by

56 U. Oztok and A. Darwiche

6

2 5

B
0

A

1

D

3

C

4

(a) A vtree

6

 ⊤ C ¬B

2

B A ¬B ⊥

2

B ¬A

5

D C ¬D⊥

(b) An SDD

Fig. 6. Function f = (A ∧ B) ∨ (B ∧ C) ∨ (C ∧ D)

repeatedly disjoining the primes of equal subs. Moreover, a function f(X,Y) has
a unique, compressed (X,Y)-partition. Finally, the size of a decomposition, or
partition, is the number of its elements.

Note that (X,Y)-partitions generalize Shannon decompositions, which fall
as a special case when X contains a single variable. OBDDs result from the
recursive application of Shannon decompositions, leading to decision nodes that
branch on the states of a single variable (i.e., literals). As we show next, SDDs
result from the recursive application of (X,Y)-partitions, leading to decision
nodes that branch on the state of multiple variables (i.e., arbitrary sentences).

Consider the vtree in Fig. 6(a). Consider also the Boolean function f = (A ∧
B) ∨ (B ∧ C) ∨ (C ∧D) over the same variables. Node v = 6 is the vtree root.
Its left subtree contains variables X = {A,B} and its right subtree contains
Y = {C,D}. Decomposing function f at node v = 6 amounts to generating an
(X,Y)-partition of function f . The unique compressed (X,Y)-partition here is

{(A ∧B︸ ︷︷ ︸
prime

, �︸︷︷︸
sub

), (¬A ∧B︸ ︷︷ ︸
prime

, C︸︷︷︸
sub

), (¬B︸︷︷︸
prime

, D ∧ C︸ ︷︷ ︸
sub

)}.

This partition is represented by the root node of Fig. 6(b). This node, which is a
circle, represents a decision node with three branches. Each branch corresponds
to one element p s of the above partition. Here, the left box contains a prime
when the prime is a literal or a constant; otherwise, it contains a pointer to
a prime. Similarly, the right box contains a sub or a pointer to a sub. The
three primes are decomposed recursively, but using the vtree rooted at v = 2.
Similarly, the subs are decomposed recursively, using the vtree rooted at v = 5.
This recursive decomposition process moves down one level in the vtree with
each recursion, terminating when it reaches leaf vtree nodes. The full SDD for
this example is depicted in Fig. 6(b).

SDDs obtained from the above process are called compressed iff the (X,Y)-
partition computed at each step is compressed. These SDDs may contain trivial
decision nodes which correspond to (X,Y)-partitions of the form {(�, α)} or
{(α,�), (¬α,⊥)}. When these decision nodes are removed (by directing their
parents to α), the resulting SDD is called trimmed. Compressed and trimmed
SDDs are canonical for a given vtree [8].

On Compiling CNF into Decision-DNNF 57

References

1. Bacchus, F., Dalmao, S., Pitassi, T.: DPLL with Caching: A new algorithm
for #SAT and Bayesian Inference. In: Electronic Colloquium on Computational
Complexity (ECCC), vol. 10(003) (2003)

2. Beame, P., Li, J., Roy, S., Suciu, D.: Lower Bounds for Exact Model Counting and
Applications in Probabilistic Databases. In: Proc. of UAI (2013)

3. Blum, M., Chandra, A.K., Wegman, M.N.: Equivalence of free boolean graphs can
be decided probabilistically in polynomial time. Inf. Process. Lett. 10(2), 80–82
(1980)

4. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

5. Chavira, M., Darwiche, A.: On Probabilistic Inference by Weighted Model
Counting. Artif. Intell. 172(6-7), 772–799 (2008)

6. Darwiche, A.: Decomposable Negation Normal Form. J. ACM 48(4), 608–647
(2001)

7. Darwiche, A.: New Advances in Compiling CNF into Decomposable Negation
Normal Form. In: Proc. of ECAI, pp. 328–332 (2004)

8. Darwiche, A.: SDD: A New Canonical Representation of Propositional Knowledge
Bases. In: Proc. of IJCAI, pp. 819–826 (2011)

9. Darwiche, A., Marquis, P.: A Knowledge Compilation Map. J. Artif. Intell. Res.
(JAIR) 17, 229–264 (2002)

10. Davis, M., Logemann, G., Loveland, D.W.: A Machine Program for Theorem-
Proving. Commun. ACM 5(7), 394–397 (1962)

11. Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. J.
ACM 7(3), 201–215 (1960)

12. Huang, J., Darwiche, A.: The Language of Search. J. Artif. Intell. Res. (JAIR) 29,
191–219 (2007)

13. Bayardo Jr., R.J., Pehoushek, J.D.: Counting Models Using Connected
Components. In: AAAI/IAAI, pp. 157–162 (2000)

14. Majercik, S.M., Littman, M.L.: Using Caching to Solve Larger Probabilistic
Planning Problems. In: AAAI/IAAI, pp. 954–959 (1998)

15. Muise, C., McIlraith, S.A., Beck, J.C., Hsu, E.I.: DSHARP: Fast d-DNNF Compi-
lation with sharpSAT. In: Kosseim, L., Inkpen, D. (eds.) Canadian AI 2012. LNCS,
vol. 7310, pp. 356–361. Springer, Heidelberg (2012)

16. Oztok, U., Darwiche, A.: CV-width: A New Complexity Parameter for CNFs. In:
Proc. of ECAI (to appear, 2014)

17. Pipatsrisawat, K., Darwiche, A.: A Lower Bound on the Size of Decomposable
Negation Normal Form. In: Proc. of AAAI (2010)

18. Pipatsrisawat, K., Darwiche, A.: Top-Down Algorithms for Constructing Struc-
tured DNNF: Theoretical and Practical Implications. In: Proc. of ECAI. pp. 3–8
(2010)

19. Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.
Theory, Ser. B 36(1), 49–64 (1984)

20. Sang, T., Bacchus, F., Beame, P., Kautz, H.A., Pitassi, T.: Combining Component
Caching and Clause Learning for Effective Model Counting. In: Proc. of SAT (2004)

21. Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8,
189–201 (1979)

A Complete Solver for Constraint Games

Thi-Van-Anh Nguyen and Arnaud Lallouet

Université de Caen, GREYC, Campus Côte de Nacre,
Boulevard du Maréchal Juin, BP 5186, 14032 Caen Cedex, France

{thi-van-anh.nguyen,arnaud.lallouet}@unicaen.fr

Abstract. Game Theory studies situations in which multiple agents having con-
flicting objectives have to reach a collective decision. The question of a compact
representation language for agents utility function is of crucial importance since
the classical representation of a n-players game is given by a n-dimensional ma-
trix of exponential size for each player. In this paper we use the framework of
Constraint Games in which CSP are used to represent utilities. Constraint Pro-
gramming –including global constraints– allows to easily give a compact and
elegant model to many useful games. Constraint Games come in two flavors:
Constraint Satisfaction Games and Constraint Optimization Games, the first one
using satisfaction to define boolean utilities. In addition to multimatrix games, it
is also possible to model more complex games where hard constraints forbid cer-
tain situations. In this paper we study complete search techniques and show that
our solver using the compact representation of Constraint Games is faster than
the classical game solver Gambit by one to two orders of magnitude.

1 Introduction

Game theory has proven to be highly successful in modeling interaction of selfish agents
[21,20]. In a strategic game, each player is given a set of actions and has to choose one to
perform. A reward is given to a player by a utility function which depends on the actions
taken by all players. One of the best known solution concepts for this type of game is
the Pure Nash Equilibrium (PNE), which occurs when no player is able to improve his
utility by changing his chosen action to another one. There are many ways do define
solution concepts [24] but PNE has the notable advantage of giving a deterministic
decision for the players. Indeed, PNE for games are similar to solutions for CSP: not all
games own a PNE, and when available, some PNE may be more desirable than others.

The basic representation of games is a multimatrix called normal form whose size is
exponential in the number of players. The intractability of this representation is a severe
limitation to the widespread use of game-based modeling. This key issue has been ad-
dressed by several types of compact representations. Some are based on some assump-
tions on the interactions between players, like graphical games [18] or action-graph
games [17] while other are language-based, like Boolean Games [14,9,4] or Constraint
Games [22].

We focus our interest here in Constraint Games for which utilities are expressed by
Constraint Satisfaction Problems (CSP) or Constraint Optimization Problems (COP).

1 This work is supported by Microsoft Research grant MRL-2011-046.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 58–74, 2014.
c© Springer International Publishing Switzerland 2014

A Complete Solver for Constraint Games 59

Constraint Games provide a rich modeling language which allows a natural formulation
of the players goals. In particular, it allows to express in a compact way most classical
games like congestion games [26], network games [6], strategic scheduling [29], to
name a few. In addition, hard constraints [25] can be provided to limit the joint strategies
all players may take. This allow unrealistic equilibria to be ruled out. Note that these
constraints are global to all players, unlike the local constraints defined in [3], and they
provide crucial expressivity in modeling. Constraint Games are a generic modeling tool
for strategic games and can be used to study new algorithms to solve them.

Despite the high interest of games for modeling strategic interaction, it is still difficult
to find a PNE game solver. The normal form game solver Gambit [19] is currently con-
sidered as state-of-the-art. Also non-compact logic transformations have been studied
[8,12]. For Boolean Games, there are techniques limited to specific categories of games
like games with acyclic interaction graph [2] or using specific bargaining techniques
[10]. For Constraint Games, only a solver based on local search has been proposed
[22]. Not surprisingly, large games can be solved but with no guarantee of finding an
equilibrium or prove the absence of equilibrium. This is due for a large part to the high
complexity of finding a PNE [13,4].

Few other works are related to Games and Constraint Programming. In [5], it has
been proposed to compute a mixed equilibrium using continuous constraints. Some
other formalisms try to solve a combinatorial problem by multiple agents, either with a
predefined assignment of variables to agents like in DCOP [11] or by letting the agents
select dynamically their variable like in SAT-Games [30] and Adversarial CSP [7].

In this paper, we prove that Constraint Games areΣp
2 -complete (like Boolean Games)

and then we focus on the problem of finding all PNE for a Constraint Game. Although
finding one PNE is a very interesting problem in itself, finding all of them allows more
freedom for choosing equilibrium that fulfills some additional requirements. For exam-
ple the correctness of the computation of Pareto Nash equilibrium relies on the com-
pleteness of PNE enumeration. We present in this paper ConGa, a new correct and
complete solver for Constraint Games. This solver is based on a fast computation of
equilibrium condition that we call Nash consistency and a pruning algorithm for never
best responses. We demonstrate the effectiveness of our approach on publicly available
benchmarks from the Gamut suite [23] as well as on real-life applications.

2 Constraint Games

Let V be a set of variables and D = (Dx)x∈V be the family of their (finite) domains.
ForW ⊆ V , we denote byDW the set of tuples onW , namelyΠx∈WDx. Projection of
a tuple (or a set of tuples) on a variable (or a set of variables) is denoted by |: for t ∈ DV ,
t|x = tx, t|W = (tx)x∈W and for E ⊆ DV , E|W = {t|W | t ∈ E}. For W,U ⊆ V , the
join ofA ⊆ DW andB ⊆ DU isA � B = {t ∈ DW∪U | t|W ∈ A ∧ t|U ∈ B}. When
W ∩ U = ∅, we denote the join of tuples t ∈ DW and u ∈ DU by (t, u). A constraint
c = (W,T) is a couple composed of a subset W = var(c) ⊆ V of variables and a
relation T = sol(c) ⊆ DW (called solutions). A Constraint Satisfaction Problem (or
CSP) is a set of constraints. We denote by sol(C) = �c∈C sol(c) its set of solutions. To
simplify the exposition, we identify sol(C) with its cylindric extension to all variables
of V (i.e. with any combination of values for the variables which do not belong to C).

60 T.-V.-A. Nguyen and A. Lallouet

Let P be a set of n players and V a finite set of variables. The set of variables is
partitioned into controlled variables Vc =

⋃
i∈P Vi where Vi is the subset of variables

controlled by Player i, and VE the set of uncontrolled or existential variables (VE =
V \ Vc).

Definition 1 (Constraint Satisfaction Game). A Constraint Satisfaction Game (or
CSG) is a 4-tuple (P , V,D,G) where P is a finite set of players, V is a finite set of
variables composed of a family of disjoint sets (Vi) for each player i ∈ P and a set VE
of existential variables disjoint of all the players variables, D = (Dx)x∈V is the family
of their domains and G = (Gi)i∈P is a family of CSP on V .

The CSP Gi is called the goal of the player i. The intuition behind CSG is that, while
Player i can only control his own subset of variables Vi, his satisfaction will depend
also on variables controlled by all the other players (Example 1). The intuition behind
existential variables is that they are existentially quantified (but most of the time they
will be functionally defined from decision variables).

Example 1. We consider the following CSG: the set of players is P = {X,Y, Z}. Each
player owns one variable: VX = {x}, VY = {y} and VZ = {z} with Dx = Dy =
{1, . . . , 9} and Dz = {1, 2, 3}. The goals are GX = {x = yz}, GY = {y = xz} and
GZ = {xy ≤ z ≤ x+ y, (x+ 1)(y + 1) �= 3z}.

A strategy for player i is an assignment of the variables Vi controlled by player i. A
strategy profile s = (si)i∈P is the given of a strategy for each player.

Definition 2 (Winning Strategy). A strategy profile s is winning for i if it satisfies
the goal of i: s ∈ sol(Gi).

A CSG can be interpreted as a classical game with a boolean payoff function which
takes value 1 when the player’s CSP is satisfied and 0 when not.

We denote by s−i the projection of s on V−i = V \ Vi. Given a strategy pro-
file s, a player i has a beneficial deviation if s �∈ sol(Gi) and ∃s′i ∈ DVi such that
(s′i, s−i) ∈ sol(Gi). Beneficial deviation represents the fact that a player will try to
maximize his satisfaction by changing the assignment of the variables he can control
if he is unsatisfied by the current assignment. A tuple s is best response for Player i if
this player is not able to make any beneficial deviation. Then we define the notion of
solution of a CSG by pure Nash equilibrium:

Definition 3 (Pure Nash Equilibrium). A strategy profile s is a Pure Nash Equilib-
rium (or PNE) of the CSG C if and only if no player has a beneficial deviation, i.e. s is
best response of all players.

Theorem 1. CSG are Σp
2 -complete.

Proof. The proof is adapted from the Σp
2 -completeness of boolean games [4].

Membership comes from the simple algorithm in which one guesses a strategy profile and
checks that no player has a beneficial deviation. Each verification consists in proving that a player
i has no solution if the strategy profile is not winning for i. This verification is in coNP because
for a strategy profile s, proving that there exists a solution for Player i amounts to solve the CSP

A Complete Solver for Constraint Games 61

Gi, which is in NP. Since the number of players is finite, there is a polynomial number of calls to
a coNP oracle (actually one for each player) and thus the problem is in Σp

2 .
For hardness, we introduce a special case of CSG: the 2-players 0-sum game. In this kind of

game, when one player wins, the other player looses. Thus it is enough to represent only the goal
of the first player, the other one being deduced by negation. Such a CSG can be represented by
(P = {1, 2}, V,D, C) where C is the goal of player 1 (the goal of Player 2 is straightforwardly
deduced by negation).

We perform a reduction from a ∃∀-QCSP to a 2-players 0-sum CSG. ∃∀-QCSP are known
to be Σp

2 -complete. This reduction proves that even 2-players 0-sum CSG are at least as hard as
solving a ∃∀-QCSP. Together with membership of the Σp

2 class, it gives the exact complexity for
n-players CSG.

The reduction is from the QCSP Q = ∃X∀Y C where X and Y are disjoint sets of variables
to the 2-players 0-sum CSG G = ({1, 2}, X ∪ Y ∪ {x, y}, (D,Dx, Dy), C ∨ (x = y)) where
x is a new variable controlled by player 1, y a new variable controlled by player 2 and Dx = Dy

are domains composed at least of 2 elements. It is obvious that the conversion can be performed
in polynomial time. If Q is valid, then let s1 be the assignment of variables of X and let s2 be an
assignment of variables of Y . Because Q is valid, ∀s′2 ∈ DY , (s1, s′2) ∈ sol(C). Thus (s1, s2)
is a PNE because player 1 is winning and player 2 has no beneficial deviation. Conversely, if Q
is not valid then for any assignment s1 ∈ DX of player 1, player 2 can play s′2 ∈ DY such that
(s1, s

′
2) �∈ sol(C). Then if player 1 plays x = v and if (s1, s2) ∈ sol(C), then player 2 can play

s′2 and y = w with w �= v. Thus player 2 has a beneficial deviation and (s1, s2, v, w) is not an
equilibrium. If (s1, s2) �∈ sol(C) and player 2 plays y = w, then player 1 can play x = w and
player 1 has a beneficial deviation. Thus (s1, s2, w,w) is not an equilibrium. In conclusion, G
has a PNE if and only if Q is valid, proving the Σp

2 -hardness. �

The players’ goals could be considered as soft constraints or preferences. It may hap-
pen however that some games have rules that forbid some strategy profiles as they model
impossible situations. It is natural to reject such profiles by setting hard constraints
shared by all players [25]. Hard constraints can be easily expressed in the framework of
Constraint Games by adding an additional CSP on the whole set of variables in order to
constrain the set of possible strategy profiles:

Definition 4 (Constraint Satisfaction Game with Hard Constraints). A Constraint
Satisfaction Game with Hard Constraints (or CSG-HC) is a 5-tuple (P , V,D,C,G)
where (P , V,D,G) is a CSG and C is a CSP on V .

It is useful to distinguish a strategy profile which does not satisfy any player’s goal from
a strategy profile which does not satisfy the hard constraints. The former can be a PNE
if no player has a beneficial deviation while the latter cannot. Therefore hard constraints
provide an increase of modeling expressibility (without however changing the general
complexity of CSG).

By adding an optimization condition it is possible to represent classical games. A
Constraint Optimization Game (or COG) is an extension of CSG in which each player
tries to optimize his goal. This is achieved by adding for each player i an optimization
condition min(x) or max(x) where x ∈ V is a variable to be optimized by Player i.

62 T.-V.-A. Nguyen and A. Lallouet

Definition 5 (Constraint Optimization Game). A Constraint Optimization Game (or
COG) is a 5-tuple (P , V,D,G, opt) where (P , V,D,G) is a CSG and opt = (opti)i∈P
is a family of optimization conditions for each player of the form min(x) or max(x)
where x ∈ V .

A winning strategy for player i is still a strategy profile which satisfies Gi. However,
the notion of beneficial deviation needs to be slightly adapted. We denote by <opti the
(partial) order on strategy profiles such that s <opti s

′ if s−i = s′−i and s|x < s′|x
when opti = min(x) (resp. s|x > s′|x when opti = max(x)). Given a strategy profile
s, a player i has a beneficial deviation if ∃s′i ∈ DVi such that s′ = (s′i, s−i) ∈ sol(Gi)
and s′ <opti s. Given this, the notion of solution is the same as for CSG. In addition,
COG can be extended with hard constraints the same way CSG are, yielding COG-HC.

3 Modeling with Constraint Games

In this section, we show that complex games can be easily expressed using constraint
games.

Example 2 (Location Game). In this example inspired by [15], n ice cream vendors
from a set P = {1, 2, . . . , n} want to choose a location numbered from 1 to m for
their stand in a street. Each seller i wants to find a location li. He already has fixed the
price of his ice cream to pi and we assume there is a customer’s house at each location.
No two vendors may choose the same location. The customers choose their vendor by
minimizing the sum of the distance between their house and the seller plus the price of
the ice cream.

In order to build the model, we need the following existential variables (which are
functionally determined by the decision variables li): costic defines the cost customer c
has to pay if he chooses the stand of seller i, minc defines the minimal cost customer c
has to pay for an ice cream, choiceic is a boolean variable which equals 1 if customer
c chooses seller i and benefiti defines the number of customers actually buying from
seller i. The Location Game (LG) can be easily modeled by a COG-HC in which each
seller wants to maximize his profit:

– P = {1, . . . , n}; ∀i ∈ P , Vi = {li} and ∀i ∈ P , D(li) = {1, . . . ,m}
– the hard constraints C are the following:

• no two vendors are located at the same place: all different(l1, l2, . . . , ln)
• ∀i ∈ P , ∀c ∈ [1..m], costic = |c− li|+ pi
• ∀c ∈ [1..m], minc = min(cost1c, . . . ,costnc)
• ∀c ∈ [1..m], (minc =costic)← (choiceic = 1)
• ∀c ∈ [1..m],

∑
i∈Pchoiceic = 1

– ∀i ∈ P , Gi contains the following constraint: benefiti = pi.
∑m

c=1choiceic
– ∀i ∈ P , the optimization condition opti = max(benefiti)

An interesting feature of this example is that it uses global constraints like all different
the same way as in Constraint Programming. It also shows the interest of modeling
hard constraints in games since it is perfectly natural to think that no two vendors can
settle at the same place. It is possible to transform this problem into a CSG by fixing a

A Complete Solver for Constraint Games 63

minimal profit mpi for each player i and stating that player i is satisfied if his benefits
is overmpi. It can be done by adding the constraint benefiti ≥ mpi to Gi instead of the
optimization condition. In the Gamut [23] version of the game, vendors do not choose
locations but prices, because there is no way to express that sellers should choose dif-
ferent locations in a normal form game like we do here with the all different constraint.

Example 3 (Cloud Resource Allocation Game). Resource allocation is a central issue in
cloud computing where clients use and pay computing resources on demand. In order
to manage conflicting interests between clients, [16] has proposed the framework of
CRAG (Cloud Resource Allocation Game) in which resource assignments are defined
by game equilibrium.

A cloud computing provider owns a set M = {M1, . . . ,Mm} of m machines, each
machine Mj having a capacity cj representing the amount of resource available (for
example CPU-hour, memory). The cost of using machine j is given by lj(x) = x× uj
where x is the number of resources requested and uj some unit cost. A set of n clients
P = {1, 2, . . . , n} wants to use simultaneously the cloud in order to perform tasks.
Client i ∈ P has mi tasks {Ti1, . . . , Timi} to perform, with respective requested ca-
pacity of {di1, . . . , dimi}. Each client i ∈ P chooses selfishly an allocation rik for
the task Tik (k ∈ [1..mi]) and wishes to minimize his cost costi =

∑mi

k=1 lrik(dik).
We assume that the provider’s resources amount is sufficient to accommodate the re-
sources requested by all of the clients:

∑n
i=1

∑mi

k=1 dik ≤
∑m

j=1 cj . This problem can
be modeled by the following COG-HC:

– P={1, . . . , n}; ∀i ∈ P , Vi = {ri1, . . . , rimi} and ∀i ∈ P , ∀k ∈ [1..mi], D(rik) =
{1, . . . ,m}

– C is composed of the following constraints:
• channeling constraints for boolean variables stating that machine j is requested

by task tik: (rik = j)↔ (choiceijk = 1)
• capacity constraints: ∀j ∈ [1..m],

∑n
i=1

∑mi

k=1 choiceijk × dik ≤ cj
– ∀i ∈ P , Gi = {costi =

∑m
j=1

∑mi

k=1 choiceijk × lj(dik)}
– ∀i ∈ P , opti = min(costi)

Other interesting examples can be modeled by Constraint Games like network games
[6], strategic scheduling [29], or games from the Gamut suite [23].

4 Pruning Techniques

A natural algorithm is to use generate and test to find an equilibrium. This naive algo-
rithm is however the only known algorithm for finding PNE [28] and from the complex-
ity result, it is unlikely that any fast (polynomial) algorithm could exist. This algorithm
is therefore the basis of the implementation of the Gambit solver [19] for PNE enu-
meration. We first show that this technique is subject to a form of trashing. In order to
simplify the exposition, we assume in the remaining of the paper that each player i only
controls one variable xi with domain Di. The extension to more than one variable per
player is not difficult (indeed our solver Conga does not have this limitation since many
examples require a player to control several variables).

64 T.-V.-A. Nguyen and A. Lallouet

The enum1 algorithm (Algorithm 1) consists in enumerating all strategy profiles,
testing each of them for each player for deviation and skipping to the next profile when
the first deviation is found.

Algorithm 1. enum1

1: function ENUM1(Game CG): setof tuples
2: Nash ← ∅
3: for s ∈ DVc do
4: if IsNash(s) then
5: Nash = Nash ∪ {s}
6: end if
7: end for
8: return Nash
9: end function

1: function ISNASH(tuple s): boolean
2: for i ∈ P do
3: for v ∈ Di, v �= si do
4: if (s−i, v) <opti s then
5: return false
6: end if
7: end for
8: end for
9: return true

10: end function

The following example shows that some deviations are performed several times.

Example 4. Let G be the 2-players game defined by the following table:

y
1 2 3

x
a (0,1)α (1,0) (1,0)
b (0,1)β (0,0) (1,0)
c (1,0) (1,1) (0,0)

We assume that the enumeration starts by Player x. The first tuple to be enumerated is
(a, 1) denoted by α. Deviation is checked for Player y and no deviation is found. Then
deviation is checked for Player x and a deviation towards (c, 1) is found. Thus this tuple
is not a PNE. The next candidate is (b, 1) denoted by β. This tuple is checked for Player
y and again no deviation is found. But when checked for Player x, the same deviation
towards (c, 1) is found as for tuple α.

This form of trashing is a strong motivation to investigate search and pruning tech-
niques for Constraint Games. To introduce our technique, we first recall [13] where the
authors introduce (originally for graphical games) a CSP composed of Nash constraints
to represent best responses for each player.

Definition 6 (GGS-CSP). Let CG = (P , V,D,G, opt) be a COG. The Nash con-
straint of player i ∈ P is gi = (Vc, T) where T = {t ∈ DV | �∃t′ ∈ DV s.t. t′ <opti t}.
The GGS-CSP G(CG) of CG is the set of Nash constraints for all players.

This CSP has the important property that it defines the PNE of the game:

Theorem 2. ([13]) t is a PNE of CG↔ t ∈ sol(G(CG))

A Complete Solver for Constraint Games 65

Then it follows that a PNE of a Constraint Game CG has a support in all of its Nash
constraints.

Our technique consists to perform a traversal of the search space by assigning the
variables of each player in turn according to a predefined ordering on P . For each
candidate tuple, we seek for supports by performing an incremental computation of the
Nash constraints. Each computed deviation is recorded in a table for each player. By
retrieving tuples in Nash constraints, we can avoid computing costly deviations.

However, since we are studying general games, each Nash constraint has the same
arity as the whole problem, which is challenging in terms of space requirements. First,
note that any tuple deleted from a table does not hinder the correctness of the Nash test.
It may only forces a deviation to be computed twice. Hence we are free to limit the size
of the tables and trade space with time. In practice, two features limit the size of the
tables.

First, deviation checks are performed in reverse player ordering. It means that a tuple
checked for the first player must have succeed the deviation test for all other players.
In practice for most problems, this limits the number of tuples reaching the upper lev-
els. Second, we can delete a tuple t recorded in a table when we can ensure that no
candidate t′ will deviate anymore towards t. This property is given by the following in-
dependence of subgames theorem. Let CG = (P , V,D,G, opt) be a constraint game.
A game CG′ = (P , V,D′, G, opt) is a subgame of CG if ∃i ∈ P , D′

i ⊆ Di and
i �= j → D′

j = Dj . We denote by bri(t) = {t′ ∈ sol(Gi) | t′−i = t−i} the set of best
response strategies from t for Player i.

Proposition 1. Let CG be a constraint game and CG′ a subgame of CG such that
D′

i ⊆ Di. Let D′′ = D \ D′, t′ ∈ D′V and t′′ ∈ D′′V . Then ∀j ∈ P , j �= i →
brj(t

′) ∩ brj(t′′) = ∅.

Proof. The proof is by contradiction. Suppose there exists t′ ∈ D′V and t′′ ∈ D′′V

such that brj(t′) ∩ brj(t
′′) �= ∅. Let s ∈ brj(t

′) ∩ brj(t′′). Then since s ∈ brj(t
′),

si ∈ D′Vi . Since s ∈ brj(t′′), si ∈ D′′Vi . Hence the contradiction. �

In other words, if we split the search space following Player Z , best responses for
Players X and Y are forced to remain in different subspaces.

By applying inductively Proposition 1 on a sequence of assignments of strategies for
Player 1 to k with k < n, we see that two branches of the search tree will not share best
responses for the remaining unassigned players. Hence we can freely remove all tuples
from the table of subsequent players once the branch is explored.

The last optimization consists in elimination of never best responses (NBR).

Definition 7. A strategy si for Player i is a never best response if ∀t−i, ∃s′i such that
(s′i, t−i) <opti (si, t−i).

Iterative elimination of NBR is a sound pruning for games [1] which additionally is
stronger than elimination of strongly dominated strategies. But unfortunately their de-
tection is very costly in the n-players case since it needs to know that this action will
never been chosen by Player i for all strategy profiles of the other players. However,
being a NBR in a subgame is a sufficient condition for not being an equilibrium:

66 T.-V.-A. Nguyen and A. Lallouet

Proposition 2. Let CG be a constraint game and CG′ a subgame of CG such that
D′

i ⊆ Di. Let sj ∈ D′
j be a NBR in CG′ with j �= i. Then for all s−j , if s = (sj , s−j)

is a PNE, then si �∈ D′
i.

Proof. The proof is by contradiction. Suppose there exists a PNE s = (sj , s−j) with
(s−j)i ∈ D′

i. Because s is a PNE, we have ∀k ∈ P , sk ∈ br(s)|k. Then because
sj is a NBR for j in CG′, there exists s′j such that (s′j , s−j) <optj (sj , s−j). Thus
sj �∈ br(s)|j . �

By applying inductively Proposition 2 on a sequence of assignments of strategies for
Player 1 to k with k < n, we see that if we detect that a strategy v is NBR for player
k in the subgame defined by the sequence of assignments, then this strategy will not
participate to a PNE and we can prune it.

5 An Algorithm for Nash Equilibrium Enumeration

We propose a tree-search algorithm for finding all PNE. The general method is based
on three ideas:

– all candidates (except those which are detected as NBR) are generated in lexico-
graphic order;

– Best responses for each player are recorded in a table BR;
– whenever a domination check is performed, it first checks this player’s recorded

best responses.

We assume given an ordering on players from 1 to n. The main algorithm (Algorithm
2) launches the recursive traversal (Algorithm 3) starting by Player 1. We distinguish
the original domains of the variables (called D) used to compute deviations from their
actual domain explored by the search tree (called A) and subject to pruning by arc-
consistency on hard constraints.

Algorithm 2. ConGa

1: global:
2: BR: array[1..n] of tuples � best responses for all players
3: cnt: array[1..n] of integer � counters for NBR detection
4: Nash: set of tuples � Nash equilibrium
5: S: global solver

6: function CONGA(Game CG): setof tuples
7: Nash ← ∅
8: Initialize solver S with hard constraints
9: A ← D

10: enum(A, 1)
11: return Nash
12: end function

Propagation of hard constraints allows to ensure that no forbidden tuple will be ex-
plored. If the propagation returns false, then at least one domain has been wiped out

A Complete Solver for Constraint Games 67

and there is no solution in this subspace. Otherwise domains A are reduced according
to arc-consistency. Values for each player are then recursively enumerated.

Algorithm 3. enum

1: procedure ENUM(domains A, int i)
2: if S.propagate(A) then
3: if i > n then
4: checkNash(tuple(A),n)
5: else
6: BR[i] ← ∅
7: cnt[i] ← Πj>i|Dj |
8: while Ai �= ∅ do
9: choose v ∈ Ai

10: B ← A
11: enum((B−i, (Bi = {v})), i+ 1)
12: Ai ← Ai − {v}
13: if cnt[i] ≤ 0 then
14: checkEndOfTable(A, i)
15: break
16: end if
17: end while
18: end if
19: end if
20: end procedure

Algorithm 4. checkNash

1: procedure CHECKNASH(tuple t, int i)
2: if i = 0 then
3: Nash ← Nash ∪ {t}
4: else
5: d ← search table(t, BR, i)
6: if d = ∅ then
7: d ← findBestResponses-C*G(t, i)
8: if d = ∅ then d ← Di end if
9: insert table(i, BR, d)

10: cnt[i] - -
11: end if
12: if ti ∈ d then checkNash(t, i − 1) end if
13: end if
14: end procedure

When a tuple is reached, it is checked for Nash condition (line 4) by Algorithm 4.
Otherwise, at least one domain remains to be explored. Each player i owns a tableBR[i]
of best responses, initialized empty and a counter cnt[i] initialized with the size of the
subspace needed to detect potential never best responses.

68 T.-V.-A. Nguyen and A. Lallouet

Algorithm 5. findBestResponses-CSG

1: function FINDBESTRESPONSES-CSG(tuple t, int i): set of tuples
2: d ← ∅
3: initialize solver Si with Gi (and Hard Constraints if required)
4: add constraints xj = tj for all j �= i
5: sol ← Si.getSolution()
6: while sol �= nil do
7: d ← d ∪ {sol}
8: sol ← Si.getSolution()
9: end while

10: return d
11: end function

After the recursive call of enum, we test whether all the subspace after Player i has
been checked for deviation. Then all subsequent values are never best responses. In this
case an exit from the loop causes backjumping to the ancestor node. This backjumping
is done after the exploration by checkEndOfTable (Algorithm 7) of the potential values
which are stored in the table and belong to the unexplored space (lines 13-16).

Algorithm 6. findBestResponses-COG

1: function FINDBESTRESPONSES-COG(tuple t, int i): set of tuples
2: d ← ∅
3: initialize solver Si with Gi and opti (and Hard Constraints if required)
4: add constraints xj = tj for all j �= i
5: save the current state of Si

6: sol ← Si.getOptimalSolution()
7: if sol = nil then
8: return d
9: else

10: get the optimal value opt of Player i from sol
11: restore the previous state of Si

12: for opti = min/max(X), add constraint X = opt
13: sol ← Si.getSolution()
14: while sol �= nil do
15: d ← d ∪ {sol}
16: sol ← Si.getSolution()
17: end while
18: end if
19: return d
20: end function

The checkNash procedure in Algorithm 4 verifies whether a player can make a ben-
eficial deviation from a tuple. Since the exploration of the search tree is done level by
level, the verification starts from the deepest level. First the tuple is searched in the ta-
ble of stored best response for this player (line 5). If not found, a solver for Gi is called
in function findBestResponses-C*G (line 7, with * standing for S for CSG and O for
COG). This function returns the set of deviation for Player i from a tuple t. There can

A Complete Solver for Constraint Games 69

be more than one deviation. In a CSG (Algorithm 5), it means that several assignments
satisfy the constraints of Gi. In a COG (Algorithm 6), it means that the optimal value
is reached for more than one point.

Algorithm 7. checkEndOfTable

1: procedure CHECKENDOFTABLE(domainA, int i)
2: for all t ∈ BR[i] such that t ∈ Πi=1..nAi do
3: checkNash(t, n)
4: end for
5: end procedure

Fig. 1. ConGa algorithm

70 T.-V.-A. Nguyen and A. Lallouet

If d is empty, it means that there is no possible action for Player i which can satisfy
the constraints of her goal. Indeed, a tuple can be an equilibrium even if a (or all) player
is unsatisfied. In this case we return the whole initial domain as deviation since any
value can participate to a PNE.

The procedure checkEndOfTable depicted in Algorithm 7 is used when the subset
has been explored and we are able to perform backjumping. In this case, all tuple of the
table which belong to the unexplored zone are checked for PNE.

In Figure 1, we apply ConGa algorithm on Example 1 of Section 2. The resolution
starts in Figure 1.a (abbreviated 1.a) with tuple 111. During the descent to the leaf, X
counter is initialized to |DY |× |DZ | = 9× 3 = 27 and Y ’s counter to |DZ | = 3. Tuple
111 is first checked for deviation for Z . It is found in 1.b that best responses for Z are
111 itself and 112, thus we store these two values in Z’s table. Then we check Players
Y and X for deviation and find that none of them deviate. Thus 111 is PNE, we record
it and store it in Y and X’s tables. Y ’s counter is decremented to 2.

Since the possible deviations for Z are explored, we continue by checkEndOfTable
for Z to 112 as in 1.c. This tuple is obviously a best response for Z (as found in Z’s
table), and is checked for deviation for the other players in reverse order. It is thus
checked for Y in 1.d and a deviation is found to 122, inserting 122 in Y ’s table. Y ’s
counter is decremented to 1.

Then backtracking occurs in 1.e at Y ’s level, which resets the table for Z . The next
candidate is 121. In 1.f, a deviation is found for Z to 123. In 1.g, the tuple 123 is
considered by checkEndOfTable for Z , checked for deviation for Z and found stable by
looking up in Z’s table. A further check for Y in 1.h finds a deviation to 133 and stores
this tuple in Y ’s table. Y ’s counter is decremented to 0.

In this example, the domain of Player Z is of size 3. Hence cnt[Y] was initialized
to 3. All tested tuples are of the form 1yz where 1 is the value on X . It happens in this
example that only by exploring values 1, 2, 3 for Y yield a complete traversal of the
subspace defined by Z (all values from Z’s domain have been considered). Thus we
know that, from that point, only 133 recorded in Y ’s table can be a PNE with X = 1.
The other remaining values of Player Y are NBR. It is sufficient to check tuple 133 in
checkEndOfTable as depicted in 1.i. Deviation is found for Player X to 933, so 133 is
not a PNE. Then, backjumping can occur. Figure 1.j makes a small summary of Player
Y’s deviation possibilities. We see that tuples 111, 112, 123 are stable for Z , thus these
tuples were lifted to Y level to be checked for Y ’s deviation. Solid arrows depict the
deviations recorded for Player Y on the different values for Z . After having checked
133, we can backjump to the next value of Player X (dotted arrows) (1.k).

In general checkEndOfTable tests all tuples of BR[Y] which belong to the unex-
plored part of the search space. This NBR detection is incomplete but comes almost for
free because it only takes a counter. Note that by Proposition 1, when exploringX = 2,
the table for Y can be reset because no other tuple will deviate to a tuple where X = 1.

Note that the tables are actually implemented by a tree whose nodes represent all
players but i, with i’s best responses attached on the leaves. Thus the search for devi-
ation in the table does not depend on the number of recorded tuples but only on the
number of players and is performed in O(|P|).

A Complete Solver for Constraint Games 71

Proposition 3. ConGa is correct and complete.

Proof. Correctness comes from the one of PNE check (Theorem 2). A reported PNE has been
checked for deviation for every player. Either the tuple has been recorded in the table as deviation
from another one, or had been directly checked by the solver against the player’s goal. Com-
pleteness is due to the traversal of the whole search space and soundness of never best response
pruning. �

6 Experiments

We have performed experiments on classical games of the Gamut suite [23] and some
games with hard constraints. Results are summarized in Table 1 in which the name
of the game is followed by the number of players and the size of the domain. Gamut
[23] games are CG (Congestion Game), GTTA (Guess Two Third Average), LG(GV)
(Location Game, Gamut version), MEG (Minimum Effort Game) and TD (Traveller’s
Dilemma). The other games are LG(HC) (Location Game with Hard Constraints,
example 2) and CRAG (Cloud Resource Allocation Game, example 3).

Table 1. Results for Gamut and other games

Name
NF Gen. Gambit enum1 ConGa

#PNE
Time Size Time Time #Cand #Dev Time #Cand #Dev

CG.7.15 259 5.1 MO 75 1.7E+8 1.8E+8 30 2.1E+7 1.3E+7 630
CG.8.15 4742 89 MO 1037 2.5E+9 2.7E+9 371 3.1E+8 1.9E+8 1680
CG.9.15 TO – – 17314 3.8E+10 4.2E+10 6035 4.9E+9 2.9E+9 5040

GTTA.3.101 2 0.1 18 4 1.0E+6 1.4E+6 1 1.0E+4 1.0E+4 1
GTTA.4.101 125 1.8 1844 337 1.0E+8 1.3E+8 12 1.0E+6 1.0E+6 1
GTTA.5.101 14705 216 MO TO – – 816 1.0E+8 1.1E+8 1

LG(GV).2.1000 2 0.01 131 340 1.0E+6 1.0E+6 8 2.0E+3 1.5E+3 0
LG(GV).2.2000 6 0.04 534 1448 4.0E+6 4.0E+6 33 4.0E+3 3.5E+3 0
LG(GV).2.3500 18 0.1 2614 6893 1.2E+7 1.2E+7 96 7.0E+3 6.0E+3 0
LG(GV).2.5000 35 0.2 7696 19990 2.5E+7 2.5E+7 205 1.0E+4 9.0E+3 0
LG(GV).2.20000 551 3.7 MO TO – – 3462 4.0E+4 3.9E+5 0

MEG.3.100 1 0.1 14 1 1.0E+6 1.0E+6 1 1.9E+4 1.5E+4 100
MEG.4.100 96 1.9 1555 46 1.0E+8 1.0E+8 10 1.9E+6 1.3E+6 100
MEG.5.100 11414 241 MO 3844 1.0E+10 1.0E+10 447 1.9E+8 1.2E+8 100
MEG.30.2 8998 91 MO 437 1.1E+9 2.1E+9 1085 5.4E+8 1.1E+9 2
MEG.35.2 TO – – 15408 3.4E+10 6.9E+10 TO – – 2

TD.3.99 2 0.1 15 1 9.7E+5 9.8E+5 1 1.9E+4 1.5E+4 1
TD.4.99 82 1.9 1572 28 9.6E+7 9.7E+7 10 1.9E+6 1.3E+6 1
TD.5.99 9301 119 MO 3338 9.1E+9 9.6E+9 488 1.8E+8 1.2E+8 1

CRAG.7.9 N/A N/A N/A 302 4.7E+6 5.3E+6 58 1.0E+6 5.9E+5 1
CRAG.8.9 N/A N/A N/A 3137 4.2E+7 4.8E+7 546 9.5E+6 5.3E+6 1
CRAG.9.9 N/A N/A N/A TO – – 4980 4.3E+7 4.8E+7 1

LG(HC).4.30 N/A N/A N/A 27 6.5E+5 8.0E+5 9 1.4E+5 4.4E+4 24
LG(HC).5.30 N/A N/A N/A 701 1.7E+7 2.1E+7 231 4.1E+6 1.2E+5 240
LG(HC).6.30 N/A N/A N/A 19040 4.3E+8 5.5E+8 17263 1.1E+8 3.2E+7 2160

72 T.-V.-A. Nguyen and A. Lallouet

For each instance, we have compared ConGa which has been built on top of the
library Choco [27] to the game solver Gambit [19] and to a base solver called enum1
(Algorithm 1). This solver works like Gambit by examining each tuple but the only
difference is that it uses the compact Constraint Game representation. All experiments
have been executed on a server of 48-core AMD Opteron 6174 with 4-processor at 2,2
GHz with 256 GB of RAM. The operating system installed is ubuntu 64bit 12.04 LTS.
In Table 1, time taken for each solver is given in seconds and time out is set to 20000
seconds. The number aE+b is equal to a× 10b.

The experiment on Gambit is divided into two steps: we first generate the
normal form matrix (column NF gen) and then we launch the command line
gambit-enumpure on the normal form to find all PNE. We have measured the time
needed to generate the normal form and its size (in GB), then the time required for the
game to be solved by Gambit. TO stands for Time Out, MO for Memory Out and ”–”
means there is no information (for example, if the generation times out, it is not possi-
ble to launch the resolution). As expected, the size of the normal form soon becomes
intractable and exceeds the capacity of Gambit.

For enum1 and ConGa, we have measured the time needed to solve an instance,
the number of candidate profiles and the number of deviation checks performed when
checking whether a candidate is a PNE. From a simple reasoning, the number of can-
didates for enum1 is simply |DVc |, and the number of checks is comprised between the
number of candidates and an upper bound of |DVc | × |P|. Not surprisingly, we see that
ConGa prunes most of the time a large part of the search space, mainly thanks to NBR
detection. But interestingly, most of the time, it also saves deviation checks, meaning
that the solution is found in the tables before a check is performed. A notable counterex-
ample is the Minimum Effort Game with a domain of size 2 (MEG.30.2 and MEG.35.2)
for which neither the tables or the NBR detection are working because the domains are
too small. Note that games with hard constraints are not implementable in Gambit, in-
dicated by N/A for not applicable. In all other benchmarks, ConGa outperforms both
Gambit and enum1 by one order of magnitude or even more.

A potential problem of ConGa could be that the size of the tables grows too much. It
is easy to build an example for which the first player will get a table of exponential size:
the game with no constraint for each player. In this game each profile is a PNE and is
thus stored in the table of the first player. However, this behavior has not been observed
in practice in any of our examples. Tables rather stay of reasonable size, either because
they belong to lower level players and they are reset often or because many profiles do
not reach high level players.

7 Conclusion

Constraint Games provide a new compact yet natural encoding to games. In this paper,
we propose the first complete solver for constraint games based on a fast computation of
Nash consistency and pruning of Never Best Responses. We show that these techniques
are yet able to outperform the existing state-of-the-art solver Gambit. But they also open
directions for further investigations on efficient algorithmic techniques to compute Nash
equilibrium. Future work include the use of heuristics, graphical constraint games and
other solution concepts like Pareto equilibrium.

A Complete Solver for Constraint Games 73

References

1. Apt, K.R.: Order independence and rationalizability. In: van der Meyden, R. (ed.) TARK,
pp. 22–38. National University of Singapore (2005)

2. Bonzon, E., Lagasquie-Schiex, M.C., Lang, J.: Dependencies between players in boolean
games. Int. J. Approx. Reasoning 50(6), 899–914 (2009)

3. Bonzon, E., Lagasquie-Schiex, M.C., Lang, J.: Effectivity functions and efficient coalitions
in boolean games. Synthese 187(1), 73–103 (2012)

4. Bonzon, E., Lagasquie-Schiex, M.C., Lang, J., Zanuttini, B.: Boolean games revisited.
In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) ECAI. Frontiers in Artificial
Intelligence and Applications, vol. 141, pp. 265–269. IOS Press (2006)

5. Bordeaux, L., Pajot, B.: Computing equilibria using interval constraints. In: Faltings, B.V.,
Petcu, A., Fages, F., Rossi, F. (eds.) CSCLP 2004. LNCS (LNAI), vol. 3419, pp. 157–171.
Springer, Heidelberg (2005)

6. Bouhtou, M., Erbs, G., Minoux, M.: Joint optimization of pricing and resource allocation in
competitive telecommunications networks. Networks 50(1), 37–49 (2007)

7. Brown, K.N., Little, J., Creed, P.J., Freuder, E.C.: Adversarial constraint satisfaction by
game-tree search. In: de Mántaras, R.L., Saitta, L. (eds.) ECAI, pp. 151–155. IOS Press
(2004)

8. De Vos, M., Vermeir, D.: Choice logic programs and nash equilibria in strategic games. In:
Flum, J., Rodrı́guez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 266–276. Springer,
Heidelberg (1999)

9. Dunne, P.E., van der Hoek, W.: Representation and complexity in boolean games. In: Alferes,
J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 347–359. Springer, Heidelberg
(2004)

10. Dunne, P.E., van der Hoek, W., Kraus, S., Wooldridge, M.: Cooperative boolean games.
In: Padgham, L., Parkes, D.C., Müller, J.P., Parsons, S. (eds.) AAMAS (2), pp. 1015–1022.
IFAAMAS (2008)

11. Faltings, B.: Distributed Constraint Programming, ch. 20. Handbook of Constraint
Programming, pp. 699–729. Elsevier (2006)

12. Foo, N.Y., Meyer, T., Brewka, G.: Lpod answer sets and nash equilibria. In: Maher, M.J. (ed.)
ASIAN 2004. LNCS, vol. 3321, pp. 343–351. Springer, Heidelberg (2004)

13. Gottlob, G., Greco, G., Scarcello, F.: Pure nash equilibria: Hard and easy games. J. Artif.
Intell. Res. (JAIR) 24, 357–406 (2005)

14. Harrenstein, P., van der Hoek, W., Meyer, J.J.C., Witteveen, C.: Boolean Games. In: van
Benthem, J. (ed.) TARK. Morgan Kaufmann (2001)

15. Hotelling, H.: Stability in competition. Economic Journal, 41–57 (1929)
16. Jalaparti, V., Nguyen, G., Gupta, I., Caesar, M.: Cloud resource allocation games. Technical

report, University of Illinois at Urbana-Champaign (2010),
http://hdl.handle.net/2142/17427

17. Jiang, A.X., Leyton-Brown, K., Bhat, N.A.R.: Action-graph games. Games and Economic
Behavior 71(1), 141–173 (2011)

18. Kearns, M.J., Littman, M.L., Singh, S.P.: Graphical models for game theory. In: Breese, J.S.,
Koller, D. (eds.) UAI, pp. 253–260. Morgan Kaufmann (2001)

19. McKelvey, R.D., McLennan, A.M., Turocy, T.L.: Gambit: Software tools for game theory
(2014), http://www.gambit-project.org

20. Nash, J.: Non-cooperative games. Annals of Mathematics 54(2), 286–295 (1951)
21. Neumann, J.V., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton

University Press (1944),
http://jmvidal.cse.sc.edu/library/neumann44a.pdf

http://hdl.handle.net/2142/17427
http://www.gambit-project.org
http://jmvidal.cse.sc.edu/library/neumann44a.pdf

74 T.-V.-A. Nguyen and A. Lallouet

22. Nguyen, T.V.A., Lallouet, A., Bordeaux, L.: Constraint games: Framework and local search
solver. In: Grégoire, É., Mazure, B. (eds.) ICTAI, pp. 963–970. Special Track on SAT and
CSP Technologies, Springer (2013)

23. Nudelman, E., Wortman, J., Shoham, Y., Leyton-Brown, K.: Run the gamut:
A comprehensive approach to evaluating game-theoretic algorithms. In: AAMAS,
pp. 880–887. IEEE Computer Society (2004), http://gamut.stanford.edu/,
http://gamut.stanford.edu/

24. Osborne, M., Rubinstein, A.: A Course in Game Theory. The MIT Press (1994)
25. Rosen, J.B.: Existence and uniqueness of equilibrium points for concave n-person games.

Econometrica 33(3), 520–534 (1965)
26. Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. International

Journal of Game Theory 2(1), 65–67 (1973)
27. The Choco Team: Choco: An Open Source Java Constraint Programming Library. Ecole des

Mines de Nantes (2008-2014), http://www.emn.fr/z-info/choco-solver/
28. Turocy, T.L.: Personal communication (2013)
29. Vöcking, B.: Selfish load balancing, ch. 20. Algorithmic game theory, pp. 517–542.

Cambridge University Press (2007)
30. Zhao, L., Müller, M.: Game-SAT: A preliminary report. In: Hoos, H., Mitchell, D. (eds.)

SAT, pp. 357–362 (2004)

http://gamut.stanford.edu/
http://gamut.stanford.edu/
http://www.emn.fr/z-info/choco-solver/

Encoding Linear Constraints into SAT

Ignasi Ab́ıo1 and Peter J. Stuckey1,2

1 NICTA Victoria Laboratory, Australia
2 Department of Computing and Information Systems,

The University of Melbourne, Australia

Abstract. Linear integer constraints are one of the most important
constraints in combinatorial problems since they are commonly found
in many practical applications. Typically, encoding linear constraints to
SAT performs poorly in problems with these constraints in comparison
to constraint programming (CP) or mixed integer programming (MIP)
solvers. But some problems contain a mix of combinatoric constraints
and linear constraints, where encoding to SAT is highly effective. In
this paper we define new approaches to encoding linear constraints into
SAT, by extending encoding methods for pseudo-Boolean constraints.
Experimental results show that these methods are not only better than
the state-of-the-art SAT encodings, but also improve on MIP and CP
solvers on appropriate problems. Combining the new encoding with lazy
decomposition, which during runtime only encodes constraints that are
important to the solving process that occurs, gives a robust approach to
many highly combinatorial problems involving linear constraints.

1 Introduction

In this paper we study linear integer (LI) constraints, that is, constraints of
the form a1x1 + · · · + anxn # a0, where the ai are integer given values, the
xi are finite-domain integer variables, and the relation operator # belongs to
{<,>,�,�,=}. We will assume w.l.o.g that # is �, the ai are positive and all
the domains of the variables are [0, di], since other cases can be reduced to this
one.1

Linear integer constraints appear in many combinatorial problems such as
scheduling, planning or software verification; they are also present in MaxSAT
problems [8]; or are part of some MaxSAT techniques, as in Fu & Malik algo-
rithm [17] (and some other algorithms based on it). Therefore, all approaches to
combinatorial optimization have studied how to best handle them, including for
MIP solvers, CP solvers [21], SMT solvers [15,11], and SAT solvers [27,6].

In this paper we examine how we can extend the state-of-the-art methods
for SAT encoding of pseudo-Boolean (PB) constraints of the form a1x1 + · · ·+
anxn # a0 where xi are Booleans, to the general linear integer case.

The method proposed here roughly consists in encoding the linear integers
constraints into Reduced Ordered Multi-Decision Diagram (MDD for short), and

1 Although replacing an equality by two inequalities substantially reduces propagation
strength.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 75–91, 2014.
c© Springer International Publishing Switzerland 2014

76 I. Ab́ıo and P.J. Stuckey

then decomposing the MDD to SAT. There are different reasons for choosing this
approach: firstly, most state-of-the-art encoding methods define one auxiliary
variable for every different possible value of the partial sum si = a1x1 + a2x2 +
· · · + aixi. However, some values of the partial sums may be equivalent in the
constraint. For instance, if aj is even for every j > i, there is no difference
between si = a0 and si = a0 − 1. With MDDs, due to the reduction process, we
can identify these situations, and encode all these indistinguishable values with
a single variable, producing a more compact encoding.

Secondly, BDDs are one of the best methods for encoding pseudo-Boolean
constraints into SAT [3], and MDDs seem the natural tool to generalize the
pseudo-Boolean encoding. Although the resulting encoding may be exponential;
however, in real-world problems we have not found any exponential examples.

The goal of this encoding is not for use in arbitrary problems involving LI con-
straints. In fact, a specific linear integer (MIP) solver will probably outperform
any SAT encoding in problems with more LI constraints than Boolean clauses.

Nevertheless, a fairly common kind of combinatorial problem mainly consist of
Boolean variables and clauses, but also a few integer variables and LI constraints.
Among these problems, an important class correspond to SAT problems with a
linear integer objective function. In these cases, SAT solvers are the optimal tool
for solving the problem, but a good encoding for the linear integer constraints
is needed to make the optimization effective. Therefore, in these problems the
decomposition presented here can make a significant difference.

Note, however, that decomposing the constraint may not always be the best
option. In some cases the encoding might produce a large number of variables and
clauses, transforming an easy problem for a CP solver into a huge SAT problem.
In some other cases, nevertheless, the auxiliary variables may give an exponential
reduction of the search space. Lazy decomposition [5,4] is a hybrid approach
that has been successfully used to handle this issue for cardinality and pseudo-
Boolean constraints. Here, we show that it also can be applied successfully on
LI constraints.

The method proposed here uses the order encoding for representing the integer
variables. In some cases, however, the domains of the integer variables are too
large for order encoding. We also propose a new alternative method for encoding
linear integer constraints with the logarithmic encoding.

The contributions of this paper are:

– A new encoding (MDD) for LI constraints using MDDs that outperforms the
state-of-the-art encodings.

– An alternative encoding (BDD-Dec) for LI constraints for large constraints
or variables with huge domains.

– An improved encoding of PB constraints which share coefficients, by con-
verting these constraints to LI constraints.

– A rigorous and extensive experimental comparison of our methods with re-
spect to other decompositions to SAT and other solvers. A total of 9 meth-
ods are compared, over approximately 3000 benchmarks, both industrial and
crafted.

Encoding Linear Constraints into SAT 77

2 Preliminaries

2.1 SAT Solving

Let X = {x1, x2, . . .} be a fixed set of propositional variables. If x ∈ X then x
and ¬x are positive and negative literals, respectively. The negation of a literal l,
written ¬l, denotes ¬x if l is x, and x if l is ¬x. A clause is a disjunction of literals
¬x1∨· · ·∨¬xp∨xp+1∨· · ·∨xn, sometimes written as x1∧· · ·∧xp → xp+1∨· · ·∨xn.
A CNF formula is a conjunction of clauses.

A (partial) assignment A is a set of literals such that {x,¬x} �⊆ A for any
x ∈ X , i.e., no contradictory literals appear. A literal l is true in A if l ∈ A, is
false in A if ¬l ∈ A, and is undefined in A otherwise. True, false or undefined
is the polarity of the literal l. A clause C is true in A if at least one of its
literals is true in A. A formula F is true in A if all its clauses are true in A.
In that case, A is a model of F . Systems that decide whether a formula F has
any model are called SAT-solvers, and the main inference rule they implement is
unit propagation: given a CNF F and an assignment A, find a clause in F such
that all its literals are false in A except one, say l, which is undefined, add l to A
and repeat the process until reaching a fix-point. See e.g. [24] for more details.

2.2 LCG and LD Solvers

Many modern CP solvers, so called Lazy Clause Generation (LCG) solvers, in-
clude the ability to explain their propagation and generate nogoods just as in
SAT solvers. Propagation of LI constraints is well understood [21] and standard.
And adding explanation for LI constraints is also well understood [16], although
there are often a number of choices of explanation that result.

More recently, Lazy Decomposition (LD) solvers have been proposed. An LD
solver is a LCG solver that, when one complex constraint propagator is very
active (that is, is frequently asked to generate explanations), then the solver
replaces the propagator by either partially or totally decomposing the constraint
into SAT (see [5,4] for more details). The advantage of LD solvers is that the
exposure of intermediate variables in the SAT encodings can substantially benefit
search, but it avoids the up front cost of encoding all complex constraints, only
those that are important in the solving process.

2.3 Order and Logarithmic Encoding

There are different methods for encoding integer variables into SAT (see for
instance [28,18]). In this paper we use the order and the logarithmic encoding.

Let y be an integer variable with domain [0, d]. The order encoding [19,7]
(sometimes called the ladder or regular encoding) introduces Boolean variables
yi for 0 � i < d. A variable yi is true iff y � i. The encoding also introduces the
clauses yi → yi+1 for 0 � i < d− 1.

The logarithmic encoding introduces only log d variables yib which codify the

binary representation of the value of y, as y =
��log(d)	

i=0 2iyib. It is a more compact
encoding, but it usually gives poor propagation performance.

78 I. Ab́ıo and P.J. Stuckey

2.4 Multi Decision Diagrams

A directed acyclic graph is called an ordered Multi Decision Diagram if it satisfies
the following properties:

– It has two terminal nodes, namely T (true) and F (false).
– Each non-terminal node is labeled by an integer variable {x1, x2, · · · , xn}.

This variable is called selector variable.
– Every node labeled by xi has the same number of outgoing edges, namely
di + 1.

– If an edge connects a node with a selector variable xi and a node with a
selector variable xj , then j > i.

The MDD is quasi-reduced if no isomorphic subgraphs exist. It is reduced if,
moreover, no nodes with only one child exist. A long edge is an edge connecting
two nodes with selector variables xi and xj such that j > i+1. In the following
we only consider quasi-reduced ordered MDDs without long edges, and we just
refer to them as MDDs for simplicity.

An MDD represents a function

f : {0, 1, . . . , d1} × {0, 1, . . . , d2} × · · · × {0, 1, . . . , dn} → {0, 1}

in the obvious way. Moreover, given the variable ordering, there is only one MDD
representing that function. We refer to [26] for further details about MDDs.

3 Linear Integer Constraints

In this paper we consider linear integer constraints of the form a1x1 + · · · +
anxn � a0, where the ai are positive integer coefficients and the xi are integer
variables with domains [0, di]. Other LI constraints can be easily reduced to this
one:

a1x1 + · · ·+ anxn = a0 =⇒
�
a1x1 + · · ·+ anxn � a0 ∧
a1x1 + · · ·+ anxn � a0

a1x1 + · · ·+ anxn < a0 =⇒ a1x1 + · · ·+ anxn � a0 − 1

a1x1 + · · ·+ anxn � a0 =⇒ −a1x1 + · · ·+−anxn � −a0
a1x1 + · · ·+ anxn > a0 =⇒ −a1x1 + · · ·+−anxn � −a0 − 1

a1x1 + · · ·+ aixi + · · ·
+anxn � a0

when xi ∈ [l, u], l �= 0, ai > 0

���
�� =⇒

���
�	
a1x1 + · · ·+ aix

′
i + · · ·

+anxn � a0 + ai × l ∧
x′i ∈ [0, u− l] ∧ x′i = xi − l

a1x1 + · · ·+ aixi + · · ·
+anxn � a0

when ai < 0 and xi ∈ [l, u]

���
�� =⇒

���
�	
a1x1 + · · ·+−aix′i + · · ·
+anxn � a0 − ai × u ∧
x′i ∈ [0, u− l] ∧ x′i = u− xi

xi ∈ [l, u], l �= 0 ∧ x′i = xi − l

∧ xji ≡ xi � j for l � j < u

=⇒ xj−l

i ≡ x′i � j for 0 � j < u− l

Encoding Linear Constraints into SAT 79

xi ∈ [l, u] ∧ x′i = u− xi

∧ xji ≡ xi � j for l � j < u

=⇒ ¬xu−j−1

i ≡ x′i � j for 0 � j < u− l

The goal of this paper is to find a SAT encoding for a given LI constraint.
That is, given a LI constraint C, construct an equivalent formula F such that
any model for F restricted to the variables of C is a model of C. Two extra
properties are usually sought:

– consistency checking by unit propagation or simply consistency: whenever a
partial assignment A cannot be extended to a model for C, unit propagation
on F and A produces a contradiction (a literal l and its negation ¬l);

– domain consistency (again by unit propagation): given an assignment A
that can be extended to a model of C, but such that A ∪ {x} cannot, unit
propagation on F and A produces ¬x.

4 Construction of the MDD

In this section we describe an efficient method for building MDDs. Let us fix
a LI constraint a1x1 + · · · + anxn � a0 and a variable ordering [x1, x2, . . . , xn].
Before explaining the algorithm, we need a preliminary definition.

LetM be the MDD of the given LI constraint and let ν be a node ofM with
selector variable xi. We define the interval of ν as the set of values α such that
the MDD rooted at ν represents the LI constraint aixi + · · · + anxn � α. It is
easy to see that this definition corresponds in fact to an interval.

Example 1. Figure 1 contains the MDD of 3x1+2x2+5x3 � 15, where x1 ∈ [0, 4],
x2 ∈ [0, 2] and x3 ∈ [0, 3]. The root interval is [15, 15]: this means that the root
does not correspond to any constraint 3x1 + 2x2 + 5x3 � α, apart from α = 15.
This means that this constraint is not equivalent to 3x1 + 2x2 + 5x3 � 14 or
3x1+2x2+5x3 � 16. However, the left node with selector variable x2 has interval
[15, 16]. This means that 2x2+5x3 � 15 and 2x2+5x3 � 16 are both represented
by the MDD rooted at that node. In particular, that means that 2x2+5x3 � 15
and 2x2 + 5x3 � 16 are two equivalent constraints. ��

The next proposition shows how to compute the intervals of every node:

Proposition 1. Let M be the MDD of a LI constraint a1x1 + · · ·+ anxn � a0.
Then, the following holds:

– The interval of the true node T is [0,∞).
– The interval of the false node F is (−∞,−1].
– Let ν be a node with selector variable xi and children {ν0, ν1, . . . , νdi}. Let

[βj , γj] be the interval of νj. Then, the interval of ν is [β, γ], with

β = max{βr + rai | 0 � r � di}, γ = min{γr + rai | 0 � r � di}.

The proof of this proposition is very similar to the Proposition 7 of [3].

80 I. Ab́ıo and P.J. Stuckey

x1

x2x2x2x2x2

x3x3x3x3x3

FT

x1
= 0

x
1
=

1

x
1

=
2

x

1 =
3

x
1 = 4

x
2
=

0

x
2
=

0

x
2

=
0

x
2

=
0

x
2

=
0

x
2
=

1

x
2

=
1

x
2

=
1

x
2

=
1

x

2 =
1

x
2

=
2

x
2

=
2

x
2

=
2

x

2 =
2

x

2 =
2

x3
=

0
x3

= 0

x3
=

0

x

3
=

0

x
3
=

0

x
3
=

1
x
3
=

1

x3
=

1

x

3
=

1

x
3
=

1

x

3
=

2x
3
=

2

x

3 =
2

x

3
=

2

x
3
=

2

x
3

=
3

x

3
=

3

x

3 =
3

x3 = 3

x
3
=

3

[15,15]

[15,16] [12,13] [9, 9] [5, 6] [2, 3]

[15,∞)
[10,14]

[5, 9]
[0, 4]

(−∞,−1]

[0,∞) (−∞,−1]

Fig. 1. MDD of 3x1 + 2x2 + 5x3 � 15

Example 2. Again, let us consider the constraint 3x1 + 2x2 + 5x3 � 15, whose
MDD is represented at Figure 1. By the previous Proposition, T and F have,
respectively, intervals [0,∞) and (−∞,−1]. Applying again the same proposi-
tion, we can compute the intervals of the nodes having x3 as selector variable.
For instance, the interval from the left node is

[0,∞) ∩ [5,∞) ∩ [10,∞) ∩ [15,∞) = [15,∞),

and the interval from the node having selector variable x3 in the middle is

[0,∞) ∩ [5,∞) ∩ (−∞, 9] ∩ (−∞, 14] = [5, 9].

After computing all the intervals from the nodes with selector variable x3, we
can compute the intervals of the nodes with selector variables x2 in the same
way, and, after that, we can compute the interval of the root. ��

The key point of the MDDCreate algorithm, detailed in Algorithm 1 and
Algorithm 2, is to label each node of the MDD with its interval [β, γ].

In the following, for every i ∈ {1, 2, . . . , n+ 1}, we use a set Li consisting of
pairs ([β, γ],M), whereM is the MDD of the constraint aixi + · · ·+ anxn � a′0
for every a′0 ∈ [β, γ] (i.e., [β, γ] is the interval of M). All these sets are kept in
a tuple L = (L1, L2, . . . , Ln+1).

Note that by definition of the MDD’s intervals, if both ([β1, γ1],M1) and
([β2, γ2],M2) belong to Li then either [β1, γ1] = [β2, γ2] or [β1, γ1]∩ [β2, γ2] = ∅.
Moreover, the first case holds if and only if M1 = M2. Therefore, Li can be
represented with a binary search tree-like data structure, where insertions and
searches can be done in logarithmic time. The function search(K,Li) searches
whether there exists a pair ([β, γ],M) ∈ Li with K ∈ [β, γ]. Such a tuple is
returned if it exists, otherwise an empty interval is returned in the first com-
ponent of the pair. Similarly, we also use function insert(([β, γ],M), Li) for

Encoding Linear Constraints into SAT 81

Algorithm 1. Procedure MDDCreate

Require: Constraint C : a1x1 + · · · + anxn � a0

Ensure: returns M the MDD of C.
1: for all i such that 1 ≤ i ≤ n do
2: Li ← ∅.
3: end for
4: Ln+1 ←

� �
(−∞,−1],F

,
�
[0,∞),T

 ��
.

5: L ← (L1, . . . , Ln+1).
6: ([β, γ],M) ← MDDConstruction(1, a1x1 + · · · + anxn � a0,L).
7: return M.

Algorithm 2. Procedure MDDConstruction

Require: i ∈ {1, 2, . . . , n+ 1}, constraint C : aixi + · · · + anxn � a′
0 and tuple L

Ensure: returns [β, γ] interval of C and M its MDD
1: ([β, γ],M) ← search(a′

0, Li).
2: if [β, γ] �= ∅ then
3: return ([β, γ],M).
4: else
5: for all j such that 0 ≤ j ≤ di do
6: ([βj , γj],Mj) ← MDDConstruction(i + 1, ai+1xi+1 + · · · + anxn � a′

0 −
jai,L).

7: end for
8: M ← mdd(xi, [M0, . . . ,Mdi]).
9: [β, γ] ← [β0, γ0] ∩ [β1 + a1, γ1 + a1] ∩ · · · ∩ [βdi + diai, γdi + dia1].
10: insert(([β, γ],M), Li).
11: return ([β, γ],M).
12: end if

insertions. The size of the MDD in the worst case is O(na0) (exponential in the
size of the rhs coefficient) and algorithm complexity is O(nw logw) where w is
the maximum width of the MDD (w ≤ a0).

5 Encoding MDDs into CNF

In this section we generalize the encoding for monotonic BDDs described in [3] to
monotonic MDDs. The encoding assumes that the selector variables are encoded
with the order encoding.

Let M be an MDD with the variable ordering [x1, . . . , xn]. Let [0, di] be the
domain of the i-th variable, and let {x0i , . . . , xdi−1

i } be the variables of the order

encoding of xi (i.e., xji is true iff xi � j). Let μ be the root of M, and let T
and F be respectively the true and false terminal nodes. In the following, given
a non-terminal node ν of M, we define SelVar(ν) as the selector variable of ν,
and Child(ν, j) as the j-th child of ν.

82 I. Ab́ıo and P.J. Stuckey

The encoding introduces the variables {zν | ν ∈M}; and the clauses

{zμ, zT , ¬zF} ∪
�
¬zν ∨ xj−1

i ∨ zν′ | ν ∈M \ {T ,F},

SelVar(ν) = xi, 0 � j � di, ν
′ = Child(ν, j)

�
,

where x−1
i is a dummy false variable.

Notice that this encoding coincides with the BDD encoding of [3] if the MDD
is a BDD.

Theorem 2. Unit propagation on the encoding described above enforces domain
consistency (and hence also consistency). ��

The proof is very similar to the BDD case described in [3].

Example 3. Let us consider the MDD represented in Figure 1. The encoding
introduces the variables z1, z2, . . . , z11, zT , zF , one for each node of the MDD;
and the following clauses:

z1, zT , ¬zF , ¬z1 ∨ z2,
¬z1 ∨ x1 � 0 ∨ z3, ¬z1 ∨ x1 � 1 ∨ z4, ¬z1 ∨ x1 � 2 ∨ z5, ¬z1 ∨ x1 � 3 ∨ z6,
¬z2 ∨ z7, ¬z2 ∨ x2 � 0 ∨ z8, ¬z2 ∨ x2 � 1 ∨ z8, ¬z3 ∨ z8,
¬z3 ∨ x2 � 0 ∨ z8, ¬z3 ∨ x2 � 1 ∨ z9, ¬z4 ∨ z9, ¬z4 ∨ x2 � 0 ∨ z9,
¬z4 ∨ x2 � 1 ∨ z9, ¬z5 ∨ z9, ¬z5 ∨ x2 � 0 ∨ z10, ¬z5 ∨ x2 � 1 ∨ z10,
¬z6 ∨ z10, ¬z6 ∨ x2 � 0 ∨ z10, ¬z6 ∨ x2 � 1 ∨ z11, ¬z7 ∨ zT ,
¬z7 ∨ x3 � 0 ∨ zT , ¬z7 ∨ x3 � 1 ∨ zT , ¬z7 ∨ x3 � 2 ∨ zT , ¬z8 ∨ zT ,
¬z8 ∨ x3 � 0 ∨ zT , ¬z8 ∨ x3 � 1 ∨ zT , ¬z8 ∨ x3 � 2 ∨ zF , ¬z9 ∨ zT ,
¬z9 ∨ x3 � 0 ∨ zT , ¬z9 ∨ x3 � 1 ∨ zF , ¬z9 ∨ x3 � 2 ∨ zF , ¬z10 ∨ zT ,
¬z10 ∨ x3 � 0 ∨ zF , ¬z10 ∨ x3 � 1 ∨ zF , ¬z10 ∨ x3 � 2 ∨ zF , ¬z11 ∨ zF ,
¬z11 ∨ x3 � 0 ∨ zF , ¬z11 ∨ x3 � 1 ∨ zF , ¬z11 ∨ x3 � 2 ∨ zF .

Notice that some clauses are redundant. This issue is handled in Section 7.2.
��

6 Optimization Problems

In this section we describe how to deal with combinatorial problem where we
minimize a linear integer optimization function. A similar idea is used in [14],
where the authors use BDDs for encoding problems with pseudo-Boolean ob-
jectives. Combinatorial optimization problems can be efficiently solved with a
branch-and-bound strategy. In this way, all the lemmas learned in the previ-
ous steps are reused for finding the next solutions or proving the optimality.
For implementing branch-and-bound, we need to be able to create a decom-
position of the constraint a1x1 + · · · + anxn � a′0 from the decomposition of
a1x1 + · · ·+ anxn � a0 where a′0 < a0.

This is easy for cardinality constraints, since, when we have encoded a con-
straint x1+· · ·+xn � a0 with a sorting network, we can encode x1+· · ·+xn � a′0
by adding a single clause (see [9]).

Encoding Linear Constraints into SAT 83

Algorithm 3. MDD Construction: Optimization version

Require: Constraint C : a1x1 + · · · + anxn � a′
0 and tuple L.

Ensure: returns M the MDD of C.
1: ([β, γ],M) ← MDDConstruction(1, a1x1 + · · · + anxn � a′

0,L).
2: return M.

In order to reuse the previous encodings for the MDD encoding of an LI
constraint, we have to save the tuple L used in Algorithm 1. When a new solution
of cost a′0 + 1 is found, Algorithm 3 is called.

Notice that the encoding creates at most one variable for every element of Li ∈
L, 1 � i � n. Therefore, after finding optimality, the encoding has generated at
most na0 variables in total, where a0 is the cost of the first solution found. The
number of clauses generated can be bounded by na0d, where d = max{di}.

7 Improvements

In this section we describe some improvements of the method. The first im-
provement is to reorder the constraint such that a1 � a2 � · · · � an. The MDD
obtained in this way is usually smaller.

7.1 Grouping Identical Coefficients

Let us fix the LI constraint C : a1x1 + · · · + anxn � a0. Assume that some
coefficients are equal; for simplicity, let us assume a1 = a2 = · · · = ar. In this
case, we can define the integer variable s = x1 + · · · + xr and decompose the
constraint C′ : a1s+ ar+1xr+1 + · · ·+ anxn � a0 instead of C. The domain of s
is [0, ds] with ds = min{a0/a1, d1 + · · ·+ dr}.

Notice that we do not need to encode the constraint s = x1+ · · ·+xr defining
the integer variables s, instead we can encode c ≡ s � x1 + · · ·+ xr since we are
only interested in lower bounds. The encoding of c can be done with cardinality
networks [2], which usually gives a more compact encoding than the MDD of c.

In industrial problems where constraints are not randomly generated, the
coefficients have some meaning. It may be likely, that a large LI constraint has
only a few different coefficients. In this case this technique can be very effective.

7.2 Removing Subsumed Clauses

The encoding explained at Section 5 can easily be improved by removing some
unnecessary clauses. We apply the following rule when producing the encoding:

Given a non-terminal node ν with SelVar(ν) = xi, if Child(ν, j) = Child(ν, j−
1), then the clause ¬zzν ∨xj−1

i ∨ zν′ is subsumed by the clause ¬zν ∨xj−2
i ∨ zν′ ;

therefore, we can remove it.
Additionally, we also improve the encoding by reinstating long edges (since

the dummy nodes used to eliminate long edges do not provide any information);
that is, we encode the reduced MDD instead of the quasi-reduced MDD.

84 I. Ab́ıo and P.J. Stuckey

7.3 Solution Phase Saving

In decision problems, last phase saving described in [25] has proven to be a
very effective strategy. According to this scheme, when the SAT solver makes a
decision, the variable is chosen with the same polarity as in the last assignment.

However, in optimization problems this is not the best option. As seen in [1],
a better strategy is to take the polarity that minimizes the objective function
in the variables which directly appear in the objective function, or the polarity
in the last solution in the other variables. That method, called solution phase
saving, emulates a local search: after finding a solution, the method explores the
neighbourhood of the solution in order to find a better solution nearby.

7.4 Lazy Decomposition

Lazy decomposition [5,4] has proved to be very successful for handling cardi-
nality and pseudo-Boolean constraints. Lazy decomposition for LI constraints
implements each LI constraint as a propagator initially, and later when we see
that a constraint is generating many explanations we replace the propagator
fully or partially by a SAT decomposition. We use the approach of [4] which
fully replaces a propagator. Our strategy for when to decompose an LI con-
straint is: when the constraint has generated more explanations than half its
encoding size, or generated more than 50,000 explanations; except that we never
encode LI constraints whose encoding size is ≥ 50 million clauses.

8 Related Work and Extensions

The simplest decomposition of linear integer constraints to SAT uses binary
adders (Adder) [29]. The encoding is very compact, but it has a poor perfor-
mance in practice since information does not propagate effectively through the
encoding.

Decision diagrams methods have been widely used to handle LI constraints.
The best current method [10] (BDD) uses a logarithmic encoding of the coeffi-
cients to create a BDD of the constraint, sorting the variables in a clever way.
The encoding size is reduced to O(n log d

�
ai), which is polynomial in the do-

main size but exponential in the coefficient size. We can improve this encoding if
we also decompose the coefficients as is done in [3]: in this way, the encoding size
is O(n2 log d log am), where am is the largest coefficient. We call this BDD-Dec.

Example 4. Consider the LI constraint 3x1+2x2+5x3 � 15 from Example 1. Af-
ter encoding the integer variables with the logarithmic encoding, the constraint
becomes the pseudo-Boolean 3x0b,1 + 6x1b,1 + 12x2b,1 + 2x0b,2 + 4x1b,2 + 5x0b,3 +

10x1b,3 � 15. Bartzis and Bultan [10] construct the BDD of the pseudo-Boolean

2x0b,2 + 3x0b,1 + 4x1b,2 + 5x0b,3 + 6x1b,1 + 10x1b,3 + 12x2b,1 � 15. Our method decom-

poses the coefficients (i.e., considers x0b,1 +2x0b,1 instead of 3x0b,1) and builds the

resulting BDD; so we encode the constraint x0b,1 + x0b,3 + 2x0b,2 + 2x0b,1 + 2x1b,1 +

2x1b,3 + 4x1b,2 + 4x0b,3 + 4x1b,1 + 4x2b,1 + 8x1b,3 + 8x2b,1 � 15. ��

Encoding Linear Constraints into SAT 85

Formally, the BDD-Dec method encodes LI constraint a1x1 + · · ·+ anxn � a0
with xi ∈ [0, di], 1 ≤ i ≤ n by first creating the PB constraint

n�
i=1

�
j∈0..�log2 di	,(di÷2j) mod 2=1

�
k∈0..�log2 ai	,(ai÷2k) mod 2=1

2j+k × xjb,i ≤ a0

over the logarithmic encoding variables xb and encoding this using the state-of-
the-art encoding for PB constraints given in [3].

Note however, logarithmic encoding of integers, while compact, is usually a
bad option since it significantly hampers propagation of information, leading to
poor solving performance. Neither BDD or BDD-Dec enforce consistency.

The most similar encoding to the approach we define is the support encoding
(Support) [27,6]. While the encodings both effectively define auxiliary variables
for the values of the partial sums si = a1x1 + · · · + aixi, the support encod-
ing fails to identify which values of these partial sums are indistinguishable in
the constraint. The result is to create an encoding equivalent to a non-reduced
ordered MDD. If the MDD cannot be reduced further (for instance, if all the
coefficients are 1), the two encodings would be identical (ignoring the further
improvement discussed above). In general, however, the support encoding gen-
erates redundant variables and clauses. Another important improvement in our
encoding is to group identical coefficients (see Section 7.1).

9 Experimental Results

In this section we compare our encoding with other LI constraints encodings
and specific LI solvers. Unfortunately, we have not found in the literature a
rigorous comparison of the different approaches for solving SAT+MIP problems.
Here, we consider state-of-the-art methods from different areas and a huge set of
benchmarks (about 2,900) coming from different industrial and crafted families.

We do not expect to be the best method in all the families of the problems.
The main goals of this section are to:

– Detect the type of problems where it is worthwhile to encode an LI constraint
instead of using a specific solver.

– Decide, in these problems, which encoding is better.
– Evaluate the lazy decomposition approach with different encodings.

All experiments were performed in a 2x2GHz Intel Quad Core Xeon E5405,
with 2x6MB of Cache and 16 GB of RAM. All the benchmarks we used can
be found at www.cs.mu.oz.au/~pjs/encodeli/ in MiniZinc [23] format with
scripts to generate CNF format.

We compare our new encodings MDD and BDD-Dec with those from the
literature Adder, BDD and Support. We also consider the Gurobi mixed integer
programming solver [20] (Gurobi) and the Barcelogic SMT solver [13] (LCG). We
also consider the use of lazy decomposition [4] together with the two domain-
consistent encoding approaches: using the MDD decomposition explained here
(LD-MDD), and using the support encoding (LD-Sup).

86 I. Ab́ıo and P.J. Stuckey

Table 1. Multiple knapsack solving average time

Different values of n Different values of amax Different values of d

5 10 20 40 80 160 1 2 4 8 16 32 1 2 4 10 25 100

Adder 0.05 9.55 186 276 296 300 57.3 60.4 74.9 114 105 117 0.02 0.15 1.84 32.7 80.3 215

BDD 0.04 7.11 185 272 298 300 21.1 39.2 59.1 111 110 129 0.01 0.06 0.58 26.8 77.6 220

BDD-Dec 0.12 4.73 163 269 295 300 10.5 25.6 47.7 90.9 84.8 82.5 0.01 0.13 0.46 18.6 56.3 202

MDD 0.05 6.45 175 268 290 300 51.8 57.2 62.9 103 107 119 0.01 0.03 0.17 18.9 80.6 258

Support 0.12 16.0 197 278 300 300 53.9 78.6 90.3 142 133 145 0.02 0.07 0.57 32.8 108 272

LD-MDD 0.01 3.23 165 264 287 300 44.3 48.2 59.4 90.0 91.5 91.1 0.02 0.01 0.09 16.4 63.1 244

LD-Sup 0.01 8.44 179 270 288 300 50.3 68.7 76.6 115 108 110 0.02 0.01 0.19 21.9 82.0 254

LCG 0.01 4.87 173 265 288 300 117 97.2 88.0 118 94.0 70.6 0.02 0.01 0.13 22.9 75.3 242

Gurobi 0.01 0.09 0.02 0.03 0.02 0.03 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.02 0.01 0.01 0.02 0.01

The Barcelogic SAT solver was used for all the SAT-based methods; this
ensured that the lazy decomposition approaches were implemented using the
same solver. The solution phase saving policy (see Section 7.3) was used in all
SAT-based methods. Gurobi used its default settings.

9.1 Multiple Knapsack

First we consider the classic multiple knapsack problem.

Max a01x1 + a02x2 + · · · + a0nxn such that
a11x1 + a12x2 + · · · + a1nxn � a10
. . .
am1 x1 + am2 x2 + · · · + amn xn � am0 ,

where xi are integer variables with domain [0, d] and the coefficients belong to
[0, amax].

Since it only consists of linear integer constraints it is ideal for MIP solvers.We
consider this problem since it is easy to modify the parameters of the constraints,
and, therefore, we can easily compare the encodings in different situations. More
precisely, we have considered different constraint sizes, coefficient sizes and do-
main sizes. In these problems, n is the number of variables,m = 20 is the number
of LI constraints, d+1 is the domain size of the variables; and amax is the bound
of the coefficients.

Table 1 contains the results on these benchmarks. For each parameter config-
uration, 100 benchmarks are considered and the average time for solving them is
reported. Timeout are considered as 300s response in the average computation.
In columns 2-7 m = 20, d = 20, amax = 10 and different values of n are taken.
Columns 8-13 consider different values of amax, with m = 20, n = 15 and d = 20.
In columns 14-19 n = 15, m = 20 and amax = 10, with different values of d. For
each group of problems, the best encoding is underlined and the best method is
bolded.

As expected Gurobi is by far the best method. SAT-based methods do not com-
pete, however, we can effectively compare the encodings in different situations.

Encoding Linear Constraints into SAT 87

Table 2. Average quality from 600 RCPSP benchmarks

15s 60s 300s 900s 3600s
Adder 0.905 0.963 0.986 0.992 0.996
BDD 0.784 0.859 0.928 0.957 0.977
BDD-Dec 0.929 0.967 0.985 0.99 0.994
MDD 0.727 0.75 0.858 0.889 0.899
Support 0.727 0.774 0.861 0.872 0.876
LD-MDD 0.918 0.982 0.992 0.994 0.996
LD-Sup 0.918 0.98 0.991 0.993 0.994
LCG 0.92 0.981 0.993 0.995 0.997
Gurobi 0.598 0.618 0.647 0.671 0.721

In general, BDD-Dec and MDD are the best encodings, MDD is specially efficient
if the domains are small and BDD-Dec in large ones. Also, notice that lazy de-
composition performs, in general, better than both the decomposition and the
propagator approaches.

9.2 RCPSP

Resource-constrained project scheduling problem [12] (RCPSP) is possibly the
most studied scheduling problem. It consists of tasks consuming one or more
resources, precedences between some tasks, and resources. Here we consider the
case of non-preemptive tasks and renewable resources with a constant resource
capacity over the planning horizon. A solution is a schedule of all tasks so that
all precedences and resource constraints are satisfied.

Usually, the objective of RCPSP is to find a solution minimizing the makespan.
Here, however, the objective is to minimize a weighted sum of start times, i.e.,
minimize

�
wisi, where wi is the weight of the i-th task and si is its starting

time. These weights represent the importance of the tasks: usually, a company
not only needs to finish all the tasks in the minimum time, but also wants to give
more importance to some of them. For the examples considered here, only ten
tasks have a non-zero weight, but terminal tasks (this is, tasks with no successors
with respect the precedence constraints) are never given a zero weight. Here we
have considered the 600 RCPSP problems with 120 tasks (ie, the largest ones)
from PSPlib [22].

The results are summarized in Table 2. Columns contain the quality average
after X seconds. Quality is computed by dividing the cost of the best known
solution by the cost of the current solution of the method; therefore, quality = 0
if no solution has been found, and quality = 1 when the best solution has been
found. Again, the best method is bolded and the best encoding is underlined.

Since in these benchmarks, the variables’ domains are very large (frequently
d > 200); the logarithmic encodings Adder and BDD-Dec are the best encod-
ings. MDD and Support have a similar performance, they are far from the best
methods. However, the best method is LCG. Both lazy decomposition methods
perform almost identically to LCG. It is clear (and well known) that MIP is not
competitive on RCPSP problems.

88 I. Ab́ıo and P.J. Stuckey

Table 3. Average quality from 320 graph coloring benchmarks

15s 60s 300s 900s 3600s
Adder 0.421 0.468 0.511 0.527 0.546
BDD 0.404 0.444 0.483 0.497 0.513
BDD-Dec 0.417 0.462 0.499 0.512 0.53
MDD 0.615 0.624 0.644 0.651 0.657
Support 0.605 0.615 0.636 0.641 0.648
LD-MDD 0.616 0.621 0.64 0.642 0.648
LD-Sup 0.613 0.618 0.635 0.639 0.643
LCG 0.617 0.623 0.64 0.643 0.646
Gurobi 0.443 0.45 0.452 0.453 0.454

9.3 Graph Coloring

The classical graph coloring problem consists in, given a graph, assign to each
node a color {0, 1, . . . , c − 1} such that two nodes connected by an edge have
different colors. Usually, the problem consists in finding a solution that minimizes
the number of colors (i.e., c). In this section we have considered a variant of this
problem. Let us consider a graph that can be colored with c colors: For each
node ν of the graph, let us define an integer value aν . Now, we want to color the
graph with c colors {0, 1, . . . , c− 1} minimizing the function

�
aνxν , where xν

is the color of the node ν.
We have considered the 80 graph coloring instances from

http://mat.gsia.cmu.edu/COLOR08/ that have less than 500 nodes. For
each graph problem, we have considered 4 different benchmarks: in the i-th one,
1 � aν � 3i − 2 for i = 1, 2, 3, 4. Results are presented on Table 3 similarly to
the previous section.

The best encoding in this problem is clearly MDD. The best methods are LCG
and LD-MDD and MDD. Gurobi and logarithmic methods are not a good option
in these problems.

9.4 Sport Leagues Scheduling

The last experiment considers scheduling a double round-robin sports league of
N teams. All teams meet each other once in the first N − 1 weeks and again in
the second N − 1 weeks, with exactly one match per team each week. A given
pair of teams must play at the home of one team in one half, and at the home of
the other in the other half, and such matches must be spaced at least a certain
minimal number of weeks apart. Additional constraints include, e.g., that no
team ever plays at home (or away) three times in a row, other (public order,
sportive, TV revenues) constraints, blocking given matches on given days, etc.

Additionally, the different teams can propose a set of constraints with some
importance (low, medium or high). It is desired not only to maximize the num-
ber of these constraints satisfied, but also to assure that at least some of the
constraints of every team are satisfied. More information can be found at [1].

http://mat.gsia.cmu.edu/COLOR08/

Encoding Linear Constraints into SAT 89

Table 4. Average quality from 200 sport scheduling league benchmarks

15s 60s 300s 900s 3600s
Adder 0 0 0.031 0.108 0.167
BDD 0.038 0.061 0.26 0.397 0.537
BDD-Dec 0.037 0.069 0.267 0.441 0.582
MDD 0.034 0.073 0.292 0.46 0.583
Support 0.035 0.07 0.254 0.404 0.545
LD-MDD 0.039 0.077 0.277 0.443 0.592
LD-Sup 0.035 0.066 0.269 0.417 0.555
LCG 0.023 0.063 0.159 0.287 0.421
Gurobi 0 0 0 0 0

Low-importance constraints are given a weight of 1; medium-importance, 5,
and high-importance, 10. For every constraint proposed by a team i, a new
Boolean variable xi,j is created. This variable is set to true if the constraint
is violated. For every team, a pseudo-Boolean constraint

�
j wi,jxi,j � Ki is

imposed. The objective function to minimize is
�

i

�
j wi,jxi,j . The data is based

on real-life instances.
Even though this problem only has pseudo-Boolean constraints, linear integer

constraints arise from grouping identical coefficients. We have considered 10
different problems with 20 random seeds. In all the problems, the optimal value
was found around 30. The results are shown in Table 4.

For sports league scheduling problems MDD is clearly the best encoding, fol-
lowed by BDD-Dec. MDD and LD-MDD are the best methods. Gurobi is unable
to handle these problems well (at least with the best model we could devise).

The BDD encoding for these problems is equivalent to using the BDD encoding
of [3] for the original pseudo-Boolean constraints. Comparing BDD and MDD
illustrates that by using LI constraint encoding we can improve one of the best
known approach for PB constraints, in cases where the PB shares coefficients.

10 Conclusion

We have introduced a new domain-consistent encoding (MDD) for linear integer
constraints. For small and medium-sized domains, this decomposition substan-
tially improves the current state-of-the-art SAT encodings for LI constraints. It
uniformly beats the only other domain consistent encoding (Support) as execu-
tion time increases. Combining this encoding with lazy decomposition, we create
a hybrid method for LI constraints which is robust across the benchmark suite
and rarely substantially bettered by any encoding or propagation method.

We have also introduced a new method (BDD-Dec) for encoding LI constraints
based on the logarithmic decomposition of domains and coefficients, substantially
improving on the previous state-of-the-art logarithmic method (BDD). This pro-
vides a robust alternative to domain-consistent methods in problems with large
domains.

90 I. Ab́ıo and P.J. Stuckey

As future work, we want to combine lazy decomposition with logarithmic
methods for large-domain problems. We are also designing a lazy decomposition
solver which dynamically selects which type of encoding apply to every constraint
to decompose.

Acknowledgments. NICTA is funded by the Australian Government through
the Department of Communications and the AustralianResearchCouncil through
the ICT Centre of Excellence Program.

References

1. Ab́ıo, I.: Solving hard industrial combinatorial problems with SAT. Ph.D. thesis,
Technical University of Catalonia, UPC (2013)

2. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: A Parametric
Approach for Smaller and Better Encodings of Cardinality Constraints. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 80–96. Springer, Heidelberg (2013)

3. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Mayer-Eichberger,
V.: A New Look at BDDs for Pseudo-Boolean Constraints. Journal of Artificial
Intelligence Research (JAIR) 45(1), 443–480 (2012)

4. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Stuckey, P.J.: To
Encode or to Propagate? The Best Choice for Each Constraint in SAT. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 97–106. Springer, Heidelberg (2013)

5. Ab́ıo, I., Stuckey, P.J.: Conflict-Directed Lazy Decomposition. In: Milano, M. (ed.)
CP 2012. LNCS, vol. 7514, pp. 70–85. Springer, Heidelberg (2012)

6. Ansótegui, C., Bofill, M., Manyà, F., Villaret, M.: Extending Multiple-Valued
Clausal Forms with Linear Integer Arithmetic. In: ISMVL, pp. 230–235. IEEE
(2011)

7. Ansótegui, C., Manyà, F.: Mapping problems with finite-domain variables to prob-
lems with boolean variables. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS,
vol. 3542, pp. 1–15. Springer, Heidelberg (2005)

8. Argelich, J., Manyà, F.: Exact Max-SAT solvers for over-constrained problems.
Journal of Heuristics 12(4-5), 375–392 (2006)

9. Aśın, R., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: Cardinality
Networks: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)

10. Bartzis, C., Bultan, T.: Efficient BDDs for bounded arithmetic constraints.
International Journal on Software Tools for Technology Transfer 8(1), 26–36 (2006)

11. Berezin, S., Ganesh, V., Dill, D.L.: An Online Proof-Producing Decision Procedure
for Mixed-Integer Linear Arithmetic. In: Garavel, H., Hatcliff, J. (eds.) TACAS
2003. LNCS, vol. 2619, pp. 521–536. Springer, Heidelberg (2003)

12. Blazewicz, J., Lenstra, J., Kan, A.: Scheduling subject to resource constraints:
classification and complexity. Discrete Applied Mathematics 5(1), 11–24 (1983)

13. Bofill, M., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: The
Barcelogic SMT Solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 294–298. Springer, Heidelberg (2008)

14. Bofill, M., Palah́ı, M., Suy, J., Villaret, M.: Boosting Weighted CSP Resolution
with Shared BDDs. In: 12th International Workshop on Constraint Modelling and
Reformulation (ModRef 2013). pp. 57–73 (2013)

Encoding Linear Constraints into SAT 91

15. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

16. Feydy, T., Stuckey, P.J.: Lazy clause generation reengineered. In: Gent, I.P. (ed.)
CP 2009. LNCS, vol. 5732, pp. 352–366. Springer, Heidelberg (2009)

17. Fu, Z., Malik, S.: Solving the minimum-cost satisfiability problem using SAT based
branch-and-bound search. In: Proceedings of the 2006 IEEE/ACM International
Conference on Computer-aided Design, ICCAD 2006, pp. 852–859. ACM, New
York (2006)

18. Gent, I.P.: Arc consistency in SAT. In: Proceedings of ECAI 2002, pp. 121–125.
IOS Press (2002)

19. Gent, I.P., Nightingale, P.: A new encoding of AllDifferent into SAT. In: 3rd
International Workshop on Modelling and reformulating Constraint Satisfaction
Problems (CP 2004), pp. 95–110 (2004)

20. Gurobi Optimization, Inc. Gurobi optimizer reference manual (2013),
http://www.gurobi.com

21. Harvey, W., Stuckey, P.: Improving linear constraint propagation by changing
constraint representation. Constraints 8(2), 173–207 (2003)

22. Kolisch, R., Sprecher, A.: PSPLIB – A project scheduling problem library (1996),
http://129.187.106.231/psplib/

23. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.:
MiniZinc: Towards a standard CP modelling language. In: Bessière, C. (ed.) CP
2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

24. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T).
Journal of the ACM, JACM 53(6), 937–977 (2006)

25. Pipatsrisawat, K., Darwiche, A.: On modern clause-learning satisfiability solvers.
Journal of Automated Reasoning 44(3), 277–301 (2010)

26. Srinivasan, A., Ham, T., Malik, S., Brayton, R.: Algorithms for discrete function
manipulation. In: 1990 IEEE International Conference on Computer-Aided Design,
ICCAD-90. Digest of Technical Papers, pp. 92–95 (1990)

27. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into
SAT. Constraints 14(2), 254–272 (2009)

28. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894,
pp. 441–456. Springer, Heidelberg (2000)

29. Warners, J.P.: A Linear-Time Transformation of Linear Inequalities into Conjunc-
tive Normal Form. Information Processing Letters 68(2), 63–69 (1998)

http://www.gurobi.com
http://129.187.106.231/psplib/

Efficient Application of Max-SAT Resolution

on Inconsistent Subsets

André Abramé and Djamal Habet

Aix Marseille Université, CNRS, ENSAM, Université de Toulon, LSIS UMR 7296,
13397 Marseille, France

{andre.abrame,djamal.habet}@lsis.org

Abstract. Max-SAT resolution is the adaption of the powerful SAT res-
olution rule for the Max-SAT problem. One of the differences between
these two rules is that Max-SAT resolution adds, besides the resolvent,
several compensation clauses to keep the formula’s equivalency. We ad-
dress in this paper the problem of reducing both the number and the size
of these compensation clauses. We show that the order in which the Max-
SAT resolution steps are applied on the inconsistent subsets of clauses
has a direct impact on the number and the sizes of the compensation
clauses added to the formula. Based on this observation, we present a
new algorithm for applying Max-SAT resolution on inconsistent subsets
which reduces the number and the sizes of the produced compensation
clauses. We demonstrate experimentally the interest of our contribution.

1 Introduction

The Max-SAT problem consists in finding an assignment which maximizes the
number of satisfied clauses of a given CNF formula. In Weighted Max-SAT, a
positive weight is associated to each clause and the goal is to maximize the sum
of the weights of the satisfied clauses. There are other variants of Max-SAT
(Partial and Weighted Partial) which are not considered in this paper.

A typical Branch and Bound (BnB) algorithm for the (weighted) Max-SAT
problem makes a depth-first exploration of the search space. At each node, it
evaluates if it is worth exploring the sub-nodes by comparing the current sum of
the falsified clause weights plus an (under-)estimation of the weights of the ones
which will become falsified (the lower bound, LB) to the best solution found
so far (the upper bound UB). If LB ≥ UB, then no better solution can be
found by exploring the sub-part of the search tree and the algorithm performs
a backtrack. The lower bound is generally computed by counting the disjoint
inconsistent subsets of the formula (sets of clauses which cannot be all satisfied).
In recent years, the definition of new inference rules [3,5,6,7,8,9] has significantly
improved the performances of BnB solvers by limiting redundancies in the LB
computation. They allow solvers to make more incremental the LB computation
by memorizing in the sub-part of the search tree some of the detected inconsistent
subsets. It has been shown [4] that almost all the existing inference rules for

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 92–107, 2014.
c© Springer International Publishing Switzerland 2014

Efficient Application of Max-SAT Resolution on Inconsistent Subsets 93

Max-SAT are special cases of Max-SAT resolution, the Max-SAT version of the
well-known resolution rule.

However, these inference rules catch only a small part of the inconsistent sub-
sets. One of the reasons why the memorization is only applied on few inconsistent
subsets is that the Max-SAT resolution rule adds, beside the resolvent, several
compensation clauses to maintain the formula’s equivalency. Thus, the size of
the formula increases quickly which slows down the BnB solver.

We address in this paper the problem of reducing the number and the size
of the compensation clauses added to the formula when applying the Max-SAT
resolution rule. At each node of the search tree, BnB Max-SAT solvers detect in-
consistent subsets by unit propagation. When an empty clause (a falsified clause)
is found, it is possible to transform the corresponding inconsistent subset (IS) of
clauses by several Max-SAT resolution steps. We study the impact of the order
of the Max-SAT resolution steps on the number and the size of compensation
clauses. The Max-SAT resolution steps are incremental, ie. the resolvent clause
produced by the current resolution step will be used as input clause by a next
resolution step. Moreover, the number and the sizes of the compensation clauses
produced by a Max-SAT resolution step depend on the sizes of the input clauses.
Thus, minimizing the intermediary resolvents will reduce the number and the
sizes of compensation clauses added by the next resolution steps. Accordingly,
we propose a new order of application of Max-SAT resolution on the clauses
belonging to an inconsistent subset. We have implemented this new order in
our solver ahmaxsat. The obtained results confirm the practical interest of our
contribution and give interesting insights of the solver’s behavior.

This paper is organized as follows. We give some basic definitions and nota-
tions in Section 2. In Section 3, we present the Max-SAT resolution rule and
describe in Section 4 how it can be used to transform inconsistent subsets. We
propose a new order of application of the resolution steps in Section 5. Even-
tually, we present in Section 6 the results of the experimental study we have
performed and we discuss the practical impact of our contribution before con-
cluding in Section 7.

2 Formalism and Definitions

A weighted formula Φ in conjunctive normal form (CNF) defined on a set of
propositional variables X = {x1, . . . , xn} is a conjunction of weighted clauses.
A weighted clause cj is a weighted disjunction of literals and a literal l is a
variable xi or its negation xi. We denote var(l) the variable of a literal l. Alter-
natively, a weighted formula can be represented as a multiset of weighted clauses
Φ = {c1, . . . , cm} and a weighted clause as a tuple cj = ({lj1 , . . . , ljk}, wj) with
{lj1 , . . . , ljk} a set of literals and wj a strictly positive weight. We denote the
number of clauses of a formula Φ by |Φ| and the number of literals of a clause cj
by |cj |.

An assignment can be represented as a set I of literals which cannot contain
both a literal and its negation. If xi is assigned to true (resp. false) then xi ∈ I

94 A. Abramé and D. Habet

(resp. xi ∈ I). I is a complete assignment if |I| = n and it is partial otherwise. A
literal l is said to be satisfied by an assignment I if l ∈ I and falsified if l ∈ I. A
variable which does not appear either positively or negatively in I is unassigned.
A clause is satisfied by I if at least one of its literals is satisfied, and it is falsified
if all its literals are falsified. Empty clauses (denoted by �) are always falsified.
A subset ψ of Φ is inconsistent if there is no assignment which satisfies all its
clauses. Solving the weighted Max-SAT problem consists in finding, for a formula
Φ, a complete assignment which maximizes the sum of the weights of the satisfied
clauses of Φ. Two formulas are equivalent for (weighted) Max-SAT iff they have
the same sum of falsified clause weights for each partial assignment.

3 Max-SAT Resolution

The Max-SAT version of the resolution rule, first introduced by Heras and Lar-
rosa [3] and further refined by Bonet et al. [1,2], can be defined as follows (on
top the premises of the rule and at the bottom the conclusions) :

c1 = {x, y1, . . . , ys}, c2 = {x, z1, . . . , zt}
cr = {y1, . . . , ys, z1, . . . , zt}, cc1, . . . , cct, cct+1, . . . , cct+s

with:

cc1 = {x, y1, . . . , ys, z1, z2, . . . , zt}
cc2 = {x, y1, . . . , ys, z2, . . . , zt}

...

cct = {x, y1, . . . , ys, zt}

cct+1 = {x, z1, . . . , zt, y1, y2, . . . , ys}
cct+2 = {x, z1, . . . , zt, y2, . . . , ys}

...

cct+s = {x, z1, . . . , zt, ys}

Contrary to SAT resolution, the original clauses c1 and c2 are removed from the
formula and, besides the resolvent cr, several compensation clauses cc1 . . . cct+s

are added to preserve the equivalency of the formula. The size of the resolvent cr
and the cardinality of the set of the compensation clauses CC = {cc1, . . . , cct+s}
can be expressed as follows:

|cr| = |c1 ∪ c2 \ {x, x}| = |c1|+ |c2| − |c1 ∩ c2| − 2

|CC| = |c1|+ |c2| − 2 ∗ |c1 ∩ c2| − 2

The sizes of the compensation clauses cc1, . . . , cct range from |c1| + 1 to |c1| +
|c2|−|c1∩c2|−1 and the ones of cct+1, . . . , cct+s range from |c2|+1 to |c1|+|c2|−
|c1 ∩ c2| − 1. The Max-SAT resolution rule can easily be extended to weighted
formulas. If m is the minimum weight of c1 and c2, then m is subtracted from
the weight of the premise clauses and all the clauses of the conclusion take the
weight m.

Efficient Application of Max-SAT Resolution on Inconsistent Subsets 95

4 Transforming Inconsistent Subsets

Recent BnBMax-SAT solvers apply unit propagation (UP) to detect inconsistent
subsets. For each unit clause {l}, they remove all the occurrences of l from the
clauses and all the clauses containing l. This process is repeated until an empty
clause (a conflict) is found or no more unit clauses remain. The unit clause {l}
causing the propagation of l is called its predecessor and the clauses which are
reduced by l are its successors. BnB Max-SAT solvers memorize the propagation
steps by an implication graph, which can be defined as follows (see for instance
[10] for a definition in the SAT context).

Definition 1 (Implication Graph). Let Φ = {c1, . . . , cm} be a (weighted)
CNF formula defined on a set of Boolean variables X = {x1, . . . , xn} and I a
partial assignment (with both decisions and propagations) of the variables of X.
We assume that there can be only one falsified clause, ie. UP is stopped when
a conflict is discovered. An implication graph is a directed labeled acyclic graph
G = (V,E) with:

V = {l ∈ I} ∪ {♦ci s.t. ∃ci ∈ Φ, |ci| = 1} ∪ {� if ∃cj ∈ Φ falsified by I}
E = {(l, l′, ck) s.t. ∃ck ∈ Φ which is reduced by l and propagates l′} ∪

{(♦cp , l, cp) s.t. ∃cp = {l} ∈ Φ} ∪
{(l,�, cq) s.t. ∃cq ∈ Φ falsified by I and l ∈ cq}

We use the two special nodes ♦ and � to represent respectively the initial vertices
of the unit clauses and the terminal one of the falsified clause. For clarity reason,
we hide the nodes ♦ in the graphical representation of the implication graphs.
Each arc is labeled with the clause it comes from.

When an empty clause is found by UP, the corresponding inconsistent subset
(IS) of the formula can be built by analyzing the implication graph G. Each
clause which is in a path between decisions (or unit clauses) and the empty
clause belongs to this inconsistent subset. We consider in the rest of this paper
that implication graphs are restricted to the nodes and arcs which lead to the
empty clause. Then, the IS can be transformed by eliminating successively by
Max-SAT resolution the propagated variables participating in the conflict (ie.
which appear in the implication graph). For a Max-SAT resolution step between
the predecessor cj and the successor ck of a variable xi ∈ X we use the following
notation: cr<xi> is the resolvent clause and CC<xi> the set of the compensation
clauses. If the undirected subgraph of G induced by X ′ = {xi1 , . . . , xik} ⊂ X
is connected, these definitions can be extended to any sequence of Max-SAT
resolution steps < xi1 , . . . , xik >. After a Max-SAT resolution step, the implica-
tion graph can be updated by removing the resolved variable and replacing the
removed clauses by the new resolvent. This operation is formally defined below.

Definition 2 (Updated Implication Graph). Let G = (V,E) be an impli-
cation graph. After the application of Max-SAT resolution on the predecessor cj

96 A. Abramé and D. Habet

and the unique successor ck of a variable xi ∈ X such that {xi, xi} ∩ V �= ∅, G
can be transformed into G<xi> = (V<xi>, E<xi>) with:

V<xi> = (V \ {xi, xi}) \ {♦cj if |cj | = 1} ∪ {♦cr<xi>
if |cr<xi>| = 1}

E<xi> = {(l, l′, cp) ∈ E s.t. var(l) �= xi, var(l
′) �= xi, cp �= cj and cp �= ck} ∪

{(l, l′, cr<xi>) s.t. l, l
′ ∈ cr<xi> and l, l′ ∈ V<xi>} ∪

{(♦cr<xi>
, l, cr<xi>) if cr<xi> = {l}} ∪

{(l,�, cr<xi>) s.t. l ∈ cr<xi>and cr<xi> is falsified by I}

This notation can be extended to all sequences of Max-SAT resolution steps <
xi1 , xi2 , . . . , xik >: G<xi1 ,xi2 ,...,xik

> = (. . . ((G<xi1>
)<xi2>

) . . .)<xik
>.

When all the propagated variables of the implication graph have been elimi-
nated, the final resolvent clause contains no propagated variables. It is empty or
directly falsified by the decisions. The conflict is memorized and unit propaga-
tion is not needed anymore to detect it, neither at this decision level nor in the
sub-part of the search tree.

It should be noted that a propagated variable xi ∈ X can only have one
predecessor but it can reduce more than one clause, and thus it can lead to several
propagations. In such a case, Max-SAT resolution cannot be applied on xi until
all its successors have been merged by Max-SAT resolution steps into a single
intermediary resolvent. For this reason, the resolution steps are usually applied
in reverse propagation order. Algorithm 1 shows how Max-SAT resolution can
be applied on an inconsistent subset from the implication graph. The algorithm
first applies Max-SAT resolution between the empty clause and the predecessor
of the most recently propagated variable. Then it applies iteratively Max-SAT
resolution between the last intermediary resolvent obtained and the predecessor
of the most recently propagated untreated variable until all the variables have
been treated. Eventually, it adds the last resolvent obtained to the formula.
The algorithm uses a function max sat resolution(Φ,c1,x,c2) which returns
the resolvent clause resulting of the application of Max-SAT resolution between

Algorithm 1. Classical transformation of IS by Max-SAT resolution

Data: A CNF formula Φ, an assignment I which falsify a clause cf ∈ Φ and the
corresponding implication graph G = (V,E).

Result: A transformed formula Φ.

1 begin
2 cr ← cf ;
3 while |V | > 0 do
4 l ← remove the most recently propagated literal from V ;
5 c ← predecessor of var(l);
6 cr ← max sat resolution(Φ,cr,var(l),c);

7 Φ = Φ ∪ {cr};

Efficient Application of Max-SAT Resolution on Inconsistent Subsets 97

c1 and c2 on x. It removes c1 and c2 and adds the compensation clauses to the
formula. The following example illustrates how this algorithm works.

Example 1. Let us consider the formula Φ = {c1, c2, . . . , c6} defined on a set
of Boolean variables {x1, . . . , x5} with c1 = {x1}, c2 = {x2}, c3 = {x2, x3},
c4 = {x2, x4}, c5 = {x1, x3, x5} and c6 = {x4, x5}. The application of unit prop-
agation on Φ leads to the assignments < x1@c1, x2@c2, . . . , x5@c5 > (meaning
that x1 is propagated by clause c1, then x2 by c2, etc.). The clause c6 is falsi-
fied. Fig. 1 shows the corresponding implication graph and Fig. 2 the Max-SAT
resolution steps applied on the formula, with the compensation clauses in boxes.
The original clauses c1, . . . , c6 are removed from the formula and besides the
compensation clauses cc1, . . . , cc8, the resolvent cr<x1,...,x5> = � is added to the
formula. The intermediary resolvents cr<x1>, . . . , cr<x1,...,x4> are consumed by
the Max-SAT resolution steps. We obtain the formula Φ′ = {�, cc1, . . . , cc8}.
Note that Φ′ contains, besides the empty clause �, one clause of size two, three
clauses of size three and four clauses of size four.

x1 x5

x2 x3 �

x4

c1

c2 c3

c4

c5

c5

c6

c6

Fig. 1. Implication graph for the formula Φ of Example 1

5 Improved Transformation of Inconsistent Subsets

We have seen in the previous section how inconsistent subsets can be trans-
formed thanks to Max-SAT resolution. These transformations produce compen-
sation clauses, and thus the size of the formula can grow quickly. It is interesting
to observe that the number and the sizes of the compensation clauses added
depend on the order in which the Max-SAT resolution steps are performed. Let
us take the subset {c4, c5, c6} from the formula Φ of Example 1. We can apply
two sequences of Max-SAT resolution steps: < x4, x5 > or < x5, x4 >. Fig. 3
shows the application of these two sequences. In both cases we obtained the
same resolvent cr<x4,x5> = cr<x5,x4> = {x1, x2, x3}, but in the second case six
compensation clauses are added (two of size three and four of size four) while in
the first case only five are added (two of size four and three of size three).

There is a direct relation between the size of the intermediary resolvents and
the number and the sizes of the compensation clauses added. As we have seen
in Section 3, the bigger the resolved clauses are, the bigger are the size of the
resolvent and the number of compensation clauses. Thus, by making first the res-
olution steps which produce small intermediary resolvents, we reduce the number

98 A. Abramé and D. Habet

c6 = {x4, x5} c5 = {x1, x3, x5}

cc1 = {x1, x3, x4, x5} , cc2 = {x3, x4, x5}
cc3 = {x1, x3, x4, x5}

cr<x1> = {x1, x3, x4} c4 = {x2, x4}

cc4 = {x1, x2, x3, x4}
cc5 = {x1, x2, x3, x4} , cc6 = {x2, x3, x4}

cr<x1,x2> = {x1, x2, x3} c3 = {x2, x3}

cc7 = {x1, x2, x3}

cr<x1,...,x3> = {x1, x2} c2 = {x2}

cc8 = {x1, x2}

cr<x1,...,x4> = {x1} c1 = {x1}

cr<x1,...,x5> = �

x5

x4

x3

x2

x1

Fig. 2. Max-SAT resolution steps applied on the formula Φ in Example 1

c6 = {x4, x5} c4 = {x2, x4}

cc1 = {x2, x4, x5}
cc2 = {x2, x4, x5}

cr<x4> = {x2, x5} c5 = {x1, x3, x5}

cc3 = {x1, x2, x3, x5} , cc4 = {x2, x3, x5}
cc5 = {x1, x2, x3, x5}

cr<x4,x5> = {x1, x2, x3}

x4

x5

(a) Max-SAT resolution steps < x4, x5 >

c6 = {x4, x5} c5 = {x1, x3, x5}

cc1 = {x1, x3, x4, x5} , cc2 = {x3, x4, x5}
cc3 = {x1, x3, x4, x5}

cr<x5> = {x1, x3, x4} c4 = {x2, x4}

cc4 = {x1, x2, x3, x4}
cc5 = {x1, x2, x3, x4} , cc6 = {x2, x3, x4}

cr<x5,x4> = {x1, x2, x3}

x5

x4

(b) Max-SAT resolution steps < x5, x4 >

Fig. 3. Application of Max-SAT resolution on {c4, c5, c6}

of compensation clauses added by the next resolution steps which use these re-
solvents. To evaluate which resolution step must be made first, we use the notion
of score of a variable. This score corresponds to the size of the resolvent obtained
if we apply Max-SAT resolution between the predecessor and the successor of
a variable. If a variable has more than one successor then, as explained in the

Efficient Application of Max-SAT Resolution on Inconsistent Subsets 99

previous section, it cannot be transformed immediately and we give it an infinite
score. Formally, for a variable xi ∈ X propagated by a clause cj :

score(xi) =

{
|cj |+ |ck| − |cj ∩ ck| − 2 if xi reduces a single clause ck
∞ if xi reduces more than one clause

We can show that for two adjacent variables in an implication graph, applying
Max-SAT resolution first on the one of lowest score always produces a smaller
number of compensation clauses.

Property 1. Let G = (V,E) be an implication graph. Let us consider two vari-
ables xi, xj ∈ X (i �= j) such that ∃l, l′ ∈ V with var(l) = xi, var(l

′) = xj and
∃(l, l′) or (l′, l) ∈ E. We have the following relation:

score(xi) ≤ score(xj) iff |CC<xi,xj>| ≤ |CC<xj ,xi>|

Proof. We assume without loss of generality that the predecessors and successors
of xi and xj are respectively ck1 , ck2 and ck2 , ck3 . We first express |CC<xi,xj>|
and |CC<xj ,xi>| in size of ck1 , ck2 and ck3 . |CC<xi,xj>| is the number of compen-
sation clauses obtained by applying two Max-SAT resolution steps, first between
ck1 and ck2 on the variable xi and second between c<xi> (the resolvent of the
previous resolution step) and ck3 on xj . These two resolution steps produce
respectively the sets of compensation clauses CC<xi> and CC<xj>|<xi> (we
denote CC<xl>|<xm1 ,...,xmp>

the set of compensation clauses obtained by apply-
ing Max-SAT resolution on a variable xl after the sequence of resolution steps
< xm1 , . . . , xmp >). We have:

|CC<xi,xj>| = |CC<xi>|+ |CC<xj>|<xi>|

From the definition of the Max-SAT resolution rule, we know that |CC<xi>| =
|ck1 |+ |ck2 |−2∗|ck1∩ck2 |−2 and |CC<xj>|<xi>| = |cr<xi>|+ |ck3 |−2∗|cr<xi>∩
ck3 | − 2. Moreover, again from the definition of Max-SAT resolution, we know
that |cr<xi>| = |ck1 |+ |ck2 |−|ck1∩ck2 |−2. Since cr<xi> = ck1∪ck2 \{xi, xi} and
ck3 ∩{xi, xi} = ∅ we have |cr<xi>∩ck3 | = |ck1 ∩ck3 |+ |ck2∩ck3 |−|ck1∩ck2 ∩ck3 |.
We obtain:

|CC<xi,xj>| = 2 ∗ |ck1 |+ 2 ∗ |ck2 |+ |ck3 | − 3 ∗ |ck1 ∩ ck2 | − 2 ∗ |ck1 ∩ ck3 |
−2 ∗ |ck2 ∩ ck3 |+ 2 ∗ |ck1 ∩ ck2 ∩ ck3 | − 6

= score(xi) + k

with k = |ck1 |+ |ck2 |+ |ck3 | − 2 ∗ |ck1 ∩ ck2 | − 2 ∗ |ck1 ∩ ck3 | − 2 ∗ |ck2 ∩ ck3 |+ 2 ∗
|ck1 ∩ ck2 ∩ ck3 | − 4. In the same way, we can obtain:

|CC<xj ,xi>| = |ck1 |+ 2 ∗ |ck2 |+ 2 ∗ |ck3 | − 2 ∗ |ck1 ∩ ck2 | − 2 ∗ |ck1 ∩ ck3 |
−3 ∗ |ck2 ∩ ck3 |+ 2 ∗ |ck1 ∩ ck2 ∩ ck3 | − 6

= score(xj) + k

��

100 A. Abramé and D. Habet

The next property links, for two adjacent variables in the implication graph,
the maximum size of the compensation clauses produced to the score of the
variables.

Property 2. Let G = (V,E) be an implication graph. Let us consider two vari-
ables xi, xj ∈ X (i �= j) such that ∃l, l′ ∈ V with var(l) = xi, var(l

′) = xj and
∃(l, l′) or (l′, l) ∈ E. We have the following relation: score(xi) ≤ score(xj) iff the
upper bounds of the ranges of the compensation clause sizes obtained with the
sequence of max-resolution steps < xi, xj > are lower or equal to ones obtained
with the sequence < xj , xi >.

Proof. As for the proof of Property 1, we assume without loss of generality
that the predecessors and successors of xi and xj are respectively ck1 , ck2 and
ck2 , ck3 . We know from the definition of the max-resolution rule (see Section 3)
that the compensation clause sizes obtained by resolving ck1 and ck2 on xi are
ranging from |ck1 | + 1 to |ck1 | + |ck2 | − |ck1 ∩ ck2 | − 1 and from |ck2 | + 1 to
|ck1 |+ |ck2 | − |ck1 ∩ ck2 | − 1. The sizes of the compensation clauses obtained by
the second max-resolution step between ck3 and cr<xi> range from |cr<xi>|+1
to |cr<xi>| + |ck3 | − |cr<xi> ∩ ck3 | − 1 and from |ck3 | + 1 to |cr<xi>| + |ck3 | −
|cr<xi> ∩ ck3 | − 1. We denote respectively ub<xi> and ub<xi,xj> the two upper
bounds of these ranges, which can be expressed in size of ck1 , ck2 and ck3 as
follows:

ub<xi> = |ck1 |+ |ck2 | − |ck1 ∩ ck2 | − 1

= score(xi) + 1

and

ub<xi,xj> = |cr<xi>|+ |ck3 | − |cr<xi> ∩ ck3 | − 1

= score(xi) + |ck3 | − |cr<xi> ∩ ck3 | − 1

= score(xi) + |ck3 | − |ck1 ∩ ck3 | − |ck2 ∩ ck3 |+ |ck1 ∩ ck2 ∩ ck3 | − 1

= score(xi) + score(xj)− |ck2 | − |ck1 ∩ ck3 |+ |ck1 ∩ ck2 ∩ ck3 |+ 1

In the same way, we can express in size of ck1 , ck2 and ck3 the upper bounds
obtained by applying max-resolution on xj then on xi, respectively denoted
ub<xj> and ub<xj,xi>:

ub<xj> = |ck2 |+ |ck3 | − |ck2 ∩ ck3 | − 1

= score(xj) + 1

and

ub<xj,xi> = |cr<xj>|+ |ck1 | − |cr<xj> ∩ ck1 | − 1

= score(xj) + |ck1 | − |cr<xj> ∩ ck1 | − 1

= score(xj) + |ck1 | − |ck1 ∩ ck2 | − |ck1 ∩ ck3 |+ |ck1 ∩ ck2 ∩ ck3 | − 1

= score(xj) + score(xi)− |ck2 | − |ck1 ∩ ck3 |+ |ck1 ∩ ck2 ∩ ck3 |+ 1

Efficient Application of Max-SAT Resolution on Inconsistent Subsets 101

Thus, if score(xi) ≤ score(xj) we have ub<xi> ≤ ub<xj> and conversely. The
second upper bounds obtained (ub<xi,xj> and ub<xj,xi>) are equal regardless of
xi and xj scores. ��

The two previous properties show that for two adjacent variables in an impli-
cation graph, applying Max-SAT resolution first on the one of lowest score pro-
duces less compensation clauses and particularly less long compensation clauses.
Algorithm 2 shows how these properties can be put into practice by applying
Max-SAT resolution steps in ascendant score order. Firstly, it computes the
scores of the variables (line 2). Then, it selects the variable of V of smallest
score and it applies Max-SAT resolution between its predecessor and successor
(lines 4-7). It replaces in the implication graph the consumed clauses by the in-
termediary resolvent produced (duplicates arcs are removed) and it updates the
scores of the variables (lines 8-9). This process is repeated until the implication
graph contains no more variable. The last resolvent produced is added to the
formula (line 10). The following example details how this algorithm works.

Algorithm 2. Improved transformation of IS by Max-SAT resolution

Data: A CNF formula Φ, an assignment I which falsify a clause and the
corresponding implication graph G = (V,E).

Result: A transformed formula Φ

1 begin
2 for x ∈ V do compute x score
3 while |V | > 0 do
4 l ← literal of smallest score of V ;
5 c1 ← predecessor of var(l);
6 c2 ← successor of var(l);
7 cr ← max sat resolution(Φ,c1,x,c2);
8 G ← G<var(l)>;
9 update the scores of the variables of c1 and c2;

10 Φ = Φ ∪ {cr};

Example 2. Let us consider the formula Φ of Example 1. As previously, the ap-
plication of unit propagation on Φ leads to the assignments < x1@c1, x2@c2, . . . ,
x5@c5 > and the clause c6 is empty. Fig. 4 shows the evolution of the implica-
tion graph (with in brackets the variable’s score) during the transformation and
Fig. 5 shows the Max-SAT resolution steps.

Initially, there are two variables with the lowest score 2, x1 and x4. The
algorithm applies Max-SAT resolution between the predecessor of x1, c1, and its
successor c5. It produces the intermediary resolvent cr<x1> = {x3, x5}, then it
removes x1 from the implication graph, it replaces the tag c5 of the arc (x3, x5)
by cr<x1> and it updates the scores of x3 and x5. Fig. 4(b) show the modified
implication graph, with in bold the replaced arcs and the updated scores.

102 A. Abramé and D. Habet

x1(2)

x3(3) x5(3)

x2(∞) x4(2) �

c1

c2

c3

c4

c5

c5

c6

c6

(a) Original implication graph G

x3(2) x5(2)

x2(∞) x4(2) �
c2

c3

c4

cr<x1>

c6

c6

(b) G<x1>

x3(2) x5(2)

x2(∞) �
c2

c3

cr<x1>

cr<x1,x4>

cr<x1,x4>

(c) G<x1,x4>

x3(2)

x2(∞) �
c2

c3

cr<x1,x4,x5>

cr<x1,x4,x5>

(d) G<x1,x4,x5>

x2(0) �
c2

cr<x1,x4,x5,x3>

(e) G<x1,x4,x5,x3>

�
(f) G<x1,x4,x5,x3,x2>

Fig. 4. Evolution of the implication graph during the transformation of the formula Φ
of Example 2

c1 = {x1} c5 = {x1, x3, x5}

cc1 = {x1, x3, x5}
cc2 = {x1, x5}

cr<x1> = {x3, x5} c4 = {x2, x4} c6 = {x4, x5}

cc3 = {x2, x4, x5}
cc4 = {x2, x4, x5}

cr<x1,x4> = {x2, x5}

cc5 = {x2, x3, x5}
cc6 = {x2, x3, x5}

c3 = {x2, x3} cr<x1,x4,x5> = {x2, x3}

c2 = {x2} cr<x1,x4,x5,x3> = {x2}

cr<x1,x4,x5,x3,x2> = �

x1

x4

x5

x3

x2

Fig. 5. Max-SAT resolution steps applied on the formula Φ in Example 2

Then, it takes the next variables of score 2, x4, and it applies Max-SAT
resolution between its predecessor and successor (c4 and c6 respectively). It
updates the implication graph and the variable scores (Fig. 4(c)). It applies
the same treatment on x5 (Fig. 4(d)) then x3 (Fig. 4(e)). At this point, the

Efficient Application of Max-SAT Resolution on Inconsistent Subsets 103

two successors of x2 have been merged and Max-SAT resolution can be applied
between its predecessor c2 and its new successor, the intermediary resolvent
cr<x1,x4,x5,x3>. This last resolution step produces an empty clause and, after its
updating, the implication graph does not contain any more variable (Fig. 4(f)).

We obtain the transformed formula Φ′′ = {�, cc1, . . . , cc6} which contains,
besides the empty clause �, six clauses (five of size three and one of size two).
There are two clauses less than in Example 1 and the clause sizes are smaller. It
is also interesting to observe that the max-resolution steps are no longer applied
in a topological order of the unit propagation steps.

6 Experimental Study

We have implemented Algorithm 2 in our solver ahmaxsat
1, which is a BnB

solver for Max-SAT and weighted Max-SAT. ahmaxsat detects inconsistent
subsets using simulated unit propagation [6] and the failed literals mechanism
[7]. Each detected IS is transformed by applying max-resolution steps between
its clauses. If an IS matches (partially or totally) a restrictive sets of patterns [8],
then the formula transformations are kept (partially or totally) in the sub-part
of the search tree. Otherwise, they are simply restored before the next decision.
ahmaxsat uses a Jeroslow-Wang branching heuristic (a slight variation of the
one of wmaxsatz2009 [8]). In the rest of this section, we call ahmaxsat the
variant applying Max-SAT resolution in the classical reverse propagation order
and ahmaxsat

+ the variant based on the scores of the variables. We have run
the two variants on all the random and crafted instances of the Max-SAT and
Weighted Max-SAT categories of the Max-SAT Competition 20132. The exper-
iments are performed on a cluster of servers equipped with Intel Xeon 2.4 Ghz
processors and 24 Gb of RAM and running under a GNU/Linux operating sys-
tem. The cutoff time for each instance is fixed to 1800 seconds.

One can note that we include neither (weighted) Partial Max-SAT instances
nor industrial ones in our experiments. Even if the results presented in this paper
can naturally be extended to these instance categories, our solver ahmaxsat

does not handle them efficiently. A performing BnB solver for (weighted) Partial
Max-SAT must handle both the soft and the hard parts of the instances. Thus, it
must include SAT mechanisms such as nogood learning, activity-based branching
heuristic or backjumping and our solver currently does not. For the industrial
instances, solvers must have a very efficient memory management. To the best of
our knowledge, none of the best performing BnB solvers (including ours) handles
huge industrial instances efficiently.

Table 1 shows the detailed results of ahmaxsat and ahmaxsat
+. The

columns S, D and T give respectively, for each variant of the solver, the number

1 An early version of ahmaxsat has been submitted to the Max-SAT Competition
2013. It was the version 1.16. Since that competition, we have made numerous im-
provement, such as code optimization and new data structures. The version presented
in this paper is numbered 1.54.

2 Available from http://maxsat.ia.udl.cat:81 .

http://maxsat.ia.udl.cat:81

104 A. Abramé and D. Habet

Table 1. Compared performances of ahmaxsat and ahmaxsat
+. The two first

columns give the instance classes and the number of instances in each class. For each
solver, the columns S, D and T give respectively the number of solved instances, the
average number of decisions made and the average solving time. The two last columns
give the percentages of variation between the two variants of the averages of the num-
ber of decisions and the solving time respectively. The columns tagged with * include
only the instances solved by both variants of the solver.

Instance classes #
ahmaxsat ahmaxsat

+

ΔT * ΔD*
S D T* T S D T* T

u
n
w
e
ig
h
te
d

crafted/bipartite 100 100 40184 113.2 114.3 100 34909 97 97.7 -13% -14%

crafted/maxcut 67 55 214561 45.4 45.6 56 177964 44.3 44.6 -17% -2%

random/highgirth 82 6 5075697 1337.2 1347 6 4597721 1119.2 1122.9 -9% -16%

random/max2sat 100 100 53451 114.6 116.2 100 38841 79.7 80.3 -27% -30%

random/max3sat 100 99 477402 329.7 345.3 100 426143 300.3 302.1 -11% -9%

random/min2sat 96 96 1115 2.8 2.9 96 979 2.4 2.4 -12% -16%

w
e
ig
h
te
d

crafted/frb 34 14 220164 40 40.2 14 210245 38.2 38.5 -5% -5%

crafted/ramsey 15 4 160192 69.6 70.6 4 157478 57.2 58.2 -2% -18%

crafted/wmaxcut 67 62 23073 35.7 35.9 62 19993 31.1 31.8 -13% -13%

random/wmax2sat 120 120 4877 68.5 69.3 120 3898 48.9 49.3 -20% -29%

random/wmax3sat 40 40 55523 154.3 155.7 40 44804 123.1 123.6 -19% -20%

Global results 821 696 153195 119.9 123.2 698 135686 101.2 101.8 -11% -16%

of solved instances, the average number of decisions and the average execution
time. The first observation which can be made is that ahmaxsat+ solves 3 more
instances than ahmaxsat. The average solving time (measured on the instances
solved by both variants of the solver) is significantly reduced (-19% on average).
The gain is especially high on random (unweighted and weighted) instances,
where the average solving time reductions vary from -16% to -30%. The gain
is slightly lower on crafted instances, with reduction varying from -5% to -18%.
Fig. 6 compares for each instance the solving time of the two variants. For clarity
reason, only the instances solved in more than ten seconds by the two variants
are displayed. It confirms the previous observation and shows that the gain is
not limited to some instances, it is spread over the majority of the benchmark.

Let us analyze the impact of the score based order of application of the Max-
SAT resolution steps on the solver behavior. Tab. 2 shows some detailed statis-
tics. We can first observe that both the number and the size (columns NB and
SZ) of the compensation clauses are significantly reduced, respectively by 22%
and 20% on average. Since the number and the size of the added compensation
clauses is reduced, one can have expected a speedup in the exploration of the
search space (measured by the number of decisions per second, column D/s). It is
the case on the majority of the instance categories but, to the contrary, on some
other categories (e.g. crafted/maxcut or crafted/wmaxcut) the average number
of decisions per second is reduced. This behavior can be explained as follows.
The reduction of the size of the compensation clauses improves the application
of unit propagation, and ahmaxsat

+ makes in average 4,2% more propagations
at each decisions (columns P/D). Consequently, it detects and transforms more
inconsistent subsets at each decision (in average 4,5% more, columns �/D). Thus

Efficient Application of Max-SAT Resolution on Inconsistent Subsets 105

Table 2. Detailed statistics of ahmaxsat and ahmaxsat
+. For each solver, the

columns NB, SZ, D/s, �/D and P/D give respectively the averages of: number of
compensation clauses added per IS transformation, size of these compensation clauses,
number of decisions per seconds, number on IS detected per decision and number of
propagations per decision. The two last columns give the percentages of variation be-
tween the two variants of the average of respectively the columns NB and SZ.

Instance classes
ahmaxsat ahmaxsat

+

ΔNB ΔSZ
NB SZ D/s �/D P/D NB SZ D/s �/D P/D

u
n
w
e
ig
h
te
d

crafted/bipartite 15.7 3.46 347.7 71.26 1106.4 13 2.88 352.8 73.49 1132.1 -17% -17%

crafted/maxcut 8.7 2.9 1515.2 15.24 97 7.7 2.54 1405 18.35 134.9 -12% -12%

random/highgirth 34 5.23 278 2.43 40.5 21.6 3.79 302 2.53 43.5 -37% -28%

random/max2sat 18 3.9 472.8 42.79 859.4 13.5 3.03 489.2 45.93 900.4 -25% -22%

random/max3sat 14.6 3.52 1578 18.44 179.2 11.7 2.92 1570.4 19.48 192.4 -20% -17%

random/min2sat 18.7 4.1 83.1 34.35 1053.2 13.8 2.93 88.9 35.99 1100.3 -26% -28%

w
e
ig
h
te
d

crafted/frb 8.7 3.22 806.4 4.23 35.8 7.4 2.7 801.5 4.28 36 -15% -16%

crafted/ramsey 11.1 3.49 875.6 4.8 11.9 8.4 2.85 1003.9 4.82 12.9 -24% -19%

crafted/wmaxcut 9.4 2.93 223.8 63.39 192.1 7.6 2.55 216.4 63.23 193.3 -19% -13%

random/wmax2sat 17 4 78.2 254.53 2459.1 12.8 3.1 88.2 266.32 2563 -25% -23%

random/wmax3sat 15.4 3.52 384.5 87.54 495.9 12 2.9 393.9 94.17 550.9 -22% -18%

Global results 15.4 3.64 551.1 79.65 931.6 11.9 2.9 550.3 83.26 971.5 -22% -20%

it spends more time on each decision and it makes fewer decisions per second.
On the other hand, it detects more IS, thus the quality of the LB is improved
and the average number of decisions made by ahmaxsat

+ is 11% smaller than
the one of ahmaxsat (Tab. 1, columns D). This reduction of the number of
decisions, combined to the speedup induced by the reduction of the sizes and
number of the compensation clauses, explains the gain in execution time.

We have compared the best variant of our solver ahmaxsat+ with two of the
best performing BnB solvers of the Max-SAT Competition 2013:wmaxsatz2009

and wmaxsatz2013 [5,7,8]. The results are presented in Fig. 7. ahmaxsat+

is very competitive. It solves seven more instances than wmaxsatz2013 and

 10

 100

 1000

 10 100 1000

ah
m

ax
sa

t

ahmaxsat+

Fig. 6. Comparison of the solving times of ahmaxsat and ahmaxsat
+. Each point

represents an instance and the farther a point is from a solver axes the better for the
solver. All axis are in logarithmic scale.

106 A. Abramé and D. Habet

1

10

100

1000

0 100 200 300 400 500 600 700 800

tim
e

in
 s

ec
on

ds
 (

lo
g

sc
al

e)

solved instances

ahmaxsat+

ahmaxsat
wmaxsatz2013
wmaxsatz2009

Fig. 7. Comparison of the performances of ahmaxsat
+, wmaxsatz2009 and

wmaxsatz2013.

41 more than wmaxsatz2009. ahmaxsat
+ is also significantly faster than

wmaxsatz2013 which was the best performing BnB solver of the Max-SAT
Competition 2013 on the considered instances.

7 Conclusion

We have addressed in this paper the problem of reducing the number and the
size of the compensation clauses produced by the transformation of inconsistent
subsets by Max-SAT resolution. We have presented a new order of application
of Max-SAT resolution based on the size of the intermediary resolvent. The
experimental study we have performed shows that this order reduces efficiently
both the number and the size of the compensation clauses. The performances of
our solver are significantly improved.

This work could be a step toward a more general learning scheme for Max-
SAT BnB solver. In the future, we will try to overcome the remaining obstacles
to this learning scheme. Especially, we will study the impact of the Max-SAT
resolution rule on the unit propagation mechanism. We will also extend this
work to partial Max-SAT.

References

1. Bonet, M.L., Levy, J., Manyà, F.: A complete calculus for max-sat. In: Biere, A.,
Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 240–251. Springer, Heidelberg
(2006)

2. Bonet, M.L., Levy, J., Manyá, F.: Resolution for max-sat. Artificial Intelli-
gence 171(8-9), 606–618 (2007)

3. Heras, F., Larrosa, J.: New inference rules for efficient max-sat solving. In:
Proceedings of the 21st National Conference on Artificial Intelligence, AAAI 2006,
vol. 1, pp. 68–73. AAAI Press (2006)

4. Larrosa, J., Heras, F., de Givry, S.: A logical approach to efficient max-sat solving.
Artificial Intelligence 172(2-3), 204–233 (2008)

Efficient Application of Max-SAT Resolution on Inconsistent Subsets 107

5. Li, C.M., Manyà, F., Mohamedou, N., Planes, J.: Exploiting cycle structures in
max-sat. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 467–480. Springer,
Heidelberg (2009)

6. Li, C.M., Manyà, F., Planes, J.: Exploiting unit propagation to compute lower
bounds in branch and bound max-sat solvers. In: van Beek, P. (ed.) CP 2005. LNCS,
vol. 3709, pp. 403–414. Springer, Heidelberg (2005)

7. Li, C.M., Manyà, F., Planes, J.: Detecting disjoint inconsistent subformulas for com-
puting lower bounds for max-sat. In: Proceedings of the 21st National Conference
on Artificial Intelligence, AAAI 2006, pp. 86–91. AAAI Press (2006)

8. Li, C.M., Manyà, F., Planes, J.: New inference rules for max-sat. Journal of Artificial
Intelligence Research 30, 321–359 (2007)

9. Li, C., Manyá, F., Mohamedou, N., Planes, J.: Resolution-based lower bounds in
maxsat. Constraints 15(4), 456–484 (2010)

10. Marques-Silva, J.P., Sakallah, K.A.: Grasp: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

Sequential Time Splitting

and Bounds Communication
for a Portfolio of Optimization Solvers

Roberto Amadini1 and Peter J. Stuckey2

1 Dept. of Computer Science and Engineering/Lab. Focus INRIA,
University of Bologna, Italy
2 National ICT Australia

Department of Computing and Information Systems
University of Melbourne, VIC 3010, Australia

Abstract. Scheduling a subset of solvers belonging to a given portfolio
has proven to be a good strategy when solving Constraint Satisfaction
Problems (CSPs). In this paper, we show that this approach can also be
effective for Constraint Optimization Problems (COPs). Unlike CSPs,
sequential execution of optimization solvers can communicate informa-
tion in the form of bounds to improve the performance of the following
solvers. We provide a hybrid and flexible portfolio approach that com-
bines static and dynamic time splitting for solving a given COP. Empiri-
cal evaluations show the approach is promising and sometimes even able
to outperform the best solver of the porfolio.

1 Introduction and Related Work

One of the main uses of Constraint Programming (CP) is to model and solve
Constraint Satisfaction Problems (CSP) [19]. Solving CSPs is hard, and there
are plenty of approaches that can be used to tackle them. One of the more recent
trend in this research area—especially in the SAT field—is trying to solve a given
problem by using a portfolio approach [12, 23].

An algorithm portfolio is a general methodology that exploits a number of
different algorithms in order to get an overall better algorithm. A portfolio of
CP solvers can therefore be seen as a particular solver, the portfolio solver, that
exploits a collection of m > 1 different constituent solvers s1, . . . , sm in order to
obtain a globally better CP solver. When a new unseen instance i arrives, the
portfolio solver tries to predict which are the best constituent solvers s1, . . . , sk
(k ≤ m) for solving i and then runs such solver(s) on i. This solver selection
process is clearly a fundamental part for the success of the approach and it is
usually performed by exploiting Machine Learning techniques.

There has been a significant body of work in using portfolios to leverage
and combine a number of different solvers in order to get an overall better
solver [15, 18]. A particular case of portfolio approach consists in scheduling
(even in parallel) a subset of the constituent solvers within a certain time window

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 108–124, 2014.
c© Springer International Publishing Switzerland 2014

Sequential Time Splitting and Bounds Communication 109

(see for instance [3,7,14,16,22,24]. This would seem to be a winning strategy, in
particular due to the fact that often the solving time of a satisfaction problem is
either relatively short or very long. It hence naturally handles the heavy tailed
nature of solving.

Surprisingly, most of the focus of algorithm portfolios has been on constraint
satisfaction problems. In practice most of the combinatorial problems of interest
are Constraint Optimization Problems (COPs), where we are interested in find-
ing a solution which minimizes as much as possible a given objective function.
As pointed out also in [25], there is a lack of use of meta-learning for algorithm
selection: to the best of our knowledge, COP portfolios are mostly developed
just for some specific optimization problems like Knapsack, Most Probable Ex-
planation, Set Partitioning, Travel Salesman Problem [13,15,26] or for example
to properly tune the parameters of a single COP solver [17, 27].

It is hence natural to ask how to create a scheduling algorithm portfolio for
COPs. A crucial difference from CSPs arises because a COP solver may yield
sub-optimal partial solutions before finding the best one (and possibly proving its
optimality). This means that one solver can transmit useful bounds information
to another if they are scheduled sequentially. This key feature is the basis of our
work. Indeed, in a portfolio scenario, a partial solution found by a solver s1 is a
token of knowledge that s1 can pass to another solver s2 in order to prune its
search space and therefore possibly improve its solving process. In this paper, we
thus address the problem of boosting optimization by exploiting the sequential
cooperation of different COP solvers. To do so, we will introduce the notion of
solving behaviour for taking into account the anytime performance of the solvers.

A work related to this paper is [9], in which algorithm control techniques are
used to share bounds information between the scheduled solvers without, how-
ever, explicitly rely on the solvers behaviours (as in our technical definition).
In [20] the authors provide a generic approach to knowledge sharing, based on
the communication of learned clauses and cuts information, which is suitable for
sequential SAT solvers but is less likely to be useful when solvers are very dis-
parate in nature. Finally, [4] reports an empirical evaluation of different portfolio
approaches applied to COPs, without however taking into account the anytime
performance of the solvers as well as the possible bounds communication between
them.

Paper Structure. In Section 2 we give the technical definitions of solving
behaviour and timesplit solver; then, in Section 3, we provide and evaluate
TimeSplit: an algorithm aimed to determine the best time splitting according to
already known behaviours. By exploiting the results of TimeSplit in Section 4 we
introduce TPS, a generic and flexible portfolio approach that relies on two steps:
when a new unseen problem arrives, a static solver schedule (computed off-line)
is run first, while a dynamic schedule is executed then by possibly exploiting the
best solution found in the first stage. In Section 5 we describe the methodology
and the results achieved by TPS, using the SUNNY [3,4] algorithm as a baseline
for computing and evaluating different portfolio approaches. Finally, in Section
6 we conclude by providing some possible future directions.

110 R. Amadini and P.J. Stuckey

2 Solving Behaviour and Timesplit Solvers

Let us fix a dataset of minimization1 problems Δ, a universe of COP solvers Σ
(which can include a particular portfolio Π ⊆ Σ) and a solving time window
[0, T]. We wish to determine the best sequence of solvers in Σ to run on p and
for how long to run each solver within the interval [0, T] in order obtain the
best result for instance p. Ideally we aim to improve the best solver of Σ for the
instance p.

We define the (solving) behaviour of each solver s ∈ Σ applied to a problem
p ∈ Δ over time [0, T] as a sequence of pairs B(s, p) = [(t1, v1), . . . , (tn, vn)] where
ti ∈ [0, T] is the time when s finds a solution, and vi is the objective value of
such a solution. Note that we can consider the pairs ordered so that t1 < · · · < tn
while v1 > · · · > vn since we assume the solving process is monotonic (we can
omit the non-monotonic entries if any). For example, consider the behaviours
B(s1, p) = [(10, 40), (50, 25), (100, 15)] and B(s2, p) = [(800, 45), (900, 10)] illus-
trated in Figure 1a with a timeout of T = 1000 seconds. The best value v∗ = 10
is found by s2 after 900 seconds, but it takes 800 seconds to find its first solu-
tion (v = 45). Meanwhile, s1 finds a better value (v = 40) after just 10 seconds
and even better values in just 100 seconds. So, the question is: what happens if
we “inject” the upper bound 40 from s1 to s2? Considering that starting from
v = 45 the solver s2 is able to find v∗ in 100 seconds (from 800 to 900), hopefully
starting from any better (or equal) value v′ ≤ 45 the time needed by s2 to find
v∗ is no more than 100 seconds. Note that from a graphical point of view what
we would like to do is therefore to “shift” the curve of s2 towards the left from
t = 800 to 10, by exploiting the fact that after 10 seconds s1 can suggest to
s2 the upper bound v = 40. The cooperation between s1 and s2 would thereby
reduce by Δt = 790 seconds the time needed to find v∗, and moreover would
allow us to exploit the remaining Δt seconds for finding better solutions or even
proving the optimality of v∗. However, note that the virtual behaviour may not
occur: it may be that s2 calculates important information in the first 800 seconds
required to find the solution v∗ = 10, and therefore the injection of v = 40 could
be useless (if not harmful!).

Given a problem p ∈ Δ and a schedule σ = [(s1, t1), . . . , (sk, tk)] of k solvers
we define the corresponding timesplit solver as a particular solver such that: i)
first, runs s1 on p for t1 seconds; ii) then, for i = 1, . . . , k− 1, runs si+1 on p for
ti+1 seconds possibly exploiting the best solution found by the previous solver si
in ti seconds. We will use the notation σ to indicate the base of timesplit solver σ
where we omit the last solver in the schedule, i.e. σ = [(s1, t1), . . . , (sk−1, tk−1)].
Intuitively, if sk is the last solver of the schedule, σ is the timesplit solver that
ideally contributes to improve sk.

As an example, in Figure 1a the ideal timesplit solver would be defined by
σ = [(s1, 10), (s2, 990)], but note that there are cases in which the timesplit
solver is actually a single solver, since the best solver is not virtually improvable

1 We can convert a maximization problem to a minimization problem by simply negat-
ing the objective function.

Sequential Time Splitting and Bounds Communication 111

10 50 100 800 900 1000

Time [seconds]

10

15

25

40

45

S
o
lu

ti
o
n
 V

a
lu

e

Δt

s
2

s
1

(a) σ = [(s1, 10), (s2, 990)]

100 250 500 700 800 900 1000

Time [seconds]

100

75

50

30

20

10

S
o
lu

ti
o
n
 V

a
lu

e

s
2

s
1

(b) σ = [(s2, 1000)]

20 100 250 400 600 800 1000

Time [seconds]

100

80

60

50

30

20

10

S
o
lu

ti
o
n
 V

a
lu

e

Δ1

Δ2
s1

s2

s3

(c) σ = [(s2, 100), (s3, 150), (s1, 750)]

20 100 250 400 600 800 1000

Time [seconds]

100

80

60

50

30

20

10

S
o
lu

ti
o
n
 V

a
lu

e

Δ
1

Δ
2

s
1

s
2

(d) σ = [(s1, 100), (s2, 150), (s3, 750)]

Fig. 1. Examples of solving behaviours and corresponding time splitting σ

by any other: this happens when every solution found by the best solver is also
the best solution found so far (e.g., see Figure 1b). Moreover, there may be also
cases in which splitting the time window in more than two slots (even alternating
the same solvers) may ideally lead to better performances. Indeed, the “overall”
best solver at the time edge T might no longer be the best one at a previous
time t < T . For example, in Figure 1c the best solver at time t ≥ 800 is s1, at
time 400 ≤ t < 800 is s3 while for t ≤ 400 is s2; in Figure 1d the best solver is
s1 if t < 400 or t ≥ 800, while for 400 ≤ t < 800 is s2.

3 Splitting Selection and Evaluation

Once we have informally hypothesized the potential benefits of timesplit solvers,
some questions naturally arise. First, which metric(s) is reasonable to formally
define the “best solver”? Furthermore, how do we split the time window between
solvers for determining the (virtually) best timesplit solver? Finally, to what ex-
tent do timesplit solvers act like the virtual timesplit solvers? In order to answer
these questions, we fixed some proper metrics, defined a splitting algorithm and
empirically evaluated the assumptions previously introduced.

112 R. Amadini and P.J. Stuckey

3.1 Evaluation Metrics

In order to evaluate the performances of different COP solvers (and thus formally
define the notion of best solver) we examine a number of metrics for grading a
solver s on a problem p over a time limit T .

Analogous to the usual metric for CSP solvers, let proven(s, p) = 1 if solver
s finds and proves the optimal solution (including proving unsatisfiability or
unboundedness) for problem p in T seconds, and 0 otherwise. A slightly better
metric measures optimization time, i.e. the time to find an optimal solution.
Let otime(s, p) = t if s finds and proves the optimal solution of p in time t,
and otime(s, p) = T if proven(s, p) = 0. Unfortunately, both these metrics are
rather poor at discriminating: for many optimization problems no solver may be
able to prove optimality.

The score function introduced in [4] gives to each solver a score in [0.25, 0.75]
proportional to the distance between the best solution it finds and the best
known solution. An additional reward (score = 1) is given if proven(s, p) = 1
while a punishment (score = 0) is given if no solution is found without proving
unsatisfiability. Let val(s, p, t) = min ({+∞}∪ {v | (t′, v) ∈ B(s, p), t′ ≤ t}) be
the (possible) best objective value found by solver s for instance p at time t. Let
Vp = {val(s, p, T) ∈ Z | s ∈ Σ} be the set of all the objective values found by
any solver s at the time limit T . The score of solver s on a problem p (at the
time limit T) is a value score(s, p) ∈ {0, 1} ∪ [0.25, 0.75] such that:

score(s, p) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if val(s, p, T) = +∞; else

1 if proven(s, p) = 1; else

0.75 if val(s, p, T) = minVp = maxVp; else

0.75− 0.5 · val(s, p, T)−min Vp
maxVp −minVp

Under this measure, a better solver has a higher score.While more discriminatory
than the previous measures, the score measure is still only considers the result
at the time limit T , without considering how it was reached (i.e. the behaviour).

In this work we introduce a new metric able to estimate the anytime solver
performance. Let Wp = {val(s, p, t) ∈ Z | s ∈ Σ, t ∈ [0, T]} be the set of all the
solutions found by any solver at any time, so minWp is the best solution found
for problem p and maxWp is the worst one. If B(s, p) = [(t1, v1), . . . , (tn, vn)] is
the behaviour of solver s on problem p, we define the (solving) area of s on p as:

area(s, p) = t1 +

n∑
i=1

(
0.25 + 0.5 · val(s, p, ti)−minWp

maxWp −minWp

)
(ti+1 − ti)

where tn+1 = otime(s, p). As the name implies, area is a normalized measure
of the area under a solver behaviour. This metric is similar to the primal in-
tegral [8] used for measuring impact of heuristics for MIP solvers, but differs
since the primal integral assumes the optimal solution is known, while area also
differentiates between finding and proving a solution optimal. The area measure

Sequential Time Splitting and Bounds Communication 113

folds in a number of measures of the strength of an optimization algorithm: the
quality of the best solution found, how quickly any solution is found, whether
optimality is proven, and how quickly good solutions are found. Even though the
ideal goal is to find the best objective value and hopefully proving its optimality,
area allows us to discriminate much more between solvers, since we capture the
tradeoff between speed and solution quality. Two solvers which eventually reach
the same best solution (without proving optimality) are indistinguishable with
the other measures, but we would almost certainly prefer the solver that finds
the solution(s) faster. Furthermore, consider two solvers that prove optimality
at the same instant t < T : while both will have otime = t, area will reward the
solver in [0, t] that finds better solutions faster.

Finally, we can now define the best solver of Σ for a given problem p as
the solver s ∈ Σ which minimizes (w.r.t. the lexicographic ordering) the set
of triples (1 − score(s, p), otime(s, p), area(s, p)) i.e., the solver that finds the
best solution within the time limit T , breaking ties using minimum optimization
time first, and then minimum area (i.e., giving priority to the solvers that prove
optimality in less time, or at least that quickly find sub-optimal solutions).

3.2 TimeSplit Algorithm

Our goal is now to find a suitable timesplit solver for instance p which can
improve upon the best solver for p. The algorithm TimeSplit described with
pseudo-code in Listing 1.1 encodes what was informally explained earlier (see
Figure 1). Given as input a problem p, a portfolioΠ ⊆ Σ, and the timeout T , the
basic idea of TimeSplit is to start from the behaviour of the best solver s2 ∈ Π
for p and then examine other solvers behaviours looking for the maximum ideal
“left shift” toward another solver s1 ∈ Π \ {s2}. Then, starting from s1, this
process is iteratively repeated until no other shift is found. The best solver of Π
is assigned to s2 via function best solver in line 2, while line 3 set the current
schedule σ to [(s2, T)]. In line 4 auxiliary variables are initialized: tot shift keeps
track of the sum of all the shifts identified, max shift is the current maximum
shift that s2 can perform, split time is the time instant from which s2 will start
its execution, while split solver is the solver that has to be run before s2 until
split time instant. The while loop enclosed in lines 5-18 is repeated until no
more shifts are possible (i.e., max shift = 0). The three nested loops starting
at lines 7-9 find two pairs (t1, v1) and (t2, v2) such that s2 can virtually shift to
another solver s1, i.e., such that in the current solving window [0, split time] we
have that at time t1 < t2 solver s1 finds a value v1 better than or equal to v2.

If the actual shift Δt = t2 − t1 is greater than max shift , in lines 11-13 the
auxiliary variables are updated accordingly. At the end of each such loop, if at
least one shift has been detected (max shift > 0) the current schedule σ needs
to be updated. In line 15, the allocated time of the current first solver of σ
(i.e., s2) is decreased by an amount of time max shift + split time (note that
first(σ) is a reference to the first element of σ, while snd returns the second
element of a pair, i.e. the allocated time in this case). This is because split time
seconds will be allocated to split solver (line 16: push front inserts an element

114 R. Amadini and P.J. Stuckey

on top of the list) while max shift seconds corresponding to the ideal shift will
be later donated to the ’overall’ best solver of Π (i.e., the last solver of σ) via
tot shift variable. At this stage, the search for a new shift is restricted to the time
interval [0, split time] in which the new best solver s2 will be split solver (line
18). Once out of the while loop (no more shifts are possible) the total amount
of all the shifts found is added to the best solver (line 19: last(σ) is a reference
to the last element of σ) and the final schedule is finally returned in line 20.

Listing 1.1. TimeSplit Algorithm

1 TimeSplit(p,Π, T) :
2 s2 = best solver(p,Π, T)
3 σ = [(s2, T)]
4 tot shift = 0 ; max shift = 1 ; split time = T ; split solver = s2
5 while max shift > 0 :
6 max shift = 0
7 for (t2, v2) in {(t, v) ∈ B(s2, p) | t ≤ split time} :
8 for s1 in Π \ {s2} :
9 for (t1, v1) in {(t, v) ∈ B(s1, p) | t < t2 ∧ v ≤ v2} :

10 if t2 − t1 > max shift :
11 max shift = t2 − t1
12 split time = t1
13 split solver = s1
14 if max shift > 0 :
15 first(σ).snd −= max shift + split time
16 push front(σ, (split solver , split time))
17 tot shift += max shift
18 s2 = split solver
19 last(σ).snd += tot shift
20 return σ

3.3 TimeSplit Evaluation

In order to experimentally verify the correctness of our assumptions of the be-
haviour of timesplit solvers, we tested TimeSplit by considering a portfolio Π
constructed from the solvers of the MiniZinc 1.6 suite [21] (i.e., CPX, G12/FD,
G12/LazyFD, and G12/MIP) with some additional solvers disparate in their
nature, namely: Gecode [11] (CP solver), MinisatID [10] (SAT-based solver),
Chuffed (Lazy Clause CP solver), and G12/Gurobi (MIP solver). We retrieved
and filtered an initial datasetΔ of 4864MiniZinc COPs fromMiniZinc 1.6 bench-
marks and the MiniZinc Challenges 2012/13 and then ran TimeSplit using a
solving timeout of T = 1800 seconds. In particular, we ran and compared two
versions of the algorithm: the original one and a variant (denoted TS-2 in what
follows) in which we imposed a maximum size of 2 solvers for each schedule σ.
This is because splitting [0, T] in too many slots can be counterproductive in
practice: excessive fragmentation of the time window may produce time slots
that are too short to be useful. Once executed these algorithms, in order to eval-
uate their significance we discarded all the “degenerate” instances for which the

Sequential Time Splitting and Bounds Communication 115

Table 1. Average performances
score proven otime area

VBS 82.40% 34.73% 1298.67 478.05
TimeSplit 80.49% 33.67% 1263.74 347.91

TS-2 80.60% 33.89% 1259.98 343.97

Table 2. Pairwise Comparisons
VBS TimeSplit TS-2

VBS — 222 232
TimeSplit 373 — 40

TS-2 364 13 —

potential total shift was minimal (less than 5 seconds). We then ended up with
a reduced dataset Δ′ ⊂ Δ of 596 instances. We ran timesplit solvers defined by
the schedule returned by each algorithm on every instance of Δ′. In addition,
we added as a baseline the Virtual Best Solver (VBS) i.e. a fictitious portfolio
solver that always choose the best solver for every instance according to a given
metric. Finally, we evaluated and compared the average performance in terms
of the above mentioned metrics: score, proven, otime, area.

Table 1 shows the average results for each approach. As can be seen, the
performances are rather close. On average, VBS is still the best solver if we focus
on score metric (i.e., considering only the values found at the time limit T).
Regarding proven and otime metrics, we can observe a substantial equivalence:
VBS is slightly better in terms of percentage of optima proven, while it is worse
than TimeSplit and TS-2 if we consider the average time to prove optimality.
Conversely, looking at area the situation appears to be more clearly defined:
on average, VBS is substantially worse than both TimeSplit and TS-2. This
means that, even if the virtual behaviour does not always occur, often the time
splitting we propose is able to find good partial solutions more quickly than
the best solver of Π . Focusing just on the two versions of TimeSplit, we can
also note that these are substantially equivalent: this confirms the hypothesis
that limiting the algorithm to schedule only two solvers is a reasonable choice
(TS-2 seems slightly better than TimeSplit on average). Indeed, among all the
instances of Δ′, only for 53 of them TimeSplit has produced a schedule with
more than two solvers.

Fig. 2. Times allocated to σ(p)

Table 2 shows instead how many
times the approach on the i-th row is
better than the one on the j-th col-
umn. In this case we can note that
TimeSplit and TS-2 perform better
than VBS: indeed, in the cases in which
the score is the same for both the ap-
proaches, often the timesplit solvers
take less time to find a (partial) solution. Note that for 375 problems (62.92%
of Δ′) at least one between TimeSplit and TS-2 is better than the VBS. Let Δ∗

be the set of such instances, and considering the base σ(p) of each schedule σ(p)
returned by the best approach between TimeSplit and TS-2 for each instance
of p ∈ Δ∗, we noticed an interesting fact: the time allocated to σ(p) is usually
pretty low. Figure 2 reports the distribution of such each times. As can be seen,
almost all the times are concentrated in the lower part of the graph: even if the
maximum value is 1363 seconds, the mean is less than a minute (54.18 seconds
to be precise) while the median value is significantly lower (9 seconds).

116 R. Amadini and P.J. Stuckey

4 Timesplit Portfolio Solvers

The results of Section 3.3 show that in a non-negligible number of cases the ben-
efits of using a timesplit solver are tangible. Unfortunately, in such experiments
for every instance we already knew the corresponding runtimes of each solver
of the portfolio. The main motivation of this work is instead to try to predict
and run the best timesplit solver for a new unseen instance. Regrettably, given
runtime prediction of a solver is a non-trivial task, predicting the detailed solver
behaviour on a new test instance is even harder. Indeed, in our case we can not
simply limit ourselves to guess the best solver for a new instance, but we should
instead predict a suitable timesplit solver [(s1, t1), . . . , (sk, tk)]. Moreover, even
if in most cases the TimeSplit algorithm works pretty well, on the others we
noticed a considerable number of instances for which this algorithm is ineffective
(or even harmful). Therefore, a successful strategy should be able not only to
predict a proper timesplit solver, but also to distinguish between the instances
for which the timesplit is actually useful and those where it is counterproductive.
Furthermore, another interesting observation that has emerged from the results
of Section 3.3 is that often for the “significant” timesplit solvers is sufficient to
run the base of the schedule for a relatively low number of seconds in order to
allow an effective improvement of the best solver.

On the basis of these observations and motivations, what we propose is there-
fore a generic and hybrid framework that we called Timesplit Portfolio Solver
(TPS). When a new instance p arrives, we compute and run on p a corresponding
timesplit solver TPS(p) = [(S, C), (D(p), T −C)], where [(S, C)] is a static times-
plit solver pre-computed off-line that will run for C < T seconds, while for the
remaining T −C seconds we execute a dynamic timesplit solver [(D(p), T −C)]
computed on-line by means of a given prediction algorithm D(p).

The underlying idea of TPS is to exploit for the first C seconds a fixed sched-
ule calculated a priori, whose purpose is to produce as many good sub-optimal
solutions as possible. If after C seconds the optimality is still not proven, in
the remaining T − C seconds the algorithm D(p) tries to predict which is the
best (timesplit) solver for p, that will be executed taking advantage of any up-
per bound provided by S. Since TPS is a general model that can be arbitrarily
specialized, in the rest of the Section we explain in more detail what choices we
made and what algorithms we used to define and evaluate (variants of) TPS.

4.1 Static Splitting

Drawing inspiration from what was done in [16] for SAT problems, we decided
to compute a static schedule of solvers according to the outcomes of TimeSplit
on a given set of training instances. While in [16] the authors solve a Resource
Constrained Set Covering Problem (RCSCP) in order to get a schedule that
maximizes the number of training instances that can be solved within a time limit
of C = 180 seconds, in our case the objective is different. What we would like is
indeed to compute a schedule that may act as a good base for the solver(s) who
will be executed in the remaining T −C seconds. To do this, we first identify by

Sequential Time Splitting and Bounds Communication 117

means of TimeSplit algorithm the set Δ∗ of all the training instances for which
a timesplit solver outperforms the VBS. Let σ(p) = [(sp,1, tp,1), . . . , (sp,k, tp,k)] be
the schedule returned by TimeSplit on each p ∈ Δ∗. We look for a schedule S
that maximizes the number of time slots tp,i ∈ σ(p) for i = 1, . . . , k− 1 that are
covered, that is the portfolio solver allocates at least tp,i seconds to solver sp,i.
Again, note that we consider the base σ(p) instead of σ(p) since at this stage we
are not interested in choosing the best solver: we want to determine an effective
timesplit solver able to quickly find suitable sub-optimal solutions. However, a
nice side-effect of this approach is that it also may be able to solve quickly those
instances that are extremely difficult for some solvers but very easy for others.

For each p ∈ Δ∗, we define ∇p = {(sp,i, t) | (sp,i, tp,i) ∈ σ(p), ti ≤ t ≤ C}
as the set of all the pairs (sp,i, t) that cover the time slot tp,i within C seconds.
Named Π∗ =

⋃
p∈Δ∗{s ∈ Π : (s, t) ∈ ∇p} the set of the solvers of the portfolio

that appear in at least a∇p, and fixed C = T/10, we solve the following problem:

min

⎡
⎣(C + 1)

∑
p∈Δ∗

yp +
∑
s∈Π∗

∑
t∈[0,C]

t xs,t

⎤
⎦ s.t.

yp +
∑

(s,t)∈∇p

xs,t ≥ 1 ∀p ∈ Δ∗

∑
s∈Π∗

∑
t∈[0,C]

t xs,t ≤ C

yp, xs,t ∈ {0, 1} ∀p ∈ Δ∗, ∀s ∈ Π∗, ∀t ∈ [0, C]

For each pair (s, t) there is a binary variable xs,t that will be equal to one
if and only if in S the solver s will run for t seconds. For each problem p, the
binary variable yp will be one if and only if S cannot cover any time slot of σ(p).
Constraint yp +

∑
xs,t ≥ 1 imposes that instance p is covered (possibly setting

yp = 1 in the worst case) while
∑
t xs,t ≤ C ensures that S will not exceed

the time limit C. The objective is thus to minimize the number of uncovered
instances first (by means of C + 1 coefficient for each yp), and the total time of
S then (using t coefficient for each xs,t).

Note that the solution of the problem defines an allocation ξ = {(s, t) : xs,t =
1} and not actually a schedule: we still have to define the execution order of the
solvers. Since the interaction between different solvers is not easily predictable,
and neither generalizable, we decided to use a simple and reasonable heuristic:
we get the schedule S by sorting each (s, t) ∈ ξ by increasing allocated time t.

4.2 Dynamic Splitting

Once defined the static part of TPS, we want to determine an algorithm D(p) able
to predict for a new unseen instance p a proper (timesplit) solver to run for T−C
seconds after [(S, C)]. Inspired by the results of [4], we made use of the SUNNY
algorithm [3, 4]. The reasons behind this choice are essentially two. First, even
if originally designed for CSP portfolios [3], the adaption of SUNNY for COPs

118 R. Amadini and P.J. Stuckey

Table 3. Pairs (score, otime) of each solver si for every problem pj

p1 p2 p3 Total
s1 (1, 150) (0.25, 1000) (0.75, 1000) (2, 2150)
s2 (0, 1000) (1, 10) (0, 1000) (1, 2010)
s3 (1, 100) (0.75, 1000) (0.7, 1000) (2.45, 2100)
s4 (0.75, 1000) (0.75, 1000) (0.25, 1000) (1.75, 3000)

turns out to perform well according to the results of [4]. Second, SUNNY is not
limited to predict a single solver but selects instead a schedule of the constituent
solvers: in other terms, it implicitly returns a timesplit solver.

SUNNY is a new lazy algorithm portfolio originally tailored for CSPs: given
a CSP p and a portfolio Π , it uses a k-NN algorithm to select from a set of
training instances a subset N(p, k) of the k instances closer to p according to
the Euclidean distance. Then, on-the-fly, it computes a schedule of solvers by
considering the smallest sub-portfolio S ⊆ Π able to solve the maximum number
of instances in the neighborhood N(p, k) and by allocating to each solver of S a
time proportional to the number of solved instances in N(p, k). In [4] SUNNY
was adapted in order to deal with COPs: this variant selects the sub-portfolio
S ⊆ Π that maximizes the score in the neighborhood and allocates to each
solver a time in [0, T] proportional to its total score in N(p, k). In particular,
while in the CSP version SUNNY allocates to a backup solver2 an amount of time
proportional to the number of instances not solved inN(p, k), in the COP version
it assigns to it a slot of time proportional to k−h where h is the maximum score

achieved by the sub-portfolio S. While for CSPs the final schedule is obtained by
sorting the solvers by increasing solving time, for COPs the sorting is done by
using increasing otime. In a nutshell, the underlying idea behind SUNNY is to
minimize the probability of choosing the wrong solvers(s) by exploiting instance
similarities in order to get the smallest possible schedule of solvers. Padding the
uncovered instances of N(p, k) with the backup solver has the purpose of filling
the “gray area” between the best sub-portfolio found and a virtual solver always
able to find the optimal solution with the (hopefully) most reliable solver of Π .
Of course, this is an arbitrary choice that biases the schedule toward the backup
solver. But experimental results have proven the effectiveness of this approach.

Example 1. Let us suppose that Π = {s1, s2, s3, s4}, the backup solver is s3,
T = 1000 seconds, k = 3, N(p, k) = {p1, p2, p3}, and the scores/optimization
times are defined as listed in Table 3. The minimum size sub-portfolio that
reaches the highest score h = 1+ 1+ 0.75 = 2.75 is {s1, s2}. On the basis of the
sum of the scores reached by s1 and s2 in N(p, k) (resp. 2 and 1, see the last col-
umn of Table 3) we then determine a slot size of t = T/(2+1+(k−h)) = 307.69
seconds and assign t1 = 2 ∗ t = 615.38 seconds to s1 and t2 = 1 ∗ t = 307.69
seconds to s2. The remaining t3 = 1000 − (t1 + t2) = 76.93 seconds are finally

2 A backup solver is a special solver of the portfolio (typically, its single best solver)
aimed to handle exceptional circumstances (e.g.,premature failures of other solvers).

Sequential Time Splitting and Bounds Communication 119

allocated to the backup solver s3. The final schedule [(s2, t2), (s3, t3), (s1, t1)] is
then obtained by sorting s1, s2, s3 by their total optimization time in N(p, k)
(i.e., 2010, 2100, and 2150 respectively: see the last column of Table 3).

5 Empirical Evaluation

In order to measure the performances of the TPS described in Sections 4.1 and 4.2,
in the following referred to as sunny-tps, we considered a solving timeout of
T = 1800 seconds, a threshold of C = 180 seconds, the portfolio Π = {Chuffed,
CPX, G12/FD, G12/LazyFD, G12/Gurobi, G12/MIP, Gecode, MinisatID} and
the dataset Δ of 4864 MiniZinc instances introduced in Section 3.3.

We evaluated sunny-tps using a 10-fold cross validation [6]: Δ was randomly
partitioned in 10 disjoint folds Δ1, . . . , Δ10 treating in turn one fold Δi as the
test set TSi (i = 1, . . . , 10) and the union of the remaining folds

⋃
j �=iΔj as the

training set TRi. For each training set TRi we then computed a corresponding
static schedule [(Si, 180)] as explained in Section 4.1, and for every instance
p ∈ TSi we computed and executed the timesplit solver [(Si, 180), (Di(p), 1620)]
where Di(p) is the schedule returned by SUNNY algorithm for problem p using
a reduced solving window of T − C = 1620 seconds.

Note that, for computing Di(p), SUNNY has to retrieve the k instances of
TRi closest to p. In order to do so, a proper set of features has to be extracted
from p (and each instance of TRi). Instead of using the whole set of 155 features
extracted by the mzn2feat tool described in [2,5] (as in [4]) we decided to select
a proper subset of them by exploiting the new extractor mzn2feat-1.0.3 This
tool is a new version of mzn2feat designed to be more portable, light-weight,
flexible, and independent from the particular machine on which it is run as well
as from the specific global redefinitions of a given solver. Indeed, mzn2feat-1.0
does not compute features based on graph measures (since this process could
be very time/space consuming), solver specific features (like global constraint
redefinitions) and dynamic features (to decouple the extractor from a particular
solver and from the given machine on which it is executed). In more detail,
mzn2feat-1.0 extracts in total 95 features: the variables (27), domains (18),
constraints (27), and solving (11) features are exactly the same of mzn2feat; the
objective features (8) are the 12 objective features of [5] except the 4 features
that involve graph measures; finally, the global constraints features are just 4 and
no longer bound to the Gecode solver, namely: the number of global constraints
n, the number of different global constraints m, the ratio m/n and the ratio n/c
where c is the total number of constraints of the problem. We finally removed
all the constant features and scaled them in [-1, 1], obtaining thus a reduced set
of 88 features.

As in Section 2, we evaluated the average performance of sunny-tps in
terms of score, proven, otime, area by varying the neighbourhood size k in
{10, 15, 20}. Finally, we compared sunny-tps vs. the following approaches:

3 Available at http://www.cs.unibo.it/~amadini/mzn2feat-1.0.tar.bz2

http://www.cs.unibo.it/~amadini/mzn2feat-1.0.tar.bz2

120 R. Amadini and P.J. Stuckey

(a) score results (in percent) (b) proven results (in percent)

– SBS: is the overall Single Best Solver of Π according to the given metric; 4

– VBS: is the Virtual Best Solver of Π defined as in Section 3.3;
– sunny-ori: is the original SUNNY algorithm evaluated in [4], that is a port-

folio solver in which the selected solvers are executed independently (i.e.,
without any bounds communication) in the time window [0, T] without the
“warm start” provided by S for the first C seconds;

– sunny-com: is a portfolio solver that acts basically as sunny-ori, with the
only exception that solvers execution is not independent: the best value found
by a solver within its time slot is subsequently exploited by the following
solver of the schedule.

The universe of all the (timesplit) solvers we used for our empirical evalua-
tion was therefore Σ = Π ∪ {SBS, VBS, sunny-com, sunny-ori, sunny-tps}. It
is worth nothing that, while in [1,4] the evaluation was based on simulations of
the portfolio approaches according to the already computed behaviours of every
solver of Π on every instance of Δ, in this work all the approaches have been
actually run and evaluated. Indeed, as shown also in Section 3.3, in this case we
can not make use of simulations since the side effects of bounds communication
are unpredictable in advance.

5.1 Test Results

The average score results (in percent) by varying the k parameter are re-
ported in Figure 3a. The plot clearly shows a common pattern: SBS, sunny-ori,
sunny-com, sunny-tps, and VBS are respectively sorted by increasing score for
every value of k. In general, we can see a rather sharp separation between the
various approaches: this witnesses the effectiveness of bounds communication
for reaching a better score or, in other terms, for improving the objective value
(possibly proving its optimality). For example, the percentage difference between
sunny-ori and sunny-com ranges between 2.83% and 3.45%. Furthermore, run-
ning the static schedule for the first 180 seconds (and therefore shrinking the

4 Regarding the score, otime, and area metrics the single best solver of Π turned out
to be CPX, while for the proven metric it is Chuffed. According to these results, we
elected CPX as the backup solver of Π .

Sequential Time Splitting and Bounds Communication 121

(c) otime results (in seconds) (d) area results (in seconds)

dynamic schedule of sunny-com in the remaining 1620 seconds) seems to be ad-
vantageous: sunny-tps is always better than SBS, sunny-ori, and sunny-com.
The peak performance (86.91%) is reached with k = 15, but the difference with
k = 10 and 20 is minimal (0.73% and 0.59% respectively). Considering k = 15,
sunny-tps has an average score higher than SBS by 10.55%, and lower than VBS

by 6.9%. Moreover, in 82 cases (1.69% of Δ) it scores better than VBS.
When considering the proven metric (Figure 3b) the performance differ-

ence between the different SUNNY approaches is not so pronounced. Indeed,
sunny-ori, sunny-com, and sunny-tps are pretty close: for every k, the per-
centage difference between the worst and the best SUNNY approach ranges
between 0.45% and 1.13%. In this case we can say that the remarkable differ-
ence in performance between the portfolio solvers and the SBS is mainly due to
the SUNNY algorithm rather than the bounds communication. In other words,
passing the bound is not so effective if we just focus on proving optimality. A
possible explanation is that communicating an upper bound can be useful to find
a better solution (see Figure 3a) but ineffective when it comes to prove optimal-
ity. In these cases probably the time needed by a solver to compute information
for completing the search process can not be offset by the mere knowledge of an
objective bound. Nonetheless, the plot shows how the “warm start” provided by
the static schedule is helpful: in fact, the performance of sunny-tps is always
better than the other approaches. The peak performance (k = 15) is 72.06%,
about 10.36% more than SBS and only 3.74% less than VBS. For 27 instances
(0.56% of Δ) sunny-tps is able to prove the optimality while VBS is not.

Let us now focus on optimization time. In Figure 3c we see, in contrast to
all the score and proven results that appear to be pretty robust by varying k,
a slight discrepancy between k = 10 and k > 10. This delay time in proving
optimality is due to the scheduling order of the constituent solvers. However, for
k = 15 the results improve and for k = 20 are substantially the same. The peak
performance is achieved with k = 15 (272.61 seconds), 105.07 less than SBS and
145.9 more than VBS; in 53 cases (1.09% of Δ) sunny-tps is able to prove the
optimality in less time than VBS.

The area results depicted in Figure 3d clearly show the benefits of bounds
communication. First, note that sunny-ori is always worse than SBS: this is
because each solver scheduled by sunny-ori is executed independently, and

122 R. Amadini and P.J. Stuckey

therefore for every solver the search is always (re-)started from scratch without
exploiting previously found solutions. sunny-com significantly improves
sunny-ori, even if its average area is very close to SBS (even worse for k = 10).
On the other hand, the fixed schedule run by sunny-tps often allows one to
quickly find partial solutions and thus to noticeably outperform both sunny-ori

and sunny-com. Like the otime metric, the average area is not so close to VBS

(the peak performance, with k = 15, is 272.61 seconds: 132.77 seconds more
than VBS, and 114.9 less than SBS), but sunny-tps outperforms VBS in 110 cases
(2.26% of Δ).

6 Conclusions and Future Work

In this work we addressed the problem of boosting optimization by exploiting
the sequential cooperation of different COP solvers. Exploiting the fact that
finding good solutions early can significantly improve optimization solvers, we
first provided a proper TimeSplit algorithm that relies on the behaviour of
different solvers on an instance for determining a good timesplit solver for this
instance (i.e., ideally able to outperform the best solver of a portfolio). Our
results show that on average the actual timesplit solver does perform similarly
to (and sometimes even better than) the Virtual Best Solver of the portfolio.
We therefore exploited the results of TimeSplit in order to define the Timesplit
Portfolio Solver (TPS), a generic and hybrid framework that combines a static
schedule (computed off-line and run for a limited time) as well as a dynamic
schedule (computed on-line by means of a proper prediction algorithm and run
in the remaining time) for solving a new unseen instance by exploiting the bounds
communication between the scheduled solvers. In particular, on the one hand,
we determined the static schedule by solving a Set Covering problem according
to the results of TimeSplit on a set of training instances, and, on the other,
we defined the dynamic selection by exploiting the SUNNY algorithm [3, 4].
Empirical results shows that this idea can be beneficial and sometimes even able
to outperform the Virtual Best Solver according to different metrics that we
introduced (namely, score, proven, otime, and area) in order to evaluate the
performance of different (portfolio) solvers.

We see this work a cornerstone for portfolio approaches to solving Constraint
Optimization Problems. Clearly bounds communication should be taken into
account in this case. It is natural to think of extensions to this work, for example,
one may try to maximize the ideal shift by considering all the constituent solvers
instead of focusing just on improving the best one. Moreover, the nature of TPS
naturally allows one to instantiate its generic schema with new algorithms and
techniques (perhaps by simply adapting the most successful portfolio approaches
of the SAT and CSP fields). For instance, one might study how to select the set
of features to improve solver selection. Note that, contrary to [1,4], for example,
significant experimentation is required since it is clearly not predictable in a
deterministic way what the side effects of transmitting bounds from a solver to
another are. Finally, other interesting directions concerns the study of parallel

Sequential Time Splitting and Bounds Communication 123

timesplit solvers as well as the communication of not only the objective bounds
but also other additional information (such as for instance cuts which is common
in SAT portfolios).

Acknowledgments. NICTA is funded by the Australian Government through
the Department of Communications and the AustralianResearchCouncil through
the ICT Centre of Excellence Program. This work was partially supported by
Asian Office of Aerospace Research and Development grant 12-4056.

References

1. Amadini, R., Gabbrielli, M., Mauro, J.: An Empirical Evaluation of Portfolios
Approaches for Solving CSPs. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013.
LNCS, vol. 7874, pp. 316–324. Springer, Heidelberg (2013)

2. Amadini, R., Gabbrielli, M., Mauro, J.: Features for Building CSP Portfolio
Solvers. CoRR, abs/1308.0227 (2013)

3. Amadini, R., Gabbrielli, M., Mauro, J.: SUNNY: a Lazy Portfolio Approach for
Constraint Solving. In: ICLP (2014),
http://www.cs.unibo.it/~amadini/iclp_2014.pdf

4. Amadini, R., Gabbrielli, M., Mauro, J.: Portfolio Approaches for Constraint Opti-
mization Problems. In: LION (2014),
http://www.cs.unibo.it/~amadini/lion_2014.pdf

5. Amadini, R., Gabbrielli, M., Mauro, J.: An Enhanced Features Extractor for a
Portfolio of Constraint Solvers. In: SAC (2014),
http://www.cs.unibo.it/~amadini/sac_2014.pdf

6. Arlot, S., Celisse, A.: A survey of cross-validation procedures for model selection.
Statistics Surveys 4, 40–79 (2010)

7. Audemard, G., Hoessen, B., Jabbour, S., Lagniez, J.-M., Piette, C.: PeneLoPe, a
Parallel Clause-Freezer Solver. In: SAT Challenge 2012 (2012)

8. Berthold, T.: Measuring the impact of primal heuristics. Operations Research
Letters 41(6), 611–614 (2013)

9. Carchrae, T., Beck, J.C.: Low-knowledge algorithm control. In: AAAI, pp. 49–54
(2004)

10. DeCat, B.: KRR Software: MinisatID (2013),
http://dtai.cs.kuleuven.be/krr/software/minisatid

11. GECODE - An open, free, efficient constraint solving toolkit,
http://www.gecode.org

12. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell (2001)
13. Guo, H., Hsu, W.H.: A machine learning approach to algorithm selection for NP-

hard optimization problems: a case study on the MPE problem. Annals OR 156(1),
61–82 (2007)

14. Hamadi, Y., Jabbour, S., Sais, L.: ManySAT: A Parallel SAT Solver. JSAT 6(4),
245–262 (2009)

15. Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm Runtime Prediction:
The State of the Art. CoRR, abs/1211.0906 (2012)

16. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Al-
gorithm Selection and Scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876,
pp. 454–469. Springer, Heidelberg (2011)

http://www.cs.unibo.it/~amadini/iclp_2014.pdf
http://www.cs.unibo.it/~amadini/lion_2014.pdf
http://www.cs.unibo.it/~amadini/sac_2014.pdf
http://dtai.cs.kuleuven.be/krr/software/minisatid
http://www.gecode.org

124 R. Amadini and P.J. Stuckey

17. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC - Instance-Specific
Algorithm Configuration. In: ECAI 2010 (2010)

18. Kotthoff, L.: Algorithm Selection for Combinatorial Search Problems: A Survey.
CoRR, abs/1210.7959 (2012)

19. Mackworth, A.K.: Consistency in Networks of Relations. Artif. Intell. (1977)
20. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Boosting sequential

solver portfolios: Knowledge sharing and accuracy prediction. In: Nicosia, G.,
Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 153–167. Springer, Heidelberg
(2013)

21. Minizinc version 1.6, http://www.minizinc.org/download.html
22. O’ Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’ Sullivan, B.: Using case-

based reasoning in an algorithm portfolio for constraint solving. In: AICS 2008
(2009)

23. Rice, J.R.: The Algorithm Selection Problem. Advances in Computers (1976)
24. Roussel, O.: ppfolio, http://www.cril.univ-artois.fr/~roussel/ppfolio/
25. Smith-Miles, K.: Cross-disciplinary perspectives on meta-learning for algorithm

selection. ACM Comput. Surv. 41(1) (2008)
26. Telelis, O., Stamatopoulos, P.: Combinatorial Optimization through Statistical

Instance-Based Learning. In: ICTAI (2001)
27. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Hydra-MIP: Automated

Algorithm Configuration and Selection for Mixed Integer Programming. In: RCRA
workshop on Experimental Evaluation of Algorithms for Solving Problems with
Combinatorial Explosion (2011)

http://www.minizinc.org/download.html
http://www.cril.univ-artois.fr/~roussel/ppfolio/

Scoring-Based Neighborhood Dominance
for the Subgraph Isomorphism Problem

Gilles Audemard1, Christophe Lecoutre1, Mouny Samy-Modeliar1,
Gilles Goncalves2, and Daniel Porumbel2

1 CRIL-CNRS, UMR 8188, University of Artois, Lens, France
2 LGI2A, University of Artois, Bethune, France

{audemard,lecoutre,modeliar}@cril.fr,
{gilles.goncalves,daniel.porumbel}@univ-artois.fr

Abstract. This paper presents an original filtering approach, called SND
(Scoring-based Neighborhood Dominance), for the subgraph isomorphism prob-
lem. By reasoning on vertex dominance properties based on various scoring and
neighborhood functions, SND appears to be a filtering mechanism of strong in-
ference potential. For example, the recently proposed method LAD is a particular
case of SND. We study a specialization of SND by considering the number of
k-length paths in graphs and three ways of relating sets of vertices. With this spe-
cialization, we prove that SND is stronger than LAD and incomparable to SAC
(Singleton Arc Consistency). Our experimental results show that SND achieves
most of the time the same filtering performances as SAC (while being several
orders of magnitude faster), which allows one to find subisomorphism functions
far more efficiently than MAC, while slightly outperforming LAD.

1 Introduction

The scientific literature is replete with graph-related objects (e.g., trees, combinatorial
maps, attributed or weighted graphs, etc.) that are routinely used to describe differ-
ent inter-linked or relational structures, e.g, networks, hierarchies and patterns. Many
applications involving such concepts require finding a “matching” between two graph
objects. To deal with such applications, a variety of (sub-)graph isomorphism problems
have been proposed over the years, e.g., graph matching, error-correcting isomorphism,
induced subgraph isomorphism, maximum common sub-graph and epimorphism [2,3].

Most of these matching problems are NP-hard, except perhaps the pure Graph Iso-
morphism (GI) that has an undefined status. From a theoretical perspective, an impor-
tant effort has been done to determine the complexity class of (sub-)graph isomorphism
problems, e.g., see the Fulkerson prize work on bounded degree graphs [14]. Com-
plexity results and (polynomial) algorithms for new isomorphism problems represent
an active area of research [7,8]. Interestingly enough, many practical applications have
been proposed over the years.

Historically, the first practical (sub-)graph isomorphism algorithms date back to the
1970s [6,23]. Generally speaking, these early methods recursively construct a match
matrix by backtracking, using “look-ahead” techniques to anticipate isomorphism vio-
lations and prune branches. But important progress has been done over the years in this

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 125–141, 2014.
c© Springer International Publishing Switzerland 2014

126 G. Audemard et al.

area. For example, VF2 [5] is shown to exhibit an exponential speed-up compared to
implementations of other similar approaches (i.e., re-implementations of the algorithms
of Ulmann Schmidt-Druffel). One can also mention the methods based on the compu-
tation of graph automorphism groups for pure isomorphism, and the “color-refining”
techniques (e.g., the Weisfeiler-Lehman algorithm [24]) that can be used to classify
vertices according to different invariants (e.g., degrees).

Incomplete and heuristic approaches are also appropriate to deal with NP-hardness.
They can actually be found in the very vast graph matching (GM) literature, e.g., hun-
dreds of references are given in [2,3]. Certain families of algorithms can be particu-
larized to pure (sub-)graph isomorphism. For instance, the heuristic from [17] tries to
minimize a similarity measure between two graphs: reaching a value of 0 is equivalent
to finding an isomorphism.

With respect to complete methods, a work direction resides in using the rich filtering
and propagation tools from the Constraint Programming (CP) literature (see [22,26,16]
for recent developments). Indeed, the (sub-)graph isomorphism problem can be easily
cast as an instance of the Constraint Satisfaction Problem (CSP). In such view, one
can exploit long-acknowledged constraint propagation techniques based on properties
like, e.g., Arc Consistency (AC) or Singleton Arc Consistency (SAC) (see other proper-
ties in [13]). To reinforce the inference process, several isomorphism-specific filtering
techniques have also been proposed; for instance, ILF [26] and LAD [22] uses degree
information, multi-sets and neighborhood to classify vertices and filter domains.

We propose a general approach to reason about vertex dominance following two
main directions: first, by associating a set of scores with each pair of vertices in any
graph, and second, by considering different ways of defining the neighborhood of ver-
tices. We call this approach SND for Scoring-based Neighborhood Dominance. We
show that LAD is a particular case of SND and we study a specialization of SND by
considering the number of k-length paths in graphs and three ways of relating sets of
vertices. With this specialization, we prove that SND is stronger than LAD and in-
comparable to SAC (Singleton Arc Consistency). Our experimental results show the
effectiveness of our approach.

This paper is organized as follows. Section 2 presents constraint approaches for the
subgraph isomorphism problem. Section 3 gives a detailed description of Scoring-based
Neighborhood Dominance. Section 4 presents a theoretical comparison of SND with re-
spect to other filtering algorithms. In Section 5, an algorithm for a weak version of SND
is introduced, and experimental results are presented in Section 6. Then, we conclude.

2 CP for the Subgraph Isomorphism Problem

Many combinatorial problems can be modeled and solved using tools of Constraint
Programming (CP). This is the case for the subgraph isomorphism problem, whose
instances can be straightforwardly modeled as constraint networks.

2.1 Technical Background

A (discrete) constraint network (CN) P is composed of a finite set of variables, denoted
by vars(P), and a finite set of constraints, denoted by cons(P). Each variable x has a

Scoring-Based Neighborhood Dominance for the Subgraph Isomorphism Problem 127

domain, which is the finite set of values that can be feasibly assigned to x. The initial
domain of a variable x is denoted by dominit(x) whereas the current domain of x is
denoted by dom(x); we always have dom(x) ⊆ dominit(x). Each constraint c involves
an ordered set of variables, called the scope of c and denoted by scp(c). An instantiation
I of an ordered set of variables X = {x1, . . . , xr} is a set {(x1, a1), . . . , (xr, ar)}
such that ∀i ∈ 1..r, ai ∈ dominit(xi) ; each ai is denoted by I[xi]. Importantly, each
constraint c is semantically defined by a relation, which contains the set of allowed
instantiations of the scope of c ; these instantiations are also said to satisfy c. A solution
of a CN P is an instantiation I of vars(P) such that every constraint c ∈ cons(P) is
satisfied by I (restricted to the variables in scp(c)). The set of solutions of a CN P is
denoted by sols(P).

The initial search space of a CN is exactly the Cartesian product of the initial do-
mains for the variables of the CN. Testing the existence of a solution in this space is
a NP-complete task (assuming that checking whether a constraint is satisfied or not
can be made in polynomial time). Fortunately, it is possible to reduce the search space
by removing certain inconsistent values from domains1, while preserving the set of
solutions, by executing so-called filtering algorithms. Interestingly enough, filtering al-
gorithms can be called in sequence, until a fixed point is reached, leading to a process
known as constraint propagation.

The level of filtering reached by constraint propagation is typically determined by a
target property called consistency. For example, Arc Consistency (AC), called General-
ized Arc Consistency (GAC) when constraints are non-binary, is the most famous one.
We define it now. An instantiation I is valid iff ∀(x, a) ∈ I, a ∈ dom(x). An instan-
tiation I of scp(c) is a support on c iff I is a valid instantiation satisfying c. If I is a
support on c such that x ∈ scp(c) and I[x] = a, we say that I is a support for (x, a) on
c. A constraint c is generalized arc consistent (GAC) iff ∀x ∈ scp(c), ∀a ∈ dom(x),
there exists at least one support for (x, a) on c. A CN P is GAC iff every constraint of
P is GAC.

(G)AC is the workhorse of general-purpose constraint solvers. It corresponds to the
maximum level of filtering when constraints are considered independently. If P is a
CN, then GAC(P) denotes the CN obtained from P by removing iteratively all values
detected without any support on a constraint of P . Of course, it is possible to filter
further by extending the reach of local reasoning. One such consistency, stronger than
GAC, is called Singleton Arc Consistency (SAC) [9]. If P is a CN, and (x, a) a pair
such that x ∈ scp(c) and a ∈ dom(x), called value of P , then P |x=a denotes the CN
obtained from P by restricting the domain of x to a. A value (x, a) of P is singleton arc
consistent (SAC) iff GAC(P |x=a) �= ⊥, meaning that no domain has become empty by
propagation. A CN P is SAC iff every value of P is SAC.

Using the terminology from [10], we say that a domain filtering process φ is stronger
than another one ψ iff, on any CN, φ always deletes at least the values deleted by ψ, and
strictly stronger if there is one CN where φ deletes more values than ψ. Accordingly, φ
is incomparable to ψ iff neither is stronger than the other.

1 Other inference techniques that do not directly filter domains exist, but they are beyond the
scope of this paper.

128 G. Audemard et al.

2.2 Isomorphism Model and Filtering Procedures

Before introducing the subgraph isomorphism problem, and different ways of address-
ing it using CP, we recall some definitions on graphs. A simple graphG is a pair (V,E)
where V is a set of vertices and E is a set of edges, which are subsets of V composed
of exactly two vertices. An edge corresponds to an unordered pair of vertices. In a sim-
ple graph, the vertices in each edge are distinct, and there is not more than one edge
between each pair of distinct vertices. Hereafter, graph alone means a simple graph. For
any vertex v ∈ V , Γ (v) denotes the set of nodes adjacent to v, i.e., the set of vertices
sharing an edge with v.

An instance of the subgraph isomorphism problem is defined by a pattern graph
Gp = (Vp, Ep) and a target graph Gt = (Vt, Et): the objective is to determine whether
Gp is isomorphic to some subgraph(s) in Gt. Finding a solution to such a problem
instance means then finding a subisomorphism function, that is an injective mapping f :
Vp → Vt such that all edges of Gp are preserved: ∀(v, v′) ∈ Ep, (f(vp), f(v

′
p)) ∈ Et.

Note that we refer in this paper to the partial, and not the induced subgraph isomorphism
problem. Our problem is also referred to as (subgraph) monomorphism, see [3, p. 268].

We introduce a natural way of representing an instance of this problem by means of
a CN noted P . First, a variable xvp is introduced in vars(P) for each vertex vp of the
pattern graph such that the domain of xvp is exactly the set Vt : if xvp is set to the value
vt, it means that the pattern vertex vp is mapped to the target vertex vt. Second, a global
constraint allDifferent(vars(P)) is introduced in cons(P), which guarantees injection,
i.e., the fact that pattern vertices are mapped to distinct target vertices. Finally, a binary
extensional constraint {xvp , xv′

p
} ∈ Et is introduced for each edge {vp, v′p} ∈ Ep,

which guarantees that every edge in the pattern graph is associated to an edge in the
target graph, i.e., the mapping does not need to be edge-preserving in both directions.
Clearly, the set of solutions to the CN P is exactly the set of possible sub-isomorphism
functions.

There are other possible CP models for the subgraph isomorphism problem, but the
one introduced above is certainly the simplest one, and was used basically in many pre-
vious pieces of work (e.g., see [23,15,19,12,26,22]). In the literature, attempts to solve
efficiently instances of this model have been made with various levels of filtering. For
example, a partial form of arc consistency, called Forward Checking (FC) was employed
in [23,15]. Later, J.-C. Régin [19] used GAC on the constraint allDifferent and AC on
the binary extensional constraints. More recently, there have been a few proposals to
combine constraints in order to filter out more values. In [12], in addition to GAC, it is
proposed to reason from the cardinality of the sets of neighbors of each vertex, while
considering the current domains of variables; we shall denote LV2002 this level of fil-
tering (as in [22]). A so-called iterated labeling filtering (ILF) has been introduced in
[26]. The idea is to exploit the structure of both pattern and target graphs in order to as-
sociate a global label with each vertex. A compatibility relationship defined over the set
of labels can then be used to remove from the domain of a variable xvp every target ver-
tex vt such that the label associated with vt is not compatible with the label associated
with vp. ILF is an iterative procedure that starts from an initial labeling. For example,
one can choose vertex degrees; we shall denote ILFdeg the filtering method obtained
from this choice. At each iteration, the new label for a vertex is a multiset composed

Scoring-Based Neighborhood Dominance for the Subgraph Isomorphism Problem 129

of the labels adjacent to the vertex. Reasoning from sorted multisets allows us to detect
and remove inconsistent values. ILFdom uses another iterative labeling that integrates
current domains in the compatibility relation [26]. Note that this idea of using multisets
(of degrees) was also used outside the constraint programming literature [24,21]. Fi-
nally, LAD is a filtering procedure [22] that is equivalent to adding np × nt constraints
to the CN, and to enforcing GAC. For each pattern vertex vp and each target vertex vt,
there is thus an implicit constraint, that we denote by LAD(vp, vt), added to cons(P)
such that its scope is {xvp} ∪ {xv′

p
| v′p ∈ Γ (vp)}, and its semantics is given by:

xvp = vt ⇒
allDifferent({xv′

p
| v′p ∈ Γ (vp)}) ∧ xv′

p
∈ Γ (vt), ∀v′p ∈ Γ (vp)

(1)

This constraint states that if vp is mapped to vt then all pattern vertices adjacent to
vp must be mapped to distinct target vertices adjacent to vt. In practice, such “neigh-
borhood” constraints are not added to the CN, but a specific filtering algorithm is used
to reach the level of filtering equivalent to GAC. Note that the filtering algorithm in-
troduced in [12] corresponds to enforcing a partial form of GAC on LAD constraints:
it basically ensures that the number of vertices adjacent to vp is smaller than or equal
to the number of target vertices that are both adjacent to vt and belong to at least one
domain of a variable in {xv′

p
| v′p ∈ Γ (vp)}.

For simplicity in our presentation, we say that GAC is enforced on LAD constraints.
This is not exactly true in practice because for each constraint LAD(vp, vt), we only
focus on the value (xvp , vt): if (xvp , vt) has no support on LAD(vp, vt), we delete this
value. In other words, we use the converse of (1) to make a single possible inference.
In case the domain of xvp is reduced to {vt}, we simply use the other constraints of the
CN to make the inferences that would be possible with the constraint LAD(vp, vt). So,
the result is the same: at the end of constraint propagation, the CN is GAC.

3 Scoring-Based Neighborhood Dominance

3.1 Principle and Correctness

We propose to generalize the reasoning behind LAD according two dimensions: first, by
associating a set of scores with any pair of vertices in a graph, and second, by consider-
ing different ways of defining the neighborhood of vertices in a graph (contrary to LAD,
these sets do not necessarily correspond to the vertices that are adjacent to a specified
vertex). We call this approach SND for Scoring-based Neighborhood Dominance.

Hence, SND can be seen as a general approach that is parametrized by two elements
denoted by S (for scoring) and N (for neighborhood). A specialization SNDS,N of
scoring-based neighborhood dominance is then defined by a set of scoring functions S
such that each S ∈ S gives for each pair of vertices (v, v′) of a graph a score S(v, v′)
(defined as an integer or real number computed by any relevant means) and a set of
neighborhood functionsN such that each N ∈ N gives for each vertex v of a graph a
set N(v) of vertices in the same graph.

130 G. Audemard et al.

As for LAD, for each pair (vp, vt) of pattern-target vertices, we implicitly consider
a constraint. It is denoted by SNDS,N (vp, vt), its scope is {xvp}

⋃
N∈N {xv′

p
| v′p ∈

N(vp)}, and its semantics is given by:

xvp = vt ⇒∧
N∈N

(
allDifferent({xv′

p
| v′p ∈ N(vp)}) ∧ xv′

p
∈ N(vt), ∀v′p ∈ N(vp)

∧ S(vp, v′p) ≤ S(vt, xv′
p
), ∀v′p ∈ N(vp), ∀S ∈ S

) (2)

When the last condition of Equation 2 holds (in the context of a neighborhood func-
tion N), i.e., S(vp, v′p) ≤ S(vt, v

′
t) where v′t = xv′

p
, we say that (vp, v′p) is domi-

nated by (vt, v
′
t). If there is no way of finding an instantiation of {xv′

p
| v′p ∈ N(vp)}

such that all pairs (vp, v
′
p) are dominated by pairs (vt, xv′

p
), then we can conclude

that xvp �= vt. Of course, the way the scores are computed and the way the neigh-
borhoods are defined must be coherent with respect to the CN. In other words, any
constraint SNDS,N (vp, vt), added to cons(P) must be a consequence of P . We shall
say that a constraint of the form SNDS,N (vp, vt) is implied (w.r.t. P) iff sols(P) =
sols(P⊕SNDS,N (vp, vt)) where P ⊕ c is the CN P with the additional constraint c.

In this paper, we propose some original combinations of scoring and neighborhood
functions. On the one hand, we propose to use numbers of paths in graphs as a basis
of our scoring functions. Indeed, it is well-known that if MG is the adjacency matrix
associated with a graph G, then Mk

G[v][v
′] indicates the number of k-length paths in

G going from vertex v to vertex v′. The idea is that it is not possible to map a pair
of pattern vertices (vp, v

′
p) to a pair (vt, v

′
t) of target vertices if for a certain k, we

have Mk
Gp

[vp][v
′
p] > Mk

Gt
[vt][v

′
t]. Consequently, such an observation can be used for

filtering. For simplicity and by abuse of notation, Mk will denote the scoring func-
tion S such that for any pair of vertices (v, v′) in a graph G, we have S(v, v′) =
Mk

G[v][v
′]. Hereafter, we shall only consider such functions, so-called length-scoring

functions. In this context, M will denote the set of all length-scoring functions, i.e.,
M = {M1,M2, . . . }.

On the other hand, we propose three different neighborhood functions defined as
follows on any graph G = (V,E):

– Id is the identity function defined as Id(v) = {v}, ∀v ∈ V . Combined with M,
it can be used to filter domains by considering the number of paths going from one
vertex to itself.

– Γ is the function (defined earlier) that returns the set of adjacent vertices. This is
the kind of neighborhood used by LAD.

– all is the function that returns the full set of vertices except the input; all(v) =
V \ {v}, ∀v ∈ V . This function is complementary to Id.

After the observation that LAD is a particular case of SND, we prove the correctness
of our approach with length-scoring functions and neighborhood functions Id, Γ , and
all.

Scoring-Based Neighborhood Dominance for the Subgraph Isomorphism Problem 131

Remark 1. LAD is equivalent to SNDS,N , with S = ∅ and N = {Γ}.

Proposition 1. Any constraint SNDS,N (vp, vt), with S ⊆ M and N ⊆ {Id, Γ,all}
is implied.

Proof. Suppose first that N = {Γ}. We know from [22] that any constraint LAD is
implied. The only difference SNDS,{Γ} makes, compared to LAD, is that, if Mk ∈ S
then it is safe to prevent from matching a node v′p adjacent to vp to a node v′t adjacent
to vt when the number of k-length paths going from vp to v′p is strictly greater than the
number of paths of length k going from vt to v′t. Clearly, ifMk

Gp
[vp][v

′
p] > Mk

Gt
[vt][v

′
t],

there is no subisomorphism function that maps vp to vt while v′p is mapped to v′t. Hence,
the additional restriction imposed by Mk guarantees that the constraint is implied. Sup-
pose now that N = {Id}. With this neighborhood, assuming that Mk ∈ S, vp is
prevented from being matched to vt when the number of k-length paths going from vp
to itself is strictly greater than the number of paths of length k going from vt to itself.
If Mk

Gp
[vp][vp] > Mk

Gt
[vt][vt], there is no subisomorphism function that maps vp to vt.

So the constraint is implied. The proof is similar forN = {all}, and can be extended
to any subset of {Id, Γ,all}. �

In our experimentation, described later, we shall use the neighborhood functions de-
fined previously. However, note that there are many other possibilities. For example, one
could reason with neighborhoods defined as sets of vertices at distance 1 or 2. Also, in-
stead of using length-scoring functions, we might exploit other scoring functions based,
for instance, on numbers of cliques or cycles. Studying these alternatives is beyond the
scope of the paper, and left as a perspective of our work.

3.2 Filtering SND Constraints

Filtering SND constraints in order to reach GAC is similar to what has been proposed
for the constraints allDifferent [18] and LAD. This is based on the concept of covering
matching in a bipartite graph. A matching in a graph is a subset of its edges, no two
of which share a vertex. A matching covers a set of vertices iff each of its vertices
appears in an edge of the matching. A bipartite graph is a graph G = (V,E) where V
is partitioned into two sets V1 and V2 such that each edge E is incident to a vertex in V1
and a vertex in V2; to emphasize the partition, we note V = V1|V2.

We can associate one bipartite graph GN per constraint SNDS,N (vp, vt) and neigh-
borhood function N ∈ N . The bipartite graph GN = (V,E), associated with this
constraint and N , is defined as follows:

– V = N(vp)|N(vt);
– E = {(v′p, v′t) ∈ N(vp)×N(vt) | v′t ∈ dom(xv′

p
)∧S(vp, v′p) ≤ S(vt, v

′
t), ∀S ∈ S}

If there does not exist a matching of the bipartite graph that covers N(vp), then the
right-hand side of Equation 2 (after symbol⇒) evaluates to false, and then (xvp , vt)
has no support on the constraint. This value can be safely deleted (provided that the
constraint is implied).

132 G. Audemard et al.

Example 1. Figure 1 shows an instance of the subgraph isomorphism problem. The
adjacency matrices MGp and MGt as well as M2

Gp
and M2

Gt
, are:

⎛
⎜⎜⎝
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
0 1 0 1 1
1 0 1 0 1
0 1 0 1 1
1 0 1 0 1
1 1 1 1 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝
3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
3 1 3 1 2
1 3 1 3 2
3 1 3 1 2
1 3 1 3 2
2 2 2 2 4

⎞
⎟⎟⎟⎟⎠

MGp MGt M2
Gt

M2
Gt

Let us consider the constraints SND{M1},{Γ}(1, A) and SND{M2},{Γ}(1, A) (for
simplicity, we only consider a unique length-scoring function and a unique neighbor-
hood function). The bipartite graphs associated with those constraints (and Γ) are de-
picted in Figure 2, where Γ (1) = {2, 3, 4} and Γ (A) = {B,D,E} (assuming that the
current domains of x2, x3 and x4 contain all initial values). Note that the scoring is
shown next to vertices. Clearly, with M1, we cannot deduce anything on (1, A) since
there is a matching that covers Γ (1) (shown in boldface in Figure 2(a)). However, with
M2, we can deduce that x1 �= A. Indeed, when we consider the scoring based on M2,
all dotted edges can be discarded. For example, the score of x2 isM2

p [x1][x2] = 2 while
the score of B is only M2

t [A][B] = 1. This means that 2 cannot be mapped to B, and
so the edge is deleted. Finally, when only considering the remaining edges (non dotted
ones), clearly there is no covering matching of Γ (1).

3.3 Simplifying the Target Graph

When domains are reduced during propagation, it is sometimes possible to refine the
scoring functions we use. Indeed, an edge can be deleted from the target graph when we
have the guarantee that no pair of pattern vertices can be mapped anymore to the target
vertices corresponding to this edge. More precisely, we say that an edge (vt, v

′
t) ∈ Et

is unreachable iff for every edge (vp, v′p) ∈ Ep, (vt, v′t) /∈ dom(xvp)× dom(xv′
p
) and

(vt, v
′
t) /∈ dom(xv′

p
) × dom(xvp). So, after any filtering process, we can simplify the

target graph by removing all its unreachable edges. Scoring functions can possibly be
updated, as for example, length-scoring functions of M since as soon as an edge is
removed, the corresponding adjacency matrix is modified. Consequently, we can start
again reasoning with the SND constraints.

1

32

4

(a) Pattern Graph Gp

A

CB

E

D

(b) Target Graph Gt

Fig. 1. An instance of the subgraph isomorphism problem

Scoring-Based Neighborhood Dominance for the Subgraph Isomorphism Problem 133

1

1

11

1

1

B

D

E

2

3

4

(a) SND{M1},{Γ}(1, A)

1

1

22

2

2

B

D

E

2

3

4

(b) SND{M2},{Γ}(1, A)

Fig. 2. Existence of a covering matching in the bipartite graph for SND{M1},{Γ}(1, A), and ab-
sence of covering matching in the bipartite graph for SND{M2},{Γ}(1, A)

4 Theoretical Filtering Comparisons

From now on, SNDS will be used as an abbreviation for SNDS,{Id,Γ,all}, and will stand
for the filtering level corresponding to enforce GAC on the initial CN supplemented
with all constraints SNDS,{Id,Γ,all}(vp, vt). In our study, S will be either M (the set
of all length-scoring functions) or a unique function Mk.

Our first results indicate that it can be useful to reason with both Mk and Mk+1.

Proposition 2. For some k ≥ 1, SND{Mk} is not stronger than SND{Mk+1}.

Proof. Example 1 proves that SND{M1} cannot be stronger than SND{M2}, since
SND{M2} is able to infer x1 �= A, contrary to SND{M1}. �

32

1

(a) Gp

D

C

E

B

A

(b) Gt

Fig. 3. An Instance showing that SND{M6} is not stronger than SND{M5}

Proposition 3. For some k ≥ 1, SND{Mk+1} is not stronger than SND{Mk}.

Proof. Let us consider the problem defined by Figure 3. The matrices M5
Gp

, M5
Gt

,
M6

Gp
and M6

Gt
are as follows:

⎛
⎝10 11 11
11 10 11
11 11 10

⎞
⎠

⎛
⎜⎜⎜⎜⎝

8 40 40 22 22
40 26 26 51 51
40 26 26 51 51
22 51 51 40 41
22 51 51 41 40

⎞
⎟⎟⎟⎟⎠

⎛
⎝22 21 21
21 22 21
21 21 22

⎞
⎠

⎛
⎜⎜⎜⎜⎝

80 52 52 102 102
52 142 142 103 103
52 142 142 103 103
102 103 103 143 142
102 103 103 142 143

⎞
⎟⎟⎟⎟⎠

M5
Gp

M5
Gt

M6
Gp

M6
Gt

134 G. Audemard et al.

On this example, SND{M6} cannot make any inference (observe that all values
in M6

Gt
are systematically greater than those in M6

Gp
, which guarantees a covering

matching for each neighborhood function). On the other hand, as M5
Gp

[1][1] = 10 >

M5
Gt
[A][A] = 8, with Id, we can infer that x1 �= A. �

Proposition 4. SNDM is incomparable to SAC

Proof. On the one hand, Example 1 shows that SNDM can filter more values than
SAC. Indeed, SNDM is able to infer x1 �= A whereas no singleton test performed
by SAC on this instance enables us to identify an inconsistent value. For example,
enforcing GAC after the assignment x1 = A just reduces the domains of x2, x3 and x4
to {B,E,D}; the value A being removed by the allDifferent constraint and the value
C being removed by the binary constraints. As there is no domain wipeout, we cannot
deduce that x1 �= A.

On the other hand, Figure 4 shows an instance where SAC filters more values than
SNDM. Indeed, let us consider the singleton test for (x3, A). By using the allDifferent
constraint, A is first removed from the domain of all other variables. By using the bi-
nary constraints involving x3, values E, F and G are removed from the domain of x2,
x4 and x5, which gives at this point dom(x2) = dom(x4) = dom(x5) = {B,C,D}.
We have here a Hall set, three values for three variables, so the allDifferent constraint
removesB, C andD from the domain of x1, giving dom(x1) = {E,F,G}. Finally, the
binary constraint between x1 and x2 removes B and C from dom(x2), which entails
that D can be removed from dom(x4), leading to an inconsistency when considering
the constraint between x4 and x1. So, SAC infers that x3 �= A. Now, consider MGp ,
MGt , M

2
Gp

and M2
Gt

:

⎛
⎜⎜⎜⎜⎝
0 1 0 1 0
1 0 1 0 0
0 1 0 1 1
1 0 1 0 1
0 0 1 1 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0 0 0
1 0 1 1 0 0 0
1 1 0 1 0 0 0
1 1 1 0 1 1 1
0 0 0 1 0 1 1
0 0 0 1 1 0 1
0 0 0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2 0 2 0 1
0 2 0 2 1
2 0 3 1 1
0 2 1 3 1
1 1 1 1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 2 2 2 1 1 1
2 3 2 2 1 1 1
2 2 3 2 1 1 1
2 2 2 6 2 2 2
1 1 1 2 3 2 2
1 1 1 2 2 3 2
1 1 1 2 2 2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

MGp MGt M2
Gp

M2
Gt

One can verify that reasoning with SND{M1,M2} does not allow to identify any
inconsistent value. There is always a possibility of finding a covering matching. This
is also true with M3 (not shown here), and because of the structure of both graphs, the
situation renders scoring useless from level 4: the greatest value in M4

Gp
is less than

the smallest value in M4
Gt

(and this will be also true at levels greater than 4). In other
words, SND does not identify any inconsistent value. �

Proposition 5. SNDM is strictly stronger than LAD

Proof. LAD only involves Γ as neighborhood function and no scoring function at
all. Besides, on Example 1, LAD behaves as SND{M1}, which is strictly weaker than
SNDM. �

Scoring-Based Neighborhood Dominance for the Subgraph Isomorphism Problem 135

1

3

2

4

5

(a) Gp

B

D

C

E

A G

F

(b) Gt

Fig. 4. An instance showing that SNDM is not stronger than SAC

A summary of the relationships existing between the domain filtering processes in-
troduced in the literature for the subgraph isomorphism problem, and SNDM intro-
duced in this paper is given by Figure 5.

GAC

LV2002

SAC

=

ILF
deg

LAD

ILF
dom

SNDM

Fig. 5. Summary of the relationships between domain filtering processes. An arrow from φ to ψ
means that φ is strictly stronger than ψ. A dotted line means incomparability.

5 A Weak SND Algorithm

This section describes an algorithm called SNDw for applying scoring-based neighbor-
hood dominance. In fact, this algorithm enforces a level of filtering that is weaker than
the full SNDM,{Id,Γ,all}; more details are given at the end of the section.

The main SNDw steps are specified in Algorithm 1, the input of which is a pattern
graph Gp and a target graph Gt. To reduce the memory usage, this algorithm avoids
recording too many matrices and it exploits scoring functions Mk independently. This
means that we reason first with M1, then with M2 and so on, through calls to Func-
tion filterUsingScoring at line 6. The constant MIN ITERATIONS is set to a small value
(e.g., 4) in order to guarantee exploiting at least all length-scoring functions M i with
1 ≤ i ≤ MIN ITERATIONS. The inner repeat-until loop (Lines 5-8) is stopped when
the filtering performed using Mk does not allow any additional inference (Function
filterUsingScoring returnsfalse) and, as indicated just above, enough steps have been
done. After this, we attempt to remove some unreachable edges from the target graph, as

136 G. Audemard et al.

Algorithm 1: SNDw(Gp = (Vp, Ep): Pattern, Gt = (Vt, Et): Target)

1 finished ← false ;
2 while ¬finished do
3 M0

Gp
← Inp ; M0

Gt
← Int ; // Initialize to identity matrices

4 k ← 1 ;
5 repeat
6 modified ← filterUsingScoring(k) ;
7 k ← k + 1 ;
8 until k > MIN ITERATIONS ∧ ¬modified;
9 if ¬removeTargetEdges() then

10 finished ← true ;

indicated in Section 3.3, by using a function called removeTargetEdges (not described
here). If this operation is effective, then the entire process starting at line 2 is run again
with the target matrix modified according to these removals.

Function filterUsingScoring(k: integer): Boolean

1 Mk
Gp

← Mk−1
Gp

× MGp ;

2 Mk
Gt

← Mk−1
t × MGt ;

3 modified ← false ;
4 foreach variable xvp ∈ vars(P) do
5 foreach value vt ∈ dom(xvp) do
6 if ¬isCoherent((vp, vt),Id)
7 ∨ ¬isCoherent((vp, vt), Γ)
8 ∨ ¬isCoherent((vp, vt),all) then
9 remove vt from dom(xvp) ;

10 if dom(xvp) = ∅ then
11 throw exception INCONSISTENT ;

12 modified ← true ;

13 return modified ;

Function filterUsingScoring starts with the computation of Mk
Gp

and Mk
Gt

from Mk−1
Gp

and Mk−1
Gt

. At any time, we just need storage for matrices at two dif-
ferent levels, which allows us to control the memory space required by our approach.
Then, for each pair (vp, vt) such that vt ∈ dom(xvp), the conditions executed at lines
6–8 correspond to the evaluation of the right-hand side of Equation 2, with Mk as
unique length-scoring function and {Id, Γ,all} as neighborhood functions. When one
of these conditions evaluates to false (according to Function isCoherent), the value
vt is removed from dom(xvp). If the deleted value was the last value in the domain,
an exception is thrown to indicate that no subisomorphism function exists. Note that

Scoring-Based Neighborhood Dominance for the Subgraph Isomorphism Problem 137

Function isCoherent((vp,vt): vertices, N : Neighborhood): Boolean

1 E ← ∅ ;
2 foreach v′p ∈ N(vp) do
3 foreach v′t ∈ N(vt) ∩ dom(xv′

p
) do

4 if Mk
Gp

[vp][v
′
p] ≤ Mk

Gt
[vt][v

′
t] then

5 E ← E ∪ {(v′p, v′t)} ;

6 return findCoveringMatching((N(vp)|N(vt), E)) ;

Function filterUsingScoring returns true when at least one value has been deleted.
Finally, Function isCoherent builds first the bipartite graph associated with the pair
(vp, vt) of vertices and the scoring function Mk, and once it is built, a covering match-
ing is sought by a call to findCoveringMatching (not described here).

Our algorithm SNDw is clearly weaker than SNDM,{Id,Γ,all} for several reasons.
First, as already indicated, we exploit scoring functions independently (for simplicity
and for controlling memory usage). Second, in our implementation, we have used an
incomplete procedure to determine whether a covering matching exists. Roughly speak-
ing, it is similar to identifying every Hall set of size 1 (only one possible target vertex
dominating a pattern vertex) and some Hall sets of greater size by a simple reasoning
on the cardinality of vertex sets used for dominance. This implementation choice was
guided by our main objective of having a fast algorithm (although we believe that there
is room for getting a fast incremental full covering matching implementation; this is
one perspective of our work). Third, because domains can be permanently reduced, we
could have envisaged considering again the scoring functions previously exploited (i.e.,
in our current approach, we only execute once the outer loop in Algorithm 1). However,
we do believe that the overhead would be very significant.

In terms of time complexity, a matrix multiplication can be carried out in O(n3),
where n is the matrix order, and faster algorithms do exist, i.e., the algorithm from [25]
requires O(n2.3729). However, when the (adjacency) matrices are sparse, the complex-
ity tends to O(n2). In our implementation, we highly exploit this feature through dedi-
cated data structures.

6 Experimental Results

In order to show the practical interest of our approach, we have performed several exper-
iments using a cluster of Xeon 3.0GHz with 13GB of RAM. For our experimentation,
we have considered the subgraph isomorphism instances used in [22] and classified as
follows:

– the series lv is composed of 793 instances with different properties, based on the
Stanford GraphBase [11,12]

– the series si2, si4, and si6 are composed of 390 instances each, based on the
Vflib database [4,20]

138 G. Audemard et al.

– the series sf is composed of 100 scale-free networks that have been randomly
generated using a power law distribution of degrees [26]

We have first compared the cpu time (expressed in seconds) and the filtering level,
given by the number of deleted values (del), of GAC, SAC2, LAD and SNDw. So, we
just applied the filtering algorithms stand-alone (during what can be considered as a
preprocessing step). For GAC, SAC and SNDw, we used our platform AbsCon (written
in Java), whereas for LAD we used the software (written in C) available at the author’s
page [22]. Table 1 shows the average results obtained on the five series introduced
above. For each series, # represents the number of instances, and D the average total
number of values (D is the average of DP =

∑
x∈vars(P) |dominit(x)| over all CNs P

of the series). A first observation is that SAC and SNDw are close to each other in term
of deleted values: on some instances/series, SAC is more powerful, and on some other
instances/series, this is SNDw. However, when turning our attention to cpu time, SAC
appears to be slower than SNDw by around two orders of magnitude. In order to have
a fair comparison between SAC and SNDw, we only kept for those two methods the
instances where SAC finished within 1, 200 seconds. This can explain why LAD seems
to filter more on the series sf. To summarize, SNDw is significantly stronger than LAD
(and close to SAC) while being more expensive to a reasonable extent (remember too
that different programming languages are used).

In our second set of experiments, we searched to solve each problem instance, i.e., to
find a solution or prove that none exists, within 1, 200 seconds. We used MAC, the clas-
sical algorithm that maintains GAC during a backtrack search, LAD, and also MSNDw

the algorithm that maintains SNDw during search (however, we only executed one it-
eration of the main loop of Algorithm 1, disabling the call to removeTargetEdges). We
also used MAC after either SAC executed at preprocessing (pSAC) or SNDw (pSNDw).
Table 2 shows that, in term of the number of solved instances (sol), MSNDw is clearly
the best approach, except for the series sf where LAD is very efficient.

Table 3 presents the results on a few selected instances. One can observe that main-
taining SNDw can be very effective. Indeed, for some instances, the number of nodes

Table 1. Preprocessing. For each filtering technique, cpu represents the average time (in seconds)
and del represents the average number of removed values (K stands for thousands).

Series GAC LAD SAC SNDw

Name # D cpu del cpu del cpu del cpu del

lv 793 5,877 0.5 188 0.01 857 24 1,237 0.6 1,502
si2 390 78K 0.6 3 0.29 50K 168 52K 1.1 51K
si4 390 156K 0.75 8 1.05 107K 177 109K 1.4 107K
si6 390 235K 0.8 12 2.19 164K 193 165K 2.1 184K
sf 100 284K 1 0 0.32 276K 567 234K 2.5 244K

2 We tried both algorithms SAC1 and SAC3 [1], but for this problem, the results were rather
similar on average. So the results are given here for SAC1.

Scoring-Based Neighborhood Dominance for the Subgraph Isomorphism Problem 139

Table 2. Finding one solution. For each filtering technique, cpu represents the average time (in
seconds) needed to solved instances and sol represents the number of solved instances (timeout
set to 1, 200 seconds).

Series MAC LAD pSAC pSNDw MSNDw

Name # cpu sol cpu sol cpu sol cpu sol cpu sol

lv 793 24 683 8.3 726 89 695 7.6 724 9.6 729
si2 390 38 352 13 345 153 236 25 356 28 357
si4 390 42 357 19 358 142 212 24 359 22 366
si6 390 46 346 20 372 191 204 22 367 24 375
sf 100 120 58 2.6 100 557 62 4.3 99 18 99

can be highly reduced. But this is not always sufficient, as can be seen for instance
si6-m4D-m1296-00, where pSNDw remains slightly faster than MSNDw although the
number of nodes is five times lower. This comforts us toward studying in the near future
optimized incremental variants of SNDw.

Table 3. Selected instances. For each technique, cpu represents the time needed to solve it (find-
ing one solution), nodes the number of nodes of the search tree and del the number of values
removed during the preprocessing step. The rightmost column is for both pSNDw and MSNDw.

Instances LAD pSNDw MSNDw

Name cpu nodes del cpu nodes cpu nodes del

val35-49 Time-OUT 0 169 29,579 54 2,985 4,558
si2-m4D-m625-01 1.10 384 30,994 56 2,222 18 870 33,138
si4-r005-m400-09 456 1,553 10 684 18,934 99 1,017 524
si6-m4D-m1296-00 324 470,007 456,936 220 4,135 224 848 468,970
E-14 5.29 5 44,126 7.02 35 14.2 8 44,578

7 Conclusion

In this paper, we have proposed a general approach for solving instances of the
subgraph isomorphism problem. This general approach called SND (Scoring-based
Neighborhood Dominance) is parametrized by two sets of scoring and neighborhood
functions. We have shown both the theoretical and practical interest of SND on a se-
lection of a few functions. A natural continuation of this work consists in optimizing
our current implementation, e.g., to ensure full covering matching incrementally. A
promising perspective concerns the design of new scoring functions and the integration
of other neighborhood functions from the literature.

Acknowledgments. This work has been supported by a project BQR (Bonus Qualité
Recherche) from the University of Artois. The three first authors also benefit from a
support by both CNRS and OSEO within the ISI project ’Pajero’.

140 G. Audemard et al.

References

1. Bessiere, C., Cardon, S., Debruyne, R., Lecoutre, C.: Efficient algorithms for singleton arc
consistency. Constraints 16(1), 25–53 (2011)

2. Bunke, H.: Recent developments in graph matching. In: Proceeding of ICPR 2000, vol. 2,
pp. 117–124 (2000)

3. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern
recognition. International Journal of Pattern Recognition and Artificial Intelligence 18(3),
265–298 (2004)

4. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: Performance evaluation of the VF graph
matching algorithm. In: Proceedings of ICIAP 1999, pp. 1172–1177 (1999)

5. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algo-
rithm for matching large graphs. IEEE Transactions on Pattern Analysis & Machine
Intelligence 26(10), 1367–1372 (2004)

6. Corneil, D.G., Gotlieb, C.C.: An efficient algorithm for graph isomorphism. Journal of the
ACM 17(1), 51–64 (1970)

7. Damiand, G., Solnon, C., de la Higuera, C., Janodet, J.-C., Samuel, E.: Polynomial
algorithms for subisomorphism of nD open combinatorial maps. Computer Vision and Image
Understanding 115(7), 996–1010 (2011)

8. de la Higuera, C., Janodet, J.-C., Samuel, E., Damiand, G., Solnon, C.: Polynomial
algorithms for open plane graph and subgraph isomorphisms. Theoretical Computer
Science 498, 76–99 (2013)

9. Debruyne, R., Bessiere, C.: Some practical filtering techniques for the constraint satisfaction
problem. In: Proceedings of IJCAI 1997, pp. 412–417 (1997)

10. Debruyne, R., Bessiere, C.: Domain filtering consistencies. Journal of Artificial Intelligence
Research 14, 205–230 (2001)

11. Knuth, D.E.: The Stanford GraphBase: A Platform for Combinatorial Computing. ACM
Press (1993)

12. Larrosa, J., Valiente, G.: Constraint satisfaction algorithms for graph pattern matching. Math-
ematical Structures in Computer Science 12(4), 403–422 (2002)

13. Lecoutre, C.: Constraint networks: techniques and algorithms. ISTE/Wiley (2009)
14. Luks, E.M.: Isomorphism of graphs of bounded valence can be tested in polynomial time.

Journal of Computer and System Sciences 25(1) (1982)
15. McGregor, J.J.: Relational consistency algorithms and their application in finding subgraph

and graph isomorphisms. Information Sciences 19, 229–250 (1979)
16. Ndiaye, S.N., Solnon, C.: CP models for maximum common subgraph problems. In: Lee, J.

(ed.) CP 2011. LNCS, vol. 6876, pp. 637–644. Springer, Heidelberg (2011)
17. Porumbel, D.C.: Isomorphism testing via polynomial-time graph extensions. Journal of

Mathematical Modelling and Algorithms 10(2), 119–143 (2011)
18. Régin, J.C.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings of

AAAI 1994, pp. 362–367 (1994)
19. Régin, J.C.: Développement d’outils algorithmiques pour l’intelligance artificielle. Applica-

tion à la chimie organique. PhD thesis, Université Montpellier II (1995)
20. De Santo, M., Foggia, P., Sansone, C., Vento, M.: A large database of graphs and its use for

benchmarking graph isomorphism algorithms. Pattern Recognition Letters 24(8), 1067–1079
(2003)

21. Shervashidze, N., Schweitzer, P., Jan van Leeuwen, E., Mehlhorn, K., Borgwardt, K.M.:
Weisfeiler-lehman graph kernels. Journal of Machine Learning Research 12, 2539–2561
(2011)

Scoring-Based Neighborhood Dominance for the Subgraph Isomorphism Problem 141

22. Solnon, C.: Alldifferent-based filtering for subgraph isomorphism. Artificial Intelligence
174(12-13), 850–864 (2010)

23. Ullmann, J.R.: An algorithm for subgraph isomorphism. Journal of the ACM 23(1), 31–42
(1976)

24. Weisfeiler, B., Lehman, A.: A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno-Technicheskaya Informatsia 2(9) (1968)

25. Williams, V.V.: Multiplying matrices faster than coppersmith-winograd. In: Proceedings of
STOC 2012, pp. 887–898 (2012)

26. Zampelli, S., Deville, Y., Solnon, C.: Solving subgraph isomorphism problems with
constraint programming. Constraints 15(3), 327–353 (2010)

Linking Prefixes and Suffixes for Constraints

Encoded Using Automata with Accumulators

Nicolas Beldiceanu1, Mats Carlsson2, Pierre Flener3,
Maŕıa Andréına Francisco Rodŕıguez3, and Justin Pearson3

1 TASC Team (CNRS/INRIA), Mines de Nantes, 44307 Nantes, France
Nicolas.Beldiceanu@mines-nantes.fr

2 SICS, P.O. Box 1263, 164 29 Kista, Sweden
Mats.Carlsson@sics.se

3 Uppsala University, Dept. of Information Technology, 751 05 Uppsala, Sweden
{FirstName.LastName}@it.uu.se

Abstract. Consider a constraint on a sequence of variables functionally
determining a result variable that is unchanged under reversal of the se-
quence. Most such constraints have a compact encoding via an automa-
ton augmented with accumulators, but it is unknown how to maintain
domain consistency efficiently for most of them. Using such an automaton
for such a constraint, we derive an implied constraint between the result
variables for a sequence, a prefix thereof, and the corresponding suffix.
We show the usefulness of this implied constraint in constraint solving,
both by local search and by propagation-based systematic search.

1 Introduction

Deterministic finite automata augmented with accumulators [4] were motivated
by the need to encode a constraint C on a sequence X of variables using an
automaton whose size does not depend on the size of X : accumulators are ini-
tialised at the start state and evolve through the transitions; upon acceptance,
the accumulators are often mapped to a result variable R of C. The Global
Constraint Catalogue [1] gives very compact automata with accumulators for 56
constraints (and some will be given shortly), but it is unknown how to maintain
domain consistency efficiently for most of them, so implied constraints can help
improve the propagation. In this paper, we consider such constraints C(X,R)
where R is the same for both X and its reverse Xrev; this covers 45 of those 56
constraints. Such constraints have proved very useful, for instance in production
sequencing and staff rostering. Given a partition of X into a prefix P and a suffix

T , we derive an implied constraint, shown to exist and be unique, between R,
−→
R ,

and
←−
R when C(X,R), C(P,

−→
R), and C(T rev,

←−
R) hold. We show the usefulness

of this implied constraint in constraint solving, whether by local search or by
propagation-based systematic search.

We now define the Group constraint, to which we will be referring heavily
throughout. We then give a motivating example, introducing our terminology
and serving as running example throughout the rest of the paper.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 142–157, 2014.
c© Springer International Publishing Switzerland 2014

Linking Prefixes and Suffixes for Constraints Encoded Using Automata 143

Definition 1 ([1]). In a sequence, a group is a maximal contiguous subsequence
with values from a given set. The constraint Group(X,W,G, V,H,L) holds if
there are G groups of a total of V values from the given set W in the possibly
empty sequence X of variables, the highest and lowest group sizes being H and
L respectively, with H = 0 = L if G = 0. (W.l.o.g., we omit two parameters.)

The instance Group([d, a, c, b, e, a, b], {a, e}, 2, 3, 2, 1) holds since there are
G = 2 groups of a total of V = 3 occurrences of ‘a’ and ‘e’ in the sequence
[d, a, c, b, e, a, b], namely the groups [a] and [e, a], the highest group size be-
ing H = 2 and the lowest group size being L = 1. Group has no known
propagator. Its decomposition [1] into the conjunction GroupG(X,W,G) ∧
GroupV(X,W, V) ∧ GroupH(X,W,H) ∧ GroupL(X,W,L) can be encoded
using four Automaton constraints on automata with accumulators [4]: see Fig-
ure 1 and Section 2 for details. These constraints are very useful, for instance in
staff rostering, where multiple counting constraints on the same sequence (the
shift assignments of an employee over a planning horizon) are quite frequent.

Example 1. Consider the instance Group([X1, X2, X3], {a}, G, V,H, L), where
dom(Xi) = {a, b}, dom(G) = {0, 1, 2} = dom(V), dom(H) = {2, 3} = dom(L),
with dom(α) denoting the current domain of variable α. Using the encoding
mentioned above, no domain pruning is achieved on this instance.

However, it is possible to achieve some propagation on this instance, whose
solutions are Group([a, a, b], {a}, 1, 2, 2, 2) and Group([b, a, a], {a}, 1, 2, 2, 2):
among others, there cannot be G = 2 groups (as that would require a sequence
of at least five elements, as groups must have at least two elements), the groups
cannot have a total of V = 0 values (as the largest group must have at least two
elements), and X2 cannot be ‘b’ (as X2 must participate in a group of ‘a’).

We now discuss three schemes for achieving more propagation than with just
the encoding by four Automaton constraints.

Scheme 1. The Group constraint has so-called graph invariants [5], which
can be seen as implied constraints. For instance, consider the following bounds
on V :

max(G− 1, 0) · L+H ≤ V ≤ max(G− 1, 0) ·H + L (1)

Intuitively, the lower bound corresponds to having one group ofH elements while
all the other groups are as small as possible, that is, they have L elements. The
upper bound is justified in a similar way. Consider again the instance above: if
the implied constraint (1) is added to the four Automaton constraints, then 2
is pruned from dom(G), but all the other domains remain unchanged. There are
90 graph invariants in [5] for the Group constraint: the pruning upon adding
all the corresponding implied constraints is evaluated in Section 5.

Scheme 2. Note that Group([X1, . . . , Xn],W,G, V,H,L) holds if and only if
Group([Xn, . . . , X1],W,G, V,H,L) holds with the same set and the same inte-
ger variables for the reverse sequence: in Section 3.1, we will say that Group is
its own reverse constraint. Let us focus on the variable V , representing the total
number of group values. If we split a sequence [X1, . . . , Xn] with n ≥ 2 elements
into a non-empty prefix [X1, . . . , Xi] and a non-empty suffix [Xi+1, . . . , Xn], with

144 N. Beldiceanu et al.

1 ≤ i < n, then observe that the numbers V ,
−→
V , and

←−
V of group values respec-

tively in the entire sequence, the prefix, and the reverse suffix are related by the

constraint V =
−→
V +

←−
V : in Section 3.2, we will say that this constraint implied by

the conjunction of GroupV([X1, . . . , Xn],W, V), GroupV([X1, . . . , Xi],W,
−→
V),

and GroupV([Xn, . . . , Xi+1],W,
←−
V) is a glue constraint. Glue constraints for all

the integer variables of Group are given in Figure 2 and will be explained in

Section 3.2. While GroupV([Xn, . . . , Xi+1],W,
←−
V) could be replaced above by

GroupV([Xi+1, . . . , Xn],W,
←−
V), this will be seen to be impossible in general

with our approach, where the third implying constraint must be on the reverse
suffix, not on the suffix itself. Now consider again the instance above: if we add
the glue constraints in Figure 2 for every possible split of the sequence (with
1 ≤ i < n), but not the implied constraint (1), then ‘b’ is pruned from dom(X2)
and 0 is pruned from dom(V), but all the other domains remain unchanged.

Note that the extra pruning achieved by Scheme 1 is incomparable with that
achieved by Scheme 2.

Scheme 3. The idea of sequence splitting (underlying the glue constraints) can
be applied also to the implied constraints stemming from graph invariants: for
instance, instead of adding (1) on the integer variables for the entire sequence,
we can add (1) on the integer variables for the prefix and reverse suffix of every
possible split of the sequence. On the instance under consideration, applying
Scheme 1+2+3 achieves the same pruning as applying Scheme 1+2, but, in
general, more pruning is possible, as we will show in Section 5. In Section 4, we
formalise Scheme 3. ��

Multiple constraints on a sequence can originate from sources other than
the decomposition of a constraint, unlike the previous example. For instance, a
conjunction of about 20 constraints on the same sequence (of energy produced
by a plant every half an hour for two consecutive days) is the pattern learned
in the context of the EDF model seeker [7]. Also, in staff rostering, one has a
matrix indexed in the rows by the employees and in the columns by the days
of a planning horizon: each matrix cell is to be assigned an identifier (or a
special off-duty value) giving the shift assigned to the corresponding employee
on the corresponding day. The constraints on the columns are usually cardinality
constraints, stemming from a performance contract, and there are often multiple
constraints on each row, stemming from employee preferences as well as labour
union and legislative restrictions. In [2], we have addressed the lack of interaction
between such row and column constraints; in this paper, we address the lack of
interaction between the constraints on a given row.

The contributions and the organisation of the rest of this paper are as follows,
after first recalling (and slightly extending) in Section 2 the concept of automaton
with accumulators [4], which can be used for compactly encoding a constraint
on a sequence of variables using the Automaton constraint [4]:

– In Section 3, our main result, after introducing the notion of reverse of a
constraint, we define a glue constraint as an implied constraint, shown to
exist and be unique, linking the result variable R under a constraint C(X,R)

Linking Prefixes and Suffixes for Constraints Encoded Using Automata 145

on a sequence X of variables to the result under C on a prefix and the result
under the reverse of C on the corresponding reverse suffix ofX , where both C
and its reverse are encoded using automata with accumulators. We show how
to derive glue constraints automatically for a useful class of such constraints.

– In Section 4, we formalise Scheme 3 of Example 1 so as to cover any con-
junction of constraints Cj(X,Rj) on the same sequence X , whose results Rj

do not vary independently but are linked by an implied constraint.
– In Section 5, we evaluate the effectiveness and efficiency of the three schemes.
– In Section 6, we use the glue constraint to compute, in constant time, the

violation cost of C when probing an assignment move in local search.

We conclude and discuss related and future work in Section 7.

2 Background: Automata with Accumulators

Recall that a deterministic finite automaton (DFA) is a tuple 〈Q,Σ, δ, φ,A〉,
where Q is the set of states, Σ the alphabet, δ : Q × Σ → Q the transition
function, φ ∈ Q the start state, and A ⊆ Q the set of accepting states. When
δ(q, σ) = q′, there is a transition from state q to state q′ upon reading alphabet
symbol σ in the word given to the DFA. Let Σ∗ denote the infinite set of words
built from Σ, including the empty word, denoted ε. The extended transition
function δ̂ : Q×Σ∗ → Q for words (instead of symbols) is recursively defined by

δ̂(q, ε) = q and δ̂(q, wσ) = δ(δ̂(q, w), σ) for a word w and symbol σ. An example
will be given shortly, but first we augment DFAs with a memory, in the spirit
of [4], in order to encode more compactly many constraints.

We here define a memory-DFA (mDFA) with a memory of k ≥ 0 accumulators
as a tuple 〈Q,Σ, δ, φ, I, A, α〉, where Q, Σ, φ, and A are as in a DFA, while the
transition function δ has signature (Q × Zk) × Σ → Q × Zk, and similarly for

its extended version δ̂. Further, I is the k-tuple of initial values of the variables
in the memory. Finally, α : A × Zk → Z is called the acceptance function and
transforms the memory of an accepting state into an integer. Given a word w,
the mDFA returns α(δ̂(〈φ, I〉, w)) if w is accepted. Note that δ, δ̂, and α are
total functions. This definition can be generalised, but suffices for the purpose
of the examples in this paper.

Example 2. Consider the mDFA H depicted in Figure 1c. It returns the highest
size of all groups of ones within a given word of zeros and ones. It uses two
accumulators: at any moment, c stores the size of the current group, while h
stores the highest size of all the groups seen so far. The state set Q is {s}.
The alphabet Σ is {0, 1}. The start state φ is s, and is indicated by an arrow
coming from nowhere, annotated within braces by the initialisation to zero of
h and c, hence I = 〈0, 0〉. A transition δ(〈q, 〈h, c〉〉, σ) = 〈q′, 〈h′, c′〉〉, where h′
and c′ are functional expressions in terms of h and c, is depicted by an arrow
going from state q to state q′, annotated by symbol σ and, within braces, the
memory update 〈h, c〉 := 〈h′, c′〉. For instance, the lower self-loop depicts that
δ(〈s, 〈h, c〉〉, 1) = 〈s, 〈max(h, c + 1), c + 1〉〉 for all h and c. If a memory update

146 N. Beldiceanu et al.

s

{v := 0}

return v

0

1
{v := v + 1}

(a) mDFA V for GroupV

return gs

{g := 0}

t

0

1
{g := g + 1}

1
0

(b) mDFA G for GroupG

s

{〈h, c〉 := 〈0, 0〉}

return h
0

{c := 0}

1
{〈h, c〉 := 〈max(h, c+ 1), c+ 1〉}

(c) mDFA H for GroupH

return min(�, c)s

{〈�, c〉 := 〈+∞, 0〉}

t

0

1
{c := 1}

1
{c := c+ 1}

0
{� := min(�, c)}

(d) mDFA L for GroupL

Fig. 1. Memory-DFAs for the constraints of the decomposition of Group

corresponds to the identity function, then we omit it; for instance, the right self-
loop has the memory update c := 0 as an abbreviation for 〈h, c〉 := 〈h, 0〉. All
states are accepting, hence A = Q, an accepting state being marked by a double
circle. The acceptance function α transforms a memory 〈h, c〉 at state s into h,
and is depicted by a box linked to s by a dotted line. ��

Automata are useful for encoding a constraint on a sequence X of variables:
the Regular(D, X) constraint [14] takes a constraint encoded by a DFA D and
holds if and only if the word represented by X is accepted by D; similarly, the
Automaton(M, X) constraint [4] takes a constraint encoded by an mDFA M
and specialises to Regular for a memory of k = 0 accumulators. We define
Automaton(M, X,R) for an mDFA with a memory of k > 0 accumulators:
this constraint is equivalent to the conjunction of Automaton(M, X) and the
acceptance constraint that variable R be equal to the integer returned by M,
that is R = α(δ̂(〈φ, I〉, X)). Note that R functionally depends on X , as α and δ̂
are total functions. Automaton does not maintain domain consistency if k > 0.

Further, a constraint C on a sequence X of variables can sometimes be en-
coded with the help of an (m)DFA that operates not on X , but on a sequence S
of signature variables, each depending via a signature constraint [4] under a total
function on a sliding window of a consecutive variables within X . The constant
a ≥ 1 is called the arity of the signature constraints, and is linked to the lengths
n of X and m of S bym = n+1−a. The arity gives a precondition on C, namely
n ≥ a−1, as the signature constraints fail otherwise. The sliding windows within
X for two consecutive signature variables overlap by a− 1 variables.

Linking Prefixes and Suffixes for Constraints Encoded Using Automata 147

Example 3. Consider the GroupH([X1, . . . , Xn],W,H) constraint with n ≥ 0.
We constrain a sequence [S1, . . . , Sm] of m = n signature 0/1 variables Si with
the signature constraints (Xi ∈ W) ⇔ (Si = 1) for all 1 ≤ i ≤ n: we have
a = 1 since each signature constraint is on a single Xi. Using the mDFA
H of Example 2 and Figure 1c, we encode GroupH([X1, . . . , Xn],W,H) by
Automaton(H, [S1, . . . , Sn], H) and these signature constraints. For the con-
straint instance GroupH([d, a, c, b, e, a, b], {a, e}, 2), the mDFA H indeed re-
turns h = 2 on the sequence S = [0, 1, 0, 0, 1, 1, 0] of signature values. Similarly,
the other constraints of the given decomposition of the Group constraint can
be encoded with the help of the other three mDFAs in Figure 1. ��

In the absence of signature variables and constraints, we consider S = X to
be a signature constraint, as this simplifies the discussion.

3 Reverse Constraints and Glue Constraints

After defining the concept of reverse of a constraint in Section 3.1, we define
in Section 3.2 a glue constraint as an implied constraint for a constraint with
a reverse constraint, both encoded using an automaton with accumulators, and
we show that the glue constraint is unique and always exists. Finally, we show
in Section 3.3 how to derive, mechanically and efficiently, the glue constraint for
a useful large class of constraints.

3.1 The Reverse of a Constraint

A constraint C(V1, . . . , Vn) is a total-function constraint [3] if its variables Vi
can be partitioned into two non-empty sets, D and R, such that for any as-
signment to the variables of D there is a unique assignment to the variables
of R that satisfies C. For example, the constraints Group(X,W,G, V,H,L),
GroupG(X,W,G), GroupV(X,W, V), GroupH(X,W,H), GroupL(X,W,L)
are total-function constraints, where X andW uniquely determine G, V , H , and
L. Also, signature constraints (see Section 2) are total-function constraints.

We write a constraint C(D,R) as C(D → R) when the variables D func-
tionally determine the variables R. We denote the reverse of a word or variable
sequence w by wrev. We now define our first core concept.

Definition 2. The reverse of a total-function constraint C(D → R), where D
is a sequence of variables, is a total-function constraint C′(D′ → R′), where D′

is a sequence of variables, such that, for any sequence X of variables, both X
and its reverse functionally determine the same result variables Y under C and
C′ respectively, that is both C(X → Y) and C′(Xrev → Y) hold.

Example 4. The constraints Group, GroupG, GroupV, GroupH, GroupL

are their own reverses. The constraint LengthFirstSequence(X,L), which
holds if L is the size of the first group of identical values within the sequenceX of
variables [1], does not have itself as reverse, but LengthLastSequence(X,L),
which holds if L is the size of the last group of identical values within X [1]. ��

148 N. Beldiceanu et al.

If a total-function constraint C(X,R) is encoded by Automaton(M, S, R)
and signature constraints linking the sequences X and S of variables, using a
memory-DFA M = 〈Q,Σ, δ, φ, I, A, α〉 with k accumulators, then M necessar-
ily only has accepting states, that is A = Q, because the total function α is
only defined on accepting states, so that the value returned by M on the word
represented by S might be undefined if there were some non-accepting states.

If a total-function constraint C has a memory-DFA M, then a memory-DFA
M′ for its reverse constraint C′ can in some cases be derived automatically from
M. Indeed, M′ is then the reverse of M, in the sense that M′ recognises the
reverse of every word recognised by M, and both return the same value. For
instance, if M has a single accumulator (hence k = 1), which is initialised to
zero (hence I = 0) at the start state φ and increased by a non-negative quantity
at each transition, and if the acceptance function α returns that accumulator
increased by a non-negative quantity, then M is a weighted DFA [12] over the
tropical semiring over the integers, and the algorithms implemented in [13] can
be used for reversal. Among the 45 of 56 constraints of the catalogue covered by
this paper, there are 16 with weighted DFAs, such as GroupG and GroupV,
but not GroupH and GroupL, whose accumulator updates use the max and
min operators. (We revisit this useful class of constraints in Section 3.3.)

3.2 Glue Constraints

We need the Automaton constraint to be implemented, in extension to how
it is done in [4], by a decomposition that introduces variables representing
not only the accumulators but also the state of the argument mDFA M =
〈Q,Σ, δ, φ, I, A, α〉 after reading each symbol of an argument sequence S of vari-

ables. Upon reading the entire S, we then have that δ̂(〈φ, I〉, S) is a tuple 〈q, V 〉,
where variable q represents the reached state of M, and V is an array of k
variables representing the k obtained accumulator values of M.

We now show that the result of M on a word w can be computed from only
these state and accumulator variables, as they encode all information on w. We
will then exploit this insight by constructing a function g, which is unique and
correctly computes the result of M on a word w = pt by combining the state
and accumulator variables reached by its prefix p and the reverse of its suffix t.

Theorem 1. Consider an mDFAM = 〈Q,Σ, δ, φ, I, A, α〉 and its reverseM′ =
〈Q′, Σ, δ′, φ′, I ′, A′, α′〉, over the same alphabet Σ. Consider four words p1, p2,

t1, and t2. Assume p1 and p2 reach the same tuple in M, that is δ̂(〈φ, I〉, p1) =
〈qp, Vp〉 = δ̂(〈φ, I〉, p2). Assume the reverses of t1 and t2 reach the same tuple

in M′, that is δ̂′(〈φ′, I ′〉, t1rev) = 〈q′t, V ′
t 〉 = δ̂′(〈φ′, I ′〉, t2rev). We then have

α(δ̂(〈φ, I〉, p1t1)) = α(δ̂(〈φ, I〉, p2t2)), so that the result on a word is independent
of its prefixes pi and corresponding suffixes ti transiting through the same tuples.

Proof. We have α(δ̂(〈φ, I〉, p1t1)) = α(δ̂(〈qp, Vp〉, t1)) = α(δ̂(〈φ, I〉, p2t1)). Simi-

larly, α′(δ̂′(〈φ′, I ′〉, (p2t1)rev)) = α′(δ̂′(〈q′t, V ′
t 〉, p2rev)) = α′(δ̂′(〈φ′, I ′〉, (p2t2)rev)).

Linking Prefixes and Suffixes for Constraints Encoded Using Automata 149

AsM′ is the reverse ofM, we have α(δ̂(〈φ, I〉, p2t1)) = α′(δ̂′(〈φ′, I ′〉, (p2t1)rev))
= α′(δ̂′(〈φ′, I ′〉, (p2t2)rev)) = α(δ̂(〈φ, I〉, p2t2)), and hence α(δ̂(〈φ, I〉, p1t1)) =

α(δ̂(〈φ, I〉, p2t2)). ��

Hence there exists a unique total function g that takes two tuples 〈q, V 〉 and
〈q′, V ′〉 of M and M′ respectively, such that

g(〈q, V 〉, 〈q′, V ′〉) = α(δ̂(〈φ, I〉, pt)) (2)

for any prefix p that reaches the tuple 〈q, V 〉 inM and any suffix t such that trev

reaches the tuple 〈q′, V ′〉 inM′. It follows from Theorem 1 that this function is
well-defined, as it is independent of the prefix p and suffix t picked.

Consider a total-function constraint C(X → R), for which an mDFA M
reads a sequence S of signature variables channelled with the sequence X by
signature constraints, such that the variable R must be the result returned by
M on S. Hence C(X,R) can be encoded by Automaton(M, S, R) and the
signature constraints. Consider a split of S into the concatenation of a possibly
empty prefix P and a possibly empty suffix T , that is S = PT , with R =
α(δ̂(〈φ, I〉, PT)). We now define our second core concept:

Definition 3. Suppose, in addition to Automaton(M, PT,R), we post the

constraint Automaton(M, P,
−→
R) on the prefix P , as well as the constraint

Automaton(M′, T rev,
←−
R) on the reverse suffix T rev, where M′ is the reverse

of M. Let δ̂(〈φ, I〉, P) = 〈−→q ,−→V 〉 and δ̂′(〈φ′, I ′〉, T rev) = 〈←−q ,←−V 〉. The function g
of (2) gives rise to an implied constraint, called the glue constraint:

R = g(〈−→q ,−→V 〉, 〈←−q ,←−V 〉) (3)

Example 5. The glue constraints for all four numeric variables of the Group

constraint are given in Figure 2. They are organised as matrices, called glue
matrices. The glue matrix in Figure 2d represents the following glue constraint:

L =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min(

−→
� ,−→c +←−c ,←−�) if −→q = s ∧←−q = s

min(
−→
� ,←−c ,←−�) if −→q = s ∧←−q = t

min(
−→
� ,−→c ,←−�) if −→q = t ∧←−q = s

min(
−→
� ,−→c +←−c ,←−�) if −→q = t ∧←−q = t

Figure 3 illustrates its use on an instance of GroupL. ��

We post the three Automaton constraints of Definition 3 and their implied
glue constraint (3) for every split of the sequence S of signature variables into a
possibly empty prefix P and a possibly empty suffix T .

We have no general calculus (yet) for deriving the glue function g mechanically
from an mDFA, but we now illustrate the typical reasoning on an example. In
Section 3.3, we then show how to derive g mechanically and efficiently for the
useful class of constraints mentioned at the end of Section 3.1.

150 N. Beldiceanu et al.

s

s V = −→v + ←−v

(a) Glue constraint for GroupV

s t

s G = −→g + ←−g G = −→g + ←−g

t G = −→g + ←−g G = −→g − 1 + ←−g

(b) Glue constraint for GroupG

s

s H = max(
−→
h ,−→c + ←−c ,←−h)

(c) Glue constraint for GroupH

s t

s L = min(
−→
� ,−→c + ←−c ,←−�) L = min(

−→
� ,←−c ,←−�)

t L = min(
−→
� ,−→c ,←−�) L = min(

−→
� ,−→c + ←−c ,←−�)

(d) Glue constraint for GroupL

Fig. 2. Glue constraints for the constraints of the decomposition of Group: a row
index refers to the state of the corresponding mDFA in Figure 1 reached by the prefix,
and a column index refers to the state reached by the corresponding reverse suffix;
recall that each of the four mDFAs is its own reverse.

Example 6. The mDFA H in Figure 1c has a single state, whose semantics is as
follows, given current accumulator values c and h: a word matching the regular
expression π1c has been read so far, where π = ε | Σ∗0, with c ≥ 0 (let 10 =
ε) and max(θ(h, π), c) = h, where θ(a, w) denotes the value of accumulator a
upon reading word w. Observe that θ(h, π) is not accessible any more in any
accumulator after reading π1c when c > 0. Note that θ(h,w) = θ(h,wrev) for
any word w, because H and GroupH are their own reverses.

When GroupH(X,W,H) is encoded by Automaton(H, S,H) and the sig-
nature constraints of Example 3 between X and S, let us split S into the con-
catenation of a possibly empty prefix P and a possibly empty suffix T .

Upon feeding the prefix P to H, we end up with acceptance at state −→q = s,

since H has only that state. Let us call −→c and
−→
h the obtained accumulator

values. From the semantics above of state s, we know that −→c ≥ 0 and P = π1
−→c

for a possibly empty prefix π of P , with:

max(θ(h, π),−→c) = −→h (4)

Similarly, upon feeding the reverse suffix T rev to H, we get ←−q = s, ←−c ≥ 0, and
T rev = τ rev1

←−c for a possibly empty prefix τ rev of T rev, that is T = 1
←−c τ , with:

max(θ(h, τ rev),←−c) =←−h (5)

Overall, we have S = PT = π1
−→c 1

←−c τ = π1
−→c +←−c τ , hence:

θ(h, S) = max(θ(h, π),−→c +←−c , θ(h, τ)) by the semantics of H
= max(θ(h, π),−→c +←−c , θ(h, τ rev)) by H being its own reverse

= max(
−→
h ,−→c +←−c , θ(h, τ rev)) by ←−c ≥ 0 and (4)

= max(
−→
h ,−→c +←−c ,←−h) by −→c ≥ 0 and (5)

(6)

Linking Prefixes and Suffixes for Constraints Encoded Using Automata 151

0 1 1 1 0 0 1

i
−→qi
−→
�i
−→ci

Signature variables:

0

s

+∞
0

1

s

+∞
0

2

t

+∞
1

3

t

+∞
2

4

t

+∞
3

5

s

3

3

6

s

3

3

7

t

3

1

. . .

. . .

. . .

. . .

111101

i
←−qi
←−
�i
←−ci

0

s

+∞
0

1

t

+∞
1

2

t

+∞
2

3

t

+∞
3

4

t

+∞
4

5

s

4

4

6

t

4

1

. . .

. . .

. . .

. . .

GroupL([b, a, a, a, b, b, a, a, b, a, a, a, a], {a}, 2)

GroupL

(
[b, a, a, a, b, b, a], {a}, 1

)
∧ GroupL

(
[a, a, a, a, b, a], {a}, 1

)

glue matrix entry associated with 〈t, t〉: L = min
(−→
�7 ,

−→c7 + ←−c6,
←−
�6

)
= min(3, 1+ 1, 4) = 2

Fig. 3. Use of the entry for the state pair 〈t, t〉 in the glue matrix of Figure 2d for
linking the result variable L with the state and accumulator variables after reading the
prefix [b, a, a, a,b,b, a] and corresponding suffix [a,b, a, a, a, a] of a sequence. The left
(resp. right) table shows the initialisation (for i = 0) and evolution of the state of the
mDFA L in Figure 1d and its accumulators � and c upon reading the symbol at index
i of the sequence (resp. its reverse).

The law underlying the last two equalities is that max(x, y) = h implies that
max(x, y + z) = max(h, y + z) when z ≥ 0. Note that θ(h, S) is now entirely
defined in terms of the accumulator values after processing P and T rev.

Posting Automaton(H, P,−→H) gives access to −→q , −→c , −→h as variables, with
−→
H =

−→
h . Similarly, posting Automaton(H, T rev,

←−
H) gives access to←−q ,←−c ,←−h as

variables, with
←−
H =

←−
h . Since the acceptance function α computes H = θ(h, S),

the implied glue constraint is H = max(
−→
h ,−→c +←−c ,←−h), due to (6). ��

3.3 Deriving the Glue Constraint

Reconsider the useful class of constraints mentioned at the end of Section 3.1,
namely those that can be encoded using an mDFAM = 〈Q,Σ, δ, φ, I, A, α〉 with
a single accumulator (hence k = 1), which is initialised to zero (hence I = 0) at
the start state φ and increased by a non-negative quantity at each transition as
well as by the acceptance function α. We denote γ(q, σ) the accumulator increase
on the transition from state q upon reading symbol σ. Similarly, we denote
γ̂(q, w) the total accumulator increase on the path from state q upon reading a
possibly empty word w. Let M′ = 〈Q′, Σ, δ′, φ′, I ′, A′, α′〉 be the reverse of M
(computed as seen in Section 3.1), on the same alphabet. The glue constraint
then always takes a particular form, as described after defining a needed concept.

Definition 4. Let PT be a word such that possibly empty prefix P leads to state
−→q of mDFA M, and the reverse of possibly empty suffix T leads to state ←−q of
the reverse mDFA M′ of M. The correction term for −→q and ←−q is:

Δ(−→q ,←−q) = γ̂(φ, PT)− (γ̂(φ, P) + γ̂′(φ′, T rev))

152 N. Beldiceanu et al.

Suppose, in addition to Automaton(M, PT,R), we post the constraints

Automaton(M, P,
−→
R) and Automaton(M′, T rev,

←−
R). Let δ̂(〈φ, I〉, P) =

〈−→q ,−→v 〉 and δ̂(〈φ′, I ′〉, T rev) = 〈←−q ,←−v 〉. The glue constraint for states −→q and
←−q is then always of the form R = α(−→v +Δ(−→q ,←−q)+←−v), because −→v = γ̂(φ, P),
←−v = γ̂′(φ′, T rev), and R = α(δ̂(〈φ, I〉, PT)) = α(γ̂(φ, PT)). Therefore, we can
abbreviate the glue matrix into the matrix of its correction terms.

Example 7. The glue matrices in Figures 2a and 2b can be abbreviated into (0)
and

(
0 0
0 −1

)
, respectively, which contain constants independent of P and T . ��

We now show that the matrix of constant correction terms can be computed
efficiently, as it obeys a recurrence relation. By Definition 4, we have the base
cases Δ(φ, q′) = 0 for every state q′ of M′, and Δ(q, φ′) = 0 for every state q of
M. For the step case of two non-start states −→q and ←−q , let PσT be a word such
that non-empty prefix P leads to state −→q ofM, with successor −→r upon reading
symbol σ, and the reverse of possibly empty suffix T leads to state ←−r of M′,
with successor ←−q upon reading symbol σ. Using Definition 4 with σT as suffix,
we get the following recurrence relation:

Δ(−→q ,←−q) = (γ̂(φ, P) + γ̂(−→q , σT))− (γ̂(φ, P) + γ̂′(φ′, T revσ))

= γ̂(−→q , σT)− γ̂′(φ′, T revσ)

= (γ(−→q , σ) + γ̂(−→r , T))− (γ̂′(φ′, T rev) + γ′(←−r , σ))
= Δ(−→r ,←−r) + γ(−→q , σ)− γ′(←−r , σ)

(7)

The matrix of correction terms for all state pairs can then be computed by dy-
namic programming. It suffices to initialise to zero the row of φ and the column
of φ′. Then let name(q) denote a shortest word reaching state q from the start
state of its mDFA. The dynamic program uses the recurrence relation (7) for
every pair 〈−→q ,←−q 〉 of non-start states with name(←−q) = name(←−r)σ. Note that
both σ and ←−r are uniquely determined by name(←−q), and that −→r is uniquely
defined as the successor of −→q under σ, since an mDFA is deterministic. Proceed-
ing by increasing lexicographic order of 〈|name(−→q)|+ |name(←−q)|,−|name(−→q)|〉,
where |w| denotes the length of word w, ensures that the right-hand side of (7)
is always already determined.

Example 8. The glue matrix
(
0 0
0 −1

)
of Example 7 is for the GroupG constraint,

whose mDFA G in Figure 1b is its own reverse. There are zeros in the left column
and top row, by the base cases. The −1 in the lower-right cell follows from the
following application of (7): we have −→q = t = ←−q , with name(←−q) = “1” =
name(←−r)σ, hence σ = 1 and name(←−r) = ε, so ←−r = s; since −→r is the successor
of−→q under σ, we have−→r = t; hence (7) givesΔ(t, t) = Δ(t, s)+γ(t, 1)−γ′(s, 1) =
0 + 0 − 1 = −1. Indeed, if the last symbol of prefix P and the first symbol of
suffix T are in a group, then the sum of the numbers of groups of P and T rev

would be one unit too high and has to be downward adjusted by −1. ��
Filling the matrix of |Q| · |Q′| correction terms takes Θ(|Q| · |Q′|+ |Σ|) time.

Indeed, each correction term is computed in constant time, and the state names
can be computed in Θ(|Q|+ |Q′|+ |Σ|) time.

Linking Prefixes and Suffixes for Constraints Encoded Using Automata 153

4 Implied Constraints on Prefixes and Suffixes

In Scheme 3 of Example 1, we showed how to improve pruning in the presence of
an implied constraint on the result variables of multiple total-function constraints
on the same sequence of variables. We now formalise this idea.

Consider a conjunction of p total-function constraints Cj(X → Rj) on the
same sequence X of n variables. For each constraint Cj , assume we have an
mDFA Mj = 〈Qj , Σj , δj , φj , Ij , Aj , αj〉 that reads a sequence Sj of mj signa-
ture variables channelled with X by signature constraints of arity aj ≥ 1 (hence
mj = n + 1 − aj), such that the variable Rj is constrained to be equal to the
result returned by Mj on Sj . (We write Sj rather than Sj so that, in line

with the rest of the paper, we can write Sj
i to refer to the element at index i

of Sj .) Hence each Cj(X → Rj) is encoded by Automaton(Mj , S
j, Rj) and

its signature constraints. Let M′
j = 〈Q′

j , Σj, δ
′
j , φ

′
j , I

′
j , A

′
j , α

′
j〉 be the reverse of

Mj , over the same alphabet Σj : it is used for encoding the reverse of Cj by
Automaton(M′

j , (S
j)

rev
, Rj), using the same signature constraints and vari-

ables. Note that all the Rj are only defined when X is sufficiently long, namely
n ≥ a− 1, where a = max(a1, . . . , ap).

Consider that the p result variables Rj are not independent and that we have
an implied constraint #(R1, . . . , Rp), called a graph invariant in [5], on them.

The idea is to improve the propagation on the conjunction of the Cj with #
(which constrains the overall results Rj under the Cj on the entire sequence X)
by adding also # on the partial results under the Cj for every sufficiently long
prefix of X , as well as adding # on the partial results under the reverses of the
Cj for the reverse of every sufficiently long suffix of X .

We thus post the implied constraint # on the results Ri
j for every not nec-

essarily strict prefix [X1, . . . , Xi+aj−1] of X , each prefix being long enough for

all the Ri
j to be defined. We also post # on the results R′i

j for the reverse of
every not necessarily strict suffix [Xn, . . . , Xn−aj−i+2] of X , each suffix being

long enough for all the R′i
j to be defined. We get:

∀j : ∀1 ≤ i ≤ n− aj + 1 : Automaton(Mj , [X1, . . . , Xi+aj−1], R
i
j)

∀j : ∀1 ≤ i ≤ n− aj + 1 : Automaton(M′
j , [Xn, . . . , Xn−aj−i+2], R

′i
j)

∀a ≤ i ≤ n : #(Ri−a1+1
1 , . . . , Ri−ap+1

p) ∧ #(R′i−a1+1
1 , . . . , R′i−ap+1

p)

Rather than posting 2 · (n − aj + 1) Automaton constraints for a given Mj ,
we only post two Automaton constraints over the sequence X and its reverse,
where our implementation of Automaton provides access to the internal vari-
ables Ri

j and R′i
j .

Note that the glue constraints of Section 3 make each implied constraint on a
prefix communicate, through shared variables, with the implied constraint on the
reverse of the corresponding suffix: we evaluate this experimentally in Section 5.

Example 9. In Scheme 3 of Example 1, we had p = 4, a1 = a2 = a3 = a4 = 1 = a,
and # as the implied constraint (1). Further experiments are in Section 5. ��

154 N. Beldiceanu et al.

5 Experiments

We have implemented as a generic framework for our method a Prolog predicate
taking as arguments (i) a shared sequence of variables, (ii) a list of p mDFAs
with their corresponding signature and glue constraints, (iii) a list of p numeric
variables Rj to be computed, (iv) a conjunction of implied constraints over the
Rj , and (v) some options for controlling the encoding scheme (see below). We
have also extended the Global Constraint Catalogue [1] with glue constraints for
most of its mDFAs and with implied constraints relating arguments of different
constraints (e.g. those of [5] and the relation between the number of valleys and
peaks [7] of a sequence).1

To evaluate our methods, we ran three experiments on a conjunction of two
Group constraints over a shared sequence of a/b variables, one with W = {a}
and one with W = {b}. Thus, a total of eight numeric values are computed from
the sequence. Each experiment was run on two sets of 1000 randomly generated
unique instances. An instance consists of initial domains for the sequence and
numeric variables. In each experiment, four encoding schemes were compared:
B the baseline, i.e. as p = 8 Automaton constraints; BI as B plus 90 implied
constraints linking the eight numeric variables, provided by [1, Section 4.3], see
Scheme 1 of Example 1; BG as B plus the appropriate glue constraints posted
at every prefix-suffix junction, see Scheme 2; and BGI as BG plus the same 90
implied constraints posted on the full sequence as well as on every nonempty
prefix and suffix, i.e. using Scheme 1+2+3.

All experiments were run in SICStus Prolog 4.3 [9] on a quad core 2.8 GHz
Intel Core i7-860 machine with 8MB cache per core, running Ubuntu Linux.

Special attention was devoted to generating meaningful instances, since the
eight numeric variables are all but independent, and a truly random choice of
their initial domains leads to an unsatisfiable instance in the vast majority of
cases. We came up with two instance sets:

Sloppy (11% satisfiable) is generated as follows: First, each a/b variable is as-
signed ‘a’ with 10% probability, ‘b’ with 10% probability, and left unassigned
with 80% probability. Then, each numeric variable is given a random subin-
terval of its feasible interval. If posting the 90 implied constraints on the
obtained candidate instance detects failure without search, then the candi-
date is rejected. Otherwise, it is included in the set.

Strict (96% satisfiable) is generated like the Sloppy set, but also, if posting
the full BGI scheme on the candidate detects failure without search, then
the candidate is rejected. Otherwise, it is included in the set.

The results of the three experiments are shown in Figure 4. In the first ex-
periment (left column), sequences of length 20 were used. In the two plots, each
point (x, y) denotes that y instances reached a total domain size of at most x

1 All code and data for the experiments as well as the extended version of the catalogue
can be found at http://www.sics.se/~matsc/research/reversible.

http://www.sics.se/~matsc/research/reversible

Linking Prefixes and Suffixes for Constraints Encoded Using Automata 155

0 20 40 60 80 100
0

200

400

600

800

1,000

x

#
w
it
h
to
ta
l
si
ze

a
t
m
o
st

x

B

BG

BI

BGI

101 102 103 104

0

200

400

600

800

1,000

time (ms)

#
so
lv
ed

B

BG

BI

BGI

101 102 103 104 105

0

200

400

600

800

1,000

time (ms)

#
so
lv
ed

B

BG

BI

BGI

40 60 80 100

0

200

400

600

800

1,000

x

#
w
it
h
to
ta
l
si
ze

a
t
m
o
st

x

B

BG

BI

BGI

102 103 104 105

0

200

400

600

800

1,000

time (ms)

#
so
lv
ed

B

BG

BI

BGI

102 103 104 105 106

0

200

400

600

800

1,000

time (ms)

#
so
lv
ed

B

BG

BI

BGI

Fig. 4. Experimental results. Comparison of the amount of pruning after posting
(left), the time to find the first solution or detect unsatisfiability (centre), and the time
to find all solutions (right). Top row: Sloppy. Bottom row: Strict.

after initial pruning, for the given scheme. We find that BGI is the most effec-
tive in pruning and B the least effective. For Sloppy, we see that BG detects
unsatisfiability far more effectively than BI. For Strict, we see that BI gives
much more pruning than BG.

For the remaining experiments (centre and right column), we plot the number
of instances that can be solved by a given deadline. Sequences of length 10 were
used here, to avoid having to impose a time limit, so that we can compare all
methods on all instances. We find that the schemes involving implied constraints
outperform the schemes that do not.

The BG curves are similar throughout the Sloppy row, confirming that the
glue method more effectively detects unsatisfiability. For the Strict instances,BI
outperformed BGI. Partial benchmark results for length 20 and for combining
Group and ChangeContinuity [1,5] paint an almost identical picture, except
there is some indication that BGI is more effective on longer sequences.

Evaluating our schemes on the model inferred by the EDF model seeker [7] is
ongoing work, and requires more work and analysis since the model is nontrivial
and contains 20 interacting constraints.

6 Constant-Time Move Probing in Local Search

In the context of constraint-based local search [15], consider a total-function con-
straint C([X1, . . . , Xn]→ R) that is encoded using an mDFA M. The violation
cost of C under the current assignment β is |β(R) − r|, where r is the result
returned by M on [β(X1), . . . , β(Xn)]. We now show, on an example, how to

156 N. Beldiceanu et al.

use the glue constraint of C in order to compute, in constant time, the violation
cost of C when probing a move Xi := v, which changes the current assignment.

For example, let us start from the ground instance of Figure 3, namely
GroupL([b, a, a, a, b, b, a, a, b, a, a, a, a], {a}, 2). It is satisfied, hence its violation
cost under the current assignment is 0. Assume now we want to probe chang-
ing variable X7 from ‘a’ into ‘b’, that is changing signature variable S7 from 1
into 0. The violation cost under the resulting new assignment, and its increase
compared to the current assignment, are computed in constant time as follows:

1. Starting from the prefix column for i = 6, we compute the new column for
i = 7, upon the mDFA L in Figure 1d reading a 0 instead of a 1: we get
−→q 7 = s and

−→
� 7 = 3 = −→c 7. The suffix column for i = 6 remains unchanged.

2. Using the glue matrix entry in Figure 2d for the state pair 〈−→q 7,
←−q 6〉 = 〈s, t〉,

we know that the new sequence has min(
−→
� 7,

←−c 6,
←−
� 6) = min(3, 1, 4) = 1 as

the lowest group size (that is not 2 anymore).
3. Hence the violation cost under the new assignment is |2− 1| = 1 (as we still

have R = 2), and has thus increased by 1− 0 = 1.

Thus, with one matrix of states and accumulator values for the mDFA and one
for the reverse mDFA, as in Figure 3, probing can be done in constant time,
thereby beating the linear time achieved for the Automaton constraint in [11].

Commitment to a move actually selected by the search (meta-)heuristic fol-
lows the same steps as above, namely once for updating the values of the left
table (in Figure 3) from the concerned column until the last column, and once
for updating the values in the right table from the concerned column until the
first column. This takes time linear in the length of X .

7 Conclusion

For a total-function constraint on a sequence of variables whose result is invariant
under sequence reversal, we have shown how to derive, from a compact encoding
of the constraint via an automaton with accumulators, an implied constraint
between the result variables for a sequence of variables, a prefix thereof, and the
corresponding suffix. Such total-function constraints have proved very useful, for
instance in production sequencing and staff rostering. We have shown that the
glue constraint is unique and always exists. We have also shown the usefulness of
the derived implied constraint in constraint solving, both by local search, where
the implied constraint enables constant-time move probing, and by propagation-
based systematic search, where the implied constraint improves propagation: our
concept is thus not oriented toward a specific solver technology.

Other constraints than Automaton could be used for handling memory-
DFAs and deriving glue constraints: recall that our method supports multiple
accumulators, and needs access as variables to the sequence of values for each
accumulator, as well as access as variables to the sequence of automaton states.
For instance, CostRegular [10] is currently limited to the class of single-
accumulator mDFAs discussed in Section 3.3, and is compared in detail with
Automaton in [6]. Encodings based on Slide [8] could also be investigated.

Linking Prefixes and Suffixes for Constraints Encoded Using Automata 157

Acknowledgements. The first author is supported by the Gaspard Monge
Program for Optimisation and operations research. The last three authors are
supported by grants 2011-6133 and 2012-4908 of the Swedish Research Council
(VR). We thank Pascal Van Hentenryck, with whom we discovered a few years
ago the unpublished result of Section 3.3. We thank the anonymous reviewers
for their valuable comments.

References

1. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global constraint catalogue:
Past, present, and future. Constraints 12(1), 21–62 (2007)

2. Beldiceanu, N., Carlsson, M., Flener, P., Pearson, J.: On matrices, automata, and
double counting in constraint programming. Constraints 18(1), 108–140 (2013)

3. Beldiceanu, N., Carlsson, M., Flener, P., Pearson, J.: On the reification of global
constraints. Constraints 18(1), 1–6 (2013)

4. Beldiceanu, N., Carlsson, M., Petit, T.: Deriving filtering algorithms from
constraint checkers. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 107–122.
Springer, Heidelberg (2004)

5. Beldiceanu, N., Carlsson, M., Rampon, J.-X., Truchet, C.: Graph invariants as
necessary conditions for global constraints. In: van Beek, P. (ed.) CP 2005. LNCS,
vol. 3709, pp. 92–106. Springer, Heidelberg (2005)

6. Beldiceanu, N., Flener, P., Pearson, J., Van Hentenryck, P.: Propagating regular
counting constraints. In: Brodley, C.E., Stone, P. (eds.) AAAI 2014. AAAI Press
(2014)

7. Beldiceanu, N., Ifrim, G., Lenoir, A., Simonis, H.: Describing and generating so-
lutions for the EDF unit commitment problem with the ModelSeeker. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 733–748. Springer, Heidelberg (2013)

8. Bessière, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: SLIDE: A useful
special case of the CARDPATH constraint. In: Ghallab, M., et al. (eds.) ECAI
2008, pp. 475–479. IOS Press (2008)

9. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292,
pp. 191–206. Springer, Heidelberg (1997), http://sicstus.sics.se/

10. Demassey, S., Pesant, G., Rousseau, L.M.: A Cost-Regular based hybrid column
generation approach. Constraints 11(4), 315–333 (2006)

11. He, J., Flener, P., Pearson, J.: An automaton constraint for local search. Funda-
menta Informaticae 107(2-3), 223–248 (2011)

12. Mohri, M.: Weighted automata algorithms. In: Droste, M., Kuich, W., Vogler, H.
(eds.) Handbook of Weighted Automata. Monographs in Theoretical Computer
Science, pp. 213–254. Springer (2009)

13. Mohri, M., Pereira, F.C.N., Riley, M.: The design principles of a weighted finite-
state transducer library. Theoretical Computer Science 231(1), 17–32 (2000), The
OpenFst Library is available http://www.openfst.org/

14. Pesant, G.: A regular language membership constraint for finite sequences of
variables. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer,
Heidelberg (2004)

15. Van Hentenryck, P., Michel, L.: Constraint-Based Local Search. MIT Press (2005)

http://sicstus.sics.se/
http://www.openfst.org/

The Propagation Depth of Local Consistency

Christoph Berkholz

RWTH Aachen University, Aachen, Germany

Abstract. We establish optimal bounds on the number of nested prop-
agation steps in k-consistency tests. It is known that local consistency
algorithms such as arc-, path- and k-consistency are not efficiently par-
allelizable. Their inherent sequential nature is caused by long chains of
nested propagation steps, which cannot be executed in parallel. This
motivates the question “What is the minimum number of nested prop-
agation steps that have to be performed by k-consistency algorithms on
(binary) constraint networks with n variables and domain size d?”

Itwas knownbefore that 2-consistency requiresΩ(nd) and 3-consistency
requires Ω(n2) sequential propagation steps. We answer the question ex-
haustively for every k ≥ 2: there are binary constraint networks where any
k-consistency procedure has to perform Ω(nk−1dk−1) nested propagation
steps before local inconsistencies were detected. This bound is tight, be-
cause the overall number of propagation steps performed by k-consistency
is at most nk−1dk−1.

1 Introduction

A constraint network (X,D,C) consists of a set X of n variables over a domain
D of size d and a set of constraints C that restrict possible assignments of the
variables. The constraint satisfaction problem (CSP) is to find an assignment
of the variables with values from D such that all constraints are satisfied. The
constraint satisfaction problem can be solved in exponential time by exhaustive
search over all possible assignments. Constraint propagation is a technique to
speed up the exhaustive search by restricting the search space in advance. This
is done by iteratively propagating new constraints that follow from previous ones.
Most notably, in local consistency algorithms the overall goal is to propagate new
constraints to achieve some kind of consistency on small parts of the constraint
network. Additionally, if local inconsistencies were detected, it follows that the
constraint network is also globally inconsistent and hence unsatisfiable.

The k-consistency test [8] is a well-known local consistency technique, which
enforces that every satisfying (k − 1)-partial assignment can be extended to a
satisfying k-partial assignment. At the beginning, all partial assignments that
violate a constraint were marked as inconsistent. Then the following inference
rule is applied iteratively:

If h is a consistent �-partial assignment (� < k) for which there exists a
variable x ∈ X such that h ∪ {x �→ a} is inconsistent for all a ∈ D, then
mark h and all its extensions as inconsistent.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 158–173, 2014.
c© Springer International Publishing Switzerland 2014

The Propagation Depth of Local Consistency 159

After at most nk−1dk−1 propagation steps this procedure stops. If the empty
assignment becomes inconsistent, we say that (strong) k-consistency cannot be
established. In this case we know that the constraint network is globally incon-
sistent. Otherwise, if k-consistency can be established, we can use the propa-
gated constraints to restrict the search space for a subsequent exhaustive search.
There are several different k-consistency algorithms in the literature, especially
for k = 2 (arc consistency) and k = 3 (path consistency), which all follow this
propagation scheme. The main difference between these algorithms are the un-
derlying data structure and the order in which they apply the propagation rule.
It seems plausible to apply the propagation rule in parallel in order to detect
local inconsistencies in different parts of the constraint network at the same
time. Indeed, this intuition has been used to design parallel arc and path con-
sistency algorithms [15,16]. On the other hand, the k-consistency test is known
to be PTIME-complete [10,11] and hence not efficiently parallelizable (unless
NC=PTIME). The main bottleneck for parallel approaches are the sequential
dependencies in the propagation rule: some assignments will be marked as in-
consistent after some other assignments became inconsistent.

For 2-consistency the occurrence of long chains of sequential dependencies
has been observed very early [6] and was recently studied in depth in [4]. There
are simple constraint networks for which 2-consistency requires Ω(nd) nested
propagation steps. Ladkin and Maddux [14] used algebraic techniques to show
that 3-consistency requires Ω(n2) nested propagation steps on binary constraint
networks with constant domain. We extend these previous results and obtain
a complete picture of the propagation depth of k-consistency. Our main re-
sult (Theorem 1) states that for every constant k ≥ 2 and given integers n,
d there is a constraint network with n variables and domain size d such that
every k-consistency algorithm has to perform Ω(nk−1dk−1) nested propagation
steps. This lower bound is optimal as it is matched by the trivial upper bound
nk−1dk−1 on the overall number of propagation steps. It follows that every par-
allel propagation algorithm for k-consistency has a worst case time complexity
of Ω(nk−1dk−1). Since the best-known running time of a sequential algorithm
for k-consistency is O(nkdk) [5] it follows that no significant improvement over
the sequential algorithm is possible.

2 Preliminaries

As first pointed out by Feder and Vardi [7] the CSP is equivalent to the structure
homomorphism problem where two finite relational structures A and B are given
as input. The universe V (A) of structure A corresponds to the set of variables
X and the universe V (B) of structure B corresponds to the domain D. The
constraints are encoded into relations such that every homomorphism from A to
B corresponds to a solution of the CSP. For the rest of this paper we mainly stick
to this definition as it is more convenient to us. In fact, our main result benefits
to a large extend from the fruitful connection between these two viewpoints.

In the introduction we have presented k-consistency as a propagation proce-
dure on constraint networks. Below we restate the definition in terms of a formal

160 C. Berkholz

inference system (which is inspired by the proof system in [1] and is a gener-
alization of [4]). This view allows us to gain insight into the structure of the
propagation process and to formally state our main theorem afterwards. At the
end of this section we provide a third characterization of k-consistency in terms
of the existential pebble game, which is the tool of our choice in the proof of the
main theorem.

2.1 CSP-Refutations

Given two σ-structures A and B, every line of our derivation system is a partial
mapping from V (A) to V (B). The axioms are all partial mappings p : V (A) →
V (B) that are not partial homomorphisms. We have the following derivation
rule to derive a new inconsistent assignment p. For all partial mappings p′i ⊆ p,
x ∈ V (A) and V (B) = {a1, . . . , an}:

p′1 ∪ {x �→ a1} · · · p′n ∪ {x �→ an}
p

(1)

A CSP-derivation of p is a sequence (p1, . . . , p� = p) such that every pi is either
an axiom or derived from lines pj, j < i, via the derivation rule (1). A CSP-
refutation is a CSP-derivation of ∅. Every derivation of p can naturally be seen
as a directed acyclic graph (dag) where the nodes are labeled with lines from the
derivation, one node of in-degree 0 is labeled with p and all nodes of out-degree
0 are labeled with axioms. If pi is derived from pj1 , . . . , pjn using (1), then there
is an arc from pi to each pj1 , . . . , pjn .

Given a CSP-derivation P , we let Prop(P) be the set of propagated mappings
p ∈ P , i. e. all lines in the derivation that are not axioms. We define the width
of a derivation P to be width(P) = maxp∈Prop(P) |p|.1 Furthermore, depth(P)
denotes the depth of P which is the number of edges on the longest path in
the dag associated with P . This measure characterizes the maximum number
of nested propagation steps in P . Since CSP-derivations model the propagation
process mentioned in the introduction, there is a CSP-refutation of width k − 1
if and only if k-consistency cannot be established.

Furthermore, every propagation algorithm produces some CSP-derivation P .
The total number of propagation steps performed by this algorithm is |Prop(P)|
and the maximum number of nested propagation steps is depth(P). Let A and
B be two relational structures such that k-consistency cannot be established.
We define the propagation depth depthk(A,B) := minP depth(P) where the min-
imum is taken over all CSP-refutations P of width at most k − 1. Hence, the
depthk(A,B) ≤ |V (A)|k−1|V (B)|k−1 is the number of sequential propagation
steps that have to be performed by any sequential or parallel propagation algo-
rithm for k-consistency.

1 Note that this implies |p| ≤ width(P) + 1 for all axioms p used in the derivation P .
However, the size of the axioms can always be bounded by the maximum arity of
the relations in A and B.

The Propagation Depth of Local Consistency 161

2.2 Results and Related Work

Our main theorem is a tight lower bound on the propagation depth.

Theorem 1. For every integer k ≥ 2 there exists a constant ε > 0 and two
positive integers n0, m0 such that for every n ≥ n0 and m ≥ m0 there exist
two binary structures An and Bm with |V (An)| = n and |V (Bm)| = m such that
depthk(An,Bm) ≥ εnk−1mk−1.

We are aware of two particular cases that have been discovered earlier. First,
for the case k = 2 (arc consistency) the theorem can be shown by rather simple
examples that occurred very early in the AI-community. The structure of this
exceptional case is discussed in deep in a joint work of Oleg Verbitsky and the
author of this paper [4]. Second, for k = 3 Ladkin and Maddux [14] showed
that there is a fixed finite binary structure B and an infinite sequence of binary
structures Ai such that depth3(Ai,B) = Ω(|V (Ai)|2). They used this result to
argue that every parallel propagation algorithm for path consistency needs at
least a quadratic number of steps. This is tight only for fixed structures B,
Theorem 1 extends their result to the case when B is also given as input.

Other related results investigate the decision complexity of the k-consistency
test. To address this more general question one analyzes the computational com-
plexity of the following decision problem.

k-Cons

Input : Two binary relational structures A and B.
Question: Can k-consistency be established for A and B?

Kasif [10] showed that 2-Cons is complete for PTIME under LOGSPACE re-
ductions. Kolaitis and Panttaja [11] extended this result to every fixed k ≥ 2.
Moreover, they established that the problem is complete for EXPTIME if k is
part of the input. In [3] the author showed that k-Cons cannot be decided in

O(n
k−3
12) on deterministic multi-tape Turing machines, where n is the overall in-

put size. Hence, any algorithm solving k-Cons (regardless of whether it performs
constraint propagation or not) cannot be much faster than the standard propaga-
tion approach. It also follows from this result that, parameterized by the number
of pebbles k, k-Cons is is complete for the parameterized complexity class XP. It
is also worth noting that Gaspers and Szeider [9] investigated the parameterized
complexity of other parameterized problems related to k-consistency.

2.3 The Existential Pebble Game

In this paragraph we introduce a third view on the k-consistency heuristic in
terms of a combinatorial pebble game. The existential k-pebble game [12] is
played by two players Spoiler and Duplicator on two relational structures A
and B. There are k pairs of pebbles (p1, q1), . . . , (pk, qk) and during the game
Spoiler moves the pebbles p1, . . . , pk to elements of V (A) and Duplicator moves

162 C. Berkholz

the pebbles q1, . . . , qk to elements of V (B). At the beginning of the game, Spoiler
places pebbles p1, . . . , pk on elements of V (A) and Duplicator answers by putting
pebbles q1, . . . , qk on elements of V (B). In each further round Spoiler picks up a
pebble pair (pi, qi) and places pi on some element in V (A). Duplicator answers
by moving the corresponding pebble qi to one element in V (B). Spoiler wins the
game if he can reach a position where the mapping defined by pi �→ qi is not a
partial homomorphism from A to B.

The connection between the existential k-pebble game and the k-consistency
heuristic was made by Kolaitis and Vardi [13]. They showed that one can es-
tablish k-consistency by computing a winning strategy for Duplicator. Going a
different way, the next lemma states that there is also a tight correspondence
between Spoiler’s strategy and CSP-refutations. The proof is a straightforward
induction over the depth and included in the full version of the paper [2].

Lemma 2. Let A and B be two relational structures. There is a CSP-refutation
for A and B of width k − 1 and depth d if and only if Spoiler has a strategy to
win the existential k-pebble game on A and B within d rounds.

Using this lemma it suffices to prove lower bounds on the number of rounds
in the existential pebble game in order to prove Theorem 1. To argue about
strategies in the existential pebble game we use the framework developed in [3].
We start with a formal definition of strategies for Duplicator.

Definition 3. A critical strategy for Duplicator in the existential k-pebble game
on structures A and B is a nonempty family H of partial homomorphisms from A
to B together with a set crit(H) ⊆ H of critical positions satisfying the following
properties:

1. All critical positions are (k − 1)-partial homomorphisms.
2. If h ∈ H and g ⊂ h, then g ∈ H.
3. For every g ∈ H\ crit(H), |g| < k, and every x ∈ V (A) there is an a ∈ V (B)

such that g ∪ {x �→ a} ∈ H.

If crit(H) = ∅, then H is a winning strategy.

The setH is the set of good positions for Duplicator (therefore they are all partial
homomorphisms). Non-emptiness and the closure property (2.) ensure that H
contains the start position ∅. Furthermore, the closure property guarantees that
the current position remains a good position for Duplicator when Spoiler picks
up pebbles. The extension property (3.) ensures that, from every non-critical
position, Duplicator has an appropriate answer if Spoiler puts a free pebble on
x. It follows that if there are no critical positions, then Duplicator can always
answer accordingly and thus wins the game. Otherwise, if Spoiler reaches a
critical position, then Duplicator may not have an appropriate answer and the
game reaches a critical state. In the next lemma we describe how to use critical
strategies to prove lower bounds on the number of rounds.

Lemma 4. If H1, . . . ,Hl is a sequence of critical strategies on the same pair of
structures and for all i < l and all p ∈ crit(Hi) it holds that p ∈ Hj \ crit(Hj)
for some j ≤ i+ 1, then Duplicator wins the l-round existential k-pebble game.

The Propagation Depth of Local Consistency 163

Proof. Starting with i = 1, Duplicator answers according to the extension
property of Hi, if the current position p is non-critical in Hi. Otherwise, p is
non-critical in Hj for some j ≤ i + 1 and Duplicator answers according to the
extension property of Hj . This allows Duplicator to survive for at least l rounds.

��

The two structures A and B we construct are vertex colored graphs. They are
built out of smaller graphs, called gadgets. Every gadget Q consists of two graphs
QS and QD for Spoiler’s and Duplicator’s side, respectively. Hence, QS and QD

will be subgraphs of A and B in the end. The gadgets contain boundary vertices ,
which are the vertices shared with other gadgets. To combine two strategies
on two connected gadgets we need to ensure that the strategies agree on the
boundary of the gadgets. Formally, let a boundary function of a strategy H on a
gadget Q be a mapping β from the boundary of QS to the boundary of QD such
that β(z) = h(z) for all h ∈ H and all z in the domain of β and h. We say that
two strategies G and H on gadgets Q and Q′ are connectable, if their boundary
functions agree on the common boundary vertices of Q and Q′. If G and H are
two connectable critical strategies on gadgets Q = (QS , QD) and Q′ = (Q′

S , Q
′
D)

it is not hard to see that the composition

G $ H = {g ∪ h | g ∈ G, h ∈ H}

is a critical strategy on QS∪Q′
S and QD∪Q′

D with crit(G$H) = crit(G)∪crit(H).
Intuitively, playing according to the strategy G $ H on Q and Q′ means that
Duplicator uses strategy G on Q and strategy H on Q′.

3 The Construction

3.1 Overview of the Construction

In this section we prove Theorem 1 for k ≥ 3. We let k := k−1 ≥ 2 and construct
two vertex colored graphs An and Bm with O(n) and O(m) vertices such that
Spoiler needs Ω(nkmk) rounds to win the existential (k + 1)-pebble game. We
color the vertices of both graphs such that the colors partition the vertex set into
independent sets, i. e. every vertex gets one color and there is no edge between
vertices of the same color. The basic building blocks in our construction are sets
of vertices which allow to store nkmk partial homomorphisms with k pebbles.

x1
1 x1

n xk
1 xk

n x1
0 x1

m xk
0 xk

m

An Bm

Fig. 1. Basic vertex blocks. Two vertices xi
j and xi′

j′ get the same color iff i = i′.

We introduce vertices xij (i ∈ [k], j ∈ [n]) in An and vertices xij (i ∈ [k],

j ∈ [m] ∪ {0}) in Bm. For every i ∈ [k] the vertices xij form a block and are

164 C. Berkholz

colored with the same color (say Pxi), which is different from any other color in
the entire construction. The vertices xi0 in structure Bm play a special role in
our construction and are visualized by instead of in the pictures. However,
they are colored with the same color Pxi as the other vertices xij . Because of

the coloring, Duplicator has to answer with some xij′ whenever Spoiler pebbles

a vertex xij . Since there are nm positions for one pebble pair on vertices in

one block, we get nkmk positions if every block has exactly one pebble pair on
vertices. The vertices are used by Duplicator whenever Spoiler does not play

the intended way. That is, if Spoiler pebbles a vertex in block i that he is not
supposed to pebble now, then Duplicator answers with xi0. The construction will
have the property that this is always a good situation for Duplicator.

To describe pebble positions on such vertex blocks, we definemappings a : [k]→
[n] and b : [k]→ [m] and call the pebble position {(xia(i), xib(i)) | i ∈ [k]} valid. If

such valid position is on the board, then Duplicator answers with xib(i) if Spoiler

pebbles xia(i) and with xi0 if Spoiler pebbles xij for some j �= a(i). We also need

to name positions where Duplicator answers with xi0 for every vertex in block i
and let T be the set of blocks where this happens. For a : [k] → [n], b : [k] → [m]
and T ⊆ [k] we call q = (a, b, T) a configuration. The configuration q is valid if
T = ∅ and invalid otherwise. For every configuration q and a set of xij vertices
as in Figure 1 we define the following homomorphism that describes Duplicator’s
behavior:

hxq(x
i
j) =

{
xib(i), if j = a(i) and i /∈ T,
xi0, otherwise.

By hx0 we denote the homomorphism hx0(x
i
j) := xi0 for all i ∈ [k], j ∈ [n]. We say

that a position of (at most k+1) pebble pairs on these vertices is invalid if it is a
subset of hxq for some invalid configuration q. For valid configurations q = (a, b, ∅)
we say “q on x” to name the valid pebble position {(xia(i), xib(i)) | i ∈ [k]}. Note
that valid pebble positions are not invalid.2

In the entire construction there is one unique copy of the xij-vertices, which

are denoted by xij . Our goal is to force Spoiler to pebble every valid position on
x before he wins the game. He is supposed to do so in a specific predefined order.
To fix this order we define a bijection α between valid configurations (a, b, ∅)
and the numbers 0, . . . , nkmk − 1:

α(q) := mk
k∑

i=1

(a(i)− 1)nk−i +

k∑
i=1

(b(i)− 1)mk−i.

Thus, α(q) is the rank of the tuple (a(1), . . . , a(k), b(1), . . . , b(k)) in lexicograph-
ical order. If α(q) < nkmk − 1, we define the successor q+ = (a+, b+, ∅) to be
the unique valid configuration satisfying α(q+) = α(q) + 1. In the sequel we
introduce gadgets to make sure that:

2 There are pebble positions on the xi
j vertices that are neither valid nor invalid.

However, such positions will not occur in our strategies.

The Propagation Depth of Local Consistency 165

– Spoiler can reach the position α−1(0) on x from ∅,
– Spoiler can reach α−1(i + 1) on x from α−1(i) on x and
– Spoiler wins from α−1(nkmk − 1) on x.

If we have these properties, we know that Spoiler has a winning strategy in the
(k+1)-pebble game. To show that Spoiler needs at least nkmk rounds we argue
that this is essentially the only way for Spoiler to win the game.

↑ INIT
y10 ykm

↓WIN

x1
0 xk

m

↑ INC left
1 ↑ INCright

k
x1
0 xk

m

y10 ykm

x1
0 xk

m

y10 ykm

↑ switch ↑ switch
x1
0 xk

m

y10 ykm

x1
0 xk

m

y10 ykm

↓ switch
y10 ykm

x1
0 xk

m

xkm

y10 ykm

x10

Fig. 2. The graph Bm. The boundaries of the gadgets are connected as indicated by
the dotted lines (which need to be contracted). The arrows point from the input to the
output vertices of the gadgets.

We start with an overview of the gadgets and how they are glued together to
form the structures An and Bm. The boundary of our gadgets consists of input
vertices and output vertices. For every gadget the set of input (output) vertices
is a copy of the vertex set in Figure 1 and we write xij (yij) to name them. This
enables us to glue together the gadgets at their input and output vertices. The
overall construction for the graph Bm is shown in Figure 2. The schema for An

is similar, it contains Spoiler’s side of the corresponding gadgets which are glued
together the same way as in Bm (just replace m by n and drop the vertices).
There are four types of gadgets: the initialization gadget, the winning gadget,
several increment gadgets and the switch.

The initialization gadget ensures that Spoiler can reach α−1(0) on x, i. e. the
pebble position {(x11, x11), . . . , (xk1 , xk1)}. This gadget has only output boundary
vertices and is used by Spoiler at the beginning of the game. There are increment

166 C. Berkholz

gadgets INCleft
i and INCright

i for all i ∈ [k]. The input vertices of every increment
gadget are identified with the x vertices as depicted in Figure 2. The increment
gadgets (all together) ensure that Spoiler can increment a configuration. More
precisely, for every valid configuration q with α(q) < nkmk − 1, there is one
increment gadget INC such that Spoiler can reach q+ on the output of INC
from q on the input. Every increment gadget is followed by a copy of the switch.
The input of 2k switches is identified with the output of the 2k increment gadgets
and the output of these switches is identified with a unique block of y-vertices
and the input of one additional single switch (see Figure 2). The output of this
switch is in turn identified with the unique block of x-vertices. The switches are
used to perform the transition in the game from α−1(i) on x to α−1(i + 1) on
x. Spoiler can pebble a valid position through one switch: from q on the input
of a switch Spoiler can reach q on the output of that switch. Hence, Spoiler
can simply pebble the incremented position α−1(i + 1) from the output of an
increment gadget through two switches to the x-block.

Finally, the winning gadget ensures that from α−1(nkmk−1) on x Spoiler wins
the game. The winning gadget has only input vertices, which are identified with
the x-vertices. From α−1(nkmk − 1) on the input, Spoiler can win the game by
playing on this gadget. On the other hand, the gadget ensures that Spoiler can
only win from α−1(nkmk − 1) on x and Duplicator does not lose from any other
configuration on x.

3.2 The Gadgets

We now describe the winning gadget and the increment gadgets in detail and
provide strategies for Spoiler and Duplicator on them. Afterwards we briefly
discuss the switch and the initialization gadget. In the next section we combine
the partial strategies on the gadgets to prove Theorem 1.

The winning gadget is shown in Figure 3. On Spoiler’s side there is just one
additional vertex a, which is connected to xin for all i ∈ [k]. On Duplicator’s
side there are k additional vertices ai, i ∈ [k]. Every ai is connected to all input
vertices except xim. We use one new vertex color to color the vertex a and all
vertices ai. From the position {(x1n, x1m), . . . , (xkn, x

k
m)} “α−1(nkmk − 1) on x”

Spoiler wins the game by placing the (k + 1)st pebble on a. Duplicator has to
answer with some ai (because of the coloring). Since there is an edge between xin
and a in WINS but none between xim and ai in WIND, Spoiler wins immediately.
It is also not hard to see that for any other position where at least one pebble
pair (xjn, x

j
m) is missing Duplicator can survive by choosing aj .

The increment gadgets enable Spoiler to reach the successor q+ from q.
Recall that we identify every valid configuration q = (a, b, ∅) with the tuple
(a(1), . . . , a(k), b(1), . . . , b(k)) ∈ [n]k× [m]k and define α(q) to be the rank (from
0 to nkmk−1) of this tuple in lexicographical order. Let q be a valid configuration
with α(q) < nkmk − 1 and successor q+ = (a+(1), . . . , a+(k), b+(1), . . . , b+(k)).
We use two types of increment gadgets, left and right, depending on whether
the left-hand side of the tuple changes after incrementation or not. There are k
increment gadgets of each type. Spoiler uses them depending on which position

The Propagation Depth of Local Consistency 167

x1
1 x1

n xk
1 xk

n

a

x1
0 x1

m xk
0 xk

m

a1 ai ak

WINS ⊆ An WIND ⊆ Bm

Fig. 3. The winning gadget

the last carryover occurs. If

q = (a(1), . . . , a(k), b(1), . . . , b(�− 1), b(�) < m, m, . . . ,m) and hence

q+ = (a(1), . . . , a(k), b(1), . . . , b(�− 1), b(�) + 1, 1, . . . , 1),

then Spoiler uses the increment gadget INCright
� to reach q+ on the output from

q on the input. If

q = (a(1), . . . , a(�− 1), a(�) < n, n, . . . , n, m, . . . ,m) and hence

q+ = (a(1), . . . , a(�− 1), a(�) + 1, 1, . . . , 1, 1, . . . , 1),

then Spoiler uses INCleft
� . Thus, for every valid configuration q with α(q) <

nkmk−1 there is exactly one applicable increment gadget. The increment gadgets

x<�
1

x<�
n x�

1 x�
n x>�

1
x>�
n x<�

0
x<�
m x�

1 x�
m x>�

0
x>�
m

y<�
1 y<�

n y�1 y�n
y>�
1 y>�

n
y<�
0 y<�

m y�1 y�m
y>�
0 y>�

m

INCright
� S ⊆ An INCright

� D ⊆ Bm

x<�
1

x<�
n x�

1 x�
n x>�

1
x>�
n x<�

0
x<�
m x�

1 x�
m x>�

0
x>�
m

y<�
1 y<�

n y�1 y�n
y>�
1 y>�

n
y<�
0 y<�

m y�1 y�m
y>�
0 y>�

m

INCleft
� S ⊆ An INCleft

� D ⊆ Bm

Fig. 4. The increment gadgets

168 C. Berkholz

are shown in Figure 4. All input vertices xij have at most one output vertex

yij′ as neighbor. Furthermore, if the gadget is applicable to a valid configuration

q = (a, b, ∅), then the unique neighbor of xia(i) is y
i
a+(i) and the unique neighbor

of xib(i) is yi
b+(i)

. This enables Spoiler to reach q+ on the output from q on

the input by the following procedure. First, Spoiler places the remaining pebble
on y1a+(1). Since this vertex is adjacent to x1a(1), Duplicator has to answer with

y1
b+(1)

, the only vertex that is adjacent to x1b(1). Afterwards, Spoiler picks up

the pebble pair from (x1a(1), x
1
b(1)). On the second block Spoiler proceeds the

same way: he pebbles y2a+(2), forces the position (y2a+(2), y
2
b+(2)

) and picks up the

pebbles from (x2a(2), x
2
b(2)). By iterating this procedure Spoiler reaches q+ on the

output.
If Spoiler tries to move a configuration through one increment gadget that is

not applicable, then Duplicator can answer with an invalid configuration on the
output as follows. On the one hand, if the gadget is not applicable because some
b(i) does not have the specified value, then xib(i) is adjacent to y

i
0. On the other

hand, if some a(i) has the wrong value, then xia(i) is not adjacent to an output

vertex. In both cases Duplicator can safely pebble yi0 if Spoiler queries some yij
and hence maintain an invalid output position. The next lemma summarizes the
strategies on the increment gadget.

Lemma 5. Let q = (a, b, T) be a configuration and INC an increment gadget.

1. If INC is applicable to q, then Spoiler can reach q+ on the output from q on
the input.

2. If INC is applicable to q, then there is a winning strategy for Duplicator with
boundary function hxq on the input and hy

q+ on the output.
3. If INC is not applicable to q, then there is a winning strategy for Duplicator

with boundary function hxq on the input and hyqinv
on the output for an invalid

configuration qinv.

The switch is an extension of the “multiple input one-way switch” defined
in [3] (which in turn is a generalization of [11]). The difference is that the old
switch can only be used for the case n = 1. It requires some work to adjust
the old switch to make it work for the more general setting. But since these
modifications require a deeper inspection into this technical construct (and are
not the main contribution of this paper), we refer to the full version of the paper
[2] and use the switch as black box at this point.

We briefly explain the strategies on the switch and provide them in Lemma 6.
As mentioned earlier, Spoiler can simply move a valid position from the input
to the output of the switch (Lemma 6(i)). Duplicator has a winning strategy
called output strategy, where any position is on the output and hx0 is on the
input (Lemma 6(ii)). This ensures that Spoiler cannot move backwards to reach
q on the input from q on the output. Hence, this strategy forces Spoiler to play
through the switches in the intended direction (as indicated by arrows Figure 2).
Furthermore, for every invalid qinv Duplicator has a winning strategy where

The Propagation Depth of Local Consistency 169

hxqinv
is on the input and hy0 is on the output (Lemma 6(iii)), which ensures

that Spoiler cannot move invalid positions through the switch. This strategy
is used by Duplicator whenever Spoiler plays on an increment gadget that is
not applicable. By Lemma 5, Duplicator can force an invalid configuration on
the output of that increment gadget and hence on the input of the subsequent
switch.

To ensure that Spoiler picks up all pebbles when reaching q on the output
from q on the input, Duplicator has a critical input strategy with q on the input
and hy0 on the output (Lemma 6(iv)). The critical positions are either contained
in an output strategy, where q is on the output, or (for technical reasons) in
a restart strategy. If Duplicator plays according to this input strategy, the only
way for Spoiler to bring q from the input to the output is to pebble an output
critical position inside the switch (using all the pebbles) and force Duplicator to
switch to the corresponding output strategy.

Lemma 6. For every configuration q = (a, b, T), the following statements hold
in the existential (k+ 1)-pebble game on the switch:

(i) If q is valid, then Spoiler can reach q on the output from q on the input.
(ii) Duplicator has a winning strategy Hout

q with boundary function hx0 ∪ h
y
q.

(iii) If q is invalid, then Duplicator has a winning strategy Hrestart
q with boundary

function hxq ∪ h
y
0.

(iv) If q is valid, then Duplicator has a critical strategy Hin
q with boundary func-

tion hxq ∪h
y
0 and sets of restart critical positions Crestart-critq,t (for t ∈ [k]) and

output critical positions Cout-critq such that:

(a) crit(Hin
q) =

⋃
t∈[k] Crestart-critq,t ∪ Cout-critq ,

(b) Crestart-critq,t ⊆ Hrestart
(a,b,{t}) and

(c) Cout-critq ⊆ Hout
q .

At the beginning of the game we want that Spoiler can reach the start con-
figuration α−1(0) on x, which is the pebble position {(x11, x11), . . . , (xk1 , xk1)}. To
ensure this, we use the initialization gadget and identify its output vertices yij
with the block of xij vertices. As for the switch, this gadget is an extension
of the initialization gadget presented in [3] and we use it as a black box here.
The strategies on this gadget are provided in Lemma 7, the proof of Lemma 7 is
given in the full version of the paper [2]. The main property of the gadget is that
Spoiler can reach the start position q at the boundary (i) and Duplicator has a
corresponding counter strategy (ii) in this situation. Furthermore, if an arbitrary
position occurs at the boundary during the game, Duplicator has a strategy to
survive (iii). This is only a critical strategy, but Duplicator can switch to the
initial strategy (hence “restart” the game) if Spoiler moves to one of the critical
positions.

Lemma 7. Let q = α−1(0). The following holds in the existential (k+1)-pebble
game on INIT:

(i) Spoiler can reach q on the output.

170 C. Berkholz

(ii) There is a winning strategy Iinit for Duplicator with boundary function hyq.
(iii) For every (valid or invalid) configuration q′ there is a critical strategy Iinitq′

with boundary function hyq′ and crit(Iinitq′) ⊆ Iinit.

3.3 Proof of Theorem 1

The size of the vertex set in every gadget is linear in n on Spoiler’s side and linear
in m on Duplicator’s side. Since the overall construction uses a constant number
of gadgets it follows that |V (An)| = O(n) and |V (Bm)| = O(m). To prove the
lower bound on the number of rounds Spoiler needs to win the existential (k+1)-
pebble game we provide a sequence of critical strategies in Lemma 8 satisfying
the properties stated in Lemma 4. For a critical strategy S we let Ŝ := S\crit(S).

Lemma 8. Spoiler has a winning strategy in the existential (k+1)-pebble game
on An and Bm. Furthermore, there is a sequence of critical strategies for Dupli-
cator Gstart,F1,G1,F2,G2, . . . ,Gnkmk−2,Fnkmk−1 such that

crit(Gstart) ⊆ F̂1,

crit(Gi) ⊆ F̂i+1 ∪ Ĝstart, 1 ≤ i ≤ nkmk − 2,

crit(Fi) ⊆ Ĝi ∪ Ĝstart, 1 ≤ i ≤ nkmk − 2.

Proof (Proof of Theorem 1). For k = 2 the theorem follows from [4]. For k ≥ 3
consider the structures An and Bm (for k = k − 1) defined above. By Lemma 8
Spoiler wins the existential k-pebble game on An and Bm. Furthermore, it follows
via Lemma 4 that Spoiler needs at least Ω(nk−1mk−1) rounds to win the game.
To get structures with exactly n and m vertices we take the largest n′,m′ such
that |V (An′)| ≤ n, |V (Bm′)| ≤ m and fill up the structures with an appropriate
number of isolated vertices. ��

Proof (Proof of Lemma 8). To show that Spoiler has a winning strategy it suffices
to prove the following three statements:

(1) Spoiler can reach the position α−1(0) on x from ∅,
(2) Spoiler can reach α−1(i+ 1) on x from α−1(i) on x (for i < nkmk − 1) and
(3) Spoiler wins from α−1(nkmk − 1) on x.

Assertion (1) follows from Lemma 7 and (3) is ensured by the winning gadget.
For (2), Spoiler starts with the position q = α−1(i) on x. Since i < nkmk − 1
there is exactly one increment gadget applicable to q. Spoiler uses Lemma 5 to
reach q+ = α−1(i + 1) on the output of that gadget. By applying Lemma 6.(i)
twice, Spoiler can pebble q+ through the two switches to the x vertices.

To define the sequence of global critical strategies we combine the partial
critical strategies on the gadgets using the $-operator. There are three types
of strategies: Gstart, Fi and Gi. To define Gi we let q = α−1(i). Duplicator
plays according to hxq on x and according to hy0 on y. She plays according to this

The Propagation Depth of Local Consistency 171

strategy in the case when Spoiler reaches “q on x”. The critical strategy Gi is the
combination of the following (pairwise connectable) strategies on the gadgets:

– The critical strategy I initq on the initialization gadget (Lemma 7).
– The winning strategy with boundary hxq and hy

q+ on the increment gadget

applicable to q (Lemma 5).
– The critical input strategy Hin

q+ on the switch following the applicable incre-

ment gadget (Lemma 6).
– The winning strategy with boundary hxq and hyqinv

on the other increment
gadgets not applicable to q (Lemma 5).

– The winning strategy Hrestart
qinv

on the switches following the inapplicable in-
crement gadgets (Lemma 6). Here, qinv is the invalid configuration on the
output of the corresponding increment gadget.

– The output winning strategy Hout
q on the single switch (Lemma 6).

If in the above setting Spoiler increments q through the applicable increment
gadget and moves q+ = α−1(i + 1) through the subsequent switch, then Du-
plicator switches to the strategy Fi+1. To define Fi we fix q = α−1(i). In this
strategy, Duplicator plays according to hx0 on x and according to hyq on y. This
critical strategy is the combination of the following strategies on the gadgets.

– The critical strategy I init0 on the initialization gadget.
– The winning strategy with boundary hx0 and hy0 on the increment gadgets.
– The output strategy Hout

q on the switches following the increment gadgets.

– The critical input strategy Hin
q on the single switch.

The critical positions in the strategies Gi and Fi are inside the switches and the
initialization gadget. Recall that by Lemma 6.(iv) the critical positions on the
switch can be divided into restart critical positions and output critical positions.
Furthermore, all output critical positions of Gi, which are inside the switch fol-
lowing the applicable increment gadget, are contained as non-critical positions
in Fi+1. All output critical position in Fi, which are inside the single switch, are
contained as non-critical positions in Gi. Now we define Gstart, which contains
all other critical positions of Gi and Fi. The critical strategy Gstart is the union
of several other global strategies. The first one is Ginit, which is defined as G0
except that it contains the winning strategy I init on the initialization gadget.
Thus, by Lemma 7, it contains every critical position on the initialization gadget
as non-critical position. Note that the output critical positions of Ginit are con-
tained as non-critical positions in F1. Since Ginit handles the critical positions
on the initialization gadget and we discussed the output critical positions on the
switches, it remains to consider the restart critical positions of the strategies.
For this we construct a strategy Grestart

i to handle the restart critical positions
of Gi (for i ≥ 1) and of Ginit (for i = 0). Furthermore, we define for every i ≥ 1
a strategy F restart

i to handle the restart critical positions of Fi.
For 0 ≤ i ≤ nkmk − 2 and t ∈ [k] we let q = α−1(i) = (a, b, ∅) and qt be the

invalid configuration (a, b, {t}). The global strategy Grestart
i,t is the combination

of the following strategies on the gadgets.

172 C. Berkholz

– The critical strategy I initqt
on the initialization gadget.

– The winning strategy with boundary hxqt
and hyqinv

on the increment gadgets.
Note that, since qt is invalid, no increment gadget is applicable to qt.

– The winning strategy Hrestart
qinv

on the switches following the increment gad-
gets. Again, qinv is the invalid configuration at the output of the preceding
increment gadget.

– The output winning strategy Hout
qt

on the single switch.

Finally, we let Grestart
i :=

⋃
i∈[k] Grestart

i,t . Note that by Lemma 6.(iv) every restart

critical position of Gi is contained in Grestart
i and every restart critical position

of Ginit is contained in Grestart
0 . Now we define for 1 ≤ i ≤ nkmk − 2, t ∈ [k],

q = α−1(i) = (a, b, ∅) and qt := (a, b, {t}) the strategy F restart
i,t analogously. It

consists of the following partial strategies.

– The critical strategy I init0 on the initialization gadget.
– The winning strategy with boundary hx0 and hy0 on the increment gadgets.
– The winning strategy Hrestart

0 on the switches after the increment gadgets.
– The winning strategy Hrestart

qt
on the single switch.

In the end we let F restart
i be the union of all F restart

i,t . Note that every restart
critical position of Fi is contained as non-critical position in F restart

i . Finally, let

Gstart := Ginit ∪
⋃

0≤i≤nkmk−2

Grestart
i ∪

⋃
1≤i≤nkmk−2

F restart
i .

To conclude the proof note that the critical positions of Grestart
i and F restart

i are

inside the initialization gadget and hence contained in Ĝinit. Thus they are not
critical positions of Gstart. Hence, crit(Gstart) = crit(Ginit) ⊆ F̂1. ��

4 Conclusion

We have proven an optimal lower bound of Ω(nk−1dk−1) on the number of nested
propagation steps in the k-consistency procedure on constraint networks with n
variables and domain size d. It follows that every parallel propagation algorithm
has to perform at least Ω(nk−1dk−1) sequential steps. Using (n+ d)O(k) proces-
sors (one for every instance of the inference rule), k-consistency can be computed
in O(nk−1dk−1) parallel time, which is optimal for propagation algorithms. In
addition, the best sequential algorithm runs in O(nkdk). The overhead compared
to the parallel approach is mainly caused by the time needed to search for the
next inconsistent assignment that might be propagated – and this seems to be
the only task that can be parallelized.

Although we have proven an optimal lower bound in the general setting, it
might be interesting to investigate the propagation depth of k-consistency on
restricted classes of structures. Especially, if in such cases the propagation depth
is bounded by O(log(n + d)), we know that k-consistency is in NC and hence
parallelizable.

The Propagation Depth of Local Consistency 173

References

1. Atserias, A., Kolaitis, P.G., Vardi, M.Y.: Constraint propagation as a proof system.
In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 77–91. Springer, Heidelberg
(2004)

2. Berkholz, C.: The Propagation Depth of Local Consistency. ArXiv e-prints (2014),
http://arxiv.org/abs/1406.4679

3. Berkholz, C.: Lower bounds for existential pebble games and k-consistency tests.
Logical Methods in Computer Science 9(4) (2013),
http://arxiv.org/abs/1205.0679

4. Berkholz, C., Verbitsky, O.: On the speed of constraint propagation and the time
complexity of arc consistency testing. In: Chatterjee, K., Sgall, J. (eds.) MFCS
2013. LNCS, vol. 8087, pp. 159–170. Springer, Heidelberg (2013)

5. Cooper, M.C.: An optimal k-consistency algorithm. Artificial Intelligence 41(1),
89–95 (1989)

6. Dechter, R., Pearl, J.: A problem simplification approach that generates heuris-
tics for constraint-satisfaction problems. Tech. rep., Cognitive Systems Laboratory,
Computer Science Department, University of California, Los Angeles (1985)

7. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic snp and
constraint satisfaction: A study through datalog and group theory. SIAM Journal
on Computing 28(1), 57–104 (1998)

8. Freuder, E.C.: Synthesizing constraint expressions. Commun. ACM 21, 958–966
(1978)

9. Gaspers, S., Szeider, S.: The parameterized complexity of local consistency. In: Lee,
J. (ed.) CP 2011. LNCS, vol. 6876, pp. 302–316. Springer, Heidelberg (2011)

10. Kasif, S.: On the parallel complexity of discrete relaxation in constraint satisfaction
networks. Artificial Intelligence 45(3), 275–286 (1990)

11. Kolaitis, P.G., Panttaja, J.: On the complexity of existential pebble games. In:
Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 314–329. Springer,
Heidelberg (2003)

12. Kolaitis, P.G., Vardi, M.Y.: On the expressive power of datalog: Tools and a case
study. J. Comput. Syst. Sci. 51(1), 110–134 (1995)

13. Kolaitis, P.G., Vardi, M.Y.: A game-theoretic approach to constraint satisfaction.
In: Proc AAAI/IAAI 2000, pp. 175–181 (2000)

14. Ladkin, P.B., Maddux, R.D.: On binary constraint problems. J. ACM 41(3),
435–469 (1994), http://doi.acm.org/10.1145/176584.176585

15. Samal, A., Henderson, T.: Parallel consistent labeling algorithms. International
Journal of Parallel Programming 16, 341–364 (1987)

16. Susswein, S., Henderson, T., Zachary, J., Hansen, C., Hinker, P., Marsden, G.:
Parallel path consistency. International Journal of Parallel Programming 20(6),
453–473 (1991), http://dx.doi.org/10.1007/BF01547895

http://arxiv.org/abs/1406.4679
http://arxiv.org/abs/1205.0679
http://doi.acm.org/10.1145/176584.176585
http://dx.doi.org/10.1007/BF01547895

The Balance Constraint Family

Christian Bessiere1, Emmanuel Hebrard2, George Katsirelos3, Zeynep Kiziltan4,
Émilie Picard-Cantin5, Claude-Guy Quimper5, and Toby Walsh6

1 CNRS, University of Montpellier, France
bessiere@lirmm.fr

2 LAAS-CNRS, Toulouse, France
hebrard@laas.fr

3 INRA, Toulouse, France
george.katsirelos@toulouse.inra.fr

4 DISI, University of Bologna, Italy
zeynep@cs.unibo.it
5 Université Laval, Canada

epicardcantin@petalmd.com, claude-guy.quimper@ift.ulaval.ca
6 NICTA and University of New South Wales, Australia

toby.walsh@nicta.com.au

Abstract. The BALANCE constraint introduced by Beldiceanu ensures solutions
are balanced. This is useful when, for example, there is a requirement for solu-
tions to be fair. BALANCE bounds the difference B between the minimum and
maximum number of occurrences of the values assigned to the variables. We
show that achieving domain consistency on BALANCE is NP-hard. We therefore
introduce a variant, ALLBALANCE with a similar semantics that is only poly-
nomial to propagate. We consider various forms of ALLBALANCE and focus on
ATMOSTALLBALANCE which achieves what is usually the main goal, namely
constraining the upper bound on B. We provide a specialized propagation algo-
rithm, and a powerful decomposition both of which run in low polynomial time.
Experimental results demonstrate the promise of these new filtering methods.

1 Introduction

In many scheduling, rostering and related problems, we want to share tasks out as
equally as possible. For example, in the nurse rostering problems in [17,5], we wish
for all nurses to have a similar workload. As a second example, in the Balanced Aca-
demic Curriculum Problem (prob030 in CSPLib.org), we want to assign time periods
to courses in a way which balances the academic load across periods. As a third exam-
ple, when scheduling viewing times on a satellite, we might want agents to be assigned
a similar number of observations. The BALANCE constraint introduced by Beldiceanu
in the Global Constraint Catalog1 [3] can be used to model situations like this where
we need to minimize the difference B in the number of times different values, which
typically represent different resources, are used.

Beldiceanu proposes an automaton based filtering algorithm for the BALANCE con-
straint that uses a counter for each value. This requires exponential space and time

1 http://www.emn.fr/z-info/sdemasse/gccat

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 174–189, 2014.
c© Springer International Publishing Switzerland 2014

http://www.emn.fr/z-info/sdemasse/gccat

The Balance Constraint Family 175

to work. Alternatively, Beldiceanu proposes a decomposition that reorders the variables
and then computes the difference between the longest and the smallest sequences of
consecutive values. As we show, such a decomposition can hinder propagation. We
therefore revisit this global constraint. We prove that propagating the BALANCE con-
straint completely is intractable in general. We then introduce ALLBALANCE with a
similar semantics that is only polynomial to propagate. We consider various forms of
ALLBALANCE, focusing on ATMOSTALLBALANCE which constrains the upper bound
of B. This can be used when we desire solutions to be as balanced as possible and thus
want to minimizeB. We present a flow-based algorithm to maintain domain consistency
on ATMOSTALLBALANCE and compare it empirically to a decomposition augmented
with implied constraints. The results show that the implied constraints significantly
improve the performance of the decomposition, whilst the filtering algorithm in turn
further improves performance.

2 Background

A Constraint Network consists of a set of variables X , a domain D mapping each vari-
able X ∈ X to a finite set of values D(X), and a set of constraints C. An assignment σ
is a mapping from variables in X to values in their domains: for all Xi ∈ X we have
σ(Xi) ∈ D(Xi). We denote max(D(X)) by max(X) and min(D(X)) by min(X).
When σ is implied from the context, we write Xi = v instead of σ(Xi) = v and Xi

instead of σ(Xi). A constraint C is a relation on a set of variables. An assignment sat-
isfies C iff it is a tuple of this relation. We use capitals for variables and lower case
for values. Constraint solvers typically use backtracking search to explore the space of
partial assignments. At each assignment, propagation algorithms prune the search space
by enforcing local consistency properties like domain consistency. A constraintC onX
is domain consistent (DC) if and only if, for every Xi ∈ X and for every v ∈ D(Xi),
there is an assignment σ satisfying C such that σ(Xi) = v. Such an assignment is a
support. A CSP is DC iff all its constraints are DC. A constraint is disentailed iff there
is no possible support.

A decomposition of a constraint C is a reformulation of C into a conjunction of
constraints that is logically equivalent to C, potentially including extra variables. A de-
compositionN1 is stronger than N2 if and only if propagation on N1 detects a superset
of the inconsistent values detected by N2 [4].

The domain of a variable Xi is an interval iff |D(Xi)| = max(Xi) − min(Xi) +
1. Let {X1, . . . , Xn} be a set of variables. We call occ(v) = |{i | Xi = v}| the
number of occurrences of the value v in this set. The constraint GCC is defined over the
variables [X1, . . . , Xn] and is parameterized by two sets of integers {l1, . . . , lm} and
{u1, . . . , um}. It ensures that we have ∀j ∈ [1, . . . ,m], lj ≤ occ(vj) ≤ uj . Achieving
DC on GCC is polynomial [13]. If the lower and upper bounds on the occurrences are
given by variables [O1, . . . , Om], DC on the variablesXi can be achieved with the same
computational complexity provided that the domains of the occurrences are intervals.

176 C. Bessiere et al.

3 The Balance Constraint Family

BALANCE bounds the difference in the number of occurrences of values.

Definition 1 (BALANCE).

BALANCE([X1, . . . , Xn], B) ⇐⇒
B = max

v∈{X1,...,Xn}
occ(v)− min

v∈{X1,...,Xn}
occ(v)

Notice that only values occurring at least once are considered. Depending on the appli-
cation, this may or may not be desirable. For instance, if we want to select a subset of
resources and distribute tasks among them in a balanced way, then BALANCE is suited.
However, if resources are already selected, then such a solution might be imbalanced
as some resources may receive no tasks. Moreover, it is hard to know if a value will be
used for sure until all variables are set. As a consequence, filtering is weak. We there-
fore consider a variant, ALLBALANCE in which all values in a set V are considered
(without loss of generality, we shall assume that V = {1, . . . ,m}). We shall see that
achieving DC on BALANCE is NP-hard, while it is polynomial for ALLBALANCE.

Definition 2 (ALLBALANCE).

ALLBALANCE(V , [X1, . . . , Xn], B) ⇐⇒
B = max

v∈V
occ(v)−min

v∈V
occ(v) ∧ ∀i Xi ∈ V

We also consider the variants of BALANCE and ALLBALANCE where B is only
a lower or an upper bound. By replacing “=” in Definition 1 and 2 by “≥”
and “≤”, we define the constraints ATMOSTBALANCE, ATLEASTBALANCE,
ATMOSTALLBALANCE and ATLEASTALLBALANCE. While ATMOSTBALANCE

and ATMOSTALLBALANCE ensure that a solution is “balanced enough”,
ATLEASTBALANCE and ATLEASTALLBALANCE ensure that the solution is
“somewhat unbalanced”. The first two constraints are useful when we seek balanced
solutions and want to minimize B, whilst the last two are useful when we cannot make
B lower than a certain value or desire some level of imbalance.

Theorem 1. Enforcing DC on BALANCE takes polynomial time if the number of values
m is bounded.

Proof. We construct a REGULAR constraint [9] with states containing counters for ev-
ery value, i.e. a state is labeled with a tuple 〈cv1 , . . . , cvm〉 where cvi is the number
of times the value vi ∈ V was encountered. The unfolded automaton therefore has
O(nm) states. Enforcing DC then takes O(nm+1m) time. One can reduce the number
of counters by 1. Choose a value and delete its counter. After parsing the string, the
missing counter should have value n - sum of the other counters. Total complexity is
then O(nmm). ��

Theorem 2. Enforcing DC on BALANCE is NP-hard.

The Balance Constraint Family 177

Proof. Reduction from 3-SAT to the problem of finding a support of BALANCE. Given
a formula ϕ with n atoms 1, . . . , n and m clauses, we build a BALANCE constraint
finding the balance B over a set of (n + 1)(m+ 1) variables. Let lkj be the k-th literal
of the j-th clause of ϕ. We define the variables:

B = 0 (3.1)

D(X1,j) = {0} ∀j ∈ 1..m+ 1 (3.2)

D(X2,i) = {ī, i} ∀i ∈ 1..n (3.3)

D(X3,j) = {l1j , l2j , l3j} ∀j ∈ 1..m (3.4)

D(X4,l) = {n̄, . . . , 1̄, 1, . . . , n} ∀l ∈ 1..(n− 1)m (3.5)

The domains of variables (3.1) and (3.2) force every value to occur 0 or m + 1 times.
The existence of a model of ϕ implies that there is a solution of BALANCE. Indeed
atom and clause variables (3.3,3.4) can be assigned using only the n literals appearing
in the model. The total number of occurrences of these n values on the variables X2,i

and X3,j is n + m. Thanks to the (n − 1)m filler variables (3.5), we can ensure that
each value of these n values occurs exactly m+ 1 times. Thus, 0 for B is consistent.

Now consider a solution of BALANCE. Since B = 0, every value occursm+1 times
or never. Since each X2,i must take a value, either the value i or ī must occur at least
once, hence m+1 times. There are (n+1)(m+1) variables in total and we identified
n + 1 values (counting the value 0) that must occur m + 1 times each. Therefore, the
other values must not occur at all. The model which contains the literal i iff the value i
occurs m + 1 times, and ī otherwise, is a model of ϕ. Indeed, for every clause cj ∈ ϕ,
since X3,j (3.4) must be assigned a value, it follows that the model above has at least
one literal from cj . ��

This proof also shows that ATMOSTBALANCE is NP-hard to propagate as it only re-
quires an upper bound on B. By comparison, it is easier to reason with ALLBALANCE,
ATLEASTALLBALANCE, ATLEASTBALANCE, and ATMOSTALLBALANCE. For the
first three constraints, we give complexity results in the form of an algorithm intended
only to prove polynomiality. For ATMOSTALLBALANCE, we will present a practical
filtering algorithm.

Theorem 3. Enforcing DC on ALLBALANCE, ATLEASTALLBALANCE and
ATLEASTBALANCE takes polynomial time.

Proof. Consider a restricted case of ALLBALANCE where the least (most) occurring
value is required to be vleast (vmost) and must occur exactly c times (c+ b times). DC
can be enforced using GCC with D(Ovleast

) = {c}, D(Ovmost) = {c+b} and D(Ov) =
[c, c+b] for all values v �∈ {vleast, vmost}. To filter ALLBALANCE, one can test whether
a value v ∈ D(Xi) has a support in one of the restricted cases where b ∈ D(B),
c ∈ [0, n− b], vleast ∈ [1,m], and vmost ∈ [1,m]. Since there are O(|D(B)|nm2) such
cases, the filtering can be done in polynomial time.

For ATLEASTBALANCE, we set the domain D(Ovleast
) = [1, c] to ensure that vleast

occurs at least once. We set D(Ovmost) = [c+min(B), n] so that the balance is at least
min(B) and we set the domains of the other occurrence variables to Oi ∈ [0, n] for i �∈

178 C. Bessiere et al.

{vleast, vmost}. There areO(nm2) restricted cases to test since vleast ∈ [1,m], vmost ∈
[1,m], and c ∈ [0, n−min(B)]. The restricted cases apply for ATLEASTALLBALANCE

except that the domain D(Ovleast
) is [0, c] to allow the value vleast to not occur. ��

4 Decompositions

We focus mainly on BALANCE and ALLBALANCE, as their decompositions can be
used also for the others by suitably constraining only the lower or upper bound of
B. The Global Constraints Catalog [3] proposes a decomposition of BALANCE that
uses the constraint SORTEDNESS([X1, . . . , Xn], [Y1, . . . , Yn]) to count the minimum
and maximum length of stretches of equal value in the sequence [Y1, . . . , Yn]. Then,
it makes sure that the difference between the length of the maximum and minimum
stretch is equal to B. We propose another decomposition of BALANCE using GCC. Let⋃n

i=1 D(Xi) = {1, . . . ,m}:

GCC([X1, . . . , Xn], [O1, . . . , Om]) &

P = max({O1, . . . , Om}) &

Q = min({O1, . . . , Om} \ {0}) &

B = P −Q

As DC on BALANCE is NP-hard, it is no surprise that neither decomposition enforces
DC. However, Example 1 shows that, even if we assume perfect communication be-
tween the variables Yj’s and B in the decomposition using SORTEDNESS2, then this
decomposition is not stronger than the new decomposition using the GCC constraint.

Example 1. m = 6, X1 ∈ {1, 6}, X2 ∈ {2, 5}, X3 ∈ {3, 4}, Y1 ∈ {1, 2, 3, 4}, Y2 ∈
{2, 3, 4, 5}, Y3 ∈ {3, 4, 5, 6}, B = 1. The domains of occurrences variables Ov are set
to {0, 1} by GCC, hence the variables P andQ are both set to 1, and thus the constraint
is found inconsistent. However, the SORTEDNESS decomposition allows stretches
greater than 1. It is therefore consistent, irrespective of the reasoning used on Yi and B.

Similar to BALANCE, the ALLBALANCE constraint can also be decomposed using
the GCC constraint. Let V = {1, . . . ,m}.

∀i ∈ {1, . . . , n}, Xi ∈ V
GCC([X1, . . . , Xn], [O1, . . . , Om]) &

P = max({O1, . . . , Om}) &

Q = min({O1, . . . , Om}) &

B = P −Q

D(P) = [
⌈
n
m

⌉
, n]

D(Q) = [0,
⌊
n
m

⌋
]

2 Such filtering can be obtained, for instance, through a REGULAR constraint.

The Balance Constraint Family 179

The domains of the variables P and Q are based on the observation that the average
of the occurrence variables is exactly n

m . Consequently, the greatest occurrence should
be no smaller than the average and the smallest occurrence should be no greater than
the average. Example 2 shows that this decomposition does not maintain DC, even on
ATMOSTALLBALANCE.

Example 2. m = 4, B ∈ [0, 2], X1 = X2 = 1, X3 ∈ {1, 2, 3}, X4 ∈ {1, 3, 4},
X5 ∈ {1, 3, 4}. After propagation, the domains of these variables remain the same and
we get:

O1 ∈ [2, 3], O2 ∈ [0, 1], O3 ∈ [0, 3], O4 ∈ [0, 2], P ∈ [2, 3], Q ∈ [0, 1]

However, the only way for the occurrence variables to sum to 5 and have a balance of at
most 2 is to take their values in the multiset {2, 2, 1, 0} or {2, 1, 1, 1}. In other words, a
value cannot occur three times and the value 1 should be removed from the domains of
X3, X4, and X5.

In order to investigate the limits of a decomposition of ALLBALANCE based on
the GCC constraint, we consider another decomposition using the constraints together
with an automaton defined on the occurrence variables. Observe that we have perfect
communication from the Xi’s domains to the Oj’s bounds (through GCC) and perfect
communication between the Oj’s and B (through REGULAR). However, we shall see
that this is still not sufficient to achieve DC on ALLBALANCE.

GCC([X1, . . . , Xn], [O1, . . . , Om]) &

REGULAR([O1, . . . , Om, B],A)

The automaton A has O(n3m) states. Non-final states are tuples 〈i, S, q, p〉 which re-
spectively encode the current variable, the current sum, the minimum value encoun-
tered, and the maximum value encountered. The final state is denoted f . The starting
state is 〈1, 0, n, 0〉. The transition function is:

δ(〈i, S, q, p〉, x) =
{
〈i + 1, S + x,min(q, x),max(p, x)〉 if i ≤ m
f if i = m+ 1 and x = p− q

Since this automaton is acyclic, unfolding does not alter the number of states, hence the
total complexity to propagate this REGULAR constraint isO(mn4). This decomposition
is costly yet is still insufficient to maintain DC. Consider the following example.

Example 3. m = 4, B ∈ [0, 2], X1, X2 = 1, X3 ∈ {1, 2, 3}, and X4, X5, X6 ∈
{1, 3, 4}. After filtering the REGULAR constraint, we obtain the domains O1 ∈ [2, 3],
O2 ∈ [0, 1], O3 ∈ [1, 2], and O4 ∈ [1, 2] that do not allow the GCC to filter 1 from the
domain of X3.

In the rest of the paper, we will focus on the GCC decomposition of ALLBALANCE.
In addition to being cheaper than the REGULAR decomposition, it can be strengthened
by adding implied constraints, as we will show next.

180 C. Bessiere et al.

4.1 Constraints Implied by ALLBALANCE

We can strengthen the GCC decomposition of ALLBALANCE thanks to the following
inequality: P + (m − 1)Q ≤ n. This is true because at least one value will occur P
times, and at most m − 1 values will occur Q times, where n is the total number of
occurrences. We have Q = P −B, hence P + (m− 1)(P −B) ≤ n, that is:

mP − (m− 1)B ≤ n (4.1)

In other words, we have an upper bound P ≤
⌊
n−B
m

⌋
+B. Consider again Example 2

which shows that the GCC decomposition of ALLBALANCE does not maintain DC.

Due to (4.1), we discover that P ≤
⌊
n+(m−1)B

m

⌋
≤

⌊
5+3×2

4

⌋
= 2 and the upper bound

of P , O1, and O3 is reduced to 2. Therefore, the constraint GCC removes 1 from the
domains of X3, X4, and X5.

We can make a similar argument to obtain a lower bound on Q. We have: Q+ (m−
1)P ≥ n which is equivalent to:

mQ+ (m− 1)B ≥ n (4.2)

Again in Example 2, thanks to (4.2), we discover thatQ ≥
⌊
n−(m−1)B

m

⌋
≥
⌊
5−3×0

4

⌋
=

1 and the lower bound of Q, O2, and O3 are increased to 1, and the variable X3 is set
to 2.

It is possible to add implied constraints providing even stronger level of filtering.
The following constraints are implied by the decomposition whilst being stronger than
constraints (4.1) and (4.2).

(

m∑
j=1

max(P −B,Oj)) ≤ n ≤ (

m∑
j=1

min(P,Oj)) (4.3)

(

m∑
j=1

min(Q+ B,Oj)) ≥ n ≥ (

m∑
j=1

max(Q,Oj)) (4.4)

Indeed, consider the following example.

Example 4. m = 7, X1, X2 ∈ {1}, X3, X4 ∈ {2}, X5, X6 ∈ {3}, X7, X8, X9 ∈
{4, 5, 6, 7}, B ∈ {1, 2}. The domains of occurrences variables O1, O2, O3 are set to 2
and O4, O5, O6, O7 to [0, 3] by GCC, hence the variables P and Q are set respectively
to [2, 3] and [0, 1], and thus the GCC decomposition as well as constraints (4.1) and
(4.2) are DC. However, P = 3 is not consistent with the constraint (4.3) and Q = 1 is
not consistent with the constraint (4.4). Therefore we can deduce B = 2.

Notice that these two extra constraints require a dedicated, albeit rather straightforward,
filtering algorithm because using SUM and MIN/MAX constraints would hinder prop-
agation. The algorithm proceeds by shaving the bounds of the variables P and Q. For
instance, after having temporarily fixed P to its upper bound, we find a support for the

The Balance Constraint Family 181

relation (
∑m

j=1 max(P − B,Oj)) ≤ n by using the maximum value for B and the
minimum value for each Oj . If this is not sufficient to keep the sum below n, then we
can deduce that P = max(P) is inconsistent. In Example 4, assuming P = 3, we have
P −max(B) = 1, and

∑m
j=1 max(P −B,Oj) = 2 + 2 + 2 + 1 + 1 + 1 + 1 > 9.

Last, we can add another cheap implied constraint. If the number of values (m) does
not divide the number of variables (n), then B cannot be equal to 0. Conversely, if n =
mk, then B cannot be equal to 1. Indeed, suppose that the balance is 1. Furthermore,
suppose that a value occurs k − 1 times or less. Then since n = mk, at least one other
value occurs k + 1 times or more, hence the balance is greater or equal to 2. The same
contradiction arises if we suppose that a value occurs k+1 times or more. Therefore, the
value of B cannot be equal to 1. These two rules can be combined together as follows:

1 +
⌊ n
m

⌋
−
⌈ n
m

⌉
�= B (4.5)

As we will show later in the empirical results, the implied constraints presented in
this section turn out to be very effective in propagating ALLBALANCE.

4.2 Special Cases of ALLBALANCE

There exist some special cases of the ALLBALANCE where we have a simple encoding
that does not hurt DC propagation. For instance, if B = n then all variables must be
equal. We can thus post: Xi = Xi+1 for 1 ≤ i < n. Another case is when m = 2.
In this case, the implied constraints (4.1) and (4.2) reveal that: P ≤ n+B

2 , Q ≥ n−B
2 .

Since there are two values, one occurs P times, and the other Q times, and P +Q = n.
Therefore, we have P = n+B

2 and Q = n−B
2 . It follows that the value of B must be

even if and only if n is even. Moreover, we can safely assume that the two values are 0
and 1 since any binary domain can be mapped to these values. Therefore, the expression∑n

i=1Xi gives either P or Q. Thus, we post:

B mod 2 = n mod 2 ∧
n∑

i=1

Xi ∈
{
n−B

2
,
n+B

2

}
There are other cases where the decomposition with the implied constraints is sufficient.

Proposition 1. The GCC decomposition with the implied constraints (4.1),(4.2) and
(4.5) achieves DC on ALLBALANCE if B ≤ 1.

Proof. When B = 0, the implied constraints (4.1) and (4.2) entail that: P ≤ n
m , Q ≥

n
m . This enforces the occurrence variables Ov for all v ∈ V of the GCC decomposition
to be set to n

m . Since P,Q and B are fixed, the constraint is now equivalent to GCC.
When B = 1, the implied bounds are:

P ≤
⌊
n− 1

m

⌋
+ 1 ≤

⌈ n
m

⌉
, Q ≥

⌈
n+ 1

m

⌉
− 1 ≥

⌊ n
m

⌋
This will enforce D(Ov) =

[⌊
n
m

⌋
,
⌈
n
m

⌉]
for all v ∈ V of the GCC decomposition. We

know that either m does not divide n or B = 1 is inconsistent. Since the latter case has

182 C. Bessiere et al.

already been treated, we check the former. In this case, constraint (4.5) implies that a
balance of 0 is not consistent, hence D(B) = {1}. However, any assignment consistent
with GCC with the bounds given by P and Q will have a balance of 1. Therefore, in
either case, we achieve DC on ALLBALANCE. ��

Another special case is as follows.

Proposition 2. The GCC decomposition with the implied constraints (4.1),(4.2) and
(4.5) achieves DC on ATMOSTALLBALANCE if m ≤ 2.

Proof. Let b = max(B). The implied constraints (4.1) and (4.2) put an upper bound on
P of

⌊
n−b
m

⌋
+ b, and a lower bound on Q of

⌈
n+b
m

⌉
− b. Hence:

max(P)−min(Q) ≤ 2b−
⌈
n+ b

m

⌉
+

⌊
n− b

m

⌋
≤ 2b− n+ b

m
+
n− b

m
= 2b− 2b

m

Now, supposem ≤ 2. Thenmax(P)−min(Q) ≤ b and for any 1 ≤ j ≤ m, max(Oj)−
min(Oj) ≤ b. Thus, all solutions of the GCC satisfy ATMOSTALLBALANCE. ��

In summary, we have shown that our decomposition with the introduced implied
constraints achieves DC on ALLBALANCE if B ≤ 1, and on ATMOSTALLBALANCE

if m ≤ 2. Moreover, there exists a decomposition achieving DC on ALLBALANCE if
m ≤ 2. In general, the decomposition does not achieve DC, even given perfect commu-
nication between the variables Oj , P,Q and B (Example 3).

5 A Filtering Algorithm for ATMOSTALLBALANCE

We present now a filtering algorithm that achieves DC on ATMOSTALLBALANCE. The
algorithm (see Algorithm 1) proceeds in two steps. First, it finds a support by iteratively
reducing the balance of a support for GCC until it is minimal. Second, it computes
the union of the supports over each possible window of width max(B) for the values’
occurrences. The resulting union can be computed efficiently and corresponds to the
domain consistent values.

5.1 Finding a Support

To find a support, the algorithm computes a flow in a graph similar to the one used for
the GCC. There is one node Xi per variable, one node v per value, a source s, and a
sink t. Each edge has a capacity [a, b], i.e. a lower capacity a and an upper capacity b.
There is an edge of capacity [0, 1] between s and each variable node Xi. There is an
edge of capacity [0, 1] between each node Xi and value v for v ∈ D(Xi). Finally, there
is an edge of capacity [0, n] between each value v and t. Let f(a, b) be the amount of
flow that circulates from node a to b. A maximum flow [1] from s to t corresponds to
an assignment of the variables, i.e. Xi = v ⇐⇒ f(Xi, v) = 1. The value v occurs
exactly f(v, t) times in the assignment. To modify the assignment so that it satisfies

The Balance Constraint Family 183

Algorithm 1. FilterAtMostAllBalance([V , [X1, . . . , Xn], B)

b ← max(B);
D(X ′

i) ← D(Xi) for all i = 1..n;
Find a support σ for ATMOSTALLBALANCE whose balance is minimal and let q be the1

occurrence of the least occurring value;
Set min(B) to be the balance of the support σ;
D(Oi) ← [q, q + b] for all i = 1..m;
filter GCC([D(X1), . . . ,D(Xn)], [O1, . . . , Om]);2

if no filtering occurred then return;
if filtering occurred because of a Hall set then k ← 1;
else k ← −1;
D(Oi) ← [q + k, q + b+ k] for all i = 1..m;
filter GCC([D(X ′

1), . . . ,D(X ′
n)], [O1, . . . , Om]);

D(Xi) ← D(Xi) ∪ D(X ′
i) for all i = 1..n;

the ATMOSTALLBALANCE constraint, the algorithm finds a path in the residual graph
from the most occurring (or least occurring) value v to any value v′ such that f(v′, t) ≤
f(v, t) − 2 (or such that f(v′, t) ≥ f(v, t) + 2). The algorithm pushes a unit of flow
along this path to modify the assignment. The algorithm repeats this operation until no
such path exists. If no such path exists and if the balance of the current assignment is
strictly greater than max(B), then no support exists. To prove correctness, we show that
if there is a solution of ATMOSTALLBALANCE, then there is a sequence of such paths
leading to it from any maximum flow. In other words, if no such path exists, then the
gap between the maximum and minimum flow going through an edge for a value node
to the sink node is a lower bound of B.

Lemma 1. If v is the most occurring value and there is no value v′ such that f(v′, t) ≤
f(v, t)− 2 and that v can reach v′ in the residual graph and if w is the least occurring
value and there is no value w′ such that f(w′, t) ≥ f(w, t) + 2 and that w can reach
w′ in the residual graph, then the balance of the current assignment is minimal.

Proof. We prove the contraposition. Suppose there is a flow f∗ whose corresponding
assignment has a smaller balance than the assignment given by f . Let the most occur-
ring and least occuring values in each flow be:

vmost = argmax
v∈V

f(v, t), vleast = argmin
v∈V

f(v, t),

v∗most = argmax
v∈V

f∗(v, t), v∗least = argmin
v∈V

f∗(v, t).

Necessarily, we have f(vmost, t) > f∗(v∗most, t)∨f(vleast, t) < f∗(v∗least, t). Suppose
that f(vmost, t) > f∗(v∗most, t), we have f(vmost, t) > f∗(v∗most, t) ≥ f∗(vmost, t).
Since both flows have the same flow value, the difference of the vectors f∗ − f de-
scribes a circulation, i.e. a collection of cycles on which the flow circulates. Since
f∗(vmost, t) − f(vmost, t) < 0, the flow circulates from t to vmost in the circula-
tion which means that there is a value v′ for which the flow circulates from v′ to t
which implies f∗(v′, t)− f(v′, t) > 0. We conclude that f(vmost, t) > f∗(v∗most, t) ≥

184 C. Bessiere et al.

f∗(v′, t) > f(v′, t) thus f(vmost, t) ≥ f(v′, t) + 2. Finally, the edges (v′, t) and (t, v)
lie on the same cycle in the circulation. Hence there is a path that connects v to v′ in the
residual graph. The case f(vleast, t) < f∗(v∗least, t) is symmetric. ��

5.2 Filtering the Domains

First, we filter the lower bound of B to the balance value of the support found in the
first phase. The balance of this solution is, by Lemma 1, the maximum lower bound
on B. Next, we set q = minv f(v, t) to be the frequency of the least occurring value.
Let b̄ = max(B). We then run the filtering algorithm of the GCC with the domains
of the occurrence variables set to [q, q + b̄]. If this does no filtering, then each value in
the domains belongs to a support where the occurrences of the values lie between q and
q+ b̄. All these supports satisfy the ATMOSTALLBALANCE and we are done. However,
if the filtering algorithm detects that the assignmentXi = v is inconsistent for the GCC,
it is not necessarily inconsistent for ATMOSTALLBALANCE. The assignment Xi = v
can occur in a support where the maximum and minimum number of occurrences do not
belong to [q, q+ b̄]. Therefore, we need to test for a support with different domains such
as [q−1, q+ b̄−1] and [q+1, q+ b̄+1]. Fortunately, we do not need to test all possible
intervals of size b̄. A Hall set is a set of values H for which exactly (q + b̄) × |H |
variable domains are subset of H , since q + b̄ is the maximum allowed occurrences
for any value in H . Conversely, an unstable set is a set of values U for which exactly
q×|U | variable domains intersectU . From [11], an assignmentXi = v is filtered either
because v belongs to a Hall set or the domain of Xi intersects with an unstable set. The
following lemmas restrict search to two windows.

Lemma 2. If H is a Hall set for a GCC with occurrences bounded by q and q + b̄ and
k a positive integer, then the bounds q − k and q + b̄− k are inconsistent.

Proof. Since H is a Hall set when the upper bound is equal to q + b̄, then there are
(q + b̄) × |H | variables whose domains are included in H . Therefore the total number
occurrences of values in H is at least (q + b̄) × |H |. Therefore at least one value must
occur at least q + b̄ times. This is a contradiction with the upper bound q + b̄− k. ��

The dual result for unstable sets can be obtained in a similar way (proof omitted):

Lemma 3. If U is an unstable set for a GCC with occurrences bounded by q and q+ b̄
and k a positive integer, then the bounds q + k and q + 1̄ + k are inconsistent.

These two lemmas imply that we only need to check the window [q + 1, q + b̄ + 1]
if the pruning was due to Hall sets only, the window [q − 1, q + b̄ − 1] if it was due to
unstable sets only, and no other window otherwise. This leads to the following theorem.

Theorem 4. Enforcing DC on ATMOSTALLBALANCE takes O(n2m) time.

Proof. First, the pruning on B is correct by Lemma 1. Since B is only an upper bound,
its own upper bound is never pruned. It follows that the pruning on B is complete and
a support is found if and only if the constraint is not disentailed. Now, consider Algo-
rithm 1. Let b = max(B) and q be the minimum occurrence of any value found in the

The Balance Constraint Family 185

support (Line 1). We compute all consistent values for a GCC constraint where occur-
rence variables are bounded by [q, q + b̄]. Suppose first that no pruning occurs. Then
every value is consistent for GCC. In each support the difference between maximum
and minimum occurrence is at most b̄. Hence it is a support for ATMOSTALLBALANCE.

Suppose now that there is at least one Hall set. Then by Lemma 2, we know
that a GCC on the same variables but with all occurrence variables bounded by
[q − k, q + b̄ − k] would be inconsistent. In other words, these values have no sup-
port for ATMOSTALLBALANCE on lower windows. By Lemma 2, since the GCC is
consistent for the window [q, q + b̄], there will not be any Hall set on higher windows.
It follows that values inconsistent for GCC on the window [q, q + b̄] are inconsis-
tent for ATMOSTALLBALANCE only if they are pruned because of an unstable set on
[q+1, q+ b̄+1] and all higher windows. However, by Lemma 3, if there is an unstable
set on the window [q + 1, q + b̄ + 1], then all higher windows will be inconsistent. It
follows that values pruned by GCC on the windows [q, q + b̄] are inconsistent if and
only if they are also pruned on the window [q + 1, q + b̄+ 1]. The second case is when
there is at least one unstable set when setting the occurrence variables to the window
[q, q + b̄]. Symmetrically, values are inconsistent if and only if they would be pruned
also for the window [q − 1, q + b̄− 1]. Finally, if the window [q, q + b̄] has both a Hall
and an unstable set, all other windows are inconsistent.

The running time is bounded by the time to find a support. This requires finding
O(n − max(B)) augmenting paths, each with a depth-first search (DFS) in O(nm)
time. The two calls to the filtering algorithm of GCC take O(n3/2m) time. Finding
what caused the filtering uses a DFS in the transposed residual graph that marks nodes
that can reach the sink t. If the value v was filtered out of the domain of Xi and that
v cannot reach the sink, then the filtering occurred because of a Hall set. Otherwise, it
occurred because of an unstable set. The total complexity is thus O(n2m). ��

In practice, the complexity can be considerably reduced. For instance, the support
σ can remain valid for multiple consecutive calls to the filtering algorithm. Then, the
running time is equivalent to executing the filtering algorithm of GCC twice. If the
support is no longer valid, it can usualy be updated rather than computed from scratch.
This involves finding much fewer than n−max(B) augmenting paths.

6 Related Work

The problem of ensuring a certain balance in the assignments of [X1, . . . , Xn] has been
previously studied with the SPREAD [10,15,14] and DEVIATION [16,14] constraints.
Both constraints look at the deviation from the mean m = 1

n

∑n
i=1Xi with balancing

criteria D =
∑n

i=1(Xi −m)2 and D =
∑n

i=1 |Xi −m|, respectively. The constraints
in the BALANCE family, however, cannot be expressed using SPREAD and DEVIATION.
In particular, SPREAD and DEVIATION consider the values taken by Xis, as opposed
to the number of occurrences of each value. For instance, for DEVIATION, an assign-
ment [1, 2, 2, 2, 2, 2, 2, 2, 3] is better than [1, 1, 1, 2, 2, 2, 3, 3, 3] as the deviation from
the mean is lower in the first, but the latter has balance B = 0 (3 occurences for each
value), so is preferred by ATMOSTALLBALANCE. This criterion is important in appli-
cations where we want to balance the occurrence of values where each occurrence of

186 C. Bessiere et al.

a value represents the use of a resource such as an employee or machine. The balance
criterionB is also different from DEVIATION on the occurrences of values. The criteria
coincide when B = D = 0, but not otherwise. Assume that the occurrences of some
4 values in some 16 variables can be [2, 2, 6, 6] or [2, 3, 4, 7]. While in the first vector
B = 4 and D = 8, in the second B = 5 and D = 6.

Similar criteria have been studied in graph theory in problems involving generating
balanced cuts, such as judicious partitioning [7] and graph conductance [2]. These are
all NP-hard but can be approximated in polynomial time.

7 Experimental Results

We evaluate our DC algorithm for ATMOSTALLBALANCE and its decompositions on
the Balanced Academic Curriculum Problem and a shift scheduling problem. All ex-
periments use Choco (version 2.1.5) under Linux on a 3Ghz CPU with 12 GB of RAM.

7.1 Balanced Academic Curriculum Problem (BACP)

In BACP (prob030 in CSPLib.org), a set of n courses must be assigned to m time
periods, such that (1) a lower and an upper bound on the number of courses per period
must be respected; (2) some courses are prerequisite for others; (3) the load (i.e., the
sum of the credits of the assigned courses) of each period should be balanced.

The “standard” model [6] has a variable Xi for each course i, whose value is the
period allocated to this course. A variable Oj for each period j gives the load on this
period. In order to channel these two sets, {0, 1} variables Yi,j are introduced and con-
strained such that Xi = j ⇔ Yi,j = 1 and Oj =

∑n
i=1 c(i) · Yi,j where c(i) stands

for the the number of credits of a course i. Constraint (1) is modeled by a GCC con-
straint on {X1, . . . , Xn}, constraints (2) are simple precedences between the corre-
sponding Xi and Xj . For the objective (3), a criterion is minimized representing how
balanced the set {O1, . . . , Om} is. In [6], the criterion is the maximum load. We here
consider the gap between the minimum and maximum load, denoted L(∞) in [16]. We
thus have three variables P , Q and B with the constraints P = max({O1, . . . , Om}),
Q = min({O1, . . . , Om}) and B = P −Q, and we minimize B.

We propose an alternative model which respects L(∞) using our ALLBALANCE

constraint. It uses the same variables {X1, . . . , Xn} and same constraints for (1) and
(2). However, we do not need Yi,j and Oj . We can directly post ALLBALANCE using
V = {1, . . . ,m} and B on the multiset of variables containing c(i) times each Xi.

We report the results obtained by running 7 models on 3 real instances involving 8,
10 and 12 periods. Standard is the first model described above. The rest correspond
to the alternative model using ALLBALANCE. The first uses the basic GCC decompo-
sition for ALLBALANCE (Decomp.), the second uses the decomposition with implied
constraints (4.1) and (4.2) (Implied), the third uses the implied constraints (4.3) and
(4.4) (Implied+), and the fourth uses the DC algorithm (AllBalance). Finally,
in the two last models we balance the load using the DEVIATION constraint [16] on
the load variables Oj . The way that DEVIATION is used differs in the two models.
In the former (Deviat.), following [16], Oj variables are channelled to the origi-
nal Xi variables via the Yi,j variables as in the standard model. In the latter model

The Balance Constraint Family 187

Table 1. Balanced Academic Curriculum Problem

Standard Decomp. Implied Implied+ AllBalance Deviat. Gcc+Deviat.
B # Time B # Time B # Time B # Time B # Time B # Time B # Time

08 16.3 - 1.0 20 116 1.0 20 112 1.0 20 120 1.0 20 174 1.3 19 388 1.0 20 579
10 15.2 - 1.0 20 2626 1.0 20 2665 1.0 20 21261 1.0 20 17509 1.1 19 63100 1.6 18 9850
12 31.6 - 2.1 15 19104 2.0 15 21984 1.4 19 28999 0.0 20 45503 0.1 19 2832 0.2 18 15023

(Gcc+Deviat.), the Oj variables are channelled to the duplicatedXi variables using
a GCC. That is, we use a GCC and a DEVIATION constraint together to balance the
load. We then report the L(∞) value of the best solutions provided by these two mod-
els. Notice that (almost) perfectly balanced solutions exist for the instances we used,
thus the L(∞) and deviation criteria are very close to each other.

As branching strategy, we use Impact Based Search [12] in all cases. Each instance is
run 20 times with a 900s cutoff by each method after randomly shuffling the variables so
that initial ties are broken randomly. We report in Table 1 the average observed balance
(B = L(∞)) over the 20 runs, and the number of runs where optimality was proven (#).
Moreover, when possible, we report the average run time in milliseconds (Time) over all
completed runs (i.e., in which optimality was proven). In other words, CPU times can be
compared only when the same set of instances have been solved by all methods. As also
shown in [6], the standard model rarely solves the instances to optimality which renders
difficult the computation of averages for which optimality is proven by all methods. We
use bold to highlight the best results. When multiple methods solve the same instances,
we also highlight the best average CPU time.

We observe that the standard CP model has extremely poor performance, the solu-
tions found are all suboptimal. Notice that the criterion optimized by the DEVIATION

models is different. Several symmetric solutions for the L(∞) criterion have a differ-
ent deviation. Indeed, we can see that the Deviat. model, which is the same as the
standard model where the simple objective function is replaced by DEVIATION , greatly
outperforms the standard model. Neither of the DEVIATION models is able to find an
optimal solution and prove it in every case. However, adding the implied constraint as
suggested in [8], significantly improves the model Deviat.: it then finds optimal so-
lutions in all but one of the instances, making it nearly as good as the AllBalance
model. The models using the decompositions of the ALLBALANCE constraint is very
efficient on instances 08 and 10, however, only the filtering algorithm is able to find an
optimal solution and prove it within the cutoff time in all cases.

7.2 Shift Scheduling

In order to better assess the advantages of the propagator over the different decompo-
sitions, we ran another series of tests (under the same conditions). We consider a task
assignment problem. We have m tasks per day. Each task requires a separate worker so
we have m workers. Over the n days of the schedule, we want each worker to receive

188 C. Bessiere et al.

Table 2. Shift Scheduling

m n
Decomp. Implied Implied+ AllBalance

B Time Bkt # B Time Bkt # B Time Bkt # B Time Bkt
6 16 8 1.92 6634 87398 25 1.88 37 472 25 1.88 35 423 25 1.88 33 260
6 17 11 2.16 60637 1073765 25 2.16 78 1123 25 2.16 63 877 25 2.16 36 249
6 18 16 3.2 8869 166146 25 1.84 127 1903 25 1.84 114 1617 25 1.84 36 279
6 19 8 3.24 106003 1352600 25 2.64 607 6983 25 2.64 504 6923 25 2.64 61 408
6 20 7 3.04 2302 27839 25 2.80 910 10027 25 2.80 734 8221 25 2.80 169 1085
7 16 6 1.44 32540 476847 25 1.44 2361 29767 25 1.44 2112 28382 25 1.44 1828 12383
7 17 9 2.04 159790 1542016 25 1.96 8416 90680 25 1.96 6697 72236 25 1.96 1576 9378
7 18 3 2.36 135580 1439674 22 1.76 19432 236671 22 1.76 14300 183069 24 1.68 13920 90665
7 19 4 2.04 80636 804503 22 1.88 21981 230327 22 1.88 13840 151262 23 1.76 6378 36822
7 20 2 2.72 25779 290430 23 1.56 46267 600434 24 1.52 55260 715789 23 1.68 18772 116406
8 16 8 2.12 128618 2109236 22 0.92 17420 231594 23 0.72 34216 462257 25 0.44 3797 14999
8 17 3 1.84 154183 1271700 21 1.68 55193 716866 21 1.68 49859 689151 25 1.28 12900 68059
8 18 1 1.76 4033 35971 15 1.56 56785 542326 16 1.52 84438 745177 16 1.56 5264 15636
8 19 2 2.12 176092 1675776 24 1.40 64074 665200 24 1.40 51899 544990 24 1.40 31092 201842
8 20 2 5.84 242901 2082063 11 2.76 51041 468643 11 2.68 35712 316148 15 2.32 12654 52741

an assignment as balanced as possible. We have one variable Xi,j per worker i and
per day j. We make sure that on any day j, all tasks are performed by distinct workers
through an ALL-DIFFERENT constraint over [X1,j , . . . , Xm,j]. We bound the balance
of the tasks assigned to each worker i by a shared variable B which we minimize with
ATMOSTALLBALANCE over [Xi,1, . . . , Xi,n]. To make problems hard, we ensure that
not all workers are available for every task every day. Given a ratio 0 ≤ α < 1, we
randomly forbid

⌈
αn2m

⌉
triples 〈i, j, k〉 for which we remove the value k from the

variable Xi,j (so that worker i cannot do task k on day j). We make sure that i ∈ Xi,j

for all i and j, to ensure a feasible solution exists. We randomly generated instances for
6 to 8 workers/tasks (m) and 16 to 20 days (n). For each pair (m,n), we generated 25
instances with α ranging from 0.1 to 0.58 by increments of 0.02.

We compare the basic GCC decomposition (Decomp.), the decompositions with im-
plied constraints (Implied) and (Implied+), and the DC algorithm (AllBalance).
We report the same statistics as for BACP, but compute averages over the values of α
instead of over random runs. A static variable and value ordering was used so that the
decrease in number of backtracks is only due to stronger propagation. We also report the
average number of backtracks over instances solved to optimality within the cutoff.

We can clearly see that the implied constraints have a huge impact for a very low
overhead. On the smaller instances, while the filtering algorithm saves backtracks, it is
almost twice as slow (in terms of backtracks per second) as either decomposition with
implied constraints. It is nevertheless almost always faster, but only by a small margin.
As the instances get larger, the benefits of the algorithm over the decompositions, and
of the stronger decompositions over the weaker ones, become more evident. Indeed,
the algorithm allows to prove optimality in 84% of the cases for m = 8, whereas
the decompositions (Decomp., Implied, Implied+) can only do it in 13%, 74%
and 76% of the cases, respectively. Moreover, still for m = 8 the objective value is
decreased 48%, 16% and 12% in average with respect to these three decompositions.

The Balance Constraint Family 189

8 Conclusions

We have studied constraints for ensuring solutions are balanced. We first proved that en-
forcing domain consistency on the ATMOSTBALANCE and therefore on the BALANCE

constraint is NP-hard. This is due to the disjunctive choice in the semantics of BALANCE

that ignores a value which does not occur. We therefore introduced a variant,
ALLBALANCE with a similar semantics in which all values are considered. We pro-
vided a propagation algorithm, and a powerful decomposition, which both work in low
polynomial time. Experimental results demonstrated the promise of these new filtering
methods.

References
1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Networks Flows, Theory, Algorithms, and

Applications. Prentice Hall (1993)
2. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph

partitioning. Journal of the ACM (JACM) 56(2), 5 (2009)
3. Beldiceanu, N., Carlsson, M., Demassey, S., Petit, T.: Global Constraint Catalogue: Past,

Present and Future. Constraints 12(1), 21–62 (2007)
4. Bessiere, C.: Constraint propagation. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook

of Constraint Programming. Elsevier (2006)
5. Cattafi, M., Herrero, R., Gavanelli, M., Nonato, M., Malucelli, F.: Improving Quality and

Efficiency in Home Health Care: an application of Constraint Logic Programming for the
Ferrara NHS unit. In: ICLP, pp. 415–424 (2012)

6. Hnich, B., Kiziltan, Z., Walsh, T.: Modelling a Balanced Academic Curriculum Problem.
In: CPAIOR, pp. 121–131 (2002)

7. Lee, C., Loh, P.-S., Sudakov, B.: Bisections of graphs. Journal of Combinatorial Theory,
Series B 103(5), 599–629 (2013)

8. Monette, J.-N., Schaus, P., Zampelli, S., Deville, Y., Dupont, P.: A CP Approach to the
Balanced Academic Curriculum Problem. In: The Seventh International Workshop on Sym-
metry and Constraint Satisfaction Problems, Symcon 2007 (2007)

9. Pesant, G.: A regular language membership constraint for finite sequences of variables.
In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 482–495. Springer, Heidelberg (2004)

10. Pesant, G., Régin, J.-C.: SPREAD: A Balancing Constraint Based on Statistics. In: van Beek,
P. (ed.) CP 2005. LNCS, vol. 3709, pp. 460–474. Springer, Heidelberg (2005)

11. Quimper, C.-G., Golynski, A., López-Ortiz, A., van Beek, P.: An Efficient Bounds Consis-
tency Algorithm for the Global Cardinality Constraint. Constraints 10, 115–135 (2005)

12. Refalo, P.: Impact-Based Search Strategies for Constraint Programming. In: Wallace, M.
(ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004)

13. Régin, J.-C.: Generalized Arc Consistency for Global Cardinality Constraint. In: IAAI,
pp. 209–215 (1996)

14. Schaus, P.: Solving Balancing and Bin-Packing problems with Constraint Programming. PhD
thesis, Universite Catholique de Louvain (2009)

15. Schaus, P., Deville, Y., Dupont, P., Régin, J.-C.: Simplification and Extension of the SPREAD
Constraint. In: Proc. of the 3rd Int’l Workshop on Constraint Propagation and Implementa-
tion, held alongside CP-06, pp. 77–91 (2006)

16. Schaus, P., Deville, Y., Dupont, P.E., Régin, J.-C.: The Deviation Constraint. In: Van Hen-
tenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 260–274. Springer,
Heidelberg (2007)

17. Schaus, P., Van Hentenryck, P., Régin, J.-C.: Scalable Load Balancing in Nurse to Patient
Assignment Problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS,
vol. 5547, pp. 248–262. Springer, Heidelberg (2009)

Experimental Comparison of BTD
and Intelligent Backtracking:

Towards an Automatic Per-instance Algorithm Selector

Loïc Blet1,3, Samba Ndojh Ndiaye1,2, and Christine Solnon1,3

1 Université de Lyon, LIRIS, UMR5205, France
2 Université Lyon 1, 69622 France

3 INSA-Lyon, 69621, France
{loic.blet,samba-ndojh.ndiaye,christine.solnon}@liris.cnrs.fr

Abstract. We consider a generic binary CSP solver parameterized by high-level
design choices, i.e., backtracking mechanisms, constraint propagation levels, and
variable ordering heuristics. We experimentally compare 24 different configura-
tions of this generic solver on a benchmark of around a thousand instances. This
allows us to understand the complementarity of the different search mechanisms,
with an emphasis on Backtracking with Tree Decomposition (BTD). Then, we
use a per-instance algorithm selector to automatically select a good solver for
each new instance to be solved. We introduce a new strategy for selecting the
solvers of the portfolio, which aims at maximizing the number of instances for
which the portfolio contains a good solver, independently from a time limit.

1 Introduction

Backtracking approaches solve constraint satisfaction problems by building a search
tree (or graph). In Chronological BackTracking (CBT) [1], this tree is explored in a
depth-first way: When a failure occurs, the search backtracks to the last choice point.
CBT is known to explore redundant subtrees when a failure is not due to the last de-
cision (trashing). To overcome trashing, intelligent backtrackings have been proposed,
such as Conflict-directed BackJumping (CBJ) [2], Dynamic BackTracking (DBT) [3]
and Decision Repair (DR) [4]: They dynamically exploit the structure of the problem
to directly backjump to failure causes thus avoiding trashing. Backtracking with Tree
Decomposition (BTD) [5] uses a different idea to avoid trashing: It captures the static
problem structure by identifying independent subproblems which are solved separately.

CBJ, DBT and CBT have already been experimentally compared (e.g., [6]). BTD
has also been experimentally compared to CBT and CBJ (e.g., [5]). However, BTD has
never been compared to CBJ and DBT on a wide benchmark, and it has never been com-
pared to DR. It is interesting to compare them as they all exploit structure to guide the
search: CBJ, DBT and DR exploit a dynamic structure thanks to explanations, whereas
BTD exploits a static structure thanks to decompositions. Furthermore, these backtrack-
ing mechanisms may be combined with different constraint propagation mechanisms,
such as Forward-Checking (FC) and Maintaining Arc Consistency (MAC), and with
different variable ordering heuristics. In particular, [7] proposes to exploit information

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 190–206, 2014.
c© Springer International Publishing Switzerland 2014

Experimental Comparison of BTD and Intelligent Backtracking 191

about previous states of the search when selecting the next variable to be assigned. In
some sense, this heuristic also exploits the structure of the instance to guide the search.

In this paper, we describe a generic CSP solver which has three parameters: (i) the
search strategy, which may be instantiated to CBT, CBJ (with or without variable re-
ordering), DBT, DR, or BTD; (ii) the constraint propagation mechanism, which may
be instantiated to FC or MAC; and (iii) the variable ordering heuristic, which may be
instantiated to minDomain over dynamic degree or over weighted degree.

A first contribution of the paper is to experimentally compare the 24 configurations
of this generic solver on a wide benchmark of around a thousand instances. In particular,
we compare BTD-based variants with other variants based on intelligent backtracking
frameworks. This extensive experimental study shows us that, even though one con-
figuration has better global success rates than all others, some configurations (such as
BTD-based ones) which have low global success rates are very good on a large number
of instances. In particular, we identify a minimal subset of 13 complementary config-
urations such that, for every instance of our benchmark, there is always at least one of
these 13 configurations which is good for it, i.e., which is not significantly outperformed
by any other configuration on this instance.

The next step is to exploit the complementarity of these configurations to improve
success rates. This may be done by hybridizing mechanisms. In particular, we have
proposed to combine BTD with approaches which dynamically exploit the structure
(CBJ and DR) in [8]. Such hybrid approaches are able to solve more efficiently some
instances but they are outperformed by some other configurations on other instances.
Recent works on portfolios and per-instance algorithm selectors (e.g., [9,10,11,12,13])
have shown us that we may much more significantly improve success rates by learning
selection models, which are able to choose a good solver for each new instance to be
solved. Therefore, we combine our generic solver with a per-instance algorithm selec-
tor. Like other recent approaches, we extract features from instances, and we use ma-
chine learning techniques to learn a selection model. A key point is to choose a subset
of solvers that may be selected by the selector: The goal is to keep a subset S of solvers
with complementary performances so that S contains a solver which performs well on
every instance of the training set. We compare two different strategies for achieving this
task, called Solved and Good. The Solved strategy maximizes the number of instances
solved at a given CPU time limit (ties are broken by minimizing CPU time), as proposed
in [12]. The Good strategy maximizes the number of instances for which S contains a
good solver, and uses statistical tests to decide whether a solver is good for an instance.
We experimentally show that this new strategy outperforms Solved.

The paper is organized as follows. In Section 2 we describe our generic framework
for solving CSPs. In Section 3, we experimentally compare different configurations of
this framework. In Section 4, we describe the per-instance algorithm selector and the
two selection strategies. In Section 5, we experimentally compare the two selection
strategies. We conclude in Section 6 with ideas for some further works.

2 Generic Framework for Binary CSPs

Background. A CSP instance is defined by a triplet (X,D,C). X is a finite set of
variables. D associates a finite set of values D(xi) with every variable xi ∈ X . C is

192 L. Blet, S.N. Ndiaye, and C. Solnon

a set of constraints. Each constraint is defined over a subset of variables and defines
tuples of values that can be assigned simultaneously to its variables. In this paper, we
consider binary CSPs, which only contain binary constraints defined over 2 variables.
A solution is an assignment of all variables satisfying all constraints.

We focus on backtracking approaches which structure the assignment space in a
search tree (or graph for DBT and DR) whose nodes correspond to variable/value as-
signments. We introduce a generic algorithm which is parameterized by the backtrack-
ing mechanism, the constraint propagation mechanism and the variable ordering heuris-
tic. This generic algorithm allows us to compare in a unified framework state-of-the-art
backtracking approaches for binary CSPs. It basically extends the generic algorithm of
[6] by adding 3 new backtracking mechanisms (CBJR, DR and BTD).

Backtracking. In Chronological Backtracking (CBT) [1], the tree is explored with a
depth-first search. When a failure occurs, the search backtracks to the last choice point.
When the cause of the failure is not due to the last decision, but to an earlier one, CBT
explores redundant subtrees. To overcome this issue, Conflict directed BackJumping
(CBJ) [2] backtracks immediately to the last assigned variable involved in the failure,
and unassigns all variables assigned after it. In this study, we use improvements pro-
posed in [14,15] to get a version of CBJ similar to the one in [6]. It maintains for each
value unsuccessfully tried the set of assigned variables involved in this failure. More-
over, if this set is empty, the value is permanently removed from the problem.

Dynamic BackTracking (DBT) [3] does not unassign variables between the current
node and the cause of the failure, but simply backjumps over them since they are not
involved in the current failure. Due to the poor performance of DBT combined with FC
and a good variable ordering [16], [17] proposes a new version of CBJ combined with
a retroactive ordering of already assigned variable (CBJR). After each new assignment,
the variable ordering heuristic is used to try to replace the assigned variable higher in the
search tree in light of the current state of the problem (for example if many values are
removed from the domain of a variable, the ordering heuristic may move up this variable
in the tree). Yet, to ensure completeness, the assigned variable cannot be moved before
a variable involved in the filtering or failure of a value in its domain.

Decision Repair (DR) [18] is a generic framework that generalizes [4] with several
parameters. Each instantiation of this framework corresponds to a different hybridiza-
tion between tree search, local search and constraint propagation. We consider the
DR(mindestroy, uvar) instantiation of this framework, as proposed in [18]. It performs
a depth first search combined with Forward-Checking (FC). When a failure occurs, the
current assignment is repaired by unassigning one variable among those involved in the
failure (not necessarily the last) and removing all explanations involving this variable.
To ease inconsistency proofs, a variable minimizing the number of removed explana-
tions is chosen randomly. We have extended DR to allow its combination with arc con-
sistency (MAC) instead of FC. Note that DR does not guarantee a complete exploration
of the search space.

Finally, Backtracking with Tree Decomposition (BTD) [5] uses a tree-decomposition
of the constraint graph which captures the problem structure by identifying indepen-
dent subproblems. BTD computes the order in which the subproblems must be solved,
resulting in a partial order on the variables. Moreover, it records goods associated with

Experimental Comparison of BTD and Intelligent Backtracking 193

subproblem solutions, and nogoods associated with subproblem failures. This informa-
tion is exploited to avoid solving the same subproblem more than once. In this study,
the tree decomposition is computed using the minimum-fill heuristic [19] to triangulate
the constraint graph.

Constraint propagation. At each node of the search tree (or graph), constraints are
propagated in order to filter domains and detect local inconsistencies. In this study,
we consider two well-known filtering mechanisms [1]: Forward Checking (FC), which
removes values which are not arc-consistent with the last variable/value assignment; and
Maintaining Arc Consistency (MAC), which ensures arc consistency of all constraints.
For CBJ, DBT and DR, we maintain arc consistency with AC3 [20], whereas for CBT
and BTD we use AC2001 [21]. AC2001 considers an ordering of the values in the
domains and records for each value its first compatible value in the other domains. If
this compatible value is removed, AC2001 searches for a new compatible value starting
from the position of the removed one.

Variable ordering heuristics. At each node of the tree (or graph), the search chooses
the next variable to be assigned among the set of all non assigned variables. It uses a
variable ordering heuristic to guide this choice. A classical variable ordering heuristic
is minDomain, which chooses a variable which has the smallest domain. In this study,
we consider two well-known improvements of this heuristic [22,7]: minDomain over
dynamic degree (d), which chooses a variable x which minimizes the ratio between the
size of D(x) and the number of unassigned variables sharing a constraint with x; and
minDomain over weighted degree (w), which chooses a variable x which minimizes
the ratio between the size of D(x) and the sum of weights of constraints which involve
x with another unassigned variable (where the weight of a constraint is the number of
failures it has generated since the beginning of the search).

Note that when the backtracking mechanism is BTD, the variable ordering heuristic
is used to choose the next variable within the current cluster of the tree decomposition,
and not within the set of all unassigned variables (see [23]).

Generic framework. [6] defines a first generic framework that encompasses several
state-of-the-art backtracking algorithms. In this study, we have extended this frame-
work with three new backtracking mechanisms, namely CBJR, DR and BTD. From
this generic framework, we can obtain configurations denoted by triplets (b, c, o) where
b ∈{CBT, CBJ, DBT, CBJR, DR, BTD} defines the backtracking mechanism, c ∈{FC,
MAC} the constraint propagation mechanism, and o ∈{d,w} the variable ordering
heuristic.

For all configurations, we first decompose the constraint graph into its set of con-
nected components to obtain independent subproblems which are solved independently
and consecutively. Also, each subproblem is made arc consistent before starting the
solving process.

All configurations are non deterministic: When choosing variables, ties are randomly
broken; furthermore, we do not consider any value ordering heuristic and values are
randomly chosen.

194 L. Blet, S.N. Ndiaye, and C. Solnon

Table 1. Classes of the benchmark. For each class, the table displays its name, number of in-
stances, number of variables, domain sizes, number of constraints and constraint tightness (ratio
of forbidden tuples over number of possible tuples): minimum, average and maximum values.

Class #Instances #Variables #Values #Constraints Constraint tightness
min avg max min avg max min avg max min avg max

ACAD 75 10 116 500 2 146 2187 45 691 4950 0.001 0.692 0.998
PATT 238 16 263 1916 3 66 378 48 4492 65390 0.002 0.795 0.996
QRND 80 50 220 315 7 11 20 451 2968 4388 0.122 0.578 0.823
RAND 206 23 37 59 8 36 180 84 282 753 0.095 0.613 0.984
REAL 193 200 628 1000 2 152 802 1235 6394 17447 0.0 0.519 1.0
STRUCT 300 150 257 500 20 23 25 617 1641 3592 0.544 0.647 0.753

3 Experimental Comparison

Benchmark. Our benchmark is composed of 1092 instances grouped into 6 classes
described in Table 1. The first 5 classes come from the CSP’08 competition. We have
only considered the binary instances. If classes contained too many similar instances we
only took the first 10 instances. We have removed from the benchmark every instance
which has not been solved by any of our 24 configurations within a time limit of 30
minutes among 15 runs for each instance. The last class (STRUCT) contains structured
instances which are randomly generated as described in [24]. These instances have a
structure similar to RLFAP instances which are real-world instances. This structure is
defined by a tree of variable clusters, and the level of structure depends on the density
of constraints in clusters and the sizes of the clusters. The class contains subclasses of
instances with different levels of structure, sizes and constraint tightness.

Experimental results. Table 2 compares the success rates of the 24 configurations at
different CPU-time limits on an Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz, 20480
KB cache size, 3GB RAM. As all configurations are non deterministic, we have per-
formed 15 runs for each instance and each configuration. Table 2 also gives success
rates of Gecode (with the model proposed in [25]) with 3 different propagation levels:
ICL_VAL, ICL_DOM and ICL_DEF. It shows us that our implementation is competi-
tive with Gecode. Of course, our implementation is dedicated to binary CSPs, whereas
Gecode is a generic solver which has not be tailored for solving binary CSPs.

(CBT,MAC,w) is the best configuration when considering global success rates. This
result is not surprising and has already been observed, for example, in [6]. Without
surprise, we also note that configurations which use weighted degrees for ordering
variables outperform configurations which consider dynamic degrees (as already ob-
served in [7]). However the gain depends on the considered backtracking mechanism
as pointed out in [26]. In particular, using weighted degrees greatly improves the solu-
tion process for CBT, DBT and DR whereas the improvement is not so high for CBJ.
Also, configurations using DBT or DR as backtracking mechanism and FC for prop-
agating constraints perform poorly. It was already hinted that DBT could lead to poor
performances in [16].

Experimental Comparison of BTD and Intelligent Backtracking 195

Table 2. Comparison by means of global success rates. Each line successively displays the param-
eters of the solver and the percentage of successful runs at different CPU time limits (in seconds,
over 15 runs on 1092 instances). For each backtracking mechanism we highlight in bold the best
configuration. We highlight in blue the best over all configurations.

1 5 10 50 100 500 1000 1800

CBT
FC

d 37.0 45.2 47.6 52.7 55.3 60.0 61.1 61.7
w 41.8 51.7 56.8 65.9 69.4 77.8 81.5 83.2

MAC
d 43.0 51.7 56.7 65.5 69.1 75.3 76.5 77.7
w 47.1 61.5 68.3 80.5 85.2 92.3 94.3 95.4

CBJ
FC

d 41.3 50.4 55.2 66.9 70.5 81.9 85.6 88.0
w 39.6 51.0 55.0 67.8 72.6 84.0 88.1 91.0

MAC
d 38.0 50.2 54.3 68.2 74.2 85.3 88.8 90.4
w 39.7 53.1 57.6 73.7 79.6 90.7 93.5 95.1

CBJR
FC

d 39.9 49.4 53.3 63.3 66.9 75.8 78.1 79.5
w 39.1 50.5 55.0 67.5 72.6 84.2 88.3 90.9

MAC
d 29.2 37.3 41.1 46.4 48.5 53.9 55.4 56.5
w 31.6 40.1 44.9 55.0 58.9 67.7 69.4 70.7

DBT
FC

d 33.8 38.0 38.8 40.8 41.5 43.9 45.8 46.7
w 37.7 47.4 50.5 61.9 66.5 77.0 80.3 83.7

MAC
d 35.8 46.2 49.4 56.6 60.0 66.6 68.0 69.3
w 37.9 49.5 54.1 68.6 74.5 85.7 89.5 91.8

DR
FC

d 32.7 37.5 39.2 41.9 42.6 44.0 44.6 45.0
w 35.1 44.4 48.1 55.4 59.8 71.9 76.3 79.4

MAC
d 32.5 41.6 45.1 51.9 53.8 59.0 60.8 62.3
w 34.4 44.3 48.7 57.8 62.5 75.2 80.3 84.5

BTD
FC

d 31.4 45.1 52.2 65.1 69.2 76.1 77.3 78.0
w 33.5 48.0 55.5 70.2 74.9 82.1 83.9 84.5

MAC
d 32.8 45.1 53.9 70.1 75.8 84.6 86.0 87.1
w 37.4 51.3 61.9 77.6 83.3 91.9 93.6 94.2

Gecode ICL_DEF 29.7 34.9 38.1 48.9 55.4 66.7 69.3 71.9
Gecode ICL_VAL 27.7 32.9 35.2 45.3 51.3 63.8 67.2 70.4
Gecode ICL_DOM 29.9 35.8 38.9 50.9 56.6 66.7 70.5 73.4

These global success rates on the 1092 instances of our benchmark hide very differ-
ent results when we look at each instance separately. In particular, some configurations
which have rather low success rates on the whole benchmark are the best performing
ones on some instances. We apply a simple rule to decide if a configuration is the best
for an instance i: we first compare the number of successful runs within a 30 minute
CPU time limit, and we break ties by comparing the CPU time of the successful runs.

Line (b) of Table 3 displays the percentage of instances for which a configuration is
the best among the whole set of configurations. It shows us that, even though (CBT,FC,d)
only solves 61.7% instances of the whole benchmark after 30 minutes of CPU time, it
is the best configuration for 27.7% of the 1092 instances. Of course, it is well known
that simple configurations like (CBT,FC,d) outperform more complicated configurations

196 L. Blet, S.N. Ndiaye, and C. Solnon

Table 3. For each configuration c, line (b) gives the percentage of instances for which c is the best
configuration; line (b/h) (resp. (g/h)) gives the percentage of hard instances for which c is the best
configuration (resp. c is a good configuration); line (sb/h) (resp. (sb2/h)) gives the percentage of
hard instances for which c is the best configuration and all other configurations are significantly
worse than c (resp. all other configurations except (CBJ,FC,w), (CBJR,FC,d), (CBJR,MAC,*), (DBT,*,*),

(DR,FC,d) and (DR,MAC,*) are significantly worse than c)

CBT CBJ CBJR DBT DR BTD
FC MAC FC MAC FC MAC FC MAC FC MAC FC MAC
d w d w d w d w d w d w d w d w d w d w d w d w

(b) 27.7 4.5 11.3 9.2 2.0 1.2 1.0 0.7 0.7 1.1 1.6 0.9 1.4 0.4 0.7 0.1 1.0 3.4 0.5 0.2 14.2 12.3 0.7 3.1
(b/h) 17.8 2.3 8.8 11.1 1.1 0.3 0.3 1.1 0.8 1.6 0.0 0.8 0.8 0.2 0.5 0.0 0.5 2.7 0.5 0.2 23.3 18.8 1.3 5.1
(g/h) 27.7 9.8 12.9 19.9 4.0 3.4 2.7 7.1 2.3 4.8 2.3 2.3 1.3 5.5 2.7 2.7 2.7 7.1 2.9 2.9 42.1 26.5 5.3 10.5
(sb/h) 6.4 0.3 5.5 5.8 0 0 0.2 0.5 0 1.1 0 0 0 0 0 0 0 1.9 0 0 14.0 7.2 0.2 1.3
(sb2/h) 6.4 0.6 6.1 7.1 1.6 - 0.2 0.8 - 1.4 - - - - - - - 2.3 - - 14.6 7.9 0.3 1.3

on very simple instances, for which there is no need for intelligent but expensive mech-
anisms, whereas they usually have very poor performance on harder instances. In line
(b/h) of Table 3, we have removed easy instances from the benchmark: we consider
that an instance is easy if it has been solved in less than one second by (CBT,MAC,w),
for each of the 15 runs. With this definition, 470 instances of our benchmark are easy,
and 622 are more difficult. When focusing on these harder instances, line (b/h) of Table
3 shows us that some configurations (such as those using DBT) only have very few
instances for which they are the best.

As several configurations may have close results for a given instance, we also study
the number of instances for which a configuration performs well: We consider that a
configuration is good for an instance i either if it is the best one, or if there is no statis-
tical difference between its 15 runs and the 15 runs of the best configuration for i. We
used the Student’s t-test with p = 0.01 to decide whether a configuration is not signifi-
cantly different from another one on a given instance. Line (g/h) of Table 3 displays the
percentage of hard instances for which a configuration is good. Again, we note that con-
figurations which are good for many instances do not always have high global success
rates on the whole benchmark. In particular, the two configurations which are good for
the largest numbers of instances (i.e., (BTD,FC,d) and (CBT,FC,d)) are far from having
the highest success rates in Table 2.

All configurations are good for at least one instance of the benchmark. However,
it may happen that some configurations are good only for instances for which other
configurations are also good, i.e., some configurations are dominated by other ones. To
study this, line (sb/h) of Table 3 displays the percentage of hard instances for which a
configuration is the best and all other configurations are significantly worse than it. It
shows us that 12 configurations are dominated by the other configurations: (CBJ,FC,*),
(CBJR,FC,d), (CBJR,MAC,*), (DBT,*,*), (DR,FC,d) and (DR,MAC,*). Hence, we have re-
moved these configurations from our study, except (CBJ,FC,d): there are 10 instances for
which all good configurations belong to the set of 12 dominated configurations; as for
these 10 instances (CBJ,FC,d) is good (and the only configuration to be good on those 10
instances), we keep (CBJ,FC,d). Finally, line (sb2/h) of Table 3 gives the percentage of
hard instances for which a configuration is the best and all other configurations except

Experimental Comparison of BTD and Intelligent Backtracking 197

Table 4. Description of the 3 sets of instances. For each set, the table displays the number of hard
instances in each benchmark class, and the average tree width and separator size (in percentage
of the number of variables) of the tree decomposition.

Number of hard instances Sep size Tree width
ACAD PATT QRND RAND REAL STRUCT Total (avg) (avg)

Decompose 7 8 1 14 5 177 212 4,7% 17,1%
Don’t decompose 5 50 12 23 77 63 230 25,3% 31,8%
Don’t know 9 35 5 99 3 29 180 32,9% 54,5%

(CBJ,FC,*), (CBJR,FC,d), (CBJR,MAC,*), (DBT,*,*), (DR,FC,d) and (DR,MAC,*) are sig-
nificantly worse than it. The set composed of the 13 remaining configurations contains
a good configuration for every instance. This set is minimal as each of these 13 solvers
is the only one to be good for at least one instance.

BTD is very effective on many instances. In particular, (BTD,FC,d) is good on more
than 42% of the hard instances, and it is significantly better than all other configurations
on more than 14% of the hard instances. However, on some other instances it also per-
forms poorly so that its global success rate is rather low compared to other approaches.
In order to give an insight into which instances are better solved by BTD, we partitioned
the 622 hard instances in 3 sets:

– The Decompose set contains all hard instances which are best solved by one of
the 4 BTD-based configurations (i.e., (BTD,*,*)), and for which none of the 9 non
BTD-based configuration (i.e., (CBT,*,*), (CBJ,FC,d), (CBJ,MAC,*), (CBJR,FC,w)),
and (DR,FC,w)) is good;

– The Don’t decompose set contains all hard instances which are best solved by one
of the 9 non BTD-based configurations and for which none of the 4 BTD-based
configuration is good;

– The Don’t know set contains all other instances.

Table 4 shows us how the instances of the benchmark are distributed into these sets.
Many instances of the Decompose set come from the STRUCT class, which contains
structured instances. This is not a surprise that BTD-based approaches perform bet-
ter than other approaches on these instances (see, e.g., [5]). As BTD has never been
compared with intelligent backtracking approaches, it is interesting to note that BTD
outperforms them on many of these structured instances. Only 35 instances of the 2008
competition belong to the Decompose set: Many instances of this benchmark do not
exhibit static structures that can be exploited by BTD. When looking at parameters of
the tree decomposition, we note that instances of the Decompose set have a smaller tree
width (half the size of the Don’t decompose set) and a smaller separator size (one fifth
the size of the Don’t decompose set). Instances of the Don’t know set have large tree
width. Actually, when the tree width is close to the number of variables, BTD behaves
like CBT as nearly all the variables belong to the same cluster.

On some instances, most notably some rlfap instances, the decomposition is good
but the instance is in Don’t decompose. These instances are easy (the solution is found

198 L. Blet, S.N. Ndiaye, and C. Solnon

very quickly by (CBT,FC,d)) but huge (up to 900 variables). Restricting the search to
clusters can be detrimental as we forbid the search from going directly to the solution.

4 Per-instance Algorithm Selector

Experimental results reported in the previous section have shown us that the best per-
forming configurations on some instances may have very bad performance on other
instances so that they are far from having the best average success rates on the whole
benchmark. This illustration of the well-known no-free-lunch theorem motivates our
study on a per-instance algorithm selector which aims at selecting a good configuration
for each new instance to be solved.

In this study, we do not aim at improving the state-of-the-art of per-instance algo-
rithm selectors such as, e.g., CPHydra [9], ISAC [11] or EISAC [27], but we focus on
a key point of these approaches, i.e., the selection of the solvers to be included in the
portfolio. Indeed, [12] shows us that better performance may be obtained with smaller
portfolios. However, it is also important that the portfolio contains a large enough num-
ber of solvers so that there is a good solver for every instance. Experimental results
reported in the previous section may be used to definitely remove some solvers from
the portfolio: The 11 configurations which are dominated by the 13 other configurations
can be removed from the portfolio without significantly changing the performance of
a Virtual Best Selector (VBS), which always selects the best solver in the portfolio. In
this section, we describe and compare two different strategies for selecting a subset of
these 13 solvers in the portfolio: the strategy used in [12], and a new strategy. Before
describing these two strategies, we describe the basic framework of our per-instance
algorithm selector.

4.1 Basic Framework of the Selector

We consider a classical framework similar to the “off-the-shelf” framework of [12]. The
idea is to train a supervised classifier by giving a training set of labeled CSP instances
to it: Each instance of the training set is described by an input vector of features and is
associated with an output label, corresponding to the best solver for this instance. This
training phase allows the classifier to learn a selection model. Then, this model is used
to select solvers for new instances to be solved, given their input feature vectors.

Features. Each CSP instance is described by a vector of features. We consider classical
features, similar to those used in [9,12], for example. The main difference is that we
also extract features from the tree decomposition, as Table 4 has shown us that the
performance of BTD depends on tree widths and separator sizes.

More precisely, we extract the following static features from each instance: Number
of variables, number of constraints, size of domains (average and standard deviation),
constraint tightness, i.e., ratio of forbidden tuples with respect to all possible tuples in
the relation (average and standard deviation), and variable degree in the constraint graph
(average and standard deviation). As the constraint graphs of some instances are not
connected, we also extract the following features: Number of connected components

Experimental Comparison of BTD and Intelligent Backtracking 199

in the constraint graph, number of variables in a connected component (average and
standard deviation), and number of constraints in a connected component (average and
standard deviation). Finally, we also extract features from a tree decomposition which is
computed using the greedy algorithm minFill of [19] to triangulate the constraint graph:
Number of clusters, maximum separator and cluster size, and density of constraints in
a cluster (average and standard deviation).

In order to gather more information on the instance to be solved, we also perform a
short run on it and extract dynamic features from this run. We have limited the time of
this run to 1 second. As (CBT,MAC,w) is the best configuration within this time limit, we
have chosen to run (CBT,MAC,w). Furthermore, this configuration allows us to gather in-
formation on variable weights (used by the variable ordering heuristic) and the number
of values filtered by MAC. We collect the following dynamic features: Number of nodes
in the search tree, maximum depth of a node in the search tree, number of failed nodes,
number of values removed by MAC (average and standard deviation), and weight of a
variable (average and standard deviation). In order to gather insights into the dynamics
of the run, we collect these features for 3 time limits, i.e., 0.25, 0.5 and 1 second.

Training. Given a portfolio of solvers and a training set I of instances such that each
instance i ∈ I is described by a vector of features and is associated with the solver of the
portfolio which is the best for i, the goal is to train a classifier to associate instances with
solvers. This is a classical supervised classification problem and there exist different
well-known approaches to solve this problem [28]. In this study, we have used the
Weka library [29,30] to perform this task. We have compared the different supervised
classifiers which are implemented in Weka. The best classification results are obtained
with ClassificationViaRegression with default parameters [31] so that we have used this
classifier in our experiments.

Once the classifier has been trained on the training set of instances, we can use it to
dynamically choose the best configuration of our generic solver for each new instance
to be solved. More precisely, to solve a new instance i we proceed as follows: We first
run (CBT,MAC,w) on i with a CPU-time limit of 1 second; if i is not solved within
this time limit, we extract static features from i, and dynamic features from the run
of (CBT,MAC,w); we give these features to the classifier which returns a configuration
and we run this configuration on i. Note that the time spent to extract the features and
classify i is very short (less than 0.1 seconds on average).

4.2 Selection of a Subset of Solvers

A key point of per-instance algorithm selection is to select the solvers to be included
in the portfolio. The goal is to select solvers with complementary behaviors so that the
portfolio contains a good solver for every instance. We may include in our portfolio
the 13 non dominated solvers identified in Section 3. However, the larger the portfo-
lio, the harder the learning task. Therefore, better results may be obtained with fewer
configurations, as observed in [12].

We compare two strategies for selecting a subset Sk of k solvers (where k ∈ [2; 13]
is a parameter to be fixed). The first strategy, called Solved, is the one used in [12]. It
selects in Sk the k solvers which maximize the number of instances solved by a VBS

200 L. Blet, S.N. Ndiaye, and C. Solnon

at the CPU time limit. Further ties are broken by minimizing the solving time of the
VBS. The second strategy, called Good, selects in Sk the k solvers which maximize
the number of instances for which Sk contains a good solver (i.e., a solver which is not
statistically different from the best solver for this instance). Further ties are broken by
maximizing the number of instances solved by a VBS at the CPU time limit.

For both strategies, finding the optimal subset Sk is NP-hard: It is a set covering
problem between solvers and instances, where a solver s covers an instance i if s is able
to solve i (for Solved) or if s is good for i (for Good). In this study, we approximately
solve it in a greedy way: Starting from the subset S1, which contains the solver which
covers the largest number of instances, we define Si from Si−1 by adding to Si−1 the
solver which most increases the number of covered instances.

When considering the 15 runs of our 13 solvers on the 622 hard instances, we obtain
the following orders:

– Order of selection of solvers with the Solved strategy:
1-(CBT,MAC,w), 2-(BTD,FC,w), 3-(CBJR,FC,w), 4-(DR,FC,w), 5-(CBJ,MAC,w),
6-(CBT,MAC,d), 7-(BTD,FC,d), 8-(BTD,MAC,w), 9-(CBT,FC,d), 10-(CBJ,FC,d),
11-(CBJ,MAC,d), 12-(BTD,MAC,d), 13-(CBT,FC,w)

– Order of selection of solvers with the Good strategy:
1-(BTD,FC,d), 2-(CBT,MAC,w), 3-(BTD,FC,w), 4-(CBT,FC,d), 5-(CBT,MAC,d),
6-(DR,FC,w), 7-(CBJ,MAC,w), 8-(BTD,MAC,w), 9-(CBJ,FC,d), 10-(CBJR,FC,w),
11-(CBT,FC,w), 12-(BTD,MAC,d), 13-(CBJ,MAC,d)

Of course, this order strongly depends on the composition of the benchmark. For exam-
ple, if we remove half of the STRUCT instances, the Good strategy selects (CBT,FC,d)
in third position and (BTD,FC,w) in fourth position, while all other positions are un-
changed. However, if we remove all STRUCT instances, the order becomes very differ-
ent and the best BTD-based approach is (BTD,FC,w) and it is selected in fourth position.

Let us note Ss
k the subset which contains every solver whose rank is lower than or

equal to k for the strategy s ∈ {Solved ,Good}, and VBS(Ss
k) the VBS associated with

Ss
k. This VBS selects the best solver of Ss

k for each instance to be solved so that any
selector built upon Ss

k cannot outperform VBS(Ss
k).

Table 5 compares the two strategies by means of VBS success rates. Let us first
note that VBS(SSolved

k)=VBS(SGood
k) when k = 10 or k = 13 as SSolved

k = SGood
k

in these two cases. Also, VBS(SSolved
k) outperforms VBS(SGood

k) at the time limit of
1800s, when k ≤ 9, and both approaches are equivalent when k ≥ 10. This comes from
the fact that the Solved strategy maximizes the number of solved instances at the time
limit. As a counterpart, VBS(SGood

k) outperforms VBS(SSolved
k) for lower time limits

or smaller values of k. This comes from the fact that the Good strategy maximizes the
number of instances for which the portfolio contains a good solver, independently from
the time limit.

For example, when k = 4, the difference between the success rates of VBS(SGood
4)

and VBS(SSolved
4) is equal to 2.2, 3.5, 2.4, 1.3, and 0.2 when the time limit is equal to

1, 5, 10, 50, and 100s, respectively, whereas it becomes negative after 100s. However,
the difference is less important (−0.4, −0.7, and −0.7 at 500, 1000 and 1800s, re-
spectively). Actually, with SSolved

3 ={(CBT,MAC,w), (BTD,FC,w), (CBJR,FC,w)}, a VBS
is able to solve 99.4% of the runs, but SSolved

3 contains a good solver for only 294 of the

Experimental Comparison of BTD and Intelligent Backtracking 201

Table 5. Comparison of Solved and Good. Each line successively displays: the number k of
solvers selected in Sk and, for different time limits in seconds, percentages of successful runs of
virtual best selectors built upon the sets defined with Solved and Good (over 15 runs on the 1092
instances). For each (Sk,time) couple, we highlight the strategy with the highest success rate.

1 5 10 50 100 500 1000 1800
Solved Good Solved Good Solved Good Solved Good Solved Good Solved Good Solved Good Solved Good

2 52.0 52.7 68.9 70.6 75.4 77.2 87.5 88.7 91.8 92.3 96.7 96.9 98.2 98.2 98.7 98.6
3 52.4 53.2 69.2 71.6 75.9 77.8 87.8 89.0 92.5 92.8 97.6 97.3 99.0 98.4 99.4 98.8
4 52.5 54.7 69.4 72.9 76.1 78.5 88.2 89.5 92.8 93.0 97.8 97.4 99.1 98.4 99.5 98.8
5 52.7 55.8 69.4 73.1 76.1 78.7 88.3 89.7 93.0 93.0 97.8 97.4 99.2 98.4 99.6 98.8
6 54.5 55.9 69.7 73.3 76.4 79.0 88.8 90.3 93.1 93.6 97.8 97.8 99.2 98.8 99.7 99.3
7 55.6 56.0 72.3 73.3 78.7 79.0 90.2 90.3 94.0 93.9 98.3 98.1 99.3 99.2 99.7 99.6
8 55.7 56.1 72.3 73.3 78.8 79.2 90.4 90.5 94.0 93.9 98.3 98.1 99.4 99.2 99.7 99.6
9 56.2 56.4 73.4 73.5 79.3 79.3 90.5 90.6 94.1 94.1 98.4 98.2 99.4 99.2 99.7 99.6

10 56.5 56.5 73.5 73.5 79.5 79.5 90.7 90.7 94.2 94.2 98.4 98.4 99.4 99.4 99.7 99.7
11 56.5 56.5 73.5 73.7 79.5 79.6 90.8 90.7 94.3 94.2 98.4 98.4 99.4 99.4 99.7 99.7
12 56.5 56.5 73.5 73.7 79.5 79.6 90.8 90.7 94.3 94.2 98.4 98.4 99.4 99.4 99.7 99.7
13 56.6 56.6 73.7 73.7 79.6 79.6 90.8 90.8 94.3 94.3 98.4 98.4 99.4 99.4 99.7 99.7

622 hard instances. When adding new solvers to SSolved
3 , we only very slightly increase

the success rate of the VBS. The solver which most increases the number of solved
instances is (DR,FC,w) and it allows us to solve 26 more runs (among 622*15 runs).
However, (DR,FC,w) is a good solver for a rather small number of instances and adding
it to SSolved

3 increases the number of hard instances for which we have a good solver
by 24. As a comparison, adding (BTD,FC,d) to SSolved

3 would allow us to solve 12 more
runs (instead of 26, among 622*15) but it would increase the number of hard instances
for which we have a good solver by 168 (instead of 24, among 622 instances).

5 Experimental Evaluation

Experimental Setting. We consider the 1092 instances of the benchmark described in
Section 3, and the training set is composed of the 622 hard instances of this benchmark.
We use a leave-one-out scheme: for each instance i of the benchmark, if i is a hard
instance which belongs to the training set, then we remove i from it and we train the
classifier on all hard instances but i; finally we ask the classifier to select a solver for i.

Comparison of classification rates obtained with different sets Sk. The learnt solver of
an instance i is the solver returned by the classifier, and we say that i is well-classified
if its learnt solver is the best solver for i among the set Ss

k of candidate solvers (or if
it is not statistically different from the best solver for i in Ss

k). The second and third
columns of the left part of Table 6 gives the percentage of well-classified hard instances
for Solved and Good, respectively. It shows us that this percentage decreases when the
number of configurations in Ss

k increases, both for Solved and Good: It decreases from
81.7% and 84.6% with 2 configurations to 65.4% with 13 configurations. However, the

202 L. Blet, S.N. Ndiaye, and C. Solnon

Table 6. Ranking and goodness of learnt solvers. For each set Sk and each rank j ∈ {1, . . . , k},
the left table displays the percentage of hard instances whose learnt configuration is the jth best
among the k configurations in Sk. For each set Sk, the right table gives the percentage of hard
instances for which the learnt solver is a good solver.

Ranking of the learnt solvers
1 2 3 4 5 6 ≥7 # good solvers

Solved Good Solved Good Solved Good Solved Good Solved Good Solved Good Solved Good Solved Good

2 81.7 84.6 18.3 15.4 2 36.7 54.5
3 78.6 77.3 12.4 16.2 9.0 6.4 3 36.5 56.4
4 78.6 75.7 10.6 15.8 6.3 6.8 4.5 1.8 4 37.3 61.4
5 77.0 75.1 7.2 14.6 6.6 5.9 4.7 3.2 4.5 1.1 5 38.4 67.2
6 73.2 71.5 6.6 13.8 6.6 7.1 3.9 5.0 5.8 2.3 4.0 0.3 6 41.3 66.4
7 66.1 71.2 13.8 11.9 5.5 5.5 4.3 3.9 5.5 4.7 2.4 2.6 2.4 0.3 7 59.8 67.8
8 63.8 70.7 11.6 10.5 5.9 5.8 5.6 5.8 5.9 3.1 3.1 1.9 4.0 2.3 8 58.7 69.0
9 65.6 67.7 11.4 9.8 6.1 5.6 4.3 7.1 4.0 3.9 3.4 2.4 5.1 3.5 9 64.8 67.2

10 66.1 66.1 10.9 10.9 5.9 5.9 4.0 4.0 3.2 3.2 3.5 3.5 6.3 6.3 10 65.4 65.4
11 66.2 66.7 10.0 10.5 6.3 6.1 3.5 3.9 3.4 2.7 1.9 2.9 8.6 7.2 11 65.8 66.6
12 64.8 65.8 9.8 10.5 6.1 6.8 3.9 3.7 4.3 3.2 1.9 2.1 9.1 8.1 12 64.1 65.6
13 65.4 65.4 9.8 9.8 6.8 6.8 3.4 3.4 3.9 3.9 1.8 1.8 8.9 8.9 13 65.4 65.4

left part of Table 6 also shows us that the learnt solvers of instances which are not well
classified often correspond to solvers which perform well: Given a set Sk of solvers, and
given an instance i, we rank each solver of Sk from 1 to k according to its performance
on i (the solver ranked 1 being the best one for i, and the solver ranked k being the
worst one). For example, let us look at the results for S13: For 65.4% of the instances,
the learnt solver is the best one; for 9.8% of the instances, it is the second best one; for
6.8% it is the third best one; . . . ; and finally, for 8.9% of the instances it is the seventh
best one, or it is worse than the seventh best one.

The fact that the learnt solver is well-classified for an instance i does not necessarily
imply that it is good for i (except when k = 13): This depends on whether Sk contains
a good solver for i or not. The right part of Table 6 displays the percentage of hard
instances for which the learnt solver is good (i.e., it is the best among the 13 solvers,
or it is not statistically different from the best on this instance). For the Solved strategy,
this percentage increases from 36.7% with SSolved

2 to 65.8% with SSolved
11 , whereas for

the Good strategy it increases from 54.5% with SGood
2 to 69% with SGood

8 .

Comparison of success rates. Table 7 displays the percentage of instances solved at
different time limits for the best solver, (CBT,MAC,w), and for the per-instance algorithm
selector with different portfolios Ss

k with k ∈ [2; 13] and s ∈ {Solved ,Good}, on
average over 15 runs. We have used the Student’s t-test with p = 0.01 to decide whether
the 15 success rates at a given time t and a given size k are significantly different for
the two strategies and we highlight in blue the best strategy when the test is positive.
At one second, all variants of the selector have the same success rate as (CBT,MAC,w)
because the selector runs (CBT,MAC,w) during one second before starting the selection
process. However, after 5 seconds, all variants of the selector have better success rates

Experimental Comparison of BTD and Intelligent Backtracking 203

Table 7. Each line displays the size k of the portfolio, followed by success rates of per-instance
solver selectors built upon SSolved

k and SGood
k at different time limits (for 15 runs on the 1092

instances). For each time limit and each size k, we highlight in blue the cell with the best result if
it is significantly better. For each time limit and each strategy s ∈ {Solved ,Good}, we highlight
in bold the highest success rate whatever the size k. The last line of the table recalls the success
rates of (CBT,MAC,w).

Success rates of per instance solver selectors (average on 15 runs):
1 5 10 50 100 500 1000 1800

k Solved Good Solved Good Solved Good Solved Good Solved Good Solved Good Solved Good Solved Good

2 47.1 47.1 64.2 66.7 72.1 73.9 84.7 86.5 88.8 90.2 94.4 95.1 96.0 96.3 96.6 96.8
3 47.1 47.1 64.5 66.5 71.9 73.8 84.4 86.0 88.6 90.1 94.3 95.3 95.6 96.2 96.1 96.6
4 47.1 47.1 64.8 67.8 72.1 74.6 84.7 86.3 88.7 89.9 94.4 95.4 95.7 96.3 96.2 96.8
5 47.1 47.1 64.9 68.4 72.0 75.1 84.5 86.3 88.6 89.9 94.4 95.6 95.8 96.5 96.3 96.9
6 47.1 47.1 64.3 68.7 71.5 75.0 83.5 86.6 87.7 89.7 93.2 95.1 94.6 95.9 95.2 96.4
7 47.1 47.1 66.7 68.2 73.1 74.5 85.0 86.1 88.4 89.4 94.0 94.8 95.0 95.9 95.7 96.5
8 47.1 47.1 66.0 68.2 72.7 74.7 84.8 86.2 88.0 89.7 93.7 95.0 94.8 95.7 95.6 96.3
9 47.1 47.1 67.8 68.2 74.0 74.6 85.1 86.0 88.4 89.4 94.0 94.7 94.9 95.5 95.5 96.1

10 47.1 47.1 67.9 67.9 73.9 73.9 85.3 85.3 88.9 88.9 94.3 94.3 95.2 95.2 95.7 95.7
11 47.1 47.1 67.9 68.2 73.9 74.3 85.3 85.5 89.1 88.8 94.4 94.5 95.3 95.3 95.7 95.7
12 47.1 47.1 67.8 68.1 73.7 74.4 85.3 85.8 88.6 89.2 94.5 94.7 95.4 95.7 95.8 96.2
13 47.1 47.1 68.5 68.5 74.5 74.5 85.8 85.8 89.2 89.2 94.6 94.6 95.7 95.7 96.3 96.3

Success rates of (CBT,MAC,w) (average on 15 runs):
47.1 61.5 68.3 80.5 85.2 92.3 94.3 95.4

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000

(CBT,MAC,w)
Learnt configurator / Solved 13

Learnt configurator / Good 5
Virtual Best Configurator / Good 5

Virtual Best Configurator / 13

Fig. 1. Evolution of the percentage of solved instances with respect to CPU time (in seconds)

204 L. Blet, S.N. Ndiaye, and C. Solnon

than (CBT,MAC,w). The Good strategy is significantly better than the Solved one when
k ≤ 9, at all time limits. When k ≥ 10, the two strategies often have results which are
not significantly different.

For the Solved strategy, the best results are obtained with the largest portfolio,S13, up
to 500 seconds. After that, the best results are obtained with S2. For the Good strategy,
the best results are often obtained with a portfolio of 5 or 6 solvers. Figure 1 plots the
evolution of the percentage of solved instances with respect to CPU time for the best
solver (CBT,MAC,w) and for the selector with SGood

5 and SSolved
13 . It also plots results of

VBS(SGood
5) and VBS(SSolved

13).

6 Conclusion

We have extended the generic framework of [6] by adding three new backtracking
mechanisms (CBJR, DR and BTD), thus defining a unified framework for comparing
24 different configurations corresponding to state-of-the-art approaches. As far as we
know, this is the first time that approaches based on tree decomposition (BTD) are ex-
tensively compared with other search mechanisms such as CBJ, DBT, and DR, when
combined with two different constraint propagation techniques (MAC and FC) and with
two different variable ordering heuristics (d and w). Experiments have shown us that al-
though BTD has lower global success rates than the best approaches, it also performs
significantly better than them on many instances.

We have used a per-instance algorithm selector to choose a good configuration for
each new instance to be solved. This selector is parametrized by the size k of the port-
folio and we have introduced a new strategy for selecting the k solvers. This strategy is
independent from the CPU time limit and aims at maximizing the number of instances
for which the portfolio contains a good solver. We compare this strategy with the one
used in [12], which aims at maximizing the number of instances solved within a given
CPU time limit. We experimentally show that our new strategy allows the selector to
solve more instances.

In this first study, we have extracted rather simple features to characterize instances
and we plan to study (i) the usefulness of these different features for the classifica-
tion task and (ii) the possibility of adding new features such as other dynamic features
gathered when running other algorithms (e.g., greedy search or local search). We also
plan to extend this work to build runtime prediction models by using linear regres-
sion techniques, as done for example in SATzilla. This kind of prediction model could
then be used to schedule configurations in a portfolio approach, as done for example in
CPHydra. Further work will also concern the extension of our generic solver to n-ary
constraints and to impact-based or activity-based variable ordering heuristics [32]. Fi-
nally, our generic framework allows us to change dynamically the configuration during
the solving process. Therefore, we plan to extend our work to dynamic configuration as
proposed, for example, in [33] or [34].

Acknowledgements. Many thanks to Pierre Flener and Justin Pearson for enriching
discussions on this work.

Experimental Comparison of BTD and Intelligent Backtracking 205

References

1. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foundations of
Artificial Intelligence). Elsevier Science Inc., New York (2006)

2. Prosser, P.: Hybrid algorithms for the constraint satisfaction problem. Computational
Intelligence 9, 268–299 (1993)

3. Ginsberg, M.: Dynamic backtracking. Journal of Artificial Intelligence Research 1, 25–46
(1993)

4. Jussien, N., Lhomme, O.: Local search with constraint propagation and conflict-based
heuristics. Artif. Intell. 139(1), 21–45 (2002)

5. Jégou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of constraint
networks. Artif. Intell. 146, 43–75 (2003)

6. Lecoutre, C., Boussemart, F., Hemery, F.: Backjump-based techniques versus conflict-
directed heuristics. In: 16th IEEE International Conference on Tools with Artificial
Intelligence, ICTAI 2004, pp. 549–557. IEEE (2004)

7. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting
constraints. ECAI 16, 146 (2004)

8. Blet, L., Ndiaye, S.N., Solnon, C.: A generic framework for solving csps integrating decom-
position methods. In: CP Doctoral Program, Quebec, Canada (2012)

9. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-based rea-
soning in an algorithm portfolio for constraint solving. In: Irish Conference on Artificial
Intelligence and Cognitive Science (2008)

10. Xu, L., Hoos, H., Leyton-Brown, K.: Hydra: Automatically configuring algorithms for
portfolio-based selection. In: AAAI, vol. 10, pp. 210–216 (2010)

11. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: Isac-instance-specific algorithm
configuration. In: ECAI, vol. 215, pp. 751–756 (2010)

12. Amadini, R., Gabbrielli, M., Mauro, J.: An empirical evaluation of portfolios approaches
for solving CSPs. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874,
pp. 316–324. Springer, Heidelberg (2013)

13. Geschwender, D.J., Karakashian, S., Woodward, R.J., Choueiry, B.Y., Scott, S.D.: Selecting
the appropriate consistency algorithm for csps using machine learning classifiers. In: Twenty-
Seventh AAAI Conference on Artificial Intelligence (2013)

14. Bacchus, F.: Extending forward checking. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894,
pp. 35–51. Springer, Heidelberg (2000)

15. Jussien, N., Debruyne, R., Boizumault, P.: Maintaining arc-consistency within dynamic
backtracking. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 249–261. Springer,
Heidelberg (2000)

16. Baker, A.B.: The hazards of fancy backtracking. In: AAAI, pp. 288–293 (1994)
17. Zivan, R., Shapen, U., Zazone, M., Meisels, A.: Retroactive ordering for dynamic

backtracking. In: CP, pp. 766–771 (2006)
18. Pralet, C., Verfaillie, G.: Travelling in the world of local searches in the space of par-

tial assignments. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011,
pp. 240–255. Springer, Heidelberg (2004)

19. Kjaerulff, U.: Triangulation of graphs: Algorithms giving small total state space. Technical
report, University of Aalborg (1990)

20. Mackworth, A.K.: Consistency in networks of relations. Artificial intelligence 8(1), 99–118
(1977)

21. Bessière, C., Régin, J.-C.: Refining the basic constraint propagation algorithm. In: IJCAI,
vol. 1, pp. 309–315 (2001)

206 L. Blet, S.N. Ndiaye, and C. Solnon

22. Bessiere, C., Régin, J.-C.: Mac and combined heuristics: Two reasons to forsake fc (and cbj?)
on hard problems. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 61–75. Springer,
Heidelberg (1996)

23. Jégou, P., Ndiaye, S., Terrioux, C.: Dynamic heuristics for backtrack search on tree-
decomposition of CSPs. In: IJCAI, pp. 112–117 (2007)

24. Jégou, P., Ndiaye, S.N., Terrioux, C.: Strategies and Heuristics for Exploiting Tree-
decompositions of Constraint Networks. In: Inference methods based on graphical structures
of knowledge (WIGSK 2006), ECAI Workshop, pp. 13–18 (2006)

25. Morara, M., Mauro, J., Gabbrielli, M.: Solving xcsp problems by using gecode. In: 26th
Italian Conference on Computational Logic (CILC). CEUR Workshop Proceedings, vol. 810,
pp. 401–405. CEUR-WS.org (2011)

26. Chen, X., Beek, P.v.: Conflict-directed backjumping revisited. Journal of Artificial Intelli-
gence Research 14, 53–81 (2001)

27. Malitsky, Y., Mehta, D., O’Sullivan, B.: Evolving instance specific algorithm configuration.
In: Symposium on Combinatorial Search, SOCS (2013)

28. Battiti, R., Brunato, M.: The LION Way: Machine Learning plus Intelligent Optimization.
Lionsolver Inc. (2013)

29. Holmes, G., Donkin, A., Witten, I.H.: Weka: A machine learning workbench. In: Proceed-
ings of the 1994 Second Australian and New Zealand Conference on Intelligent Information
Systems, pp. 357–361. IEEE (1994)

30. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data
mining software: an update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)

31. Frank, E., Wang, Y., Inglis, S., Holmes, G., Witten, I.H.: Using model trees for classification.
Machine Learning 32(1), 63–76 (1998)

32. Kadioglu, S., O’Mahony, E., Refalo, P., Sellmann, M.: Incorporating variance in impact-
based search. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 470–477. Springer, Heidelberg
(2011)

33. Sakkout, H.E., Wallace, M.G., Richards, E.B.: An instance of adaptive constraint propaga-
tion. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 164–178. Springer, Heidelberg
(1996)

34. Liberto, G.D., Kadioglu, S., Leo, K., Malitsky, Y.: Dash: Dynamic approach for switching
heuristics. CoRR, abs/1307.4689 (2013)

Solving Intensional Weighted CSPs

by Incremental Optimization with BDDs

Miquel Bofill	, Miquel Palah́ı	,		, Josep Suy	, and Mateu Villaret	

Departament d’Informàtica, Matemàtica Aplicada i Estad́ıstica
Universitat de Girona, Spain

{mbofill,mpalahi,suy,villaret}@imae.udg.edu

Abstract. We present a method for solving weighted Constraint Satis-
faction Problems, based on translation into a Constraint Optimization
Problem and iterative calls to an SMT solver, with successively tighter
bounds of the objective function. The novelty of the method herewith
described lies in representing the bound constraint as a shared Binary
Decision Diagram, which in turn is translated into SAT. This offers two
benefits: first, BDDs built for previous bounds can be used to build the
BDDs for new (tighter) bounds, considerably reducing the BDD con-
struction time; second, as a by-product, many clauses asserted to the
solver in previous iterations can be reused.

The reported experimentation on the WSimply system shows that this
technique has better performance in general than other methods imple-
mented in the system. Moreover, with the new technique WSimply out-
performs some state-of-the-art solvers in most of the studied instances.

1 Introduction

A Constraint Satisfaction Problem (CSP) is a decision problem where the goal
is to determine whether an assignment of values to a set of variables exists which
satisfies a given set of constraints. It is common to find CSPs where, additionally
to determine if there exists a solution for the problem, the possible solution has
to minimize or maximize some objective function. These kinds of CSP are known
as Constraint Optimization Problems (COP).

Occasionally, some real-world CSP instances have no solution. In such situ-
ations, we can relax the CSP by allowing the violation of a subset of the con-
straints, and try to maximize the number of satisfied constraints. This CSP
variant is known as Maximum CSP (MaxCSP) [17]. Furthermore, there can ex-
ist preferences over which constraints to violate. A convenient way of expressing
these preferences is by giving a weight to each constraint, denoting its viola-
tion cost. The constraints that can be violated (the ones with a non-infinite
weight) are usually called soft, while those constraints that must be satisfied

� Supported by the Spanish Ministry of Science and Innovation (project TIN2012-
33042).

�� Supported by UdG grant (BR 2010).

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 207–223, 2014.
c© Springer International Publishing Switzerland 2014

208 M. Bofill et al.

are called hard. Then, the objective is to find an assignment which satisfies all
hard constraints and minimizes the aggregated cost of the violated soft con-
straints [22]. These problems are known as Weighted CSP (WCSP) [20] or, al-
ternatively, as Cost Function Networks (CFN) [13].

WSimply [3,5] is a pioneering language and system for solving intensionally rep-
resented WCSPs by reformulation into Satisfiability Modulo Theories (SMT) [7],
namely, into SAT modulo Linear Integer Arithmetic (LIA). An SMT formula
can be seen as a generalization of propositional Boolean formula, where some
predicates have predefined interpretations from background theories, and any
satisfying assignment has to be compatible with those theories. Leveraging the
advances made in SAT solvers in the last decade, SMT solvers have proved to
be competitive with classical decision methods in many areas, and in particular
in CSP solving [4,9]. Most modern SMT solvers integrate a SAT solver with
decision procedures (theory solvers) for sets of literals belonging to each theory.
For example, variations of the simplex method are used for dealing with LIA
predicates. This way, one can hopefully get the best of both worlds: in particu-
lar, the efficiency of the SAT solver for the Boolean reasoning and the efficiency
of special-purpose algorithms for the theory reasoning. As shown in [9], SMT
outperforms other methods on instances with a significant Boolean component,
i.e., instances with Boolean decision variables and disjunctions of (arithmetic)
constraints.

WSimply benefits from the expressiveness of the SMT language and the per-
formance of current SMT solvers. However, SMT solvers are decision procedures,
and they rarely support optimization. A few solvers support (weighted partial)
MaxSMT [15,14,12], and there is a recent attempt to introduce optimization
into SMT by means of a theory of costs [11]. In WSimply, optimization is imple-
mented by means of successive calls to the decision procedure in several (user
choosable) ways: performing sequential or binary search, or using algorithms
based on unsatisfiable cores like WPM1 [6].

In this paper we extend the WCSP solving capability of WSimply by intro-
ducing a new optimization method, based on representing the bound constraint
on the objective function (generated from the violation cost of soft constraints)
as a BDD [2]. This allows us to encode the objective as a pure propositional
formula, following the generalized arc-consistent encoding proposed in [1]. This
way, on the one hand we increase the Boolean component of the instances and,
on the other hand, we tighten the link between optimization and the logical
structure of the problem, with the hope of benefiting from crucial capabilities
of the underlying solver, such as conflict driven learning [21]. Since the BDD
for the objective can be really big, and so the number of clauses to represent it,
an interesting aspect of our approach is the reutilization of BDDs in successive
calls to the decision procedure. Although changing the bound of the objective
function implies building a new BDD, some parts can be easily reused. We create
a Shared BDD [19], also known in the literature as Multi-Rooted BDD, keeping
all the generated BDDs. This allows not only to improve the performance of the

Solving Intensional Weighted CSPs by Incremental Optimization with BDDs 209

BDD construction algorithm, but also to keep a number of learned clauses from
the solver, as we reuse the clauses representing the previous BDDs.

Since the size of BDDs strongly depends on the number of variables involved,
and we use them to represent bound constraints on objective functions encoding
the violation cost of soft constraints, our method is especially well suited for
WCSP instances involving a small number of soft constraints. We provide an
experimentation section where we show that the new BDD-based solving method
outperforms previous WSimply solving methods in the majority of the problems.
Moreover, we also provide comparisons with other state-of-the-art optimization
and WCSP solvers, showing that our method is, in general, the most robust one.

The paper is structured as follows. In Section 2 we introduce the required
background. In Section 3 we introduce Pseudo-Boolean constraints and (Reduced
Ordered) Binary Decision Diagrams (ROBDD). In Section 4 we present our
incremental method of solving WCSPs using shared ROBDDs. In Section 5 we
study the performance of the new method and we compare it with other methods
implemented in WSimply and other state-of-the-art systems. In the same section,
we report on some experiments showing how the use of BDDs to represent the
objective, instead of using a linear equation, has a positive impact in the learning
of the SMT solver. Finally, in Section 6 we conclude and propose some future
work.

2 Preliminaries

In this section we recall some basic definitions related to our research. First,
we introduce the kind of WCSPs we are interested to solve. Second, we briefly
explain what is SMT. Finally, we briefly review how the WSimply system faces
the optimization process by iterative calls to an SMT solver.

2.1 WCSPs and COPs

AConstraint Satisfaction Problem (CSP) instance is defined as a triple 〈X,D,C〉,
where X = {x1, . . . , xn} is a set of variables, D = {d(x1), . . . , d(xn)} is a set of
domains containing the values the variables may take, and C = {C1, . . . , Cm} is a
set of constraints defining relations between subsets of variables. In this paper we
assume to deal with intensional Weighted CSPs, where weighted constraints have
the form (c, w(c)), being c a constraint as defined for a CSP and w(c) the cost cor-
responding to its falsification, which can be a natural number or infinity. We call
those constraints whose associated cost is infinity hard, if otherwise soft. A solu-
tion to a WCSP is an assignment that satisfies all hard constraints and minimizes
the sum of falsified soft-constraints costs.

A Constraint Optimization Problem (COP) instance consists of an optimiza-
tion variable O, matched to an objective function to be minimized (maximized)
subject to the constraints of a CSP instance 〈X,D,C〉, where O ∈ X . A solution
to a COP instance is a solution to the CSP instance that minimizes (maximizes)
the value of the optimization variable O. A WCSP can be seen as a COP where

210 M. Bofill et al.

the objective function to minimize is
∑m

i=1 wi ∗ oi, being wi the cost of the soft-
constraint i of the WCSP and oi a pseudo-Boolean variable representing if the
soft-constraint i is violated.

2.2 SMT and Weighted SMT

A Satisfiability Modulo Theories (SMT) formula is a generalization of a Boolean
formula in which some propositional variables have been replaced by predicates
with predefined interpretations from background theories such as, e.g., linear
integer arithmetic. For example, a formula can contain clauses like p ∨ q ∨ (x+
2 ≤ y) ∨ (x > y + z), where p and q are Boolean variables and x, y and z
are integer variables. A solution to an SMT instance is an assignment that
satisfies the formula, provided that predicates over non-Boolean variables, such
as linear integer inequalities, are evaluated according to the rules of a background
theory [7]. As in the CSP case, we can extend SMT to weighted SMT (WSMT)
as follows.

A weighted SMT clause is a pair (C,w), where C is an SMT clause1 and w is
a natural number or infinity (indicating the penalty for violating C). A weighted
SMT formula is a multiset of weighted SMT clauses

{(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)}

where the first m clauses are soft and the last m′ clauses are hard. The optimal
cost of a weighted SMT formula is the minimal cost of all its assignments. An
optimal assignment is an assignment with optimal cost. The WSMT problem2

for a WSMT formula is the problem of finding an optimal assignment for that
formula.

2.3 Solving WCSP with (Weighted) SMT

WSimply [5] is a tool with its own language for WCSP and COP modelling that
solves the corresponding instances translating them into (weighted) SMT. First
of all, the hard-constraints of the instance are translated into an SMT formula.
Second, depending on the user-specified way to solve the instance, the soft-
constraints are reformulated either into an objective function or into weighted
SMT formulas.3 Finally, the generated (weighted) SMT formula is solved using
one of three solving methods: yices, core or dico, where the two former are
used to solve WCSP instances, while the latter is used to solve COP instances.
In order to give the reader some idea of these methods we add a short description
of them:

1 In fact these can be general SMT formulas, not necessarily disjunctions of literals.
2 In the literature the weighted SMT problem is also referred to as weighted MaxSMT,
same as in the SAT formalism. We prefer to talk about WSMT because it is closer
to WCSP.

3 Note that in case it is wanted to solve a COP instance using WSMT, the objective
function can be easily translated into WSMT clauses.

Solving Intensional Weighted CSPs by Incremental Optimization with BDDs 211

– The yices method uses an algorithm that performs a sequence of satisfiabil-
ity checks until the optimum is found. It is the default Yices [15] algorithm
for solving WSMT (WSimply is built on top of Yices). This algorithm is not
exact since Yices defines a maximum number of iterations for the search.4

We are not aware of any document describing the procedures used there.
– The core method is an implementation, introduced in [5], of the core based

WPM1 algorithm [6] for MaxSAT.
– In the dico method, the system first translates the constraints of the COP

into SMT formulae, and then iteratively calls the SMT solver, bounding the
optimization variable O by adding the unit clause O ≤ K, where K is an
integer constant determined by the system using binary search.
It is worth noting that in the case we are bounding the objective function of a
COP encoding a WCSP instance, this results in a pseudo-Boolean constraint
(see Subsection 2.1).

For deeper details about WSimply and its solving techniques we refer the
reader to [5].

3 Binary Decision Diagrams

A typical data structure to represent Boolean functions is a Binary Decision
Diagram (BDD), which consists of a rooted, directed, acyclic graph, where each
non-terminal (decision) node corresponds to a Boolean variable x and has two
child nodes with edges representing a true and a false assignment to x, respec-
tively. We talk about the true child (resp. false child) to refer to the child node
linked by the true (resp. false) edge. Terminal nodes are called 0-terminal and
1-terminal, representing the truth value of the formula for the assignment lead-
ing to them. A BDD is called ordered if different variables appear in the same
order on all paths from the root. A BDD is said to be reduced if the following
two rules have been applied to its graph until fixpoint:

– Merge any isomorphic subgraphs.
– Eliminate any node whose two children are isomorphic.

A Reduced Ordered Binary Decision Diagram (ROBDD) is canonical (unique)
for a particular function and variable order. Figure 1 shows an example of a
ROBDD.

An interesting property of ordered BDDs is that when multiple ordered
BDDs contain isomorphic subgraphs, they can be joined in a single shared BDD
(SBDD) [19], providing a more compact representation of the Boolean functions.

3.1 SAT Encodings of Pseudo-Boolean Constraints Using BDDs

Pseudo-Boolean (PB) constraints [10] are constraints of the form a1x1 + · · · +
anxn # K, where the ai and K are integer coefficients, the xi are pseudo-
Boolean (0/1) variables, and the relation operator # belongs to {<,>,≤,≥,=}.
4 http://yices.csl.sri.com/language.shtml

http://yices.csl.sri.com/language.shtml

212 M. Bofill et al.

x1

x2

x3

01

1

1

10

0

0

Fig. 1. ROBDD for the Boolean function x1 + x1 · x2 + x1 · x2 · x3

For our purposes we will assume that # is ≤ and that the ai and K are positive.
Under these assumptions, these constraints are monotonic (decreasing) Boolean
functions C : {0, 1}n → {0, 1}, i.e., any solution for C remains a solution after
flipping input values from 1 to 0.

It is quite common to use BDDs to represent PB-constraints. For example, the
ROBDD of Figure 1 also corresponds to the PB constraint 2x1 +3x2 +4x3 ≤ 7.

An interval of a PB constraint C is the set of values of K for which C has
identical solutions. More formally, given a constraint C of the form a1x1 + · · ·+
anxn ≤ K, the interval of C is the set of all integersM such that the constraint
a1x1+ · · ·+anxn ≤ M , seen as a Boolean function, is equivalent to C (i.e., that
the corresponding Boolean functions have the same truth table). For instance,
the interval of 2x1+3x2+4x3 ≤ 7 is [7, 8] since, as no combination of coefficients
adds to 8, we have that the constraint 2x1 + 3x2 + 4x3 ≤ 7 is equivalent to
2x1 + 3x2 + 4x3 ≤ 8.

There exist several BDD-based approaches for reformulating PB constraints
into propositional clauses [16]. We focus on the recent work of [1], that proposes
a simple and efficient algorithm to construct ROBDDs for monotonic Boolean
functions, and a corresponding generalized arc-consistent SAT encoding. The
algorithm proposed in [1] is a dynamic, bottom up BDD construction algorithm,
which runs in polynomial time with respect to the ROBDD size and the number
of variables. The key point is that it keeps the intervals of the PB constraints built
for the already visited nodes: for a given variable ordering, say x1, x2, . . . , xn,
a list of layers L = L1, . . . , Ln+1 is maintained, where each layer Li is a set of
pairs of the form ([β, γ],B), being B the ROBDD of the constraint aixi + · · ·+
anxn ≤ K, for every K in the interval [β, γ].

These intervals are used to detect if some needed ROBDD has already been
constructed. That is, if for some node at level i, the ROBDD for the constraint
aixi+ · · ·+ anxn ≤ K is needed for a given K, and K belongs to some interval
already computed in layer Li, then the same ROBDD can be used for this node.
Otherwise, a new ROBDD is constructed and a new pair (the ROBDD and its
respective interval) is added to the layer. It is important to recall here that
ROBDDs are unique for a given function and variable ordering.

Solving Intensional Weighted CSPs by Incremental Optimization with BDDs 213

The encoding of the ROBDD to SAT that we borrow from [1] is generalized
arc-consistent, and works as follows. For each node with a selector variable x we
create, a new auxiliary variable n, which represents the state5 of the node, and
two clauses:

f̄ → n̄ t̄ ∧ x→ n̄

being f the state variable of its false child and t the state variable of its true
child. Finally, we add a unit clause with the state variable of the 1-terminal
node, another clause with the negation of the variable of the 0-terminal node.
To make the encoding generalized arc-consistent, a unit clause forcing the state
variable of the root node to be true must be added.

We refer the reader to [1] for additional details on the BDD construction
algorithm and the SAT encoding.

4 Solving WCSPs by Incremental Optimization Using
Shared ROBDDs

The WCSP solving method presented here consists in reformulating the WCSP
into a COP, and solving the resulting optimization problem by iteratively calling
an SMT solver with the problem instance, together with successively tighter
bounds for the objective function.

The novelty of the method lies in the way the objective function is treated.
Inspired by the idea of intervals in the BDD construction algorithm of [1], our
aim is to represent the pseudo-Boolean objective function resulting from the
WCSP (see Subsection 2.1) as a BDD, and take profit of BDD reuse in successive
iterations of the optimization process. That is, instead of creating a (reduced
ordered) BDD from scratch at every iteration, we build a shared BDD. Since
the PB constraint encoded at each iteration is almost the same, with only the
bound constant K changing, this will hopefully lead to high node reuse.

We claim that using shared BDDs has two important benefits. The first one,
fairly evident, is that node reuse considerably reduces the BDD construction
time. The second one, which is not so evident, is that, as a by-product, we will
be reusing many literals and clauses resulting from the SAT encoding of BDDs
from previous iterations (in addition to clauses learned at previous steps). In
Section 5 we present some experiments to support these claims.

4.1 Incremental Optimization Algorithm

Algorithm 1 describes our WCSP solving method. The input of the algorithm is
a WCSP instance divided into a set ϕs of soft constraints and a set ϕh of hard
constraints, and its output is the optimal cost of ϕs ∪ϕh if ϕh is satisfiable, and
UNSAT otherwise.

5 That is, if the PB constraint corresponding to (the interval of) the node is satisfied
or not.

214 M. Bofill et al.

Algorithm 1 Solving a WCSP by incremental optimization using a shared
ROBDD
Input: ϕs = {(C1, w1), . . . , (Cm, wm)} , ϕh = {Cm+1, . . . , Cm+m′)}
Output: Optimal cost of ϕs ∪ ϕh or UNSAT

ϕ ← ϕh ∪ reif soft(ϕs)
(st,M) ← SMT algorithm(ϕ)
if st = UNSAT then

return UNSAT
else

ub ← sum({wi | (Ci, wi) ∈ ϕs and Ci is falsified in M})
end if
lb ← −1
L ← init layers(ϕs)
while ub > lb + 1 do

K ← �(ub + lb)/2�
([β, γ],B) ← ROBDD(ϕs, K,L)
(root, ϕ) ← BDD2SAT(B, ϕ)
ϕ ← ϕ ∪ {root}
(st,M) ← SMT algorithm(ϕ)
if st = UNSAT then

lb ← γ
ϕ ← (ϕ \ {root}) ∪ {root}

else
ub ← min(β, sum({wi | (Ci, wi) ∈ ϕs and Ci is falsified in M}))

end if
end while
return ub

The first step is to reify the soft constraints (reif soft), and create a formula
ϕ with the reified soft constraints together with the hard constraints. By reifying
a soft constraint Ci we mean adding a hard constraint xi ↔ Ci, where xi is a
new pseudo-Boolean variable. Note that in fact we are reifying the negation of
Ci, since the cost wi is associated to its violation (see Subsection 2.1).

Then, the satisfiability of ϕ is checked by an SMT solver. SMT algorithm
returns a tuple with the satisfiability (st) of ϕ and, if satisfiable, an assignment
(model) M of ϕ. Note that if ϕ is unsatisfiable, this implies that ϕh is unsat-
isfiable, and hence we return UNSAT. Otherwise, we use the solution found to
compute an upper bound ub of the objective function by aggregating the weights
of the violated soft constraints, and set the lower bound lb to −1.

Before starting a binary search procedure to determine the optimal cost, in
L ← init layers(ϕs) we initialize each layer i of L (for i in 1..m+ 1) with the
two pairs of intervals and (trivial) ROBDDs {((−∞,−1],0), ([

∑m
j=i wj ,∞),1)},

meaning that the PB constraint wixi + · · · + wmxm ≤ K is trivially false for
K ∈ (−∞,−1] and trivially true for K ∈ [

∑m
j=i wj ,∞), where xi,. . . ,xm denote

the reification variables of the soft constraints Ci,. . . ,Cm as described above (see
Subsection 3.1 for the definition of layer and interval).

Solving Intensional Weighted CSPs by Incremental Optimization with BDDs 215

In the first step of the while statement, we determine a new tentative bound
K for the objective function. Then, we call the ROBDD construction algorithm
of [1] (briefly described in Subsection 3.1) with the set of soft clauses ϕs, the new
boundK and the list of layers L, being this last an input/output parameter. This
way, L will contain the shared ROBDD with all the computed ROBDDs, and
may be used in the following iterations of the search, significantly reducing the
construction time and avoiding the addition of repeated clauses. This procedure
returns the ROBDD B representing the objective function for the specific K in
the current iteration.

In the next step we call theBDD2SAT procedure, which generates the propo-
sitional clauses from B, as explained in Subsection 3.1, but only for the new
nodes. The procedure inserts these clauses into the formula ϕ, and the new for-
mula is returned together with the auxiliary variable root associated to the root
node of B. This variable is inserted into ϕ as a unit clause to effectively force
the objective function to be less or equal than K.

At this point we call the SMT solver to check the satisfiability of the new
ϕ. We remark that, since we are using the SMT solver through its API, we
only need to feed it with the new clauses. If ϕ is satisfiable we can keep all the
learned clauses. Otherwise, we need to remove the unit clause for the root node.
This way, we will (only) remove the learned clauses related to this unit clause.
In addition, we add a unit clause with the negation of the root node variable,
stating that the objective function value must be greater than K.

Finally, we update either the lower or upper bound according to the interval
[β, γ] of the ROBDD B and the computed assignment M for ϕ: if ϕ is unsat-
isfiable, then the lower bound is set to γ; otherwise, the upper bound is set
to min(β, sum({wi | (Ci, wi) ∈ ϕs and Ci is falsified in M})). From the invari-
ant that the lower bound always corresponds to an unsatisfiable case, while
the upper bound corresponds to a satisfiable case, when ub = lb + 1 this value
corresponds to the optimum.

Note that, thanks to the intervals, in fact we are checking the satisfiability of
the PB constraints for several values at the same time and hence, sometimes,
this can allow us to obtain better lower/upper bound updates.

Example 1. Figure 2 and Figure 3 show, respectively, the evolution of the shared
ROBDD and the propositional clauses added to the SMT formula for the objec-
tive 2x1 + 3x2 + 4x3 ≤ K, with successive values K = 7, K = 3, K = 5 and
K = 4.

5 Benchmarking

In this section we first compare the performance of the presented solving method
with that of other methods implemented in WSimply. Second, we compare the
performance of WSimply, using this new method, with that of several state-
of-the-art CSP, WCSP and ILP solvers. Third, we study the benefits, such as
learning, obtained from using a shared BDD for the objective instead of a linear

216 M. Bofill et al.

x1

[7, 8]

x2[4, 6]

x3 [0, 3]

01

1

1

10

00

x1

[7, 8]

x2[4, 6]

x1

[3, 3]

x2[0, 2]

x3 [0, 3]

01

1
1

0

0

1

1

10

00

x1

[7, 8]

x2[4, 6]

x1

[5, 5]

x1

[3, 3]

x2[0, 2]

x3 [0, 3]

01

1
1

0

0

1

1

10

00

1

0

x1

[7, 8]

x2[4, 6]

x1

[5, 5]

x1

[4, 4]

x1

[3, 3]

x2[0, 2]

x3 [0, 3]

01

1 0

1

1

0

0

1

1

10

00

1

0

Fig. 2. Shared ROBDDs and intervals for objective 2x1+3x2+4x3 ≤ K, with successive
values K = 7 (top left), K = 3 (top right), K = 5 (bottom left) and K = 4 (bottom
right), illustrating the reuse of previous ROBDDs

equation, and the amount of BDD node reutilization between successive itera-
tions in the optimization process.

For the comparison we use (variants of) six problems:6 five variants of the Soft
BACP (SBACP) [5] (a softened version of the well-known Balanced Academic
Curriculum Problem), three variants of the Still Life Problem and one variant
of the Talent Scheduling Problem from the MiniZinc distribution7 (all of them
reformulated as a WCSP) and three classical WCSPs: CELAR, SPOT5 and
Combinatorial Auctions.

Since the size of the generated BDDs strongly depends on the number of
variables and the number of distinct coefficients in the objective function, we
briefly describe these features for the studied problems in Table 1.

The experiments were run on a cluster of Intel R© XeonTMCPU@3.1GHz ma-
chines, with 8GB of RAM, under 64-bit CentOS release 6.3 (kernel 2.6.32).

6 All instances available in http://ima.udg.edu/Recerca/lap/simply
7 http://www.minizinc.org

http://ima.udg.edu/Recerca/lap/simply
http://www.minizinc.org

Solving Intensional Weighted CSPs by Incremental Optimization with BDDs 217

K = 7 : ϕ1 = ϕ ∪ {t → n1,1, n2,1 ∧ x1 → n1,1, t → n2,1, n3,1 ∧ x2 → n2,1, t → n3,1,

f ∧ x3 → n3,1, t, f} ∪ {n1,1}
K = 3 : ϕ2 = ϕ1 ∪ {n3,1 → n1,2, n2,2 ∧ x1 → n1,2, n3,1 → n2,2, f ∧ x2 → n2,2} ∪ {n1,2}
K = 5 : ϕ3 = (ϕ2 \ {n1,2}) ∪ {n1,2} ∪ {n2,1 → n1,3, n3,1 ∧ x1 → n1,3} ∪ {n1,3}

(supposing that ϕ2 has been found to be unsatisfiable in iteration 2)

K = 4 : ϕ4 = ϕ3 ∪ {n2,1 → n1,4, n2,2 ∧ x1 → n1,4} ∪ {n1,4}

Fig. 3. Formula update (clauses added and removed), for objective 2x1+3x2+4x3 ≤ K
with successive values K = 7, K = 3, K = 5 and K = 4, according to the shared
ROBDDs of Figure 2. ϕj denotes the SMT formula at hand when checking satisfiability
in iteration number j of Algorithm 1. Each atom ni,j is the state variable of the node
with selector variable xi, that is added in iteration j, and t and f are the variables of
the 1-terminal and 0-terminal nodes, respectively.

Table 1. Average number of variables, and weights, of the soft constraints in each pack
of instances. Weights are denoted as (min − max) for ranges and as (val1, val2, . . .)
for packs with a small number of distinct values in weights.

Problem #Variables Weights Problem #Variables Weights

sbacp 67 1 talent 80 (4,5,10,20,40)
sbacp h1 67 1
sbacp h2 67 1 auction 138 ∼(100-1000)
sbacp h2 ml2 312 (1,246)
sbacp h2 ml3 332 (1,21,5166) spot5 385 (1-5,1000,2000)

s.l. 30 1
celar 1482

(1,10,100,1000)
s.l. free 30 1 (1,100,10000,100000)
s.l. no border 30 1 (1,2,3,4)

WSimply was run on top of the Yices 1.0.33 [15] SMT solver. It is worth noting
that by calling Yices through its API, we are able to keep learned clauses from
previous calls that are still valid.

5.1 WSimply Solving Methods Comparison

Table 2 shows the aggregated time (sum of the times to produce an optimal
solution and prove its optimality, for all instances) for the solved instances. We
consider the yices, core and dico solving methods described in Subsection 2.1,
plus the new method sbdd≤ using shared ROBDDs, where variables in the BDD
are ordered from small (root) to big (leaves) coefficients. We also studied the
performance of sbdd≥, where variables are ordered from big (root) to small
(leaves) coefficients, but the performance of sbdd≤ was slightly better.

The new solving method with shared ROBDDs is clearly the best in the ma-
jority of problems. The performance of the sbdd≤ method is better on instances
with a small number of distinct coefficients (especially when all coefficients
are 1), namely, in the sbacp and still life problems. In these cases, the BDDs are

218 M. Bofill et al.

Table 2. Aggregated time in seconds for the solved instances in each set, with a cutoff
of 600s per instance. The column # indicates the number of instances per set. The
indication (n1) refers to the number of instances for which the solver ran out of time,
(n2) refers to the number of instances for which the solver returned unknown, and (n3)
refers to the number of instances for which the solver ran out of memory.

Problem # dico yices core sbdd≤
sbacp 28 70.53 40.17 1342.16 (131) 9.83

sbacp h1 28 6.68 12.02 363.78 (121) 6.93

sbacp h2 28 26.04 26.65 748.81 (131) 9.97

sbacp h2 ml2 28 280.68 109.42 75.82 (191) 78.36

sbacp h2 ml3 28 804.74 516.51 547.55 (231) 92.37

s.l. 10 118.05 (11) 102.97 (12) 3.35 (41) 191.56

s.l. free 10 434.05 (21) 2.69 (32) 386.91 (31) 98.75

s.l. no border 10 187.94 (11) 166.91 (12) 81.24 (31) 105.30

talent 11 289.90 60.72 94.82 (81) 38.25

auction 170 9084,03 (931) 1083.44 (852) 0 (801 903) 12028.50 (781 113)

celar 16 582,64 (141) 750.32 (101 22) 94.82 (81 63) 1417.19 (61)

spot5 20 205,2 (181) 9.32 (51 132) 94.82 (141 33) 1990.59 (71)

relatively small, having the bigger ones only thousands of nodes. On the other
side, the timeouts occurring in the celar and spot5 problems are mostly in the
instances with higher number of variables in the objective function (e.g., from
approximately 1200 to 5300 variables in celar), generating BDDs of hundreds
of thousands nodes (a similar situation occurs in the auction instances running
out of time, where there are not so many variables but a lot of distinct variable
coefficients). In spite of this, sbdd≤ is still the best method on the celar and
spot5 problems.

It is worth to notice that there are some unknowns in the yices method, due
to the fact that the Yices MaxSMT solver is non exact and incomplete. The
core method has really bad performance on the crafted instances considered in
this experiment, probably due to the bad quality of the unsatisfiable cores found
during the solving process.

5.2 SBDD-Based versus State-of-the-Art CSP and WCSP Solvers

For the sake of completeness we tested the performance of the MATHSAT5-MAX
and LLWPM MaxSMT solvers of [12] on the weighted SMT instances generated
by WSimply in the previous experiment. However we do not report these results,
since they are comparable to those of the WSimply core method.

The second part of our experiments consists in reformulating the WCSPs into
(MiniZinc) COPs, and compare the performance of WSimply using the sbdd≤
method with that of IBM ILOG CPLEX 12.6 and some state-of-the-art CSP and
WCSP solvers, namely Toulbar2 0.9.5.0, G12-CPX 1.6.0 and Opturion 1.0.2, all
of them capable of solving MiniZinc instances. We used Numberjack [18] as a
platform for solving MiniZinc COPs through the Toulbar2 API. We also used
the Toulbar2 binary to solve the original WCSP instances of auction, celar and

Solving Intensional Weighted CSPs by Incremental Optimization with BDDs 219

Table 3. Aggregated time in seconds for the solved instances in each set, with a cutoff
of 600s per instance. The column # indicates the number of instances per set. The
indication (n1) refers to the number of instances for which the solver ran out of time,
(n3) refers to the number of instances for which the solver ran out of memory, and (n4)
refers to the number of instances for which the solver returned another type of error.

Problem # TB2 G12-CPX Opturion sbdd≤ CPLEX

sbacp 28 662.58 (241) 76.31 83.47 9.83 36.81
sbacp h1 28 707.78 4.00 13.25 6.93 21.78
sbacp h2 28 483.98 19.53 30.51 9.97 24.89
sbacp

28 3849.38 (61) 166.69 91.55 78.36 64.98
h2 ml2
sbacp

28 2408.66 (121) 336.25 99.77 92.37 72.95
h2 ml3

s.l. 10 166.08 (21) 232.1 (11) 43.81 (21) 191.56 234.71

s.l. free 10 69.85 (31) 267.13 (21) 394.28 (21) 98.75 29.91
s.l. no

10 122.05 (21) 354.41 (11) 102.29 (21) 105.3 68.37
border

talent 11 2.38 (94) 1.81 (81) 2.07 (81) 38.25 1269.13 (21)

auction
170

888.99 7288.73 (951) 7053.43 (1001) 12028.5 (781 113) 220.12
auction

5038.49 (31)
(wcsp)

celar
16

0 (161) 0 (164) 0 (161) 1417.19 (61) 0 (161)
celar

311.23 (41)
(wcsp)

spot5
20

114.66 (81 84) 0 (201) 0 (201) 1990.59 (71) 297.59 (71 104)
spot5

76.28 (161)
(wcsp)

spot5, indicated in Table 3 as auction (wcsp), celar (wcsp) and spot5 (wcsp),
respectively. In order to test the performance of CPLEX on the considered prob-
lems, we used WSimply to translate the instances to pseudo-Boolean constraints
as in [8]. For the experiments with Opturion we used a slightly different com-
puter (Intel R© CoreTMCPU@2.8GHz, with 12GB of RAM, under 64-bit Ubuntu
12.04.3, kernel 3.2.0) due to some library dependence problems.

Table 3 shows the results of this second experiment. We can observe that, in
general, sbdd≤ is the most robust method, considering the number of instances
solved and their aggregated solving time. The sbacp and still life problems seem
to be reasonably well suited for SMT solvers (in particular, the latter consists of
disjunctions of arithmetic constraints). We highlight the talent scheduling prob-
lem, where sbdd≤ clearly outperforms the other solvers, being the only solver
capable to solve all the instances. In fact, this is probably the best suited problem
for SMT solvers, as it consists of binary clauses of difference logic constraints.
Unfortunately, in most of the instances of this problem, Toulbar2 reported an
error saying that the model decomposition was too big. In the auction problem,
CPLEX is by far the best solver, solving all 170 instances in only 220.12 seconds.
This is clearly one of the worst kind of problems for SMT solvers, as it simply
consists of a conjunction of arithmetic (0/1) constraints, i.e., it has a trivial
Boolean structure and all deductions need to be performed by the theory solver.
For celar, only sbdd≤ and Toulbar2 (in the WCSP version) were able to solve

220 M. Bofill et al.

some instances (10 and 12 out of 16, respectively). This problem also has a bal-
anced combination of arithmetic constraints and clauses. G12-CPX reported an
error (not finding the int plus constraint), and Toulbar2 (in the COP version),
Opturion and CPLEX ran out of time on all instances. Finally, for spot5, sbdd≤
was able to solve some instances (13 out of 20), Toulbar2 only 4, CPLEX only
3, and Opturion and G12-CPX ran out of time on all instances. This problem is
also well suited for SMT solvers since it basically consists of clauses with equality
constraint literals.

We remark that we also tested the G12-Lazy, G12-FD and Gecode 4.2.1
solvers, but since they presented slightly worst performance than G12-CPX we
have not included them in Table 3.

5.3 SBDD Incrementality

In this section we study the benefits of using a shared BDD for the objective
instead of a linear equation, in particular, the effect that this has on the learning
capability of the SMT solver. Note that with this technique we are increasing
the Boolean component of the formula at hand and, hence, we should expect
some improvement in learning. Finally, we quantify the amount of BDD node
reutilization through iterations.

We compare the performance of four solving approaches: using either SB-
DDs or arithmetic expressions to bound the objective function, with and with-
out using the learning capabilities of the solver. From now on we will denote
by SBDD+L, SBDD-L, LIA+L and LIA-L these four possibilities, where LIA
stands for linear integer arithmetic expressions and +L/-L indicates the use or
not of learning. Note that WSimply uses Yices as a back-end solver, and it does
not provide statistics about learned clauses. Therefore, we used the Yices com-
mands push and pop to define backtrack points and to backtrack to that points,
respectively, in order to force the solver to forget learned clauses.

Table 4 summarizes the solving times for the four options. They do not include
neither BDD construction, clause generation nor assertion times. Since solving
times are very sensitive to the bounds on the objective function, first of all we
solved all the instances with the SBDD+L approach and stored the bounds at
each iteration. Then these bounds were passed to the other three methods to
obtain their solving times under the similar conditions.

If we first compare SBDD-L and LIA-L we can appreciate that using BDDs
considerably reduces the number of timeouts in still life, auction, celar and spot5,
and the solving time, almost 5 times in sbacp and 10 times in talent scheduling.

Furthermore, comparing SBDD+L and SBDD-L, we can easily appreciate that
learning reduces even more the solving times. In sbacp the number of timeouts
is reduced to 0 and the sum of solving times is reduced almost 4 times; in talent
scheduling and still life the solving time is reduced almost to the half; and in celar
and spot5 the number of timeouts is reduced in 2 and 3 instances respectively.
In auction, the SBDD+L method has the drawback of increasing the number of
memory outs.

Solving Intensional Weighted CSPs by Incremental Optimization with BDDs 221

Table 4. Aggregated time in seconds for the solved instances of each problem, with a
cutoff of 600s per instance, and indication of the number of unsolved instances due to
time out (TO) and memory out (MO)

SBDD+L SBDD-L LIA+L LIA-L
Problem # Inst. Solving # TO/MO Solving # TO/MO Solving # TO Solving # TO
sbacp 140 58.03 0 221.30 1 853.56 0 924.83 2
s.l. 30 393.22 0 715.17 0 795.62 4 895.28 4
talent 11 35.36 0 55.57 0 363.43 0 472.09 0
auction 170 9631.19 73/12 5673.22 75/7 8540.76 92 9919.79 90
celar 16 1199.99 6 1299.99 8 10.94 15 8.29 15
spot5 20 1675.90 7 943.96 10 165.48 18 59.99 18

If we compare SBDD-L and LIA-L with respect to SBDD+L and LIA+L, we
can see that the improvement in terms of number of timeouts and solving time
is higher in the SBDD approach than in the LIA approach.

Finally, to quantify the contribution of the shared BDD to the amount of
BDD node reutilization, we computed the percentage of reused nodes at each
iteration of the optimization process. Our experiments shown an average 50% of
node reuse when the solving process was about the 40.73% of the search, and a
80% of node reuse when it was about the 48.72% of the search. This is especially
relevant because the BDDs attained hundreds of thousands of nodes.

6 Conclusions and Future Work

We have presented a new WCSP solving method, implemented in the WSimply

system, based on using shared ROBDDs to generate propositional clauses rep-
resenting the objective. We think that it opens a promising research line, taking
into account that the presented method clearly outperforms not only the previ-
ously implemented solving methods in WSimply, but also some state-of-the art
solvers, on several problems. We have also shown how to boost the generation
of ROBDDs for objective functions using previously generated ROBDDs, more
precisely constructing a shared ROBDD.

As future work we want to study more deeply the efficiency of our method on
other weighted CSPs. Also, as a well-known challenge, a crucial aspect to study
is how to find a good variable ordering for the objective function. Although the
problem of finding the optimal variable ordering in order to generate a minimal
BDD is known to be NP-hard, we are interested in finding a variable ordering
that maximizes the node reuse through iterations. Another aspect that could
be interesting to explore is to extend the new method to deal with objective
functions with (finite domain) integer variables, using Multi-valued Decision
Diagrams (MDDs) to represent them. Finally, we also want to test if making
visible the intermediate literals of the arithmetic representation of the objective
function could benefit the dico solving method.

222 M. Bofill et al.

Acknowledgments. The authors would like to thank Simon de Givry for pro-
viding the CELAR, SPOT5 and Combinatorial Auctions WCSP instances, and
Roberto Sebastiani for providing the MATHSAT5-MAX and LLWPM MaxSMT
solvers for the experiments. The authors also thank the anonymous referees for
suggestions to improve the paper.

References

1. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Mayer-Eichberger,
V.: A New Look at BDDs for Pseudo-Boolean Constraints. Journal of Artificial
Intelligence Research (JAIR) 45, 443–480 (2012)

2. Akers, S.B.: Binary Decision Diagrams. IEEE Transactions on Computers 27(6),
509–516 (1978)

3. Ansótegui, C., Bofill, M., Palah́ı, M., Suy, J., Villaret, M.: A Proposal for Solving
Weighted CSPs with SMT. In: Proceedings of the 10th International Workshop on
Constraint Modelling and Reformulation (ModRef 2011), pp. 5–19 (2011)

4. Ansótegui, C., Bofill, M., Palah́ı, M., Suy, J., Villaret, M.: Satisfiability Modulo
Theories: an Efficient Approach for the Resource-Constrained Project Scheduling
Problem. In: Proceedings of the 9th Symposium on Abstraction, Reformulation
and Approximation (SARA 2011), pp. 2–9 (2011)

5. Ansótegui, C., Bofill, M., Palah́ı, M., Suy, J., Villaret, M.: Solving weighted
CSPs with meta-constraints by reformulation into Satisfiability Modulo Theories.
Constraints 18(2), 236–268 (2013)

6. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (Weighted) Partial MaxSAT through
Satisfiability Testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584,
pp. 427–440. Springer, Heidelberg (2009)

7. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability Modulo
Theories. In: Handbook of Satisfiability. Frontiers in Artificial Intelligence and
Applications, vol. 185, pp. 825–885. IOS Press (2009)

8. Bofill, M., Espasa, J., Palah́ı, M., Villaret, M.: An extension to Simply for solv-
ing Weighted Constraint Satisfaction Problems with Pseudo-Boolean Constraints.
In: XII Spanish Conference on Programming and Computer Languages (PROLE
2012), Almeŕıa, Spain, pp. 141–155 (September 2012)

9. Bofill, M., Palah́ı, M., Suy, J., Villaret, M.: Solving constraint satisfaction problems
with SAT modulo theories. Constraints 17(3), 273–303 (2012)

10. Boros, E., Hammer, P.L.: Pseudo-Boolean optimization. Discrete Applied
Mathematics 123(1-3), 155–225 (2002)

11. Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability
Modulo the Theory of Costs: Foundations and Applications. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 99–113. Springer,
Heidelberg (2010)

12. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: A Modular Approach
to MaxSAT Modulo Theories. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013.
LNCS, vol. 7962, pp. 150–165. Springer, Heidelberg (2013)

13. de Givry, S., Zytnicki, M., Heras, F., Larrosa, J.: Existential arc consistency: get-
ting closer to full arc consistency in weighted CSPs. In: Proceedings of the 19th
International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 84–89
(2005)

Solving Intensional Weighted CSPs by Incremental Optimization with BDDs 223

14. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

15. Dutertre, B., de Moura, L.: The Yices SMT solver (August 2006), Tool paper
available at http://yices.csl.sri.com/tool-paper.pdf

16. Eén, N., Sörensson, N.: Translating Pseudo-Boolean Constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation (JSAT) 2(1-4), 1–26 (2006)

17. Freuder, E.C., Wallace, R.J.: Partial constraint satisfaction. Artificial Intelli-
gence 58(1-3), 21–70 (1992)

18. Hebrard, E., O’Mahony, E., O’Sullivan, B.: Constraint Programming and Com-
binatorial Optimisation in Numberjack. In: Lodi, A., Milano, M., Toth, P. (eds.)
CPAIOR 2010. LNCS, vol. 6140, pp. 181–185. Springer, Heidelberg (2010)

19. Minato, S.-I., Ishiura, N., Yajima, S.: Shared Binary Decision Diagram with At-
tributed Edges for Efficient Boolean function Manipulation. In: Proceedings of the
27th ACM/IEEE Conference on Design Automation (DAC 1990), pp. 52–57 (1990)

20. Larrosa, J., Schiex, T.: Solving Weighted CSP by Maintaining Arc-Consistency.
Artificial Intelligence 159(1-2), 1–26 (2004)

21. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers.
In: SAT Handbook, pp. 131–154 (2009)

22. Meseguer, P., Rossi, F., Schiex, T.: Soft constraints. In: Rossi, F., van Beek, P.,
Walsh, T. (eds.) Handbook of Constraint Programming, vol. 9. Elsevier (2006)

http://yices.csl.sri.com/tool-paper.pdf

On Backdoors to Tractable Constraint

Languages�

Clément Carbonnel1,3, Martin C. Cooper2, and Emmanuel Hebrard1

1 CNRS, LAAS, 7 avenue du colonel Roche, 31400 Toulouse, France
{carbonnel,hebrard}@laas.fr

2 IRIT, University of Toulouse III, 31062 Toulouse, France
cooper@irit.fr

3 University of Toulouse, INP Toulouse, LAAS, 31400 Toulouse, France

Abstract. In the context of CSPs, a strong backdoor is a subset of
variables such that every complete assignment yields a residual instance
guaranteed to have a specified property. If the property allows efficient
solving, then a small strong backdoor provides a reasonable decomposi-
tion of the original instance into easy instances. An important challenge
is the design of algorithms that can find quickly a small strong backdoor
if one exists. We present a systematic study of the parameterized com-
plexity of backdoor detection when the target property is a restricted
type of constraint language defined by means of a family of polymor-
phisms. In particular, we show that under the weak assumption that
the polymorphisms are idempotent, the problem is unlikely to be FPT
when the parameter is either r (the constraint arity) or k (the size of the
backdoor) unless P = NP or FPT = W[2]. When the parameter is k+ r,
however, we are able to identify large classes of languages for which the
problem of finding a small backdoor is FPT.

1 Introduction

Unless P=NP, the constraint satisfaction problem (CSP) is in general intractable.
However, one can empirically observe that solution methods scale well beyond
what a worst-case complexity analysis would suggest.

In order to explain this gap, Williams, Gomes and Selman introduced the
notion of backdoor [1]. A strong backdoor is a set of variables whose complete
assignments all yield an easy residual problem. When it is small, it therefore
corresponds to a weak spot of the problem through which it can be attacked.
Indeed, by branching first on the variables of a backdoor of size k, we ensure
that the depth of the search tree is bounded by k. There exists a similar notion
of weak backdoor, ensuring that at least one assignment yields an easy problem,
however, we shall focus on strong backdoors and omit the adjective “strong”.

Finding small backdoors is then extremely valuable in order to efficiently solve
constraint problems, however, it is very likely to be itself intractable. In order

� Supported by ANR Project ANR-10-BLAN-0210.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 224–239, 2014.
c© Springer International Publishing Switzerland 2014

On Backdoors to Tractable Constraint Languages 225

to study the computational complexity of this problem, we usually consider
backdoors with respect to a given tractable class T , i.e., such that all residual
problems fall into the class T . In Boolean Satisfiability (SAT), it was shown
that finding a minimum backdoor with respect to HornSAT, 2-SAT and their
disjunction is fixed-parameter tractable with respect to the backdoor size [2][3].
It is significantly harder, however, to do so with respect to bounded treewidth
formulas [4]. In this paper we study the computational complexity of finding a
strong backdoor to a semantic tractable class of CSP, in the same spirit as a
very recent work by Gaspers et al. [3]. Assuming that P �= NP, semantic tractable
classes are characterized by unions and intersections of languages of constraints
closed by some operations. We make the following three main contributions:

– We first consider the case where these operations are idempotent, and show
that computing a k-backdoor with respect to such a class is NP-hard even on
bounded arity CSPs, and W[2]-hard for the parameter k if the arity is not
bounded. Observe that the scope of this result is extremely wide, as most
tractable classes of interest are idempotent.

– Then, we characterize another large category of tractable classes, that we
call Helly, and for which finding k-backdoors is fixed-parameter tractable in
k + r where r is the maximum arity of a constraint.

– Lastly, we show that finding k-backdoors with respect to many semantic
tractable classes that are not Helly is W[2]-hard for k + r (and remains
W[2]-hard for k if r is fixed). However, we do not prove a strict dichotomy
since a few other conditions must be met besides not being Helly.

The paper is organized as follows: After introducing the necessary technical
background in Section 2, we study idempotent tractable classes in Section 3 and
Helly classes as well as a family of non-Helly classes in Section 4.

2 Preliminaries

Constraint Satisfaction Problems. A constraint satisfaction problem (CSP)
is a triplet (X,D,C) where X is a set of variables, D is a domain of values, and
C is a set of constraints. For simplicity, we assume D to be a finite subset of N. A
constraint is a pair (S,R) where S ⊆ X is the scope of the constraint and R is an
|S|-ary relation on D, i.e. a subset of D|S| representing the possible assignments
to S. A solution is an assignment X → D that satisfies every constraint. The
goal is to decide whether a solution exists.

A constraint language is a set of relations. The domain of a constraint language
Γ is denoted by D(Γ) and contains all the values that appear in the tuples of the
relations in Γ . Given a constraint language Γ , CSP(Γ) is the restriction of the
generic CSP to instances whose constraints are relations from Γ . The Dichotomy
Conjecture by Feder and Vardi says that for every finite Γ , CSP(Γ) is either
in P or NP-complete [5]. Since the conjecture is still open, the complexity of
constraint languages is a very active research area (see e.g. [6][7][8]).

226 C. Carbonnel, M.C. Cooper, and E. Hebrard

It is known that the complexity of a language is determined by its set of
closure operations [9]. Specifically, an operation f : D(Γ)a → D(Γ) of arity
a is a polymorphism of Γ if for every R ∈ Γ of arity r and t1, . . . , ta ∈ R,
f(t1, . . . , ta) = (f(t1[1], . . . , ta[1]), . . . , f(t1[r], . . . , ta[r])) ∈ R. A polymorphism
f is idempotent if ∀x ∈ D, f(x, x, . . . , x) = x. We denote by Pol(Γ) (resp.
IdPol(Γ)) the set of all polymorphisms (resp. idempotent polymorphisms) of
Γ . Given two languages Γ1, Γ2 with D(Γ2) ⊆ D(Γ1), we write Pol(Γ1) ⊆ Pol(Γ2)
if the restriction to D(Γ2) of every f ∈ Pol(Γ1) is in Pol(Γ2). A wide range of op-
erations have been shown to induce polynomial-time solvability of any language
they preserve: these include near-unanimity operations [10], edges [11], semilat-
tices [9], 2-semilattices [12] and totally symmetric operations of all arities [13].

Composite Classes. A semantic class is a set of languages. A semantic class
T is tractable if CSP(Γ) ∈ P for every Γ ∈ T , and recognizable in polynomial
time if the membership problem ‘Does Γ ∈ T ?’ is in P . We say that a semantic
class T is atomic if there exists an operation f : Na → N such that Γ ∈ T if
and only if f|D(Γ) ∈ Pol(Γ), where f|D(Γ) denotes the restriction of f to D(Γ).
We sometimes denote such a class by Tf and say that f induces Tf . We call
a semantic class T simple if there exists a set T of atomic classes such that
T = ∩Tf∈T Tf . Finally, a semantic class T is composite if there exists a set T of
simple classes such that T = ∪Ts∈T Ts. In both cases, the set T is allowed to be
infinite. Using the distributivity of intersection over union, it is easy to see that
any class derived from atomic classes through any combination of intersections
and unions is composite. We say that an atomic class Tf is idempotent if f is
idempotent. By extension, a composite class is idempotent if can be obtained by
intersections and unions of idempotent atomic classes.

Example 1. Consider the class of max-closed constraints, introduced in [14]. This
class is tractable as any CSP instance over a max-closed constraint language can
be solved by establishing (generalised) arc-consistency. Using our terminology,
this class is exactly the atomic class induced by the operation max(., .), and thus
it is composite. Max-closed constraints have been generalized to any language
that admits a semilattice polymorphism, i.e. a binary operation f such that
f(x, x) = x, f(x, y) = f(y, x) and f(f(x, y), z) = f(x, f(y, z)) for any x, y, z ∈
D [9]. If we denote by Sml the set of all possible semilattice operations on N,
this larger class corresponds to ∪f∈SmlTf , which is composite but not atomic.

Example 2. For a given language Γ , let Γ be the language obtained from Γ by
adding all possible unary relations over D(Γ) with a single tuple. Consider the
very large class TBW of languages Γ such that CSP(Γ) (and thus CSP(Γ)) can
be solved by achieving k-consistency for some k that only depends on Γ . This
property is equivalent to the existence of two idempotent polymorphisms f and
g such that for every x, y ∈ D(Γ) [15][16],

(i) g(y, x, x, x) = g(x, y, x, x) = g(x, x, y, x) = g(x, x, x, y)

(ii) f(y, x, x) = f(x, y, x) = f(x, x, y)

(iii) f(x, x, y) = g(x, x, x, y)

On Backdoors to Tractable Constraint Languages 227

If we denote by FGBW the set of all pairs of operations (f, g) on N satisfying
these three conditions, the class TBW is composite and idempotent since it can
be written as TBW = ∪(f,g)∈FGBW(Tf ∩ Tg).

The choice to study composite classes shows multiple advantages. First, they
are general enough to capture most natural semantic tractable classes defined
in the literature, and they also allow us to group together tractable languages
that are solved by the same algorithm (such as arc consistency or Gaussian
elimination). Second, membership in these classes is hereditary: if Γ ∈ T and
Pol(Γ) ⊆ Pol(Γ ′), then Γ ′ ∈ T . In particular, any sublanguage of a language in
T is in T , and every composite class contains the empty language.

Strong Backdoors. Given an instance (X,D,C) of CSP(Γ), assigning a vari-
able x ∈ X to a value d ∈ D is done by removing the tuples inconsistent with
x ← d from the constraints whose scope include x, and then removing the vari-
able x from the instance (thus effectively reducing the arity of the neighbouring
constraints by one). A strong backdoor to a semantic class T is a subset S ⊆ X
such that every complete assignment of the variables from S yields an instance
whose language is in T . Note that assigning a variable involves no further inference
(e.g., arc consistency); indeed doing so has been shown to make backdoors poten-
tially much harder to detect [17]. There exist alternative forms of backdoors, such
as weak backdoors [1] and partition backdoors [18], but we only consider strong
backdoors throughout this paper so we may omit the word “strong” in proofs. The
goal of this work is to study how the properties of the target semantic class T affect
the (parameterized) complexity of the following problem.

Strong T -Backdoor: Given a CSP instance I and an integer k, does I have
a strong backdoor to T of size at most k?

Parameterized Complexity. A problem is parameterized if each instance x
is coupled with a nonnegative integer k called the parameter. A parameter-
ized problem is fixed-parameter tractable (FPT) if it can be solved in time
O(f(k)|x|O(1)), where f is any computable function. For instance, Vertex

Cover parameterized with the size k of the cover is FPT as it can be solved
in time O(1.2738k + kn) [19], where n is the number of vertices of the input
graph. The class XP contains the parameterized problems that can be solved in
time O(f(k)|x|g(k)) for some computable functions (f, g). FPT is known to be a
proper subset of XP [20]. Between these extremes lies the Weft Hierarchy :

FPT = W[0] ⊆W[1] ⊆W[2] ⊆ . . . ⊆ XP

where for every t, W[t+1] is believed to be strictly larger than W[t]. These classes
are closed under FPT-reductions, which map an instance (x, k) of a problem L1

to an instance (x′, k′) of a problem L2 such that:

– (x′, k′) can be built in time O(f(k)|x|O(1)) for some computable function f
– (x′, k′) is a yes-instance if and only if (x, k) is
– k′ ≤ g(k) for some computable function g

228 C. Carbonnel, M.C. Cooper, and E. Hebrard

For instance, k-Clique is W[1]-complete [20] when the parameter is k. Note
that if considering the parameter as a constant yields an NP-hard problem, the
parameterized version is not in XP (and thus not FPT) unless P = NP.

3 General Hardness

We consider two parameters: k, the size of the backdoor, and r, the maximum
arity of the constraint network. Under the very weak assumption that T is com-
posite and idempotent, we show that Strong T -Backdoor is unlikely to be
FPT for either of the parameters taken separately, assuming that P �= NP and
FPT �= W[2], as we shall do througout the paper. In both cases, we show that
our results extend to the class of Boolean CSPs with minor modifications.

Our hardness results will be obtained by reductions from various forms of the
p-Hitting Set problem: given a universe U , a collection S = {Si | i = 1..n} of
subsets of U with |Si| = p and an integer k, does there exist a subset H ⊆ U such
that |H | ≤ k and ∀i, H ∩ Si �= ∅? This problem is NP-complete for every fixed
p ≥ 2 [21], and W[2]-complete when the parameter is k and p is unbounded [20].
The special case p = 2 is called Vertex Cover, and the input is typically given
in the form of a graph G = (U, S) and an integer k.

We will make use of two elementary properties of idempotent composite
classes. First, any relation with a single tuple is closed by every idempotent
operation. Thus, adding such a relation to a language does not affect its mem-
bership in idempotent classes. The second property is slightly more general.
Given a relation R of arity r, let MR be the matrix whose rows are the tuples of
R sorted by lexicographic order (so that MR is unique). We say that a relation
R is an extension of a relation R′ if MR has all the columns of MR′ , plus extra
columns that are either constant (i.e. every value in that column is the same) or
copies of some columns of MR′ . In that case, since IdPol({R}) = IdPol({R′}),
{R} ∈ T if and only if {R′} ∈ T , for every idempotent composite class T .

For the rest of the document, we represent relations as lists of tuples delim-
ited by square brackets (e.g. R = [t1, . . . , tn]), while tuples are delimited by
parentheses (e.g. t1 = (d1, . . . , dr)).

3.1 Hardness on Bounded Arity CSPs

Theorem 1. Strong T -Backdoor is NP-hard for every idempotent compos-
ite tractable class T , even for binary CSPs.

Proof. We reduce from Vertex Cover. Let I = (G, k) be an instance of Ver-

tex Cover. We consider two cases. First, suppose that Γ = {[(1), (2)], [(2), (3)],
[(1), (3)]} ∈ T . We create a CSP with one variable per vertex in G, and if two
variables correspond to adjacent vertices we add the constraint �=1,2,3 (inequal-
ity over the 3-element domain) between them. Since CSP({�=1,2,3}) is NP-hard
and T is tractable, a valid backdoor of size at most k must correspond to a ver-
tex cover on G. Conversely, the variables corresponding to a vertex cover form a

On Backdoors to Tractable Constraint Languages 229

backdoor: after every complete assignment to these variables, the language of the
reduced instance is a subset of Γ , which is in T since T is composite and hence
hereditary. Now, suppose that Γ /∈ T . We duplicate the column of each relation
in Γ to obtain the binary language Γ ′ = {R1, R2, R3} with R1 = [(1, 1), (2, 2)],
R2 = [(2, 2), (3, 3)] and R3 = [(1, 1), (3, 3)]. Since Γ ′ is an extension of Γ and
T is idempotent, Γ ′ is not in T . Then, we follow the same reduction as in
the first case, except that we add the three constraints R1, R2, R3 instead of
�=1,2,3 between two variables associated with adjacent vertices. By construction,
a backdoor must be a vertex cover. Conversely, if we have a vertex cover, after
any assignment of the corresponding variables we are left with at most one tuple
per constraint, and the resulting language is in T by idempotency. ��

In the case of Boolean CSPs, Theorem 1 cannot apply verbatim. This is due
to the fact that every binary Boolean language is a special case of 2-SAT and
is therefore tractable. Thus, a binary Boolean CSP has always a backdoor of
size 0 to any class that is large enough to contain 2-SAT, and the minimum
backdoor problem is trivial. The next proposition shows that this is the only
case for which Strong T -Backdoor is not NP-hard under the idempotency
condition. Note that looking for a strong backdoor in a binary Boolean CSP has
no practical interest; however this case is considered for completeness.

Proposition 1. On Boolean CSPs with arity at most r, Strong T -Backdoor

is NP-hard for every idempotent composite tractable class T if r ≥ 3. For r = 2,
Strong T -Backdoor is either trivial (if every binary Boolean language is in
T) or NP-hard.

We omit the proof as it is similar to that of Theorem 1 (with more cases). All
omitted proofs are available in an extended version [22].

3.2 Hardness When the Parameter Is the Size of the Backdoor

In general, a large strong backdoor is not of great computational interest as
the associated decomposition of the original instance is very impractical. Thus,
it makes sense to design algorithms that are FPT when the parameter is the
size of the backdoor. In this section we show that in the case of idempotent
composite classes such algorithms cannot exist unless FPT =W[2]. Furthermore,
we establish this result under the very restrictive condition that the input CSP

has a single constraint, which highlights the fact that Strong T -Backdoor is
more than a simple pseudo-Hitting Set on the constraints outside T .

For any natural numbers m, e (m ≥ 3), we denote by Rm
3 (e) the relation

obtained by duplicating the last column of [(e+ 1, e, e), (e, e+ 1, e), (e, e, e+ 1)]
until the total arity becomes m. It is straightforward to see that CSP({Rm

3 (e)})
is NP-hard for every m, e by a reduction from 1-in-3-SAT. In a similar fashion,
we define Rm

2 (e) as an extension of [(e+ 1, e), (e, e+ 1)] of arity m.

Theorem 2. Strong T -Backdoor is W[2]-hard for every idempotent com-
posite tractable class T when the parameter is the size of the backdoor, even if
the CSP has a single constraint.

230 C. Carbonnel, M.C. Cooper, and E. Hebrard

U = (u1, . . . , u7)
S1 = (u3, u4, u5)
S2 = (u2, u5, u6)
S3 = (u1, u3, u7)

(a) 3-Hitting Set

{R2
2(2)} ∈ T

{R2
2(4)} �∈ T

{R2
2(6)} �∈ T

(b) class T

u1 u2 u3 u4 u5 u6 u7

2 2 3 2 2 2 2
2 2 2 3 2 2 2
2 2 2 2 3 2 2
4 5 4 4 4 4 4
4 4 4 4 5 5 4
7 6 6 6 6 6 6
6 6 7 6 6 6 7

(c) Constraint C

Fig. 1. Example of reduction from a 3-Hitting Set instance to the problem of finding
a backdoor to the class T . The reduction produces a single constraint C.

Proof. The proof is an FPT-reduction from p-Hitting Set parameterized with
solution size k. Let (p, U, S) be an instance of p-Hitting Set, where U is the
universe (|U | = n) and S = {Si | i = 1..s} is the collection of p-sets. We assume
without loss of generality that p ≥ 3 (if this is not the case we pad each set with
unique elements). We build an n-ary relation R, where each column is associated
with a value from U , as follows. For every Si ∈ S, we consider two cases. If
{R2

2(2i)} /∈ T , we add two tuples t1, t2 to R such that the restriction of [t1, t2] to
the columns corresponding to the values appearing in Si form the relationRp

2(2i),
and the other columns are constant with value 2i. If {R2

2(2i)} ∈ T , we add 3
tuples t1, t2, t3 such that the restriction of t1, t2, t3 to the columns corresponding
to Si form Rp

3(2i), and the remaining columns are constant with value 2i. Once
the relation is complete, we apply it to n variables to obtain an instance of our
backdoor problem. See Figure 1 for an example of the construction.

Suppose we have a backdoor of size at most k, and suppose there exists a set
Si such that none of the corresponding variables belong to the backdoor. Then,
if we assign every variable in the backdoor to 2i, the reduced constraint must
belong to T . By idempotency, we can further assign every remaining variable
outside of Si to the value 2i and the resulting constraint must still be in T .
The reduced constraint becomes either Rp

2(2i) if {R2
2(2i)} /∈ T , or R

p
3(2i), which

is not in T since T is tractable and we assume P �= NP. In both cases, this
constraint does not belong to T , and we have a contradiction. Therefore, if there
is a backdoor of size at most k, we also have a hitting set of size at most k.

Conversely, suppose we have a hitting set of size at most k. We prove that
the associated set of variables form a backdoor. Observe that two blocks (i.e.
pairs/triples) of tuples of the constraint C associated with different sets do not
share any common value; hence, after assigning the variables corresponding to
the hitting set to any values, the resulting constraint is either empty or a sub-
relation of a single block associated with the set Si. The latter case yields two
possibilities. If T does not contain {R2

2(2i)}, then the block i must have been
reduced to a single tuple, since the two initial tuples t1, t2 satisfy t1[xj] �= t2[xj]
for all xj associated with a value in Si. Thus, by idempotency, the resulting con-
straint is in T . Now, if T contains {R2

2(2i)}, the resulting constraint has at most
two tuples (same argument as above), which can only happen if all the variables
are assigned to the value 2i. If we are in this situation, the new constraint must

On Backdoors to Tractable Constraint Languages 231

be an extension of R2
2(2i) and hence is in T . Therefore, our hitting set provides

a strong backdoor in our CSP instance, which concludes the reduction. ��
This theorem still holds on Boolean CSPs if we allow multiple constraints in

the target instance, even if these constraints are all the same relation. We omit
the proof, as it follows the same principles as that of Theorem 2.

Proposition 2. On Boolean CSPs, Strong T -Backdoor is W[2]-hard for
every idempotent composite tractable class T when the parameter is the size of
the backdoor, even if the CSP has a single type of constraint.

Remark 1. Partition Backdoors is an alternative form of backdoors recently in-
troduced by Bessiere et al [18]. Such backdoors are especially interesting in the
case of conservative classes (conservativity is more restrictive than idempotency,
since each polymorphism is required to satisfy f(x1, . . . , xa) ∈ {x1, . . . , xa}). The
authors argue that, given a partition of the constraints C = {C1, C2} such that
the language of C1 is in a conservative class T , the vertex cover of the primal
graph of C2 is a strong backdoor to T . The minimum-size partition backdoor
is then the best such backdoor over every possible partition of the constraints.
Computing the minimum-size partition backdoor is FPT in the parameter k+ l,
where l is the size of the constraint language; our results show that computing
the actual minimum strong backdoor is a much harder problem as it is still W[2]-
hard for the larger parameters k+m (Theorem 2) and d+ k+ l (Proposition 2),
where m is the number of constraints and d the size of the domain.

4 Combined Parameters: Helly Classes and Limits

We have shown in sections 3.1 and 3.2 that considering independently the max-
imum constraint arity r and the size of the backdoor k as parameters is unlikely
to yield FPT tractability. We now consider the combined parameter k + r and
show that FPT tractability ensues for numerous tractable composite classes.

In order to design an algorithm for Strong T -Backdoor that is FPT for
k+r, it is important to have a procedure to check whether a subset of variables of
size at most k is a strong backdoor to T . The natural algorithm for this task runs
in time O(mrtdkP (Γ)) (where m is the number of constraints, t the maximum
number of tuples and P (Γ) the complexity of the membership problem of a
language Γ in T) by checking independently each of the dk possible assignments
of B. In our case this approach is not satisfactory: since d is not a parameter,
the term dk is problematic for the prospect of an algorithm FPT in k + r. The
next lemma presents an alternative algorithm for the “backdoor check” problem
that is only exponential in the number of constraints m. Although it may seem
impractical at first sight (as m is typically much larger than k), we will show
that it can be exploited for many tractable classes.

Lemma 1. Let T be a composite class recognizable in time P (Γ). Let I =
(X,D,C) be a CSP instance with m constraints of arity at most r and con-
taining at most t tuples, and B ⊆ X. It is possible to decide whether B is a
strong backdoor to T in time O(mrt2 +m2r(2t)mP (Γ)).

232 C. Carbonnel, M.C. Cooper, and E. Hebrard

Proof. We first focus on a single constraint (S,R). Let BS = B ∩ S. Observe
that at most t different assignments of BS can leave R nonempty, since the
subrelations of R obtained with each assignment are pairwise disjoint and their
union is R. To compute these assignments in polynomial time, one can explore a
search tree. Starting from a node labelled R, we pick a nonfixed variable v ∈ BS

and for every d ∈ D(v) such that the subrelation Rv=d is not empty we create
a child node labelled with Rv=d. Applying this rule recursively, we obtain a
tree of depth at most r and with no more than t leaves, so it has at most rt
nodes. The time spent at each node is O(t), so computing all leaves can be
done in time O(rt2). Now, suppose that for each constraint c = (R,S) ∈ C
we have computed this set φc of all the locally consistent assignments of BS

and stored the resulting subrelation. For every φ ∈
∏

c∈C φc and every possible
subset C′ of the constraints, we check if the restriction φs of φ to the constraints
of C′ is a consistent assignment (i.e., no variable is assigned multiple values).
If φs is consistent, we temporarily remove from the instance the constraints
outside C′, we apply the assignment φs and we check whether the language of
the resulting instance is in T . The algorithm returns that B is a backdoor if and
only if each membership test in T is successful. To prove the correctness of the
algorithm, suppose that ψ is an assignment of B such that the resulting language
is not in T . Then, at least one subset of the constraints have degraded into non-
empty subrelations. For each of these constraints, the restricted assignment ψR

is consistent with the others, so the algorithm must have checked membership
of the resulting language in T and concluded that B is not a strong backdoor.
Conversely, if B is a strong backdoor, every complete assignment of B yields
an instance in T . In particular, if we consider only a subset of the constraints
after each assignment, the language obtained is also in T since T is composite
(and hence hereditary). Thus, none of the membership tests performed by the
algorithm will fail. The complexity of the algorithm is O(mrt2+m2rtm2mP (Γ)).

��

We say that a composite class T is h-Helly if it holds that for any language Γ ,
if every Γh ⊆ Γ of size at most h is in T then Γ is in T . This property is analogous
to the well-studied Helly properties for set systems. We call Helly number of T
the minimum positive integer h such that T is h-Helly. Being characteristic of a
class defined exclusively in terms of polymorphisms over N, the Helly number is
independant from parameters like the domain size or the arity of the languages.
The next theorem is the motivation for the study of such classes, and is the main
result of this section.

Theorem 3. For every fixed composite class T recognizable in polynomial time,
if T has a finite Helly number then Strong T -Backdoor is FPT when the
parameter is k + r, where k is the size of the backdoor and r is the maximum
constraint arity.

Proof. Let h denote the Helly number of T . The algorithm is a bounded search
tree that proceeds as follows. Each node is labelled by a subset of variablesB. The
root of the tree is labelled with the empty set. At each node, we examine every

On Backdoors to Tractable Constraint Languages 233

possible combination of h constraints and check if B is a strong backdoor for the
subset in time O(hrt2+h2r(2t)hP (Γ)) (where P (Γ) is the polynomial complexity
of deciding the membership of a language Γ in T) using Lemma 1. Suppose that
B is a strong backdoor for every h-subset. Then, for any possible assignment
of B, each h-subset of the constraints of the resulting instance must be in T :
otherwise, B would not be a strong backdoor for the h original constraints that
generated them. Since T is h-Helly, we can conclude that B is a valid strong
backdoor for the whole instance. Now suppose that we have found a h-subset for
which B is not a strong backdoor. For every variable x in the union of the scopes
of the constraints in this subset that is not already in B (there are at most rh
such variables x), we create a child node labelled with B ∪ {x}. At each step we
are guaranteed to add at least one variable to B, so we stop creating child nodes
when we reach depth k. The algorithm returns ‘YES’ at the first node visited
that corresponds to a strong backdoor, and ‘NO’ if no such node is found.

If no strong backdoor of size at most k exists, it is clear that the algorithm
correctly returns ‘NO’. Now suppose that a strong backdoor B, |B| ≤ k, exists.
Observe that if a node is labelled with B ⊂ B and B is not a backdoor for some
h-subset of constraints, then B contains at least one more variable within this
subset. Since the algorithm creates one child per variable that can be added and
the root is labelled with a subset of B, by induction there must be a path from
the root to a node labelled with B and the algorithm returns ‘YES’.

The complexity of the procedure is O
(
(rh)kmh(hrt2 + h2r(2t)hP (Γ))

)
=

O
(
f(k + r)mh(ht2 + h2(2t)hP (Γ))

)
. ��

In contrast to the previous hardness results, the target tractable class is not
required to be idempotent. However, the target class must have a finite Helly
number, which may seem restrictive. The following series of results aims to iden-
tify composite classes with this particular property.

Lemma 2. A composite class T is simple if and only if it is 1-Helly.

Proof. Let T be a simple class, i.e. an intersection of atomic classes T = ∩f∈FTf .
Let Γ be a constraint language such that each {R} ⊆ Γ is in T . Then, every
f ∈ F preserves every relation in Γ and thus preserves Γ , so Γ ∈ T and T is
1-Helly. Conversely, let T be a 1-Helly composite class. Let F = {f | f preserves
every {R} ∈ T }. Every Γ ∈ T admits as polymorphism every f ∈ F (as each
{R} ⊆ Γ is in T and thus is preserved by f), so T ⊆ ∩f∈FTf . The other way
round, a language Γ in ∩f∈FTf is preserved by every f ∈ F and thus must be
a sublanguage of Γ∞ = ∪{R}∈T {R}, which is in T since T is 1-Helly, so Γ ∈ T
and ∩f∈FTf ⊆ T . Finally, T = ∩f∈FTf and so T is simple. ��

Proposition 3. Let h be a positive integer and T be a set of simple classes.
Then, T = {Γ | Γ belongs to every Ti ∈ T except at most h} is a (h + 1)-Helly
composite class.

Proof. T is composite since it is the union of every possible intersection of all
but h classes from T and any class derived from atomic classes through any

234 C. Carbonnel, M.C. Cooper, and E. Hebrard

combination of intersections and unions is composite. We write T = {Ti | i ∈ I}.
Let Γ be a language such that every sublanguage of size at most h+1 is in T . For
each R ∈ Γ we define S(R) = {Ti | {R} /∈ Ti}. By Lemma 2, simple classes are
1-Helly so Γ /∈ Ti ⇔ (∃R ∈ Γ such that {R} /∈ Ti)⇔ Ti ∈ ∪R∈ΓS(R). So Γ ∈ T
if and only if | ∪R∈Γ S(R)| ≤ h. We discard from Γ every relation R such that
|S(R)| = 0 as they have no influence on the membership of Γ in T . If that process
leaves Γ empty, then it belongs to T . Otherwise, let sj denote the maximum size
of ∪R∈ΓjS(R) over all size-j subsets Γj of Γ . Since each sublanguage Γj of size
j ≤ h + 1 is in T , from the argument above we have 1 ≤ s1 ≤ . . . ≤ sh+1 ≤ h,
thus there exists j < h + 1 such that sj = sj+1. Let Γj ⊆ Γ denote a set of
j relations such that | ∪R∈Γj S(R)| = sj . Suppose there exists R0 ∈ Γ such
that S(R0) �⊆ ∪R∈ΓjS(R). Then, | ∪R∈Γj∪{R0} S(R)| > sj = sj+1, and we get a
contradiction. So ∪R∈ΓS(R) ⊆ ∪R∈ΓjS(R), hence | ∪R∈Γ S(R)| ≤ h and Γ is in
T . Therefore, T is (h+ 1)-Helly. ��

In the particular case where T is finite and h = |T | − 1, we get the following
nice corollary. Recall that a composite class is any union of simple classes.

Corollary 1. Any union of h simple classes is h-Helly.

Example 3. Let T = {Γ | Γ is either min-closed, max-closed or 0/1/all}. T is the
union of 3 well-known tractable semantic classes. By definition, min-closed and
max-closed constraints are respectively the languages that admit min(., .) and
max(., .) as polymorphisms. Likewise, 0/1/all constraints have been shown to be
exactly the languages that admit as polymorphism the majority operation [9]

f(x, y, z) =

{
y if y = z
x otherwise

Thus, T is the union of 3 atomic classes and hence is 3-Helly by Corollary 1. Since
T is also recognizable in polynomial time, by Theorem 3 Strong T -Backdoor

is FPT when parameterized by backdoor size and maximum arity.

In the light of these results, it would be very interesting to show a dichotomy.
Is Strong T -Backdoor with parameter k + r at least W[1]-hard for every
tractable composite class T that does not have a finite Helly number? While
we leave most of this question unanswered, we have identified generic sufficient
conditions for W[2]-hardness when r is fixed and the parameter is k.

Given a bijection φ : D1 → D2, we denote by Rφ the relation [(d, φ(d)), d ∈
D1]. Given a language Γ , a subdomain D1 of D(Γ) is said to be conservative if
every f ∈ Pol(Γ) satisfies f(x1, . . . , xm) ∈ D1 whenever {x1, . . . , xm} ⊆ D1. For
instance, D(Γ ′) is conservative for every Γ ′ ⊆ Γ , and for every column of some
R ∈ Γ the set of values that appear in that column is conservative. Then, we
say that a class T is value-renamable if for every Γ ∈ T and φ : D1 → D2, where
D1 is a conservative subdomain of Γ and D2 ∩ D(Γ) = ∅, Γ ∪ {Rφ} is in T .
For instance, the class of 0/1/all constraints introduced in Example 3 is value-
renamable, but max-closed constraints are not (as they rely on a fixed order on

On Backdoors to Tractable Constraint Languages 235

N). We also say that a composite class T is domain-decomposable if for each
pair of languages Γ1 ∈ T and Γ2 ∈ T , D(Γ1) ∩D(Γ2) = ∅ implies Γ1 ∪ Γ2 ∈ T .
Value-renamability and domain-decomposability are natural properties of any
class that is large enough to be invariant under minor (from the algorithmic
viewpoint) modifications of the constraint languages.

Given a language Γ and a bijection φ : D(Γ) → D′, we denote by φ(Γ) the
language over D′ obtained by replacing every tuple t = (d1, . . . , dr) in every
relation in Γ by φ(t) = (φ(d1), . . . , φ(dr)).

Lemma 3. Let Γ = Γ1 ∪ Γ2 ∪ {Rφ} where φ is a bijection from D(Γ2) to some
domain D1. Then, Pol(Γ) ⊆ Pol(Γ1 ∪ φ(Γ2)).

Proof. Let f ∈Pol(Γ) of arity a.We only need to show that f preservesφ(Γ2), as f
already preserves Γ1. Since f preserves Rφ, for each (d1, φ(d1)), . . . , (da, φ(da)) ∈
Rφ we have (f(d1, . . . , da), f(φ(d1), . . . , φ(da))) ∈ Rφ, so f(φ(d1), . . . , φ(da)) =
φ(f(d1, . . . , da)) for every d1, . . . , da ∈ D(Γ2). Then, given a tuples φ(t1), . . . , φ(ta)
of φ(Γ2), f(φ(t1), . . . , φ(ta)) = φ(f(t1, . . . , ta)) ∈ φ(Γ2) since f(t1, . . . , ta) ∈ Γ2.
Therefore, f is a polymorphism of φ(Γ2) and Pol(Γ) ⊆ Pol(Γ1 ∪ φ(Γ2)).

Theorem 4. On CSPs with arity at most r, if T is a composite class that is

– idempotent
– not 1-Helly for constraints of arity at most r
– value-renamable
– domain-decomposable

then Strong T -Backdoor is W[2]-hard when the parameter is k.

Proof. Since T is not 1-Helly for constraints of arity at most r, there exists a
language Γm = {Ri | i ∈ 1..lm} (of arity rm ≤ r and over a domain Dm, |Dm| =
dm) such that lm > 1 and every sublanguage of Γm is in T but Γm is not. Since
T is fixed, we shall consider that Γm is fixed as well and hence has constant size.
We assume for simplicity of presentation that every R ∈ Γm has arity rm.

We perform an FPT-reduction from p-Hitting Set parameterized with so-
lution size as follows. Let (p, U, S) be an instance of p-Hitting Set, with
S = {S1, . . . , Ss} and U = {u1, . . . , un}. For every ui ∈ U , we associate a
unique variable xi. For every set Sj = (uσj(1), . . . , uσj(p)), we add 2rm new

variables y1j , . . . , y
rm
j , z1j , . . . , z

rm
j and we create p+ 2 new disjoint domains Di

j ,

i ∈ [0 . . . p+1] of size dm. Then, we pick a chain of p+1 bijections ψi
j : D

i
j → Di+1

j ,
i ∈ [0 . . . p] and we add a chain of constraints Rψi

j
between the p + 2 variables

(yrmj , xσj(1), . . . , xσj(p), z
1
j). Afterwards, we pick a bijection φj : Dm → D0

j and

we apply φj(R1) to y
1
j , . . . , y

rm
j . In the same fashion, if we denote by ψj the bi-

jection from D0
j to Dp+1

j obtained by composition of all the ψi
j , we apply every

constraint in (ψj ◦ φj)(Γm\{R1}) to the variables z1j , . . . , z
rm
j . The main idea

behind the construction is that both Γm\{R1} and {R1} are in T but Γm is not:
by adding φj(R1) on the variables y, ψj ◦ φj(Γm\{R1}) on the variables z and
the chain of bijections Rψi

j
of the x variables, we have a language that is not in

236 C. Carbonnel, M.C. Cooper, and E. Hebrard

x1 x2 x3 x4 x5 x6 x7

y1
1 y2

1 z11 z21

φ1(R1)

Rψ0
1

Rψ1
1

Rψ2
1

Rψ3
1

(ψ1 ◦ φ1)(R2)

(ψ1 ◦ φ1)(R3)

y1
2 y2

2 z12 z22

φ2(R1)
Rψ0

2

Rψ1
2

Rψ2
2

Rψ3
2

(ψ2 ◦ φ2)(R3)

(ψ2 ◦ φ2)(R2)

Fig. 2. Example of the construction for U = (u1, . . . , u7), two sets S1 = (u2, u4, u5),
S2 = (u1, u4, u6), Γm = {R1, R2, R3} and rm = 2. Each arrow is a (binary) constraint.
The upper part of the instance is constructed from S1 and the lower part from S2.

T but assigning any value to x yields a residual language in T (the proof can
be found below). We use this property to encode a Hitting Set instance. See
Figure 2 for an example of the reduction.

Suppose we have a backdoor to T of size at most k. Then, for each set Sj , at
least one variable from (y1j , . . . , y

rm
j , xσj(1), . . . , xσj(p), z

1
j , . . . , z

rm
j) must belong

to the backdoor. Suppose this is not the case. Then, the language Γ of any
reduced instance would contain the relations of {φj(R1), (ψj ◦ φj)(Γm\{R1})}
plus the relations Rψi

j
. Applying Lemma 3 p+1 times, we get Pol(Γ) ⊆ Pol((ψj ◦

φj)(R1)∪ (ψj ◦φj)(Γm\{R1})) = Pol((ψj ◦φj)(Γm)). Thus, if Γ is in T , then so
is (ψj ◦φj)(Γm). Then, by value-renamability {(ψj ◦φj)(Γm)∪R(ψj◦φj)−1} is also
in T and using Lemma 3 again, Γm is in T , which is a contradiction. Therefore,
a hitting set of size at most k can be constructed by including every value ui
such that xi is in the backdoor, and if any variable from y1j , . . . , y

rm
j , z1j , . . . , z

rm
j

belongs to the backdoor for some j, we also include uσj(1).
Conversely, a hitting set forms a backdoor. After every complete assignment

of the variables from the hitting set, the set of constraints associated with any
set Sj can be partitioned into sublanguages whose domains have an empty in-
tersection(see Figure 2). The sublanguages are either:

– φj(R1) together with some constraints Rψi
j
and a residual unary constraint

with a single tuple. This language is in T by Lemma 3, value-renamability
and idempotency.

– (ψj ◦φj)(Γm\{R1}) together with some constraints Rψi
j
and a residual unary

constraint with a single tuple. This case is symmetric.

On Backdoors to Tractable Constraint Languages 237

– A (possibly empty) chain of constraints Rψi
j
plus unary constraints with a

single tuple, which is again in T since T is idempotent, value-renamable and
contains the language {∅}.

Furthermore, the sublanguages associated with different sets Sj also have an
empty domain intersection. Since T is domain-decomposable, the resulting lan-
guage is in T . ��

Note that this result does not conflict with Theorem 3, since any class T
that is domain-decomposable, value-renamable and not 1-Helly cannot have a
finite Helly number (part of the proof of Theorem 4 amounts to showing that
one can build in polynomial time arbitrarily large languages Γ such that ev-
ery sublanguage is in T but Γ is not). While the proof may seem technical,
the theorem is actually easy to use and applies almost immediately to many
known tractable classes: to prove W[2]-hardness of Strong T -Backdoor on
CSPs of arity bounded by r, one only has to prove value-renamability, domain-
decomposability (which is usually straightforward) and exhibit a language Γ
such that each {R} ⊂ Γ is in T but Γ is not.

Example 4. An idempotent operation f is totally symmetric (TSI) if it satisfies
f(x1, . . . , xa) = f(y1, . . . , ya) whenever {x1, . . . , xa} = {y1, . . . , ya}. Using the
same notations as in Example 2, it has been shown in [13] that CSP(Γ) is
solved by arc-consistency if and only if Γ has TSI polymorphisms of all arities.
We show that this class of languages (which we denote by TTSI) falls in the
scope of Theorem 4 even for binary relations. First, this class is composite and
idempotent: If we denote by TS(a) the set of all possible TSI operations on N of
arity a and ATS =

∏
a∈N∗ TS(a), we have TTSI = ∪F∈ATS (∩f∈FTf). To prove

domain-decomposability and value-renamability, we will use the equivalent and
more convenient characterization that Γ is in TTSI if and only if Γ has a TSI of
arity |D(Γ)|. Without loss of generality, we consider TSI polymorphisms as set
functions and write f(x1, . . . , xa) = f({x1, . . . , xa}).

– Domain-decomposability: Let Γ1, Γ2 ∈ T be constraint languages with re-
spective TSI polymorphisms f1, f2 (of respective arities |D(Γ1)|, |D(Γ2)|),
and D(Γ1) ∩ D(Γ2) = ∅. Let f be the operation on D(Γ1) ∪D(Γ2) of arity
|D(Γ1) ∪D(Γ2)| defined as follows:

f(x1, . . . , xm) =

⎧⎨⎩
f1({x1, . . . , xm}) if {x1, . . . , xm} ⊆ D(Γ1)
f2({x1, . . . , xm}) if {x1, . . . , xm} ⊆ D(Γ2)
max(x1, . . . , xm) otherwise

f is totally symmetric and preserves both Γ1 and Γ2, so f is a polymorphism
of Γ1 ∪ Γ2 and Γ1 ∪ Γ2 ∈ TTSI. Therefore, TTSI is domain-decomposable.

– Value-renamability: Let Γ ∈ TTSI be a language with a TSI polymorphism
f1 of arity |D(Γ)|. Let φ : D1 → D2 be a bijection, where D1 is a conserva-
tive subdomain of D(Γ) and D2 ∩ D(Γ) = ∅. Then, the operation of arity

238 C. Carbonnel, M.C. Cooper, and E. Hebrard

|D(Γ) ∪D2| defined as

f(x1, . . . , xm) =

⎧⎨⎩
f1({x1, . . . , xm}) if {x1, . . . , xm} ⊆ D(Γ)

φ(f2({φ−1(x1), . . . , φ
−1(xm)})) if {x1, . . . , xm} ⊆ D2

max(x1, . . . , xm) otherwise

is a TSI and preserves both Γ and Rφ (the proof is straightforward using
the fact that D1 is a conservative subdomain), so Γ ∪{Rφ} ∈ TTSI and TTSI

is value-renamable.
– Not 1-Helly: Let R1 = [(0, 0), (0, 1), (1, 0)] and R2 = [(1, 1), (0, 1), (1, 0)].

Both {R1} and {R2} are in TTSI (as they are respectively closed by min and
max, which are 2-ary TSIs), but {R1, R2} is not (R1 forces f(0, 1) = 0 and
R2 forces f(0, 1) = 1 for every TSI polymorphism f), so TTSI is not 1-Helly.

Finally, we conclude that Theorem 4 applies to TTSI even for binary constraints.
The same reasoning also applies to many other tractable classes, such as lan-
guages preserved by a near-unanimity (f(y, x, . . . , x) = f(x, y, x, . . . , x) = . . . =
f(x, . . . , x, y) = x) or a Mal’tsev (f(x, x, y) = f(y, x, x) = y) polymorphism.

5 Related Work

A very recent paper by Gaspers et al. [3] has independently investigated the
same topic (parameterized complexity of strong backdoor detection for tractable
semantic classes) and some of their results seem close to ours. In particular, one
of their theorems (Theorem 5) is similar to our Proposition 2, but is less general
as they assume the target class to be an union of atomic classes. They also study
the case where r is bounded and k is the parameter, as we do, but their result
(Theorem 6) is more specific and can be shown to be implied by our Theorem 4.

6 Conclusion

We have shown that finding small strong backdoors to tractable constraint lan-
guages is often hard. In particular, if the tractable class is a set of languages
closed by an idempotent operation, or can be defined by arbitrary conjunctions
and disjunctions of such languages, then finding a backdoor to this class is NP-
hard even when all constraints have a fixed arity. Moreover, it is W[2]-hard with
respect to the backdoor size k.

When considering the larger parameter k + r, however, we have shown that
strong backdoor detection is FPT provided that the target class is h-Helly for
a constant h, that is, membership in this class can be decided by checking all
h-tuples of relations. We then give a complete characterization of 1-Helly classes,
and we use this result to show that any finite union of 1-Helly classes induces a
backdoor problem FPT in k+ r. Finally, we characterize another large family of
tractable classes for which backdoor detection is W[2]-hard for the parameter k
even if r is fixed. This result can be used to derive hardness of backdoor detec-
tion for many known large tractable classes, provided they have certain natural
properties (which we call value-renamability and domain-decomposability).

On Backdoors to Tractable Constraint Languages 239

References

1. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In:
Proceedings of the 18th International Joint Conference on Artificial Intelligence, IJ-
CAI 2003, pp. 1173–1178. Morgan Kaufmann Publishers Inc., San Francisco (2003)

2. Nishimura, N., Ragde, P., Szeider, S.: Detecting Backdoor Sets with Respect to
Horn and Binary Clauses. In: SAT (2004)

3. Gaspers, S., Misra, N., Ordyniak, S., Szeider, S., Živný, S.: Backdoors into hetero-
geneous classes of sat and csp. In: Proceedings of the 28th AAAI Conference on
Artificial Intelligence, AAAI 2014 (2014)

4. Gaspers, S., Szeider, S.: Strong Backdoors to Bounded Treewidth SAT. In: FOCS,
pp. 489–498 (2013)

5. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic snp and
constraint satisfaction: A study through datalog and group theory. SIAM Journal
on Computing 28(1), 57–104 (1998)

6. Bulatov, A.A.: Complexity of conservative constraint satisfaction problems. ACM
Trans. Comput. Logic 12(4), 24:1–24:66 (2011)

7. Barto, L., Bulin, J.: Csp dichotomy for special polyads. IJAC 23(5), 1151–1174
(2013)

8. Barto, L., Kozik, M.: Constraint satisfaction problems solvable by local consistency
methods. J. ACM 61(1), 3:1–3:19 (2014)

9. Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. J. ACM
44(4), 527–548 (1997)

10. Jeavons, P., Cohen, D., Cooper, M.: Constraints, consistency, and closure. Artificial
Intelligence 101, 101–1 (1998)

11. Idziak, P., Markovic, P., McKenzie, R., Valeriote, M., Willard, R.: Tractability and
learnability arising from algebras with few subpowers. SIAM Journal on Comput-
ing 39(7), 3023–3037 (2010)

12. Bulatov, A.A.: Combinatorial problems raised from 2-semilattices. Journal of Al-
gebra 298(2), 321–339 (2006)

13. Dalmau, V., Pearson, J.: Closure functions and width 1 problems. In: Jaffar, J.
(ed.) CP 1999. LNCS, vol. 1713, pp. 159–173. Springer, Heidelberg (1999)

14. Jeavons, P., Cooper, M.: Tractable constraints on ordered domains. Artificial
Intelligence 79, 327–339 (1995)

15. Barto, L., Kozik, M.: Constraint satisfaction problems solvable by local consistency
methods. Journal of the ACM (JACM) 61(1), 3 (2014)

16. Kozik, M., Krokhin, A., Valeriote, M., Willard, R.: Characterizations of several
maltsev conditions (2013) (preprint)

17. Dilkina, B., Gomes, C.P., Sabharwal, A.: Tradeoffs in the complexity of backdoors
to satisfiability: dynamic sub-solvers and learning during search. Annals of Math-
ematics and Artificial Intelligence, 1–33 (2014)

18. Bessiere, C., Carbonnel, C., Hebrard, E., Katsirelos, G., Walsh, T.: Detecting and
exploiting subproblem tractability. In: International Joint Conference on Artificial
Intelligence (IJCAI), Beijing, China (August 2013)

19. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor.
Comput. Sci. 411(40-42), 3736–3756 (2010)

20. Downey, R.G., Fellows, M.R.: Parameterized Complexity, 530 p. Springer (1999)
21. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Com-

puter Computations, pp. 85–103 (1972)
22. Carbonnel, C., Cooper, M.C., Hebrard, E.: On backdoors to tractable constraint

languages (extended paper), http://arxiv.org/abs/1404.3675

http://arxiv.org/abs/1404.3675

Nested Constraint Programs

Geoffrey Chu and Peter J. Stuckey

National ICT Australia, Victoria Laboratory,
Department of Computing and Information Systems,

University of Melbourne, Australia
{gchu,pjs}@cis.unimelb.edu.au

Abstract. Many real world discrete optimization problems are express-
ible as nested problems where we solve one optimization or satisfaction
problem as a subproblem of a larger meta problem. Nested problems in-
clude many important problem classes such as: stochastic constraint satis-
faction/optimization, quantified constraint satisfaction/optimization and
minimax problems. In this paper we define a new class of problems called
nested constraint programs (NCP)which include the previouslymentioned
problem classes as special cases, and describe a search-based CP solver for
solving NCP’s. We briefly discuss how nogood learning can be used to sig-
nificantly speedup such an NCP solver. We show that the new solver can
be significantly faster than existing solvers for the special cases of stochas-
tic/quantified CSP/COP’s, and that it can solve new types of problems
which cannot be solved with existing solvers.

1 Introduction

An aggregator constraint takes the form: y = agg([f(x1, . . . , xn, z1, . . . , zm) |
z1, . . . , zm where C(x1, . . . , xn, z1, . . . , zm)]) where agg is an aggregator function
such as sum, max, min, and, or, f is a function which we will call the local
function, c is a (set of) local constraint(s), xi are some input variables, y is an
output variable, and zi are some local variables.

Aggregator constraints are an extremely flexible and powerful modelling con-
struct, especially when we allow them to be nested inside each other. Prob-
lems such as constraint satisfaction/optimization problems, stochastic constraint
satisfaction/optimization problems, quantified constraint satisfaction/optimiza-
tion problems, bi-level and multi-level programming, and many others, can be
expressed using aggregator constraints. Unfortunately, most of these problem
classes, and the solvers designed for them, only support a very restricted subset
of aggregator constraints. For example CP solvers typically cannot handle ag-
gregator constraints natively at all, and rely on some sort of unrolling procedure
to convert them into primitive constraints first.

An aggregator constraint can be unrolled by eliminating the local variables
and local constraints in the aggregator. If we can statically find the set of local
solutions S to the constraint C(x1, . . . , xn, z1, . . . , zm) (either independent of xi
or if the xi are fixed), then for each θ ∈ S, we create a variable a[θ] and post the
constraints a[θ] = f(θ), then post the constraint y = agg([a[θ] | θ ∈ S]). This
completely eliminates the need to handle those local variables and constraints

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 240–255, 2014.
c© Springer International Publishing Switzerland 2014

Nested Constraint Programs 241

during solving, but at a potential cost of creating exponentially many variables
and constraints.

Example 1. Suppose we have variable arrays p and q. Suppose we have aggre-
gator constraint y = max([p[z] + z × q[z] | z where z ∈ {1, 2, 3}). We can unroll
this to: y = max([a[1], a[2], a[3]]), a[1] = p[1] + q[1], a[2] = p[2] + 2 × q[2],
a[3] = p[3] + 3× q[3]. ��

Such an approach can handle many common CSP problems, and can also be
used to convert stochastic CSP’s and quantified CSP’s into normal CSP’s which
can be solved using standard CP solvers. For example, scenario-based methods
for solving stochastic CSP’s [1] eliminate the stochastic variables in order to
convert the problem into a CSP.

However, there are significant problems with this approach. Firstly, in general,
it may not be possible or efficient to calculate the set of local solutions S stati-
cally. E.g., if the input variables xi are not fixed at compile time, then it may not
be possible at all, or if we have complex constraints in c (like other aggregator
constraints), it may take exponential time just to check the satisfiability of an
assignment. Secondly, if there are many nested aggregator constraints, then such
unrolling could create an exponential number of variables and constraints, caus-
ing the solver to run out of memory. For example, in a k-stage stochastic CSP,
we have k nested max and weighted sum aggregators. If each stage had O(S)
scenarios and we were to unroll all the weighted sum aggregator constraints by
eliminating their local variables, then we end up with O(Sk) variables and con-
straints which could easily cause the solver to run out of memory. Thirdly, not all
the terms in the aggregation are necessarily relevant, especially with aggregators
like max, min, and, or, etc, where evaluating one term may mean that other
terms do not need to be evaluated or do not need to be evaluated fully.

An alternative method for handling aggregator constraints is to keep the local
variables and constraints, and dynamically calculate the local solutions to the
aggregator constraint during solving, rather than statically at compile time. Such
search-based approaches have been used in stochastic CSP/COP solvers [2], in
quantified CSP/COP solvers [3], and in quantified Boolean formulae solvers,
e.g., [4,5]. In this paper we go further than these works by defining a much more
general class of problems which we will call nested constraint programs (NCP’s).
Rather than only allowing linear aggregation structures where the output of
one aggregator is immediately used as the function for the next as in stochastic
CSP/COP’s and quantified CSP/COP’s, we represent the output of aggregators
with a variable and allow these variables to be used in an arbitrary manner in
the parent context. This means that they can be used in constraints, or as part
of some complex expression for the parent’s local function. It also means that
we can have multiple aggregator constraints in the local constraints of another
aggregator constraint, and thus we can have tree-like quantification structures.
NCP’s include stochastic CSP/COP, quantified CSP/COP/COP+ and many
more as special cases, but can model problems which do not fit in any of these
subclasses. We describe a new CP-based solver for solving NCP’s, and briefly
describe how to apply nogood learning in such a solver.

242 G. Chu and P.J. Stuckey

The contributions of this paper are:

– An expressive framework for nested constraint programs (Section 3).
– A propagation based solver architecture that supports this class of problems

(Section 4).
– Experiments showing that the resulting system is highly competitive with

existing solvers for specialized subclasses of NCP (Section 5).

2 Preliminaries

A valuation, θ, is a mapping of variables to values, denoted {x1 �→ d1, . . . , xn �→
dn}. Let vars(θ) = {x1, . . . , xn}. We can apply a valuation to a variable θ(xi) to
return the value di, and extend application of valuations θ to arbitrary expres-
sions involving vars(θ) in the obvious way.

A constraint, c, is a set of valuations over a set of variables vars(c). A valuation
θ is a solution of c if {x �→ θ(x) | x ∈ vars(c)} ∈ c. A valuation θ is a solution
of a set of constraints C if it is a solution for each c ∈ C. We write c1 |= c2 if
every solution of c1 is a solution of c2.

A literal is a unary constraint (we can restrict to the forms x = d, x �= d, x ≥
d, x ≤ d), or false. A domain D is a conjunction of literals over vars(D). We use
notation D(x) = {θ(x) | θ is a solution of D}. We use range notation [l .. u] =
{d | l ≤ d ≤ u}. A singleton domain is one where |D(x)| = 1, x ∈ vars(D), and
we let θD = {x �→ dx | x ∈ vars(D), D(x) = {dx}} in this case.

A propagator p(c) for constraint c is an inference algorithm, it maps a domain
D to a conjunction of literals p(c)(D), whereD∧c |= p(c)(D). We shall sometimes
treat this conjunction as a set. We assume each propagator is checking, that is
if ∀x ∈ vars(c).|D(x)| = 1 then p(c)(D) = ∅ if θD is a solution of c and {false}
otherwise.

In lazy clause generation (LCG) solvers [6,7] propagators are also required to
return explanations for each new consequence l ∈ p(c)(D), that is an explanation
clause e ≡ l1 ∧ · · · ln → l where ∀1 ≤ i ≤ n,D |= li and c |= e. LCG solvers,
like SAT solvers, create an implication graph, where every new consequence is
attached to a reason. On failure this used to create a nogood by repeatedly
replacing literals in the explanation of failure until only one literal that became
true after the last decision remains. This nogood is guaranteed to generate new
propagation information. See [5] for more details.

3 Aggregators and Nested Constraint Programs

An aggregator function is a function which maps a multiset (list) of values to a
single value by performing some sort of aggregation over them, e.g., by summing
over them, or taking the maximum, etc. Aggregators are functions on multisets,
they cannot make use of the order of elements in the list they operate on. They
may be partial functions.

An aggregator constraint is of the form: y = agg([f(x1, . . . , xn, z1, . . . , zm) |
z1, . . . , zm where C(x1, . . . , xn, z1, . . . , zm)]) where agg is an aggregator function,
f is the local function of the aggregator constraint, and C is a set (or conjunc-
tion) of local constraints of this aggregator constraint. We assume the local

Nested Constraint Programs 243

function f is total in its inputs, if not we can add constraints to C to ensure
it is total for all possible local solutions, thus implementing the relational se-
mantics [8]. The scope of this aggregator constraint is vars(a) = {y, x1, . . . , xn}.
Given aggregator constraint a, let ovar(a) = y be the output variable, ivars(a) =
{x1, . . . , xn} be the input variables, lvars(a) = {z1, . . . , zm} be the local vari-
ables, and lcons(a) = C.

The solutions of an aggregator constraint c ≡ y = agg([f(x1, . . . , xn, z1, . . . ,
zm) | z1, . . . , zm where C(x1, . . . , xn, z1, . . . , zm)]) are defined inductively on the
depth of nesting. Let Θ be the solutions of the constraint C, then the solutions
of c are

{x1 �→ d1, . . . , xn �→ dn, y �→ agg([f(d1, . . . , dn, θ(z1), . . . , θ(zm) | θ ∈ Θ, θ(xi) = di])}

for all (d1, . . . , dn) where ∃θ ∈ Θ.∀1 ≤ i ≤ n.θ(xi) = di. If C includes no
aggregator constraints then this definition is self-contained, otherwise we can
determine the solutions of C by induction (since the depth of nesting is 1 less)
and use them to define the solutions of c. Note that an aggregator constraint
may have no solutions if the aggregation function is not defined on the resulting
multiset of solutions, e.g. y = average([]).

Example 2. Suppose we have y = sum([z1 | z1, z2 where z1, z2 ∈ [1 .. 3] , z1 +
z2 ≤ x]). Then given a particular value of x, we find all solutions to z1, z2 which
satisfy z1, z2 ∈ [1 .. 3] , z1+z2 ≤ x, and sum over the z1 values of those solutions
in order to calculate y. So for example, this constraint would allow the tuples:
(x, y) ∈ {. . . , (0, 0), (1, 0), (2, 1), (3, 4), (4, 10), (5, 15), (6, 18), (7, 18), . . .}. ��

Some commonly used aggregators are sum, product, min, max, and, or,
average, stddev, variance, whose definitions are already well known. Note
that we have not restricted the types of the variables or the input or output
arguments to the aggregator functions. This means for example, we can define
aggregator functions which take in a list of tuples as arguments, or which return
a tuple as the output, etc. For example, weighted average can be defined on a
list of pairs where the first element is the weight and the second element is the
value and it returns a single value as output. Similarly, we can extend min and
max to take a list of tuples as argument and use the lexico-graphical ordering
to return the smallest or largest tuple as the return value.

A nested constraint program (NCP) consists of a single aggregator constraint
with no input variables: e.g. y = agg([f | z1, . . . , zm where C(z1, . . . , zm)]) The
goal of an NCP is to determine the value of the output variable of the top-level
aggregator constraint. The power of NCPs arise from the fact that the local con-
straints of one aggregator constraint can contain other aggregator constraints.
Thus in general, we can have a nested structure where we have a tree of aggrega-
tor constraints, each with its own local variables and constraints, and where each
aggregator constraints is a local constraint of its parent aggregator constraint.

Example 3. In the simple production planning problem studied in [2], in each
stage, we can choose to produce 0 or more books. After production, there is a
stochastic demand for books between 100 and 105 with equal probabilities for
each. There are soft constraints enforcing that the available stock be sufficient to

244 G. Chu and P.J. Stuckey

satisfy the demand. The problem is to find a policy whose expected satisfiability
is above a certain threshold α. We can model a 3 stage instance as follows:

r = or([m1 ≥ α | m1 where
m1 = max([a1 | s1, p1, a1 where s1 = 0 ∧
a1 = average([bool2int(s1 + p1 ≥ d1)×m2 | d1 ∈ [100..105],m2 where
m2 = max([a2 | s2, p2, a2 where s2 = s1 + p1 − d1 ∧
a2 = average([bool2int(s2 + p2 ≥ d2)×m3 | d2 ∈ [100..105],m3 where
m3 = max([a3 | s3, p3, a3 where s3 = s2 + p2 − d2 ∧
a3 = average([bool2int(s3 + p3 ≥ d3) | d3 ∈ [100..105]])])])])])])])

Example 4. Consider the 2-player Nim-Fibonacci game [9]. The game starts with
n matches. The first player may take between 1 to n− 1 of the matches. There-
after, the turns alternate and the current player may take between 1 to 2k of the
matches where k is the number of matches taken by the previous player. The
player who takes the final match wins. The problem is to find out for each n
whether the first player has a winning strategy. It has the interesting property
that the first player has a winning strategy iff n is not a Fibonacci number.
The problem can be modelled as follows. Given turn i, let ri be the number of
matches left, li be the maximum number of matches that can be taken during
that turn, ti the actual number of matches taken, and wi whether there is a
winning strategy from that position.

w1 = or([l1 ≥ r1 ∨ ¬w2 | w2, l1, r1, t1 where
l1 = n− 1 ∧ r2 = n ∧ 1 ≤ t1 ≤ l1 ∧
w2 = or([l2 ≥ r2 ∨ ¬w3 | w3, l2, r2, t2 where
l2 = 2× t1 ∧ r2 = r1 − t1 ∧ 1 ≤ t2 ≤ l2 ∧
w3 = or([l3 ≥ r3 ∨ ¬w4 | w4, l3, r3, t3 where
l3 = 2× t2 ∧ r3 = r2 − t2 ∧ 1 ≤ t3 ≤ l3 ∧
. . .
wn = true]) . . .])

The ability to model problems using tree-like quantification structures rather
than the linear quantification structure used in stochastic CSP and quantified
CSP allows certain kinds of optimisations.

Example 5. Consider a stochastic scheduling problem with precedence and non-
overlap constraints C on n tasks where we fix the (array of) start times s̄ within

the makespan [0 ..m], written as s̄ ∈ [0 ..m], but then each task duration di
can then independently be one of three values Li = {fi, ri, wi} fast, regular or
slow, and we need to pay recourse recoursec(sc1 , sc2 , dc1 , dc2) for the violation
of each constraint c ∈ C involving at most two tasks numbered c1 and c2. Given
n tasks there are 3n scenarios. The natural stochastic model is

u = min([average([sum([recoursec(sc1 , sc2 , dc1 , dc2) | c ∈ C])

| d̄ ∈ L̄]) | s̄ ∈ [0 ..m]])

where we find a schedule (start times) s̄ which minimizes the expected recourse
cost, over all possible durations d̄ ∈ L̄ scenarios The problem is there are 3n

scenarios and hence evaluating a schedule is O(|C|3n). But, since the recourse

Nested Constraint Programs 245

for each constraint c ∈ C is dependent on at most two stochastic durations dc1
and dc2 , we can model this instead as

u = min([sum([average([recoursec(sc1 , sc2 , dc1 , dc2) | dc1 ∈ Lc1 , dc2 ∈ Lc2])

| c ∈ C])) | s̄ ∈ [0 ..m]])

There are at most 9 scenarios for each constraints recourse calculation, hence
to evaluate a schedule is O(|C|). Note that such a quantification structure is not
supported by stochastic CSP solvers but can be solved with our more generic
NCP solver. ��

Aggregator functions involving tuples allows us to model things like bi-level
programs.

Example 6. The Network Links Pricing problem [3] can be described as follows.
The problem is to set the tariffs on the network links in order to maximise the
profit of the owner of the links. The i ∈ I customer (or data movement) will
route their di data from srci to snki using the smallest possible cost path. Each
path has to cross a tolled arc j ∈ J with cost per unit data tj . We assume the
cost per unit data from srci to snki via j is ci,j for the rest of the network.
Hence the cost to the customer of a path through arc j is (ci,j + tj) × di. The
income to the network is tj × di. The customer can choose another independent
network provider with cost ui instead of using this network. The problem is
determine the toll tj from some set of possibilities Tj (t̄ ∈ T̄) for each arc j to
maximise revenue. We assume customers will pick the cheapest link for them,
but if there are ties, they will pick the one most profitable for the operator, as
the network operator can simply adjust their tariffs by some small ε to make that
choice the cheapest for that customer. The interesting thing here is that in the
subproblem, we need to minimize one quantity, i.e., the cost the customer, but
return another value as the result, i.e., the profit to the operator. Such problems
cannot be modelled as normal QCOPs, but can be modelled as QCOP+s or as
NCPs by using tuples.

y = max([sum(p ∗ di | c, p where
(c, p) = max([(−(ci,j + tj), tj) | j ∈ J where

(ci,j + tj)× di ≤ ui])) | i ∈ I]) | t̄ ∈ T̄])

Note that the inner (lexico-graphical) max on the pair picks the link with the
lowest cost, and among those the one with highest profit, and returns that pair
as the return value. ��

The greater expressivity of NCP allow us to model all kinds of meta problems
where the results or properties of subproblems can be used in constraints or the
objective function of the parent problem, or the output of one subproblem can
be used as the input to another, etc.

Example 7. Consider a Sudoku problem, given a set of possible clues {xiljl =
dl | 1 ≤ l ≤ n}, find the smallest subset of these clues such that the resulting
Sudoku problem has a unique solution. We can model this as a NCP, using a

246 G. Chu and P.J. Stuckey

Boolean variable bl to indicate whether a clue is used:

c = min([sum([bl | l ∈ [1 .. n]]) | b̄ ∈ [0 .. 1] where

1 = sum([1 | x̄ ∈ [1 .. 9] where
and([bl → xiljl = dl | l ∈ [1 .. n]]) ∧ sudoku(x̄)])])

where sudoku(x̄) are constraints enforcing that x̄ is a solution to a Sudoku
problem. ��

CSP/COP, stochastic CSP/COP [2], QCSP [10], QCOP, QCOP+ [3], stochas-
tic SAT, MAXSAT, QBF [11], influence diagrams, finite horizon markov deci-
sion processes, MPE and MAP queries over stochastic graphical models such as
Bayesian nets, and probably many more, are all expressible as NCP. In addition
to this, there are many problems expressible as NCP which cannot easily be ex-
pressed as any of the previously mentioned problem classes. Thus NCP is a very
expressive and generic problem class. In this paper, we are interested in solving
NCPs using a modified CP solver. Thus we restrict our attention to finite NCPs,
i.e., where every local variable is constrained to have a fixed finite initial domain
given by explicit local constraints, e.g. z ∈ [1 .. 100].

4 Solving NCP’s

In this section, we describe how to solve NCPs. The main idea is to augment a
standard CP solver with a new class of propagators which can encapsulate the
subproblem modelled by an aggregator constraint. Such a propagator constrains
the input and output variables of the aggregator constraint and performs prop-
agation on these variables. The major difference with normal CP propagators
is that unlike a normal CP propagator which run a self-contained algorithm to
perform propagation, these new propagators may take control of the search en-
gine itself to do some search in order to perform their propagation. However, at
the end of their propagation algorithm, they must return the search engine to its
former state so that it is as if nothing has happened. Thus these new propagators
simply change the domains of variables, just like all other standard CP propag-
tors, and there is no need to treat them specially in any way. The fact that the
set of assignments allowed by the aggregator constraint is defined via aggregat-
ing the solutions to a CP problem rather than extensionally or intensionally as
in normal CP constraints is irrelevant. As far as the parent subproblem is con-
cerned, the aggregator constraint is just a normal constraint which is satisfied
by a particular set of assignments, and we have a propagator which is capable
of enforcing the constraint, and thus the parent subproblem can be treated as
a completely normal (non-nested) CP problem. This allows us to solve NCPs
using CP solvers by simply adding a new kind of propagator.

Recall that there are two main ways to deal with an aggregator constraint.
We can either unroll it by eliminating the local variables and local constraints
as described in Section 1, or we can post a propagator which can handle it
natively as described above. The first suffers from a potential combinatorial ex-
plosion in the number of variable/constraints required, while the second tends
to have weaker propagation strength. The key here is to try to find the best

Nested Constraint Programs 247

tradeoff between propagation strength and time/memory usage. For simple ag-
gregator constraints, we would often get a better tradeoff simply by unrolling
them. Whereas for more complicated ones with non-trivial local constraints, the
search based approach may give a better tradeoff. In general, we use the follow-
ing policy: given an aggregator constraint a, if the local solutions of a can be
computed at compile time and there are no more than L of them where L is some
user defined parameter, and there are no nested aggregator constraints within
a, then we unroll a. Otherwise, we leave it as is and post a propagator that can
handle it natively. Such a policy ensures that we avoid any sort of exponential
blowup in problem size that can occur when we unroll aggregator constraints.

After unrolling, we create a domain object for each variable and a propagator
object for each constraint and aggregator. Unlike a normal CP solver where all
variables exist in the one existential context, variables in a NCP may belong
to different contexts. Each variable is either a local variable to one aggregator
constraint or is the root variable. It can also be an input variable of zero or
more descendant aggregator constraints. Each local constraint can contain local
variables from the same aggregator constraint and also input variables which are
local to the ancestor aggregator constraints.

First, we consider a non-aggregator constraint c. For each such constraints
c, we create a modified propagator p(c) which is identical to the standard CP
propagator, except that it is only allowed to prune values from the domains of
the local variables of the parent aggregator constraint y = agg([...]) to which it
belongs. It is incorrect in general to prune values from the input variables. The
reason for this is that when a local constraint has no solutions, this does not
mean that the parent aggregator constraint has no solutions, rather it means that
the value of y is given by agg([]) since the local problem has no solutions. This
does not constrain the input variables, so pruning their domains is incorrect!

Example 8. Consider the following problem: y = min([x2 | x1, x2 where x1 ∈
[0 .. 3] ∧ x2 ∈ [−4 .. 4] ∧ x2 = sum([x3 | x3 where x3 ∈ [1 .. 5] ∧ x3 ≤ x1])]).
The local constraint x2 = sum([x3 | x3 where x3 ∈ [1 .. 5] ∧ x3 ≤ x1]) has
the solutions (x1, x2) ∈ {. . . , (−1, 0), (0, 0), (1, 1), (2, 3), (3, 6), (4, 10), (5, 15),
(6, 15), . . .}. This means that the local solutions of the min aggregator are
(x1, x2) ∈ {(0, 0), (1, 1), (2, 3)}, giving y = 0. Suppose however, we allowed the
constraint x3 ≤ x1 to propagate on its input variable x1. Then at the root,
since we have x3 ∈ [1 .. 5] we can immediately propagate x1 ≥ 1, and we have
completely pruned off a totally valid local solution ((x1, x2) = (0, 0)) of the min
aggregator, leading to an answer of y = 1 which is simply wrong. ��

For each aggregator constraint a, we create a propagator p(a). This can use the
semantics of its aggregator function to propagate domain changes to the output
variable based on the domains of its input and local variables. For example,
consider an aggregator constraint a ≡ y = min([f(z, x) | z where c(z, x)]).
Suppose that a has not yet taken control of the search (i.e., x is not yet fixed),
but propagation of the local constraints c has already forced a lower bound l on
f(z, x). Then we can immediately propagate y ≥ l, because no matter what x
ends up being set to, any local solution must have local objective value greater
than or equal to l.

248 G. Chu and P.J. Stuckey

Secondly, we maintain a copy of each aggregator constraint in A which will
propagate in a more complex way. When all the input variables of a are fixed,
then a can take control of the search engine and perform search on its local vari-
ables in order to calculate the value of the output variable. Different aggregator
constraints can use different search strategies. The search strategy can either be
defined in the model, or some sort of autonomous or default search can be used.
They will have different conditions for when they can yield control of the search
engine. For example, an or (resp. and) aggregator can yield control as soon
as a true (resp. false) solution is found. A min aggregator will perform local
branch and bound in order to find its output value. The first branching decision
that it will make will be of the form o < k where o is the objective variable,
and k is either the value of the best solution found so far, or maxD(y) + 1 if
it has just taken control.1 If it finds a solution with objective value k, it can
propagate y ≤ k. If the branch and bound decision o < k produces failure,
then it can immediately propagate y ≥ k. It can yield control if it either proves
y ≤ minD(y)− 1, y ≥ maxD(y) + 1 or it finds the optimal solution and proves
optimality. Similarly, a sum aggregator would perform a search to find all of its
local solutions to calculate the sum of the local function values. If it proves that
y ≤ minD(y)− 1 or y ≥ maxD(y) + 1, it can terminate early.

Pseudo-code for the algorithm is given in Figure 1. We set up an initial domain
D for all variables, and set P to be the propagators p(c) for each c ∈ C ∪ A.
Initially, the root aggregator root is in control of the search engine with the call
agg(root,D, P,A). The aggregator constraint sets the variables V as its input
and local variables, and invokes search.

Then propagation is performed to fixed point or failure by propagate. Prop-
agation repeatedly chooses a propagator p from the queue Q, calculates a new
domain D′ then adds all the propagators in P that may need to be recomputed
due to changes in the domain computed by new(P,D,D′, a), repeating until the
queue is empty. There is a subtle difference with regular CP propagation. If a
variable x gets an empty domain, this does not necessarily mean that the last
decision made was infeasible. If x �∈ V is not a local variable then it simply
means that the aggregator a′ that introduces x (which must be a descendent of
a in the aggregator tree) has no local solution given the decisions of its ancestor
aggregators. This means that a′ needs to be woken up so that it can propagate
y = agg([]) where y is its output variable and agg is its aggregator function.
Note that a′ has to be a descendant of a, because decisions made by a can only
cause domain changes to variables belonging to descendants of a.

If we reach propagation fixed point, then we need to check whether any other
aggregator constraints become eligible for taking over control of the search. An
aggregator a is eligible if:

– its not currently suspended and either all its input variables are fixed or one
of its local variables has an empty domain, and

– its output variable has not already been fixed by a when it executed earlier
on the same fixed inputs or empty domain, and

– its output variable appears in at least one constraint which is not already
satisfied.

1 Assuming y is integer for simplicity of explanation.

Nested Constraint Programs 249

agg(a,D, P,A)
let a = agg([o|lvars(a) where lcons(a)])
search(D, ivars(a) ∪ lvars(a), P,A, {p(c) | c ∈ lcons(a)}, a)
let Θ be the set of solutions processed
D := D ∧ ovar(a) = agg([θ(o)|θ ∈ Θ])
return D

search(D, V, P,A,Q, a)
D := propagate(D, V, P,A,Q, a)
if (∃x ∈ V.D(x) = ∅) return false
if (∀x ∈ V.|D(x)| = 1)

let θ = {x �→ dx | x ∈ V,D(x) = {dx}}
return process solution(θ, a,D)

else
{c1, . . . , cm} := branch(a,D)
for i ∈ 1..m

if (search(D, P ∪ Q,A, {p(ci)}, a))
return true

return false

propagate(D,V, P,A,Q, a)
P := P ∪ Q
repeat

while (∀x ∈ V.D(x) �= ∅ ∧ ∃p′ ∈ Q)
Q := Q − {p′}
D′ := D ∧ p′(D)
Q := Q ∪ new(P,D,D′, a)
D := D′

if (∃a ∈ A.eligible(a))
A := A − {a}
D′ := agg(a,D, P,A)
Q := Q ∪ new(P,D,D′, a)
D := D′

until Q = ∅
return D

Fig. 1. Pseudo-code for evaluating NCPs

In the last case, no other constraint cares about the value so we do not need to
calculate it. If an aggregator is eligible, it will immediately take over control of
the search engine and the aggregator constraint which was previously in control
will be suspended until this one returns. If multiple aggregators become eligible
at the same time, then we choose one of the aggregators closest to the root in
the aggregator tree.

After propagation quiesces there are three cases. If a local variable has no so-
lution this indicates failure, hence search backtracks. If all the local variables are
fixed then we have discovered a new solution θ. Then the aggregator constraint
will do whatever sort of bookkeeping it needs to do to calculate its aggregate
value using process solution. If it determines it now has enough information to
determine the final aggregate value or fail, process solution returns true and the
search finishes, otherwise it backtracks and continues the search. If propagation
neither fails nor succeeds, the aggregator constraint a in control of the search
makes a branching decision c1∨· · ·∨cn using its branching heuristic branch(a,D),
and searches each resulting subproblem. Search continues until either the en-
tire subtree for this subproblem is explored or process solution detects early
termination.

When search finishes the aggregator calculates the result on its output variable
and updates the domain accordingly, then yields control to its parent. The al-
gorithm terminates when the root aggregator constraint yields control, at which
point, we have calculated the value of its output variable and solved the NCP.

Example 9. Consider the problem of Example 8. We create an initial domain
D(x1) = [0 .. 3], D(x2) = [−4 .. 4], D(x3) = [1 .. 5], D(y) = [−∞ ..∞]. We

250 G. Chu and P.J. Stuckey

create propagators for the constraints x3 ≤ x1 and the two aggregator con-
straints. Execution begins by calling the search on the root min aggregator.
Propagation uses x3 ≤ x1 to set D(x3) = [1 .. 3] and queisces. Assume the
min aggregator makes a branching decision on the x1 variable x1 = 0 ∨ x1 ≥ 1
(since the branch and bound decision x2 < +∞ ∨ x2 ≥ +∞ is not useful).
Searching on the left branch sets D(x1) = {0} which causes D(x3) = ∅ which
wakes the sum aggregator (with an empty domain for the local variable x3)
which immediately returns setting D(x2) = {0}. The min aggregator processes
the solution (x1, x2) = (0, 0), (we will at this stage propagate that D(y) =
[−∞ .. 0]). Search then tries the right branch where propagation returns the
domain D(x1) = [1 .. 3], D(x2) = [−4 .. 4], D(x3) = [1 .. 3] by propagating the
constraint x1 ≥ 1. Once again the min aggregator makes a branching decision
x1 = 1 ∨ x1 ≥ 2, and taking the left branch sets D(x1) = {1} and D(x3) = {1}
waking the sum aggregator since its input variable x1 is fixed. This aggregator
finds a single solution (x1, x3) = (1, 1) and then sets D(x2) = {1}. The min ag-
gregator processes the solution (x1, x2) = (1, 1) by just throwing it away. Search
continues with the right branch where eventually the min aggregator finds the
remaining solution (x1, x2) = (2, 3), and returns y = 0.

Note that if we use a cleverer propagator for the sum aggregator then at the first
propagation step it will setD(x2) = [0 .. 4] since the sum of any number of positive
values (x3 ∈ [1 .. 3]) is at least 0. Themin propagator can also add the bounding
constraint x2 < 0 after it finds the first solution. These two together would cause
search to terminate immediately once the first solution was found. ��

In this paper we only consider computing the result of the NCP, in practice
we will may want to know the “policy” of decisions that lead to this result. It
is easy enough to expose the values of the local variables of the root aggregator,
thus giving the “first-stage” decisions. To record the entire policy of decisions we
would need to store a shorthand form of the entire search tree (including nested
search trees) analogous to the approach used in QCOP+ [3].

4.1 Complexity

The time and space complexity of the algorithm depends on many things, such as
the time and space complexity of the propagators and aggregators, and the search
strategy. However, a very large subclass of finite NCP is PSPACE-complete. In
particular, consider the subclass where all non-aggregator constraints have a
polynomial space propagator (this is true for all commonly used CP constraints)
and all aggregator functions require only a polynomial space to compute their
output value when the elements of its list argument are fed in one by one (this is
true for sum, product, min, max, and, or, average, stddev, variance, but
not for aggregators like median). This subclass includes QBFs and quantified
CSPs and thus is PSPACE-HARD. For such problems, the algorithm is PSPACE-
complete.

Nested Constraint Programs 251

4.2 Learning for NCPs

Nogood learning [5,6] significantly improves both SAT and CP solving perfor-
mance. Similarly, it dramatically improve the efficiency of an NCP solver. Un-
fortunately we do not have sufficient space to adequately describe how to add
nogood learning to an NCOP solver. Instead we will briefly discuss the uses of
nogood learning, and some of the issues that arise in implementing it. There are
generally two different kinds of nogoods that we can learn: ones which explain
a local failure, and ones which explain the return value of a subproblem.

– Nogoods learned within one execution of an aggregator constraint a become
new local constraints for a. Just like other local constraints they are only
allowed to prune local variables. When we reexecute a with different input
variable values, much of the search in a may be repeated, and these local
nogoods can substantially reduce this repeated search, similar to the case
for inter-problem nogood learning [14].

– We can cache the return value of an execution of an aggregator constraint
a using a nogood, e.g. if we run a with input variables fixed to x1 =
d1, . . . , xn = dn and find that output y = d we can cache this as x1 =
d1 ∧ · · ·xn = dn → y = d. This nogood prevents us from having to run the
aggregator again on the same input values.

Nogood learning can be better than this however, since it may determine
that only some of the input constraints are required to give the result of
aggregator a leading to a much more general nogood. Consider for example
the aggregator of Example 2, setting x = 0 gives y = 0, but nogood learning
will learn that x ≤ 1 → y = 0. Similarly, x = 7 gives y = 18, but nogood
learning will learn universally that y ≤ 18.

The challenge for implementing nogood learning in an NCOP solver is to
extend the propagators for aggregator constraints to explain their propagation
behaviour. To do so we must be able to determine what parts of the input
constraints contributed to the result of the aggregator. This requires combining
the usual uses of nogoods, to explain why some part of the search failed, with
explaining why some part of the search succeeded with a certain value of the local
function. The success explanation part is entirely novel, and is a generalisation
of solution analysis in QBF, (see e.g. [11]) where all constraints are clauses and
they use specialized heuristics to pick a satisfying literal for each clause.

5 Experiments

Due to the very large range of problem classes that can be modelled as NCPs,
it is difficult to compare against the current state of the art in all those problem
classes. Instead, we concentrate on the problem classes where CP-based solvers
have had some success, namely in stochastic CSP/COP problems and quantified
CSP/COP problems. We implemented a NCP solver in Chuffed, a state-of-the-
art CP solver that supports nogood learning. Experiments are run on Intel Xeon
2.40GHz processors, with a 1800s timeout. Times are given in seconds. We use
an unrolling limit (L in Section 4) of 100. We use input order search and try the

252 G. Chu and P.J. Stuckey

Table 1. Comparison of the search-based NCP solver with learning (learn) and without
learning (no-learn) with QeCode (qecode) on the Nim-Fibonacci Problem

Size no-learn learn qecode
fails time fails time fails time

5 2 0.01 2 0.01 23 0.01
10 20 0.01 13 0.01 1310 0.02
15 174 0.01 45 0.01 11116 0.26
20 1438 0.01 101 0.01 56560 1.61
30 62313 0.36 272 0.01 483346 16.24
40 4773553 30.13 727 0.01 — TO
50 — TO 1502 0.0 — TO
100 — TO 8461 0.21 — TO
200 — TO 45227 2.12 — TO
500 — TO 414152 55.29 — TO

smallest value first. We compare against QeCode 2.0 [3], which is a state of the
art QCOP+ solver, on the problems that it supports. QeCode does not support
floating point variables or weighted sum aggregators. As a result, it is unable to
solve stochastic COP’s, so we only compare against it on integer and Boolean
problems. We also compare against the published results of other systems that
are not publicly available.

The Nim-Fibonacci problem is described in Example 4. It is a QCSP and can
potentially be unrolled into a CSP by eliminating the universal variables and
solved using a CP solver. However, this is not really practical as this produces
O(nn/2) variables and constraints and causes the solver to run out of memory on
all but the smallest instances. In this experiment, we compare the new search-
based NCP solver with and without learning with QeCode. It can be seen from
Table 1 that our search-based NCP solver does significantly better than QeCode
on this problem. Even without learning, we are much faster, due to the fact
that we have variables representing the output values of subproblems and it is
possible to propagate domain changes on them. Such variables do not exist in
Qecode. Nogood learning provides a massive benefit due to its ability to explain
successes. It is able to learn that if there is a winning strategy with a particular
number of matches where you take k matches next, then in any other branch
where you had the same number of matches but the limit on the number of
matches you can take is greater than or equal to k, its a won game. In fact, the
asymptotic complexity of the NCP solver is polynomial when nogood learning
is used, as opposed to O(nn) if no learning is used.

The Network Links Pricing problem [3] is described in Example 6. The results
are shown in Table 2. The no-learn solver is substantially faster than QeCode,
which appears to be because Qecode does not use branch and bound during
solving this problem. Nogood learning is only slightly beneficial for this problem,
giving a constant factor reduction in node count and run times. This is not
surprising, as the problem is very shallow (only 3 layers), and there is only a
single inequality constraint in the final layer, so there is not much propagation
going on, and thus not much opportunity for learning.

Nested Constraint Programs 253

Table 2. Comparison of the search-based NCP solver without learning (no-learn) and
with learning (learn) with QeCode (qecode) on the network link pricing problem

Stages no-learn learn qecode
fails time fails time fails time

6 37399 2.63 5037 1.80 376234 7.10
7 342823 23.06 52301 18.54 2218653 44.48
8 985622 68.24 121815 56.82 12148442 255.66
9 17566514 1225.80 2253269 903.01 — TO

Table 3. Comparison on a simple production planning problem of the search-based
NCP with solver learning (learn) with published results (from [1], run on a different
machine) for the search-based stochastic CSP solver of [2] (search) and the scenario-
based solver of [1] (scen), also showing how learn scales to larger numbers

Stages no-learn learn search scen
fails time fails time fails time fails time

1 7 0.01 8 0.01 10 0.01 4 0.00
2 178 0.01 16 0.01 148 0.03 8 0.02
3 4574 0.36 24 0.01 3604 0.76 24 0.16
4 116305 9.24 32 0.01 95570 19.07 42 1.53
5 2955371 233.05 40 0.01 2616858 509.95 218 18.52
6 — TO 48 0.01 — TO 1260 474.47

Stages learn
fails time

10 80 0.03
20 160 0.11
30 240 0.27
40 320 0.53
50 400 0.93
100 800 7.40

Consider the simple production planning problem of Example 3 which was ex-
amined in [2] using search-based approaches and [1] using unrolling or scenario
generation. From Table 3, it is clear there is an asymptotic difference in complex-
ity. This occurs since each subproblem only involves a single input parameter,
i.e., how much stock we currently have. If the stock is over the maximum demand
for this period, then increasing it does not help at all, since we can just produce it
during the next period instead. Nogood learning is able to derive a nogood that ex-
presses this. Similarly, if the current stock is under the minimum demand for this
period, then it fails in all scenarios, and again, nogood learning is able to derive a
nogood that expresses this. Thus at each stage, the solver only has to tryO(S) val-
ues for the production, where S is the number of different possible demands, and
we end up needing to examine onlyO(Sk) nodes where k is the number of stages. If
we do not use nogood learning, then our solver has virtually identical behaviour
to the search based approach of [1] (search) and has an exponential complexity.
Although our learning solver only requires a linear number of nodes, the run time
appears to be growing as O(k3) due to the fact that as k increases, we have more
variables and constraints to propagate at each node.

6 Related Work

NCPs are a very general form of optimization problem. They include stochastic
CSP/COP, quantified CSP/COP, QCOP+ [3], QBF, bi-level and multi-level
programming. The evaluation approach we define for NCP is a generalization
of the search-based approaches used for many of these problems, although not

254 G. Chu and P.J. Stuckey

many focus on propagation, and only QBF solvers also consider learning. NCPs
are more general than these other formalisms principally because aggregator
terms can appear arbitrarily nested in both function terms and constraints.

Probably the closest work to NCPs is Quantified Constraint Optimization
(QCOP+) [3]. QCOP+ are based on extending quantified CSPs to include local
objective functions. They are limited compared to NCPs since only a single chain
of nesting is allowed, meaning they cannot for example use the efficient form of
the problem in Example 5. QCOP+ is implemented in a system QeCode which
we compare with in the experiments section. They do not consider learning.

Another closely related work is the Plausibility-Feasibility-Utility (PFU)
framework [15]. However, PFU does not allow tuple types to be the result of
aggregator constraints, which means it cannot express bilevel problems such as
the Network Link Pricing problem of Example 6. The tree search algorithms for
evaluating PFUs is similar to that for NCPs, but they do not consider shortcir-
cuit evaluation or learning. The PFU framework is studied theoretically in [15]
and does not appear to have an implementation.

QBF is the form of NCP with only and and or aggregator constraints and
clauses, and there is a significant body of work about how propagation and clause
learning can be used in this context. The learning used in QBF is considerably
simpler than for NCP, which tackles finite domain and interval variables and
constraints and a much larger range of aggregators and more complicated nest-
ing. SAT modulo theory solvers (e.g. Z3 [16]) are extended to handled quantified
formula but principally through instantiation [17] akin to unrolling, which does
not require (partial) search trees to be explained and only considers the and
and or aggregators.

7 Conclusion

In summary, NCP’s are a highly expressive formalism that unifies CSP/COP’s,
stochastic CSP/COP’s, quantified CSP/COP’s, bi-level and multi-level program-
ming in the one framework, and allows many other kinds of nested problems to
be expressed. We have demonstrated an effective search-based CP solver for eval-
uating them, which is significantly improved by the use of nogood learning to
avoid repeating similar search. The resulting solver is competitive with or signifi-
cantly better than state of the art CP-based approaches for many of the problems
in these problem classes and brings us much closer to a universal CP solver that
can “solve them all”. Interesting directions for further investigation are: lazy or
partial unrolling of aggregator constraints, model analysis and transformation
for NCPs, improving propagation using the structure of the aggregation tree,
approximation methods, and hybrid methods where each subproblem is solved
using the technology most suited for it, e.g., using an LP or MIP propagator.

Acknowledgments. NICTA is funded by the Australian Government through
the Department of Communications and the Australian Research Council through
the ICT Centre of Excellence Program. This work was partially supported by
Asian Office of Aerospace Research and Development grant 12-4056.

Nested Constraint Programs 255

References

1. Tarim, A., Manandhar, S., Walsh, T.: Stochastic Constraint Programming: A
Scenario-Based Approach. Constraints 11, 53–80 (2006)

2. Walsh, T.: Stochastic Constraint Programming.. In: van Harmelen, F. (ed.) ECAI,
pp. 111–115. IOS Press (2002)

3. Benedetti, M., Lallouet, A., Vautard, J.: Quantified constraint optimization. In:
Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 463–477. Springer, Heidelberg
(2008)

4. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning
in the evaluation of quantified Boolean formulas. J. Artif. Intell. Res. (JAIR) 26,
371–416 (2006)

5. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiabil-
ity solver. In: Proceedings of the 2002 IEEE/ACM International Conference on
Computer-aided Design, pp. 442–449. ACM (2002)

6. Ohrimenko, O., Stuckey, P., Codish, M.: Propagation via lazy clause generation.
Constraints 14, 357–391 (2009)

7. Feydy, T., Stuckey, P.J.: Lazy Clause Generation Reengineered. In: Gent, I.P. (ed.)
CP 2009. LNCS, vol. 5732, pp. 352–366. Springer, Heidelberg (2009)

8. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P., Garcia de la Banda, M.,
Wallace, M.: The design of the Zinc modelling language. Constraints 13, 229–267
(2008)

9. Schwenk, A.J.: Take-away games. Fibonacci Quarterly 8, 225–234 (1970)
10. Chen, H.: The Computational Complexity of Quantified Constraint Satisfaction.

PhD thesis, Cornell University (2004)
11. Samulowitz, H.: Solving Quantified Boolean Formulas. PhD thesis, University of

Toronto (2007)
12. Benedetti, M., Lallouet, A., Vautard, J.: Reusing CSP propagators for qCSPs.

In: Azevedo, F., Barahona, P., Fages, F., Rossi, F. (eds.) CSCLP. LNCS (LNAI),
vol. 4651, pp. 63–77. Springer, Heidelberg (2007)

13. Schulte, C., Stuckey, P.J.: Effcient constraint propagation engines. ACM Transac-
tions on Programming Languages and Systems (TOPLAS) 31, 2 (2008)

14. Chu, G., Stuckey, P.J.: Inter-instance nogood learning in constraint programming.
In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 238–247. Springer, Heidelberg
(2012)

15. Pralet, C., Verfailles, G., Schiex, T.: An algebraic graphical model for decision
with uncertainties, feasibilities, and utilities. Journal of Artificial Intelligence Re-
search 29, 421–489 (2007)

16. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

17. Ge, Y., Barrett, C., Tinelli, C.: Solving quantified verification conditions using
satisfiability modulo theories. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI),
vol. 4603, pp. 167–182. Springer, Heidelberg (2007)

Beyond Consistency and Substitutability�

Martin C. Cooper

IRIT, University of Toulouse III, 31062 Toulouse, France
cooper@irit.fr

Abstract. Elimination of inconsistent values in instances of the constraint
satisfaction problem (CSP) conserves all solutions. Elimination of substi-
tutable values conserves at least one solution. We show that certain values
which are neither inconsistent nor substitutable can also be deleted while
conserving at least one solution. This allows us to state novel rules for
the elimination of values in a binary CSP. From a practical point of view,
we show that one such rule can be applied in the same asymptotic time
complexity as neighbourhood substitution but is strictly stronger.

An alternative to the elimination of values from domains is the elimi-
nation of variables. We give novel satisfiability-preserving variable elimi-
nation operations. In each case we show that if the instance is satisfiable,
then a solution to the original instance can always be recovered in low-
order polynomial time from a solution to the reduced instance.

1 Introduction

Operations to reduce the worst-case exponential time complexity of exhaustive
search are essential for the efficient resolution of large-scale constraint satisfac-
tion problems. Reduction operations are most effective at reducing search space
size when applied during search, but if this is too computationally expensive
they can still be usefully applied just once during a preprocessing phase. Most
previous research in this domain has concentrated on domain-filtering oper-
ations based on various forms of consistency: a value is removed from a do-
main if an algorithm running in low-order polynomial time demonstrates that
this assignment cannot be part of a solution. Other reduction operations in-
clude the elimination of values by interchangeability or substitutability [7,11],
the merging of domain values [10], the elimination of variables [9,5,3] and the
introduction of symmetry-breaking constraints [1,8].

This paper studies local (and hence polytime-detectable) properties of bi-
nary CSP instances which allow value elimination or variable elimination while
preserving satisfiability. We show that allowing arbitrary quantification over
variables and values as well as arbitrary conditions on the compatibilities of
pairs of assignments provides a rich and largely unexplored source of reduction
operations.

� Supported by ANR Project ANR-10-BLAN-0210 and EPSRC grant EP/L021226/1.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 256–271, 2014.
c© Springer International Publishing Switzerland 2014

Beyond Consistency and Substitutability 257

Definition 1. A binary CSP instance I consists of

– a set X of n variables,
– a domainD(x) of possible values for each variable x ∈ X ,
– a relation Rxy ⊆ D(x) ×D(y), for each pair of distinct variables x, y ∈ X , which

consists of the set of pairs of values (a, b) which can simultaneously be assigned to
variables (x, y).

A partial solution to I on Y ⊆ X is a mapping s : Y → D where, for all x �= y ∈ Y
we have (s(x), s(y)) ∈ Rxy. A solution to I is a partial solution on X .

For simplicity of presentation, Definition 1 assumes that there is exactly one
constraint relation for each pair of variables {x, y}. If Rxy �= D(x) × D(y), then
we say that variable x constrains variable y. If (a, b) ∈ Rxy , then the assignments
〈x, a〉 and 〈y, b〉 are compatible, otherwise incompatible.

In previous work we showed that there are exactly four variable-elimination
rules based on so-called irreducible existential patterns [3]. In the present paper
we give strict generalisations of all these rules. We also give value-elimination
rules which are strict generalisations of neighbourhood substitution [7]. The
paper is organised as follows: Section 2 and Section 3 present rules for, respec-
tively, value elimination and variable elimination, Section 4 gives a particular
value-elimination rule which generalises neighbourhood substitution but can
be applied in the same time complexity, Section 5 gives the complexity of re-
covering all solutions after applying our value or variable elimination rules,
while Section 6 discusses the difficulty of characterising all value or variable
elimination rules based on local properties.

2 Value Elimination

For each rule which tells us when a value can be eliminated from a domain,
there is a corresponding property which holds if and only if no value elimi-
nations can be performed by this rule. Following the tradition of consistency
properties, we state our rules in the form of positive properties which are satis-
fied if and only if no eliminations are possible.

We begin by recalling the notions of arc consistency and neighbourhood sub-
stitution, illustrated in Figure 1. In figures, each bullet represents a variable-
value assignment, assignments to the same variable are grouped together within
the same oval and compatible (incompatible) pairs of assignments are linked by
solid (broken) lines.

Definition 2. A value b ∈ D(x) is AC-supported if ∀y ∈ X \ {x}, ∃c ∈ D(y) such
that (b, c) ∈ Rxy. We say that c is an AC support for 〈x, b〉 at y.

Any assignment value b ∈ D(x) which is not AC-supported can be elimi-
nated fromD(x) without losing any solutions since the assignment 〈x, b〉 cannot
be part of any solution.

258 M.C. Cooper

�

�

�

�

•
�

�

�

�

•c b

y x

(a)

�

�

�

�

•

�

�

�

�
•

•
������

a

b
c

y x

(b)

Fig. 1. Illustration of the notions of (a) arc consistency, (b) neighbourhood substitution

In a binary CSP instance we can eliminate a value b ∈ D(x) by neighbour-
hood substitution if ∃a ∈ D(x) \ {b} such that ∀y ∈ X \ {x}, �c ∈ D(y) such
that (a, c) /∈ Rxy and (b, c) ∈ Rxy [7]. This is because in any solution the as-
signment 〈x, b〉 can be replaced by the assignment 〈x, a〉. The corresponding
positive property can be defined as follows.

Definition 3. A value b ∈ D(x) is neighbour-supported if ∀a ∈ D(x) \ {b}, ∃y ∈
X \ {x}, ∃c ∈ D(y) such that (a, c) /∈ Rxy and (b, c) ∈ Rxy. We say that 〈y, c〉 is a
neighbour-support of (x, b, a)

Clearly, an elimination by arc consistency is possible if and only if some
variable-value assignment has no AC-support and a neighbourhood substitu-
tion elimination is possible if and only if some variable-value assignment is
not neighbour-supported. We require the following definition in order to give
more general rules for value elimination than arc consistency and neighbour-
hood substitution.

Definition 4. A value-elimination condition (or simply a val-elim condition) is
a polytime-computable property P (x, b) of an assignment 〈x, b〉 in a CSP instance I
such that when P (x, b) holds, the instance I ′ obtained from I by eliminating b from
D(x) is satisfiable if and only if I is satisfiable.

A val-elim condition allows us to eliminate values from domains while con-
serving at least one solution (if one exists). In binary CSP, two val-elim condi-
tions on assignment 〈x, b〉 are: (1) b ∈ D(x) is not AC-supported, (2) b ∈ D(x)
is not neighbour-supported. We now introduce two other notions of support
which if not satisfied allow us to eliminate a value from a domain. The first of
these is illustrated in Figure 2.

Given a binary CSP instance I , let I[〈y, c〉] denote the instance which results
by assigning c to y and by eliminating all values e from other domains D(w)
(w ∈ X \ {y}) such that (c, e) /∈ Ryw. Suppose that for all possible assignments
c to y in I , b is neighbourhood substitutable by some value (not necessarily the
same for each value c) in I[〈y, c〉]. Then b can be deleted from D(x) in I without
changing the satisfiability of I . This idea is captured by the following positive
property of conditional neighbour (CN) support.

Definition 5. A value b ∈ D(x) is CN-supported if ∀y ∈ X \ {x}, ∃c ∈ D(y) such
that: (1) (b, c) ∈ Rxy and (2) ∀a ∈ D(x) \ {b} with (a, c) ∈ Rxy, ∃z ∈ X \ {x, y},
∃d ∈ D(z) such that (c, d) ∈ Ryz , (b, d) ∈ Rxz and (a, d) /∈ Rxz .

Beyond Consistency and Substitutability 259

�

�

�

�

•

�

�

�

�

•

�

�

�

�
•

•
�������
�
�
�

x
y

a

b
c

d

z

�
�
�

�

Fig. 2. Illustration of the definition that b is CN-supported

In other words, b ∈ D(x) is CN-supported if ∀y ∈ X \ {x}, 〈x, b〉 has an AC
support c at y such that ∀a ∈ D(x) \ {b} with (a, c) ∈ Rxy , ∃z ∈ X \ {x, y},
∃d ∈ D(z) such that (c, d) ∈ Ryz and 〈z, d〉 is a neighbour-support of (x, b, a).
It follows immediately from this definition that a CN-supported assignment is
also AC-supported, and (almost immediately) that it is neighbour-supported.

When 〈y, c〉 is a neighbour-support of (x, b, a), as illustrated in Figure 1(b), it
may still be possible to replace b by a in all solutions provided we also replace c
by another value d. As we will see in the proof of Proposition 1, below, this is the
motivation behind the following notion of extended-neighbour (EN) support,
illustrated in Figure 3.

Definition 6. A value b ∈ D(x) is EN-supported if ∀a ∈ D(x)\{b}, ∃y ∈ X \{x},
∃c ∈ D(y) such that: (1) (a, c) /∈ Rxy , (b, c) ∈ Rxy and (2) ∀d ∈ D(y) with (a, d) ∈
Rxy, ∃z ∈ X \{x, y}, ∃e, f ∈ D(z) such that (a, e) ∈ Rxz , (d, e) /∈ Ryz , (c, f) ∈ Ryz

and (d, f) /∈ Ryz .

In other words, b ∈ D(x) is EN-supported if ∀a ∈ D(x) \ {b}, there is a
neighbour-support 〈y, c〉 of (x, b, a) such that condition (2) of Definition 6 holds.
It follows that a EN-supported assignment is also neighbour-supported.

Example 1. Suppose that in a binary CSP instance I , there is a subset S of the
variables such that each domain D(x) (x ∈ S) contains a default value 0, where
assigning 0 to a variable in S is only possible if we assign 0 to all variables in
S, and this partial solution (s(x) = 0 for x ∈ S) is compatible with all possible

�

�

�

�
•

•

�

�

�

�

•

�

�

�

�
•

•
������������

�
�
�
�
�

x

a

b

c

d

e

y

z

and

�

�

�

�
•

•

�

�

�

�

•

�

�

�

�
•

•
������������
�
�
�
�
��

x

a

b

c

d

f

y

z

Fig. 3. Illustration of the definition that b is EN-supported

260 M.C. Cooper

assignments to all variables in X \ S, i.e. ∀x, y ∈ S, (0, c) ∈ Rxy ⇔ c = 0, and
∀x ∈ S, ∀y /∈ S, (0, c) ∈ Rxy for all c ∈ D(y). Let b be any value in D(x) \ {0},
for some x ∈ S. We will show that b is not EN-supported. Setting a = 0, if
y ∈ X \ {x} and c ∈ D(y) are such that (a, c) /∈ Rxy and (b, c) ∈ Rxy , then we
necessarily have y ∈ S. So ∃d = 0 ∈ D(y) with (a, d) = (0, 0) ∈ Rxy , such that

– ∀z ∈ S \ {x, y}, ∀e ∈ D(z) with (a, e) ∈ Rxz , we have e = 0 and hence
(d, e) = (0, 0) ∈ Ryz , and

– ∀z ∈ X \ S, ∀f ∈ D(z), we have (d, f) = (0, f) ∈ Ryz

It follows from Definition 6 that no b ∈ D(x) \ {0} is EN-supported, and hence,
anticipating Proposition 1, we can reduce the domains of all variables x ∈ S to
a singleton {0} by eliminating all such values b.

We now show that the notions of support given in Definitions 5 and 6
allow us to define val-elim conditions: Proposition 1, below, tells us that assign-
ments with no CN-support or no EN-support can be eliminated while conserv-
ing satisfiability. If b ∈ D(x) is not neighbour-supported, then it is
neither CN-supported nor EN-supported. Thus eliminating values that are not
CN-supported or not EN-supported implies eliminating a superset of those val-
ues that can be eliminated by neighbourhood substitution.

Proposition 1. Both of the following conditions on assignment 〈x, b〉 are val-elim con-
ditions in binary CSP instances:

1. b ∈ D(x) is not CN-supported.
2. b ∈ D(x) is not EN-supported.

Proof. Let I be a binary CSP instance and suppose that s is a solution to I such
that s(x) = b. In both cases, we will show that I has a solution s′ in which
s′(x) �= b.

1. Since b ∈ D(x) is not CN-supported, ∃y ∈ X \ {x} such that ∀c ∈ D(y)
with (b, c) ∈ Rxy, ∃a(y, c) ∈ D(x) \ {b} with (a(y, c), c) ∈ Rxy such that
∀z ∈ X \ {x, y}, ∀d ∈ D(z) with (c, d) ∈ Ryz and (b, d) ∈ Rxz , we have
(a(y, c), d) ∈ Rxz . Define s′ to be identical to s, except that s′(x) = a(y, s(y)).
Now the assignment 〈x, a(y, s(y))〉 is compatible with 〈y, s(y)〉 (by defini-
tion of a(y, s(y))). Furthermore (again by definition of a(y, s(y))) the assign-
ment 〈x, a(y, s(y))〉 is compatible with all assignments which are compati-
ble with both of 〈x, b〉 and 〈y, s(y)〉 and hence with all assignments 〈z, s(z)〉
(z ∈ X \ {x, y}). It follows that s′ is a solution.

It is worth pointing out that this proof is valid even in the special case in
which X = {x, y}.

2. Since b ∈ D(x) is not EN-supported, ∃a ∈ D(x) \ {b} such that ∀y ∈ X \
{x}, ∀c ∈ D(y) with (a, c) /∈ Rxy and (b, c) ∈ Rxy, ∃d(y, c) ∈ D(y) with
(a, d(y, c)) ∈ Rxy , such that ∀z ∈ X \ {x, y}, either
(a) ∀e ∈ D(z) with (a, e) ∈ Rxz , we have (d(y, c), e) ∈ Ryz , or
(b) ∀f ∈ D(z) with (c, f) ∈ Ryz , we have (d(y, c), f) ∈ Ryz

Beyond Consistency and Substitutability 261

�

�

�

�

•
�

�

�

�
•

•������

x

a

b

c

y

⇒
�

�

�

�
•

•

�

�

�

�

•

�

�

�

�
•

•
������������

�
�
�
�
�

�
�
��

x

a

b

c

d

e

y

z

or

�

�

�

�
•

•

�

�

�

�

•

�

�

�

�
•

•
������������
�
�
�
�
��

�
�
��

x

a

b

c

d

f

y

z

Fig. 4. b ∈ D(x) is not EN-supported

This is illustrated in Figure 4. Recall that s is a solution such that s(x) = b.
Let Y := {y ∈ X | (a, s(y)) ∈ Rxy} and Y := X \ (Y ∪ {x}). Define s′ as
follows

s′(v) =

⎧⎪⎨⎪⎩
a if v = x,
s(v) if v ∈ Y ,
d(v, s(v)) otherwise.

The assignments 〈v, s(y)〉 (v ∈ Y) are all compatible with 〈x, a〉 (by defi-
nition of Y) and with each other (since they are all part of the solution s).
The assignments 〈v, d(v, s(v))〉 (v ∈ Y) are all compatible with 〈x, a〉 (by
definition of d(v, s(v))). Furthermore (again by the definition of d(v, s(v)),
whether it is (a) or (b) that holds) the assignments 〈v, d(v, s(v))〉 (v ∈ Y) are
all compatible with all assignments which are compatible both with 〈x, a〉
and 〈v, s(v)〉 and hence with all assignments 〈w, s(w)〉 for all w ∈ Y (which
are compatible with 〈x, a〉 by definition of Y and with 〈v, s(v)〉 since s is
a solution). To complete the proof that s′ is a solution, it suffices to prove
that ∀v �= w ∈ Y , (d(v, s(v)), d(w, s(w))) ∈ Rvw. Suppose, for a contradic-
tion, that (d(v, s(v)), d(w, s(w))) /∈ Rvw. Then, when y = v, c = s(v) and
z = w, we necessarily fall into case (b), since setting e = d(w, s(w)) con-
tradicts case (a). But then setting f = d(w, s(w)) in case (b) implies that
(s(v), d(w, s(w))) /∈ Rvw. By a symmetrical argument, exchanging v and w,
we immediately have that (d(v, s(v)), s(w)) /∈ Rvw. But applying case (b) to
y = v, c = s(v), z = w and f = s(w) implies that (d(v, s(v)), s(w)) ∈ Rvw.
From this contradiction we can deduce that s′ is a solution.

It is worth pointing out that this proof is valid even in the special case in
which I has only two variables x, y. In this case, either b can be eliminated
by neighbourhood substitution, or there is some solution (a, d(y, c)) to I
which does not require the assignment 〈x, b〉.

The following two examples show that the two rules given in Proposition 1
allows us to eliminate certain values which are neither arc-inconsistent nor
neighbourhood substitutable.

Example 2. Consider the arc-consistent CSP instance I4 with X = {w, x, y, z},
D(w) = D(x) = D(y) = D(z) = {1, 2, 3} and five constraints x �= y, y = z, x �= z,

262 M.C. Cooper

w �= y, w = z. No eliminations are possible by neighbourhood substitution,
but any b ∈ D(x) can be eliminated since it is not CN-supported: ∀c ∈ D(y),
b ∈ D(x) is neighbourhood substitutable in I4[〈y, c〉].

Example 3. Consider the arc-consistent CSP instance with X = {x, y, z},D(x) =
D(y) = D(z) = {1, 2, 3} and three constraints x �= y, x �= z, (y, z) /∈ {(1, 3), (3, 1)}.
No eliminations are possible by neighbourhood substitution, but the assign-
ment b = 2 ∈ D(x) can be eliminated since it is not EN-supported: this follows
from the symmetry between variables y,z and the fact that the value a = 1 ∈
D(x) is such that ∀c ∈ D(y) with (a, c) /∈ Rxy and (b, c) ∈ Rxy (i.e. c = 1),
∃d = 2 ∈ D(y) with (a, d) ∈ Rxy, such that ∀e ∈ D(z), (d, e) ∈ Ryz .

Our two value-elimination rules are complementary since in Example 2, all
variable-value assignments are EN-supported and in Example 3, all variable-
value assignments are CN-supported.

3 Variable Elimination

In this section we present conditions under which a variable x can be eliminated
from a binary CSP instance while preserving satisfiability. A simple example of
such a condition is that ∃a ∈ D(x) which is compatible with all assignments to
all other variables. Another simple example is that the variable x has a single-
ton domain {a}. This second example demonstrates that when eliminating the
variable x we need to retain the projections onto X \ x of all constraints whose
scope includes x, since in this example we must first eliminate from all domains
D(y) (y �= x) those values that are not compatible with 〈x, a〉. Thus, the instance
I ′ obtained by eliminating a variable x from a binary CSP instance I is identical
to I except that (1) ∀y �= x, we have deleted from D(y) all values b such that
〈y, b〉 has no AC-support at x in I , and (2) we have deleted the variable x and
all constraints with x in their scope.

As another example, consider the case when an assignment 〈x, a〉 is such that
all other values in the domain of x can be removed one by one, by elimination
thanks to one of the val-elim conditions given in Section 2. The variable x can
again be eliminated while preserving satisfiability. We can relate this to previ-
ous variable-elimination rules as follows. By the above discussion, it is possible
to eliminate a variable x when all values b ∈ D(x), except for an assignment
〈x, a〉, are not EN-supported at 〈x, a〉 (in the sense that there is no neighbour-
support 〈y, c〉 of (x, b, a) which satisfies Condition (2) of Definition 6). This rule
strictly subsumes two previously published variable-elimination rules (corre-
sponding to the absence of the existential patterns ∃snake or ∃invsubBTP in
arc-consistent binary CSP instances) [3].

We require the following formal definition in order to give further variable-
elimination rules.

Definition 7. A satisfiability-preserving variable-elimination condition (or a
var-elim condition) is a polytime-computable property P (x) of a variable x in a bi-
nary CSP instance I such that when P (x) holds the instance I ′ obtained from I by

Beyond Consistency and Substitutability 263

eliminating x from I is satisfiable if and only if I is satisfiable. Such a property P (x) is
a solution-preserving variable-elimination condition (sol-var-elim condition) if
it is possible to construct a solution to I from any solution s′ to I ′ in polynomial time.

A sol-var-elim condition not only allows us to eliminate variables while
preserving satisfiability but also allows the polynomial-time recovery of at least
one solution to the original instance I from a solution to the reduced instance I ′.
All the var-elim properties given in this paper are also sol-var-elim properties.

�

�

�

�

•

�

�

�

�

•

�

�

�

�

•
�
�
�
�

xy

z

ba

c

(a)

�

�

�

�

•

�

�

�

�

•

�

�

�

�
•

•
�������
�
�
�

x
y

z

a
d

c

b

�
�
�
�
�

(b)

Fig. 5. Illustration of the definition that (a) a variable x is Triangle-supported, (b) a vari-
able x is ∃∀BTP-supported

The following notion of support is illustrated in Figure 5(a). It says that it is
not the case that ∃y �= x such that for all a ∈ D(y) to y, in I[〈y, a〉] (the reduced
instance consisting of the set of assignments compatible with 〈y, a〉) there is an
assignment 〈x, b〉 compatible with all assignments to all variables z ∈ X \{x, y}.

Definition 8. A variable x is Triangle-supported if ∀y ∈ X \ {x}, ∃a ∈ D(y) such
that ∀b ∈ D(x) with (b, a) ∈ Rxy , ∃z ∈ X \ {x, y}, ∃c ∈ D(z) such that (a, c) ∈ Ryz

and (b, c) /∈ Rxz .

It is known that if for a given variable x in an arc-consistent binary CSP in-
stance I , the set of (in)compatibilities (known as a broken triangle) shown in
Figure 5(b) occurs for no two values b, d ∈ D(x) and no two assignments a, c
to two other variables y, z, then the variable x can be eliminated from I with-
out changing the satisfiability of I [5,3]. The following notion of support, based
on the same broken triangle shown in Figure 5(b), leads to a strict generalisa-
tion of the broken-triangle property (BTP) variable-elimination rule [5]. We can
observe that, unlike BTP, this new rule does not require arc consistency. The
corresponding positive property is given by the following definition.

Definition 9. A variable x is ∃∀BTP-supported if ∃y ∈ X \ {x}, ∃a ∈ D(y) such
that ∀b ∈ D(x) with (b, a) ∈ Rxy , ∃z ∈ X \ {x, y}, ∃c ∈ D(z) with (a, c) ∈ Ryz and
(b, c) /∈ Rxz , such that ∃d ∈ D(x) with (d, c) ∈ Rxz and (d, a) /∈ Rxy.

The following notion of support is illustrated in Figure 6.

264 M.C. Cooper

�

�

�

�

•

�

�

�

�

•

�

�

�

�
•

•
�������
�
�
�

x

a
b

c

d

y

z

(a)

�

�

�

�
•

•

�

�

�

�

•

�

�

�

�

•
�
�
�
�
��

x

a
b

e

f

y

w

(b)

Fig. 6. Illustration of cases (a) and (b) of Definition 10 that variable x is crab-supported

Definition 10. A variable x is crab-supported if ∀a ∈ D(x), ∃y ∈ X \ {x}, ∃b ∈
D(y) with (a, b) /∈ Rxy such that (1) ∀c ∈ D(x) with (c, b) ∈ Rxy, ∃z ∈ X \ {x, y},
∃d ∈ D(z) with (b, d) ∈ Ryz and (c, d) /∈ Rxz , and (2) ∀e ∈ D(y) with (a, e) ∈ Rxy ,
∃w ∈ X \ {x, y}, ∃f ∈ D(w) with (b, f) ∈ Ryw and (e, f) /∈ Ryw.

Proposition 2. Each of the following properties of variable x are sol-var-elim condi-
tions in binary CSP instances:

1. x is not Triangle-supported.
2. x is not ∃∀BTP-supported and D(x) �= ∅.
3. x is not crab-supported.

Proof. Let I be a binary CSP instance and suppose that s′ is a solution to I ′, the
instance obtained by eliminating variable x from I . In each of the three cases,
we will show that I has a solution s. In each case our proof is constructive and
there is an obvious polynomial-time algorithm to produce s from s′.

1. Since x is not Triangle-supported, ∃y ∈ X \ {x} such that ∀a ∈ D(y),
∃b(a) ∈ D(x) with (b(a), a) ∈ Rxy such that ∀z ∈ X \ {x, y}, ∀c ∈ D(z)
with (a, c) ∈ Ryz , we have (b(a), c) ∈ Rxz . Define s as follows: s(v) = s′(v)
(v ∈ X \ {x}) and s(x) = b(s′(y)). The assignment 〈x, b(s′(y))〉 is compat-
ible with 〈y, s′(y)〉 (by definition of b(s′(y))) and is compatible with all of
the assignments 〈v, s′(v)〉 (v ∈ X \ {x}) again by definition of b(s′(y)) since
(s′(y), s′(v)) ∈ Ryv . Hence s is a solution to I .
It is easily verified that this proof is valid even in the special caseX = {x, y}.

2. If X = {x}, then since D(x) �= ∅, I has a solution. So from now on we
assume that |X | ≥ 2. Since x is not ∃∀BTP-supported, ∀y ∈ X \ {x}, ∀a ∈
D(y), ∃b(y, a) ∈ D(x) with (b(y, a), a) ∈ Rxy such that ∀z ∈ X \ {x, y}, ∀c ∈
D(z) with (a, c) ∈ Ryz and (b(y, a), c) /∈ Rxz , ∀d ∈ D(x) with (d, c) ∈ Rxz ,
we have (d, a) ∈ Rxy .

For v ∈ X\{x}, let Im(v) := {d ∈ D(x) | (d, s′(v)) ∈ Rxv}. If y, z ∈ X\{x}
are such that (b(y, s′(y)), s′(z)) /∈ Rxz , then setting a = s′(y), c = s′(z), we
can deduce that (d, s′(z)) ∈ Rxz ⇒ (d, s′(y)) ∈ Rxy and hence that Im(z) ⊆
Im(y). Indeed, we have Im(z) ⊂ Im(y) since b(y, s′(y)) ∈ Im(y)\ Im(z). Now
choose some y ∈ X\{x} such that Im(y) is minimal for inclusion among the

Beyond Consistency and Substitutability 265

sets Im(v) (v ∈ X \ {x}). Then the assignment 〈x, b(y, s′(y))〉 is compatible
with all the assignments s′(z) (z ∈ X \ {x, y}) (otherwise we would have
Im(z) ⊂ Im(y) which would contradict the minimality of Im(y)). Therefore,
s is a solution to I , where s(v) = s′(v) (v ∈ X \ {x}) and s(x) = b(y, s′(y)).

3. Since x is not crab-supported, ∃a ∈ D(x) such that ∀y ∈ X \ {x}, ∀b ∈ D(y)
with (a, b) /∈ Rxy , at least one of the following two conditions holds:
(a) ∃c(y, b) ∈ D(x) with (c(y, b), b) ∈ Rxy such that ∀z ∈ X \ {x, y}, ∀d ∈

D(z) with (b, d) ∈ Ryz , we have (c(y, b), d) ∈ Rxz .
(b) ∃e(y, b) ∈ D(y) with (a, e(y, b)) ∈ Rxy such that ∀w ∈ X \ {x, y}, ∀f ∈

D(w) with (b, f) ∈ Ryw, we have (e(y, b), f) ∈ Ryw.
If X = {x}, then since a ∈ D(x), I has a solution. If X = {x, y} (with y �= x),
then I has a solution, either of the form (c(y, b), b) or of the form (a, e(y, b)).
So, from now on we assume that |X | ≥ 3.

Let b ∈ D(y) be such that (a, b) /∈ Rxy. Let I1 be identical to I except
that we have made 〈x, a〉 compatible with the assignment 〈y, b〉. We will
show that I1 is satisfiable iff I is satisfiable. Furthermore, it follows directly
from Definition 10 that I1 is also not crab-supported. It will then follow,
by a simple inductive argument, that we can make 〈x, a〉 compatible with
all assignments to all other variables in I without changing its satisfiability.
But then we can eliminate x from I since there is an assignment to x which
is compatible with all assignments to all other variables.

Suppose first that 〈y, b〉 satisfies condition (a), i.e. ∃c(y, b) ∈ D(x) with
(c(y, b), b) ∈ Rxy such that ∀z ∈ X \ {x, y}, ∀d ∈ D(z) with (b, d) ∈ Ryz ,
we have (c(y, b), d) ∈ Rxz . Let I1 be identical to I except that (a, b) ∈ Rxy

in I1. Suppose that I1 has a solution s1 such that s1(x) = a and s1(y) = b.
To show that I and I1 have the same satisfiability, it suffices to show that
I also has a solution. Consider any z ∈ X \ {x, y} and let d = s1(z). Since
s1 is a solution to I1, (b, d) ∈ Ryz . Thus, by condition (a), (c(y, b), d) ∈ Rxz .
Furthermore, (c(y, b), b) ∈ Rxy . Define s by s(v) = s1(v) (v ∈ X \ {x})
and s(x) = c(y, b). Then s is a solution to I , since we have just shown that
〈x, c(y, b)〉 is compatible with 〈v, s1(v)〉 for all v ∈ X \ {x}.

Suppose now that 〈y, b〉 satisfies condition (b), i.e. ∃e(y, b) ∈ D(y) with
(a, e(y, b)) ∈ Rxy such that ∀w ∈ X\{x, y}, ∀f ∈ D(w) with (b, f) ∈ Ryw, we
have (e(y, b), f) ∈ Ryw. Again, let I1 be identical to I except that (a, b) ∈ Rxy

in I1. Suppose that I1 has a solution s1 such that s1(x) = a and s1(y) = b.
To show that I and I1 have the same satisfiability, it suffices to show that I
also has a solution. Consider any w ∈ X \ {x, y} and let f = s1(w). Since
s1 is a solution to I1, (b, f) ∈ Ryw. Thus by condition (b), (e(y, b), f) ∈ Ryw.
Furthermore, (a, e(y, b)) ∈ Rxy. Define s by s(v) = s1(v) (v ∈ X \ {y})
and s(y) = e(y, b). Then s is a solution to I , since we have just shown that
〈y, e(y, b)〉 is compatible with 〈v, s1(v)〉 for all v ∈ X \ {y}.

The var-elim rule given by Proposition 2(2) subsumes the BTP var-elim rule [5].
Examples of the BTP var-elim rule include a variable x which is only con-
strained by one other variable in an arc-consistent instance or a Boolean vari-
able x in a path-consistent instance. However, eliminating a variable with no

266 M.C. Cooper

∃∀BTP support is strictly stronger then the BTP var-elim rule. This is demon-
strated by the fact that it also subsumes the rule that allows us to eliminate a
variable x when an assignment to x is compatible with all assignments to all
other variables. Another generic example is when all occurrences of the BTP
pattern shown in Figure 5(b) on variable x occur on pairs of values b, d ∈ S ⊂
D(x) and each assignment a to each other variable y �= x has an AC-support at
x in D(x) \ S.

The var-elim rule given by Proposition 2(3) is a strict generalisation of two
previously published var-elim rules (corresponding to the absence of the exis-
tential patterns ∃subBTP or ∃snake in arc-consistent binary CSP instances) [3].

4 Practical Considerations

In binary CSP instances with a large number of variables and/or with large
domains, applying the value and variable elimination rules given in this paper
may not be practical. Thus, to demonstrate the practical utility of our approach,
we now give a weaker version of the notion of EN-support which is neverthe-
less strictly stronger than the notion of neighbour-support. It leads to a val-elim
rule that is strictly stronger than neighbourhood substitution but that can be ap-
plied in the same worst-case time complexity [6].

Definition 11. A value b ∈ D(x) is snake-supported if ∀a ∈ D(x) \ {b}, ∃y ∈
X \ {x}, ∃c ∈ D(y) such that: (1) (a, c) /∈ Rxy, (b, c) ∈ Rxy and (2) ∀d ∈ D(y) with
(a, d) ∈ Rxy, ∃z ∈ X \ {x, y}, ∃f ∈ D(z) such that (c, f) ∈ Ryz and (d, f) /∈ Ryz .

In other words, b ∈ D(x) is snake-supported if ∀a ∈ D(x) \ {b}, there is
a neighbour-support 〈y, c〉 of (x, b, a) such that ∀d ∈ D(y) with (a, d) ∈ Rxy ,
(y, c, d) has a neighbour-support 〈z, f〉 for some z ∈ X\{x, y}. This is illustrated
by the right-hand side of Figure 3. An assignment which is not snake-supported
is not EN-supported and hence, by Proposition 1, can be eliminated.

In order to establish and maintain the property that all assignments are
snake-supported, we use the following data structures: AC-supps(x,s,y) (for all
x, y ∈ X such that y constrains x and for all s ∈ D(x)), neighbour-supps(y,p,q),
neighbour-supp-vars(y,p,q), diamond-supps(y,p,q), snake-supps(y,p,q) (for all
y ∈ X and for all p, q ∈ D(y)), neighbour-supps-at(y,p,q,z) (for all y, z ∈ X
such that y constrains z and for all p, q ∈ D(y)), and hinge-supps(y,p,x,s) (for
all x, y ∈ X such that y constrains x and for all p ∈ D(y), s ∈ D(x)), where

– AC-supps(x,s,y) = {q ∈ D(y) | (s, q) ∈ Rxy}
– neighbour-supps(y,p,q) = {〈z, r〉 | r ∈ D(z) ∧ (p, r) ∈ Ryz ∧ (q, r) /∈ Ryz}
– neighbour-supps-at(y,p,q,z) = {r ∈ D(z) | 〈z, r〉 ∈ neighbour-supps(y,p,q)}
– neighbour-supp-vars(y,p,q) = {z ∈ X | neighbour-supps-at(y,p,q,z) �= ∅}
– diamond-supps(y,p,q) = {〈x, s〉 ∈ neighbour-supps(y,q,p) |

∃〈z, r〉 ∈ neighbour-supps(y,p,q) with z �= x }
– hinge-supps(y,p,x,s) = {q ∈ D(y) \ {p} | 〈x, s〉 ∈ diamond-supps(y,p,q)}
– snake-supps(x,t,s) = {〈y, p〉 ∈ neighbour-supps(x,t,s) |

|hinge-supps(y,p,x,s)| = |AC-supps(x,s,y)| }.

Beyond Consistency and Substitutability 267

These different notions of support are illustrated in Figure 7: in Figure 7(a),
〈z, r〉 ∈ neighbour-supps(y,p,q); in Figure 7(b), 〈x, s〉 ∈ diamond-supps(y,p,q)
and q ∈ hinge-supps(y,p,x,s); in Figure 7(c), 〈y, p〉 ∈ snake-supps(x,t,s) if ∀q ∈
D(y), q ∈ AC-supps(x,s,y)⇒ q ∈ hinge-supps(y,p,x,s).

�

�

�

�
•

•

�

�

�

�

•

�
�
�
�
�

p

q

r

y

z

(a)

�

�

�

�
•

•

�

�

�

�

•

�

�

�

�

•
�
�
�
�
��

x

s
p

q

y

(b)

�

�

�

�
•

•

�

�

�

�

•

�

�

�

�
•

•
������������
�
�
�
�
��

x

s

t

p

q

y

(c)

Fig. 7. Illustration of (a) neighbour, (b) diamond and hinge, and (c) snake supports

We can see from Figure 7 and Definition 11, that t ∈ D(x) is snake-supported
if and only if ∀s ∈ D(x) \ {t}, snake-supps(x,t,s) �= ∅. A value t is therefore
deleted from D(x) when snake-supps(x,t,s) = ∅ for some s ∈ D(x) \ {t}.

Let e be the number of pairs of variables which constrain each other, and let d
be the maximum domain size. We can store subsets of a finite set S (such as the
set of all variable-value assignments) in the form of a doubly linked list (whose
length is also stored) and an array indexed by elements of S and containing
pointers to this list. This allows the basic operations of addition, deletion and
test of membership and of size to be performed in O(1) time. The six data struc-
tures, given above, require O(ed3) space when stored in this way. We calculate
and maintain diamond-supps(y,p,q) using the fact that

diamond-supps(y,p,q) = neighbour-supps(y,q,p)
if |neighbour-supp-vars(y,p,q)| > 1,

diamond-supps(y,p,q) = {〈z, r〉 ∈ neighbour-supps(y,q,p) | z �= x}
if neighbour-supp-vars(y,p,q) = {x}.

The above six data structures can be calculated in O(ed3) from their definitions.
Then values t ∈ D(x) which are not snake-supported can be eliminated, which
may provoke new eliminations. Maintaining the above data structures until
convergence (i.e. to the point at which all assignments are snake-supported)
can be achieved inO(ed3) time since assignments can only be deleted and never
added to the data structures.

5 Recovering All Solutions

In some applications, it is important to return all solutions to a CSP instance.
We therefore study in this section whether it is possible to efficiently recover all

268 M.C. Cooper

solutions to a binary CSP instance after elimination of variables and/or values
by our rules.

Proposition 3. Let I be a binary CSP instance and let S be the set of all solutions to
the instance I ′ obtained after applying a sequence σ of operations given by the elimi-
nation of values that are not CN-supported or the elimination of variables that are not
Triangle-supported, or not ∃∀BTP-supported, or not crab-supported. Then the set of all
solutions to I can be found from (S, σ) in O(|SI |ed + 1) time, where SI is the set of
solutions to I .

Proof. In the trivial case in which |SI | = 0, we necessarily have as input S = ∅
which can clearly be tested for in O(1) time.

First consider the elimination of a single variable x from an instance I by
one of the three variable-elimination rules. As observed in the proof of Propo-
sition 2, each solution of the reduced instance can be extended to a solution of
I . This implies that the number of solutions cannot decrease when we reinstate
the variable x. Clearly each solution of I is an extension of a solution of the
reduced instance. So testing all possible extensions of each solution of the re-
duced instance will produce all solutions of I in time O(|SI |exd), where ex is
the number of binary constraints with x in their scope.

Now consider the elimination of a value b from the domain of a variable x
due to the fact that b is not CN-supported. As observed in the proof of Proposi-
tion 1, s is a solution to I with s(x) = b implies that there is a solution s′ to the
reduced instance I ′ such that s′(x) �= b and s′(v) = s(v) for v �= x. To determine
all solutions of I including the assignment 〈x, b〉 from the set of all solutions of
the reduced instance thus requires only O(|SI |ex) time.

Summing over all variables x and, in the case of value-eliminations, over all
assignments to x, we obtain a total time complexity of O(|SI |ed+1), as claimed.

On the other hand, the following proposition indicates that eliminating val-
ues with no snake-support or no EN-support is not useful if we require all so-
lutions. Since a value which is not snake-supported is not EN-supported, we
only need to consider the former.

Proposition 4. Let I be a binary CSP instance and let I ′ be the instance obtained from
I after eliminating all values that are not snake-supported or not arc consistent. Even
if we are given the set of all solutions to I ′, determining whether I has more than one
solution is NP-complete.

Proof. This problem is clearly in NP. It therefore suffices to give a polynomial
reduction from the known NP-complete problem binary CSP. Let J be an arbi-
trary instance of binary CSP on variables X where, without loss of generality,
we assume ∀x ∈ X , 0 /∈ D(x) in J . We build an instance I on variablesX ∪{x0}
where x0 /∈ X and the domain of variable x0 in I is {0, 1}. We add an extra value
0 to each domain D(x) (x ∈ X). In I , for all variables y ∈ X , the assignment
〈x0, 0〉 is compatible only with the assignment 〈y, 0〉, whereas the assignment
〈x0, 1〉 is compatible with all the assignments 〈y, a〉 for a �= 0; furthermore for
each y, z ∈ X , the assignment 〈y, 0〉 is compatible with all assignments to z.

Beyond Consistency and Substitutability 269

In I , the value 1 ∈ D(x0) is not snake-supported, and hence can be elim-
inated from the domain of x0. After establishing arc consistency, all domains
are reduced to the singleton {0}. Hence the reduced instance has exactly one
solution. In the instance I , the assignment 〈x0, 0〉 only belongs to the solution
assigning 0 to each variable, whereas the assignment 〈x0, 1〉 is compatible with
exactly the set of solutions to the instance J . Thus, determining the existence of
a second solution to I is equivalent to determining the satisfiability of J .

6 Theoretical Discussion

We now look into the question of whether there are other rules for the elimina-
tion of values or variables (which are not subsumed by known rules or the rules
we have given in this paper). To avoid confusion, we use the specific terms CSP-
value and CSP-variable to refer to names of values and variables to be quan-
tified. We consider very general rules of the form Q(Avar ∪ Aval)f(E(A))[v],
where A is a set of variable-value assignments 〈x, a〉 in which each CSP-value
a occurs exactly once, Avar (Aval) is the set of CSP-variables (CSP-values) oc-
curring in A, Q(Avar ∪ Aval) is a sequence of quantifications on Avar ∪ Aval,
E(A) is the list of the compatibilities of all pairs of assignments from A to
two distinct CSP-variables (i.e. the list of truth values of (a, b) ∈ Rxy for each
(〈x, a〉, 〈y, b〉) ∈ A2 with x �= y), f : {0, 1}m → {0, 1} is any Boolean function
(where m = |E(A)|), and v is the CSP-variable or CSP-value which can be elim-
inated whenever Q(Avar ∪Aval)f(E(A)) holds.

For Q(Avar ∪ Aval)f(E(A))[v] to be well-formed we require that

1. Each CSP-value in Aval and each CSP-variable in Avar occurs exactly once
in Q(Avar ∪ Aval),

2. In Q(Avar ∪ Aval) each CSP-variable x ∈ Avar is quantified ∃x ∈ X \ Y or
∀x ∈ X \ Y where Y is the set of CSP-variables which has already been
quantified (i.e. those CSP-variables appearing to the left of x in Q(Avar ∪
Aval)),

3. InQ(Avar∪Aval) each CSP-value a is quantified ∀a ∈ D(x) or ∃a ∈ D(x)\Hx

where x is a CSP-variable which has already been quantified, and Hx is the
set of CSP-values which have already been quantified over D(x),

4. v is a CSP-variable in Avar or a CSP-value in Aval,
5. f is not identically equal to FALSE.

We have chosen to impose that universal quantification of CSP-values be
over all values in a domain whereas existential quantification of CSP-values be
over all unused values, since all the rules given in this paper can be expressed
using this convention. Note that since the various kinds of support (such as
neighbour-support, CN-support, etc.) are the negation of the corresponding
elimination rule, in the definition of each kind of support, existential quantifi-
cation of CSP-values is over all values in a domain and universal quantification
of CSP-values is over all unused values.

Unfortunately, exhaustive search even concerning rules on a small number of
CSP-variables and CSP-values rapidly becomes impossible since the number of

270 M.C. Cooper

Boolean functions onm arguments is 22
m

. Previously, we have studied different
forms of forbidden patterns [2,3,4]. Forbidding a flat pattern on assignments A
corresponds to a rule Q(Avar ∪ Aval)f(E(A)) where all quantifiers in Q are ∀
and the function f is a clause. Quantified (respectively, existential) patterns are
of the same form except that the sequence of quantifications Q begins ∃x ∈ X
(respectively, ∃x ∈ X , ∃a1 ∈ D(x), . . . , ∃ar ∈ D(x)) [3]. The rules we consider
in this paper are thus much more general in that we allow any (well-formed)
sequence of quantifications but also because we allow any Boolean function of
the compatibilities.

A valid rule is interesting if it is not too expensive to apply and there is no
other rule which both strictly subsumes it and is no more expensive to apply.
Not only is the number of cases to consider very large, but the number of inter-
esting var-elim or val-elim rules Q(Avar ∪ Aval)f(E(A))[v] could possibly turn
out to be very large. It should also be pointed out that certain reduction opera-
tions, such as singleton arc consistency, cannot be expressed as local properties.

7 Conclusion

This paper describes several novel reduction operations for binary CSP which
are neither based on consistency nor on substitutability. They reduce search
space size either by elimination of variables or by the elimination of values. We
showed that one of these operations can be applied in the same time complexity
as neighbourhood substitution but is strictly stronger. From a practical point of
view, further research is required to determine the utility of the rules given in
this paper, for example, as preprocessing operations on large-scale real-world
instances, or to identify tractable problem domains in which all variables can be
eliminated by our variable-elimination rules. From a theoretical point of view,
the most interesting challenge is the characterisation of all such rules.

Acknowledgements. I would like to thank David Cohen, Guillaume
Escamocher, Peter Jeavons and Stanislav Živný for their insightful comments
during discussions concerning this work.

References

1. Cohen, D.A., Jeavons, P., Jefferson, C., Petrie, K.E., Smith, B.M.: Symmetry defini-
tions for constraint satisfaction problems. Constraints 11(2-3), 115–137 (2006)

2. Cohen, D.A., Cooper, M.C., Creed, P., Marx, D., Salamon, A.Z.: The tractability of
CSP classes defined by forbidden patterns. J. Artif. Intell. Res. (JAIR) 45, 47–78 (2012)

3. Cohen, D.A., Cooper, M.C., Escamocher, G., Zivny, S.: Variable elimination in binary
CSP via forbidden patterns. In: Rossi, F. (ed.) IJCAI, pp. 517–523. AAAI Press, Menlo
Park (2013)

4. Cooper, M.C., Escamocher, G.: A dichotomy for 2-constraint forbidden CSP patterns.
In: Hoffmann, J., Selman, B. (eds.) AAAI, pp. 464–470. AAAI Press (2012)

Beyond Consistency and Substitutability 271

5. Cooper, M.C., Jeavons, P.G., Salamon, A.Z.: Generalizing constraint satisfaction on
trees: Hybrid tractability and variable elimination. Artif. Intell. 174(9-10), 570–584
(2010)

6. Cooper, M.C.: Fundamental properties of neighbourhood substitution in constraint
satisfaction problems. Artif. Intell. 90(1-2), 1–24 (1997)

7. Freuder, E.C.: Eliminating interchangeable values in constraint satisfaction
problems. In: Proceedings of AAAI-91, pp. 227–233 (1991)

8. Gent, I.P., Petrie, K.E., Puget, J.-F.: Symmetry in constraint programming. In:
van Beek, P., Walsh, T., Rossi, F. (eds.) Handbook of Constraint Programming,
pp. 327–374. Elsevier (2006)

9. Larrosa, J., Dechter, R.: Boosting search with variable elimination in constraint opti-
mization and constraint satisfaction problems. Constraints 8(3), 303–326 (2003)

10. Likitvivatanavong, C., Yap, R.H.C.: Eliminating redundancy in csps through merg-
ing and subsumption of domain values. ACM SIGAPP Applied Computing
Review 13(2) (2013)

11. Prestwich, S.D.: Full Dynamic Substitutability by SAT Encoding. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 512–526. Springer, Heidelberg (2004)

Subexponential Time Complexity of CSP
with Global Constraints�

Ronald de Haan1, Iyad Kanj2, and Stefan Szeider1

1 Institute of Information Systems, Vienna University of Technology, Vienna, Austria
2 School of Computing, DePaul University, Chicago, USA

Abstract. Not all NP-complete problems share the same practical hardness with
respect to exact computation. Whereas some NP-complete problems are amenable
to efficient computational methods, others are yet to show any such sign. It be-
comes a major challenge to develop a theoretical framework that is more fine-
grained than the theory of NP-completeness, and that can explain the distinction
between the exact complexities of various NP-complete problems. This distinc-
tion is highly relevant for constraint satisfaction problems under natural restric-
tions, where various shades of hardness can be observed in practice.

Acknowledging the NP-hardness of such problems, one has to look beyond
polynomial time computation. The theory of subexponential time complexity pro-
vides such a framework, and has been enjoying increasing popularity in com-
plexity theory. Recently, a first analysis of the subexponential time complexity of
classical CSPs (where all constraints are given extensionally as tables) was given.

In this paper, we extend this analysis to CSPs in which constraints are given
intensionally in the form of global constraints. In particular, we consider CSPs
that use the fundamental global constraints AllDifferent, AtLeastNValue, AtMost-
NValue, and constraints that are specified by compressed tuples (cTable). We
provide tight characterizations of the subexponential time complexity of the afore-
mentioned problems with respect to several natural structural parameters.

1 Introduction

It has been observed in various practical contexts that some NP-hard problems are ac-
cessible to efficient exact computational methods, whereas for others such methods are
futile. In particular, there seem to be various grades of “empirical hardness” among
several NP-complete variants of the constraint satisfaction problem (CSP). It is a cen-
tral challenge for theoreticians to develop a framework, that is more fine graded than
the theory of NP-completeness, and that can explain the distinction between the exact
complexities of NP-hard problems. Subexponential time complexity is a framework of
complexity theory that provides such a distinction [27]. It is based on the observation
that for some NP-complete problems, one can improve the exponent in the exponential
term of the upper bound on their running time indefinitely—such problems admit subex-
ponential time algorithms—whereas for others this is apparently not possible under
commonly-believed hypotheses in complexity theory. In particular, subexponential time

� Supported by the European Research Council (ERC), project 239962 (COMPLEX REASON),
and the Austrian Science Fund (FWF), project P26200 (Parameterized Compilation).

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 272–288, 2014.
c© Springer International Publishing Switzerland 2014

Subexponential Time Complexity of CSP with Global Constraints 273

algorithms were developed for many graph problems, including INDEPENDENT SET

and DOMINATING SET, under natural structural restrictions (see [8,12]). The bench-
mark problem for subexponential time computation is the satisfiability problem for CNF
formulas, where each clause contains at most three literals, denoted 3-CNF-SAT. The
Exponential Time Hypothesis (ETH), proposed by Impagliazzo and Paturi [21], states
that 3-CNF-SAT with n variables is not decidable in subexponential time, i.e., not de-
cidable in time 2o(n) (omitting polynomial factors).

In a recent paper, Kanj and Szeider [23] provided a first analysis of the subexponen-
tial time complexity of the classical CSP, where all constraints are given extensionally
in the form of tables. In this paper, we extend this line of research by considering CSPs
where constraints are specified intensionally using global constraints. This extension is
highly relevant since it is central for the modeling and the solving of real-world prob-
lems, to use various global constraints that come along with efficient propagation and
filtering techniques [33,36].

In particular, we consider CSPs in which the global constraints are all either AllD-
ifferent constraints, NValue constraints, AtLeastNValue constraints, AtMostNValue con-
straints, or constraints that are specified by tables with compressed tuples (cTable). We
provide tight characterizations of the subexponential time complexity of the aforemen-
tioned CSPs with respect to several natural parameters of the problem instance. For
example, we show that the CSP with AllDifferent constraints is solvable in subexpo-
nential time if the domain size is ω(1) (that is, lower bounded by any nondecreasing
unbounded function of the number of variables), whereas, unless the ETH fails, the
problem is not solvable in subexponential time for any constant domain size that is at
least 3. For the CSP with AtLeastNValue constraints, we show that the problem is solv-
able in subexponential time if the number of constraints is constant and the domain size
is ω(1), and unless the ETH fails, the problem is not solvable in subexponential time
if the number of constraints is linear and the domain size is constant. The results in
this paper shed some light on which instances of the aforementioned CSPs with global
constraints are feasible with respect to exact computation.

2 Preliminaries

2.1 CSP

An instance I of the CONSTRAINT SATISFACTION PROBLEM (or CSP, for short) is a
triple (V,D, C), where V is a finite set of variables, D is a mapping that assigns each
variable v ∈ C a finite set D(v) of domain values, and C is a finite set of constraints.
We write D =

⋃
v∈V D(x).

Each constraint in C is a pair (S,R), where S, the constraint scope, is a non-empty
sequence of distinct variables of V , and R, the constraint relation, is a relation over D
whose arity matches the length of S; a relation is considered as a set of tuples. There-
fore we also call such a constraint a table constraint. The size of a CSP instance
I = (V,D, C) is the sum

∑
(S,R)∈C |S| · |R|. We write var (C) for the set of variables

that occur in the scope of constraint C.
An assignment or instantiation is a mapping from the set V of variables to the do-

main D. An assignment τ satisfies a constraint C = ((x1, . . . , xn), R) if

274 R. de Haan, I. Kanj, and S. Szeider

(τ(x1), . . . , τ(xn)) ∈ R, and τ satisfies the CSP instance if it satisfies all its constraints.
An instance I is consistent or satisfiable if it is satisfied by some assignment. CSP is
the problem of deciding whether a given instance of CSP is consistent.

Bounding the treewidth is a classical method for restricting the structure of CSP
instances. The method dates back to Freuder [15]. Treewidth is a graph parameter that
can be applied to CSP in terms of primal graphs or incidence graphs giving rise to
the CSP parameters primal treewidth (also called induced width [11]) and incidence
treewidth, respectively [35]. For self-containment we give the definitions. The primal
graph of a CSP instance I has as vertices the variables of I , and two variables are joined
by an edge if and only if the variables occur together in some constraint of I . The
incidence graph is a bipartite graph, one side of which consists of the variables and the
other side consists of the constraints; a variable and a constraint are joined by an edge
if the variable occurs in the constraint. A tree decomposition of a graph G = (V,E) is
a pair (T, χ) consisting of a tree T and a mapping χ that assigns to each node t of T
a subset χ(t) ⊆ V such that the following conditions are satisfied: (i) for every edge
{u, v} ∈ E there is a node t of T such that u, v ∈ χ(t); and (ii) for any three nodes
t1, t2, t3 of T we have χ(t2) ⊆ χ(t1) ∩ χ(t3) if t2 lies on a path between t1 and t3.
The width of (T, χ) is the size of a largest set χ(t) minus 1. The treewidth of G is the
smallest width over all its tree decompositions.

For an instance I = (V,D, C) of CSP we define the following basic parameters:

– vars: the number |V | of variables, usually denoted by n;
– dom: the number |D| of values;
– cons: the number |C| of constraints;
– arity: the maximum size of a constraint scope;
– tw: the treewidth of the primal graph of I;
– tw∗: the treewidth of the incidence graph of I .

BOOLEAN CSP denotes the CSP with the Boolean domain {0, 1}. CNF-SAT is the
satisfiability problem for propositional formulas in conjunctive normal form (CNF). k-
CNF-SAT denotes CNF-SAT restricted to formulas where each clause is of width at
most k, i.e., contains at most k literals.

2.2 Global Constraints

It is often preferred to represent a constraint more succinctly than by listing all the
tuples of the constraint relation. Such an intensionally represented constraint is called a
global constraint [33,36]. The Global Constraints Catalogue [1] lists several hundred
of global constraints. In this paper we focus on the following global constraints.

– The AllDifferent global constraint is probably the best-known, most influential, and
most studied global constraint in constraint programming [36]. It admits efficient
matching based filtering algorithms [31]. An AllDifferent constraint over a set S of
variables is satisfied if each variable in S is assigned a different value.

– The global constraints NValue [29], AtLeastNValue [32], and AtMostNValue [2] are
widely used in constraint programming [1]. Each such constraint C is associated
with an integer nC ∈ N. The NValue constraint C over a set S of variables is

Subexponential Time Complexity of CSP with Global Constraints 275

satisfied if the number of distinct values assigned to the variables in S is exactly nC .
The AtLeastNValue and AtMostNValue constraints are satisfied if the number of
distinct values is ≤ nC or ≥ nC , respectively. The special case of an NValue or
AtLeastNValue constraint C where nC equals the arity of C is equivalent to an
AllDifferent constraint.

– The global constraint cTable is a table constraint with compressed tuples. This
global constraint admits a potentially exponential reduction in the space compared
to an extensional table constraint and can be propagated using a variant of the GAC-
schema algorithm [24]. cTable constraints have also been studied under the name
generalized DNF constraints [6]. A cTable constraint is a pair (S,U) where S =
(v1, . . . , vr) is a non-empty sequence of distinct variables, and U is a set of com-
pressed tuples, which are sequences of the form (V1, . . . , Vr), where Vi ⊆ D(vi),
1 ≤ i ≤ r. One compressed tuple (V1, . . . , Vr) represents all the tuples (d1, . . . , dr)
with di ∈ Vi. Thus, by “decompression” one can compute from (S,U) a (unique)
equivalent table constraint (S,R) where R contains all the tuples that are repre-
sented by the compressed tuples in U .

The CSP where all constraints are AllDifferent constraints is denoted CSP�=. This vari-
ant of the CSP was studied by Fellows et al. [13] who called it MAD-CSP (multiple all
different CSP). The CSP where all constraints are NValue, AtLeastNValue, or AtMost-
NValue constraints, is denoted CSP=, CSP≥, and CSP≤, respectively. The CSP where
all constraints are cTable constraints is denoted CSPc.

We note that all the problems CSP�=, CSP=, CSP≥, CSP≤, CSPc, are NP-complete.
In fact, CSP �= (and therefore the more general problems CSP≥, CSP≤) is even NP-hard
for instances consisting of two constraints only [26], and CSP≤ is even NP-hard for
instances consisting of a single constraint [3]. CSPc is clearly NP-hard as it contains
the classical CSP (with table constraints) as a special case. Hence all the considered
problems admit the representation of NP-hard combinatorial problems.

Consider a CSP instance that models some real-world problem and uses, among oth-
ers, some of the global constraints considered above, say the AllDifferent constraint.
Then, we can combine all the AllDifferent constraints in the instance into a new global
constraint, a multi-AllDifferent constraint. Filtering this combined constraint is polyno-
mial time equivalent to solving one instance of CSP �=. Such a combination of several
global constraints into a new one has been considered for several different global con-
straints (see, e.g., [20,34]).

Guarantees and limits for polynomial-time preprocessing for single NValue, AtLeast-
NValue, and AtMostNValue constraints have been given by Gaspers and Szeider [18].

The Boolean versions of the above global constraints problems, and the parameters
vars, dom, cons, arity, tw, and tw∗, are defined as in the CSP.

2.3 Subexponential Time Complexity

The time complexity functions used in this paper are assumed to be proper complexity
functions that are unbounded and nondecreasing.

It is clear that CSP and CNF-SAT are solvable in time domn|I|O(1) and 2n|I|O(1),
respectively, where I is the input instance and n is the number of variables in I . We

276 R. de Haan, I. Kanj, and S. Szeider

say that the CSP (resp. CNF-SAT) problem is solvable in (uniform) subexponential
time if there exists an algorithm that solves the problem in time domo(n)|I|O(1) (resp.
2o(n)|I|O(1)). Using the results of [9,14], the above definition is equivalent to the fol-
lowing: The CSP (resp. CNF-SAT) problem is solvable in subexponential time if there
exists an algorithm that for all ε = 1/�, where � is a positive integer, solves the problem
in time domεn|I|O(1) (resp. 2εn|I|O(1)). This means that we can improve the exponent
in the exponential-term of the running time of the algorithm indefinitely.

Let Q and Q′ be two problems, and let μ and μ′ be two parameter functions defined
on instances of Q and Q′, respectively. In the case of CSP and CNF-SAT, μ and μ′ will
be the number of variables in the instances of these problems. A subexponential time
Turing reduction family (SERF-reduction) [14,22] is an algorithm A with an oracle to
Q′ such that there are computable functions f, g : N −→ N satisfying: (1) given a
pair (I, ε) where I ∈ Q and ε = 1/� (� is a positive integer), A decides I in time
f(1/ε)domεμ(I)|I|O(1) (for CNF-SAT dom = 2); and (2) for all oracle queries of the
form “I ′ ∈ Q′” posed by A on input (I, ε), we have μ′(I ′) ≤ g(1/ε)(μ(I) + log |I|).

Since we focus on the super-polynomial factor in the running time, we will often use
the O∗ notation, which suppresses the polynomial factor in the input length |I|.

The optimization class SNP consists of all search problems expressible by second-
order existential formulas whose first-order part is universal [30]. [22] introduced the
notion of completeness for the class SNP under serf-reductions, and identified a class
of problems which are complete for SNP under serf-reductions, such that the subex-
ponential time solvability for any of these problems implies the subexponential time
solvability of all problems in SNP. Many well-known NP-hard problems are proved
to be complete for SNP under the serf-reduction, including 3-SAT, VERTEX COVER,
and INDEPENDENT SET, for which extensive efforts have been made in the last three
decades to develop subexponential time algorithms with no success. This fact has led to
the exponential-time hypothesis, ETH, which is equivalent to the statement that not all
SNP problems are solvable in subexponential time:

Exponential-Time Hypothesis (ETH): The problem k-CNF-SAT, for any k ≥ 3,
cannot be solved in time 2o(n), where n is the number of variables in the formula.
Therefore, there exists c > 0 such that k-CNF-SAT cannot be solved in time 2cn.

The following result is implied, using the standard technique of renaming variables,
from [22, Corollary 1] and from the proof of the Sparsification Lemma [22], [14, Lemma
16.17].

Lemma 1. k-CNF-SAT (k ≥ 3) is solvable in 2o(n) time if and only if k-CNF-SAT

with a linear number of clauses and in which the number of occurrences of each vari-
able is at most 3 is solvable in time 2o(n), where n is the number of variables in the
formula (note that the size of an instance of k-CNF-SAT is polynomial in n). In par-
ticular, choosing k = 3 we get: 3-CNF-SAT in which every variable occurs at most 3
times, denoted 3-3-SAT, is not solvable in 2o(n) time unless the ETH fails.

The ETH has become a standard hypothesis in complexity theory [27].

Remark 1. In this paper, when we consider the CSP with global constraints restricted
to instances in which a certain parameter isΩ(g(n)) (resp. ω(g(n)), O(g(n)), o(g(n))),

Subexponential Time Complexity of CSP with Global Constraints 277

for some proper complexity function g(n) of the number of variables n in the instance,
we mean the CSP restricted to all the instances in which the parameter is upper bounded
by a (prespecified) function that is Ω(g(n)) (resp. ω(g(n)), O(g(n)), o(g(n))).

3 The Problem CSP �=

Let I be an instance of CSP �= with constraints C1, . . . , Cc for some integer c > 0, over
the set of variables {x1, . . . , xn}. Denote by Di, i = 1, . . . , n, the domain of xi.

Proposition 1. CSP �= can be solved in time O∗(2n).

Proof. We reduce the instance I to an instance of LIST COLORING. Construct the
graphG whose vertices are x1, . . . , xn (without loss of generality, we label the vertices
in G with their corresponding variables’ names in I) and such that there is an edge
between two vertices xi and xj , 1 ≤ i < j ≤ n if and only if xi and xj appear
together in some constraint in I. For each vertex xi in G, associate with it a list of
colors Li = Di. It is not difficult to see that I is a yes-instance of CSP �= if and only if
the graph G has a proper list coloring. It is known that LIST COLORING is solvable in
time O∗(2n) [4], and hence so is CSP �=. ��

Corollary 1. Let d(n) = ω(1) be a proper complexity function. The CSP�= restricted
to instances in which dom ≥ d(n) is solvable in subexponential time.

Proof. Let d(n) = ω(1) be a proper complexity function, and consider the CSP �= re-
stricted to instances in which dom ≥ d(n). By Proposition 1, CSP �= is solvable in time
O∗(2n) = O∗(d(n)n/ log (d(n))) ⊆ O∗(domo(n)). ��

By Corollary 1, we can focus our investigation of the subexponential time complexity
of the problem CSP�= on instances in which dom = O(1) = d, for some constant d.
Note that dom is an upper bound on arity because each constraint must have arity at
most dom (otherwise it cannot be satisfied). If d ≤ 2, then each constraint can have
arity at most 2, and CSP �= in this case reduces to 2-CNF-SAT, which is in P. Therefore,
we can assume in the remainder of this section that d ≥ 3.

Proposition 2. Unless the ETH fails, CSP �= restricted to instances in which dom =
d ≥ 3 and cons = Ω(n) is not solvable in subexponential time.

Proof. It suffices to prove the result for cons = s(n), where s(n) is any specific func-
tion such that s(n) = Θ(n), as the result would extend using a padding argument to
any function that is linear in n (we can add new “dummy” variables and new “dummy”
constraints on those new variables to make the relation between the constraints and the
variables satisfy the desired function s()).

By Lemma 1, 3-3-SAT is not solvable in subexponential time unless ETH fails. The
standard polynomial-time reduction from 3-SAT to 3-COLORABILITY (see [10]), es-
tablishing the NP-hardness of 3-COLORABILITY, reduces an instance of 3-SAT on n
variables andm clauses to an instance of 3-COLORABILITY withO(n+m) vertices and
O(n+m) edges. Therefore, if we use the same reduction but start from 3-3-SAT instead

278 R. de Haan, I. Kanj, and S. Szeider

of 3-SAT, we end up with an instance of 3-COLORABILITY in which the number of ver-
tices is O(n) and the number of edges is O(n) as well. Let LINEAR-3-COLORABILITY

be the restriction of 3-COLORABILITY to instances in which the number of edges
is linear in the number of vertices. The previous argument shows that if LINEAR-3-
COLORABILITY is solvable in subexponential time then so is 3-3-SAT, and then the
ETH would fail. Now if we use the standard reduction from 3-COLORABILITY to CSP �=

(in which each vertex becomes a variable, each edge becomes a constraint of arity 2, and
the domain is the set of 3 colors), but instead we start from an instance of LINEAR-3-
COLORABILITY, we obtain an instance of CSP �= on n variables (the same as the number
of vertices in the graph), linear number of constraints, and domain size dom = 3. There-
fore, the previous reduction is a SERF-reduction from LINEAR-3-COLORABILITY to
the restriction of CSP �= to instances in which the number of constraints is linear, and
dom = 3. Combining the above sequence of arguments proves the proposition. ��
Remark 2. We do not consider the restriction of CSP �= to instances in which cons =
o(n) and dom = O(1). This is because each constraint must have arity ≤ dom, and
hence, if cons = o(n) then it would follow that the total number of variables is o(n). It
follows that Proposition 2 and Corollary 1 provide tight characterizations of the subex-
ponential time complexity of CSP �= with respect to each of cons and dom.

The following proposition provides a tight characterization of the subexponential
time complexity of CSP �= with respect to the treewidth of the primal graph:

Proposition 3. CSP �= is solvable in subexponential time for instances in which tw =
o(n), and unless the ETH fails, CSP�= is not solvable in subexponential time for in-
stances in which tw = Ω(n).

Proof. Let I be an instance of CSP �= such that the treewidth of its primal graph is
o(n). Since the arity of each constraint in I is at most d and the domain size is d, in
polynomial time we can reduce I to an instance of CSP on the same set of variables,
and with the same domain, constraints, and primal treewidth. It is well known [16]
that CSP is solvable in time O∗(dtw) ⊆ O∗(do(n)), and hence I can be decided in
subexponential time.

The hardness result follows from a general observation about the primal treewidth
of the CSP. First note that the number of variables n is an upper bound on the primal
treewidth; that is, tw ≤ n. Therefore, for any upper bound s(n) = Ω(n) on tw, using
a padding argument (adding a linear number of dummy new variables and singleton
constraints that do not increase the primal treewidth) we can reduce a general instance of
CSP �= to an instance in which tw ≤ s(n) at the cost of a linear increase in the number of
variables and the instance size. This provides a SERF-reduction from a general instance
of CSP�= to an instance in which tw ≤ s(n) = Ω(n). The result now follows from the
same result for CSP �= on general instances (implied, e.g., from Proposition 2).1 ��

It is well-known that (see [25]) tw ≤ arity·(tw∗−1) and tw∗ ≤ tw+1. If arity = O(1),
then tw and tw∗ are within a multiplicative constant from one another. Therefore, from
Proposition 3 we can infer the following tight result:

1 This padding argument applies as well to the other variants of the CSP with global constraints
considered in this paper, and will prove useful for the hardness results on their subexponential
time complexity when tw ≤ s(n) = Ω(n).

Subexponential Time Complexity of CSP with Global Constraints 279

Proposition 4. CSP �= is solvable in subexponential time for instances in which tw∗ =
o(n), and unless the ETH fails, CSP�= is not solvable in subexponential time for in-
stances in which tw∗ = Ω(n).

Remark 3. There are several width parameters for CSP that are even more general
than tw∗ in the sense that any instances for which tw∗ is small, also the other width
parameter is small; but there are instances for which the other width parameter is small
but tw∗ can be arbitrarily large. Prominent examples for such with parameters are hyper-
tree width [19] and submodular width [28]. The lower bound statement of Proposition 4
clearly carries over to the more general width parameters. The same holds true for the
lower bound statements in Proposition 7 and Theorem 3.

4 The Problems CSP= , CSP≥, and CSP≤

We start by presenting an exact algorithm for CSP≥; we do so by reducing CSP≥ to
CSP �=. We use the example illustrated in Figure 1 as a running example to explain the
idea behind this reduction. In this example, the instance I of CSP≥ consists of three
constraints C1, C2, C3, where the variables in C1 are x1, x2, x3, x4, the variables in C2

are x4, x5, and the variables in C3 are x1, x5, x6, x7. The domain of x1 is {a, b}, the
domain of both x2 and x3 is {b}, the domain of x4 is {b, c}, the domain of x5 is {a},
and the domain of both x6 and x7 is {d, e}. The number of distinct values that need to
be assigned to the variables of C1 is at least 3, to the variables of C2 is at least 2, and to
the variables of C3 is at least 3.

In a solution S (i.e., an assignment of variables to domain values) to an instance I of
CSP≥, and for a constraintC in I, it is possible for several variables inC to be assigned
the same value by the solution S (in the running example we are forced to assign both
x2 and x3 the value b). Therefore, if we attempt a straightforward reduction from CSP≥

to CSP �= that produces the same instance I, the solution S to I as an instance of CSP≥

may not be a solution to I as an instance of CSP �=. It is possible that the above happens
due to the fact that there are variables in I that can be removed without affecting the
satisfiability of I, because there is a solution to I in which each constraint will still be
satisfied without considering the values assigned to those variables.

The algorithm starts by trying each subset of the variables as a subset for which there
exists a solution in which each of those variables is “essential” for this solution; the
algorithm then removes all the other (nonessential) variables, updates the instance, and
works toward finding a solution under this assumption in the resulting instance. (In the
running example, we remove x3 fromC1; see the Venn diagram on the left in Figure 1.)
Even with the above assumption, it is still possible that in a solution to the resulting
instance, two variables in a constraintC are assigned the same value. One cannot simply
ignore (remove) one of these variables on the basis that removing it will not affect the
satisfiability of C, because the removed variable may contribute to the satisfiability of a
constraint other than C, in which this variable appears as well. (In the running example,
we are forced to assign both x1 and x5 the same value, which would violate constraint
C3 of CSP �=.) Therefore, the resulting instance, even though it may be a satisfiable
instance of CSP≥, it may not be a satisfiable instance of CSP �=. However, as it will be
shown in Lemma 2, it is possible in such an instance to “reassign” each variable to a

280 R. de Haan, I. Kanj, and S. Szeider

subset of the constraints that it appears in, so that after this reassignment/repartitioning
each variable contributes to the satisfiability of each constraint that it appears in. After
such a reassignment, the resulting instance of CSP≥ becomes an equivalent instance of
CSP �=. (In the running example, variable x5 is not contributing to C3, and can be safely
reassigned to C2; see the Venn diagram on the right in Figure 1.) We now proceed to
the formal proofs.

C1

C2

C3

x2 x1

x4 x5

x6 x7

C′
1

C′
2

C′
3

x2 x1

x4

x5

x6 x7

Fig. 1. Illustration of the example of the reduction from CSP≥ to CSP �=

Let I be an instance of CSP≥ with constraints C1, . . . , Cc for some integer value
c > 0, over the variables x1, . . . , xn. Let ni, i = 1, . . . , c, be the nonnegative integer
associated with constraint Ci. Denote by Di, i = 1, . . . , n, the domain of variable xi,
and let D =

⋃n
i=1Di. Set k = |D|. If we consider each Ci, i = 1, . . . , c, as a set

consisting of all the variables in Ci, and we draw the Venn diagram for the Ci’s, then
this Venn diagram consists of at most s ≤ 2c many nonempty regions, where each
region Rj , j = 1, . . . , s, is defined as the intersection of all the sets containing the
variables that lie in Rj in the Venn diagram. For a solution S to the instance I, we call
a variable xi essential (to S) if discounting the value assigned to xi by S violates at
least one of the constraints (containing xi), and hence no longer gives a solution to I.
It is clear that by enumerating every subset of the variables in I, which takes O(2n)
time, we can work under the assumption that we are looking for a solution such that
every variable is essential to S. Since we are working on an instance of CSP≥, adding
the nonessential variables to the solution afterwards (and assigning them values from
their domains) will not hurt the solution. Therefore, without loss of generality, we will
assume that each of the variables x1, . . . , xn is essential to the solution sought (if any
exists). We start with the following lemma.

Lemma 2 (The Repartitioning Lemma). Let I be an instance of CSP≥. There is a
solution to I if and only if there is an instance I ′ on the same set of variables as I, and
whose constraints are C′

1, . . . , C
′
c, such that:

(1) the variables in C′
i are a subset of those in Ci, for i = 1, . . . , c;

(2) the numbers n1, . . . , nc are the same in both I and I ′; and

Subexponential Time Complexity of CSP with Global Constraints 281

(3) there is a solution to I ′ satisfying that for every value v, and for any two distinct
variables xi, xj that are assigned the value v in the solution for I ′, the set of con-
straints that xi belongs to in I ′ is disjoint from that that xj belongs to in I ′.

Proof. Suppose that I has a solution S; by the discussion preceding this lemma, we
can assume that every variable is essential to S. We define the instance I ′ on the same
set of variables as I as follows. The constants n1, . . . , nc remain the same in I ′. We
define the constraints in I ′ by a sequence of changes performed to the constraints in I;
initially the constraints of I ′ are identical to those of I. For every value v ∈ D assigned
to some variable by the solution S, let x1v, . . . , x

�
v be the variables assigned the value v

by S. For each xjv , j = 1, . . . , � − 1, considered in the listed order, let Cjv be the set of
constraints containing xjv in I ′, and let Cjv,∪ be the union of all constraints containing
any of the variables xj+1

v , . . . , x�v . Remove xjv from each constraint in Cjv ∩ C
j
v,∪.

We claim that the same solution to I is a solution to I ′ that satisfies all the conditions
in the statement of the lemma. First, from the construction of the constraints in I ′, for
any value v in the solution, the set of constraints containing each variable assigned the
value v are mutually disjoint because each variable xiv (i < �) assigned a value v is re-
moved from each constraint that some subsequent variable in xi+1

v , . . . , x�v is contained
in. Moreover, because each constraintC′

i is obtained from Ci only by (possibly) remov-
ing variables from Ci, we have C′

i ⊆ Ci, for i = 1, . . . , c. Finally, when a variable xiv
that is assigned a value v is removed from a constraint C′

j , this removal will not affect
the number of different values assigned to the variables in C′

j by S; this is because we
know for sure that there will be a subsequent variable xpv , p ∈ {i + 1, . . . , �}, that is
assigned value v and that will remain in C′

j , namely the variable xpv with the maximum
index p that appears in C′

j .
Conversely, because each C′

i is a subset of Ci, for i = 1, . . . , c, it is easy to see that
any solution to I ′ is also a solution to I. ��

Theorem 1. CSP≥ can be solved in time O∗((2(cons+1) + 1)n).

Proof. Let I be an instance of CSP≥ with constraints C1, . . . , Cc for some integer
c > 0, over the variables x1, . . . , xn. Let ni, i = 1, . . . , c, be the nonnegative integer
associated with constraint Ci.

We first enumerate each subset of the variables {x1, . . . , xn} as the subset of essen-
tial variables for the solution S sought. Fix such an enumerated subset X , remove the
other variables from I, and update the instance accordingly (i.e., update the constraints);
without loss of generality, we will still refer to the resulting instance as I.

By Lemma 2, there is a solution to I if and only if there is an instance I ′ on the same
set of variables as I, and whose constraints are C′

1, . . . , C
′
c, such that: (1) the variables

in C′
i form a subset of those in Ci, for i = 1, . . . , c, (2) the numbers n1, . . . , nc are the

same in both I and I ′, and (3) there is a solution to I ′ satisfying that for every value v,
and for any two distinct variables xi, xj that are assigned the value v in the solution
for I ′, the set of constraints that xi belongs to in I ′ is disjoint from that that xj belongs
to in I ′.

To find the instance I ′, we will try every possible partitioning of the variables in X
into c constraints to determine the new constraintsC′

1, . . . , C
′
c in I ′. For each such parti-

tioning π in whichC′
i ⊆ Ci and at least ni variables are in C′

i, for i = 1, . . . , c, we form

282 R. de Haan, I. Kanj, and S. Szeider

the instance of CSP �= on the set of variables X and the set of constraints C′
1, . . . , C

′
c,

and invoke the algorithm for CSP �= described in Proposition 1 on this instance; if the
algorithm returns a solution then we return the same solution as a solution to I. If for
each enumerated subset X and each enumerated partitioning π the algorithm for CSP �=

rejects, then we reject the instance I.
It is easy to see the correctness of the above algorithm. Clearly, if there is a solution

to the CSP �= instance then there is a solution to I ′, and hence to I. This is because
each constraint contains at least ni variables, which must receive ni distinct values in
the solution to the CSP �= instance, hence satisfying each constraint Ci and satisfying I.
On the other hand, if I has a solution, then there is an enumerated partitioning of the
variables in X that will correspond to the constraints in I ′. Now because there is a
solution to I ′ that satisfies properties (1)-(3) in Lemma 2, no two variables in the same
constraint of I ′ receive the same value v in this solution (by property (3)). Therefore,
this solution will also be a solution to the constructed instance of CSP �=. This shows
the correctness of the above algorithm.

The running time of the algorithm is the time taken to enumerate all subsets of the
variables, and for each subset X , the time to enumerate all partitions of X into c con-
straints, and finally for each such partition the time taken to invoke the CSP �= algo-
rithm on the resulting instance. The number of subsets of variables of {x1, . . . , xn} is∑n

i=0

(
n
i

)
. For each subset of cardinality i, there are at most 2ci many ways of partition-

ing it into c constraints. Finally, for each instance on i variables, the CSP �= algorithm
takesO∗(2i) time. Putting everything together, the overall running time of the algorithm
is a polynomial factor multiplied by:

n∑
i=0

(
n

i

)
· 2ci · 2i =

n∑
i=0

(
n

i

)
· 2(c+1)i = (2(c+1) + 1)n.

Therefore, the running time of the algorithm is O∗((2(cons+1)+1)n) as claimed. ��

Corollary 2. CSP≥ restricted to instances in which cons = O(1) is solvable in
O∗(2O(n)) time.

Corollary 3. CSP≥ restricted to instances in which cons = o(log dom) is solvable in
subexponential time.

Proof. The result follows from Theorem 1 after noticing that if cons = o(log dom)
then 2cons = domo(1). ��

Proposition 5. Let d(n) = ω(1) be a proper complexity function. Then CSP≥ re-
stricted to instances in which cons = O(1) and dom ≥ d(n) is solvable in subexponen-
tial time, and unless the ETH fails, CSP≥ restricted to instances in which cons = Ω(n)
(even when dom = O(1)) is not solvable in subexponential time.

Proof. The positive result follows from Corollary 3. The hardness result follows from
the hardness result for CSP �= in Proposition 2 (CSP�= is a special case of CSP≥). ��

Theorem 2. CSP≤ restricted to instances where dom = O(1) and cons = Ω(n) is
not solvable in subexponential time, unless the ETH fails.

Subexponential Time Complexity of CSP with Global Constraints 283

Proof. We give a SERF-reduction from 3-3-SAT to CSP≤; the result will then fol-
low by Lemma 1. Take an instance ϕ of 3-3-SAT with n variables. We construct in
polynomial time an instance of CSP≤, with cons = O(n) and dom = O(1) that is
a yes-instance if and only if ϕ ∈ 3-3-SAT. We proceed in two steps: firstly, we mod-
ify the well-known polynomial-time reduction from 3-SAT to VERTEX COVER [17] to
a reduction from 3-3-SAT to CSP≤, resulting in an instance with cons = O(n) and
dom = O(n); secondly, we transform this instance of CSP≤ to an equivalent instance
of CSP≤ with cons = O(n) and dom = O(1).

We start with the first step. Let ϕ consist of the clauses c1, . . . , cm, where ci =
li1∨li2∨li3 for each 1 ≤ i ≤ m. The well-known reduction to VERTEX COVER produces
a graphG = (V,E), containing vertices vx, vx for each variable x occurring in ϕ, and a
vertex vij for each literal occurrence, where 1 ≤ i ≤ m and 1 ≤ j ≤ 3. The variables vx
and vx are adjacent, for each variable x, and the vertices vi1, v

i
2, v

i
3 form a triangle,

for each 1 ≤ i ≤ m. Moreover, there is an edge between vij and vl, where l = lij .
Then ϕ is satisfiable if and only if G has a vertex cover consisting of n + 2m vertices.
More specifically, ϕ is satisfiable if and only if G has a vertex cover containing exactly
one vertex from vx, vx for each variable x and exactly two vertices from vi1, v

i
2, v

i
3 for

each 1 ≤ i ≤ m. We now construct an instance of CSP≤ as follows. For each edge e =
{v1, v2} ∈ E, we introduce a variableue with domain {v1, v2}. Then, for each clause ci,
we define the set Eci to consist of all edges between vi1, v

i
2, v

i
3, between vij and vlij and

between vlij and v
lij

, for each 1 ≤ j ≤ 3. Then, we add a constraint ensuring that
the variables ue for all nine e ∈ Eci take at most 5 different values. The assignments
to the variables ue that satisfy all these constraints exactly correspond to the vertex
covers of G containing exactly one vertex from vx, vx for each variable x and exactly
two vertices from vi1, v

i
2, v

i
3 for each 1 ≤ i ≤ m. These particular vertex covers, in

turn, correspond exactly to truth assignments (which set one of x, x to true, for each
variable x) satisfying ϕ. The construction of such a constraint is illustrated in Figure 2.

In the second step, we transform the instance of CSP≤ in such a way that dom =
O(1). In order to do so, we will use the following observation. Whenever two
vertices v1, v2 ∈ V have the property that there is no constraint both containing a

◦ •
vi2

•
vi1

• vi3

◦◦

◦•
vx4

•
vx4

◦•
vx1

•
vx1

◦•
vx5

•
vx5

◦
◦

◦

◦ •
vj2

•
vj1

• vj3

◦◦

◦•
vx6

•
vx6

◦•
vx7

•
vx7

◦
◦

◦

Fig. 2. The CSP≤ constraints corresponding to example clauses ci = (x1 ∨ x4 ∨ x5) and cj =
(x5 ∨ x6 ∨ x7). Variables are denoted by ◦, and values by •. The constraints are indicated by
dashed lines. The nine variables in each constraint must be assigned to at most 5 different values.
The double lines indicate an assignment to the variables satisfying the constraint that corresponds
to the truth assignment {x1 �→ �, x4 �→ ⊥, x5 �→ �, x6 �→ �, x7 �→ ⊥}.

284 R. de Haan, I. Kanj, and S. Szeider

variable ue1 for some edge e1 incident with v1 and a variable ue2 for some edge e2 in-
cident with v2, then we can safely identify the domain values v1 and v2 in the instance
of CSP≤. Consequently, we can identify all m many domain values v11 , . . . , v

m
1 into a

single value, and similarly identify all domain values v12 , . . . , v
m
2 and v13 , . . . , v

m
3 . Next,

to reduce dom even more, we will identify a number of domain values vx with each
other (and similarly identify their complementary values vx with each other). Consider
the primal graph of ϕ, i.e., the graphGp

ϕ containing as vertices the variables of ϕ where
two vertices x, x′ are adjacent if and only if x and x′ occur together in a clause (pos-
itively or negatively). Since each variable occurs at most 3 times in ϕ, we know that
the maximum degree of Gp

ϕ is bounded above by 8. Then, by Brooks’ Theorem [5],
we know that there exists a proper coloring of Gp

ϕ by at most 9 colors, and that such
a coloring can be computed in linear time. Take such a proper coloring c of Gp

ϕ. Now,
for each color b used by the coloring c, we let Xb ⊆ Var(ϕ) be the set of variables x
such that c(x) = b. Then, since c is a proper coloring of the primal graph Gp

ϕ of ϕ,
we know that for any color b no two variables x, x′ ∈ Xb occur together in any clause
of ϕ. Therefore, for each color 1 ≤ b ≤ 3 we can safely identify all domain values vx
for x ∈ Xb with each other in the instance of CSP≤, and similarly we can safely iden-
tify all domain values vx for x ∈ Xb with each other. This results in an equivalent
instance of CSP≤ with cons = O(n) and dom = O(1). ��

We next consider the subexponential time complexity of the CSP=, CSP≥, and
CSP≤ with respect of the primal treewidth. We have the following tight result:

Proposition 6. CSP=, CSP≥, and CSP≤ restricted to instances in which tw = o(n)
are solvable in subexponential time, and unless the ETH fails, CSP=, CSP≥, and
CSP≤ restricted to instances in which tw = Ω(n) are not solvable in subexponential
time.

Proof. The proof of this proposition for each of the CSP=, CSP≥, and CSP≤ is exactly
the same as the proof of Proposition 3. ��

Finally, the following hardness result for CSP= and CSP≥ with respect to tw∗ fol-
lows from Proposition 4 since CSP �= is a special case of each of CSP= and CSP≥:

Proposition 7. Unless the ETH fails, CSP= and CSP≥ are not solvable in subexpo-
nential time for instances in which tw∗ = Ω(n).

5 The Problem CSPc

We start by providing strong evidence that BOOLEAN CSPc is not solvable in subex-
ponential time. By SAT[3] we denote the satisfiability of normalized propositional
formulas of depth 3 (see [14]), that is, propositional formulas that are the conjunction-
of-disjunction-of-conjunction of literals. It is well known that if SAT[3] is solvable in
time O∗(2o(n)) then the W -hierarchy in parameterized complexity collapses at the sec-
ond level [7], that is, W [2] = FPT, which is a consequence that is deemed very unlikely
and would imply that the ETH fails [14]. We have the following result:

Subexponential Time Complexity of CSP with Global Constraints 285

Proposition 8. UnlessW [2] = FPT, BOOLEAN CSPc is not solvable in timeO∗(2o(n)).

Proof. It is easy to see that an instance of SAT[3] is polynomial-time reducible to an
instance of BOOLEAN CSPc on the same set of variables. In this reduction, every dis-
junction of conjunction of literals in the Boolean formula is associated with a cTable
constraint, where each compressed tuple (V1, . . . , Vr) of this constraint represents a
conjunction of literals: a positive literal xi is represented by Vi = {1}, a negative literal
¬xi is represented by Vi = {0}, and if a variable xi does not occur in the conjunction,
it is represented by Vi = {0, 1}. Therefore, there is a SERF-reduction from SAT[3] to
BOOLEAN CSPc. The statement now follows from the result in [7]. ��

Next, we consider the subexponential time complexity of CSPc with respect to the
number of constraints cons. We have the following proposition:

Proposition 9. CSPc restricted to instances in which cons = O(1) is solvable in subex-
ponential time (even in P), and unless the ETH fails, CSPc restricted to instances in
which cons = ω(1) is not solvable in subexponential time.

Proof. If the number of constraints in an instance is O(1), then in polynomial time we
can enumerate each subset of tuples T such that T contains exactly one compressed
tuple from each constraint in the instance (because the size of T is O(1)). We can then
verify consistency, and deduce an instantiation of the set of variables if it exists in poly-
nomial time. The hardness result follows from the same hardness result for CSP [23]
since CSP is a special case of CSPc. ��

The following theorem provides a tight characterization of the subexponential time
complexity of CSPc with respect to the primal and incidence treewidth.

Theorem 3. The following statements are true:

(i) CSPc restricted to instances in which tw = o(n) is solvable in subexponential time,
and unless the ETH fails, CSPc restricted to instances in which tw = Ω(n) is not
solvable in subexponential time.

(ii) CSPc restricted to instances in which tw∗ = O(1) is solvable in subexponential
time (even in P), and unless the ETH fails, CSPc restricted to instances in which
tw∗ = ω(1) is not solvable in subexponential time.

Proof. (i) Note that an upper bound on the primal treewidth implies the same upper
bound on the arity. Let I be an instance of CSPc whose tw = o(n). Since arity = o(n),
each constraint contains at most d(n)o(n) many satisfying tuples. By decompressing
compressed tuples, i.e., by enumerating all the satisfying tuples in each constraint in
time O∗(d(n)o(n)) we can reduce the instance I to an instance of CSP on the same set
of variables, domain, and primal tree width. It is well known [16] that CSP is solvable
in time O∗(d(n)tw) ⊆ O∗(d(n)o(n)), and hence I can be decided in subexponential
time. The hardness result follows from the same hardness result for the CSP [23].

(ii) The hardness result is a direct consequence of the hardness result in Proposition 9,
since cons is an upper bound on tw∗. Establishing the first statement requires some work.
Consider an instance I of CSPc whose incidence treewidth is a constant w.

286 R. de Haan, I. Kanj, and S. Szeider

We apply a construction of [35] to transform I into an equivalent instance I ′ of
CSPc whose incidence treewidth is at most w + 1 and where each variable appears in
the scope of at most 3 constraints. The construction keeps all constraints of I and adds
binary equality constraints and copies of variables. The equality constraints enforce
that a variable and all its copies get assigned the same value. The construction in [35]
is stated for table constraints but clearly works also for cTable, since the constraints of
I are not changed at all, and the newly introduced constraints are binary.

Consider the dual graph Gd of I ′ which has as vertices the constraints of I ′, and
where two constraints are joined by an edge if and only if they share at least one variable.
Because each variable appears in the scope of at most 3 constraints, a further result
of [35, Lemma 2(5)] applies, which is based on a construction due to Kolaitis and
Vardi [25], and from which it follows that the treewidth of Gd is at most 2w + 2.

Next we obtain the CSP instance I ′′ which is “dual” to the instance I ′. This con-
struction is a straightforward generalization of a known construction for CSP with table
constraints (see, e.g., [11, Definition 2.1]). Each constraint C = (S,U) of I ′ gives rise
to a variable x[C] of I ′′; the domainD(x[C]) is U , a set of compressed tuples. Between
any two variables x[C1], x[C2] of I ′′ corresponding to constraints C1 = (S1, U1) and
C2 = (S2, U2), respectively, of I ′ that share at least one variable we add a binary table
constraint ((x[C1], x[C2]), R). Here, the relationR contains all pairs (t1, t2) ∈ U1×U2

that are consistent in the sense that for all variables x that appear in the scopes of C1

and C2, the coordinate V 1
i of t1 corresponding to x and the coordinate V 2

j of t2 cor-
responding x have a nonempty intersection. It is straightforward to see that I ′ and I ′′
are equivalent. It remains to observe that Gd is isomorphic to the primal graph of I ′′,
and hence the primal treewidth of I ′′ is 2w + 2, a constant. Hence we can solve I ′′ in
polynomial time [16]. ��

As it turns out, both CSP and CSPc exhibit the same subexponential time complexity
behavior with respect to the same restrictions on the structural parameters considered
above. On the other hand, the negative result proved in Proposition 8 for the BOOLEAN

CSPc is stronger than that known for BOOLEAN CSP [23], the latter of which states that
a (nonuniform) subexponential time algorithm for CSP implies a (nonuniform) subex-
ponential time algorithm for CNF-SAT.

6 Conclusion

We have provided a first analysis of the subexponential time complexity of CSP with
global constraints, focusing on instances that are composed of the fundamental global
constraints AllDifferent, AtLeastNValue, AtMostNValue, and cTable, respectively. Our
results show a detailed complexity landscape for these problems under various natural
structural restrictions. In most cases, we were able to obtain tight bounds that exactly
determine the borderline between the classes of instances that can be solved in subex-
ponential time, and those for which the existence of subexponential time algorithms
is unlikely. There are several ways for extending the current work such as consider-
ing other global constraints, the combination of different global constraints, and other
structural restrictions on the primal or incidence graphs.

Subexponential Time Complexity of CSP with Global Constraints 287

References

1. Beldiceanu, N., Carlsson, M., Rampon, J.-X.: Global constraint catalog. Technical Report
T2005:08, SICS, SE-16 429 Kista, Sweden (August 2006),
http://www.emn.fr/x-info/sdemasse/gccat/

2. Bessiere, C., Hebrard, E., Hnich, B., Kiziltan, Z., Walsh, T.: Filtering algorithms for the
NValue constraint. Constraints 11(4), 271–293 (2006)

3. Bessière, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of global constraints. In:
McGuinness, D.L., Ferguson, G. (eds.) Proceedings of the Nineteenth National Conference
on Artificial Intelligence, San Jose, California, USA, July 25-29, pp. 112–117. AAAI Press /
The MIT Press (2004)

4. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J.
Comput. 39(2), 546–563 (2009)

5. Brooks, R.L.: On colouring the nodes of a network. Mathematical Proceedings of the Cam-
bridge Philosophical Society 37, 194–197 (1941)

6. Chen, H., Grohe, M.: Constraint satisfaction with succinctly specified relations. J. of Com-
puter and System Sciences 76(8), 847–860 (2010)

7. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong computational lower bounds via parameter-
ized complexity. J. of Computer and System Sciences 72(8), 1346–1367 (2006)

8. Chen, J., Kanj, I., Perkovic, L., Sedgwick, E., Xia, G.: Genus characterizes the complexity of
certain graph problems: Some tight results. Journal of Computer and System Sciences 73(6),
892–907 (2007)

9. Chen, J., Kanj, I.A., Xia, G.: On parameterized exponential time complexity. Theoretical
Computer Science 410(27-29), 2641–2648 (2009)

10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn.
The MIT Press, Cambridge (2009)

11. Dechter, R.: Constraint Processing. Morgan Kaufmann (2003)
12. Demaine, E., Fomin, F., Hajiaghayi, M., Thilikos, D.: Subexponential parameterized algo-

rithms on bounded-genus graphs and H-minor-free graphs. J. ACM 52, 866–893 (2005)
13. Fellows, M.R., Friedrich, T., Hermelin, D., Narodytska, N., Rosamond, F.A.: Constraint sat-

isfaction problems: Convexity makes alldifferent constraints tractable. In: Walsh, T. (ed.) IJ-
CAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence,
Barcelona, Catalonia, Spain, July 16-22, pp. 522–527. IJCAI/AAAI (2011)

14. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Sci-
ence. An EATCS Series, vol. XIV. Springer, Berlin (2006)

15. Freuder, E.C.: A sufficient condition for backtrack-bounded search. J. of the ACM 29(1),
24–32 (1982)

16. Freuder, E.C.: Complexity of k-tree structured constraint satisfaction problems. In: Shrobe,
H.E., Dietterich, T.G., Swartout, W.R. (eds.) Proceedings of the 8th National Conference
on Artificial Intelligence, Boston, Massachusetts, July 29-August 3, 2 vols., pp. 4–9. AAAI
Press / The MIT Press (1990)

17. Garey, M.R., Johnson, D.R.: Computers and Intractability. W. H. Freeman and Company,
New York (1979)

18. Gaspers, S., Szeider, S.: Kernels for global constraints. In: Walsh, T. (ed.) Proceedings of
the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011, pp. 540–545.
AAAI Press/IJCAI (2011)

19. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable queries. J. of
Computer and System Sciences 64(3), 579–627 (2002)

20. Hnich, B., Kiziltan, Z., Walsh, T.: Combining symmetry breaking with other constraints:
Lexicographic ordering with sums. In: AI&M 1-2004, Eighth International Symposium on
Artificial Intelligence and Mathematics, Fort Lauderdale, Florida, USA, January 4-6 (2004)

http://www.emn.fr/x-info/sdemasse/gccat/

288 R. de Haan, I. Kanj, and S. Szeider

21. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. of Computer and System Sci-
ences 62(2), 367–375 (2001)

22. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity?
J. of Computer and System Sciences 63(4), 512–530 (2001)

23. Kanj, I., Szeider, S.: On the subexponential time complexity of CSP. In: Proceedings of the
Twenty-Seventh AAAI Conference on Artificial Intelligence. AAAI Press (2013)

24. Katsirelos, G., Walsh, T.: A compression algorithm for large arity extensional constraints. In:
Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 379–393. Springer, Heidelberg (2007)

25. Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. J. of
Computer and System Sciences 61(2), 302–332 (2000); Special issue on the Seventeenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Seattle,
WA (1998)

26. Kutz, M., Elbassioni, K., Katriel, I., Mahajan, M.: Simultaneous matchings: hardness and
approximation. J. of Computer and System Sciences 74(5), 884–897 (2008)

27. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypoth-
esis. Bulletin of the European Association for Theoretical Computer Science 105, 41–72
(2011)

28. Marx, D.: Tractable hypergraph properties for constraint satisfaction and conjunctive queries.
J. of the ACM 60(6), Art. 42, 51 (2013)

29. Pachet, F., Roy, P.: Automatic generation of music programs. In: Jaffar, J. (ed.) CP 1999.
LNCS, vol. 1713, pp. 331–345. Springer, Heidelberg (1999)

30. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes.
J. of Computer and System Sciences 43(3), 425–440 (1991)

31. Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: Hayes-Roth,
B., Korf, R.E. (eds.) Proceedings of the 12th National Conference on Artificial Intelligence,
Seattle, WA, USA, July 31-August 4, vol. 1, pp. 362–367. AAAI Press / The MIT Press
(1994)

32. Régin, J.-C.: Développement d’outils algorithmiques pour l’Intelligence Artificielle. PhD
thesis, Montpellier II (1995) (in French)

33. Régin, J.-C.: Global constraints: A survey. In: van Hentenryck, P., Milano, M. (eds.) Hybrid
Optimization: The Ten Years of CPAIOR. Optimization and Its Applications, vol. 45, ch. 3,
pp. 63–134. Springer (2011)

34. Régin, J.-C., Rueher, M.: A global constraint combining a sum constraint and difference con-
straints. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 384–395. Springer, Heidelberg
(2000)

35. Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited. J. of Com-
puter and System Sciences 76(2), 103–114 (2010)

36. van Hoeve, W.-J., Katriel, I.: Global constraints. In: Rossi, F., van Beek, P., Walsh, T. (eds.)
Handbook of Constraint Programming, ch. 6. Elsevier (2006)

A New Characterization of Relevant Intervals
for Energetic Reasoning

Alban Derrien and Thierry Petit

TASC (Mines Nantes, LINA, CNRS, INRIA),
4, Rue Alfred Kastler, 44307 Nantes Cedex 3, France

{alban.derrien,thierry.petit}@mines-nantes.fr

Abstract. Energetic Reasoning (ER) is a powerful filtering algorithm for the
Cumulative constraint. Unfortunately, ER is generally too costly to be used in
practice. One reason of its bad behavior is that many intervals are considered
as relevant, although most of them should be ignored. In the literature, heuristic
approaches have been developed in order to reduce the number of intervals to
consider, leading to a loss of filtering. In this paper, we provide a sharp charac-
terization that allows to reduce the number of intervals by a factor seven without
loss of filtering.

1 Introduction

Due to its relevance in many industrial contexts, the NP-Hard Cumulative Scheduling
Problem (CuSP) has been widely studied in Constraint Programming (CP). This prob-
lem is defined on a set of activitiesA consuming a resource of capacityC. Each activity
a ∈ A is defined by four variables: its starting time sa, its processing time pa, its ending
time ea and its height ha, which represents the amount of resource consumed by the ac-
tivity when it is processed. We use the notation a = {sa, pa, ea, ha}. Usually, variables
pa and ha are fixed integers, as well as C. In this paper, we make such assumptions. A
solution to a CuSP is a schedule that satisfies the following constraints:

∀a ∈ A : sa + pa = ea ∧ ∀t ∈ N :
∑

t∈[sa,ea[,a∈A ha ≤ C

In CP, this problem is generally represented by the global constraint Cumulative [1].
The Energetic Reasoning of Baptiste et al. (ER) is one of the most powerful filtering
algorithms for Cumulative [2]. This algorithm uses a characterization of relevant inter-
vals, that is, intervals that are sufficient to check in order to ensure that all the undergo-
ing rules used for filtering domains are satisfied. Unfortunately, ER is often too costly
to be used in practice. First, its time complexity is O(n3). Moreover, the hidden con-
stant in that time complexity is huge, as many intervals are characterized to be relevant
although most of them should be ignored. In the literature, only heuristic approaches
have been proposed for reducing the number of checked intervals [3].

This article provides a sharper characterization of relevant intervals. We reduce the
number of intervals by a factor seven without loss of reasoning. From this theoretical
work, we improve the ER checker and we introduce a new ER propagator. Compared
with state-of-the-art ER techniques for Cumulative, our experiments show a significant
reduction in the running time of both the ER checker and the ER propagator.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 289–297, 2014.
c© Springer International Publishing Switzerland 2014

290 A. Derrien and T. Petit

2 Background

Given a variable x, let x be the minimum value in its domain and x the maximum value.
The principle of ER is to compare the available energy within a given time interval
(length of that interval × capacity) with the energy necessarily taken by activities that
should partially or totally overlap this interval. The minimum energy for an activity can
be found either when the activity is left shifted or right shifted.

We define the part of a left shifted activity a in intersection with an interval [t1, t2[
as LS(a, t1, t2) = max(0,min(ea, t2) − max(sa, t1)). Similarly, for the right shifted
intersection we define RS(a, t1, t2) = max(0,min(ea, t2) − max(sa, t1)). Then the
minimal intersection of activity a with an interval [t1, t2[is:

MI(a, t1, t2)=min(LS(a, t1, t2), RS(a, t1, t2))

Proposition 1 (ER checker [5]). If the condition

∀t1, t2 ∈ N2, t1 < t2 C × (t2 − t1) ≥
∑
i∈A

hi ×MI(i, t1, t2) (1)

is violated then the problem represented by Cumulative is unfeasible.

One issue is then to find the smallest sufficient set of intervals [t1, t2[that should be
checked to detect the unfeasibility.

Proposition 2 (Baptiste et al. characterization). In order to ensure that the condition
of Proposition 1 holds, it is sufficient to consider all pairs of activities (i, j) and check
intervals [t1, t2[from the set OB =

⋃
(i,j)∈A2 OB(i, j), with:

OB(i, j) =

⎧⎨⎩
(t1, t2), t1 ∈ O1(i) < t2 ∈ O2(j)
(t1, t2), t1 ∈ O1(i) < t2 ∈ Ot1(j)
(t1, t2), t2 ∈ O2(j) > t1 ∈ Ot2(i)

and O1(i) = {si, si, ei}, O2(i) = {si, ei, ei}, Ot(i) = {si+ei − t}.

Proposition 1 can also be used to adjust bounds of starting and ending time variables.
We examine if scheduling an activity a at its minimum schedule does not lead to a
failure of condition (1). We first define the available energy for a over interval [t1, t2[
as the capacity of the interval minus the minimum intersection of all other activities:

Avail(a, t1, t2)= C × (t2−t1)−
∑

i∈A\{a}
hi ×MI(i, t1, t2)

Proposition 3. For any activity a if there exists an interval [t1, t2[such that
Avail(a, t1, t2) < ha×LS(a, t1, t2) then the left shift placement of a is not valid and
the activity can not start before t2 − 1

ha
×Avail(a, t1, t2).

Proposition 4. For any activity a there exists an interval [t1, t2[such that
Avail(a, t1, t2) < ha×RS(a, t1, t2) then the right shift placement of activity a is not
valid and a can not end after t1 + 1

ha
×Avail(a, t1, t2).

A New Characterization of Relevant Intervals for Energetic Reasoning 291

Definition 1 (Complete ER propagation). The Complete ER Propagation is obtained
when no activity can be adjusted using Proposition 3 or 4.

The characterization of Proposition 2 is proved to be sufficient in [2] (Proposition 19)
for the ER checker. Two open questions remain. The first one is related to the checker:
The set of relevant intervals OB is proved to be sufficient but could it be reduced? The
second one is related to the propagator: Is OB also sufficient to perform a complete ER
propagation? In the next section, we demonstrate that one can respond affirmatively to
those two questions.

3 The Energetic Reasoning Checker Revisited

Baptiste et al. showned that f1 : (t1, t2)→ C × (t2 − t1)−
∑

i∈A hi ×MI(i, t1, t2) is
continuous and piecewise linear, and that any piece can be bounded by points defined
in their characterization. As extrema of a continuous and piecewise linear function can
only be found on bounds of the pieces their characterization is sufficient. Out of the
scope of Constraint Programming, Schwindt proposed in [9] a study of f1 limited to
local minima in order to compute a lower bound of the makespan. We propose a study
adapted to the computation of relevant intervals for the Energetic Reasoning checker.

Lemma 1. f1 is locally minimum in (t1, t2) only if there exist two activities i and j
such that the two following conditions are satisfied.

∂−MI(i, t1, t2)

∂t1
>
∂+MI(i, t1, t2)

∂t1
(2)

∂−MI(j, t1, t2)

∂t2
>
∂+MI(j, t1, t2)

∂t2
(3)

Proof. By contradiction, let (t1, t2) such that for all activities in A condition (2) is not
satisfied. Then

∑
i∈A hi×MI(i, t1, t2) has its left derivative lower than or equals to it’s

right derivative and f1 has its left derivative greater than or equal to its right. By the
second derivative test, minimal value of a function can only be found at points where
its left derivative is lower than its right derivative. (t1, t2) can not be a local minimum.
Proof is similar for condition (3). This proves the lemma. ��

The set of intervals OB characterizes for any couple of activity (i, j) a total number
of 15 intervals. This number can be reduced thanks to Lemma 1: We can deduce neces-
sary conditions for determining the subset of intervals that are really relevant. We first
characterize the condition for which the end of an interval may be relevant.

Lemma 2. For any activity j and any interval starting time t1 there exists at most one

interval [t1, t2[such that ∂−MI(j,t1,t2)
∂t2

> ∂+MI(j,t1,t2)
∂t2

:

1. if t1≤sj then only [t1, ej [has to be considered
2. if t1>sj ∧ t1≥ej then no interval has to be considered
3. if t1>sj ∧ t1<ej ∧ t1<sj then only [t1, sj+ej−t1[has to be considered
4. if t1>sj ∧ t1<ej ∧ t1≥sj then only [t1, ej[has to be considered

292 A. Derrien and T. Petit

Proof. Let us study the variation of the function f j
2 : t2 → MI(j, t1, t2) when t2 varies.

As an example that illustrates the case of the first item, Figure 1 is a representation of
the evolution of the minimal intersection of an activity with the following data: j =
{sj∈ [2, 4], pj=4, ej∈ [6, 8], hj}. We can distinguish three cases.

– If t2 ≤ sj then
MI(j, t1, t2) = 0.

– If sj ≤ t2 ≤ ej then
MI(j, t1, t2) = t2 − sj .

– And finally if ej ≤ t2 then
MI(j, t1, t2) = pj .

T ime

0 1 2 3 4 5 6 7 8 9 10

t1=1

a

0

4

Fig. 1. A graphical exemple

The only interval for which ∂−MI(j,t1,t2)
∂t2

> ∂+MI(j,t1,t2)
∂t2

is then [t1, ej[; [1, 8[in the
example. Similar case-based proofs apply for other items [4]. ��
Lemma 3. f1 is locally minimum in (t1, t2) only if there exist two activities i and j
such that (t1, t2) ∈ OC(i, j) with

OC(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[si, ej [if si≤sj ∧ ej≥ei
[si, sj+ej−si[if si>sj ∧ si<ej ∧ si<sj ∧ sj+ej−si≥ei
[si, ej] if si>sj ∧ si<ej ∧ si≥sj ∧ ej≥ei
[si, ej] if si≤sj ∧ ej<ei ∧ ej>si ∧ ej≤ej
[si, sj+ej−si] if si>sj ∧ si<ej ∧ si<sj ∧

si<sj+ej−si≤ei ∧ sj+ej−si<ei
[si, ej] if si>sj ∧ si<ej ∧ si≥sj ∧

ej<ei ∧ ej>si ∧ ej≤ei
[si+ei−ej, ej] if ej<ei ∧ ej>si ∧ ej>ei ∧ si+ei−ej≤sj
[si+ei−ej, ej] if ej<ei ∧ ej>si ∧ ej>ei ∧

sj≤si+ei−ej<ej ∧ sj<si+ei−ej
Proof. Suppose � ∃(i, j) such that (t1, t2) ∈ OC(i, j) then by Lemma 2 and its symmet-

ric both condition ∂−MI(j,t1,t2)
∂t2

> ∂+MI(j,t1,t2)
∂t2

and ∂−MI(j,t1,t2)
∂t1

> ∂+MI(j,t1,t2)
∂t1

can
not be satisfied; by Lemma 1 f1 can not be minimal. This proves the Lemma. ��
Theorem 1. In order to ensure ER checker property holds (condition (1)), it is enough
to check intervals of the form OC(A) =

⋃
(i,j)∈A2 OC(i, j).

Proof. Suppose ∃[t1, t2[such that
∑

i∈A hi × MI(i, t1, t2) − C × (t2 − t1) < 0. By
Lemma 3, ∃[t∗1, t∗2[∈ OC(A) such that

∑
i∈A hi × MI(i, t∗1, t

∗
2) − C × (t∗2 − t∗1) ≤∑

i∈A hi×MI(i, t1, t2)−C× (t2− t1). f1 is negative in (t∗1, t
∗
2), thus checking [t∗1, t

∗
2[

leads to a failure. The characterization is sufficient. ��
This precise characterization reduces the number of relevant intervals for any pair of

activities. Our characterization leads to 2 intervals for any pair of activities, as no more
than two conditions can be simultaneously valid. We have thus reduced the number
of intervals by a factor 7 compared with Baptiste et al. characterization. Moreover, no
intervals start by ei or end by sj .

A New Characterization of Relevant Intervals for Energetic Reasoning 293

4 Characterization of Intervals for the Propagator

Similarly to the checker, we aim to find minimal values of the induced function fa
3 : (t1, t2)→

Avail(a, t1, t2)− ha× LS(a, t1, t2). If fa
3 takes a negative value, the lower bound of ac-

tivity a can be adjusted (thanks to Proposition 3).

Lemma 4. fa
3 is locally minimum in (t1, t2) only if one of the four conditions is

satisfied:

∃(i, j), ∂
−MI(i, t1, t2)

∂t1
>
∂+MI(i, t1, t2)

∂t1
∧ ∂−MI(j, t1, t2)

∂t2
>
∂+MI(j, t1, t2)

∂t2
(4)

∃i, ∂
−MI(i, t1, t2)

∂t1
>
∂+MI(i, t1, t2)

∂t1
∧ ∂−LS(a, t1, t2)

∂t2
>
∂+LS(a, t1, t2)

∂t2
(5)

∃j, ∂
−LS(a, t1, t2)

∂t1
>
∂+LS(a, t1, t2)

∂t1
∧ ∂−MI(j, t1, t2)

∂t2
>
∂+MI(j, t1, t2)

∂t2
(6)

∂−LS(a, t1, t2)

∂t1
>
∂+LS(a, t1, t2)

∂t1
∧ ∂−LS(a, t1, t2)

∂t2
>
∂+LS(a, t1, t2)

∂t2
(7)

Proof. Similar to proof of Lemma 1. ��

We can build from Lemma 4 the set of relevant intervals for a couple of activities
from the four conditions. Intervals satisfying condition (4) have already been defined:
OC(A\a). From conditions (5), (6) and (7) we can similarly build the set La studying
the conditions from the left shift placement function fa

4 : (t1, t2)→ LS(a, t1, t2).

Lemma 5. For any activity a and any interval starting time t1 there exists at most one

interval [t1, t2[such that ∂−LS(a,t1,t2)
∂t2

> ∂+LS(a,t1,t2)
∂t2

:

– If t1<ea then only [t1, ea[has to be considered.
– If t1≥ea then no intervals have to be considered.

Proof. We consider 3 different cases :

1. t1 < sa:
Then LS(a, t1, t2) = max(0,min(ea, t2)− sa)
(a) if t2 ≤ sa then LS(a, t1, t2) = 0.
(b) if sa ≤ t2 ≤ ea then LS(a, t1, t2) = t2 − sa.
(c) if ea ≤ t2 then LS(a, t1, t2) = pa.

The only interval for which ∂−LS(a,t1,t2)
∂t2

> ∂+LS(a,t1,t2)
∂t2

is then [t1, ea[.
2. sa ≤ t1 < ea:

Then LS(a, t1, t2) = max(0,min(ea, t2)− t1)
(a) if t2 ≤ ea then LS(a, t1, t2) = t2 − t1.
(b) if ea ≤ t2 then LS(a, t1, t2) = ea − t1.

The only interval for which ∂−LS(a,t1,t2)
∂t2

> ∂+LS(a,t1,t2)
∂t2

is then [t1, ea[.
3. ea ≤ t1: Then LS(a, t1, t2) = 0 and no interval satisfies the condition.

Combination of cases 1, 2 and 3 proves the lemma. ��

294 A. Derrien and T. Petit

We now precisely characterize relevant intervals for the left shift placement of activ-
ity a, from the conditions 5 , 6 and 7 : La =

⋃
i∈A\a L

a
1(i)

⋃
j∈A\a L

a
2(j)

⋃
La
3 .

From Lemma 5 and the symmetric of Lemma 2, we can characterize for any i the
interval that satisfy condition (5).

La
1(i) =

⎧⎪⎪⎨⎪⎪⎩
[si, ea[if si<sa ∧ ei<ea
[si+ei−ea, ea[if si+ei−ea<ea ∧ si+ei−ea<sa ∧

ea<ei ∧ ea>si ∧ ea>ei
[si, ea[if si<sa ∧ ea<ei ∧ ea<si ∧ ea≤ei

From the symmetric of Lemma 5 and Lemma 2 we can characterize for any j the inter-
val that satisfy condition (6).

La
2(j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[sa, ej [if sa≤sj ∧ ej<ea
[sa, sj+ej−sa[if sa>sj ∧ sa<ej ∧ sa<sj ∧

sj + ej − ea>sa ∧ sj + ej − ea<ea
[sa, ej [if sa>sj ∧ sa<ej ∧ sa≥sj ∧ ej<ea

From Lemma 5 and its symmetric we can build the interval that satisfy condition (7).

La
3 = { [sa, ea[}

Lemma 6. fa
3 is locally minimum only in (t1, t2) ∈ Oa

L with Oa
L = OC(A\a) ∪ La.

Proof. Same proof as Lemma 3. ��

The same reasoning leads to the characterization of relevant intervals for the right
shift placement Ra =

⋃
j∈A\a R

a
1(j)

⋃
i∈A\aR

a
2(i)

⋃
Ra

3 .The precise characterization
is symmetrical to the left shift placement characterization.

The number of relevant intervals for any activity a is then |OC(A\a) ∪ La ∪ Ra|.
By construction, |OC(A\a)| = 2(n−1)2 and |La|= |Ra|= 2.n+ 1. Compared with
Baptiste et al. characterization, our characterization reduces by a factor 7 the number of
relevant intervals.

Theorem 2. In order to ensure a complete ER propagation (Definition 1) it is sufficient
to check intervals [t1, t2[in OP = OC(A)

⋃
a∈A La

⋃
a∈ARa.

Proof. Same proof as Theorem 1. ��

We can thus respond affirmatively to the second open question:

Property 1. Baptiste et al. characterization of relevant intervals OB is sufficient to en-
sure a complete ER propagation.

Proof. By Theorem 2, OP is sufficient and OP ⊂ OB . ��

A New Characterization of Relevant Intervals for Energetic Reasoning 295

5 Algorithms and Experiments

5.1 Checker

Baptiste et al. proposed an O(n2) checker algorithm based on their characterization.
Their algorithm loops over setO1 =

⋃
a∈A{sa, sa, ea} to compute all relevant intervals

starting by a value in O1. We have shown that ea is not relevant as a starting value. We
propose a version of the algorithm adapted to our characterization, reducing the relevant
starting values. We replace O1 by O′

1 =
⋃

a∈A{sa, sa} and apply the same algorithm.

5.2 Propagator

The same adaptation could be made to Baptiste et al’s propagator using the reduced
set O′

B , removing ea from O1(a) and sa from O2(a). This adaptation is simple but it
deals with a superset of the relevant intervals obtained with our sharp characterization.
Therefore, we propose a new ER algorithm. As the characterization given in Theorem
2, the algorithm is in 3 parts. First, we apply Baptiste et al’s algorithm reduced to the
set of relevant intervals OC(A) (lines 1 to 9). Then, for all activities we check its left
and right shifted placements with sets La (lines 11 to 15) and Ra (lines 16 to 20).

Algorithm 1. ERpropagator()

1 foreach (t1, t2) ∈ OC(A) do
2 W :=

∑
a∈A ha×MI(a, t1, t2);

3 if W > C × (t2 − t1) then fail;
4 else foreach a ∈ A do
5 avail := C×(t2−t1) − W + ha×MI(a, t1, t2);
6 if avail < ha.LS(a, t1, t2) then
7 sa := max(sa, t2 − 1

ha
× avail);

8 if avail < ha.RS(a, t1, t2) then
9 ea := min(ea, t1 +

1
ha

× avail);

10 foreach a ∈ A do
11 foreach (t1, t2) ∈ La do
12 avail := C×(t2−t1) −

∑
i∈A\a ha×MI(i, t1, t2);

13 if avail < ha.MI(a, t1, t2) then fail;
14 else if avail < ha.LS(a, t1, t2) then
15 sa := max(sa, t2 − 1

ha
× avail);

16 foreach (t1, t2) ∈ Ra do
17 avail := C×(t2−t1) −

∑
i∈A\a ha×MI(i, t1, t2);

18 if avail < ha.MI(a, t1, t2) then fail;
19 else if avail < ha.RS(a, t1, t2) then
20 ea := min(ea, t1 +

1
ha

× avail);

296 A. Derrien and T. Petit

5.3 Experiments

Experiments were run on a 2.9 GHz Intel Core i7, in Choco [10] version 3 (release
13.03). In order to check the gain obtained with the new characterization we have con-
sidered 100 random instances and the instances from the PSPLIB [7]. Random instances
have either 10 or 20 activities. Their processing times were chosen within [1, 10], their
heights within [1, 5]. We used the first fail [6] search strategy (the current default strat-
egy of Choco) and compared our algorithms with the corresponding state of the art
algorithms [2], both combined with the Time-Table (TT) filtering algorithm of Letort et
al. [8]. The number of nodes is identical for all proved instances, as expected. Table 1
shows a running time improvement of 20 to 36% using the new checker (measured in
μs/node). Table 2 shows a time improvement of 49 to 72% using the new propagator.

Table 1. Comparison of average running
of ER checkers

New checker Baptiste et al Gain
Instances (μs/node) (μs/node) in %
Random10 16 25 36
Random20 44 56 21
PspLib 30 451 619 27
PspLib 120 1 339 1 683 20

Table 2. Comparison of average running of
ER propagators

Algorithm 1 Baptiste et al Gain
Instances (μs/node) (μs/node) in %
Random10 91 244 62
Random20 327 641 49
PspLib 30 4 372 8 809 50
PspLib 120 41 418 151 390 72

We also compared those combinations with the state-of-the-art filtering combina-
tion: TT + Time-Table Edge-Finding (TTEF) [11]. We tried to prove optimality. On the
random10 instances, TT associated with our new ER propagator proved 63 out of 100
instances in the given time limit of five minutes. TT+TTEF was only able to prove 8 in-
stances, mainly due to the fact that TTEF does not include an energetic checker whereas
our ER propagator does; The combination TT+TTEF+ our ER Checker proved 72 in-
stances. This shows the interest of an energetic checker as a standard feature of Cumu-
lative in existing solvers. Regarding the ER propagator, a promising perspective of our
work is to exploit the theoretical characterization to design a light version, with a lower
time complexity than the current propagator but still filtering more values than TTEF.

6 Discussion and Conclusion

We have proposed a new characterization of relevant intervals for the energetic reason-
ing. Our characterization reduces by a factor seven the number of relevant intervals for
the checker and for filtering any activity. We answered to an open question: Baptiste
et al. characterization is sufficient to ensure a complete bounds adjustment. Compared
with state-of-the-art ER techniques for Cumulative, our experiments show a signifi-
cant reduction in the running time of both the ER checker and the ER propagator. Our
sharpened characterization opens the new possibility to analyze the impact, in terms
of filtering, of each type of relevant interval. This may help to design heuristics for
ignoring some intervals without decreasing too much the pruning power of ER.

A New Characterization of Relevant Intervals for Energetic Reasoning 297

References

1. Aggoun, A., Beldiceanu, N.: Extending chip in order to solve complex scheduling and place-
ment problems. Math. Comput. Model. 17(7), 57–73 (1993)

2. Baptiste, P., Pape, C.L., Nuijten, W.: Constraint-Based Scheduling: Applying Constraint Pro-
gramming to Scheduling Problems. In: International Series in Operations Research and Man-
agement Science. Kluwer (2001)

3. Berthold, T., Heinz, S., Schulz, J.: An Approximative Criterion for the Potential of Energetic
Reasoning. In: Marchetti-Spaccamela, A., Segal, M. (eds.) TAPAS 2011. LNCS, vol. 6595,
pp. 229–239. Springer, Heidelberg (2011)

4. Derrien, A., Petit, T.: The Energetic Reasoning Checker Revisited. In: CP Doctoral Program
2013, Uppsala, Sweden, pp. 55–60 (September 2013)

5. Erschler, J., Lopez, P., Thuriot, C.: Scheduling under time and resource constraints. In: Proc.
of Workshop on Manufacturing Scheduling, 11th IJCAI, Detroit, USA (1989)

6. Haralick, R.M., Elliot, G.L.: Increasing tree search efficiency for constraint satisfaction prob-
lems. Artificial Intelligence 14(3), 263–313 (1980)

7. Kolisch, R., Sprecher, A.: Psplib – a project scheduling problem library. European Journal of
Operational Research 96, 205–216 (1996)

8. Letort, A., Beldiceanu, N., Carlsson, M.: A scalable sweep algorithm for the cumulative con-
straint. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 439–454. Springer, Heidelberg
(2012)

9. Schwindt, C.: Verfahren zur Lösung des ressourcenbeschränkten Projektdauermin-
imierungsproblems mit planungsabhängigen Zeitfenstern. PhD thesis, Fakultät für
wirtschaftswissenschaften der Universität Fridericiana zu Karlsruhe (1998) (in German)

10. CHOCO Team. Choco: an open source Java CP library. Research report 10-02-INFO, Ecole
des Mines de Nantes (2010)

11. Vilı́m, P.: Timetable edge finding filtering algorithm for discrete cumulative resources. In:
Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697, pp. 230–245. Springer,
Heidelberg (2011)

A Declarative Paradigm
for Robust Cumulative Scheduling

Alban Derrien, Thierry Petit, and Stéphane Zampelli

TASC (Mines Nantes, LINA, CNRS, INRIA),
4, Rue Alfred Kastler, 44307 Nantes Cedex 3, France

{alban.derrien,thierry.petit}@mines-nantes.fr,
szampelli@gmail.com

Abstract. This paper investigates cumulative scheduling in uncertain environ-
ments, using constraint programming. We present a new declarative characteriza-
tion of robustness, which preserves solution quality. We highlight the significance
of our framework on a crane assignment problem with business constraints.

1 Introduction

Scheduling consists in assigning activities over time. When a solution is executed in a
real-world environment, activities may take longer to execute than expected. In many
practical cases, solutions cannot be re-computed at anytime when disruptions occur. For
instance, in Crane Assignment [17], planners need a fixed schedule which guarantees
that the vessel processing will be completed ahead of schedule. The solution should
meet the deadline while being able to absorb activity delays during its execution. We
wish a tradeoff between robustness and performance.

We aim to address this issue for the Cumulative Scheduling Problem (CuSP), with
possibly additional constraints. In a CuSP, each activity a ∈ A has a starting time
variable sa and an ending time variable ea. Its duration pa (processing time) and re-
source consumption ha are usually strictly positive integers. We use the notation a =
〈sa, pa, ea, ha〉. Given an integer capacityC, a solution to a CuSP satisfies the following
constraints: ∀a ∈ A, sa + pa = ea and ∀t ∈ N,

∑
t∈[sa,ea[,a∈A ha ≤ C. In Constraint

Programming, the Cumulative(A, C) constraint [3] represents a CuSP. A usual objective
is to minimize the makespan, i.e., the latest end among all activities.

In this paper, we integrate the notion of robustness directly into the problem defini-
tion. We define a new generic problem, such that any activity can be delayed up to a
certain time without being forced to re-schedule the other activities in its neighborhood.
We introduce FlexC, a constraint dedicated to this problem. Our paradigm deals with
the three following aspects at the same time. 1. Declarative framework: We solve prob-
lems such that solutions cannot be recomputed at anytime. Maximum allowed delays of
activities are a data and may vary from one activity to another. 2. Specialized definition:
In order to fit the practical needs, we use a robustness definition based on the semantics
of the core problem. Notably, all the variables have not the same status. 3. Modular
approach: We design a framework such that the model should not be totally re-written
each time we add a new business constraint.

Crane Assignment is a real-world example with these three requirements. In order to
validate our approach, we experiment on this problem.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 298–306, 2014.
c© Springer International Publishing Switzerland 2014

A Declarative Paradigm for Robust Cumulative Scheduling 299

2 Robust Cumulative Scheduling

Related Work. In the literature, some frameworks deal with the three aspects (declar-
ative approach, specialized definition and modularity), but not all at the same time for
the CuSP. In a super-solution [9; 10], the loss of the values of at most a variables can
be repaired by changing the values of these variables and at most b other variables.
This notion is generic. All variables have the same status. It has been applied to job-
shop benchmarks [9]. A low-performance technique for obtaining robust schedules is
to augment the duration of each activity. To improve it, some slack-based techniques
incorporate the reasoning about uncertainty in the solving process [7]. This approach
does not deal with CuSP and its modularity was not investigated but it has some links
with our work: Schedules absorb some level of unexpected events without rescheduling.
Other Operations Research techniques for robustness in scheduling problems different
from the CuSP can be found in [5; 16]. A Mixed-Integer Linear Programming formu-
lation of robust RCPSP (i.e., CuSP with precedences) has been proposed in [14]. This
formulation requires an exponential number of variables and constraints.

A New Framework for Robust CuSP. We use the following notation for i-order max-
imum heights of activities: Given A↓ the collection of activities in a set A sorted by
decreasing heights, max i

a∈A(ha) is the height of the ith activity in A↓.
We propose a new definition of cumulative problems, where each activity a can be

delayed up to ka points in time, without modifying the position of any other activity in
its neighborhood. This can be viewed as a specialization of the notion of super-solutions
that takes into account the semantics of the CuSP. Formally, given an integer r ≥ 1, we
define the Robust Cumulative Problem of order r (RCuSPr).

Definition 1 (RCuSPr). Given a set of activities A, let K be a set of positive integers
slacks associated with activities, such that to each a ∈ A corresponds ka ∈ K. Let r be
an integer, r ≥ 1. A solution to a RCuSPr satisfies the following constraints:

∀a ∈ A, sa + pa = ea ∧ ∀t ∈ N,
∑
a∈A,

t∈[sa,ea[

ha +
i=r∑
i=1

max i

a∈{b∈A,t∈[eb,eb+kb[}
(ha) ≤ C

Definition 1 considers a set K of positive integers for slacks. The material presented
in this paper is consistent with the case where K is a set of variables, provided that
values in their domains are greater than or equal to 0 and for each activity a we consider
ka as the minimum valid value for the variable in K mapped with a. Using variables,
constraints can be defined on slacks, e.g., dependencies on starting time of activities.

We now focus on the problem RCuSP (RCuSPr with r = 1). We express a RCuSP
with a constraint, FlexC(A, C,K), as it is done for the CuSP.

Property 1. FlexC(A, C,K) ⇒ Cumulative(A, C).

Proof. By Definition 1 and Definition of the CuSP. ��

Property 2. Assume activities in A are fixed. Let a = 〈sa, pa, ea, ha〉 be an activity in
A, and k an integer, 0 ≤ k ≤ ka. Given a′ = 〈s′a = (sa + k), pa, e

′
a = (ea + k), h′a =

ha〉 and A′ = A ∪ {a′} \ {a}, we have: FlexC(A, C,K) ⇒ Cumulative(A′, C).

300 A. Derrien, T. Petit, and S. Zampelli

Fig. 1. Solutions minimizing the makespan. Grey rectangles are activities, the horizontal axis is
time and the vertical one is consumption. On the left, a CuSP without robustness. In the middle,
optimal solutions of the RCuSP with values in K respectively all equal to 1 (top) and 2 (bottom).
On the right, optimal solutions with all durations increased respectively by 1 and 2.

Proof. Assume ¬ Cumulative(A′, C) ∧ FlexC(A, C,K) (hypothesis). As ¬
Cumulative(A′, C), ∃tfail ∈ N,

∑
b∈A′,tfail∈[sb,eb[

hb>C (1). From Property 1,
FlexC(A, C,K) ⇒ Cumulative(A, C). Then, ∀t ∈ N,

∑
b∈A,t∈[sb,eb[

, hb ≤ C. As
A and A′ differ only wrt. a and a′, tfail ∈ [max(ea, s

′
a), e

′
a[. As FlexC(A, C,K)

is satisfied, (
∑

b∈A,tfail∈[sb,eb[
hb)+(maxb∈A,tfail∈[eb,eb+kb[hb)≤C (2). (2) minus

(1) leads to (maxb∈A,tfail∈[eb,eb+kb[hb) − h′a < 0. As tfail ∈ [max(ea, s
′
a), e

′
a[,

ha ≤ (maxb∈A,tfail∈[eb,eb+kb[hb). Thus, ha − h′a < 0, absurd by definition of A′. ��

Delaying the starting time of an activity or increasing its duration are equivalent in
the context of the RCuSP, provided we do not both delay and enlarge the activity. In
case of enlargement (a′ = 〈sa, p′a = (pa + k), e′a = (ea + k), h′a = ha〉), the proof of
Property 2 is the same. Given any set of activities, comparing RCuSPr when r varies,
we can say that RCuSPr has an optimum makespan less than or equal to the minimum
makespan of RCuSPr+1. When r is too high (e.g., with sumr the sum of the r minimum
heights of distinct activities, sumr ≥ C) we obtain the naive approach consisting in
adding ka to the duration of each activity. This naive method is the least performant
and the most robust, as Fig. 1 shows. Conversely, the RCuSP (when r=1) is the most
performant tradeoff. Nevertheless, we claim that the level of robustness in solutions of a
RCuSP will be widely satisfactory in most of cases. Indeed, the RCuSP allows to delay
several activities in a solution provided they are scheduled in disjoint intervals in time
even when they are delayed. This property is the key of the practical significance of the
RCuSP. Furthermore, in some particular solutions of FlexC, more than one activity (e.g.,
a2 and a3 in the medium picture of Fig. 1, with all values inK equal to 1) can be delayed
in the same time window without violating Cumulative. Regarding modularity, as we
define a constraint, our declarative paradigm can be combined with other constraints.
To guarantee the robustness, additional constraints may also have to be modified. We
demonstrate this possibility in Sect. 4.

3 Filtering Technique

This Sect. presents a Time-Table filtering for FlexC. We selected this algorithm because
it is the best one in terms of scaling (number of activities) in the CuSP case [13]. This
algorithm does not directly depends on the selected time unit. Given a variable x, x
(resp. x) denotes the minimum value (resp. the maximum value) in its domain.

A Declarative Paradigm for Robust Cumulative Scheduling 301

Time-Table Failure Detection. We first study the failure condition of the Time-Table
filtering Algorithm for Cumulative, such as Letort et al.’s algorithm [13]. It is based on
the profile of compulsory parts [11]. The compulsory part of an activity a ∈ A is the
interval in time where a has to be processed. This interval is [sa, ea[(empty if sa ≥ ea).
The profile is the cumulated sum of heights of compulsory parts for each point in time
t, which should never exceed the capacity C. From [2], we have:

Proposition 1 (Time-Table failure check for Cumulative).
If ∃t ∈ N, (

∑
a∈A,t∈[sa,ea[

ha) > C, Cumulative(A, C) has no solution.

To provide a similar failure condition for FlexC, we have to add the necessary height
to preserve the robustness (arrayK) to the cumulated sum of heights of activities having
a non-empty compulsory part. To do so, we introduce K-compulsory parts. Given the
compulsory part Ia of an activity a computed with the hypothesis that duration of a is
pa + ka, the K-compulsory part of a is the sub-interval of Ia that is not intersecting the
initial compulsory part of a, [sa, ea[, if such a sub-interval exists (it can be empty).

Definition 2 (K-compulsory part). Let a ∈ A be an activity and ka ∈ K. The K-
compulsory part of a, denoted KCPa, is the interval [max(sa, ea), ea + ka].

The Time-Table failure condition of FlexC integrates in the profile, at any time t, the
maximum height among activities having a K-compulsory part intersecting t.

Proposition 2 (Time-Table failure check for FlexC).
If ∃t∈N, (

∑
a∈A,t∈[sa,ea[

ha)+(maxa∈A,t∈KCPa ha)>C then FlexC(A, C,K) fails.

Proof. Assume ∃t,
∑

a∈A,t∈[sa,ea[
ha + maxa∈A,t∈KCPa ha > C. Let b be an activity such

that t ∈ KCPb and hb = maxa∈A,t∈KCPa ha. Consider A′ = A \ {b} ∪ {b′ = 〈s′b =
sb, p

′
b = pb+kb, e

′
b = eb+kb, hb〉}. By construction t ∈ [sb′ , eb′ [.

∑
a∈A′,t∈[sa,ea[ha > C.

Cumulative(A′, C) is violated. By Property 2, FlexC(A, C,K) is violated. ��

Pruning Characterization. We assume now that, for each activity a ∈ A, the solver
maintains Bounds-Consistency [4] (BC) on the constraint sa + pa = ea, independently
from our propagator. A special case of FlexC(A, C,K) is the case where all values in
K are equal to 0. In this case, from Definition 1, FlexC⇔ Cumulative. As enforcing
BC for Cumulative is NP-Hard [1], it is NP-Hard for FlexC. Therefore, we consider
a weaker form of BC. Our goal is that the achieved consistency corresponds to the
filtering enforced by Time-Table in the case of Cumulative.

Definition 3. Given a scheduling constraint, a propagator is Time-Table if ∀a ∈ A,
fixing sa at time sa (respectively, ea at time ea) does not lead to a contradiction if we
apply the Time-Table Failure check of the constraint.

Fix-Point Property. The following property holds when Letort et al.’s sweep min al-
gorithm reaches its fixpoint (Property 1 in [13]) on lower bounds of start variables.

Property 3. Given Cumulative(A, C), sweep min ensures that: ∀b∈A, ∀t ∈ [sb, eb[, hb+∑
a∈A\{b},t∈[sa,ea[

ha ≤ C.

302 A. Derrien, T. Petit, and S. Zampelli

To adapt the fixpoint Property 3 to the case of FlexC, we have to ensure that any
activity b ∈ A could be able to be scheduled at its earliest time sb without leading
directly to a fail when we apply Prop. 2.

∀t ∈ [sb, eb[, (hb +
∑

a∈A\{b},
t∈[sa,ea[

ha) + (max
a∈A,

t∈KCPa

ha) ≤ C

This condition guarantees that when all variables are instantiated we have a solution
of FlexC. The obtained filtering is weaker than Time-Table. For instance, consider a
capacity C = 1 and two activities a1 and a2, such that a2 is fixed to 〈sa2 = 4, pa2 =
2, ea2 = 6, ha2 = 1〉, with ka2 = 0. Assume sa1 = [0, 1000], pa1 = 2, ha1 = 1 and
ka1 = 3. The lower bound sa1 = 0 satisfies the previous condition. However, schedul-
ing a1 at sa1 = 0 leads to a fail using Prop. 2. The condition ensures the consistency
of each activity a all along its duration if scheduled at sa, but it does not guarantee that
the space required after a to make it robust does not induce an inconsistency (because
some activities may end after ea). The complete Time-Table fixpoint conditions are the
following. Any activity which would lead to a Time-Table fail if fixed at its earliest
(resp. latest) date violates one of the conditions, and reciprocally.

Property 4 (FlexC (lower bounds)). Given FlexC(A, C,K), the propagator should en-
sure ∀b ∈ A:

∀t ∈ [sb, eb[, (hb +
∑

a∈A\{b},
t∈[sa,ea[

ha) + (max
a∈A,

t∈KCPa

ha) ≤ C (1)

∧∀t ∈ [eb, eb + kb[, (
∑

a∈A,
t∈[sa,ea[

ha) + hb ≤ C (2)

Property 5 (FlexC (upper bounds)). Given FlexC(A, C,K), the propagator should en-
sure the same conditions as Property 4 with intervals [sb, eb[(condition (1)) and [eb, eb+
kb[(condition (2)).

We can obtain this filtering using either a decomposition or a dedicated algorithm.

Decomposition. Let A = {a1, a2, . . . , an} be a set of activities. For each ai =
〈sai , pai , eai , hai〉 inA we define a′i = 〈sai , pa′

i
= (pai +kai), ea′

i
= (eai +kai), hai〉

and Ai = A ∪ {a′i} \ {ai}. The set of solutions of FlexC(A, C,K) is the set obtained
by projecting on variables in A all solutions of the following constraint network CN :
Cumulative(A1, C,K)∧Cumulative(A2, C,K)∧ . . .∧Cumulative(An, C,K). Representing
a global constraint with n global constraints may be costly. With respect to RrCuSP,

(
n
r

)
Cumulative constraints are required. However, using Time-Table for each Cumulative of
the decompositon prunes the same values as Time-Table for FlexC.

Dynamic Sweep Time-Table algorithm. We have adapted [8] the Time-Table Letort
et al.’s dynamic Sweep algorithm [13; 12] for Cumulative, in order to design a propa-
gator for FlexC. This algorithm is in two steps: Filtering of lower bounds of starting
time variables (Sweep min) and upper bounds of ending-time variables (Sweep max).
Sweep min for FlexC is in O(n2) time, as for Cumulative [12, p. 55]. Conversely to

A Declarative Paradigm for Robust Cumulative Scheduling 303

0.1

1

10

100

1000

100 200 400 800 1600 3200 6400 12800

S
ec

on
ds

Number of activities

Cumulative
FlexC

Decomposition

Fig. 2. Scaling of Dynamic Sweep for FlexC

the case of Cumulative, the filtering of FlexC is not symmetrical. In Sweep max, our
implementation adds new events in the sweep process to handle K-compulsory parts,
leading to a O(n2 ×maxa∈A(ka))) time algorithm. As there is some differences with
Sweep for Cumulative, we have experimented the limits of our algorithm with respect to
problems size. We used Choco [6] with a 2.9 Ghz Intel i7 and 8GB of RAM. Following
experiments provided in [12], we generated large random instances with pa from 5 to
10, ha from 1 to 5,C = 30. Values inK are not null, with an average equal to 4. Similar
results are obtained with fixed ka. Figure 2 shows that our filtering algorithm scales on
problems up 12800 activities for a first solution. The decomposition reaches the time
limit of 1h:00m with 1600 activities and leads to a memory crash with 6400 Cumulative.

4 Experiments with Side Constraints

FlexC can be used in a closed world, but external constraints can also be defined. It
may be necessary to make them robust. For instance, precedence constraints of the form
eai+Δij ≤ saj . As the constraint≤ is monotone, using the natural ordering of integers,
augmenting saj by kaj does not reduce the set of solutions of eai+ Δij ≤ saj . Con-
versely, to ensure that solutions are robust to the increase of eai , the precedences should
be strengthened: eai+kai +Δij≤ saj . The principle can be extended to more complex
constraints, e.g., business constraints of the Crane Assignment Problem (CAP).

We now present experiments on this problem. Our goal is to show how the model
with business side constraints (such as precedence constraints, transition times, machine
assignments) can be transformed into a robust one, and to measure the impact of the
robust model on the objective function compared to a naive model where all durations
are extended. The CAP is a specialization of the berth and crane problem [17], where
we focus on the detailed scheduling of a single-container cargo’s discharge. A cargo
vessel is made of bays. Bays are transverse sections storing containers. Each bay is split
into above deck and below deck parts. Below and above bays hold containers. A fixed
number of cranes is assigned to the vessel. Cranes are operated on a single rail, they
cannot cross each other. The goal is to minimize the makespan: The terminal has to pay
a fee proportional to the leaving time of the cargo. Crane productivity depends on the
wind and sea conditions, on the driver, and on the position of the containers in the cargo.
To avoid fees, customers wish a fixed “worst case” schedule which guarantees to meet

304 A. Derrien, T. Petit, and S. Zampelli

1r ange A = 1 . . 4 0 / / Range of a c t s
2i n t nbc =4 ; / / nb r o f c r a n e s
3i n t pos [A] = . . . ; / / a c t p o s i t i o n
4i n t t t [A,A] = . . . ; / / a c t s t r a n s i t i o n t im e
5boo l p r e c e d [A,A] = . . . ; / / a c t p r e c e d e n c e
6S o l v e r m() ;
7I n t V a r s [A] (. . .) ; / / s t a r t
8I n t V a r p [A] (m, r and [5 , maxd])) ; / / d u r a t i o n
9I n t V a r e [A] (. . .) ; / / end
10I n t V a r h [A] (m, 1) ; / / r e s o u r c e
11I n t V a r c [A] (m, [0 , nbc−1]) ; / / c r a n e
12I n t V a r k [i∈A] (m, r and ([0 , . 2 5])∗p [i]) ;

Fig. 3. CAP Input Data

1/ / 1 . cumu c s t r , nbc r e s o u r c e s
2m. p o s t (Cumula t i ve (s , p , e , h , nbc))
3/ / 2 . p r e c e d e n c e c o n s t r a i n t s
4f o r (i , j) s . t . p r e c e d [i , j] ==1 :
5m. p o s t (e [i]<s [j]) ;
6/ / 3 . c r a n e a l l o c , t r a n s i t i o n t i m e s
7f o r (i , j) i != j∧pos [i]<pos [j] :
8m. p o s t (((s [i]<e [j]+ t t [i , j])
9∧ (s [j]<e [i]+ t t [i , j]))
10=> c [i]<c [j]) ;
11/ / 4 . no i n t e r s e c f o r nea r by a c t s
12f o r (i , j) i<j∧| pos [i]−pos [j]|<=2:
13m. p o s t (s [i]>e [j] ∨ e [i]<s [j]) ;
14min imize o b j = min ({ e [i]} i ∈ A)

Fig. 4. CAP model

1/ / 1 . f l e x cumu c s t r , nbc r e s o u r c e s
2m. p o s t (FlexC (s , p , e , h , k , nbc))
3/ / 2 . p r e c e d e n c e c o n s t r a i n t s
4f o r (i , j) s . t . p r e c e d [i , j] ==1 :
5m. p o s t (e [i] +k[i] <s [j]) ;
6/ / 3 . c r a n e a l l o c , t r a n s i t i o n t i m e s
7f o r (i , j) i != j∧pos [i]<pos [j] :
8m. p o s t (((s [i]<e [j]+ t t [i , j] +k[j])
9∧ (s [j]<e [i]+ t t [i , j] +k[i]))
10=> c [i]<c [j]) ;
11/ / 4 . no i n t e r s e c f o r nea r by a c t s
12f o r (i , j) i<j∧| pos [i]−pos [j]|<=2:
13m. p o s t (s [i]>e [j] +k[i] ∨ e [i] +k[i]<s [j]) ;
14min imize o b j = min ({ e [i]+k[i]} i ∈ A)

Fig. 5. Robust CAP model

a deadline, given a precise robustness definition, as our framework does. Simulation is
not relevant: Uncertainty has to be taken into account a priori in the problem definition.
The maximum allowed slack ka for each activity a is a data. Generating durations a
posteriori is not relevant, as they would have to match the input robustness criteria.

Data. Figure 3 provides the pseudo code for the input data and decision variables.
Line 1 is the range of activities. The cargo has 20 bays with one activity below and
above deck. Line 2 sets the number of resources to 4, the typical number of cranes for
such a cargo of 20 bays. Lines 3-5 declare the bay position of each activity, the transition
time and the presence of a precedence constraint. Transition times are computed based
on the distance between two positions, multiplied by a factor. For each bay, we have
a precedence constraint between below and above deck activities. An additional 5% of
precedences are randomly set to reflect discharge balance constraints on the cargo. Lines
7-10 declare the start, duration, end, and resource variables for each activity. Durations
(in minutes) are randomly chosen in [5,maxd = 800] to capture many scenarios. Value
800 is the maximum duration for discharging a large bay. In lines 11-12, additional
crane and robustness variables are created for each activity. The robust factor k, fixed,
is randomly chosen in [0, 25%] multiplied by the duration of the activity. This is a bad
case for our approach (performance improves as the ratio ka/pa increases).

Constraints. Figure 4 shows the constraints of the CAP model without robustness.
Following [17], we model this application as a cumulative scheduling problem. Lines
2-5 post the cumulative constraint and precedence constraints. Lines 8-10 post the crane
allocation constraints. Given two different activities i and j with i being on the left of
j, if those activities intersect in time, we ensure that crane assignment follows their
position, assuming crane 0 is on the left of crane 1. Those constraints ensure that any
set of activities intersecting with a given point in time has a feasible crane assignment.
The activities should not be assigned to the same crane if they intersect in time while

A Declarative Paradigm for Robust Cumulative Scheduling 305

being extended by the transition time, because a crane would not have the required time
to travel from activity i to activity j. Line 13 ensures that, for security reasons, cranes
should not work on nearby bays. If two activities are two bays away from each other,
they should have no intersection in time.

Robust Model. In Fig. 5, FlexC is used with the k variables in line 2. The precedences
constraints are modified in line 5 to accomodate the robust factor. The left side of the
constraint in lines 8-10 is an intersection in time condition. The solution should ensure
that if an activity is pushed or extended and intersects after this change with another
activity, the schedule is still valid. Line 13 posts the negation of an intersection in time
condition, and we can add k[i] to e[i].

Heuristic. For the three models, first the starting variables are assigned based on min
domain and min value, then on crane variables. The search strategy uses propagation-
guided LNS [15] and fixes randomly 70% of the starting time of the activities.

Table 1. Lower bound distance in %

CAP FlexC Naive α γ

1 10.2 (0.08) 20.7 (2.20) 36.2 (3.28) 0.40 2.47
2 8.6 (0) 19.4 (2.13) 32.5 (1.62) 0.45 2.21
3 5.7 (0) 19.2 (3.08) 28.5 (0.60) 0.59 1.68
4 9.3 (0) 17.7 (0.47) 30.9 (3.66) 0.38 2.57
5 6.3 (0) 20.2 (2.10) 35.3 (0) 0.47 2.08
6 6.4 (0) 17.8 (1.37) 30.7 (0.15) 0.46 2.13
7 4 (0) 15.5 (1.08) 35.8 (2.40) 0.36 2.76
8 1.8 (0) 19.8 (2.35) 27.1 (1.42) 0.71 1.40
9 13.2 (0) 15.5 (2.61) 22 (0.31) 0.26 3.82
10 7.2 (0) 19.4 (1.63) 31.6 (0.07) 0.5 2.0

Performance. We measure the distance of the objective value to a lower bound com-
puted by adding the durations and dividing by the number of cranes. This lower bound
ignores side constraints. We compare the CAP, robust CAP, and a naive model where
all durations are extended. To make a fair comparison with the naive approach, using
FlexC(A,K) we minimize maxa∈A(ea + ka). Table 1 shows ten instances with a time-
out of 5 minutes. Entries in the first columns are the distance in percentage with the
lower bound. The standard deviation on 5 runs is in parenthesis. Column α is the rel-
ative position of the robust approach compared with the initial and the naive model.
Column γ is the ratio between the naive and FlexC results. A value of γ = 2 means the
naive model doubles the distance with respect to the CAP model, compared with FlexC.
Our approach produces a robust solution adding on average 10% to the makespan, while
the naive model adds 20% on average. A fully loaded cargo would take a lower bound
of (20*2*800)/4=8000 minutes to discharge, that is, 5d:13h:20m. The naive model adds
26h:40m. The robust approach adds 13h:20m, a good worst case compromise.

5 Conclusion

This paper has introduced a new declarative paradigm in order to deal with robustness
in cumulative problems. We have defined a new constraint and adapted the Time-Table
dynamic sweep algorithm. The experiments showed that our approach is modular, as

306 A. Derrien, T. Petit, and S. Zampelli

solution performance can be preserved for a problem with many business constraints.
Future work includes the adaption of other solving techniques and the use of a similar
approach for other classes of optimization problems.

References

1. Baptiste, P., Le Pape, C., Nuijten, W.: Satisfiability tests and time-bound adjustments for
cumulative scheduling problems. Annals of Operations Research 92, 305–333 (1999)

2. Beldiceanu, N., Carlsson, M.: A new multi-resource cumulatives constraint with negative
heights. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 63–79. Springer, Hei-
delberg (2002)

3. Beldiceanu, N., Contejean, E.: Introducing global constraints in CHIP. Journal of Mathemat-
ical and Computer Modelling 20(12), 97–123 (1994)

4. Bessiere, C.: Constraint propagation. Research report 06020. In: Rossi, F., van Beek, P.,
Walsh, T. (eds.) Handbook of Constraint Programming, LIRMM, ch. 3, Elsevier (2006)

5. Billaut, J.-C., Moukrim, A., Sanlaville, E. (eds.): Flexibility and Robustness in Scheduling.
Wiley (2010)

6. Choco. 3.1.0 (2013), http://choco.sourceforge.net/
7. Davenport, A.-J., Jefflot, C., Beck, J.-C.: Slack-based techniques for robust schedules. In:

Proc. European Conference on Planning, pp. 7–18 (2001)
8. Derrien, A., Petit, T., Zampelli, S.: Dynamic sweep filtering algorithm for FlexC. Research

report RR14/1/INFO, Mines Nantes (2014)
9. Hebrard, E.: Super solutions in constraint programming. In: Sattler, U. (ed.) IJCAR Doctoral

Programme. CEUR Workshop Proceedings, vol. 106. CEUR-WS.org (2004)
10. Hebrard, E., Hnich, B., Walsh, T.: Super solutions in constraint programming. In: Régin, J.-

C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 157–172. Springer, Heidelberg
(2004)

11. Lahrichi, A.: The notions of Hump, Compulsory Part and their use in Cumulative Problems.
C.R. Acad. Sc. 294, 20–211 (1982)

12. Letort, A.: Passage à l’échelle pour les contraintes d’ordonnancement multi-ressources. Ph.D
dissertation (2013)

13. Letort, A., Beldiceanu, N., Carlsson, M.: A scalable sweep algorithm for the cumulative con-
straint. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 439–454. Springer, Heidelberg
(2012)

14. Leus, R., Artigues, C., Talla Nobibon, F.: Robust optimization for resource-constrained
project scheduling with uncertain activity durations. In: Proc. IEEM, pp. 101–105 (2011)

15. Perron, L., Shaw, P., Furnon, V.: Propagation guided large neighborhood search. In: Wallace,
M. (ed.) CP 2004. LNCS, vol. 3258, pp. 468–481. Springer, Heidelberg (2004)

16. Wu, C.W., Brown, K.N., Beck, J.C.: Scheduling with uncertain durations: Modeling beta-
robust scheduling with constraints. Computers & OR 36(8), 2348–2356 (2009)

17. Zampelli, S., Vergados, Y., Van Schaeren, R., Dullaert, W., Raa, B.: The berth allocation and
quay crane assignment problem using a CP approach. In: Schulte, C. (ed.) CP 2013. LNCS,
vol. 8124, pp. 880–896. Springer, Heidelberg (2013)

http://choco.sourceforge.net/

Improving DPOP with Branch Consistency
for Solving Distributed Constraint Optimization

Problems

Ferdinando Fioretto1,2, Tiep Le1, William Yeoh1, Enrico Pontelli1, and Tran Cao Son1

1 Department of Computer Science, New Mexico State University, USA
2 Department of Mathematics and Computer Science, University of Udine, Italy

{ffiorett,tile,epontell,wyeoh,tson}@cs.nmsu.edu

Abstract. The DCOP model has gained momentum in recent years thanks
to its ability to capture problems that are naturally distributed and cannot be
realistically addressed in a centralized manner. Dynamic programming based
techniques have been recognized to be among the most effective techniques for
building complete DCOP solvers (e.g., DPOP). Unfortunately, they also suffer
from a widely recognized drawback: their messages are exponential in size. An-
other limitation is that most current DCOP algorithms do not actively exploit hard
constraints, which are common in many real problems. This paper addresses these
two limitations by introducing an algorithm, called BrC-DPOP, that exploits arc
consistency and a form of consistency that applies to paths in pseudo-trees to re-
duce the size of the messages. Experimental results shows that BrC-DPOP uses
messages that are up to one order of magnitude smaller than DPOP, and that it
can scale up well, being able to solve problems that its counterpart can not.

1 Introduction

Distributed Constraint Optimization Problems (DCOPs) are constraint optimization
problems where variables and constraints are distributed among a group of agents,
and where each agent can only interact with agents that share a common con-
straint [20,24,30]. As a result, agents need to coordinate their value assignments to
maximize the overall sum of resulting constraint utilities and lead to an optimal solu-
tion of the optimization problem. DCOPs provide an elegant and effective modeling
of problems that have a distributed nature, and where a collective is trying to achieve
a globally optimal solution within the confines of the localized communication. Re-
searchers have used DCOPs to model various distributed optimization problems, such
as meeting scheduling [19,34], resource allocation [8,33], and power network manage-
ment problems [16].

In recent years, we have witnessed a growing interest towards DCOPs, with the de-
velopment of a number of complete and incomplete distributed algorithms. A num-
ber of implementations have been proposed and are publicly available [18,28,7]. The
majority of the existing DCOP algorithms can be placed in one of three classes. Search-
based algorithms perform a distributed search over the space of solutions to deter-
mine optimum [20,9,32]. Inference-based algorithms, on the other hand, make use

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 307–323, 2014.
c© Springer International Publishing Switzerland 2014

308 F. Fioretto et al.

of techniques from dynamic programming to propagate aggregate information among
agents [24,8]. Finally, sampling-based algorithms rely on sampling applied to the over-
all search space [23,22]. Of these methods, the Distributed Pseudo-tree Optimization
Procedure1 (DPOP) [24] is one of the most efficient DCOP solvers; DPOP has also been
extended in several ways to enhance its performance and capabilities (e.g., O-DPOP and
MB-DPOP trade off memory requirement for longer runtimes [26,27], A-DPOP trades
off solution optimality for shorter runtimes [25], SS-DPOP trades off runtime for in-
creased privacy [10], H-DPOP exploits hard constraints for smaller runtimes [17], and
DPOP with function filtering exploits utility bounds for smaller runtimes [3]).

This paper proposes a novel variant of DPOP, called Branch-Consistency DPOP
(BrC-DPOP), that takes advantage of hard constraints present in the problem to prune
the search space. BrC-DPOP introduces a new form of consistency, called branch con-
sistency, which can be viewed as a weaker version of path consistency [21] tailored to
variables ordered in a pseudo-tree, and where each agent can only communicate with
neighboring agents. The effect of enforcing this consistency in DPOP is the ability to
actively use hard constraints (either explicitly provided in the problem specification or
implicitly described in utility tables) to prune the search space and to reduce the size of
the utility tables exchanged among agents.

2 Background

2.1 Distributed Constraint Optimization Problems (DCOPs)

A DCOP [20,24,30] is defined by a tuple 〈X ,D,F ,A, α〉, where X = {x1, . . . , xn}
is a set of variables; D = {D1, . . . , Dn} is a set of finite domains, where Di is the
domain of variable xi; F = {f1, . . . , fe} is a set of utility functions (also called con-
straints), fi : �xj∈scope(fi)Dj �→ N ∪ {0,−∞}, specifying the utility of each combi-
nation of values to the variables in the scope of the constraint (where scope(fi) ⊆ X);
A = {a1, . . . , ap} is a set of agents; α : X → A maps each variable to one agent.
In this paper, we will focus on unary and binary constraints. For simplicity, we will
refer to unary constraints as fii and binary constraints as fij to denote the fact that
their scope is {xi} ⊆ X and {xi, xj} ⊆ X , respectively. We also assume that each
agent has exactly one variable mapped to it. Thus, we will use the terms “variable” and
“agent” interchangeably. This is a common assumption in the DCOP literature as there
exist pre-processing techniques that transform a general DCOP into our more restrictive
DCOP [31,4]. A solution is a value assignment for a subset of variables. Its utility is the
evaluation of all utility functions on it. A solution is complete if it is a value assignment
for all variables in X . The goal is to find a utility-maximal complete solution.

Each constraint in F can be either hard, indicating that some value combinations
result in a utility of −∞ and must be avoided, or soft, indicating that all value combi-
nations result in a finite utility and need not be avoided. We use Hi and Si to denote
the set of hard and soft constraints, respectively, whose scope includes xi. With a slight
abuse of notation, we will also often view a unary constraint fii as a subset of Di, de-
fined as fii = {(u) ∈ Di | fii(u) �= −∞}, and a binary constraint fij as a subset of
Di ×Dj , defined as fij = {(u, v) ∈ Di ×Dj | fij(u, v) �= −∞}.

1 This algorithm has also been referred to as Dynamic Programming Optimization Protocol.

Improving DPOP with Branch Consistency 309

a2

a1

a3

a4

a5

x1

x3

x4

x5

=

<

=
soft

x2

>

x1

x3

x4

x5

=

<

=
soft

x2

> x1 x5 Utilities
0 0 20
0 1 8
0 2 10
0 3 3
. . .

3 3 2

(a) Constraint Graph (b) Pseudo-tree (c) Constraint Table

Fig. 1. Example DCOP

Table 1. Example UTIL Phase Computations of a5

x1 x4 Utilities
0 0 max(20+0, 8-∞, 10-∞, 3-∞) = 20
0 1 max(20-∞, 8+0, 10-∞, 3-∞) = 8
0 2 max(20-∞, 8-∞, 10+0, 3-∞) = 10
0 3 max(20-∞, 8-∞, 10-∞, 3+0) = 3
.

A constraint graph visualizes a DCOP, where nodes correspond to the variables and
the edges connect pairs of variables in the scope of the same utility function. A DFS
pseudo-tree arrangement has the same nodes and edges as the constraint graph and satis-
fies two conditions: (i) there is a subset of edges (tree edges) that form a rooted tree, and
(ii) two variables in the scope of the same utility function appear in the same branch of
the tree. The other edges are called backedges. Tree edges connect parent-child nodes,
while backedges connect a node with its pseudo-parents and pseudo-children. We also
use the following notation: Ci, PCi, Pi, and PPi refer to the set of children, pseudo-
children, parent, and pseudo-parents of agent ai, respectively; and sep(ai) refers to the
separator of agent ai, which is the set of ancestor agents that are constrained with agent
ai or one of its descendant agents.

Figure 1(a) shows the constraint graph of a simple DCOP with five agents, ai, with
i = 1, . . . , 5, each owning exactly one variable xi. The domain of each variable is the
set {0, 1, 2, 3}. Figure 1(b) shows one possible pseudo-tree for the problem, where the
agent a1 has one pseudo-child, a5 (the dotted line is a backedge). Figure 1(c) describes
few value combinations of the utility function associated with the constraint f15.

2.2 Distributed Pseudo-Tree Optimization Procedure (DPOP)

DPOP [24] has the following three phases:
(1) The first phase is the pseudo-tree generation phase, realized through an existing

distributed pseudo-tree construction algorithm, like Distributed DFS [15].
(2) The second phase is the UTIL propagation phase, where each agent, starting from

the leaves of the pseudo-tree, computes the optimal sum of utilities in its subtree for

310 F. Fioretto et al.

each value combination of variables in its separator. The agent does so by summing
the utilities of its constraints with the variables in its separator and the utilities in the
UTIL messages received from its children agents, and then projecting out its own
variables by optimizing over them. In our example problem, agent a5 computes
the optimal utility for each value combination of variables x1 and x4, as shown in
Table 1, and sends the utilities to its parent agent a4 in a UTIL message. Such a
table consists of 43 = 64 utilities before projecting out its variable x5, and 42 = 16
utilities after the projection. The value 0 (−∞) represents the utility for the hard
constraint f45 for values of x4, x5 that satisfy (do not satisfy) it. When the root
agent a1 receives the UTIL message from each of its children, it computes the
maximum utility of the entire problem.

(3) The third phase is the VALUE propagation phase, where each agent, starting from
the root of the pseudo-tree, determines the optimal value for its variable. The root
agent does so by choosing the value of its variable from its UTIL computations—
selecting the value with the maximum utility. It sends the selected value to its chil-
dren in a VALUE message. Each agent receiving a VALUE message will determine
the value for its variable producing the maximum utility given the variable assign-
ments (of the agents in its separator) indicated in the VALUE message. Once deter-
mined, such assignment is further propagated to the children via VALUE messages.

3 Branch-Consistent DPOP (BrC-DPOP)

3.1 Preliminaries

Definition 1. The consistency graph of a DCOP 〈X ,D,F ,A, α〉 is G = (V,E) where
V = {(i, k) | xi ∈ X , k ∈ Di} and E = {〈(i, r), (j, c)〉 | r ∈ Di, c ∈ Dj, fij ∈
F , (r, c) ∈ fij}.

Definition 2. Given a pseudo-tree associated with a DCOP problem instance, we de-
fine a linear ordering ≺ on its variables: xi ≺ xj iff xj ∈ Pi. Similarly, xi * xj iff

xj ∈ Ci. We denote with + (and,) the reflexive closure of≺ (and*), and with
∗
≺ (and

∗
*,

∗
+,

∗
,) the transitive closure of ≺ (and *, +, ,).

Definition 3. A pair of values (r, c) ∈ Di×Dj of two variables xi, xj that share
a constraint fij is branch consistent (BrC) iff for any sequence of variables (xi =
xk1 , . . . , xkm = xj), such that fkpkq ∈ F , where p ≤ q ≤ p + 1, and xk1 + · · · +
xkm , there exists a tuple of values (r = vk1 , . . . , vkm = c) such that vkq ∈ Dkq and
(vkp , vkq) ∈ fkpkq , for each 1 ≤ q ≤ m and p ≤ q ≤ p+ 1.

Definition 4. A DCOP is branch consistent (BrC) iff for any pair of variables (xi, xj)
with xi + xj and any (u, v) ∈ fij , (u, v) is branch consistent.

Definition 5. Given a DCOP, the Value Reachability Matrix (VRM) Mij of two vari-

ables xi and xj ofX , with xi
∗
+xj , is a binary matrix of size Di×Dj , where Mij [r, c]=1

iff there exists at least one sequence of variables (xi = xk1 , . . . , xkm = xj), such that
xk1+· · ·+xkm , and a tuple of values (r=vk1 , vk2 , . . . , vkm =c) such that vkp ∈ Dkp

and (vkp , vkq) ∈ fkpkq , for each 1 ≤ q ≤ m and p ≤ q ≤ p+ 1.

Improving DPOP with Branch Consistency 311

Proposition 1. For each variable xi, xj , and xk, the regular product of two VRMs Mik

and Mkj is a VRM Mij = Mik ×Mkj , where each entry (r, c) of Mij is given by

Mij [r, c] = min

⎧⎨⎩1,

|Dk|∑
l=1

Mik[r, l] ·Mkj [l, c]

⎫⎬⎭
Proposition 2. For each variable xi and xj , the entrywise product of two VRMs Mij

and M̂ij is a VRM M ′
ij =Mij ◦ M̂ij , where each entry (r, c) of M ′

ij is given by

M ′
ik[r, c] = Mij [r, c] · M̂ij [r, c]

Definition 6. Given a VRM Mij , a pair of values (r,c) is a valid pair iff Mij [r, c] = 1.

Definition 7. If fij ∈ F , then Mij is branch consistent (BrC) iff all its valid pairs are
branch consistent. If fij /∈ F , then Mij is branch consistent iff it is a regular product
of branch consistent VRMs.

3.2 High-Level Algorithm Description

Let us now illustrate the high-level structure of BrC-DPOP on the example DCOP
shown in Figure 1. BrC-DPOP consists of the following phases:

• Pseudo-tree Generation Phase: This phase is identical to that of DPOP.
• Path Construction Phase: In this phase, each agent builds the VRMs associated

with the constraints involving its variables along with the structures describing the
paths between pseudo-parents and pseudo-children. Figure 2(a) shows the VRMs
(in a consistency graph representation); we do not show the soft constraint between
variables x1 and x5 as it allows every value combination of the two variables.

• Arc Consistency Enforcement Phase: In this phase, the agents enforce arc consis-
tency in a distributed manner. At the end of this phase, each agent has the updated
VRMs shown in Figure 2(b). Arc consistency causes the removal of exactly two val-
ues from the domain of each variable of the DCOP: values 0 and 3 from D1, 0 and 1
from D2, and 2 and 3 from D3, D4, and D5.

• Branch Consistency Enforcement Phase: In this phase, the agents enforce branch
consistency in a distributed manner. In our example, branch consistency needs to
be enforced for the pairs of values of variables x1 and x5 only. The values for all
other pairs of variables are already branch consistent. Agent a1 starts this process by
sending a message containing VRM M11 to its child a3 (since a5 is in the subtree
rooted at a3). Once agent a3 receives the message, it computes the VRM M31 by
multiplying its VRM M31 with the VRM M11 just received, and sends a message
containing this VRM to its child a4. Agent a4 repeats this process by multiplying its
VRM M43 with the VRM M31, resulting in VRM M41, which it sends to its child
a5. This process repeats until agent a5 computes the VRM M51, after which it knows
its set of reachable values in x5 for each value in x1. Figure 2(c) shows the VRMs.

• UTIL and VALUE Propagation Phases: This phase is identical to the correspond-
ing UTIL and VALUE propagation phases of DPOP, except that each agent constructs

312 F. Fioretto et al.

Fig. 2. Example Trace

a UTIL table that contains utilities for each combination of unpruned values of vari-
ables in its VRMs. In our example, agent a5 is able to project out its variable x5
and construct its UTIL table, shown in Figure 2(d). Note that the UTIL table consists
of only 3 utilities, both before and after projection. In contrast, DPOP’s UTIL table
consists of 43 = 64 utilities before projection and 42 = 16 utilities after projection.

3.3 Messages and Data Structures

During the execution of BrC-DCOP, each agent ai maintains the following data struc-
tures, where the first three are used in the arc consistency phase and the last two are
used in the branch consistency phase.

• The set of hard constraints Ĥi = {fij ∈ Hi | ai
∗
+ aj} to check for consistency.

• The set of VRMs M̂i = {M̂ij | fij ∈ F , aj
∗
+ ai}, which includes the VRMs for

each parent and pseudo-parent aj .
• The flag fixedi for each agent ai, which is initialized to true. It indicates if agent ai

has reached a fixed point in the arc consistency phase.
• The set of VRMs Mi = {Mij | aj ∈ sep(ai)}, which includes the VRMs for each

separator agent aj .

• The set of paths PATHSi = {(as
aj� ad) | aj ∈ Ci, as

∗
, ai * aj

∗
, ad}, which

the agent uses to send updated VRMs in the branch consistency phase. Each path

(as
aj�ad) indicates that there is a branch in the pseudo-tree from as to ad that passes

through ai and its child aj . This data is needed by agent ai to know which child it
should send its updated VRM to, if the VRM originated from agent as. For example,
in our example trace, agent a1 knows to send its VRM to its child a3 and not a2.
To preserve privacy, the information about the destination agent ad can be omitted

from each path. Each agent thus maintains only (as
aj�?), which is sufficient to ensure

correctness.

In addition to the UTIL and VALUE messages used in the UTIL and VALUE prop-
agation phases, each agent ai uses the following types of messages, where the first

Improving DPOP with Branch Consistency 313

Algorithm 1. BRC-DPOP

1 PSEUDO-TREE-GENERATION-PHASE()
2 PATH-CONSTRUCTION-PHASE()
3 AC-PROPAGATION-PHASE()
4 BRC-PROPAGATION-PHASE()
5 UTIL-AND-VALUE-PHASES()

Procedure Path-Construction-Phase()

6 foreach ap ∈ PPi do

7 PATHSi ← PATHSi ∪ (ap
NULL� ?)

8 if Ci �= ∅ then
9 while not received all PATH↑

c(·) from each ac ∈ Ci do
10 if receive PATH↑

c(as) from ac ∈ Ci then
11 PATHSi ← PATHSi ∪ (as

ac�?)

12 foreach as �= ai such that (as
ac�?) ∈ PATHSi do

13 Send PATH↑
i (as) to Pi

14 if PATH↑
i (·) has not been sent to Pi then

15 Send PATH↑
i (NULL) to Pi

two are used in the arc consistency phase, while the last two in the branch consistency
phase:2

• AC↑
i (D

′
j , fixedi), which is sent from an agent ai to an agent aj

∗
* ai such that fij ∈

Hi. It contains a copy of the domain of the variable xj , D′
j , updated with the changes

caused by the propagation of the constraints in Ĥi, and a flag, fixedi, which denotes
whether changes have occurred in the domain of some variable in the subtree rooted
at ai during the last iteration of the AC↑ messages.

• AC↓
i (Di), which is sent from an agent ai to the agents aj

∗
≺ ai such that fij ∈ Hi.

It contains a copy of the domain of the variable xi, Di, updated with the changes
caused by the propagation of the constraints in Ĥi.

• PATH↑
i (as), which is sent from an agent ai to its parent Pi to inform it that it is part

of a tree path in the pseudo-tree between agents as and some pseudo-child of as.
• BrC↓

i (Mis), which is used to determine the branch consistent value pairs of xs and xi.

3.4 Algorithm Description

Algorithm 1 shows the pseudo-code of BrC-DPOP. It can be visualized as a process
composed of 5 phases:

• Phase 1 - Pseudo-tree Generation Phase: This phase is identical to that of DPOP,
where a pseudo-tree is generated (line 1).

2 We use the superscript ↑ to denote the messages being propagated from the leaves of the
pseudo-tree to the root, and ↓ to denote the ones propagated from the root to the leaves.

314 F. Fioretto et al.

Procedure AC-Propagation-Phase()

16 iteration ← 0
17 repeat
18 if Ci �= ∅ then
19 Wait until received AC↑

c(D
′
i, fixedc) from each ac ∈ Ci ∪ PCi in this iteration

20 foreach AC↑
c(D

′
i, fixedc) received do

21 Di ← Di ∩ D′
i

22 〈M̂i, Di〉 ← ENFORCEAC(Ĥi, M̂i, Di)
23 fixedi ← ¬CHANGED(Di) ∧

∧
ac∈Ci

fixedc

24 Send AC↑
i (M̂ij|j , fixedi) to each aj ∈ Pi ∪ PPi

25 if Pi �= NULL then
26 Wait until received AC↓

p(Dp) from each ap ∈ Pi ∪ PPi in this iteration or
received BrC↓

p(·) from parent ap

27 if received BrC↓
p(·) from parent ap then break

28 if ¬fixedi then
29 foreach AC↓

p(Dp) received do
30 update M̂ip with Dp

31 if Pi �= NULL then
32 〈M̂i, Di〉 ← ENFORCEAC(Ĥi, M̂i, Di)

33 Send AC↓
i (Di) to each ac ∈ Ci ∪ PCi

34 iteration ← iteration+ 1

35 until Pi = NULL and fixedi

• Phase 2 - Path Construction Phase: The phase is used to construct the direct paths
from each agent to its parent and pseudo-parents. At the start of this phase (line 2),
each agent, starting from the leaves of the pseudo-tree, recursively populates its PATHSi

as follows: It saves a path information (ap
NULL� ?) for each of its pseudo-parents ap

(lines 6-7) and sends a PATH↑
i (ap)message to its parent. When the parentai receives a

PATH↑
c message from each of its childac, it stores the path information in themessage in

its PATHSi data structure (lines 9-11). For each path in PATHSi, if it is not the destination
agent, then it sends a PATH↑

j message that contains that path to its parent (lines 12-

13). If it does not send a PATH↑
j message to its parent, then it sends an empty PATH↑

j

message (lines 14-15). These path information will be used in the branch consistency
propagation phase later. When the root processes and stores the path information from
each of its children, it ends this phase and starts the next AC propagation phase.

• Phase 3 - Arc Consistency (AC) Propagation Phase: In this phase, the agents
enforce arc consistency in a distributed manner, by interleaving the direction of the
AC message flows: from the leaves to the root (lines 18-24) and from the root to the
leaves (lines 25-34), until a fixed point is detected at the root (line 35).

In the first part of this phase (lines 18-24), each agent, starting from the leaves up to
the root, recursively enforces the consistency of its hard constraints in Ĥi (line 22) via
the ENFORCEAC procedure, which we implemented using the AC-2001
algorithm [2]. In this process, the agent also updates the VRMs M̂i associated with
all its constraints fij ∈ Ĥi and its domain Di to prune all unsupported values. If

Improving DPOP with Branch Consistency 315

Procedure BrC-Propagation-Phase()

36 if Pi �= NULL then
37 Wait until received a BrC↓

p(Mps) for each path (as
ac�?) ∈ PATHSi from parent ap

38 foreach (as
ac�?) ∈ PATHSi do

39 if as = ai then Mis ← M̂ii

40 else Mis ← M̂ip × Mps

41 Mis ← M̂is ◦ Mis

42 if ac �= NULL then
43 Send BrC↓

i (Mis) to ac

44 foreach ac ∈ Ci that has not been sent a BrC↓
i message do

45 Send BrC↓
i (NULL) to ac

any of its values are pruned, indicating that it has not reached a fixed point, it sets its
fixedi flag to false (line 23). It then sends an AC↑

i message to each of its parent and
pseudo-parentaj , which contains its fixedi flag as well as a copy of their domainsD′

j
3

to notify them about which unsupported values were pruned (line 24). The domain of
each agent is updated before enforcing the arc consistency, as soon as it receives all
the AC↑

i messages from each of its children and pseudo-children (lines 20-21).
Once the root enforces the consistency of its hard constraints, it checks if it has

reached a fixed point (line 28). If it has not, then it starts the next part of this phase,
which is similar to the previous one except for the direction of the recursion and the
AC message flow (lines 29-34). This phase is carried from the root down to the leaves
of the pseudo-tree, and it ends when all the leaves have enforced the consistency of
their hard constraints. Then the procedure repeats the first part where the recursion
and the AC message flow starts from the leaves again and continues up to the root.
This process repeats until a fixed point is reached at the root (line 35), which ends
this phase, and starts the next BrC propagation phase.

• Phase 4 - Branch Consistency (BrC) Propagation Phase: In this phase, the agents
enforce branch consistency in a distributed manner, that is, every pair of values of
an agent and its pseudo-parents are mutually reachable throughout every tree path
connecting them in the pseudo-tree.

At the start of this phase, each agent, starting from the root down to the leaves,
recursively enforces branch consistency for all tree paths from the root to that agent
and sends a BrC↓

i message to each of its children. This message includes the VRM
for each path through that child. Once an agent ai receives all the VRM messages
from its parent (lines 36-37), for each path that goes through it (line 38), it creates
a new VRM Mis. If it is the start of the path, then it sets its VRM M̂ii (line 39),
which is arc consistent, as the new VRM Mis. Otherwise, it performs the regular
product of its VRM M̂ip for the constraint between itself and its parent ap and the
VRM received from the parent Mps and sets it to Mis (line 40). Then, to ensure that
the VRM Mis is branch consistent, it performs the entrywise product with the VRM
M̂is of its pseudo-parent as (line 41). If the agent is the destination of the path, then

3 In the pseudo-code, we use the notation M̂ij|j to indicate D′
j .

316 F. Fioretto et al.

it will use the resulting VRM in the construction of the UTIL messages in the UTIL
phase. Otherwise, it will send the VRM to its child agent that is in that path in a BrC↓

i

message (lines 42-43). Finally, it will send an empty BrC↓
i to all remaining child

agents to ensure that the propagation reaches all the leaves (lines 44-45).
• Phase 5 - DPOP’s UTIL and VALUE Phases: This phase is identical to the cor-

responding UTIL and VALUE propagation phases of DPOP, except that each agent
constructs a UTIL table that contains utilities for each combination of unpruned val-
ues of variables in its VRMs.

4 Theoretical Analysis

In this section, we use n, e, and d to denote |A|, |F|, and maxxi∈X |Di|, respectively.

Theorem 1. The AC propagation phase requires O(nde) messages, each of size O(d).

Proof Sketch: In the worst case, each AC iteration removes exactly one value from one
domain. Thus, there are only O(nd) iterations, as there are only O(nd) values among
all variables. In each iteration, each agent sends exactly one AC↑ message to each parent
and pseudo-parent and one AC↓ message to each child and pseudo-child. Thus, there
are at most O(e) messages sent in each iteration. Each message contains at most the
full domain of a variable and the fixed flag, which is O(d).

Theorem 2. The BrC propagation phase requires O(e) messages, each of size O(d2).

Proof Sketch: In the BrC propagation phase, each agent sends exactly one BrC↓ mes-
sage to each child, and the phase ends after all the leaves in the pseudo-tree receives a
BrC↓ message. Each message contains at most a VRM, which is O(d2).

Theorem 3. The DCOP is arc consistent after the AC propagation phase.

Proof Sketch: We prove this result by contradiction. Assume that there are ai, aj ∈ A
and a ∈ Di such that ∀b ∈ Dj , (a, b) �∈ fij . Let b1, . . . , bm be all the (pruned) values
in Dj supporting a. We have the following two cases:

• ai ∈ Pj ∪ PPj . If agent aj pruned all its values br (1 ≤ r ≤ m) from Dj , then the
value a is pruned from the copy of the domain Di held at aj (M̂ji|i will not include
the value a) (line 22). When ai receives an AC↑ message from each ak ∈ Ci ∪ PCi

(including aj), it updates its own domain with the copy received from each agent
(lines 20-21) removing a from Di and resulting in a contradiction.

• ai ∈ Cj ∪ PCj . Agent aj can prune all its values br (1 ≤ r ≤ m) from Dj in
the following two ways. In case 1, agent ai prunes all the values br from a copy of
Dj during its AC consistency enforcement (line 22), sends up an AC↑ message to
aj , and aj prunes all its values br from its Dj . However, in this case, agent ai would
have also pruned value a from its domain, resulting in a contradiction. In case 2, some
other agent ak that shares a constraint fkj with agent aj prunes all the values br from
the copy of Dj during its AC consistency enforcement, sends up an AC↑ message to

Improving DPOP with Branch Consistency 317

aj , and aj prunes all its values br from its Dj . In this case, aj will eventually send
an AC↓ message to ai that contains its updated domain without the values br. Then,
agentai will prune valuea from its domain in its AC consistency enforcement (line 22),
resulting in a contradiction.

Theorem 4. The DCOP is branch consistent after the BrC propagation phase.

Proof Sketch: We prove by induction on the number of variables in the paths xi =
xk1 , . . . , xkm =xj , such that xk1* . . .*xkm .
Base Case (m= 2): We know that xj ∈ Ci and there is only one path from xi to xj
via the constraint fij . Additionally, this constraint is arc consistent because the BrC
propagation phase runs after the AC propagation phase. Thus, all the remaining pairs
of values in both variables are by definition branch consistent (Definition 3). The VRM
Mji is thus branch consistent.
Induction Assumption: Assume that for any 2 ≤ q ≤ r and paths xi=xk1 , . . . , xkq =
xj with xk1* . . .*xkq , there is a VRM Mji that is branch consistent.
Induction Case (m= r + 1): We know that the paths from xi = xk1 to xkr is branch
consistent from the induction assumption. Thus, the VRM Mkrk1 received by xkr+1 is
branch consistent. Additionally, all the constraints between any xkp (1 ≤ p ≤ r) and
xkr+1 are arc consistent because the BrC propagation phase runs after the AC propaga-
tion phase. Thus, the VRMs M̂kr+1kp are also branch consistent.
We now show that the algorithm removes values of xkr+1 that are not branch consistent
with values of its ancestors in the following two cases:
• For paths that include the constraint between xr and xr+1, BrC-DPOP takes the

regular product (line 40), which removes all inconsistent values.
• For paths that do not include the constraint between xr and xr+1 and, thus, must

include the constraint between xk1 and xkr+1 , BrC-DPOP performs the entrywise
product (line 41), which removes all inconsistent values.

Theorem 5. BrC-DPOP is complete and correct.

Proof Sketch: The completeness and correctness of BrC-DPOP follows from the cor-
rectness and completeness of DPOP [24] and the correctness and completeness of the
AC and BrC propagation phases (Theorems 1, 2, 3, and 4).

Property 1. Both the UTIL and the VALUE phases require O(n) number of messages.

Property 2. The memory requirement of BrC-DPOP is in the worst case exponential in
the induced width of the problem for each agent.

Both properties follow trivially from the properties of DPOP since no values are
pruned from the AC and BrC propagation phases in the worst case.

5 Related Work

We characterize the approaches that prune values of variables in DCOPs along two gen-
eral types. Algorithms in the first category propagates exclusively hard constraints (BrC-
DPOP falls into this category). To the best of our knowledge, the only existing work that

318 F. Fioretto et al.

falls into this category is H-DPOP [17], which, like BrC-DPOP, is also an extension of
DPOP. The main difference between H-DPOP and BrC-DPOP is that instead of VRMs,
each agent ai in H-DPOP uses constraint decision diagrams (CDDs) to represent the
space of possible value assignments of variables in its separator set sep(ai). A CDD is
a rooted directed acyclic graph structured by levels, one for each variable in sep(ai). In
each level, a non-terminal node represents a possible value assignment for the associated
variable. Each non-terminal node v has a list of successors: one for each value u in the
next variable for which the pair (u, v) is satisfied by the constraint between the two vari-
ables. As a result of using CDDs, H-DPOP suffers from two limitations: (1) H-DPOP
can be slower than DPOP because maintaining and performing join and projection oper-
ations on CDD are computationally expensive. In contrast, maintaining and performing
operations on VRMs can be faster, which we will demonstrate in the experimental results
section later. (2) H-DPOP cannot fully exploit information of hard constraints to reduce
the size of UTIL messages. Consider the DCOP instance of Figure 2, where the domains
for the variables x1, x3, x4, and x5 are represented by the set {1, . . . , 100}, while the
domain for variable x2 is the set {1, 2}. In H-DPOP, a5 is not aware of the constraints
x1 < x2 and x1 < x3—neither x2 nor x3 are in sep(a5), thus no pruning will be en-
forced. Its UTIL table will hence contain 1002 = 10, 000 utilities for each combination
of values of x4 and x1. This is the same table that DPOP would construct. In contrast, in
BrC-DPOP, the domains of x1 and x2 will be pruned to {1} and {2}, respectively, and
the domains of x3, x4, and x5 to {2, . . . , 100}. Therefore, the UTIL table that a5 sends
to a4 contains 99 × 1 = 99 utilities. Aside from these two limitations, a more critical
limitation of H-DPOP is its assumption that each agent has knowledge of all the con-
straints whose scope is a subset of its separator set. This assumption is stronger than the
assumptions made by most DCOP algorithms and might cause privacy concerns in some
applications. In contrast, BrC-DPOP does not make such assumptions.

Algorithms in the second category propagates lower and upper bounds. Researchers
have extended search-based DCOP algorithms (e.g., BnB-ADOPT and its enhanced
versions [29,12,14]) to maintain soft-arc consistency in a distributed manner [1,13,11].
Such techniques are typically very effective in search-based algorithms as their runtime
depends on the accuracy of its lower and upper bounds.

Finally, it is important to note the differences between branch consistency and path
consistency [21]. One can view branch consistency as a weaker version of path consis-
tency, where all the variables in a path must be ordered according to the relation≺, and
only a subset of all possible paths have to be examined for consistency. Thus, one can
view branch consistency as a form of consistency tailored to pseudo-trees, where each
agent can only communicate with neighboring agents.

6 Experimental Results

We implemented a variant of BrC-DPOP, called AC-DPOP, that enforces arc consis-
tency only in order to assess the impact of the branch consistency phase in BrC-DPOP.
Moreover, in order to be as comprehensive as possible in our evaluations, we also im-
plemented a variant of H-DPOP called PH-DPOP, which stands for Privacy-based H-
DPOP, that restricts the amount of information that each agent can access to the amount

Improving DPOP with Branch Consistency 319

(a) Random Graphs: Varying p1

S
im

ul
at

ed
 T

im
e

(m
s)

0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

10

100

103

104

105

●

●

●

●

●

●

●

●

●

●

●

●

(b) Random Graphs: Varying p2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10

100

103

104

105

●
●

● ●

●

●
●

●

● ●
●

●

●

●

● ●

(c) RLFA: Varying Number of Agents

5 10 15 20 25 30 35 40 45 50 55

0.1

1

10

100

103

104

105

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

(d) Random Graphs: Varying p1

M
es

sa
ge

 S
iz

e

0.3 0.4 0.5 0.6 0.7 0.8 0.9

103

104

105

106

107

●

●

●

●

●

●

●

●

●

●

●

●

(e) Random Graphs: Varying p2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

104

2.5 ⋅ 104

105

2.5 ⋅ 105

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

(f) RLFA: Varying Number of Agents

5 10 15 20 25 30 35 40 45 50 55

10

102

103

104

105

106

107

●

●

●

●

● ●

● ●
● ●

●

●

●

●

●

Fig. 3. Runtimes and Message Sizes

common in most DCOP algorithms including BrC-DPOP. Specifically, agents in PH-
DPOP can only access their own constraints and, unlike H-DPOP, cannot access their
neighboring agents’ constraints.

In our experiments,4 we compare AC-DPOP and BrC-DPOP against DPOP [24],
H-DPOP [17], and PH-DPOP. We use a publicly-available implementation of DPOP
available in the FRODO framework [18] and an implementation of H-DPOP provided
by the authors. We ensure that all algorithms use the same pseudo-tree for fair com-
parisons. All experiments are performed on an Intel i7 Quadcore 3.4GHz machine with
16GB of RAM with a 300-second timeout. If an algorithm fails to solve a problem, it
is due to either memory limitations or timeout. We conduct our experiments on ran-
dom graphs [6], where we systematically vary the constraint density p1 and constraint
tightness p2,5 and distributed Radio Link Frequency Assignment (RLFA) problems [5],
where we vary the number of agents |A| in the problem. We generated 50 instances for
each experimental setting, and we report the average runtime, measured using the sim-
ulated runtime metric [28], and the average total message size, measured in the number
of utility values in the UTIL tables. For the distributed RLFA problems, we also report
the percentage of satisfiable instances solved to show the scalability of the algorithms.

Random Graphs: In our experiments, we set |A| = 10, |X | = 10, |Di| = 8 for all
variables. We vary p1 (while setting p2 = 0.6) and vary the p2 (while setting p1 = 0.6).
We did not bound the tree-width, which is determined based on the underlying graph

4 Available at http://www.cs.nmsu.edu/klap/brc-dpop_cp14/
5 p1 and p2 are defined as the ratio between the number of binary constraints in the problem and

the maximum possible number of binary constraints in the problem and the ratio between the
number of hard constraints and the number of constraints in the problem, respectively.

http://www.cs.nmsu.edu/klap/brc-dpop_cp14/

320 F. Fioretto et al.

and randomly generated. We used hard constraints that are either the “less than” or
“different” constraints. We also assign a unary constraint to each variable that gives it a
utility corresponding to each its value assignments.

Figures 3(a-b) show the runtimes of the algorithms and Figures 3(d-e) show the
message sizes. We omit results of an algorithm for a specific parameter if it fails to solve
50% of the satisfiable instances for that parameter. We make the following observations:

• On message sizes, BrC-DPOP uses smaller messages than AC-DPOP because BrC-
DPOP prunes more values due to its BrC propagation enforcement. H-DPOP uses
smaller messages than BrC-DPOP and AC-DPOP because agents in H-DPOP uti-
lize more information about the neighbors’ constraints to prune values. In contrast,
agents in BrC-DPOP and AC-DPOP only utilize information on their own constraints
to prune values. BrC-DPOP and AC-DPOP use smaller messages than PH-DPOP at
large p2 values, highlighting the strength of the AC and BrC propagation phases com-
pared to the pruning techniques in PH-DPOP. Finally, they all use smaller messages
than DPOP because they all prune values while DPOP does not.

• On runtimes, BrC-DPOP is slightly faster than AC-DPOP because BrC-DPOP prunes
more values than AC-DPOP. Additionally, these results also indicate that the over-
head of the BrC propagation phase is relatively small. BrC-DPOP and AC-DPOP
are faster than DPOP because they do not need to perform operations on the pruned
values. This also indicates that the overhead of the AC propagation phase is small. In
our experiments, the number of AC messages exchanged during the AC propagation
phase never exceeds 3|F| and is, on average, as small as |F|. DPOP is faster than
H-DPOP and PH-DPOP because they maintain and perform operations on CDDs,
which are computationally very expensive. In contrast, BrC-DPOP maintains and
performs operations on matrices, which are more computationally efficient.

Distributed RLFA Problem: In these problems, we are given a set of links {L1, . . . ,
Lr}, each consisting of a transmitter and a receiver. Each link must be assigned a fre-
quency from a given set F . At the same time the total interference at the receivers must
be reduced below an acceptable level using as few frequencies as possible. In our model,
each transmitter corresponds to an agent (and a variable). The domain of each variable
consists of the frequencies that can be assigned to the corresponding transmitter. The
interference between transmitters are modeled as constraints of the form |xi − xj | > s,
where xi and xj are variables and s ≥ 0 is a randomly generated required frequency
separation. We also assign a utility value to each frequency taken by each agent, repre-
sented as a unary soft constraint, which represents a preference for an agent to transmit
at a given frequency.

For generating the constraint graphs, we vary |A| and fix the other parameters:
|Di| = 6, p2 = 0.55, s ∈ {2, 3}. We also set the maximum number of neighbors
for each agent to 3 in order to generate more satisfiable instances. Figure 3(c) shows the
runtimes and Figure 3(f) shows the message sizes. We omit results of an algorithm for a
specific parameter if it fails to solve 50% of the satisfiable instances for that parameter.

We observe trends that are similar to those in the earlier random graphs except that
the message size of H-DPOP is slightly larger than of those of BrC-DPOP. Therefore,
as we have described in Section 5, it is possible for H-DPOP to prune fewer values de-
spite using more information. Additionally, both H-DPOP and PH-DPOP can only solve

Improving DPOP with Branch Consistency 321

Table 2. Percentage of Satisfiable Instances Solved

|A| 5 10 15 20 25 30 35 40 45 50 55

BrC-DPOP 1.00 1.00 1.00 1.00 1.00 0.97 0.52 0.78 0.73 0.70 0.51
AC-DPOP 1.00 1.00 1.00 1.00 1.00 0.39 0.11 0.30 0.15 0.15 0.19
H-DPOP 1.00 1.00 1.00 1.00 0.46 0.12 0.00 0.00 0.00 0.00 0.00

PH-DPOP 1.00 1.00 1.00 1.00 0.21 0.09 0.00 0.00 0.00 0.00 0.00
DPOP 1.00 1.00 1.00 1.00 1.00 0.67 0.23 0.35 0.23 0.29 0.19

small problems and failed to solve some problems that DPOP successfully solved. Ta-
ble 2 tabulates the percentage of satisfiable problem instances solved by each algorithm
(the largest percentage in each parameter setting is shown in bold), where it is clear that
BrC-DPOP is more scalable than all its counterparts.

7 Conclusions and Future Work

To the best of our knowledge, H-DPOP is the only existing DCOP algorithm that prop-
agates exclusively hard constraints. Unfortunately, it suffers from high computational
requirements as well as its overly strong assumption on the knowledge of each agent.
In this paper, we alleviate these limitations by introducing the concept of branch con-
sistency as well as the BrC-DPOP algorithm, a DPOP extension that enforces arc con-
sistency and branch consistency. We experimentally show that BrC-DPOP can prune as
much as a version of H-DPOP that limits its knowledge to the same amount as BrC-
DPOP in a much smaller amount of time. We also show that it can scale to larger
problems than DPOP and H-DPOP. Therefore, these results confirm the strengths of
this approach, leading to enhanced efficiency and scalability.

For future work, we plan to extend BrC-DPOP to handle higher arity constraints,
which can be done by substituting the VRM structures with either consistency graphs
or higher dimension VRMs. We suspect that there will be a tradeoff between runtime
and memory requirement between the two approaches, where using higher dimension
VRMs is faster but uses more memory. We also plan to extend BrC-DPOP to memory-
bounded versions similar to MB-DPOP [27] in order to scale to even larger problems.
Finally, we plan to explore propagation of soft constraints similar to the versions of
BnB-ADOPT with soft AC enforcement [1,13,11].

Acknowledgment. We would like to thank Akshat Kumar for providing us his im-
plementation of H-DPOP. This research is partially supported by the National Science
Foundation under grant number HRD-1345232. The views and conclusions contained
in this document are those of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the sponsoring organizations,
agencies, or the U.S. government.

322 F. Fioretto et al.

References

1. Bessiere, C., Gutierrez, P., Meseguer, P.: Including Soft Global Constraints in DCOPs. In:
Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 175–190. Springer, Heidelberg (2012)

2. Bessiere, C., Regin, J.: Refining the Basic Constraint Propagation Algorithm. In: Proc. of
IJCAI, pp. 309–315 (2001)

3. Brito, I., Meseguer, P.: Improving DPOP with function filtering. In: Proc. of AAMAS,
pp. 141–158 (2010)

4. Burke, D., Brown, K.: Efficiently Handling Complex Local Problems in Distributed Con-
straint Optimisation. In: Proc. of ECAI, pp. 701–702 (2006)

5. Cabon, B., De Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio Link Frequency As-
signment. Constraints 4(1), 79–89 (1999)

6. Erdös, P., Rényi, A.: On Random Graphs I. Publicationes Mathematicae Debrecen 6, 290
(1959)

7. Ezzahir, R., Bessiere, C., Belaissaoui, M., Bouyakhf, E.: DisChoco: A Platform for Dis-
tributed Constraint Programming. In: Proc. of the Distributed Constraint Reasoning Work-
shop, pp. 16–27 (2007)

8. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.: Decentralised Coordination of Low-Power
Embedded Devices Using the Max-Sum Algorithm. In: Proc. of AAMAS, pp. 639–646
(2008)

9. Gershman, A., Meisels, A., Zivan, R.: Asynchronous Forward-Bounding for Distributed
COPs. Journal of Artificial Intelligence Research 34, 61–88 (2009)

10. Greenstadt, R., Grosz, B., Smith, M.: SSDPOP: Improving the Privacy of DCOP with Secret
Sharing. In: Proc. of AAMAS, pp. 1098–1100 (2007)

11. Gutierrez, P., Lee, J.H.M., Lei, K.M., Mak, T.W.K., Meseguer, P.: Maintaining Soft Arc Con-
sistencies in BnB-ADOPT+ during Search. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124,
pp. 365–380. Springer, Heidelberg (2013)

12. Gutierrez, P., Meseguer, P.: Saving redundant messages in BnB-ADOPT. In: Proc. of AAAI,
pp. 1259–1260 (2010)

13. Gutierrez, P., Meseguer, P.: Improving BnB-ADOPT+-AC. In: Proc. of AAMAS,
pp. 273–280 (2012)

14. Gutierrez, P., Meseguer, P., Yeoh, W.: Generalizing ADOPT and BnB-ADOPT. In: Proc. of
IJCAI, pp. 554–559 (2011)

15. Hamadi, Y., Bessière, C., Quinqueton, J.: Distributed Intelligent Backtracking. In: Proc. of
ECAI, pp. 219–223 (1998)

16. Kumar, A., Faltings, B., Petcu, A.: Distributed Constraint Optimization with Structured Re-
source Constraints. In: Proc. of AAMAS, pp. 923–930 (2009)

17. Kumar, A., Petcu, A., Faltings, B.: H-DPOP: Using Hard Constraints for Search Space Prun-
ing in DCOP. In: Proc. of AAAI, pp. 325–330 (2008)

18. Léauté, T., Ottens, B., Szymanek, R.: FRODO 2.0: An Open-Source Framework for Dis-
tributed Constraint Optimization. In: Proc. of the Distributed Constraint Reasoning Work-
shop, pp. 160–164 (2009)

19. Maheswaran, R., Tambe, M., Bowring, E., Pearce, J., Varakantham, P.: Taking DCOP to
the Real World: Efficient Complete Solutions for Distributed Event Scheduling. In: Proc. of
AAMAS, pp. 310–317 (2004)

20. Modi, P., Shen, W.-M., Tambe, M., Yokoo, M.: ADOPT: Asynchronous Distributed Con-
straint Optimization with Quality Guarantees. Artificial Intelligence 161(1-2), 149–180
(2005)

21. Mohr, R., Henderson, T.C.: Arc and Path Consistency Revisited. Artificial Intelligence 28(2),
225–233 (1986)

Improving DPOP with Branch Consistency 323

22. Nguyen, D.T., Yeoh, W., Lau, H.C.: Distributed Gibbs: A Memory-Bounded Sampling-
Based DCOP Algorithm. In: Proc. of AAMAS, pp. 167–174 (2013)

23. Ottens, B., Dimitrakakis, C., Faltings, B.: DUCT: An Upper Confidence Bound Approach to
Distributed Constraint Optimization Problems. In: Proc. of AAAI, pp. 528–534 (2012)

24. Petcu, A., Faltings, B.: A Scalable Method for Multiagent Constraint Optimization. In: Proc.
of IJCAI, pp. 1413–1420 (2005)

25. Petcu, A., Faltings, B.V.: Approximations in Distributed Optimization. In: van Beek, P. (ed.)
CP 2005. LNCS, vol. 3709, pp. 802–806. Springer, Heidelberg (2005)

26. Petcu, A., Faltings, B.: ODPOP: An algorithm for open/distributed constraint optimization.
In: Proc. of AAAI, pp. 703–708 (2006)

27. Petcu, A., Faltings, B.: MB-DPOP: A New Memory-Bounded Algorithm for Distributed
Optimization. In: Proc. of IJCAI, pp. 1452–1457 (2007)

28. Sultanik, E., Lass, R., Regli, W.: DCOPolis: a Framework for Simulating and Deploying Dis-
tributed Constraint Reasoning Algorithms. In: Proc. of the Distributed Constraint Reasoning
Workshop (2007)

29. Yeoh, W., Felner, A., Koenig, S.: BnB-ADOPT: An Asynchronous Branch-and-Bound
DCOP Algorithm. Journal of Artificial Intelligence Research 38, 85–133 (2010)

30. Yeoh, W., Yokoo, M.: Distributed Problem Solving. AI Magazine 33(3), 53–65 (2012)
31. Yokoo, M. (ed.): Distributed Constraint Satisfaction: Foundation of Cooperation in Multi-

agent Systems. Springer (2001)
32. Zhang, W., Wang, G., Xing, Z., Wittenberg, L.: Distributed Stochastic Search and Distributed

Breakout: Properties, Comparison and Applications to Constraint Optimization Problems in
Sensor Networks. Artificial Intelligence 161(1-2), 55–87 (2005)

33. Zivan, R., Glinton, R., Sycara, K.: Distributed Constraint Optimization for Large Teams of
Mobile Sensing Agents. In: Proc. of IAT, pp. 347–354 (2009)

34. Zivan, R., Okamoto, S., Peled, H.: Explorative anytime local search for distributed constraint
optimization. Artificial Intelligence 212, 1–26 (2014)

Constraint-Based Lagrangian Relaxation

Daniel Fontaine1, Laurent Michel1, and Pascal Van Hentenryck2

1 University of Connecticut, Storrs, CT 06269-2155, USA
2 NICTA and Australian National University, Australia

Abstract. This paper studies how to generalize Lagrangian relaxation
to high-level optimization models, including constraint-programming and
local search models. It exploits the concepts of constraint violation (typ-
ically used in constraint programming and local search) and constraint
satisfiability (typically exploited in mathematical programming). The
paper considers dual and primal methods, studies their properties, and
discusses how they can be implemented in terms of high-level model
combinators and algorithmic templates. Experimental results suggest
the potential benefits of Lagrangian methods for improving high-level
constraint programming and local search models.

1 Introduction

Lagrangian relaxation (e.g., [1]) is a significant optimization paradigm that typ-
ically applies to models that feature both easy and hard constraints. Its idea
is to relax the hard constraints into the objective, using Lagrangian multi-
pliers to adjust the coefficients of these relaxed constraints. Consider, for in-
stance, the application of Lagrangian relaxation to a mixed integer program:

Z = min c · x

s.t.

⎧⎨⎩
Ahx ≥ bh
Aex ≥ be
x ∈ {0, 1}

−→
ZLR(λ) = min c · x+ λT · (bh −Ahx)

s.t.

{
Aex ≥ be
x ∈ {0, 1}

The Lagrangian relaxation can be used to find both dual and primal bounds.
The value ZLR(λ) is a lower bound of Z for any λ ≥ 0 and primal bounds can
be obtained by searching for saddle points to the Lagrangian relaxation (in the
x and λ space).

The idea of Lagrangian relaxation is largely independent of how the model is
expressed (and solved). It is heavily used in continuous optimization (e.g., [8])
and in mixed integer programming (e.g., [5]). It had attracted some attention in
constraint satisfaction problems and SAT in the late 1990s (e.g., [17,3]) but has
not been a topic of much research since then.

This research originated from an attempt to build model combinators for La-
grangian relaxation that would apply to arbitrary optimization models. The de-
sign of these combinators required a systematic investigation of the semantics of

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 324–339, 2014.
c© Springer International Publishing Switzerland 2014

Constraint-Based Lagrangian Relaxation 325

Lagrangian relaxation over these models, which revealed some interesting model-
ing, computational, and implementation issues. It also raised the question about
the potential benefits of Lagrangian relaxation for constraint programming, hy-
brid methods, and constraint-based local search, a topic which has been largely
neglected in the constraint-programming community.

This paper reports some findings in this direction. It starts by introducing
the concept of satisfiability degree that provides an alternative to the notion of
constraint violation used in constraint programming (e.g., [2]) and constraint-
based local search [4,9,14]. The paper then provides natural generalizations of
traditional Lagrangian relaxation concepts, including the Lagrangian duals, sub-
gradient optimization [5], surrogate subgradient optimization [18], and primal
Lagrangian methods (e.g., [17,3]). These generalizations then makes it possible
to design model combinators for Lagrangian relaxation that apply to arbitrary
models and algorithmic templates for Lagrangian methods that are independent
of the solving technology. The paper also presents some preliminary experimental
results indicating the potential of Lagrangian methods for constraint program-
ming and local search, as well as synergies between mathematical programming,
constraint programming, and large-neighborhood search.

The remainder of the paper is organized as follows. Section 2 introduces the
generalized Lagrangian relaxation idea. Sections 3 and 4 discuss dual and pri-
mal Lagrangian methods respectively. Section 5 sketches the implementation in
Ojective-CP. Section 6 presents the experimental results techniques. Section 7
discusses related work and Section 8 concludes the paper.

2 Generalized Lagrangian Relaxation

This section explores how the traditional formulation of Lagrangian relaxations
and Lagrangian duals can be systematically generalized.

2.1 Violation and Satisfiability Degrees

Generalized Lagrangian relaxations are based on the concepts of violation and
satisfiability degrees. The violation degree of a constraint is a key concept in con-
straint programming (e.g., [2]) and constraint-based local search (e.g., [9,14,4]).
The violation degree is constraint-dependent and exploits the constraint struc-
ture. Intuitively, the violation degree denotes how violated the constraint is.

Definition 1 (Violation Degree). The violation degree of constraint c : -n →
Bool is a function νc : -n → -+ such that

c(v1, . . . , vn) ≡ νc(v1, . . . , vn) = 0.

In contrast, the satisfiability degree of a constraint captures both how much the
constraint is violated and the constraint slackness when it is satisfied. It gener-
alizes the Lagrangian relaxation typically used in mathematical programming.
Intuitively, when the satisfiability degree is strictly positive, it denotes how much

326 D. Fontaine, L. Michel, and P. Van Hentenryck

the constraint is violated; when it is negative, the constraint is satisfied and the
satisfiability degree denotes the slack of the constraint. When the satisfiability
degree is zero, the constraint is satisfied but tight.

Definition 2 (Satisfiability Degree). The satisfiability degree of constraint
c : -n → Bool is a function σc : -n → - such that

c(v1, . . . , vn) ≡ σc(v1, . . . , vn) ≤ 0.

Example 1 (A · x ≥ b). Consider the constraint c(x) defined by A · x ≥ b. Its
satisfiability degree is given by the function σc(x) = b − A · x. Observe that,
when σc(v) ≤ 0, A · v ≥ b and c(v) is satisfied. When σc(v) > 0, A · v < b
and σc(v) represents how much the constraint is violated. When σc(v) = 0, the
constraint is satisfied at equality. When σc(v) < 0, σc(v) captures the slackness
of the inequality.

Example 2 (disjunctive(s1, d1, s2, d2)). Constraint disjunctive(s1, d1, s2, d2)
holds if s1 + d1 ≤ s2 ∨ s2 + d2 ≤ s1. Its degree of satisfiability is given by

σd(s1, d1, s2, d2) = min(s1 + d1, s2 + d2)−max(s1, s2).

When max(s1, s2) < min(s1 + d1, s2 + d2), the two intervals [s1, s1 + d1[and
[s2, s2+d2[overlap, the disjunctive constraint is violated and σd(s1, d1, s2, d2) >
0. Similarly, if max(s1, s2) ≥ min(s1+d1, s2+d2), the two intervals are temporally
separated and |σd(s1, d1, s2, d2)| is the temporal slack separating the end of the
first activity from the start of the second activity.

The following example illustrates that, for some constraints, the satisfiability
degree reduces to the violation degree.

Example 3 (permutation(x1, · · · , xn)). Constraint permutation(x1, · · · , xn)
holds if x1, · · · , xn is a permutation of the values in interval 1..n. Its degree
of satisfiability is given by

σp(v1, · · · , vn) =
n∑

j=1

max

(
0,

(
n∑

i=1

(xi = j)

)
− 1

)
.

When σp(v1, · · · , vn) > 0, the constraint is violated. When σp(v1, · · · , vn) = 0,
each value is selected exactly once and the constraint is satisfied. However,
σp(v1, · · · , vn) is never negative as all permutations are equally good: None sat-
isfies the constraint more than the others.

Observe that the violation degree νc of a constraint c can always be defined in
terms of its satisfiability degree σc by stating

νc(x1, . . . , xn) = max(0, σc(x1, . . . , xn)).

We make this assumption in the rest of this paper, when comparing relaxations
based on νc and σc.

Constraint-Based Lagrangian Relaxation 327

2.2 Generalized Lagrangian Relaxations

This section considers Lagrangian relaxations based on violation and satisfiabil-
ity degrees. It first defines the concepts of constraint softening and constraint
relaxation.

Definition 3 (Constraint Softening). The softening of a constraint c over
-n is a constraint soft(c) over -n+1 defined as

soft(c)(x1, · · · , xn, y) ≡ y = νc(x1, · · · , xn).

Definition 4 (Constraint Relaxation). The relaxation of a constraint c over
-n is a constraint relax (c) over -n+1 defined as

relax (c)(x1, · · · , xn, y) ≡ y = σc(x1, · · · , xn).

We are now in a position to define generalized and soft Lagrangian relaxations.

Definition 5 (Generalized and Soft Lagrangian Relaxations). Consider
the optimization problem

P = minx f(x)

subject to

{
ch(x) (h ∈ H)
ce(x) (e ∈ E)

where H and E denote, respectively, the index sets of hard and easy constraints.
The generalized Lagrangian relaxation of P for a set of Lagrangian multipliers
λh ≥ 0 is given by

GLR(λ) = minx f(x) +
∑

h∈H λh · σh
subject to

{
ce(x) (e ∈ E)
relax(ch)(x, σh) (h ∈ H)

The soft Lagrangian relaxation of P for a set of Lagrangian multipliers λh ≥ 0
is given by

SLR(λ) = minx f(x) +
∑

h∈H λh · νh
subject to

{
ce(x) (e ∈ E)
soft(ch)(x, νh) (h ∈ H)

The definitions of the generalized and soft Lagrangian relaxations are composi-
tional and constraint-driven. This makes it possible to define model combinators
that systematically obtain a Lagrangian relaxation from a high-level model as
discussed in Section 5. The following (direct) lemma establishes the soundness
of the approach.

Lemma 1 (Relaxations). Consider the optimization problem P defined above,
an optimal solution x∗ of P , and the generalized and soft relaxations GLR(λ) and
SLR(λ) for a vector λ ≥ 0 ∈ R|H|. Then, GLR(λ) and SLR(λ) are relaxations
of P , i.e., GLR(λ) ≤ f(x∗) and SLR(λ) ≤ f(x∗).

328 D. Fontaine, L. Michel, and P. Van Hentenryck

Proof. Each feasible solution of P satisfies νh = 0 and σh ≤ 0 for all h ∈ H .
Hence, in SLR(λ) (resp. GLR(λ)), the objective value of a feasible solution is
the same as (resp. no greater than) the objective value of a feasible solution in
P . The results follows since the λh are nonnegative. ��

The following (also direct) lemma shows that the soft relaxation is at least as
strong as the generalized relaxation.

Lemma 2 (GLR versus SLR). For any λ ≥ 0, we have GLR(λ) ≤ SLR(λ).

This lemma seems to suggest the use of SLR(λ) instead of GLR(λ) (which gen-
eralizes the traditional mathematical approach), since it is a stronger relaxation.
Indeed, SLR(λ) could be defined as

SLR(λ) = minx f(x) +
∑

h∈H λh · νh

subject to

⎧⎪⎪⎨⎪⎪⎩
ce(x) (e ∈ E)
relax(ch)(x, σh) (h ∈ H)
νh ≥ 0 (h ∈ H)
νh ≥ σh (h ∈ H)

which does not change the theoretical complexity of the relaxation if GLR(λ)
is a linear program or a mixed integer program. The experimental results in
Section 6 will shed some light on this issue.

3 Generalized Lagrangian Duals

Lagrangian relaxation is often used to find tight dual bounds to optimization
problems. The aim is thus to determine the set of Lagrangian multipliers λ
that gives the strongest dual bound. This section focuses on the generalized
Lagrangian relaxation but the results apply to the soft Lagrangian relaxation as
well. The generalized Lagrangian dual can then be defined as

GLR∗ = max
λ≥0

GLR(λ).

The generalized Lagrangian dual satisfies the following property.

Theorem 1 (Optimality Test). Let x̂ be an optimal solution to GLR(λ) for
some λ ≥ 0 such that

1. ch(x̂) holds for all h ∈ H.
2. λh · σh = 0 for all h ∈ H.

Then, x̂ is an optimal solution to P and GLR∗ = GLR(λ).

Proof. By condition (1) and the definition of GLR(λ), x̂ is a feasible solution.
Moreover, by condition (2), GLR(λ) = f(x̂) +

∑
h∈H λh · σh = f(x̂). Since f(x̂)

is both a lower and an upper bound, the result follows. ��

Note that, for SLR, condition (1) implies condition (2).

Constraint-Based Lagrangian Relaxation 329

1 function SubgradientSolve(GLR(λ), ZUB)
2 π = 2
3 k = 0
4 λ0 = 0
5 Zbest = −∞
6 noImproveCount = 0
7 do

8 xk+1 = solve(GLR(λk))

9 Zk+1 = f(xk+1) +
∑

h∈H λk
h · σh(x

k+1)

10 Δk+1 = π(ZUB − Zk+1)/||σ(xk+1)||2
11 forall(h ∈ H) λk+1

h = max(0, λk
h + Δk+1 ∗ σh(x

k+1))

12 if Zk+1 > Zbest

13 Zbest = Zk+1

14 noImproveCount = 0
15 else noImproveCount = noImproveCount + 1
16 if noImproveCount > 30
17 π = π/2
18 noImproveCount = 0
19 k = k + 1
20 while the termination criterion is not met;
21 return Zbest

Fig. 1. The subgradient Algorithm Template

Subgradient Optimization. The generalized Lagrangian dual can be rewrit-
ten explicitly as

maxλ≥0 w
subject to
w ≤ f(x) + λT · σh(x) ∀x, e ∈ E : ce(x).

This formulation has exponentially many constraints but it can be solved by a
subgradient method which iterates two steps

xk+1 = solve(GLR(λk))

λk+1
h = max

(
0, λkh +Δk+1 σh(x

k+1)
)
(h ∈ H)

where Δk is the step size at iteration k. What remains to determine is the ini-
tial value of the multipliers and the step size at each iteration. The algorithmic
schema for subgradient optimization is depicted in Figure 1 and is independent
of the model and the solving technology. Its input is a parametric Lagrangian
model GLR(λ) and an initial upper bound to the original problem P . The al-
gorithmic template also uses an agility parameter π used to compute the step
sizes. The subgradient optimization sets the initial multipliers λ0 to 0. Lines
8–19 repeatedly solves the parametric model with the current multipliers λk and
store its solution in xk+1 and its objective value in Zk+1 (lines 8–9). Lines 10
computes the step function Δk+1 used on line 11 to compute the next multipli-
ers λk+1. Lines 12–19 record the current best objective and update the agility
parameter π when there is no improvement over some time. Observe that the
template does not prescribe any technology for solving GLR(λk).

Generalized Surrogate Optimization. The surrogate gradient method was
introduced in [18] and refined in [13] to solve a Lagrangian dual featuring loosely

330 D. Fontaine, L. Michel, and P. Van Hentenryck

coupled subproblems. By relaxing the coupling constraints, the subproblems can
then be optimized independently.

Consider the following simple IP minimization problem:

Z = min
∑4

i=1 xi

s.t.

⎧⎨⎩
x1 + x2 ≥ b1

x3 + x4 ≥ b2
x1+ x3 + x4 ≥ b3

Relaxing the coupling constraint produces the Lagrangian dual:

ZLD = min
∑4

i=1 xi + λ(b3 − (x1 + x3 + x4))

s.t.

{
x1 + x2 ≥ b1

x3 + x4 ≥ b2

The objective function of ZLD can be simplified algebraically in order to obtain
two separable subproblems:

min[x1(1− λ) + x2] + [(x3 + x4)(1 − λ)]

Such rewritings are not always possible when using arbitrary models featuring
global constraints. But the surrogate subgradient algorithm can be generalized
to arbitrary models by using ideas from large neighborhood search. At each
iteration, a subproblem can be chosen and all the variables not appearing in this
subproblem are fixed to their values in the incumbent solution. A subproblem
GLR(λ, x̂, V), where x̂ is an incumbent solution and V is the set of variables
associated with one of the subproblems, can be defined as

GLR(λ, x̂, V) = minx f(x) +
∑

h∈H λh σh(x)

subject to

{
ce(x) (e ∈ E)
xi = x̂i (i /∈ V)

With this idea in mind, the generalized surrogate gradient template is presented
in Figure 2. It receives as inputs the parametric model and the set of variables
appearing in each subproblem. Observe that line 6 solves the initial model en-
tirely before starting the subproblem optimization. Once again, the template
does not prescribe any technology for solving GLR(λk, x̂, V).

4 Generalized Lagrangian Primal Methods

Primal Lagrangian methods are ubiquitous in continuous optimization. In the
late 1990s, some of their main concepts were elegantly transferred to discrete
optimization [12,17]. Focusing on violation degrees, the resulting Lagrangian
primal methods (SPLR) can be viewed as the iteration of two steps:

xk+1 = argminx∈N (xk)SLR(λk, xk)

λk+1 = λk + ν(xk+1)

Constraint-Based Lagrangian Relaxation 331

1 function SurrogateSolve(GLR(λ), ZUB , {V1, . . . , Vk})
2 k = 0
3 λ0 = 0
4 Zbest = −∞
5 noImproveCount = 0
6 x0 = Solve(GLR(λ0))
7 do

8 Zk = f(xk) +
∑

h∈H λk
hσh(x

k)

9 Δk = (ZUB − Zk)/||σ(xk)||2

10 forall(h ∈ H) λk+1
h = max

(
0, λk

h + Δk ∗ σh(x
k)

)

11 if Zk > Zbest

12 Zbest = Zk

13 noImproveCount = 0
14 else noImproveCount = noImproveCount + 1
15 select i ∈ 1..k

16 y = Solve
(
GLR(λk+1, xk, Vi)

)

17 obj = f(y) +
∑

h∈H λk+1
h σh(y)

18 if obj < zk

19 xk+1 = y

20 else xk+1 = xk

21 k = k + 1
22 while the termination criterion is not met;
23 return Zbest

Fig. 2. The Surrogate Subgradient Algorithm Template

where N (x) is the neighborhood around x, i.e., a set of points satisfying the
easy constraint and including x, and SLR(λ, x) = f(x)+λν(x). Such primal La-
grangian methods thus descend in the x-space and ascend in the λ-space. Such
primal Lagrangian methods were applied to SAT [12] and constraint satisfaction
problems [3], with neighborhoods changing the value of one variable. However,
they have not attracted much attention in the constraint-programming commu-
nity since then. It is useful to state the main theoretical results from [17], since
they shed some light on the search algorithm.

Definition 6 (Discrete Saddle Point). A pair (λ∗, x∗) is a discrete saddle
point of SLR if SLR(λ, x∗) ≤ SLR(λ∗, x∗) ≤ SLR(λ∗, x) for all λ and x ∈
N (x∗).

The left condition in the definition can be shown to be equivalent to ν(x∗) = 0.
The following theorem is a direct adaptation to our setting of the main results
in [17].

Theorem 2 (Saddle Point Theorem). Point x∗ is a local minimum to the
original problem P if and only if there exists λ∗ ≥ 0 such that (λ∗, x∗) is a
discrete saddle point. Moreover, (λ∗, x∗) is a saddle point if and only if x∗ =
argminx∈N (x∗)SLR(λ∗, x∗) and ν(x∗) = 0.

Observe also that if (λ∗, x∗) is a saddle point, so is (λ, x∗) for λ ≥ λ∗ [17]. Hence,
in theory, there is no need to decrease the Lagrangian multipliers when searching
for a saddle point. It is thus unclear whether the satisfiability degree is useful in
primal Lagrangian methods.

332 D. Fontaine, L. Michel, and P. Van Hentenryck

In contrast to earlier work, this paper studies whether primal Lagrangian
methods can provide a simple, systematic, and principled way of boosting ex-
isting search methods, such as tabu search or large neighborhood search, when
applied to high-level models. In other words, the neighborhood N in these pri-
mal Lagrangian methods is very large and defined by a neighborhood search
technique over a high-level model.

5 Practical Implementation

The earlier sections defined a general framework for applying Lagrangian relax-
ation to high-level models. This section describes how this generality is supported
in Objective-CP [15]. Intuitively, the implementation starts with a high-level
model which is then relaxed by replacing the hard constraints with their relax-
ation and adding a new term in the objective function to capture the weighted
sum of violations or satisfiability degrees. The hard constraints are identified
either by users or automatically by a partitioning algorithms. The resulting La-
grangian model is then concretized into an optimization program, which can
be a MIP solver, a constraint-programming solver, or a constraint-based local
search. The concrete optimization program is then embedded in an algorithmic
template (a runnable in Objective-CP’s terminology [6], e.g., a surrogate dual
or a primal Lagrangian methods. We now illustrate this methodology on a few
code snippets. Consider the excerpt

1 id<ORModel > P = [ORFactory createModel];
2 ...
3 id<ORIdArray > H = ... // array of hard constraints in P
4 id<ORModel > L = [ORFactory lagrangianRelax: P relaxingConstraints: H];
5 id<ORProgram > O = [ORFactory createMIPProgram: L];
6 id<ORRunnable > r = [ORFactory subgradient: O];
7 [r run];

The code fragment starts by declaring a model P on line 1. Line 3 stores the set
of constraints deemed hard in P in array H . Line 4 creates a parametric model
L representing GLRP (λ). Line 5 concretizes GLRP (λ) into a parametric MIP
program O, which is solved using a subgradient template in Lines 6–7. To switch
to a CP solver, it suffices to change line 5 into

1 id<ORProgram > O = [ORFactory createCPProgram: L];

Similarly, to use violation degrees rather than satisfiability degrees, it is sufficient
to edit line 4 to read

1 id<ORModel > L = [ORFactory lagrangianRelax: P softeningConstraints: H];

Observe that, following [6], Objective-CP stores the fact that L is a relaxation
of P and the runnable produces several products in agreement with a relaxation
specification, including a stream of lower bounds. It can thus be composed nat-
urally with a primal algorithm.

Consider now the application of a surrogate optimization scheme.

Constraint-Based Lagrangian Relaxation 333

1 id<ORModel > P = [ORFactory createModel];
2 ...
3 id<ORIdArray > H = ... // array of hard constraints in P
4 id<ORPartition > Vs = [ORFactory autoPartition: P accordingTo: H];
5 id<ORModel > S = [ORFactory lagrangianRelax: P relaxingConstraints: H];
6 id<ORProgram > O = [ORFactory createMIPProgram: S];
7 id<ORRunnable > r = [ORFactory surrogate: O splitWith: Vs];
8 [r run];

Line 4 computes a partition of the variables in P from the hard constraints. Line
5 creates the Lagrangian relaxation of P with respect to H and line 6 creates a
MIP program that is then used by a surrogate runnable in line 7. The partition
in line 4 is the argument {V1, · · · , Vk} appearing in the template in Figure 2.

Models with a natural decomposable or “block” structure are often difficult
to decompose by hand, particularly for larger problems. Hence, it is useful to
have the ability to automatically partition a problem based on sets of coupling
constraints. Objective-CP makes use of a hyper-graph clustering algorithm [7]
to provide an automatic decomposition. The variables of a model become nodes
and each constraint defines an hyper-edge connecting it variables. The algorithm
recursively clusters variables into disjoint sets until the maximal decomposition
is achieved.

6 Empirical Results

This section reports some experimental results highlighting the concepts de-
scribed in this paper. The goal is not to present state-of-the-art results on specific
problems but to make the case that Lagrangian relaxation could play a larger role
in the constraint-programming community. In addition, the experiments present
some interesting perspectives on some design choices in Lagrangian methods.
All experimental results are obtained using Objective-CP [15] unless specified
otherwise. Mixed-Integer programs are solved using Gurobi 5.6.

6.1 Graph Coloring

Graph coloring aims at minimizing the number of colors necessary to color a
graph so that no two adjacent vertices have the same color. The following is a
typical CP formulation of the problem:

ZCP = min m

subject to

⎧⎪⎪⎨⎪⎪⎩
vi ≤ m, i ∈ 1..|V |
vi �= vj , (i, j) ∈ E
vi ∈ 1..|V |, i ∈ 1..|V |
m ∈ 1..|V |

Here, V is the set of vertices, E the set of edges, m a decision variable for
the number of colors used and {vi}i∈1..|V | are decision variables representing
the color assigned to the i-th vertex of V . In the Lagrangian relaxation, E is
partitioned into a ’hard’ and ’easy’ edge set E = Ee∪Eh, relaxing Eh. The exper-
iments also use a MIP formulation automatically obtained from the above model

334 D. Fontaine, L. Michel, and P. Van Hentenryck

Table 1. Experimental Results on Graph Coloring

Dual Primal
Instances GLR(MIP) SLR(MIP) SLR(CP) MIP CP

time lb ub itr time lb ub itr time lb itr time lb up time ub
20-3-39 0.08 11* 11* 1 0.07 11* 11* 1 0.44 11* 10.95 0.06 11* 11* 0.01 11*
120-25-188 300 9 9 173 3.4 9* 9* 2 30.25 9* 8.35 1.52 9* 9* 1.98 9*
160-2-846 300 55 160 1 300 55 160 1 300 105 104.5 300 55 160 0.07 108*
160-30-187 300 9 9 103 6.77 9* 9* 2 0.11 9* 4.35 2.5 9* 9* 0.03 9*
80-10-176 300 13 13 266 2.15 13* 13* 2 8.25 13* 13.3 0.90 13* 13* 0.02 13*
200-10-281 300 30 30 30 23.48 30* 30* 2 12.14 30* 30.0 12.03 30* 30* 11.03 30*
120-3-465 300 53 53 33 300 53* 53* 34 37.25 53* 51.15 10.0 53* 53* 0.05 53*
160-4-498 300 62 62 16 40.4 62* 62* 2 54.04 62* 61.0 20.01 62* 62* 6.92 62*
120-5-938 300 34 34 49 300 34 34 54 300 34 33.5 9.48 35* 35* 25.94 35*
200-20-201 300 16 16 47 12.8 16* 16* 2 3.58 16* 16.15 5.77 16* 16* 0.03 16*
180-5-873 300 51 51 11 176.85 51* 51* 2 300 51* 49.5 23.29 51* 51* 37.04 51*
100-2-910 12.5 71* 71* 1 12.40 71* 71* 1 300 69 67.5 12.52 71* 71* 0.03 71*
150-5-1803 - - - - - - - - 300 41 39.5 26.8 46* 46* 11.11 46*
140-12-1137 - - - - - - - - 300 19 10.0 12.04 20* 20* 55.7 20*

by a linearization transformation. The Objective-CP linearization performs a
binarization of the variables {vi}i∈1..|V | over their domains and transforms the
(non-linear) disequality constraints into sets of inequalities.

The experiments consider three dual methods (GLR(MIP), SLR(MIP), and
SLR(CP)), as well as two primal methods (MIP, CP). The methods are eval-
uated on randomly generated instances1 which are built around collections of
vertex cliques connected via coupling edges. More precisely, the vertex set is first
partitioned into randomly sized cliques. Then a subset of vertices are chosen at
random and coupling edges between these vertices are added. These instances
are generated based on three parameters: number of vertices (nbv), number of
cliques (nbc), number of coupled vertices (nbcv). In Figure 1, instances are re-
ferred to in the following format: ‘nbv-nbc-nbcv’. The relaxed edges Eh used in
GLR(MIP), SLR(MIP), and SLR(CP) are a subset of the coupling edges. The
problem is first decomposed into independent sets (cliques in this case) using a
standard hyper-graph partitioning algorithm. Edges which do not have a vertex
in the maximal clique are relaxed. Initial upper bounds provided to the dual
problem were about twice the optimal value.

Table 1 describes the results on 15 instances and it reports the runtime and the
bounds produced by the various algorithms. Dual algorithms only report a lower
bound lb while the MIP produces both lower and an upper bounds, and the CP
program produces an upper bound only. Dual algorithms may terminate because
of a timeout or because the step size is too small in which case the dual solution
is typically primal-infeasible. Theorem 1 specifies when the Lagrangian dual
produces an optimal solution. The table also reports the number of Lagrangian
iterations. Bold entries correspond to the fastest implementation, while starred

1 Python script for generating instances: http://bit.ly/1jDCgJq

http://bit.ly/1jDCgJq

Constraint-Based Lagrangian Relaxation 335

Table 2. Experiments on Set Covering problems

Instances GLR SLR 5s SLR 10s SLR
time itr bnd time itr bnd time itr bnd time itr bnd

inst 1 243.8 154 155.8 900 13 164.0 900 15 163.2 900 7 161.6
inst 2 900 109 149.2 900 12 153.1 900 12 155.3 900 9 153.5

entries indicate whether an optimal solution was found and proved optimal. A
timeout of 300 seconds is used throughout.

The results bring some interesting conclusions. The dual MIP approaches
perform poorly on these benchmarks and are strongly dominated by the primal
MIP. **The dual CP is better than the dual MIP approaches but is typically
bettered by the Primal CP formulation. The primal CP approach is the most
effective approach on a number of benchmarks but is sometimes dominated by
the primal MIP. These results seem to indicate that it would be valuable to
investigate combinations of Lagrangian relaxation and constraint programming
systematically on more applications. Note that the absence of lower-bounds and
the large number of symmetries is detrimental to SLR(CP) which explores al-
ternative selections of violated colorings.

6.2 GLR versus SLR

Lemma 2 indicated that SLR is a stronger relaxation than GLR, although
GLR is the traditional Lagrangian relaxation in mathematical programming.
Experimental results on graph coloring indicated that SLR(MIP) systemat-
ically outperforms GLR(MIP) on these instances and performs significantly
fewer iterations. This section aims at confirming these results on set-covering
instances. The results are based on random instances generated in separable
blocks of random sizes which are extended with coupling constraints. The in-
stances consider 1000 elements and 400 sets partitioned into 10 separable blocks
and 250 coupling constraints (which are relaxed). The results for two representa-
tive instances are presented in Figure 3 and Table 2. The results again indicate
that GLR and SLR behave very differently. SLR tends to have longer iterations
but make larger jumps, while GLR features relatively rapid iterations but makes
much less progress per iteration. It is also possible to speed-up SLR substan-
tially by using a time limit. SLR then returns its best lower bound at the time
limit when an improved lower bound has been found; otherwise, it continues
until such a lower bound is found or the search is complete. Figure 3 shows the
bound quality of GLR, SLR, and the time-limited SLR with limits of 5 seconds
(SLR 5s) and 10 seconds (SLR 10s). A 15 minute (900s) time out is used.

The results on these set-covering instances shed some light on the respective
strengths of GLR and SLR. On the first instance, GLR terminates because the
step size has become too small (due to lack of bound improvement). Once again,
SLR approaches dominate GLR on these instances. Results on instance 2 is

336 D. Fontaine, L. Michel, and P. Van Hentenryck

Fig. 3. Bound quality over time, GLR vs SLR

also revealing in that the smaller time limit gives better bounds early on but
eventually falls behind and produces poorer bounds. Once again, these results
seem to indicate that concepts from constraint programming, i.e., the degree of
violations, could bring benefits into traditional Lagrangian dual methods.

6.3 Primal Lagrangian Tabu Search

This section describes the application of Lagrangian primal methods to boost
the performance of a tabu-search algorithm. The tabu search is used to explore
the neighborhood in the SPLR method; Upon completion, the Lagrangian mul-
tipliers are updated using the violation degrees and the tabu-search algorithm
is restarted. The experiments are performed on the hardest instances of the
progressive party problem using the model and the tabu search presented in
[14] but with no restarting component and no manual tuning of the constraint
weights. The progressive party problem features a variety of global constraints
(e.g., alldifferent and packing constraints). It is thus fundamentally different from
the benchmarks typically used to demonstrate the weighting schemes which uses
SAT or binary CSPs, or binary constraints (e.g., [12,3,11]).

Figure 4 reports the experimental results. SPLR is a primal Lagrangian
method using the tabu search (with no restart) to explore the neighborhood
N . SPLR updates the weights after n2 iterations of the tabu search, where n is
the number of variables. Tabu is the tabu search with restarts, i.e., the control
case. W-Tabu is the Comet implementation of the tabu search with hand-
chosen constraint weights and restarts (running on a slightly faster processor).
All algorithms have a limit of 1,000,000 iterations and were executed 50 times on
each instance. The table reports the configuration C, the number of periods P ,
the success percentage %S and the minimum, maximum, average, and standard
deviation for the number of iterations and CPU time.

The results shows that SPLR significantly outperforms the tabu search in
speed and success rate on these instances, indicating that Lagrangian primal

Constraint-Based Lagrangian Relaxation 337

Algorithm C P %S m(I) M(I) μ(I) σ(I) m(T) M(T) μ(T) σ(T)

3 9 98 63019 1000000 373515.82 233297.49 4.68 73.95 26.36 16.65
SPLR 4 9 94 73319 1000000 386478.46 246292.98 5.14 73.01 27.59 17.90

6 7 94 40010 1000000 312445.44 280601.45 3.24 76.61 23.26 21.11

3 9 30 22729 1000000 816440.38 311171.57 1.855 86.542 59.46 23.15
Tabu 4 9 48 17692 1000000 767466.30 313399,19 1.40 82.36 55.59 23.15

6 7 64 130117 1000000 733028.38 285338.94 8.699 66.11 47.55 18.56

3 9 96 23645 1000000 245331.96 249549.41 4.41 164.44 40.10 40.14
W-Tabu 4 9 94 47962 1000000 363842.50 273432.48 8.35 166.90 59.55 44.44

6 7 88 19314 1000000 379072.73 328393.13 3.24 152.37 56.92 48.91

Fig. 4. Experimental Results for SPLR on the Progressive Party Problem

methods may provide a simple, systematic, and principled way to boost the
performance of meta-heuristics and complex search procedures. Moreover, SPLR
exhibits a performance similar to W-Tabu on instances (3,9) and (4,9) and
outperforms it slightly on instance (6,7). This indicates that primal Lagrangian
methods may find proper multipliers quickly (the theory indicates that such
multipliers exist but not how fast they can be identified).

It is also interesting to report some additional insights on SPLR. Indeed,
experimental results show that using the satisfiability is counter-productive in
this setting, the search rarely converging to a feasible solution. Moreover, using a
restarting component is also not productive, which is a surprise given the impor-
tance on restarts for tabu search on this benchmark. The Lagrangian multipliers
are very effective in driving the search out of local minima on this problems.

7 Related Work

This section reviews related work and positions this research, complementing the
citations already given in the paper. To the best of our knowledge, this paper
presents the first implementation of the Lagrangian dual with constraint pro-
gramming, showing the benefits of Lagrangian relaxation to improve dual bounds
in constraint programming and speed up optimality proofs. The paper also shows
how to generalize the surrogate method for solving the Lagrangian dual, using
ideas from large neighborhood search. **This is the first** systematic, compo-
sitional, and technology-independent implementation of the surrogate method.
The paper also suggests that it may be valuable to consider violation degrees
instead of satisfiability degrees in a variety of applications. Primal Lagrangian
methods were generalized from continuous to discrete optimization in [12,17]
and applied to SAT and CSPs in [17,3]. The focus in this paper was to suggest
that Lagrangian methods can boost the performance of existing local or large
neighborhood search systematically and compositionally. In that sense, this re-
sulting algorithmic template is close to guided local search [16]. There are some
interesting differences however, including the fact that the updates of Lagrangian

338 D. Fontaine, L. Michel, and P. Van Hentenryck

multipliers use the violation degrees and that the underlying search can be arbi-
trary. Lagrangian relaxation was used to boost the coupling, communication, and
propagation capabilities of two global propagators for optimization constraints
in in [10]. The key insight is to solve a sequence of Lagrangian relaxations for
the two propagators, using dual values at optimality of one propagator to seed
the multipliers for the second optimization. This use of Lagrangian relaxation
is rather different from this research where Lagrangian relaxation is used at the
model level and existing methodologies are generalized to become compositional,
to apply to high-level models, and to leverage multiple solution technologies.

8 Conclusion

The key contribution of this paper is to generalize Lagrangian relaxation to
arbitrary high-level models. Lagrangian relaxations of such models can then
be concretized into a variety of optimization technology (e.g., constraint pro-
gramming, local search, or MIP). The resulting concrete optimization programs
can be entrusted to algorithmic templates to solve Lagrangian duals or use La-
grangian primal methods. The paper also showed that Lagrangian relaxations
can be built around the notion of satisfiability degrees (typical in mathemati-
cal programming) or violation degrees (typically in constraint programming and
local search). Finally, the paper also indicated how to apply surrogate optimiza-
tion systematically in a generic algorithmic template that optimizes independent
problems separately. The experimental results show the versatility of Lagrangian
relaxation for a variety of solver technologies and models. In particular, they
show that

– The Lagrangian dual coupled with constraint programming is an effective
method for some classes of graph coloring problems.

– The concept of violation degree is valuable to improve the quality and per-
formance of the Lagrangian dual when solved with MIP solvers. It is not
clear however whether satisfiability degrees can be valuable for constraint
programming or local search.

– Primal Lagrangian methods may systematically boost the performance and
solution quality of meta-heuristics in a principled way.

Overall, these results tend to indicate that Lagrangian methods could play a
much more significant role in constraint programming and large neighborhood
search and that further synergies between constraint programming and mathe-
matical programming should be explored.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, Englewood Cliffs (1993)

2. Beldiceanu, N., Petit, T.: Cost evaluation of soft global constraints. In: Régin, J.-C.,
Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 80–95. Springer, Heidelberg
(2004)

Constraint-Based Lagrangian Relaxation 339

3. Choi, K.M.F., Lee, J.H.-M., Stuckey, P.J.: A lagrangian reconstruction of genet.
Artif. Intell. 123(1-2), 1–39 (2000)

4. Codognet, C., Diaz, D.: Yet Another Local Search Method for Constraint Solving.
In: AAAI Fall Symposium on Using Uncertainty within Computation, Cape Cod,
MA (2001)

5. Fisher, M.: The Lagrangian Relaxation Method for Solving Integer Programming
Problems. Management Science 27, 1–18 (1981)

6. Fontaine, D., Michel, L., Van Hentenryck, P.: Model combinators for hybrid opti-
mization. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 299–314. Springer,
Heidelberg (2013)

7. Klimmek, R., Wagner, F.: A simple hypergraph min cut algorithm (1996)
8. Luenberger, D.G.: Introduction to Linear and Nonlinear Programming. Addison-

Wesley, Reading (1973)
9. Nareyek, A.: Using global constraints for local search. In: Freuder, E.C., Wallace,

R.J. (eds.) Constraint Programming and Large Scale Discrete Optimization. Amer-
ican Mathematical Society Publications, vol. 57, pp. 9–28. DIMACS (2001)

10. Sellmann, M., Fahle, T.: Constraint programming based lagrangian relaxation for
the automatic recording problem. Annals of Operations Research 118(1-4), 17–33
(2003)

11. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing.
In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science.
American Mathematical Society Publications, vol. 26. DIMACS (1996)

12. Shang, Y., Wah, B.: A Discrete Lagrangian-Based Global-Search Method for Solv-
ing Satisfiability Problems. Journal of Global Optimization 12, 61–99 (1998)

13. Sun, T., Zhao, Q.C., Luh, P.B.: On the Surrogate Gradient Algorithm for La-
grangian Relaxation. Journal of Optimization Theory and Applications 133(3),
413–416 (2007)

14. Van Hentenryck, P.: Constraint-Based Local Search. The MIT Press, Cambridge
(2005)

15. Van Hentenryck, P., Michel, L.: The Objective-CP Optimization System. In:
Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 8–29. Springer, Heidelberg (2013)

16. Voudouris, C., Tsang, E.: Partial constraint satisfaction problems and guided local
search. In: Proc., Practical Application of Constraint Technology (PACT 1996),
pp. 337–356 (1996)

17. Wah, B.W., Wu, Z.: The theory of discrete lagrange multipliers for nonlinear
discrete optimization. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 28–42.
Springer, Heidelberg (1999)

18. Zhao, X., Luh, P.B., Wang, J.: The surrogate gradient algorithm for Lagrangian
relaxation method. In: Proceedings of the 36th IEEE Conference on Decision and
Control, pp. 305–310 (1997)

Loop Untangling

Kathryn Francis and Peter J. Stuckey

National ICT Australia, Victoria Research Laboratory,
The University of Melbourne, Victoria 3010, Australia

{kathryn.francis,peter.stuckey}@nicta.com.au

Abstract. An effective translation from procedural code into equiva-
lent constraints is necessary in order to facilitate automated reasoning
about the behaviour of programs. We consider the translation of bounded
loops, proposing a new form of loop unwinding called loop untangling.
In comparison to standard loop unwinding the constraints representing
each iteration of the loop are greatly simplified. This is achieved by de-
coupling the execution order from the representation of each individual
iteration. We illustrate this new technique using two different examples
and provide experimental results verifying that the technique produces
simpler models which result in much better solver performance.

1 Introduction

A translation from procedural code into equivalent constraints is a prerequisite
for various applications based on automatic reasoning about program behaviour,
such as program testing [15], test generation [19] and program verification [10,14].
This paper is concerned specifically with the treatment of loops (for loops and
while loops) during this translation.

We focus on bounded loops, where a limit on the number of iterations is
assumed or can be computed. Bounded loops arise in bounded model checking
(e.g.[6]), simulation optimization (e.g. [11,5]), and other forms of symbolic execu-
tion. The typical approach to handling bounded loops is loop unwinding, which
involves flattening the loop by creating a copy of the body for each potential
iteration. This is used in e.g. [11,12,5,6,3,4].

The key insight of this paper is that the iterations of a loop do not necessarily
need to be identified by the order of execution. That is, when creating copies of
the loop body we do not have to label them as the iteration reached by execution
first, second, and third, as is done in standard loop unwinding. Instead we can
choose a different way of identifying each potential iteration, and then link them
together using a separate representation of the execution order.

We describe here a new technique called loop untangling which does just that.
Instead of execution order, iterations are identified by the value taken by a key
expression within the loop body. This can vastly simplify the constraints for each
copy of the loop body as the value of this key expression is known. As shown in
Section 4, the result is greatly improved solver performance.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 340–355, 2014.
c© Springer International Publishing Switzerland 2014

Loop Untangling 341

2 Motivating Examples

We give here two example programs where standard loop unwinding produces
a particularly inefficient model, and sketch how loop untangling can provide a
better translation. We will later show how this can be achieved automatically.

Our motivating examples come from a tool which allows combinatorial optimi-
sation problems to be defined procedurally [11,12]. A programmer with no mod-
elling experience can define an optimisation problem by writing a Java method
which uses provided non-deterministic library methods to build a random solu-
tion to the problem, and then evaluates that solution, returning a measure of
its quality or throwing an exception if it is invalid. The tool automatically finds
the values to be returned by the library functions in order to produce the best
return value. This is achieved by translating the code into equivalent constraints
and passing the resulting model to a constraint solver. More details can be found
in [11] but are not important for this work.

Our first example (below) is a routing problem which was one of the original
benchmarks from [11]. Given a set of jobs, each of which has a pickup stop
and a delivery stop, the problem is to choose the shortest Hamiltonian route
visiting all stops, with no delivery stop visited before the corresponding pickup.
Note that the ChoiceMaker argument provides the non-deterministic decision
making methods. In this case the method chooseOrder is used, which returns a
permutation of the given list.

1 int buildRoute(ChoiceMaker chooser) {
2 List<Stop> route = chooser.chooseOrder(allStops);
3 // compute arrival times
4 int currentLocation = startLocation;
5 int currentTime = 0;
6 for(Stop stop: route) {
7 int nextLocation = stop.getLocation();
8 currentTime += travTime(currentLocation, nextLocation);
9 stop.arrivalTime = currentTime;

10 currentLocation = nextLocation;
11 }
12 tripFinishTime = currentTime + travTime(currentLocation, startLocation);
13 // check no pickup is after the corresponding delivery
14 for(Job j : jobs) {
15 if(j.pickupStop.arrivalTime > j.deliveryStop.arrivalTime)
16 throw new Exception();
17 }
18 return tripFinishTime;
19 }

Fig. 1. Java code defining a routing problem

Consider the first loop, which computes the arrival time for each stop. Let us
assume the list allStops contains three stops [A,B,C], which means these three

342 K. Francis and P.J. Stuckey

stops also occur exactly once in the route list, but in an unknown order. Using
standard loop unwinding we would create a copy of the loop body for the first,
second, and third iteration. For each of these, the value of stop may be A, B, or
C. All of the other variables depend on stop, so their values are also unknown.
Furthermore, when we later look up the arrival time for the pickup and delivery
stop for each job, the value retrieved could be the currentTime value computed
in any of the three iterations.

Figure 2(a) shows the (idealized) MiniZinc [16] produced by loop unwinding.
The decisions are the permutation of the stops, enforced by alldifferent. Ex-
pressions computed within the loop body are represented using arrays indexed
by iteration time Ite = 1..n (where n is the number of iterations), or Ite0 = 0..n
for those having a version before the loop. Constraints simulate the calculation
within the loop, using the locations and dist arrays to look up parameter val-
ues referenced within the getLocation and travTimemethods. To constrain the
final arrival time for each stop s we need to determine which iteration was the
last where we changed the arrivalTime field of the stop s, encoded using which.
We then can lookup the currentTime in that iteration to give the arrivalTime.

array[Ite] of var Stop: route;
constraint alldifferent(route);

array[Ite] of var Location: nextL;
array[Ite0] of var Location: currL;
array[Ite] of var int: travT;
array[Ite0] of var int: currT;
constraint currL[0] = startL;
constraint currT[0] = 0;
constraint forall (i in Ite) (
nextL[i] = locations[route[i]] ∧
travT[i] = dist[currL[i-1],nextL[i]] ∧
currT[i] = currT[i-1] + travT[i] ∧
currL[i] = nextL[i]

);
array[Stop] of var Ite: which;
constraint forall(s in Stop) (
which[s] = max(i in Ite)

(i∗bool2int(route[i] = s)));

constraint forall (j in Job) (
currT[which[pickup[j]]] <=
currT[which[delivery[j]]]

);

array[Stop] of var Stop0: prevS;
constraint path(prevS, ,0);

array[Stop] of var Location: nextL;
array[Stop0] of var Location: currL;
array[Stop] of var int: travT;
array[Stop0] of var int: currT;
constraint currT[0] = 0;
constraint currL[0] = startL;
constraint forall (s in Stop) (
nextL[s] = locations[s] ∧
travT[s] = dist[currL[prevS[s]],nextL[s]] ∧
currT[s] = currT[prevS[s]] + travT[s] ∧
currL[s] = nextL[s]

);

constraint forall (j in Job) (
currT[pickup[j]] <= currT[delivery[j]]

);

(a) (b)

Fig. 2. (Idealized) Constraints generated using (a) unwinding, and (b) untangling

The observation we make in this paper is that instead of creating copies of
the loop body for each iteration in order of execution, it would be much better
to create a copy for the iteration where stop equals A, B, and C. We know that

Loop Untangling 343

each of these iterations will be executed, the only uncertainty is the order in
which this will happen. With a known value for stop, the value of nextLocation
is fixed, and crucially the stop whose arrival time we set in each iteration is also
known, so when we later look up the arrival time for each stop we know which
version of currentTime is relevant in each case. Obviously we still need to link
the iterations to each other, as expressions used within the loop depend on the
previous iteration. Actually the value of e.g. currentLocation for a given iteration
is exactly the value of nextLocation from the previous iteration. So this linking
can be achieved with a path [13] or DomReachability constraint [18].

The (again idealized) MiniZinc produced using loop untangling is shown in
Figure 2(b). Since we are identifying iterations by the value of stop, the arrays
for expressions calculated within the loop are indexed by Stop or Stop0 (which
includes an artificial initial stop 0). The decisions are prevS, that is for each
iteration/stop, what is the previous iteration/stop (or 0 for the first iteration).
This is used to look up values that depend on the previous loop iteration (or
initialization), while a path constraint ensures that these predecessor variables
correspond to a Hamiltonian path starting anywhere and ending at the artifi-
cial stop 0. The arrivalTime for a stop is now simply equal to the currentTime
computed in the iteration corresponding to that stop.

Our second example is a pizza ordering problem which was the running exam-
ple from [12], part of which is shown in Figure 3. The task is to find the cheapest
pizza order which will satisfy a group of discriminating pizza eaters. The code
computes the acceptable pizzas for each person, then chooses from these for each
slice up to the number the person requires. Once the slices are chosen the cost of
the order is calculated taking into account a discount for ordering whole pizzas.

1 int buildOrder() {
2 order = new Order(menu);
3 for(Person person : people) {
4 // Find acceptable pizzas
5 pizzas.clear();
6 for(OrderItem item : order.items)
7 if(person.willEat(item))
8 pizzas.add(item);
9 // Choose type for each slice

10 for(int i=0; i<person.slices; i++) {
11 OrderItem pizza =
12 chooser.chooseOne(pizzas);
13 pizza.addSlice();
14 } }
15 return order.totalCost();
16 }

17 class OrderItem
18 {
19 int fullPizzas = 0;
20 int numSlices = 0;
21
22 void addSlice() {
23 numSlices = numSlices + 1;
24 if(numSlices == slicesPerPizza) {
25 numSlices = 0;
26 fullPizzas = fullPizzas + 1;
27 } }
28
29 ...
30 }

Fig. 3. Extract from a Java simulation of a pizza ordering optimisation problem

The loop we consider this time is the one on lines 10–14, within which we
make the decisions and tally up the number of slices and pizzas for each pizza

344 K. Francis and P.J. Stuckey

type. Here the order of iterations is actually irrelevant to the final result (the
cost of the order). It is only the number of times each type of pizza is chosen
which matters. Unwinding the loop introduces symmetries and also creates a
lot of added uncertainty as the pizza type whose numSlices and numPizzas field
is changed in each iteration is unknown. It would be much better to create
a variable giving the number of times each type of pizza is chosen, and then
constrain the final value of numSlices and numPizzas for each pizza type to be a
function of this variable.

Loop untangling achieves this by labelling the iterations by the return value of
chooseOne (assigned to the pizza variable on line 11/12). Note that in this case
the label is not unique, so we will need a copy of the body for e.g. the first time
Vegetarian is chosen, and the second time, up to the maximum times possible.
In each of these iterations the value of numSlices and numPizzas will be fixed.
Furthermore, when we later look up these values for a particular pizza type, we
know that the result will be the value computed in one of the iterations corre-
sponding to that pizza type. Which iteration will depend only on the number of
times that pizza type is chosen. The resulting constraint system is far simpler
and propagates much more efficiently.

We describe in the following sections our loop untangling technique which can
be applied to any loop, and which when applied to the examples above results in
much better performance than standard loop unwinding. It is not necessary to
detect specifically that in the first example the value of currentLocation is exactly
the value of nextLocation from the previous iteration, nor to detect in the second
example that the order of iterations is irrelevant. Provided the appropriate choice
of labelling scheme for iterations our generalised implementation automatically
produces a model which is equivalent to the better model in both cases.

3 General Loop Untangling Technique

This section explains the process of converting code into equivalent constraints
using loop untangling rather than loop unwinding. The underlying translation
technique is the query based approach described in [12]. The key feature of this
technique is that rather than modelling the current state of the program at each
execution step, we simply constrain the value of each state query to correspond
correctly to the preceding state changes. This is a necessary prerequisite for loop
untangling because it allows the execution order of state changes to be viewed
as a decision.

The translation is broken into two phases. First the code is flattened into a
list of basic steps : state changes, state queries, and path control points. Then the
result of each state query in this list is constrained to correspond correctly to the
changes and control points. The difference between the technique we describe
here and that used in [12] is a new approach to making copies of loop bodies
while flattening, and a different representation for the constraints defining which
state changes occur before which state queries.

Loop Untangling 345

3.1 Programs as Ordered State Changes and State Queries

We consider a Java program to consist of a sequence of basic steps, each of which
is a state change, state query, or path control point. At the lowest level all state
changes are assignments and all state queries are variable references. However,
since our application of interest (defining combinatorial optimisation problems
using imperative code) tends to make heavy use of collections (sets, lists and
maps), we treat the core collection operations as atomic state changes (e.g. add
item to list) and state queries (e.g. length of list). Path control points are points
in the code where execution branches or merges. That is, break, continue and
return statements, plus the beginning and end of then blocks, else blocks and
loop bodies, and the end of methods (if there are multiple return statements).

3.2 Flattening

c1: currentTime := 0 (5)
c2: i := 0 (6)
q1: i < route.size() (6)
p1: start loop (q1) (6)
p2: start loop body (6)
q2: route.get(i) (6)
c3: stop := q2 (6)
q3: stop.getLocation() (7)
c4: nextLocation := q3 (7)
q4: currentTime+travTime(..) (8)
c5: currentTime := q4 (8)
q5: currentTime (9)
q6: stop (9)
c6: q6.arrivalTime := q5 (9)
q7: nextLocation (10)
c7: currentLocation := q7 (10)
q8: i+1 (11)
c8: i := q8 (11)
q9: i < stopsInOrder.size() (11)
p3: end loop body (q9) (11)
p4: end loop (11)
q10: currentTime+travTime(..) (12)
c9: tripFinishTime := q10 (12)

Fig. 4. Flattened loop

The first step in our translation is to con-
vert the code into a list of basic steps.
For example the code in lines 5-12 of
the routing example (Figure 1) is flat-
tened as shown in Figure 4. To save
space we have not separated compound
queries into individual parts. For example
stop.getLocation() is actually a query for
the value of the stop variable, and then
a query for the result of the getLocation
method called on that stop variable, which
is itself a query for the location field of the
stop.

Note that this list is not really flat
yet, as items inside loop bodies may oc-
cur more than once in an execution of the
program. To solve this we need to create
copies of the loop body in such a way that
each copy is executed at most once.

3.3 Creating Iterations

When standard loop unwinding is used (as
in [12]), we create a copy of the loop body
for each potential iteration and label them
as the first, second, third etc. The execu-
tion order is fixed, but each individual iteration can have a large amount of
uncertainty. The idea behind loop untangling is to instead create and label our
iterations in a way that reduces the uncertainty within each individual iteration.

346 K. Francis and P.J. Stuckey

The first step is to choose a state query inside the body to be used as the
label query. The label query is how we will refer to the loop iteration, and ideally
knowing the value of the label query will make the loop body much easier to
model. Currently this choice is specified via annotation, although it seems clear
that some simple static analysis should give us good choices. In our illustrative
examples, we choose the iteration argument stop (q2 in Figure 4) and the choice
of pizza type assigned to pizza (line 11 in Figure 3).

Given a label query qL, we determine the maximum number of times the
loop body may be executed (n), and for each iteration i ∈ 1..n we compute the
set of possible values Di which could be taken by qL. This is exactly the same
calculation as would be done as part of standard loop unwinding.

We then create copies of the loop body as follows. For each value v in the
union of the domains Di computed above, we create k copies of the loop body,
where k is the number of iterations in which Di contains v. For each copy, we add
a constraint that if this iteration is reached by execution then the value of qL is
v. This means that we can assume a fixed value for each iteration. If execution
reaches the iteration then we know its value will be v, and if execution does
not reach this iteration then the value of any query contained in it is irrelevant.
When multiple copies are created for value v we also impose a fixed execution
order on these to eliminate symmetry, and number them accordingly.

Note that the added constraint setting qL to take value v does not replace the
constraints ordinarily used to define the result of the query based on the preced-
ing state changes. These are still needed but they will now impose a constraint
on the (no longer fixed) execution order rather than the query result.

Note also that we may create more than n copies of the loop body. A good
choice of label query will remove a lot of uncertainty from individual iterations
without introducing too many extra iterations. If for the chosen label query every
computed domain Di contains only a single value, then no uncertainty can be
removed and loop untangling is equivalent to loop unwinding.

In the routing example we create a single copy of the loop body for each stop
in the allStops list, as we know that each occurs exactly once in stopsInOrder
and therefore will occur in exactly one iteration. The new list of basic steps will
have three copies of the body (assuming there are 3 stops A,B,C). We will add
subscripts a, b, c to the listed step ids in Figure 4 to refer to them.

In the pizza example, we need multiple copies for each pizza type. The number
of copies for each is the number of iterations in which that pizza type may be
contained in the pizzas list, which is calculated by unwinding as described above.
For nested loops such as this one, we create copies of the bodies separately.
That is, copies of the inner loop body are not associated with a particular outer
iteration. However, there will be multiple copies of the start and end loop nodes
for the inner loop, and each of these will belong to a particular iteration of
the outer loop. Assuming people = [Ant,Bee], if Ant wants one slice of Veg or
Capriciosa, and Bee wants two slices which could be Margherita or Veg, then
there are 3 copies of the inner loop for Veg, two copies for Mar, and one for Cap.

Loop Untangling 347

3.4 Modelling State Queries

A state query is a function of the state changes occurring before it, while the path
control points determine which state changes occur before which state queries.
To achieve a correct translation from code to constraints we need to constrain
each state query in our flattened list to correspond correctly to the state changes
(including artificial state changes added at the beginning to set up the initial
program state) and path control points. The constraints described below are the
same as those used in [12].

Most types of state query (including variable references) are what we call
lookup queries, which means they return a value which is a function of only the
most recent matching state change. What is meant by matching depends on
the specific query type. For lookup queries we create a variable changeID to
represent the ID of the most recent matching state change, and then constrain
this ID and the retrieved value appropriately. For example, field references are
constrained as shown below. Note that only assignments to the queried field (not
other state changes) are relevant.

query qstep: var ref qobj.field
changes: step1: obj1.field := expr1

...
stepn: objn.field := exprn

variables: var 1..n: changeID; var int: changestep; var int: qresult;
constraints: [obj1, ..., objn][changeID] = qobj ∧

qresult = [expr1, ..., exprn][changeID] ∧
changestep= [step1, ...,stepn][changeID] ∧
before(changestep, qstep) ∧
forall (i in 1..n) (
(obji = qobj ∧ before(stepi, qstep)) → not before(changestep, stepi));

The first constraint requires the chosen assignment to use the same object
as the query, which is the definition of matching for field references. The next
constraint sets the result of the query to the value from the chosen assignment.
The before constraint ensures that the change occurs before the query. A change
which is skipped by the execution path or which occurs after the query cannot
be chosen. We discuss the implementation of before in the next section. The final
constraint is used to ensure that we choose the latest matching assignment by
requiring that no other matching change overwrites our chosen one.

Other queries return a value which is a function of all matching state changes
occurring before the query. We call these aggregate queries. For these we use
before to constrain which changes should be included in the aggregate. For ex-
ample, list length is constrained as follows (the length of the list is the number
of matching add item changes before the query).

query: qstep: qlist.length()
changes: step1: list1.add(item1)

...
stepn: listn.add(itemn)

variables: var int: qresult;
constraints: qresult = sum (i in 1..n) (bool2int(listi = qlist ∧ before(stepi,qstep)));

348 K. Francis and P.J. Stuckey

Sometimes a lookup query behaves like an aggregate query. This happens
when the most recent relevant change itself depends on the previous changes,
either because of its arguments or because earlier changes affect whether or not
execution reaches the later changes. In these cases it is still possible to use the
standard representation for lookup queries, but much better performance can
be achieved using a specialised translation. In [12] this was called special cases.
When untangling rather than unwinding loops we can use the same specialised
translations described in [12], as in each special case discussed there the query
result is not affected by the order in which the changes occur.

3.5 Modelling the Execution Path

When standard loop unwinding is used, path control points can only cause exe-
cution to skip state changes. The relative order is known. So in [12], before was
implemented by calculating a Boolean expression conda for the conditions under
which execution reaches step a, and then defining before as follows.

before(stepa, stepb) = (a < b) ∧ conda

When iterations are identified by something other than execution order, the
relative execution order of iterations, and therefore of the basic steps contained
in them, is unknown. This means we need a new implementation of before. Our
new implementation is based on a graph of the possible execution paths. This
graph is very similar to a control flow graph, but it contains a node for every
copy of each basic step, rather than a single node for each basic block. The edges
are constructed as follows.

– A state query or state change has a single outgoing edge leading to the
following step.

– The control point at the beginning of a then or else block has an edge
leading to the first step in the block, and another edge leading directly to
the end of the block.

– A continue, break, or return control point has a single outgoing edge to
the end of the associated loop body, loop, or method respectively.

– A start loop control point has an edge to its associated end loop control
point, and to every start body control point for its loop.

– An end loop body control point has an edge to the start body point for each
other iteration of that loop, and to every version of the end loop control
point.

– An exception step has no outgoing edges.

Any valid solution must correspond to a path through this graph (between
the fixed start and end steps). Note that as required by our application this
prevents exception points from being reached.

As we will be looking backwards from queries to the changes affecting them,
we assign for each basic step s a predecessor prev[s] which is the basic step

Loop Untangling 349

�������	p2a
p3a
��

��

��

��

���
��

��
��

�

�������	c1
p1

����������
��

���
��

��
��

��
�������	p2b
p3b
��

��

���������	p4
c9

�������	p2c
p3c

����������

������M1 ��

		����
�����

�����
�����

�����
����

��

��

�
��

��
��

��
��

��
���

���
��

��
��

��
��

��
��

��
��

��

������M2

���
����

����
����

���

����
��
��
��
��
��
��

��

��

��

	
		

		
		

		
		

		
	

������sB

��

���
��

��
��

�

���
����

����
����

��

������eB

������sA ��

���
��

��
��

�

������V 1 ����

����������������������������
������V 2

�� ��
������V 3

����������

������eA

��

���������������

������C1

��

(a) (b)

Fig. 5. Path control graphs: (a) lines 5-12 of Figure 1, (b) lines 10-14 of Figure 3

executed immediately before s. Clearly for most steps this is simply the unique
predecessor. The prev array can be constrained by a subpath constraint [13].

Not all paths through the graph represent valid execution paths. The use of
certain edges (where execution branches) is conditional on the result of a Boolean
state query referred to in that step. The edge leading into a then or else block
can only be used if the if condition is true or false respectively. An edge leading
into a loop body is only valid if a query for the loop entry condition returns
true. In Figure 4 the query used to control the use of edges is shown in brackets
next to the source node. For loops (both start loop and end loop body control
points) if the query shown is false then the edge to the end loop control point
must be used.

Figure 5(a) shows a portion of the execution graph for our routing example
with basic blocks collapsed. The start can reach each loop iteration for stop =
A, B or C, and these can each reach each other and the end of the loop. As an
example of the conditions on edges, consider the edges leaving step p3a. Setting
prev[p4] = p3a requires q9a = false, as this edge represents exiting the loop,
while prev[p2b] = p3a (or prev[p2c] = p3a) requires that q9a = true, as these
edges represent re-entering the loop.

For the pizza example (Figure 5(b)), edges which can be discounted upfront
due to false edge conditions or constraints on the label query are not shown.
Since Ant runs first it can reach only the first instance of Veg or Cap, and each
of these can reach its end since Ant only picks one slice. For Bee the start can
reach the first Mar or the first or second Veg. Each of these nodes can reach only
the next of the same category or any of the other category, and the end of Bee’s
loop. Outside this part of the graph is a mandatory path from the end of Ant’s
loop to the start of Bee’s.

We need further constraints on the edges for nested loops, to ensure that we
do not enter the inner loop from one outer iteration and leave to a different
outer iteration. For example we cannot enter node V 1 from sA and leave to eB.

350 K. Francis and P.J. Stuckey

This is prevented by adding a constraint on the start and end loop body control
points (si and ei for i in the iteration set I) for each loop.

∀i, j ∈ I,¬(before(si, ej) ∧ before(ej , ei))

This ensures that no other end loop body step from the outer loop can come
between a pair of associated start and end body steps for that loop.

As mentioned previously, if we have created multiple iterations for a given
value of the label query, we also impose a fixed order on those (using before) to
eliminate symmetry. This means that (as shown in Figure 5(b)) edges leading
from the start loop control point to the second or later copy of the body for each
value of the label query are excluded immediately, and between iterations for
the same value we only keep edges leading between successive copies.

3.6 Redefining before

The purpose of constructing the graph described in the previous section is to
provide a new definition of the before relation used in our constraints. A simple
implementation of before can be achieved by creating a time variable for each
node in the graph of possible execution paths, and adding a constraint for each
edge to say that if that edge is used then the time of the destination is one
greater than the time of the source. Then before can be defined as follows.

before(a, b) = time[a] < time[b]

In order to prevent changes which are not included on the execution path
from affecting queries which are, we require that any step not on the path has a
time greater than the number of steps.

While this implementation is correct, it does not provide very strong propaga-
tion. Consider the reference to currentTime which forms part of q4 in the routing
example (Figure 4). The options for the latest matching change are c1 and c5
(which has a version for each iteration of the loop). Imagine we are determin-
ing q4b and we have already decided that the a iteration is followed by the b
iteration prev[p2b] = p3a. Ideally we should know that q4b refers directly to c5a.
But after this decision we have that time[q4b] ∈ {26, 42}, time[c5a] = {11, 27},
time[c5c] = {11, 43}, time[c1] = 1. So according to the above definition of before
each of {c1, c5a, c5c} could be the latest matching state change.

Even harder to handle is when we decide that iteration b does not follow
a. We know that all iterations have a matching change for q4b. So if a is not
immediately before b, then there must be another iteration in between with a
matching change, even though no specific change is known to be between them.

More generally, the logic we would like to have is that whenever all paths
between change c and query q go through another change which is known to
match q, then change c cannot be chosen for q. Note that although this is related
to dominance it is not pure dominance as we do not require that the same change
overwrites c on all paths.

Loop Untangling 351

Ideally this would be achieved using a global constraint. Such a constraint
does not exist, but we have found that including the logic it would use in our
simplification phase is sufficient to provide good performance compared with
loop unwinding. We intend to implement the global constraint and expect that
even better performance should be possible.

3.7 Optimisations and Simplifications

In certain cases it is possible to create a simple expression closestc defining the
conditions which must hold for change c to be the closest matching change to a
given lookup query q. When this is possible, we can change the constraints used
for q to the simpler form shown below.

query: qstep: var ref qobj.field
changes: step1: obj1.field := expr1

...
stepn: objn.field := exprn

variables: var 1..n: changeID; var int: qresult;
constraints: [obj1, ..., objn][changeID] = qobj ∧

[closest1, ..., closestn][changeID] ∧
qresult = [expr1, ..., exprn][changeID];

If all changes potentially matching a lookup query are initialisation changes
(added at the beginning to set up the initial program state), then only one can
match the query, so we can use true as the closest expression for all of them.

If for a query q there exists a node in the execution graph n such that every
edge leading in to n would create a fixed path between a matching change c for
q and q, then we can use the edges into n to define the closest conditions. For
example, consider the reference to currentTime discussed previously (part of q4
in Figure 4). The query q4b has a matching change in each iteration of the loop
(c5a, c5b, c5c), and one before the loop (c1). All edges into the node p2b (see
Figure 5) create a fixed path between one of these changes and q4b. So we can
constrain q4b as shown below. Note that since none of the edges leading in to p2b
correspond to the change c5b we can discount this change immediately.

query: q4b: currentTime
changes: c1: currentTime := 0

c5a: currentTime := q4a
c5c: currentTime := q4c

variables: var 1..3: changeID; var int: qresult;
constraints: [prev[p2b]=p1, prev[p2b]=p3a, prev[p2b]=p3c][changeID] ∧

qresult = [0, q4a, q4c][changeID];

The same can be done for query q10 outside the loop using the edges into p4.
This provides both the positive and negative reasoning discussed in the previous
section. If we decide to use an edge then the closest condition for that change
will become true and all others will become false. If we decide not to use an
edge then that closest condition will become false, excluding the corresponding
change. Although these constraints are more verbose than the idealised MiniZinc
shown in Section 2, they provide the same propagation strength.

352 K. Francis and P.J. Stuckey

We can also take into account the known relationship between iterations with
the same value for the label query. If all changes relevant to a query belong
to iterations with the same label value, then their relative order is known (as
we have fixed this to avoid symmetry), so we can use the original definition of
before.

If in addition all possibly matching changes are known to actually match and
the path through each iteration with a matching change is fixed, then we can
do even better. In this case it is not possible for execution to skip the change in
iteration i without also skipping those in later iterations. So the closest matching
change is the one from the last iteration to be executed before the query. Ordering
the changes by iteration version, for each change ci except the last:

closestci = before(ci, q) ∧ ¬before(ci+1, q)

The change from the last iteration is the closest whenever it is before the query.
If the query is outside the loop, then we know that all iterations not skipped by
execution will occur before the query, so we can simplify the condition further:

closestci = in[ci] ∧ ¬in[ci+1] in[stepi] = (prev[stepi] �= stepi)

where in[stepi] means step i is included on the execution path. This can be
defined as shown above since subpath sets unused nodes to point at themselves.

Finally, for queries which are also contained in an iteration with the same
label value, we can assume that all changes in earlier iterations for this value are
included on the execution path. If not, then the query will not be reached either
so its value does not matter. Therefore for these queries the closest matching
change is set to the change from the latest iteration before the query iteration.

The above simplifications are used in the translation of the pizza example.
Consider the reference to numSlices on line 23 of the pizza code (Figure 3), in
the first Veg iteration. Let us call this query qnv1. The relevant changes are the
initialisation assignment for Veg which sets numSlices to 0, and the assignments
on lines 23 and 25. All versions of these assignments from non-Veg iterations are
known not to match qnv1 as they refer to a different pizza object, and all versions
from later Veg iterations are known to be after this query. The versions from
the current iteration are also after this query, so actually only the initialisation
assignment can be chosen. Therefore the value of qnv1 can be fixed to 0. This in
turn will fix the value assigned to numSlices on line 23 to 1, and the condition on
the following line (24) to false (assuming slicesPerPizza is fixed to say 2), which
means that the assignment on line 25 is not reached by execution.

Now consider the reference to numSlices in the next Veg iteration, query qnv2.
As explained above, since the path through the earlier Veg iteration is fixed and
the query is also inside a Veg iteration, we can simply use the change from the
closest iteration to this one (V 1). The value of qnv2 is therefore 1. The value
assigned on line 23 will be 2, and the test on line 24 will succeed. Again the
path through this iteration is fixed, but it goes through the assignment on line
25, setting numSlices back to zero. When we consider qnv3 applying the same
simplification again gives a value of 0.

Loop Untangling 353

For the query to Veg.numSlices after the loop (inside the totalCost method),
we can use the definition of closest described above for queries outside the loop,
because all matching changes belong to Veg iterations (except for the init change)
and are known to match, and the path through every Veg iteration is fixed. The
constraint for this query is therefore:

query: q: var ref Veg.numSlices
changes: c0: Veg.numSlices := 0

c1v1: Veg.numSlices := 1
c2v2: Veg.numSlices := 0
c1v3: Veg.numSlices := 1

variables: var 1..4: changeID, var int: qresult
constraints: [¬in[c1v1], in[c1v1] ∧ ¬in[c2v2], in[c2v2] ∧ ¬in[c1v3], in[c1v3]][changeID]

∧ qresult = [0,1,0,1][changeID];

This is the constraint described in Section 2 which links the final value of
Veg.numSlices to the number of times Veg is chosen (which is changeID−1).

4 Experimental Results

We have implemented the loop untangling technique described above, and show
here experimental results for the two examples discussed. The constraint models
for unwinding and untangling are produced fully automatically from the input
Java code, the only additional information given to untangling was the choice of
label query for each loop. Table 1 compares untangling to unwinding (the version
called new+ in [12]) and to a hand written CP model for the same problem (also
from [12]). Each figure is the average for 30 instances of the stated size. The
times shown include instances which reached the timeout of 10 minutes, while
the failures figures (shown in thousands) exclude them. All models were solved
using G12 CPX on a 3.40GHz Intel i5-4670K with 16GB RAM.

The results clearly show the benefit of untangling. For these problems, we
are clearly better off using a simple model for each iteration and deciding the
order through them, rather than deciding what happens in the ith loop iteration
where we know the order. We expect that with a specialized global propagator
for managing the before constraint this could be further substantially improved.

Table 1. Comparative performance of unwinding and untangling

Solving Time Failures (000s)
Problem unwind untangle hand unwind untangle hand

pizza 4 94.0s (2) 1.3s 0.1s 127.8 17.2 0.8
5 320.7s (13) 5.8s 0.5s 250.5 49.0 5.7
6 470.1s (22) 149.7s (6) 20.9s (1) 240.1 480.2 12.1

routing 5 12.9s 1.5s 0.4s 24.5 4.4 2.1
6 102.8s 8.1s 2.2s 112.4 18.4 9.9
7 569.3s (20) 40.8s 14.6s 343.4 67.4 45.7

354 K. Francis and P.J. Stuckey

5 Related and Further Work

Loop untangling is related to other forms of program analysis that reason about
loops. For example, automatic parallelisation of code needs to reason about when
iterations can be reordered [17]. We could improve loop untangling by co-opting
methods from this area to detect cases where the execution order of iterations can
be fixed arbitrarily. The technique described in [2] for detecting commutativity
could be a good starting point as a similar query-based viewpoint is taken when
considering whether or not reordering iterations changes the outcome.

Loop untangling could also be improved by employing more general forms of
program analysis. Typically optimisations performed by compilers are designed
to simplify the remaining code, which would in turn simplify our translation to
the constraint model. For example, loop untangling implicitly requires reaching
definitions, and can also be simplified by constant propagation. While our tool
does a basic form of reaching definition analysis and constant propagation these
could be improved by full program analysis techniques (e.g. [1]).

An interesting direction for future work is developing a program analysis which
would automatically select the label query. By examining the reaching definitions
graph and understanding what data in the program is dependent on decisions
and what is not we can choose a label query that, when fixed, fixes much of the
computation of the loop body. But we need to trade this off against the number
of iterations it will create.

Finally our method, and indeed most methods based on symbolic execution,
currently only handles bounded loops. Unbounded loops can be approximated
by putting an artificial limit on the number of iterations, but otherwise they
require techniques to generate loop invariants including interpolation [8] or ab-
stract interpretation [7]. Loop untangling could possibly be extended to handle
unbounded loops using an approach similar to that in [9]. There constraints were
added for each iteration of the loop lazily as needed when it became known that
the previous iteration was entered. We could do something similar, lazily adding
nodes to our execution path graph.

6 Conclusion

Standard loop unwinding unnecessarily ties the actual execution order of iter-
ations with the way an individual iteration is identified. The idea behind loop
untangling is to decouple these two things by modelling the execution path ex-
plicitly. The labelling scheme can be used to reduce the uncertainty in each
copy of the loop body. Although it may be necessary to create more copies of
the loop body than through standard loop unwinding, with a good choice of
labelling scheme this is far outweighed by the relative simplicity of the constraints
required for each copy. The final result is a model which is much easier to solve.

Acknowledgments. NICTA is funded by the Australian Government through
the Department of Communications and the Australian Research Council
through the ICT Centre of Excellence Program.

Loop Untangling 355

References

1. Aho, A.V., Sethi, R., Ullman, J.D., Lam, M.S.: Compilers: Principles, Techniques,
and Tools, 2nd edn. Addison-Wesley (2006)

2. Aleen, F., Clark, N.: Commutativity analysis for software parallelization: letting
program transformations see the big picture. ACM Sigplan Notices 44(3), 241–252
(2009)

3. Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software
using SMT solvers instead of SAT solvers. International Journal on Software Tools
for Technology Transfer 11(1), 69–83 (2009)

4. Brandwijk, P.: Verifying software with SMT and random testing using a single
property specification. Master’s thesis, University of Amsterdam (2012)

5. Brodsky, A., Nash, H.: CoJava: optimization modeling by nondeterministic simu-
lation. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 91–106. Springer,
Heidelberg (2006)

6. Collavizza, H., Rueher, M., Van Hentenryck, P.: CPBPV: a constraint-
programming framework for bounded program verification. Constraints 15(2), 238–
264 (2010)

7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the Fourth ACM Symposium on Principles of Programming Languages, pp. 238–
252 (1977)

8. Craig, W.: Linear reasoning: A new form of the Herbrand-Gentzen theorem. Jour-
nal of Symbolic Logic 22(3), 250–268 (1957)

9. Denmat, T., Gotlieb, A., Ducassé, M.: An abstract interpretation based combinator
for modelling while loops in constraint programming. In: Bessière, C. (ed.) CP 2007.
LNCS, vol. 4741, pp. 241–255. Springer, Heidelberg (2007)

10. Floyd, R.W.: Assigning meanings to programs. In: Proceedings of the American
Mathematical Society Symposia on Applied Mathematics, vol. 19, pp. 19–31 (1967)

11. Francis, K., Brand, S., Stuckey, P.J.: Optimization modelling for software devel-
opers. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 274–289. Springer,
Heidelberg (2012)

12. Francis, K., Navas, J., Stuckey, P.J.: Modelling destructive assignments. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 315–330. Springer, Heidelberg (2013)

13. Francis, K., Stuckey, P.J.: Explaining circuit propagation. Constraints 19(1), 1–29
(2014)

14. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580 (1969)

15. King, J.: Symbolic Execution and Program Testing. Com. ACM, 385–394 (1976)
16. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.: Miniz-

inc: Towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007.
LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

17. Pottenger, W.: The role of associativity and commutativity in the detection and
transformation of loop-level parallelism. In: Proceedings of the 12th International
Conference on Supercomputing, pp. 188–195. ACM (1998)

18. Quesada, L., Van Roy, P., Deville, Y., Collet, R.: Using dominators for solving con-
strained path problems. In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819,
pp. 73–87. Springer, Heidelberg (2005)

19. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
Proceedings of the 10th European Software Engineering Conference, pp. 263–272.
ACM (2005)

Discriminating Instance Generation
for Automated Constraint Model Selection

Ian P. Gent1, Bilal Syed Hussain1, Christopher Jefferson1, Lars Kotthoff2,
Ian Miguel1, Glenna F. Nightingale1, and Peter Nightingale1

1 School of Computer Science, University of St. Andrews, UK
{ian.gent,bh246,caj21,ijm,gfe2,pwn1}@st-andrews.ac.uk

2 INSIGHT Centre for Data Analytics, Ireland
larsko@4c.ucc.ie

Abstract. One approach to automated constraint modelling is to generate, and
then select from, a set of candidate models. This method is used by the automated
modelling system CONJURE. To select a preferred model or set of models for a
problem class from the candidates CONJURE produces, we use a set of training
instances drawn from the target class. It is important that the training instances
are discriminating. If all models solve a given instance in a trivial amount of time,
or if no models solve it in the time available, then the instance is not useful for
model selection. This paper addresses the task of generating small sets of dis-
criminating training instances automatically. The instance space is determined by
the parameters of the associated problem class. We develop a number of methods
of finding parameter configurations that give discriminating training instances,
some of them leveraging existing parameter-tuning techniques. Our experimental
results confirm the success of our approach in reducing a large set of input models
to a small set that we can expect to perform well for the given problem class.

1 Introduction and Background

Numerous approaches have been taken to automating aspects of constraint model-
ling, including: learning models from examples [8,4,5,17,3]; automated transformation
of medium-level solver-independent constraint models [23,21,24,20]; theorem proving
[7]; case-based reasoning [18]; and refinement of abstract constraint specifications [10]
in languages such as ESRA [9], ESSENCE [11],F [14] or Zinc [19,16]. We focus on the
refinement approach, where a user writes a constraint specification describing a problem
above the level of abstraction at which modelling decisions are made. Constraint spe-
cification languages support abstract decision variables with types such as set, multiset,
relation and function, as well as nested types, such as set of sets and multiset of rela-
tions. Therefore, problems can typically be specified very concisely. However, existing
constraint solvers do not support these abstract decision variables directly, so abstract
constraint specifications must be refined into concrete constraint models.

We use ESSENCE [11]. An ESSENCE specification (see Fig. 1) identifies: the para-
meters of the problem class (given), whose values define an instance; the combinatorial
objects to be found (find); and the constraints the objects must satisfy (such that).

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 356–365, 2014.
c© Springer International Publishing Switzerland 2014

Discriminating Instance Generation for Automated Constraint Model Selection 357

An objective function may also be specified (min/maximising) and identifiers de-
clared (letting). Our CONJURE system1 [2] employs refinement rules to convert
an ESSENCE specification into the solver-independent constraint modelling language
ESSENCE′ [23]. We use SAVILEROW2 [22] to translate an ESSENCE′ model into input
for a particular constraint solver while performing solver-specific model optimisations.

By following alternative refinement paths CONJURE typically produces a large set
of models for a given ESSENCE specification. In our previous work [1] we developed
a racing process to select among these candidate models, in which a set of training
instances drawn from the problem class being modelled is used to gauge relative model
performance. For this process to be effective, it is important that the instances chosen
are discriminating: if all models solve a given instance in a trivial amount of time, or
if no model solves it in the time available, then the instance is not useful for model
selection. Our previous work assumed that such instances were given. In this paper we
address the task of generating discriminating training instances automatically.

2 Racing for Automated Model Selection

Our approach to model selection follows that we reported in [1], but with an improved
method of producing a set of winning models described below. It takes as input a set
of instances drawn from the target problem class. Our performance measure of a model
with respect to an instance is the time taken for SAVILEROW to instantiate the model
and translate for input to the MINION constraint solver [12] plus the time taken for MIN-
ION to solve the instance. We include the time taken by SAVILEROW since it adds desir-
able instance-specific optimisations, such as common subexpression elimination [13].

We conduct a race [6] for each provided instance. Given a parameter ρ ≥ 1, a model
is ρ-dominated on an instance by another model if the measure for the second model is
at least ρ times faster than the first. The ‘winners’ of an instance race are the models not
ρ-dominated by any other model. So that trivial instances do not discriminate we do not
consider any model that solves within 1s to be dominated. All models enter each race,
but for efficiency a model is terminated as soon as it is ρ−dominated by some other
model. Furthermore, the order in which the models are executed is influenced by their
performance in previous races: well-performing models are executed first to establish a
good ρ bound early. In order to guide our exploration of the instance space we assign
a discriminatory quality value to an instance with respect to the results of the race run.
This is the fraction of models that are ρ-dominated.

A set of instances is ρ-fractured if every model is ρ-dominated on at least one in-
stance. In the presence of fracturing, care must be taken in defining the set of winning
models over a race sequence. We do so as follows. We first find a minimum hitting set of
winning models {a1, a2, a3, ...} which covers all instance races. We then define the set
Ai as the set of models that won every race that ai won. The set of sets {A1, A2, A3, ...}
then gives a summary of the winning models over all fractured parts of the instance
space. Note that each Ai ∩ Aj = ∅ (where i �= j) as otherwise we could find a smal-
ler hitting set. Also note that in an unfractured instance space the unique A1 is simply

1 http://bitbucket.org/stacs cp/conjure-public
2 http://savilerow.cs.st-andrews.ac.uk

358 I.P. Gent et al.

the set of models which won all races. However, for fractured spaces the set {Ai} is
not uniquely defined as it depends on the hitting set found: nevertheless it gives us a
representation of one particular fracturing of the instance space.

3 Methods for Generating Discriminating Instances

The instance space is defined by the parameters of a problem class. Consider the ES-
SENCE specifications in Figure 1. Langford’s Problem has two independent integer
parameters and hence a two-dimensional instance space. The Knapsack Problem is an
example of a more complex instance space, consisting of two integers and two func-
tions. The first integer, n, governs the number of items and also the domain of the two
given functions, which define the weights and values of those items. Our three methods
for generating discriminating instances in these spaces are described below. All run a
sequence of races and combine the results following the method described in Section 2.
Undirected: For each race in a sequence, undirected simply draws a sample

from the instance space and runs a race. Section 4 describes our sampling method.
Markov: This method is loosely based on the Markov chain Monte Carlo methods

used, e.g., to estimate the value of a multi-dimensional integral. We assume that dis-
criminating instances are likely to be found near (by some proximity measure) other dis-
criminating instances, and non-discriminating instances near other non-discriminating
instances. This naturally leads to a Markov chain that walks the instance space, is
attracted towards known discriminating instances, and is repelled from known non-
discriminating instances. Our measure of proximity per parameter type:

Integer. The distance is simply the absolute difference between the two values.
Total Function. Given functions f and g we compute the distance between f(i) and

g(i) for each i where both functions are defined, and aggregate using Euclidean
distance. When f and g have different domains of definition, some mappings in
f and/or g will be discarded. Suppose we had given weights : function
(total) int(1..n) --> int(1..100) (as in the Knapsack Problem)
with n a parameter. If the domain of definition int(1..n) differs between f
and g, then n must differ and this will count towards the instance distance.

Set. Given sets S and T , the distance is
√
|S \ T |+ |T \ S|, also Euclidean.

Relation. Treating a relation as a set of tuples, we use the distance measure for sets.

To obtain the instance distance, we combine the distance measure for each parameter
again using the Euclidean distance. This combines elegantly with the Euclidean
distances computed per parameter. An initial instance is sampled using the method de-
scribed in Section 4. A race is run using this instance and a record taken of its discrim-
inatory quality. Each subsequent instance (sampled using the same method) is accepted
or rejected according to the scheme below. If an instance is accepted a race is run with
that instance, otherwise another instance is generated, and so on until the required race
sequence is complete. We use the following acceptance function, where xi−1 is the
previous accepted instance and x′i is the proposed instance.

A(xi−1, x
′
i) =

G′(x′i)

G(xi−1)

Discriminating Instance Generation for Automated Constraint Model Selection 359

LANGFORD’S PROBLEM (CSPLIB 24)
given k, n : int(1..)
letting seqLength be k * n
letting seqIndex be domain int(1..seqLength)
find seq : function (total, surjective) seqIndex --> int(1..n)
such that forAll i,j : seqIndex , i < j .

seq(i) = seq(j) -> seq(i) = j - i - 1

THE KNAPSACK PROBLEM
given n, totalWeight : int(1..)
given weights, values : function (total) int(1..n) --> int(1..)
find picked: set(maxSize n, minSize 1) of int(1..n)
maximising (sum i in picked . values(i))
such that (sum i in picked . weights(i)) <= totalWeight

THE PROGRESSIVE PARTY PROBLEM (CSPLIB 14)
given n_upper, n_boats, n_periods : int(1..)
letting Boat be domain int(1..n_boats)
given capacity, crew : function (total) Boat --> int(1..n_upper)
where forAll i : Boat . crew(i) <= capacity(i),
find hosts : set of Boat,

sched : set (size n_periods) of function (total) Boat --> Boat
minimising |hosts|
such that forAll p in sched . range(p) subsetEq hosts,

forAll p in sched . forAll h in hosts . p(h) = h,
forAll p in sched . forAll h in hosts .

(sum b in preImage(p,h) . crew(b))<= capacity(h),
forAll b1,b2 : Boat , b1 != b2 .

(sum p in sched . (p(b1) = p(b2))) <= 1

THE WAREHOUSE LOCATION PROBLEM. (CSPLIB 34)
given n_upper, n_stores, n_warehouses : int(1..30)
letting Store be domain int(1..n_stores),

WHouse be domain int(1..n_warehouses)
given capacity : function (total) WHouse --> int(1..n_upper),

opencost : function (total) WHouse --> int(1..n_upper),
cost : function (total) tuple (Store, WHouse) --> int(1..n_upper)

find open : function (total) Store --> WHouse
minimising (sum r in range(open). opencost(r)) + sum s : Store . cost((s,open(s)))
such that forAll w : WHouse . |preImage(open,w)| <= capacity(w)

Fig. 1. Four sample ESSENCE specifications

G′ estimates the discriminatory quality of the instance in the interval [0, 1] using the
quality values of previously accepted instances found by racing. We define a radius of
influence r, which is 10% of the greatest possible distance between any two instances,
using the distance measure above.G′(x′i) finds the set of all previous accepted instances
within distance r of x′i. If this set is non-empty, G′(x′i) returns the mean of the true
quality values for the set. Otherwise, G′(x′i) = 0.5. G(xi−1) gives the true quality of
xi−1. Finally, a pseudorandom number a is generated within [0, 1], and x′i is accepted
if A(xi−1, x

′
i) ≥ a then. Hence, the proposed instance is always accepted if G′(x′i) is

greater than G(xi−1).
Smac: Our final method is based on SMAC [15], an automatic algorithm configura-

tion system. Given an algorithm, a description of its parameters, and a set of instances,
it finds the set of parameters for the algorithm that delivers the best performance on
the set of instances. Finding discriminatory instances is a very similar setting – the al-
gorithm is the problem class specification, its parameters instantiate particular instances
of the class and the set of problem “instances” is the set of models. We want to find the

360 I.P. Gent et al.

set of problem class parameters – the set of problem instances – that has the optimum
discriminatory power with respect to the models.

We encode the problem class parameters into SMAC’s input format, which uses in-
teger and categorical variables. Integer givens are converted to integer parameters
with the range specified in the problem definition. We model structured givens such
as functions using multiple SMAC parameters. When one given depends on another,
such as the size of the domain of the function depending on n in the Knapsack Prob-
lem, we must be conservative: sufficient SMAC parameters are used to accommodate
the maximum size of the structured given. The extraneous parameters are ignored
when racing the instances so produced. Although SMAC has demonstrated that it is able
to handle large parameter spaces, this conservative encoding may hinder its ability to
cover the space effectively, since many of the values it is producing may be ignored.
Furthermore, SMAC does not support the complex constraints between parameters that
we sometimes require (where), so we use CONJURE to validate the instances that
SMAC generates and discard those that do not satisfy the constraints.

4 Uniform Versus Non-Uniform Sampling

Except for SMAC, which has its own sampling method, our generation approaches re-
quire the ability to sample from the instance space associated with a problem class.
Since the instance spaces of the problem classes we consider are typically infinite, our
method requires some sensible bounds on the parameters involved in order to circum-
scribe a finite sub-space of interest. For example in Langford’s Problem, as discussed in
Section 5, we limit the two integer parameters to the ranges 2..10 and 1..50 respectively.

When the parameters defining the space are independent (e.g. the pair of integer para-
meters to Langford’s problem), uniform sampling is straightforward: simply generate a
value uniformly and independently for each parameter. When the parameters are not in-
dependent, uniform sampling is more difficult. Reconsider the Knapsack Problem from
Figure 1. An approach to sampling from this space is first to generate n uniformly then
uniformly and independently generate a mapping for each element of the domain (1..n)
of the two functions weights and values. However, this introduces bias: there are
many more possible functions for large values of n than there are for small values of
n. Hence, if we generate n uniformly then a particular function for small n is far more
likely to be selected than a particular function for large n.

A solution to this problem is to enumerate all of the valid instances of the instance
sub-space and sample uniformly from this set. This enumeration problem is naturally
cast as a (simple) constraint problem. An ESSENCE specification E∗ for the enumera-
tion problem can be obtained automatically from an original ESSENCE specification E
simply by replacing in E the given (parameter) statements with find (decision vari-
able) statements and discarding the rest of E. As a very simple example, performing
this process for Langford’s Problem produces:

find k : int(2..10)
find n : int(1..50)

Discriminating Instance Generation for Automated Constraint Model Selection 361

Care must be taken that this transformation produces valid ESSENCE. For the Knapsack
Problem (assuming sensible parameter limits) it produces:

find totalWeight : int (1..1000)
find weights : function (total) int(1..n) --> int(1..100)
find values : function (total) int(1..n) --> int(1..100)

find n : int(1..100)

This is invalid because a decision variable is used to define the size of the domain of
the two function variables. The solution we adopt is to leave n as a parameter, solve the
problem for each value of n and take the union of the results.

We obtain a single model for E∗ automatically using CONJURE and the Compact
heuristic [1] — this is sufficient because the enumeration problem is typically easy.
MINION is then used to find all solutions to the model. Our uniform sampling method
is to select uniformly from this set of solutions.

The drawback of uniform is that it limits the size of space that we can consider.
An alternative approach, which we call solver-random, is to sample by requesting
a single solution from MINION, employing a random variable and value order. This in-
troduces bias for much the same reason as described above: the distribution of solutions
to the model may not be uniform. However, solver-random is much more scalable.

In order to compare uniform with solver-random we performed an experi-
ment on two problem classes: Warehouse Location and the Progressive Party Prob-
lem (see Figure 1). So that uniform sampling was feasible, the instance space for
each problem class was restricted to around a billion instances by limiting the upper
bounds of each of their parameters. For each problem class we ran three sequences of
thirty races using our Markov and Undirected generation approaches. In this ex-
periment there was no substantive difference between Markov and Undirected —
probably because of the (lack of) discriminatory quality of the instance sampled as we
discuss below. For Warehouse Location the performance of the two sampling methods is
identical, reducing 128 input models to 64 non-dominated models. For the Progressive
Party Problem solver-random actually performs better than uniform, reducing
256 input models to 16 non-dominated models, whereas uniform produces between
63 and 77 non-dominated models. The bias inherent to solver-uniform appears to
have been beneficial in this case, guiding the methods to discriminating instances.

These experiments provide some evidence that solver-random is a reasonable
approach to sampling the instance space. It is also worth noting that the restrictions
on the size of the instance space that we explore (to accommodate uniform) restricts
the discriminatory quality of the instances that we find — producing 64 non-dominated
models for Warehouse Location is a relatively weak result. solver-random scales
easily to more challenging, hence more discriminating, instances as we will see in the
following section where we use solver-random exclusively.

5 Experimental Results

In this section we report an experimental evaluation of our instance generation meth-
ods. Following the outcome of our experiment in Section 4, we use solver-random

362 I.P. Gent et al.

sampling throughout. We experiment on six problem classes described below with res-
ults summarised in Table 1. For each class we run three independent sequences of races.
For Markov and Undirected we run 30 races, each with a time budget of 6 hours.
This time budget is divided by the number of models to obtain the maximum time al-
lowed for a particular model to solve an instance. Rather than a maximum number of
runs, SMAC requires a total time budget. We specify the maximum time either of the
other methods took to complete the race sequence.

Given the volume of experiments we use heterogeneous compute resources, while
ensuring that all experiments for each problem class are run on the same resource. In
all cases, a model is given 6.5GB of RAM and run on an AMD-based architecture. The
Social Golfer Problem was run on a 32-core 2.1GHz machine, Warehouse Location
on a 64-core 2.1GHz machine, and the remainder on 2.1GHz processors on Microsoft
Azure.

Our results are summarised in Table 1. For each problem class we record: the number
of models refined by CONJURE from the associated ESSENCE specification; the size of
the output set(s) of models as described in Section 2; the number of discovered fractured
parts of the instance space; and, for Markov and Undirected, the number of races
until convergence. This last measure indicates how many of the 30 races are necessary
to achieve the final result. Detailed discussion follows.

The Knapsack Problem. The parameter space is limited as described in Section 4. All
of our methods perform well on this problem class, identifying that the instance space
is fractured into two parts. The parts correspond to satisfiable versus unsatisfiable in-
stances. For the satisfiable part, all three methods returned a single winner model (from
the 64 input), which employs a 0/1 model of the problem. For the unsatisfiable part,
all three methods also returned a single winning model based on an explicit representa-
tion of the set of items in the knapsack. Both Markov and Undirected show some
variability in how quickly they converge on this result.

Langford’s Problem. The parameters to this problem are a pair of independent integers
(limited as described in Section 4). Therefore, solver-random sampling is unbiased
for this problem. None of our methods found the instance space to be fractured, and each
was able to reduce the input set of models drastically to a small set of non-dominated
models. Over the three independent runs, Markov shows a slight edge in performance
returning a single model in one case, whereas Undirected on one occasion returns
six models. Both show some variability in steps to convergence.

The Social Golfer Problem. The parameters to this problem are a triple of independ-
ent integers, hence solver-random sampling is again unbiased. Each parameter is
limited between 1 and 100. Hence, a large fraction of this instance space is unfeasibly
difficult so we would expect our more informed approaches to perform better in this
case study. In fact, SMAC struggles with this class, in two cases finding no discrimin-
ating instances at all. Undirected’s performance is variable, sometimes outputting a
single model, but on one occasion also finding no discriminating instances. By contrast

Discriminating Instance Generation for Automated Constraint Model Selection 363

Table 1. Results for the six problem classes over three independent runs

Markov SMAC Undirected

Output Steps to Output Output Steps to
Problem #Models Sizes Frac. Conv. Sizes Frac. Sizes Frac. Conv.

Knapsack-1 64 1,1 2 20 1,1 2 1,1 2 7
Knapsack-2 64 1,1 2 13 1,1 2 1,1 2 30
Knapsack-3 64 1,1 2 2 1,1 2 1,1 2 3

Langford-1 154 4 1 28 4 1 6 1 1
Langford-2 154 1 1 14 3 1 4 1 14
Langford-3 154 4 1 2 4 1 3 1 29

SGP-1 24 1,4 2 26 1 1 1 1 7
SGP-2 24 4 1 13 24 1 1 1 15
SGP-3 24 1 1 7 24 1 24 1 30

PPP-1 256 32,8 2 2 8 1 53,8 2 19
PPP-2 256 32,8 2 12 16 1 27,8 2 11
PPP-3 256 8 1 9 15 1 17 1 7

Warehouse-1 128 32 1 17 32 1 45 1 16
Warehouse-2 128 24 1 13 49 1 72 1 26
Warehouse-3 128 8 1 16 27 1 54 1 26

BACP-1 48 1,1 2 24 26 1 1 1 8
BACP-2 48 1 1 1 8 1 1 1 25
BACP-3 48 1 1 2 25 1 1 1 7

Markov performs well, reducing the 24 input models to between 1 and 4 on each run
and on one occasion identifying a fracture in the instance space.

The Progressive Party Problem. This class has the most (256) input models. Perhaps
unsurprisingly, therefore, the instance space is fractured — but this is only identified by
Markov and Undirected. When fracturing is detected, Markov is more consistent
than Undirected in the size of the returned set for the first fractured part.

The Warehouse Location Problem. All three methods are able to reduce the input set
of 128 models significantly. Markov has the best performance, followed by SMAC and
then Undirected. No fracturing was found.

Balanced Academic Curriculum Problem. Only Markov is able to detect a frac-
ture in the instance space for this class, and only on one of its runs. Both Markov
and Undirected reduce the input model set drastically from 48 to a single winning
model. SMAC performs much less well on this class, perhaps hampered by the neces-
sary encoding compromises (see Section 3) on what is a more complex instance space
defined by 7 integers, two functions and a relation.

364 I.P. Gent et al.

6 Conclusions

We have developed and investigated three methods for generating discriminating in-
stances for the purpose of automated constraint model selection. Our experimental
evaluation shows that all of these methods are capable of reducing a large number of
possible models to a much smaller set. The methods are able to detect fracturing if it
occurs and successfully determine the best models for each fraction. Overall, our novel
Markov approach has the best performance on the problem classes in our experiments.

Acknowledgements. This research is supported by UK EPSRC EP/K015745/1. Bilal
Syed Hussain is supported by an EPSRC scholarship, and a Google Europe Scholar-
ship. Chris Jefferson is a University Research Fellow funded by the Royal Society. Lars
Kotthoff is supported by EU FP7 grant 284715. The Microsoft Azure processors were
provided by a Microsoft Azure for Research grant.

References

1. Akgun, O., Frisch, A.M., Gent, I.P., Hussain, B.S., Jefferson, C., Kotthoff, L., Miguel, I.,
Nightingale, P.: Automated symmetry breaking and model selection in CONJURE. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 107–116. Springer, Heidelberg (2013)

2. Akgun, O., Miguel, I., Jefferson, C., Frisch, A.M., Hnich, B.: Extensible automated con-
straint modelling. In: 25th Conference on Artificial Intelligence (AAAI) (2011)

3. Beldiceanu, N., Simonis, H.: A model seeker: Extracting global constraint models from pos-
itive examples. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 141–157. Springer,
Heidelberg (2012)

4. Bessière, C., Coletta, R., Freuder, E.C., O’Sullivan, B.: Leveraging the learning power of ex-
amples in automated constraint acquisition. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258,
pp. 123–137. Springer, Heidelberg (2004)

5. Bessiere, C., Coletta, R., Koriche, F., O’Sullivan, B.: Acquiring constraint networks using a
SAT-based version space algorithm. In: 21st Conference on Artificial Intelligence (AAAI),
pp. 1565–1568 (2006)

6. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring
metaheuristics. In: The Genetic and Evolutionary Computation Conference (GECCO), vol. 2,
pp. 11–18 (2002)

7. Charnley, J., Colton, S., Miguel, I.: Automatic generation of implied constraints. In: 17th
European Conference on Artificial Intelligence (ECAI), pp. 73–77 (2006)

8. Coletta, R., Bessière, C., O’Sullivan, B., Freuder, E.C., O’Connell, S., Quinqueton, J.: Semi-
automatic modeling by constraint acquisition. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833,
pp. 812–816. Springer, Heidelberg (2003)

9. Flener, P., Pearson, J., Ågren, M.: Introducing ESRA, a relational language for model-
ling combinatorial problems. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 971–971.
Springer, Heidelberg (2003)

10. Frisch, A.M., Jefferson, C., Hernandez, B.M., Miguel, I.: The rules of constraint modelling.
In: 19th International Joint Conference on Artificial Intelligence (IJCAI), pp. 109–116 (2005)

11. Frisch, A.M., Harvey, W., Jefferson, C., Martı́nez-Hernández, B., Miguel, I.: Essence: A con-
straint language for specifying combinatorial problems. Constraints 13(3), 268–306 (2008)

12. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In: 17th
European Conference on Artificial Intelligence (ECAI), vol. 141, pp. 98–102 (2006)

Discriminating Instance Generation for Automated Constraint Model Selection 365

13. Gent, I.P., Miguel, I., Rendl, A.: Common subexpression elimination in automated constraint
modelling. In: Workshop on Modeling and Solving Problems with Constraints, pp. 24–30
(2008)

14. Hnich, B.: Function variables for constraint programming. AI Communications 16(2),
131–132 (2003)

15. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general
algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523.
Springer, Heidelberg (2011)

16. Koninck, L.D., Brand, S., Stuckey, P.J.: Data independent type reduction for Zinc. In: 9th
International Workshop on Constraint Modelling and Reformulation (2010)

17. Lallouet, A., Lopez, M., Martin, L., Vrain, C.: On learning constraint problems. In:
22nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), vol. 1,
pp. 45–52 (2010)

18. Little, J.J., Gebruers, C., Bridge, D.G., Freuder, E.C.: Using case-based reasoning to write
constraint programs. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, p. 983. Springer, Heidel-
berg (2003)

19. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., de la Banda, M.G., Wallace, M.: The
design of the Zinc modelling language. Constraints 13(3), 229–267 (2008)

20. Mills, P., Tsang, E., Williams, R., Ford, J., Borrett, J.: EaCL 1.5: An easy abstract con-
straint optimisation programming language. Tech. rep., University of Essex, Colchester, UK
(December 1999)

21. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.: Minizinc: To-
wards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741,
pp. 529–543. Springer, Heidelberg (2007)

22. Nightingale, P., Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I.: Automatically improving con-
straint models in savile row through associative-commutative common subexpression elimin-
ation. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 590–605. Springer, Heidelberg
(2014)

23. Rendl, A.: Effective Compilation of Constraint Models. Ph.D. thesis, University of St An-
drews (2010)

24. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press, Cambridge
(1999)

Aggregating CP-nets with Unfeasible Outcomes

Umberto Grandi1, Hang Luo2,3, Nicolas Maudet2, and Francesca Rossi1

1 University of Padova, Italy
umberto.uni@gmail.com, frossi@math.unipd.it

2 Université Pierre et Marie Curie, France
{nicolas.maudet,hang.luo}@lip6.fr

3 Tsinghua University, China

Abstract. We consider settings where a collection of agents express preferences
over a set of candidates with a combinatorial structure via the use of CP-nets,
and we need to exploit the information contained in the CP-nets to choose one
of the candidates. Moreover, there is a set of constraints which defines the un-
feasible candidates, which cannot be the result of the preference aggregation. We
propose a method to achieve this which is based on voting, and considers one
variable at a time in a sequence. This method has been studied in the literature
to aggregate non-constrained CP-nets. Here we generalise it to work with con-
strained CP-nets, and we study its properties. The constraints are used to leave
in the variable domains only the admissible values. This allows the voting steps
to return only feasible values. We find conditions of coherence between the pref-
erence expressed in the CP nets and the constraints, in order to guarantee that
the classical sequential aggregation method always returns a feasible candidate.
Even when such conditions are not met, but the constraints defining the unfea-
sible candidates have a tree structure (or a structure with bounded tree-width),
and the collection of CP-nets is O-legal (that is, the dependency graphs of the
CP-nets are compatible), we show that our more general voting procedure can be
used, and that it is polynomial in the number of features describing the candidates
and in the number of voters.

1 Introduction

Preferences are ubiquitous in real life. Often we need to express our preferences over
a large set of objects, which has a combinatorial structure and can be described as the
Cartesian product of the domains of a set of decision variables. Consider for example
a situation where we give our opinion about cars. A car may be described by several
features, like the model, the colour, the engine, the shape, and the maker. Each feature
may have several possible choices. We may have various models, colours, engine types,
shapes, and makers. If the features are modelled by variables and the choices as variable
domains, formally a car can be modelled by an assignment of values to such variables.

However, it may be that not all cars are available in the market. For example, while
there are red cars and diesel cars, there could be no red diesel car in the current list of
available cars. So we are expressing our preferences over all possible cars, but some of
them are actually not available.

Often we take group decisions, together with other individuals. For example, a hus-
band and wife could go and look for a car together, each having his/her own preferences

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 366–381, 2014.
c© Springer International Publishing Switzerland 2014

Aggregating CP-nets with Unfeasible Outcomes 367

over all cars. To decide on what car to buy, they need to consider the preferences of both
and also the possible feasibility constraints, in order to select a car that is on the market
and that satisfies their preferences as well as possible.

In this paper we are interested in modeling and studying these scenarios. To model
individual’s preferences, we use CP-nets [2], a qualitative formalism to express condi-
tional preferential statements. In the car example, using CP-nets we can say that, if the
maker is Citroen, we prefer a gasoline engine to a diesel engine. In particular, we study
acyclic CP-nets, which have an acyclic dependency structure, since we believe they are
expressive enough to model most rational preference orderings. In acyclic CP-nets, it is
computationally easy to determine the most preferred object.

We then use constraints to model the feasibility restrictions. Thus we pair CP-nets
with a set of constraints, which define the feasible objects, while the CP-net discriminate
among the feasible objects via the preferences. Constrained CP-nets have been studied
in the literature, and procedures to obtain a feasible undominated outcome have been
proposed [3].

A set of constraints [8] compactly models a set of feasible variable assignments.
Each constraint usually involves few variables, and the feasible objects are those that
satisfy them all. While the task of finding a feasible variable assignment in a generic
constraint set is NP-hard, there are classes of constraint problems where this task is
computationally easy. One of these classes consists of those constraint sets whose graph
(where nodes model variables and arcs model constraints) is a tree, or a graph with
bounded tree-width.

We then consider collections of several acyclic CP-nets, as many as the individuals,
plus a set of constraints defining the feasible objects. To aggregate such preferences and
make sure we return a feasible object, we use voting rules [1] and we define a sequen-
tial voting procedure that considers one variable at a time and uses one of the voting
rules to decide the ”winning value” for that variable. Sequential voting has been al-
ready defined for CP-nets with no feasibility constraints [5]. We show that the classical
sequential voting procedure can be used also in this more general setting when CP-nets
and constraints are coherent according to three consistency notions that we introduce. In
these cases, this procedure returns a feasible outcome. When consistency does not hold,
we define a generalization of the classical sequential voting procedure which takes the
constraints into account and still returns a feasible outcome. This is computed in time
polynomial in the size of the profile, if all the used voting rules are polynomial for win-
ner determination and if the constraints are tractable. This means that the presence of
feasibility does not make sequential preference aggregation over CP-nets more difficult,
provided that the constraints belong to a tractable class.

2 Background

2.1 CP-nets

CP-nets [2] are a graphical model for compactly representing conditional and qualitative
preference relations. CP-nets are sets of ceteris paribus (cp) preference statements. For
instance, the statement “I prefer red wine to white wine if meat is served.” asserts that,

368 U. Grandi et al.

given two meals that differ only in the kind of wine served and both containing meat,
the meal with red wine is preferable to the meal with white wine.

A CP-net has a set of features, modelled by variables F = {x1, . . . , xm}, with finite
domains D(x1), . . . ,D(xm). For each feature xi, it is given a set of parent features
Pa(xi) that can affect the preferences over the values of xi. This defines a dependency
graph in which each node xi has Pa(xi) as its immediate predecessors. Given this
structural information, the agent explicitly specifies her preference over the values of
xi for each complete assignment onPa(xi). This preference is assumed to take the form
of total or partial order over D(xi). An acyclic CP-net is one in which this dependency
graph is acyclic. A separable CP-net is one in which there is no preferential dependency
(that is, the dependency graph has no edges).

Consider a CP-net whose features are A, B, C, and D, with binary domains contain-
ing f and f if F is the name of the feature, and with preference statements as follows:
a * a, b * b, (a ∧ b) ∨ (a ∧ b) : c * c, (a ∧ b) ∨ (a ∧ b) : c * c, c : d * d, c : d * d.
Here, statement a * a represents the unconditional preference for A = a over A = a,
while statement c : d * d states that D = d is preferred to D = d, given that C = c.

A worsening flip is a change in the value of a variable to a value which is less pre-
ferred by the CP-statement for that variable. For example, in the CP-net above, passing
from abcd to abcd is a worsening flip since c is better than c given a and b. One outcome
α is better than another outcome β (written α * β) iff there is a chain of worsening
flips from α to β. This definition induces a preorder over the outcomes.

In general, finding the optimal outcome of a CP-net is NP-hard. However, in acyclic
CP-nets, there is only one optimal outcome and this can be found in linear time. We
simply sweep through the CP-net, following the arrows in the dependency graph and
assigning at each step the most preferred value in the preference table. For instance, in
the CP-net above, we would chooseA = a andB = b, thenC = c and thenD = d. The
optimal outcome is therefore abcd. Determining if one outcome is better than another (a
dominance query) is NP-hard even for acyclic CP-nets. Whilst tractable special cases
exist, there are also acyclic CP-nets in which there are exponentially long chains of
worsening flips between two outcomes. In the CP-net of the example, abcd is worse
than abcd.

2.2 Constraints

In this paper we refer to the usual notation and terminology for constraint satisfac-
tion problems (CSPs), that can be found for example in [8]. In a constraint prob-
lem (CSP) (V,D,C), where V = (v1, . . . , vn) is a set of variables, with domains
D = (D1, . . . , Dn), and C is a set of constraints, a solution is an assignment of val-
ues to all its variables that satisfies all constraints. In the following, we say that a partial
assignment to a subset of the variables in V is feasible if it can be extended to a solution.

We will also use classical results about tractability of constraint problems and the
relationship between local and global consistency. In particular, we will exploit the
fact that CSPs whose constraint graph has a bounded tree-width, such as trees, are
tractable. For trees, a standard polynomial algorithm to solve them involves deciding
on an ordering over which to instantiate the variables to construct a solution, achieving

Aggregating CP-nets with Unfeasible Outcomes 369

directional arc-consistency on such an order, and then instantiating the variables with
no backtracking.

Another tractability result that we will use in this paper is the fact that, in CSPs with
Boolean variables and binary constraints, strong 3-consistency (that is, arc- and path-
consistency) is sufficient to assure global consistency. This means that it is polynomial
to solve such CSPs. In fact, even if we do not have strong 3- consistency, we can achieve
it in polynomial time while remaining in the class of binary constraints with Boolean
variables, and then we can apply this result.

We will also use a graph which is obtained by the constraint graph of a CSP by first
achieving path-consistency and then taking only those edges that correspond to non-
trivial constraints (that is, constraints that are a proper subset of the Cartesian domain
of their variables). We will call this the path-closure graph of the CSP.

2.3 Constrained CP-nets

A constrained CP-net is just a CP-net N with the addition of a set of constraints C over
the same variables. An outcome is feasible if it satisfies all constraints in C. An optimal
outcome for a constrained CP-net (N,C) is a feasible outcome which is not dominated
by any other feasible outcome in the CP-net preference ordering.

While for acyclic CP-nets finding an optimal outcome is computationally easy, for
acyclic constrained CP-nets it is as difficult as solving (possibly several times) the con-
straint set C. In [3] an algorithm (Search-CP) is defined to find an optimal outcome in
a constrained CP-net.

Therefore, when the constraint set is tractable, for example it has a tree structure,
then this problem is computationally easy. In this paper we consider constrained CP-
nets where the CP-net is acyclic, and for some results we will also exploit the tractability
of the constraint set. However, we will not compute the optimal outcome of any single
constrained CP-net, but rather use the constraints to make sure we obtain a feasible
outcome as the result of the aggregation of several CP-nets.

Even if the literature has focussed on finding optimal outcomes of constrained CP-
nets, it is also an interesting question to know whether preferences expressed by the
CP-net comply (and to what extent) with the constraints. In Section 3 we discuss several
possible ways to define such a compliance.

2.4 Voting Theory

A voting rule allows a set of voters to choose one among a set of candidates. Voters
need to submit their vote, that is, their preference ordering over the set of candidates (or
part of it), and the voting rule aggregates such votes to yield a final result, usually called
the winner. In the classical setting [1], given a set of candidates, a profile is a collection
of total orderings over the set of candidates, one for each voter. Given a profile, a voting
rule maps it into a single winning candidate.

Some examples of widely used voting rules are:

– Plurality, where each voter states who the preferred candidate is, and the candidate
who is preferred by the largest number of voters wins;

370 U. Grandi et al.

– Borda, where, given m candidates, each voter gives a ranking of all candidates and
the ith ranked candidate scores m − i, and the candidate with the greatest sum of
scores wins;

– Approval, where each voter approves between 1 and m − 1 candidates on m total
candidates, and the candidate with most approvals wins;

– Copeland, where the winner is the candidate that wins the most pairwise competi-
tions against all the other candidates.

When there are ties, a unique winner is chosen according to some tie-breaking rule.
Voting theory has considered many desirable properties of voting rules. Some

examples are anonymity, neutrality, consistency, monotonicity, Pareto efficiency, in-
dependence of irrelevant alternatives (IIA), non-dictatoriality, strategy proofness, and
participation [1]. All the above rules are anonymous, neutral, non-dictatorial, mono-
tone, and Pareto efficient, while only Approval is IIA. All but Copeland are consistent
and participative.

2.5 Aggregating CP-nets

There is extensive literature that has considered the task of aggregating preferences
modelled via CP-nets [5]. In this setting, n agents express their preferences over a set
of candidates with a combinatorial structure: there are m features, and each candidate
is an assignment of values to all features. Agents’ preferences over the candidates are
usually modeled via acyclic CP-nets. Moreover, the dependency graphs of such CP-
nets are usually assumed to be compatible with a linear order O over the features: for
each voter, the preference over a feature is independent of features following it in O.1

This implies that the n CP-netsN1, . . . , Nn are such that the union of their dependency
graphs, that we call Dep(N1, . . . , Nn), does not contain cycles. Notice that CP-nets
with this property may have different dependency graphs.

Given n agents,m binary features, and a linear orderingO over the features, a profile
is thus a collection of n acyclic CP-nets over the m features which are compatible
with O.

To aggregate the preferences expressed via CP-nets, what is often done is to employ
a sequential approach, with as many steps as the number of features. The algorithm uses
as many voting rules as the number of features, say 〈r1, . . . , rm〉.

Taken the features in the order O, say 〈x1, . . . , xm〉, the aggregation considers one
feature at a time in this order and returns a “winner”, that is, a variable assignment
for such variables, say 〈d1, . . . , dn〉. It starts from variable x1, which is for sure an
independent variable, and applies voting rule r1 to the profile obtained by the preference
orderings given by all CP-nets over the domain of x1, returning a winner value d1. If
we have already considered variables x1, . . . , xk , obtaining values d1, . . . , dk, we then
consider variable xk+1 and apply voting rule rk+1 to the profile obtained by considering
the preference ordering over the domain of xk+1 in all CP-nets. If xk+1 is a dependent
variable, we choose the preference ordering which corresponds to the assignment of the
previous variables. Notice that all parents of xk+1 must have been assigned already at

1 This coincides with the notion of O-legality in [5].

Aggregating CP-nets with Unfeasible Outcomes 371

this point, because of the way the ordering O is defined. This procedure is sometimes
called sequential voting [5], or also Level Aggregation (LA) [7].

Example. Consider three agents, each expressing their preferences over candidates
defined by 3 binary features. So we have 3 CP-nets N1, N2, and N3, with features
A, B, and C, where each feature X has values x and x̄. N1 contains the preferential
statements a * a, b * b, (a ∧ b) ∨ (a ∧ b) : c * c, (a ∧ b) ∨ (a ∧ b) : c * c.
We recall that a * a represents the unconditional preference for A = a over A = a,
while (a ∧ b) ∨ (a ∧ b) : c * c states that C = c is preferred to C = c, when
A = a and B = b and also when A = a and B = b. Thus, in N1, A and B are
independent variables, while C depends on both A and B. N2 contains instead the
following preferential statements: a * a, a : b * b, a : b * b, b : c * c, b : c * c. Thus,
in N2, A is an independent variable, while B depends on A and C depends on B. N3

is defined by: a * a, b * b, c * c. Thus, in N3, all variables are independent. Figure 1
shows this profile.

Consider now ordering O = 〈A,B,C〉, and let us apply the sequential voting pro-
cedure with voting rule Majority for all three variables. For variable A, we have the
preferences a * a from all agents, thus we select A = a. Then, given this choice,
we pass on to variable B, getting preferences b * b from all agents. Thus we choose
B = b. Notice that, while feature B is independent from A in agent 1 and 3, in agent
2 it depends on A. Thus the preferences on the values of B in such an agent are those
corresponding to the value of A chosen in the previous step. Passing on to C, we get
preferences c * c from all agents, thus we chooseC = c. Thus the sequential procedure
chooses the variable assignment 〈A = a,B = b, C = c〉.

Sequential voting provides an efficient way to determine the winning candidate when
preferences are expressed compactly with CP-nets or other preference formalisms.

A

a � a

A

a � a

A

a � a

B

b � b

B
a : b � b

a : b � b
B

b � b

C

(a ∧ b) ∨ (a ∧ b) : c � c

(a ∧ b) ∨ (a ∧ b) : c � c

C

b : c � c

b : c � c

C

c � c

Fig. 1. A profile of CP-nets

372 U. Grandi et al.

Moreover, it maintains many of the desirable properties of the local voting rules used at
every step [5].

3 Consistency in Constrained CP-nets

Given a constrained CP-net (N,C), we now study some notions of consistency between
the preference structure expressed by N and the set of constraintsC. The reason we are
interested in these consistency notions is that in some cases they make the aggregation
simpler, when preferences are expressed by a collection of constrained CP-nets, as we
will see in Section 5.

3.1 Consistency Notions

The first notion of consistency relates the optimal outcome of the CP-net to the
constraints.

Definition 1. A constrained CP-net (N,C) is top-consistent if the optimal outcome of
N satisfies the constraints in C.

For example, the CP-net of agent 1 in Figure 1 is top-consistent with the set of
constraints {A = B}.

The next notion of consistency acts at the variable level and makes sure that feasi-
bility is maintained when passing from the parents of the variable to its most preferred
value.

Definition 2. A constrained CP-net (N,C) is locally-consistent if there is no line in
the CP-tables of N of the form o : b > b̄ such that o is feasible but ob is not.

Since o and ob can be partial outcomes, that is, assigning values to only some of the
variables, we recall that a partial outcome is feasible if it can be extended to a solution.

The third notion of consistency we define is a structural property, that related the
dependency graph of the CP-net to the path-closure graph of the constraints.

Definition 3. A constrained CP-net (N,C) is dependency-consistent if the path-closure
graph of C is a subset of the undirected version of the dependency graph of N .

Dependency consistency can be natural in several settings. For example, if constraints
are known in advance, the process of specifying a CP-net will exploit preferential de-
pendencies among variables connected by a constraint to express qualitative preferences
over the partial outcomes over such variables.

Theorem 1. If a constrained CP-net is both locally and dependency-consistent, then it
is also top-consistent.

Proof. If we have both local and dependency consistency, the optimal outcome is fea-
sible (that is, we have top consistency). In fact, let us compute the optimal outcome by
instantiating one variable at a time, in an order which is compatible with the dependency

Aggregating CP-nets with Unfeasible Outcomes 373

graph of the CP-net (that is, parents come before their children). We start from the inde-
pendent variables and we give them their most preferred value. This is a feasible partial
assignment since, by dependency consistency, there are no constraints among indepen-
dent variables. At any step, we instantiate a new variable to its most preferred value
given the chosen instantiation of its parents. If the partial assignment before this step
was feasible, also the new partial assignment is feasible because of local and depen-
dency consistency. Thus all partial assignments built during the procedure, included the
last one which is the optimal outcome, are all feasible. A feasible complete assignment
is, by definition, a solution. �

It is easy to see that neither local nor dependency consistency alone imply top con-
sistency, and viceversa.

Example. Consider the CP-nets in Figure 1 and the constraints cAB = {(A = a,B =
b), (A = a,B = b)} and cBC = {B = b, C = c), (B = b, C = c)}. None of the CP-
nets are top consistent. Moreover, N1 is not locally consistent because of the CP-table
for feature C: ab is a partially feasible assignment but abc is not. N2 is not locally-
consistent either, again because of the CP-table for C: b is feasible but bc is not. On the
other hand, n3 is locally consistent. Only N2 is dependency consistent.

3.2 Checking the Consistency Notions

We now study the computational complexity of checking the above three notions of
consistency in a constrained CP-net. In what follows we assume CP-nets to be acyclic.

Theorem 2. Given a constrained CP-net (N,C), it is polynomial to check whether it
is top-consistent or dependency consistent.

Proof. For top consistency, it is sufficient to find the optimal outcome of N and check
whether it satisfies the constraints inC. SinceN is acyclic, this is computationally easy.

For dependency consistency, we just need to compare the dependency graph and the
path-closure graph of the constraints. Once we have the two graphs, this is linear in
their size. The path-closure graph can be obtained by achieving 3-consistency on the
constraints, which is polynomial. �

Theorem 3. Given a constrained CP-net (N,C) with Boolean variables, with C a set
of binary constraints, it is polynomial to check whether it is locally consistent.

Proof. We need to check that ob is feasible, for each row in the CP-tables of the form o :
b > b̄ such that o is feasible. Since constraints are binary, for each row in a CP-table, this
can be done in polynomial time. In fact, checking that a partial outcome is feasible with
a set of binary constraints is computationally easy if variables are Boolean (it amounts
to solving a 2SAT problem). The number of rows in a CP-net may be exponential in the
number of issues, but not in the size of the CP-net which is given in the input. Thus the
overall complexity is polynomial. �

Observe that local consistency in general cannot be checked in polynomial time if con-
straints are not binary, even if variables are Boolean, since it would require solving a
SAT problem, while in the binary case it is 2-SAT.

374 U. Grandi et al.

3.3 Achieving Top and Local Consistency in Constrained CP-nets

Assume that (N,C) is a constrained CP-net which is not top-consistent or not locally-
consistent. This can happen in scenarios in which we have our own preferences over
the outcomes expressed via a CP-net, and somebody gives us the constraints describing
the feasible outcomes, and the two things together do not have the desired notion of
consistency. We would like to modify our CP-net as little as possible in order to obtain
either top consistency or local consistency.

Top consistency. To achieve top consistency, we may adopt the following procedure. Let
us start from any independent variable (there must be one since N is acyclic) and have
one step for each variable, in an order which is compatible with the dependency graph
of the CP-net (parents come before their children), computing the optimal outcome.
If at any step j, the partial outcome o obtained so far is not feasible, then we modify
the row of the CP-table of variable xj corresponding to the parents’ assignment in o
doing a switching of the ordering. This assures that the new partial outcome is feasible.
This algorithm will produce in polynomial time a CP-net which is top-consistent if the
constraints are binary. However, it does not assure that the resulting CP-net is minimally
distant from the given one, if the distance is the number of different orderings in the
CP-tables. However we conjecture it would be computationally difficult to find the one
which is minimally distant.

Local consistency. Instead, to obtain a CP-net which is locally-consistent, it is suffi-
cient to check each row in the CP-tables for the condition of local consistency, again
following an order of the variables which is compatible with the dependency graph. If
one of the rows fails the consistency check, then the preference expressed in this row
needs to be inverted. Since we are moving forward following the dependency structure
of N , we are guaranteed that one of the two possible orders in a row of the CP-table
must be consistent. Notice that this algorithm is different from the previous one since
we need to check all rows of the CP-tables and not just those involved in the compu-
tation of the optimal outcome. Again, the assumption of binary constraints is crucial
for this algorithm to be polynomial. Unlike the previous one, this algorithm guarantees
that the resulting CP-net is minimally distant from the given one, if the distance is the
number of different orderings in the CP-tables.

4 Constrained Profiles

A constrained profile models the scenario in which we have several individuals who
express their preferences over a common set of outcomes by using CP-nets, and the
constraints model the set of feasible outcomes. Only those outcomes that satisfy all
constraints can be returned as the result of the aggregation of the preferences of the
individuals.

Formally, a constrained profile is a collection of CP-nets {N1, . . . , Nn} plus a set of
constraints C. This can also be seen as a collection of constrained CP-nets {(N1, C),
. . . , (Nn, C)}, all having the same constraints.

Aggregating CP-nets with Unfeasible Outcomes 375

Notice that all CP-nets share the same set of feasible (and thus unfeasible) candi-
dates, which are those defined by C. Moreover, the CP-nets of all agents share also
the variables and the variable domains. So, what can be different in two agents is the
dependency graph of their CP-nets, as well as CP-tables of the CP-nets.

In this paper, we restrict our attention to constrained profiles which are O-legal, that
is, there is an orderingO of the variables such that, for each CP-net, the preference over
a feature is independent of features following it in O.

Notice that O-legality implies that all CP-nets in the constrained profile are acyclic.

Example. As an example of a constrained profile, let us consider the CP-nets in Figure
1, with the addition of the set of constraints cAB = {(A = a,B = b), (A = a,B = b)},
CBC = {B = b, C = c), (B = b, C = c)}. It is easy to see that this profile is O-legal:
there is an ordering O of the variables which is compatible with all dependency links,
namely O = (A,B,C). Observe that the top outcome is abc for all three agents, and
this would be the result of sequential majority over the three CP-nets. However, this
outcome is not feasible (only abc and abc are).

5 Aggregating Preferences in Constrained Profiles

The goal is to take a constrained profile and return a feasible outcome, which should
satisfy the preferences of the individual CP-nets as much as possible. As we know, when
we have no constraints on the feasible outcomes, sequential voting is used to perform
such an aggregation. We will now see that sometimes sequential voting is all we need
also in presence of constraints. In general, however, we need to take constraints into ac-
count. This can be done by adapting the sequential voting procedure, while maintaining
a polynomial time complexity if constraints are tractable.

5.1 Top, Local, and Dependency Consistency

Under assumptions the consistency notions introduced in Section 3, sequential aggre-
gation using the majority rule outputs a feasible outcome. The first result applies when
we have top consistency, but requires CP-nets to be separable, that is, to have no depen-
dency structure.

Theorem 4. If 〈(N1, . . . , Nn), C〉 is a constrained profile such that all Ni are top-
consistent and separable, and C is a set of binary constraints, then the winner deter-
mined by sequential voting with the majority rule is feasible.

Proof. Since all Ni are separable (and variables are binary), then the order followed by
sequential majority is irrelevant, and the problem is equivalent to binary aggregation
in which all individuals submit their top outcome and issue-by-issue majority voting is
used. We can therefore use the following result from the binary aggregation literature:
issue-by-issue majority outputs a feasible outcome given feasible input (that is, it is
collectively rational) if and only if the constraints are equivalent to a conjunction of
disjunctions of size 2 [4,6]. First we observe that, by top consistency, each individual top
outcome satisfies the constraints. Second, since we assume constraints inC to be binary,

376 U. Grandi et al.

each constraint can be written as a conjunction of disjunctions of size 2, thus the whole
set of constraints can also be written in this way. Therefore this result applies here. If
the constraints are not binary, it is possible to find examples in which the outcome of
sequential majority is not feasible. �

When the CP-nets have a non-empty dependency structure, we can still apply stan-
dard sequential voting to get a feasible outcome if they are both locally and dependency
consistent (and thus also top consistent). So we need a stronger property on the CP-nets
when we have preferential dependencies.

Theorem 5. If 〈(N1, . . . , Nn), C〉 is a constrained profile such that all Ni are locally-
consistent and dependency-consistent, and C is a set of binary constraints, then the
winner determined by sequential voting with the majority rule is feasible.

Proof. We will prove by induction on the number of variables that, at each step i be-
tween 1 and m, the partial assignment generated until step i is feasible. For step 1, it is
trivially true since the CP-nets are locally consistent, so the most preferred value in an
independent variable must be feasible. This means that all CP-nets vote for a feasible
value for the first variable, and thus majority chooses a feasible value.

Let us assume that the statement is true until step i, and let us consider step i + 1.
We have a feasible partial assignment 〈v1, . . . , vi〉 obtained so far. For variable i + 1,
assume that there is a majority in favor of b, i.e., at least a majority of the individual
CP-nets prefer b to b̄ given the partial assignment obtained so far. This means that if
individual j is part of this majority, then Nj contains the row oj : b > b̄, where oj
is the assignment of the parent variables of variable i in CP-net Nj which occurs in
the current feasible assignment. By dependency consistency we know that the parent
variables of variable i in each individual CP-net include all variables k that are related
with i by a constraint. By local consistency, we also know that ojb is feasible for each
j between 1 and n. Thus also 〈v1, . . . , vi, b〉 is feasible.

Therefore all partial assignments generated during the sequential voting procedure
are feasible, including the last one, which is a complete assignment and thus a solution
of all the constraints. �

5.2 Aggregation in Non-consistent Profiles

When none of the sufficient conditions mentioned above hold, we can obtain a feasi-
ble outcome by modifying the sequential voting procedure to take the constraints into
account. Starting from the LA procedure already defined in the literature to aggregate
CP-nets, we define the procedure CLA, for Constrained LA procedure. CLA is very
similar to LA, except that it will work on possibly reduced variable domains, because
of the constraints. As each step, the constraints will tell us what domain values to con-
sider, in order to get a feasible outcome.

The first thing we need to do is to preprocess the constraints in C so to bring to the
variable domains the information about the feasible candidates. In fact, since LA is a
sequential voting procedure which considers one variable at a time, it is important to
leave in the domain of each variable only the values that belong to feasible candidates.

Aggregating CP-nets with Unfeasible Outcomes 377

Algorithm 1. CLA
Input: A constrained profile 〈(N1, . . . , Nm), C〉, n voting rules r1, . . . , rn, an ordering
O = 〈x1, . . . , xn〉
Output: a variable assignment 〈x1 = v1, . . . , xn = vn〉
for i = 1 to n do

Ti = the constraint graph of C (a tree), rooted at xi;
C′ = DAC(Ti);
Di = the domain of xi in C′;
if Di = ∅ then

return No feasible candidate

for j = 1 to m do
oj = the ordering over Di given by the CP-table in Nj for
x1 = v1, . . . , xi−1 = vi−1;
o′j = oj restricted to D′

i;

vi = ri(o
′
1, . . . , o

′
n);

Add the constraint xi = vi to C;
return 〈x1 = v1, . . . , xn = vn〉

As in the classical sequential voting procedure, we have a collection of m voting
rules 〈r1, . . . , rm〉 that will be used in the m steps of the procedure, one step for each
variable. If variables are Boolean, of course all ri will be the majority voting rule.
Assume for now that the constraint set has a bounded tree-width, so it belongs to a
tractable class. For sake of easiness of presentation, let us consider a tree- like shape.
However, the CLA procedure works also for bounded tree-width constraint sets.

Since the constraints have a tree shape, it is indeed possible to leave in the domain of
each variable only those values that appear in some feasible candidate. We just need to
consider the variable ordering O, take the first variable x1, use it as the root of the tree,
and achieve directional arc-consistency to this tree. At the end, the new domain of x1,
say D′

1, will contain only those values that appear in some feasible candidate. We can
now apply the voting rule r1 to the profile over variable x1, where however the domain
of x1 has been reduced to D′

1. This will choose a value for x1, say v1, which is feasible
(that is, it can be extended to a solution).

Let us now pass to the second variable x2. Given the value v1 chosen for x1, we set
x1 = v1 in C and in all the CP-nets and we apply again DAC bottom-up, now by using
x2 as the root of the tree. This will generate a new domain for x2, say D′

2, which will
contain only those values that appear in some feasible candidate. We can now apply
the voting rule r2 to the profile over variable x2 (given x1 = v1), where however the
domain of x2 has been reduced to D′

2. This will choose a value for x2, say v2. Now we
have the partial assignment 〈x1 = v1, x2 = v2〉, which is feasible.

We then continue like this until all variables have been assigned. The winning can-
didate is then {x1 = v1, . . . , xn = vn}.

Since C is a tree, the first application of DAC will tell us if there are feasible can-
didates. If no variable domain is empty after the first DAC, then we know there is at
least one feasible candidate, and the later applications of the DAC procedure will never
generate any empty variable domain.

378 U. Grandi et al.

Example. As an example of the application of the CLA algorithm to a constrained pro-
file, consider again the constrained profile in Figure 1, with ordering O = {A,B,C}
and constraints cAB = {(A = a,B = b), (A = a,B = b)}, cBC = {B = b, C =
c), (B = b, C = c)}. Since we do not have top consistency, nor local and dependency
consistency, for all CP-nets, we cannot use classical sequential voting to select a fea-
sible outcome. We will thus use the CLA procedure. Since the variables are binary, we
use majority voting at each step. CLA first achieves DAC to the constraint set, which
is a tree, rooted at A. This removes the value b from the domain of B, because of the
constraint cBC , and it also removes the value a from the domain of A, because of con-
straint cAB . We now apply majority voting to the profile related to variable A, getting
A = a. We then add the constraint A = a to the initial set of constraints and we pass
on to the second variable, B. We achieve DAC to the tree rooted at B, which does
not remove anything from any domain. We apply majority to the profile for B, getting
B = b, and we add this as a new constraint. Finally, we achieve DAC on the tree rooted
at C, leaving only c in the domain of C, and, by majority voting, we get C = c. Thus
the result of CLA is (A = a,B = b, C = c). This variable assignment satisfies all
constraints. Notice that the outcome of a sequential voting procedure over the same
profiles, without the constraints, would be (A = a,B = b, C = c), which does not
satisfy the constraints.

On the other hand, if C is not tree-shaped, achieving DAC could leave in the variable
domains also values that do not appear in any feasible candidate. Thus, once a value for
a variable is chosen, it could be that there is no value for the next variable which is
compatible with it. This means that the CLA procedure should backtrack its previous
choices (for example the last one made) and replace it with another value. It could also
be the case that no feasible candidate exists, and this will result in backtracking over the
choices until no more alternative choice is available. Thus the CLA procedure needs to
perform search if achieving DAC (or adaptive consistency) does not leave the domains
minimal, that is, containing only the values that participate in at least a solution.

5.3 Properties of CLA

The most important property to prove is that, in the setting we are considering, CLA
always returns feasible outcomes, in time polynomial in the size of the input. We recall
that our setting assumes that we have a constrained profile 〈(N1, . . . , Nn), C〉, where
C has a tree-like constraint graph, m voting rules r1, . . . , rm, and an ordering O =
〈x1, . . . , xm〉 which makes the profile O-legal.

Theorem 6. The variable assignment 〈x1 = v1, . . . , xm = vm〉 returned by CLA sat-
isfies all constraints in C.

Proof: Consider the output of CLA, say 〈v1, . . . , vm〉. Take any constraint in C, say
c, between variables xi and xj . We need to prove that 〈xi = vi, xj = vj〉 satisfies c. At
step i, CLA applied DAC to the tree rooted at xi, restricting the domain of xi. So, by
definition of DAC, vi is a value for xi such that there is a value in xj (and in any other
variable) which satisfies c. After doing that, CLA has added the constraint xi = vi to

Aggregating CP-nets with Unfeasible Outcomes 379

C. Then, at step j, CLA applied DAC again, to the tree rooted at xj , thereby reducing
the domain of xj to only those values that have support in the domains of all variables,
thus also in the domain of xi, which is now containing just the value xi. Since vj is in
the domain of xj , this means that 〈xi = vi, xj = vj〉 satisfies c. �

Theorem 7. CLA works in time O(n × (md2 + n + t)), where m is the number of
variables, d is the size of the largest domain among Di, . . . , Dm, n is the number of
agents, and t = f(n, d) is the time complexity for winner determination in the most
computational expensive of the voting rules r1, . . . , rm.

Proof: CLA performs at most m steps. At each step, it achieves DAC on a tree with
m variables with domain size at most d. This takes O(md2) time. It then reduces the
n orderings over the current variable domain to the new domains computed by DAC.
Finally, it applies the voting rule for that step to such orderings. �

It is worth noting that, in the case of just one voter, we have a single constrained CP-
net, and CLA returns a feasible outcome which is undominated in the CP-net preference
ordering. This is equivalent to what is done in [3]. However, since we consider tree-
shaped constraint sets, we can get this outcome in polynomial time. We therefore get
this useful result out of our aggregation procedure. Observe moreover that if we start
from acyclic CP-nets, an order O that makes the profile O-legal (or the conclusion that
there is no such order) can be found in time polynomial in the number of variables. It is
indeed sufficient to take the union of all dependency graphs and take any linearisation of
it, if there is one. Any such ordering would give the same result of sequential majority,
since preferential dependencies are all taken care of in the union graph.

Theorem 8. Given a constrained CP-net 〈N,C〉, whereN is acyclic and the constraint
graph of C is a tree, finding an undominated feasible outcome is in P .

Proof: By Theorem 6, the variable assignment returned by CLA is feasible, that is, it
satisfies all constraints in C.

We have just one CP-net N and a set of constraints C. Thus, every time we use a
voting rule ri, this voting rule acts as the identity, thus returning the top choice in the
preference ordering it gets in input. We will prove by induction on i that, after step i,
〈x1 = v1, . . . , xi = vi〉 is undominated by feasible outcome (in the outcome ordering
of N restricted to x1, . . . , xi) and it satisfies all constraints in C. It is trivial for step 1,
since v1 is the top choice in the restricted domain of x1, obtained after applying DAC
to the tree C rooted at x1. Assume the statement is true at step i and let us now consider
step i+1. CLA returns vi+1, which is the top element of the preference ordering in the
restricted domain of xi+1. Since 〈x1 = v1, . . . , xi = vi〉 is an undominated outcome
over variables x1, . . . , xi, and since xi+1 is the top element in the feasible domain of
xi+1, there is no other extension of 〈x1 = v1, . . . , xi = vi〉 to variable xi+1 which can
be more preferred to 〈x1 = v1, . . . , xi = vi, xi+1 = vi+1〉. �

Sequential voting with CP-nets has been studied also from the point of view of the
properties which can, or cannot, be transferred from the ”local” voting rules r1, . . . , rn
to the ”global” sequential voting rule LA [5]. It is easy to see that, if a property transfers

380 U. Grandi et al.

from local to global in the LA procedure, then it also transfers for CLA. In fact, CLA
is just LA but on possibly smaller variable domains. So we are performing a domain
restriction on the set of possible profiles. If a property is true of a sequential voting pro-
cedure when considering a larger set of profiles, it will remain true when we consider a
smaller set. This is true for properties like anonymity, consistency, strong monotonicity,
and monotonicity (of rm), as shown in [5].

If instead a property does not transfer from local to global, then by passing from
LA to CLA the same examples showing this still hold. Examples of properties that do
not transfer from local to global LA are neutrality, efficiency, and participation (see
again [5]). However, it could be that the domain restriction imposed by the constraints
removes those profiles which are problematic for that property. We plan to study specific
constraint classes that could allow some properties to transfer from local to global for
CLA, even though they do not do so for LA.

Theorem 9. If all voting rules r1, . . . , rm are anonymous (resp., consistent, strong
monotone), then so is CLA. If rm is monotone, then so is CLA. If r1, . . . , rm satisfy
neutrality (resp., efficiency, participation), it could be that CLA does not satisfy it.

Proof: It follows directly from the analogous results in [5] for LA. �

6 Conclusions

Often we need to aggregate preferences of several agents over a set of candidates which
satisfy certain requirements. Agents may express preferences over a superset of the fea-
sible candidates, with a combinatorial structure, thus being able to use compact pref-
erence modeling frameworks such as CP-nets. But the result of preference aggregation
can only be a feasible candidate.

We modeled these settings by defining constrained profiles consisting of a collection
of CP-nets and a set of constraints, and by proposing a procedure to return a feasible
candidate by interleaving constraint solving and voting. If the CP-nets are acyclic and
the constraint set has a tree shape, the procedure, called CLA, requires polynomial time
if all the voting rules work in polynomial time. Other properties, but not all, transfer
from the voting rules to the CLA procedure.

We also identified conditions on the compliance of the CP-nets to the constraints
that allow us to forget about the constraints when aggregating the preferences, and thus
using standard sequential voting to get a feasible outcome.

We plan to study several other properties of the CLA procedure, among which the
complexity of manipulation, bribery, and control. We also plan to test it experimentally
on real life profiles from the preflib.org website, where we will add some constraints.

Acknowledgements. The work of Umberto Grandi and Francesca Rossi was partially
supported by the strategic project “KIDNEY - Incorporating patients’ preferences in
kidney transplant decision protocols” funded by the University of Padova.

Aggregating CP-nets with Unfeasible Outcomes 381

References

1. Arrow, K.J., Sen, A.K., Suzumura, K.: Handbook of Social Choice and Welfare. North-
Holland, Elsevier (2002)

2. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A tool for
representing and reasoning with conditional ceteris paribus preference statements. JAIR 21,
135–191 (2004)

3. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: Preference-based con-
strained optimization with cp-nets. Computational Intelligence 20, 137–157 (2004)

4. Grandi, U., Endriss, U.: Lifting integrity constraints in binary aggregation. Artificial Intelli-
gence 200, 45–66 (2013)

5. Lang, J., Xia, L.: Sequential composition of voting rules in multi-issue domains. Mathematical
Social Sciences 57, 304–324 (2009)

6. List, C., Puppe, C.: Judgment aggregation: A survey. In: Handbook of Rational and Social
Choice. Oxford University Press (2009)

7. Maudet, N., Pini, M.S., Rossi, F., Venable, K.B.: Influence and aggregation of preferences
over combinatorial domains. In: Proc. AAMAS 2012, pp. 1313–1314 (2012)

8. Rossi, F., Beek, P.V., Walsh, T.: Handbook of Constraint Programming. Elsevier (2006)

The StockingCost Constraint

Vinasétan Ratheil Houndji, Pierre Schaus, Laurence Wolsey, and Yves Deville

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
{vinasetan.houndji,pierre.schaus,laurence.wolsey,

yves.deville}@uclouvain.be

Abstract. Many production planning problems call for the minimiza-
tion of stocking/storage costs. This paper introduces a new global con-
straint StockingCost([X1, . . . , Xn], [d1, . . . , dn],H, c) that holds when
each item Xi is produced on or before its due date di, the capacity c
of the machine is respected, and H is an upper bound on the stocking
cost. We propose a linear time algorithm to achieve bound consistency
on the StockingCost constraint. On a version of the Discrete Lot Sizing
Problem, we demonstrate experimentally the pruning and time efficiency
of our algorithm compared to other state-of-the-art approaches.

Keywords: Production Planning, Discrete Lot Sizing, Constraint Pro-
gramming, Global Constraint.

1 Introduction

Production planning problems, such as Lot Sizing and Scheduling Problems,
require one to determine a minimum cost production schedule to satisfy the
demands for single or multiple items without exceeding machine capacities while
satisfying demands. Reviews of those problems and the corresponding Mixed
Integer Programming (MIP) formulations are presented in [8,2,5,12]. In many
Lot Sizing and Scheduling problems, in particular when the planning horizon is
discrete and finite, there are stocking costs to minimize. These costs depend on
the time spent between the production of an item and its delivery (due date).

To handle such Lot Sizing Problems in Constraint Programming,
we propose an efficient bound consistency filtering algorithm for the
StockingCost([X1, . . . , Xn], [d1, . . . , dn], H, c) constraint that requires each item
Xi to be produced on or before its due date di and the capacity c of the machine
to be respected.

First, we define the StockingCost constraint and how one can achieve prun-
ing with the state-of-the-art approaches. After, we present some algorithms to
achieve Bound Consistency for the total stocking costs H and for the items
Xi, i ∈ [1..n]. Then, we propose a complete O(n) filtering algorithm to achieve
Bound Consistency for all variables. Finally, we present some experimental re-
sults on a Lot Sizing Problem and conclude.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 382–397, 2014.
c© Springer International Publishing Switzerland 2014

The StockingCost Constraint 383

2 The StockingCost Constraint

The StockingCost constraint has the following form:

StockingCost([X1, . . . , Xn], [d1, . . . , dn], H, c)

where

– the variable Xi is the date of production of item i on the machine,
– the integer di is the due-date for item i,
– the integer c is the maximum number of items the machine can produce

during one time slot (capacity),
– if an item is produced before its due date, then it must be stocked. The

variable H is an upper bound on the total number of slots all the items are
need in stock.

The StockingCost constraint holds when each item is produced before its due
date (Xi ≤ di), the capacity of the machine is respected (i.e. no more than c
variablesXi have the same value), andH is an upper bound on the total stocking
cost (

∑
i(di −Xi) ≤ H).

Definition 1. Each variable has a finite domain. We denote by Xmin
i and Hmin

(resp. Xmax
i and Hmax) the minimal (resp. maximal) value in the domain of

variable Xi and H. We also denote tmax = (maxi(X
max
i)−mini(X

min
i)).

Note that StockingCost can be viewed as a soft-constraint [13] that would
impose every item to be produced exactly at the deadline. The stocking cost vari-
able H is the violation of these deadlines. We use inequality instead of equality
(as in van-Hoeve’s definition of soft-constraints [13]) because StockingCost is
an optimization constraint with H typically minimized. Observe that it differs
from a standard inequality constraint mainly because Hmax (the value repre-
senting the current best solution) will change during the search for a solution
[13]. In particular, it implies that we can filter the domains of variables Xi with
respect to Hmax, and potentially increase Hmin with respect to Xi’s.

The objective of a filtering algorithm is to remove values that do not partici-
pate in any solution of the constraint. In this paper, we are interested in achiev-
ing bound-consistency for the StockingCost constraint. This consistency level
generally offers a good trade-off between speed and filtering power. In a bound
consistent constraint, every variable bound (maximum or minimum) occurs in a
solution of the constraint. More formally, the bound-consistency definitions for
the StockingCost constraint are:

Definition 2. Given a domain D of variables Xi and H, the constraint
StockingCost([X1, . . . , Xn], [d1, . . . , dn], H, c) is bound consistent with respect
to D iff

– BC(Xmin
i) (1 ≤ i ≤ n) Let xi = Xmin

i ; there exist xj ∈
[Xmin

j ..Xmax
j] (1 ≤ j ≤ n, i �= j) and h = Hmax such that

StockingCost([x1, . . . , xn], [d1, . . . , dn], h, c) holds

384 V.R. Houndji et al.

– BC(Xmax
i) (1 ≤ i ≤ n) Let xi = Xmax

i ; there exist xj ∈
[Xmin

j ..Xmax
j] (1 ≤ j ≤ n, i �= j) and h = Hmax such that

StockingCost([x1, . . . , xn], [d1, . . . , dn], h, c) holds
– BC(Hmin) Let h = Hmin; there exist xi ∈ [Xmin

i ..Xmax
i](1 ≤ i ≤ n) such

that StockingCost([x1, . . . , xn], [d1, . . . , dn], h, c) holds

Decomposing the Constraint

It is classical to decompose a global constraint into a conjunction of simpler
constraints, and applying the filtering algorithms available on the simpler con-
straints. This raises two questions. First, does the filtering on the decomposition
achieves bound consistency? Second, if it achieves the same filtering, what is the
complexity of this filtering?

A first decomposition of the constraint StockingCost([x1, . . . , xn],
[d1, . . . , dn], h, c) is the following:

Xi ≤ di, ∀i (1)∑
i

(Xi = t) ≤ c, ∀t (2)∑
i

(di −Xi) ≤ H (3)

Assuming that the filtering algorithms for each of the separate constraints
achieve bound consistency, the above decomposition does not achieve bound
consistency of the StockingCost constraint, as illustrated in the following
example.

Example 1. Consider the following instance StockingCost([X1 ∈ [1..2], X2 ∈
[1..2]], [d1 = 2, d2 = 2], H ∈ [0..2], c = 1). The naive decomposition is not able to
increase the lower bound on H because the computation of H gives (2−X1) +
(2 − X2) = [0..1] + [0..1] = [0..2]. The problem is that it implicitly assumes
that both items can be placed at the due date but this is not possible because
of the capacity 1 of the machine. The lower bound of H should be set to 1. It
corresponds to one item produced in period 1 and the other in period 2.

Other decompositions can be proposed to improve the filtering of the naive
decomposition.

A first improvement is to use the global cardinality constraint (gcc) to model
the capacity requirement of the machine imposing that no value should occur
more than c times. The gcc constraint can efficiently replace tmax constraints of
equation 2 in the basic decomposition. Bound consistency on the gcc constraint
can be obtained in O(n) plus the time for sorting the n variables [9]. However,
together with equation 3, they do not achieve bound consistency of StockingCost
constraint.

A second possible improvement is to use a cost based global cardinality con-
straint (cost-gcc) [10]. In the cost − gcc, the cost of the arc (Xi, v) is equal

The StockingCost Constraint 385

to +∞ if v > di and di − v otherwise. The cost − gcc provides more pruning
than equations 2 and 3 in the basic decomposition. Enforcing arc-consistency
for cost-gcc requires a time complexity of O(n · S(m,n + d, γ)) to check con-
sistency where n is the number of variables, d is the size of the domains, m is
the number arcs and S(m,n+ d, γ) is the complexity of the search for shortest
paths from a node to every node in a graph with m arcs and n+ d nodes with
a maximal cost γ [10]. For the StockingCost, there can be up to n · tmax arcs.
Hence1 the final complexity to obtain arc-consistency2 on the cost-gcc used to
model StockingCost can be up to O(t3max). To the best of our knowledge the
arc-consistent cost-gcc constraint has never been implemented in a solver. Note
that for c = 1, one can use a minimum assignment constraint with a filtering
based on reduced costs [4]. The consistency check for this constraint is achieved
in O(t3max) (time complexity needed to solve a minimum assignment problem
with the Hungarian algorithm). The advantage of the minimum assignment is
that a minimum cost assignment can be recomputed in O((tmax)

2) for one value
removal. It is not possible to clearly characterize the filtering level achieved for
the minimum assignment constraint based on reduced-costs.

Without loss of generality, in the rest of paper, we assume that Xmax
i ≤ di, ∀i.

3 Pruning the Cost Variable

Given an assignment/solution X̄ on variables X = [X1, . . . , Xn], we denote by
H(X̄) the value

∑
i(di − X̄i).

Observation 1. For two assignments X̄ and X̂ satisfying |{Xi : Xi = t}| ≤ c,
if the sorted sequences of values in these solutions are the same, then H(X̄) =
H(X̂).

Let P denote the problem of computing the optimal lower-bound for H :

Hopt(P) = min
∑
i

(di −Xi) s.t.

Xmin
i ≤ Xi ≤ Xmax

i , ∀i
|{Xi : Xi = t}| ≤ c, ∀t

Algorithm 1 computes the optimal value Hopt(P) in O(n · log(n)) and detects
infeasibility if the problem not feasible. This algorithm greedily schedules the
productions from the latest to the first one. A current time line t is decreased
and at each step, all the items such thatXmax

i = t are stored into a priority queue
(heap) to be scheduled next. Note that each item is added/removed exactly once
in the heap and the heap is popped at each iteration (line 11). The items with
largest Xmin

i must be scheduled first until no more items can be scheduled in
time t or the maximum capacity c is reached.

1 Using Fibonacci heap to implement Dijkstra algorithm for shortest path computation.
2 Without considering incremental aspects.

386 V.R. Houndji et al.

Algorithm 1. Filtering of lower bound on H - BC(Hmin)

Input: X = [X1, . . . , Xn] such that Xi ≤ di and sorted (Xmax
i > Xmax

i+1)

1 Hopt ← 0
// total minimum stocking cost

2 t ← Xmax
1

// current time slot

3 slack ← c
// current slack at this time slot

4 i ← 1
5 heap ← {}

// priority queue sorting items in decreasing Xmin
i

6 while i ≤ n do
7 while i ≤ n ∧ Xmax

i = t do
8 heap ← heap ∪ {i}
9 i ← i+ 1

10 while heap.size > 0 do
// we virtually produce unit j in t

11 j ← heap.popF irst
12 slack ← slack − 1
13 Hopt ← Hopt + (dj − t)

14 if t < Xmin
i then

15 the constraint is not feasible

16 if slack = 0 then
17 t ← t − 1
18 while i ≤ n ∧ Xmax

i = t do
19 heap ← heap ∪ {i}
20 i ← i+ 1

21 slack ← c

22 if i ≤ n then
23 t ← Xmax

i

24 Hmin ← max(Hmin,Hopt)

Let Pr denote the same problem with relaxed lower bounds of Xi:

Hopt(Pr) = min
∑
i

(di −Xi) s.t.

Xi ≤ Xmax
i , ∀i

|{Xi : Xi = t}| ≤ c, ∀t

Observation 2. If problem P is feasible (i.e. the gcc constraint is feasible), then
Hopt(P) = Hopt(Pr).

The StockingCost Constraint 387

Proof. If we use a simple queue instead of a priority queue in Algorithm 1, one
may virtually assign items to times t < Xmin

i and the feasibility test is not valid
anymore, but the algorithm terminates with the same ordered sequence of time
slots used in the final solution. By Observation 1, the objective values of optimal
solutions are the same. The complexity of the algorithm without priority queue
is O(n) instead of O(n · log(n)). ��

The greedy Algorithm 1 is able to compute the best lower bound Hopt(Pr)
(in the following we drop problem argument since optimal values are the same)
and filters the lower bound of H if possible.

4 Pruning the Item Variable

From now on, since we assume the gcc constraint is already bound-consistent
and thus feasible, only the cost argument may cause a filtering of lower-bounds
Xmin

i . Therefore, in the rest of the article, we implicitly assumed relaxed domains
[−∞..Xmax

i] ≤ di.

Definition 3. Let Hopt
Xi←v denote the optimal lower bound in a situation where

Xi is forced to take the value v ≤ Xmax
i .

Clearly, v must be removed from the domain of Xi if Hopt
Xi←v > Hmax. An

interesting question is: What is the minimum value v for Xi such that Hopt
Xi←v =

Hopt?

Definition 4. Let vopti denote the minimum value such that Hopt
Xi←v = Hopt.

We have vopti = min{v ≤ Xmax
i : Hopt

Xi←v = Hopt}.

The following observation gives a lower bound on the evolution on Hopt when
a variable Xi is forced to take a value v < vopti .

Observation 3. For v < vopti , we have Hopt
Xi←v ≥ Hopt + (vopti − v)

After the propagation of Hmin, one may still have some slack between the upper
and the lower bound Hmax −Hmin. Since vopti is the minimum value such that
Hopt

Xi←v = Hopt, we can use the lower bound of Observation 3 to filter Xi as
follows:

Xmin
i ← max(Xmin

i , vopti − (Hmax −Hmin))

In the following we show that the lower-bound of Observation 3 can be im-
proved and that we can actually predict the exact evolution of Hopt

Xi←v for an

arbitrary value v < vopti . A valuable information to this end is the number of
items scheduled at a given time slot t in an optimal solution:

Definition 5. In an optimal solution X̄ (i.e. H(X̄) = Hopt), let

count[t] = |{i : X̄i = t}|.

388 V.R. Houndji et al.

Algorithm 2 computes vopti , ∀i and count[t], ∀t in linear time O(tmax). The
first step of the algorithm is to initialize count[t] as the number of variables
with upper bound equal to t. This can be done in linear time assuming the time
horizon of size (maxi{Xmax

i } − mini{Xmin
i }) is in O(n). We can initialize an

array count of the size of the horizon and increment the entry count[Xmax
i] of

the array in O(1) for each variable Xi.
The idea of the Algorithm 2 is to use a Disjoint-Set T (also called union-

find) data structure [1] making it possible to have efficient operations for
T.Union(S1, S2), grouping two disjoint sets into a same set, and T.F ind(v)
returning a ”representative” of the set containing v. It is easy to extend a
disjoint-set data structure with operations T.min(v)/T.max(v) returning the
minimum/maximum value of the set containing value v. As detailed in the in-
variant of the algorithm, time slots are grouped into a set S such that ifXmax

i ∈ S
then vopti = minS.

Algorithm 2. Compute vopti for all i

1 Initialize count as an array such that count[t] = |{Xi : X
max
i = t}|

2 Create a disjoint set data structure T with the integers

t ∈ [mini{Xmin
i },maxi{Xmax

i }]
3 t ← maxi{Xmax

i }
4 repeat
5 while count[t] > c do
6 count[t − 1] ← count[t − 1] + count[t] − c
7 count[t] ← c
8 T.Union(t − 1, t)

// invariant: vopti = t,∀i ∈ {i : t ≤ Xmax
i ≤ T.max(T.find(t))}

9 t ← t − 1

10 until t ≤ mini{Xmin
i }

11 // if count[mini{Xmin
i] > c then the constraint is infeasible

12 ∀i : vopti = T.min(T.find(Xmax
i))

Example 2. Consider the following instance StockingCost([X1 ∈ [1..3], X2 ∈
[1..6], X3 ∈ [1..7], X4 ∈ [1..7], X5 ∈ [1..8]], [d1 = 3, d2 = 6, d3 = 7, d4 =
7, d5 = 8], H ∈ [0..4], c = 1). At the beginning of the algorithm, count =
[0, 0, 1, 0, 0, 1, 2, 1] and T = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}}. After the loop,
count = [0, 0, 1, 0, 1, 1, 1, 1] and T = {{1}, {2}, {3}, {4}, {5, 6, 7}, {8}}. Thus
voptX1

= 3, voptX2
= voptX3

= voptX4
= 5 and voptX5

= 8. Next figure shows the differ-
ent steps of the computation of T . Note that from step 3 to step 8, there is no
change since for t ∈ [1..6], count[t] always ≤ 1 in the loop.

Observation 3 gives a lower bound on the evolution of the optimal stocking
cost when assigning variable Xi to v. Unfortunately, this lower bound is not

The StockingCost Constraint 389

1

2

3

4

5

6

7

8

step 1
t = 8

1

2

3

4

5

6

7

8

step 2
t = 7

1

2

3

4

5

6

7

8

step 3
t = 6

1

2

3

4

5

6

7

8

step 4
t = 5

1

2

3

4

5

6

7

8

step 5
t = 4

1

2

3

4

5

6

7

8

step 6
t = 3

1

2

3

4

5

6

7

8

step 7
t = 2

1

2

3

4

5

6

7

8

step 8
t = 1

optimal. One can be convinced easily for instance that with c = 1, if v < vopti

is assigned Xi, it virtually imposes to move to left at least all variables Xj such
that {Xj : Xmax

j = v}. This suggests for c=1, the following improved lower

bound for Hopt
Xi←v :

Hopt
Xi←v ≥ Hopt + (vopti − v) + |{Xj : X

max
j = v}| (4)

Next example illustrates that this lower bound is still not optimal. It is not
sufficient just only consider the set {Xj : X

max
j = v} since more variables could

be impacted.

Example 3. Consider the following instance StockingCost([X1 ∈ [1..5], X2 ∈
[1..4], X3 ∈ [1..4]], [d1 = 5, d2 = 4, d3 = 4], H ∈ [0..10], c = 1) with Hopt = 1
and voptX1

= 5. For v = 4, Hopt
X1←4 ≥ Hopt + (voptX1

− v) + |{Xj : Xmax
j = v}| =

1+ (5− 4)+ 2 = 4. Here, Hopt
X1←4 is really 4. For v = 3, Hopt

X1←3 ≥ Hopt +(voptX1
−

v) + |{Xj : X
max
j = v}| = 1 + (5− 3) + 0 = 3 but here Hopt

X1←3 = 4.

Definition 6. A slot t is full if it is using all its capacity count[t] = c.

Observation 4. There is at most .nc / full time slots.

Definition 7. minfull[t] is largest time slot ≤ t which is not full. More exactly
minfull[t] = max{t′ ≤ t : count[t′] < c}.

Definition 8. maxfull[t] is the smallest time slot ≥ t which is not full. More
exactly maxfull[t] = min{t′ ≥ t : count[t′] < c}.

Next observation gives the exact evolution of Hopt
Xi←v that will allow the BC

filtering of Xmin
i .

Observation 5. Hopt
Xi←v = Hopt + (vopti − v) + (v −minfull[v]), ∀v < vopti

390 V.R. Houndji et al.

To understand the previous observation one can realize that the number of
variables affected (that would need to be shifted by one to the left) by as-
signing Xi ← v is equivalent to the impact caused by insertion of an artificial
item with the domain [−∞..v]. So, the exact impact of Xi ← v is the number
of variables affected by the move plus (v − voptXi

). The Algorithm 3 computes
minfull[t],maxfull[t], ∀t. The time complexity is thus O(tmax).

Algorithm 3. Computation of minfull [t],maxfull [t] ∀t

1 Create a disjoint set data structure F with the integers

t ∈ [mini{Xmin
i } − 1,maxi{Xmax

i }]
2 t ← maxi{Xmax

i }
3 repeat
4 if count[t] = c then
5 F.Union(t − 1, t)

6 t ← t − 1

7 until t < mini{Xmin
i }

8 ∀t : minfull(t) = F.min(F.find(t))
9 ∀t : |F.find(t)| > 1 : maxfull(t) = F.max(F.find(t)) + 1

10 ∀t : |F.find(t)| = 1 : maxfull(t) = F.max(F.find(t))

Observation 6. Hopt
Xi←t ≥ Hopt

Xi←t′∀t < t′ ≤ vopti

Observation 7. If a slot t is full (count[t] = c) then ∀i:

Hopt
Xi←t = Hopt

Xi←t′ , ∀t′ ∈ [minfull[t]..maxfull[t]) such that t′ < vopti

Proof. Suppose that a slot t is full. We know that ∀t′ ∈ [minfull[t]..maxfull[t]),
minfull[t′] = minfull[t]. Thus, ∀t′ ∈ [minfull[t]..maxfull[t]) such that t′ <
vopti , Hopt

Xi←t′ = Hopt+(vopti −t′)+(t′−minfull[t′]) = Hopt+vopti −minfull[t] =
Hopt + (vopti − t) + (t−minfull[t]) = Hopt

Xi←t. ��

The above observation is very important because if the new minimum for Xi

falls on a full time slot, we can increase the lower bound further. The bound
consistent filtering rule is given in Algorithm 4.

Algorithm 4. Bound Consistent Filtering of Xmin
i - BC(Xmin

i)

1 newmin ← vopti − (Hmax − Hmin)
2 if count[newmin] = c then

3 newmin ← min{vopti ,maxfull[newmin]}
4 Xmin

i ← max(Xmin
i , newmin))

The StockingCost Constraint 391

Example 4. Considering the following instance StockingCost([X1 ∈ [1..3], X2 ∈
[1..6], X3 ∈ [1..7], X4 ∈ [1..7], X5 ∈ [1..8]], [d1 = 3, d2 = 6, d3 = 7, d4 = 7, d5 =
8], H ∈ [0..4], c = 1). We know that voptX1

= 3, voptX2
= voptX3

= voptX4
= 5, voptX5

= 8
and count = [0, 0, 1, 0, 1, 1, 1, 1]. After running the algorithm 1 we have Hopt =
2 and thus H ∈ [2..4]. Algorithm 3 gives F = {{0}, {1}, {2, 3}, {4, 5, 6, 7, 8}},
minfull = [1, 2, 2, 4, 4, 4, 4, 4] and maxfull = [1, 2, 4, 4, 9, 9, 9, 9]. Algorithm 4
gives for:
- X1 : newmin = 3− 2 = 1. count[1] = 0 and Xmin

1 = max{1, 1} = 1 ;
- X2, X3, X4 : newmin = 5− 2 = 3. count[3] = 1, newmin = min{4, 5} = 4 and
Xmin

j∈{2,3,4} = max{1, 4} = 4. Next figure shows the evolution of Hopt
X3←t. Note

that for t ∈ [1..3], Hopt
X3←t > Hmax = 4.

0 1 2 3 4 5 6 7 8
t

1

2

3

Hmax = 4

5

6

Hopt

- X5 : newmin = 8 − 2 = 6. count[6] = 1, newmin = min{8, 9} = 8 and
Xmin

5 = max{1, 8} = 8.
Thus X1 ∈ [1..3], X2 ∈ [4..6], X3 ∈ [4..7], X4 ∈ [4..7] and X5 ∈ {8}.

5 A Complete Filtering Algorithm in O(n)

The Algorithms 2 and 3 for computing vopti , ∀i and maxfull(t), ∀t presented so
far have a complexity of O(tmax). Although for some problems tmax ≈ n, in prac-
tice it can be larger than n if there is some sparsity on the deadlines. Algorithm
5 describes a complete self-contained version of the filtering for StockingCost
running in O(n) given a sorted version of the variables. This algorithm keeps
tracks of the items in the same set (same vopt) by maintaining two indexes j, k
with the following properties:

– After line 10, items in {j, . . . , i} are the open items (Xi : X
max
i ≥ t) that

still need to be placed into some slots in an optimal solution.
– After line 10, all the items in {k, . . . , i} have the same vopt. This value vopt

is only known when all the current remaining open items can be placed into
the current slot. That is when the condition at line 13 is true.

392 V.R. Houndji et al.

Variable u keeps track of the maxfull(t) potential value with maxfull(t)
implemented as a map with constant time insertion. Only time slots t with
maxfull(t) > t are added to the map. Each time a full slot t is discovered (at
lines 19 and 26), one entry is added to the map. By observation 4 the number
of entries added into the map is at most n.

Lines 29 to 34 are just applying the filtering rules from Algorithm 4.

Implementation Details. Although the Algorithm 5 is in O(n), it requires the
variables to be sorted. Since the filtering algorithms are called multiple times
during the search process and only a few number of variables are modified be-
tween each call, simple sorting algorithms such as insertion or bubble sort are
generally more efficient than classical sorting algorithms O(n · log(n)).

The map can be a simple Hashmap but a simple implementation with two
arrays of size tmax and a magic number incremented at each call can be used
to avoid computing hash functions and the map object creation/initialization
at each call to the algorithm. One array contains the value for each key index
in the map, and the other array contains magic numbers containing the value
of the magic number at the insertion. An entry is present only if the value at
corresponding index in the magic array is equal to the current magic number.
Incrementing the magic number thus amounts at emptying the map in O(1). The
cost O(tmax) at the map creation has to be paid only once an is thus amortized.

6 Experimental Results

Experiments were conducted on instances MI −DLS−CC −SC (Multi Item -
Discrete Lot Sizing - Constant Capacity - Setup Cost) problems described in [8].

Description of the MI − DLS − CC − SC Problem

The Discrete Lot Sizing problem considered here is a multi-item, single machine
problem with capacity of production limited to one per period. There are storage
costs and sequence-dependent changeover costs, respecting the triangle inequal-
ity. Each order consisting of one unit of a particular item has a due date and
must be produced at latest by its due date. The stocking (inventory) cost of
an order is proportional to the number of periods between the due date and
the production period. The changeover cost qi,j is induced when passing from
the production of item i to another one j with qi,i = 0 ∀i. Backlogging is not
allowed. The objective is to assign a production period for each order respecting
its due date and the machine capacity constraint so as to minimize the sum of
stocking costs and changeover costs.

Next example shows a tiny instance of the problem.

Example 5. Consider the problem with the following input data: number of items
type nbItems = 2; number of periods nbPeriods = 5; stocking cost h = 2;
demand times for items of type 1 d1t∈{1,...,5} = (0, 1, 0, 0, 1) and for items of type

The StockingCost Constraint 393

Algorithm 5. Complete filtering algorithm in O(n)

Input:
X = [X1, . . . , Xn, Xn+1] such that Xi ≤ di and sorted (Xmax

i > Xmax
i+1)

Xmax
n+1 = −∞ // artificial variable

1 Hopt ← 0
2 t ← Xmax

1

3 i ← 1
4 j ← 1 // open items {j, . . . , i} must be placed in some slots

5 k ← 1 // items {k, . . . , i} have same vopt

6 u ← t+ 1
7 maxfull ← map() // a map from int to int

8 while i ≤ n ∨ j < i do
9 while i ≤ n ∧ Xmax

i = t do
10 i ← i+ 1

// place at most c items into slot t
11 for i′ ∈ [j..min(i − 1, j + c − 1)] do
12 Hopt ← Hopt + (di′ − t)

13 if i − j ≤ c then // all the open items can be placed in t
14 full ← i − j = c // true if t is fill up completely

15 voptl ← t,∀l ∈ [k..i)
16 j ← i
17 k ← i
18 if full then

// invariant ∀t′ ∈ [t..u − 1], count[t] = c
19 maxfull(t) ← u
20 if Xmax

i < t − 1 then
21 u ← Xmax

i + 1

22 else
23 u ← Xmax

i + 1

24 t ← Xmax
i

25 else // all open items can not be placed in t
// invariant ∀t′ ∈ [t..u − 1], count[t] = c

26 maxfull(t) ← u
27 j ← j + c // place c items into slot t
28 t ← t − 1

29 Hmin ← max(Hmin,Hopt)
30 for i ∈ [1..n] do

31 newmin ← vopti − (Hmax − Hmin)
32 if maxfull(t).hasKey(newmin) then
33 newmin ← min{vopti ,maxfull(newmin)}
34 Xmin

i ← max(Xmin
i , newmin))

394 V.R. Houndji et al.

2 d2t∈{1,...,5} = (1, 0, 0, 0, 1); q1,2 = 5, q2,1 = 3. A feasible solution of this problem

is productionP lan = (2, 1, 2, 0, 1) which means that item 2 will be produced in
period 1; item 1 in period 2; item 2 in period 3 and item 1 in period 5. Note that
there is no production in period 4, it is an idle period. The cost associated to this
solution is q2,1+q1,2+q2,1+2∗h = 15 but it is not the optimal cost. The optimal
solution is productionP lan = (2, 1, 0, 1, 2) with the cost q2,1 + q1,2 + h = 10.

A Constraint Programming Model

We uniquely identify each order. The aim is to associate to each of these orders
a period that respects the due date of the order. Let date(p) ∈ [1..nbPeriods],
∀p ∈ [1..nbDemands], represents the period in which the order p is satisfied. This
corresponds to period in which the order p is produced/satisfied. Let dueDate(p)
be the deadline for order p, that is the period in which p is due.

If objStorage is an upper bound on the total number of periods in which orders
have to be held in stock, the stocking part can be modeled by the constraint:

StockingCost(date, dueDate, objStorage, 1)

Observation 8. There is no difference between two orders of the same item
except for their due dates. Therefore given a feasible production schedule, if it
is possible to swap the production periods of two orders involving the same item
same item (date(p1), date(p2) such that item(p1) = item(p2)), we obtain an
identical solution with the same stocking cost..

Based on observation 8, we remove such symmetries by adding precedence con-
straints on date variables involving by the same item:

date(p1) < date(p2), ∀(p1, p2) ∈ [1..nbDemands]× [1..nbDemands] such that

dueDate(p1) < dueDate(p2) ∧ item(p1) = item(p2)

Now, the second part of the objective objChangeover concerning changeover
costs has to be introduced in the model. This part is similar to a successor
CP model for the Traveling Salesman Problem (TSP) in which the cities to be
visited represent the orders and the distances between them are the correspond-
ing changeover costs. Let successor(p), ∀p ∈ [1..nbDemands], define the order
produced on the machine immediately after producing order p. We additionally
create a dummy order nbDemands + 1 to be produced after all the other or-
ders. In the first step, a Hamiltonian circuit successor variable is imposed. This
is achieved by using the classical circuit [7] constraint on successor variables
for dynamic subtour filtering. The date and successor variables are linked with
the element constraint by imposing that the production date of p is before the
production date of its successors:

∀p ∈ [1..nbDemands] : date(p) < date(successor(p))

The StockingCost Constraint 395

As announced, the artificial production is scheduled at the end:

date(nbDemands+ 1) = nbPeriods+ 1

Note that as with date variables, some symmetries can be broken. For two
nodes n1, n2 ∈ [1..nbDemands] such that dueDate(n1) < dueDate(n2) and
item(n1) = item(n2), we force that n1 cannot be the successor of n2 with
successor(n2) �= n1. Finally, a minAsssignment constraint [3] is used on the
successor variables and the changeover part of the objective objChangeover.

The objective to minimize is simply the sum of stocking costs and changeover
costs : (objStorage ∗ h) + objChangeover, where h is the unit stocking cost.

Experimental Results

By assuming that the basic filtering date(p) ≤ dueDate(p) , ∀p ∈
[1..nbDemands] is imposed a priori, we compare the performance of the fil-
tering algorithm due to StockingCost(date, deadline, objStorage, 1) constraint
with that achieved by the following three sets of constraints:

– the basic decomposition :∑
p

(date(p) = t) ≤ 1, ∀t ∈ [1..nbPeriods]

∑
p

(dueDate(p)− date(p)) ≤ objStorage

– tmax constraints of the previous decomposition are replaced by the global
bound consistency constraint allDifferentBC [6], that is the special case
of gcc constraint when the capacity c = 1 :

allDifferentBC(date)∑
p

(dueDate(p)− date(p)) ≤ objStorage

– the global constraint minAssignment [3] on date and objStorage variables
is added to the previous decomposition.

The StockingCost filtering algorithm and the MI −DLS−CC −SC model
have been implemented in the OscaR open-source solver [11]. They will be avail-
able in OscaR from release 1.1.0. As search heuristic, we used a classical static
binary search on date and successor variables in order to reduce the impact of
the search on model comparisons. Table 1 shows the results for some randomly
generated instances of MI − DLS − CC − SC 3. We present, for each group
of constraints, the number of nodes visited and the time (in seconds) used to
complete the search.

3 Instances available at http://becool.info.ucl.ac.be/resources/
discrete-lot-sizing-problem

396 V.R. Houndji et al.

Table 1. Results for 15 MI-DLS-CC-SC instances. The format of instance is the follow-
ing: InstanceNumber(nbPeriods nbItems nbDemands). ”—” means that the model
did not complete the search after 3600 seconds.

Instance StockingCost Minassignment AllDifferent Basic decomp
Nodes Time Nodes Time Nodes Time Nodes Time

1(15 5 13) 0.36 106 26 0.41 106 36 1.25 106 87 1.25 106 99

2(15 5 14) 0.98 106 79 1.26 106 112 3.16 106 255 3.17 106 283

3(15 8 13) 1.10 106 64 2.34 106 156 8.05 106 515 8.07 106 625

4(15 10 12) 0.22 106 12 0.72 106 32 8.02 106 385 8.10 106 478

5(15 10 14) 0.32 106 16 1.41 106 79 18.7 106 1350 18.8 106 1552

6(20 5 17) 1.14 106 135 1.40 106 213 3.33 106 353 4.07 106 548

7(20 10 18) 6.90 106 534 8.02 106 805 9.68 106 906 — —

8(20 10 19) 1.32 106 95 1.34 106 120 9.68 106 616 — —

9(30 5 12) 2.87 106 124 3.00 106 223 3.00 106 127 3.00 106 188

10(30 10 11) 5.51 106 244 6.68 106 530 7.73 106 342 7.73 106 494

11(30 10 16) 2.41 106 156 4.64 106 439 — — — —

12(100 10 11) 1.49 106 60 1.50 106 271 2.30 106 110 2.30 106 153

13(100 10 18) 0.11 106 10 0.15 106 63 0.36 106 23 2.96 106 331

14(100 15 17) 2.79 106 143 6.51 106 1132 22.2 106 1305 22.3 106 1712

15(200 15 22) 19.3 106 854 — — 24.6 106 1187 24.6 106 2024

These results suggest that our StockingCost version offers a stronger and
faster filtering than other decompositions. In particular, the last four instances
suggest that the time complexity of our filtering algorithm scales better than the
minAssignment decomposition when the number of time slots increases. This is
not surprising since filtering algorithm for StockingCost is in O(nbDemands)
and not a function of the size of horizon as is the case for the minAssignment
decomposition.

7 Conclusion

In this paper, we have introduced a new global constraint StockingCost to
handle the stocking aspect of Lot Sizing Problems when using Constraint Pro-
gramming. We have described an advanced filtering algorithm achieving bound
consistency with a time complexity linear in the number of variables. The ex-
perimental results show the pruning and time efficiency of the StockingCost

constraint on a version of the Discrete Lot Sizing Problem compared to various
decompositions of the constraint.

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Data structures for Disjoint
Sets. In: Introduction to Algorithms, ch. 21, 2nd edn., MIT Press, Cambridge
(2001)

The StockingCost Constraint 397

2. Drexl, A., Kimms, A.: Lot sizing and scheduling - survey and extensions. European
Journal of Operational Research, 221–235 (1997)

3. Focacci, F., Lodi, A., Milano, M.: Cost-based domain filtering. In: Jaffar, J. (ed.)
CP 1999. LNCS, vol. 1713, pp. 189–203. Springer, Heidelberg (1999)

4. Focacci, F., Lodi, A., Milano, M., Vigo, D.: Solving tsp through the integration of
or and cp techniques. Electronic Notes in Discrete Mathematics 1, 13–25 (1999)

5. Jans, R., Degraeve, Z.: Modeling industrial lot sizing problems: A review. Interna-
tional Journal of Production Research (2006)

6. López-Ortiz, A., Quimper, C.-G., Tromp, J., van Beek, P.: A fast and simple algo-
rithm for bounds consistency of the alldifferent constraint. In: International Joint
Conference on Artificial Intelligence, IJCAI 2003 (2003)

7. Pesant, G., Gendreau, M., Potvin, J.-Y., Rousseau, J.-M.: An exact constraint logic
programming algorithm for the traveling salesman problem with time windows.
Transportation Science 32(1), 12–29 (1998)

8. Pochet, Y., Wolsey, L.: Production Planning by Mixed Integer Programming.
Springer (2005)

9. Quimper, C.-G., van Beek, P., López-Ortiz, A., Golynski, A., Sadjad, S.B.S.: An
efficient bounds consistency algorithm for the global cardinality constraint. In:
Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 600–614. Springer, Heidelberg (2003)

10. Régin, J.-C.: Cost-based arc consistency for global cardinality constraints. Con-
straints 7(3-4), 387–405 (2002)

11. OscaR Team. Oscar: Scala in or (2014), https://bitbucket.org/oscarlib/oscar
12. Ullah, H., Parveen, S.: A literature review on inventory lot sizing problems. Global

Journal of Researches in Engineering 10, 21–36 (2010)
13. van Hoeve, W.-J.: Over-constrained problems. In: Hybrid Optimization,

pp. 191–225. Springer (2011)

https://bitbucket.org/oscarlib/oscar

Scalable Parallel Numerical CSP Solver

Daisuke Ishii1, Kazuki Yoshizoe1,2 and Toyotaro Suzumura2,3

1 Tokyo Institute of Technology, Tokyo, Japan
2 Japan Science and Technology Agency, Japan

3 IBM Research, Dublin, Ireland
{dsksh,yoshizoe,suzumura}@acm.org

Abstract. We present a parallel solver for numerical constraint satis-
faction problems (NCSPs) that can scale on a number of cores. Our
proposed method runs worker solvers on the available cores and simul-
taneously the workers cooperate for the search space distribution and
balancing. In the experiments, we attained up to 119-fold speedup using
256 cores of a parallel computer.

1 Introduction

Numerical constraint satisfaction problems (NCSPs, Section 2) have been suc-
cessfully applied to problems described in the domain of reals[3,6]. Given a NCSP
with search space represented as a box (i.e., interval vector), the branch and
prune algorithm efficiently computes a paving, a set of boxes that encloses the
solution set, yet its exponential computational complexity limits the tractable
instances. Although the solving process exhibits a parallelism, no parallel NCSP
solver has been made available to date because of the difficulty in partitioning
the search space equally.

In this research, we parallelize a NCSP solver to scale its solving process on
both shared memory and distributed memory parallel computers (Section 3).
Our parallel method consists of parallel worker solvers that solve a portion of
search space on CPU cores and interact with neighbor workers via message pass-
ing for dynamic load balancing. We also propose a preprocess that accelerates
the initial search space distribution by sending sets of boxes via static routing
between the workers. We have implemented the method by extending the Re-
alpaver solver using the X10 language to realize a process-level parallelization
over a number of cores. Section 4 reports experimental results when our method
was deployed on two hardware environments.

Related Work. There have been several work regarding parallel solving of
CSPs with either discrete or continuous domains. Parallel solving of generic
CSPs on massive computer clusters and supercomputers has been explored in
[12,2,18]. This work focuses on a massive parallel solver for NCSPs that has a
different characteristics compared to generic CSPs. In the survey [7], existing
work is classified into (i) search-space splitting methods[16,12,2,5,15,18], (ii) co-
operative methods for heterogeneous solver agents (cf. portfolios)[2], and (iii)

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 398–406, 2014.
c© Springer International Publishing Switzerland 2014

Scalable Parallel Numerical CSP Solver 399

parallelization of constraint propagation. Our method belongs to the first cate-
gory. A few works have used approaches (ii)[11] and (iii)[8] for parallelization of
NCSP solving. However, to the best of our knowledge, a massive parallelization
method that uses the typical approach (i) has not yet been proposed.

Substantial work regarding the parallelization of the branch and bound algo-
rithm with search-space splitting exists [9,13,14]. This approach has also been
applied to CSP solvers [16,5] and SAT solvers [15]. This work explores an efficient
parallel method for solving NCSPs with similar approach to [9,13].

2 Numerical Constraint Satisfaction Problems

A numerical constraint satisfaction problem (NCSP) is defined as a triple (v, v0, c)
that consists of a vector of variables v = (v1, . . . , vn), an initial domain in the
form of a box v0 ∈ IRn (IR denotes the set of closed real intervals), and a con-
straint c(v) ≡ f(v) = 0 ∧ g(v) ≥ 0, where f : Rn → Re and g : Rn → Ri,
i.e., a conjunction of e equations and i inequalities. A solution of a NCSP is an
assignment of its variables v ∈ v0 that satisfies its constraints. The solution set
Σ of a NCSP is the region within its initial domain that satisfies its constraints,
i.e., Σ(v0) := {ṽ ∈ v0 | c(ṽ)}. The target of this paper is under-constrained
NCSPs such that n > e. In general, an under-constrained problem may have a
continuous set of infinitely many solutions.

Branch and Prune Algorithm. The branch and prune algorithm [17] is the
standard solving method for NCSPs. It takes a NCSP and a precision ε as an
input and outputs a set of boxes (or paving) S that approximates the solution
set with precision ε. Examples of S are illustrated in Figure 1.

An intermediate state of the algorithm is represented as a pair of sets of boxes
(L, S). The solver receives an initial state ({v0}, ∅)and iteratively applies the step
computation (illustrated in Figure 2) until it reaches a final state (∅, S). In the
step computation, first, it takes the first element of the queue L of boxes and
applies the Prune procedure, which is a filtering procedure that shaves bound-
ary portions of the considered box. In this work, we use an implementation
proposed in [6] which provides a verification process based on an interval New-
ton method combined with a relatively simple filtering process based on the Hull
consistency[1]. As a result, a box becomes either empty, precise enough (its width
is smaller than ε), verified as an inner box of the solution set Σ, or undecided.
Precise and inner boxes are appended to S and undecided boxes are passed to
Branch. Second, the Branch procedure bisects the box at the midpoint along a
component corresponding to one of the variables and the sub-boxes will be put
back in the queue. In this work, we assume Branch selects variables in an order
which makes the search to behave in a breadth-first manner and thus the solving
process gradually improves the precision of the overall pavings (Figure 1).

The computation of Prune is expensive and is the bottleneck of the solving
process. Under certain conditions, application of Prune contracts a large portion
of the search space into a tight box (cf. quadratic convergence of the interval

400 D. Ishii, K. Yoshizoe, and T. Suzumura

Fig. 1. Overlay of two solu-
tion box sets (pavings) with
ε = 0.01, 0.1

. . .

S: solution box set

Prune

L: queue of boxes
. . .

Branch
empty box

Fig. 2. A step computa-
tion of the branch and
prune algorithm

p0

p0

B&P

B&P B&P
p1

p2 p1 p3

. . .

. . .

. . .

.

.

nb boxes

Initial domain

Fig. 3. Distribution of the box
queue L in the preprocess

Newton methods). Prune can also filter out the whole box if the considered box is
verified as an inner or totally inconsistent region. These characteristics of Prune
result in the unbalanced nature of search trees. Therefore, a straightforward
parallel method does not work efficiently. It is crucial for efficient NCSP solving
to execute Prune on each step of traversing the search tree which makes it more
difficult to distribute a search path among processors. These properties will be
discussed in Section 4.1.

3 Parallel Branch and Prune

We propose a parallel method that runs several workers on the available CPU
cores p0, . . . , p#p−1 (we assume a single worker runs on a core and identify both
a worker and a core with pi). Workers homogeneously interleave the follow-
ing three procedures and cooperate in a decentralized fashion: (i) breadth-first
branch and prune search, (ii) distribution and workload balancing of search space
in a sender-initiated manner, and (iii) termination detection. Sub-trees in the
search space of the branch and prune becomes unbalanced but can be searched
independently: there are no confluence of multiple branches, and we have no
shared information between branches. Distribution of the search space among
workers is done in preprocess and postprocess as described in the following sub-
sections. The preprocess distributes the portions of the search space to the other
workers, and the postprocess balances the load of each worker during search.
Termination is detected by circulating a termination token via idling workers
based on Dijkstra’s method (see Section 11.4.4 of [9]).

Preprocess: Search-Space Splitting and Distribution. A solving process is
started by a worker p0 that possesses the initial domain (i.e., a box which contains
the whole search space) in the queue L. To distribute the subsequent search space
(i.e., a queue of boxes) equally to each core, the preprocess invokes a partition of
the queue in two (or more) and then sends a portion to another worker. Figure 3
illustrates in a downward direction some initial transitions of the box queue L dis-
tributed among three workers. In our implementation, the distribution routing is

Scalable Parallel Numerical CSP Solver 401

formed as a binary tree whose height is 0log2 #p1. In each node of the tree, the
branch and prune process runs until the number of boxes in the queue reaches nb
Next, the queue is sorted by the volume of the boxes and the half of the content
(i.e., nb/2 boxes) is sent to the other core via the right branch.

Postprocess: Dynamic Load Balancing. During search, each worker nor-
malizes the loads within a predefined neighborhood which consists of a small
number of neighbor workers. Because there are sufficiently large number of boxes,
we simply regard the number of boxes in the queue L as the amount of load. As-
sume #p workers are running and each worker pi possesses li boxes in its queue.
We also assume for each worker pi that Ni is a set of |N | neighbor workers, N−1

i

is a set of workers where pj ∈ N−1
i ⇔ pi ∈ Nj , Li is a set of loads of the neighbor

workers, and Δ is a predefined load margin. The load balancing procedure of a
worker pi performs the following steps once every ns branch and prune steps.

1. For each worker pj in N−1
i , inform the load li and put in the list Lj.

2. Calculate the mean μ of the loads in Li.
3. If μ < Δ, for each worker pj in Ni, send at most μ − lj boxes to pj (to be

efficient, a certain number of boxes should be kept locally).

Neighbor workers can be identified e.g. as adjacent nodes in the |N |-dimensional
mesh of workers. The routing between neighbor workers is fixed during a solving
process and thus it may happen that a worker possesses an excessive load than
others. However, this load imbalance will be resolved by the subsequent load
balancing processes.

4 Experimental Results

We have implemented the proposed method and measured the speedup of the
solving process of under-constrained NCSPs. The experiments were performed
with an exhaustive set of parameter combinations to explore the optimal settings.

Implementation. We have implemented the proposed method with C++ (gcc
ver. 4.4.7 and 4.3.4) and X10 (ver. 2.3.1)[4], a high productivity language for
parallel computing. In the following, we use the term place, which is a notion of
X10 that in our setting represents a CPU core. Libraries Realpaver (ver. 1.1)[10]
for sequential NCSP solving and Gaol (ver. 4.0.1)1 for basic interval computation
were used to facilitate the implementation. The Prune procedure is realized by
calling the sequential implementation in Realpaver. Each run of Prune takes
around 0.2–1ms and the overall execution becomes the bottleneck of the branch
and prune algorithm (occupies greater than 95% of running time in sequential
solving). The procedures for search space distribution and load balancing are
implemented with X10. Communication of boxes and loads between places are
implemented as async tasks and performed in parallel to the search process so

1 http://sourceforge.net/projects/gaol/

http://sourceforge.net/projects/gaol/

402 D. Ishii, K. Yoshizoe, and T. Suzumura

that the overhead will be hidden. In the experiments, timings t1 for sequential
runs on single core were measured using the C++ implementation described in
[6], which works identically and faster than our X10 version.

Experiment Environments. Two sets of experiments were operated using (1)
a shared-memory machine equipped with 40 cores (four of 10-core Intel Xeon
E7-4860 2.26GHz) and 256GB of local memory and (2) up to 256 cores of SGI
UV1000, a pseudo-shared memory machine equipped with 2,048 cores (8-core
Xeon E7-8837 2.67GHz) and 16TB of memory. UV1000 works as a single shared
memory machine by emulating memory accesses using communication based on
a high speed NUMAlink5 network which has a bandwidth of 120Gbps. We used
the MPI backend of X10 with options X10 NTHREADS = 6 and GC NPROCS = 2.

Experiments on a Shared Memory Machine. We solved the problems
shown in [6,3] using 40 cores of the machine (1). We report the results for two rep-
resentative problems. Parameters in the load balancing method were set as either
combination of the following values: nb = 32, |N | ∈ {2, 4}, ns ∈ {10, 100, 1000},
and Δ = 10. We also computed with and without the preprocess (when the pre-
process is not used, the postprocess is executed from the beginning). For each
problem, we solved two instances with two multiplicative precisions. The speci-
fication of each instance and the computational results are presented in Table 1.
In the table, the columns “problem”, “size”, “ε”, “pp”, and “|N |” represent the
name of the problem, size (i.e., the number of projection/parameter variables),
the precision, usage of the preprocess, and the number of neighbor workers, re-
spectively. The rest of the columns represents the results. t1 and #br1 represent
the running time and the number of branches on single core. tns,i and #brns,i
represent the running time and the largest number of branches performed by a
worker when computed with the interval ns and i X10 places (best timings are
underlined).Figure 4 illustrates the speedup of the solving process.

Experiments on a Cluster with High-Speed Interconnection. We solved
the problem “3rpr” using up to 256 cores of the machine (2), UV1000. Parame-
ters in the load balancing method were set as either combination of the following
values: nb = 8, |N | ∈ {2, 4}, ns = 1000, and Δ = 10. The results are presented in
Table 2. Each column of the table represents the same information as presented
in Table 1 except that the column “#sends1000,256” represents the number of
loads sent by the load balancer in the solving process with ns = 1000 and 256
X10 places. Figure 5 illustrates the speedup of the solving process.

4.1 Discussions

In the experiments, our method scaled up to 256 cores with the optimal con-
figurations. We achieved speedups up to 32.3 fold using 40 cores of the shared
memory machine and up to 119 fold using 256 cores of the cluster machine.

The best speedup of 119 fold was obtained with the preprocess. The prepro-
cess facilitates and accelerates the workload distribution in the early stage of

Scalable Parallel Numerical CSP Solver 403

Table 1. Experimental result on the shared memory machine

problem size ε pp |N | t1 t10,40 t100,40 t1000,40 #br1
#br1

#br100,40

4D sphere 2+4 0.02 yes 2 254 9.52 7.94 10.1 238 319 37.0
and plane 4 11.0 8.73 9.45 37.6
(sp2-4) no 2 9.34 8.13 16.5 35.4

4 10.8 8.67 10.5 37.3
0.01 yes 2 721 38.6 22.8 23.9 669 601 38.0

4 38.1 25.1 24.0 38.7
no 2 35.7 22.7 30.0 37.6

4 36.8 24.7 24.7 38.7

3-RPR robot 3+3 0.2 yes 2 1 100 199 73.9 34.1 1 936 939 33.7
(3rpr) 4 296 68.5 36.4 38.0

no 2 185 64.0 34.0 33.5
4 244 58.3 36.1 38.0

0.1 yes 2 4 080 1 010 714 282 7 186 845 30.2
4 2 820 1 070 257 36.0

no 2 971 678 244 28.5
4 2 630 901 231 36.0

Table 2. Experimental result on the UV1000 cluster

problem size ε pp |N | t1 t1000,32 t1000,256
#br1

#br1000,256
#sends1000,256

3-RPR robot 3+3 0.2 yes 2 850 37.4 14.0 131 18 648
(3rpr) 4 54.6 33.6 157 85 904

no 2 39.8 20.4 43.8 10 856
4 53.4 32.0 123 66 212

0.1 yes 2 3 040 341 25.6 192 39 608
4 371 87.8 176 128 084

no 2 325 54.7 105 34 892
4 339 52.1 184 129 512

the search process. In some of the experiments without using the preprocess,
the speedup ratio became saturated when using many cores (e.g., sp2-4 with
ns = 1000 and the experiments on the cluster). This was because the load bal-
ancing process was too infrequent for the given number of workers and the work
load diffusion became too slow. When comparing the right-hand graphs for the
instance sp2-4, ns = 1000, in Figure 4, we can notice that the point of saturation
shifts according to the search space size. On the other hand, in some other ex-
periments, the results got worse with the preprocess (e.g., results with ns = 10
on the machine (1)). It occasionally happens that the preprocess mostly solves
the problem. However, the preprocess can result in highly unbalanced search
trees because of the Prune process, and in such cases the postprocess will not
have enough time for load balancing.

Regarding the neighborhood sizes |N | = 2, 4, there was a trade off between
the workloads balance and the amount of communications required. For the

404 D. Ishii, K. Yoshizoe, and T. Suzumura

ns�10, �N��2 ns�10, �N��4 ns�100, �N��2 ns�100, �N��4

ns�1000, �N��2 ns�1000, �N��4

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

32.0

10 20 30 40
0

10

20

30

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

31.2

10 20 30 40
0

10

20

30

(a) sp2-4, ε = 0.02.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
31.7

10 20 30 40
0

10

20

30

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�
31.8

10 20 30 40
0

10

20

30

(b) sp2-4, ε = 0.01.

�
�

�
�

� �
�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
32.2

10 20 30 40
0

10

20

30

�
�

�
�

� �

�
�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
32.3

10 20 30 40
0

10

20

30

(c) 3rpr, ε = 0.2.

� �
� �

� �
� �� �

�
�

� �
� �

�
�

�

�

�
�

�

� 15.8

10 20 30 40
0

10

20

30

� �
� �

� �
� �� �

� �

� �

�
�

�
�

�

�

�
�

�

� 17.7

10 20 30 40
0

10

20

30

(d) 3rpr, ε = 0.1.

Fig. 4. Speedups on the shared memory machine with 40 cores. Left- and right-hand
side graphs correspond to computations with and without the preprocess, respectively.

Scalable Parallel Numerical CSP Solver 405

pp�yes, �N��2 pp�yes, �N��4 pp�no, �N��2 pp�no, �N��4

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

65.1

50 100 150 200 250
0

10

20

30

40

50

60

(a) 3rpr, ε = 0.2.

�

�

�

� �

�

�

�

�
�

�
�

�

�

�

�
�

� �

�

119

50 100 150 200 250
0

20

40

60

80

100

120

(b) 3rpr , ε = 0.1.

Fig. 5. Speedups using 256 cores of UV1000

shared memory machine, it was unclear which size had the advantage. How-
ever, for UV1000, the solver was notably slower for |N | = 4 than |N | = 2. It is
understandable because larger number of neighbors significantly increased the
number of communications (see “#sends1000,256” in Table 2) and communica-
tions between places were much more costly compared to normal shared memory
machines despite the high speed network of UV1000.

Three intervals ns = 10, 100, 1000 were used for load balancing which deter-
mined the speed of workload distribution. When the distribution was too slow,
the speedup ratio did not scale well (e.g., 3rpr, ε = 0.2, with ns = 1000 on the
machine (1)). Conversely, small intervals required greater amount of communi-
cations and therefore we used ns = 1000 to draw better performance on the
cluster where communications were more costly.

There was a large overhead caused by the workers sending a large number of
boxes for load balancing when the number of workers was not sufficient against
the problem size. Speedups for 3rpr, ε = 0.1, using 40 workers or less shows an
example of such overheads (Figure 4(d)). Resolving this overhead by suppressing
redundant box sends is a part of the future work.

5 Conclusions

In this paper, we proposed a parallel branch and prune algorithm, based on,
non-portfolio, search-space splitting approach. In the experiments, using 256
X10 places (i.e., cores), we achieved speedup factors of as much as 119. We
expect that our parallelized solver will be applied to large practical problems,
e.g., the robotics problems in [3].

Acknowledgments. This work was partially funded by JSPS (KAKENHI
25880008 and 25700038). Computing resources for the experiments in this pa-
per were provided by Prof. Kazunori Ueda (Waseda University, Tokyo) and a
Compute Canada RAC award, for environments (1) and (2), respectively.

406 D. Ishii, K. Yoshizoe, and T. Suzumura

References

1. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.F.: Revising Hull and Box
Consistency. In: Proc. of ICLP, pp. 230–244 (1999)

2. Bordeaux, L., Hamadi, Y., Samulowitz, H.: Experiments with Massively Parallel
Constraint Solving. In: Proc. of IJCAI, pp. 443–448 (2006)

3. Caro, S., Chablat, D., Goldsztejn, A., Ishii, D., Jermann, C.: A branch and prune
algorithm for the computation of generalized aspects of parallel robots. Artificial
Intelligence 211, 34–50 (2014)

4. Charles, P., Grothoff, C., Saraswat, V.: X10: an object-oriented approach to non-
uniform cluster computing. In: Proc. of OOPSLA, pp. 519–538 (2005)

5. Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in
parallel constraint programming. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732,
pp. 226–241. Springer, Heidelberg (2009)

6. Ishii, D., Goldsztejn, A., Jermann, C.: Interval-based projection method for under-
constrained numerical systems. Constraints Journal 17(4), 432–460 (2012)

7. Gent, I.P., Jefferson, C., Miguel, I., Moore, N.C.A., Nightingale, P., Prosser, P.,
Unsworth, C.: A Preliminary Review of Literature on Parallel Constraint Solving.
In: Proc. of Workshop on Parallel Methods for Constraint Solving, pp. 7–19 (2011)

8. Goldsztejn, A., Goualard, F.: Box consistency through adaptive shaving. In: Proc.
of SAC, pp. 2049–2054 (2010)

9. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Comput-
ing. Addison Wesley (2003)

10. Granvilliers, L., Benhamou, F.: Algorithm 852: RealPaver: an interval solver us-
ing constraint satisfaction techniques. ACM Transactions on Mathematical Soft-
ware 32(1), 138–156 (2006)

11. Granvilliers, L., Hains, G.: A conservative scheme for parallel interval narrowing.
Information Processing Letters 74(3-4), 141–146 (2000)

12. Jaffar, J., Santosa, A., Yap, R., Zhu, K.: Scalable distributed depth-first search
with greedy work stealing. In: Proc. of ICTAI, pp. 98–103 (2004)

13. Lüling, R., Monien, B., Reinefeld, A., Tschöke, S.: Mapping Tree-Structured
Combinatorial Optimization Problems onto Parallel Computers. In: Ferreira, A.,
Pardalos, P. (eds.) SCOOP 1995. LNCS, vol. 1054, pp. 115–144. Springer, Heidel-
berg (1996)

14. Otten, L., Dechter, R.: Towards Parallel Search for Optimization in Graphical
Models. In: Proc. of ISAIM (2010)

15. Schubert, T., Lewis, M., Becker, B.: PaMiraXT: Parallel SAT Solving with Threads
and Message Passing. JSAT 6, 203–222 (2009)

16. Schulte, C.: Parallel search made simple. In: Proc. of TRICS, pp. 41–57 (2000)
17. Van Hentenryck, P., McAllester, D., Kapur, D.: Solving Polynomial Systems

Using a Branch and Prune Approach. SIAM Journal on Numerical Analysis 34(2),
797–827 (1997)

18. Xie, F., Davenport, A.: Massively Parallel Constraint Programming for Supercom-
puters: Challenges and Initial Results. In: Lodi, A., Milano, M., Toth, P. (eds.)
CPAIOR 2010. LNCS, vol. 6140, pp. 334–338. Springer, Heidelberg (2010)

Tree-Decompositions with Connected Clusters
for Solving Constraint Networks�

Philippe Jégou and Cyril Terrioux

Aix-Marseille Université, LSIS UMR 7296
13397 Marseille, France

{philippe.jegou,cyril.terrioux}@lsis.org

Abstract. From a theoretical viewpoint, the (tree-)decomposition methods offer
a good approach for solving Constraint Satisfaction Problems (CSPs) when their
(tree)-width is small. In this case, they have often shown their practical interest.
So, the literature (coming from Mathematics or AI) has concentrated its efforts
on the minimization of a single parameter, the tree-width. Nevertheless, experi-
mental studies have shown that this parameter is not always the most relevant to
consider for solving CSPs. In this paper, we experimentally show that the decom-
position algorithms of the state of the art produce clusters (a tree-decomposition
is a tree of clusters) having several connected components. Then we highlight that
such clusters create a real problem for the efficiency of solving methods. To avoid
this kind of problem, we consider here a new kind of graph decomposition called
Bag-Connected Tree-Decomposition, which considers only tree-decompositions
such that each cluster is connected. We propose a first polynomial time algorithm
to find such decompositions. Finally, we show experimentally that using these
bag-connected tree-decompositions improves significantly the solving of CSPs
by decomposition methods.

1 Introduction

Constraint Satisfaction Problems (CSPs, see [1] for a state of the art) provide an efficient
way of formulating problems in computer science, especially in Artificial Intelligence.

Formally, a constraint satisfaction problem is a triple (X,D,C), where X = {x1,
. . . , xn} is a set of n variables, D = (Dx1 , . . . , Dxn) is a list of finite domains of
values, one per variable, and C = {C1, . . . , Ce} is a finite set of e constraints. Each
constraint Ci is a pair (S(Ci), R(Ci)), where S(Ci) = {xi1 , . . . , xik} ⊆ X is the
scope of Ci, and R(Ci) ⊆ Dxi1

× · · · ×Dxik
is its compatibility relation. The arity of

Ci is |S(Ci)|. A CSP is called binary if all constraints are of arity 2. The structure of a
constraint network is represented by a hypergraph (which is a graph in the binary case),
called the constraint (hyper)graph, whose vertices correspond to variables and edges to
the constraint scopes. In this paper, for sake of simplicity, we only deal with the case
of binary CSPs but this work can easily be extended to non-binary CSP by exploiting
the 2-section [2] of the constraint hypergraph (also called primal graph), as it will be

� This work was supported by the French National Research Agency under grant TUPLES
(ANR-2010-BLAN-0210).

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 407–423, 2014.
c© Springer International Publishing Switzerland 2014

408 P. Jégou and C. Terrioux

done for our experiments since we will consider binary and non-binary CSPs. More-
over, without loss of generality, we assume that the network is connected. To simplify
the notations, in the sequel, we denote the graph (X, {S(C1), . . . S(Ce)}) by (X,C).
An assignment on a subset of X is said to be consistent if it does not violate any con-
straint. Determining whether a CSP has a solution (i.e. a consistent assignment on all
the variables) is known to be NP-complete. So, many works have been realized to make
the solving of instances more efficient in practice, by using optimized backtracking
algorithms which may exploit heuristics, constraint learning, non-chronological back-
tracking, filtering techniques based on constraint propagation, etc. The time complexity
of these backtracking methods is naturally exponential, at least in O(e.dn) with n the
number of variables, d the maximum size of domains and e the number of constraints.

Another way is related to the study of tractable classes defined by properties of con-
straint networks. E.g., it has been shown that if the structure of this network is acyclic, it
can be solved in linear time [3]. Using and generalizing these theoretical results, some
methods to solve CSPs have been defined, such as Tree-Clustering [4]. This kind of
methods is based on the notion of tree-decomposition of graphs [5]. Their advantage
is related to their theoretical complexity, that is dw+1 where w is the tree-width of the
constraint graph. When this graph has nice topological properties and thus when w is
small, these methods allow to solve large instances, e.g. radio link frequency assign-
ment problems [6]. Note that in practice, the time complexity is more related to dw

++1

where w+ ≥ w is actually an approximation of the tree-width because computing an
optimal tree-decomposition (of width w) is an NP-hard problem.

However, the practical implementation of such methods, even though it often shows
its interest, has proved that the minimization of the parameter w+ is not necessarily
the most appropriate. Besides the difficulty of computing the optimal value of w+, i.e.
w, it sometimes leads to handle optimal decompositions, but whose properties are not
always adapted to a solving that would be the most efficient. This has led to propose
graph decomposition methods that make the solving of CSPs more efficient in practice,
but for which the value of w+ can even be really greater than w [7].

In this paper, we show that a reason to this lack of efficiency for solving CSPs us-
ing decomposition can be found in the nature of the decompositions for which w+ is
close to w. Indeed, minimizing w+ can lead to decompositions such that some clus-
ters have several connected components. Unfortunately, this lack of connectedness may
lead the solving method to spend large amount of efforts to solve the subproblems re-
lated to these disconnected clusters, by passing many times from a connected compo-
nent to another. To avoid this problem, we consider here a new kind of graph decompo-
sition called Bag-Connected Tree-Decomposition1 and its associated parameter called
Bag-Connected Tree-Width [8]. This parameter is equal to the minimal width over all
the tree-decompositions for which each cluster has a single connected component. So,
the Bag-Connected Tree-Width will be the minimum width for all Connected Tree-
Decompositions. The notion of Bag-Connected Tree-Width has been introduced very
recently and to date, only studied in [8] from a mathematical viewpoint. Here we ana-
lyze this concept in terms of its algorithmic properties. So, we firstly prove that its com-

1 We use the term “bag” rather than “cluster” because it is more compatible with the terminology
of Graph Theory.

Tree-Decompositions with Connected Clusters for Solving Constraint Networks 409

x2

x4

x6

x7

x5 x8

x1

x3

x3x7x8

x4x5x6

x2 x5x4x3

x1 x3x2

E3

2

1

4E

E

E

(a) (b)

Fig. 1. A constraint graph for 8 variables (a) and an optimal tree-decomposition (b)

putation is NP-hard. So, we propose a first polynomial time algorithm (in O(n(n+ e)))
in order to approximate this parameter, and the associated decompositions. The exper-
iments we present show the relevance of this parameter, since it allows to significantly
improve the solving of CSPs by decomposition.

Note that the present work is applied to tree-decompositions, but it can also be
adapted to most decompositions (e.g. [9,10]). Indeed, in most CSP solving methods
based on a decomposition approach, the decompositions are computed by algorithms
which aim to approximate at best a graphical parameter (width) without taking into ac-
count the connectedness of produced clusters, neither the solving step. So, the problems
observed here for tree-decomposition can also occur for other decompositions.

Section 2 introduces notations and the principles of tree-decomposition methods
for solving CSPs. Section 3 points to some problems due to the computing of “good”
tree-decompositions while section 4 presents the notion of bag-connected
tree-decomposition, proposing a first algorithm to achieve one. Before concluding, we
empirically show the interest of the use of this graph parameter for the practical solving
of CSPs in section 5.

2 Solving CSPs Using Graph Decomposition

Tree-Clustering (denoted TC [4]) is the reference method for solving binary CSPs by
exploiting the structure of their constraint graph. It is based on the notion of tree-
decomposition of graphs [5].

Definition 1. Given a graph G = (X,C), a tree-decomposition of G is a pair (E, T)
with T = (I, F) a tree and E = {Ei : i ∈ I} a family of subsets of X , such that
each subset (called cluster or bag in Graph Theory) Ei is a node of T and satisfies (i)
∪i∈IEi = X , (ii) for each edge {x, y} ∈ C, there exists i ∈ I with {x, y} ⊆ Ei, and
(iii) for all i, j, k ∈ I , if k is in a path from i to j in T , then Ei ∩Ej ⊆ Ek .

The width of a tree-decomposition (E, T) is equal tomaxi∈I |Ei|−1. The tree-width
w of G is the minimal width over all the tree-decompositions of G.

Figure 1(b) presents a tree whose nodes correspond to the maximal cliques of the
graph depicted in Figure 1(a). It is a possible tree-decomposition for this graph.

410 P. Jégou and C. Terrioux

So, we get E1 = {x1, x2, x3}, E2 = {x2, x3, x4, x5}, E3 = {x4, x5, x6}, and E4 =
{x3, x7, x8}. The tree-width of this graph is 3 as the maximum size of clusters is 4.

The first version of TC [4], begins by computing a tree-decomposition (using the
algorithm MCS [11]). In the second step, the clusters are solved independently, con-
sidering each cluster as a subproblem, and then, enumerating all its solutions. After
this, a global solution of the CSP, if one exists, can be found efficiently exploiting the
tree structure of the decomposition. Time and space complexities of this first version is
O(n.dw

++1) wherew++1 is the size of the largest cluster (w+1 ≤ w++1 ≤ n). Note
that this first approach has been improved to reach a space complexity in O(n.s.ds)
[12,13] where s is the size of the largest intersection (separator) between two clusters
(s ≤ w+). Unfortunately, this kind of approach which solves completely each cluster
is not efficient in practice. So, later, the Backtracking on Tree-Decomposition method
(denoted BTD) [14] has been proposed and shown to be really more efficient from a
practical viewpoint and appears in the state of the art as a reference method for this type
of approach [15]. In contrast to TC, BTD does not need to solve completely each cluster
to find a solution. A backtrack search is realized, exploiting a variable ordering induced
by a depth first traversal of the tree-decomposition. While this approach has shown
its practical interest, from a theoretical viewpoint, in the worst case, it has the same
complexities as the improved version of TC, that is O(n.dw

++1) for time complex-
ity, and O(n.s.ds) for space complexity. So, to make structural methods efficient, we
must a priori minimize the values ofw+ and swhen computing the tree-decomposition.
Unfortunately, computing an optimal tree-decomposition (i.e. a tree-decomposition of
width w) is NP-hard [16]. So, many works deal with this problem. They often exploit
an algorithmic approach related to triangulated graphs (see [17] for an introduction
to triangulated graphs). We can distinguish different classes of approaches. On the one
hand, the methods looking for optimal decompositions or their approximations have not
shown their practical interest, due to a too expensive runtime w.r.t. the weak improve-
ment of the value w+. On the other hand, the methods with no guarantee of optimality
(like ones based on heuristic triangulations) are commonly used. They run in polyno-
mial time (between O(n + e) and O(n3)), are easy to implement and their advantage
seems justified. Indeed, these heuristics appear to obtain triangulations reasonably close
to the optimum [18]. In practice, the most used methods to find tree-decompositions are
based on MCS [11] and Min-Fill [19] which give good approximations of w+. More-
over, in [7], experiments have shown that the efficiency for solving CSPs is not only
related to the value of w+, but also to the value of s. Nevertheless, to our knowledge,
these studies were only focused on the values of w+ and s, not on the structure of
clusters which seems to be a more relevant parameter. This question is studied in the
next section, showing that topological properties of clusters constitute also a crucial
parameter for solving CSPs.

Before that, we recall how compute a tree-decomposition with the Min-Fill heuristic.
The first step, which corresponds to Min-Fill, is to calculate a triangulation of the graph.
For a given graph G = (X,C), a set of edges C′ will be added so that the resulting
graph G′ = (X,C ∪ C′) is triangulated. Min-Fill will order the vertices from 1 to n.
At each step, a vertex is numbered by choosing a unnumbered vertex x that minimizes
the number of edges to be added in G′ to make a clique with the set of unnumbered

Tree-Decompositions with Connected Clusters for Solving Constraint Networks 411

neighboring vertices of x. Once a vertex is numbered, it will be eliminated. After this
processing, the vertices have been numbered from 1 to n, and it is ensured that for
a given vertex x with number i, its neighboring vertices in G′ with a higher number
j > i, form a clique. The order defined by these numbers is called a perfect elimination
order. The cost of this first step is O(n3). The second step is to compute the maximal
cliques of G′. Since G′ is triangulated and we have a perfect elimination order, it can
be achieved in linear time, i.e. in O(n+e′) where e′ = |C ∪C′| [20,17]. Each maximal
clique corresponds to a cluster of the associated tree decomposition. The third step
computes the tree structure of the decomposition. Several approaches exist. A simple
way consists in computing a maximum spanning tree (the constraint graph is assumed to
be connected) of a graph whose vertices correspond to the maximal cliques (i.e. clusters
Ei), and edges link two maximal cliques sharing at least one vertex and are labeled with
the size of these intersections. This treatment can be achieved in O(n3) (e.g. by Prim’s
algorithm). Overall, the cumulative cost of these three steps is in O(n3).

3 Disconnected Clusters and Their Impact on the Efficiency of
Decomposition Methods

The study of the tree-decompositions shows they can frequently possess clusters that
have several connected components. For example, consider a cycle without chord (that
is without edge joining two non-consecutive vertices in the cycle) of n vertices (with
n ≥ 4). Any optimal tree-decomposition has exactly n−2 clusters of size 3, and among
them, n− 4 clusters have two connected components.

This phenomenon is also observed for real instances, when we consider tree-decom-
positions of good quality. For example, the well known RLFAP instance Scen-06 ap-
pearing in the CSP 2008 Competition2 is defined on 200 variables and its network admit
good tree-decompositions which can be found quite easily (e.g. Min-Fill finds one with
w+ = 20). Unfortunately, a detailed analysis of these tree-decompositions shows that
they have several disconnected clusters. More generally, it turns out that about 32% of
the 7,272 instances of the CSP 2008 Competition have a tree-decomposition with at
least one disconnected cluster when MCS or Min-Fill are used, what is generally the
case of most tree-decomposition methods for solving CSPs. Among these instances for
which MCS or Min-Fill produce tree-decompositions with disconnected clusters, we
can notably find most of the RLFAP or FAPP instances which are often exploited as
benchmarks for decomposition methods for both decision and optimization problems.
Moreover, sometimes, the percentage of disconnected clusters in one instance may be
very large up to 99% and about 35% in average. For the FAPP instances, the average is
about 48% for tree-decompositions produced by Min-Fill, and a greater average using
MCS. This observation will be even more striking for algorithms that find decomposi-
tions with smaller widths, as suggested by the example of the cycle without chord.

The presence of disconnected clusters in the considered tree-decomposition can have
a negative impact on the practical efficiency of decomposition methods which can be
penalized by a large amount of time or memory to solve the instance. Firstly, it is well

2 See http://www.cril.univ-artois.fr/CPAI08 for more details.

http://www.cril.univ-artois.fr/CPAI08

412 P. Jégou and C. Terrioux

(a) (b)

Fig. 2. (a) Disconnected cluster in a Tree-Decomposition, (b) First pass in the loop for Bag-
Connected-TD

known that if a constraint network is not connected, this can have important conse-
quences on the effectiveness of its solving. For example, if one of its connected com-
ponents has no solution, and if the solving first addresses a connected component that
has solutions, all of them should be listed before proving the inconsistency of the whole
CSP. In the case of decomposition methods, the existence of disconnected clusters is
perhaps even more pernicious. In the case of TC, let us consider a disconnected clus-
ter. On the one hand, the phenomenon already encountered in the case of disconnected
networks may arise. But it is also possible that this cluster has solutions. All these so-
lutions will be calculated and stored before processing another cluster. Their number
can be significant as it is the product of the number of solutions of each of its con-
nected components. Note that for some benchmarks coming from the FAPP instances,
the number of connected components in one cluster can be greater than 100. However,
many local solutions of this cluster may be globally incompatible, because these con-
nected components may be linked by some constraints which appear in other clusters.
Figure 2(a) shows an example of decomposition for which two connected components
of a clusterEi are connected by a sequence of constraints that appear in the subproblem
rooted in this cluster. Thus, the overall inconsistency of local solutions of Ei can only
be detected when all these clusters have been solved, during the composition of global
solutions produced by TC in its last step. This leads TC to a large consumption of time
and memory, making this approach unrealistic in practice.

Other methods were proposed to avoid this kind of phenomenon where clusters are
initially solved independently. This is notably the case of BTD which is one of the most
effective approaches based on decompositions. Although BTD has shown its practical
interest, unfortunately, the observed phenomenon still exists, even if it will generally
be attenuated. To well understand this, we must remind that BTD solves an instance by
solving successively the subproblems rooted in every cluster of the tree-decomposition.
But unlike TC which first calculates all the solutions of a cluster, when accessing a
cluster, BTD only computes one solution. Roughly speaking, the subproblem rooted in a
cluster Ei corresponds to the subproblem involving all the variables of the descendants
of Ei in the tree-decomposition (see [14] for more details). In practice, BTD starts

Tree-Decompositions with Connected Clusters for Solving Constraint Networks 413

its backtrack search by assigning consistently the variables of the root cluster before
exploring a child cluster. When exploring a new cluster Ei, it only assigns the variables
which appear in the cluster Ei but not in its parent cluster Ep(i), that is all the variables
of the cluster Ei except the variables of the separator Ei ∩ Ep(i)

3. For instance, let us
consider the constraint graph of Figure 1 and its associated tree-decomposition. If we
assume that E1 is the root cluster, BTD first tries to assign consistently the variables
of E1. If so, it keeps on the search with one of its child clusters (i.e. E2 or E4). If
BTD chooses to explore first E2, it will have to assign consistently the variables of
E2\(E1 ∩ E2) (i.e x4 and x5).
Now and more generally, let us consider a disconnected cluster Ei. We have two cases:

– if G[Ei\(Ei ∩ Ep(i))]
4 is disconnected: BTD has to consistently assign variables

which are distributed in several connected components. If the subproblem rooted
in Ei is trivially consistent (for instance it admits a large number of solutions),
BTD will find a solution by doing at most a few backtracks and keep on the search
on the next cluster. So, in such a case, the non-connectivity of Ei does not entail
any problem. In contrast, if this subproblem has few solutions or none, we have a
significant probability that BTD passes many times from a connected component of
G[Ei\(Ei ∩ Ep(i))] to another when it solves this cluster. Roughly speaking, BTD
may have to explore all the consistent assignments of each connected component by
interleaving eventually the variables of the different connected components. Indeed,
if BTD exploits filtering techniques, the assignment of a value to a variable x of
Ei\(Ei∩Ep(i)) has mainly impact on the variables of the connected component of
G[Ei\(Ei ∩ Ep(i))] which contains x. In contrast, the filtering does not modify or
slightly the domain of any variable in another connected component. This entails
that inconsistencies are often detected later and not necessarily in Ei but in one
of its descendant cluster (as illustrated previously by Figure 2(a)). If so, BTD may
require a large amount of time or memory (due to (no)good recording) to solve
the subproblem rooted in Ei, especially if the variables have large domains. For
example, this negative phenomenon has been empirically observed on some FAPP
instances (e.g the fapp05-0350-10 instance) with a BTD version using MAC [21].

– if G[Ei\(Ei ∩ Ep(i))] is connected: it follows that Ei is a disconnected cluster
because its separator with its parent cluster is disconnected. As the variables of
this separator are already assigned, the non-connectivity of Ei does not cause any
problem.

This negative impact of disconnected clusters is compatible with empirical results
reported in the literature. We have observed that sometimes, the percentage of discon-
nected clusters for Min-Fill differs significantly from one for MCS, which may explain
some differences of efficiency observed by different authors. Indeed, even if the width
is the same, decompositions computed by Min-Fill offer best results for solving than
the ones obtained by MCS [7] and is considered as the best heuristic of the state of the
art now. Moreover, the analysis of tree-decompositions shows also that the connection

3 We assume that Ei ∩ Ep(i) = ∅ if Ei is the root cluster.
4 For any Y ⊆ X , the subgraph G[Y] of G = (X,C) induced by Y is the graph (Y,CY) where
CY = {{x, y} ∈ C|x, y ∈ Y }.

414 P. Jégou and C. Terrioux

between connected components of some clusters is frequently observed in the leaves
(clusters) of the decomposition, further increasing more the negative effects observed.
To avoid this kind of phenomenon, we study classes of tree-decompositions for which
all the clusters are connected.

4 A New Parameter for Graph Decomposition of CSPS

4.1 Bag-Connected Tree-Decomposition

The facts presented above lead us naturally to consider only tree-decompositions for
which all the clusters are connected. This concept has been recently introduced in the
context of Graph Theory [8]. It has been studied for some of its combinatorial prop-
erties. However, the algorithmic issues related to its computation have not been stud-
ied yet, neither in terms of complexity, nor to propose algorithms to find them. [8]
provides a central theorem indicating an upper bound of Bag-Connected Tree-Width5

as a function of the tree-width. We present now the notion of Bag-Connected Tree-
Decomposition, which corresponds to tree-decomposition for which each cluster Ei is
connected (i.e. the subgraph G[Ei] of G induced by Ei is a connected graph).

Definition 2. Given a graph G = (X,C), a Bag-Connected Tree-Decomposition of
G is a tree-decomposition (E, T) of G such that for all Ei ∈ E, the subgraph G[Ei] is
a connected graph. The width of a Bag-Connected Tree-Decomposition (E, T) is equal
to maxi∈I |Ei| − 1. The Bag-Connected Tree-Width wc is the minimal width over all
the bag-connected tree-decompositions of G.

Given a graph G = (X,C) of tree-width w, necessarily w ≤ wc. The central the-
orem of [8] provides an upper bound of the Bag-Connected Tree-Width as a function
of the tree-width and k which is the maximum length of its geodesic cycles6. More
precisely, we have wc ≤ w +

(
w+1
2

)
.(k.w − 1) (k = 1 if G has no cycle). Note that

wc = 0n2 1 for graphs defined by cycles of length n and without chord. Nevertheless, if
G is a triangulated graph, w = wc.

Furthermore, the fact that w ≤ wc, independently of the complexity of achieving a
Bag-Connected Tree-Decomposition, indicates that the decomposition methods based
on it, necessarily appear below Tree-Decomposition methods in the hierarchy intro-
duced in [9]. But this remark has no real interest here because our contribution mainly
concerns practical efficiency of such methods. Nevertheless, the difference between w
and wc can naturally have incidences on the efficiency of solving in practice. Indeed, if
we consider the example of the cycle of length n given in section 3 (a geodesic cycle),
optimal decompositions give w = 2 and wc = 0n2 1. But, in such a case, even if the bag-
connected tree-width is arbitrarily greater than the tree-width, applying BTD based on

5 Note that we use the term of Bag-Connected Tree-Width rather than one of Connected Tree-
Width exploited in [8] because the term of Connected Tree-Width has been introduced before
in [22] but corresponds to a quite different concept.

6 A cycle is said geodesic if for any pair of vertices x and y belonging to the cycle, the distance
between x and y in the graph is equal to the length of the shortest path between x and y in the
cycle.

Tree-Decompositions with Connected Clusters for Solving Constraint Networks 415

MAC is always as effective since as soon as the first variable is assigned, BTD detects
the inconsistency or directly finds a solution, due to the arc-consistency propagation
which will be realized along the connected paths in the clusters.

The natural question now is related to the computation of optimal Bag-Connected
Tree-Decompositions, that is Bag-Connected Tree-Decompositions of width wc. We
show that this problem, as for Tree-Decompositions, is NP-hard.

Theorem 1. Computing an optimal Bag-Connected Tree-Decomposition is NP-hard.

Proof. We propose a polynomial reduction from the problem of computing an optimal
tree-decomposition to this one. Consider a graph G = (X,C) of tree-width w, the
associated tree-decomposition of G being (E, T). Now, consider the graphG′ obtained
by adding to G an universal vertex x, that is a vertex which is connected to all the
vertices in G. Note that from (E, T), we can obtain a tree-decomposition for G′ by
adding in each cluster Ei ∈ E the vertex x. It is a bag-connected tree-decomposition
since each cluster is necessarily connected (by paths containing x) and its width is
w + 1. To show that this addition defines a reduction, it is sufficient to show that w is
the tree-width of G iff the bag-connected tree-width wc of G′ is w + 1.

(⇒) We know that at most, the width of the considered tree-decomposition of G′ is
w + 1 since this tree-decomposition is connected and its width is w + 1. Thus, wc ≤
w + 1. Assume that wc ≤ w. So, there is a bag-connected tree-decomposition of G′

of width at most w. Using this tree-decomposition of G′, we can define the same tree,
but deleting the vertex x, to obtain a tree-decomposition of G of width w − 1, which
contradicts the hypothesis.

(⇐) With the same kind of argument as before, we know that the tree-width w of G
is at most wc − 1. And by construction, it cannot be strictly less than wc − 1. So, it is
exactly wc − 1.
Moreover, achieving G′ is possible in linear time. �

We have seen that for solving CSPs, it is not necessary to find an optimal tree-
decomposition, and this is even often desirable. Also, we now propose an algorithm
which computes a bag-connected tree-decomposition in polynomial time, of course
without any guarantee about its optimality. The algorithm Bag-Connected-TD described
below finds a bag-connected tree-decomposition of a given graph G = (X,C).

4.2 Computing a Bag-Connected Tree-Decomposition

The first step of Algorithm 1 finds a first cluster, denoted E0, which is a subset of
vertices which are connected. X ′ is the set of already treated vertices. It is initialized
to E0. This first step can be done easily, using an heuristic. Then, let X1, X2, . . .Xk

be the connected components of the subgraph G[X\E0] induced by the deletion of the
vertices ofE0 inG. Each one of these sets is inserted in a queue F . For each elementXi

removed from the queueF , let Vi ⊆ X be the set of vertices inX ′ which are adjacent to
at least one vertex in Xi. Note that Vi (which can be connected or not) is a separator of
the graphG since the deletion of Vi inGmakesG disconnected (Xi being disconnected
from the rest of G). A new cluster Ei is then initialized by this set Vi. So, we consider
the subgraph of G induced by Vi and Xi, that is G[Vi ∪ Xi]. We choose a first vertex

416 P. Jégou and C. Terrioux

Algorithm 1. Bag-Connected-TD
Input: A graph G = (X,C)
Output: A set of clusters E0, . . . Em of a bag-connected tree-decomposition of G
Choose a first connected cluster E0 in G;
X ′ ← E0;
Let X1, . . . Xk be the connected components of G[X\E0];
F ← {X1, . . . Xk};
while F �= ∅ do /* find a new cluster Ei */

Remove Xi from F ;
Let Vi ⊆ X ′ be the neighborhood of Xi in G;
Ei ← Vi;
Search in G[Vi ∪ Xi] starting from Vi ∪ {x} with x ∈ Xi. Each time a new vertex x
is found, it is added to Ei. The process stops once the subgraph G[Ei] is connected;
if Vi belongs to the set of clusters already found then Delete the cluster Vi (because
Vi � Ei) X

′ ← X ′ ∪ Ei;
Let Xi1 , Xi2 , . . . Xiki

be the connected components of G[Xi\Ei];

F ← F ∪ {Xi1 , Xi2 , . . . Xiki
};

x ∈ Xi that is connected to at least one vertex of Ei (so one vertex of Vi). This vertex
is added to Ei. If G[Ei] is connected, we stop the process because we are sure that Ei

will be a new connected cluster. Otherwise, we continue, taking another vertex of Xi.
Figure 2(b) shows the computation of E1, the second cluster (after E0), at the first

pass in the loop. After the addition of vertices a, b and c, the subgraphG[V1 ∪{a, b, c}]
is not connected. If the next reached vertex is d, it is added to E1, and thus, E1 =
V1 ∪ {a, b, c, d} is a new connected cluster, breaking the search in G[V1 ∪X1].

When this process is finished, we add the vertices of Ei to X ′ and we compute
Xi1 , . . .Xiki

the connected components of the subgraph G[Xi\Ei]. Each one is then
inserted in the queue F . In the example of Figure 2(b), two connected components will
be computed, {e} and {f, g, h}. This process continues while the queue is not empty.
In the example, in the right part of the graph, the algorithm will compute 3 connected
clusters: {d, e}, {b, c, d, f} and {f, g, h}.

Note that the line 10 is only useful when the set Vi computed at line 7 is a previously
built cluster. In such a case, the cluster Vi can be removed. Indeed, as Vi � Ei, Vi
becomes useless in the tree-decomposition.

We now establish the validity of the algorithm and we evaluate its time complexity.

Theorem 2. The algorithm Bag-Connected-TD computes the clusters of a
bag-connected tree-decomposition of a graph G.

Proof. We need only to prove the lines 5-13 of the algorithm. We first prove the termi-
nation of the algorithm. At each pass through the loop, at least one vertex will be added
to the set X ′ and this vertex will not appear later in a new element of the queue because
they are defined by the connected components of G[Xi\Ei], a subgraph that contains
strictly fewer vertices than was contained in Xi. So, after a finite number of steps, the
set Xi\Ei will be an empty set, and therefore no new addition in F will be possible.

Tree-Decompositions with Connected Clusters for Solving Constraint Networks 417

We now show that the set of clusters E0, E1, . . . Em induces a bag-connected tree-
decomposition. By construction each new cluster is connected. So, we have only to
prove that they induce a tree-decomposition. We prove this by induction on the added
clusters, showing that all these added clusters will induce a tree-decomposition of the
graph G(X ′).

Initially, the first cluster E0 induces a tree-decomposition of the graph G[E0] =
G[X ′].

For the induction, our hypothesis is that the set of already added clusters E0, E1,
. . . Ei−1 induces a tree-decomposition of the graphG[E0 ∪E1 ∪ · · · ∪Ei−1]. Consider
now the addition of Ei. We show that by construction,E0, E1, . . . Ei−1 and Ei induces
a tree-decomposition of the graph G[X ′] by showing that the three conditions (i), (ii)
and (iii) of the definition of tree-decompositions are satisfied.

(i) Each new vertex added in X ′ belongs to Ei

(ii) Each new edge in G[X ′] is inside the cluster Ei.
(iii) We can consider two different cases for a vertex x ∈ Ei, knowing that for other

vertices, the property is already satisfied by the induction hypothesis:
(a) x ∈ Ei\Vi: in this case, x does not appear in another cluster thanEi and then,

the property holds.
(b) x ∈ Vi: in this case, by the induction hypothesis, the property was already

verified.

Finally, it is easy to see that if the line 10 is applied, we obtain a tree-decomposition
of the graph G[X ′]. �

Theorem 3. The time complexity of the algorithm Bag-Connected-TD is O(n(n+ e)).

Proof. The lines 1-4 are feasible in linear time, that is O(n+ e), since the cost of com-
puting the connected components of G[X\E0] is bounded by O(n + e). Nevertheless,
we can note that the line 1 can be done by a more expensive heuristic to get a more rele-
vant first cluster, but at most in O(n(n+ e)) in order not to exceed the time complexity
of the most expensive step of the algorithm. We analyze now the cost of the loop (line
5). Firstly, note that there is less than n insertions in the queue F . Now, we analyze the
cost of each treatment associated to the addition of a new cluster, and we give for each
one, its global complexity.

– Line 6: obtaining the first element Xi of F is bounded by O(n), thus globally
O(n2).

– Line 7: obtaining the neighborhood Vi ⊆ X ′ of Xi in G is bounded by O(n + e),
thus globally by O(n(n+ e)).

– Line 8: this step is feasible in O(n), thus globally O(n2).
– Line 9: the cost of the search inG[Vi∪Xi] starting with vertices of Vi and x ∈ Xi is

bounded by O(n+ e). Since the while loop runs at most n times, the global cost of
the search in these subgraphs is bounded by O(n(n+ e)). Moreover, for each new
added vertex x, the connectivity of G[Ei] is tested with an additional cost bounded
by O(n+ e). Note since such a vertex is added at most one time, globally, the cost
of this test is bounded by O(n(n+e)). So, the cost of the line 9 is globally bounded
by O(n(n+ e)).

418 P. Jégou and C. Terrioux

– Line 10: using an efficient data structure, this step can be realized in O(n), thus
globally O(n2).

– Line 11: the cost of finding the connected components of G[Xi\Ei] is bounded by
O(n+ e). So, globally, the cost of this step is O(n(n+ e)).

– Line 12: the insertion of a set Xij in F is feasible in O(n), thus globally O(n2)
since there is less than n insertions in F .

Finally, the time complexity of the algorithm Bag-Connected-TD is O(n(n+ e)). �

From a practical viewpoint, it can be assumed that the choice of the first cluster E0

can be crucial for the quality of the decomposition which is being computed. Similarly,
the choice of vertex x, selected in line 9 may be of considerable importance. For these
two choices, heuristics can of course be used. This is discussed in the next section.
However, a particular choice of these heuristics makes it possible, without any change
of the complexity, to compute optimal tree-decompositions for the case of triangulated
graphs. Assume that the first clusterE0 is a maximal clique. This can be done efficiently
using a greedy approach. Now, for the choice of the vertex x in line 9, we consider the
vertex which has the maximum number of neighbors in the set Vi. As in a triangulated
graph, all the clusters of an optimal tree-decomposition are cliques, necessarily,Vi being
a clique, x will be connected to all the vertices of Vi and thus, Ei will be a clique.
Progressively, each maximal clique will be found and the tree-decomposition will be
optimal. Line 10 will be used for the case of maximal cliques including more than one
vertex x of a new connected component. In any case, the practical interest of this type
of decomposition is based on both the efficiency of its computation, but also on the
significance which it may have for solving CSPs. This is discussed in section 5.

5 Experiments

In this section, we mainly compare the solving efficiency and the structural parameters for
BTD using tree-decompositions produced by Min-Fill with ones for BTD exploiting bag-
connected tree-decompositions.These latter are computed thanks to the Bag-Connected-
TD algorithm. Regarding the choice of the first cluster in Bag-Connected-TD, it consists
in computing greedily a maximal clique of the constraint network7. To choose the next
vertex, we have considered 6 heuristics. We present here the best ones:

– NV1: the next vertex is a vertex in the neighborhood of previously chosen vertices,
– NV2: the vertices are processed in the decreasing degree order,
– NV3: the vertices are processed according to the order they are visited by a breadth-

first traversal of the graph from the vertices of Vi,
– NV4: we choose as next vertex the vertex which has the maximum number of

neighbors in the set Vi.

The solving is achieved by BTD based on MAC, by using the dom/wdeg variable heuris-
tic [23]. We choose as root cluster the cluster Ei which maximizes the ratio ei

|Ei|−1 with
ei the number of constraints of the cluster Ei. This choice provides better results than

7 Remind that we use the 2-section for non-binary instances.

Tree-Decompositions with Connected Clusters for Solving Constraint Networks 419

 0

 200

 400

 600

 800

 1000

 1200

 700 800 900 1000 1100 1200 1300 1400

tim
e

(s
)

solved instances

Min-Fill
NV1
NV2
NV3
NV4

 0

 200

 400

 600

 800

 1000

 1200

 100 110 120 130 140 150 160

tim
e

(s
)

solved instances

Min-Fill
NV1
NV2
NV3
NV4

(a) (b)

Fig. 3. The cumulative number of solved instances for each considered tree-decomposition for
instances for which Min-Fill produces some disconnected clusters (a), for instances for which
Min-Fill produces a bag-connected tree-decomposition (b)

ones of [24]. The decomposition runtimes for Min-Fill and Bag-Connected-TD are sim-
ilar and are included in the runtime of BTD. All the implementations are written in C++.
The experimentations are performed on a linux-based PC with an Intel Pentium IV 3.2
GHz and 1 GB of memory.

5.1 Instances for Which Min-Fill Produces Some Disconnected Clusters

In this subsection, we compare the bag-connected tree-decompositions with discon-
nected ones from the viewpoint of the solving efficiency. With this aim in view, we
consider 1,597 instances (of arbitrary arity) among the 2,310 instances of the CSP 2008
Competition for which Min-Fill produces a tree-decomposition with at least one dis-
connected cluster. The excluded instances are instances which cannot be solved with-
out exceeding the time limit (namely 1,200 s) or which contain global constraints (not
implemented yet in our solver). Among the considered instances, we can notably find
instances from families rlfap, fapp, modifiedRenault, graphColoring, bqwh or travel-
lingSalesman.

Figure 3(a) presents the cumulative number of solved instances for each considered
tree-decomposition. First, we can observe that, by using any bag-connected tree-decom-
position, BTD solves more instances than by using the disconnected tree-decompositions
produced by Min-Fill. Note that this observation remains true if we use any connected
decomposition based on the non presented heuristics. The best number of solved in-
stances is reached thanks to the tree-decomposition based on the heuristic NV2 and NV3.
These decomposition allow us to solve respectively 114 and 111 additional instances
w.r.t. Min-Fill. Those based on NV1 and NV4 are close to each other. Moreover, for any
decomposition, most instances are solved in less than 60 s.

Now, in order to fairly compare the runtimes, we only consider the instances which
are solved by BTD for all the considered tree-decompositions, including Min-Fill. The
runtime for solving the 1,230 instances by using the decompositions based on Min-Fill
is 50,669 s while by using the connected decompositions based on NV1, it requires only
32,372. The connected decomposition based on NV2 is relatively close to NV1 (namely

420 P. Jégou and C. Terrioux

33,202 s). Those based on NV3 and NV4 are slightly slower (respectively 36,420 s and
36,087 s). Note that the two other heuristics (not presented here) also outperform the
Min-Fill decomposition.

If we focus on the 329 instances having a suitable structure (i.e. instances having a
ratio n/w+ greater than 2), again, we observe the same trend, namely that BTD with
bag-connected tree-decomposition performs better than BTD with Min-Fill. The best
cumulative runtime is achieved by BTD using NV1 in 5,698 s while the worst one is
obtained by BTD using Min-Fill in 13,641 s. BTD using NV2 and NV4 are close to
each other with respectively 6,137 s and 6,010 s while BTD with NV3 needs 8,483 s.

Finally, if we compare these results with ones obtained by a classical enumerative
algorithm like MAC, we can note that some instances solved by BTD with some NVi

are not solved by MAC and conversely. We also observe that MAC performs sometimes
better, sometimes worse than BTD using connected decompositions. However, globally,
they have similar results. This is explained by the fact that most of the 1,597 instances
we consider are far from having a suitable structure. In contrast, when the structure has
interesting features, BTD outperforms MAC. For instance, BTD with decomposition
based on NV3 requires 856 s for solving 10 instances over the 12 instances of rlfap-
Scens11 family while MAC only solves 8 instances in 1,595 s. Moreover, for solving
these 8 instances, BTD requires only 63 s, that is more than 25 times faster than MAC.

5.2 Instances for Which Min-Fill Produces a Bag-Connected
Tree-Decomposition

This subsection briefly deals with the behavior of BTD when solving instances for
which Min-Fill produces a bag-connected tree-decomposition. Of course, for such in-
stances, Min-Fill and our Bag-Connected-TD algorithm do not necessarily produce the
same tree-decompositions. By lack of place, we focus directly our study on the more
relevant instances (i.e. the 191 instances having a suitable structure for a decomposition
approach).

As shown in Figure 3(b), BTD using Min-Fill succeeds in solving more instances
than BTD using NV1 or NV2 (143 instances against 140) but less than BTD using NV3
and NV4 which solve respectively 144 and 157 instances. If we focus our study on the
132 instances which are solved by BTD for all the considered tree-decompositions, in-
cluding Min-Fill, BTD using NV3, NV4 or Min-Fill obtain the best cumulative runtime
(respectively in 1,283 s, 1,298 s and 1,280 s) while BTD using NV1 or NV2 are slower
(respectively 2,226 s and 2,265 s).

5.3 Comparisons of the Structural Parameters

Table 1 presents the value of the structural parameters for some instances. Not surpris-
ingly, Min-Fill produces tree-decompositions with smaller widths and larger numbers
of clusters than ones produced by Bag-Connected-TD. However, if in some cases, the
width obtained by Bag-Connected-TD is significantly larger than one provided by Min-
Fill (e.g. the width produced by NV3 for instance squares-23-23), in other cases, it
remains relatively close (even sometimes equal) to one obtained by Min-Fill. This no-
tably occurs for instance renault-mod-33 ext but also for instances for which Min-Fill

Tree-Decompositions with Connected Clusters for Solving Constraint Networks 421

Table 1. Value of the structural parameters for some instances for which Min-Fill produces some
disconnected clusters (a), for which Min-Fill produces a bag-connected tree-decomposition (b)

Instances n e
Min-Fill NV1 NV2 NV3 NV4
w+ s w+

c s w+
c s w+

c s w+
c s

(a)

2-insertions-4-3 149 541 38 34 66 54 95 14 101 66 58 57
ewddr2-10-by-5-9 50 265 16 15 22 17 21 20 26 23 45 37
renault-mod-33 ext 111 133 11 11 12 11 14 11 17 15 16 13

scen7 400 2,865 33 29 90 48 319 9 116 94 81 34
squares-23-23 1,058 1,268 45 4 45 5 45 5 235 88 45 26
fapp06-0500-1 500 3,478 221 210 286 284 286 284 314 314 313 248

js-taillard-15-100-4 225 1785 86 70 114 102 121 97 129 102 210 197

(b)

mps-red-qnet1 5,380 621 970 773 1,272 1,265 1,272 1,265 978 954 998 974
anna-9 138 493 12 12 14 14 14 14 16 15 14 13

haystacks-10 100 459 9 1 9 1 9 1 9 1 9 1
renault-mod-8 ext 111 126 11 11 11 11 12 11 13 12 11 11
qwh-15-106-9 ext 225 2324 99 99 102 102 102 102 103 103 173 168

produces a bag-connected tree-decomposition (see part (b) of Table 1). We also observe
that the quality of the width obtained thanks to Bag-Connected-TD may significantly
vary depending on the considered instances. If NV1 often presents the best width among
ones computed by Bag-Connected-TD algorithm, it is sometimes outperformed by NV3
or NV4 (e.g. for instance mps-red-qnet1).

Regarding the parameter s, the observed trends are similar to ones for the width.

6 Conclusion

In this paper, we have introduced the concept of Bag-Connected Tree-Decomposition
in the field of constraint network decomposition. After having shown the interest of this
new parameter and proposed a first polynomial time algorithm which computes Bag-
Connected Tree-Decompositions, we have experimentally demonstrated the relevance
of this approach since it allows to significantly improve the solving of CSP using de-
composition methods. Indeed, by using bag-connected tree-decompositions, BTD suc-
ceeds in solving many more instances. Moreover, the improvement of the runtime is
approximately 63% w.r.t. BTD using tree-decompositions with disconnected clusters
produced by Min-Fill. This benefit mainly comes from the connectedness of clusters
since when Min-Fill produces bag-connected tree-decompositions, the results of the
different versions of BTD are close. Finally, thanks to these bag-connected decompo-
sitions, BTD also can significantly outperform MAC for well structured instances (e.g.
for the rlfapScens11 family, BTD can be 25 times faster than MAC).

The first extension of this work is related to the study of bag-connected tree-decompo-
sitions in the more general field of Graphical Models in AI. This concerns the study of this
notion for other classes of methods as Hypertree-Decomposition, And/Or Search, Bucket
Elimination, etc. This approach is particularly justified by the fact that, even if some of
these approaches are based on other parameters (e.g. Hypertree-Decomposition), their

422 P. Jégou and C. Terrioux

efficient implementations use generally algorithms coming from Tree-Decompositions
(e.g. Min-Fill for Hypertree-Decomposition [25]). Another promising study is related
to the use of bag-connected tree-decompositions in the field of optimization and count-
ing problems. The second extension of this work is related to a theoretical study of this
new graph parameter from a mathematical viewpoint. For example, what are the funda-
mental properties of this parameter? For what classes of graphs, this parameter is easy
to compute, or is close to the tree-width? Or, are there problems which are hard when
the tree-width is bounded by a constant, and which are easy when the bag-connected
tree-width is bounded by a constant?

References

1. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier (2006)
2. Berge, C.: Graphs and Hypergraphs. Elsevier (1973)
3. Freuder, E.: A Sufficient Condition for Backtrack-Free Search. JACM 29(1), 24–32 (1982)
4. Dechter, R., Pearl, J.: Tree-Clustering for Constraint Networks. Artificial Intelligence 38,

353–366 (1989)
5. Robertson, N., Seymour, P.D.: Graph minors II: Algorithmic aspects of treewidth. Algo-

rithms 7, 309–322 (1986)
6. Cabon, C., de Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio Link Frequency Assign-

ment. Constraints 4, 79–89 (1999)
7. Jégou, P., Ndiaye, S.N., Terrioux, C.: Computing and exploiting tree-decompositions for

solving constraint networks. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 777–781.
Springer, Heidelberg (2005)

8. Müller, M.: Connected tree-width. CoRR, abs/1211.7353 (2012)
9. Gottlob, G., Leone, N., Scarcello, F.: A Comparison of Structural CSP Decomposition Meth-

ods. Artificial Intelligence 124, 243–282 (2000)
10. Gyssens, M., Jeavons, P., Cohen, D.: Decomposing constraint satisfaction problems using

database techniques. Artificial Intelligence 66, 57–89 (1994)
11. Tarjan, R., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test

acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM Journal on
Computing 13(3), 566–579 (1984)

12. Dechter, R., El Fattah, Y.: Topological Parameters for Time-Space Tradeoff. Artificial Intel-
ligence 125, 93–118 (2001)

13. Dechter, R.: Constraint processing. Morgan Kaufmann Publishers (2003)
14. Jégou, P., Terrioux, C.: Hybrid backtracking bounded by tree-decomposition of constraint

networks. Artificial Intelligence 146, 43–75 (2003)
15. Petke, J.: On the bridge between Constraint Satisfaction and Boolean Satisfiability. PhD the-

sis, University of Oxford (2012)
16. Arnborg, S., Corneil, D., Proskuroswki, A.: Complexity of finding embeddings in a k-tree.

SIAM Journal of Discrete Mathematics 8, 277–284 (1987)
17. Golumbic, M.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York

(1980)
18. Kjaerulff, U.: Triangulation of Graphs - Algorithms Giving Small Total State Space. Techni-

cal report, Judex R.R. Aalborg., Denmark (1990)
19. Rose, D.J.: A graph theoretic study of the numerical solution of sparse positive denite sys-

tems of linear equations. In: Read, R.C. (ed.) Graph Theory and Computing, pp. 183–217.
Academic Press, New York (1973)

Tree-Decompositions with Connected Clusters for Solving Constraint Networks 423

20. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by
cliques, and maximum independent set of a chordal graph. SIAM Journal on Computing 1(2),
180–187 (1972)

21. Sabin, D., Freuder, E.: Contradicting Conventional Wisdom in Constraint Satisfaction. In:
Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 125–129. Springer, Heidelberg (1994)

22. Fraigniaud, P., Nisse, N.: Connected treewidth and connected graph searching. In: Correa,
J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 479–490. Springer,
Heidelberg (2006)

23. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting
constraints. In: Proceedings of ECAI, pp. 146–150 (2004)

24. Jégou, P., Ndiaye, S.N., Terrioux, C.: An extension of complexity bounds and dynamic
heuristics for tree-decompositions of CSP. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204,
pp. 741–745. Springer, Heidelberg (2006)

25. Dermaku, A., Ganzow, T., Gottlob, G., McMahan, B.J., Musliu, N., Samer, M.: Heuristic
methods for hypertree decomposition. In: Gelbukh, A., Morales, E.F. (eds.) MICAI 2008.
LNCS (LNAI), vol. 5317, pp. 1–11. Springer, Heidelberg (2008)

CIP and MIQP Models for the Load Balancing

Nurse-to-Patient Assignment Problem

Wen-Yang Ku, Thiago Pinheiro, and J. Christopher Beck

Department of Mechanical & Industrial Engineering,
University of Toronto, Toronto, Ontario M5S 3G8, Canada

{wku,jcb}@mie.utoronto.ca, thiagopj@gmail.com

Abstract. The load balancing nurse-to-patient assignment problem re-
quires the assignment of nurses to patients to minimize the variance of
the nurses’ workload. This challenging benchmark is currently best solved
exactly with constraint programming (CP) using the spread constraint
and a problem-specific heuristic. We show that while the problem is
naturally modelled as a mixed integer quadratic programming (MIQP)
problem, the MIQP does not match the performance of CP. We then de-
velop several constraint integer programming (CIP) models that include
bounds propagation, linear relaxations, and cutting planes associated
with the quadratic, gcc, and spread global constraints. While the
quadratic and gcc techniques are known, our additions to the spread

constraint are novel. Our empirical results demonstrate that the CIP
approach substantially out-performs the MIQP model, but still lags be-
hind CP. Finally, we propose a simple problem-specific variable ordering
heuristic which greatly improves the CIP models, achieving performance
about an order of magnitude faster than CP and establishing a new state
of the art.

1 Introduction

The load balancing nurse-to-patient assignment problem assigns nurses to a hos-
pital zone (e.g., a nursery room) and to patients within the zone to minimize
the variance in the total acuity of patients across nurses. A constraint pro-
gramming approach, combining the spread constraint [1] with problem-specific
search heuristics, is currently the state of the art for solving this problem exactly
[2,3]. In this paper, we address the problem with two approaches that, to our
knowledge, have not yet been applied: mixed integer quadratic programming
(MIQP) and constraint integer programming (CIP) [4,5].

Mixed integer linear programming (MILP) techniques have been extended to
reason about convex quadratic constraints [6], allowing MIQPs to be solved by
commercial MILP solvers. Since variance minimization can be modelled as an
MIQP and underlying MILP technology has seen substantial improvement over
the past few years [7], we develop and apply an MIQP model to the problem.
The model is natural, given the direct representation of the quadratic constraints,
however we show that model performs substantially worse using CPLEX than
the existing CP model implemented in COMET.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 424–439, 2014.
c© Springer International Publishing Switzerland 2014

CIP and MIQP for Nurse-to-Patient Assignment 425

We then improve the MIQP model in two orthogonal directions. First, in
the constraint integer programming (CIP) framework, we add global constraints
that embed both inference techniques in the form of bounds propagation and
relaxation-based reasoning via constraint-specific linear relaxations and cutting
planes. These techniques are functional extensions to global constraints (beyond
filtering) that can be implemented in any solver that allows linear relaxations
and the dynamic addition of cutting planes. In particular, we augment the MIQP
to include quadratic [8], gcc, and spread global constraint. For the first
two constraints, the propagation, relaxation, and cutting plane techniques are
taken from the literature. For the spread constraint, we implement the bound
consistency algorithm due to Schaus et al. [9] and develop novel relaxation and
cutting plane techniques. Our augmented global constraints can be soundly used
in any models in which the un-augmented global constraints appear. The second
direction of improvements is to modify the default branching heuristics. Given
the structure of the nurse-to-patient assignment problem, we develop two simple,
static variable ordering heuristics that influence the default, general branching
rules of the CIP solver, SCIP [4,10].

Our empirical results show that the CIP models without problem-specific
branching heuristics significantly outperform the MIQP model in CPLEX,
achieving about a three times speed-up. However, the CP model is still more
than twice as fast. The primary benefit arises from the use of the quadratic

constraint with worse overall run-time performance from the additional inclusion
of the gcc and spread constraints.

When problem-specific branching priorities are used, all three CIP models
outperform the state-of-the-art CP model. The best model includes all three
global constraints and results in an order of magnitude improvement over CP.
Compared to the default heuristics, the problem-specific heuristics find and prove
optimal solutions with 30 to 40 times less effort in terms of both search tree size
and run-time. Subsequent analysis shows that the improved performance arises
due to the rapid improvement in both the primal (upper) bound and the dual
(lower) bound early in the search.

The paper is organized as follows. In Section 2 we present the problem and
previous results. We present the CP, MIQP, and CIP models in Section 3. Section
4 describes the global constraints used in the CIP models while Section 5 defines
the branching heuristics. Sections 6 and 7 provide computational results and
discussions. We conclude in Section 8.

2 Background

The load balancing nurse-to-patient assignment problem requires the assignment
of nurses to new-born infant patients across different zones in a hospital [11].
Each infant is hospitalized in one of the rooms, or zones, in the nursery and
requires a certain amount of care depending on the acuity of his/her condition.
The problem has two main decisions. First, each nurse has to be assigned to a
zone in which he/she will work for the entire shift. Second, each nurse has to

426 W.-Y. Ku, T. Pinheiro, and J. Christopher Beck

be assigned to a set of patients in the same zone. The objective is to minimize
the variance of the total acuity assigned to each nurse. Such an assignment will
avoid overloading the nurses, which can result in stress and poor quality of the
care.

The problem was originally modeled and solved as an MILP with a linear
objective function that minimizes the sum of the differences between the maxi-
mum and minimum assigned workload in each zone [11]. However, although the
objective function ensures the workload of each zone is evenly distributed, the
workload difference between nurses in different zones may be large.

Schaus et al. [2,3] proposed a CP model that directly minimizes the stan-
dard deviation of the nurses’ workloads using the spread constraint [1]. Results
showed significant improvements in both solution quality and computational effi-
ciency compared to the MILP model. The CP approach is able to solve problems
with two zones exactly, but not very efficiently without using an approximation
of the number of nurses assigned to each zone and further decomposition. While
the approximation and decomposition techniques solve the problem quickly, op-
timality is not guaranteed. In this paper, we are interested in exact solutions.

3 Mathematical Models

Formally, the load balancing nurse-to-patient assignment problem is defined by
a finite set of m patients, a finite set of n nurses, and a finite set of p zones. In
addition, let Pk denote the set of patients in zone k, thus {P1, . . . , Pp} forms a
partition of {1, . . . ,m}. For each patient, i, a non-negative integer, Ai, represents
his/her acuity. The mean of the nurses’ workload is therefore computed as μ =∑m

i=1Ai/n. The sum of the acuity levels of the patients assigned to a nurse
cannot exceed MaxAcuity and the total number of assigned patients cannot
exceed MaxPatients. Each patient can only be assigned to one nurse, and each
nurse can only be assigned to one zone. The objective is to minimize the variance
or, equivalently the standard deviation, of the nurses’ workload, measured as the
total acuity assigned to the nurses.

3.1 The CP Model

In the state-of-the-art exact CP model [2], the decision variables are defined as
follows:

– Ni denotes the nurse assigned to patient i.
– Wj denotes nurse j’s workload.
– σ denotes the standard deviation of the variables W1, . . . ,Wn.

The CP model is shown in Fig. 1. Constraint (2) is the spread constraint,
which relates a set of variables to their mean and standard deviation. Con-
straint (3) is a global packing constraint that governs the packing of items,
corresponding to patients with “size” equal to their acuity levels, into bins cor-
responding to the workload of each nurse. Constraint (4) is the gcc placing the

CIP and MIQP for Nurse-to-Patient Assignment 427

min σ (1)

s.t. spread({W1, . . . ,Wn}, μ, σ), (2)

multiknapsack({N1, . . . , Nm}, {A1, ..., Am}, {W1, . . . ,Wn}), (3)

cardinality({N1, . . . , Nm}, {1, . . . , n}, {1, . . . ,MaxPatients}), (4)

pairwiseDisjoint({Z1, . . . , Zp}), (5)

Wj ∈ {min{Ai}, . . . ,MaxAcuity}, j = 1, . . . , n (6)

Ni ∈ {1, . . . , n}. i = 1, . . . ,m (7)

Fig. 1. The CP model of Schaus et al. [2]

limit on each nurse in terms of number of assigned patients. Constraint (5) ex-
presses that a nurse can only work in one zone during the shift, where Zk is the
set of nurses assigned to zone k, i.e., Zk =

⋃
i∈Pk

Ni. The pairwiseDisjoint

constraint enforces pairwise empty intersections among variables representing
the set of nurses working in each zone. Constraint (6) expresses bounds on the
workload of each nurse. Since there are always more patients than nurses, each
nurse will be assigned to at least one patient and, therefore, the Wj variables
have a lower bound equal to the minimum acuity among all patients.

A customized search heuristic is an important aspect of the success of the CP
model. First, the symmetry arising from the interchangeability of the nurses is
dynamically broken during search by exploiting the equivalence among all nurses
who have not yet been assigned a patient. Second, problem-specific variable
and value ordering heuristics are implemented: the unassigned patient with the
highest acuity is selected and assigned to the nurse with the current smallest
workload.

3.2 The MIQP Model

We propose a mixed integer quadratic programming (MIQP) model for the prob-
lem that is mathematically equivalent to the CP model. In addition to μ, σ, and
the Wj variables, we define two additional decision variables as follows:

– xij is equal to 1 if patient i is assigned to nurse j.
– zjk is equal to 1 if nurse j is assigned to work in zone k.

The MIQP model is given in Fig. 2. The objective function is stated in (8).
Constraint (9) specifies the quadratic relationship between the standard devia-
tion, σ, and the workload variables,Wj . Constraint (10) ensures that each patient
is assigned to exactly one nurse. Constraint (11) ensures that each nurse is as-
signed to exactly one zone. Constraint (12) calculates the workload of each nurse
by summing over all patients. Constraint (13) ensures that the maximum num-
ber of patients assigned per nurse does not exceed the capacity of the nurse and
that a nurse is only assigned patients from his/her assigned zone. Constraint (14)
is the symmetry breaking constraint.

428 W.-Y. Ku, T. Pinheiro, and J. Christopher Beck

min σ (8)

s.t. σ ≥

√∑n
j=1(Wj − μ)2

n
, (9)

n∑
j=1

xij = 1, i = 1, . . . ,m (10)

p∑
k=1

zjk = 1, j = 1, . . . , n (11)

Wj =
m∑
i=1

xijAi, j = 1, . . . , n (12)

∑
i∈Pk

xij ≤ zjkMaxPatients, j = 1, . . . , n, k = 1, . . . , p (13)

Wj ≤ Wj+1, j = 1, . . . , n − 1 (14)

xij ∈ {0, 1}, i = 1, . . . ,m, j = 1, . . . , n (15)

zjk ∈ {0, 1}, j = 1, . . . , n, k = 1, . . . , p (16)

Wj ∈ [min{Ai},MaxAcuity]. j = 1, . . . , n (17)

Fig. 2. The MIQP model

3.3 The CIP Model

The CIP model adds global constraints to the MIQP model. To do this, we
include the Ni variable with the same meaning as in the CP model: the index
of the nurse assigned to patient i. We link Ni to xij as follows:

Ni =

n∑
j=1

xijj. i = 1, . . . ,m (18)

The global constraints added to the MIQP model to form the CIP model are
Constraints (2) and (4) from the CP model (Fig. 1). The complete CIP model
is the MIQP model in Fig. 2 plus Constraints (18), (2), and (4).

Note that there is no need for an explicit quadratic global constraint in the
CIP model. The SCIP solver used for the CIP models recognizes the quadratic
nature of Constraint (9) and automatically includes the quadratic constraint.

4 Global Constraints

Three global constraints are included in the CIP model: quadratic, spread,
and gcc. For each constraint, bounds propagation is used as the underlying
representation in the solver used, SCIP, employs an interval representation of
variable domains. As the functionality of global constraints in CIP is more gen-
eral than in CP, we discuss each constraint in this section.

CIP and MIQP for Nurse-to-Patient Assignment 429

4.1 The Quadratic Constraint

The quadratic constraint [8] is used to reason about constraints with quadratic
terms and consists of a set of n variables {W1, . . . ,Wn}, a n×n symmetric matrix
A, and n-dimensional vectors b, l and u. The representation is given as follows:

quad({W1, . . . ,Wn},A, b, l,u),
where A ∈ Qn×n, b ∈ Qn, l ∈ Qn and u ∈ Qn. The constraint ensures the
following condition:

l ≤
n∑

i=1

n∑
j=1

Ai,jWiWj +

n∑
i=1

bi ≤ u.

We use the existing quadratic constraint in SCIP [8] with its default pa-
rameter values. It implements a number of problem solving techniques including
bounds propagation, addition of linear relaxations, cutting plane generation,
problem reformulation, and primal heuristics.

4.2 The Global Cardinality Constraint

The gcc constraint consists of a set of m variables {N1, . . . , Nm}, a set of n
values {v1, . . . , vn}, and a set of n pairs of values [lj, uj], for each vj . The con-
straint is satisfied if and only if each vj is assigned at least lj times and at most
uj times to the Ni variables. The representation is given as follows:

cardinality({N1, ..., Nm}, {v1, ..., vn}, {[l1, u1], ..., [l1, un]}).
We use the bound consistency filtering algorithm due to Quimper et al. [12].

Relaxation. Linear relaxations have a central role in mixed integer program-
ming. Given an MILP, which is, in general, NP-hard, the standard relaxation
arises from ignoring the integrality constraints on the integer variables resulting
in a polytime solvable linear program (LP). The LP plays numerous roles in
search including providing a dual bound on a problem that is compared to the
current best solution to prune search sub-trees in which no improving solution
exists and in providing a basis for search heuristics.

A substantial body of work has developed linear relaxations for global con-
straints (e.g., [13,14,15]). We implement an existing relaxation based on the
MILP representation of gcc [15]. Using the notation for gcc introduced above,
if we define an additional binary variable xij = 1 if Ni = vj , an exact formulation
of gcc is presented in Fig. 3. This formulation is used by the solver to form a
linear relaxation of the gcc constraint by ignoring the integrality constraint on
xij (i.e., Constraint (22)) and replacing it with xij ∈ [0, 1].

Our CIP model already contains linear constraints that are identical to some
of those in Fig. 3. Specifically, Constraint (10), (15), and (18) in the CIP model
are identical Constraints (19), (22), and (23), respectively. As Constraint (21)
does not fix any xij variables in our problem, the only constraint we add to the
CIP model is Constraint (20).

430 W.-Y. Ku, T. Pinheiro, and J. Christopher Beck

n∑
j=1

xij = 1, i = 1, . . . ,m (19)

lj ≤
m∑
i=1

xij ≤ uj , j = 1, . . . , n (20)

xij = 0, ∀i, j /∈ Dxi (21)

xij ∈ {0, 1}, ∀i, j (22)

Ni =
n∑

j=1

vjxij . i = 1, . . . ,m (23)

Fig. 3. A MILP formulation of gcc [15]

Cutting Planes. With the importance of the linear relaxation to MILP solving,
techniques for improving it via the addition of cutting planes (i.e., implied linear
constraints) have been developed [16]. We use the cutting planes for gcc due to
Hooker [15].

For the CIP model we generate one inequality constraint using all xi variables:

n∑
i=1

pivi ≤
m∑
j=1

Nj ≤
n∑

i=1

qivi, (24)

where

pi = min
{
ui m−

i−1∑
j=1

pj −
n∑

j=i+1

lj

}
, i = 1, . . . , n (25)

qi = min
{
ui m−

n∑
j=i+1

qj −
i−1∑
j=1

lj

}
. i = n, . . . , 1. (26)

Note that pi and qi are the maximum number of times that vi can be selected
when, respectively, minimizing and maximizing the sum of the xi variables, as-
suming, without loss of generality, that the vis are ordered from smallest to
largest. Similar inequalities including subsets of the xi variables ranging in car-
dinality from 2 to m − 1 are also valid and could result in a smaller search
space. However, our preliminary results indicated that the large number of the
constraints added to the problem results in a very large model, reducing search
efficiency. Please see Hooker [15] for more details.

4.3 The Spread Constraint

The spread constraint was first proposed by Pesant [1] to achieve the balancing
of a set of values based on statistical concepts. A bound consistency algorithm
was proposed in the same paper and a simplified and extended filtering algorithm
was presented in Schaus et al. [9].

CIP and MIQP for Nurse-to-Patient Assignment 431

The spread constraint enforces a given mean μ and maximum standard de-
viation σ among a set of n variables {W1, . . . ,Wn}. It can be defined as follows:

spread({W1, . . . ,Wn}, μ, σ).

The filtering algorithm reduces the domains of the Wj variables based on μ
and σ in O(n2) time-complexity. Another algorithm filters values in the domain
of σ based on domains of the variablesWj in quadratic time [9]. Both algorithms
are implemented in the spread constraint in this paper. The complete spread

constraint also propagates from Wj and σ to μ. However, since in our problem
the total acuity load and number of nurses are fixed and known, the mean, μ, is
always fixed to a single value.

Relaxation. A simple relaxation of the spread constraint is a single linear
equality that enforces the mean among all the variables in the spread constraint.
The constraint guarantees that the sum of all variables Wj is equal to μ × n,
where n is the number of variables.

n∑
j=1

Wj = μ× n. (27)

Cutting Planes. When the objective is to minimize the standard deviation,
the quadratic objective function can be formulated as follows:

min σ =

√∑m
j=1(Wj − μ)2

n
, (28)

which can be re-written in the following form:

min ‖μ− IW ‖22 , (29)

where I ∈ Zn×n is the identity matrix, μ = μe, μ ∈ Rn and W ∈ Rn are
n-dimensional vectors.

Suppose the optimal integer solution W ∗ to the above problem satisfies the
following bound

‖μ− IW ∗‖22 < β, (30)

where β is a constant. Geometrically, Equation (30) is a hyper-ellipsoid with
center μ.

Chang & Golub [17] proposed an efficient way to compute the smallest hyper-
rectangle whose edges are parallel to the axes of the coordinate system and that
includes the hyper-ellipsoid. Let B be the smallest hyper-rectangle including a
hyper-ellipsoid of the general form ‖y −Ax‖22 ≤ β, the lower bound l and the
upper bound u can be computed as follows:

uj =
⌊√

β
∥∥∥A−T ej

∥∥∥
2
+ eTj A

−1y
⌋
,

432 W.-Y. Ku, T. Pinheiro, and J. Christopher Beck

lj =
⌈
−
√
β
∥∥∥A−Tej

∥∥∥
2
+ eTj A

−1y
⌉
.

Since in our problem, A = I and y = μ, Equation (30) is actually a hyper-
sphere with center μ with the same lower bounds and upper bounds for all the
variables. Thus, the computation of the lower bounds and the upper bounds can
be simplified as follows:

uj =
⌊√

β + μ
⌋
, (31)

lj =
⌈
−
√
β + μ

⌉
. (32)

An upper bound of the standard deviation σmax can be used to compute β
through the following relationship, based on Equation (28) and (29):

β =
√
nσ2

max. (33)

Therefore, the cutting planes Wj ≥ lj and Wj ≤ uj can be used to update
the bounds on the Wj variables. In our implementation, these constraints are
computed every time the upper bound of σ is improved. Since the constraints
are globally feasible, the global bounds of the variables are updated if the new
bounds are tighter than the current global bounds of the variables. We have
previously applied a similar approach to solving binary quadratic programming
problems within CIP [18].

We also place an initial lower bound on σ. Considering only the standard devi-
ation minimization aspect of the original problem, the resulting relaxed problem
can be defined as follows:

min σrelaxed, (34)

s.t. σrelaxed ≥

√∑n
j=1(Wj − μ)2

n
, (35)

n∑
j=1

Wj = nμ, (36)

Wj ∈ Z, j = 1, . . . , n, (37)

where the optimal objective value σrelaxed is therefore a lower bound on σ,
i.e., σ ≥ σrelaxed. The optimal solution to this relaxed problem can be obtained
trivially by assigningWjs to either 0μ1 or .μ/ that leads to the smallest standard
deviation, while satisfying Constraint (36) and (37). For example, one can start
with assigning all Wjs to 0μ/, and then assign the last 0n(|μ− 0μ/|)/ Wjs to
0μ/+ 1 if 0μ/ − μ < 0 (0μ/ − 1 if 0μ/ − μ > 0).

5 Branching Heuristics

It is well recognized in CP and MILP that the use of search heuristics can have
substantial impact on problem solving performance [19,20,10,21]. One simple

CIP and MIQP for Nurse-to-Patient Assignment 433

way to influence search without implementing new heuristics is to modify the
heuristic priority of variables. In SCIP, the branching priority of variables can
be modified, allowing problem-specific knowledge to be incorporated into the
default heuristics. Increasing the branching priority of a set of variables means
that they will be branched on earlier in the search.

We investigate two manipulations: 1) increasing the priority of the zjk vari-
ables that assign nurses to zones and 2) increasing the branching priority of both
the zjk variables and the workload variables, Wj . In both conditions, we assign
maximum priority to all corresponding variables.

Increasing zjk Priority. We choose to increase the branching priority of the
zjk variables based on the intuition that they have a significant effect on many
other variables. Pryor & Chinneck [21] have shown that to quickly find a feasible
solution in MILP, it is often desirable to branch on variables whose assignment
results in substantial change to the linear relaxation. When a zjk variable is set
to 1, Constraint (11) immediately results in the p − 1 other zik variables with
i = j being assigned to 0. Furthermore, through Constraint (13), fixing a zjk
variable to 0 leads to the assignment of m xij variables to 0. Therefore, whether
branching up or down on the zjk variables, we expect to see a substantial change
in the linear relaxation.

Increasing Wj Priority. We choose to also increase the branching priority of
the Wj variables due to their expected impact on the dual bound. A second
intuition for heuristics in a MILP is to branch to quickly increase the dual bound
(i.e., the lower bound in a minimization problem). It is often observed that a
considerable amount of the effort in solving a problem is not in finding a solution
but in proving its optimality. As the primary method for such a proof is through
pruning the sub-trees when the dual bound meets or exceeds the incumbent
solution value, it is often useful to base branching heuristics on increasing the
dual bound (e.g., [4]).

Given Constraint (9), branching on variables other than Wj will tend to lead
to relaxedWj values that are close μ, resulting in a dual bound that is close to 0.
Branching on the Wj variables, in contrast, can more quickly increase the dual
bound as the upper and lower bounds on other Wj variables must be changed
due to Constraint (27).

Our initial experiments showed that only increasing the branching priority of
the Wj variables without the zjk led to poor performance due to difficulty in
finding feasible solutions. We will return to this point in Section 7.

6 Computational Results

We compare the performance of three solvers and the following 11 solver-model-
heuristic combinations.

– The CP model (Fig. 1) is implemented in COMET. We indicate this model
by CP .

434 W.-Y. Ku, T. Pinheiro, and J. Christopher Beck

– The MIQP model (Fig. 2) is implemented in CPLEX using default parame-
ters. This model is referred to as MIQP .

– The basic CIP is declaratively identical to MIQP but, when solved using
default SCIP, incorporates the quadratic constraint. We experiment with
three models corresponding to the branching priorities: CIP (default), CIPz

(increased zjk priority), and CIPz,w (increased priority for zjk and Wj).
– The CIP model augmented to include only the constraint propagation of the

gcc and spread constraints is indicated by a superscript p (for propaga-
tion). There are, again, three models: CIP p, CIP p

z , and CIP
p
z,w correspond-

ing to the branching priorities.
– The full CIP model, indicated by superscript f includes constraint propa-

gation, relaxation, and cutting planes of the quadratic, gcc, and spread

constraints: CIP f , CIP f
z , and CIP

f
z,w .

6.1 Experimental Setup

All experiments were performed on a Intel(R) Xeon(R) CPU E5-1650 v2 3.50GHz
machine (in 64 bit mode) with 16GB memory running MAC OS X 10.9.2 with
one thread. The software is CPLEX v12.5, SCIP v3.0.2, and Comet v2.1-1. The
CPU time limit for each run on each problem instance is 7200 seconds.

6.2 Test Sets

Following the methodology of Schaus et al. [2], we generated 24 problem instances
to closely resemble the original real world instances [11]. The maximum acuity
for a nurse is set to MaxAcuity = 105 and the maximum number of patients
per nurse is MaxPatients = 3. We generate problem instances with number of
nurses, n ∈ [9, 12], number of patients, m ∈ [21, 30], and number of zones, p = 2.

6.3 Results

An overview of the results is given in Table 1. We report the arithmetic mean
CPU time “arith”, and the shifted geometric mean CPU time “geo” on the
24 instances.1 The arithmetic mean on the number nodes “Nodes” (number of
backtracks “Bts” for CP) and the optimality gap “Opt gap” are also presented.
We finally report the number of instances for which an optimal solution is found
and proved “# opt” and the number of optimal solutions found “# opt found”
without necessarily being proved.

The results of the MIQP model demonstrate that while CPLEX is able to
find feasible solutions to all problems, it can only find and prove optimality in 7
of 24 with a substantially larger run-time as compared to the CP model.

1 The shifted geometric mean time is computed as follows:
∏
(ti + s)1/n − s, where ti

is the actual CPU time, n is the number of instances, and s is chosen as 10. Using
geometric mean can decrease the influence of outliers [4].

CIP and MIQP for Nurse-to-Patient Assignment 435

Table 1. Comparison of CP, MIQP, and 9 different CIP variations. For CP, the super-
script indicates the number of instances for which no feasible solution was found. The
optimality gap “Opt gap” is computed only for the problem instances where feasible
solutions are found.

Solver Model Time to opt Nodes or Bts Opt gap (%) # opt # opt found
arith geo

COMET CP 749.87 137.10 42292088 01 23 23

CPLEX MIQP 5649.15 4247.26 9587569 31.0 7 18

CIP 1877.63 565.02 4096764 1.0 20 23
CIPp 2795.80 746.89 4683757 3.0 15 18
CIPf 2193.95 542.27 4040087 7.0 19 20
CIPz 1605.64 267.11 3694590 19.0 20 23

SCIP CIPp
z 1723.08 331.85 3221449 0 20 24

CIPf
z 1459.78 267.16 2549701 6.0 21 21

CIPz,w 100.74 32.26 210485 0 24 24
CIPp

z,w 94.49 32.29 132342 0 24 24

CIPf
z,w 74.05 27.90 130012 0 24 24

The first set of CIP models (CIP , CIP p, and CIP f) show a significant gain
compared to MIQP: more than twice as many problems solved to proved optimal-
ity with about half the number of nodes. We attribute this strong performance
to the quadratic constraint. The inclusion of constraint propagation in the
gcc and spread constraints degrades performance (CIP p vs. CIP) both in
terms of run-time and search tree size. The 15% larger search tree in particular
is interesting and deserves more study. We speculate, given results below, that
we may be observing a negative interaction between the constraint propagation
and relaxation-based MILP-style search, indicating that we cannot necessarily
expect improved performance from simply adding global constraint propagation
to a MILP-style search. Comparing CIP f to CIP shows similar run-times and
tree sizes but worse solution quality for the full model. We believe that the gains
from the global constraints are not large enough to out-weigh the increased
computation they incur.

In the second set of CIP results, with increased branching priority for the zjk
variables, we see a substantial performance improvement in all models compared
to the default heuristic. The inclusion of global constraints, whether just the
propagation or the full model, results in smaller search trees by about 13% for
CIP p

z and 30% for CIP f
z,w and better solution quality. However, the run-times

are either about the same or are actually worse than the CIPz model.
Finally, the most substantial gains arise from increasing the branching priority

of both the zjk variables and the Wj variables. About an order of magnitude
improvement is seen compared to the previous CIP models. The inclusion of
global constraint propagation and propagation plus relaxation and cutting planes
leads to clear gains with search tree sizes of almost 40% smaller than CIPz,w.
Furthermore, the three CIP models solve all problems to proved optimality from

436 W.-Y. Ku, T. Pinheiro, and J. Christopher Beck

7 to 10 times faster (in arithmetic mean) than the CP model. We believe these are
the first models of any type that have been able to improve on the performance
of the CP state of the art.

7 Discussion

Our experimental results have demonstrated that the hybridization of CP and
MIQP techniques within the framework of constraint integer programming re-
sults in a new state of the art for the load balanced nurse-to-patient assignment
problem.

Primal Bounds and Dual Bounds. Analysis of the solving behavior of the MIQP
and default CIP model points to the importance of the dual bound in achieving
strong performance. The MIQP approach using CPLEX is able to find high
quality solutions early in the search but then only improves the dual bound very
slowly, often timing-out without proving optimality. The MIQP model is able to
find the optimal solution for 18 of the 24 problems but can only prove optimality
in 7. The primary advantage of the default CIP model over MIQP appears to
be due to its rapid improvements in the dual bound.

A more complicated pattern emerges from the comparison of the full CIP
model with and without the branching heuristics (CIP f vs. CIPf

z vs. CIP f
z,w).

Fig. 4 plots the evolution of the mean primal and dual bounds over time for
the three CIP models. For each instance, the primal, p, and dual, d, gaps are
computed as follows: p = (UB(σ)− σ∗)/σ∗ and d = (LB(σ)− σ∗)/σ∗, where σ∗

is the known optimal solution cost and UB(σ) and LB(σ) respectively represent
the best upper and lower bounds at a given point in the search.

Consistent with our intuitions in Section 5, CIP f
z,w delivers tight primal and

dual bounds, though it is more clearly dominant in the latter. However, the
results of CIP f

z contradict our expectations that increasing the priority of the zjk
variables alone would lead to strong primal bounds. We see the opposite, as CIP f

z

dominates CIP f in terms of the dual bound while performing much worse on the
primal bound. Interestingly, experiments that only increasing the priority of the
Wj variables (not included here) do match our intuitions: the model performs
poorly, timing out without finding feasible solutions to 5 problem instances.
More detailed experimentation is needed to understand the reasons behind the
impact of the search heuristics and, in particular, why CIP f

z,w performs so well.

The Impact of Global Constraints. Global constraints play a primary role in
CP, forming the central object in both modeling and solving. Building on this
role and the substantial work over the past 15 years on the hybridization of
CP and MIP solving techniques [22], we are interested in exploring the concept
of a global constraint as a richer object in the search process, exploiting its
structure to do more than domain pruning [23]. Several works have shown the
success on the pursuing of this direction. For example, global constraints can
provide heuristic information [24], generate SAT clauses [25] and cutting planes

CIP and MIQP for Nurse-to-Patient Assignment 437

0 100 200 300 400 500 600 700 800 900 1000
−100

−80

−60

−40

−20

0

20

40

60

80

100

120

time (sec)

ga
p

(%
)

primal [CIPf

z,w
]

dual [CIPf
z,w

]

primal [CIPf
z
]

dual [CIPf
z
]

primal [CIPf]

dual [CIPf]

Fig. 4. Comparison of the primal and dual gaps of CIP f , CIPf
z and CIP f

z,w

[26], detect independent sub-problems [27], and decompose constraints and fix
or remove variables [28].

Though we have developed a new state-of-the-art hybrid model for the nurse-
to-patient assignment problem and demonstrated the reduction in search effort
(in both time and nodes) from the integration of constraint propagation, lin-
ear relaxation, and cutting planes within global constraints (i.e., compare CIPz

with CIP f
z and CIPz,w with CIP f

z,w), the importance of augmented global con-
straints to our results should not be overstated. Without the use of the branching
priorities on zjk andWj variables, none of the CIP models are able to match the
performance of the CP model.2 Therefore, it appears that the primary reason
for the strong performance of the new state-of-the-art is the branching priori-
ties and, at best, the interaction of the branching priorities with the augmented
global constraints. Furthermore, as the comparison of the number of nodes of
CIP and CIP p indicate, the simple addition of global constraint propagation
to a MILP-style search does not necessarily result in improved performance: a
more nuanced understanding of the interactions is needed.

8 Conclusions

In this paper, we developed a series of mixed integer quadratic programming and
constraint integer programming models for the load balanced nurse-to-patient

2 The CP model also uses a problem-specific heuristic and so we believe the direct
comparison of it with the CIP f

z,w is justified.

438 W.-Y. Ku, T. Pinheiro, and J. Christopher Beck

assignment problem. This problem has been addressed with mixed integer linear
programming and constraint programming, with the latter representing the state
of the art.

Our approach focused on the integration of augmented global constraints into
the CIP model. In addition to constraint propagation, the global constraints
implemented constraint-specific linear relaxations and cutting plane generation.
Building on the existing work on the quadratic [8], gcc [12,15], and spread [9]
constraints, we introduced a linear relaxation and cutting planes for the latter.
Our empirical results demonstrate that the CIP approach substantially out-
performs the MIQP model, supporting the effectiveness of the extended global
constraints, but still does not compete with the CP model. To facilitate the
search process, we propose problem-specific branching priorities, which greatly
improve the CIP models, resulting in performance about one order of magnitude
faster than CP.

References

1. Pesant, G., Régin, J.-C.: Spread: A balancing constraint based on statistics. In:
van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 460–474. Springer, Heidelberg
(2005)

2. Schaus, P., Van Hentenryck, P., Régin, J.C.: Scalable load balancing in nurse to
patient assignment problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR
2009. LNCS, vol. 5547, pp. 248–262. Springer, Heidelberg (2009)

3. Schaus, P., Régin, J.C.: Bound-consistent spread constraint. EURO Journal on
Computational Optimization, 1–24 (2013)

4. Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Univer-
sität Berlin (2007)

5. Achterberg, T.: SCIP: solving constraint integer programs. Mathematical Program-
ming Computation 1, 1–41 (2009)

6. Bussieck, M.R., Vigerske, S.: Minlp solver software. Wiley Encyclopedia of Oper-
ations Research and Management Science. Wiley, Chichester (2010)

7. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.,
Danna, E., Gamrath, G., Gleixner, A., Heinz, S., Lodi, A., Mittelmann, H., Ralphs,
T., Salvagnin, D., Steffy, D., Wolter, K.: MIPLIB 2010. In: Mathematical Program-
ming Computation, pp. 1–61 (2011)

8. Berthold, T., Heinz, S., Vigerske, S.: Extending a CIP framework to solve MIQCPs.
In: Mixed-Integer Nonlinear Programming. The IMA Volumes in Mathematics and
its Applications, vol. 154, pp. 427–445. Springer (2012)

9. Schaus, P., Deville, Y., Dupont, P., Régin, J.C.: Simplification and extension of the
spread constraint. In: Third International Workshop on Constraint Propagation
and Implementation, pp. 77–91 (2006)

10. Achterberg, T., Berthold, T.: Hybrid branching. In: van Hoeve, W.-J., Hooker, J.N.
(eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 309–311. Springer, Heidelberg (2009)

11. Mullinax, C., Lawley, M.: Assigning patients to nurses in neonatal intensive care.
Journal of the Operational Research Society 53, 25–35 (2002)

12. Quimper, C.G., Van Beek, P., López-Ortiz, A., Golynski, A., Sadjad, S.B.: An
efficient bounds consistency algorithm for the global cardinality constraint. In:
Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 600–614. Springer, Heidelberg (2003)

CIP and MIQP for Nurse-to-Patient Assignment 439

13. Refalo, P.: Tight cooperation and its application in piecewise linear optimization.
In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 375–389. Springer, Heidelberg
(1999)

14. Milano, M., Ottosson, G., Refalo, P., Thorsteinsson, E.S.: The role of integer pro-
gramming techniques in constraint programming’s global constraints. INFORMS
Journal on Computing 14, 387–402 (2002)

15. Hooker, J.: Integrated Methods for Optimization, 2nd edn. Springer (2012)
16. Marchand, H., Martin, A., Weismantel, R., Wolsey, L.: Cutting planes in inte-

ger and mixed integer programming. Discrete Applied Mathematics 123, 397–446
(2002)

17. Chang, X.W., Golub, G.H.: Solving ellipsoid-constrained integer least squares prob-
lems. SIAM Journal on Matrix Analysis and Applications 31, 1071–1089 (2009)

18. Ku, W.Y., Beck, J.C.: Combining discrete ellipsoid-based search and branch-and-
cut for binary quadratic programming problems. In: Simonis, H. (ed.) CPAIOR
2014. LNCS, vol. 8451, pp. 334–350. Springer, Heidelberg (2014)

19. Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satis-
faction problems. Artificial Intelligence 14, 263–314 (1980)

20. Beck, J.C., Prosser, P., Wallace, R.J.: Trying again to fail first. In: Faltings, B.V.,
Petcu, A., Fages, F., Rossi, F. (eds.) CSCLP 2004. LNCS (LNAI), vol. 3419, pp.
41–55. Springer, Heidelberg (2005)

21. Pryor, J., Chinneck, J.W.: Faster integer-feasibility in mixed-integer linear pro-
grams by branching to force change. Computers and Operations Research 38,
1143–1152 (2011)

22. Van Hentenryck, P., Milano, M. (eds.): Hybrid Optimization: Ten Years of
CPAIOR. Springer (2011)

23. Beck, J.C.: Modeling, global constraints, and decomposition. In: Tenth Symposium
of Abstraction, Reformulation, and Approximation (2013)

24. Pesant, G., Quimper, C.G., Zanarini, A.: Counting-based search: Branching heuris-
tics for constraint satisfaction problems. Journal of Artificial Intelligence Re-
search 43, 173–210 (2012)

25. Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative
propagator. Constraints 16, 250–282 (2011)

26. Bergman, D., Hooker, J.N.: Graph coloring facets from all-different systems. In:
Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp.
50–65. Springer, Heidelberg (2012)

27. Heinz, S., Ku, W.Y., Beck, J.C.: Recent improvements using constraint integer
programming for resource allocation and scheduling. In: Gomes, C., Sellmann, M.
(eds.) CPAIOR 2013. LNCS, vol. 7874, pp. 12–27. Springer, Heidelberg (2013)

28. Heinz, S., Schulz, J., Beck, J.C.: Using dual presolving reductions to reformulate
cumulative constraints. Constraints 18, 166–201 (2013)

On the Erdős Discrepancy Problem

Ronan Le Bras, Carla P. Gomes, and Bart Selman

Computer Science Department,
Cornell University, Ithaca, NY, 14850, USA

Abstract. According to the Erdős discrepancy conjecture, for any infinite ±1
sequence, there exists a homogeneous arithmetic progression of unbounded dis-
crepancy. In other words, for any ±1 sequence (x1, x2, ...) and a discrepancy C,
there exist integers m and d such that |

∑m
i=1 xi·d| > C. This is an 80-year-old

open problem and recent development proved that this conjecture is true for dis-
crepancies up to 2. Paul Erdős also conjectured that this property of unbounded
discrepancy even holds for the restricted case of completely multiplicative se-
quences, namely sequences (x1, x2, ...) where xa·b = xa · xb for any a, b ≥ 1.
The longest such sequence of discrepancy 2 has been proven to be of size 246. In
this paper, we prove that any completely multiplicative sequence of size 127, 646
or more has discrepancy at least 4, proving the Erdős discrepancy conjecture for
discrepancy up to 3. In addition, we prove that this bound is tight and increases
the size of the longest known sequence of discrepancy 3 from 17, 000 to 127, 645.
Finally, we provide inductive construction rules as well as streamlining methods
to improve the lower bounds for sequences of higher discrepancies.

Introduction

Much like Ramsey theory studies how order must emerge in combinatorial objects as
their size increases, discrepancy theory investigates how deviations from uniformity
necessarily occur. Namely, discrepancy theory addresses the problem of distributing
points uniformly over some geometric object, and studies how irregularities ineluctably
appear in these distributions. For example, this subfield of combinatorics aims to an-
swer the following question: for a given set U of n elements, and a finite family S =
{S1, S2, . . . , Sm} of subsets of U , is it possible to color the elements of U in red or
blue, such that the difference between the number of blue elements and red elements in
any subset Si is small?

Important contributions in discrepancy theory include the Beck-Fiala theorem [1]
and Spencer’s Theorem [2]. The Beck-Fiala theorem guarantees that if each element
appears at most t times in the sets of S, the elements can be colored so that the imbal-
ance, or discrepancy, is no more than 2t − 1. According to the Spencer’s theorem, the
discrepancy of S grows at most as Ω(

√
n log(2m/n)).

Nevertheless, some important questions remain open. According to Paul Erdős him-
self, two of his oldest conjectures relate to the discrepancy of homogeneous arithmetic
progressions (HAPs) [3]. Namely, a HAP of length k and of common difference d
corresponds to the sequence (d, 2d, . . . , kd). The first conjecture can be formulated as
follows:

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 440–448, 2014.
c© Springer International Publishing Switzerland 2014

On the Erdős Discrepancy Problem 441

Conjecture 1. Let (x1, x2, ...) be an arbitrary±1 sequence. The discrepancy of x w.r.t.
HAPs must be unbounded, i.e. for any integer C there is an integer m and an integer d
such that |

∑m
i=1 xi·d| > C.

This problem has been open for over eighty years, as is the weaker form according
to which one can restrict oneself to completely multiplicative functions. Namely, f is
a completely multiplicative function if f(a · b) = f(a) · f(b) for any a, b. The second
conjecture translates to:

Conjecture 2. Let (x1, x2, ...) be an arbitrary completely multiplicative ±1 sequence.
The discrepancy of x w.r.t. HAPs must be unbounded, i.e. for any integer C there is a
m and a d such that |

∑m
i=1 xi·d| > C.

Hereinafter, when non-ambiguous, we refer to the discrepancy of a sequence as its
discrepancy with respect to homogeneous arithmetic progressions. Formally, we denote
disc(x) = maxm,d|

∑m
i=1 xi·d|. We denote E1(C) the minimum length for which any

sequence has discrepancy at least C +1, or equivalently, one plus the maximum length
of a sequence of discrepancy C. Similarly, we define E2(C) the minimum length for
which any completely multiplicative sequence has discrepancy at least C + 1. 1

Table 1. Results for the Erdős discrepancy problem. E1(C) (resp. E2(C)) corresponds to the min-
imum length for which any sequence (resp. completely multiplicative sequence) has discrepancy
C + 1. Bold indicates contribution of the current work.

C 1 2 3

E1(C) 12 1,161 ≥127,646
E2(C) 10 247 127,646

A proof or disproof of these conjectures would constitute a major advancement in
combinatorial number theory [4]. To date, both conjectures have been proven to hold
for the case C ≤ 2. As illustrated in Table 1, the values of E1(1), E2(1), and E2(2) have
been long proven to be 12, 10, and 247 respectively, while recent development proved
E1(2) = 1161 [5]. Konev and Lisitsa [5] also provide a new lower bound for E1(3).
After 3 days of computation, a SAT solver was able to find a satisfying assignment for a
sequence of length 13, 000. Yet, it would fail to find a solution of size 14, 000 in over 2
weeks of computation. They also report a solution of length 17, 000, the longest known
sequence of discrepancy 3.

In this work, we explore streamlining for this problem, an effective combinatorial
search strategy that exploits regularities in some problem solutions, beyond the struc-
ture of the combinatorial problem itself. Streamlining provides and exploits structural
information about the problem, and we believe that a sine qua non condition for tack-
ling huge sequences requires deep insights into the structure of the problem. In addition,
streamlining provides a vision for a broader strategy for solving problems. Overall, we

1 Note that, if Conjecture 1 (resp. Conjecture 2) were to be rejected, E1(C) (resp. E2(C)) would
correspond to infinity.

442 R. Le Bras, C.P. Gomes, and B. Selman

substantially increase the size of the longest sequence of discrepancy 3, from 17, 000
to 127, 645. In addition, we prove that E2(3) = 127, 646, making this bound tight, as
Plingeling was able to prove unsat and Lingeling generated an UNSAT proof
in DRUP format [6].

This paper is organized as follows. The next section formally defines the Erdős
discrepancy problems (for the general case and the multiplicative case) and presents
SAT encodings for both problems. We then investigate streamlined search techniques
to boost the search for lower bounds of these two problems, and to characterize addi-
tional structures that appear in a subset of the solutions. Furthermore, in a subsequent
section, we provide construction rules that are based on these streamliners and allow
to generate larger sequences of limited discrepancy from smaller ones. The last section
presents the results of these approaches.

Problem Formulation

In this section, we first formally define the two conjectures as decision problems and
then propose encodings for these problems.

Definition 1 (EDP1). Given two integers n and C, does there exist a ±1 sequence
(x1, . . . , xn) such that |

∑m
i=1 xi·d| ≤ C for any 1 ≤ d ≤ n,m ≤ n/d.

Konev and Lisitsa [5] provide a SAT encoding for this problem that uses an au-
tomaton accepting any sub-sequence of discrepancy exceeding C. A state sj of the
automaton corresponds to the sum of the input sequence, while the accepting state
sB captures whether the sequence has exceeded the discrepancy C. A proposition
s
(m,d)
j is true whenever the automaton is in state

∑m−1
i=1 xi·d after reading the sequence

(xd, . . . , x(m−1)d). Let pi be the proposition corresponding to xi = +1. A proposition
that tracks the state of the automaton for an input sequence (xd, x2d, . . . , x�n/d	d) can
be formulated as:

φ(n, C, d) = s
(1,d)
0

n/d∧
m=1

(∧
−C≤j<C

(
s
(m,d)
j ∧ pid → s

(m+1,d)
j+1

)
∧

∧
−C<j≤C

(
s
(m,d)
j ∧ pid → s

(m+1,d)
j+1

)
∧

(
s
(m,d)
C ∧ pid → sB

)
∧(

s
(m,d)
−C ∧ pid → sB

))
(1)

In addition, we need to encode that the automaton is in exactly one state at any point
in time. Formally, we define this proposition as:

χ(n,C) =
∧

1≤d≤n/C,1≤m≤n/d

(∨
−C≤j≤C

s
(i,d)
j ∧

∧
−C≤j1 ,j2≤C

(
s
(i,d)
j1

∨ s
(i,d)
j2

))
(2)

On the Erdős Discrepancy Problem 443

Finally, we can encode the Erdős Discrepancy Problem as follows:

EDP1(n,C) : sB ∧ χ(n,C) ∧
n∧

d=1

φ(n,C, d) (3)

Furthermore, as the authors of [5], the actual states s(m,d)
j of the automaton do not

require 2C + 1 binary variables to represent the 2C + 1 values of the states. Instead,
one can modify this formulation and use 0log2(2C + 1)1 binary variables to encode the
automaton states.

For the completely multiplicative case, we introduce additional constraints to capture
the multiplicative property of any element of the sequence, i.e. xid = xixd for any
1 ≤ d ≤ n, 1 ≤ i ≤ n/d. With respect to the boolean variables pi, pd and pid, such a
constraint acts as XNOR gate of input pi and pd and of output pid. Formally, we denote
this propositionM(i, d) and define:

M(i, d) = (pi ∨ pd ∨ pid) ∧ (pi ∨ pd ∨ pid) ∧ (pi ∨ pd ∨ pid) ∧ (pi ∨ pd ∨ pid) (4)

Importantly, for completely multiplicative sequences, the discrepancy of the sub-
sequence (xd, ..., xmd) of length m and common difference d will be the same as
the discrepancy of the subsequence (x1, ..., xm). Indeed , we have |

∑m
i=1 xi·d| =

|
∑m

i=1 xixd| = |xd| · |
∑m

i=1 xi| = |
∑m

i=1 xi|. Therefore, one needs only check that
the partial sums

∑m
i=1 xi, 1 ≤ m ≤ n never exceed C nor go below −C. Further-

more, note that a completely multiplicative sequence is entirely characterized by the
values it takes at prime positions, i.e. {xp|p is prime}. In addition, if there exists a com-
pletely multiplicative sequence (x1, ..., xp−1) of discrepancy C with p prime, then the
sequence (x1, ..., xp−1, (−1)�

∑m
i=1

xi≥0) will also be a CMS of discrepancy C. As a
result, E2(C) cannot be a prime number.

Overall, for the completely multiplicative case, we obtain:

EDP2(n,C) : sB ∧ χ(n,C) ∧ φ(n,C, 1)
∧

1≤d≤n,1≤i≤n/d

M(i, d) (5)

Streamlined Search

The encoding of EDP1 given in the previous section has successfully led to prove a
tight bound for the case C = 2 [5]. On an Intel Core i5-2500K CPU, it takes about 800
seconds for Plingeling [7] to find a satisfying assignment for EDP1(1160, 2) and
less than 6 hours for Glucose [8] to generate a proof of E1(2) = 1, 161. Nevertheless,
for the case C = 3, it requires more than 3 days of computation for Plingeling to
find a sequence of size n = 13, 000, and fails to find a sequence of size 14, 000 in over
two weeks of computation.

In this section, in order to improve this lower bound and acquire a better understand-
ing of the solution space, we explore streamlining techniques that identifies additional

444 R. Le Bras, C.P. Gomes, and B. Selman

structure occurring in a subset of the solutions. Among the solutions of a combinato-
rial problem, there might be solutions that possess regularities beyond the structure of
the combinatorial problem itself. Streamlining [9] is an effective combinatorial search
strategy that exploits these additional regularities. By intentionally imposing additional
structure to a combinatorial problem, it focuses the search on a highly structured sub-
space and triggers increased constraint reasoning and propagation. This search tech-
nique is sometimes referred to as “tunneling” [10]. In other words, a streamlined search
consists in adding specific desired or observed regularities, such as a partial pattern that
appears in a solution, to the combinatorial solver. These additional regularities boost
the solver that may find more effectively larger solutions that contain these regularities.
If no solution is found, the observed regularities were likely accidental. Otherwise, one
can analyze these new solutions and suggests new regularities. This methodology has
been successfully applied to find efficient constructions for different combinatorial ob-
jects, such as spatially-balanced Latin squares [11], or graceful double-wheel graphs
[12].

When analyzing solutions of EDP1(n, 2) for n ∈ [1, 1160], there is a feature that
visually stands out of the solutions, as illustrated in Figure 1. When looking at a solution
as a 2D-matrix with entries in {−,+} and changing the dimensions of the matrix (see
Fig. 1, Left) , there seems to be clear preferred matrix dimensions (say m-by-p) such
that the m rows are mostly identical for the columns 1 to p − 1, suggesting that xi =
xi mod p for 1 ≤ i ≤ p− 1. We denote period(x, p, t) the streamliner that enforces this
observation and define:

period(x, p, t) : xi = xi mod p ∀1 ≤ i ≤ t, i �≡ 0 mod p (6)

Fig. 1. First elements of a sequence of length 1160 and of discrepancy 2, illustrating the period
(Left) and mult (Right) streamliners

First, while this observation by itself did not allow to improve the current best lower
bound for E1(3), it led to the formulation of the construction of the next section. Second,
it also led to the re-discovery of the so-called ’improved Walters sequence’ [13], defined
as follows:

μ3(i) =

⎧⎪⎨⎪⎩
+1, if i is 1 mod 3

−1, if i is 2 mod 3

−μ3(i/3), otherwise.

(7)

On the Erdős Discrepancy Problem 445

In the following, we denote walters(x,w) the streamliner imposing that the first w
elements of a sequence x follow the improved Walters sequence, i.e.:

walters(x,w) : xi = μ3(i) ∀1 ≤ i ≤ w (8)

One can easily see that the improved Walters sequence is a special case of the pe-
riodic sequence defined previously. Namely, for any sequence x where walters(x,w)
holds true, then we have period(x, 9, w).

Finally, another striking feature of the solutions of EDP1(n, 2) is that they tend to
follow a multiplicative sequence. Interestingly, EDP2 restricts EDP1 to the special case
of multiplicative functions and we observe for the case C = 2 that this restriction
substantially impacts the value of the best bound possible (i.e. E1(2) = 1, 161 whereas
E2(2) = 247). Nevertheless, the solutions of EDP1(n, 2) exhibit a partial multiplicative
property (see Fig. 1, Right) and we define:

mult(x,m, l) : xi·d = xixd ∀2 ≤ d ≤ m, 1 ≤ i ≤ n/d, i ≤ l (9)

In the experimental section, we show the speed-ups that are triggered using these
streamliners, and how the best lower bound for EDP1(n, 2) gets greatly improved.

Construction Rule

In this section, we show how we used insights from the period(x, p, t) streamliner in
order to generate an inductive construction rule for sequences of discrepancy C from
sequences of lower discrepancy.

Consider a sequence x that is periodic of period p, as defined in the previous section,
i.e. period(x, p, |x|) holds true, and is of length n = p ∗ k. Then, the sequence x can be
written as:

x = (y1, y2, . . . , yp−2, yp−1, z1

y1, y2, . . . , yp−2, yp−1, z2

. . .

y1, y2, . . . , yp−2, yp−1, zk) (10)

Let C be the discrepancy of z = (z1, z2, ..., zk) and C′ the discrepancy of
(y1, ..., yp−1). Given that

∑m
i=1 xip =

∑m
i=1 zi for any 1 ≤ m ≤ k, we have disc(x) ≥

C. Note that if x was completely multiplicative, then it would hold disc(x) = C. We
study the general case where x is not necessarily multiplicative, and investigate the
conditions under which disc(x) is guaranteed to be less or equal to C + C ′.

For a given common difference d and length m, we consider the subsequence
(xd, x2d, ..., xmd). Let q = p

gcd(d,p) . Given the definition 10 of x, we have:

(xd, x2d, ..., xmd) = (yd mod p, y2d mod p, ..., y(q−1)d mod p, zq, (11)

yd mod p, y2d mod p, ..., y(q−1)d mod p, z2q , (12)

yd mod p, ...) (13)

446 R. Le Bras, C.P. Gomes, and B. Selman

Note that if p divides d or d divides p, this subsequence becomes (zq, z2q, ..., zqm)
and is of discrepancy at most C. As a result, a sufficient condition for x to be of dis-
crepancy at most C+C′ is to have yd mod p, y2d mod p, ..., y(q−1)d mod p of discrepancy
C′ and summing to 0. We say that such a sequence has a discrepancy mod p of C′.
Formally, we define the problem of finding such sequences as follows:

Definition 2 (Discrepancy mod p). Given two integers p andC′, does there exist a±1
sequence (y1, . . . , yp−1) such that:

|
m∑
i=1

yi·d mod p| ≤ C′, ∀1 ≤ d ≤ n,m <
p

gcd(d, p)
(14)

p
gcd(d,p)

−1∑
i=1

yi·d mod p = 0, ∀1 ≤ d ≤ n (15)

Notice that, given the equation 15, p should be odd for such a sequence to exist.
We encode this problem as a Constraint Satisfaction Problem (CSP) in a natural way

from the problem definition. We provide the experimental results in the next section.

Results

All experiments were run on a Linux (version 2.6.18) cluster where each node has an
Intel Xeon Processor X5670, with dual-CPU, hex-core @2.93GHz, 12M Cache, 48GB
RAM. Unless otherwise noted, the results were obtained using the parallel SAT solver
Plingeling, version ats1 for the SAT encodings, and using IBM ILOG CPLEX
CP Optimizer, release 12.5.1 for the CP encodings.

First, we evaluate the proposed streamliners for the two problems. Table 2 reports
the length of the sequences that were successfully generated, as well as the computation
time. The first clear observation is that, for EDP1, the streamlined search based on the
partial multiplicative property significantly boosts the search and allows to generate
solutions that appear to be out of reach of the standard search approach. For example,
while it takes about 10 days to find a solution of length 13, 900without streamliners, the
streamlined search generates a substantially-large satisfying assignment of size 31, 500
in about 15 hours. Next, we study streamliners that were used for EDP2, i.e. partially
imposing the walters sequence. The results clearly show the speed up triggered by the
combination of the new encoding for EDP2 with the walters streamliners. Interestingly,
the longest walters sequence of discrepancy 3 is of size 819. Nevertheless, one can
successfully impose the first 800 elements of the walters sequence and still expand it to
a sequence of length 108, 000. Furthermore, when imposingwalters(730), it takes less
than 1 hour and an half to find a satisfying assignment for a sequence of size 127, 645.
Moreover, without additional streamliners, it takes about 60 hours to prove unsat for the
case 127, 646 and allows us to prove that this bound is tight. Indeed, the solver generates
a DRUP proof of approximately 29GB and DRAT-trim, an independent satisfiability
proof checker [6,14], verifies the 88 million lemmas of the proof in about 45 hours.

In terms of the inductive construction described in the previous section, we can gen-
erate sequences whose discrepancy mod p is 1, for p in 1, 3, 5, 7, and 9, while it also

On the Erdős Discrepancy Problem 447

Table 2. Solution runtimes of searches with and without streamliners. The streamlined search
leads to new lower bounds for the 2 EDP problems.

Encoding Streamliners Size of sequence Runtime (in sec)

EDP1

- 13,000 286,247
- 13,500 560,663
- 13,900 770,122

mult(120,2000) 15,600 4,535
mult(150,2000) 18,800 8,744
mult(200,1000) 23,900 12,608
mult(700,10000) 27,000 45,773
mult(700,20000) 31,500 51,144

EDP2

walters(800) 81,000 1,364
walters(800) 108,000 4,333
walters(700) 112,000 5,459
walters(730) 127,645 4,501

generates sequences of discrepancy mod p equal to 2 for p in 11, 13, 15, 17, 25, 27, 45,
and 81. Overall, this proves that one can take any sequence x of length |x| and dis-
crepancy C and generate one of length 9|x| and of discrepancy C + 1, or of length
81|x| and of discrepancy C + 2. As a result, this provides a new bound for the case
of discrepancy 4, and proves E1(4) > 9 ∗ 127645 = 1, 148, 805. Interestingly, such a
long sequence suggests that the proof of the Erdos conjecture for C > 3 may require
additional insights and analytical proof, beyond the approach proposed in this work.

Conclusions

In this paper, we address the Erdős discrepancy problem for general sequences as
well as for completely multiplicative sequences. We adapt a SAT encoding previously
proposed and investigate streamlining methods to speed up the solving time and un-
derstand additional structures that occur in some solutions. Overall, we substantially
improve the best known lower bound for discrepancy 3 from 17, 001 to 127, 646. In
addition, we prove that this bound is tight, as evidenced by the unsat proof generated by
Lingeling and confirmed by the proof checker DRAT-trim. Finally, we propose
construction rules to inductively generate longer sequences of limited discrepancy.

Acknowledgments. This work was supported by the National Science Foundation
(NSF IIS award, grant 1344201). The experiments were run on an infrastructure sup-
ported by the NSF Computing research infrastructure for Computational Sustainability
grant (grant 1059284). Note that, while this work was submitted on April 14, 2014 to the
20th International Conference on Principles and Practice of Constraint Programming,
results [15] were independently submitted on May 13, 2014, confirming the value of
E2(3).

448 R. Le Bras, C.P. Gomes, and B. Selman

References

1. Beck, J., Fiala, T.: Integer-Making theorems. Discrete Applied Mathematics 3, 1–8 (1981)
2. Spencer, J.: Six standard deviations suffice. Transactions of the American Mathematical So-

ciety 289, 679–706 (1985)
3. Erdös, P.: Some of my favourite problems which recently have been solved. North-Holland

Mathematics Studies 74, 59–79 (1982)
4. Nikolov, A., Talwar, K.: On the hereditary discrepancy of homogeneous arithmetic progres-

sions. arXiv preprint arXiv:1309.6034 (2013)
5. Konev, B., Lisitsa, A.: A sat attack on the erdos discrepancy conjecture (2014)
6. Heule, M.J., Hunt, W.A., Wetzler, N.: Trimming while checking clausal proofs. In: Formal

Methods in Computer-Aided Design (FMCAD), pp. 181–188. IEEE (2013)
7. Biere, A.: Lingeling, plingeling and treengeling entering the sat competition 2013. In: Pro-

ceedings of SAT Competition (2013); Solver and (2013) 51
8. Audemard, G., Simon, L.: Glucose 2.3 in the sat 2013 competition. In: Proceedings of SAT

Competition (2013); Solver and (2013) 42
9. Gomes, C., Sellmann, M.: Streamlined constraint reasoning. In: Wallace, M. (ed.) CP 2004.

LNCS, vol. 3258, pp. 274–289. Springer, Heidelberg (2004)
10. Kouril, M., Franco, J.: Resolution tunnels for improved sat solver performance. In: Bacchus,

F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 143–157. Springer, Heidelberg (2005)
11. Le Bras, R., Gomes, C.P., Selman, B.: From streamlined combinatorial search to efficient

constructive procedures. In: Proceedings of the 15th International Conference on Artificial
Intelligence, AAAI 2012 (2012)

12. Le Bras, R., Gomes, C.P., Selman, B.: Double-wheel graphs are graceful. In: Proceedings
of the Twenty-Third International Joint Conference on Artificial Intelligence, IJCAI 2013,
pp. 587–593. AAAI Press (2013)

13. Polymath1: Matryoshka Sequences, http://michaelnielsen.org/
polymath1/index.php?title=Matryoshka Sequences
(accessed April 11, 2014)

14. Wetzler, N., Heule, M.J., Hunt Jr., W.A.: (Drat-trim: Efficient checking and trimming using
expressive clausal proofs)

15. Konev, B., Lisitsa, A.: Computer-aided proof of erdos discrepancy properties. arXiv preprint
arXiv:1405.3097 (2014)

http://michaelnielsen.org/polymath1/index.php?title=Matryoshka_Sequences
http://michaelnielsen.org/polymath1/index.php?title=Matryoshka_Sequences

Towards Practical Infinite Stream Constraint

Programming: Applications and Implementation

Jasper C.H. Lee1 and Jimmy H.M. Lee2

1 Churchill College and Computer Laboratory, University of Cambridge, UK
chjl2@cam.ac.uk

2 Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

jlee@cse.cuhk.edu.hk

Abstract. Siu et al. propose stream CSPs (St-CSPs) as a generalisation
of finite domain CSPs to cater for constraints on infinite streams, and a
solving algorithm that produces a deterministic Büchi automaton recog-
nising the solution language. As a novel application, we demonstrate
how St-CSPs can model mathematically and generate a PID controller
for driving a self-balancing tray and an inverted pendulum in real-time.
We propose and give formally the correctness of an improvement to the
implementation that eliminates numerous unnecessary states in the so-
lution automaton for St-CSPs involving the first temporal operator,
thereby reducing solving time. We give two St-CSP examples that can
benefit from our new implementation techniques. Our approach always
generates a solution automaton not bigger than, but potentially expo-
nentially smaller than, that produced by the original implementation.
Experimental results show substantial improvements.

1 Introduction

Streams of data are ubiquitous. They can either be discrete sequences on their
own (e.g. stock market data), or discrete samples of continuous signals (e.g. po-
sitional data with respect to time). The evolution of such sequences is typically
governed by some physical laws or mathematical equations. However, standard
finite domain constraint satisfaction problems (CSPs) do not model such prob-
lems very well, because they can only model a finite segment of an otherwise in-
finite problem. To model such discrete time constraint problems more naturally,
Siu et al. [8,11] introduce stream constraint satisfaction problems (St-CSPs) by
adapting temporal operators in Wadge and Ashcroft’s [12] Lucid programming
language. They give the definition of St-CSPs, and a solving algorithm that pro-
duces a deterministic Büchi automaton recognising the solutions of an St-CSP.
The termination, soundness and completeness of their algorithm are proven.
They also suggest practical applications for St-CSPs, such as generating har-
monic accompaniment to a melody, and the game engine for the once popular
Digi Invaders1 game in early Casio calculators in the 1970s.

1 http://www.youtube.com/watch?v=1YafgAcmov4

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 449–464, 2014.
c© Springer International Publishing Switzerland 2014

450 J.C.H. Lee and J.H.M. Lee

This paper is about practical stream constraint programming. The goal is to
push the limit of this relatively new member of the CP family, and take the first
step towards putting the theoretical framework into practice. Since there are
currently no common modelling idioms, and we know little about implementa-
tion technology and applications, we approach this idea from two angles. First,
we demonstrate that St-CSPs can be used for solving interesting real life prob-
lems. Continuing the work on game engine generation [8,11], we model real-time
hardware controllers as St-CSPs. Even though discretisation and approximations
have to be applied, we find that the approach produces stable control on our
hardware. Second, we propose an improvement for the search algorithm to re-
duce solving time and the size of the solution automaton. Our improvement is
restricted to a certain class of St-CSPs, and we give practical usages of this class
on two applications. We also state formally the correctness of our technique. To
demonstrate the efficiency of our proposal, we give experimental results to com-
pare our new search algorithm against the original, showing orders of magnitude
improvement in terms of runtime and solution automaton size.

2 Background

This section introduces the background for stream constraint solving. We first
state the definition of St-CSPs and related notions, followed by the constraint
specification language. The solving algorithm of Siu et al. [8,11] is summarised.

2.1 Infinite Strings and Stream Constraint Satisfaction Problems

An infinite string α over an alphabet Σ is a function N0 → Σ. Given i, α(i) is an
individual daton of α at time point i. The set of all such strings with alphabet
Σ is denoted Σω. Infinite strings are also referred to as streams.

The notation α′ = α(i,∞) is used for the string suffix α′(j) = α(j + i). For a
language L, L(i,∞) = {α(i,∞) |α ∈ L}. As for a finite prefix of a string, infinite
or not, the notation α′ = α[0 : i] is used to denote the string α′(j) = α(j) if
0 ≤ j ≤ i and undefined otherwise. When i < 0, α[0 : i] is the empty string.

A stream constraint satisfaction problem (St-CSP) is a tuple P = (X,D,C)
[8,11], where X = {x1, . . . , xn} is a finite set of variables, D(x) = (Σ(x))ω is
a function that maps a variable to its domain which is the set of all infinite
strings with alphabet Σ(x), C is a finite set of constraints. A constraint c ∈ C
is a relation R defined on an ordered subset Scope(c) of variables. The relation
gives all the valid simultaneous assignments of values to variables in Scope(c).
Every constraint c ∈ C must also be a deterministic ω-regular language [2].

An assignment A(xi) ∈ D(xi) is a function mapping a variable to
an element in its domain. A satisfies a constraint c if and only if
(A(xi1), A(xi2), . . . , A(xik)) ∈ c, where Scope(c) = (xi1 , . . . , xik). The notion can
be generalised to say that the string β of tuples β(i) = (A(x1)(i), . . . , A(xn)(i))
satisfies the constraint c where X = {x1, . . . , xn}. An St-CSP is satisfied by a
variable assignment A or a string of tuples β if and only if all constraints are
satisfied.

Towards Practical Infinite Stream Constraint Programming 451

As a corollary of the closure properties of deterministic ω-regular languages,
the solution set sol(P) = {t = (a1, a2, . . . , an) ∈

∏
iD(xi) | ∀ c ∈ C. t satisfies c}

of an St-CSP P is also a deterministic ω-regular language.
In addition, two St-CSPs P and P ′ are said to be equivalent, written as P ≡ P ′

as usual, if and only if sol(P) = sol(P ′).
Given a set of constraints C and a point i, the shifted view (previously

known in the literature as the limited view [8,11]) of C is defined as C(i,∞) =
{ck(i,∞) | ck ∈ C}. Similarly, given an St-CSP P = (X,D,C) and a point i, the
shifted view of P is defined as P̂ (i) = (X,D,C(i,∞)).

2.2 The Stream Constraint Language

In this paper, we are only concerned with St-CSPs whose variable alphabets are
integer intervals, i.e. [m,n]ω for some m ≤ n ∈ Z.

To specify constraints, there are primitives such as variable streams, which
are the variables in the St-CSP, and constant streams. For example, the stream
2 denotes the stream a where a(n) = 2.

Three temporal operators, in the style of the Lucid programming language
[12], first, next and fby, are defined on streams. Suppose α and β are streams.
We have first α being the constant stream of α(0), and next α being the “tail”
of α, i.e. next α = α(1,∞). In addition, α fby β = γ is the concatenation of
the head of α and β, i.e. γ(0) = α(0) and γ(i) = β(i− 1) for i ≥ 1.

Furthermore, there are pointwise operators, such as integer arithmetic op-
erators {+, -, *, /, %}. They combine two streams point by point using the
corresponding arithmetic operator. Integer arithmetic relational operators are
{lt, le, eq, ge, gt, ne}. They compare the two argument streams pointwisely
and return a pseudo-Boolean stream, that is a stream in [0, 1]ω, where 0 denotes
false and 1 denotes true. Pointwise Boolean operators {and, or} act on any
two pseudo-Boolean streams γ and η. The final pointwise operator supported
is if-then-else. Suppose γ is pseudo-Boolean, and α, β are streams in general,
then (if γ then α else β)(i) is α(i) if γ(i) = 1 and β(i) if γ(i) = 0.

Given these stream operators, we can now use the following relations to ex-
press stream constraints. For integer arithmetic comparisons ◦ ∈ {<, <=, ==, >=,
>, !=}, the constraint α ◦ β is satisfied if and only if the arithmetic comparison
◦ is true at every point in the streams. Therefore, a constraint is violated if and
only if there exists a time point at which the arithmetic comparison is false.

Care should be taken to distinguish between constraints and the relational
operators. Relational operators take two streams and give a pseudo-Boolean
stream as output. Constraints, on the other hand, are relations on streams.

2.3 Normalising Constraints

Siu [11] defines an St-CSP to be in normal form if it contains only primitive con-
straints. Primitive constraints are in one of the following three forms, assuming
xi are stream variables.

452 J.C.H. Lee and J.H.M. Lee

– Primitive first constraints: first xi == first xj
– Primitive next constraints: xi == next xj
– Primitive pointwise constraints: constraints with no first, next or fby.

Reducing all occurrences of first operators to the primitive form is benefi-
cial, since primitive first constraints can be enforced like a primitive pointwise
constraint, but can be deleted after the first time point.

All St-CSPs are reduced to an equivalent normal form before being submitted
to the solver. Siu [11] also gives a simple recursive translation of an St-CSP into
this normal form. Only the appearance of either “first expr”, “next expr” or
“expr1 fby expr2” may violate the normal form property. The cases are trans-
lated separately. By adopting notations from programming language semantics
theory [13], we write c [–] for constraint contexts, i.e. constraints with placehold-
ers for syntactic substitution. For example, if c [–] = [– + 3 >= 4], then c [first
α] = [(first α) + 3 >= 4]. We also write a constraint rewriting transition as
(C0, C1) � (C′

0, C
′
1), where C0, C1, C

′
0 and C′

1 are sets of constraints. C0 is the
set of constraints that has to be further normalised, and C1 is the set that is
guaranteed to be in normal form already. Hence, the initial constraint pair for
the St-CSP (X , D, C) is (C, {}). Rules are applied until none are applicable.

1. (C0 ∪ {c [first expr]}, C1) � (C0 ∪ {c [v1], v2 == expr}, C1 ∪ {first v1
== first v2, v1 == next v1}) where v1 and v2 are auxiliary variables not in
any of c [–], C0 and C1.

2. (C0 ∪ {c [next expr]}, C1) � (C0 ∪ {c [v1], v2 == expr}, C1 ∪ {v1 == next

v2}) where v1 and v2 are auxiliary variables not in any of c [–], C0 and C1.
3. (C0 ∪ {c [expr1 fby expr2]}, C1) � (C0 ∪ {c [v1], v2 == expr1, v3 == expr2},

C1 ∪ {first v1 == first v2, next v1 == v3}) where v1, v2 and v3 are
auxiliary variables not in any of c [–], C0 and C1.

2.4 Search Trees

A search tree for an St-CSP P is a tree with potentially infinite height. Its nodes
are St-CSPs, and the root node is P itself. The level of a node N is recursively
defined as 0 for the root node, and 1 + � for non-root nodes N where � is the
level of the parent of N . A child node Q′ = (X,D,C ∪ {c′}) is constructed
from a parent node P ′ = (X,D,C) at level k and an instantaneous assignment
τ(x) ∈ Σ(x), where τ takes a stream variable x and returns a daton value for it.
In other words, τ gives a scalar assignment to the daton of streams at time point
k. The constraint c′ specifies that for all x ∈ X , x(k) = τ(x) and for all i �= k,

x(i) is unconstrained. We write P ′ τ→ Q′ for such a parent to child construction,
and label the edge on the tree between the two nodes with τ . Fig. 1 shows an
example search tree.

We can identify a search node Q at level k with the shifted view Q̂(k). Taking
this view, if P̂ (k) = (X,D,C) is the parent node of Q̂(k + 1), then Q̂(k + 1) =
(X,D,C ∪{c′})(1) = (X,D, (C ∪{c′})(1,∞)) where c′ is the same constraint as
defined above.

Towards Practical Infinite Stream Constraint Programming 453

Recall that a constraint violation requires only a single time point at which
the pointwise constraint is false. Therefore, we can generalise the definition of
constraint violation such that a finite prefix of an assignment can violate a
constraint. A sequence of instantaneous assignments from the root to a node
is isomorphic to a finite prefix of an assignment, and so the definition again
generalises. Suppose F = (X,D,C) is a node at level k such that {τi} is the
sequence of instantaneous assignments that constructs F from the root node,
i.e. P

τ0→ . . .
τk→ F . We say node F is a failure if and only if {τi} violates a

constraint c ∈ C.

(0,0) (0,1)

(0,0)

(0,0) (0,1)

(0,1)

Fig. 1. Example Search Tree

2.5 Solving St-CSPs

Given an St-CSP P , its search tree is explored using depth first search. Back-
tracking happens when the current search node is a failure. A search node A at
level k dominates [8,11] another search node B at level k′, written as B ≺ A,
if and only if their shifted views are equivalent (Â(k) ≡ B̂(k′)) and A is visited
before B during the search. When the algorithm visits a search node N that is
dominated by a previously seen node M , the edge pointing to N is redirected
to M instead. The resulting structure is isomorphic to a deterministic Büchi
automaton, which accepts all and only the solutions of P . Siu et al. [8,11] prove
the termination, soundness and completeness of the algorithm.

3 Application on Real-Time PID Control

A proportional-integral-derivative (PID) controller [10] is a loop feedback con-
trol mechanism. A process receives an input signal u(t) and gives an output y(t),
which has an error e(t) = y(t)− r(t) from a reference signal r(t). The PID con-
troller produces the input signal u(t) by adding a weighted sum of the following
three components. The proportional component is simply the error signal e(t).

The integral component is
∫ t

0
e(τ) dτ . The derivative component is e′(t). Fig. 2

shows the described structure. Kp, Ki and Kd are the corresponding coefficients
for the components in the weighted sum.

We can model a PID controller as an St-CSP. The first step is to discretise
and scale the domain of the error signal, such that the signal can be represented
as an integer stream e. For example, the error signal might have a real interval

454 J.C.H. Lee and J.H.M. Lee

Process −

P = Kpe(t)

I = Ki

∫ t

0
e(τ)dτ

D = Kd
de(t)
dt

+

y(t)

r(t)

e(t)u(t)

Fig. 2. PID Controller Schematics

[−15, 15] as the domain representing an angle deviation. A possible discretisation
is to map the interval to the integer interval [−60, 60] by multiplication with
4 and rounding. The stream e (the error and the proportional component) is
unconstrained and acts as an input to the automaton. At each state, the edge
with the correct error value is selected in order to proceed to the next state.

There is a tradeoff between having greater precision in the error stream and
limiting the size of the solution automaton. The standard approaches to deter-
mining the PID coefficients are by experimentation or analysis of a mathematical
model of the process. A good discretisation of the error stream can therefore be
similarly determined using either of the approaches.

Given the discretisation,we canmodel the derivative component of the PID con-
trol signal. For a stream of discrete time signalsα, an analog of the derivative is the
finite difference α(i+ 1)− α(i). Any linear scaling factor required for a better ap-
proximation can simply be absorbed into theKd coefficient for the weighted sum.
In order to compute finite differences, a stream l is introduced with constraints l ==
0 fby e. The derivative stream d is therefore constrained by d == e - l. From this,
we deduce that the bounds for d is [−2c, 2c] if the bounds for e is [−c, c].

An analog of the integral for discrete signals is the finite sum
∑n

0 α(i). In an ideal
PID controller, the integral component can be unbounded. In practice, it is either
restricted by the real number representation of the machine or artificial bounds are
introduced. In our case, a bound b is also needed in order to have a finite alphabet
for the integral stream i. With the value of b decided, the integral stream can be
computed using the constraint i == 0 fby (if (i+e gt b) then b else (if (i+e lt -b)
then -b else i+e)). There is an alternative approximation for the integral stream if
we know the scaling factor applied to it is close to 0. In this case, instead of summing
the error discrete signals, we sum the sign of the error signals. That is, we introduce
another stream tempI with constraint tempI == 0 fby (i + if (e gt 0) then 1
else (if (e lt 0) then -1 else 0)). Instead of using the previous constraint for
computing i, we use i == if (tempI gt b) then b else (if (tempI lt -b) then -b
else tempI). It is also possible to inline thedefinitionof tempI into i, butwepresent
this as it is here for clarity. This alternative approximation is useful for keeping the
alphabet of the stream i small.

Towards Practical Infinite Stream Constraint Programming 455

As discrete time controllers process input and output streams, St-CSPs are
ideal for modelling them. The typical way of implementing controllers is to pro-
gram the controller equations in an imperative language. Programming with
destructive assignments and various control flow commands can be error prone.
Bentley [1] gives experimental results that only 10% of professional program-
mers write correct code for an algorithm as simple as the binary search. Using
the St-CSP approach, the imperative code required in a program is only for
traversing a solution automaton according to the sensor error input stream and
producing control signals to the output streams. This code has to be engineered
only once and is largely reusable. The St-CSP specification language is declar-
ative in nature without any side effects in its semantics. Hence, it inherits the
advantages of declarative programming over imperative programming, including
readability, conciseness, compositionality and referential transparency. Correct-
ness and elegance are therefore more easily achievable than using a conventional
programming language like C.

A PID controller for a self-balancing tray2 was synthesised. The platform has
a tray holding a pingpong ball, two motors that allows it to rotate in 3D space
and an accelerometer that measures the orientation. The purpose of the con-
troller is to maintain the horizontal position of the tray as the platform rotates,
such that the pingpong ball does not fall out. We also applied the technique to
control a self-balancing inverted pendulum3. It has a vertical body, with wheels
at the bottom to allow movement for balancing the body as it tilts sideways.
The controller actually uses a variant of PID control with a second derivative
component in addition to the original three. Also, a complementary filter and a
Kalman filter were applied to the gyroscope sensor input to eliminate noise. The
filters however are not part of our St-CSP model.

The traditional controllers of the above hardware happen to be simple and
small, even when implemented in C. We anticipate the advantages of our ap-
proach to become more apparent when the controllers are more complex. The
purpose of the current exercise is really to demonstrate that CP can have appli-
cations in real-time hardware control.

4 Improved Handling of the first Operator

Our new approach focuses on the handling of streams constructed using the
first operator. Fig. 3 contains two St-CSPs that show some uses of first

would increase the number of states in the solution automaton, and some other
uses would not. Problem 1 imposes that the first daton of x has to be less than
the first daton of y, whilst Problem 2 requires all datons of x to be less than the
first daton of y. Therefore, the constraint in Problem 1 only concerns the first
time point, whereas the effect of the constraint in Problem 2 persists indefinitely.

2 A video demonstration of the self-balancing tray in operation can be found at
http://www.youtube.com/watch?v=dT56qAZt8hI

3 A video demonstration of the inverted pendulum can be found at
http://www.youtube.com/watch?v=5GvbG3pN0vY

456 J.C.H. Lee and J.H.M. Lee

Streams x, y with alphabet [0, 2]

first x < first y

(a) Problem 1

Streams x, y with alphabet [0, 2]

x < first y

(b) Problem 2

Fig. 3. Example St-CSPs

The optimal solution automaton (Fig. 4a), in the sense of having the fewest
states, for the St-CSP in Fig. 3a has two states, whilst the optimal solution
automaton (Fig. 4b) for the St-CSP in Fig. 3b is a three-state automaton. In
fact, for the St-CSP in Fig. 3b, as the size of the alphabet of y increases, the
number of states in the optimal solution scales linearly. This is because, for each
value that first y takes, there is a different upper bound on x. Therefore, a
different state is needed for each value of first y.

Sstart

(0, 1)

(0, 2)

(1, 2)
(a, b)

(a) Problem 1

Sstart

(0, 1)

(0, 2)

(1, 2)

(0, b)

(0, b) or (1, b)

(b) Problem 2

a, b are universally quantified over the integer interval [0, 2]

Fig. 4. Optimal Solution Automata for Example Problems

The difference between the two St-CSPs is that Problem 1 has a constraint
that involves only the first time point, whereas Problem 2 has a constraint that
involves streams with first operators and also other constructions of variable
streams. These two examples demonstrate that constraints of the former kind
do not increase the solution automaton size in general, whilst constraints of the
latter kind can potentially multiply the size by a linear factor in the size of the
stream alphabet.

However, the original solving approach [8,11] produces an automaton (Fig. 5)
of linear size even for Problem 1, as a result of their normalisation rules. Stream
expressions of the form “first expr” are normalised with the introduction of
primitive next constraints (xi == next xj), which increase the size of the solution
automaton because the daton values taken by xi has to be taken by the daton
of xj at the next time point. Therefore, different states are needed to distinguish
between the different values, effectively acting as memory for the automaton.
Figure 6 shows an example of how states act as memory, where the alphabet of
xi is [0, 1] for simplicity. Each state in Fig. 6 is annotated with the last daton
value of the stream xj that it represents.

Our proposed approach therefore is designed to avoid introduction of primitive
next constraints for normalising streams with first operators, by improving the
normalisation and search procedure. Even though the proposal applies only to a

Towards Practical Infinite Stream Constraint Programming 457

Sstart

(0, 1)

(0, 2)

(1, 2)

(a, b) for all a, b ∈ [0, 2]

(a, b)

Fig. 5. Siu et al. [8,11]: Solution Automaton for first x < first y

Sstart

xj = 0

xj = 1

(0, a) for all a ∈ [0, 1]

(1, a)

(0, 0)

(1, 1)

(1, 0)(0, 1)

Fig. 6. Solution Automaton for xi == next xj

certain class of St-CSPs, we identify two practical uses for this class, which are
presented in Sect. 5.

4.1 Constraint Normalisation

We propose to relax Siu’s normal form [11]. An St-CSP is in normal form if it
contains only constraints of the following two forms.

– Primitive next constraints: xi == next xj
– Primitive pointwise constraints with no next or fby.

Note that, in our approach, constraints involving only the first temporal oper-
ator are also considered as pointwise constraints.

The normalisation of next and fby streams is largely unchanged from Siu’s
algorithm [11]. The following is our new normalisation algorithm concerning
first streams.

1. (C0 ∪ {c [next first expr]}, C1) � (C0 ∪ {c [first expr]}, C1)
2. (C0 ∪ {c [first first expr]}, C1) � (C0 ∪ {c [first expr]}, C1)
3. (C0 ∪ {c [first (expr1 fby expr2)]}, C1) � (C0 ∪ {c [first expr1]}, C1)
4. (C0 ∪ {c [first const]}, C1) � (C0 ∪ {c [const]}, C1) where const is a

constant stream.
5. (C0 ∪ {c [first next expr]}, C1) � (C0 ∪ {c [first v]}, C1 ∪ {v == next

expr}) where expr is not of the form first expr1, next expr1 or expr1 fby

expr2, and v is an auxiliary variable not in any of c [–], C0 and C1.

To calculate the alphabets of auxiliary variables, we use interval arithmetic
to construct bounds of the expression represented by the variable.

Given our new definition of normal form, the search algorithm has to be
adapted.

458 J.C.H. Lee and J.H.M. Lee

4.2 Search Algorithm

Constraint specifications are now assumed to be in the normal form defined in
the last section. The search algorithm we propose is again similar to the original
approach [8,11], but the constraints in our approach can change during search.

We now describe how we construct the set of constraints C′ of a child node
Q̂(k+1) from the set of constraints C of the parent node P̂ (k) and instantaneous

assignment τk if P̂ (k)
τk→ Q̂(k + 1). The construction of τk should have been

such that it satisfies all the primitive next constraints imposed by τk−1, i.e.
τk(xj) = τk−1(xi) for all primitive next constraints xi == next xj , and also all
primitive pointwise constraints in C. In order to construct C′, a direct copying
from C is not correct. We observe that primitive next constraints are invariant in
all shifted views of an St-CSP. It is only the primitive pointwise constraints that
may change. In particular, streams with first operators are no longer the same
when we take the shifted view of the child node Q̂(k+ 1). Such streams have to
be evaluated, meaning that all variable streams inside a first operator have to
be substituted by their assigned values from τk. The resulting stream expressions
thus contain only constant streams, pointwise operators and first operators.
Since first operators have no effect on constant streams, the expressions can
always be reduced to a constant stream by evaluating pointwise operations and
deleting first operators. We say we evaluate a constraint if and only if we
evaluate all the stream expressions with first operators in the constraint. After
evaluating a constraint with τk, we test whether it is a tautology. Since arithmetic
is not decidable in general, we only consider tautologies of the zeroth order,
i.e. those not involving universally quantified variables. If the constraint is a
tautology, it is removed from the constraint set C.

Example 1. An example is given here to illustrate the construction process. Con-
sider the St-CSP in Fig. 7a, which is normalised to the one in Fig. 7b. We con-
struct the child node Q̂(1) from the root node and the instantaneous assignment
τ0 = {(x = 0), (y = 0), (v = 2)}. Observe that given this τ0, any τ1 must obey
τ1(y) = 2 due to the primitive next constraint. The final result of C′ is {x == 0,
x < v, v == next y}:

– first x == first (x + y) is first substituted with values of τ0 and becomes
first 0 == first (0 + 0). The constraint is then evaluated into 0 == 0,
which is a tautology not involving any variables. Therefore, we remove the
constraint from C′.

– x == first y is evaluated into x == 0. Since x is still present, the constraint
is not removed from C′.

– v == next y and x < v are unchanged.

Dominance between search nodes is detected in the same way as the original
approach [8,11]. We say x is a signature stream if and only if x appears on the
L.H.S. of a primitive next constraint x == next y for some stream y. Suppose
Q̂1(k1) is a search node constructed from the instantaneous assignment τk1 and

Towards Practical Infinite Stream Constraint Programming 459

Streams x, y with alphabet [0, 2]

first x == first (x + y)
x == first y
x < next y

(a) Example St-CSP

Streams x, y, v with alphabet [0, 2]

first x == first (x + y)
x == first y
x < v, v == next y

(b) Normalised Example St-CSP

Fig. 7. Example St-CSPs Illustrating the Search Algorithm

Q̂2(k2) is another search node constructed from τk2 . Let their corresponding sets
of constraints be C1 and C2. We say that the two search nodes are equivalent
if and only if C1 is syntactically equivalent to C2 and τk1(x) = τk2 (x) for all
signature streams x. The proofs of Siu et al. [8,11] can be easily adapted to show
that the detection is sound.

The previous example also demonstrates how we remove all information about
the values taken for constraints involving only the first time point. They are
always evaluated into a tautology that we recognise. Therefore, it is impossible
for the solution automaton to have any “memory” on what values were taken,
meaning there are no distinct states distinguishing between the different values.
This achieves the reduction in automaton size we seek.

Our improvement is applicable whenever there exists a stream expression of
the form first expr that only appears in constraints involving the first time
point, and can take multiple values. The size of the solution automaton can be
reduced by an exponential factor from the original approach [8,11]. For example,
for an St-CSP with 2n streams with alphabet [0, 1] and constraints first x2i ==
first x2i+1 for 0 ≤ i ≤ n−1, our approach produces a two state automaton since
all constraints are removed after the first time point. In contrast, the original
approach [8,11] normalises the problem and produces 2n streams constrained by
primitive next constraints. There are a total of 2n valid combinations of values
taken by the streams with first operators. Therefore, considering also the start
state, an automaton of size 2n + 1 is produced.

Due to space limitation, we state without proof the soundness of our constraint
construction algorithm in the following. Recall from Sect. 2.4 that, if a parent
node P has the set of constraints C, then the constraints of a child node Q are
(C ∪ {c′}) where c′ is the constraint stating x(0) = τk(x) for all streams x and
x(i) is unconstrained for all i > 0. Since our construction algorithm takes shifted
views into account, Theorem 1 gives the equivalence of C′ and (C ∪ {c′})(1,∞)
where C′ is the result of our construction.

Theorem 1. Suppose the constraint set C′ of the shifted view of child node
Q̂(k + 1) is constructed from the constraint set C of the parent node P̂ (k) and
the instantaneous assignment τk. Then C′ = (C ∪ {c′})(1,∞) where c′ is the
constraint stating x(0) = τk(x) for all streams x and x(i) is unconstrained for
all i > 0.

460 J.C.H. Lee and J.H.M. Lee

5 Benefitting from the New Implementation

Our improvement applies only to certain usages of the first operator in an St-
CSP. In this section, we show possible uses of the first operator in applications
that can benefit from our new search algorithm.

5.1 Symmetry Breaking

The first operator can be used for breaking solution symmetry [4] in St-CSPs to
reduce search, in the same way symmetry breaking helps with solving standard
CSPs.

Symmetry breaking is the avoidance of visiting symmetric counterparts of
visited search space. Suppose a CSP has value symmetry [9] σ and variable
symmetry [9] σ′. If {x0 = d0, x1 = d1, . . . , xn = dn} is a solution of P , then {x0 =
σ(d0), . . . , xn = σ(dn)} and {xσ′(0) = d0, . . . , xσ′(n) = dn} are also solutions
respectively.

One technique for breaking value symmetry is by preassignment [7]. An anal-
ogous technique for stream constraint solving is to preassign the first daton of
streams by constraints of the form “first x == const”. This is a constraint that
only concerns the first time point. However, since the stream with the first

operator can only take one value, preassignment constraints do not increase the
sizes of solution automata produced by even the original approach [8,11].

To break variable symmetry, a lexicographical ordering of assigned values can
be imposed [5]. That is, suppose there is a fixed ordering on the set of variables.
Extra constraints are added to enforce that if x1 < x2, then d1 ≤ d2 where d1 and
d2 are the values assigned to x1 and x2 respectively. An analogous treatment with
streams is to enforce such ordering at the first time point by adding constraints
such as first x1 <= first x2 and first x2 <= first x3.

Observe that streams with first operators in these lexicographical order-
ing constraints can take multiple values in general. Therefore, our improvement
applies and produces a smaller solution automaton than the original approach
[8,11]. Given n streams with the same alphabet of size |Σ|, our solution au-

tomaton is smaller4 by a multiplicative factor
(|Σ|+n−1

n

)
, which is the number of

different valid assignments for the first datons of each stream. Section 6 includes
experimental results to show the improvement.

5.2 Sequential Planning

Ghallab et al. [6] give a framework for encoding planning problems in tradi-
tional CSPs. The framework first states a planning problem in the state variable
representation, consisting of state variables which are descriptions of the world
that can change over time, actions with preconditions and effects which cause
changes to the world, and rigid relations which describe the invariants in the

4 This calculation excludes the start state, i.e. the size of the original automaton is(|Σ|+n−1
n

)
× (|S| − 1) + 1 where |S| is the size of our automaton.

Towards Practical Infinite Stream Constraint Programming 461

world. For example, at(cat) is a state variable that holds the location of the
cat object. The move(o,a,b) action has the precondition that at(o) = a and
the effect that at(o) = b. adjacent = {(desk,wall), (desk,bed)} is a rigid
relation.

The state variable representation can then be encoded [6] as a CSP that ex-
presses a plan of length t. Each time point has an associated actiont variable,
denoting the action taken at time t. Each state variable is encoded as a con-
straint variable for every time point, for example at(cat)0, . . ., at(cat)3 for a
plan of length 3. Precondition constraints are used to enforce the preconditions
of actions. They are of the form (actiont = a) ⇒ (preconditions of a at time
t−1), such as (actiont = move(o,a,b))⇒ (at(o)t−1 = a). Similarly, there are
effect constraints of the form (actiont = a) ⇒ (effects of a at time t). Finally,
frame constraints enforce that actions do not change anything other than their ef-
fects. For example, the constraint {(actiont = move(o,a,b), has(balloon)t =
c, has(balloon)t+1 = c | c is an object}.

With a St-CSP formulation, however, a variable for each time point is no
longer needed. Only one St-CSP variable is required for each state variable,
and another St-CSP variable for the action stream as St-CSP variables inher-
ently span all time points. Precondition and effect constraints do not need to
be specified per time point either. Observe that implication can be specified
by inequality of pseudo-Boolean streams. Hence the precondition constraints
(actiont = move(o,a,b))⇒ (at(o)t−1 = a) can be specified in an St-CSP as
a single constraint next (action eq move(o, a, b)) <= at(o) eq a. It is a coinci-
dence that the inequality appears typographically in the reverse direction of the
implication symbol.

Subsequently, to ensure that the goal is achieved within t time points, a goal
constraint is added: first next next next ... next goal == 1 where there
are t next operators and goal is the pseudo-Boolean stream expression denoting
whether the goal has been achieved or not.

With traditional CSPs, the size of the specification for a t step planning
problem scales linearly with t. With St-CSPs, the size stays constant. Therefore,
the St-CSP approach achieves representational simplicity that is not possible
with the standard CSP approach. Another advantage is that, even though there
may be potentially infinitely many solutions to the St-CSP, the solution set can
be represented by a finite description, namely the solution automaton.

Example 2. The following is a simple example demonstrating the modelling tech-
nique. Suppose there is a unique, physical document to be circulated to n indi-
viduals. Only one individual may hold the document at any single time point.
We use the state variables seen(i) to denote whether individual i has seen
the document yet. The action giveTo(i) has no preconditions and the effect
that seen(i) becomes true (or 1). Using the formalism above, we get the simple
St-CSP in Fig. 8. In this example, we do not specify the length of the plan.

We can also use the first operator to specify initial conditions. For example,
it can be the case that the first individual who gets the document must be
one of senior rank, which is defined by the individual having a number smaller

462 J.C.H. Lee and J.H.M. Lee

Stream goal with alphabet [0, 1]
Stream giveTo with alphabet [0, n − 1]
Streams seen0, . . . , seenn−1 with alphabet [0, 1]

Constraints:
For each i, first goal = 0
first seeni == 0 goal >= (seen0 and . . . and seenn−1)
next seeni >= seeni or (giveTo eq i) next goal >= goal;

Fig. 8. Document Circulation Planning St-CSP

than (n − 1)/2. We introduce a constraint first giveT o < (n − 1)/2. Initial
conditions produce constraints that only involve the first time point. When an
initial condition is not strict, such as the one above, the streams with first

operators can take multiple values. In this case, our improvement applies again,
resulting in a smaller solution automaton and faster search. This shows that our
new implementation has relevance to planning problems as well.

6 Experimental Results

We compare our implementation with the original implementation [8,11] using
both the runtime and the size of the solution automaton as metrics. Experiments
are conducted on an Intel Core i7 (4 × 2.2GHz) machine with 16GB RAM.
Both solvers are set to timeout in 1 hour. Columns t and s in the results table
corresponding to the runtime in seconds and the number of states in the solution
automaton respectively. A “-” means the solver failed to solve the test case
within the time limit. We also highlight the best results in bold per test case in
the tables. Note that, our implementation also includes improvements achieved
by using better data structures than the original.

6.1 Juggling Patterns

Siu et al. [8,11] give juggling patterns generation as an application of stream
constraint solving. The St-CSP model describes the possible patterns of juggling
moves obeying physical laws, parametrised by the number b of balls being juggled
and the maximum number f of upward force units that can be applied to the
balls. For physical reasons, b ≤ f . This problem has variable symmetries. The
test cases therefore contain symmetry breaking constraints, and can demonstrate
the efficiency of our improvement.

Table 1a gives the experimental results. The notation (b, f) is used to denote
the b and f values for a test case. Our implementation performs much better
than the original solver in both metrics. The reduction in time can be as much
as 96% for the case (4, 6), which also achieves a 90% reduction in automaton
size.

Towards Practical Infinite Stream Constraint Programming 463

Table 1. Experimental Results

(a) Juggling Test Cases

Original New

(b, f) t s t s

(4, 4) 0.00 5 0.00 5

(4, 5) 2.10 481 0.12 121

(4, 6) 36.28 3601 1.27 361

(5, 5) 0.10 6 0.01 6

(5, 6) 238.41 3601 11.33 721

(6, 6) 2.10 7 0.23 7

(b) Document Circulation Test Cases

Original New

n t s t s

10 5.07 4093 1.81 1920

11 24.23 10236 4.57 3968

12 102.43 20476 11.50 7936

13 1132.53 49147 28.38 16128

14 - - 66.59 32256

6.2 Document Circulation Planning Problem

We use the document circulation example in Sect. 5.2 as a class of test cases.
The initial condition described is also included in order to demonstrate our
improvement. The number n of individuals is varied to give multiple test cases.

Table 1b gives the experimental results. It shows a significant reduction in
both the solving times and the sizes of the solution automata in all test cases.
The reduction in search time is at least 64% when n = 10 and can be as much
as 97% when n = 13. As for the sizes of the solution automata, the reduction
is at least 53% when n = 10 and can achieve 67% when n = 13. The results for
n = 14 are incomparable since the original implementation [8,11] failed to solve
the test case within 1 hour.

7 Concluding Remarks

Our contributions in this paper are four-fold. First, we present a novel applica-
tion of St-CSPs in real-time PID control. We believe this is the first application
of CSPs in real-time control on real hardware. The technique was applied to two
different pieces of hardware and achieved stable performance as demonstrated in
our video recordings. Second, we propose an improvement on the solving tech-
nique, which can lead to orders of magnitude reduction in both the search time
and the size of the solution automaton. Third, we identify symmetry breaking
and the specification of initial conditions in sequential planning problems as
good uses of our improvement. Last but not least, we provide empirical evidence
of the proposed improvement. All these takes us one step closer to deploying
infinite stream constraint programming in practice.

There is ample room for future work. Here are a few possibilities. We can in-
vestigate the relationships among model checking [3], μ-calculus [3] and St-CSPs,
as they are all related to Büchi automata. We can also extend the constraint lan-
guage with more temporal operators, for example asa (as soon as), whenever
and upon from the Lucid language [12] to increase our framework’s expressive-
ness. In addition, the link between standard CSPs and St-CSPs can be explored.
Standard CSP solving techniques may also help with solving St-CSPs.

464 J.C.H. Lee and J.H.M. Lee

Acknowledgements. We are grateful to the kind comments and suggestions by
the anonymous referees. We thank Simon Wong for building the self-balancing
tray and inverted pendulum used for our demonstrations, and Kin-Hong Wong
for his help with PID control and robotics. Last but not least, the second author
is indebted to Bill Wadge for teaching him dataflow programming and the Lucid
language 25 years ago.

References

1. Bentley, J.: Programming Pearls. Addison-Wesley (2000)
2. Büchi, J.: On a decision method in restricted second order arithmetic. In: Mac

Lane, S., Siefkes, D. (eds.) The Collected Works of J. Richard Büchi, pp. 425–435.
Springer, New York (1990)

3. Clarke, J. E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (1999)

4. Cohen, D., Jeavons, P., Jefferson, C., Petrie, K.E., Smith, B.M.: Constraint sym-
metry and solution symmetry. In: Proc. AAAI 2006, pp. 1589–1592 (2006)

5. Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Global constraints for
lexicographic orderings. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470,
pp. 93–108. Springer, Heidelberg (2002)

6. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory & Practice. Mor-
gan Kaufmann Publishers Inc. (2004)

7. Harvey, W.: Symmetry breaking and the social golfer problem. In: Proc. SymCon
2001 (2001)

8. Lallouet, A., Law, Y.C., Lee, J.H.M., Siu, C.F.K.: Constraint programming on
infinite data streams. In: Proc. IJCAI 2011, pp. 597–604 (2011)

9. Law, Y.C., Lee, J.H.M.: Symmetry breaking constraints for value symmetries in
constraint satisfaction. CONSTRAINTS 11(2-3), 221–267 (2006)

10. Minorsky, N.: Directional stability of automatically steered bodies. Journal of the
American Society for Naval Engineers 34(2), 280–309 (1922)

11. Siu, C.F.K.: Constraint Programming on Infinite Data Streams. Ph.D. thesis, De-
partment of Computer Science and Engineering, The Chinese University of Hong
Kong (2012)

12. Wadge, W.W., Ashcroft, E.A.: LUCID, the Dataflow Programming Language. Aca-
demic Press Professional, Inc. (1985)

13. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press, Cambridge (1993)

An Increasing-Nogoods Global Constraint
for Symmetry Breaking During Search�

Jimmy H.M. Lee and Zichen Zhu

Department of Computer Science and Engineering,
The Chinese University of Hong Kong,

Shatin, N.T., Hong Kong
{jlee,zzhu}@cse.cuhk.edu.hk

Abstract. Symmetry Breaking During Search (SBDS) adds conditional symme-
try breaking constraints (which are nogoods) dynamically upon backtracking to
avoid exploring symmetrically equivalents of visited search space. The constraint
store is proliferated with numerous such individual nogoods which are weak
in constraint propagation. We introduce the notion of increasing nogoods, and
give a global constraint of a sequence of increasing nogoods, incNGs. Reasoning
globally with increasing nogoods allows extra prunings. We prove formally that
nogoods accumulated for a given symmetry at a search node in SBDS and its vari-
ants are increasing. Thus we can maintain only one increasing-nogoods global
constraint for each given symmetry during search. We give a polynomial time fil-
tering algorithm for incNGs and also an efficient incremental counterpart which
is stronger than GAC on each individual nogood. We demonstrate with exten-
sive experimentation how incNGs can increase propagation and speed up search
against SBDS, its variants, SBDD and carefully tailored static methods.

1 Introduction

Symmetries are common in many constraint problems. They can be broken stati-
cally [18,1,4,11] or dynamically [3,8,19]. While there are pros and cons for each ap-
proach, the focus of the paper is on SBDS (symmetry breaking during search) [8,6] and
its variants, which add conditional symmetry breaking constraints dynamically during
search. ReSBDS [12] is adapted from SBDS that tries to break extra symmetry compo-
sitions with a small overhead when only a subset of symmetries is given.

An overhead for SBDS and ReSBDS is the addition of a large number of constraints
with weak pruning power. We observe that the symmetry breaking constraints added
for each symmetry g at a search node are nogoods that are semantically related. We
propose the notion of increasing nogoods. A global constraint (incNGs), which is log-
ically equivalent to a set of increasing nogoods, is derived. Reasoning globally with
increasing nogoods allows extra prunings. Thus we can maintain only one incNGs for
each given symmetry. Light ReSBDS adds only a subset or implied ones of the nogoods
added by ReSBDS but has a smaller overhead both in time and space. We give a polyno-
mial time filtering algorithm for incNGs and its incremental version which is stronger

� We thank the anonymous referees and Toby Walsh for their kind and insightful comments and
patience.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 465–480, 2014.
c© Springer International Publishing Switzerland 2014

466 J.H.M. Lee and Z. Zhu

than GAC on each individual. Extensive experimentations are performed to demonstrate
how incNGs can increase propagation and speed up search against SBDS, its variants,
GAP-SBDD [7] and carefully tailored static methods.

2 Background

A constraint satisfaction problem (CSP) P is a tuple (X,D,C) whereX is a finite set of
variables,D is a finite set of domains such that each x ∈ X has a D(x) andC is a set of
constraints, each is a subset of the cross product

⊗
i∈X D(i). A constraint is generalized

arc consistent (GAC) iff when a variable in the scope of a constraint is assigned any
value in its domain, there exist compatible values (called supports) in the domains of
all the other variables in the scope of the constraint. A CSP is GAC iff every constraint
is GAC. An assignment x = v assigns value v to variable x. A full assignment is a set
of assignments, one for each variable in X . A partial assignment is a subset of a full
assignment. A solution to P is a full assignment that satisfies every member of C.

A nogood is the negation of a partial assignment which cannot be contained in any
solution. Nogoods can also be expressed in an equivalent implication form. A directed
nogood ng ruling out value vk from the initial domain of variable xk is an implication of
the form (xs1 = vs1) ∧ · · · ∧ (xsm = vsm)⇒ (xk �= vk), meaning that the assignment
xk = vk is inconsistent with (xs1 = vs1) ∧ · · · ∧ (xsm = vsm). When a nogood,
ng, is represented as an implication, the left hand side (LHS) (lhs(ng) ≡ (xs1 =
vs1) ∧ · · · ∧ (xsm = vsm)) and the right hand side (RHS) (rhs(ng) ≡ (xk �= vk))
are defined with respect to the position of⇒. If lhs(ng) is empty, ng is unconditional.
From now on, we call directed nogoods simply as nogoods when the context is clear.

In this paper, we consider search trees with binary branching, in which every non-
leaf node has exactly two children. If a node P0 is in a subtree under node P1, P0 is the
descendant node of P1 and P1 is the ancestor node of P0.

We assume that the CSP associated with a search tree node is always made GAC
using an AC3-like [13] constraint filtering algorithm except our global constraint.

Here we consider symmetry as a property of the set of solutions. A solution symme-
try [20] is a solution-preserving permutation on assignments.

Symmetry breaking method m1 is stronger in nodes (resp. solutions) pruning than
method m2, denoted by m1 ,n (resp. ,s) m2, when all the nodes (resp. solu-
tions) pruned by m2 would also be pruned by m1. Symmetry breaking method m1

is strictly stronger in nodes (resp. solutions) pruning than method m2, denoted by
m1 *n (resp. *s) m2, when m1 ,n (resp. ,s) m2 and m2 �,n (resp. �,s) m1.
Note that ,n and *n imply ,s and *s respectively.

Symmetry breaking during search (SBDS) [8,6] adds constraints to a problem during
search so that after backtracking from a search node, the added constraints ensure that
no symmetric equivalent of that node is ever allowed in subsequent search. An advan-
tage is that this method can break symmetries of arbitrary kind. Partial SBDS (ParS-
BDS) [4,16] is SBDS but deals with only a given subset of all symmetries. LDSB [14]
is a further development of shortcut SBDS [8] which handles only active symmetries
and their compositions. Recursive SBDS [12] (ReSBDS) extends ParSBDS by breaking
not only the given symmetries but also some symmetry compositions.

An Increasing-Nogoods Global Constraint for Symmetry Breaking During Search 467

SBDD [3,7] is another widely used dynamic symmetry breaking method by checking
whether the current state is dominated by recorded nogoods.

3 A Global Constraint for Increasing Nogoods

A set of directed nogoods is increasing if the nogoods can form a sequence

ng0 ≡ A0 ⇒ xk0 �= vk0

ng1 ≡ A1 ⇒ xk1 �= vk1

...

ngt ≡ At ⇒ xkt �= vkt

(1)

such that (i) for any i ∈ [1, t], Ai−1 ⊆ Ai and (ii) no nogoods are implied by another.
We consider the nogoods as a set or a sequence according to the context.

Every sequence of increasing nogoods has the following form:

ng0 ≡ xs00 = vs00 ∧ · · · ∧xs0r0 =vs0r0 ⇒xk0 �= vk0

ng1 ≡ lhs(ng0) ∧ xs10 = vs10 ∧ · · · ∧xs1r1=vs1r1 ⇒ xk1 �= vk1

...
...

ngt ≡ lhs(ng0) ∧ · · · ∧ lhs(ngt−1) ∧ xst0 = vst0 ∧ · · · ∧ xstrt =vstrt⇒xkt �= vkt .
(2)

A sequence of increasing nogoods can be encoded compactly, using 3 integer lists:
I (index), E (equal) and N (not equal).

I = 〈 s00, . . . , s0r0 , k0, E = 〈 vs00 , . . . , vs0r0 ,⊥, N = 〈 ⊥, . . . ,⊥, vk0 ,
s10, . . . , s1r1 , k1, vs10 , . . . , vs1r1 ,⊥, ⊥, . . . ,⊥, vk1 ,

...
...

...
st0, . . . , strt , kt〉 vst0 , . . . , vstrt ,⊥〉 ⊥, . . . ,⊥, vkt〉

(3)

We encode in order every equality on the LHS and every disequality on the RHS of
every nogood. The lists have the same length. Consider the ith tuple (Ii, Ei, Ni) from
the 3 lists. If Ni = ⊥, then the tuple is encoding xIi = Ei on the LHS of a nogood. If
Ei = ⊥, then it is encoding xIi �= Ni on the RHS of a nogood.

Suppose we have the four nogoods

ng0 ≡ x1 �= 2,

ng1 ≡ x2 = 1⇒x3 �= 1,

ng2 ≡ x2 = 1 ∧ x4 = 1 ∧ x5 = 1⇒x3 �= 2,

ng3 ≡ x2 = 1 ∧ x4 = 1 ∧ x5 = 1 ∧ x6 = 2⇒x1 �= 1.

(4)

These nogoods are increasing because ∅ ⊆ {x2 = 1} ⊆ {x2 = 1 ∧ x4 = 1 ∧ x5 =
1} ⊆ {x2 = 1 ∧ x4 = 1 ∧ x5 = 1 ∧ x6 = 2} and none is implied by another. The 3
lists are derived as follows.

468 J.H.M. Lee and Z. Zhu

0 1 2 3 4 5 6 7
I = 〈 1 , 2 , 3 , 4 , 5 , 3 , 6 , 1 〉,
E = 〈 ⊥ , 1 , ⊥ , 1 , 1 , ⊥ , 2 , ⊥ 〉,
N = 〈 2 , ⊥ , 1 , ⊥ , ⊥ , 2 , ⊥ , 1 〉.

(5)

The 3 lists derived in (3) have the following feature.

Lemma 1. Each (Ii, Ei, Ni) in I, E,N corresponds to an equality xIi = Ei or dis-
equality xIi �= Ni, which can be considered as a variable-value pair. All pairs are
distinct.

An immediate consequence is to ensure the size of these 3 lists has an upper bound.

Theorem 1. Suppose P = (X,D,C) is a CSP with |X | = n, and I , E and N are
constructed from a sequence of increasing nogoods. The maximum size of these 3 lists
is
∑n−1

i=0 D(xi).

Next we propose a global constraint that is equivalent to these nogoods but has
stronger pruning power than each individual nogood. Suppose P = (X,D,C) is a CSP,
I , E and N are 3 lists with the same size m in the form of (3). An increasing-nogoods
global constraint incNGs(I ,E,N)(X) specifies

∀i ∈ [0,m− 1], Ni = ⊥ ∨ ((E0 = ⊥ ∨ (xI0 = E0))
∧ (E1 = ⊥ ∨ (xI1 = E1))
∧ . . .
∧ (Ei−1 = ⊥ ∨ (xIi−1 = Ei−1))⇒ xIi �= Ni)

(6)

meaning that if Ni is a non-⊥ value and all variables with indices before i in I are
assigned to the corresponding value in E when there is a non-⊥ value, value Ni will
be pruned from D(xIi). Note that incNGs(I ,E,N)(X) is a family of global constraints
parameterized by I , E and N .

Due to space limitation, we state without proof that the global constraint constructed
from a sequence of increasing nogoods is logically equivalent to the conjunction of the
increasing nogoods.

Theorem 2. Suppose 〈ng0, . . . , ngt〉 are increasing nogoods. We construct I , E and
N as in (3). Then incNGs(I ,E,N)(X) is logically equivalent to ng0 ∧ · · · ∧ ngt.

4 Deriving incNGs(I ,E,N)(X) from SBDS and Its Variants

In this section, we first introduce an adaptation of ReSBDS with a smaller overhead.
Next, we prove that constraints added by SBDS or its variants accumulated from the
root node to a search node for the same symmetry forms a set of increasing nogoods.

4.1 Light ReSBDS

Domain filtering prune values by an AC3-like [13] constraint filtering algorithm. If a
value v is pruned during the propagation of a constraint c, we say this pruning is effected
by constraint c.

An Increasing-Nogoods Global Constraint for Symmetry Breaking During Search 469

Recursive SBDS [12] (ReSBDS) uses a backtrackable set T to record all the assign-
ments whose violations can indicate that a symmetry breaking constraint is already sat-
isfied. Extra constraints would be added according to these violations. Suppose xj = a
is recorded in T since the constraint Ag ⇒ (xi �= v)g is added at node P0. Suppose
further this assignment is violated at a descendant nodeP1, i.e. a is pruned fromD(xj).
The pruning indicates thatAg ⇒ (xi �= v)g is already satisfied. This pruning is effected
either by a problem constraint or a symmetry breaking constraint. Considering the latter
case only, we propose a light version of the ReSBDS method without T as follows.

[Light ReSBDS (LReSBDS)] Suppose G is a set of symmetries. LReSBDS
always adds constraints added by ParSBDS. Once a value v is pruned from
D(xi) effected by a symmetry breaking constraint at node P0 with a partial
assignment A, symmetry breaking constraint Ag ⇒ (xi �= v)g for all g ∈ G is
added.

Here the recursive addition of constraints is done by the propagation mechanism
which stops propagation only when every variable domain does not change anymore.

Due to space limitation, we state without proof the comparison between ReSBDS
and LReSBDS.

Theorem 3. ReSBDS *n LReSBDS and ReSBDS ,s LReSBDS when given the same
set of symmetries and both use the same static variable and value orderings.

We conjecture that ReSBDS *s LReSBDS, but we have not found an example yet.

4.2 Deriving incNGs(I,E,N)(X)

In the following, by variants of SBDS, we mean ReSBDS and LReSBDS.
All the constraints added by SBDS or its variants down a search path for the same

symmetry g forms a set of increasing nogoods.

Theorem 4. Suppose G is a set of symmetries. Suppose further at a search node P1,
the constraints added by SBDS (or its variants) accumulated from root node to P1 for
symmetry g is R, where g ∈ G. R is a set of increasing nogoods.

During search, all children nodes inherit I , E and N from their parent node. Every
time a nogood is introduced by SBDS or its variants, the 3 lists are extended to record
the nogood. Supposingly, each node should post a new increasing-nogoods constraint
when a new nogood is added. We show in the following, however, that an increasing-
nogoods constraint for a symmetry g posted in a parent node will always be subsumed
by the corresponding one posted in its child node. Thus, each search node only has to
deal with one increasing-nogoods constraint for each given symmetry.

All symmetry breaking constraints added to the parent node would also be added to
the child node. It is straightforward to have the following theorem.

Theorem 5. Suppose g is a symmetry and P0 and P1 are search nodes, where P1

is a descendant of P0. Suppose P0 constructs I , E, N and P1 constructs I ′, E′,
N ′ correspondingly by SBDS (or its variants). We have incNGs(I ′,E′,N ′)(X) ⇒
incNGs(I ,E,N)(X).

470 J.H.M. Lee and Z. Zhu

To implement LReSBDS, we need to know whether the pruning is effected by prob-
lem constraints or symmetry breaking constraints. We therefore need to get access to
the filtering algorithm of the symmetry breaking constraints. This can be easily imple-
mented in the constraint filtering algorithm of incNGs for LReSBDS.

5 A Filtering Algorithm

Suppose 〈ng0, . . . , ngt〉 is a sequence of increasing nogoods. A nogood ngi is lower
than nogood ngj iff i < j, and ngj is higher than ngi.

SupposeΛ is a sequence of increasing nogoods with the current domainD. A nogood
ng is generated by Λ iff (i) ∃ng′ s.t. Λ generates ng′ and Λ ∪ {ng′} generates ng, or
(ii) we can find an x ∈ X and a subsequence 〈ngs1 , . . . , ngsp〉 of Λ where p = |D(x)|,
such that ∀v ∈ D(x), ∃j ∈ [1, p], x �= v ≡ rhs(ngsj) and ng ≡ ¬lhs(ngsp) with
rhs(ng) being the rightmost assignment in lhs(ngsp).

A sequence Λ of increasing nogoods is in reduced form iff Λ can generate no no-
goods. In the rest of the paper, we assume that Λ is always a sequence of increasing
nogoods of the form 〈ng0, . . . , ngt〉.

Theorem 6. Λ is either in reduced form or has an equivalent sequence of increasing
nogoods which is in reduced form. The size of the equivalent sequence never increases.

The reduction procedure repeatedly checks for condition (ii) to generate a new
nogood as appropriate. Assume a new nogood ng is generated fromΛ according to con-
dition (ii) and ngk is the lowest nogood in Λ such that ¬ng ⊆ lhs(ngk). Clausal reso-
lution ensures that 〈ng0, . . . , ngk−1, ng, ngk, . . . , ngt〉 is equivalent to 〈ng0, . . . , ngt〉.
As ng implies 〈ngk, . . . , ngt〉, 〈ng0, . . . , ngk−1, ng〉 is equivalent to 〈ng0, . . . , ngt〉. If
〈ng0, . . . , ngk−1, ng〉 cannot generate a new nogood, it is in reduced form. Otherwise,
we continue to generate new nogood from 〈ng0, . . . , ngk−1, ng〉.

Consider the nogoods given in (4) with D(x1) = D(x2) = D(x3) = D(x6) =
{1, 2} and D(x4) = D(x5) = {1}. Consider ng1 and ng2. Between x3 �= 1 and
x3 �= 2, one of them must be false since x3 must take a value. Thus we can generate the
nogood (¬lhs(ng1)∨¬lhs(ng2))⇔ ¬lhs(ng2), which is ¬(x2 = 1∧x4 = 1∧x5 = 1)
and can be expressed as a directed nogood ng4 ≡ x2 = 1 ∧ x4 = 1 ⇒ x5 �= 1 by
putting the rightmost assignment of lhs(ng2) to the right. Now 〈ng0, ng1, ng4〉 is a new
sequence of increasing nogoods equivalent to 〈ng0, ng1, ng2, ng3〉. Consider ng4. Do-
main of x5 is a singleton. Directed nogood ng5 ≡ x2 = 1⇒ x4 �= 1 is generated. Now
〈ng0, ng5〉 is a new sequence of increasing nogoods equivalent to 〈ng0, ng1, ng4〉. Do-
main of x4 is a singleton. Directed nogood ng6 ≡ x2 �= 1 is generated. Now 〈ng0, ng6〉
is a new sequence of increasing nogoods equivalent to 〈ng0, ng5〉. No new nogood can
be generated and 〈ng0, ng6〉 is the reduced form of 〈ng0, ng1, ng2, ng3〉.

It might happen that more than one subsequence ofΛ satisfies condition (ii). We give
the shortest nogood rule: whenever more than one nogood can be generated from Λ
according to condition (ii), we choose the shortest one to generate. In other words, we
generate using a subsequence, the highest nogood of which is the lowest in Λ.

An assignment x = v satisfies the covering condition in Λ iff x = v ∈ lhs(ngk) ∧
x = v �∈ lhs(ngk−1) ∧ (∀v′ ∈ D(x) − {v}, ∃j ∈ [0, k − 1], rhs(ngj) ≡ x �= v′). In

An Increasing-Nogoods Global Constraint for Symmetry Breaking During Search 471

other words, when an assignment x = v appears for the first time in the sequence in
the LHS of a nogood (say, ng), x �= v′ would have appeared on the RHSs of nogoods
lower than ng for all v′ ∈ D(x) except v.

For a sequence of increasing nogoods Λ in reduced form, we consider only a single
pruning condition: when the LHS of a nogood in Λ is true, its RHS is enforced to
effect value pruning.

The reduction procedure as described seems to call for scanning the sequence of
increasing nogoods repeatedly, which is inefficient. In the following, we explain how
the covering condition allows us to scan the nogood sequence only once to transform it
into reduced form.

Consider the nogoods in (4) again. If, instead,D(x5)={1, 2},ng4 in 〈ng0, ng1, ng4〉
cannot generate ng5 since condition (ii) is not met. This is because x5 = 2 does not
satisfy the covering condition. We state without proof the following theorem.

Theorem 7. Assume Γ is a new and equivalent sequence of increasing nogoods trans-
formed from Λ according to the shortest nogood rule with the current domain. Γ can
generate further new nogoods only if the assignment ¬rhs(ng) satisfies the covering
condition in Λ, where ng is the highest nogood in Γ .

Consider the nogoods in (4) again with the variable domains on page 470: D(x1) =
D(x2) = D(x3) = D(x6) = {1, 2} and D(x4) = D(x5) = {1}. We scan from ng0
and up. Assignment x2 = 1 does not satisfy the covering condition since rhs(ng0) �≡
x2 �= 2. In ng2, assignments x4 = 1 and x5 = 1 satisfy the covering condition since
they have singleton domains. Now the new nogood ng4 ≡ ¬lhs(ng2) is generated
whose RHS is x5 �= 1. Another new nogood ng5 ≡ ¬lhs(ng4) can be generated imme-
diately without rescanning from the first nogood. Since ¬rhs(ng5) ≡ x4 �= 1, another
new nogoodng6 ≡ ¬lhs(ng5) can be generated immediately. Now ¬rhs(ng6) ≡ x2 �=
1, which does not satisfy the covering condition. We can stop and 〈ng0, ng6〉 is equiva-
lent to the original sequence and in reduced form.

As a result, we only have to scan the sequence from ng0 and up. For every nogood,
we check if condition (ii) is met for nogoods from ng0 up to here. In addition, we also
check and record whether new assignments on the LHS satisfies the covering condition
or not. Once the first reduction step is launched, there is no further need to check for
condition (ii). We stop once ¬rhs(ng) does not satisfy the covering condition, where
ng is the last generated nogood.

In our filtering algorithm, the first step is to effect prunings using nogoods whose
LHSs are true under the current domain. These nogoods can then be thrown away. The
remaining nogoods still form an increasing sequence, which can be turned into reduced
form. The single pruning condition for reduced forms is still expensive to check. It turns
out that if the leftmost assignment in the LHS of the first nogood in a sequence is not
true under the current domain, we can detect pruning in the reduced form much more
efficiently. This form is easy to get.

Lemma 2. Suppose x = v in lhs(ng0) is the leftmost assignment which is not true
under the current domain and Δ is the set of assignments before x = v in lhs(ng0).
Suppose further Γ ≡ 〈ngs0 , . . . , ngst〉 is a sequence of increasing nogoods such that

472 J.H.M. Lee and Z. Zhu

∀i ∈ [0, t], lhs(ngsi) = lhs(ngi) − Δ, rhs(ngsi) = rhs(ngi). Γ is equivalent to Λ
and is the simplified version of Λ.

Suppose we have an increasing sequence with the form as given in the last lemma.
By repeated applications of the single pruning condition, we get the following result
which gives a much simplified pruning condition.

Theorem 8. SupposeΓ is the reduced form ofΛ where the first assignment in lhs(ng0)
is not true under the current domain D. A value v ∈ D(x) is pruned in Γ if Γ ≡ 〈x �=
v〉, where x �= v is an unconditional nogood.

In the following, we give an efficient filtering algorithm based on the following two
major steps: effect prunings for nogoods whose LHSs are true and transform the sim-
plified version of the remaining sequence of increasing nogoods into reduced form. We
explain our algorithm using the I , E and N encodings of Λ. Pointer α is used to index
into the 3 lists to effect prunings for nogoods whose LHSs are true.

– Pointer α is set to the largest index such that (∀i ∈ [0, α), Ei = ⊥ ∨ xIi = Ei).
Note that α points at an unsatisfied equality in lhs(ngp) − lhs(ngp−1) where p ∈
[0, t] and ngp is the lowest nogood whose LHS is not true. For all the nogoods lower
than ngp, their RHSs can be enforced to prune values.

Therefore, we examine the LHSs of remaining nogoods starting fromα. To transform
the simplified version 〈ng′p, . . . , ng′t〉 of remaining increasing nogoods 〈ngp, . . . , ngt〉
into reduced form, two pointers β and γ are used to index into the 3 lists with the
following conditions.

– Pointer β is used to find the shortest nogood generated by Λ according to condition
(ii). If a new nogood is generated, γ is then used to check whether there are extra
nogoods that can be generated according to Theorem 7 and find the last generated
nogood. If extra nogoods can be generated, β is set to γ. Initially, β is set to the
largest index such that ∀i ∈ [0, β), Ei ∈ D(xIi) ∨ (Ei = ⊥ ∧ D(xIi) �= SIi),
where SIi = {Nj|Ij = Ii, Nj �= ⊥, Nj ∈ D(xIi), j ∈ [0, i]}. The key concept is
SIi , which is the collection of all values Nj still in D(xIi) such that xIi �= Nj is
a RHS disequality that appears before or at the nogood encoded at i. Note that β
points to either

(a). an equality in lhs(ngq) − lhs(ngq−1) where q ∈ [0, t], in which case Eβ �=
⊥ and Eβ �∈ D(xIβ), i.e. ngq is the lowest nogood whose LHS is false.
All nogoods ngi where t ≥ i ≥ q are satisfied. We only need to enforce
〈ng′p, . . . , ngq−1〉. No new nogoods can be generated and this increasing no-
goods is in reduced form. We say β satisfies condition (a); or

(b). the disequality in rhs(ngq) where q ∈ [0, t], in which case D(xIβ) = SIβ , i.e.
ngq with rhs(ngq) ≡ xkq �= vkq is the lowest nogood such that all values in
the domain of xkq (= xIβ) have appeared in rhs(ngj) for all j ∈ [0, q]. Now
new nogood ng ≡ ¬lhs(ngq) is generated and is the shortest one. Increasing
nogoods 〈ng′p, . . . , ng〉 are formed. We say β satisfies condition (b).

An Increasing-Nogoods Global Constraint for Symmetry Breaking During Search 473

– If β satisfies condition (b), the first reduction step is launched since the new nogood
ng is generated. Pointer γ is set in such a way that all equalities xIi = Ei for
i ∈ [γ, s], where ¬rhs(ng) ≡ xIs = Es, satisfy the covering condition. Pointer
γ is set to the smallest index such that (∀i ∈ (γ, β), (Ei = ⊥) ∨ (D(xIi) =
SIi ∪ {Ei})) ∧ D(xIγ) = SIγ ∪ {Eγ}. Note that γ points to the disequality in
rhs(ng′) where ¬lhs(ng′) is the highest nogood of increasing nogoods in reduced
form (e.g. for nogoods in (4) with variable domains on page 470, ng′ is ng5 and
¬lhs(ng′) is ng6). If γ takes a value, new nogoods can be generated and β is set to
γ. Otherwise, we do not need to update β. Now β still satisfies condition (b).

After updating β according to the above, we have found the increasing nogoods in
reduced form. If β still satisfies condition (b), i.e. new nogoods have been generated,
we need to check whether values can be pruned according to Theorem 8.

Consider the nogoods given in (4) with variable domains on page 470. If
incNGs(I ,E,N)(X) has m as the size of the 3 lists, we do propagation in the following
ways.

1. Pointer α = 0, β = m = 3 and γ =⊥.
2. To find α, we scan with i from 0 to m− 1.

– i = 0: prune N0 from D(x1) (= D(xI0)).
– i = 1: E1 �= ⊥ and E1 has not been assigned to x2(= xI1). Stop scanning and

set α = 1.
3. To find β, we scan with i from α to m− 1.

– i = 1: E1 ∈ D(x2) (= D(xI1)).
– i = 2: E2 = ⊥ but value 1 in domain D(x3)(= D(xI2)) is not in Nj for all
j ≤ i and Ij = I2.

– i = 3: E3 ∈ D(x4) (= D(xI3)).
– i = 4: E4 ∈ D(x5) (= D(xI4)).
– i = 5: D(xI5) = D(x3) ⊆ {1, 2} = {N2, N5} = S3 since I2 = I5 = 3. Stop

scanning and set β = 5. Now β satisfies condition (b).
4. Pointer β satisfies condition (b), the first reduction step is launched. To find γ, we

scan with i from α to β − 1.
– i = 1: E1 ∈ D(x2) (= D(xI1)) but S2 ∪ {E1} �= D(x2).
– i = 2: E2 = ⊥.
– i = 3: E3 ∈ D(x4) (= D(xI3)) and S4 ∪ {E3} = D(x4), set γ = 3.
– i = 4: E4 ∈ D(x5) (= D(xI4)) and S5 ∪ {E4} = D(x5), γ is still 3.

5. Pointer β satisfies condition (b) and γ �= ⊥, set β = γ. Now β points to the
disequality in RHS of the newly generated nogood ng′ ≡ x2 = 1 ⇒ x4 �= 1 and
ng ≡ ¬lhs(ng′) is the final generated nogood. Since lhs(ng) is empty, value 1 is
pruned from D(x2). The propagation is done.

After the propagation, D(x1) = {1}, D(x2) = {2}, D(x3) = {1, 2}, D(x4) =
D(x5) = {1}, D(x6) = {1, 2}. GAC on individual nogoods can only prune value 2
from D(x1). Our filtering prunes also 1 from D(x2). The step to find β and γ can be
done at the same time. We only need to check whether β should be set to γ or not.

SupposeP = (X,D,C) is a CSP where the size ofX is n. We give the filtering algo-
rithm for an incNGs(I ,E,N)(X) as follows. For the moment, please ignore highlighted
codes in frame boxes, which are reserved for the incremental version of the algorithm.

474 J.H.M. Lee and Z. Zhu

Algorithm 1. InGEnforce()

Require:
X , D, I , E, N
m: the size of I , E and N
α = 0

β = m �β =
∑n−1

i=0 D(xi)

γ =⊥
p = 0: reason of why β is updated

1: if m = 0 then
2: return ENTAILED;
3: end if
4: UpdateAlpha();

5: UpdateBeta();
6: if α = β then
7: if p = 1 then
8: return ENTAILED;
9: end if

10: if p = 2 then
11: return FAILED;
12: end if
13: end if
14: if p = 2 then
15: return CheckE();
16: end if

Algorithm 1 is the top level of the filtering algorithm. This algorithm is called when-
ever the domain of a variable in X is modified or I , E and N are extended. The pointer
α is initialized to 0, β is initialized to the size of the 3 lists and γ is set to ⊥. Integer
variable p tells the reason of why β is updated, i.e. β satisfies which condition. If the 3
lists are empty (Lines 1-3), the constraint is automatically ENTAILED, which means
the constraint can be disposed. Line 4 calls the function UpdateAlpha() to update the
pointer α. Line 5 calls the function UpdateBeta() to update the pointer β according to
shortest nogood rule and Theorem 7. Lines 6-13 check whether α = β or not. If it is
true and β is updated as a result of condition (a), this constraint is ENTAILED since
future pruning can take place only between α and β − 1. If the two pointers are equal
and β is updated because of the condition (b), this constraint is FAILED since LHS of
nogood at α (= β) is satisfied but the negation of the LHS of this nogood is a nogood.
Thus the current node should fail. Lines 14-16 calls the function CheckE() to check
whether the last generated nogood satisfies the condition in Theorem 8.

In the following, Prune(v, x) prunes value v fromD(x). While x.assigned(v) checks
whether x is assigned with value v, x.in(v) checks whether v ∈ D(x) and x.size()
returns |D(x)|. We assume the last three functions have constant time complexity.

Algorithm 2. UpdateAlpha()

1: int i = 0; �int i = α;

2: while i < m �and i < β do

3: if Ei = ⊥ then
4: Prune(Ni,xIi);
5: else
6: if ¬xIi .assigned(Ei) then

7: break;
8: end if
9: end if

10: i = i+ 1;
11: end while
12: α = i;

Algorithm 2 updates α. It starts scanning from index i = 0, and stops only when xIi
is not assigned with non-⊥ value Ei (lines 6-8), in which case α is set to i (line 12).
During scanning, if Ei = ⊥, since the LHS of the nogood at this point is true, Ni can
be pruned from D(xIi) (lines 3-4).

An Increasing-Nogoods Global Constraint for Symmetry Breaking During Search 475

Algorithm 3. UpdateBeta()

1: int i = α;
2: int S[n];
3: for each j ∈ [0, n − 1] do
4: S[j] = 0;
5: end for
6: while i < m �and i < β do

7: if xIi .in then(Ei)
8: if γ �=⊥ ∧S[Ii] �= xIi .size()-1 then
9: γ =⊥;

10: else
11: if γ =⊥ ∧S[Ii] = xIi .size()-1 then
12: γ = i;
13: end if
14: end if
15: continue;
16: end if
17: if Ei �= ⊥ then
18: if ¬xIi .in(Ei) then
19: p = 1;

20: break;
21: end if
22: else
23: if xIi .in(Ni) then
24: S[Ii] + +;
25: end if
26: if S[Ii] = xIi .size() then
27: p = 2;
28: break;
29: end if
30: end if
31: i = i+ 1;
32: end while
33: if i �= m then
34: if p = 2 ∧ γ �=⊥ then
35: β = γ;
36: else
37: β = i;
38: end if
39: end if

Algorithm 3 updates β. As β ≥ α, the scan starts from α. We use an array S[], so
that S[i] records the number of encountered values during scanning for each variable xi
in the disequalities on the RHS of nogoods. S[i] does not count values already pruned
from the domain of xi (lines 23-25). Lines 7-16 updates γ. Lines 8 and 9 reset γ to ⊥ if
the covering condition is not satisfied. Lines 11-13 set γ to i if γ is ⊥ and the covering
condition is satisfied. Lines 17-21 check if scanning should stop due to condition (a) and
set the reason p for updating β, before updating β in lines 33-39. Lines 26-29 check if
scanning should stop due to condition (b) and set the reason p for updating β, before
updating β in lines 33-39. If the scanning is stopped due to condition (b) and γ is a
non-⊥ value (line 34), β is set to γ (line 35). Or else, β is set to the interrupted i.

Algorithm 4. CheckE()

1: int i = β − 1;
2: while i > α do
3: if Ei �= ⊥ then
4: break;
5: end if
6: i = i − 1;

7: end while
8: if i = α then
9: Prune(Eα,xIα);

10: return ENTAILED;
11: end if
12: return CONSISTENT;

If β is updated because of condition (b), Algorithm 4 is called. Lines 2-7 first check
whether there exists non-⊥ value in E from α+ 1 to β − 1. If yes (line 12), xIα = Eα

must be in the LHS of the last generated nogood which does not satisfy the condition in

476 J.H.M. Lee and Z. Zhu

Theorem 8. This constraint is CONSISTENT means that the domain filtering is done.
Now the nogoods between α and β consist of the increasing nogoods in reduced form.
If not (lines 8-11), value Eα is pruned from its corresponding variable’s domain since
xIα �= Eα is the only nogood in the increasing nogoods in reduced form. Now this
constraint is ENTAILED as β = α.

We do not have an exact characterization on Algorithm 1’s consistency level yet, but
it is stronger than GAC on individual nogoods and has a polynomial time complexity.

Theorem 9. Algorithm 1 terminates and enforces a consistency on incNGs(I ,E,N)(X)
that is strictly stronger than GAC on each individual nogood.

Theorem 10. Algorithm 1 runs in O(db|X |) for constraint incNGs(I ,E,N)(X), where
d is the largest domain size and b is the cost of pruning a value from a variable domain.

6 Incremental Filtering Algorithm

Though polynomial, Algorithm 1 is expensive to execute from scratch at every invoca-
tion of the global constraint during (a) constraint propagation within an AC3-like algo-
rithm and (b) adding new increasing nogoods during search (advancing to child nodes
during search and generating extra nogoods during propagation in recursive methods).
We can make Algorithm 1 incremental using the following theorems.

Theorem 11. For a global constraint incNGs(I ,E,N)(X), whenever Algorithm 1 is
invoked during AC3-like constraint filtering algorithm, the two pointers α and β can be
carried over from the last invocation.

Theorem 12. Suppose I , E and N are constructed from increasing nogoods Λ.
Suppose further that I ′, E′ and N ′ are constructed from increasing nogoods
〈ng0, . . . , ngt, ngt+1〉. The two pointers α′ and β′ for enforcing incNGs(I ′,E′,N ′)(X)
can be initialized to the values of α and β respectively after domain filtering of
incNGs(I ,E,N)(X) with Algorithm 1.

The incremental filtering algorithm can be obtained by adding the highlighted ones
marked by � and substituting codes by ones marked by � to the right. Note that at the
start of Algorithm 1, the initialization for α, β, γ and p is only for the root node. In
subsequent nodes, these four are initialized from the ones after the latest propagation or
from the ones of the previous global constraint after its domain filtering.

7 Experiments

This section gives four experiments to demonstrate empirically how globalized SBDS,
ParSBDS and ReSBDS can improve the runtime substantially over their original ver-
sions. We also implemented the global version of LReSBDS but not the one using de-
composed nogooods. When available, we compare our results also against state of the
art static methods. All experiments are conducted using Gecode Solver 4.2.0 on Xeon
E5620 2.4GHz processors.

SBC uses the static method by Puget [17] to break all variable symmetries and the
value symmetries in all-different problems. Doublelex [4] lexicographically orders the
rows and columns in increasing order. SBDS uses SBDS to break all symmetries. ParS-
BDS and ReSBDS handle the given symmetries by ParSBDS and ReSBDS respectively.

An Increasing-Nogoods Global Constraint for Symmetry Breaking During Search 477

For matrix problems, ReSBDS[c] is given as symmetries that adjacent rows (columns) are
interchangeable and also cartesian-productof adjacent row symmetries and adjacent col-
umn symmetries. The globalized version of SBDS, ParSBDS, ReSBDS and ReSBDS[c]
are denoted by [incNGs]S , [incNGs]P , [incNGs]R and [incNGs]R[c] respectively. By
using the globalized version of LReSBDS and give the same symmetries as ReSBDS and
ReSBDS[c] respectively, we have [incNGs]LR and [incNGs]LR[c]. For decomposed no-
good implementation, we use clause constraint whose propagation uses two-watched lit-
erals [15,21]. For GAP-SBDD and GAP-SBDS, we do not have their implementation in
Gecode, and provide an indirect but machine-independent comparison using results in
the literature. LDSB is discarded in the comparison here since ReSBDS is substantially
more efficient [12]. Unless otherwise specified, we search with input variable order and
minimum value order.

In all experiments, we show only the runtime to find all solutions. Runtime is limited
to 1 hour. The number of backtracks and number of solutions are in line with the theo-
retical predictions. We did not report them only because of lack of space. All results are
shown in graphical form for easy visualization. The horizontal axis shows instances,
and the vertical axis shows the runtime in seconds. N -Queens instances are sorted by
size. In the other three experiments, instances are sorted by the runtime of static meth-
ods. The last two experiments use log graph for better visualization. Dashed lines give
the results of methods using decomposed nogoods and solid lines are for methods using
global constraints. Solid lines with ’+’ shows the results for static methods.

7.1 N -Queens

We model the N -Queens problem the standard way using one variable per column. All
8 geometric symmetries are given to SBDS. ParSBDS and ReSBDS are only given the
two generators rx (reflection on the vertical axis) and d1 (reflection on the diagonal),
which can generate all 8 geometric symmetries.

Fig. 1 shows the results. For complete methods, [incNGs]S is up to 1.82 times faster
than SBDS, and [incNGs]S has up to 434825 less failures than SBDS. For partial sym-
metry breaking methods, only two symmetries are given and these two symmetries

14 15 16 17
0

200

400

600

800

1000

1200

1400

Instance (N)

T
im

e
 (

S
e

co
n

d
s)

SBDS
[incNGs]

S

ParSBDS
[incNGs]

P

ReSBDS
[incNGs]

R
[incNGs]

LR

Fig. 1. N -Queens problem

3,3 5,2 3,4 4,3 6,2
0

500

1000

1500

2000

2500

3000

3500

4000

Instance (n,m)

T
im

e
 (

S
e

c
o

n
d

s
)

SBC
SBDS
[incNGs]

S

ParSBDS
[incNGs]

P

ReSBDS
[incNGs]

R
[incNGs]

LR

Fig. 2. The Graceful Graph problem

478 J.H.M. Lee and Z. Zhu

would be broken high up in the search tree. For partial SBDS, [incNGs]P is up to 1.23
times faster than ParSBDS. For ReSBDS, [incNGs]R improves only a little over ReS-
BDS due to the overhead to get to know when I ,E andN are updated. And [incNGs]LR

is the most efficient and faster than ReSBDS. Note that [incNGs]S is complete and
comparable with ReSBDS and [incNGs]LR. This shows how the global constraint can
help to prune all symmetric solutions in a competitive manner.

7.2 Graceful Graph

The graceful graph problem is an all-different problem [16]. A Kn × Pm graph has
intra-clique permutations, inter-clique permutations, complement symmetry, and their
combinations. ParSBDS is given n ∗ (n− 1)/2 symmetries to describe any two nodes
in each clique being permutable simultaneously and two more symmetries to describe
inter-clique permutation and complement symmetry. ReSBDS is given (n − 1) sym-
metries to describe simultaneous permutation of adjacent nodes in each clique and also
one inter-clique permutation and one complement symmetry.

Fig. 2 shows the results. For complete methods, [incNGs]S runs up to 4.25 times
faster than SBDS, and [incNGs]S has up to 169286 less failures than SBDS. This shows
the global constraint improves our complete method dramatically. For ParSBDS and
ReSBDS, [incNGs]P and [incNGs]R are up to 1.13 and 1.09 times faster than ParS-
BDS and ReSBDS respectively as only a small subset of symmetries are given. Using
LReSBDS, [incNGs]LR is up to 1.16 times faster than ReSBDS and is even up to 1.71
times faster than SBC. Literature results [17] show that SBC is up to 15 times faster than
GAP-SBDD and GAP-SBDS. This demonstrates LReSBDS with global constraints can
beat GAP-SBDD, GAP-SBDS and carefully tailored static methods.

7.3 Balanced Incomplete Block Design

A BIBD instance can be determined by its parameters (v, k, λ). We use the 0/1
model [5], which has row and column symmetries since we can permute any rows or
columns freely without affecting any of the constraints. ParSBDS is given the symme-
try that any two rows (columns) are interchangeable. ReSBDS is given interchangeabil-
ity of adjacent rows (columns). All are solved with the maximum value heuristic.

Fig. 3 shows the results for BIBD. For partial SBDS, [incNGs]P runs up to 2.26
times faster than ParSBDS. For ReSBDS, the global constraint cannot help much due
to the overhead to get to know when I , E and N are updated. Note that [incNGs]R[c]
is even 1.58 times slower than ReSBDS[c]. For light ReSBDS, however, [incNGs]LR

and [incNGs]LR[c] are up to 1.46 and 1.32 times faster than ReSBDS and ReSBDS[c]
respectively. The light version improves a lot over ReSBDS. Note that [incNGs]LR[c]
is even 3.03 times faster than DoubleLex. The gains come from the advantage of LReS-
BDS by posting more symmetries and the efficiency of the global constraint. Literature
results [7,6] show that GAP-SBDD is about 4 times faster than GAP-SBDS and Dou-
bleLex is at least 10 and up to 38 times faster than GAP-SBDS, we can conclude indi-
rectly that [incNGs]LR[c] can beat GAP-SBDD and GAP-SBDS dramatically.

An Increasing-Nogoods Global Constraint for Symmetry Breaking During Search 479

7,3,5 10,5,4 15,5,2 7,3,6 10,3,2 7,3,7 8,4,6 7 3 8 8 4 7
10

0

10
1

10
2

10
3

Instance (v,k,λ)

T
im

e
 (

S
e

c
o

n
d

s
)

DoubleLex
ParSBDS
[incNGs]

P

ReSBDS
[incNGs]

R
[incNGs]

LR

ReSBDS[c]
[incNGs]

R
[c]

[incNGs]
LR

[c]

Fig. 3. The BIBD problem

2,3,3,11 2,4,4,16 2,3,3,12 2,3,3,13 2,3,5,25 2,3,3,14 2,3,3,15

10
1

10
2

10
3

Instance (t,k,g,b)

T
im

e
 (

S
e

c
o

n
d

s
)

DoubleLex
ParSBDS
[incNGs]

P

ReSBDS
[incNGs]

R
[incNGs]

LR

ReSBDS[c]
[incNGs]

R
[c]

[incNGs]
LR

[c]

Fig. 4. The CA problem

7.4 Cover Array Problem (CA)

The Cover Array Problem CA(t, k, g, b) is prob045 in CSPLib [9]. We use the inte-
grated model [10], which channels an original model and a compound model. ParSBDS
and ReSBDS are given the same set of symmetries as in BIBD.

Fig. 4 shows the results. For dynamic methods, [incNGs]P , [incNGs]R and
[incNGs]R[c] run up to 2.91, 1.46 and 1.37 times faster than the decomposed ones,
and have up to 3014, 3938 and 33383 less failures than the decomposed ones. While
[incNGs]LR and [incNGs]LR[c] are up to 1.92 and 1.91 times faster than ReS-
BDS and ReSBDS[c] respectively. Note that for the case CA(2, 4, 4, 16), ReSBDS[c],
[incNGs]R[c] and [incNGs]LR[c] leave 2250, 2076 and 2100 solutions respectively.
This demonstrates that with global constraint, ReSBDS prunes more solutions than
LReSBDS, and our domain filtering on global constraint can prune more solutions than
GAC on each individual nogood. When compared with static methods, the best one
[incNGs]LR[c] runs up to 1.72 times faster than DoubleLex. This shows how LReS-
BDS with global constraint is competitive against static methods.

8 Conclusion and Future Work

Our contributions are five-fold. First, based on the special semantics and structures
of increasing nogoods, we propose a global constraint with equivalent meaning but
stronger pruning power. Second, we demonstrate that nogoods added by SBDS and its
variants are increasng so that the methods can be adapted with the global constraints.
Third, benefitting from the global constraint, we devise a light version of ReSBDS with
smaller space and time overheads. Fourth, we give a polytime filtering algorithm for
the increasing-nogoods constraint, which also has an efficient and simple incremental
version. Fifth, extensive experimentations confirm the efficiency of our proposals.

ReSBDS has the advantage that a substantial number of symmetries can be broken
with only a small given subset of them. The increasing-nogoods global constraint reduce

480 J.H.M. Lee and Z. Zhu

the overhead of SBDS and its variants dramatically, making it possible to handle larger
set of given symmetries which in turn can prune more search space.

Nogood learning is a general technique for improving backtracking search [2]. We
envision that the increasing-nogoods constraint is applicable to other scenarios in CP,
in addition to symmetry breaking.

References

1. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry breaking predicates for search
problems. In: KR 1996, pp. 148–159 (1996)

2. Dechter, R.: Enhancement schemes for constraint processing: Backjumping, learning, and
cutset decomposition. Artificial Intelligence, 273–312 (1990)

3. Fahle, T., Schamberger, S., Sellmann, M.: Symmetry breaking. In: Walsh, T. (ed.) CP 2001.
LNCS, vol. 2239, pp. 93–107. Springer, Heidelberg (2001)

4. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.: Breaking
row and column symmetries in matrix models. In: Van Hentenryck, P. (ed.) CP 2002. LNCS,
vol. 2470, pp. 187–192. Springer, Heidelberg (2002)

5. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Matrix modelling. In:
ModRef 2001 (2001)

6. Gent, I.P., Harvey, W., Kelsey, T.: Groups and constraints: Symmetry breaking during search.
In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 415–430. Springer, Heidelberg
(2002)

7. Gent, I.P., Harvey, W., Kelsey, T., Linton, S.: Generic SBDD using computational group
theory. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 333–347. Springer, Heidelberg
(2003)

8. Gent, I., Smith, B.: Symmetry breaking in constraint programming. In: ECAI 2000, pp. 599–
603 (2000)

9. Gent, I.P., Walsh, T.: CSPlib: A benchmark library for constraints. In: Jaffar, J. (ed.) CP 1999.
LNCS, vol. 1713, pp. 480–481. Springer, Heidelberg (1999)

10. Hnich, B., Prestwich, S.D., Selensky, E., Smith, B.M.: Constraint models for the covering
test problem. Constraints, 199–219 (2006)

11. Law, Y.C., Lee, J.: Global constraints for integer and set value precedence. In: Wallace, M.
(ed.) CP 2004. LNCS, vol. 3258, pp. 362–376. Springer, Heidelberg (2004)

12. Lee, J., Zhu, Z.: Boosting SBDS for partial symmetry breaking in constraint programming.
In: AAAI 2014 (to appear, 2014)

13. Mackworth, A.: Consistency in networks of relations. Artificial Intelligence, 99–118 (1977)
14. Mears, C., de la Banda, M.G., Demoen, B., Wallace, M.: Lightweight dynamic symmetry

breaking. Constraints, 1–48 (2013)
15. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an

efficient sat solver. In: DAC 2001, pp. 530–535 (2001)
16. Petrie, K.E., Smith, B.M.: Symmetry breaking in graceful graphs. In: Rossi, F. (ed.) CP 2003.

LNCS, vol. 2833, pp. 930–934. Springer, Heidelberg (2003)
17. Puget, J.: Breaking symmetries in all different problems. In: IJCAI 2005, pp. 272–277 (2005)
18. Puget, J.F.: On the satisfiability of symmetrical constrained satisfaction problems. In: Ko-

morowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 350–361. Springer, Heidelberg
(1993)

19. Roney-Dougal, C.M., Gent, I.P., Kelsey, T., Linton, S.: Tractable symmetry breaking using
restricted search trees. In: ECAI 2004, pp. 211–215 (2004)

20. Rossi, F., Van Beek, P., Walsh, T.: Handbook of constraint programming. Elsevier (2006)
21. Zhang, L., Malik, S.: The quest for efficient boolean satisfiability solvers. In: Brinksma, E.,

Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 17–36. Springer, Heidelberg (2002)

Memory-Efficient Tree Size Prediction
for Depth-First Search in Graphical Models

Levi H.S. Lelis1, Lars Otten2, and Rina Dechter3

1 Departamento de Informática, Universidade Federal de Viçosa, Brazil
2 Google Inc., USA

3 Department of Computer Science, University of California, Irvine, USA

Abstract. We address the problem of predicting the size of the search tree
explored by Depth-First Branch and Bound (DFBnB) while solving optimiza-
tion problems over graphical models. Building upon methodology introduced by
Knuth and his student Chen, this paper presents a memory-efficient scheme called
Retentive Stratified Sampling (RSS). Through empirical evaluation on probabilis-
tic graphical models from various problem domains we show impressive predic-
tion power that is far superior to recent competing schemes.

1 Introduction

The most common search scheme for Graphical Models optimization tasks, such as
MAP/MPE or Weighted CSP, is Depth-First Branch-and-Bound (DFBnB). Its use for
finding both exact and approximate solutions was extensively studied in recent years
[1–4]. Our paper addresses the general question of predicting the size of the DFBnB
explored search tree, focusing on graphical models optimization tasks.

DFBnB [5] explores the search space in a depth-first manner while keeping track of
the current best-known solution cost, denoted cbound, which can be initialized with the
value of a solution derived by some preprocessing (e.g., local search). DFBnB uses an
admissible heuristic function h(·), i.e., a function that never overestimates the optimal
cost-to-go for every node, and is guided by an evaluation function f(n) = g(n)+h(n) ,
where g(n) is the cost of the path from the root node to node n. Since f(n) is an
underestimate of the cost of an optimal solution that goes through n, whenever f(n) ≥
cbound, n is pruned.

Often the user of search algorithms such as DFBnB does not know a priori how long
the search will take to finish solving a problem instance: it could take seconds, hours or
years. This is due to a series of factors, including the strength of the heuristic guiding the
search. Prediction is particularly elusive for graphical models where solvers originate
in diverse communities (e.g., CP, UAI, OR) and employ different principles for (a)
traversing the search space, (b) for generating the heuristic lower bound function, and
(c) for pruning nodes. In addition to estimating the algorithm’s running time, estimates
of expanded search tree size could be used to decide which heuristic function to use to
solve a particular problem instance: should one use the slow but accurate heuristic or
the fast but inaccurate one? (e.g., by controlling the i-bound in the case of the mini-
bucket heuristics [1]). Or, in the context of parallelizing search, a prediction scheme

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 481–496, 2014.
c© Springer International Publishing Switzerland 2014

482 L.H.S. Lelis, L. Otten, and R. Dechter

could facilitate load-balancing by partitioning the problem into subproblems of similar
EST sizes [6].

Our approach in this paper builds upon the Stratified Sampling (SS) scheme [7, 8].
Knuth [7] proposed a method for estimating the running time of tree search methods by
quickly estimating the size of the expanded search tree (EST). Under the reasonable
assumption that the time required to expand a node is constant throughout the EST , an
estimate of the EST ’s size provides an estimate of the algorithm’s running time.

Prediction schemes were investigated in the past primarily in the context of path-
finding problems. Specifically, various methods have been developed for estimating
EST size of search algorithms such as IDA* [9]. Examples include Partial Backtrack-
ing by Purdom [10] and SS by Chen [8], both based on the seminal work of Knuth [7];
other related methods include [11–14]. All of the above work by sampling a small
portion of the EST and extrapolating from it. None of those earlier works addressed
graphical models tasks which unlike path-finding problems all their solution nodes ap-
pear are at a fixed finite depth (i.e., the number of variables). Also, none of these earlier
works considered branch and bound search schemes.

Recently Lelis et al. [15] initiated investigating the usage of SS for estimating the
DFBnB EST size and evaluated its effectiveness on graphical models. They observed
that methods such as SS make the implicit stable children assumption, namely that
the set of children of node n in an EST can be determined given only the path from
the root of the EST to n. Crucially, however, this property does not hold in the con-
text of DFBnB where pruning depends on the upper bound cbound that is updated
dynamically throughout the search. Lelis et al. thus introduced a new SS scheme called
Two-Step Stratified Sampling (TSS), described in more detail later, that mitigates this
problem [15]. They also provided an empirical evaluation of their approach by looking
at a specific DFBnB solver applied to a collection of typical graphical models bench-
marks from the probabilistic domain.

Contributions. TSS presented a substantial advance to the DFBnB search space predic-
tion task, but it was also shown to be limited by its memory requirements. As a result,
TSS can produce poor estimates or, in some cases, no estimates at all. In this paper
we introduce Retentive Stratified Sampling (RSS) that addresses differently the stable
children property of DFBnB, resulting in a far more memory-efficient scheme. Namely,
instead of memorizing every node expanded during sampling, RSS retains only the en-
countered solution paths. We show that this scheme is asymptotically unbiased.

We test RSS empirically on optimization benchmarks over probabilistic graphical
models [16] using DFBnB guided by the mini-bucket heuristic [1, 17] (BBMB), which
has been extended into a competition-winning solver [18, 19]. We compare RSS with
TSS and WBE [20], over prediction tasks from 3 problem domains in graphical models.
Our empirical results show that RSS overcomes the memory limitation of TSS and
yields estimates far superior to any of the currently competing methods of its kind.

2 Background

Given a directed and implicitly defined full search tree representing a state-space prob-
lem [21], we are interested in estimating the size of the subtree expanded by a search

Memory-Efficient Tree Size Prediction for Depth-First Search in Graphical Models 483

algorithm seeking an optimal solution. We call the former the underlying search tree
(UST) and the latter the Expanded Search Tree (EST). Let S(s∗) = (N,E) be a tree
representing such an EST rooted at s∗. For each n ∈ N child(n) = {n′|(n, n′) ∈ E}
defines the node-child relationship in the EST . The prediction task is to estimate the
size of N without fully expanding the EST .

2.1 The Knuth-Chen Method

Knuth [7] presented a method to estimate the size of a tree by repeatedly performing
a random walk from the root. Under the assumption that all branches have a structure
equal to the path visited by the random walk, one branch is enough to estimate the
size of the tree. Knuth observed that his method, while guaranteed to converge to the
right value, is not effective when the tree is unbalanced. Chen [8] proposed Stratified
Sampling (SS), which improves upon Knuth’s method with a stratification of the tree
through a type system to reduce the variance of the sampling process.

Definition 1 (Type System). Let S(s∗) = (N,E) be a tree rooted at s∗, and T a
function from N to a finite set of numerical types {t1, . . . , tn}. We call T a type system,
and it yields a partition of N into T = {t1, . . . , tn} where ti = {s ∈ N |T (s) = ti}.
We abuse notation: ti denotes a type and also the set of nodes in N that map to type ti.

A type system can be based on any property of the nodes in the search tree. For
example, Zahavi et al. [12] used a type system that accounts for the f -value of the
nodes to make predictions of the size of the IDA* EST . That is, nodes n and n′ have
the same type if they have the same f -value. Still in the context of IDA* predictions,
Lelis et al. [22] used variations of Zahavi et al.’s type system in which they also account
for the f -value of the nodes in the neighborhood of n when computing n’s type. In this
paper we use the type system introduced by Lelis et al. [15], which is also based on the
f -value; we describe such type system in Section 4.1 below.

Chen’s Stratified Sampling (SS) is a general method for approximating any function
of the form

ϕ(s∗) =
∑

n∈S(s∗)

z(n) ,

where z is any function assigning a numerical value to a node. ϕ(s∗) represents a
numerical property of the search tree rooted at s∗. For instance, if z(n) = 1 for all
n ∈ S(s∗), then ϕ(s∗) is the size of the tree.

Instead of traversing the entire tree and summing all z-values, SS assumes subtrees
rooted at nodes of the same type will have equal values of ϕ and so only one node
of each type, chosen randomly, is expanded. In practice, a type system is good for a
function ϕ(s∗) if nodes having identical type root subtrees with similar values of ϕ.
Clearly, we wish to have a good type system with a small number of types. If we have a
type for each node, then the type system will be good in the above sense, yet completely
ineffective.
SS estimates ϕ(s∗) as follows. First, it samples the tree rooted at s∗ and returns a set

A of representative-weight pairs, with one such pair for every unique type seen during

484 L.H.S. Lelis, L. Otten, and R. Dechter

Algorithm 1. Stratified Sampling, a single probe
Input: tree root s∗, type system T , initial upper bound cbound.
Output: a sampled tree ST specified by a set A which is divided into subsets, where A[i] is the

set of pairs 〈s, w〉 for the nodes s ∈ ST expanded at level i.
1: initialize A[0] ← {〈s∗, 1〉}
2: i ← 0
3: while i is less then search depth do
4: for each element 〈s, w〉 in A[i] do
5: for each child s′′ of s do
6: if h(s′′) + g(s′′) < cbound then
7: if A[i+ 1] contains an element 〈s′, w′〉 with T (s′) = T (s′′) then
8: w′ ← w′ + w
9: with probability w/w′, replace 〈s′, w′〉 in A[i+ 1] by 〈s′′, w′〉

10: else
11: insert the new element 〈s′′, w〉 into A[i+ 1]
12: i ← i+ 1

sampling. In the pair 〈n,w〉 in A for type t ∈ T , n is the unique node of type t that was
expanded during search and w is an estimate of the number of nodes of type t in the
tree rooted at s∗. ϕ(s∗) is then approximated by ϕ̂(s∗)

ϕ̂(s∗) =
∑

〈n,w〉∈A

w · z(n) , (1)

SS (see Algorithm 1) receives as input a start state s∗, a type system T , and an initial
upper bound cbound which is derived by some preprocessing (e.g., local search). SS
returns a set A which is indexed by depth in the search tree, where A[i] is the set of
representative-weight pairs for the types encountered at depth i.

In SS types are required to be partially ordered: a node’s type must be strictly greater
than the type of its parent. Chen suggests that this can be guaranteed by adding the
depth of a node to the type system and then sorting the types lexicographically. In our
implementation of SS, types at one level are treated separately from types at another
level by the division of A into the A[i]. If the same type occurs on different levels the
occurrences will be treated as though they were different types – the depth of search is
implicitly added to the type system.

The algorithm works as follows: A[0] is initialized to contain only the root of the
tree to be probed, with weight 1 (line 1). In each iteration (lines 4 through 11), all nodes
in A[i] are expanded. The children of each node in A[i] are considered for inclusion in
A[i + 1]. If a child s′′ has a type t that is already represented in A[i + 1] by node s′

with weight w′, then a merge of s′′ and s′ is performed: increase weight w′ of s′ by
the weight w of s′′’s parent s (since there were w nodes at level i that are assumed to
have children of type t at level i+1). With a certain probability (line 9) s′′ will replace
the s′. Chen [8] proved that this stochastic choice of type representatives reduces the
variance of the estimation. Once all the states inA[i] are expanded, we move to the next
iteration. In Chen’s SS, this process continues until A[i] is empty. The set of nodes in
A represents a subtree of the tree SS samples, we call this subtree the sampled tree.

Memory-Efficient Tree Size Prediction for Depth-First Search in Graphical Models 485

A single run of SS is called a probe. We denote as ϕ̂(p)(s∗) the estimate produced
by SS’s p-th probe.

Theorem 1. [8] Given a set of independent probes p1, · · · , pm produced by SS using
type system T from tree S(s∗), the average 1

m

∑m
j=1 ϕ̂

(pj)(s∗) converges to ϕ(s∗) as
m goes to infinity. Namely,

limm→∞
1

m

m∑
j=1

ϕ̂(pj)(s∗) = ϕ(s∗)

2.2 Two-Step Stratified Sampling (TSS)

Stable Children Property. Lelis et al. [15] observed the implicit assumption in SS that
it has access to the generative process of the node-child relationship for every node. In
particular, SS prunes child nodes only if their f -value is greater than or equal to the
initial upper bound cbound (line 6 in Algorithm 1). While such pruning scheme holds
for predictingEST size of algorithms such as IDA* [22], it does not hold in the case of
DFBnB, where pruning is based on an upper bound that is updated throughout search.
As a result, the exact child nodes generated by DFBnB are not available to the sampling
algorithm.

Definition 2 (Stable Children Property). [15] Given an EST S(s∗) = (N,E), the
stable children property is satisfied iff for every path π leading from the root s∗ to a
node n, the set child(n) in EST can be determined based on π alone.

Lelis et al. [15] overcome the lack of the stable children property in the EST of
DFBnB by producing the estimate in two steps. In the first step, their TSS algorithm
generates m independent SS probes assuming that the search tree is bounded by the
initial upper bound cbound. Each SS probe produces a sampled tree, and TSS stores
in memory the union of all m sampled trees, denoted UnionST . In the second step,
TSS emulates DFBnB restricted to the nodes in UnionST . UnionST gets larger as
we increase the value of m. In particular, as m goes to infinity, UnionST converges
to the search tree bounded by cbound. In this theoretical scenario, TSS’s second step
expands exactly the same nodes that DFBnB expands and TSS is able to determine the
set child(n) exactly and thus produces perfect estimates.

Although in theory the TSS scheme overcomes the lack of the stable child property,
it can have high memory requirement, as it stores every node expanded in the first step
of each of them probes. Therefore,TSS is often limited to only a few probes, frequently
producing poor predictions or no predictions at all.

Theorem 2 (TSS’s Time and Memory Complexity). [15] The memory complexity of
TSS is O(m × |T |2), where |T | is the size of the type system being employed and m
is the number of TSS probes. TSS time complexity is O(m × |T |2 × b), where b is the
branching factor of UnionST .

486 L.H.S. Lelis, L. Otten, and R. Dechter

2.3 Graphical Models

A graphical model is given as a set of variables X = {X1, . . . , Xn}, their respective
finite domains D = {D1, . . . , Dn}, a set of functions F = {f1, . . . , fm}, each de-
fined over a subset of X (the function’s scope), and a combination operator (typically
sum, product, or join) over functions. Together with a marginalization operator such as
minX and maxX we obtain a reasoning problem. For instance, a weighted constraint
satisfaction problem is typically expressed through a set of cost functions over the vari-
ables, with the goal of finding the minimum of the sum over these costs (i.e., we seek
argminX

∑
i fi) . In the area of probabilistic reasoning, the most probable explanation

task over a Bayesian network is defined as maximizing the product of the probabilities
(argminX

∏
i fi). The set of function scopes imply a primal graph, an induced width

or tree width that is known to control the complexity of variable-elimination and search
algorithms for solving a variety of graphical models tasks [23].

The search tree of a graphical model. The most successful schemes for solving opti-
mization tasks over graphical models is by DFBnB search. In its simplest formulation
the nodes in UST are consistent partial assignment of values to the variables along a
fixed variable ordering X1, · · · , Xn. The root is the empty assignment, and a node at
depth d is n = (x1, · · · , xd) where xi is a value from the domain of Xi. Child nodes
of n extend it by assigning values to the next variable in the ordering. Solutions cor-
respond to full assignments and all appear at depth n. Leaves of the UST correspond
either to partial assignments that cannot be extended consistency or to full assignments
representing solutions. DFBnB prunes the search tree in the usual manner, comparing
its heuristic evaluation function to the current upper-bound.

A popular heuristic function that guides search schemes for graphical models is the
mini-bucket heuristic. It is based on mini-bucket elimination, an approximate variant of
variable elimination that computes approximations to reasoning problems over graph-
ical models [1]. A control parameter, denoted as i-bound, allows a trade-off between
accuracy of the heuristic and its computational requirements: higher values of i yield a
more accurate heuristic but take more time and space to compute.

3 Retentive Stratified Sampling

In this section we present Retentive Stratified Sampling (RSS). The central idea is that
it is sufficient to have available the full set of solutions subsumed in the DFBnB EST
in order to allow SS to determine exactly the set child(n) in the EST .

DFBnB defines a complete ordering on the nodes in the EST , implied by the order
in which the child nodes of each parent node are expanded. This expansion ordering
also induces an order on the solution leaf nodes.

Definition 3 (Solution Search Tree). Given that the DFBnBEST is an ordered search
tree, the subtree of EST that is restricted to only solution paths is called Solution
Search Tree (SST). The leaves in the SST are ordered, from left to right, reflecting
their discovery order by DFBnB. For each node, its child nodes are ordered from left to
right as well. If we have k solutions we assume they are ordered by s1, · · · , sk .

Memory-Efficient Tree Size Prediction for Depth-First Search in Graphical Models 487

Fig. 1. Example of a UST . The dashed nodes and arcs do not belong to the EST ; the arcs in bold
represent the SST , with solution nodes m and q, with solution costs of 15 and 10 respectively.
The numbers by the nodes a in the SST show the lowest cost solution l(a) going through a.

The assumption that DFBnB has a deterministic ordering of child-node expansion is
common since DFBnB usually expands first the subtree rooted at the most promising
child (i.e., the child with lowest f -value). By definition the leaves of SST are ordered
in decreasing cost from left to right.

Lemma 1. If the ordered Solution Search Tree SST is available to SS, then for every
node n in the DFBnB EST , SS can determine the set child(n) in the EST .

Proof (sketch). We prove the theorem constructively, by providing an algorithm (see
Algorithm 3) for the task. Given an SST , we will associate each node m in SST with
the lowest cost solution in SST that goes through m, denoted l(m). This is easy to
compute by a depth-first search traversal on the SST in time linear in |SST |. It is also
easy to update the l(·)-values whenever new solutions are added to SST : after a new
solution is added to the SST , its cost is propagated upwards, namely the minimal costs
l(m) for all m along the solution path are updated in the obvious way.

Given a partial path π = n0, n1, . . . , nd in UST , from the root n0 to a node n = nd,
we wish to determine the correct upper bound that would be used by DFBnB. This is
done as follows: let node nj be the closest ancestor of n = nd on the path π going
in reverse order from nd backwards towards n0 that (1) appears in SST , and (2) has
a child node m in SST which is not on π, such that m immediately precedes nj+1

(which is the child node of nj’s on π) according to the child-node ordering. Clearly m
can be identified in time linear on the depth of SST . It is easy to see that if m exists,
then the lowest cost solution encountered by DFBnB prior to n is l(m), which is thus
the upper bound available to DFBnB when it visits n.

Example 1. The tree shown in Figure 1 represents a hypotheticalUST where the dashed
nodes are pruned by DFBnB, and the arcs in bold represent the SST . We are assuming
that DFBnB visits the nodes in lexicographical order. If RSS encounters node n during
sampling, it identifies l(k) = 15 as the relevant upper bound as follows. RSS identifies
j as the first ancestor of n along the path π going from n towards the root that appears
in SST , and has a child node k in SST which is not on π, which immediately pre-
cedes j’s child node on π (which in this case is n itself) according to the child-node

488 L.H.S. Lelis, L. Otten, and R. Dechter

Algorithm 2. Retentive Stratified Sampling, a single probe
Input: tree root s∗, type system T , solution branches B, initial upper bound cbound.
Output: a sampled tree ST represented by an array of sets A, where A[i] is the set of pairs

〈s, w〉 for the nodes s ∈ ST expanded at level i, and solutions B to be reused in next probe.
1: initialize A[0] ← {〈s∗, 1〉}
2: i ← 0
3: while i is less then search depth do
4: for each element 〈s, w〉 in A[i] do
5: if s is a solution node ending a solution path πs and πs is not in B then
6: B ← Insert(B,πS)
7: for each child s′′ of s do
8: currb ← V erifyBound(s′′, B, cbound) // cf. Algorithm 3
9: if h(s′′) + g(s′′) < currb then

10: if A[i+ 1] contains an element 〈s′, w′〉 with T (s′) = T (s′′) then
11: w′ ← w′ + w
12: with probability w/w′, replace 〈s′, w′〉 in A[i+ 1] by 〈s′′, w′〉
13: else
14: insert new element 〈s′′, w〉 in A[i+ 1]
15: i ← i+ 1

Algorithm 3. VerifyBound
Input: node s ∈ UST along path π, ordered tree-structure B whose arcs are labeled l(n,m)

denoting the lowest solution cost below m, and initial upper bound cbound.
Output: upper bound for s according to B
1: (n′, m′) ← identify n′ ∈ B as the closest ancestor to s along π that has a child node m′ on

B which immediately precedes m”, which is n′’s child on π.
2: If n′ exists, then return l(m′), return cbound otherwise.

ordering. If f(n) = 16 (which is greater than l(k)), then RSS correctly prunes n. As
another example, if RSS encounters node p during sampling, it identifies l(j) = 15 as
the relevant upper bound as follows. i is the first ancestor of p along the path π going
from p towards the root that appears in SST , and has a child node j in SST which is
not on π, and which immediately precedes i’s child node on π (node o) according to the
child-node ordering. In this case, if f(p) = 10, then RSS correctly expands p.

Since the SST is generally far smaller than the EST , we are likely to get a memory-
efficient algorithm, which is obviously superior to TSS. Algorithm RSS implements the
scheme described in Lemma 1 in its pseudo code shown in Algorithms 2 and 3. RSS
can be viewed as SS with the following two extensions:

1. Algorithm 2 approximates SST in the initially empty tree structure B, which is
updated throughout probes. Specifically, whenever a solution sol is generated, it is
inserted into B (respecting the parent-child ordering induced by DFBnB). In doing
so, pruning within the B structure can be applied by removing from B any solution
that succeeds sol in B and has a higher cost (note that solutions preceding sol in
B will always have higher cost due to the pruning in Algorithm 2, line 9). Thus, at
all times we maintain in B an ordered tree where leaves have decreasing cost going

Memory-Efficient Tree Size Prediction for Depth-First Search in Graphical Models 489

from the first to the last solution expanded by DFBnB. The function Insert(B, πS)
(line 6 of Algorithm 2) accomplishes this task and can work in time linear in |B|
(the function is not formally introduced). The tree B that RSS outputs in the i-th
probe is used as input for the (i+ 1)-th probe.

2. RSS does not insert child s′′ into A[i + 1] if there is a solution in B that appears
before s′′, and h(s′′) + g(s′′) ≥ currb (lines 8 and 9 of Algorithm 2).

3.1 Asymptotically Perfect Predictions

Since every branch in the EST has a non-zero probability of being sampled, it is quite
immediate that:

Lemma 2. The tree structure B converges to SST as the number of probes goes to
infinity.

From Lemma 2 and from Theorem 1 it follows that RSS has the asymptotic guarantee
to generate perfect predictions of the size of the DFBnB EST . Formally,

Theorem 3. Given a set of independent probes p1, · · · , pm produced by RSS using
type system T from a search tree S(s∗) representing a DFBnB EST , there exists j0 ≤
m such that, the average 1

m−j0

∑m
j≥j0

ϕ̂(pj)(S) converges to ϕ(s∗) as m→∞.

Proof. Eventually, after a finite number of probes j0, B will be equal (or close) to SST
(Lemma 2), allowing RSS to determine the exact set child(n) for any node n in the
DFBnB EST (Lemma 1), which in turn allows us to apply Theorem 1.

In practice j0 is unknown and we use a heuristic estimate as described below.

3.2 Time and Space Complexity of Retentive Stratified Sampling

In each probe, in addition to the B structure, RSS with type system T stores in memory
at most |T | nodes. Across multiple probes B converges to SST . Thus,

Theorem 4. RSS’s time complexity after m probes is O(m × |T | × d), where |T | is
the size of the type system and d is the EST depth (i.e., the number of variables in the
graphical model). The space complexity is O(|T |+ |SST |).

Although RSS’s time and space complexities depend on parameters for which we
might not know the values in advance, they allow us to contrast, for example, RSS and
TSS memory requirements. In particular, we observe that the amount of memory TSS
requires is bounded by |EST |, while the amount of memory RSS requires is bounded
by |SST |. In the worst case |SST | is bounded by the number of solutions of the original
problem, in the best case SST is a single branch. In practice |SST | tends to be much
smaller than the |EST |.

490 L.H.S. Lelis, L. Otten, and R. Dechter

4 Experiments

4.1 Empirical Methodology

We evaluate RSS by predicting EST sizes of DFBnB using the mini-bucket heuris-
tic (BBMB) [1, 17]. For a given problem instance we experiment with different mini-
bucket i-bounds for producing different heuristic strengths. RSS is currently not able to
account for AND/OR search spaces and caching, techniques used in the more advanced
solvers such as AOBB [18, 19].

We consider three problem domains, protein side-chain prediction (pdb), computing
haplotypes in genetic analysis (pedigree), and randomly generated grid networks, with
14, 4, and 14 problem instances, respectively. We use the following i-bounds values: 3
for pdb; 6, 7, 8, 10, 11, 12, and 13 for pedigree; and 10, 11, 12, and 13 for grids. Thus,
we use 14, 28, and 56 prediction tasks (pairs problem instance and i-bound) for pdb,
pedigree, and grids, respectively. We remove from our test set the tasks that DFBnB is
able to solve in less than a second, and the tasks that DFBnB is not able to solve after
several days of running time. After removing such tasks our test set contains 14, 26,
and 54 prediction tasks for pdb, pedigree, and grids, respectively. We remove the easy
instances from our test set because they are uninteresting and the instances that DFBnB
is not able to solve after several days of running time because we are not able to verify
the algorithms’ prediction accuracy on those instances. The average running time of
DFBnB on the tasks of each domain is 89.3 minutes, 72.2 hours, and 10.9 minutes, for
pdb, pedigree and grids, respectively, on a 2.6 GHz CPU (10GB RAM).

We compare the performance of RSS against TSS and WBE (described below). We
leave SS out of our experiments because Lelis et al. [15] have already shown that SS
is not able to produce good predictions of DFBnB EST size even when granted more
computation time than the time required by DFBnB to solve the problem. Since TSS
and RSS are stochastic algorithms, we consider the average result over five independent
runs for each prediction task. In each case we use the following ratio as a measure of
accuracy: predicted

actual if predicted > actual and actual
predicted , otherwise — this prevents

over- and underestimations canceling out when averaging results. Perfect predictions
yield a ratio of 1.0.

Weighted Backtrack Estimator. The Weighted Backtrack Estimator (WBE) [20]
runs alongside DFBnB search with minimal computational overhead. It uses explored
branches to predict unvisited ones and thereby theEST size. WBE produces perfect pre-
dictions when the search finishes. We implementedWBE in the context of BBMB, yielding
an updated prediction every 5 seconds.Kilbyetal. presentedanotherpredictionalgorithm,
the Recursive Estimator (RE), whose performance was similar to WBE’s in their experi-
ments. BothWBE andREwere developed to predict the size of binary trees, but in contrast
to WBE it is not clear how to generalize RE to non-binary search trees.

Type Systems. The use of the f -value to define a node’s type has proven effective in
other heuristic search tree size estimation problems [22]. In our experiments, in addition
to a node’s f -value, we also use its depth level (cf. Algorithm 2) for its type, namely
nodes n and n′ have the same type if they are at the same level of the UST and if

Memory-Efficient Tree Size Prediction for Depth-First Search in Graphical Models 491

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 100 200 300 400 500 600

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

pedigree1, i-bound 7, DFBnB Runtime 624s.

WBE
TSS
RSS

1 0.1
 1

 10
 100

 1000
 10000

 100000
 1e+06
 1e+07
 1e+08
 1e+09
 1e+10

 0 200 400 600 800 1000 1200

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

pedigree39, i-bound 13, DFBnB Runtime 1297s.

WBE
TSS
RSS

1

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40 45

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

pedigree23, i-bound 9, DFBnB Runtime 48s.

WBE
TSS
RSS

1 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08
 1e+09
 1e+10

 0 100000 200000 300000 400000 500000

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

pedigree39, i-bound 10, DFBnB Runtime 517209s.

WBE
TSS
RSS

1

Fig. 2. Prediction accuracy over time of RSS, TSS, and WBE on select representative prediction
tasks of the pedigree domain

f(n) = f(n′) . We note that the cost function and accordingly, the derived heuristic
in graphical model problems are often real-valued and a type system based on floating
point equality might be far too large. To mitigate this we apply the technique used by
Lelis et al. [15], multiplying f(n) by a constant C and truncating to the integer portion.
The constant C allows us to control to some extent the size of the type system. That is,
larger values of C result in larger type systems, which implies in slower but possibly
more accurate predictions. This is because larger range of types yields a larger coverage
of the search space.

Warmstarting RSS. Theorem 3 showed that RSS is unbiased in the limit, in particular
because RSS is eventually able to determine exactly the sets child(n) in the EST (i.e.,
B = SST) and the number of probes based on this will eventually outweigh the earlier
ones. From Theorem 3 we know that the initial set of probes are skewed and should not
be included in the estimate. The rule we used is that upon termination of the probes,
we compute the RSS estimation by only averaging over probes obtained since the last
addition of a new solution to B.

4.2 Select Individual Results

We begin by showing results of RSS, TSS, and WBE on select individual prediction
tasks in Figures 2, 3, and 4. These instances are representative in that they highlight
different aspects of the prediction methods. For each scheme, we plot in log-scale the
ratio of predicted and actual EST size, as defined above, as a function of running time

492 L.H.S. Lelis, L. Otten, and R. Dechter

 1e-05

 1

 100000

 1e+10

 1e+15

 1e+20

 1e+25

 1e+30

 1e+35

 1e+40

 0 100 200 300 400 500 600 700 800

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

pdb1opc, i-bound 3, DFBnB Runtime 827s.

WBE
TSS
RSS

1 0.01
 1

 100
 10000
 1e+06
 1e+08
 1e+10
 1e+12
 1e+14
 1e+16
 1e+18
 1e+20

 0 100 200 300 400 500 600 700 800 900

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

pdb1c44, i-bound 3, DFBnB Runtime 981s.

WBE
TSS
RSS

1

 1e-05
 1

 100000
 1e+10
 1e+15
 1e+20
 1e+25
 1e+30
 1e+35
 1e+40
 1e+45

 0 1000 2000 3000 4000 5000 6000 7000

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

pdb1qrp, i-bound 3, DFBnB Runtime 7667s.

WBE
RSS

1

 1e-05

 1

 100000

 1e+10

 1e+15

 1e+20

 1e+25

 1e+30

 0 1000 2000 3000 4000 5000

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

pdb1f4p, i-bound 3, DFBnB Runtime 5659s.

WBE
TSS
RSS

1

Fig. 3. Prediction accuracy over time of RSS, TSS, and WBE on select representative prediction
tasks of the pdb domain

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 50 100 150 200 250 300

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

75-16-5, i-bound 10, DFBnB Runtime 3387s.

WBE
TSS
RSS

1 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

50-14-5, i-bound 11, DFBnB Runtime 165s.

WBE
TSS
RSS

1

 0.1

 1

 10

 100

 1000

 0 100 200 300 400 500

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

75-16-6, i-bound 10, DFBnB Runtime 557s.

WBE
TSS
RSS

1 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60

R
at

io
 P

re
di

ct
io

n
/ N

od
es

 E
xp

an
de

d

Runtime in Seconds

75-16-5, i-bound 12, DFBnB Runtime 66s.

WBE
TSS
RSS

1

Fig. 4. Prediction accuracy over time of RSS, TSS, and WBE on select representative prediction
tasks of the grids domain

Memory-Efficient Tree Size Prediction for Depth-First Search in Graphical Models 493

in seconds. We run RSS with different number of probes and use the warmstarting
strategy to generate predictions with different running time. Results for RSS and TSS
are averaged over 5 independent runs. There is very little variance in the prediction
accuracy over different runs of RSS as the 95% confidence interval is shown but is
hardly noticeable. Note that because we vary the number of probes, RSS is oblivious
to the DFBnB total running time. That is why in some plots we do not present the RSS
results for larger DFBnB running times. The DFBnB total running time is shown on the
top of each plot. For each problem we first run a limited-discrepancy search [24] with
a maximum discrepancy of 1 to quickly find an initial bound cbound which is provided
to both DFBnB and to the prediction algorithms. We use C = 100 in this experiment
for both RSS and TSS (see Section 4.1 on type systems).

The prediction results in Figures 2, 3, and 4 suggest that RSS is far superior to both
TSS and WBE. For instance, RSS quickly produces almost perfect estimates of EST
size of pedigree39 with i = 10 (Figure 2); TSS is unable to yield good estimates and
quickly runs out of memory.WBE is able to produce acceptable predictions only towards
the end of DFBnB execution—approximately 6 days on this instance. For pdb1qrp with
i = 3 (Figure 3) TSS is unable to produce predictions at all—RSS, however, quickly
produces near-perfect estimates. Similarly, RSS outperforms the other methods on al-
most all instances. The pdb1c44 problem instance with i-bound of 3 (Figure 3) shows
another situation we would like to highlight. In that instance RSS starts producing es-
timates after 200 seconds of computation time. This is because in the first 200 seconds
RSS is constantly updating B and according to our warmstarting strategy described
above RSS does not produce estimates while updating B. 75-16-6 with i = 10 (Fig-
ure 4) is one of the rare cases in which WBE performs better than both RSS and TSS.

4.3 Comparison with TSS

Table 1 shows a summary of prediction results of TSS and RSS for C = 10 and C =
100. Here “%” is the average prediction time relative to DFBnB. For instance, a value of
20 means that the prediction was produced in 20% of the DFBnB running time. Given
a number of probes for TSS and the resulting %-value, the number of RSS probes
is chosen so that it has %-values smaller than TSS, thereby giving the latter a small
advantage. In each case we observe that n, the number of instances where TSS does not
run out of memory, decreases with the number of probesm. For instance, for pedigrees
with C = 100 and m = 50 probes, TSS is able to produce predictions only for 8 out
of 26 prediction tasks (the comparison is performed only on these 8 instances). We also
observe in Table 1 the trade-off between prediction accuracy and running time provided
by parameter C. RSS using C = 100, and thus a larger type system, produces more
accurate predictions, but it requires more time to produce such predictions.

Table 1 suggests that RSS produces substantially more accurate predictions than
TSS, in less time. In many cases, its average ratio of predicted and actual EST size
is orders of magnitude better than TSS. For instance, for grids with C = 10 the ratios
with m = 10 probes for TSS and RSS are over 300,000 and 15.1, respectively, which
drops to 416 and 2.17 with m = 50. Overall, its accuracy results in Table 1 and its
more modest memory requirement suggest that RSS decisively outperforms and thus
supersedes TSS.

494 L.H.S. Lelis, L. Otten, and R. Dechter

Table 1. Prediction results of RSS and TSS for C = 10 and C = 100. For each number of TSS
probes m, n is the number of tasks that TSS is able to produce predictions for without running
out of memory and which the algorithms are compared on. Ratio of predicted and actual EST
size is computed as above, “%” is the average percentage of the full DFBnB search time. Bold
results indicate that a scheme produced more accurate predictions in shorter time.

pedigree (C = 10) pedigree (C = 100)
TSS RSS TSS RSS

m n ratio % ratio % m n ratio % ratio %
1 21 7.45e+06 8.47 3.5 7.04 1 15 4.2e+06 2.38 181 1.54

10 18 3.92e+06 5.67 3.2 6.83 10 12 1.07e+03 22.3 1.6 21.4
50 15 4.37e+06 10.4 2.21 6.62 50 8 58.8 23.6 1.71 21.5

100 13 6.46e+04 18.9 2.3 16.7 100 8 72.4 42.3 1.7 42

pdb (C = 10) pdb (C = 100)
TSS RSS TSS RSS

m n ratio % ratio % m n ratio % ratio %
1 14 1.73e+04 0.383 9.83 2.14 1 13 66.4 3.07 6.66 2.7

10 14 4.34e+03 1.87 9.83 2.14 10 10 12.1 13.5 1.2 12.3
50 13 174 4.96 9.44 2.05 50 2 1.1 12.2 1.02 7.47

100 11 3.88 8.55 1.37 7.35 100 0 - - - -

grids (C = 10) grids (C = 100)
TSS RSS TSS RSS

m n ratio % ratio % m n ratio % ratio %
1 53 2.61e+06 1.61 1.54e+04 1.47 1 50 373 20.4 4.18 17.5

10 53 3.02e+05 7.89 15.1 7.49 10 40 3.47 41.2 2.61 37.3
50 50 416 17.3 2.17 16.8 50 20 1.94 61.1 1.4 57.3

100 48 134 23 1.87 21.8 100 12 2.22 69.6 1.24 67.3

4.4 Comparison with WBE

Lastly, we compare the performance of RSS and WBE. Evaluation can occur on the
entire set of prediction tasks, since neither of the two schemes had issues running out
of memory. The results in Table 2 are again averaged per problem domain, but this time
organized by choosing predictions with similar %-value (see table caption for details).

Table 2. Prediction results of WBE and RSS (C = 100), averaged per problem domain and
arranged by %-value: for RSS we average the results obtained within 0-5%, 5-10%, ..., 20-25%
of DFBnB runtime. In each case we then pick the next-highest (in terms of %) WBE result to
compare. Bold results indicate that a scheme produced more accurate predictions in shorter time.

pedigree (26 tasks) pdb (14 tasks) grids (54 tasks)
WBE RSS WBE RSS WBE RSS

% range ratio % ratio % ratio % ratio % ratio % ratio %
0 - 5 6.92e+06 1.61 20 1.44 1.7e+25 3.16 1.78 3.14 8.09e+07 3.48 142 3.27

5 - 10 6.34e+03 8.82 12 7.16 2e+26 7.4 1.97 7.36 2.95e+05 7.65 85.1 7.25
10 - 15 7.65e+03 15.2 2.45 12.4 5.74e+25 12.3 1.86 12.2 2.08e+05 12.6 1.68 11.9
15 - 20 545 19 1.06 18 3.11e+19 17.1 1.72 17.1 1.17e+07 19.5 5.55 17
20 - 25 111 43.1 1.41 22.4 6.91e+18 22.8 1.46 22.7 450 25.4 1.83 22.3

Memory-Efficient Tree Size Prediction for Depth-First Search in Graphical Models 495

Note that the %-values for WBE are by design larger than the ones for RSS, thus giving
WBE a slight advantage in terms of computation time.

In this prediction setting, RSS performs substantially better than WBE, in all cases
being several orders of magnitude more accurate than WBEwhile taking the same or less
amount of time. Most significantly, in case of pdb tasks RSS average ratio in Table 2
never exceeds 2, while WBE overestimatesEST size by 18 or more orders of magnitude.
Secondly, RSS is able to provide estimations within a factor of 2 (on average) after only
10-15% of DFBnB search time. To the best of our knowledge, this is the first time a
sampling algorithm is able to produce such accurate predictions of DFBnB EST size
without having memory issues.

5 Related and Future Work

Another approach for DFBnB EST size prediction lies in off-line learning of regres-
sion models based on features extracted from the problem instance, the search space,
and possibly candidate solvers. These techniques have been applied to satisfiability
problems [25], combinatorial auctions [26], and graphical models [6]. These methods
generally require collecting a large set of solved training instances, which can take a
substantial amount of time. By contrast, RSS does not rely on training data; its output,
however, could be used as an input feature for a regression-based approach, an interest-
ing direction we hope to investigate in the future.
RSS has two limitations we hope to address in the future. First, RSS is not able

to produce estimates of the size of AND/OR search trees [18]. Second, our sampling
scheme does not account for DFBnB implementations that use caching to avoid ex-
panding duplicated nodes.

6 Conclusion

We have introduced Retentive Stratified Sampling (RSS), a scheme for estimating the
size of DFBnB search trees. RSS repeatedly probes the search tree and remembers solu-
tion nodes it encounters in the process, which are used to apply pruning in subsequent
probes. We have demonstrated the superiority of RSS over competing schemes like
TSS and WBE, namely its ability to produce estimates with high accuracy in relatively
little time. In addition, unlike other schemes RSS does not suffer from memory issues,
further adding to its attractiveness.

Acknowledgements. This work was sponsored by FAPEMIG, in part by NSF grants
IIS-1065618 and IIS-1254071, and in part by the United States Air Force under Contract
No. FA8750-14-C-0011 under the DARPA PPAML program.

References

1. Kask, K., Dechter, R.: A general scheme for automatic search heuristics from specification
dependencies. Artificial Intelligence, 91–131 (2001)

2. Marinescu, R., Dechter, R.: Memory intensive AND/OR search for combinatorial optimiza-
tion in graphical models. Artificial Intelligence 173, 1492–1524 (2009)

496 L.H.S. Lelis, L. Otten, and R. Dechter

3. Otten, L., Dechter, R.: Anytime AND/OR depth first search for combinatorial optimization. In:
Proceedings of the Symposium on Combinatorial Search, pp. 117–124. AAAI Press (2011)

4. de Givry, S., Schiex, T., Verfaillie, G.: Exploiting tree decomposition and soft local consis-
tency in Weighted CSP. In: Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 22–27. AAAI Press (2006)

5. Balas, E., Toth, P.: Branch and bound methods. In: Lawler, E.L., Lenstra, J.K., Kart,
A.H.G.R., Shmoys, D.B. (eds.) The Traveling Salesman Problem: A Guided Tour of Combi-
natorial Optimization. John Wiley & Sons, New York (1985)

6. Otten, L., Dechter, R.: A case study in complexity estimation: Towards parallel branch-and-
bound over graphical models. In: Proceedings of the Conference on Uncertainty in Artificial
Intelligence, pp. 665–674 (2012)

7. Knuth,D.E.:Estimatingtheefficiencyofbacktrackprograms.Math.Comp.29,121–136(1975)
8. Chen, P.C.: Heuristic sampling: A method for predicting the performance of tree searching

programs. SIAM Journal on Computing 21, 295–315 (1992)
9. Korf, R.E.: Depth-first iterative-deepening: An optimal admissible tree search. Artificial In-

telligence 27, 97–109 (1985)
10. Purdom, P.W.: Tree size by partial backtracking. SIAM Journal of Computing 7, 481–491

(1978)
11. Korf, R.E., Reid, M., Edelkamp, S.: Time complexity of Iterative-Deepening-A∗. Artificial

Intelligence 129, 199–218 (2001)
12. Zahavi, U., Felner, A., Burch, N., Holte, R.C.: Predicting the performance of IDA* using

conditional distributions. Journal of Artificial Intelligence Research 37, 41–83 (2010)
13. Burns, E., Ruml, W.: Iterative-deepening search with on-line tree size prediction. In: Pro-

ceedings of the International Conference on Learning and Intelligent Optimization, pp. 1–15
(2012)

14. Lelis, L.H.S.: Active stratified sampling with clustering-based type systems for predicting the
search tree size of problems with real-valued heuristics. In: Proceedings of the Symposium
on Combinatorial Search, pp. 123–131. AAAI Press (2013)

15. Lelis, L.H.S., Otten, L., Dechter, R.: Predicting the size of depth-first branch and bound
search trees. In: International Joint Conference on Artificial Intelligence, pp. 594–600 (2013)

16. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann (1988)
17. Dechter, R., Rish, I.: Mini-buckets: a general scheme for bounded inference. Journal of the

ACM 50, 107–153 (2003)
18. Marinescu, R., Dechter, R.: AND/OR Branch-and-Bound search for combinatorial optimiza-

tion in graphical models. Artificial Intelligence 173, 1457–1491 (2009)
19. Otten, L., Dechter, R.: Anytime AND/OR depth-first search for combinatorial optimization.

AI Communications 25, 211–227 (2012)
20. Kilby, P., Slaney, J.K., Thiébaux, S., Walsh, T.: Estimating search tree size. In: Proceedings

of the AAAI Conference on Artificial Intelligence, pp. 1014–1019. AAAI Press (2006)
21. Nilsson, N.: Principles of Artificial Intelligence. Morgan Kaufmann (1980)
22. Lelis, L.H.S., Zilles, S., Holte, R.C.: Predicting the Size of IDA*’s Search Tree. Artificial

Intelligence, 53–76 (2013)
23. Dechter, R.: Reasoning with Probabilistic and Deterministic Graphical Models: Exact Al-

gorithms. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers (2013)

24. Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, pp. 607–613 (1995)

25. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based Algorithm Se-
lection for SAT. J. Artif. Intell. Res. (JAIR) 32, 565–606 (2008)

26. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Empirical hardness models: Methodology
and a case study on combinatorial auctions. Journal of the ACM 56, 1–52 (2009)

Higher-Order Consistencies through GAC on Factor
Variables

Chavalit Likitvivatanavong, Wei Xia, and Roland H. C. Yap

School of Computing, National University of Singapore, Singapore
{chavalit,xiawei,ryap}@comp.nus.edu.sg

Abstract. Filtering constraint networks to reduce search space is one of the
main cornerstones of Constraint Programming and among them (Generalized)
Arc Consistency has been the most fundamental. While stronger consistencies
are also the subject of considerable attention, none matches GAC’s and for this
reason it continues to advance at a steady pace and has become the popular choice
of consistency for filtering algorithms. In this paper, we build on the success of
GAC by proposing a way to transform a constraint network into another such that
enforcing GAC on the latter is equivalent to enforcing a stronger consistency on
the former. The key idea is to factor out commonly shared variables from con-
straints’ scopes, form new variables, then re-attach them back to the constraints
where they come from. Experiments show that this method is inexpensive and
outperforms specialized algorithms and other techniques when it comes to full
pair-wise consistency (FPWC).

1 Introduction

Generalized arc consistency (GAC) is one of the most studied filtering algorithms for
constraint satisfaction problems (CSPs) due to its simplicity and excellent performance
in practice. Domain reduction interspersed with GAC during backtracking search has
become the foremost method for solving a general CSP [17]. GAC on positive table
constraints, in particular, has received a great deal of attention in recent years [3, 4, 9,
10, 12, 14]. These advances in turn provide a basis for many algorithms that enforce
even stronger consistencies than GAC to build on.

In [6] it was shown that a network is pairwise consistent (PWC) iff its dual CSP is
arc consistent. PWC is a k-wise consistency [5] for the case where k = 2. This is one
of the earlier works that demonstrates how (G)AC can be used to achieve other types of
consistencies. Consistencies of level/order higher than GAC are also the subject of many
recent works [8, 11, 16]. Specifically, maxRPWC, PWC, and FPWC are investigated in
[2, 11, 16]. Many of the algorithms that enforce these consistencies are based on well-
established GAC algorithms. In [16], the authors extended the GACva algorithm [12] to
enforce maxRPWC. Subsequently, STR2 was extended to cope with FPWC, resulting
in eSTR2 [11] which gets improvement similar to how STR2 outperforms GACva.

As another area of focus in CSPs, researchers have studied how to transform non-
binary constraint networks into equivalent binary constraint networks so that the algo-
rithms and methods from the binary case can be applied [1, 18]. Two techniques emerge
as a result: the hidden transformation and the dual transformation. Both rely on the dual

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 497–513, 2014.
c© Springer International Publishing Switzerland 2014

498 C. Likitvivatanavong, W. Xia, and R.H.C. Yap

variable associated with each constraint, whose domain values have a one-to-one corre-
spondence with the constraint’s tuples. Nevertheless, the benefits of the transformation
diminish as filtering algorithms for non-binary CSPs get better.

In this paper, we propose to transform a non-binary constraint network into another
non-binary constraint network such that the latter is GAC if and only if the former is
full pairwise consistency (FPWC), which means both GAC and PWC. In this respect,
our intention is similar to that of the authors of [13] who proposed another kind of
transformation. Like the transformation from non-binary to binary network, the one in
[13] is based on dual variables. But here the dual variable is included into the scope of
the constraint it is associated with. The pruning power comes from the join of tables
that uses the dual variables as its scope so that propagation can be transmitted directly
to other constraints.

Our transformation works in a fundamentally different way. Instead of forming a
dual variable for each constraint, we factor out commonly shared variables among them.
These variables form new compound variables that will be augmented to only the con-
straints that are involved. For FPWC, no new constraints are created. We extend this
transformation to cover general k-wise consistency, adding new constraints reduced
from the join of k tables. Preliminary experiments show that for FPWC our method is
faster than both [13] and a specialized FPWC algorithm. For k-wise consistency where
k ≥ 3, our transformation can lower the number of nodes visited during search but it is
more costly and thus of limited application unless the search reduction is large.

2 Preliminaries

A constraint network P is a (X , C) where X is a set of n variables {x1, . . . , xn} and
C a set of e constraints {c1, . . . , ce}. D(x) is the domain of x ∈ X . During search,
Dc(x) denotes the current domain of x. If a ∈ Dc(x), a is said to be present in D(x);
otherwise a is absent from D(x). We use (x, a) to denote the value a ∈ D(x) (or
simply a when the context is clear). Each c ∈ C involves two components: a scope
(scp(c)) which is an ordered subset of variables of X ; and a relation over the scope
(rel(c)). Given scp(c) = {xi1 , . . . , xir}, rel(c) ⊆

∏r
j=1 D(xij) represents the set of

satisfying combinations of values for the variables in scp(c). We may also refer to c
by c(xi1 , . . . , xir) to emphasize the scope. A constraint’s scope can be made unique by
combining the constraint’s relation with relations from other constraints with the same
scope through intersection. We assume a total ordering for every rel(c) and use ρ(c, i)
to denote the ith tuple. The arity of c is |scp(c)|. Given an ordered set S ⊆ scp(c)
and τ ∈ rel(c), the projection of τ on S (τ [S]) is the tuple consisting of only the
components of τ that correspond to the variables in S. A tuple τ = (aii , . . . , aik)
where aij ∈ D(xij) is said to be an tuple over {xi1 , . . . , xik}. The join of constraints
ci and cj (ci � cj) is a constraint whose scope is scp(ci)∪scp(cj) and whose relation is
{τ | τ is a tuple over scp(ci)∪ scp(cj)∧ τ [scp(ci)] ∈ rel(ci)∧ τ [scp(cj)] ∈ rel(cj)}.
The join of tuples τi ∈ rel(ci) and τj ∈ rel(cj) (τi � τj) is the tuple τ over scp(ci) ∪
scp(cj) such that τ [scp(ci)] = τi and τ [scp(cj)] = τj . When elements in rel(c) are
given explicitly, c is called a positive table constraint. A tuple τ ∈ rel(c) is valid iff
τ [x] ∈ Dc(x) for each x ∈ scp(c). Otherwise τ is invalid. A tuple τ ∈ rel(c) is a

Higher-Order Consistencies through GAC on Factor Variables 499

support of (x, a) in c iff τ [x] = a. A value (x, a) is generalized arc-consistent (GAC)
on a constraint c involving x iff there exists a valid support τ of (x, a) in c. A value
(x, a) is GAC iff it is GAC on every constraint c involving x. A variable x is GAC iff
Dc(x) �= ∅ and (x, a) is GAC for each a ∈ Dc(x). P is GAC iff each of its variables
is GAC. A solution to P is a valid tuple over X such that every constraint is satisfied.
P is satisfiable iff one solution exists. The constraint satisfaction problem (CSP) is the
NP-hard task of determining whether a given constraint network is satisfiable or not.

A compound variable X is a cross-product composition from {xi1 , . . . , xim} ⊆
X , called X’s signature (σ(X)), where D(X) ⊆

∏m
j=1D(xij) and its values are

sometimes referred to as compound values. Given a constraint c and an ordered set
S = {xi1 , . . . , xim} ⊆ scp(c), we denote λc(S) to be the compound variable on S
with respect to c whose domain D(λc(S)) is {τ [S] | τ ∈ rel(c)}. It follows that
σ(λc(S)) = S. A value in D(λc(S)) may be written as ā = (ai1 , . . . , aim). We also
use π(λc(S), xik) to denote {aik | ā ∈ D(λc(S))} where k ∈ {1, . . . ,m}. Similarly,
πc(λc(S), xik) = {aik | ā ∈ Dc(λc(S))}. We may drop the subscript and write λ(S) if
there is no ambiguity. Non-compound variables are called ordinary variables. For uni-
formity, σ is defined for all variables, i.e. σ(x) = {x} for an ordinary variable x. A
value (x, a) is max-restricted pairwise consistent (maxRPWC) iff for all ci ∈ C where
x ∈ scp(ci), (x, a) has a valid support τi in rel(ci) such that for any other cj ∈ C there
exists a valid tuple τj ∈ rel(cj) and τi[scp(ci) ∩ scp(cj)] = τj [scp(ci) ∩ scp(cj)]. P
is maxRPWC iff all values are maxRPWC. P is k-wise consistent (kWC) iff given any
group of k constraints {cii , . . . , cik}, then for any τ ∈ rel(cij) for some j there exists a

valid tuple τ ′ over
⋃k

l=1 scp(cil) such that τ ′[scp(cij)] = τ and τ ′[scp(cil)] ∈ rel(cil)
for all l ∈ {1, . . . , k}. If P is kWC then P is (k-1)WC. When k is equal to two, it is
also called pairwise consistency (PWC). P is full pairwise consistent (FPWC) iff it is
both GAC and PWC. FPWC is also equivalent to PWC together with maxRPWC [11].

3 Reformulation

First we give a straightforward reformulation of a constraint network that encodes
FPWC as follows. Given P = (X , C), we construct P+ = (X ∪ W , C+) such that
W = { λci(S), λcj (S) | S = scp(ci) ∩ scp(cj)) for all i �= j ∧ |S| > 1} and C+ in-
cludes constraints of the following three types. The first involves a simple extension of
constraints in C. For each c′i ∈ C+, 1 ≤ i ≤ e, we have,

– scp(c′i) = scp(ci) ∪ {λci(S) | λci(S) ∈ W ∧ S ⊆ scp(ci)}}
– for any τ ∈ rel(ci), τ ′ ∈ rel(c′i) is a tuple extended from τ such that

• τ ′[x] = τ [x] for any x ∈ scp(ci)
• for any λci(S) ∈ scp(c′i), τ ′[λci(S)] = τ [S]

The second type of constraints involves equality betweenλci(S) andλcj(S) inW for any
i, j, and S. The third involves compatibility constraints between a compound variable
and each variable in its signature. That is, given λc(S) such that S = {xi1 , . . . , xim},
there is a constraint between λc(S) and each xik that forces πc(λc(S), xik) = Dc(xik).
As a result of this construction, in a generalized arc-consistent P+ any valid tuple in a
constraint c can be extended to a valid tuple over scp(c)∪scp(c′) for any other constraint
c′ through variables in W . The proof is omitted due to space restrictions.

500 C. Likitvivatanavong, W. Xia, and R.H.C. Yap

Theorem 1. P+ is GAC if and only if P is FPWC.

Next we show how P+ can be simplified while still preserving Theorem 1. Instead
of posting an equality constraint between every pair of compound variables with the
same signature, we unify all these compound variables into a single variable. Equality
constraints are removed. Given P= (X , C) and P+= (X ∪W , C+), the factor encoding
(FE) of P is the network P∗ = (X ∪W∗, C∗) where,

W∗ = {λ(S) | D(λ(S)) =
⋃

kD(λck(S)) for all k such that λck(S) ∈ W}
and for each c∗i ∈ C∗, 1 ≤ i ≤ e,

– scp(c∗i) = scp(ci) ∪ {λ(S) | λ(S) ∈ W∗ ∧ S ⊆ scp(ci)}}
– for any τ ∈ rel(ci), τ∗ ∈ rel(c∗i) is a tuple extended from τ such that

• τ∗[x] = τ [x] for any x ∈ scp(ci)
• for any λ(S) ∈ scp(c∗i), τ∗[λ(S)] = τ∗[S](= τ [S]) (e1)

We call the compound variables in W∗ factor variables. P∗ is also referred to as
fe(P). Given ck ∈ C, we may denote c∗k ∈ C∗ with fe(ck). We observe that the compat-
ibility constraint in P+ can be decomposed into two conditions. Given λ(S) such that
S = {xi1 , . . . , xim}, we have,

(c1) ā ∈ Dc(λ(S))⇒ ∀k ∈ {1, . . . ,m}, aik ∈ Dc(xik)
(c2) a ∈ Dc(xik) for some k ∈ {1, . . . ,m} ⇒ ∃ā ∈ Dc(λ(S)), aik = a

We will show that the compatibility constraints in P+ are actually implied and do
not need to be posted explicitly.

Lemma 1. Enforcing GAC on fe(P) imposes the condition (c1) between a factor vari-
able and each ordinary variable in its signature.

Proof. Consider λ(S) where S = {xi1 , . . . , xim} and ā ∈ Dc(λ(S)). Because fe(P)
is GAC, for any fe(c) such that λ(S) ∈ scp(fe(c)), there is a valid support of ā in
rel(fe(c)). That is, ∃τ ∈ rel(fe(c)) such that τ [λ(S)] = ā. Since τ [λ(S)] = τ [S],
τ [xik] = aik for 1 ≤ k ≤ m, which means aik also has a valid support in rel(fe(c)). �

Lemma 2. Enforcing GAC on fe(P) imposes the condition (c2) between a factor vari-
able and each ordinary variable in its signature.

Proof. Assume aik /∈ πc(λ(S), xik) for some aik . This indicates that any ā involving
aik must be absent fromD(λ(S))). Due to propagation, every τ in every rel(fe(c)) such
that λ(S) ∈ scp(fe(c)) and τ [λ(S)] = ā would eventually become invalid. Because
τ [S] = τ [λ(S)] = ā, τ [xik] = aik . That means such τ is not a valid support of
aik . Because D(λ(S)) contains every compound values involving aik from all c whose
scope subsumes S, there is no other valid tuple τ ′ such that τ ′[xik] = aik . Hence,
aik /∈ Dc(xik) after the propagation converges. �

Theorem 2. fe(P) is GAC if and only if P is FPWC.

Proof. Follows from Theorem 1, and Lemma 1, and 2. �

Theorem 3. fe(P) is GAC if and only if fe(P) is FPWC.

Higher-Order Consistencies through GAC on Factor Variables 501

Proof. As FPWC is both GAC and PWC, (⇐) is immediate. We will prove the (⇒)
direction. Assume fe(P) is GAC. Let τi ∈ fe(ci). Now consider another constraint
fe(cj) �= fe(ci). If there is no factor variable in scp(fe(ci)) ∩ scp(fe(cj)), then PWC is
trivial. Let f be the factor variable1 in scp(fe(ci))∩ scp(fe(cj)) such that scp(fe(ci))∩
scp(fe(cj))\σ(f) = {f}. Since fe(P) is GAC, τi[f] must have a valid support in fe(cj).
Call it τj . Because τi and τj agree on f , by definition of factor variable they must agree
on σ(f) too, which means they agree on σ(f) ∪ {f} = scp(fe(ci)) ∩ scp(fe(cj)).
As a result, τi � τj is well-defined as well as being a tuple extended from τi over
scp(fe(ci)) ∪ scp(fe(cj)). Hence, fe(P) is PWC. �

Let fek(P) denote fe(fe(. . . fe(P) . . .)) (the FE is applied k times in a row), then

Corollary 1. For all k ≥ 1, P is FPWC if and only if fek(P) is GAC.

Proof. We consider k = 2 as other cases follow from induction. From Theorem 2 and
Theorem 3, we have: P is FPWC iff fe(P) is FPWC. From this statement and the result
of another application of the FE on it we derive: P is FPWC iff fe(fe(P)) is FPWC.
From Theorem 3, fe(fe(P)) is FPWC iff fe(fe(P)) is GAC. �

This shows fek(P) for k ≥ 2 is no different than fe(P) so applying the FE more than
once in succession is pointless. A localized version of this corollary is given as follows.

Corollary 2. Given any two constraints ci and cj , if there exists a factor variable f ∈
scp(ci) ∩ scp(cj) such that scp(ci) ∩ scp(cj) \ σ(f) = {f} then adding the factor
variable f ′ whose signature is σ(f) ∪ {f} to the scopes of both constraints is futile.

Property 1. Running GAC on fe(P) can be O(e2) faster and use O(e2) smaller space
than running eSTR2 on P .

Reasoning: eSTR2 [11] is an extension of STR2 [9] that enforces FPWC. The main
difference between enforcing GAC on the FE and enforcing eSTR2 on the original net-
work is the space and time associated with factor variables vs. those associated with the
additional data structures for checking PWC in eSTR2. The overhead of running GAC
on the FE depends on factor variables, whose number can be lower than the number of
intersecting constraints. In eSTR2, the overhead depends on the number of intersecting
constraints. If P consists of only constraints such that a single factor variable is com-
mon to all and that no other factor variable exists, the space and time complexity of the
GAC on fe(P) is the same as those on P . By contrast, the space and time of eSTR2 on
P would be at least an order of O(

(
e
2

)
) = O(e2) larger. �

Property 2. For any c ∈ C, |scp(c)| ≤ |scp(fe(c))| ≤ |scp(c)|+ |C| − 1.

The range is the result of the number of factor variables added. The lower bound is zero,
when no other constraint’s scope overlaps on more than two variables with scp(c),
whereas the upper bound is |C| − 1 when every intersection with another constraint
produces a new factor variable.

1 There may be multiple factor variables if P itself is the factor encoding of another constraint
network, which in turn is the factor encoding of another, and so on (see Corollary 1). The
factor variable f is set to be the most recent one.

502 C. Likitvivatanavong, W. Xia, and R.H.C. Yap

3.1 Example

We give an example of P∗ and trace some GAC propagation on P∗ in this section.
Note that although relations in P∗ are an extension of those in P , the extension to
factor variables can be implicit. The expression τ [S] in (e1) can be given as a function
(i.e. the projection) that takes an input S rather than the actual result of the projection
of τ on S. Such abstract extension of tuples is demonstrated in this section.

For brevity, compound variables and values are written as a concatenation of ordinary
variables and values. Let P∗ = (X ∪ W∗, C∗), where X = {x1, x2, x3, x4, x5, x6},
W∗ = {x1x2, x1x2x4}, C∗ = {c∗1, c∗2, c∗3, c∗4} where scp(c∗1) = {x1, x2, x3, x1x2},
scp(c∗2) = {x1, x2, x4, x1x2, x1x2x4}, scp(c∗3) = {x1, x2, x4, x5, x1x2, x1x2x4},
scp(c∗4) = {x2, x6}. Relations of P are given as tables for ci below (rel(c∗i) will be
inferred from rel(ci)). Dc(x1) = Dc(x2) = Dc(x4) = Dc(x6) = {a, b}, Dc(x3) =
Dc(x5) = {a, b, c}, Dc(x1x2) = {aa, ab, bb}, Dc(x1x2x4) = {abb, bba, bbb}.

c1
x1 x2 x3

a a a
a b a
a b c
b b b

c2
x1 x2 x4

a b b
b b a

c3
x1 x2 x4 x5

a b b a
b b a b
b b b c

c4
x2 x6

a a
b b

We now look at some GAC propagation on this network. First, we consider whether
(x1x2x4, bbb) is GAC. Let τ = ρ(c3, 3) = (b, b, b, c). The value (x1x2x4, bbb) is GAC on
c∗3 since ρ(c∗3, 3) = (τ [x1], τ [x2], τ [x4], τ [x5], τ [x1x2], τ [x1x2x4]) = (b, b, b, c, bb, bbb)
is found to be a valid support. But (x1x2x4, bbb) is not GAC on c∗2 because no tuple
in rel(c∗2) involves bbb (i.e. rel(c∗2) = {(a, b, b, ab, abb), (b, b, a, bb, bba)}), so bbb is
removed from Dc(x1x2x4). Propagation leads back to the removal of c from Dc(x5)
as ρ(c∗3, 3) is no longer valid because ρ(c∗3, 3)[x1x2x4] = bbb /∈ Dc(x1x2x4). Next we
look at (x1x2, aa). It has no valid support in c∗2 so aa will be removed from the domain
of x1x2. Because ρ(c∗1, 1) = (a, a, a, aa), this tuple becomes invalid. Because ρ(c∗1, 1)
is the only tuple involving (x2, a) in rel(c∗1), (x2, a) is no longer GAC on c∗1. Value a
is then removed from Dc(x2). Further propagation leads to the removal of (x6, a).

4 The k-Interleaved Encoding

The k-interleaved encoding (kIL) [13] is closely related to the FE as both try to enlarge
constraints with auxiliary variables that represent groups of existing variables. Enforc-
ing GAC on the k-interleaved encoding is equivalent to enforcing kWC on the original
network in addition to GAC. The following definitions are taken from [13].

Definition 1 (k-Dual Encoding). Let P = (X , C). The k-dual encoding of P is the
constraint network Pkd = (X kd, Ckd) where:

– for each ci ∈ C, X kd contains a variable x′i where D(x′i) = {1, . . . , |rel(ci)|}.
– for each subset S of k constraints of C, Ckd contains a constraint c′ such that
scp(c′) = {x′i | ci ∈ S} and c′ is a k-ary table constraint containing the join of all
constraints in S (represented with the indexes of the original tuples).

Higher-Order Consistencies through GAC on Factor Variables 503

Definition 2 (Hybrid Constraints). Let P = (X , C). The set of hybrid constraints
φ(C) of P is the set {φ(ci) | ci ∈ C} where:

– scp(φ(ci)) = scp(ci) ∪ {x′i}
– for every jth tuple τ of rel(ci), τ ′ is a tuple in rel(φ(ci)) such that τ ′[x′i] = j and
τ ′[x] = τ [x] for each x ∈ scp(ci)

Definition 3 (k-Interleaved Encoding). Let P = (X , C). The k-interleaved encod-
ing of P is the constraint network Pki = (X ki, Cki) = (X ∪ X kd, φ(C) ∪ Ckd) where
(X kd, Ckd) is the k-dual encoding of P and φ(C) the hybrid constraints of P .

For k = 2, enforcing GAC on the 2IL has the same pruning power as enforcing GAC
on the FE, but the FE does not add any new constraint. We now look at an example
from [13] for a comparison of the 2IL and the FE. Figure 1a shows three constraints
from the original network. Figure 1b shows the FE for these constraints. A factor vari-
able’s domain of size d is normalized as {1, . . . , d}. As a result, Dc(xy) = Dc(uv) =
{11, 00, 01, 10}= {1, 2, 3, 4}. After GAC is established,Dc(y) becomes {1} andDc(v)
becomes {0}. Figure 1c shows the 2IL of 1a [13]. This example shows that while en-
forcing GAC on the kIL gives identicalDc(y) and Dc(v) to Figure 1b, the kIL can take
a longer chain of propagation to do so.

x y u v

1 1 1 0
0 0 0 1
0 1 0 0
1 0 1 1

x y

1 1
0 0
0 1

u v

1 1
1 0
0 0

(a) Original

x y u v xy uv

1 1 1 0 1 4
0 0 0 1 2 3
0 1 0 0 3 2
1 0 1 1 4 1

x y xy

1 1 1
0 0 2
0 1 3

u v uv

1 1 1
1 0 4
0 0 2

(b) Factor encoding of (a)

x y u v x′
1

1 1 1 0 1
0 0 0 1 2
0 1 0 0 3
1 0 1 1 4

x y x′
2

1 1 1
0 0 2
0 1 3

u v x′
3

1 1 1
1 0 2
0 0 3

x′
1 x

′
2

1 1
2 2
3 3

x′
1 x

′
3

1 2
3 3
4 1

(c) 2-interleaved encoding of (a)

Fig. 1. Comparison of two encodings

We compare the complexity of the FE and the kIL as follows. For simplicity, we
assume there are e constraints of arity r, each associated with a table containing t tuples
and that every pair of constraints shares at least two variables in their scopes.

Property 3. The extra cells added to the tables by the FE ranges from O(et) to O(e2t).

Proof. In the best case there is only one factor variable. Each constraint will be extended
with an extra column so the total extra space is O(et). In the worst case, every pair of
constraint produces one additional factor variable. Each of these factor variables will
appear in two different tables. Thus, the total is O(2t

(
e
2

)
) = O(e2t). �

Because an optimal GAC algorithm traverses every cell of every table in the worst
case, the worst-case time complexity of GAC on the FE is thus between O(ert) (i.e. no
asymptotic difference) and O(ert + e2t) = O(e2t) (i.e. assuming e > r).

Property 4. The extra cells added to the tables by the kIL is O(
(
e
k

)
tk)

504 C. Likitvivatanavong, W. Xia, and R.H.C. Yap

Proof. Each constraint has an extra column for indexing so the space is et. For every
subset of C of size k, a join table of arity k is created. The total space is therefore
O(et+

(
e
k

)
tk) = O(

(
e
k

)
tk). �

For k = 2, this space becomes O(e2t2). As far as GAC is concerned, the 2IL is thus
a factor of t more expensive in the worst case than the FE.

5 Enforcing k-Wise Consistency through Reduced Join Tables

Given fe(P), we may post additional constraints so that GAC may also enforce kWC.
These new constraints are created from a group of existing constraints and this section
studies their effect on the consistency level.

Given C = {ci1 , . . . , cik} in P where k ≥ 3, we define the following notation:
– mult(C) = {λ(S) | λ(S) ∈ W∗ ∧ S = scp(cij) ∩ scp(cil) for 1 ≤ j < l ≤ k}
– sing(C) = {x | x ∈ X ∧ {x} = scp(cij) ∩ scp(cil) for 1 ≤ j < l ≤ k}
– join(C) = rel(ci1) � . . . � rel(cik),

Definition 4. Given a set C of k constraints (k ≥ 3), the factor-reduced join of C
(frj(C)) is a constraint constructed as follows. Let |mult(C)| = o, and |sing(C)| = p,

– scp(frj(C)) = mult(C) ∪ sing(C) = {λ(S1), . . . , λ(So)} ∪ {xj1 , . . . xjp}
– rel(frj(C)) = {(τ [S1], . . . , τ [So], τ [xj1], . . . , τ [xjp]) | τ ∈ join(C)}

The factor-reduced join is not a projection of join(C) as its scope may include factor
variables. Rather, it can be viewed as a projection of �c∈C fe(c). In any case, since it is
derived from the join of C, its pruning power cannot be greater.

It should be noted that frj(C) may end up having the same scope as another existing
constraint or another frj constraint. For instance, letC1 = {c1(x1, x2, x3), c2(x1, x2, x4),
c3(x1, x5)} and C2 = {c4(x1, x2, x6), c5(x1, x2, x7), c3(x1, x5)}. Let y1 = x1x2, it
follows that scp(frj(C1)) = {x1, y1} = scp(frj(C2)). This can also happen in the case
where no factor variables are formed by the FE. For instance, let C1 = {c1(x1, x2),
c2(x2, x3), c3(x3, x4)}. Then scp(frj(C1)) = {x2, x3} = scp(c2). Both cases can be
handled by merging constraints with the same scope afterwards.

We assume that every constraint in C must be relevant. Namely, given c ∈ C there
must exist at least one other c′ ∈ C such that |scp(c) ∩ scp(c′)| ≥ 1.

Property 5. The arity of frj(C) ranges from 2 to
(|C|

2

)
.

The fe(P) with the additional constraints frj(C) for every groupC of size k is called
the factor encoding of P for k-wise consistency (FKWC), also denoted by fkwc(P , k).

Property 6. Enforcing GAC on fkwc(P ,k) is strictly weaker than enforcing both FPWC
and kWC on P and strictly stronger than enforcing FPWC on P .

We show this by an example. Consider the constraints in Figure 2a and their factor
encodings in Figure 2b, where y1 = x2x3. The networks in both figures are PWC. The
join of the three original constraints is given in Figure 2c. The projection of join(C)
onto each of the original constraint makes the following tuples 3-wise inconsistent:
(1, 1, 0, 0) ∈ rel(c1), (1, 0, 1) ∈ rel(c2), and (1, 0, 1) ∈ rel(c3). Now consider the

Higher-Order Consistencies through GAC on Factor Variables 505

c1
x1 x2 x3 x4

0 0 0 0
0 0 1 1
1 1 0 0

c2
x2 x3 x5

0 0 0
0 1 1
1 0 1

c3
x4 x5 x6

0 0 0
1 0 1
1 1 0

(a) Original: C = {c1, c2, c3}

fe(c1)
x1 x2 x3 x4 y1
0 0 0 0 0
0 0 1 1 1
1 1 0 0 2

fe(c2)
x2 x3 x5 y1
0 0 0 0
0 1 1 1
1 0 1 2

fe(c3)
x4 x5 x6

0 0 0
1 0 1
1 1 0

(b) Factor-encoded constraints

join(C)
x1 x2 x3 x4 x5 x6

0 0 0 0 0 0
0 0 1 1 1 0

(c) The join of constraints in C

frj(C)
x4 y1 x5

0 0 0
1 1 1

(d) The factor-reduced join of C

fe(fe(c1))
x1 x2 x3 x4 y1 z1
0 0 0 0 0 0
0 0 1 1 1 1
1 1 0 0 2 2

fe(fe(c2))
x2 x3 x5 y1 z2
0 0 0 0 0
0 1 1 1 1
1 0 1 2 2

fe(fe(c3))
x4 x5 x6 z3
0 0 0 0
1 0 1 1
1 1 0 2

fe(frj(C))
x4 y1 x5 z1 z2 z3
0 0 0 0 0 0
1 1 1 1 1 2

(e) The FE of (b) and (d) where fe(fe(ci)) denotes the FE of constraints from (b) with frj(C).

Fig. 2. The pruning power of GAC on (b) + (d) lies between FPWC and FPWC + 3-wise consis-
tency on (a), whereas GAC on (e) is equal to FPWC + 3-wise consistency on (a)

frj(C) in Figure 2d. GAC on {frj(C), fe(c1), fe(c2), fe(c3)} leads to the inconsistency of
(1, 1, 0, 0, 2) ∈ rel(fe(c1)) and (1, 0, 1, 2) ∈ rel(fe(c2)), but not (1, 0, 1) ∈ rel(fe(c3)).

Although the fkwc(P ,k) encoding is only partial kWC, it subsumes fe(P) so FPWC
is guaranteed by GAC. Together with the fact that kWC implies (k-1)WC, we have

Property 7. Enforcing GAC on fkwc(P ,k) is strictly weaker than enforcing GAC on
the kIL of P for k ≥ 3.

Theorem 4. Q = fe(fkwc(P , k))) is GAC if and only if P is FPWC and kWC.

Sketch of Proof: Consider C = {ci1 , . . . , cik}. It is clear that join(C) forces kWC
on C through GAC. fe(frj(C)) ∈ Q represents all the articulation points of join(C)
and we will show that both have the same restricting effect on the rest of the network
by showing that the “missing columns” can be “rebuilt” via GAC. The proof for (⇐)
is omitted for lack of space. Assume Q is GAC. Let x be a variable in scp(join(C)) \
(
⋃

λ(S)∈mult(C) S)\sing(C). It follows that there is exactly one constraint cij ∈ C such
that x ∈ scp(cij). Suppose a ∈ Dc(x). BecauseQ is GAC, so is a. By definition, there
exists a valid tuple τij ∈ rel(fe(fe(cij))) such that τij [x] = a. Let Hij = scp(fe(cij))∩
scp(frj(C)), |Hij | ≥ 1. Because Q is a factor encoding, there exists a variable λ(Hij)
in both scp(fe(fe(cij))) and scp(fe(frj(C))) (λ(Hij) is either an ordinary or a factor
variable). Since Hij too is GAC, τij is guaranteed to be extendable to fe(frj(C)). Let ϕ
be such a tuple in fe(frj(C)) such that τij � ϕ is a tuple over scp(fe(cij))∪scp(frj(C)).
For each cil ∈ C \ {cij}, let Hil = scp(fe(cil)) ∩ scp(frj(C)). By the same argument,
there exists a valid tuple τil in fe(fe(cil)) such that τil [Hil] = ϕ[Hil]. The join of ϕ,
τij , and every such τil would become a valid support of a in J = (�c∈C fe(fe(c))) �

506 C. Likitvivatanavong, W. Xia, and R.H.C. Yap

fe(frj(C)). Because the projection of J on scp(join(C)) is join(C) and a is arbitrary,
the column x in scp(join(C)) is thus the same as Dc(x). �

Figure 2e shows another application of the factor encoding on top of fkwc(P , k),
where z1 = x4y1, z2 = x5y1, and z3 = x4x5. GAC on this network would lead to the
inconsistency of (1, 0, 1, 1) in the third table. Since x2x3y1 is redundant according to
Corollary 2 we do not add it to scp(fe(fe(c1))) and scp(fe(fe(c2))).

Property 8. The arity of fe(frj(C)) ranges from 2 to
(|C|

2

)
+ |C|.

Proof The reasoning is similar to the one for Property 2, but here fe(frj(C)) is not
necessarily part of C so the bound on the number of constraints that it may interact with
is |C| not |C| − 1. Coupled with Property 5, we have,

2 ≤ |scp(frj(C))| ≤ |scp(fe(frj(C)))| ≤ |scp(frj(C))| + |C| ≤
(|C|

2

)
+ |C| �

Figure 2e demonstrates: we have |C| = |C| = 3, so the upper bound on the arity of
fe(frj(C)) is

(|C|
2

)
+ |C| =

(
3
2

)
+3 = 6, which happens to be the actual arity of fe(frj(C)).

6 Experiments

In this section, we present experimental results on the effectiveness of the FE and the
FKWC in comparison with the kIL and an FPWC algorithm. We will use kFE to denote
fkwc(P , k). Benchmarks are drawn from the CSP solver competition2 in addition to
randomly generated problems. The experiments were conducted on a 2.6GHz quad-
core Intel Core i7 on OS X 10.8. The converters take an input in the XCSP format and
output the result as another text file. As such, we are not restricted to any particular GAC
algorithm and we shall test the encoding on multiple GAC algorithms. Like [7, 11], the
search employed the dom/ddeg variable ordering heuristic and the lex value ordering.
We used AbsCon [15] as the solver. Conversion time is limited to 30 minutes while
memory is limited to 8GB for both the converters and the solver.

Because the kIL and the FE augment the original constraints’ scope with new vari-
ables, the location to which they are inserted has to be considered. Two natural choices
are the front and the back. The front leads to slightly faster running time in our exper-
iments, with a big difference on some problem instances, such as when multi-valued
decision diagrams (MDDs) are involved. To simplify the presentation, experiments
therefore involve only the front insertion. After the conversion the FE and FKWC con-
verters may have to re-sort the tuples since the front insertion may disrupt the ordering
of the input that is already sorted. The reason is that AbsCon happens to need sorted
relations for some GAC algorithms such as MDDc [3]. The kIL conversion avoids this
overhead because it maintains the tuple ordering of the input. For the 2IL any pair of
constraints is joined only if their scopes share more than one variable. Unused dual
variables are discarded from the output. For instance, consider the 2IL comprising of
c1(x, y, z, v1), c2(x, y, w, v1), c3(w, z, v3), where v1, v2, v3 are the dual variables as-
sociated with c1, c2, c3 and the rest are ordinary variables. Only v1 and v2 are joined to

2 Available at http://www.cril.univ-artois.fr/CSC09. The modified renault problems with tables all
positive are taken from http://becool.info.ucl.ac.be/resources/positive-table-constraints-benchmarks.

http://www.cril.univ-artois.fr/CSC09
http://becool.info.ucl.ac.be/resources/positive-table-constraints-benchmarks

Higher-Order Consistencies through GAC on Factor Variables 507

form a new constraint c4(v1, v2) as c1 and c2 share x and y. Because v3 is not involved
in any constraint it will be removed from X and c3.

Table 1 shows the mean results on some series of benchmarks while Table 2 shows
the results from selected instances. Five algorithms were tested: GACva [12], MDDc
[3], STR3[10], STR2 [9], and an AbsCon’s implementation3 of FPWC based on STR,
which we will call Fabs. Fabs is not eSTR2w [11] but can be regarded as a variant of
eSTRw (or FPWC-STRw). It exhibits a profile similar to that of eSTR2w when com-
pared to STR2 on common benchmarks, except in a few cases where the difference in
performance with respect to STR2 is noticeably smaller (e.g. aim) or larger (e.g. rand-
10-20-10). Among the four GAC algorithms, GACva and STR3 are generally slower
than MDDc and STR2 so for succinctness they do not appear in the main results in
Table 1. Their performance on some representative instances can be seen in Table 2.
All algorithms were run on the original instance and its two encodings for FPWC: the
FE and the 2IL. There are three variants depending on how variables are handled dur-
ing search. FE-O and 2IL-O (pref-orig) force the variable ordering heuristic to choose
from the set of original variables until all of them are instantiated before choosing from
the set of auxiliary (compound) variables. FE-A and 2IL-A (pref-aux) are the opposite,
where preference is given to the auxiliary variables. FE-E and 2IL-E (pref-equal) give
equal treatment to all variables with respect to dom/ddeg.

In both tables, tC gives the running time of the converters in seconds, while nV is
the number of the variables, e.g. there are 100 ordinary variables in a2, 99 extra factor
variables in its FE, and 127 extra dual variables in its 2IL. Best times and nodes are set in
bold. A node count of zero means unsatisfiability is detected before the search starts. In
Table 1, SS stands for solving strategy, the combination of GAC algorithm and encoding
(if applicable). STR2 is the main GAC algorithm for solving various encodings unless
specified otherwise (MDDc is ill-suited to the encodings as will be explained later). (#n)
is the number of instances tested in the series. Instances that were not solved within 60
minutes by STR2 (the baseline) or exceeded the memory limit on any solving strategy
are excluded, otherwise there is no time limit. Trivial instances (solved within 1 second)
of the modified renault benchmark (modRenault) are also excluded (17 out of 50). The
mdd-r-n-d series are randomly generated, based on the RD model [19], by building an
MDD in a post-order manner with probability 0.5 that a previously created sub-MDD
is reused [3]. The parameters are: arity (r), number of variables (n), and domain size
(d). In Table 2, ENC is the encoding used. The columns GACva, MDDc, STR3, STR3,
and Fabs give their running times. As Fabs reaches the same node count as GAC on the
respective FE/2IL encoding, cells on these rows are left blank.

It is worth mentioning that dom/ddeg may not produce the same search tree in both
the original network and in its encoding, even when only the ordinary variables are in-
stantiated. Because the dynamic degree counts the number of constraints in which there
are at least two uninstantiated variables, the fact that an encoding’s scopes have more
variables may steer dom/ddeg to pick a different variable than in the original problem.
As a result, a weaker consistency may generate lower nodes than a stronger one (e.g.
Fabs’s node count on r19 is lower than GAC’s on the FE-O and the 2IL-O). Another
source of the difference in node count lies in how AbsCon explicitly instantiates all

3 Available in AbsCon 1.418.

508 C. Likitvivatanavong, W. Xia, and R.H.C. Yap

variables, even the ones that are already singletons. For example, both encodings for a2
are backtrack-free for GAC, but the node count for the FE is 199 because there are 99
more variables, while the 2IL’s is 277 because there are 127 additional dual variables.

We make the following observations on these data:
– The FE’s conversion time is mostly inconsequential compared to the solver’s running
time whereas the 2IL’s can be a lot more expensive as it is based on the join of tables.
The conversion time of the FE can be improved since we have not made an attempt
to optimize our converter. For one thing, it always re-sorts relations before writing the
output regardless of the solver’s requirement.
– The fastest GAC on the original problem is either MDDc or STR2. The best variant of
the FE largely improves the running time of STR2 and STR3, while it may help or hurt
MDDc and Fabs. The 2IL has mixed results and the conversion can be very slow due
to the join. The FE clearly outperforms the 2IL on the same variant and benchmark, but
enforcing MDDc on the original problems is frequently faster than any solving strategy
(e.g. rand-3-20-20 and the fcd variation). The implication here is that switching GAC
algorithm may improve the running time better than equipping a GAC algorithm with
stronger consistency. Experiments in previous works [11, 13, 16] neither considered
MDDc nor included more than one GAC algorithm in the same study.
– For MDD compression, a larger scope is associated with lower probability of getting
well-compacted MDDs. Any transformation which enlarges the scope may be unfa-
vorable to MDDc. This is especially true with the kIL, which interferes directly with
the compression by assigning different index to different tuples. The FE too causes the
same problem, but to a lesser extent. However, the pruning from FPWC can more than
compensate for this drawback in many cases (e.g. dubois, dag-rand-1), although it is
not enough to win over STR2 on the same encoding. Since auxiliary variables are put
in front of the scope, they will be placed on top of the MDDs by MDDc and this makes
the pruning from FPWC more effective. By comparison, putting auxiliary variables in
the back of the scope lessens the impact of FPWC to the point where running MDDc
on an encoding is always worse off.
– Due to stronger consistency, maintaining Fabs leads to a lower node count than main-
taining GAC during search, but the lower number of nodes does not always translate to
faster running time. Fabs can be faster or slower than STR2. By contrast, all variants of
the FE are faster than Fabs although the node count can be higher.
– When a problem does not present an opportunity for additional pruning beyond GAC,
running a stronger algorithm is counterproductive. Given that FPWC is both GAC and
PWC, as the FE and the 2IL already builds in PWC propagation into the encoding, the
portion of an FPWC algorithm that administers PWC becomes useless and simply in-
curs overhead when executed. Running an FPWC algorithm on the encoding therefore
gets the same number of nodes as running any GAC algorithm on the encoding. It is
interesting that the FE can make Fabs faster in some cases. The reason is that Fabs en-
forces only partial FPWC while the encoding provides complete FPWC. When Fabs’s
pruning capability happens to reach the level of complete FPWC on the original prob-
lem (i.e. its node count is already the lowest or not too much higher) running it on the
FE would be slower (e.g. r19, dag-rand-1). Otherwise if Fabs’s node count is consider-
ably larger, that means there is still room for improvement and running Fabs on the FE

Higher-Order Consistencies through GAC on Factor Variables 509

Table 1. Mean results for selected benchmarks. T/O indicates the converter was timed out. M/O
is out-of-memory failure. M stands for millions. For the mdd series, e is the number of constraints
while t is the number of tuples in a relation
series SS tC nV time nodes

rand-3-20-20-fcd STR2 – 20 39.61 130,327
(#50) MDDc – 20 21.00 130,327

Fabs – 20 34.28 37,727
FE-O 0.21 +45 22.07 40,289
FE-A 0.21 +45 32.94 71,568
FE-E 0.21 +45 22.82 36,195
2IL-O 2.83 +55 68.79 40,299
2IL-A 2.83 +55 105.40 59,885
2IL-E 2.83 +55 73.09 36,227

rand-3-20-20 STR2 – 20 83.27 256,958
(#50) MDDc – 20 40.94 256,958

Fabs – 20 74.39 83,529
FE-O 0.22 +45 41.76 74,825
FE-A 0.22 +45 54.85 108,696
FE-E 0.22 +45 42.53 66,850
2IL-O 2.89 +55 130.38 74,830
2IL-A 2.89 +55 269.64 137,301
2IL-E 2.89 +55 129.68 66,853

dubois STR2 – 71 528.45 100.27M
(#8) MDDc – 71 541.67 100.27M

Fabs – 71 298.35 75.20M

STR2

⎧⎨
⎩

FE-O 0.00 +2 92.88 41.78M
FE-A 0.00 +2 198.42 66.85M
FE-E 0.00 +2 63.91 16.71M

Fabs + FE-E 0.00 +2 50.90 16.71M
MDDc + FE-E 0.00 +2 64.63 16.71M

2IL-O 0.00 +4 96.74 41.78M
2IL-A 0.00 +4 196.88 66.85M
2IL-E 0.00 +4 73.79 16.71M
4FE-O 0.08 +2 81.88 41.78M
4FE-A 0.08 +2 194.64 66.85M
4FE-E 0.08 +2 192.52 66.85M
4IL-O 0.08 +47 89.80 29.25M
4IL-A 0.08 +47 76.61 20.89M
4IL-E 0.08 +47 65.68 8.36M

aim-200 STR2 – 200 45.54 637,085
(#6) MDDc – 200 32.95 637,085

Fabs – 200 25.42 377,682
FE-O 0.03 +354 3.85 32,354
FE-A 0.03 +354 0.85 1,767
FE-E 0.03 +354 2.96 11,397
2IL-O 0.03 +551 4.36 32,552
2IL-A 0.03 +551 3.45 22,968
2IL-E 0.03 +551 3.72 11,594
3FE-O 79.03 +354 1.39 5,561
3FE-A 80.52 +354 2.79 19,002
3FE-E 79.23 +354 1.00 1,434
3IL-O 31.32 +769 34.73 4,854
3IL-A 31.28 +769 8.32 690
3IL-E 31.64 +769 7.73 683

instance SS tC nV time nodes

rand-8-20-5 STR2 – 20 12.50 101,301
(#20) MDDc – 20 22.26 101,301
(2IL T/O) Fabs – 20 32.74 18,709

FE-O 5.87 +130 12.57 5,302
FE-A 5.87 +130 22.64 3,111
FE-E 5.87 +130 12.73 4,985

mdd-5-15-7 STR2 – 15 18.48 50,402
(#30) MDDc – 15 5.95 50,402
(e = 42) Fabs – 15 36.26 3,996
(t = 8403) FE-O 1.05 +175 11.80 1,569
(2IL M/O) FE-A 1.05 +175 13.63 1,816

FE-E 1.05 +175 12.33 1,512
mdd-7-25-4 STR2 – 25 79.18 231,364
(#10) MDDc – 25 26.19 231,364
(e = 50) Fabs – 25 287.36 34,636
(t = 8192) FE-O 1.85 +466 79.95 12,037
(2IL M/O) FE-A 1.85 +466 71.90 39,366

FE-E 1.85 +466 73.99 10,523
mdd-9-30-3 STR2 – 30 73.16 349,073
(#10) MDDc – 30 39.00 349,073
(e = 47) Fabs – 30 396.88 66,109
(t = 9,841) FE-O 2.80 +723 83.68 12,963
(2IL M/O) FE-A 2.80 +723 79.79 23,578

FE-E 2.80 +723 84.28 10,603
rand-10-20-10 STR2 – 20 0.64 830
(#20) MDDc – 20 2.06 830

Fabs – 20 0.60 0
FE-O 0.24 +10 0.69 0
FE-A 0.24 +10 0.69 0
FE-E 0.24 +10 0.70 0
2IL-O 4.37 +5 1.41 0
2IL-A 4.37 +5 1.45 0
2IL-E 4.37 +5 1.45 0

dag-rand STR2 – 23 17.48 57,969
(#25) MDDc – 23 123.83 57,969

Fabs – 23 12.56 0
(2IL T/O) FE-O 14.07 +120 9.45 0

FE-A 14.07 +120 9.30 0
FE-E 14.07 +120 9.12 0

modRenault STR2 – 110 317.18 6.40M
(#12) MDDc – 110 295.45 6.40M

Fabs – 110 2.19 30
FE-O 0.71 +102 1.19 54
FE-A 0.71 +102 1.22 58
FE-E 0.71 +102 1.20 53
2IL-O 81.16 +148 158.40 66
2IL-A 81.45 +148 159.93 1023
2IL-E 80.96 +148 159.14 2411

510 C. Likitvivatanavong, W. Xia, and R.H.C. Yap

Table 2. Results from selected instances

instance ENC tC nV nodes GACva MDDc STR3 STR2 Fabs nodes

rand-3-20-20-60-632-19 None – 20 252,803 49.15 36.59 82.39 73.05 64.94 74,509
(abbrv. as “r19”) FE-O 0.22 +47 87,674 119.53 197.73 90.55 49.78 226.84

FE-A 0.22 +47 145,296 145.12 296.61 128.35 73.93 301.83
FE-E 0.22 +47 77,483 125.08 197.09 97.32 53.58 207.95
2IL-O 3.03 +57 87,674 258.08 341.64 222.87 143.26 218.48
2IL-A 3.03 +57 147,978 416.86 488.22 340.66 230.14 395.93
2IL-E 3.03 +57 77,483 245.40 355.73 222.59 156.22 243.80

rand-3-20-20-60-632-26 None – 20 442,871 74.65 67.24 147.71 127.00 35.34 29,765
(abbrv. as “r26”) FE-O 0.21 +48 34,200 53.73 82.02 32.71 19.54 72.07

FE-A 0.21 +48 23,498 24.58 52.54 17.64 10.95 40.86
FE-E 0.21 +48 30,957 53.02 85.44 32.94 19.37 72.55
2IL-O 2.73 +57 34,209 117.34 159.62 97.49 62.93 93.67
2IL-A 2.73 +57 31,907 117.13 156.49 112.07 66.98 90.20
2IL-E 2.73 +57 30,966 117.26 159.61 98.58 63.29 92.36

dag-rand-1 None – 23 43,994 74.37 109.04 259.00 15.52 11.68 0
(2IL T/O) FE-O 14.28 +120 0 18.44 15.39 12.30 9.14 20.57

FE-A 14.28 +120 0 18.66 15.53 12.54 9.24 21.91
FE-E 14.28 +120 0 18.74 15.65 13.79 9.91 20.47

rand-8-20-5-18-800-7 None – 20 11,063 4.75 4.94 32.95 4.43 8.81 980
(2IL T/O) FE-O 5.71 +128 573 22.77 M/O 10.82 5.98 M/O

FE-A 5.71 +128 177 6.79 M/O 5.93 4.47 M/O
FE-E 5.71 +128 546 23.00 M/O 11.40 6.27 M/O

aim-100-1-6-sat-2 None – 100 95.79M 498.67 446.68 1015.90 577.23 163.12 23.11M
(abbrv. as “a2”) FE-O 0.01 +99 199 0.43 0.50 0.48 0.45 0.47

FE-A 0.01 +99 199 0.44 0.50 0.46 0.43 0.45
FE-E 0.01 +99 199 0.44 0.49 0.46 0.46 0.47
2IL-O 0.00 +127 227 0.47 0.48 0.52 0.49 0.51
2IL-A 0.00 +127 227 0.47 0.48 0.49 0.48 0.52
2IL-E 0.00 +127 227 0.46 0.47 0.52 0.49 0.51

mdd-5-15-7-inst-1 None – 15 9,975 3.56 2.13 10.39 4.33 8.88 694
(2IL M/O) FE-O 1.05 +190 594 16.58 91.49 5.84 4.11 52.74

FE-A 1.05 +190 1,383 35.54 201.29 12.10 9.33 155.91
FE-E 1.05 +190 572 16.50 88.07 6.01 4.35 52.40

(or 2IL) could make it faster (e.g. dubois, a2). On dubois, the combination of Fabs and
FE-E is the fastest, offering an order-of-magnitude improvement over STR2.
– Variable preferences have a strong influence on the performance: the best can be twice
as fast and/or halves the node count of the worst. Wide fluctuation also exists within the
same series (e.g. in Table 2 FE-A is the best on r26 but the worst on r19). Generally
pref-equal has an advantage over pref-orig, while pref-aux is consistently the worst
(FE-A on aim is the exception). This pattern holds for both the FE and the 2IL.
– As is the case with Fabs, the node count of various encodings does not correlate well
with the running time. However, too many overlapping constraints or factor variables
clearly has an adverse effect on the running time. The three mdd series illustrate. As ar-
ity and number of variable increases, so does the number of overlapping constraints and
factor variables. Keep in mind that the latter’s number can be lower than the former’s.
For example, the instance mdd-9-30-3-inst-1 has 47 relations, so the maximum number

Higher-Order Consistencies through GAC on Factor Variables 511

of intersecting constraints is
(
47
2

)
= 1081, whereas the actual number is 930 and the

number of factor variables in the FE is 718. The ratio of the number of factor variables
to the number of original variables goes from 11.67 for mdd-5-15-7 to 18.64 for mdd-
7-25-4 to 24.1 for mdd-9-30-3. The ratio of Fabs’s running time to STR2’s increases
accordingly from 1.96 to 3.63 to 5.42. The ratio of the FE’s running time increases too,
but at a lower pace of 0.54, 0.93, and 1.51 respectively. We also experimented with
restricting the number of factor variables allowed in the FE for the mdd series but this
does not improve the running time.

We have performed initial experiments with the FKWC and compare it with the kIL.
For k ≥ 3, [13] suggested the cycle heuristic to reduce the number of constraints: each
constraint must share at least one variable with the previous and the next constraint in a
circular manner. Our converters for the kIL and the FKWC employ this heuristic. Both
the kIL and the FKWC are not practical beyond small k (3 or 4) since they are based on
join which suffers from exponential growth in computation. The 3IL and 3FE are either
timed out or ran out of memory on all the benchmarks in Table 1 except for dubois and
aim-200. On dubois, no new constraint is created by the 3IL and the only constraints
created by the 3FE are universal (where every combination of value is allowed) so they
are useless and ignored. The 4FE does not improve on the FE. The 4IL is better than
the 2IL and has the best node count but it is still slower than the FE. Similarly, the 3FE
and the 3IL brings down the node count for aim but does not improve the running time.
We also tried other benchmarks from the solver competition but most exceeded time or
memory limit for conversion. Some benchmarks, such as pret or ramsey, produce only
universal constraints for the 3FE. For the benchmarks that can be converted, we found
the FKWC to be slower than the FE although the node count is lower.

7 Conclusion

We have introduced a new encoding for non-binary constraint networks that enables
stronger consistencies to be acquired through GAC. Thus, this allows stronger consis-
tencies to be incorporated into existing (state-of-the-art) CP solvers. Our experiments
suggest FE to be the better method for achieving FPWC than both the 2IL and AbsCon’s
FPWC algorithm. Unlike specialized FPWC algorithms which are usually slower than
GAC when there is little or no overlapping constraint, the preprocessors like the FE
or the 2IL converter do not suffer from such computational overhead. Unlike the 2IL
which joins constraints to achieve PWC, the FE is more precise and does not require
any new constraint to be posted. As a converter, the FE benefits from flexibility: any
solver using any GAC algorithm can be used as long as it is able to read the file in
the specified format. At the same time, passing information to the solver this way can
become a significant expense when large files are involved. Integrating the converter
with the solver would eliminate this problem. As for the encodings for general kWC,
we found they are not as effective as the FE. Similar to the kIL, the FKWC encoding
has limited practical benefits due to the high cost of joins in both time and space and
the need for good heuristics that pick only the useful pieces from the large number of
possible joins. Success hinges on fine-tuning these heuristics and implementing better
join algorithms. Constructing the frj constraints directly through search [8] instead of
deriving them from join is also less expensive and could be examined in future works.

512 C. Likitvivatanavong, W. Xia, and R.H.C. Yap

The MDDc algorithm is faster than STR2 on some sets of benchmarks but its per-
formance on the FE is generally poor due to the factor variable’s larger domains and
the drop in compression rate as arity increases. Modifying the MDDc algorithm itself
to make it aware of factor variables is a promising direction.

Acknowledgments. We thank Christophe Lecoutre for the permission to use AbsCon
in our experiment. This work has been supported by grant MOE2012-T2-1-155.

References

1. Bacchus, F., Chen, X., van Beek, P., Walsh, T.: Binary vs. non-binary constraints. AIJ
140(1-2), 1–37 (2002)

2. Bessière, C., Stergiou, K., Walsh, T.: Domain filtering consistencies for non-binary con-
straints. Artificial Intelligence 172(6-7), 800–822 (2008)

3. Cheng, K.C.K., Yap, R.H.C.: An MDD-based generalized arc consistency algorithm for pos-
itive and negative table constraints and some global constraints. Constraints 15(2), 265–304
(2010)

4. Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Data structures for generalised arc con-
sistency for extensional constraints. In: Proceedings of AAAI 2007, Vancouver, Canada,
pp. 191–197 (2007)

5. Gyssens, M.: On the complexity of join dependencies. ACM Transactions on Database Sys-
tem 11(1), 81–108 (1986)

6. Janssen, P., Jegou, P., Nouguier, B., Vilarem, M.C.: A filtering process for general constraint-
satisfaction problems: Achieving pairwise-consistency using an associated binary represen-
tation. In: Proceedings of IEEE Workshop on Tools for Artificial Intelligence, pp. 420–427
(1989)

7. Karakashian, S., Woodward, R., Choueiry, B.Y., Prestwich, S., Freuder, E.C.: A partial tax-
onomy of substitutability and interchangeability. In: CP 2010 Workshop on Symmetry in
Constraint Satisfaction Problems (2010)

8. Karakashian, S., Woodward, R., Reeson, C., Choueiry, B.Y., Bessiere, C.: A first prac-
tical algorithm for high levels of relational consistency. In: Proceedings of AAAI 2010,
pp. 101–107 (2010)

9. Lecoutre, C.: STR2: Optimized simple tabular reduction for table constraints. Con-
straints 16(4), 341–371 (2011)

10. Lecoutre, C., Likitvivatanavong, C., Yap, R.H.C.: A path-optimal GAC algorithm for table
constraints. In: Proceedings of ECAI 2012, France, pp. 510–515 (2012)

11. Lecoutre, C., Paparrizou, A., Stergiou, K.: Extending STR to a higher-order consistency. In:
Proceedings of AAAI 2013, Washington, U.S., pp. 576–582 (2013)

12. Lecoutre, C., Szymanek, R.: Generalized arc consistency for positive table constraints. In:
Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 284–298. Springer, Heidelberg (2006)

13. Mairy, J.-B., Deville, Y., Lecoutre, C.: Domain k-wise consistency made as simple as gener-
alized arc consistency. In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 235–250.
Springer, Heidelberg (2014)

14. Mairy, J.-B., Van Hentenryck, P., Deville, Y.: Optimal and efficient filtering algorithms for
table constraints. Constraints 19(1), 77–120 (2014)

15. Merchez, S., Lecoutre, C., Boussemart, F.: AbsCon: a prototype to solve CSPs with ab-
straction. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 730–744. Springer, Heidelberg
(2001)

Higher-Order Consistencies through GAC on Factor Variables 513

16. Paparrizou, A., Stergiou, K.: An efficient higher-order consistency algorithm for table con-
straints. In: Proceedings of AAAI 2012, pp. 535–541 (2012)

17. Sabin, D., Freuder, E.C.: Contradicting conventional wisdom in constraint satisfaction. In:
Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 10–20. Springer, Heidelberg (1994)

18. Samaras, N., Stergiou, K.: Binary encoding of non-binary constraint satisfaction problems:
Algorithms and experimental results. JAIR 24, 641–684 (2005)

19. Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: Random constraint satisfaction: easy gen-
eration of hard (satisfiable) instances. AIJ 171(8-9), 514–534 (2007)

Incremental QBF Solving�

Florian Lonsing and Uwe Egly

Vienna University of Technology
Institute of Information Systems
Knowledge-Based Systems Group

Vienna, Austria
http://www.kr.tuwien.ac.at/

Abstract. We consider the problem of incrementally solving a sequence
of quantified Boolean formulae (QBF). Incremental solving aims at us-
ing information learned from one formula in the process of solving the
next formulae in the sequence. Based on a general overview of the prob-
lem and related challenges, we present an approach to incremental QBF
solving which is application-independent and hence applicable to QBF
encodings of arbitrary problems. We implemented this approach in our
incremental search-based QBF solver DepQBF and report on implemen-
tation details. Experimental results illustrate the potential benefits of
incremental solving in QBF-based workflows.

1 Introduction

The success of SAT technology in practical applications is largely driven by incre-
mental solving. SAT solvers based on conflict-driven clause learning (CDCL) [32]
gather information about a formula in terms of learned clauses. When solving a
sequence of closely related formulae, it is beneficial to keep clauses learned from
one formula in the course of solving the next formulae in the sequence.

The logic of quantified Boolean formulae (QBF) extends propositional logic by
universal and existential quantification of variables. QBF potentially allows for
more succinct encodings of PSPACE-complete problems than SAT. Motivated
by the success of incremental SAT solving, we consider the problem of incre-
mentally solving a sequence of syntactically related QBFs in prenex conjunctive
normal form (PCNF). Building on search-based QBF solving with clause and
cube learning (QCDCL) [8,13,21,24,36], we present an approach to incremental
QBF solving, which we implemented in our solver DepQBF.1

Different from many incremental SAT and QBF [27] solvers, DepQBF allows to
add clauses to and delete clauses from the input PCNF in a stack-based way by
push and pop operations. A related stack-based framework was implemented in
the SAT solver PicoSAT [5]. A solver API with push and pop increases the usabil-
ity from the perspective of a user. Moreover, we present an optimization based
on this stack-based framework which reduces the size of the learned clauses.
� Supported by the Austrian Science Fund (FWF) under grant S11409-N23. We would
like to thank Armin Biere and Paolo Marin for helpful discussions.

1 DepQBF is free software: http://lonsing.github.io/depqbf/

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 514–530, 2014.
c© Springer International Publishing Switzerland 2014

http://www.kr.tuwien.ac.at/
http://lonsing.github.io/depqbf/

Incremental QBF Solving 515

Incremental QBF solving was introduced for QBF-based bounded model
checking (BMC) of partial designs [26,27]. This approach, like ours, relies on
selector variables and assumptions to support the deletion of clauses from the
current input PCNF [1,11,20,28]. The quantifier prefixes of the incrementally
solved PCNFs resulting from the BMC encodings are modified only at the left
or right end. In contrast to that, we consider incremental solving of arbitrary
sequences of PCNFs. For the soundness it is crucial to determine which of the
learned clauses and cubes can be kept across different runs of an incremen-
tal QBF solver. We aim at a general presentation of incremental QBF solving
and illustrate problems related to clause and cube learning. Our approach is
application-independent and applicable to QBF encodings of arbitrary problems.

We report on experiments with constructed benchmarks. In addition to ex-
periments with QBF-based conformant planning using DepQBF [12], our results
illustrate the potential benefits of incremental QBF solving in application do-
mains like synthesis [6,33], formal verification [4], testing [17,25,34], planning [9],
and model enumeration [3], for example.

2 Preliminaries

We introduce terminology related to QBF and search-based QBF solving neces-
sary to present a general view on incremental solving.

For a propositional variable x, l := x or l := ¬x is a literal, where v(l) = x
denotes the variable of l. A clause (cube) is a disjunction (conjunction) of literals.
A constraint is a clause or a cube. The empty constraint ∅ does not contain any
literals. A clause (cube) C is tautological (contradictory) if x ∈ C and ¬x ∈ C.

A propositional formula is in conjunctive (disjunctive) normal form if it con-
sists of a conjunction (disjunction) of clauses (cubes), called CNF (DNF). For
simplicity, we regard CNFs and DNFs as sets of clauses and cubes, respectively.

A quantified Boolean formula (QBF) ψ := Q̂. φ is in prenex CNF (PCNF)
if it consists of a quantifier-free CNF φ and a quantifier prefix Q̂ with Q̂ :=
Q1B1 . . .QnBn where Qi ∈ {∀, ∃} are quantifiers and Bi are blocks (i.e. sets) of
variables such that Bi �= ∅ and Bi ∩Bj = ∅ for i �= j, and Qi �= Qi+1.

The blocks in the quantifier prefix are linearly ordered such that Bi < Bj if
i < j. The linear ordering is extended to variables and literals: xi < xj if xi ∈ Bi,
xj ∈ Bj and Bi < Bj , and l < l′ if v(l) < v(l′) for literals l and l′.

We consider only closed PCNFs, where every variable which occurs in the
CNF is quantified in the prefix, and vice versa.

A variable x ∈ Bi is universal, written as q(x) = ∀, if Qi = ∀ and existential,
written as q(x) = ∃, if Qi = ∃. A literal l is universal if q(v(l)) = ∀ and existential
if q(v(l)) = ∃, written as q(l) := ∀ and q(l) := ∃, respectively.

An assignment is a mapping from variables to the truth values true and false.
An assignment A is represented as a set of literals A := {l1, . . . , lk} such that,
for li ∈ A, if v(li) is assigned to false (true) then li = ¬v(li) (li = v(li)).

A PCNF ψ under an assignment A is denoted by ψ[A] and is obtained from
ψ as follows: for li ∈ A, if li = v(li) (li = ¬v(li)) then all occurrences of v(li) in

516 F. Lonsing and U. Egly

ψ are replaced by the syntactic truth constant � (⊥), respectively. All constants
are eliminated from ψ[A] by the usual simplifications of Boolean algebra and
superfluous quantifiers and blocks are deleted from the quantifier prefix of ψ[A].
Given a cube C and a PCNF ψ, ψ[C] := ψ[A] is the formula obtained from ψ
under the assignment A := {l | l ∈ C} defined by the literals in C.

The semantics of closed PCNFs is defined recursively. The QBF � is satisfi-
able and the QBF ⊥ is unsatisfiable. The QBF ψ = ∀(B1 ∪ {x}) . . . QnBn. φ is
satisfiable if ψ[¬x] and ψ[x] are satisfiable. The QBF ψ = ∃(B1∪{x}) . . . QnBn. φ
is satisfiable if ψ[¬x] or ψ[x] are satisfiable.

A PCNF ψ is satisfied under an assignment A if ψ[A] = � and falsified under
A if ψ[A] = ⊥. Satisfied and falsified clauses are defined analogously.

Given a constraint C, LQ(C) := {l ∈ C | q(l) = Q} for Q ∈ {∀, ∃} denotes the
set of universal and existential literals in C. For a clause C, universal reduction
produces the clause UR(C) := C \ {l | l ∈ L∀(C) and ∀l′ ∈ L∃(C) : l′ < l}.

Q-resolution of clauses is a combination of resolution for propositional logic
and universal reduction [7]. Given two non-tautological clauses C1 and C2 and
a pivot variable p such that q(p) = ∃ and p ∈ C1 and ¬p ∈ C2. Let C

′ :=
(UR(C1) \ {p}) ∪ (UR(C2) \ {¬p}) be the tentative Q-resolvent of C1 and C2.
If C′ is non-tautological then it is the Q-resolvent of C1 and C2 and we write
C′ = C1 ⊗ C2. Otherwise, C1 and C2 do not have a Q-resolvent.

Given a PCNF ψ := Q̂. φ, a Q-resolution derivation of a clause C from ψ is
the successive application of Q-resolution and universal reduction to clauses in
ψ and previously derived clauses resulting in C. We represent a derivation as a
directed acyclic graph (DAG) with edges (1) C′′ → C′ if C′ = UR(C′′) and (2)
C1 → C′ and C2 → C′ if C′ = C1⊗C2. We write Q̂.φ 4 C if there is a derivation
of a clause C from ψ. Otherwise, we write Q̂.φ � C. Q-resolution is a sound and
refutationally-complete proof system for QBFs [7]. A Q-resolution proof of an
unsatisfiable PCNF ψ is a Q-resolution derivation of the empty clause.

3 Search-Based QBF Solving

We briefly describe search-based QBF solving with conflict-driven clause learning
and solution-driven cube learning (QCDCL) [8,13,21,24,36] and related proper-
ties. In the context of incremental QBF solving, clause and cube learning requires
a special treatment, which we address in Section 4.

Given a PCNF ψ, a QCDCL-based QBF solver successively assigns the vari-
ables to generate an assignment A. If ψ is falsified under A, i.e. ψ[A] = ⊥, then
a new learned clause C is derived by Q-resolution and added to ψ. If ψ is unsat-
isfiable, then finally the empty clause will be derived by clause learning. If ψ is
satisfied under A, i.e. ψ[A] = �, then a new learned cube is constructed based
on the following model generation rule, existential reduction and cube resolution.

Definition 1 (Model Generation rule [13]). Given a PCNF ψ := Q̂.φ,
an assignment A such that ψ[A] = � is a model2 of ψ. An initial cube C =
(
∧

li∈A li) is a conjunction over the literals of a model A.

2 We adopted this definition of models from [21].

Incremental QBF Solving 517

Clause derivation: Cube derivation:

C8 = (¬x1)

C7 = (¬y8 ∨ ¬x1)

C3 = (¬x1 ∨ x4) C4 = (¬y8 ∨ ¬x4)

C14 = ∅

C13 = (¬x1)

C10 = (¬y8)

C9 = (. . .)

C12 = (y8 ∧ ¬x1)

C11 = (. . .)

Fig. 1. Derivation DAGs of the clauses and cubes from Example 1. The literals in the
initial cubes C9 and C11 have been omitted in the figure to save space.

Definition 2 ([13]). Given a cube C, existential reduction produces the reduced
cube ER(C) := C \ {l | l ∈ L∃(C) and ∀l′ ∈ L∀(C) : l′ < l}.

Definition 3 (Cube Resolution [13,36]). Given two non-contradictory cubes
C1 and C2, cube resolution is defined analogously to Q-resolution for clauses, ex-
cept that existential reduction is applied and the pivot variable must be universal.
The cube resolvent of C1 and C2 (if it exists) is denoted by C := C1 ⊗ C2.

If ψ is satisfiable, then finally the empty cube will be derived by cube learning
(Theorem 5 in [13]). Whereas in clause learning initially clauses of the input
PCNF ψ can be resolved, in cube learning first initial cubes have to be generated
by the model generation rule, which can then be used to produce cube resolvents.
Similar to Q-resolution derivations (DAGs) of clauses and Q-resolution proofs,
we define cube resolution derivations of cubes and proofs of satisfiability.

Example 1. Given the satisfiable PCNF ψ := ∃x1∀y8∃x5, x2, x6, x4. φ, where
φ :=

∧
i:=1,...,6Ci with C1 := (y8 ∨ ¬x5), C2 := (x2 ∨ ¬x6), C3 := (¬x1 ∨ x4),

C4 := (¬y8 ∨ ¬x4), C5 := (x1 ∨ x6), and C6 := (x4 ∨ x5).
Figure 1 shows the derivation of the clauses C7 := C3⊗C4 = (¬y8∨¬x1) and

C8 := UR(C7) = (¬x1) by Q-resolution and universal reduction.
The assignment A1 := {x6, x2,¬y8,¬x5, x4} is a model of ψ by Definition 1.

Hence C9 := (x6 ∧ x2 ∧ ¬y8 ∧ ¬x5 ∧ x4) is an initial cube. Existential re-
duction of C9 produces the cube C10 := ER(C9) = (¬y8). Similarly, A2 :=
{y8,¬x4,¬x1, x5, x6, x2} is a model of ψ and C11 := (y8∧¬x4∧¬x1∧x5∧x6∧x2) is
an initial cube. Existential reduction of C11 produces the cube C12 := ER(C11) =
(y8 ∧ ¬x1). The cube C13 := (¬x1) is obtained by resolving C10 = (¬y8) and
C12 = (y8 ∧¬x1). Finally, existential reduction of C13 produces the empty cube
C14 := ER(C13) = ∅, which proves that the PCNF ψ is satisfiable.

A QCDCL-based solver implicitly constructs derivation DAGs in constraint
learning. However, typically only selected constraints of these derivations are
kept as learned constraints in an augmented CNF [36].

518 F. Lonsing and U. Egly

Definition 4. Let ψ := Q̂. φ be a PCNF. The augmented CNF (ACNF) of ψ
has the form ψ′ := Q̂. (φ ∧ θ ∨ γ), where Q̂ is the quantifier prefix, φ is the set
of original clauses, θ is a CNF containing the learned clauses, and γ is a DNF
containing the learned cubes obtained by clause and cube learning in QCDCL.

Given an ACNF ψ′ and an assignment A, the notation ψ′[A] is defined simi-
larly to PCNFs. Analogously to clause derivations, we write Q̂. φ 4 C if there is
a derivation of a cube C from the PCNF Q̂.φ. During a run of a QCDCL-based
solver the learned constraints can be derived from the current PCNF.

Proposition 1. Let ψ′ := Q̂. (φ∧θ∨γ) be the ACNF obtained by QCDCL from a
PCNF ψ := Q̂. φ. It holds that (1) ∀C ∈ θ : Q̂. φ 4 C and (2) ∀C ∈ γ : Q̂. φ 4 C.

Proposition 1 follows from the correctness of constraint learning in non-incre-
mental QCDCL. That is, we assume that the PCNF ψ is not modified over time.
However, as we point out below, in incremental QCDCL the constraints learned
previously might no longer be derivable after the PCNF has been modified.

Definition 5. Given the ACNF ψ′ := Q̂. (φ ∧ θ ∨ γ) of the PCNF ψ := Q̂. φ, a
clause C ∈ θ (cube C ∈ γ) is derivable with respect to ψ if ψ 4 C. Otherwise, if
ψ � C, then C is non-derivable.

Due to the correctness of model generation, existential/universal reduction,
and resolution, constraints which are derivable from the PCNF ψ can be added
to the ACNF ψ′ of ψ, which results in a satisfiability-equivalent (≡sat) formula.

Proposition 2 ([13]). Let ψ′ := Q̂. (φ ∧ θ ∨ γ) be the ACNF of the PCNF
ψ := Q̂. φ. Then (1) Q̂.φ ≡sat Q̂.(φ ∧ θ) and (2) Q̂.φ ≡sat Q̂.(φ ∨ γ).

4 Incremental Search-Based QBF Solving

We define incremental QBF solving as the problem of solving a sequence of
PCNFs ψ0, ψ1, . . . , ψn using a QCDCL-based solver. Thereby, the goal is to not
discard all the learned constraints after the PCNF ψi has been solved. Instead,
to the largest extent possible we want to re-use the constraints that were learned
from ψi in the process of solving the next PCNF ψi+1. To this end, the ACNF
ψ′
i+1 = Q̂i+1. (φi+1 ∧ θi+1 ∨ γi+1) of ψi+1 for i > 0, which is maintained by the

solver, must be initialized with a set θi+1 of learned clauses and a set γi+1 of
learned cubes such that θi+1 ⊆ θi, γi+1 ⊆ γi and Proposition 2 holds with respect
to ψi+1. The sets θi and γi contain the clauses and cubes that were learned from
the previous PCNF ψi and potentially can be used to derive further constraints
from ψi+1. If θi+1 �= ∅ and γi+1 �= ∅ at the beginning, then the solver solves
the PCNF ψi+1 incrementally. For the first PCNF ψ0 in the sequence, the solver
starts with empty sets of learned constraints in the ACNF ψ′

0 = Q̂0. (φ0∧θ0∨γ0).
Each PCNF ψi+1 for 0 ≤ i < n in the sequence ψ0, ψ1, . . . , ψn has the form

ψi+1 = Q̂i+1. φi+1. The CNF part φi+1 of ψi+1 results from φi of the previous
PCNF ψi = Q̂i. φi in the sequence by addition and deletion of clauses. We write

Incremental QBF Solving 519

φi+1 = (φi \φdeli+1)∪φaddi+1 , where φ
del
i+1 and φaddi+1 are the sets of deleted and added

clauses. The quantifier prefix Q̂i+1 of ψi+1 is obtained from Q̂i of ψi by deletion
and addition of variables and quantifiers, depending on the clauses in φaddi+1 and

φdeli+1. That is, we assume that the PCNF ψi+1 is closed and that its prefix Q̂i+1

does not contain superfluous quantifiers and variables.
When solving the PCNF ψi using a QCDCL-based QBF solver, learned clauses

and cubes accumulate in the corresponding ACNF ψ′
i = Q̂i. (φi∧θi∨γi). Assume

that the learned constraints are derivable with respect to ψi. The PCNF ψi is
modified to obtain the next PCNF ψi+1 to be solved. The learned constraints
in θi and γi might become non-derivable with respect to ψi+1 in the sense of
Definition 5. Consequently, Proposition 2 might no longer hold for the ACNF
ψ′
i+1 = Q̂i+1. (φi+1 ∧ θi+1 ∨ γi+1) of the new PCNF ψi+1 if previously learned

constraints from θi and γi appear in θi+1 and γi+1. In this case, the solver might
produce a wrong result when solving ψi+1.

4.1 Clause Learning

Assume that the PCNF ψi = Q̂i. φi has been solved and learned constraints
have been collected in the ACNF ψ′

i = Q̂i. (φi ∧ θi ∨ γi). The clauses in φdeli+1 are
deleted from φi to obtain the CNF part φi+1 = (φi \ φdeli+1) ∪ φaddi+1 of the next

PCNF ψi+1 = Q̂i+1. φi+1. If the derivation of a learned clause C ∈ θi depends
on deleted clauses in φdeli+1, then we might have that ψi 4 C but ψi+1 � C.
In this case, C is non-derivable with respect to the next PCNF ψi+1. Hence
C must be discarded before solving ψi+1 starts so that C �∈ θi+1 in the initial
ACNF ψ′

i+1 = Q̂i+1. (φi+1 ∧ θi+1 ∨ γi+1). Otherwise, if C ∈ θi+1 then the solver
might construct a bogus Q-resolution proof for the PCNF ψi+1 and, if ψi+1 is
satisfiable, erroneously conclude that ψi+1 is unsatisfiable.

Example 2. Consider the PCNF ψ from Example 1. The derivation of the clause
C8 = (¬x1) shown in Fig. 1 depends on the clause C4 = (¬y8 ∨ ¬x4). We have
that ψ 4 C8. Let ψ1 be the PCNF obtained from ψ by deleting C4. Then ψ1 � C8

because C3 = (¬x1 ∨x4) is the only clause which contains the literal ¬x1. Hence
a possible derivation of the clause C8 = (¬x1) must use C3. However, no such
derivation exists in ψ1. There is no clause C′ containing a literal ¬x4 which can
be resolved with C3 to produce C8 = (¬x1) after a sequence of resolution steps.

Consider the PCNF ψi+1 = Q̂i+1. φi+1 with φi+1 = φi ∪ φaddi+1 which is ob-

tained from Q̂i. φi by only adding the clauses φaddi+1 , but not deleting any clauses.

Assuming that Q̂i.φi 4 C for all C ∈ θi in the ACNF ψ′
i = Q̂i. (φi ∧ θi ∨ γi),

also Q̂i+1. (φi ∪φaddi+1) 4 C. Hence all the learned clauses in θi are derivable with
respect to the next PCNF ψi+1 and can be added to the ACNF ψ′

i+1.

4.2 Cube Learning

Like above, let ψ′
i = Q̂i. (φi ∧ θi ∨ γi) be the ACNF of the previously solved

PCNF ψi = Q̂i. φi. Dual to clause deletions, the addition of clauses to φi can

520 F. Lonsing and U. Egly

make learned cubes in γi non-derivable with respect to the next PCNF ψi+1 =
Q̂i+1. φi+1 to be solved. The clauses in φaddi+1 are added to φi to obtain the CNF
part φi+1 = (φi \φdeli+1)∪φaddi+1 of ψi+1. An initial cube C ∈ γi has been obtained
from a model A of the previous PCNF ψi, i.e. ψi[A] = �. We might have that
ψi+1[A] �= � with respect to the next PCNF ψi+1 because of an added clause
C′ ∈ φaddi+1 (and hence also C′ ∈ φi+1) such that C′[A] �= �. Therefore, A is not
a model of ψi+1 and the initial cube C is non-derivable with respect to ψi+1,
i.e. Q̂i.φi 4 C but Q̂i+1.φi+1 � C. Hence C and every cube whose derivation
depends on C must be discarded to prevent the solver from generating a bogus
cube resolution proof for ψi+1. If ψi+1 is unsatisfiable, then the solver might
erroneously conclude that ψi+1 is satisfiable. That is, Proposition 2 might not
hold with respect to non-derivable cubes and the ACNF ψ′

i+1 of ψi+1.

Example 3. Consider the PCNF ψ from Example 1. The derivation of the cube
C10 = (¬y8) shown in Fig. 1 depends on the initial cube C9 = (x6 ∧ x2 ∧ ¬y8 ∧
¬x5∧x4), which has been generated from the model A1 = {x6, x2,¬y8,¬x5, x4}.
The cube C9 is derivable with respect to ψ since ψ[A1] = �, and hence ψ 4 C9.
The cube C10 is also derivable since C10 = ER(C9). Assume that the clause
C0 := (¬x2 ∨ ¬x4) is added to ψ resulting in the unsatisfiable PCNF ψ2. Now
C9 is non-derivable with respect to ψ2 since C0[A1] = ⊥. Further, ψ2 � C10.

Consider the PCNF ψi+1 = Q̂i+1. φi+1 with φi+1 = φi\φdeli+1 which is obtained

from Q̂i. φi by only deleting the clauses φdeli+1, but not adding any clauses. If after
the clause deletions some variable x does not occur anymore in the resulting
PCNF ψi+1, then x is removed from the quantifier prefix of ψi+1 and from
every cube C ∈ γi which was learned when solving the previous PCNF ψi.
Proposition 2 holds for the cleaned up cubes C′ = C \ {l | v(l) = x} for all
C ∈ γi with respect to ψi+1 and hence C′ can be added to the ACNF ψ′

i+1.

Proposition 3. Let ψ′
i := Q̂i. (φi ∧ θi ∨ γi) be the ACNF of the PCNF ψi :=

Q̂i. φi. Let ψi+1 := Q̂i+1. φi+1 be the PCNF resulting from ψi with φi+1 = (φi \
φdeli+1), where the variables V del

i+1 no longer occur in φi+1 and are removed from Q̂i

to obtain Q̂i+1. Given a cube C ∈ γi, let C′ := C\{l | v(l) ∈ V del
i+1}. Proposition 2

holds for C′ with respect to Q̂i+1. φi+1: Q̂i+1. φi+1 ≡sat Q̂i+1. (φi+1 ∨ C′).

Proof (Sketch). By induction on the structure of the derivations of cubes in γi.
Let C ∈ γi be an initial cube due to the assignment A with ψi[A] = �. For

A′ := A \ {l | v(l) ∈ V del
i+1}, we have ψi+1[A

′] = � since all the clauses containing
the variables in V del

i+1 were deleted from ψi to obtain ψi+1. Then the claim holds
for the initial cube C′ = C \ {l | v(l) ∈ V del

i+1} = (
∧

li∈A′ li) since ψi+1 4 C′.
Let C ∈ γi be obtained from C1 ∈ γi by existential reduction such that

C = ER(C1). Assuming that the claim holds for C′
1 = C1 \ {l | v(l) ∈ V del

i+1}, it
also holds for C′ = C \ {l | v(l) ∈ V del

i+1} = ER(C′
1) since existential reduction

removes existential literals which are maximal with respect to the prefix ordering.
Let C ∈ γi be obtained from C1, C2 ∈ γi by resolution on variable x with

x ∈ C1, ¬x ∈ C2. Assume that the claim holds for C′
1 = C1 \ {l | v(l) ∈ V del

i+1}

Incremental QBF Solving 521

and C′
2 = C2 \ {l | v(l) ∈ V del

i+1}, i.e. Q̂i+1. φi+1 ≡sat Q̂i+1. (φi+1 ∨ C′
1) and

Q̂i+1. φi+1 ≡sat Q̂i+1. (φi+1 ∨ C′
2). If x �∈ V del

i+1 then the claim also holds for
C′ = C \ {l | v(l) ∈ V del

i+1} = C′
1 ⊗ C′

2 with x ∈ C′
1, ¬x ∈ C′

2 due to the
correctness of resolution (Proposition 2). If x ∈ V del

i+1 then the claim also holds
for C′ = C\{l | v(l) ∈ V del

i+1} = (C′
1∧C′

2) since {y,¬y} �⊆ (C′
1∪C′

2) for all variables
y, which can be proved by reasoning with tree-like models of QBFs [30]. ��

If a variable x no longer occurs in the formula, then cubes where x has been
removed might become non-derivable. However, due to Propositions 2 and 3 it is
sound to keep all the cleaned up cubes (resolution is not inferentially-complete).
Moreover, due to the correctness of resolution and existential reduction, Propo-
sition 2 also holds for new cubes derived from the cleaned up cubes.

In practice, the goal is to keep as many learned constraints as possible be-
cause they prune the search space and can be used to derive further constraints.
Therefore, subsets θi+1 ⊆ θi and γi+1 ⊆ γi of the learned clauses θi and cubes γi
must be selected so that Proposition 2 holds with respect to the initial ACNF
ψ′
i+1 = Q̂i+1. (φi+1 ∧ θi+1 ∨ γi+1) of the PCNF ψi+1 to be solved next.

5 Implementing an Incremental QBF Solver

We describe the implementation of our incremental QCDCL-based solver
DepQBF. Our approach is general and fits any QCDCL-based solver. For incre-
mental solving we do not apply a sophisticated analysis of variable dependencies
by dependency schemes in DepQBF [22]. Instead, as many other QBF solvers, we
use the linear ordering given by the quantifier prefix. We implemented a stack-
based representation of the CNF part of PCNFs based on selector variables and
assumptions. Assumptions were also used for incremental QBF-based BMC of
partial designs [27] and are common in incremental SAT solving [1,11,20,28].

We address the problem of checking which learned constraints can be kept
across different solver runs after the current PCNF has been modified. To this
end, we present approaches to check if a constraint learned from the previous
PCNF is still derivable from the next one, which makes sure that Proposition 2
holds. Similar to incremental SAT solving, selector variables are used to handle
the learned clauses. Regarding learned cubes, selector variables can also be used
(although in a way asymmetric to clauses), in addition to an alternative approach
relying on full derivation DAGs, which have to be kept in memory. Learned cubes
might become non-derivable by the deletion of clauses and superfluous variables,
but still can be kept due to Proposition 3. We implemented a simple approach
which, after clauses have been added to the formula, allows to keep only initial
cubes but not cubes obtained by resolution or existential reduction.

5.1 QBF Solving under Assumptions

Let ψ := Q1B1Q2B2 . . .QnBn. φ be a PCNF. We define a set A := {l1, . . . , lk}
of assumptions as an assignment such that v(li) ∈ B1 for all literals li ∈ A. The

522 F. Lonsing and U. Egly

variables assigned by A are from the first block B1 of ψ. Solving the PCNF ψ
under the set A of assumptions amounts to solving the PCNF ψ[A]. The defini-
tion of assumptions can be applied recursively to the PCNF ψ[A]. If A assigns
all the variables in B1, then variables from B2 can be assigned as assumptions
with respect to ψ[A], since B2 is the first block in the quantifier prefix of ψ[A].

We implemented the handling of assumptions according to the literal-based
single instance (LS) approach (in the terminology of [28]). Thereby, the as-
sumptions in A are treated in a special way so that the variables in A are never
selected as pivots in the resolution derivation of a learned constraint according
to QCDCL-based learning. Similar to SAT-solving under assumptions, LS allows
to keep all the constraints that were learned from the PCNF ψ[A] under a set A
of assumptions when later solving ψ[A′] under a different set A′ of assumptions.

5.2 Stack-Based CNF Representation

In DepQBF, the CNF part φ of an ACNF ψ′
i = Q̂i. (φi ∧ θi ∨ γi) to be solved

is represented as a stack of clauses. The clauses on the stack are grouped into
frames. The solver API provides functions to push new frames onto the stack, pop
present frames from the stack, and to add new clauses to the current topmost
frame. Each push operation opens a new topmost frame fj . New clauses are
always added to the topmost frame fj. Each new frame fj opened by a push
operation is associated with a fresh frame selector variable sj . Frame selector
variables are existentially quantified and put into a separate, leftmost quantifier
block B0 i.e. the current ACNF ψ′

i has the form ψ′
i = ∃B0Q̂i. (φi ∧ θi ∨ γi).

Before a new clause C is added to frame fj , the frame selector variable sj of
fj is inserted into C so that in fact the clause C′ = C ∪ {sj} is added to fj . If
all the selector variables are assigned to false then under that assignment every
clause C′ = C ∪ {sj} is syntactically equivalent to C.

The purpose of the frame selector variables is to enable or disable the clauses
in the CNF part φi with respect to the push and pop operations applied to
the clause stack. If the selector variable sj of a frame fj is assigned to true
then all the clauses of fj are satisfied under that assignment. In this case, these
satisfied clauses are considered disabled because they can not be used to derive
new learned clauses in QCDCL. Otherwise, the assignment of false to sj does
not satisfy any clauses in fj . Therefore these clauses are considered enabled.

Before the solving process starts, the clauses of frames popped from the stack
are disabled and the clauses of frames still on the stack are enabled by assign-
ing the selector variables to true and false, respectively. The selector variables
are assigned as assumptions. This is possible because these variables are in the
leftmost quantifier block B0 of the ACNF ψ′

i = ∃B0Q̂i. (φi∧θi∨γi) to be solved.
The idea of enabling and disabling clauses by selector variables and assump-

tions originates from incremental SAT solving [11]. This approach was also ap-
plied to bounded model checking of partial designs by incremental QBF solv-
ing [27]. In DepQBF, we implemented the push and pop operations related to
the clause stack by selector variables similarly to the SAT solver PicoSAT [5].

Incremental QBF Solving 523

In the implementation of DepQBF, frame selector variables are maintained
entirely by the solver. Depending on the push and pop operations, selector vari-
ables are automatically inserted into added clauses and assigned as assumptions.
This approach saves the user the burden of inserting selector variables manually
into the QBF encoding of a problem and assigning them as assumptions via
the solver API. Manual insertion is typically applied in incremental SAT solv-
ing based on assumptions as pioneered by MiniSAT [10,11]. We argue that the
usability of an incremental QBF solver is improved considerably if the selector
variables are maintained by the solver. For example, from the perspective of the
user, the QBF encoding contains only variables relevant to the encoded problem.

In the following, we consider the problem of maintaining the sets of learned
constraints across different solver runs. As pointed out in Section 4, Proposition 2
still holds for learned clauses (cubes) after the addition (deletion) of clauses to
(from) the PCNF. Therefore, we present the maintenance of learned constraints
separately for clause additions and deletions.

5.3 Handling Clause Deletions

A clause C ∈ θi in the current ACNF ψ′
i = Q̂i. (φi ∧ θi ∨ γi) might become

non-derivable if its derivation depends on clauses in φdeli+1 which are deleted to
obtain the CNF part φi+1 = (φi \ φdeli+1) ∪ φaddi+1 of the next PCNF ψi+1.

In DepQBF, learned clauses in θi are deleted as follows. As pointed out in
the previous section, clauses of popped off frames are disabled by assigning
the respective frame selector variables to true. Since the formula contains only
positive literals of selector variables, these variables cannot be chosen as pivots
in derivations. Therefore, learned clauses whose derivations depend on disabled
clauses of a popped off frame fj contain the selector variable sj of fj . Hence
these learned clauses are also disabled by the assignment of sj. This approach
to handling learned clauses is also applied in incremental SAT solving [11].

The disabled clauses are physically deleted in a garbage collection phase if
their number exceeds a certain threshold. Variables which no longer occur in the
CNF part of the current PCNF are removed from the quantifier prefix and, by
Proposition 3, from learned cubes in γi to produce cleaned up cubes. We initialize
the set γi+1 of learned cubes in the ACNF ψ′

i+1 = Q̂i+1. (φi+1 ∧ θi+1 ∨ γi+1) of
the next PCNF ψi+1 to be solved to contain the cleaned up cubes.

The deletion of learned clauses based on selector variables is not optimal in
the sense of Definition 5. There might be another derivation of a disabled learned
clause C which does not depend on the deleted clauses φdeli+1. This observation
also applies to the use of selector variables in incremental SAT solving.

As illustrated in the context of incremental SAT solving, the size of learned
clauses might increase considerably due to the additional selector variables [1,20].
In the stack-based CNF representation of DepQBF, the clauses associated to a
frame fj all contain the selector variable sj of fj. Therefore, the maximum
number of selector variables in a new clause learned from the current PCNF ψi

is bounded by the number of currently enabled frames. The sequence of push
operations introduces a linear ordering f0 < f1 < . . . < fk on the enabled frames

524 F. Lonsing and U. Egly

fi and their clauses in the CNF with respect to the point of time where that
frames and clauses have been added. In DepQBF, we implemented the following
optimization based on this temporal ordering. Let C and C′ be clauses which
are resolved in the course of clause learning. Assume that si ∈ C and sj ∈ C′

are the only selector variables of currently enabled frames fi and fj in C and
C′. Instead of computing the usual Q-resolvent C′′ := C ⊗ C′, we compute
C′′ := (C⊗C′)\{l | l = si if fi < fj and l = sj otherwise}. That is, the selector
variable of the frame which is smaller in the temporal ordering is discarded from
the resolvent. If fi < fj then the clauses in fi were pushed onto the clause stack
before the clauses in fj . The frame fj will be popped off the stack before fi.
Therefore, in order to properly disable the learned clause C′′ after pop operations,
it is sufficient to keep the selector variable sj of the frame fj in C′′. With this
optimization, every learned clause contains exactly one selector variable. In the
SAT solver PicoSAT, an optimization which has similar effects is implemented.

5.4 Handling Clause Additions

Assume that the PCNF ψi := Q̂i. φi has been solved and that all learned
constraints in the ACNF ψ′

i = Q̂i. (φi ∧ θi ∨ γi) of ψi are derivable with re-
spect to ψi. The set φaddi+1 of clauses is added to φi to obtain the CNF part

φi+1 = (φi \ φdeli+1) ∪ φaddi+1 of the next PCNF ψi+1 = Q̂i+1. φi+1. For learned

clauses, we can set θi+1 := θi in the ACNF ψ′
i+1 = Q̂i+1. (φi+1 ∧ θi+1 ∨ γi+1) of

ψi+1. The following example illustrates the effects of adding φaddi+1 on the cubes.

Example 4. Consider the cube derivation shown in Fig. 1. As illustrated in Ex-
ample 3, the cubes C9 = (x6 ∧ x2 ∧ ¬y8 ∧ ¬x5 ∧ x4) and C10 = (¬y8) are
non-derivable with respect to the PCNF ψ2 obtained from ψ by adding the
clause C0 := (¬x2 ∨¬x4). The initial cube C11 := (y8 ∧¬x4 ∧¬x1 ∧x5 ∧x6 ∧x2)
still is derivable because the underlying model A2 := {y8,¬x4,¬x1, x5, x6, x2}
of ψ is also a model of ψ2. Therefore, when solving ψ2 we can keep the derivable
cubes C11 and C12 = ER(C11). The non-derivable cubes C9 and C10 must be
discarded. Otherwise, QCDCL might produce the cube resolution proof shown
in Fig. 1 when solving the unsatisfiable PCNF ψ2, which is incorrect.

We sketch an approach to identify the cubes in a cube derivation DAGG which
are non-derivable with respect to the next PCNF ψi+1 = Q̂i+1. φi+1. Starting
at the initial cubes, G is traversed in a topological order. An initial cube C is
marked as derivable if ψi+1[C] = �, otherwise if ψi+1[C] �= � then C is marked
as non-derivable. This test can be carried out syntactically by checking whether
every clause of ψi+1 is satisfied under the assignment given by C. A cube C
obtained by existential reduction or cube resolution is marked as derivable if
all its predecessors in G are marked as derivable. Otherwise, C is marked as
non-derivable. Finally, all cubes in G marked as non-derivable are deleted.

The above procedure allows to find a subset γi+1 ⊆ γi of the set γi of cubes
in the solved ACNF ψ′

i = Q̂i. (φi ∧ θi ∨γi) so that all cubes in γi+1 are derivable

and Proposition 2 holds for the next ACNF ψ′
i+1 = Q̂i+1. (φi+1 ∧ θi+1 ∨ γi+1).

Incremental QBF Solving 525

However, this procedure is not optimal because it might mark a cube C ∈ G as
non-derivable with respect to the next PCNF ψi+1 although ψi+1 4 C.

Example 5. Given the satisfiable PCNF ψ := ∃x1∀y8∃x5, x2, x6, x4. φ, where
φ :=

∧
i:=1,...,5Ci with the clauses Ci from Example 1 where C1 := (y8 ∨ ¬x5),

C2 := (x2 ∨ ¬x6), C3 := (¬x1 ∨ x4), C4 := (¬y8 ∨ ¬x4), C5 := (x1 ∨ x6).
Consider the model A3 := {¬x1, y8,¬x5, x2, x6,¬x4} of ψ and the initial cube
C15 := (¬x1 ∧y8∧¬x5∧x2 ∧x6∧¬x4) generated from A3. Existential reduction
of C15 produces the cube C16 := ER(C15) = (¬x1 ∧ y8). Assume that the clause
C0 := (x4∨x5) is added to ψ to obtain the PCNF ψ3. The initial cube C15 is non-
derivable with respect to ψ3 since C0[A3] �= �. However, for the cube C16 derived
from C15 it holds that ψ3 4 C16. The assignment A4 := {¬x1, y8, x5, x2, x6,¬x4}
is a model of ψ3. Let C17 := (¬x1 ∧ y8 ∧ x5 ∧ x2 ∧ x6 ∧ ¬x4) be the initial cube
generated from A4. Then C16 = ER(C17) is derivable with respect to ψ3.

In practice, QCDCL-based solvers typically store only the learned cubes,
which might be a small part of the derivation DAG G, and no edges. There-
fore, checking the cubes in a traversal of G is not feasible. Even if the full DAG
G is available, the checking procedure is not optimal as pointed out in Example 5.
Furthermore, it cannot be used to check cubes which have become non-derivable
after cleaning up by Proposition 3. Hence, it is desirable to have an approach to
checking the derivability of individual learned cubes which is independent from
the derivation DAG G. To this end, we need a condition which is sufficient to
conclude that some arbitrary cube C is derivable with respect to a PCNF ψ,
i.e. to check whether ψ 4 C. However, we are not aware of such a condition.

As an alternative to keeping the full derivation DAG in memory, a fresh selec-
tor variable can be added to each newly learned initial cube. Similar to selector
variables in clauses, these variables are transferred to all derived cubes. Poten-
tially non-derivable cubes are then disabled by assigning the selector variables
accordingly. However, different from clauses, it must be checked explicitly which
initial cubes are non-derivable by checking the condition in Definition 1 for all
initial cubes in the set γi of learned cubes. This amounts to an asymmetric
treatment of selector variables in clauses and cubes. Clauses are added to and
removed from the CNF part by push and pop operations provided by the solver
API. This way, it is known precisely which clauses are removed. In contrast
to that, cubes are added to the set of learned cubes γi on the fly during cube
learning. Moreover, the optimization based on the temporal ordering of selector
variables from the previous section is not applicable to generate shorter cubes
since cubes are not associated to stack frames.

Due to the complications illustrated above, we implemented the following sim-
ple approach in DepQBF to keep only initial cubes. Every initial cube computed
by the solver is stored in a linked list L of bounded capacity, which is increased
dynamically. The list L is separate from the set of learned clauses. Assume that
a set φaddi+1 of clauses is added to the CNF part φi of the current PCNF to obtain

the CNF part φi+1 = (φi \φdeli+1)∪φaddi+1 of the next PCNF ψi+1 = Q̂i+1. φi+1. All
the cubes in the current set γi of learned cubes are discarded. For every added

526 F. Lonsing and U. Egly

clause C ∈ φaddi+1 and for every initial cube C′ ∈ L, it is checked whether the
assignment A given by C′ is a model of the next PCNF ψi+1. Initial cubes C

′

for which this check succeeds are added to the set γi+1 of learned cubes in the
ACNF ψ′

i+1 of the next PCNF ψi+1 after existential reduction has been applied
to them. If the check fails, then C′ is removed from L. It suffices to check the
initial cubes in L only with respect to the clauses C ∈ φaddi+1 , and not the full
CNF part φi+1, since the assignments given by the cubes in L are models of
the current PCNF ψi. In the end, the set γi+1 contains only initial cubes all of
which are derivable with respect to the ACNF ψ′

i+1. If clauses are removed from
the formula, then by Proposition 3 variables which do not occur anymore in the
formula are removed from the initial cubes in L.

In the incremental QBF-based approach to BMC for partial designs [26,27],
all cubes are kept across different solver calls under the restriction that the
quantifier prefix is modified only at the left end. This restriction does not apply
to incremental solving of PCNF where the formula can be modified arbitrarily.

5.5 Incremental QBF Solver API

The API of DepQBF [23] provides functions to manipulate the prefix and the
CNF part of the current PCNF. Clauses are added and removed by the push and
pop operations described in Section 5.2. New quantifier blocks can be added at
any position in the quantifier prefix. New variables can be added to any quantifier
block. Variables which no longer occur in the formula and empty quantifier blocks
can be explicitly deleted. The quantifier block B0 containing the frame selector
variables is invisible to the user. The solver maintains the learned constraints as
described in Sections 5.3 and 5.4 without any user interaction.

The push and pop operations are a feature of DepQBF. Additionally, the API
supports the manual insertion of selector variables into the clauses by the user.
Similar to incremental SAT solving [11], clauses can then be enabled and disabled
manually by assigning the selector variables as assumptions via the API. In this
case, these variables are part of the QBF encoding and the optimization based
on the frame ordering presented in Section 5.3 is not applicable. After a PCNF
has been found unsatisfiable (satisfiable) under assumptions where the leftmost
quantifier block is existential (universal), the set of relevant assumptions which
were used by the solver to determine the result can be extracted.3

6 Experimental Results

To demonstrate the basic feasibility of general incremental QBF solving, we eval-
uated our incremental QBF solver DepQBF based on the instances from QBFE-
VAL’12 Second Round (SR) with and without preprocessing by Bloqqer.4 We
disabled the sophisticated dependency analysis in terms of dependency schemes
in DepQBF and instead applied the linear ordering of the quantifier prefix in the

3 This is similar to the function “analyzeFinal” in MiniSAT, for example.
4 http://www.kr.tuwien.ac.at/events/qbfgallery2013/benchmarks/ .

http://www.kr.tuwien.ac.at/events/qbfgallery2013/benchmarks/

Incremental QBF Solving 527

Table 1. Average and median number of assignments (a and ã, respectively), back-
tracks (b, b̃), and wall clock time (t, t̃) in seconds on sequences S = ψ0, . . . , ψ10 of
PCNFs which were fully solved by DepQBF both if all learned constraints are dis-
carded (discard LC) and if constraints which are correct in the sense of Propositions 2
and 3 are kept (keep LC). Clauses are added to ψi to obtain ψi+1 in S.

QBFEVAL’12-SR
discard LC keep LC diff.(%)

a: 29.37 × 106 26.18 × 106 -10.88
ã: 3,833,077 2,819,492 -26.44

b: 139,036 116,792 -16.00

b̃: 8,243 6,360 -22.84

t: 99.03 90.90 -8.19
t̃: 28.56 15.74 -44.88

QBFEVAL’12-SR-Bloqqer
discard LC keep LC diff.(%)

a: 39.75 × 106 34.03 × 106 -14.40
ã: 1.71 × 106 1.65 × 106 -3.62

b: 117,019 91,737 -21.61

b̃: 10,322 8,959 -13.19

t: 100.15 95.36 -4.64
t̃: 4.18 2.83 -32.29

Table 2. Like Table 1 but for the reversed sequences S′ = ψ9, . . . , ψ0 of PCNFs after
the original sequence S = ψ0, . . . , ψ9, ψ10 has been solved. Clauses are deleted from ψi

to obtain ψi−1 in S′.

QBFEVAL’12-SR
discard LC keep LC diff.(%)

a: 5.48 × 106 0.73 × 106 -86.62
ã: 186,237 15,031 -91.92

b: 36,826 1,228 -96.67

b̃: 424 0 -100.00

t: 21.94 4.32 -79.43
t̃: 0.75 0.43 -42.66

QBFEVAL’12-SR-Bloqqer
discard LC keep LC diff.(%)

a: 5.88 × 106 1.29 × 106 -77.94
ã: 103,330 8,199 -92.06

b: 31,489 3,350 -89.37

b̃: 827 5 -99.39

t: 30.29 9.78 -67.40
t̃: 0.50 0.12 -76.00

given PCNFs. For experiments, we constructed a sequence of related PCNFs
for each PCNF in the benchmark sets as follows. Given a PCNF ψ, we divided
the number of clauses in ψ by 10 to obtain the size of a slice of clauses. The
first PCNF ψ0 in the sequence contains the clauses of one slice. The clauses
of that slice are removed from ψ. The next PCNF ψ1 is obtained from ψ0 by
adding another slice of clauses, which is removed from ψ. The other PCNFs in
the sequence S = ψ0, ψ1, . . . , ψ10 are constructed similarly so that finally the
last PCNF ψ10 contains all the clauses from the original PCNF ψ. In our tests,
we constructed each PCNF ψi from the previous one ψi−1 in the sequence by
adding a slice of clauses to a new frame after a push operation. We ran DepQBF
on the sequences of PCNFs constructed this way with a wall clock time limit of
1800 seconds and a memory limit of 7 GB.

Tables 1 and 2 show experimental results5 on sequences S = ψ0, . . . , ψ10 of
PCNFs and on the reversed ones S′ = ψ9, . . . , ψ0, respectively. To generate S′,
we first solved the sequence S and then started to discard clauses by popping
the frames from the clause stack of DepQBF via its API. In one run (discard
LC), we always discarded all the constraints that were learned from the previous

5 Experiments were run on AMD Opteron 6238, 2.6 GHz, 64-bit Linux.

528 F. Lonsing and U. Egly

PCNF ψi so that the solver solves the next PCNF ψi+1 (ψi−1 with respect to
Table 2) starting with empty sets of learned clauses and cubes. In another run
(keep LC), we kept learned constraints as described in Sections 5.3 and 5.4.
This way, 70 out of 345 total PCNF sequences were fully solved from the set
QBFEVAL’12-SR by both runs, and 112 out of 276 total sequences were fully
solved from the set QBFEVAL’12-SR-Bloqqer.

The numbers of assignments, backtracks, and wall clock time indicate that
keeping the learned constraints is beneficial in incremental QBF solving despite
the additional effort of checking the collected initial cubes. In the experiment
reported in Table 1 clauses are always added but never deleted to obtain the next
PCNF in the sequence. Thereby, across all incremental calls of the solver in the
setQBFEVAL’12-SR on average 224 out of 364 (61%) collected initial cubes were
identified as derivable and added as learned cubes. For the set QBFEVAL’12-
SR-Bloqqer, 232 out of 1325 (17%) were added.

Related to Table 2, clauses are always removed but never added to obtain the
next PCNF to be solved, which allows to keep learned cubes based on Proposi-
tion 3. Across all incremental calls of the solver in the set QBFEVAL’12-SR on
average 820 out of 1485 (55%) learned clauses were disabled and hence effectively
discarded because their Q-resolution derivation depended on removed clauses.
For the set QBFEVAL’12-SR-Bloqqer, 704 out of 1399 (50%) were disabled.

7 Conclusion

We presented a general approach to incremental QBF solving which integrates
ideas from incremental SAT solving and which can be implemented in any
QCDCL-based QBF solver. The API of our incremental QBF solver DepQBF
provides push and pop operations to add and remove clauses in a PCNF. This
increases the usability of our implementation. Our approach is application-
independent and applicable to arbitrary QBF encodings.

We illustrated the problem of keeping the learned constraints across different
calls of the solver. To improve cube learning in incremental QBF solving, it
might be beneficial to maintain (parts of) the cube derivation in memory. This
would allow to check the cubes more precisely than with the simple approach
we implemented. Moreover, the generation of proofs and certificates [2,14,29] is
supported if the derivations are kept in memory rather than in a trace file.

Dual reasoning [15,16,19,35] and the combination of preprocessing and cer-
tificate extraction [18,26,31] are crucial for the performance and applicability
of CNF-based QBF solving. The combination of incremental solving with these
techniques has the potential to further advance the state of QBF solving.

Our experimental analysis demonstrates the feasibility of incremental QBF
solving in a general setting and motivates further applications, along with the
study of BMC of partial designs using incremental QBF solving [27]. Related ex-
periments with conformant planning based on incremental solving by DepQBF
showed promising results [12]. Further experiments with problems which are in-
herently incremental can provide more insights and open new research directions.

Incremental QBF Solving 529

References

1. Audemard, G., Lagniez, J.M., Simon, L.: Improving Glucose for Incremental SAT
Solving with Assumptions: Application to MUS Extraction. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg
(2013)

2. Balabanov, V., Jiang, J.R.: Unified QBF certification and its applications. Formal
Methods in System Design 41(1), 45–65 (2012)

3. Becker, B., Ehlers, R., Lewis, M.D.T., Marin, P.: ALLQBF Solving by Compu-
tational Learning. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS,
vol. 7561, pp. 370–384. Springer, Heidelberg (2012)

4. Benedetti, M., Mangassarian, H.: QBF-Based Formal Verification: Experience and
Perspectives. JSAT 5, 133–191 (2008)

5. Biere, A.: PicoSAT Essentials. JSAT 4(2-4), 75–97 (2008)
6. Bloem, R., Könighofer, R., Seidl, M.: SAT-Based Synthesis Methods for Safety

Specs. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp.
1–20. Springer, Heidelberg (2014)

7. Büning, H.K., Karpinski, M., Flögel, A.: Resolution for Quantified Boolean For-
mulas. Inf. Comput. 117(1), 12–18 (1995)

8. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An Algorithm to Eval-
uate Quantified Boolean Formulae and Its Experimental Evaluation. J. Autom.
Reasoning 28(2), 101–142 (2002)

9. Cashmore, M., Fox, M., Giunchiglia, E.: Planning as Quantified Boolean Formula.
In: Raedt, L.D., Bessière, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F.,
Lucas, P.J.F. (eds.) ECAI. Frontiers in Artificial Intelligence and Applications, pp.
217–222. IOS Press (2012)

10. Eén, N., Sörensson, N.: An Extensible SAT-Solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

11. Eén, N., Sörensson, N.: Temporal Induction by Incremental SAT Solving. Electr.
Notes Theor. Comput. Sci. 89(4), 543–560 (2003)

12. Egly, U., Kronegger, M., Lonsing, F., Pfandler, A.: Conformant Planning as a Case
Study of Incremental QBF Solving. CoRR abs/1405.7253 (2014)

13. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/Term Resolution and Learn-
ing in the Evaluation of Quantified Boolean Formulas. J. Artif. Intell. Res.
(JAIR). 26, 371–416 (2006)

14. Goultiaeva, A., Van Gelder, A., Bacchus, F.: A Uniform Approach for Generating
Proofs and Strategies for Both True and False QBF Formulas. In: Walsh, T. (ed.)
IJCAI, pp. 546–553. IJCAI/AAAI (2011)

15. Goultiaeva, A., Bacchus, F.: Recovering and Utilizing Partial Duality in QBF.
In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 83–99.
Springer, Heidelberg (2013)

16. Goultiaeva, A., Seidl, M., Biere, A.: Bridging the Gap between Dual Propaga-
tion and CNF-based QBF Solving. In: Macii, E. (ed.) DATE, pp. 811–814. EDA
Consortium. ACM DL, San Jose (2013)

17. Hillebrecht, S., Kochte, M.A., Erb, D., Wunderlich, H.J., Becker, B.: Accurate
QBF-Based Test Pattern Generation in Presence of Unknown Values. In: Macii, E.
(ed.) DATE, pp. 436–441. EDA Consortium, ACM DL, San Jose, CA, USA (2013)

18. Janota, M., Grigore, R., Marques-Silva, J.: On QBF Proofs and Preprocessing.
In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS,
vol. 8312, pp. 473–489. Springer, Heidelberg (2013)

530 F. Lonsing and U. Egly

19. Klieber, W., Sapra, S., Gao, S., Clarke, E.M.: A Non-prenex, Non-clausal QBF
Solver with Game-State Learning. In: Strichman, O., Szeider, S. (eds.) SAT 2010.
LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010)

20. Lagniez, J.M., Biere, A.: Factoring Out Assumptions to Speed Up MUS Extraction.
In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 276–292.
Springer, Heidelberg (2013)

21. Letz, R.: Lemma and Model Caching in Decision Procedures for Quantified Boolean
Formulas. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI),
vol. 2381, pp. 160–175. Springer, Heidelberg (2002)

22. Lonsing, F., Biere, A.: Integrating Dependency Schemes in Search-Based QBF
Solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–
171. Springer, Heidelberg (2010)

23. Lonsing, F., Egly, U.: Incremental QBF Solving by DepQBF (Extended Abstract).
In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 307–314. Springer,
Heidelberg (2014)

24. Lonsing,F.,Egly,U.,VanGelder,A.:EfficientClauseLearning forQuantifiedBoolean
Formulas via QBFPseudo Unit Propagation. In: Järvisalo, M., VanGelder, A. (eds.)
SAT 2013. LNCS, vol. 7962, pp. 100–115. Springer, Heidelberg (2013)

25. Mangassarian, H., Veneris, A.G., Benedetti, M.: Robust QBF Encodings for Se-
quential Circuits with Applications to Verification, Debug, and Test. IEEE Trans.
Computers 59(7), 981–994 (2010)

26. Marin, P., Miller, C., Becker, B.: Incremental QBF Preprocessing for Partial Design
Verification - (Poster Presentation). In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 473–474. Springer, Heidelberg (2012)

27. Marin, P., Miller, C., Lewis, M.D.T., Becker, B.: Verification of Partial Designs
using Incremental QBF Solving. In: Rosenstiel, W., Thiele, L. (eds.) DATE, pp.
623–628. IEEE (2012)

28. Nadel, A., Ryvchin, V.: Efficient SAT Solving under Assumptions. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 242–255. Springer, Heidelberg
(2012)

29. Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-Based Cer-
tificate Extraction for QBF - (Tool Presentation). In: Cimatti, A., Sebastiani, R.
(eds.) SAT 2012. LNCS, vol. 7317, pp. 430–435. Springer, Heidelberg (2012)

30. Samulowitz, H., Davies, J., Bacchus, F.: Preprocessing QBF. In: Benhamou, F.
(ed.) CP 2006. LNCS, vol. 4204, pp. 514–529. Springer, Heidelberg (2006)

31. Seidl, M., Könighofer, R.: Partial witnesses from preprocessed quantified Boolean
formulas. In: DATE, pp. 1–6. IEEE (2014)

32. Silva, J.P.M., Lynce, I., Malik, S.: Conflict-Driven Clause Learning SAT Solvers. In:
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability,
FAIA, vol. 185, pp. 131–153. IOS Press (2009)

33. Staber, S., Bloem, R.: Fault Localization and Correction with QBF. In: Marques-
Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 355–368. Springer,
Heidelberg (2007)

34. Sülflow, A., Fey, G., Drechsler, R.: Using QBF to Increase Accuracy of SAT-Based
Debugging. In: ISCAS, pp. 641–644. IEEE (2010)

35. Van Gelder, A.: Primal and Dual Encoding from Applications into Quantified
Boolean Formulas. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 694–707.
Springer, Heidelberg (2013)

36. Zhang, L., Malik, S.: Towards a Symmetric Treatment of Satisfaction and Conflicts
in Quantified Boolean Formula Evaluation. In: Van Hentenryck, P. (ed.) CP 2002.
LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002)

Incremental Cardinality Constraints for MaxSAT

Ruben Martins1,	, Saurabh Joshi1,	, Vasco Manquinho2,		, and Inês Lynce2,		

1 University of Oxford, Department of Computer Science, UK
{ruben.martins,saurabh.joshi}@cs.ox.ac.uk

2 INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Portugal
{vmm,ines}@sat.inesc-id.pt

Abstract. Maximum Satisfiability (MaxSAT) is an optimization variant of the
Boolean Satisfiability (SAT) problem. In general, MaxSAT algorithms perform a
succession of SAT solver calls to reach an optimum solution making extensive
use of cardinality constraints. Many of these algorithms are non-incremental in
nature, i.e. at each iteration the formula is rebuilt and no knowledge is reused
from one iteration to another. In this paper, we exploit the knowledge acquired
across iterations using novel schemes to use cardinality constraints in an incre-
mental fashion. We integrate these schemes with several MaxSAT algorithms.
Our experimental results show a significant performance boost for these algo-
rithms as compared to their non-incremental counterparts. These results suggest
that incremental cardinality constraints could be beneficial for other constraint
solving domains.

1 Introduction

Plethora of application domains such as software package upgrades [5], error local-
ization in C code [27], debugging of hardware designs [12], haplotyping with pedi-
grees [24], and course timetabling [6] have benefited from the advancement in MaxSAT
solving techniques. Considering such diversity of application domains for MaxSAT al-
gorithms, the continuous improvement of MaxSAT solving techniques is imperative.

Incremental approaches have provided a huge leap in the performance of SAT
solvers [47, 22, 45, 8]. However, the notion of incrementality has not yet been fully
exploited in MaxSAT solving. Most MaxSAT algorithms perform a succession of SAT
solver calls to reach optimality. Incremental approaches allow the constraint solver to
retain knowledge from previous iterations that may be used in the upcoming iterations.
The goal is to retain the inner state of the constraint solver as well as learned clauses
that were discovered during the solving process of previous iterations. At each iteration,
most MaxSAT algorithms [23, 38, 25, 43] create a new instance of the constraint solver
and rebuild the formula losing most if not all the knowledge that could be derived from
previous iterations.

� Supported by the ERC project 280053.
�� Partially supported by FCT grants ASPEN (PTDC/EIA-CCO/110921/2009), POLARIS

(PTDC/EIA-CCO/123051/2010), and INESC-ID’s multiannual PIDDAC funding PEst-
OE/EEI/LA0021/2013.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 531–548, 2014.
c© Springer International Publishing Switzerland 2014

532 R. Martins et al.

Between the iterations of a MaxSAT algorithm, cardinality constraints are added to
the formula [23, 3, 25, 43]. Usually, cardinality constraints are encoded in CNF so that a
SAT solver can handle the resulting formula [9, 46, 7]. Otherwise, calls to a SAT solver
must be replaced with calls to a pseudo-Boolean solver that natively handles cardinality
constraints [38]. This paper discusses the use of cardinality constraints in an incremental
manner to enhance MaxSAT algorithms. To achieve this, we propose the following
incremental approaches: (i) incremental blocking, (ii) incremental weakening, and (iii)
iterative encoding.

The remainder of the paper is organized as follows. Section 2 introduces prelimi-
naries and notations. We describe our proposed techniques in Section 3. In Section 4,
we mention prior research work done in relevant areas. We show the superiority of
our approaches through experimental results in Section 5. Finally, Section 6 presents
concluding remarks.

2 Preliminaries

A Boolean formula in conjunctive normal form (CNF) is a conjunction of clauses,
where a clause is a disjunction of literals and a literal is a Boolean variable xi or its
negation ¬xi. A Boolean variable may be assigned truth values true or false. A literal
xi (¬xi) is said to be satisfied if the respective variable is assigned value true (false).
A literal xi (¬xi) is said to be unsatisfied if the respective variable is assigned value
false (true). A clause is satisfied if and only if at least one of its literals is satisfied. A
clause is called a unit clause if it only contains one literal. A formula ϕ is satisfied if
all of its clauses are satisfied. The Boolean Satisfiability (SAT) problem can be defined
as finding a satisfying assignment to a propositional formula ϕ or prove that such an
assignment does not exist. Throughout this paper, we will refer to ϕ as a set of clauses,
where each clause ω is a set of literals.

Maximum Satisfiability (MaxSAT) is an optimization version of SAT where the goal
is to find an assignment to the input variables such that the number of unsatisfied (sat-
isfied) clauses is minimized (maximized). From now on, it is assumed that MaxSAT is
defined as a minimization problem.

MaxSAT has several variants such as partial MaxSAT, weighted MaxSAT and weigh-
ted partial MaxSAT [33]. A partial MaxSAT formula ϕ has the form ϕh ∪ϕs where ϕh

and ϕs denote the set of hard and soft clauses, respectively. The goal in partial MaxSAT
is to find an assignment to the input variables such that all hard clauses ϕh are satisfied,
while minimizing the number of unsatisfied soft clauses in ϕs. The weighted version of
MaxSAT allows soft clauses to have weights greater than or equal to 1 and the objective
is to satisfy all hard clauses while minimizing the total weight of unsatisfied soft clauses.
In this paper we assume a partial MaxSAT formula. The described algorithms can be
generalized to the weighted versions of MaxSAT.

Cardinality constraints are a generalization of propositional clauses. In a cardinality
constraint, a sum of n literals must be smaller than or equal to a given value k, i.e.∑n

i=1 li ≤ k where li is a literal. As a result, a cardinality constraint over n literals
ensures that at most k literals can be satisfied.

Incremental Cardinality Constraints for MaxSAT 533

Algorithm 1. Linear Search Unsat-Sat Algorithm
Input: ϕ = ϕh ∪ ϕs

Output: satisfying assignment to ϕ
1 (ϕW , VR, λ) ← (ϕh, ∅, 0)
2 foreach ω ∈ ϕs do
3 VR ← VR ∪ {r} // r is a new relaxation variable
4 ωR ← ω ∪ {r}
5 ϕW ← ϕW ∪ {ωR}
6 while true do
7 (st, ν, ϕC) ← SAT(ϕW ∪ {CNF(

∑
r∈VR

r ≤ λ)}, ∅)
8 if st = SAT then
9 return ν // satisfying assignment to ϕ

10 λ ← λ+ 1

2.1 MaxSAT Algorithms

Due to the recent developments in SAT solving, different algorithms for solving
MaxSAT have been proposed that rely on multiple calls to a SAT solver. A SAT solver
call SAT(ϕ,A) receives as input a CNF formula ϕ and a set of assumptions A. The
set of assumptions A defines a set of literals that must be satisfied in the model of ϕ
returned by the solver call. Assumptions may lead to early termination if the SAT solver
learns a clause where at least one of the literals inAmust be unsatisfied. An assumption
controls the value of a variable for a given SAT call, whereas a unit clause controls the
value of a variable for all the SAT calls after the unit clause has been added.

The SAT call returns a triple (st, ν, ϕC), where st denotes the status of the solver:
satisfiable (SAT) or unsatisfiable (UNSAT). If the solver returns SAT, then the model
that satisfies ϕ is stored in ν. On the other hand, if the solver returns UNSAT, then ϕC

contains an unsatisfiable formula that explains the reason of unsatisfiability. Notice that
ϕmay be satisfiable, but the solver returns UNSAT due to the set of assumptionsA (i.e.
there are no models of ϕ where all assumption literals are satisfied). In this case, ϕC

contains a subset of clauses from ϕ and a subset of assumptions from A. Otherwise, if
ϕ is unsatisfiable, then ϕC is a subformula of ϕ.

The algorithms presented in the paper assume that a SAT solver call is previously
performed to check the satisfiability of the set of hard clauses ϕh. If ϕh is not satisfiable,
then the MaxSAT instance does not have a solution.

Algorithm 1 performs a linear search on the number of unsatisfied soft clauses. First,
a new relaxation variable r is added to each soft clause ω (lines 2-5). The goal is to find
an assignment to the input variables that minimizes the number of relaxation variables
that are assigned value true. If the original clause ω is unsatisfied, then r is assigned to
true. At each iteration, a cardinality constraint is defined such that at most λ relaxation
variables can be assigned to true. This cardinality constraint is encoded into CNF and
given to the SAT solver (line 7). Algorithm 1 starts with λ = 0 and in each iteration λ is
increased until the SAT solver finds a satisfying assignment. Hence, λ defines a lower
bound on the number of unsatisfied soft clauses of ϕ. At each iteration, the result of the
SAT call is UNSAT, except the last one that provides an optimal solution to ϕ.

534 R. Martins et al.

Algorithm 2. Fu-Malik Algorithm
Input: ϕ = ϕh ∪ ϕs

Output: satisfying assignment to ϕ
1 (ϕW , ϕWs) ← (ϕ,ϕs)
2 while true do
3 (st, ν, ϕC) ← SAT(ϕW , ∅)
4 if st = SAT then
5 return ν // satisfying assignment to ϕ

6 VR ← ∅
7 foreach ω ∈ (ϕC ∩ ϕWs) do
8 VR ← VR ∪ {r} // r is a new relaxation variable
9 ωR ← ω ∪ {r}

10 ϕWs ← (ϕWs \ {ω}) ∪ {ωR}
11 ϕW ← (ϕW \ {ω}) ∪ {ωR}
12 ϕW ← ϕW ∪ {CNF(

∑
r∈VR

r ≤ 1)}

Algorithm 3. MSU3 Algorithm
Input: ϕ = ϕh ∪ ϕs

Output: satisfying assignment to ϕ
1 (ϕW , VR, λ) ← (ϕ, ∅, 0)
2 while true do
3 (st, ν, ϕC) ← SAT(ϕW ∪ {CNF(

∑
r∈VR

r ≤ λ)}, ∅)
4 if st = SAT then
5 return ν // satisfying assignment to ϕ

6 foreach ω ∈ (ϕC ∩ ϕs) do
7 VR ← VR ∪ {r} // r is a new variable
8 ωR ← ω ∪ {r} // ω was not previously relaxed
9 ϕW ← (ϕW \ {ω}) ∪ {ωR}

10 λ ← λ+ 1

Algorithm 1 follows an Unsat-Sat linear search. A converse approach is the Sat-
Unsat linear search where λ is defined as an upper bound. In that case, λ is initialized
with the number of soft clauses. Next, while the SAT call is satisfiable, λ is decreased.
The algorithm ends when the SAT call returns UNSAT and the last satisfying assign-
ment found is an optimal solution to ϕ.

Core-guided algorithms for MaxSAT take advantage of the certificates of unsatisfia-
bility produced by the SAT solver [23]. In Algorithm 2, proposed by Fu and Malik [23],
soft clauses are only relaxed when they appear in some unsatisfiable core ϕC returned
by the SAT solver. Initially, we consider all hard and soft clauses without relaxation. In
each iteration, an unsatisfiable subformulaϕC is identified and relaxed by adding a new
relaxation variable to each soft clause in ϕC (lines 7-11). Additionally, a new constraint
is added such that at most one of the new relaxation variables can be assigned to true
(line 12). The algorithm stops when the formula becomes satisfiable.

Incremental Cardinality Constraints for MaxSAT 535

(O : o1, o2, o3, o4, o5 : 5)

(A : a1, a2 : 2)

(C : l1 : 1) (D : l2 : 1)

(B : b1, b2, b3 : 3)

(E : l3 : 1) (F : f1, f2 : 2)

(G : l4 : 1) (H : l5 : 1)

Fig. 1. Totalizer encoding for l1 + · · · + l5 ≤ k

In Algorithm 2 soft clauses may have to be relaxed several times. As a result, several
relaxation variables can be added to the same soft clause. Nevertheless, other core-
guided algorithms have already been proposed where at most one relaxation variable
is added to each soft clause [3, 40]. Algorithm 3 follows a linear search Unsat-Sat, but
soft clauses are only relaxed when they appear in some unsatisfiable core ϕC .

In this section we solely describe MaxSAT algorithms that will be the focus of the
enhancements proposed in the paper. We refer to the literature for other approaches such
as branch and bound algorithms using MaxSAT inference techniques or procedures to
estimate the number of unsatisfied clauses to prune the search [33]. Additionally, there
is also an extended overview on core-guided algorithms [43].

2.2 Totalizer Encoding

For the purpose of this paper, we describe the Totalizer encoding [9] for cardinality
constraints, as later in the paper we build upon this encoding to present our novel ap-
proaches. Totalizer encoding can be better visualized as a tree as shown in Fig. 1. Here,
notation for every node is (node name : node vars : node sum). To enforce the car-
dinality constraint, we need to count how many input literals (l1, . . . , ln) are set to true.
This counting is done in unary. Therefore, at every node its corresponding node vars
represents an integer from 1 to node sum in the order. For example, at node B, b2 be-
ing set to true means that at least two of the leaves under the tree rooted at B have been
set to true. The input literals (l1, . . . , l5) are at the leaves where as the root node has
the output variables (o1, . . . , o5) giving the finally tally of how many input literals have
been set.

Any intermediate node P , counting up to n1, has two children Q and R counting up
to n2 and n3 respectively such that n2+n3 = n1. Also, their correspondingnode vars
will be (p1, . . . , pn1), (q1, . . . , qn2) and (r1, . . . , rn3) in that order. In order to ensure
that the correct sum is received at P , the following formula is built for P :∧

0 ≤ α ≤ n2
0 ≤ β ≤ n3
0 ≤ σ ≤ n1
α + β = σ

¬qα ∨ ¬rβ ∨ pσ where, p0 = q0 = r0 = 1 (1)

536 R. Martins et al.

Essentially, Eq. 1 dictates that if α many leaves have been set to true under the
subtree rooted at Q and β many leaves have been set to true under the subtree rooted
at R then rσ must be set to true to indicate that at least α + β many leaves have been
set to true under P . Eq. 1 only counts the number of input literals set to true. In other
words, it encodes cardinality sum over input literals. To enforce that at most k of the
input literals are set to true, we conjunct it with the following :∧

k+1≤i≤n

¬oi (2)

Observation 1. Two disjoint subtrees for the Totalizer encoding are independent of
each other. For example, the tree rooted at B counts how many literals have been set
from (l3, l4, l5) where as, the tree rooted at A counts the set literals from (l1, l2).

Note also that Eq. 1 counts up to n and then Eq. 2 restricts the sum to k. If we only
want to enforce the constraint for at most k then we need at most k+1 output variables
at the root. In turn, we need at most k + 1 node vars at any intermediate node. Even
with this modification, Eq. 1 remains valid. However, the equality n2 + n3 = n1 may
no longer hold. With this modification, Eq. 2 simplifies to

¬ok+1

Without the simplification this encoding requires O(nlog n) extra variables and O(n2)
clauses. After the simplification the number of clauses reduces toO(nk) [11, 29]. From
here on, we will refer to this simplification as k-simplification.

Observation 2. Let ϕ1 and ϕ2 be two formulas, representing cardinality sums k1 and
k2 respectively, generated using Eq. 1 and k-simplification. Observe that ϕ1 ⊂ ϕ2,
whenever k1 < k2.

3 Incremental Approaches

MaxSAT algorithms that are based on refining unsatisfiable SAT formulas can be en-
hanced by changing cardinality constraints in an incremental fashion. In this section, we
propose the following three techniques to enable incrementality when using cardinal-
ity constraints: (i) incremental blocking, (ii) incremental weakening, and (iii) iterative
encoding.

3.1 Incremental Blocking

MaxSAT algorithms based on refining unsatisfiable formulas are usually non-incremen-
tal. After an unsatisfiable iteration, the formula is refined by removing a certain set of
clauses and adding a new set of clauses that imposes a weaker constraint over the relax-
ation variables. However, SAT solvers do not allow the deletion of clauses that belong
to the original formula. Since learned clauses from previous iterations may depend on
the clauses that are now being removed, it is not sound to keep all of the learned clauses.

Incremental Cardinality Constraints for MaxSAT 537

Incremental SAT solving addresses these problems by using assumptions [22]. To the
best of our knowledge this approach has not been extended for incremental MaxSAT
solving.

We denote b as a blocking variable which is used to extend a clause ω to (ω ∨ b).
When b is set to false the original clause ω is enforced (enabled). When b is set to true
the extended clause (ω ∨ b) is trivially satisfied and ω is no longer enforced (disabled).
Thus, adding b (or ¬b) as an assumption or unit clause disables (or enables) a clause.
Using a blocking variable, we can overcome the limitation of a SAT solver not allowing
clause deletions.

MaxSAT Algorithms Based on Cardinality Constraints. Many MaxSAT algorithms
are based on refining the formula by encoding and updating cardinality constraints [25,
2, 43]. For these algorithms, the incremental blocking can be done when cardinality
constraints are encoded to CNF.

ϕ	 b ≡ {ω ∨ b : ω ∈ ϕ} (3a)

Ψ(X, k, b) ≡ CNFTotk(Σxi)	 b (3b)

ϕi ≡ ϕW ∪

⎛⎝ i⋃
j=1

Ψ(Xj, kj , bj)

⎞⎠ ∪ 〈¬bi,¬oki+1〉 ∪
[
b1, . . . , bi−1

]
(3c)

ϕi+1 ≡ ϕW ∪

⎛⎝i+1⋃
j=1

Ψ(Xj, kj , bj)

⎞⎠ ∪ 〈¬bi+1,¬oki+1+1〉 ∪
[
b1, . . . , bi

]
(3d)

Let Eq. 3a define the extension of a CNF formula ϕ with a blocking variable b.
Next, Ψ(X, k, b) represents a cardinality sum up to k + 1 over x1, . . . , xn encoded
in CNF using Eq. 1 and k-simplification of the Totalizer encoding and extended with
a blocking variable b. Then, for incremental blocking, at line 7 in Algorithm 1 and
line 3 in Algorithm 3 we call the solver on ϕi as defined in Eq. 3c for the ith iteration.
Assumption 〈¬bi〉 enables the cardinality constraint for the current iteration whereas
unit clauses

[
b1, . . . , bi−1

]
ensure that cardinality constraints from earlier iterations are

disabled. In addition, assumption 〈¬oki+1〉 restricts the sum to ki. Notice that in the
(i + 1)th iteration, a new cardinality sum Ψ(Xi+1, ki+1, bi+1) is added and earlier
constraints are disabled as assumption 〈¬bi〉 moves as unit clause

[
bi
]
.

Assume the MaxSAT formula has a given optimum value kopt. When considering
Algorithm 1 and the Totalizer encoding, incremental blocking creates an encoding for
each ki up to kopt. Hence, the overall encoding would have O(

∑kopt

i=0 ni) = O(nk2opt)
auxiliary clauses. Though incremental blocking creates more clauses as compared to a
non-incremental approach (O(nkopt)), keeping the inner state of the constraint solver
across iterations significantly reduces the solving time. A similar reasoning can be made
for Algorithm 3 or any other MaxSAT algorithm that uses incremental blocking.

Fu-Malik Algorithm with Incremental Blocking. Incremental blocking can also be
used for MaxSAT algorithms that do not update cardinality constraints but modify the

538 R. Martins et al.

Algorithm 4. Fu-Malik Algorithm with Incremental Blocking
Input: ϕ = ϕh ∪ ϕs

Output: satisfying assignment to ϕ
1 (ϕW , ϕWs ,A,B) ← (ϕ,ϕs, ∅, ∅)
2 while true do
3 (st, ν, ϕC) ← SAT(ϕ,A)
4 if st = SAT then
5 return ν // satisfying assignment to ϕ

6 VR ← ∅
7 foreach ω ∈ (ϕC ∩ ϕWs) do
8 VR ← VR ∪ {r} // r is a new relaxation variable

9 ωR ← (ω \ B) ∪ {r} ∪ {b} // b is a new blocking variable

10 B ← B ∪ {b}
11 ϕWs ← (ϕWs \ {ω}) ∪ {ωR}
12 A ← (A \ {¬b′ : b′ ∈ B ∩ ω}) ∪ {¬b} // enables ωR

13 ϕW ← ϕW ∪ {ωR} ∪ {b′ : b′ ∈ B ∩ ω } // disables ω

14 ϕW ← ϕW ∪ {CNF(
∑

r∈VR
r ≤ 1)}

formula at each iteration. For example, Fu-Malik algorithm (Algorithm 2, Section 2)
can be enhanced with incremental blocking. Algorithm 4 shows the modifications to
Fu-Malik algorithm to support incremental blocking. The main differences between the
incremental and non-incremental versions of Fu-Malik algorithm are highlighted. For
each soft clause ω in ϕC , Algorithm 4 copies ω into ωR without blocking variables
(line 9). Next, it adds a fresh blocking variable b and a fresh relaxation variable r to ωR

(line 9). The current soft clause ωR is enabled by adding 〈¬b〉 to the set of assumptions,
where b is the blocking variable that occurs in ωR (line 12). At the same time, the
assumption 〈¬b′〉 is removed from the set of assumptions, where b′ is the blocking
variable that occurs in ω (line 12). Finally, the working formula ϕW is updated with the
new clause ωR, and with the unit clause [b′]. Note that this unit clause disables ω from
the working formula ϕW since ω contains b′ and therefore is always satisfied.

The incremental version of Fu-Malik algorithm creates m auxiliary clauses at each
iteration, where m is the number of soft clauses in the unsatisfiable subformula. How-
ever, the size of unsatisfiable subformulas tends to be small when compared to the total
number of soft clauses. Note that the number of auxiliary clauses created by the in-
cremental version of Fu-Malik is not as large as when incremental blocking is directly
applied to cardinality encodings.

3.2 Incremental Weakening

Since incremental blocking encodes a new cardinality constraint at each iteration, this
results in an increase in formula size at every iteration. To circumvent this increase,
one can build the cardinality sum only once, and incrementally weaken the cardinality
bound (k).

Incremental Cardinality Constraints for MaxSAT 539

Incremental weakening is similar to incremental strengthening [7], but instead of con-
straining the output of the cardinality constraint with unit clauses it uses assumptions.
Notice that incremental strengthening is used in linear search Sat-Unsat algorithms. In
these algorithms, the cardinality bound decreases monotonically at each iteration. There-
fore, the unit clauses that constrain the previous cardinality bound remain valid when con-
sidering the new bound. On the other hand, incremental weakening is used for MaxSAT
algorithms that search on the lower bound of the optimal solution. For these algorithms,
the restriction of the cardinality bound is only valid for the current iteration and must be
updated for the upcoming iterations.

Γ (X, k) ≡ CNFTotk(Σxi) (4a)

ϕi ≡ ϕW ∪ Γ (X, ku) ∪ 〈¬oki+1, . . . ,¬oku〉 (4b)

ϕi+1 ≡ ϕW ∪ Γ (X, ku) ∪ 〈¬oki+1+1, . . . ,¬oku〉 (4c)

Let Γ (X, k) be the cardinality sum over input literals x1, . . . , xn encoded in CNF
using Eq. 1 and k-simplification. Then, for incremental weakening, at line 7 in Algo-
rithm 1 and line 3 in Algorithm 3 we call the solver on ϕi as defined in Eq. 4b for
the ith iteration. Note that Γ (X, ku) is encoded only once for a conservative upper
bound ku. For the ith iteration, we restrict the cardinality sum to ki using assump-
tions 〈¬oki+1, . . . ,¬oku 〉 (Eq. 2). In the following iteration (Eq. 4c), we only change
assumptions to restrict the cardinality sum to ki+1.

To obtain a conservative upper bound ku, we invoke the SAT solver over ϕh to check
if the set of hard clauses itself is satisfiable. If it is not satisfiable, the original MaxSAT
formula ϕ can not be solved. However, if ϕh is satisfiable, one can count the number of
soft clauses that remain unsatisfied under the satisfying assignment forϕh. This number
can be used as ku since we know at least one assignment where ku many clauses remain
unsatisfied. Therefore, the optimum value kopt must be smaller or equal to ku.

With an upper bound ku, incremental weakening creates O(nku) auxiliary clauses
as opposed to O(nkopt) of the non-incremental approach. However, a non-incremental
approach builds a new formula of size O(nkopt) for every iteration, whereas incre-
mental weakening builds the formula only once keeping the internal state and learned
clauses across iterations. This results in a significant performance boost for MaxSAT
algorithms using incremental weakening.

Incremental weakening does not allow the number of input literals in the cardinal-
ity constraint to change. Therefore, it does not directly support the MSU3 Algorithm
(Algorithm 3, Section 2). To use incremental weakening with Algorithm 3, we mod-
ify the algorithm to relax all soft clauses and build a cardinality constraint over all
relaxation variables. The relaxation variables ri that do not appear in an unsatisfiable
subformula ϕC are added as assumptions of the form 〈¬ri〉. This enforces the soft
clauses corresponding to the relaxation variables until these clauses occur in ϕC . When
they do occur, assumptions ¬ri are removed and their value is now only restricted by
the cardinality constraint. Even though this procedure allows the incremental weak-
ening approach to be used with Algorithm 3, it does not benefit from smaller encod-
ings resulting from having less input literals in the cardinality constraint. Therefore, the
non-incremental approach may create a much smaller encoding than the incremental
weakening approach for Algorithm 3.

540 R. Martins et al.

(A : a1, a2 → a1, a2, a3, a4 : 2 → 4)

(B : b1, b2 : 2)

(D : l1 : 1) (E : l2 : 1)

(C : c1, c2,→ c1, c2, c3 : 2 → 3)

(G : l3 : 1) (F : f1, f2 : 2)

(H : l4 : 1) (I : l5 : 1)

(J : j1, j2 : 2)

(K : l7 : 1) (L : l8 : 1)

(O : o1, . . . , o4 : 4)

Fig. 2. Transforming l1 + · · · + l5 ≤ 1 and l7 + l8 ≤ 1 into l1 + . . .+ l5 + l7 + l8 ≤ 3

3.3 Iterative Encoding

Incremental weakening uses a conservative upper bound (e.g., ku) on the number of
unsatisfied soft clauses in order to encode the cardinality constraint only once. How-
ever, this upper bound may be much larger than the optimum value (e.g. kopt) which
may result in a larger encoding than the non-incremental approach. In addition, incre-
mental weakening does not allow the set of input literals in the cardinality constraint to
change. Therefore, MaxSAT algorithms that increase the input literals of the cardinality
constraint can not take advantage of incremental weakening. To remedy this situation,
we propose to encode the cardinality constraint in an iterative fashion. At each iteration
of the MaxSAT algorithm, the encoding of the cardinality constraint is augmented with
clauses that allow the sum of input literals to go up to k for the current iteration. We
call this approach iterative encoding.

Let us take a look at Fig. 2 to see how iterative encoding proceeds. Assume that for
a particular iteration, we needed to encode l1 + · · ·+ l5 ≤ 1. This can be accomplished
using the subtree rooted at A. Since the bound for this iteration is k = 1, we only need
k + 1 = 2, node vars at every node as described in k-simplification in Section 2.2. In
the next iteration, suppose we need to encode l1+ · · ·+ l5+ l7+ l8 ≤ 3. Observation 2
allows us to augment the formula for subtree rooted at A to allow l1 + · · ·+ l5 to sum
up to 4. This is done by increasing the output variables of node A to sum up to 4 and
adding the respective clauses that encode sums 3 and 4. Similarly, for nodeC the output
variables are increased to sum up to 3 and the clauses that sum up to 3 are added to the
formula. For the additional input literals l7 and l8 we encode the subtree rooted at J .
Observation 1 allows us to merge trees rooted at A and J by creating a new parent node
O which sums up to 4 since A and J have disjoint sets of input literals. To restrict the
number of input literals being set to true to 3, we only need to add ¬o4 as described in
Eq. 2.

In general, if the cardinality constraint changes from x1+ · · ·+xn ≤ k1 (k1 < n) to
x1+· · ·+xn+y1+· · ·+ym ≤ k2 where k1 ≤ k2 then we do the following : (1) Remove
the assumption over output literal ¬ok1+1 which restricts the sum of x1 . . . , xn to k1.

Incremental Cardinality Constraints for MaxSAT 541

(2) Augment the formula for x1, . . . , xn to sum up to min(k2 + 1, n). (3) Encode the
formula over y1, . . . , ym to sum up to min(k2+1,m). (4) Conjunct these two formulas
and augment the resulting formula using Eq. 1 and k-simplification in order to encode
x1 + · · ·+ xn + y1 + · · ·+ ym ≤ k2. Since iterative encoding always adds clauses to
the existing formula and changes assumptions, it allows us to retain the internal state of
the solver across iterations.

Linear search Unsat-Sat algorithm (Algorithm 1, Section 2) increases the cardinality
bound by 1 at each iteration but does not change the set of input literals of the cardinal-
ity constraint. Therefore, to apply iterative encoding to this algorithm we only perform
steps (1) and (2). On the other hand, MSU3 algorithm (Algorithm 3, Section 2) may
change the set of input literals of the cardinality constraint between iterations. There-
fore, iterative encoding is applied to MSU3 by performing steps (1) to (4).

Since at every iteration, bare minimum number of clauses necessary to encode the
cardinality constraint for that iteration is added, the size of the encoding remains small
throughout the run of the MaxSAT algorithm. Iterative encoding is not only faster but al-
lows us to solve more problem instances as compared to non-incremental approaches.

4 Related Work

The first use of incremental SAT solving can be traced back to the 90’s with the seminal
work of John Hooker [26]. Initially, only a subset of constraints is considered. At each
iteration, more constraints are added to the formula. Later, incremental approaches were
adopted by constraint solvers in the context of SAT [50, 21] and SAT extensions [29, 8].
Assumptions are widely used for incremental SAT [22, 45]. The minisat solver [21]
interface allows the definition of a set of assumptions. Alternatively, the interface of
zchaff [36] allows removing groups of clauses.

Although not implemented, the work of Fu and Malik in MaxSAT [23] discusses
how learned clauses may be kept from one SAT iteration to the next one. In Pseudo
Boolean Optimization (PBO), early implementations include the use of incremental
strengthening in minisat+ [20]. Linear search Sat-Unsat algorithms [29, 32] are imple-
mented incrementally. A critical issue is on keeping safe learned clauses in successive
iterations of a core-guided algorithm [41]. Quantified Boolean Formula (QBF) solving
has successfully been made incremental [35] and further applied to verification [39].

In the context of SAT, incremental approaches exist for building encodings and
identifying Minimal Unsatisfiable Subformulas (MUSes). For example, an incremental
translation to CNF uses unit clauses to simplify the pseudo-Boolean constraint before
translating it to CNF [37]. More recent work lazily decomposes complex constraints
into a set of clauses [1]. The identification of MUSes has been made incremental by
Liffton et al. [34]. Later on, the SAT solver Glucose has been made incremental using
assumptions and applied to MUS extraction [8].

Incrementality is also present in other SAT-related domains such as Satisfiability Mod-
ulo Theories (SMT) and Bounded Model Checking (BMC). The SMT-LIB v2.0 [10]
defines the operations push and pop to work with a stack containing a set of formu-
las to be jointly solved. The MaxSAT solvers WPM1 and WPM2 [2] use the SMT
solver Yices [19] which supports incrementality. Its use resembles the blocking strategy.

542 R. Martins et al.

Table 1. Number of instances solved by the different incremental approaches and median speedup
of solved instances

None Blocking Weakening Iterative
#Inst Speedup #Inst Speedup #Inst Speedup #Inst Speedup

Fu-Malik 366 1.0 388 2.4 - - - -
LinearUS 477 1.0 446 1.6 498 2.3 509 2.4
MSU3 517 1.0 488 1.6 504 2.0 541 3.6

The use of SAT solvers in BMC is known to benefit from incrementality, either by im-
plementing incremental SAT solving [47] or by using assumptions [22].

In the context of Constraint Satisfaction Problems (CSPs), incremental formulations,
incremental propagation and incremental solving are worth mentioning. Incrementality
is naturally present in Dynamic CSPs (DCSPs) [18]. In DCSPs, the formulation of a prob-
lem evolves over time by adding and/or removing variables and constraints. Nogoods can
eventually be carried from one formulation to the next one. DCSPs make use of an incre-
mental arc consistency algorithm [17]. Incremental propagation in CSP [31, 13] makes
use of advisors which give propagators a detailed view of the dynamic changes between
propagator runs. Advisors enable the implementation of optimal algorithms for impor-
tant constraints. Search in CSP is inherently incremental. From the first implementations,
the approach to solve many CSPs is to incrementally build a solution, backtracking when
an infeasibility is detected, until a solution is found or the problem is proven to have no
solution [48]. More recently, incrementality has been implemented in global constraints
mostly due to efficiency reasons [49].

5 Experimental Results

We used all partial MaxSAT instances (627) from the industrial category of the MaxSAT
Evaluation 20131 as a benchmark for our experiments. The evaluation was performed
on two AMD Opteron 6276 processors (2.3 GHz) running Fedora 18 with a timeout of
1,800 seconds and a memory limit of 8 GB. We implemented all algorithms described in
section 2 (Linear search Unsat-Sat, Fu-Malik, and MSU3), as well as their incremental
counterparts on top of OPEN-WBO [42]. OPEN-WBO is a modular open source MaxSAT
solver that is easy to modify and is competitive with state-of-the-art MaxSAT solvers.

Table 1 shows the number of instances solved (#Inst) by the described MaxSAT
algorithms using the different approaches, namely, non-incremental approach (none),
incremental blocking (blocking), incremental weakening (weakening), and iterative en-
coding (iterative). Table 1 also shows the median speedup2 for instances that have been
solved by all incremental approaches for a given algorithm.

Fu-Malik with incremental blocking significantly outperforms the non-incremental
algorithm. Incremental blocking not only solves more instances but also is significantly

1 Benchmarks available at http://maxsat.ia.udl.cat/13/benchmarks/
2 The speedup of an instance is measured as the ratio of the solving time of the non-incremental

approach to the solving time of the respective incremental approach.

http://maxsat.ia.udl.cat/13/benchmarks/

Incremental Cardinality Constraints for MaxSAT 543

faster than the non-incremental algorithm. From those instances which were solved by
both approaches, 50% of them have a speedup of at least 2.4. Incremental weakening
and iterative encoding cannot be used with the Fu-Malik algorithm since it only uses at
most one constraints and modifies the formula across iterations of the algorithm.

Linear search Unsat-Sat (LinearUS) with incremental blocking solves less instances
than the non-incremental approach. Incremental blocking encodes a new cardinality
constraint at each iteration of the MaxSAT algorithm, causing the formula to grow too
large resulting in termination due to memory outs. However, for those instances that
were solved successfully, incremental blocking was 60% faster than the original Lin-
earUS. Incremental weakening allows MaxSAT algorithms to solve more instances with
significant speedup. Since the cardinality constraint is encoded only once, the size of
the formula remains almost constant across iterations. The majority of the instances are
solved at least 2× faster. Iterative encoding outperforms all other approaches. Smaller
formula sizes due to iterative encoding allows it to solve more instances as compared to
incremental weakening.

MSU3 with incremental blocking solves less instances as compared to the original
MSU3 but it is faster for instances solved by both approaches. Similar results have been
observed for the LinearUS algorithm with incremental blocking. Incremental weak-
ening outperforms incremental blocking in the number of solved instances as well as
in terms of solving time. However, incremental weakening solves less instances than
the non-incremental approach, since incremental weakening is not flexible to directly
support the increase in the number of input literals of the cardinality constraint. A non-
incremental approach may need to impose the cardinality constraint over a small subset
of relaxation variables. Incremental weakening does not enjoy this benefit due to its
inflexibility. This may result in incremental weakening producing a larger encoding for
certain problem instances. Iterative encoding solves more instances and is significantly
faster than the non-incremental approach. Iterative encoding only encodes the clauses
that are needed at each iteration of the MaxSAT algorithm, allowing for an encoding
with a similar size to the non-incremental approach. Most instances are solved at least
3.6× faster with iterative encoding than without it.

Fig. 3 shows scatter plots that compare the non-incremental and incremental ap-
proaches which are highlighted in Table 1. Each point in the plot corresponds to a prob-
lem instance, where the x-axis corresponds to the run time required by non-incremental
approaches and the y-axis corresponds to the run time required by incremental ap-
proaches. Instances that are above the diagonal are solved faster when using a non-
incremental approach, whereas instances that are below the diagonal are solved faster
when using an incremental approach. Incremental approaches that we propose in this
paper clearly assert their dominance over their non-incremental counterparts integrated
with all three algorithms as shown in Fig. 3. This is particularly evident in the MSU3 al-
gorithm where the majority of the instances are solved much faster with iterative encod-
ing. For example, for 30% of the instances solved by MSU3 with and without iterative
encoding, iterative encoding is at least 6× faster than the non-incremental approach.
For 10% of the instances solved by both approaches, iterative encoding boosts MSU3
with at least 14× speedup.

544 R. Martins et al.

10-1

100

101

102

103

10-1 100 101 102 103

In
cr

em
en

ta
l B

lo
ck

in
g

Non-Incremental

(a) Fu-Malik Algorithm:
Non-Incremental vs. Incremental Blocking

10-1

100

101

102

103

10-1 100 101 102 103

In
cr

em
en

ta
l W

ea
ke

ni
ng

Non-Incremental

(b) LinearUS Algorithm:
Non-Incremental vs. Incremental Weakening

10-1

100

101

102

103

10-1 100 101 102 103

Ite
ra

tiv
e

E
nc

od
in

g

Non-Incremental

(c) LinearUS Algorithm:
Non-Incremental vs. Iterative Encoding

10-1

100

101

102

103

10-1 100 101 102 103

Ite
ra

tiv
e

E
nc

od
in

g

Non-Incremental

(d) MSU3 Algorithm:
Non-Incremental vs. Iterative Encoding

Fig. 3. Impact of incremental approaches

Fig. 4 shows a cactus plot with the running times of state-of-the-art MaxSAT solvers
used in the MaxSAT Evaluation 20133 (WPM1 [3], WPM2 [4, 2], MaxHS [15, 16],
BCD2 [44], QMaxSAT2 [29]) and the best incremental algorithms presented in this
paper (incremental blocking Fu-Malik, iterative encoding LinearUS and MSU3).

Fu-Malik and WPM1 use similar MaxSAT algorithms. Moreover, WPM1 has a sim-
ilar incremental strategy due to the incremental SMT solver that is used by WPM1.
Since both solvers used similar techniques, it is not surprising that their performance
is similar. Even though LinearUS uses a simple MaxSAT algorithm, it is competitive
with more complex state-of-the-art MaxSAT algorithms. This is mostly due to the
incremental approach that is being used in LinearUS and shows the importance of us-
ing an efficient incremental approach. MSU3 and QMaxSAT2 perform complementary

3 Only single engine solvers have been considered in this evaluation, therefore we did not in-
clude ISAC+ (a portfolio MaxSAT solver) [28].

Incremental Cardinality Constraints for MaxSAT 545

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 300 350 400 450 500 550

se
co

nd
s

instances

WPM1
Inc-Fu-Malik

MaxHS
WPM2
BCD2

Inc-LinearUS
QMaxSAT2

Inc-MSU3

Fig. 4. Running times of state-of-the-art MaxSAT solvers

searches but both use incrementality and have similar performances. Iterative encoding
is not restricted to MSU3 and may be used in other MaxSAT algorithms, such as WPM2
and BCD2. It is expected that if those algorithms are enhanced with the incremental it-
erative encoding, their performance might rise to values similar or higher than those of
QMaxSAT2 and MSU3.

6 Conclusions and Future Work

Several state of the art MaxSAT algorithms are based on solving a sequence of closely
related SAT formulas. However, although incrementality is not a new technique, it is
seldom used in MaxSAT algorithms that search on the lower bound of the optimum
solution. In this paper, we describe and propose new techniques to incrementally modify
cardinality constraints used in several MaxSAT algorithms, namely in linear Unsat-Sat
search, the classic Fu-Malik algorithm and MSU3 core-guided algorithm.

Experimental results show the effectiveness of the techniques proposed in the pa-
per. The incremental versions of the MaxSAT algorithms clearly outperform the non-
incremental versions, both in terms of speed and number of solved instances. Further-
more, the proposed techniques can be integrated in other core-guided algorithms such
as WPM2 and BCD2, among others.

Finally, the paper also describes that in general it is possible to perform iterative
encoding of cardinality constraints using the Totalizer encoding. Therefore, the use of
this technique is not limited to the scope of MaxSAT algorithms. As future work, we
propose to integrate these techniques in other domains where cardinality constraints are
used, and to extend incrementality to other effective cardinality constraints encodings.

546 R. Martins et al.

References

1. Abı́o, I., Stuckey, P.J.: Conflict Directed Lazy Decomposition. In: Milano, M. (ed.) CP 2012.
LNCS, vol. 7514, pp. 70–85. Springer, Heidelberg (2012)

2. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving WPM2 for (Weighted) Partial
MaxSAT. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 117–132. Springer, Heidelberg
(2013)

3. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (Weighted) Partial MaxSAT through Satisfia-
bility Testing. In: Kullmann (ed.) [30], pp. 427–440

4. Ansótegui, C., Bonet, M.L., Levy, J.: A New Algorithm for Weighted Partial MaxSAT. In:
Fox, M., Poole, D. (eds.) AAAI Conference on Artificial Intelligence. AAAI Press (2010)

5. Argelich, J., Berre, D.L., Lynce, I., Marques-Silva, J., Rapicault, P.: Solving Linux Upgrade-
ability Problems Using Boolean Optimization. In: Workshop on Logics for Component Con-
figuration, pp. 11–22 (2010)

6. Ası́n, R., Nieuwenhuis, R.: Curriculum-based course timetabling with SAT and MaxSAT.
Annals of Operations Research, 1–21 (2012)

7. Ası́n, R., Nieuwenhuis, R., Oliveras, A., Rodrı́guez-Carbonell, E.: Cardinality Networks: a
theoretical and empirical study. Constraints 16(2), 195–221 (2011)

8. Audemard, G., Lagniez, J.M., Simon, L.: Improving Glucose for Incremental SAT Solving
with Assumptions: Application to MUS Extraction. In: Järvisalo, M., Van Gelder, A. (eds.)
SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg (2013)

9. Bailleux, O., Boufkhad, Y.: Efficient CNF Encoding of Boolean Cardinality Constraints. In:
Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer, Heidelberg (2003)

10. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. Tech. rep., Depart-
ment of Computer Science, The University of Iowa (2010), www.SMT-LIB.org

11. Büttner, M., Rintanen, J.: Satisfiability Planning with Constraints on the Number of Actions.
In: Biundo, S., Myers, K.L., Rajan, K. (eds.) International Conference on Automated Plan-
ning and Scheduling, pp. 292–299 (2005)

12. Chen, Y., Safarpour, S., Marques-Silva, J., Veneris, A.G.: Automated Design Debugging
With Maximum Satisfiability. IEEE Transactions on CAD of Integrated Circuits and Sys-
tems 29(11), 1804–1817 (2010)

13. Cheng, K.C.K., Yap, R.H.C.: Maintaining Generalized Arc Consistency on Ad-Hoc n-Ary
Boolean Constraints. In: Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) European
Conference on Artificial Intelligence. Frontiers in Artificial Intelligence and Applications,
vol. 141, pp. 78–82. IOS Press (2006)

14. Cimatti, A., Sebastiani, R. (eds.): SAT 2012. LNCS, vol. 7317, pp. 2012–2015. Springer,
Heidelberg (2012)

15. Davies, J., Bacchus, F.: Exploiting the Power of mip Solvers in maxsat. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 166–181. Springer, Heidelberg (2013)

16. Davies, J., Bacchus, F.: Postponing Optimization to Speed Up MAXSAT Solving. In:
Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 247–262. Springer, Heidelberg (2013)

17. Debruyne, R.: Arc-Consistency in Dynamic CSPs Is No More Prohibitive. In: International
Conference on Tools with Artificial Intelligence, pp. 299–307. IEEE (1996)

18. Dechter, R., Dechter, A.: Belief Maintenance in Dynamic Constraint Networks. In: Shrobe,
H.E., Mitchell, T.M., Smith, R.G. (eds.) AAAI Conference on Artificial Intelligence,
pp. 37–42. AAAI Press / The MIT Press (1988)

19. Dutertre, B., de Moura, L.M.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

20. Eén, N., Sörensson, N.: Translating Pseudo-Boolean Constraints into SAT. Journal on Satis-
fiability, Boolean Modeling and Computation 2, 1–26 (2006)

www.SMT-LIB.org

Incremental Cardinality Constraints for MaxSAT 547

21. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

22. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electronic Notes
in Theoretical Computer Science 89(4), 543–560 (2003)

23. Fu, Z., Malik, S.: On Solving the Partial MAX-SAT Problem. In: Biere, A., Gomes, C.P.
(eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)

24. Graça, A., Lynce, I., Marques-Silva, J., Oliveira, A.L.: Efficient and Accurate Haplotype
Inference by Combining Parsimony and Pedigree Information. In: Horimoto, K., Nakatsui,
M., Popov, N. (eds.) ANB 2010. LNCS, vol. 6479, pp. 38–56. Springer, Heidelberg (2012)

25. Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms for max-
imum satisfiability. In: Burgard, W., Roth, D. (eds.) AAAI Conference on Artificial Intelli-
gence. AAAI Press (2011)

26. Hooker, J.N.: Solving the incremental satisfiability problem. Journal of Logic Program-
ming 15(1&2), 177–186 (1993)

27. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum satisfiability.
In: Hall, M.W., Padua, D.A. (eds.) Programming Language Design and Implementation, pp.
437–446. ACM (2011)

28. Kadioglu, S., Malitsky, Y., Sellmann, M.: Non-Model-Based Search Guidance for Set Parti-
tioning Problems. In: Hoffmann, J., Selman, B. (eds.) AAAI Conference on Artificial Intel-
ligence. AAAI Press (2012)

29. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: A Partial Max-SAT Solver.
Journal on Satisfiability, Boolean Modeling and Computation 8, 95–100 (2012)

30. Kullmann, O. (ed.): SAT 2009. LNCS, vol. 5584. Springer, Heidelberg (2009)
31. Lagerkvist, M.Z., Schulte, C.: Advisors for Incremental Propagation. In: Bessière, C. (ed.)

CP 2007. LNCS, vol. 4741, pp. 409–422. Springer, Heidelberg (2007)
32. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. Journal on Satisfiability, Boolean

Modeling and Computation 7(2-3), 59–66 (2010)
33. Li, C.M., Manyà, F.: MaxSAT, Hard and Soft Constraints. In: Handbook of Satisfiability,

pp. 613–631. IOS Press (2009)
34. Liffiton, M.H., Sakallah, K.A.: Algorithms for Computing Minimal Unsatisfiable Subsets of

Constraints. Journal Automated Reasoning 40(1), 1–33 (2008)
35. Lonsing, F., Egly, U.: Incremental QBF Solving. Computing Research Repository - arXiv

abs/1402.2410 (2014)
36. Mahajan, Y.S., Fu, Z., Malik, S.: Zchaff2004: An efficient sat solver. In: H. Hoos, H.,

Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 360–375. Springer, Heidelberg (2005)
37. Manolios, P., Papavasileiou, V.: Pseudo-Boolean Solving by incremental translation to

SAT. In: Bjesse, P., Slobodová, A. (eds.) International Conference on Formal Methods in
Computer-Aided Design, pp. 41–45. FMCAD Inc. (2011)

38. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for Weighted Boolean Optimiza-
tion. In: Kullmann (ed.) [30], pp. 495–508

39. Marin, P., Miller, C., Lewis, M.D.T., Becker, B.: Verification of partial designs using incre-
mental QBF solving. In: Rosenstiel, W., Thiele, L. (eds.) Design, Automation, and Test in
Europe Conference, pp. 623–628. IEEE (2012)

40. Marques-Silva, J., Planes, J.: On using unsatisfiability for solving Maximum Satisfiability.
Tech. rep., Computing Research Repository, abs/0712.0097 (2007)

41. Martins, R., Manquinho, V., Lynce, I.: Parallel Search for Maximum Satisfiability. AI Com-
munications 25(2), 75–95 (2012)

42. Martins, R., Manquinho, V., Lynce, I.: Open-WBO: a Modular MaxSAT Solver. In: Sinz, C.,
Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 438–445. Springer, Heidelberg (2014)

43. Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and core-guided
MaxSAT solving: A survey and assessment. Constraints 18(4), 478–534 (2013)

548 R. Martins et al.

44. Morgado, A., Heras, F., Marques-Silva, J.: Improvements to Core-Guided Binary Search for
MaxSAT. In: Cimatti, Sebastiani (eds.) [14], pp. 284–297

45. Nadel, A., Ryvchin, V.: Efficient SAT Solving under Assumptions. In: Cimatti, Sebastiani
(eds.) [14], pp. 242–255

46. Sinz, C.: Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. In: van
Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005)

47. Shtrichman, O.: Pruning Techniques for the SAT-Based Bounded Model Checking Problem.
In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS, vol. 2144, pp. 58–70. Springer,
Heidelberg (2001)

48. van Beek, P.: Backtracking Search Algorithms. In: Rossi, F., van Beek, P., Walsh, T. (eds.)
Handbook of Constraint Programming, ch. 4. Elsevier (2006)

49. van Hoeve, W.J., Katriel, I.: Global constraints. In: Rossi, F., van Beek, P., Walsh, T. (eds.)
Handbook of Constraint Programming, ch. 6. Elsevier (2006)

50. Whittemore, J., Kim, J., Sakallah, K.A.: SATIRE: A New Incremental Satisfiability Engine.
In: Design Automation Conference, pp. 542–545. ACM (2001)

Reducing the Branching in a Branch and Bound

Algorithm for the Maximum Clique Problem

Ciaran McCreesh and Patrick Prosser

University of Glasgow, Glasgow, UK
c.mccreesh.1@research.gla.ac.uk,
patrick.prosser@glasgow.ac.uk

Abstract. Finding the largest clique in a given graph is one of the fun-
damental NP-hard problems. We take a widely used branch and bound
algorithm for the maximum clique problem, and discuss an alternative
way of understanding the algorithm which closely resembles a constraint
model. By using this view, and by taking measurements inside search,
we provide a new explanation for the success of the algorithm: one of
the intermediate steps, by coincidence, often approximates a “smallest
domain first” heuristic. We show that replacing this step with a genuine
“smallest domain first” heuristic leads to a reduced branching factor
and a smaller search space, but longer runtimes. We then introduce a
“domains of size two first” heuristic, which integrates cleanly into the
algorithm, and which both reduces the size of the search space and gives
a reduction in runtimes.

1 Introduction

A clique in a graph is a subset of vertices, each of which is adjacent to every
other vertex in this subset—we illustrate this in Fig. 1. Finding the size of a
maximum clique in a given graph is one of Garey and Johnson’s fundamen-
tal NP-hard problems [1]. The maximum clique problem has been studied in a

1 2

3

4

56

7

8

1 2

3

4

56

7

8

1 2

3

4

56

7

8

Fig. 1. On the left, a graph with a maximum clique of size four. Next, a greedy four-
colouring of this graph: vertices {1, 4} have been coloured dark blue, vertices {2, 7} are
light blue, vertices {3, 5, 8} are pale cream and vertex 6 is dark chocolate. On the right,
a graph which requires four colours but does not contain a clique of size four.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 549–563, 2014.
c© Springer International Publishing Switzerland 2014

550 C. McCreesh and P. Prosser

constraint programming setting by Régin [2], and using MaxSAT and MaxSAT-
inspired algorithms by Li et al. [3,4,5,6]. However, we will be looking at a family
of dedicated branch and bound algorithms due to Tomita et al. [7,8,9]. These
algorithms are widely used on “real” problems in practice [10,11,12,13,14,15,16],
and many variations have been proposed [17,18,19,20], notably including bit- and
thread-parallel versions [21,22,23,15]; the techniques we will investigate have also
been reused to solve other problems, including maximum common subgraph [15]
and maximum balanced induced biclique [24]. But despite this wide use, it is
not entirely clear why these algorithms work so well. In particular, in one part
of the algorithm we iterate over a certain array backwards. It is easy to check
that this leads to a much smaller search space than iterating over this array
in the forwards direction instead, but recent experimental work contradicts the
conventional explanation for why this should be the case.

By rephrasing the algorithm using language from constraint programming,
we will see that these “forward” and “backward” iterations are effectively two
different variable selection heuristics (although the variables only exist implic-
itly). We take measurements inside search to demonstrate that “backwards”,
by coincidence, approximates a “smallest domain first” (SDF) heuristic, and
that “forwards” is roughly “largest domain first”. It is then easy to modify the
algorithm to use a genuine SDF heuristic; doing so leads to a smaller search
space due to a reduced branching factor, but longer runtimes due to the cost
of performing a sort for each recursive call made by the algorithm. Finally, we
show how to get both a smaller search space and improved runtimes by using a
cheaper alternative to SDF, which is effectively “domains of size two first”.

2 Algorithms for the Maximum Clique Problem

Throughout, let G = (V,E) be a graph with vertex set V and edge set E. We
write V(G) for V , and N(G, v) for the neighbourhood of a vertex v (that is,
the vertices adjacent to it). The size of a maximum clique is denoted ω. When
discussing random graphs, we use G(n, p) to denote an Erdős-Rényi random
graph with n vertices, and with edges between each pair of distinct vertices with
independent probability p.

We start by describing Algorithm 1, a generic, exact branch and bound algo-
rithm for the maximum clique problem. This algorithm is essentially Tomita et
al.’s “MCS” [9] with a simpler initial vertex ordering and the colour repair step
omitted (Prosser’s computational study [18] calls this combination “MCSa1”),
but we describe it in a new, more flexible way that allows us to investigate and
explain its behaviour.

The key to this algorithm is a relationship between cliques and colourings.
A colouring of a graph is an assignment of vertices to colours, where adjacent
vertices are given different colours. A set of like-coloured vertices in a given
colouring is called a colour class. A clique in a coloured graph can contain at
most one vertex from each colour class (see Fig. 1), so if we can colour a graph

Reducing the Branching in a Branch and Bound Algorithm 551

Algorithm 1. A generic exact algorithm to deliver a maximum clique

1 maxClique :: (Graph G) → Set
2 begin
3 global Cmax ← ∅
4 expand(G, ∅,V(G))
5 return Cmax

6 expand :: (Graph G, Set C, Set P)
7 begin
8 colourClasses ← colour(G,P)
9 while colourClasses �= ∅ do

10 colourClass ← select(colourClasses)
11 for v ∈ colourClass do
12 if |C| + |colourClasses | ≤ |Cmax| then return
13 P ′ ← P ∩ N(G, v)
14 C ← C ∪ {v}
15 if |C| > |Cmax| then Cmax ← C16 if P ′ �= ∅ then expand(G,C, P ′)
17 C ← C \ {v}
18 colourClasses ← remove(colourClasses , colourClass)

using k colours, we have shown that ω ≤ k. This is not generally an equality: the
third graph in Fig. 1 has ω = 3, but cannot be coloured using three colours. Like
finding a maximum clique, finding a minimum colouring is NP-hard. However,
we may construct a greedy colouring in polynomial time.

These facts are used to grow a maximum clique, as follows. We have a variable
C, which contains the current growing clique, and a variable P (the candidate
set) which contains vertices which may potentially be added to C. Initially C
is empty, and P contains every vertex in the graph (line 4). Now we produce a
greedy colouring of the subgraph induced by P (line 8); we describe how this is
performed in Algorithm 2. From this colouring, we select a colour class (line 10),
and from that colour class we select a vertex v (line 11). We then consider every
clique which contains the vertices in C plus v, by filtering from P any vertices
not adjacent to v (line 13), and recursing (line 16). Next we consider every clique
which contains the vertices in C but not v: we remove v from consideration (line
17), and select a new vertex from the current colour class (line 11). When the
current colour class has been explored we remove it (line 18) to consider the
possibility of not selecting any vertex at all from this colour class, and then
select a new colour class (line 9).

We keep track of the largest clique we have found so far (line 15), which
we call the incumbent, and store it in Cmax. At any point during the search,
if the number of colour classes remaining plus the number of vertices in C is
not strictly greater than |Cmax|, we cannot unseat the incumbent and so we
backtrack (line 12).

552 C. McCreesh and P. Prosser

Algorithm 2. Greedily colour vertices, delivering a list of colour classes

1 colour :: (Graph G, Set P) → List of Set
2 begin
3 colourClasses ← ∅
4 uncoloured ← copy(P)
5 while uncoloured �= ∅ do
6 current ← ∅
7 for v ∈ uncoloured do
8 if current ∩ N(G, v) = ∅ then current ← current ∪ {v}
9 uncoloured ← uncoloured \ current

10 colourClasses ← append(colourClasses , current)

11 return colourClasses

Note that we produce a new colouring each time we recurse—we generally get
tighter colourings as we consider smaller subproblems. Thus being able to pro-
duce a colouring very quickly is important. San Segundo et al. [21,22] observed
that using a bitset encoding for the entire algorithm would lead to a perfor-
mance improvement of between two and twenty times, without changing the
steps taken. We will be using (but not explicitly describing) a bitset encoding
throughout, and refer the reader to these papers for implementation details.

In constraint programming terms, we can think of colour classes as variables,
and vertices within a colour class as values. We are forming a clique by picking
a vertex from each colour class. There is also a “nothing from this colour class”
value, which we wish to take as infrequently as possible. On line 10 we are
selecting a variable, and on line 11 we are trying a value for that variable; the
filtering on line 13 is propagation. There is the slight conceptual complication
in that we are producing a new set of variables at each recursive call—perhaps
this is why this explanation has not been considered previously.

There are three choices to be made when implementing this algorithm. The
first is how the colouring is produced (line 8). For this paper, we will use a simple
greedy sequential colouring, where colour classes are filled by selecting vertices in
order. We show this in Algorithm 2. The order in which vertices are considered
has a large effect upon the colourings produced; here we select vertices in a
static non-increasing degree order (this is implemented by permuting the graph
at the top of search). Other initial vertex orders and more sophisticated (but also
more computationally expensive) colouring algorithms sometimes give better
results, and sometimes give worse results. A computational study by Prosser [18]
examines this issue in depth; our approach is compatible with other colourings
and initial vertex orderings, and we are describing the simplest options for clarity.

Note that the choice of vertex ordering here is made to improve the quality
of the colouring, in the hope that the greedy colouring will be close to optimal.
For computationally challenging graphs, the degree of a vertex is often not an
indication of whether it is present in a solution—either by design [25,26], because

Reducing the Branching in a Branch and Bound Algorithm 553

the degree spread is very narrow (as in Erdős-Rényi random graphs), or because
the graph contains many maximum cliques but the difficulty lies in proving
optimality [27,28,29].

The second choice to be made is the order in which colour classes are selected
(the select function used in line 10) and the third is the order in which vertices
are selected from within a colour class (iteration over the colour class in line 11).
These choices have not been investigated deeply (nor have they been presented
explicitly as choices to be made). To emulate Tomita’s algorithms we would
select (line 10) and then remove (line 18) the last colour class from the list of
colour classes constructed by Algorithm 2. Vertices within colour classes would
also be selected in reverse order, with the last vertex in that colour class chosen
first.

But why select vertices in colour class order, and why select from right to
left? This may be implemented very efficiently by using a pair of arrays, as in
Fig. 2. The first array (drawn as coloured vertices) controls the iteration order:
it contains vertex numbers, in the reverse order that they are to be considered.
The second array holds the bound (drawn as a list of numbers): in the ith entry
we store the number of colours that were used to colour the induced subgraph
which contains only the first i vertices from the first array. Since vertices with
the same colour are adjacent in the iteration order, the bound is decreasing when
iterating from right to left, which allows Algorithm 1 to be implemented using
a single loop—in fact, this algorithm has not previously been described in any
other way.

However, recursing from left to right (and thus selecting from the first colour
class first, rather than the last colour class first) may be implemented equally ef-
ficiently, so why use a reverse order? Tomita claims that vertices in the rightmost
colour class are “generally expected [to have a] high probability of belonging to a
maximum clique” [8]. This claim was not tested experimentally, beyond verifying
that the reverse ordering gives much worse performance, and recent experiments
by the authors [29] and by Batsyn et al. [19] suggest that for several families of
graphs, these algorithms are not particularly good at finding a maximum clique
quickly.

We argue that there is another factor contributing to the success of the reverse
selection order. Intuitively, one might think that early colour classes are likely
to be larger: colour classes are filled greedily, with vertices being placed in the
first available colour class. Selecting from small colour classes first is beneficial:
consider Fig. 2, and suppose Cmax = 3. If we select v from the rightmost colour
class (which contains only one vertex) first, we make only a single recursive call
which cannot be eliminated by the bound. But if we were to select from any
other colour class, we would have to make either two or three recursive calls
before our bound would decrease. (This also shows why we commit entirely to a
selected colour class: we want to eliminate colour classes as quickly as possible.)

In constraint programming terms, selecting from small colour classes first is
a “smallest domain first” variable selection heuristic. Such a heuristic tends to
give a low branching factor locally (that is, it reduces the number of recursive

554 C. McCreesh and P. Prosser

1 4 2 5 8 3 6 7

1 1 2 2 2 3 3 4

Eliminated by bound BranchLast colour first:

Colours used:

Eliminated by boundBranchFirst colour first:

Greedy colouring:

Fig. 2. The colour classes from the third graph of Fig. 1, in colour order. Above the
vertices is an array of bounds: the ith entry shows the number of colours used to colour
the subgraph containing only the first i vertices from the colouring. Now suppose
an incumbent of size three had already been found. If we select from the rightmost
colour class first, and discover that there is no clique of size four containing vertex 7,
then we may abandon search. But if we select from the leftmost colour class first (as
drawn below), we must recurse twice: once to show that there is no clique of size four
containing vertex 1, and then again for vertex 4.

calls made) [30]. This does not necessarily produce the best possible search tree
globally, but we will demonstrate that it is generally beneficial in this context.

2.1 Are Colour Classes Roughly Sorted by Size?

We will now test our intuition, by augmenting Algorithm 2 to take measurements
inside the search. The hypothesis we are testing is as follows: is there a correlation
between the position a colour classes is in, and the position it would be in if colour
classes were sorted by size (largest first)? To measure this, we use Spearman’s
rank correlation coefficient (with rank ties) [31]; this will give us a value of 1
if there is a perfect monotonically increasing relationship, −1 if it is perfectly
monotonically decreasing, and a value in-between otherwise.

We performed this test for each colouring produced, over 100 samples of ran-
dom graphs G(150, 0.9). The results are plotted in the top left graph of Fig. 3.
For the x-axis, we use the number of colour classes used. For the y-axis, rather
than show the average, we show the distribution of the results of the statisti-
cal test (so the colours in each column sum to 1). For comparison purposes,
the bottom left graph shows what we would see if the colour classes were in no
particular order (we shuffle the colour classes before running the test), and the
bottom right graph shows the color classes fully sorted (i.e. SDF). These results
confirm our suspicions that colour classes are “roughly” sorted by size, as a side
effect of the greedy colouring process: the top left graph is much more heavily
weighted towards 1 (sorted) than the shuffled graph. In other words, the greedy
colouring process and backwards iteration is approximating an SDF heuristic.

The top right graph shows the effects of our “domains of size two first” heuris-
tic, which we describe below. As its name suggests, a partial sort increases the
degree to which colour classes are sorted by size, but does not sort them fully—it
is a cheap surrogate for SDF.

Reducing the Branching in a Branch and Bound Algorithm 555

U
n
m
o
d
ifi
ed

0
2
0

4
0

6
0

8
0

N
u
m
b
er

o
f
co
lo
u
rs

-101

Sortedness

00
.2

0
.4

0
.6

0
.8

1

P
a
rt
ia
ll
y
S
o
rt
ed

(2
D
F
)

0
2
0

4
0

6
0

8
0

N
u
m
b
er

o
f
co
lo
u
rs

-101

Sortedness

00
.2

0
.4

0
.6

0
.8

1

S
h
u
ffl
ed

0
2
0

4
0

6
0

8
0

N
u
m
b
er

o
f
co
lo
u
rs

-101

Sortedness

00
.2

0
.4

0
.6

0
.8

1

S
o
rt
ed

(S
D
F
)

0
2
0

4
0

6
0

8
0

N
u
m
b
er

o
f
co
lo
u
rs

-101

Sortedness

00
.2

0
.4

0
.6

0
.8

1

F
ig
.
3
.
A
re

co
lo
u
r
cl
a
ss
es

ro
u
g
h
ly

o
rd
er
ed

b
y
si
ze
?
A

va
lu
e
o
f
1
m
ea
n
s
“
y
es
,
la
rg
es
t
fi
rs
t”
,
0
m
ea
n
s
“
n
o
”
,
a
n
d
-1

m
ea
n
s
“
y
es
,
sm

a
ll
es
t

fi
rs
t”
.
In

th
e
to
p
le
ft

g
ra
p
h
,
th
e
o
ri
g
in
a
l
a
lg
o
ri
th
m
,
a
n
d
in

th
e
to
p
ri
g
h
t,
th
e
eff

ec
ts

o
f
a
p
a
rt
ia
l
so
rt
.
F
o
r
co
m
p
a
ri
so
n
,
th
e
b
o
tt
o
m

le
ft

g
ra
p
h

sh
ow

s
sh
u
ffl
ed

co
lo
u
r
cl
a
ss
es
,
a
n
d
th
e
b
o
tt
o
m

ri
g
h
t
g
ra
p
h
sh
ow

s
fu
ll
y
so
rt
ed

co
lo
u
r
cl
a
ss
es
.
R
es
u
lt
s
a
re

fr
o
m

1
0
0
sa
m
p
le
s
o
f
G
(1
5
0
,0
.9
).

556 C. McCreesh and P. Prosser

2.2 Reordering Colour Classes to Reduce the Branching Factor

We have established empirically that smaller colour classes tend to be picked ear-
lier by Tomita’s algorithms, and explained theoretically why this is beneficial.
Now ask what would happen if we increased this effect. We consider two ap-
proaches.

The “sorted”, or “smallest domains first” variation. We could explicitly select
from the smallest colour class (i.e. the smallest domain) first. This could be
implemented directly, via a different select function used with Algorithm 1, or
we could use Tomita’s “two arrays” approach and add a (stable) sort to the end
of Algorithm 2.

The “partially sorted”, or “domains of size two first” (2DF) variation. We also
consider a potentially cheaper alternative: instead of fully sorting colour classes
by size, we propose a partial sort that moves colour classes containing only
one vertex (which we call singleton colour classes) to the end of the list of
colour classes, so that they are selected first. In other words, we are picking from
domains with two values (a single vertex, plus the “nothing” option) first. We
show how to do this in a way which is compatible with a bitset encoding in
Algorithm 3: when we produce a colour class containing only a single vertex, we
append that colour class onto the list singletons (line 12) and when every vertex
has been processed we return the concatenated list of colour classes with the
singletons appearing at the end (line 15). We then replace the call to colour in
line 8 of Algorithm 1 with a call to colourSort2DF, and implement the select
step and the bound by using two arrays and selecting the rightmost entry first,
as in Tomita’s algorithms.

2.3 Tie-Breaking

But why are we preserving the relative order of the partially sorted colour
classes—that is, why do we specify a stable sort, or why is it important to put
the last singleton colour class at the end of the list of colour classes? Suppose
Algorithm 2 produced the colour classes shown in Fig. 4. Due to the greediness
of the colouring, vertices 5, 6, 7, 8 and 9 must all be adjacent to vertex 4 (the
only member of the dark chocolate colour class), for if one were not, it would
also have been coloured dark chocolate. Thus if Algorithm 1 selects colour class
{4} in preference to the other singleton colour class {7}, the new candidate set
P ′ will contain some of the vertices from the set {1, 2, 3}, and all of the vertices
from the sets {5, 6}, {7} and {8, 9}. However, by the same kind of reasoning, if
the colour class {7} is selected before {4}, P ′ will contain some of the vertices
from the sets {1, 2, 3} and {5, 6} and all of the vertices in the sets {4} and {8, 9},
so the new candidate set will potentially be smaller. This is why we preserve the
order: selecting from the latest-coloured singleton colour class first can increase
the amount of filtering done on P , giving a smaller P ′ in the recursive call (line
16), further reducing the branching in the search process.

Reducing the Branching in a Branch and Bound Algorithm 557

Algorithm 3. Greedily colour vertices, delivering a partially sorted list of
colour classes, with singleton colour classes deferred to the end.

1 colourSort2DF :: (Graph G, Set P) → List of Set
2 begin
3 colourClasses ← ∅
4 singletons ← ∅
5 uncoloured ← copy(P)
6 while uncoloured �= ∅ do
7 current ← ∅
8 for v ∈ uncoloured do
9 if current ∩ N(G, v) = ∅ then current ← current ∪ {v}

10 uncoloured ← uncoloured \ current
11 if |current | = 1 then
12 singletons ← append(singletons , current)

13 else
14 colourClasses ← append(colourClasses , current)

15 return concatenate(colourClasses , singletons)

2.4 Compatibility with Other Improvements

Both the “sorted” and “partially sorted” changes are compatible with other
recent improvements that have been proposed for this family of algorithms. They
do not interfere with priming the search with a heuristic solution [19], they are
not sensitive to alternative vertex orderings, and critically, they are compatible
with multi-core parallelism [15,23,29].

One improvement with which they are not compatible is a relaxed colouring
proposed by San Segundo and Tapia [20]. Relaxed colourings also do not interact
cleanly with parallel branch and bound or with priming (with relaxed colourings,
finding a larger incumbent earlier can be a penalty rather than a benefit), so we
do not consider this to be a substantial weakness.

1 2 3 4 5 6 7 8 9

4 is adjacent to some of these, and all of these.

7 is adjacent to some of these, and all of these

Fig. 4. Due to the greedy colouring, singleton colour classes are not equally powerful
from a filtering perspective. For any singleton colour class, its vertex is adjacent to
every vertex with a later colour, but only some vertices with an earlier colour. Here,
branching on vertex 7 rather than vertex 4 is likely to lead to more filtering, giving a
smaller subproblem at the next recursive call.

558 C. McCreesh and P. Prosser

3 Experimental Results

We now evaluate our “SDF” and “2DF” changes experimentally on a range of
standard and random problems. Where runtimes are given, experimental results
are produced on a machine with an Intel Xeon E5645 CPU. The time taken to
read in a graph from a file is not measured, but preprocessing time is included.
The algorithms were implemented in C++. Sometimes we report the number of
“nodes” explored by an algorithm, by which we mean the number of recursive
calls made to the expand function in Algorithm 1.

For our baseline, we use a bitset encoded version of the variant Prosser calls
“MCSa1” [18]; our implementation has been shown to perform very competi-
tively with other implementations of the same algorithm [23]. We also have a
parallel implementation of these algorithms, although we are reporting sequen-
tial results for ease of understanding (parallel branch and bound is speculative,
and we often see anomalous speedups [15,23] due to additional diversity from
differing search orders [29]). For the “SDF” implementation, we add a stable
sort (using the C++ standard library function) at the end of Algorithm 2; for
the “2DF” implementation, we replace Algorithm 2 with Algorithm 3. In both
cases, we use Tomita’s “two arrays” approach, and have select pick from right
to left.

3.1 Random Graphs

In the top graph in Fig. 5 we show the number of search nodes required for
random graphs G(200, x) for values of x between 0.70 and 0.99 (averaged over
100 graph instances for each x). We see that there is a clear benefit to reordering
colour classes, either by sorting or by partially sorting. However, sorting and
partial sorting give lines which are too close to be easily distinguishable—at
least for these graphs, simply deferring singleton colour classes is as effective as
a full sort.

But do reductions in the size of the search space help with performance? In
the graph below, we present the same data, but measuring runtimes. We see that
the improvements to runtimes from a partial sort reflects the improvements to
search nodes. On the other hand, it is clear that a full sort is extremely expensive:
we get a factor of five slowdown despite the smaller search space.

3.2 Standard Benchmark Problems

Next we consider a range of standard benchmark problems from the Second
DIMACS Implementation Challenge1 and from BHOSLIB (“Benchmarks with
Hidden Optimum Solutions for Graph Problems”)2. From DIMACS, we have
omitted graphs where the number of search nodes is below 104. Some extremely
hard instances, where an optimal solution is either unknown or takes more than

1 http://dimacs.rutgers.edu/Challenges/
2 http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm

http://dimacs.rutgers.edu/Challenges/
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm

Reducing the Branching in a Branch and Bound Algorithm 559

0

10

20

30

40

50

0.7 0.75 0.8 0.85 0.9 0.95 1

S
ea
rc
h
n
o
d
es

(m
il
li
o
n
s)

Edge probability

Search nodes

Unmodified
Partial (2DF)
Sorted (SDF)

0

10

20

30

40

50

60

70

80

0.7 0.75 0.8 0.85 0.9 0.95 1

R
u
n
ti
m
e
(s
)

Edge probability

Runtimes

Unmodified
Partial (2DF)
Sorted (SDF)

Fig. 5. The number of search nodes (top), and runtimes (bottom) for random graphs
G(200, x) with varying edge probabilities (steps of 0.01, 100 samples per probability).
In the top graph, the partially sorted and sorted results are nearly indistinguishable,
but on the bottom graph we see the high cost to runtime of doing a full sort.

560 C. McCreesh and P. Prosser

T
a
b
le

1
.
E
x
p
er
im

en
ta
l
re
su
lt
s
fo
r
m
ed

iu
m
-s
iz
ed

D
IM

A
C
S

a
n
d

sm
a
ll
er

B
H
O
S
L
IB

g
ra
p
h
s.

S
h
ow

n
fo
r
ea
ch

in
st
a
n
ce

is
th
e
si
ze

o
f
a

m
a
x
im

u
m

cl
iq
u
e,

th
en

th
e
n
u
m
b
er

o
f
se
a
rc
h
n
o
d
es

(r
ec
u
rs
iv
e
ca
ll
s)

a
n
d
ru
n
ti
m
e
fo
r
th
e
b
a
se
li
n
e
a
lg
o
ri
th
m
.
W
e
th
en

g
iv
e
th
e
se
a
rc
h
sp
a
ce

si
ze

a
n
d
ru
n
ti
m
e
fo
r
p
a
rt
ia
l
so
rt
in
g
,
a
s
a
p
ro
p
o
rt
io
n
o
f
th
e
b
a
se
li
n
e,

a
n
d
th
en

th
e
sa
m
e
fo
r
a
fu
ll
so
rt
.
In
st
a
n
ce
s
in

b
o
ld

a
re

th
o
se

w
h
er
e

a
p
a
rt
ia
l
so
rt

g
iv
es

a
st
ri
ct

im
p
ro
v
em

en
t
in

b
o
th

n
o
d
es

a
n
d
ru
n
ti
m
es
.
T
h
e
o
m
it
te
d
re
su
lt

ta
k
es

m
o
re

th
a
n
tw

o
w
ee
k
s
to

co
m
p
le
te
.

In
s
ta

n
c
e

ω
U
n
m

o
d
ifi

e
d

2
D
F

(%
)

S
D
F

(%
)

In
s
ta

n
c
e

ω
U
n
m

o
d
ifi

e
d

2
D
F

(%
)

S
D
F

(%
)

N
o
d
e
s

T
im

e
N
o
d
e
s
T
im

e
N
o
d
e
s
T
im

e
N
o
d
e
s

T
im

e
N
o
d
e
s
T
im

e
N
o
d
e
s

T
im

e

b
r
o
c
k
2
0
0

1
2
1

5
.2
5
×
1
0
5

4
1
1
m
s

9
3
.8

9
6
.4

8
7
.5

5
2
6
.5

p
h
a
t7

0
0
-2

4
4

7
.5
1
×
1
0
5

3
.2

s
9
5
.7

9
5
.0

2
0
5
.8

6
8
3
.1

b
ro

ck
2
0
0
3

1
5

1
.4
6
×
1
0
4

1
1
m
s

9
7
.9

1
0
0
.0

9
6
.6

5
0
9
.1

p
h
a
t7

0
0
-3

6
2

2
.8
2
×
1
0
8

1
6
7
7
.9

s
9
5
.3

9
4
.3

3
2
4
.1

1
1
4
4
.9

b
r
o
c
k
2
0
0

4
1
7

5
.8
7
×
1
0
4

4
2
m
s

9
6
.4

9
7
.6

8
3
.2

4
7
6
.2

p
h
a
t1

0
0
0
-1

1
0

1
.7
7
×
1
0
5

2
5
1
m
s

9
9
.6

9
7
.6

1
0
0
.7

2
7
8
.1

b
r
o
c
k
4
0
0

1
2
7

1
.9
8
×
1
0
8

2
8
7
.8

s
9
7
.0

9
9
.1

8
5
.3

3
8
8
.2

p
h
a
t1

0
0
0
-2

4
6

3
.4
5
×
1
0
7

1
6
4
.8

s
9
4
.8

9
4
.2

1
3
1
.1

4
4
4
.8

b
r
o
c
k
4
0
0

2
2
9

1
.4
6
×
1
0
8

2
0
9
.8

s
9
3
.6

9
4
.0

1
2
3
.0

5
4
0
.9

p
h
a
t1

0
0
0
-3

6
8

1
.3
0
×
1
0
1
1

2
2
5
.8

h
9
3
.8

9
8
.8

b
r
o
c
k
4
0
0

3
3
1

1
.2
0
×
1
0
8

1
6
6
.1

s
9
4
.3

9
4
.6

9
2
.8

4
2
3
.7

p
h
a
t1

5
0
0
-1

1
2

1
.1
8
×
1
0
6

3
.6

s
9
9
.7

1
0
2
.5

8
7
.4

1
7
7
.9

b
r
o
c
k
4
0
0

4
3
3

5
.4
4
×
1
0
7

8
0
.6

s
9
2
.2

9
3
.4

1
9
3
.1

8
3
2
.8

p
h
a
t1

5
0
0
-2

6
5

2
.0
1
×
1
0
9

7
.7

h
9
4
.0

9
6
.9

1
4
5
.7

3
0
9
.0

b
r
o
c
k
8
0
0

1
2
3

2
.2
3
×
1
0
9

5
3
2
5
.8

s
9
7
.3

9
5
.1

1
0
4
.6

3
2
6
.0

sa
n
2
0
0
0
.7

1
3
0

1
.3
4
×
1
0
4

1
6
m
s

1
0
0
.1

1
0
6
.2

5
2
.4

2
4
3
.8

b
r
o
c
k
8
0
0

2
2
4

2
.2
4
×
1
0
9

5
3
1
3
.7

s
9
7
.3

9
5
.0

9
7
.0

3
0
5
.1

s
a
n
2
0
0

0
.9

1
7
0

8
.7
3
×
1
0
4

1
0
0
m
s

7
6
.1

9
1
.0

7
5
.4

5
1
6
.0

b
r
o
c
k
8
0
0

3
2
5

2
.1
5
×
1
0
9

4
9
2
4
.1

s
9
7
.3

9
5
.5

8
0
.2

2
5
5
.6

sa
n
2
0
0
0
.9

2
6
0

2
.3
0
×
1
0
5

3
7
3
m
s

3
4
0
.9

3
0
3
.2

3
1
6
.8

1
6
3
1
.9

b
r
o
c
k
8
0
0

4
2
6

6
.4
0
×
1
0
8

1
8
5
1
.7

s
9
7
.9

9
5
.5

9
3
.8

2
8
9
.2

s
a
n
2
0
0

0
.9

3
4
4

6
.8
2
×
1
0
6

9
.3

s
7
2
.8

7
5
.1

7
4
.1

4
5
3
.4

C
1
2
5
.9

3
4

5
.0
2
×
1
0
4

4
7
m
s

7
1
.5

7
8
.7

7
1
.7

5
1
0
.6

s
a
n
4
0
0

0
.7

1
4
0

1
.1
9
×
1
0
5

2
3
4
m
s

9
4
.2

9
3
.2

7
9
.4

4
3
5
.9

C
2
5
0
.9

4
4

1
.0
8
×
1
0
9

1
7
3
2
.6

s
8
3
.1

8
3
.8

8
2
.8

5
2
6
.8

s
a
n
4
0
0

0
.7

2
3
0

8
.8
9
×
1
0
5

2
.1

s
8
9
.9

9
1
.1

5
2
.8

1
8
6
.8

C
2
0
0
0
.5

1
6

1
.8
2
×
1
0
1
0

2
1
.4

h
9
8
.9

1
0
0
.2

9
5
.6

1
7
0
.4

s
a
n
4
0
0

0
.7

3
2
2

5
.2
1
×
1
0
5

1
.3

s
9
0
.7

9
1
.4

3
8
.6

1
0
7
.4

D
S
J
C
5
0
0

5
1
3

1
.1
5
×
1
0
6

1
.1

s
9
8
.6

9
8
.4

9
3
.6

3
7
2
.6

s
a
n
4
0
0

0
.9

1
1
0
0

4
.5
4
×
1
0
6

2
4
.2

s
7
8
.8

7
9
.5

7
3
.9

3
3
5
.5

D
S
J
C
1
0
0
0

5
1
5

7
.7
0
×
1
0
7

1
4
5
.5

s
9
8
.8

9
6
.3

9
6
.1

2
7
4
.4

s
a
n
1
0
0
0

1
5

1
.5
1
×
1
0
5

2
.0

s
9
8
.3

9
8
.6

1
0
.9

6
.0

g
e
n
2
0
0

p
0
.9

4
4

4
4

1
.7
7
×
1
0
6

2
.7

s
8
0
.2

8
3
.2

8
7
.3

5
3
6
.0

s
a
n
r
2
0
0

0
.7

1
8

1
.5
3
×
1
0
5

1
1
2
m
s

9
5
.6

9
7
.3

9
3
.8

5
4
6
.4

g
e
n
2
0
0

p
0
.9

5
5

5
5

1
.7
0
×
1
0
5

2
2
9
m
s

8
6
.2

8
9
.1

8
5
.9

5
3
3
.2

s
a
n
r
2
0
0

0
.9

4
2

1
.4
9
×
1
0
7

2
1
.4

s
9
1
.5

9
1
.8

8
7
.2

5
4
5
.3

g
e
n
4
0
0

p
0
.9

6
5

6
5

1
.7
6
×
1
0
1
1

1
2
6
.5

h
5
9
.5

6
1
.5

5
8
.1

2
7
9
.5

s
a
n
r
4
0
0

0
.5

1
3

3
.2
0
×
1
0
5

2
6
3
m
s

9
8
.5

9
8
.5

9
3
.3

3
9
7
.7

g
e
n
4
0
0

p
0
.9

7
5

7
5

1
.0
5
×
1
0
1
1

7
2
.2

h
3
5
.7

3
6
.0

3
4
.1

1
6
5
.8

s
a
n
r
4
0
0

0
.7

2
1

6
.4
4
×
1
0
7

7
5
.5

s
9
5
.4

9
5
.5

9
4
.2

4
2
6
.5

h
a
m
m
in
g
8
-4

1
6

3
.6
5
×
1
0
4

4
4
m
s

1
0
0
.9

1
0
0
.0

6
0
.0

2
7
0
.5

fr
b
3
0
-1

5
-1

3
0

2
.9
2
×
1
0
8

6
7
7
.8

s
8
8
.6

8
9
.0

8
6
.8

3
6
9
.4

jo
h
n
so

n
1
6
-2
-4

8
2
.5
6
×
1
0
5

4
9
m
s

1
0
0
.0

1
0
6
.1

8
8
.8

5
5
1
.0

fr
b
3
0
-1

5
-2

3
0

5
.5
7
×
1
0
8

1
2
2
8
.8

s
8
1
.8

8
2
.8

4
2
.2

1
8
3
.7

k
e
ll
e
r4

1
1

1
.3
7
×
1
0
4

8
m
s

9
8
.7

1
2
5
.0

8
4
.1

4
2
5
.0

fr
b
3
0
-1

5
-3

3
0

1
.6
7
×
1
0
8

3
7
5
.2

s
8
0
.7

8
2
.2

7
8
.5

3
3
3
.7

k
e
ll
e
r5

2
7

5
.0
7
×
1
0
1
0

4
4
.1

h
1
0
8
.8

1
1
3
.2

6
9
.7

2
3
9
.5

fr
b
3
0
-1

5
-4

3
0

9
.9
1
×
1
0
8

2
0
7
4
.0

s
8
5
.2

8
6
.3

5
4
.0

2
3
1
.7

M
A
N
N

a
2
7

1
2
6

3
.8
0
×
1
0
4

2
7
4
m
s

1
0
0
.0

9
9
.6

1
0
0
.0

5
1
8
.6

fr
b
3
0
-1

5
-5

3
0

2
.8
3
×
1
0
8

6
0
8
.9

s
7
9
.8

8
1
.8

8
0
.8

3
6
1
.5

M
A
N
N

a
4
5

3
4
5

2
.8
5
×
1
0
6

2
5
0
.0

s
1
0
0
.0

1
0
0
.8

1
0
0
.0

2
0
6
.9

fr
b
3
5
-1

7
-1

3
5

1
.3
3
×
1
0
1
0

1
4
.8

h
8
2
.7

8
8
.4

4
4
.9

1
5
4
.1

p
h
a
t3

0
0
-3

3
6

6
.2
5
×
1
0
5

1
.1

s
9
2
.9

9
4
.7

1
0
9
.6

5
6
2
.3

fr
b
3
5
-1

7
-2

3
5

2
.3
4
×
1
0
1
0

2
6
.1

h
8
2
.3

8
8
.8

4
8
.8

1
7
1
.6

p
h
a
t5

0
0
-2

3
6

1
.1
4
×
1
0
5

2
6
6
m
s

9
5
.0

9
5
.5

9
7
.9

4
2
3
.3

fr
b
3
5
-1

7
-3

3
5

8
.2
5
×
1
0
9

9
.7

h
8
0
.8

8
6
.5

1
0
1
.4

3
3
6
.6

p
h
a
t5

0
0
-3

5
0

3
.9
3
×
1
0
7

1
1
4
.1

s
9
3
.6

9
3
.7

2
1
1
.6

9
9
7
.8

fr
b
3
5
-1

7
-4

3
5

8
.8
5
×
1
0
9

1
0
.7

h
8
6
.6

9
1
.7

9
5
.7

3
1
8
.9

p
h
a
t7

0
0
-1

1
1

2
.6
6
×
1
0
4

4
2
m
s

9
9
.4

9
7
.6

1
0
6
.3

2
8
5
.7

fr
b
3
5
-1

7
-5

3
5

5
.8
0
×
1
0
1
0

5
8
.9

h
7
6
.5

8
2
.2

7
1
.0

2
4
9
.4

Reducing the Branching in a Branch and Bound Algorithm 561

two weeks to produce, are also omitted. However, our results include problems
where the baseline runtimes are between less than a second to more than 9 days.
For BHOSLIB, we have selected the smaller families, i.e. instances that we can
solve within a few days.

Table 1 gives, for each problem instance, the size of the largest clique (ω) and
then the performance of the baseline implementation, in number of search nodes
and in runtimes. We then give the performance using partial sorting, and then
full sorting. Performance is given as a percentage of the baseline.

We see that a full sort (SDF) gives a strict reduction in nodes (in all but
15 cases) but with a substantial increase in runtimes (in all but one instance,
“san1000”). Partial sorting (2DF) gives a strict reduction in both search nodes
and runtimes in all but 11 instances (those not shown in bold) and generally a re-
duction in nodes corresponds to a similar reduction in runtimes. The BHOSLIB
(“frb” family) problems are worthy of note: these problems take between 5 min-
utes and 59 hours, and a partial sort gives improvements to both the search space
size and runtimes of between ten and twenty five percent. A full sort here would
give even more benefit, if it could be done economically, as it roughly halves
the size of the search space in four of the instances. However, for some other
graphs, a full sort actually gives a larger search space than a partial sort—this
should not be a surprise, since a local improvement to the branching factor is
not guaranteed to produce the best search tree globally.

4 Conclusion

Previously, in Tomita et al.’s maximum clique algorithms, the vertex selection
rules and colourings were tightly coupled and not fully understood. Inspired by
constraint programming techniques, we have provided a different way of looking
at these algorithms. This allows us to treat the vertex selection and colouring
processes separately, and to discuss this process in terms of variable and value
ordering heuristics.

By looking inside the search process, we showed that the greedy colouring
process produced vertices in an approximation of a “smallest domain first” or-
der, which would reduce the amount of branching done locally at each step. We
saw that using that order exactly would reduce the size of the search space in
many cases, but that doing a full sort to obtain it had a large impact on run-
times. We introduced a partial sorting technique, and showed that this reduced
both the size of the search space and runtimes. (Although not reported, we also
investigated exploring colour classes in decreasing size and in the reverse order
they were constructed. Both of these resulted in an increase in both nodes and
runtimes.)

This is the first investigation into the effects of different vertex selection rules
within Tomita’s algorithms, and we have shown that genuine improvements can
be made. A further benefit is that we now understand more about why these
algorithms work so well in practice. Our decoupling also gives us more scope for
improving the colouring process: previously, a different initial vertex ordering

562 C. McCreesh and P. Prosser

or a more sophisticated colouring algorithm could have undesirable knock-on
effects upon which vertex is selected first; we may now ignore these effects, or
study them separately. This could make it easier to integrate Li et al.’s MaxSAT-
inspired inference into these algorithms.

We stress that more advanced vertex selection rules must not come at the
cost of greater runtimes: we saw this issue when a full sort gave a significant
slowdown, despite the smaller search space. However, we saw that a very cheap
partial sort was an excellent surrogate. We hope that with further investigation
into these kinds of techniques, even greater gains can be had.

References

1. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

2. Régin, J.-C.: Using constraint programming to solve the maximum clique problem.
In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 634–648. Springer, Heidelberg
(2003)

3. Li, C.M., Quan, Z.: An efficient branch-and-bound algorithm based on MaxSAT
for the maximum clique problem (2010)

4. Li,C.M.,Quan,Z.:Combininggraph structure exploitation andpropositional reason-
ing for themaximumclique problem. In: 2010 22nd IEEE InternationalConference on
Tools with Artificial Intelligence (ICTAI), vol. 1, pp. 344–351 (October 2010)

5. Li, C.M., Zhu, Z., Manyà, F., Simon, L.: Minimum satisfiability and its appli-
cations. In: Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence - Volume Volume One, IJCAI 2011, pp. 605–610. AAAI Press,
Palo Alto (2011)

6. Li, C.M., Fang, Z., Xu, K.: Combining MaxSAT reasoning and incremental up-
per bound for the maximum clique problem. In: 2013 IEEE 25th International
Conference on Tools with Artificial Intelligence (ICTAI), pp. 939–946 (November
2013)

7. Tomita, E., Seki, T.: An efficient branch-and-bound algorithm for finding a maxi-
mum clique. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003.
LNCS, vol. 2731, pp. 278–289. Springer, Heidelberg (2003)

8. Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm for finding a
maximum clique with computational experiments. Journal of Global Optimiza-
tion 37(1), 95–111 (2007)

9. Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and
faster branch-and-bound algorithm for finding a maximum clique. In: Rahman,
M. S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 191–203. Springer,
Heidelberg (2010)

10. Okubo, Y., Haraguchi, M.: Finding conceptual document clusters with improved
top-n formal concept search. In: Proceedings of the 2006 IEEE/WIC/ACM Inter-
national Conference on Web IntelligencE, WI 2006, pp. 347–351. IEEE Computer
Society, Washington, DC (2006)

11. Konc, J., Janežič, D.: A branch and bound algorithm for matching protein struc-
tures. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICAN-
NGA 2007. LNCS, vol. 4432, pp. 399–406. Springer, Heidelberg (2007)

12. Yan, B., Gregory, S.: Detecting communities in networks by merging cliques. In:
IEEE International Conference on Intelligent Computing and Intelligent Systems,
ICIS 2009, vol. 1, pp. 832–836 (November 2009)

Reducing the Branching in a Branch and Bound Algorithm 563

13. San Segundo, P., Rodŕıguez-Losada, D., Mat́ıa, F., Galán, R.: Fast exact feature
based data correspondence search with an efficient bit-parallel MCP solver. Applied
Intelligence 32(3), 311–329 (2010)

14. Fukagawa, D., Tamura, T., Takasu, A., Tomita, E., Akutsu, T.: A clique-based
method for the edit distance between unordered trees and its application to analysis
of glycan structures. BMC Bioinformatics 12(suppl. 1), S13 (2011)

15. Depolli, M., Konc, J., Rozman, K., Trobec, R., Janežič, D.: Exact parallel maxi-
mum clique algorithm for general and protein graphs. Journal of Chemical Infor-
mation and Modeling 53(9), 2217–2228 (2013)

16. Regula, G., Lantos, B.: Formation control of quadrotor helicopters with guaran-
teed collision avoidance via safe path. Electrical Engineering and Computer Sci-
ence 56(4), 113–124 (2013)

17. Konc, J., Janezic, D.: An improved branch and bound algorithm for the maxi-
mum clique problem. MATCH Communications in Mathematical and in Computer
Chemistry (June 2007)

18. Prosser, P.: Exact algorithms for maximum clique: a computational study. Algo-
rithms 5(4), 545–587 (2012)

19. Batsyn, M., Goldengorin, B., Maslov, E., Pardalos, P.: Improvements to mcs al-
gorithm for the maximum clique problem. Journal of Combinatorial Optimiza-
tion 27(2), 397–416 (2014)

20. San Segundo, P., Tapia, C.: Relaxed approximate coloring in exact maximum clique
search. Computers & Operations Research 44, 185–192 (2014)

21. San Segundo, P., Rodŕıguez-Losada, D., Jiménez, A.: An exact bit-parallel algo-
rithm for the maximum clique problem. Comput. Oper. Res. 38(2), 571–581 (2011)

22. San Segundo, P., Matia, F., Rodriguez-Losada, D., Hernando, M.: An improved
bit parallel exact maximum clique algorithm. Optimization Letters 7(3), 467–479
(2013)

23. McCreesh, C., Prosser, P.: Multi-threading a state-of-the-art maximum clique al-
gorithm. Algorithms 6(4), 618–635 (2013)

24. McCreesh, C., Prosser, P.: An exact branch and bound algorithm with symmetry
breaking for the maximum balanced induced biclique problem. In: Simonis, H. (ed.)
CPAIOR 2014. LNCS, vol. 8451, pp. 226–234. Springer, Heidelberg (2014)

25. Brockington, M., Culberson, J.C.: Camouflaging independent sets in quasi-random
graphs. In: DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, vol. 26, pp. 75–88 (1996)

26. Soriano, P., Gendreau, M.: Tabu search algorithms for the maximum clique prob-
lem. In: DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence, vol. 26, pp. 221–242 (1996)

27. Mannino, C., Sassano, A.: Solving hard set covering problems. Operations Research
Letters 18(1), 1–5 (1995)

28. Marconi, J., Foster, J.: A hard problem for genetic algorithms: finding cliques
in Keller graphs. In: Evolutionary Computation Proceedings of the 1998 IEEE
International Conference on IEEE World Congress on Computational Intelligence,
pp. 650–655 (May 1998)

29. McCreesh, C., Prosser, P.: The shape of the search tree for the maximum clique
problem, and the implications for parallel branch and bound. ArXiv e-prints (Jan-
uary 2014)

30. Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satis-
faction problems. Artificial Intelligence 14(3), 263–313 (1980)

31. Spearman, C.: The proof and measurement of association between two things.
American Journal of Psychology 15, 88–103 (1904)

Core-Guided MaxSAT
with Soft Cardinality Constraints

Antonio Morgado1, Carmine Dodaro2, and Joao Marques-Silva1,3,	

1 INESC-ID, IST, ULisboa, Portugal
ajrm@sat.inesc-id.pt

2 Dep. of Mathematics and Computer Science, Unical, Italy
dodaro@mat.unical.it

3 CASL, University College Dublin, Ireland
jpms@ucd.ie

Abstract. Maximum Satisfiability (MaxSAT) is a well-known optimization vari-
ant of propositional Satisfiability (SAT). Motivated by a growing number of prac-
tical applications, recent years have seen the development of different MaxSAT
algorithms based on iterative SAT solving. Such algorithms perform well on prob-
lem instances originating from practical applications. This paper proposes a new
core-guided MaxSAT algorithm. This new algorithm builds on the recently pro-
posed unclasp algorithm for ASP optimization problems, but focuses on reusing
the encoded cardinality constraints. Moreover, the proposed algorithm also ex-
ploits recently proposed weighted optimization techniques. Experimental results
obtained on industrial instances from the most recent MaxSAT evaluation, in-
dicate that the proposed algorithm achieves increased robustness and improves
overall performance, being capable of solving more instances than state-of-the-
art MaxSAT solvers.

1 Introduction

Maximum Satisfiability (MaxSAT) is a well-known optimization version of Proposi-
tional Satisfiability (SAT). Recent years have seen a growing number of
practical applications of MaxSAT, that include fault localization in C code [12] and
design debugging [21], among many others [19]. For practical MaxSAT problem in-
stances, the most effective solutions are based on iterative SAT solving, and a number
of alternative approaches exist. One approach iteratively pre-relaxes every clause (by
adding to each clause a fresh relaxation variable) and refines bounds on the number of
unsatisfied clauses [19]. A recent example of such a MaxSAT solver is QMaxSAT [13].
An alternative approach is based on iterative identification of unsatisfiable cores [10].
Different algorithms based on the identification of unsatisfiable cores have been devel-
oped in recent years, e.g. [19]. One additional approach is based on finding minimum
hitting sets of a formula representing disallowed sets of clauses [8]. This paper builds on

� This work is partially supported by SFI grant BEACON (09/IN.1/I2618), by FCT grant PO-
LARIS (PTDC/EIA-CCO/123051/2010), by INESC-IDs multiannual PIDDAC funding PEst-
OE/EEI/LA0021/2013, and by the European Commission, European Social Fund of Regione
Calabria.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 564–573, 2014.
© Springer International Publishing Switzerland 2014

Core-Guided MaxSAT with Soft Cardinality Constraints 565

recent work on using unsatisfiable cores for solving optimization problems in ASP [1]
and shows how the algorithm can be optimized for the case of MaxSAT. Experimental
results, obtained on problem instances from the industrial categories of the MaxSAT
evaluation, indicate that the new algorithm is more robust in practice than state-of-the-
art MaxSAT solvers, being able to solve more problem instances. The paper is organized
as follows. Section 1 introduces the paper, followed by the notation and definitions used
in the paper in Section 2. The OLL algorithm is presented in Section 3. The experimen-
tal results are presented in Section 4 and Section 5 concludes the paper.

2 Preliminaries

This section introduces the notation used throughout the paper. Standard definitions are
assumed (e.g. [14,19]). Let X = {x1, x2 . . .} be a set of Boolean variables. A literal
li is either a variable xi or its negation ¬xi. A clause c is a disjunction of literals. A
conjunctive normal form (CNF) formulaϕ is a conjunction of clauses. An assignmentA
is a mappingA : X → {0, 1}, whereA satisfies(falsifies) xi ifA(xi) = 1(A(xi) = 0).
Assignments are extended to literals and clauses in the usual way, that is,A(li) = A(xi)
if li = xi, andA(li) = 1−A(xi) otherwise, while for clausesA(c) = max{A(li)|li ∈
c}. Given a CNF formula ϕ, a model of the formula is an assignment that satisfies all the
clauses in ϕ. The Propositional Satisfiability problem (SAT) is the problem of deciding
whether there exists a model to a given formula. A subformula of a given unsatisfiable
formula which is still unsatisfiable is referred as an unsatisfiable core (or simply a core).
The calls to the SAT solver are done through function SATSolver(ϕ), that receives a
formula and returns a triple (st, ϕC ,A), where st is either true or false.If st is true, then
A is a model, otherwise ϕC is a core. Given a clause c and an integer w greater than
0 referred to as weight, the pair (c, w) is a weighted clause. Weighted clauses may be
classified as hard or soft clauses. Hard clauses have to be satisfied and are associated
with the special weight �. Soft clauses may or may not be satisfied, and their weight
represents the cost of falsifying the clause. A weighted CNF formula (WCNF) is a
set of weighted clauses. A model of a WCNF formula is an assignment that satisfies
all the hard clauses, and the cost associated to the model is the sum of the weights
of the falsified soft clauses. The Weighted Partial MaxSAT problem is the problem of
determining the minimum cost of the models of a given WCNF formula.

In the paper, we refer to Relaxation Variables, which are fresh Boolean variables.
The process of augmenting a clause with a relaxation variable is referred as relaxing
the clause. We also refer to a special type of constraints called cardinality constraints,
which have the form

∑
i xi ≤ k. The sum

∑
xi is referred to as the left hand side

(LHS) of the constraint while k is referred to as the right hand side (RHS).

3 The OLL Algorithm

Algorithm OLL has been introduced in the unclasp tool for solving ASP optimiza-
tion problems [1]. Unclasp is the base of the ASP-based Linux configuration system
aspuncud [11], which won four tracks of the 2011 Mancoosi International Solver Com-
petition1. Algorithm OLL has been reported [1] to be able to solve a higher number of

1 http://www.mancoosi.org/misc/

http://www.mancoosi.org/misc/

566 A. Morgado, C. Dodaro, and J. Marques-Silva

MISC optimization instances than clasp (the base solver on which unclasp was built
upon).

This section shows how to adapt the OLL algorithm to MaxSAT, but additionally
considering the reuse of the cardinality constraints as they are discovered. The idea of
the OLL algorithm is to mix the strengths of two MaxSAT algorithms, namely the Fu
& Malik algorithm [10] and MSU3 [17,18]. These are core-guided algorithms, which
means that the algorithms make use of the unsatisfiable cores in order to relax clauses.
Like MSU3 only one relaxation variable is added per clause identified in a core, but
similarly to the Fu & Malik algorithm a new cardinality constraint is added for each core
as it is found. One of the main difference of the OLL algorithm is that the soft clauses
are transformed into hard clauses after relaxing them, while the cardinality constraints
are added as soft. Consider the following Example 1.

Example 1. In the example we will abuse the notation and refer to soft constraints as
if they were clauses. Consider for example the partial formula ϕ = ϕS ∪ ϕH , where
ϕS is the set of soft clauses ϕS = {(x1, 1), (x2, 1), (x3, 1)} and ϕH is the set of hard
clauses ϕH = {(¬x1∨¬x2,�), (¬x1∨¬x3,�), (¬x2∨¬x3,�)}. The initial working
formulaϕW is ϕS ∪ϕH , which is unsatisfiable. Let the soft clauses in the core returned
by the SAT solver be (x1, 1) and (x2, 1). The OLL algorithm relaxes both clauses and
makes them hard, and adds a cardinality constraint as a soft constraint. As such, the sets
of clauses in the working formula are updated as:

ϕS ← (ϕS \ {(x1, 1), (x2, 1)}) ∪ {(r1 + r2 ≤ 1, 1)}
ϕH ← ϕH ∪ {(x1 ∨ r1,�), (x2 ∨ r2,�)}

where r1 and r2 are the new relaxation variables.
The resulting working formula ϕW is again unsatisfiable. Now the unsatisfiable core

contains the soft clause (x3, 1) and the soft constraint (r1 + r2 ≤ 1, 1). As before the
OLL algorithm is going to relax the soft clause and make it hard, that is (x3 ∨ r3,�).
It will also remove the soft constraint (r1 + r2 ≤ 1, 1) from the working formula, and
add two new constraints (r3 + ¬(r1 + r2 ≤ 1) ≤ 1, 1) and (r1 + r2 ≤ 2, 1). The first
constraint says that in order to satisfy the constraint, you either have (r1 + r2 ≤ 1) (the
previous constraint) falsified or you are allowed to set r3 to true.

The second constraint added (r1 + r2 ≤ 2, 1), if satisfied, allows one more of the
previous relaxation variables to be satisfied. The sets in the working formula are then
updated as:

ϕS ← (ϕS \ {(x3, 1), (r1 + r2 ≤1, 1)}) ∪ {(r3 + ¬(r1 + r2 ≤ 1) ≤ 1, 1), (r1 + r2 ≤ 2, 1)}
ϕH ← ϕH ∪ {(x3 ∨ r3,�)}

Now the resulting working formula is satisfiable and the algorithm returns 2, which
is the cost of the satisfying assignment.

As the previous example illustrates, the idea of OLL is to go through unsatisfiable
iterations until a satisfiable working formula is obtained. Whenever a new unsatisfiable
core is identified, then the working formula is updated such that either all the previous
soft constraints in the core are satisfied and allowing a new relaxation variable to be set
to true, or one of the soft constraints is allowed to increase its bound by 1.

Core-Guided MaxSAT with Soft Cardinality Constraints 567

The example uses soft constraints that correspond to cardinality constraints. On the
other hand, SAT solvers only handle clauses. In order to use the OLL algorithm in
a MaxSAT solver using a SAT solver, it is necessary to encode the cardinality con-
straints into CNF each time they are identified. Observe that both cardinality constraints
r1+r2 ≤ 1 and r1+r2 ≤ 2, share the same LHS r1+r2. In fact, some of the existing en-
codings of cardinality constraints, encode the sum on the LHS into an array of Boolean
variables to represent it as a unary number. In this paper, we propose to use this fact in
order to reuse the encodings of the sums of the LHS of the constraints between cardi-
nality constraints that only differ on their RHS. In the previous example, r1 + r2 would
be encoded using an auxiliary function ([s1, s2], clauses) ← createSum({r1, r2}),
which receives a set of variables for which we want to encode the sum, and returns a
pair containing an array of the Boolean variables that encode the sum in a unary number
(the unary number s2s1), and a set of clauses that encodes the sum. Whenever a new
cardinality constraint is required with the same LHS (sum), then the same variables s1
and s2 are set to the appropriate values in order to encode the cardinality constraint.

The pseudo-code of OLL is shown in Algorithm 1. In the following we assume that
the input formula is unweighted (weighted case explained later on), partial and the
set of hard clauses is satisfiable. Given an input formula ϕ, OLL maintains three sets
of clauses: the current representation of the input formula called the working formula
ϕW ; the current set of soft clauses ϕS and the set of soft cardinalities ϕSC contain-
ing (unit) clauses associated to cardinality constraints. Those sets are initialized in
line 1. Moreover, function map associates with a literal l (related to one of the car-
dinality constraints) a pair corresponding to the outputs of the associated sum and a
bound (its RHS). OLL starts by calling the SAT solver on the current working for-
mula ϕW . If the formula is satisfiable, then the algorithm terminates and returns the
cost of A (line 5). Otherwise, the working formula is unsatisfiable and an unsatis-
fiable core is computed. The algorithm proceeds by relaxing all soft clauses of the
core that are in ϕS , and making them hard clauses. This is done through function
RelaxAndHarden(ϕW , ϕC ∩ ϕS), which receives the working formula ϕW , and a
set of soft clauses that need to be relaxed. Function RelaxAndHarden returns a pair
(L,ϕW), where L is the set of new relaxation variables, and ϕW is updated to the
clauses that were in ϕW , but to which the clauses that were in ϕC ∩ ϕS , have been
relaxed and transformed into hard clauses.

After relaxing soft clauses, the remaining clauses in the core related to cardinality
constraints (i.e. clauses in ϕC ∩ ϕSC) are processed and removed from the working
formula ϕW (line 9) and from the set ϕSC (line 10). Each of those clauses is a unit
clause.The outputs sumOtps of the sum associated with the cardinality constraint cor-
responding to ¬s are obtained with the function map(¬s), from which the correspond-
ing bound b (RHS) is also obtained. In fact, the variable s represents the b-th output
variable of the sum in sumOtps. In line 11, the set L is extended with the variable
s. This corresponds to the negation of the previous cardinality constraint with b as the
RHS, i.e. if s is true then the sum is greater than b, thus negating the cardinality con-
straint. The algorithm proceeds by creating a new unit clause (¬sumOtps[b + 1]) that
encodes the sum to be less or equal to b. The clause is then added to the working for-
mula ϕW (line 14) and to ϕSC (line 15). Moreover, in line 16, the pair (sum, b + 1) is
added to the map for the (b + 1)-th output variable. Note that this is done only if b + 1

568 A. Morgado, C. Dodaro, and J. Marques-Silva

Algorithm 1. OLL algorithm for (non-weighted) (partial) MaxSAT
Input: A formula ϕ

1 (ϕW , ϕS , ϕSC) ← (ϕ,Soft(ϕW), ∅);
2 map ← ∅; // map(lit) = (sumOtps, bound)
3 while true do
4 (st, ϕC ,A) ← SATSolver(ϕW);
5 if st = true then return

∑
(c,1)∈ϕS

(1 − A(c))

6 else
7 (L,ϕW) ← RelaxAndHarden(ϕW , ϕC ∩ ϕS);
8 foreach (¬s, 1) ∈ ϕC ∩ ϕSC do
9 ϕW ← ϕW \ {(¬s, 1)};

10 ϕSC ← ϕSC \ {(¬s, 1)};
11 L ← L ∪ {s};
12 (sumOtps, b) ← map(¬s);
13 if b+ 1 < |sumOtps| then
14 ϕW ← ϕW ∪ {(¬sumOtps[b+ 1], 1)};
15 ϕSC ← ϕSC ∪ {(¬sumOtps[b+ 1], 1)};
16 map(¬sumOtps[b+ 1]) ← (sumOtps, b+ 1);

17 (sumOtpsNew, sumClsNew) ← createSum(L);
18 ϕW ← ϕW ∪ {(c,�) | c ∈ sumClsNew} ∪ {(¬sumOtpsNew[1], 1)};
19 ϕSC ← ϕSC ∪ {(¬sumOtpsNew [1], 1)};
20 map(¬sumOtpsNew[1]) ← (sumOtpsNew, 1);

is less than the size of the sum, i.e. if incrementing the bound by one does not make the
sum trivially satisfied.

When all clauses in the core related to soft cardinality constraints have been
processed, a new cardinality constraint, with the corresponding new sum is created, con-
taining all variables in L (line 17). The clauses encoding the sum are added to the work-
ing formula as hard clauses while a new unit soft clause (¬sumOtptsNew[1]) is added
to ϕW and to ϕSC . This clause encodes that at most one of the variables in L is true.
In addition, the pair (sumOtpsNew, 1) is associated to the literal ¬sumOtpsNew[1] by
adding a new entry to the map.

Proposition 1. Given a (partial) MaxSAT formula, Algorithm 1 is correct and returns
the optimum MaxSAT solution.

Proof (sketch). The OLL algorithm goes thought unsatisfiable instances until a satisfi-
able instance is obtained. Initially the algorithm tries to satisfy all the soft clauses (added
to a working formula together with the hard clauses). Whenever the working formula is
unsatisfiable, then it is updated such that at most one more of the initial soft clauses is
allowed to be falsified (than the previous iteration). When the working formula is satis-
fiable the algorithm stops and the number of initial soft clauses simultaneously falsified
corresponds the optimum MaxSAT solution. This process is similar to other MaxSAT
algorithms as MSU3.

Nevertheless, in OLL, the restriction on the number of initial soft clauses that are
allowed to be falsified is achieved by adding relaxation variables to soft clauses that

Core-Guided MaxSAT with Soft Cardinality Constraints 569

belong to a core and have not been relaxed before, and by the addition of soft cardi-
nality constraints (At-Most-K constraints). The soft cardinality constraints (added on
line 18, initially with a RHS of 1) allow at most one of the newly relaxed clauses to
be falsified or at most one of previous soft cardinality constraints that appeared in the
core to be falsified. Falsifying a previous soft cardinality constraint forces the number
of associated initial soft clauses that are falsified to increase. The increase is contrained
to be at most one by adding a new soft cardinality constraint (added on line 14) equal
to the previous soft cardinality but with the RHS increased by 1.

The previous algorithm deals with non-weighted (partial) MaxSAT formulas. In the
weighted case the procedure is similar to the MSU1/WPM1 algorithms [15,3], that is,
every time a new core is found, the minimum weight of the soft clauses in the core
min is computed. Then each clause (ci, wi) with a weight greater than the minimum
is replaced by two clauses: (ci,min) and (ci, wi −min). Then the algorithm proceeds
as in the partial case but as if the core obtained contained only clauses with the same
weight min . The result is obtained as in the partial case by considering the cost of the
satisfying assignment in the original soft clauses, but considering the original weights.

4 Experimental Results

This section presents the experimental results obtained to validate the performance of
the MaxSAT algorithm proposed in Section 3. All experiments were run on an HPC
cluster, each node having two processors E5-2620 @2GHz, with each processor having
6 cores, and with a total of 128 GByte of physical memory. Each process was limited to
4GByte of RAM and to a time limit of 1800 seconds. All the industrial instances from
the most recent MaxSAT Evaluation2 2013 [5] were used, that is the following three
categories of benchmarks were considered: (plain) MaxSAT industrial; partial MaxSAT
industrial; and weighted partial MaxSAT industrial.

For the experiments, the OLL algorithm proposed in the previous section was imple-
mented in MSUnCore [20]3. MSUnCore is a state-of-the-art (generic) MaxSAT solver,
that won third place in the partial MaxSAT category of the 2013 MaxSAT Evaluation (sec-
ond place, if portfolio solvers are excluded). The underlying SAT solver in MSUnCore is
PicoSAT [7] (version 935). Three different cardinality constraint encodings that are able
to encode the sum of all the input variables as a unary number, were considered. Namely
Sorting Networks [9], Sequential Counters [22], and Totalizer [6]. In the results the OLL
algorithm with the cardinality constraints are referred as msu-oll-sn, msu-oll-sc and msu-
oll-to respectively. For weighted instances, we have implemented an OLL solver which
includes recent weighted boolean optimizations techniques proposed for MaxSAT solv-
ing. When considering the weighted optimizations, and previously to solving, a weighted
instance is checked for the BMO condition [16], in which case the instance is solved
according to the BMO approach. Otherwise, the stratification technique [4] is consid-
ered. The resulting solver is referred in the results as msu-oll-xx-wo, where xx corre-
sponds to the cardinality constraint considered. Additionally the experiments include the

2 http://www.maxsat.udl.cat
3 Logs in http://sat.inesc-id.pt/˜ajrm/oll_statlogs.tgz

http://www.maxsat.udl.cat
http://sat.inesc-id.pt/~ajrm/oll_statlogs.tgz

570 A. Morgado, C. Dodaro, and J. Marques-Silva

MSi PMSi WPMSi ALLi
#Instances 55 627 396 1078

msu-oll-sn-wo 25 512 330 867
msu-oll-to-wo 19 517 329 865
msu-oll-to 19 517 315 851
msu-oll-sn 25 512 314 851
msu-oll-sc-wo 18 494 331 843
msu-oll-sc 18 494 289 801
msu-bcd2 22 500 265 787

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 650 700 750 800 850

C
PU

 ti
m

e

Instances

msu-oll-sn-wo
msu-oll-to-wo

msu-oll-to
msu-oll-sn

msu-oll-sc-wo
msu-oll-sc
msu-bcd2

Fig. 1. Cactus plot and statistics for the different configurations of the solvers in MSUnCore

two best solvers for each of the industrial categories from the 2013 MaxSAT Evaluation
(among non-portfolio solvers): MiFuMax4, MSUnCore [20] (BCD2 version), QMaxSAT
0.21 [13], WPM1 [4] (2011 and 2013 versions), and WPM2 [4,2] (2013 version). The
solvers are referred in the results as mifumax, msu-bcd2, qmaxsat, wpm1, wpm1-2011,
and wpm2.

The table in Figure 1 shows the number of instances solved by each of the algo-
rithms in MSUnCore, that is, the OLL algorithms and msu-bcd2. The first column of
the table shows the name of the solver. The second to fourth columns show the number
of solved instances by each of the solvers, for the (plain) MaxSAT industrial (MSi),
partial MaxSAT industrial (PMSi) and weighted partial MaxSAT industrial instances
respectively. The last column shows the total number of solved instances among all of
the industrial instances. The first row does not present the number of solved instances,
but instead the total number of instances in the category considered in the column. In
the table the solvers are ordered according to the number of instances solved in ALLi.

The results in the table show that among the msu-oll-xx solvers, both msu-oll-sn
and msu-oll-to have similar performance, being msu-oll-sn slightly better for (plain)
MaxSAT instances, while msu-oll-to is slightly better for partial MaxSAT instances.
The msu-oll-sc solver performs consistently worse than the other two with a total of 50
less instances solved in ALLi. The table in Figure 1 also allows to conclude that the
weighted optimizations included are consistently beneficial for all the msu-oll solvers.
This is especially true for msu-oll-sc-wo which solved 32 more instances than msu-oll-
sc. Comparing the msu-oll solvers with msu-bcd2 (since they are implemented in the
same platform), the results show that for MSi instances, the msu-oll solvers are compa-
rable to msu-bcd2, where msu-oll-sn(-wo) solves 3 more instances than msu-bcd2. In
the case of PMSi instances, the difference between msu-bcd2 and the msu-oll solvers
is greater, and both the msu-oll-sn and msu-oll-to are able to solve more 12 and 17
instances than msu-bcd2. For weighted instances, all the OLL algorithms outperform
msu-bcd2, including the versions that do not make use of weighted optimizations. This
can be related to the fact that OLL requires only cardinality constraints to deal with the
weights, while msu-bcd2 uses pseudo-Boolean constraints. In fact, the best perform-
ing OLL algorithm (msu-oll-sn-wo) is able to solve 80 more instances than msu-bcd2.

4 http://sat.inesc-id.pt/˜mikolas/sw/mifumax

http://sat.inesc-id.pt/~mikolas/sw/mifumax

Core-Guided MaxSAT with Soft Cardinality Constraints 571

MSi PMSi WPMSi ALLi
#Instances 55 627 396 1078

msu-oll-sn-wo 25 512 330 867
wpm2 12 490 320 822
msu-bcd2 22 500 265 787
wpm1 19 384 342 745
wpm1-2011 37 265 304 606
mifumax 38 273 258 569
qmaxsat – 540 – –

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 400 450 500 550 600 650 700 750 800 850

C
PU

 ti
m

e

Instances

msu-oll-sn-wo
wpm2

msu-bcd2
wpm1

wpm1-2011
mifumax

Fig. 2. Cactus plot and statistics for the best OLL algorithm vs non-OLL algorithms

These results are confirmed by the cactus plot in Figure 1, where the msu-bcd2 is the
left-most solver, meaning that it solves less instances. On the other end, both msu-oll-
sn-wo and msu-oll-to-wo appear close together on the right-most side of the plot.

In order to compare the best performing msu-oll solver (msu-oll-sn-wo) with the
remaining solvers, we present in the table of Figure 2 the number of solved instances
for the remaining solvers along with msu-oll-sn-wo and msu-bcd2. The table in the
Figure 2 has a similar structure to the table in the Figure 1. As before the solvers are
ordered according to the number of instances solved in ALLi. The only exception is
qmaxsat for which the tested solver only allows to solve partial MaxSAT instances.
From the table it is possible to see that for each category, msu-oll-sn-wo is either the
third (for MSi) or the second (for PMSi and WPMSi) solver in terms of number of
instances solved. Nevertheless, overall msu-oll-sn-wo solves more instances than any
of the other solvers (shown in the ALLi column). The closest solver is wpm2 with 822
instances solved, which means a difference of 45 instances to msu-oll-sn-wo. These
results are also confirmed by the cactus plot show in Figure 2, where the right-most line
corresponds to msu-oll-sn-wo and the gap between the line of msu-oll-sn-wo and next
line (wpm2) corresponds to the 45 instances difference. Note that in the figure, qmaxsat
is not represented since it only allows solving partial MaxSAT instances.

5 Conclusions

This paper describes how to transform the OLL algorithm, proposed in unclasp for opti-
mization problems in ASP [1], into a core-guided MaxSAT using a modern SAT solver.
Additionally, the paper shows how to reuse the encodings of the cardinality constraints
as they are added to the working formula. The experimental results indicate that the pro-
posed OLL algorithm represents the currently most robust approach for MaxSAT, being
able to solve more instances than state-of-the-art MaxSAT solvers. Despite not being
in general the top performer for any specific category of instances, overall the OLL al-
gorithm solves more instances than any of the best performing solvers from the 2013
MaxSAT Evalution, including MiFuMax, MSUnCore (BCD2), WPM1 and WPM2.

Future work will investigate alternative approaches for aggregating soft cardinality
constraints, as well as improving the quality of computed unsatisfiable cores.

572 A. Morgado, C. Dodaro, and J. Marques-Silva

References

1. Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based optimization in
clasp. In: International Conference on Logic Programming (Technical Communications),
pp. 211–221 (2012)

2. Ansótegui, C., Bonet, M.L., Gabàs, J., Levy, J.: Improving WPM2 for (weighted) partial
MaxSAT. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 117–132. Springer, Heidelberg
(2013)

3. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial MaxSAT through satisfia-
bility testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427–440. Springer,
Heidelberg (2009)

4. Ansótegui, C., Bonet, M.L., Levy, J.: SAT-based MaxSAT algorithms. Artificial Intelli-
gence 196, 77–105 (2013)

5. Argelich, J., Li, C.M., Manyà, F., Planes, J.: The first and second Max-SAT evaluations.
Journal on Satisfiability, Boolean Modeling and Computation 4(2-4), 251–278 (2008)

6. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality constraints. In:
Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer, Heidelberg (2003)

7. Biere, A.: Picosat essentials. Journal on Satisfiability, Boolean Modeling and Computa-
tion 4(2-4), 75–97 (2008)

8. Davies, J., Bacchus, F.: Solving MAXSAT by solving a sequence of simpler SAT instances.
In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 225–239. Springer, Heidelberg (2011)

9. Een, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Journal on Satis-
fiability, Boolean Modeling and Computation 2, 1–26 (2006)

10. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.)
SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)

11. Gebser, M., Kaminski, R., Schaub, T.: aspcud: A Linux package configuration tool based
on answer set programming. In: International Workshop on Logics for Component Config-
uration (LoCoCo 2011). Electronic Proceedings in Theoretical Computer Science (EPTCS),
vol. 65, pp. 12–25 (2011), http://www.cs.uni-potsdam.de/wv/aspcud/

12. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum satisfiabil-
ity. In: International Conference on Programming Language Design and Implementation,
pp. 437–446 (2011)

13. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: QMaxSAT: A partial Max-SAT solver.
Journal on Satisfiability, Boolean Modeling and Computation 8(1-2), 95–100 (2012)

14. Li, C.M., Manyà, F.: MaxSAT, hard and soft constraints. In: Handbook of Satisfiability,
pp. 613–632. IOS Press (2009)

15. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean optimiza-
tion. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508. Springer, Heidelberg
(2009)

16. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic optimiza-
tion: algorithms & applications. Annals of Mathematics and Artificial Intelligence 62(3-4),
317–343 (2011)

17. Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satisfiability.
Computing Research Repository abs/0712.0097 (December 2007)

18. Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsatisfiable
cores. In: Design, Automation and Testing in Europe Conference, pp. 408–413 (March 2008)

http://www.cs.uni-potsdam.de/wv/aspcud/

Core-Guided MaxSAT with Soft Cardinality Constraints 573

19. Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and core-
guided maxsat solving: A survey and assessment. Constraints 18(4), 478–534 (2013)

20. Morgado, A., Heras, F., Marques-Silva, J.: Improvements to core-guided binary search for
MaxSAT. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 284–297.
Springer, Heidelberg (2012)

21. Safarpour, S., Mangassarian, H., Veneris, A., Liffiton, M.H., Sakallah, K.A.: Improved design
debugging using maximum satisfiability. In: International Conference on Formal Methods in
Computer-Aided Design (2007)

22. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: van Beek,
P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005)

The IntSat Method for Integer Linear Programming

Robert Nieuwenhuis

Barcelogic.com and Technical University of Catalonia (UPC), Barcelona, Spain

Abstract. Conflict-Driven Clause-Learning (CDCL) SAT solvers can automat-
ically solve very large real-world problems. To go beyond, and in particular in
order to solve and optimize problems involving linear arithmetic constraints, here
we introduce IntSat, a generalization of CDCL to Integer Linear Programming
(ILP). Our simple 1400-line C++ prototype IntSat implementation already shows
some competitiveness with commercial solvers such as CPLEX or Gurobi. Here
we describe this new IntSat ILP solving method, show how it can be implemented
efficiently, and discuss a large list of possible enhancements and extensions.

1 Introduction

Conflict-Driven Clause-Learning (CDCL) propositional SAT solving technology can
automatically solve hard real-world industrial and scientific problem instances involv-
ing large numbers of binary variables and constraints (i.e., clauses). SAT is the par-
ticular case of ILP where all variables are binary (0/1) and constraints have the form
x1 + . . . + xm − y1 . . . − yn > −n, written as clauses x1 ∨ . . .∨ xm ∨y1 ∨ . . .∨yn, i.e., sets (dis-
junctions) of literals. Given a partial assignment A, seen as a set of (non-contradictory)
literals, a clause C is true in A if A ∩ C � ∅, it is false or a conflict if l ∈ A for every
literal l in C, and it is undefined otherwise. All essential CDCL features are described
in the following 14-line algorithm, where A is seen as an (initially empty) stack:

1. Propagate: while possible and no conflict appears, if, for some clause l∨C, C is
false in A and l is undefined, push l onto A, associating to l the reason clause C.

2. if there is no conflict
if all variables are defined in A, output “solution A” and halt.
else Decide: push some undefined literal l, marked as a decision, and goto step 1.

3. If A contains no decisions, output “unsatisfiable” and halt.
4. Use a clause data structure C. Initially, let C be any conflict.

– Conflict analysis: Invariant: C is false in A, that is, if l ∈ C then l ∈ A.
If l is the literal of C whose negation is topmost in A, and D is the reason clause
of l, then replace C by (C \ {l}) ∪ D. Repeat this until there is only one literal
ltop in C such that ltop is, or is above, A’s topmost decision.

– Backjump: pop literals from A until either there are no decisions in A or, for
some l in C with l � ltop, there are no decisions above l in A.

– Learn: add the final C as a new clause, and go to 1 (where C propagates ltop).

Note that replacing C by (C \{l})∪D is in fact an inference by resolution between C and
D∨ l. Essentially all state-of-the-art CDCL SAT solvers use this (so called 1UIP conflict

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 574–589, 2014.
c© Springer International Publishing Switzerland 2014

The IntSat Method for Integer Linear Programming 575

analysis-based) algorithm, with efficient data structures for propagation, heuristics that
select recently active literals as decisions, periodically forgetting (removing) the least
useful learned clauses, and using clause simplification and other inprocessing methods
(see, e.g., [16,4] for more details and further references).

Given CDCL’s enormous success for SAT, for decades researchers (e.g., from the
SAT community, but not only) have tried to produce an effective CDCL-like method
for ILP. However, due to a number of obstacles (see, e.g., Example 3 below), the re-
sults of such attempts were always orders of magnitude slower than the state-of-the-art
commercial MIP/ILP solvers such as CPLEX or Gurobi, based on LP relaxations, sim-
plex, and branch-and-cut (see, e.g., the “mip basics” at www.gurobi.com). Typical at-
tempts to generalize CDCL from SAT to ILP are in the following sense, where (possibly
subindexed) letters a denote integer coefficients:

SAT ILP
clause l1 ∨ . . .∨ ln linear constraint a1x1 + · · · + anxn � a0

0/1 variable x integer variable x
positive literal x lower bound a� x
negative literal x upper bound x�a

propagation bound propagation
resolution inference cut inference

Example 1. By bound propagation, from the lower bound 1� x, the upper bound y�2,
and the constraint x − 2y + 5z � 5, we infer that 1 − 4 + 5z � 5, so 5z � 8, and hence
z � 8/5, which is rounded, propagating a new bound z � 1. Note that any 1-variable
constraint propagates a bound by itself, e.g., from −7x � 3 we have −3 � 7x, and hence
−3/7 � x, which after rounding propagates the lower bound 0� x. 	

Example 2. From 4x + 4y + 2z � 3 and −10x + y − z � 0, by multiplying the former
by 5 and the latter by 2 and adding them up, we obtain the cut 22y + 8z � 15. Here
the variable x is eliminated, which can always be achieved if in the two premises x has
coefficients a and b such that a · b < 0. The result 22y + 8z � 15 can be normalized
dividing by gcd(22, 8) = 2, giving 11y+ 4z � 15/2 and, by rounding, 11y+ 4z � 7. 	

Example 3. An important problem for extending CDCL to ILP is the following, which
we will call the rounding problem. Assume we have the two constraints x + y + 2z � 2
and x + y − 2z � 0 and we take the decision 0� x, which propagates nothing, and later
on another decision 1�y, which due to x+ y+2z � 2 propagates z�0 (since 1+2z � 2,
and hence 2z � 1 and by rounding z�1/2 we get z�0). Then x + y − 2z � 0 becomes a
conflict: it is false in the current partial assignment A = { 0� x, 1�y, z�0 } .

Now let us attempt a straightforward generalization of the CDCL algorithm: since
z�0 is the topmost (last propagated) bound, a cut inference eliminating z between both
constraints would be needed, generating the new constraint C which is 2x + 2y � 2, or
equivalently, x+y � 1. Then conflict analysis is over because there is only one bound in
A at, or above, the last decision relevant for C, namely 1�y. But unfortunately the new
constraint x + y � 1 is not false in A, breaking (what should be) the invariant. Hence
it does not propagate the negation of 1 � y (which is y � 0) and is too weak to force a
backjump. This problem is due to the rounding that takes place when propagating z. 	

576 R. Nieuwenhuis

The rounding problem illustrated in Example 3 was solved in a very ingenious way
by Jovanovic and de Moura in their cutsat procedure [14], where a decision can only
make a variable equal to its current upper or lower bound, which permits, at each con-
flict caused by bound propagations with rounding, to compute tightly propagating con-
straints that justify the same propagations without rounding, and to do conflict analysis
using tightly propagating constraints only. This makes the learning scheme of [14] sim-
ilar to the SAT one of doing resolutions until reaching a clause built from decisions
only, which is well known to perform significantly worse than 1UIP.

Here we introduce IntSat, a new completely different method for ILP. It admits arbi-
trary new bounds as decisions and guides the search exactly as with the 1UIP approach
in CDCL-based SAT solving, and still it overcomes the rounding problem. The key
ideas behind IntSat are as follows. Given a partial assignment A, a set (stack) of bounds,
each time a constraint C and a set of bounds R with R ⊆ A propagate a new bound B,
this bound is pushed onto A, associating to B not only its reason constraint C but also
its reason set R. Conflict analysis and cuts performed are both guided by successive
refinements of a so-called Conflicting Set of bounds CS ⊆ A that is infeasible along
with the current set of constraints. After each conflict, always a backjump takes place
and a new constraint is learned.

This paper is structured as follows. The basic IntSat procedure is introduced in Sec-
tion 2, its termination, correctness and completeness stated, and extensions are given
for, e.g., optimization. In Section 3 we give some details about the efficient imple-
mentability of IntSat, and further work on IntSat is discussed in Section 4. Section 5
provides experimental results and in Section 6 we describe related work and conclude.

2 The Basic IntSat Procedure

In a first basic version of IntSat we deal with integer coefficients only and decide the
existence of integer solutions, i.e., feasibility problems only, and no optimization yet
(extensions are handled later on). Let X be a finite set of variables {x1 . . . xn}. An (inte-
ger linear) constraint over X is an expression of the form a1x1 + · · ·+ anxn � a0 where,
for all i in 0 . . .n, the coefficients ai are integers. Below, variables are always denoted
by (possibly sub-indexed or primed) lowercase x, y, z and coefficients by a, b, c, respec-
tively. An Integer Program (IP) over X is a set S of integer linear constraints over X.
A solution for an IP S over X is a function sol: X → Z that satisfies every constraint
a1x1 + · · · + anxn � a0 in S , that is, a1 · sol(x1) + · · · + an · sol(xn) ≤Z a0. A bound is
a one-variable constraint a1x � a0. Any bound can equivalently either be written as a
lower bound a� x or as an upper bound x�a. For a constraint a1x1 + . . . + anxn � a0,
each aixi is called a monomial of it, and the monomial is positive (negative) if ai is.

Bound Propagation. Let C be a constraint of the form P + ax ≤ a0, where P is a sum
of positive monomials { b1y1, . . . , bpyp } and negative monomials { c1z1, . . . , cqzq }. Let
R be a set of bounds { lb1 � y1, . . . , lbp � yp, z1 �ub1, . . . , zq �ubq }. Let E denote the
expression a0 − b1lb1 − . . . − bplbp − c1ub1 − . . . − cqubq. If a < 0 then then C and R
propagate �E/a�� x. If a > 0 then then C and R propagate x��E/a�.
Cuts and Constraint Normalization. In what follows we assume all constraints to be
eagerly normalized: any constraint a1x1 + . . . + anxn � a0 with d = gcd(a1, . . . , an) > 1

The IntSat Method for Integer Linear Programming 577

is eagerly replaced by a1/d x1 + . . . + an/d xn � �a0/d�. From constraints
a1x1 + · · · + anxn � a0 and b1x1 + · · · + bnxn � b0, and natural numbers c and d, a new
constraint c1x1+ · · ·+cnxn � c0 called a cut can be obtained where ci = cai+dbi for i in
0 . . .n. If some ci = 0 then we say that xi is eliminated in this cut. Note that if aibi < 0,
then one can always choose c and d such that xi is eliminated. See [13,7,23] for further
discussions and references about Chvátal-Gomory cuts and their applications to ILP.

Let A be a set of bounds. A variable x is defined to a in A if {a � x, x � a} ⊆ A for
some a. We call two bounds a � x and x � a′ contradictory if a > a′. Note that if all
variables of X are defined and there are no contradictory bounds in A then A can be seen
as a total assignment A: X → Z. A bound a� x is new in A if there is no a′ � x in A with
a′ ≥ a. Similarly, x�a is new if there is no x�a′ with a′ ≤ a. A bound is fresh in A if
it is new in A and contradictory with no bound in A.

False Constraint (Conflict) in A. If C is a constraint a1x1 + . . . + anxn � a0 with
positive monomials { b1y1, . . . , bpyp }, negative monomials { c1z1, . . . , cqzq } and there
is a subset of bounds { lb1 � y1, . . . , lbp � yp, z1 � ub1, . . . , zq � ubq } ⊆ A with
b1lb1 + . . . + bplbp + c1ub1 + . . . + cqubq > a0 then C is false or a conflict in A.

The Basic IntSat Algorithm. In the following IntSat algorithm, A is seen as an (ini-
tially empty) stack of bounds:

1. Propagate: while possible and no conflict appears, if C and R propagate some fresh
bound B, for some constraint C and set of bounds R with R ⊆ A, then push B onto
A, associating to B the reason constraint C and the reason set R.

2. if there is no conflict
if all variables are defined in A, output “solution A” and halt.
else Decide: push some fresh bound B, marked as a decision, and go to 1.

3. If A contains no decisions, output “infeasible” and halt.
4. Use data structures C, a constraint, and CS , the Conflicting Set of bounds. Initially,

C is any conflict and CS is the subset of bounds of A causing the falsehood of C.
– Conflict analysis: Invariants: CS ⊆ A and if S is the current set of constraints,

then S ∪CS is infeasible (has no solution). Repeat the following three steps:
• If B is the bound in CS that is topmost in A, and R is the reason set of B,

then let CS be (CS \ {B}) ∪ R.
• If a cut eliminating B’s variable exists between C and B’s reason constraint

then replace C by that cut.
• Early Backjump: If for some maximal k ∈ N, after popping k bounds the

last one being a decision, C propagates some new bound in the resulting
A, then pop k bounds, learn C as a new constraint, and go to 1.

until CS contains a single bound Btop that is, or is above, A’s topmost decision.
– Backjump: Pop bounds from A until either there are no decisions in A or, for

some B in CS with B � Btop, there are no decisions above B in A. Then push
Btop with associated reason constraint C and reason set CS \ {Btop}.

– Learn: add the final C as a new constraint, and go to 1.

Note that in the 2nd step of conflict analysis indeed sometimes no cut eliminating B’s
variable exists between C and B’s reason constraint; this can be because that variable
does not occur in C, or it occurs with the same sign.

578 R. Nieuwenhuis

Example 4. We apply IntSat to Example 3: there are two constraints x + y + 2z � 2
and x + y − 2z � 0 and we take the decision 0� x, which propagates nothing, and later
on another decision 1 � y, which due to x + y + 2z � 2 propagates z � 0, which is
pushed with associated reason constraint x + y + 2z � 2 and reason set { 0� x, 1� y }.
Conflict analysis: Initially, x + y − 2z � 0 is the conflict C and CS is the set of bounds
{ 0 � x, 1 � y, z � 0 } ⊆ A causing the falsehood C. In the first iteration, in CS we
replace z�0 by its reason set { 0� x, 1� y }. The resulting CS is { 0� x, 1� y }. A cut
eliminating z exists (see Example 3) and C becomes x + y � 1. Then conflict analysis
is over because the CS contains exactly one bound Btop, which is 1�y, at or above A’s
topmost decision. Backjump: We pop bounds until for some B in CS with B � Btop,
there are no decisions above B in A, in this case, until there are no decisions above 0� x
in A, and then push Btop, which is y � 0, with reason set { 0 � x }, and with reason
constraint x + y � 1. Note that this reason constraint is not a “good” reason, i.e., it does
not propagate y�0, but still y�0 is a valid consequence of the set of constraints together
with its reason set { 0� x }. Learn: The final C, which is x + y � 1, is learned. 	

Example 5. Consider the initial constraints

C0 : x −3y −3z � 1
C1 : −2x +3y +2z � −2
C2 : 3x −3y +2z � −1

Below we depict the stack with some initial bounds after doing their propagations and
taking and propagating two decisions:

2�y { 1� x, z�−2 } C0

x�1 { y�2, z�−2 } C0

z�−2 decision
z�−1 { x�2, 1�y } C1

x�2 decision
z�0 { x�3, 1�y } C1

y�2 { x�3, −2�z } C1

1� x { 1�y, −2�z } C1

z�2 initial
−2�z initial
y�4 initial
1�y initial
x�3 initial
−2� x initial
bound reason set reason constraint

Now C1 is a conflict. The initial CS is { −2� z, x� 1, 2� y }, with two bounds above
the last decision. In the first conflict analysis step, we replace 2 � y by its reason set
{ 1� x, z�−2 } obtaining the new CS { −2� z, 1� x, z�−2, x� 1 } which still has
two bounds at or above the last decision. Now a cut eliminating y is attempted between

The IntSat Method for Integer Linear Programming 579

the initial C, which is C1, and the reason constraint of 2� y, which is C0. Here this cut
exists, with c = d = 1, and we obtain and learn the new constraint C3 : −x − z� −1.
It allows us to perform an early backjump to before the second decision, since there it
propagates 2 � x with reason set { z � −1 } and reason constraint C3. Then, after two
more propagations, we obtain

2�y { 2� x, z�−1 } C0

−1�z { x�2 } C3

2� x { z�−1 } C3

z�−1 { x�2, 1�y } C1

x�2 decision
z�0 { x�3, 1�y } C1

y�2 { x�3, −2�z } C1

1� x { 1�y, −2�z } C1

z�2 initial
.

−2� x initial

and again C1 is a conflict, with the initial CS being { x � 2, −1 � z, 2 � y }. After
the first conflict analysis step (replacing 2 � y) the CS becomes { x � 2, z � −1, 2 �
x, −1 � z }. As before, the cut eliminates y, between C1 and C0 (the initial C and the
reason constraint of 2 � y), obtaining −x − z � −1. After the following step (replacing
−1 � z), the CS becomes { x � 2, z � −1, 2 � x }. The C does not change because
no cut eliminating z exists with C3. In the next step (replacing 2� x), the CS becomes
{ x� 2, z�−1 }. Again no cut eliminating z exists with C3. In another step (replacing
z�−1), the CS becomes { 1� y, x � 2 }. Since there is only one bound at or after the
last decision, we backjump, in this case to before the first decision, and add there the
negation of x�2, which is 3� x.

The result of the cut on C with C1 eliminating z gives us −4x+3y�−4. The backjump
with this cut (C4) can also take us to before the first decision, but propagating 2 � x.
Since this is weaker than the bound 3� x obtained from the CS , here we choose the CS
one. After one further propagation, the procedure returns “infeasible” since the conflict
C2 appears and there are no decisions in the stack:

−1�z { 3� x, y�2 } C0

3� x { 1�y } C4

z�0 { x�3, 1�y } C1

y�2 { x�3, −2�z } C1

1� x { 1�y, −2�z } C1

z�2 initial
.

−2� x initial

580 R. Nieuwenhuis

Theorem 1. The basic IntSat algorithm, when given as input a finite set of constraints
S including for each variable xi a lower bound lbi � xi and an upper bound xi � ubi,
always terminates, finding a solution if, and only if, there exists one, and returning
“infeasible” if, and only if, S is infeasible.

The previous theorem holds even if no cuts are performed and no new constraints are
learned (although practical performance depends crucially on these). Its proof follows
essentially the same scheme as our termination, soundness and completeness results for
SAT and SAT Modulo Theories (SMT) [20]. For termination (from which soundness
and completeness are not hard to establish), we define a well-founded ordering � on
the states of the stack A, as follows. For a given A, the number of possible values a
variable xi can still take is vi(A) = ubi − lbi + 1, where lbi � xi and xi � ubi are its
topmost lower and upper bounds in A, and the total number of values for all n variables
is v(A) = v1(A) + . . . vn(A). Let Ai, for i ≥ 1 denote the bottom part of A, below (and
without) the i-th decision. We define a stack A to be larger (i.e., less advanced, search-
wise) than a stack A′, written A � A′, if 〈v(A1), . . . , v(Am)〉 >lex 〈v(A′1), . . . , v(A′m)〉
where m is the maximal number of decisions the stack can contain, at most n · v(A) for
the initial A. It is easy to see that this lexicographic ordering � is well-founded and that
all steps of the algorithm either halt it or transform A into an A′ with A � A′.

More General Constraints. It is obvious that a constraint a1x1 + . . . + anxn � a0 can
be expressed as −a1x1 − . . .−anxn � −a0, that a1x1 + . . .+anxn = a0 can be replaced by
the two constraints a1x1 + . . . + anxn � a0 and a1x1 + . . . + anxn � a0, and that rational
non-integer coefficients a/b can be removed by multiplying the constraint by b.

Optimization is also possible in a standard way, since, unlike what happens in SAT,
linear constraints are first-class citizens (i.e., belong to the core language). For finding a
solution that minimizes a linear expression a1x1+ . . .+anxn (or maximizes −a1x1− . . .−
anxn), in our current implementation this is done in a completely straightforward way:
first an arbitrary solution A is found and then, each time a new solution A is found, it is
attempted to improve it by re-running with the additional constraint a1x1 + . . .+ anxn �
a0 where a0 is a1A(x1) + . . . + anA(xn) − 1. This is done until the problem becomes
infeasible. Bound propagations from these successively stronger constraints are indeed
very effective for pruning (bounding) the resulting branch-and-bound search.

Handling Unbounded Variables. Up to now we have assumed that for each variable
there is an initial lower bound and an upper bound, or, equivalently, initial constraints
propagating such bounds. Although this is common in practical applications, some
problems do have unbounded variables. In theory, any ILP can be converted into an
equivalent fully bounded one [23], but these bounds are too large to be useful in prac-
tice. One solution is to introduce a fresh auxiliary variable z, with lower bound 0�z, and
for each variable x without lower bound add the constraint −z� x, and similarly if it has
no upper bound add x� z. Then one can re-run the IntSat procedure with successively
larger upper bounds z� ub for z, thus guaranteeing completeness for finding (optimal)
solutions. Further practical solutions are subject of current work, also for handling the
well-known fact that with unbounded variables bound propagation may not terminate
in unfeasible problems: consider, e.g., C1 : x − y � 0 and C2: −x + y + 1 � 0 and the
bound 0� x, which makes C1 propagate 0�y; then C2 propagates 1� x, and so on.

The IntSat Method for Integer Linear Programming 581

3 Implementation

Here we describe some details of our current prototype IntSat implementation. It cur-
rently consists of 1400 lines of simple C++ code that make heavy use of standard STL
data structures (this source code can be downloaded from [19]). For instance, a con-
straint is an STL vector of monomials (pairs of two ints: the variable number and the
coefficient), sorted by variable number, plus some additional information (independent
term, activity). Coefficients are never larger than 230, and cuts producing any coefficient
larger than 230 are simply not performed, which is a straightforward way of guaran-
teeing that no overflow occurs if bound propagation, cuts, normalization, etc., are done
using 64-bit integers for intermediate results. During conflict analysis, the CS is imple-
mented simply as an STL set of ints, the heights in the stack of the bounds in the CS .
A very large source of inefficiency of conflict analysis is our current implementation
of Early Backjumps, which, after each cut giving a new C, naively checks, at all (fre-
quently thousands of) prefixes of the stack below a decision, whether C propagates any
new bound at that prefix.

The Current Assignment. There is an array, the Bounds Array, indexed by variable
number, that can return in constant time the current upper and lower bounds for that
variable. It always stores, for each variable xi, the positions pli and pui in the stack of
its current (strongest) upper bound and lower bound, respectively, with pli = 0 (pui = 0)
if xi has no current lower (upper) bound. The stack itself is another array containing at
each position three data fields: a bound, a natural number pos, and an info field con-
taining, among other information, (pointers to) the reason set and the reason constraint.
The value pos is always the position in the stack of the previous bound of the same type
(lower or upper) for this variable, with pos = 0 for initial bounds. When pushing or
popping bounds, these properties are easy to maintain in constant time.

Example of
bounds array

and stack:

Height in stack of
current bound
lower: upper:

x1 1 2
x2 0 0

...
...

x7 40 31
...

...

...

40 5� x7 23 info
...

31 x7�6 14 info
...

23 2� x7 13 info
...

14 x7�9 0 info
13 0� x7 0 info

...
2 x1�8 0 info
1 0� x1 0 info

582 R. Nieuwenhuis

Bound Propagation Using Filters. Affordably efficient bound propagation is crucial
for performance. In our current implementation, for each variable x, there are two oc-
curs lists. The positive occurs list for x contains all pairs (IC , a) s.t. C is a linear con-
straint where x occurs with positive coefficient a, and the negative one contains the
same for occurrences with a negative coefficient a. Here IC is an index to the constraint
header of C in an array of constraint headers. Each constraint header contains an integer
FC called a filter, and (a pointer to) the constraint C itself. The filter FC is maintained
cheaply, and one can guarantee that C does not propagate anything as long as FC ≤ 0,
thus avoiding many useless (cache-) expensive visits to the actual constraint C. This is
done as follows.

Let C be a constraint of the form a1x1 + · · · + anxn � a0. Let lbi � xi and xi � ubi be
the current lower and upper bounds (if any) for xi. Each monomial aixi in C can have a
minimal value mi, which is ai · lbi if ai ≥ 0, and ai · ubi otherwise. Here mi is undefined
if there is no such bound lbi (or ubi). Initially, if some mi is undefined, then FC is set
to a special value ⊥, and otherwise to −a0 + m1 + · · · + mn + maxi { |ai(ubi − lbi)| }.
In the latter case, FC is said to be precise: the constraint C propagates if, and only if,
⊥ � FC > 0. At all time points, FC = ⊥ or FC is an upper approximation of the precise
one, so C can only propagate (or be false) if FC > 0.

To preserve this property, these filters need to be updated when new bounds are
pushed onto the stack (and each update needs to be undone when popped, for which
other data structures exist). Assume a new lower bound k� x is pushed onto the stack.
Let the previous lower bound for x (if any) be k′ � x. For each pair (IC, a) in the positive
occurs list of x, using IC we access the FC and increase it by |a(k − k′)|. If there was
no previous lower bound, then FC was ⊥ and is now set to 1. If FC becomes positive,
the constraint C is visited because it may propagate some new bound. After each time
a constraint C is visited, FC is set to its precise value. If a new upper bound x � k is
pushed on the stack, exactly the same is done, where x�k′ is the previous upper bound
for x (if any), and using the negative occurs list.

4 Further Work

Both from a theoretical as a practical point of view, a large amount of further ideas
around IntSat arise to be explored. From the implementation point of view, aspects such
as special treatments for binary variables and for specific types of constraints should be
worked out. Our current implementation in fact mimics several ideas from CDCL SAT
solving without having tested them thoroughly.

Decision Heuristics. For instance, our current heuristics for selecting the variable of the
next decision bound are based on recent activity: the variable with the highest activity
score is picked (for this there is a priority queue). The activity score of a variable x is
increased each time a bound containing x appears in the CS during conflict analysis,
and to reward recent activity the amount of increment grows in time. Once a variable is
picked, one has to decide the actual decision bound: whether it is lower or upper, and
how to divide the interval between the current lower and upper bounds. Another idea is
to try to mimic the last-phase polarity heuristic from SAT [22], which would translate
into picking some recent upper/lower bound and value for the selected variable.

The IntSat Method for Integer Linear Programming 583

Restarts and Cleanups. Something similar happens with the periodic restarts that SAT
solvers apply. We currently follow a rather conservative restart policy based on increas-
ing intervals based on the number of conflicts. Another basically non-tested aspect is the
cleanup policy for the constraint database; at each cleanup, we remove all non-initial
constraints with more than two monomials and activity counter equal to 0. This activ-
ity counter is increased each time the constraint is a conflicting or reason constraint at
conflict analysis, and is divided by 2 at each cleanup. Cleanups are done periodically,
in such a way that the constraint database grows rather slowly over time.

Early Backjump and Conflict Analysis. Performing early backjumps is in fact op-
tional. When omitted (or not done whenever possible), the price to be paid is the loss of
an invariant of the stack: it is no longer true that before each decision all bounds are ex-
haustively propagated. A slight modification of conflict analysis suffices to handle this:
before starting conflict analysis, pop bounds from the stack until the initial CS contains
at least one bound at or above the topmost decision. We have not done any thorough ex-
periments yet evaluating this option. One could, for example, do, or attempt to do, early
backjump with the intermediate conflicting constraint C if it is false in the current stack,
or only if it is promising (e.g., short) according to some heuristic. In any case, further
work on the implementation should probably cover a much better implementation for
early backjumping, which is currently a black hole for efficiency.

Several other improvements exist for conflict analysis. For example, the quality of
backjumps and the strength of the reason sets can be improved by doing some more
work: the CS can be simplified by removing bounds that are subsumed by stronger
ones, and also, instead of using the pre-stored reason sets R, one can re-compute them
on the fly during conflict analysis with similar aims. One can also do a bit of search
during conflict analysis, e.g., by trying to remove non-topmost bounds and do cuts with
these, with the aim of finding good early backjump cuts.

Optimization. For optimization many further ideas exist: heuristics for finding a first
solution quickly (which helps bounding the search dramatically), heuristics for choos-
ing the decision bound in a “first-succeed” manner (i.e., steering it towards minimizing
the cost function). For problems of a more numerical nature with many solutions, one
could also search for the optimal solution with binary search instead of decreasing the
objective one by one.

Pre– and in-processing, Arithmetic. For some problems currently too many cuts are
discarded because of coefficients larger than 230. One can look for solutions from the
implementation point of view, e.g., by using large integer arithmetic, or using floating
point arithmetic, but it might also be the case that more constraint simplification pre-
and in-processing techniques can be helpful (and not only for this purpose). For propo-
sitional SAT, the so-called lemma shortening techniques introduced in MiniSAT [12]
have turned out to be essential for modern SAT solvers and (in fact, several extensions
of them) can be applied to IntSat as well. Modern SAT solvers such as lingeling [3]
heavily apply different inprocessing techniques to keep the constraint database small
but strong.

MIPs. Finally, it needs to be worked out how to apply IntSat in order to solve MIP
instances, i.e., where not all variables are subject to integrality. One can decide on the

584 R. Nieuwenhuis

integer variables as it is done now, and at any desired point one can run an LP solver
to optimize the values for the rational variables. The inclusion of lower bounding tech-
niques, well-known from modern MIP solvers, also needs to be considered.

5 Experiments

All experiments described in this section were carried out on a standard 2.66GHz 4-core
Intel i5 750 desktop. The reader can easily verify these results; in particular our pro-
totype IntSat implementation including source code and all benchmarks can be down-
loaded from [19].

CPLEX and Gurobi. We compare with the newest versions of the commercial solvers
CPLEX (v.12.6) and Gurobi (v.5.6.2). Both use all four processor cores (while IntSat
uses only one!). Both are well-known to outperform, in general by far, the existing non-
commercial solvers. The technology behind these solvers is extremely mature, after
decades of improvements: according to [5], between 1991 and 2012 they have seen a
475000 times speedup from algorithmic improvements only (i.e., not counting another
2000 times from hardware improvements)!.

Rather than using a single method, these solvers apply a large variety of techniques,
including, e.g., specialized cuts (Gomory, knapsack, flow and GUB covers, MIR, clique,
zerohalf, mod-k, network, submip,etc.), heuristics (rounding, RINS, solution improve-
ment, feasibility pump, diving, etc.) and variable selection techniques (pseudo costs,
strong branching, reliability branching, etc.).

They also apply sophisticated presolve methods to reduce in advance the size of
the problem and to tighten its formulation. Since we have no special-purpose presolve
implementation for IntSat (yet), unfortunately here we had to use Gurobi’s one, and for
fairness, we used Gurobi to presolve and output all instances (which took essentially
negligible time) and ran all three solvers on these Gurobi-presolved instances.

Other Classes of Solvers. It is well known that SAT Modulo Theories (SMT) [20]
solvers such as Mathsat5 [8], Yices [11], Z3 [10] or our own Barcelogic solver [6]
mostly focus on efficiently handling the arbitrary Boolean structure on top of the LIA
constraints. Their Theory Solver component, the one that handles conjunctions of con-
straints (our aim here), is rather basic, and we do not compere here with SMT solvers
since on conjunctive problems they are indeed in general orders of magnitude worse
than CPLEX or Gurobi.

Concerning SAT and Lazy Clause Generation (LCG) [21], from our own work (see
among many others [1]), we also know too well that solvers that (lazily) encode lin-
ear constraints into SAT can be competitive as long as problems are rather Boolean,
without a heavy ILP/optimization component. Also CSP solvers such as Sugar [24],
which heavily focus on their rich constraint language, are in general very far from the
commercial OR solvers on the typical hard pure ILP optimization problems.

Also, most of these SAT/SMT/LCG solvers cannot optimize or are rather bad at it.
Cutsat [14] cannot optimize either.

The IntSat Method for Integer Linear Programming 585

Random Optimization Instances. We used a random generator to create 100 optimiza-
tion instances with 600 variables (about half of them non-binary) and 750 constraints
(instances and generator are available at [19]). Then we discarded the 51 “too easy” in-
stances (for which all three solvers could find an optimal solution and prove optimality
in less than 2s).

The first columns (I, C, G) in the table below show runtimes in seconds of, respec-
tively, IntSat, CPLEX and Gurobi to prove optimality, and no time indicates timeout
after 10s, which happens 17 times for IntSat, 19 times for CPLEX and 9 times for
Gurobi.

Since finding good solutions quickly is perhaps as important as proving optimality,
the following columns show the cost of the optimal solution (“opt”), and the best solu-
tions found after 10s, only when different from the optimal one. The reader can check
that IntSat fails 8 times to find the optimal solution, CPLEX 13 times, and Gurobi 7
times, and that the total sum of distances to the optimal solutions in these cases are
22, 39 and 17, respectively. When given longer runtimes, the commercial solvers tend
to behave better on these instances than the current version of IntSat. However, this
should of course be re-evaluated after a more mature implementation, heuristics, and
pre- and inprocessing, etc., become available for IntSat.

I C G opt I C G
01.lp -7 -5 . -4
03.lp 7.76 5.41 -7 . . .
05.lp 1.85 1.08 4.19 -4 . . .
06.lp 2.50 -13 . -7 10
07.lp 1.06 2.98 3.94 -7 . . .
10.lp 4.21 0.17 0.07 -11 . . .
12.lp 9.80 -9 . . .
14.lp 0.77 5.78 3.16 -14 . . .
15.lp 1.43 2.56 0.21 -10 . . .
16.lp 5.02 -9 . -8 .
20.lp -8 -6 -4 -6
21.lp 0.71 0.19 -7 -5 . .
23.lp -8 . . .
24.lp 2.85 0.08 0.05 -4 . . .
26.lp 1.04 2.93 -11 . -7 .
27.lp 2.71 6.32 -2 . . .
28.lp 2.16 -9 . -7 -8
31.lp -6 . -3 -3
33.lp 2.79 6.38 2.92 -6 . . .
34.lp 2.62 1.86 0.30 -13 . . .
36.lp 6.58 1.53 5.23 -9 . . .
40.lp 2.02 3.10 0.05 -18 . . .
44.lp 4.76 7.47 8.54 -10 . . .
49.lp 2.77 0.47 0.09 -8 . . .
50.lp 0.22 -12 -8 -11 .

I C G opt I C G
53.lp 2.47 3.05 -13 -7 . .
60.lp 1.69 2.19 -9 . -8 .
61.lp 1.47 1.14 -16 . . -15
62.lp 2.58 0.53 0.02 -3 . . .
63.lp 4.55 -12 . . .
64.lp 1.56 6.33 2.60 -4 . . .
65.lp 3.26 0.80 0.81 -8 . . .
66.lp 1.32 9.23 4.47 -5 . . .
68.lp -9 . . .
69.lp 5.91 1.20 0.13 -14 . . .
70.lp 8.33 0.24 0.09 -6 . . .
73.lp 4.75 -11 -9 -9 .
76.lp 0.74 2.89 0.40 -11 . . .
78.lp -8 -5 -2 -4
79.lp 8.26 0.36 0.06 -4 . . .
80.lp 7.54 2.59 0.13 -7 . . .
81.lp 0.86 4.71 4.78 -9 . . .
84.lp 2.93 6.40 -12 . -5 .
87.lp -10 . -8 .
88.lp 9.67 -5 -4 -4 .
91.lp 2.38 2.96 -9 . . .
93.lp 2.98 3.03 0.45 -9 . . .
95.lp 1.51 3.13 0.14 -10 . . .
99.lp 0.62 2.00 4.92 -7 . . .

586 R. Nieuwenhuis

5.1 MIPLIB Instances

From the MIPLIB 2010 Mixed Integer Problem Library, a well-known “standard test
set” to compare optimizer performance for the Operations Research (OR) community,
cf. miplib.zib.de, we considered all 30 ILP instances (i.e., with integer and binary
variables only) and discarded the 11 instances lacking initial lower and upper bounds
for some variable.

For the remaining 19 ones, the next table below indicates runtimes (in s) needed to
prove feasibility (as recommended for the commercial solvers, the objective function
was replaced by 0). The table also includes some statistics on number of constraints,
total number of variables, and among these, the number of binary variables.

We ran IntSat with no presolving, as Gurobi’s presolve was harmful for it in some
cases. Here we also compare with the Cutsat implementation of [14], which currently
can only handle feasibility, and no optimization.

Feasibility (s) Problem statistics
IntSat CPLEX Gurobi Cutsat #constr. total #vars. #0/1-vars.

30n20b8 20.14 0.83 0.41 >300 666 18380 11036
d10200 10.00 0.20 0.22 >300 1147 2000 733
d20200 0.55 0.34 1.15 >300 1702 4000 3181
lectsched-1 1.11 7.75 39.73 64.84 51608 28718 28236
lectsched-1-obj 1.09 145.25 11.71 45.77 51608 28718 28236
lectsched-2 0.60 3.50 1.14 5.39 31775 17656 17287
lectsched-3 0.99 6.94 6.82 18.43 46615 25776 25319
lectsched-4-obj 0.25 0.15 0.38 0.86 14760 7901 7665
mzzv11 1.27 0.04 1.26 0.08 12871 10240 9989
neos-1224597 0.20 0.11 0.15 >300 3682 3605 3150
neos16 0.09 9.74 16.54 >300 1028 377 336
neos-555424 0.07 0.07 0.07 18.53 2746 3815 3800
neos-686190 1.98 0.44 0.27 >300 3785 3660 3600
ns1854840 3.21 3.31 1.57 3.75 151216 135754 135280
rococoB10-011000 0.06 0.05 0.06 0.06 3063 4456 4320
rococoC10-001000 0.05 0.04 0.05 4.45 2298 3117 2993
rococoC11-011100 0.10 0.16 0.10 0.05 4403 6491 6325
rococoC12-111000 0.16 0.15 0.27 >300 13181 8619 8432
sp98ir 0.16 0.15 0.28 0.92 1531 1680 871

5.2 Optimizing the MIPLIB Instances

We also considered optimizing these same 16 MIPLIB instances (lectsched-1, -2 and
-3 are feasibility ones), using all three applicable solvers (IntSat,CPLEX,Gurobi) with
a timelimit of 600s.

30n20b8 and Lectsched-4-Obj: For these two instances, all three solvers find the opti-
mal solution and prove optimality in less than 10 seconds. For 30n20b8, in 1.03s, 3.59s
and 4.18s, respectively for IntSat, CPLEX, and Gurobi (optimal solution has cost 302)
and for lectsched-4-obj, in 0.43s, 3.37s, and 1.61s respectively (optimal is 4). Note that
on both instances IntSat is fastest. IntSat is currently not able to prove optimality for
any of the other 14 MIPLIB optimization instances in less than 600s.

The IntSat Method for Integer Linear Programming 587

neos16 and neos-1224597: IntSat does find optimal solutions quickly for these two
problems. For neos16, none of the three solvers proves optimality in less than 600s, but
IntSat finds the optimal solution (cost 446) in 13.1s, whereas CPLEX needs 39.2s and
Gurobi needs 45s. For neos-1224597, all three solvers find the optimal solution (cost
-448) in around 1s., but CPLEX and Gurobi moreover prove optimality.

The Other 12 Instances: CPLEX and Gurobi also prove optimality for five other in-
stances, the same ones for both solvers, given in the first table below.

Results and best found solutions for the remaining seven instanes are given in the sec-
ond table below. Out of these seven, two (d10200, rococoC11) are catalogized in the MI-
PLIB as “hard” and three further instances (d20200, lectsched-1-obj, and ns1854840)
are “open”, as their optimal cost is unknown. IntSat is the best solver by far on the
open problem ns1854840, even though IntSat’s 600s refer to runtime on one core only,
whereas the other solvers run 600s on all four cores. In fact, for this instance Gurobi
only finds an initial “heuristic” solution that is more than 100 times worse than the one
found by IntSat; this happens because Gurobi’s root simplex times out after 600s. Of
the other “open” problems, IntSat is also better than CPLEX on two other problems:
lectsched-1-obj and rococoC11-011100.

In some cases IntSat appears to be quite improvable still, e.g., due to its too naive
handling of very large input problems. Sometimes also better optimization heuristics
will to be useful on instances with a very numerical nature and slowly decreasing values
of the objective function.

Best solutions found
IntSat (600s) optimal time CPLEX time Gurobi

mzzv11 -18368 -21718 16.64s 21.73s
neos-555424 1369300 1324300 4.72s 2.16s
neos-686190 11380 6730 28.95s 24.21s
rococoC10-001000 13402 11460 49.89s 436.31s
sp98ir 279007104 219676790 24.17s 33.07s

Best solutions found after 600s
IntSat CPLEX Gurobi

d10200 12809 12441 12438
d20200 13619 12279 12262
lectsched-1-obj 92 93 85
ns1854840 288000 392000 4272000
rococoB10-011000 21462 19449 19810
rococoC11-011100 21427 21800 20957
rococoC12-111000 57118 36988 35845

6 Related Work and Conclusions

We already mentioned the work on Cutsat [14]. The idea of applying conflicting sets is
not only reminiscent to the conflict analysis of SAT, but also of SAT Modulo Theories

588 R. Nieuwenhuis

(SMT) [20,2] for the theory of linear arithmetic, with the main difference, among others,
that here new ILP constraints are obtained by cut inferences, normalized and learned,
and not only new Boolean clauses that are disjunctions of literals representing bounds
(usually only those that occur in the input formula). Other SAT/SMT related work, but
for rational arithmetic is [17,15,9].

It is also worth mentioning that there may be some possible theoretical and practical
consequences of the fact that IntSat’s underlying cutting planes proof system is stronger
than CDCL’s resolution proof system: could IntSat outperform SAT solvers on certain
SAT problems for which no short resolution proofs exist? E.g., pigeon-hole-like situ-
ations do occur in practical problems (think of timetabling or scheduling). A similar
question applies to the current SMT solvers, which are based on resolution as well [18].

It seems unlikely that for ILP or MIP solving one single technique can dominate
the others; the best solvers will probably continue combining different methods from a
large toolbox, which perhaps will also include IntSat at some point. Still, IntSat by itself
already appears to be the first alternative method for ILP that uses no LP relaxations and
no simplex that is competitive on certain hard optimization problems, and moreover it
still has an enormous potential for enhancement. We expect that this work will trigger
quite some further activity on all the improvements mentioned in Section 4.

Acknowledgments. Thanks go to Albert Fiol for his work last year, as an undergrad-
uate student, on a preliminary IntSat implementation, to Enric Rodrı́guez and Albert
Oliveras for always trying to answer my questions, and to Dejan Jovanović for his help
with cutsat and to my muse Mariona. Partially supported by the Spanish government
under the SweetLogics project (TIN 2010-21062-C02-01).

References

1. Abı́o, I., Nieuwenhuis, R., Oliveras, A., Rodrı́guez-Carbonell, E., Stuckey, P.J.: To Encode
or to Propagate? The Best Choice for Each Constraint in SAT. In: Schulte, C. (ed.) CP 2013.
LNCS, vol. 8124, pp. 97–106. Springer, Heidelberg (2013)

2. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In:
Handbook of Satisfiability, pp. 825–885. IOS Press (2009)

3. Biere, A. (2010), Lingeling SAT Solver, http://fmv.jku.at/lingeling/
4. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T.: Handbook of Satisfiability. Frontiers in

Artificial Intelligence and Applications, vol. 185. IOS Press (February 2009)
5. Bixby, B.: Presentation: 1000X MIP Tricks, Bill Cunninghams 65th (June 12, 2012)
6. Bofill, M., Nieuwenhuis, R., Oliveras, A., Rodrı́guez-Carbonell, E., Rubio, A.: The Barcel-

ogic SMT Solver. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 294–298.
Springer, Heidelberg (2008)

7. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math-
ematics 4(4), 305–337 (1973)

8. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT Solver. In:
Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer,
Heidelberg (2013)

9. Cotton, S.: Natural domain SMT: A preliminary assessment. In: Chatterjee, K., Henzinger,
T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 77–91. Springer, Heidelberg (2010)

http://fmv.jku.at/lingeling/

The IntSat Method for Integer Linear Programming 589

10. de Moura, L., Bjorner, N.: Z3: An Efficient SMT Solver. In: Technical report, Microsoft
Research, Redmond (2007), http://research.microsoft.com/projects/z3

11. Dutertre, B., de Moura, L.: The YICES SMT Solver. In: Technical report, Computer Science
Laboratory, SRI International (2006), http://yices.csl.sri.com

12. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

13. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bulletin of
the American Mathematical Society 64(5), 275–278 (1973)

14. Jovanovic, D., de Moura, L.M.: Cutting to the chase - solving linear integer arithmetic. J.
Autom. Reasoning 51(1), 79–108 (2013)

15. Korovin, K., Voronkov, A.: Solving systems of linear inequalities by bound propagation. In:
Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 369–383.
Springer, Heidelberg (2011)

16. Marques-Silva, J., Sakallah, K.A.: GRASP: A Search Algorithm for Propositional Satisfia-
bility. IEEE Transactions on Computers 48(5), 506–521 (1999)

17. McMillan, K.L., Kuehlmann, A., Sagiv, M.: Generalizing DPLL to Richer Logics. In: Boua-
jjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 462–476. Springer, Heidelberg
(2009)

18. Nieuwenhuis, R.: SAT and SMT Are Still Resolution: Questions and Challenges. In: Gram-
lich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 10–13. Springer,
Heidelberg (2012)

19. Nieuwenhuis, R.: Intsat source code, makefile, benchmarks and benchmark generators
(2014), http://www.lsi.upc.edu/˜roberto/IntSatCP2014.tgz

20. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories: From an
abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). Journal of the ACM,
JACM 53(6), 937–977 (2006)

21. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation = lazy clause generation. In: Bessière,
C. (ed.) CP 2007. LNCS, vol. 4741, pp. 544–558. Springer, Heidelberg (2007)

22. Pipatsrisawat, K., Darwiche, A.: On modern clause-learning satisfiability solvers. Journal of
Automated Reasoning 44(3), 277–301 (2010)

23. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons, Chichester
(1986)

24. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into SAT.
Constraints 14(2), 254–272 (2009)

http://research.microsoft.com/projects/z3
http://yices.csl.sri.com
http://www.lsi.upc.edu/~roberto/IntSatCP2014.tgz

Automatically Improving Constraint Models
in Savile Row through Associative-Commutative

Common Subexpression Elimination

Peter Nightingale, Özgür Akgün, Ian P. Gent, Christopher Jefferson, and Ian Miguel

School of Computer Science, University of St. Andrews, St. Andrews, Fife KY16 9SX, UK
{pwn1,ozgur.akgun,ian.gent,caj21,ijm}@st-andrews.ac.uk

Abstract. When solving a problem using constraint programming, constraint
modelling is widely acknowledged as an important and difficult task. Even a
constraint modelling expert may explore many models and spend considerable
time modelling a single problem. Therefore any automated assistance in the area
of constraint modelling is valuable. Common sub-expression elimination (CSE)
is a type of constraint reformulation that has proved to be useful on a range of
problems. In this paper we demonstrate the value of an extension of CSE called
Associative-Commutative CSE (AC-CSE). This technique exploits the proper-
ties of associativity and commutativity of binary operators, for example in sum
constraints. We present a new algorithm, X-CSE, that is able to choose from a
larger palette of common subexpressions than previous approaches. We demon-
strate substantial gains in performance using X-CSE. For example on BIBD we
observed speed increases of more than 20 times compared to a standard model
and that using X-CSE outperforms a sophisticated model from the literature. For
Killer Sudoku we found that X-CSE can render some apparently difficult in-
stances almost trivial to solve, and we observe speed increases up to 350 times.
For BIBD and Killer Sudoku the common subexpressions are not present in the
initial model: an important part of our methodology is reformulations at the pre-
processing stage, to create the common subexpressions for X-CSE to exploit. In
summary we show that X-CSE, combined with preprocessing and other reformu-
lations, is a powerful technique for automated modelling of problems containing
associative and commutative constraints.

1 Introduction

When solving a problem using constraint programming, constraint modelling is widely
acknowledged as both important and difficult [13]. A problem may have many mod-
els, and it is difficult to know which will be solved most efficiently by a given con-
straint solver. Even a constraint modelling expert may explore many models and spend
considerable time modelling a single problem. Therefore, any automated assistance in
constraint modelling is valuable.

We focus on the process we call tailoring: given a constraint model in a solver-
independent language and a value for each of its parameters, translate it into a form
suitable for efficient solving by a given constraint solver. Tailoring must be efficient: it is
performed separately for each problem instance, hence any computationally expensive
reformulation must pay for itself by saving time during solving.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 590–605, 2014.
c© Springer International Publishing Switzerland 2014

Automatically Improving Constraint Models in Savile Row 591

Common sub-expression elimination (CSE) is a type of constraint reformulation that
has proved to be useful on a range of problems [16,15]. Herein we investigate an exten-
sion of CSE, Associative-Commutative CSE (AC-CSE), which exploits the properties
of associativity and commutativity of binary operators (e.g. + and ×). Expressions
containing these operators can be rearranged to reveal common subexpressions. As an
example, take the following two constraints over four variables:

w + x+ y + z = 6, z + y + w = 5

Conventional constraint propagation will not reveal the fact that x = 1. AC-CSE could
extract w+ y+ z and replace it with an auxiliary variable a to give the following three
constraints. Performing constraint propagation on this set will assign x to 1.

x+ a = 6, a = 5, a = w + y + z

An Associative-Commutative Common Subexpression (AC-CS) of a set of associative
and commutative (AC) expressions (e.g. sums) is a set of at least two terms that all
appear in each one of the AC expressions (sums). In the example above, the set of
three terms {w, y, z} appears in both the original sum constraints, hence {w, y, z} is an
AC-CS of the two sum constraints.

A simple normalisation step, such as sorting the terms in the AC expressions, fol-
lowed by examining contiguous subsequences of terms within AC expressions, can
reveal some but not all of the available AC-CSs. More is necessary to find AC-CSs
in general. Consider the example above, with an alphabetical ordering of the terms
w+ x+ y + z and w + y + z. The largest contiguous subsequence of both is y+ z, so
this approach would miss the maximal AC-CS w + y + z.

In this paper we introduce and describe in detail a new algorithm, X-CSE, to perform
AC-CSE in constraint problems. We show that X-CSE is able to find common subex-
pressions (CSs) automatically in a variety of problems, and that using these subexpres-
sions can greatly reduce search and improve solving time. A particular advantage of
X-CSE is that it is able to find and exploit small CSs that occur in many constraints, as
well as larger ones that occur in few constraints. This is made possible by finding CSs
that contain auxiliary variables introduced at an earlier step of the algorithm. We can
thus exploit the occurrence of many small CSs without losing the advantages of finding
larger ones. We illustrate this with an example below in Sections 2.3 and 3.3. The reuse
of auxiliary variables created by AC-CSE in subsequent common subexpressions is an
important advantage of X-CSE.

In addition, we show that X-CSE can be particularly effective in combination with
other automated modelling techniques. In this paper we give two examples. First, we
show that automated reformulation of an all-different constraint can lead to sum con-
straints, which can be exploited by X-CSE. Second, we see that by applying Singleton
Arc Consistency at the preprocessing stage, we reveal new common subexpressions
that can be exploited by X-CSE. These combinations show in particular that X-CSE is
a valuable addition to the armoury of automated constraint modelling techniques, both
alone and in combination with other techniques.

We evaluate the new algorithm on four problem classes: BIBD, the SONET problem,
Killer Sudoku and Molnar’s Problem. When applying X-CSE we demonstrate substan-
tial gains in performance. On BIBD we observed speed increases of more than 20 times

592 P. Nightingale et al.

compared to a standard model. We found that X-CSE outperforms a sophisticated model
from the literature with manually derived implied constraints [7]. On the SONET prob-
lem we observed speed increases of 5 times on some instances. For Killer Sudoku we
found that applying X-CSE can render some apparently difficult instances almost triv-
ial to solve, and we saw more than 300 times speed increases in some cases. Molnar’s
Problem exhibits more modest gains peaking at 5 times faster for the most difficult
instance.

2 Related Work

The context of our work is reformulation of constraint modelling languages such as
OPL [19], MiniZinc [18] and ESSENCE′ [16]. These languages have a collection of
global constraints, arithmetic and logical operators that act on finite-domain or real
interval decision variables. In this paper we consider finite-domain decision variables.

Such languages are not directly accepted by constraint solvers but must be tailored
into a form suitable for a constraint solver. During tailoring the model can be refor-
mulated to improve the efficiency of the constraint solver. There are many ways of
producing better constraint models, some requiring manual interaction [2], and others
that are automated [8]. For example these tools can discover global constraints or auto-
matically detect and remove symmetries [11]. These improvements often complement
each other, for example Frisch, Jefferson, and Miguel [7] show how breaking symme-
tries can lead to effective implied constraints for BIBDs among other problems. In this
paper we show how to automatically generate a superior model for the BIBD problem.

2.1 Flattening and CSE

Flattening is the process of taking a nested expression and reducing the degree of nest-
ing by replacing a subexpression with a new variable. For example given the product
X × (Y + Z) and a target solver that does not allow sums inside products, the flatten-
ing process will add a new variable aux, replace the product with the new expression
X×aux and add a new constraint aux = Y +Z . We say that X× (Y +Z) is flattened
to X × aux and that Y + Z is extracted.

Common sub-expression elimination (CSE) was first applied in the context of finite-
domain constraint languagesby AndreaRendl [16,15]. In its simplest form,CSEtakes two
or more syntactically identical sub-expressions that must be flattened, and flattens them
all using the same auxiliary variable. This reduces both the number of constraints and
auxiliary variables. Importantly, CSE can reduce the search space dramatically [16,15]
by linking different constraints together thus strengthening constraint propagation.

2.2 Normalisation and Active CSE

One way CSE has been fruitfully extended is by matching subexpressions that
are not syntactically identical [16]. This is achieved in two ways. The first is nor-
malisation, where prior to CSE the expression tree is converted to a normal form
(primarily by ordering the arguments of commutative operators and evaluating any

Automatically Improving Constraint Models in Savile Row 593

constant expressions). This converts some semantically equivalent expressions (such
as C = B + A + 1 − 1 and A + B = C) to syntactically identical expressions. The
second is Active CSE, where two expressionsA andB may be matched if they are iden-
tical after some transformation (for example by applying one of De Morgan’s laws). For
example, Active CSE can match A < B with A ≥ B by a simple negation.

The algorithm introduced by Rendl [15] and used by Stuckey and Tack [18] performs
CSE during flattening. The algorithm maintains a hash table keyed by the expressions
that have been extracted so far, and containing the new auxiliary variable for each. When
extracting an expression E, the algorithm looks up E in the hash table, and (if present)
uses the auxiliary variable in the hash table rather than creating a new auxiliary. This
algorithm has the advantage that is easily extended to active CSE. When looking up E
in the hash table, active CSE also looks up each transformation of E. However it is not
clear how this algorithm could be extended to AC-CSE. The common subexpressions
extracted by AC-CSE would not normally be extracted by flattening.

2.3 Associative-Commutative CSE

Araya, Neveu and Trombettoni [1] exploited common subexpressions among + and ×
expressions. Their work is in the context of numerical CSP solved by algorithms such as
HC4, but the reformulation is equally applicable to finite-domain CSP. They proposed
two algorithms named I-CSE and I-CSE-NC. Both algorithms apply a form of AC-CSE
prior to flattening as a separate operation.

The first pass of both algorithms is to transform the abstract syntax tree (AST) into a
directed acyclic graph where identical subexpressions are represented once. The second
step is to intersect each pair of sums and pair of products to create a set of candidate
AC-CSs. As we will see in Section 3.3 other AC-CSs (generated by the intersection of
three or more sums) can also be useful, but I-CSE and I-CSE-NC will never generate
them. Later passes extract the AC-CSs from the original expressions.

Araya et al. defined two AC-CSs f1 and f2 to be in conflict if f1 ∩ f2 �= ∅, f1 � f2
and f2 � f1. Two AC-CSs in conflict cannot both be extracted from the same expres-
sion. When a set of AC-CSs in conflict are subsets of the same original expression s,
then I-CSE copies s a sufficient number of times to extract each of the AC-CSs from at
least one copy. I-CSE-NC (for No Conflicts) does not copy s, it simply extracts a single
maximal subset of the candidate AC-CSs from s. Consider the following example:

v + w + x+ y = 0, v + w + x+ z = 0

v + w + y + z = 0

In this example I-CSE(-NC) would generate three AC-CSs: v + w + x, v + w + y
and v + w + z. I-CSE would duplicate each of the original constraints resulting in six
constraints and three further constraints to define the auxiliary variables.

I-CSE-NC can extract only one AC-CS. Suppose it extracts v + w + x, then at this
point v + w + y and v + w + z cease to be AC-CSs:

aux+ y = 0, aux+ z = 0, v + w + y + z = 0

aux = v + w + x

594 P. Nightingale et al.

I-CSE-NC can only extract CSEs from the original expressions, so fails to exploit the
AC-CS v + w. Even on this small example I-CSE has increased the size of the model
substantially. I-CSE-NC has not, but it has missed a potentially useful AC-CS and has
not linked v + w + y + z to the other two sums.

I-CSE and I-CSE-NC are both compared to our algorithm in the experiments below.
We implement the algorithms exactly as described in Section 4 of Araya et al. [1]. Both
I-CSE and I-CSE-NC only extract AC-CSs from the original expressions, they do not
extract AC-CSs from other AC-CSs.

3 The X-CSE Algorithm

The X-CSE algorithm is implemented in Savile Row 1.6 [12]. Savile Row reads the
ESSENCE′ language and transforms it in many passes to an output for a constraint
solver. X-CSE simply becomes another pass. In this paper we consider the associa-
tive and commutative (AC) operators \/ (or), /\ (and), +, *. These are represented as
a single AST node with n children in Savile Row 1.6. There are other AC operators in
the language, notably min and max, and != between boolean expressions (exclusive
or). We leave these for future work.

Prior to running X-CSE the AST is normalised by sorting the children of all com-
mutative operators. For any AC operator 5, the goal of X-CSE is to find common sets
containing two or more expressions that are contained in more than one 5 expression.
The X-CSE algorithm uses a hash table map from pairs of expressions {a, b} to a list
of the 5 expressions that contain both a and b. Algorithm 2 (populateMap) takes a ref-
erence to an AST node and explores the tree, populating map for each 5 expression.

Algorithm 1 (X-CSE) takes a reference to the AST representing all constraints, a
reference to the global symbol table, and the AC operator 5. After initialising data
structures it calls populateMap with the entire AST. Following that it enters the main
loop on line 4. On line 5 one pair is selected from map according to a heuristic. If the
pair occurs in more than one 5 expression then there must exist an AC-CS including
that pair. Lines 10-20 find an AC-CS and extract it from all the relevant expressions.
The algorithm includes as many 5 expressions as possible to maximise the effect of
extracting the AC-CS. Line 10 intersects all 5 expressions containing the pair. A new 5
expression for the AC-CS is constructed, and an auxiliary variable is created. On line 14
a constraint is created to define the auxiliary variable. Each 5 expression containing
the AC-CS is replaced. At this point, lines 19 and 20 update map to include all the
newly created expressions, allowing X-CSE to extract further AC-CSs from the new
expressions. Some references to removed 5 expressions will remain in map; these will
be filtered out on line 8.

3.1 Heuristics

X-CSE chooses the next pair to process by calling a heuristic on line 5. We exper-
imented with eight heuristics. There are four basic heuristics: most occurrences (i.e.
select the pair that leads to the longest list ls after line 8 of X-CSE), fewest occurrences,
largest AC-CS and smallest AC-CS. In some cases there exists a pair such that its cor-
responding AC-CS can be extracted without preventing any other AC-CS. We call these

Automatically Improving Constraint Models in Savile Row 595

Algorithm 1. X-CSE(AST, ST, 5)
Require: AST: Abstract syntax tree representing the model
Require: ST: Symbol table containing decision variables
Require: �: The associative and commutative operator
1: newcons ← empty list {Collect new constraints}
2: map ← empty hash table mapping pairs of expressions to lists
3: populateMap(AST, map, �)
4: while map not empty do
5: pairexp ← heuristic(map)
6: ls ← map(pairexp) {ls is a list of � AST nodes}
7: delete map(pairexp)
8: ls ← filter(isAttached, ls) {Remove � AST nodes no longer contained in AST or newcons}

9: if length(ls) > 1 then
10: commonset ← ls[1] ∩ ls[2] ∩ · · · ∩ ls[length(ls)]
11: e ← fold(�, commonset)
12: bnds ← bounds(e)
13: aux ← ST.newAuxVar(bnds)
14: newc ← (e = aux) {New constraint defining aux}
15: newcons.append(newc)
16: for all a ∈ ls do
17: newe ← fold(�, (a \ commonset) ∪ {aux})
18: Replace a with newe within AST or newcons
19: populateMap(newe, map, �)
20: populateMap(newc, map, �)
21: AST ← AST ∧ fold(∧, newcons)

non-blocking pairs and it may be helpful to process them first. We created four more
heuristics that select non-blocking pairs first, then fall back to one of the four basic
heuristics. We found no clear winner among the eight heuristics. We use the ‘most oc-
currences’ heuristic throughout the rest of this paper because it is cheap to compute and
often performs well.

3.2 Complexity Analysis

In this analysis we will use n for the number of 5 expressions, k for the length of the
longest 5 expression, d as the depth of the deepest 5 expression in the AST, and S as
the number of nodes in the AST.

Central to the complexity analysis of X-CSE is the observation that at most k−1 AC-
CSs may be extracted from one 5 by X-CSE. Recall (from Section 2.3) that two AC-CSs
in conflict cannot both be extracted from the same expression. A pair of AC-CSs may
overlap only if one is a subset of the other. Consider an AC-CS f in an expression e.
There can be no other AC-CSs involving f in e except possibly some f ′ where f � f ′.
The smallest AC-CS is size two, and extracting this replaces a size two term with a size
one term (i.e. the replacement auxiliary variable). If the original expression is size k,
we thus find one AC-CS and now have a size k − 1 expression. Iterating shows that at

596 P. Nightingale et al.

Algorithm 2. populateMap(A, map, 5)
Require: A: Reference to an abstract syntax tree
Require: map: Hash table mapping pairs of expressions to lists
Require: �: The associative and commutative operator
1: if A is expression of � then
2: for all {e1, e2} ⊆ A do
3: Add A to list map[{e1, e2}]
4: for all child ∈ A.Children() do
5: populateMap(child, map, �)

most k − 1 AC-CSs may be extracted from one 5 expression by X-CSE. This gives us
a global limit of O(nk) AC-CS extractions.

To populate map, populateMap traverses the AST with S nodes, and for each 5 ex-
pression e it inserts a reference to e in O(k2) lists within map. Assuming hash table
operations are O(1), populateMap takes O(S + nk2) time.1

X-CSE then enters a loop that continues until map is empty. Each iteration of the
loop is as follows. We assume the heuristic takes O(1) time.2 For the given pair, its list
ls has at most n elements. Note that if the pair occurs more than once in an expression
it might be entered into ls multiple times: to keep the list at size n, when inserting an
expression e into ls we can check the last element of ls: if it is equal to e, we do not
insert e for a second time. The list ls is filtered in O(nd) time. If the list has length two
or greater, then we extract an AC-CS. For the following we assume that an AC expres-
sion is represented by a set data structure with O(1) lookup, insertion and removal.3

Creating commonset on line 10 takes O(nk) time. Computing the bounds and creating
the auxiliary variable and the new constraint can be done in O(k) time. The algorithm
then replaces commonset in each ls expression in O(nk) time. Re-populating map (on
lines 19 and 20) takes O(S+nk2) because the updated AC expressions can contain the
entire AST. Therefore the entire cost of extracting one AC-CS is O(S+nk2+nd), and
the total cost of X-CSE is O(nkS + n2k3 + n2kd).

While the complexity may seem high, the algorithm scales with the number of AC-
CSs it is able to exploit, therefore it is relatively quick when there are few or no AC-CSs,
and it takes more time when there is greater potential benefit.

3.3 Comparison with I-CSE(-NC)

X-CSE differs from the existing algorithms I-CSE(-NC) in that it can extract AC-CSs
that are intersections of more than two expressions, and AC-CSs containing auxiliary
variables (from earlier steps). Thus it has a larger palette of AC-CSs to choose from. In

1 This is correct if all expressions to be hashed are size O(1) and computing the hash code is
linear. If either assumption is invalid then an additional factor h is necessary, representing the
time to hash an expression.

2 As an example of an O(1) heuristic we could maintain a doubly linked list of keys in map and
have the heuristic simply remove and return the first element of the list.

3 Once again we are assuming expressions can be hashed in O(1) time.

Automatically Improving Constraint Models in Savile Row 597

the example from Section 2.3, X-CSE would first extract v + w from all three sums as
follows.

a = v + w, a+ x+ y = 0, a+ x+ z = 0, a+ y + z = 0

Second, X-CSE would extract any one of a+ x, a+ y or a+ z, as follows. This second
step is not possible in I-CSE(-NC).

a = v + w, b = a+ x, b+ y = 0, b+ z = 0, a+ y + z = 0

This result is clearly better than I-CSE-NC (Section 2.3) that extracted only v + w + x
and thus did not connect the third constraint to the other two. I-CSE produced nine
constraints on this example. It is possible that the more compact model produced by
X-CSE is better. We investigate this further in Section 5.5.

4 Preprocessing and Reformulation

The number and quality of CSs found can be improved by using MINION to preprocess
an initial version of the model then feeding it back into Savile Row for CSE. Our method
is as follows. First Savile Row translates the instance to MINION (with or without X-
CSE). Then MINION is called to filter domains with SACBounds (no search), which is
a variant of SAC [3]. SACBounds applies the SAC test to prune the upper and lower
bound of each variable to exhaustion. Savile Row re-starts the translation process with
the filtered domains and translates the instance to MINION again (with or without X-
CSE). Re-starting translation allows Savile Row to simplify the constraints following
domain filtering. For example, on the BIBD problem below, some variables are assigned
by SACBounds and this allows constant folding (e.g. · · ·+ a× x+ b× y + · · · where
SACBounds assigns a = 1 and b = 0 becomes · · ·+ x+ · · ·).

A further step to promote the identification of AC-CSs is in reformulating a model to
add implied constraints consisting of AC expressions. Savile Row creates implied sum
constraints from all-different and global cardinality constraints. This is done by finding
assignments to the all-different (GCC) with the smallest and largest sums (lb and ub
resp.), then adding either

∑
≥ lb and

∑
≤ ub (when lb �= ub) or

∑
= lb = ub where∑

is the sum of the variables in scope of the original constraint (except cardinality
variables in GCC). For example, given allDiff(x, y, z) where all variables have domain
{1 . . .4}, we add constraints x+ y + z ≥ 1 + 2 + 3 and x+ y + z ≤ 2 + 3 + 4.

5 Case Studies

In this section we study four problems where we found AC-common subexpressions.
We use Savile Row 1.6 and the following optimisations are always applied: unifica-
tion of equal variables, domain filtering with SACBounds (as described in the sec-
tion above), and identical CSE (elimination of identical subtrees in the expression
tree). In addition, X-CSE, I-CSE or I-CSE-NC may be applied (before any form of
flattening or other CSE) as required for the experiment. Timings include both total
time reported by Savile Row (which includes the first preprocessing call to MINION)

598 P. Nightingale et al.

and total time reported by MINION 1.6.1 64-bit to search for a solution. MINION is
given a time limit of 600s to solve the final model. Savile Row is executed in the
Java 1.7.0 55 JIT. Each reported timing is a mean of 5 runs. Experiments were per-
formed on a 32-core AMD Opteron 6272 at 2.1 GHz. All model and parameter files are
available at http://pn.host.cs.st-andrews.ac.uk/cp-2013-ac-cse-
experiments.tgz.

5.1 Case Study 1: BIBD

We use Puget’s model of the Balanced Incomplete Block Design (BIBD) problem, with
Lex2 symmetry breaking constraints [14]. BIBD is parameterised by (v, k, λ) and has
r = λ(v−1)

k−1 and b = λv(v−1)
k(k−1) . The model has a v by b matrix m of boolean variables.

Each of the v rows sums to r (row constraints), and each of the b columns sums to k
(column constraints). The scalar product of each pair of rows has value λ:

∀i1, i2 ∈ {1 . . . v} . i1 < i2 → (
b∑

j=1

m[i1, j] ∗m[i2, j]) = λ

This model initially has no common subexpressions (identical or AC). As described
above the domains are filtered by applying SACBounds. This assigns some of the vari-
ables (the entire first two rows and first column, plus some other entries). When trans-
lating again with the domains filtered by SACBounds, the scalar product constraints are
simplified causing AC-CSs to appear among scalar product constraints, and between
scalar product and row sum constraints.

We evaluated X-CSE on the 24 instances in Figure 1 of Puget ([14]). MINION times
out for 4 instances without X-CSE. For the remaining 20 instances, X-CSE always
decreases the node count. Figure 1 plots the reduction factor for the 20 instances. Harder
instances tend to show a greater reduction in node count. For the hardest instance solved
within the time limit, the node count is reduced by 78 times.

Figure 1 plots speed-up of total time with X-CSE. For the easiest instances, the re-
duction in node count does not cause a measurable difference in MINION’s run time.
The slow down in total time is caused by the up-front cost of X-CSE. On the harder
instances, MINION search takes up most of the total time and X-CSE speeds up search
substantially by reducing the number of search nodes. Figure 1 (lower) peaks with in-
stance (10, 3, 6), which has a 58-fold reduction in nodes and speed up of 24.5 times.
X-CSE typically increases the number of constraints and auxiliary variables, reducing
the node rate of MINION. Finally, (10, 3, 8) times out without X-CSE, and takes 138.6
s with X-CSE. Hence it appears on the far right of Figure 1 with a speed up of 4.39.

Implied Constraints for BIBD. Frisch, Jefferson, and Miguel ([7]) derived a set of
implied constraints for BIBD that drastically improve the performance of the model.
First they observed that the first two rows and first column of the BIBD can be assigned
by manually reasoning about the constraints. Second, for each of the remaining rows i,
they reformulated the row sum constraint into four sum constraints. For example, for
indices where row 1 is set to 0, row i sums to r − λ. These four constraints are derived

http://pn.host.cs.st-andrews.ac.uk/cp-2013-ac-cse-experiments.tgz
http://pn.host.cs.st-andrews.ac.uk/cp-2013-ac-cse-experiments.tgz

Automatically Improving Constraint Models in Savile Row 599

1e+02 1e+04 1e+06

0
20

40
60

80

Nodes without X−CSE and without implied constraints

S
ea

rc
h

no
de

 r
ed

uc
tio

n
fa

ct
or

●●

●

●

●
●

● ●
●

●

●●

●

● ● ●
●

●●

●

●

X−CSE
Implied constraints
Implied constraints+X−CSE

2 5 10 20 50 100 200 500

0
5

10
15

20
25

Total time without X−CSE and without implied constraints (s)

S
pe

ed
−u

p
fa

ct
or

●●

●

●

●

●

●

● ● ●● ●● ●● ●●● ● ● ●

●

●

●

●

X−CSE
Implied constraints
Implied constraints+X−CSE

Fig. 1. (Top) BIBD search nodes of instances that do not time out. (Bottom) BIBD total time.

from the row constraint for row i and scalar product with either row 1 or 2 using an
approach resembling manual AC-CSE.

The automated approach improves on Frisch et al. in two ways. First SACBounds is
able to assign not just the first two rows and first column but also parts of other rows
and columns. For example, on the instance (v = 22, k = 7, λ = 2) parts of the third
and fourth rows and the first eight entries of the second column are assigned. Second,
X-CSE is able to link multiple scalar product constraints and a row constraint, whereas
the implied constraints are each derived from a single scalar product constraint and a
row constraint.

The implied constraints alone do reduce node count (see Figure 1) but are not as
effective as X-CSE. For the hardest instances the implied constraints speed up solving
but by a smaller degree than X-CSE. Adding the implied constraints then applying X-
CSE is slightly more effective than X-CSE alone in reducing node count. However this
does not translate to more efficient search. Implied constraints plus X-CSE is slower
than X-CSE alone on almost all instances. Remarkably, X-CSE is able to improve the
sophisticated model on the hardest four solvable instances.

600 P. Nightingale et al.

0.2 0.5 2.0 5.0 20.0 100.0 500.0

1
2

3
4

5
6

Total time without X−CSE (s)

S
pe

ed
 u

p
fa

ct
or

 w
ith

 X
−C

S
E

●
●●

●
●

●
●

●

●

SONET
Molnar's

●●●●

●

●● ●●

●

● ●●●

●

●

●● ●

●

●●

●

●●

●

●

●

●

●
●

●

●
●
●

● ●

●

●

●

●

●

●

●

●●●

●

●●

●

● ●
●

● ●
●
●● ●

●

●●● ●

●

●● ●

●

●

●
● ●

●

● ●

●

● ●

●

●

●

●

●
●

●● ● ●●● ●●● ●●●

●

●

2 5 10 20 50 100 200 500

0
50

15
0

25
0

35
0

Total time without X−CSE (s)

S
pe

ed
 u

p
fa

ct
or

 w
ith

 X
−C

S
E

Fig. 2. (Left) Results for SONET and Molnar’s Problem total time. (Right) Results for Killer
Sudoku total time.

5.2 Case Study 2: The SONET Problem

The SONET problem [17] is a network design problem where each node is connected
to a set of rings (fibre-optic connections). The simplified SONET problem (Section 3 of
[17]) where each ring has unlimited capacity has the following parameters: the number
of nodesn, the upper limit on the number of ringsm, the maximum number of nodes per
ring r, and a set of pairs that must be connected. For each of these pairs there must exist
a ring connected to both nodes. The number of node-ring connections is minimised.

The problem is modelled as follows. We have a boolean matrix rings indexed by
[1 . . .m, 1 . . . n]. rings [a, b] indicates whether ring a is connected to node b. For each
ring a we have the sum constraint

∑n
b=1 rings [a, b] ≤ r. The connectedness constraint

between two nodes b1 and b2 is expressed as a disjunction (refined by Savile Row to a
watched-or [9]) of sums:

∃ i ∈ {1 . . .m}. (rings [ai, b1] + rings [ai, b2] ≥ 2)

The minimisation function is simply the sum of rings. Rings are indistinguishable so
we use lexicographic ordering constraints to order the rows of rings in non-decreasing
order. The static variable ordering we use is the reading order of rings and value order
is 0 then 1. This model is very simple and does not include implied or dominance
constraints [17]. The problem constraints are already flat and only the minimisation
sum needs to be flattened, thus only one auxiliary variable is created by Savile Row
without X-CSE. There are AC-CSs between the connectedness constraints, the ring
sum constraints and the minimisation sum.

We generated 24 instances with n ∈ {6 . . .13}, r ∈ {3, 4, 5}, and m = 10. The
demand graph when n = 13 is Figure 1 of Smith [17]. For smaller n we take the
subgraph with vertices {n+ 1 . . . 13} and edges adjacent to these vertices removed.

Figure 2 plots the speed-up factor for X-CSE. As before the time limit is 600s. All
instances with n ∈ {10 . . .13} and also instance n = 9, r = 4 timed out both with and
without X-CSE. Instances n = 9, r = 5 and n = 8, r = 3 timed out without X-CSE,
and appear on the far right of the plot with a speed-up of 4.84 and 1.55 respectively.
X-CSE improves solving speed for all but the most trivial instances.

Automatically Improving Constraint Models in Savile Row 601

5.3 Case Study 3: Killer Sudoku

We consider the Killer Sudoku problem. The standard Killer Sudoku has a 9 × 9 grid
where each row and column are all-different, and the nine non-overlapping 3 × 3 sub-
squares are also all-different. Each slot in the grid is initially empty and takes a digit
1 . . . 9. Clues are sets of squares that sum to a given value (and are also all-different).
We found that 9× 9 Killer Sudoku instances were very easy. We generalised the puzzle
to 16 × 16 with 16 4 × 4 subsquares, and each slot takes a number 1 . . . 16. 100 in-
stances were generated at random. Traditional Killer Sudoku puzzles have exactly one
solution. The random 16 × 16 instances may be unsatisfiable and may have multiple
solutions. For brevity we do not describe how these instances are generated. All models
and instances are available on the web at the URL given in Section 5 above.

X-CSE alone does nothing because the sums in the clues are the only AC expres-
sions and they do not overlap. However the sums overlap with all-different constraints.
Each all-different constraint on a row, column or subsquare represents a permutation of
{1 . . .16} which sum to 136. Savile Row automatically adds these implied sum con-
straints as described in Section 4. X-CSE is able to find common subexpressions among
rows, columns, sub-squares and clues.

Figure 2 plots the speed-up quotient for Killer Sudoku. Without X-CSE, 54 instances
timed out. With X-CSE, 28 instances timed out. As the instances become more difficult
the trend is towards greater speed-up by X-CSE. The plot peaks at 345 times faster.
On this instance, without X-CSE Savile Row took 2.26 s and MINION timed out after
exploring 2,774,028 nodes. With X-CSE, Savile Row took 1.62 s and MINION took
0.13 s to explore 2 nodes.

5.4 Case Study 4: Molnar’s Problem

Molnar’s problem [6] (CSPLib problem 035 [5]) is to find a square matrix M of inte-
gers. The model has two parameters: the size k (i.e.M has size k×k) and the maximum
absolute value of integers in M , named d. The initial domain of each element of M is
{−d . . . − 2} ∪ {0} ∪ {2 . . . d}. The first constraint is that the determinant of M is 1
or −1 (following the model of Frisch et al. [6]). For the second constraint we construct
another matrix S where each entry of S is the square of the corresponding entry of M .
The determinant of S must also be 1 or −1.

We used the Leibniz formula for determinants, and expressed a2 as a × a to allow
more AC-CSs of products. When k = 3 we have the following two matrices and two
constraints. In addition we break symmetry on M by lexicographically ordering rows
and columns.

M =

[
a b c
d e f
g h i

]
, S =

[
a2 b2 c2

d2 e2 f2

g2 h2 i2

]

|M | = aei− afh+ bfg − bdi+ cdh− ceg ∈ {−1, 1}

|S| = aaeeii− aaffhh+ bbffgg − bbddii+ ccddhh− cceegg ∈ {−1, 1}

602 P. Nightingale et al.

There are multiple AC-CSs of products, for example aa and aei. Some connect the
two sums, and others connect terms within one sum. X-CSE is able to extract a par-
ticular AC-CS from the same product more than once on this problem. Consider aei:
extracting it once creates a new constraint aei = x and modifies the expression aei to x,
and the expression aaeeii to x× aei. Now X-CSE extracts aei a second time from the
new constraint and one of the modified expressions, creating a second auxiliary variable
(that will later be unified with x).

Figure 2 plots the speed-up quotient for Molnar’s Problem on the eight instances
where k ∈ {2, 3} and d ∈ {2 . . .5}. X-CSE appears to be more useful for the more
difficult instances. None of the instances time out. The peak speed-up quotient is 5.5.

5.5 I-CSE and I-CSE-NC

In this section we use all four problem classes to compare X-CSE to I-CSE and I-CSE-
NC. Figure 3 plots the speed-up factor for I-CSE and I-CSE-NC compared to X-CSE.
It is clear from the lower plot that I-CSE-NC performs much more poorly than X-CSE
(since almost all points are below y = 1). By comparing the two plots in Figure 3 it
is clear that I-CSE outperforms I-CSE-NC on Killer Sudoku, I-CSE-NC is preferable
for SONET, and that the two algorithms are very similar for BIBD (without implied
constraints) and Molnar’s Problem.

X-CSE performs substantially better than I-CSE on BIBD and SONET, and slightly
better on Molnar’s Problem. For BIBD, both timed out on 3 instances and each solved
21. X-CSE explored fewer search nodes on 16 of the 21 instances, and was much faster
overall. The mean time for X-CSE (on the set of 21 instances) was 16.7 s compared to
52.1 s for I-CSE.

For SONET, X-CSE always explores more (or an equal number of) search nodes
than I-CSE but total time is lower with X-CSE for all instances taking longer than 1
s. X-CSE was able to solve all instances that I-CSE could within the timeout, and one
additional one. Of the 9 that both solved, X-CSE had a mean time of 20.3 s compared
to I-CSE’s mean of 65.1 s. X-CSE and I-CSE-NC are able to solve the same set of 10
SONET instances. X-CSE had a mean time of 57.1 s while I-CSE-NC had a mean time
of 59.7 s.

For Killer Sudoku, the picture is less clear. 70 instances are solved by both I-CSE and
X-CSE. I-CSE solves one additional instance in 454 s, and X-CSE solves two additional
instances in 2.1 s and 278 s. On the 70 instances solved by both, I-CSE took a mean
time of 28.6 s, and X-CSE took a mean time of 35.2 s. I-CSE searches fewer nodes on
16 of these 70 instances and is more than 1.5 times faster than X-CSE on 10 instances.
In short, neither X-CSE nor I-CSE is clearly better than the other on Killer Sudoku. The
successes of I-CSE show that it can be worthwhile to extract conflicting AC-CSs.

5.6 Other Problems

In this section we investigate the benefit and overhead of X-CSE on a larger set of
problems. 47 example ESSENCE′ models were included with Savile Row 1.5 [12]. Four
of these are used as case studies above. In this section we use the other 43 problems,

Automatically Improving Constraint Models in Savile Row 603

2 5 10 20 50 100 200 500

1e
−0

3
1e

−0
2

1e
−0

1
1e

+0
0

1e
+0

1

Total time for X−CSE (s)

S
pe

ed
−u

p
w

ith
 I−

C
S

E

●●
●

●

●

●
●●

●

●

●

●●●●●●●●●●●●●

●

I−CSE BIBD
I−CSE SONET
I−CSE Killer Sudoku
I−CSE Molnars

2 5 10 20 50 100 200 500

1e
−0

3
1e

−0
2

1e
−0

1
1e

+0
0

1e
+0

1

Total time for X−CSE (s)

S
pe

ed
−u

p
w

ith
 I−

C
S

E
−N

C

●
● ●

●

● ● ●● ● ●● ●●●●●●●●●●●●●

●

I−CSE−NC BIBD
I−CSE−NC SONET
I−CSE−NC Killer Sudoku
I−CSE−NC Molnars

Fig. 3. Comparison of X-CSE with I-CSE (top) and I-CSE-NC (bottom)

almost all of which were written before X-CSE was conceived. Of these 43 problems,
16 have no AC-CSs and 27 have them.

Figure 4 (left) plots the time taken by Savile Row (including running MINION to
enforce SACBounds). In some cases applying X-CSE speeds up Savile Row overall.
Figure 4 (right) plots total time. Only two problems searched fewer nodes with X-CSE:
Plotting (2% reduction) and waterBucket (21% reduction) and for both these problems
the search time saved is outweighed by additional time required in Savile Row. For
those problems that are sped up overall, there are two reasons: in some cases (e.g.
quasiGroup5Idempotent, pegSolitaireState) X-CSE speeds up MINION without reduc-
ing the node count; and in other cases X-CSE speeds up Savile Row and not MINION.
In summary, X-CSE provides a modest benefit on some of these problems and is a small
overhead on others.

604 P. Nightingale et al.

●

●

●
●●

●

●

●

●

●
●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

1e−01 1e+00 1e+01 1e+02 1e+03

0.
6

0.
8

1.
0

1.
2

1.
4

Savile Row time without X−CSE

S
pe

ed
 u

p
fa

ct
or

 w
ith

 X
−C

S
E

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

5e−01 5e+00 5e+01 5e+02

0.
8

0.
9

1.
0

1.
2

1.
4

Total time without X−CSE

S
pe

ed
 u

p
fa

ct
or

 w
ith

 X
−C

S
E

Fig. 4. Savile Row time only (left), and total time (right) on a set of 43 problems

6 Future Work

X-CSE is able to extract sets of identical terms shared among a set of AC-expressions. It
is unable to match non-identical terms that are equivalent after a simple transformation.
On the other hand, Active CSE [16] (described in Section 2.2) can match non-identical
expressions that are identical after a simple transformation, but usually cannot extract
AC-CSs. Suppose we had expressions x − y and y − x. They could in principle be
extracted by Active CSE, with one replaced by an auxiliary variable aux and the other
replaced by −aux . However, if we have x − y + z and y − x + z, the z term hides
the common subexpression and neither X-CSE nor Active CSE can detect it. Exactly
this situation arises in a potable water management problem (Choi and Lee [4]). Choi
and Lee extracted the common subexpressions manually and proved that constraint
propagation is strengthened by doing so.

Our proposed future work is to integrate X-CSE and Active CSE to create a single al-
gorithm that is able to reveal AC-CSs by performing transformations. One (very simple)
example of a transformation is multiplying by −1 to reveal the common subexpression
in x − y + z and y − x + z. A second example is negation (followed by De Morgan’s
law) to reveal that ¬A ∨ ¬C may be extracted from A ∧C and ¬A ∨ ¬B ∨ ¬C.

7 Conclusions

We have introduced and described a new algorithm, X-CSE, to perform Associative-
Commutative Common Subexpression Elimination (AC-CSE) as an automated mod-
elling step for finite domain constraint satisfaction problems. X-CSE is able to find
common subexpressions which reduce search in four sample problems: BIBD, SONET,
Killer Sudoku and Molnar’s Problem. Of particular importance, X-CSE can interact
with other automated modelling techniques, thereby magnifying the power of those
techniques and X-CSE. We suggest that X-CSE is preferable to an earlier algorithm for
AC-CSE, namely I-CSE, because it is able to exploit frequently occurring short com-
mon subexpressions. In our experiments X-CSE outperformed I-CSE in most cases.
We conclude that X-CSE is a valuable addition to the armoury of automated constraint
modelling techniques, both alone and in combination with other techniques.

Automatically Improving Constraint Models in Savile Row 605

Acknowledgements. We would like to thank the Royal Society for funding through Dr
Jefferson’s URF, and the EPSRC for funding this work through grant EP/H004092/1.

References

1. Araya, I., Neveu, B., Trombettoni, G.: Exploiting common subexpressions in numerical
CSPs. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 342–357. Springer, Heidelberg
(2008)

2. Beldiceanu, N., Simonis, H.: A constraint seeker: Finding and ranking global constraints
from examples. In: Lee (ed.) [10], pp. 12–26

3. Bessiere, C., Cardon, S., Debruyne, R., Lecoutre, C.: Efficient algorithms for singleton arc
consistency. Constraints 16(1), 25–53 (2011)

4. Choi, C.W., Lee, J.H.M.: Solving the salinity control problem in a potable water system. In:
Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 33–48. Springer, Heidelberg (2007)

5. Frisch, A., Jefferson, C., Miguel, I.: CSPLib problem 035: Molnar’s problem,
http://www.csplib.org/Problems/prob035

6. Frisch, A.M., Jefferson, C., Miguel, I.: Constraints for breaking more row and column sym-
metries. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 318–332. Springer, Heidelberg
(2003)

7. Frisch, A.M., Jefferson, C., Miguel, I.: Symmetry-breaking as a prelude to implied con-
straints: A constraint modelling pattern. In: Proc. 16th European Conference on Artificial
Intelligence, ECAI 2004 (2004)

8. Frisch, A.M., Miguel, I., Walsh, T.: CGRASS: A system for transforming constraint satisfac-
tion problems. In: O’Sullivan, B. (ed.) CologNet 2002. LNCS (LNAI), vol. 2627, pp. 15–30.
Springer, Heidelberg (2003)

9. Jefferson, C., Moore, N., Nightingale, P., Petrie, K.E.: Implementing logical connectives in
constraint programming. Artificial Intelligence 174, 1407–1429 (2010)

10. Lee, J. (ed.): CP 2011. LNCS, vol. 6876. Springer, Heidelberg (2011)
11. Mears, C., Niven, T., Jackson, M., Wallace, M.: Proving symmetries by model transforma-

tion. In: Lee (ed.) [10], pp. 591–605
12. Nightingale, P.: Savile Row, a constraint modelling assistant (2014),

http://savilerow.cs.st-andrews.ac.uk/
13. Puget, J.F.: Constraint programming next challenge: Simplicity of use. In: Wallace, M. (ed.)

CP 2004. LNCS, vol. 3258, pp. 5–8. Springer, Heidelberg (2004)
14. Puget, J.F.: Symmetry breaking using stabilizers. In: Rossi, F. (ed.) CP 2003. LNCS,

vol. 2833, pp. 585–599. Springer, Heidelberg (2003)
15. Rendl, A.: Effective Compilation of Constraint Models. Ph.D. thesis, University of St An-

drews (2010)
16. Rendl, A., Miguel, I., Gent, I.P., Jefferson, C.: Automatically enhancing constraint model

instances during tailoring. In: Bulitko, V., Beck, J.C. (eds.) SARA. AAAI (2009)
17. Smith, B.M.: Symmetry and search in a network design problem. In: Barták, R., Milano, M.

(eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 336–350. Springer, Heidelberg (2005)
18. Stuckey, P.J., Tack, G.: MiniZinc with functions. In: Gomes, C., Sellmann, M. (eds.) CPAIOR

2013. LNCS, vol. 7874, pp. 268–283. Springer, Heidelberg (2013)
19. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press, Cambridge

(1999)

http://www.csplib.org/Problems/prob035
http://savilerow.cs.st-andrews.ac.uk/

Improving GAC-4 for Table and MDD Constraints

Guillaume Perez and Jean-Charles Régin

Université Nice-Sophia Antipolis, I3S UMR 6070, CNRS, France
{guillaume.perez06,jcregin}@gmail.com

Abstract. We introduce GAC-4R, MDD-4, and MDD-4R three new algorithms
for maintaining arc consistency for table and MDD constraints. GAC-4R im-
proves the well-known GAC-4 algorithm by managing the internal data struc-
tures in a different way. Instead of maintaining the internal data structures only
by studying the consequences of deletions, we propose to reset the data struc-
tures by recomputing them from scratch whenever it saves time. This idea avoids
the major drawback of the GAC-4 algorithm, i.e., its cost at a shallow search-
tree depth. We also show that this idea can be exploited in MDD constraints.
Experiments show that GAC-4R is competitive with the best arc-consistency al-
gorithms for table constraints, and that MDD-4R clearly outperforms all classical
algorithms for table or MDD constraints.

1 Introduction

We consider table and Multi-valued Decision Diagram (MDD) constraints, which list
the allowed combinations of values for the variables in the scopes of the constraints.
Those constraints are useful for modeling and solving many real-world problems. They
can be specified either directly, by input from the user, or indirectly by synthesizing
other constraints or subproblems [17,11].

Table constraints are fundamental and implemented in any CP solver. This is the case
for the or-tools1 solver, which won the 2013 MiniZinc Challenge.2 The or-tools solver
does not implement many global constraints, but has an implementation of GAC-4R,
which is our efficient algorithm for enforcing arc consistency on table constraints. In
this paper, we introduce GAC-4R, and we adapt it to enforce arc consistency on MDD
constraints.

Consider an extensional constraint C. Arc-consistency algorithms for C operate as
follows: for each value a in the domain of a variable x, they search for a combination
of values in the current domains of the other variables in the scope of C that contains
(x, a) and satisfies C. A tuple of C is a combination of values in the domain of the
variables in the scope of C. We say the the tuple is allowed, or a support, when it
appears in the constraint’s definition. We say that the tuple is valid if and only if its
values appear in the current domains of the respective variables. Note that a valid tuple
is not necessarily allowed. Arc-consistency algorithms can be distinguished depending
on how they manage allowed and valid tuples [16]. While the allowed tuples do not

1 http://code.google.com/p/or-tools/
2 http://www.minizinc.org/challenge2013/call_for_problems.html

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 606–621, 2014.
c© Springer International Publishing Switzerland 2014

http://code.google.com/p/or-tools/
http://www.minizinc.org/challenge2013/call_for_problems.html

Improving GAC-4 for Table and MDD Constraints 607

change during search because they are listed in the constraint definition, their validity
is determined by the current domains.

While some arc-consistency algorithms operate on allowed tuples to check their va-
lidity, others first consider the current domains and look for a combination satisfying
the constraint.

Existing algorithms mainly differ by how they operate when a value is deleted. Some
algorithms are lazy (e.g., GAC-Schema [3], STR-2 [14], or STR-3 [15]). They try to
reduce the operations executed at each modification (i.e., deletion of value of a domain)
at the cost of increasing the complexity of the implementation. Others, such as GAC-4
[19], operate more systematically, thus keeping the implementation simple.

GAC-4 associates, to each variable-value pair (x, a), the list S(x, a) of valid tu-
ples involving (x, a) that satisfy C. When a value b is deleted from the domain of a
variable y, the tuples associated with (y, b) are no longer valid and must be removed.
Consequently, for each tuple t ∈ S(y, b) and for each variable-value pair (z, c) in t, we
remove t from S(z, c). If S(z, c) becomes empty, then no valid tuple involving (z, c)
and satisfying C exists. Thus, we can safely remove c from D(z).

GAC-4 is efficient when there are only few tuples for each value, which typically
occurs at deeper levels of the search tree. However, at shallower levels its performance
is qualitatively different in that maintaining the internal data structures is costly. In this
paper, we give a solution to this issue.

Indeed, we show that the performance of GAC-4 can be improved by rebuilding,
from scratch, the data structures of GAC-4 when the modifications have reached a given
threshold. We illustrate such a situation with an example. Consider a table constraint
with k tuples and involving a variable x having 10 values in its domain (the arity is
not important here). Assume that the tuples are homogeneously distributed among the
values of x. In other words, every value of x appears in about k

10 tuples. Now, assume
that a is assigned to x. Thus, only about k

10 tuples remain valid. GAC-4 will consider
and propagate deletions of 9k

10 tuples although only about k
10 tuples remain. Thus, it is

more effective to reset the constraint with the elements of S(x, a), in other words, to
rebuild the constraint from scratch. In this situation, we restart from a tuple set of only
k
10 tuples and save a factor of 9. We can determine exactly when it is worthwhile to
apply such an operation, which is when the sum of the sizes of S lists of the deleted
values of x is larger than the sum of the sizes of S lists of the remaining values in the
current domain of x.

In this paper, we introduce GAC-4R, which exploits that idea. The challenge is to
maintain this mechanism throughout the search, because we need to undo this operation
upon backtracking. To this end, we propose to represent the list of supported tuples for
each variable-value pair using sparse sets.

Another way for improving the performance of arc-consistency algorithms for ta-
ble constraints is to reduce the size of the representation of the tuples because the
complexity depends on it. Several algorithms for compressing the allowed tuples of
a constraint have been proposed, and arc consistency algorithms adapted for dealing
with them [12,9,21]. Multi-valued Decision Diagrams (MDDs) are one of the most
advanced and powerful representations. Cheng and Yap provide mddc, an efficient al-
gorithm for enforcing arc consistency on MDDs based on GAC-3 [8,7]. In this paper,

608 G. Perez and J.-C. Régin

we define MDD-4, which adapts GAC-4 to MDD constraints, and introduce MDD-4R,
which implements our improvement in MDD-4.

The paper is organized as follows. First, we recall background information. Then,
we describe GAC-4R, our new version of GAC-4 based on resetting data structures.
Next, we introduce MDD-4 and MDD-4R, which adapts the idea of reset to MDDs.
After reviewing main existing GAC algorithms we discuss experiments that empirically
establish the advantages of our algorithms in practice. Finally, we conclude this paper.

2 Preliminaries

2.1 Definitions

Constraint Network. A finite constraint network N = (X,D, C) is defined as a set
of n variables X = {x1, . . . , xn}, a set of domains D = {D(x1), . . . , D(xn)} where
D(xi) is the finite set of possible values for variable xi, and a set C of constraints
between variables. A value a for a variable x is often denoted by (x, a).

Constraint. A constraint C on the ordered set of variablesX(C) = (xi1 , . . . , xir) is a
subset T (C) of the Cartesian productD(xi1)× · · · ×D(xir) that specifies the allowed
combinations of values for the variables xi1 , . . . , xir . An element of D(xi1) × · · · ×
D(xir) is called a tuple on X(C) and t[x] is the value of the tuple t assigned to x.
|X(C)| is the arity of C. We will denote by d the size of the largest initial domain and
by r the arity.

Arc Consistency. Let C be a constraint. A tuple t on X(C) is valid iff ∀x ∈ X(C),
t[x] ∈ D(x); and t is a support for (x, a) iff t[x] = a and t ∈ T (C). A value a ∈ D(x)
is consistent with C iff x /∈ X(C) or there exists a valid support for (x, a). C is arc
consistent iff ∀x ∈ X(C), D(x) �= ∅ and ∀a ∈ D(x), a is consistent with C.

Table and MDD Constraints. Those constraints are said to be defined in extension. A
table constraint is a constraint whose tuples satisfying the constraint are explicitly given
in extension. An MDD constraint is a constraint which is defined thanks to a multi-
valued decision diagram which is an efficient way to know whether or not a combination
of values of the variables involved in the constraints satisfies the constraint.

2.2 GAC-4

The data structures of GAC-4 are quite simple. GAC-4 associates with each value a of
each variable x the list S(x, a) of the tuples of T (C) containing (x, a). It maintains the
following invariant:
∀x ∈ X(C), ∀a ∈ D(x): S(x, a) contains the valid tuples t ∈ T (C) with t[x] = a.

Thus, if a list S(x, a) becomes empty then GAC-4 removes the value a from the domain
of x. The initialization is done as follows: for each tuple t and for each value (x, a)
belonging to t we add t to S(x, a). Each time there is a deletion of a value of a variable
involved in C, this deletion is added to a deletion set and the constraint is pushed in
order to be revised later. Function REVISEGAC-4 (See Algorithm 1) is called in order
to propagate the consequences of these deletions. It maintains the S lists.

Improving GAC-4 for Table and MDD Constraints 609

Algorithm 1. REVISEGAC-4
REVISEGAC-4(C: constraint; deletionSet: list): Boolean
for each (x, a) ∈ deletionSet do

for each t ∈ S(x, a) do
for each (z, c) ∈ t do remove t from S(z, c)
if S(z, c) = ∅ then remove c from D(z) ; add (z, c) to deletionSet
if D(z) = ∅ then return False;

return True

2.3 Sparse Set

Sparse set is an efficient data structure for manipulating sets with a fixed size universe
U [5]. It has been successfully used in CP for representing sets or lists [8,7,14,15]. We
will use it in GAC-4R and MDD-4R, so we give details of it.

For convenience, the elements in U are mapped to integers 0 through |U | − 1. The
representation has three components: two vectors (named dense and sparse), each
|U | elements long and a scalar (named members) that records the number of mem-
bers in the set. The values in the array dense from 0 to members - 1 corresponds
to the elements in the set. The array sparse contains indices of the array dense. If
a number k is a member of the set, it must satisfy two conditions 0 ≤sparse[k] <
members and dense[sparse[k]] = k. It means that sparse[k] is the index i in the
array dense of the value k, that is, we have dense[i] = k. Here is a sparse set:

sparse 5 2 - 0 - 1 - 3 4 -
dense 3 5 1 7 8 0

members 6

The membership, addition and deletion functions are defined in Algorithm 2. Func-
tion DELETE has been modified from its original definition in [5] in order to be able
to restore easily the sparse set after some deletions. Consider the sparse set previously
defined. Suppose that member 7 is deleted. Before the deletion the scalar members is
equal to 6 and after the deletion we have the new sparse set:

sparse 3 2 - 0 - 1 - 5 4 -
dense 3 5 1 0 8 7

members 5

When 7 has been deleted, the members 7 and 0 (i.e. the last value of the set) have
been exchanged. Precisely, we swap dense[sparse[7]] and dense[sparse[0]] and we swap
sparse[7] and sparse[0]. Thanks to these swaps, we can easily restore the sparse set
simply by setting the members value to 6. The sparse set contains the same elements
but not in the same order.

2.4 Multi-valued Decision Diagram

This presentation is inspired from [22]. Multi-valued decision diagram (MDD) is a
method for representing discrete functions. It is a multiple-valued extension of BDD [6].

610 G. Perez and J.-C. Régin

Algorithm 2. Functions for manipulating a sparse set. k is an element. S is a sparse
set with two arrays S.dense and S.sparse and scalar S.members.
MEMBER(k, S): return S.sparse[k] < S.members and S.dense[S.sparse[k]] = k
ADD(k, S) // assume k is not a member

S.sparse[k] ← S.members
S.dense[S.members] ← k
S.members← S.members +1

DELETE(k,S) // assume k is a member
ik ← S.sparse[k]; ie ← S.members −1; e ← S.dense[ie]
S.sparse[e] ← ik
S.dense[ik] ← e
S.sparse[k] ← ie
S.dense[ie] ← k
S.members← S.members −1

An MDD is a directed acyclic graph (DAG) used to represent some multi-valued func-
tion f : {0...d − 1}r → {0...d − 1}, based on a given integer d. Given the r input
variables, the DAG representation is designed to contain r layers of nodes, such that
each variable is represented at a specific layer of the graph. Each node on a given layer
has d outgoing arcs to nodes in the next layer of the graph. Each arc is labeled by its cor-
responding integer. The final layer is represented by the terminal nodes having values
in the range {0, ...d− 1}.

Fig. 1. An MDD representing a function defined
on variables x1 and x2. Layer 1 (resp. 2) corre-
sponds to x1 (resp. x2). Terminal node tt is true
while ff is false. The function is true for the tu-
ples (a, a), (a, b), (c, a), (c, b), (c, c).

The function encoded by an MDD may be evaluated on a given set of r input vari-
ables by traversing the graph, starting from the root (i.e. the highest-layer variable in
the graph), and choosing the outgoing arc at each node corresponding to the input value
of the variable represented at the current layer of the graph. This traversal continues
until a terminal node is reached. The resulting value of the function is indicated by the
value of the terminal node reached along this evaluation path. MDDs have been widely
used in CP because there are powerful for modeling problems or for representing some
functions or domain store [1,10,11,2]. In CP there are usually two terminal nodes tt,
which is true, and ff which is false. Figure 1 gives an example of MDD. We have the
path (0, 1, tt) so f(a, a) and f(a, b) are true because tt is true.

An MDD is ordered if each variable is encountered at most once on each path from
the root to a terminal. An MDD is fully-reduced if it does not contain any nodes with

Improving GAC-4 for Table and MDD Constraints 611

all k outgoing arcs pointing to the same node and does not contain duplicate nodes for
a given layer in the DAG. Fully-reduced and ordered MDDs are mainly used.

Arc Consistency and MDD. Cheng and Yap provide mddc, an algorithm maintaining
arc consistency for an MDD constraint based on GAC-3 [8,7]. In an MDD constraint,
the MDD models the set of tuples satisfying the constraint. Each variable of the MDD
corresponds to a variable of the constraint. An arc associated with an MDD variable
corresponds to a value of the corresponding variable of the constraint. It uses a depth
first search for traversing the MDD from the root node. Only arcs corresponding to
values belonging to the domain of the variables are used. Terminal nodes are either
positive or negative. A node x is marked positive if the subgraph traversed from x
reaches a positive node. If no terminal node can be reached from x or if only negative
nodes can be reached from x then x is marked negative. The algorithm saves the values
corresponding to the arcs having a positive terminating node (this means that the value
belongs to a valid tuple defined by the path). When the depth first search ends, the values
that have not been saved may be safely removed because there is no longer a path from
the root to a positive terminal node, which involves an arc corresponding to this value.

In mddc, it is important to note that any arc is traversed at most once, because a
depth first search is used and because the MDD is not changed during the search by
the algorithm. This is only the way the MDD is traversed that depends on the current
domains. Note also that it is not straightforward to find an arc corresponding to a value
belonging to the current domain and this task is more difficult when the domain size is
reduced.

3 GAC-4R

GAC-4 is a simple and easy algorithm to implement. Its worst case complexity is opti-
mal. However it is mainly focused on the study of the consequences of the deletions of
values but it could be worthwhile to recompute some data structures instead of main-
taining them incrementally. A simple example is the computation of an intersection.
Suppose that you want to maintain the intersection C of two sets A and B. You com-
puted this intersection when A and B had 100 values and you determined that C has 50
values. Suppose that a value v of A is deleted. Then, your algorithm will recompute the
set C by checking whether C contains v or not, and remove v from C if v ∈ C. Now,
suppose that we remove 98 values from A, and we have A = {a, b}. Then it is faster
to check whether a and b belong to B and build C consequently instead of considering
the deleted values. Only two operations have to be performed to define the new set C.
In this case, we will say that we reset C.

This idea had been applied to define which algorithm should be preferred between
AC-2001 and AC-6 [4] or to design an adaptive algorithm [20]. Combining GAC-4 with
this idea will save a lot of computations for a shallow depth of the tree search. Such a
combination requires to answer two questions:

1. How can we know whether a reset is better or not?
2. How can we perform this reset and the restoration of the previous set efficiently?

612 G. Perez and J.-C. Régin

The first question answer is simple. Consider a variable x and Δ(x) the set of val-
ues of D(x) that have been deleted and not yet considered by GAC-4 algorithm (i.e.
they belong to deletionSet). The number of tuples that are no longer valid, denoted by
#TΔ(x), is given by the sum of the size of the S lists of the values in Δ(x), and the
number of remaining tuples is the difference between the total number of tuples and
#TΔ(x) because a tuple contains only one value per variable. So we have:

Property 1. Let x be a variable, Δ(x) be the values of x that have been deleted and
that must be propagated, #TΔ(x) =

∑
a∈Δ(x) |S(x, a)| be the number of tuples that

are no longer valid and T be the current number of tuples.
If #TΔ(x) > T

2 then a reset operation will consider less tuples than the application of
Function REVISEGAC-4

This property is useful only if we can answer the second question. We show that we
can use sparse sets for efficiently computing a reset operation in such a way that the
restoration is easy.

The question can be reformulated as follows. Consider S a set with two lists of
elementsR andQ. The lists are disjoint and their union contains exactly all the elements
of S. The setsR andQ are not explicitly given, that is, we do not have a set representing
them but we can traverse them (in term of programming language, they are given by an
iterator) and their size is known. We want to modify S by removing the set of elements
R ⊆ S in order to obtain a set containing only the elements of Q. However, instead
of performing |R| operations for this task, we want to have a number of operations
bounded by min(|R|, |Q|). In addition, we have to be able to restore the set S after
performing the modifications with a similar complexity (or less).

Algorithm 3. Function re-add of a sparse set S. k is an element
RE-ADD(k, S) // We assume that S.dense[S.sparse[k]] = k
ik ← S.sparse[k]; e ← S.dense[S.members]
S.sparse[k] ← S.members
S.sparse[e] ← ik
S.dense[S.members] ← k
S.dense[ik] ← e
S.members← S.members+1

Thanks to sparse sets we can give a nice answer to this question. Let S be represented
by a sparse set. If |R| ≤ |Q| then we delete the elements ofR from S as it is explained in
Preliminaries section. The restoration of S consists of modifying the scalar members
of S. Assume that |Q| < |R|. S is recomputed as follows. First, we set S.members to
0. Then, we traverse Q and for each element a ∈ Q we add a to S by calling Function
RE-ADD (See Algorithm 3) which is a modified version of Function ADD of the sparse
set. It exploits the fact that the value which is added was previously in the set. Thus, it
proceeds to a swap in a way similar as the one used by Function DELETE in order to be
able to restore the set in the future. More precisely, when an element i is re-added to
the sparse set, we swap i and the value j at the index defined by members. That is, we
exchange the value of i and the value of j in the sparse array and we exchange i and
j in the dense array. For instance, consider the left sparse set:

Improving GAC-4 for Table and MDD Constraints 613

sparse 3 2 - 0 - 1 - 5 4 -
dense 3 5 1 0 8 7

members 2

sparse 3 4 - 0 - 1 - 5 2 -
dense 3 5 8 0 1 7

members 3

The set contains the values 3 and 5. If we re-add the value 8 then we will exchange the
value of dense[members], i.e. 1, with 8. So we will have dense[2] = 8;dense[4] =
1; sparse[8] = 2; sparse[1] = 4. We obtain the right sparse set.

The advantage of this method is that the restoration of the scalar members is enough
for restoring the sparse set. Function RE-ADD has a complexity in O(1) per call. Thus,
we can re-add |Q| elements in O(|Q|).

Algorithm 4. GAC-4R. T is the current number of tuples
REVISEGAC-4R(C: constraint; deletionSet: list, T : number of tuples): Boolean

for each x ∈ X(C) do #TΔ(x) ← 0
for each (x, a) ∈ deletionSet do #TΔ(x) ← #TΔ(x) + |S(x, a)|
#TΔmax ← maxx∈X(C)(#TΔ(x))
if #TΔmax > T

2
then

// we reset the data structures
pick a variable x with #TΔ(x) = #TΔmax
Tset ← ∅; T ← 0
for each a ∈ D(x) do add S(x, a) in Tset
for each y ∈ X(C) do

for each b ∈ D(y) do S(y, b).members← 0

// we re-add valid tuples into the S lists
for each t ∈ Tset do

if t is valid then
for each i = 1...n do RE-ADD(t,S(xi, t[i]))
T ← T + 1

// we remove values having an empty S list.
for each y ∈ X(C) do

for each b ∈ D(y) do
if S(y, b) = ∅ then remove b from D(y)
if D(y) = ∅ then return False;

else
// classical GAC-4 deletion process
for each (x, a) ∈ deletionSet do

for each t ∈ S(x, a) do
for each i = 1...n do

DELETE(t[i],S(xi, t[i]))
T ← T − 1
if S(xi, t[i]) = ∅ then remove t[i] from D(xi)
if D(xi) = ∅ then return False;

return True

614 G. Perez and J.-C. Régin

A possible implementation of GAC-4R is given by Algorithm 4. Each list S is rep-
resented by a sparse set with a fixed size universe equal to |T (C)|. For convenience, we
will consider that t is a tuple and also the index of the tuple in the table of tuples.

The complexity of GAC-4R remains the same as the complexity of GAC-4, because
the deletion of a tuple or the re-addition of a tuple have the same complexity which
corresponds to the arity of the constraint. In addition traversing the valid tuples costs
at least the cost of traversing all the domains of the variables involved in the constraint
and since we do this only when there are less valid tuples than non valid tuples, the
traversal of all the domains does not impact the complexity.

4 MDD-4R

We propose to adapt the principles of GAC-4R to be able to deal with an MDD instead
of a table. First, we will slightly modify the MDD from which the constraint is defined.
Then we design the MDD-4 algorithm. Unlike mddc, MDD-4 modifies and maintains
the MDD during the search for a solution. Next, we will study the reset principle for
MDD-4 and explain when the reset should be done.

4.1 MDD Reformulation

ff Removal. The node ff is not useful for maintaining arc consistency. So, we remove it
and also all the nodes that do not belong to a path from the root to tt. This can be done
by performing a depth first search.

Semi-Reduced MDD. We relax the fully reduced property of the MDD. We accept
to have nodes with all k outgoing arcs pointing to the same node. We will say that
we have a semi-reduced MDD. Note our algorithm may also work with MDDs having
duplicate nodes, i.e., MDDs that are not even semi-reduced. Figure 2 gives an example
of a reformulation. Each reduced arc in a fully reduced MDD is replaced by d arcs in
the semi-reduced MDD. We do not find any problem for which it really changes the
space complexity.

Fig. 2. Reformulation of an MDD. The left graph is the initial MDD. The middle graph represents
the deletion of the node ff. The right graph is the semi-reduced MDD that will be used by MDD-4.

Improving GAC-4 for Table and MDD Constraints 615

4.2 MDD-4 Algorithm

The algorithm MDD-4 is a modification of GAC-4 for dealing with MDDs. We differ-
entiate two parts: the maintenance of the MDD during the search for a solution and the
maintenance of the S lists.

In GAC-4 the maintenance of the list of valid tuples is made by managing the S lists.
With an MDD this is more complex, because the tuples are not explicitly represented
in an MDD. The representation is implicit: a valid tuple corresponds to path from the
root to the node tt which traverses only arcs corresponding to valid values. In order to
avoid checking all the time the validity of the values, like in mddc, and to make sure
that we do not uselessly traverse a path we propose to delete the arcs corresponding to
values that are no longer valid. Then, we delete the nodes and arcs that do not belong to
a path from the root to tt. We call this process the maintenance of the MDD. We do not
need to explicitly search for such paths. It is sufficient to delete the nodes from which
we can no longer reach the root or the node tt. The idea is to check whether a deleted
arc (i, j) is the only outgoing arc from i or the only incoming arc to j, because if a
node has no longer any outgoing arc or any incoming arc then we can remove it. We
implement this process as follows. When values are removed from domains we delete
the corresponding arcs in the MDD and push the extremities into two queues Q↑ and
Q↓ (See Function REMOVEARC). Each queue can contain only once a node. If an arc
(i, j) is deleted then i is pushed into Q↑ and j is pushed into Q↓. Then the queues are
proceeded by layer (See Lines 2 and 3). The elements of Q↑ are taken from the deepest
to the shallowest layer. For each element i ∈ Q↑ we remove i from the queue and we
check whether there is an outgoing arc from i. If there is none, then i is removed from
the graph, so arcs are deleted and new nodes are added to the queues. The elements of
Q↓ are taken from the shallowest to the deepest layer. For each element j ∈ Q↓ we
remove j from the queue and we check whether there is an incoming arc from j. If there
is none, then node j is removed from the graph, so arcs are deleted and new nodes are
added to the queues. The process is repeated until the queues are empty.

In order to remove values from domain variables we need to have a relation between
the values and the arcs of the MDD. In MDD-4 this relation is defined by the S lists,
so the S lists contain arcs instead of tuples as in GAC-4. Precisely, for each value (x, a),
the list S(x, a) contains the set of arcs in the MDD labeled with the value a at the layer
of x. If there is no more arc for a value (x, a) in the MDD, then S(x, a) becomes empty
and we can safely remove a from D(x). Once again, S lists are implemented by sparse
sets.

A synopsis of the code of MDD-4 is given by Algorithm 5. In order to restore effi-
ciently the MDD we use sparse sets for representing the neighborhood of the nodes.

We can establish an interesting property:

Property 2. MDD-4 cannot perform more operations than GAC-4 for establishing arc
consistency of a table constraint

Sketch of Proof. The deletion of a value in GAC-4 implies to consider all the current
tuples containing the values. The deletion of a tuple in GAC-4 costs r operations (i.e.,
the arity of the constraint), because the tuple belongs to r S-list (one for each value of
the tuple). When a value(x, a) is deleted in MDD-4, we have to delete all the arcs corre-
sponding to this value. The number of deleted arcs is bounded by the number of tuples

616 G. Perez and J.-C. Régin

Algorithm 5. MDD-4
REMOVEARC(MDD, Q↓, Q↑, (i, j)):Boolean

delete the arc (i, j) from the MDD
y ← variable of the arc (i, j); b ← value of the arc (i, j)
remove the arc (i, j) from the S(y, b)
if S(y, b) = ∅ then remove b from D(y)
push nodes i into Q↓ and j into Q↑ if they are not already in.
return (D(y) �= ∅)

REVISEMDD-4(C: constraint; deletionSet: list): Boolean
Q↓← ∅; Q↑← ∅

1 for each (x, a) ∈ deletionSet do
for each arc (i, j) ∈ S(x, a) do

if ¬ REMOVEARC(MDD,Q↓, Q↑, (i, j)) then return False

while Q↓�= ∅ or Q↑�= ∅ do

2 while Q↑�= ∅ do
pick the node i ∈ Q↑ with the lowest layer
if there is no outgoing arc from i then

for each arc (j, i) do
if ¬ REMOVEARC(MDD,Q↓, Q↑, (j, i)) then return False

remove i from Q↑
3 while Q↓�= ∅ do

pick the node j ∈ Q↓ with the highest layer
if there is no incoming arc to j then

for each arc (j, i) do
if ¬ REMOVEARC(MDD,Q↓, Q↑, (j, i)) then return False

remove j from Q↓

return True

involving (x, a). The deletion of (x, a) triggers the maintenance of the extremities of
the deleted arcs. Since the deleted arcs belong to deleted tuples, the number of arcs that
are considered through the nodes maintenance cannot be greater than the number of
elements of all the tuples involving (x, a). Thus the property holds.

4.3 MDD-4R

MDD-4 can be improved by integrating the idea of resetting the data structures instead
of being focused only on the deletions. MDD-4 works by layer in the MDD, that is,
variable per variable. Let #A(x) be the total number of arcs associated with a value of
a variable x. This number can be stored and maintained for each variable. For a given
layer corresponding to the variable x, we have to compute #DA(x) the number of arcs
that will be deleted for this layer. By comparing this number to #A(x) we will know
whether it is better to reset the layer or not. Resetting the layer means that we rebuild
the layer of the graph from the remaining nodes by adding their remaining arcs instead

Improving GAC-4 for Table and MDD Constraints 617

of deleting the arcs and nodes of the layer. The computation of #DA(x) depends on
the type of modification occurring in the MDD. There are two kinds of modifications:

– First, the arcs corresponding to the deletions of values of a variable x are removed.
In this case, we have #DA(x) =

∑
a∈Δ(x) |S(x, a)|. This happens only once.

– Second, the consequences of the deletion of arcs and nodes in the MDD are prop-
agated, in other words the MDD is maintained. MDD-4R proceeds by layer. For a
given variable y, MDD-4 has the list Q(y) of nodes that must be deleted, which is
for the given layer the content of the queue Q↑ or Q↓ depending on the sense of
propagation. We have #DA(y) =

∑
z∈Q(y) |N(y, z)|, where N(y, z) is the list of

arcs associated with y having z as extremity.

Property 3. Let x be any variable, If #DA(x) > #A(x)
2 then a reset operation for the

layer of x will consider less arcs than the application of MDD-4 for this layer.

Note that this property computes exactly whether it is better to reset or not the data
structure.

The reset idea can be implemented in an easy way by using sparse sets for represent-
ing the neighborhood of the nodes.

5 Related Work

Allowed of or-Tools. The or-tools solver integrates an efficient algorithm when there
are only few tuples. It is based on GAC-3. The algorithm, that we will name allowed,
indexes the tuples and maintains a bitset of the valid tuples. For each variable x and for
each value a, a bitset mask of tuples containing the value (x, a) is maintained. If a value
(y, b) is removed then all the tuples of the bitset mask of (y, b) are cleared in the bitset
of valid tuples. Then, the algorithm scans the values of all the variables to see if there is
an active tuple which supports it thanks to bitwise operators.

STR2. It has been proposed in [14]. It is based on GAC-3. It maintains a sparse set
of the valid tuples and improves the test of the validity of a tuple by considering only
the variables whose domain recently changed. It also uses the tuples that have been
computed valid as support for all the other values involved in the tuple, like in GAC-
Schema, and so it decreases the number of values for which we have to search for a new
support.

STR3. It has been defined in [15]. It is based on GAC-Schema (or GAC-6). For each
variable x and for each value a of x it precomputes the list of tuples involving (x, a). It
uses sparse set for maintaining the validity of tuples and to speed-up the test of validity.

We do not include the algorithms of [18] because the authors recognize that when
the arity of the table increases, the existing state-of-the-art propagators STR3 and mddc
are faster than their algorithms.

618 G. Perez and J.-C. Régin

6 Experiments

Machine: Dell server having four E7- 4870 Intel processors, each having 10 cores with
256 GB of memory and running under Scientific Linux.

Solver: or-tools 3158.

Selected Benchmarks: All problems can be downloaded from the Solver Competition
archive [13]. We selected problems having only positive table constraints and at least
one variable whose domain is not Boolean. We do not include BDD-based instances
and instances involving only binary constraints because we are interested in large arity
constraints. rand-8-20-5-18-800 is abbreviated by rand-1 and rand-10-20-10-5-10000
is abbreviated by rand-2. half-n25-d5-e56-r7-1 is abbreviated by half-1 and contains
the problems of half-n25-d5-e56-r7 that are solved by mddc in less than 1800s and
half-n25-d5-e56-r7-2 is abbreviated by half-2 and contains the problems of half-n25-
d5-e56-r7 that are not solved by mddc in less than 1800s.

We also used random problems that we defined. One of the most difficult parameter
to define is the tightness of the constraint that is, the ratio between the number of tuples
allowed by the constraint and the total number of tuples. We use ratio from 0.00004%
to 1%. For a comparison, we can note that an alldiff constraint defined on a set of k
variables sharing the same k values is equal to k!

kk which is 0.6% for k = 7; 0.034% for
k = 10 and 0.0003% for k = 15.

Search Strategy: We select the variable that appears in most constraints and its smallest
value as proposed for testing mddc [7]. Our algorithm is more robust than the Cheng’s
one for the strategy, because we maintain the MDD whereas they traverse the initial
MDD according to the current domains. Thus mddc algorithm can lose time for find-
ing an arc corresponding to a value belonging to the current domain of the associated
variable. This problem does not arise in neither MDD-4 nor MDD-4R.

Results: Times are expressed in seconds. Time Out (T-O) is set at 1800s. All means are
geometric.

6.1 General Comparison

Table 1 gives results for the selected benchmarks. MDD-based algorithms perform well
in general. Algorithm mddc is clearly improved by MDD-4 and MDD-4R algorithms.

Table 1. Geometric means of the time needed to solve some categories of problems

benchmark MDD-4 MDD-4R mddc GAC-4 GAC-4R STR2 STR3 allowed
nonograms 0,33 0,27 0,8 4,3 3,18 2,77 1,52 1,03
cw-m1c-ogd 3,07 1,72 32,69 4,03 2,74 13,21 2,69 3,09
cw-m1c-uk 3,96 1,91 21,14 3,24 2,27 8,32 1,89 2,22
rand-1 6,06 2,93 13,71 2,90 1,38 1,56 1,93 1,09
rand-2 192,47 50,51 186,35 241,56 170,36 141,03 T-O T-O
half-1 975,49 471,25 1438,20 T-O T-O T-O T-O T-O
half-2 1720 778,28 T-O T-O T-O T-O T-O T-O

Improving GAC-4 for Table and MDD Constraints 619

GAC-4R outperforms GAC-4 and is competitive with other GAC algorithms for table
constraints. The reset strategy is quite interesting and MDD-4R clearly outperforms all
the other algorithms.

We propose to study in detail the behavior of these algorithms according to the tight-
ness and the domain size. For each graph we select randomly 10 problems and run them
30 times and take the mean.

Fig. 3. Time needed to solve problems while increasing the domain size. Tightness is 1%.

Domain Size. We study the behavior of the algorithms while changing the domain size.
Each problem involves 100 variables and constraints of arity 7. The results are given
in Fig. 3. Modifying the domain may change the tightness so we set it at 1%. Clearly
MDD-4R is the best algorithm. The reset idea is also a clear improvement for GAC-4
and MDD-4. GAC-4R is competitive with STR2 and STR3.

Tightness. We set the domain size (8) and the arity (7) and we increase the tightness.
Each problem involves 40 variables and 40 constraints.

Fig. 4 presents the results. Once again the reset idea is worthwhile. STR2 outper-
forms STR3 and GAC-4R.

620 G. Perez and J.-C. Régin

Fig. 4. Time needed to solve problems while increasing the tightness. Domain size is 8.

The conclusion of these experiments is that MDD-based algorithms clearly outper-
form the algorithms based on table constraints when the tightness and/or the size of the
domains grow. The reset idea really improves the algorithms and GAC-4R is a compet-
itive algorithm. The most robust and globally the most efficient algorithm is MDD-4R.
This algorithm should be preferred in practice.

7 Conclusion

We have introduced MDD-4 and the two algorithms GAC-4R and MDD-4R which re-
spectively improved the algorithms GAC-4 and mddc. These algorithms are mainly
based on an adaptive method for maintaining the data structures. If a lot of deletions
are made then we reset the data structures from the remaining elements instead of
studying the consequences of the deletions. We have defined rules for maintaining the
data structures in the best way for GAC-4R and MDD-4R. The experiments show that
GAC-4R clearly improves GAC-4 and is competitive with STR2 and STR3. They also
show that MDD-4R is a clear improvement of mddc and that it outperforms all existing
algorithms.

Improving GAC-4 for Table and MDD Constraints 621

References

1. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A Constraint Store Based on Mul-
tivalued Decision Diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118–132.
Springer, Heidelberg (2007)

2. Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD Relaxations for Combi-
natorial Optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011. LNCS, vol. 6697,
pp. 20–35. Springer, Heidelberg (2011)

3. Bessière, C., Régin, J.-C.: Arc consistency for general constraint networks: preliminary re-
sults. In: Proceedings of IJCAI 1997, Nagoya, pp. 398–404 (1997)

4. Bessière, C., Régin, J.-C.: Refining the basic constraint propagation algorithm. In: Proceed-
ings of IJCAI 2001, Seattle, WA, USA, pp. 309–315 (2001)

5. Briggs, P., Torczon, L.: An efficient representation for sparse sets. ACM Letters on Program-
ming Languages and Systems 2, 59–69 (1993)

6. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers C35(8), 677–691 (1986)

7. Cheng, K., Yap, R.: An mdd-based generalized arc consistency algorithm for positive and
negative table constraints and some global constraints. Constraints 15 (2010)

8. Cheng, K.C.K., Yap, R.H.C.: Maintaining generalized arc consistency on ad hoc r-ary con-
straints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 509–523. Springer, Heidelberg
(2008)

9. Gent, I., Jefferson, C., Miguel, I., Nightingale, P.: Data structures for generalised arc con-
sistency for extensional constraints. In: Proc. AAAI 2007, Vancouver, Canada, pp. 191–197
(2007)

10. Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate Compilation of
Constraints into Multivalued Decision Diagrams. In: Stuckey, P.J. (ed.) CP 2008. LNCS,
vol. 5202, pp. 448–462. Springer, Heidelberg (2008)

11. Hoda, S., van Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based con-
straint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–280. Springer,
Heidelberg (2010)

12. Katsirelos, G., Walsh, T.: A compression algorithm for large arity extensional constraints. In:
Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 379–393. Springer, Heidelberg (2007)

13. Lecoutre, C.: Csp/maxcsp/wcsp solver competitions (2009),
http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

14. Lecoutre, C.: Str2: optimized simple tabular reduction for table constraints. Con-
straints 16(4), 341–371 (2011)

15. Lecoutre, C., Likitvivatanavong, C., Yap, R.H.C.: A path-optimal gac algorithm for table
constraints. In: ECAI, pp. 510–515 (2012)

16. Lhomme, O., Régin, J.-C.: A fast arc consistency algorithm for n-ary constraints. In: Proc.
AAAI 2005, Pittsburgh, USA, pp. 405–410 (2005)

17. Lhomme, O.: Practical reformulations with table constraints. In: ECAI, pp. 911–912 (2012)
18. Mairy, J.-B., Van Hentenryck, P., Deville, Y.: Optimal and efficient filtering algorithms for

table constraints. Constraints 19(1), 77–120 (2014)
19. Mohr, R., Masini, G.: Good old discrete relaxation. In: Proceedings of ECAI 1988,

pp. 651–656 (1988)
20. Régin, J.-C.: AC-*: A configurable, generic and adaptive arc consistency algorithm. In: van

Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 505–519. Springer, Heidelberg (2005)
21. Régin, J.-C.: Improving the expressiveness of table constraints. In: CP 2011, Proceedings

Workshop ModRef 2011 (2011)
22. Rice, M., Kulhari, S.: A survey of static variable ordering heuristics for efficient bdd/mdd

construction. University of California, Tech. Rep. (2008)

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

Improvement of the Embarrassingly Parallel Search
for Data Centers�

Jean-Charles Régin, Mohamed Rezgui, and Arnaud Malapert

Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France

Abstract. We propose an adaptation of the Embarrassingly Parallel Search
(EPS) method for data centers. EPS is a simple but efficient method for paral-
lel solving of CSPs. EPS decomposes the problem in many distinct subproblems
which are then solved independently by workers. EPS performed well on multi-
cores machines (40), but some issues arise when using more cores in a datacenter.
Here, we identify the decomposition as the cause of the degradation and propose
a parallel decomposition to address this issue. Thanks to it, EPS gives almost
linear speedup and outperforms work stealing by orders of magnitude using the
Gecode solver.

1 Introduction

Several methods for parallelizing the search in constraint programming (CP) have been
proposed. The most famous one is the work stealing [12,14,5,16,3,8]. This method uses
the cooperation between computation units (workers) to divide the work dynamically
during the resolution. Recently, [13] introduced a new approach named Embarrass-
ingly Parallel Search (EPS), which has been shown competitive with the work stealing
method.

The idea of EPS is to decompose statically the initial problem into a huge number
of subproblems that are consistent with the propagation (i.e. running the propagation
mechanism on them does not detect any inconsistency). These subproblems are added
to a queue which is managed by a master. Then, each idle worker takes a subproblem
from the queue and solves it. The process is repeated until all the subproblems have
been solved. The assignment of the subproblems to workers is dynamic and there is
no communication between the workers. EPS is based on the idea that if there is a
large number of subproblems to solve then the resolution times of the workers will be
balanced even if the resolution times of the subproblems are not.

In other words, load balancing is automatically obtained in a statistical sense. In-
terestingly, experiments of [13] have shown that the number of subproblems does not
depend on the initial problem but rather on the number of workers. Moreover, they have
shown that a good decomposition has to generate about 30 subproblems per worker.
Experiments have shown good results on a multi-cores machine (40 cores/workers).

� This work was granted access to the HPC and visualization resources of ”Centre de Calcul
Interactif” hosted by the University of Nice Sophia Antipolis. It was also partially supported
by OSEO, with the project ISI ”Pajero”.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 622–635, 2014.
c© Springer International Publishing Switzerland 2014

Improvement of the Embarrassingly Parallel Search for Data Centers 623

Preliminary experimental results of this method on a data center (512 cores/workers)
have shown that the scalability of the overall resolution time without the decomposition
is very good. However, the decomposition becomes more difficult and the relative part
of the decomposition compared to the overall resolution time grows with the number of
workers. There are several reasons for that. First, the number of subproblems that have
to be generated grows linearly with the number of cores. Second, the overall resolution
time diminishes when the number of workers is increased. At last, the decomposition
of the EPS method as proposed in [13] is not efficiently parallelized. In this paper we
propose to address this issue by designing an efficient parallel decomposition of the
initial problem.

A naive decomposition in parallel has been proposed in [13]. It splits the initial
problem into as many subproblems as there are workers and assigns a subproblem to
each worker. Then, each worker decomposes its subproblem into 30 subproblems. This
gains a factor of 2 or 3 in comparison with a sequential decomposition. This is enough
when the number of workers is limited (40 for instance) but it is no longer an efficient
method with hundreds of workers. The gain is limited because there is no reason to
have equivalent subproblems to decompose. However, from this naive algorithm we
learn several things:

1. the difference of total work (i.e. activity time in EPS) made by the workers de-
creases when the number of subproblems increases. This is not a linear relation.
There is a huge difference between the activity time of the workers when there
are less than 5 subproblems per worker. These differences decrease when there are
more than 5 subproblems per worker.

2. a simple decomposition into subproblems that may be inconsistent causes quickly
some issues because inconsistencies are detected very quickly.

3. splitting an initial problem into a small set of subproblems is fast compared to the
overall decomposition time and compared to the overall resolution time.

From these observations we understand that we will have to find a compromise and
we propose an iterative process decomposing the initial problem in 3 phases. In the first
phase, we want to decompose it into only few subproblems because the relative cost is
small even if we have an unbalanced workload. However, we should be careful with the
first phase (i.e. starting with probably inconsistent subproblems) because it can have
an impact on the performance. At last, the most important thing seems to generate 5
subproblems because we could restart from these subproblems to decompose more and
such a decomposition should be reasonably well balanced.

Thus, we propose a method which has 3 main phases:

– An initial phase where we generate as quickly as possible one subproblem per
worker.

– A main phase which aims at generating 5 subproblems per worker. Each subprob-
lem is consistent with the propagation. This phase can be divided into several steps
for reaching that goal while balancing the work among the workers.

– A final phase which consists of generating 30 subproblems per worker from the set
of subproblems computed by the main phase.

624 J.-C. Régin, M. Rezgui, and A. Malapert

The paper is organized as follows. First we recall some preliminaries. Next, we de-
scribe the existing decomposition and we present an efficient parallelization of the de-
composition. Then, we give some experimental results. At last, we conclude.

2 Preliminaries

A worker is a computation unit. Most of the time, it corresponds to a core. We will
consider that there are w workers. We present the two methods that we will compare.

2.1 Work Stealing

The work stealing method was originally proposed in [2] and was first implemented in
Lisp parallel machines [4]. It splits the problem dynamically during the resolution. The
workers solve the subproblems and when a worker finishes a subproblem, it asks the
other workers for more work. In general, it is carried out as follows: when a worker W
does not have work, it asks another worker V to get some work. If V agrees to give
some of its work, then its splits the current subproblem into two subproblems and gives
one to W . We say that W ”steals” some work of V . If V does not agree to give some
work to W , then W asks another worker U for some work until it gets some work or
all workers have been solicited.

This method has been implemented in a lot of solvers (Comet [8] or ILOG Solver
[12] for instance), and into several manners [14,5,16,3] depending on whether the work
to be done is centralized or not, on the way the search tree is split, or on the communi-
cation method between workers. Work stealing attempts to solve partially the balancing
issue of the workload by decomposing dynamically the subproblems.

When a worker is starving, it should not steal easy problems, because it would ask
work again almost instantly. It happens frequently at the end of the search when many
workers have no subproblems to solve. Thus, there are a lot of unnecessary communi-
cations. [11] proposes to use a threshold to avoid these unnecessary communications
but its efficiency depends on the search space. Generally, this method scales well for a
few workers but it is difficult to keep a linear speedup with a huge number of workers.

Some methods [15,5] attempt to increase the scalability. In [15], the authors propose
a masters/workers approach. Each master has its own workers. The search space is
divided between the different masters, then each master puts its attributed sub-trees in
a work pool to dispatch to the workers. When a node of the sub-tree is detected that is
a root of large sub-tree, the workers generate a large number of sub-trees and put them
in a the work pool in order to have a better load balancing.

In [5], the authors experiment with up to 64 cores using a work stealing strategy.
A master centralizes all pieces of information (bounds, solutions and requests). The
master estimates which worker has the largest amount of work in order to give some
work to an idle worker.

Another drawback is that the implementation of the work stealing is intrusive and is
strongly dependent of the solver which requires to have a very good knowledge of the
CP solver and to access to some internal functions. Some methods try to address this
issue [7].

Improvement of the Embarrassingly Parallel Search for Data Centers 625

2.2 EPS

The Embarassingly Paralell Search (EPS) method has been defined in [13]. This method
splits statically the initial problem into a large number of subproblems that are consis-
tent with the propagation and puts them in a queue. Once this decomposition is over,
the workers take dynamically the subproblems from the queue when they are idle. Pre-
cisely, EPS relies on the following steps:

• it splits a problem into p subproblems such as p ≥ w and pushes them into the
queue.

• each worker takes dynamically a subproblem in the queue and solves it.
• a master monitors the concurrent access of the queue.
• the resolution ends when all subproblems are solved.

For optimization problems, the master manages the value of the objective. When a
worker takes a subproblem from the queue, it also takes the best objective value com-
puted so far. And when a worker solves a subproblem it communicates to the worker
the value of the objective function. Note that there is no other communication, that is
when a worker finds a better solution, the other workers that are running cannot use it
for improving their current resolution.

The reduction of communication is an advantage over the work stealing. Further-
more, a resolution in parallel can be replayed by saving the order in which the subprob-
lems have been executed. This costs almost nothing and helps a lot the debugging of
applications.

2.3 Definitions

A constraint network CN = (X ,D, C) is defined by:

• a set of n variables X = {x1, x2, . . . , xn}
• a set of n finite domains D = {D(x1), D(x2), . . . , D(xn)} with D(xi) the set of

possible values for the variable xi,
• a set of constraints between the variables C = {C1, C2, . . . , Ce}. A constraint Ci

is defined on a subset of variables XCi = {xi1 , xi2 , . . . , xij} of X with a subset of
Cartesian productD(xi1)×D(xi2)× . . .×D(xij), that states which combinations
of values of variables {xi1 , xi2 , . . . , xij} are compatible.

Each constraint Ci is associated with a filtering algorithm that removes values of
the domains of its variables that are not consistent with it. The propagation mechanism
applies filtering algorithms of C to reduce the domains of variables in turn until no
reduction can be done. For convenience, we will use the word ”problem” for designing
a constraint network when it is used to represent the constraint network and not the
search for a solution. We say that a problem P is consistent with the propagation if and
only if running the propagation mechanism on P does not trigger a failure.

Notation 1. Let Q be a problem, we will denote by D(Q, x) the resulting domain of
the variable x when the propagation mechanism has been applied to Q

626 J.-C. Régin, M. Rezgui, and A. Malapert

3 Decomposition Algorithms

3.1 Sequential Decomposition

EPS method is based on the decomposition of the initial problem into p subproblems
consistent with the propagation. It has been shown in [13] that it is essential to generate
subproblems consistent with the propagation, because the parallel version of search
must not consider problems that would have not been considered by the sequential
version of the serach.

If we aim at generating p subproblems then we can apply the simple following algo-
rithm, called SIMPLEDECOMPOSITIONMETHOD.

• we use any variable ordering1 x1, ..., xn.
• we compute the value k such that |D(x1)| × . . . × |D(xk−1)| < p ≤ |D(x1)| ×
. . .× |D(xk−1)| × |D(xk)|.

• we generate all the assignments of the variables from x1 to xk and we regroup them
if we have too many assignments.

Algorithm 1. Some useful functions
SIMPLEDECOMPOSITION(CN, p)

computes the value k such that |D(x1)| × . . .× |D(xk−1)| < p ≤ |D(x1)| × . . .×
|D(xk−1)| × |D(xk)|
generates all the assignments of the variables from x1 to xk

regroups them and put the resulting subproblems into S
returns the tuple (S, k)

COMPUTEDEPTH(CN, cardS, δ, p)
returns d such as cardS × |D(xδ+1)| × . . . × |D(xd−1)| < p ≤ cardS ×
|D(xδ+1)| × . . . × |D(xd−1)| × |D(xd)|

GETDOMAINS(S)
returns the set of domains of D = {D(S, x1), D(S, x2), . . . , D(S, xn)} such that
∀x ∈ X D(S, x) = ∪P∈SD(P, x)

GENERATESUBPROBLEMS(CN, S, d)
runs a search for solution based on a DBDFS with d as depth limit on the constraint
network formed by CN and the table constraint defined from the elements of S.
returns the set of leaves that are not a failure.

Generating subproblems consistent with the propagation is a more complex task.
In [13], a depth bounded depth first search (DBDFS) is used for computing such

problems. More precisely, this decomposition method is defined as follows. First, a
static ordering of the variable is considered: x1, x2, . . . , xn. Usually the variables are
sorted by non decreasingly domain sizes. Then, the main step of the algorithm is ap-
plied: define a depth d and perform a search procedure based on a DBDFS with d as
limit. This search triggers the propagation mechanism each time a modification occurs.

1 In this paper, we do not study the influence of any specific ordering.

Improvement of the Embarrassingly Parallel Search for Data Centers 627

For each leaf of this search which is not a failure, the variables x1, ..., xd are assigned
and so the subproblem defined by this assignment is consistent with the propagation.
Thus the set of leaves defines a set S of subproblems. Next, if S is large enough, then
the decomposition is finished. Otherwise, we apply again the main step until we reach
the expected number of subproblems. However, we do not restart the main step from
scratch and we use the previous set for improving the next computations in two ways.
We use the cardinal of S for computing the new depth and we define a table constraint
from the elements of S to avoid recomputations at the beginning of the search.

Algorithm 2. SEQUENTIALDECOMPOSITION

SEQUENTIALDECOMPOSITION(CN, p)
// CN is a constraint network; p the number of subproblems to be generated
S ← ∅; d ← 0
while |S| < p do

d ←COMPUTEDEPTH(CN, |S|, d, p)
S ←GENERATESUBPROBLEMS(CN, S, d)
if S = ∅ then return ∅
CN ← (X ,GETDOMAINS(S),C)

return S

An important part of this method is the computation of the next depth. Currently it is
simply estimated from the current number of subproblems that have been computed at
the previous depth and the size of the domain. If we computed |S| subproblems at the
depth δ and if we want to have p subproblems then we search for the value d such that
|S|×|D(xδ+1)|× . . .×|D(xd−1)| < p ≤ |S|×|D(xδ+1)|× . . .×|D(xd−1)|×|D(xd)|

Algorithm 1 gives some useful functions. Algorithm 2 is a possible implementation
of the sequential decomposition.

3.2 A Naive Parallel Decomposition

A parallelization of the decomposition is given in [13]. The initial problem is split into
w subproblems by domain splitting. Each worker receives one of these subproblems
and decomposes it into p/w subproblems consistent with the propagation. The master
gathers all computed subproblems. If a worker is not able to generate p/w subprob-
lems because it is not possible, the master asks the other workers to decompose their
subproblems into smaller ones until reaching the right number of subproblems.

4 The New Parallel Decomposition

The method we propose has 3 main phases. A fast initial stating the process, a main
phase, which is the core of the decomposition and a final phase ensuring that 30 sub-
problems per worker are generated. In the main phase, we try to progress in the decom-
position and to manage the imbalance of the work load between workers, because we

628 J.-C. Régin, M. Rezgui, and A. Malapert

Algorithm 3. EPS: Improved Decomposition in Parallel
WORKERDEC(CN , Q, d)

S ← ∅
run in parallel

while Q �= ∅ do
pick P ∈ Q and remove P from Q
S′ ←GENERATESUBPROBLEMS(CN, P, d)
S ← S ∪ S′

return S

DECOMPOSE(CN , S, numspb)
while |S| < numspb do

d ←COMPUTEDEPTH(CN, |S|, d, numspb)
S ←WORKERDEC(CN, S, d)
if S = ∅ then return ∅
CN ← (X ,GETDOMAIN(S),C)

return S

PARALLELDECOMPOSITION(CN, numPbforStep, numStep, p)
(S, d) ←SIMPLEDECOMPOSITION(CN, numPbforStep[0])
S ←WORKERDEC(CN, S, d)
CN ← (X ,GETDOMAIN(S),C)
for i=0 to numStep-1 do

S ←DECOMPOSE(CN , S, numPbforStep[i])
if S = ∅ or |S| ≥ p then return S

return S

cannot avoid this imbalance. We progress by small steps of decomposition that are fol-
lowed by synchronization of the workers and by merging the set of subproblems com-
puting by each worker in order to correct the imbalance in the future. In other words,
we ask the workers to decompose any subproblems into a small number of subprob-
lems, then we merge all these subproblems (the union of subproblems lists computed
by each worker) and ask again to decompose each subproblem into a small number of
subproblems. When the number of generated subproblems is close to 5 subproblems
per worker we know that we will have less problem with the load balancing. Thus, we
can move on and trigger the last phase: the decomposition of the subproblems until we
reach 30 subproblems per workers. Precisely, the phases are defined as follows:

– An initial phase where we decompose as quickly as possible the problem into as
many subproblems as we have workers

– A main phase which aims at generating 5 subproblems per worker. Each subprob-
lem is consistent with the propagation. This phase is divided into several steps in
order to balance the work among the workers.

– A final phase which consists of generating 30 subproblems per worker from the set
of subproblems computed by the main phase.

Algorithm 3 is a possible implementation of this new parallel decomposition.

Improvement of the Embarrassingly Parallel Search for Data Centers 629

The remaining question is the definition of the number of steps and the number of
subproblems per worker that have to be generated for each step of the second phase.
Clearly the decomposition of the first phase is not good and we have to stop the work
for redistributing the subproblems to the worker as quickly as possible. The experiments
have shown that we have to stop when 1 subproblem consistent with the propagation per
worker have been generated. Then, a stop at 5 subproblems per worker will be enough
for the second phase.

5 Experiments

Execution environment. All the experiments have been made on the data center ”Centre
de Calcul Interactif” hosted by the University of Nice Sophia Antipolis. It has 1152
cores, spread over 144 Intel E5-2670 processors, with a 4,608GB memory and runs
under Linux (http://calculs.unice.fr/fr). We were allowed to use to up to
512 cores simultaneously for our experiments. The data center uses a scheduler (OAR)
that manages jobs (submissions, executions, failures).

Implementation details. EPS is implemented on the top of the solver gecode 4.0.0
[1]. We use MPI (Message Passing Interface), a standardized and portable message-
passing system to exchange information between processes. Master and workers are
MPI processes. Each process reads a FlatZinc model to init the problem and only jobs
are exchanged through messages between master and workers.

Benchmark Instances. We report results for the twenty most significant instances we
found. Two types of problems are used: enumeration problems and optimization prob-
lems. Some of them are from CSPLib and have been modeled by Håkan Kjellerstrand
(see [6]). The others come from the minizinc distribution (see [9]).

To study the decomposition, we select hard instances (i.e. more than 500s and less
than 1h) with the Gecode solver.

Tests. It is important to point out that the decomposition must finish in order to begin
the resolution of the generated subproblems.
We use the following definitions:

• tdec and tres denote respectively the total decomposition time (by the master and
the workers) and the parallel solving time of the subproblems. So, the overall resolution
time t is equal to tdec + tres

• t0 is the resolution time of the instance in sequential
• su = t0

t is the speedup of the overall resolution time compared with the sequential
resolution time

• sures = t0
tres

is the speedup of the overall resolution time without taking account
the decomposition time compared with the sequential resolution time

• partdec = tdec
t is the ratio in % between the decomposition time and the overall

resolution time

http://calculs.unice.fr/fr

630 J.-C. Régin, M. Rezgui, and A. Malapert

5.1 Sensitivity Analysis

Depth of the Decomposition. Figure 1 shows the evolution of the depth depending
on the number of workers. As expected, the depth of the decomposition grows with
the number of workers. Sometimes, the depth is very high for some instances like
ghoulomb 3-7-20 or talent scheduling alt film117 (see table 3). The reason is that the
depth estimation we made is based on the Cartesian product of the domains which is
sometimes wrong because there are many subproblems that are not consistent with the
propagation, so the decomposition goes to a higher depth than the number of considered
domains to generate 30 subproblems per worker consistent with the propagation.

Fig. 1. Depth to reach 30 subproblems per worker related to the number of workers

Sequential Decomposition Issue. Table 1 gives the part of the sequential decomposi-
tion according to the overall resolution time with 16 workers and 512 workers. For 16
workers, the sequential decomposition takes a small part of the overall resolution time
(an average of 3.5%) because it generates few subproblems (16 ∗ 30 = 480 subprob-
lems). Since the number of subproblems to generate is greater with 512 workers than
16 workers (16*30 vs 512*30), the sequential decomposition takes a significant time
compared to the overall resolution time (an average of 72.5%). Thus, it takes more time
to generate and impacts on the global performances.

Improvement of the Embarrassingly Parallel Search for Data Centers 631

Table 1. Part of the sequential decomposition according to the overall resolution time to generate
30 subproblems per worker for 16 workers and 512 workers

Instance partdec for 16 workers partdec for 512 workers
16 ∗ 30 = 480 subproblems 512 ∗ 30 = 15360 subproblems

% %

market split s5-02 0.7% 33.5%
market split u5-09 0.6% 29.4%
market split s5-06 0.6% 37.6%
prop stress 0600 4.7% 81.0%
nmseq 400 4.0% 85.3%
prop stress 0500 3.5% 81.7%
fillomino 18 6.2% 88.7%
steiner-triples 09 3.1% 70.5%
nmseq 300 8.1% 91.2%

golombruler 13 1.7% 78.0%
cc base mzn rnd test.11 6.1% 83.4%
ghoulomb 3-7-20 6.9% 91.3%
pattern set mining k1 yeast 4.9% 83.6%
still life free 8x8 8.8% 90.6%
bacp-6 2.8% 69.7%
depot placement st70 6 3.8% 79.5%
open stacks 01 wbp 20 20 1 7.1% 86.7%
bacp-27 3.8% 76.5%
still life still life 9 6.0% 88.5%
talent scheduling alt film117 5.3% 91.1%

geometric average(%) 3.5% 72.5%

Fixing the Parallel Decomposition Parameters. Now, we must choose the number of
subproblems to generate for the main phase. We select some representative instances to
fix a good number of subproblems per worker. Table 2 shows the total decomposition
time for some instance to choose the number of subproblems for the main phase. We no-
tice that 5 is a good choice. Starting from 7 subproblems per worker, the performances
begin to drop.

Table 2. Decomposition time comparison (in seconds) depending on the fixed number of sub-
problems in the second phase with 512 workers

Instance numPbforStep[1]

3 4 5 6 7

prop stress 0600 10.5 8.6 7.5 9.1 13.0
cc base mzn rnd test.11 21.5 12.1 10.1 14.5 17.8
ghoulomb 3-7-20 16.4 13.3 12.1 16.5 18.1
pattern set mining k1 yeast 8.5 6.9 5.6 9.2 13.4
still life free 8x8 11.5 8.1 8.3 12.7 14.6

total decomposition time(s) 68.4 49.0 43.6 62.0 76.9

632 J.-C. Régin, M. Rezgui, and A. Malapert

Table 3. Comparison of the decomposition algorithms with 512 workers

Instance Seq. Decseq Dec//1 Dec//2
t0 sures tdec su tdec su tdec su

s r s r s r s r

market split s5-02 3314.4 459.5 3.6 305.5 1.3 388.7 1.0 405.9
market split u5-09 3266.6 455.0 3.0 321.2 1.1 394.7 0.8 411.8
market split s5-06 3183.9 436.0 4.4 272.0 2.2 334.8 1.0 384.0
prop stress 0600 2729.2 213.9 54.4 40.7 21.3 80.0 7.5 193.1
nmseq 400 2505.8 429.7 33.7 63.3 14.9 120.9 4.6 240.4
prop stress 0500 1350.6 265.2 22.7 48.6 9.3 93.7 3.3 161.6
fillomino 18 763.9 301.9 19.8 34.2 6.4 85.7 2.5 150.7
steiner-triples 09 604.9 443.8 3.3 130.8 1.8 191.5 0.5 332.0
nmseq 300 555.3 309.0 18.7 27.1 7.9 57.1 2.4 131.7

golombruler 13 1303.9 492.0 9.4 92.7 1.4 322.9 0.4 427.9
cc base mzn rnd test.11 3279.5 196.5 83.8 32.6 35.5 62.8 10.1 122.6
ghoulomb 3-7-20 2993.8 279.2 112.6 24.3 50.0 49.3 12.1 131.1
pattern set mining k1 yeast 2871.3 285.5 51.3 46.8 21.0 92.4 5.6 183.2
still life free 8x8 2808.9 331.0 82.0 31.1 33.2 67.4 8.3 166.9
bacp-6 2763.3 473.1 13.4 143.5 5.4 245.0 1.5 378.9
depot placement st70 6 2665.1 345.6 29.9 70.9 12.5 131.8 3.6 235.1
open stacks 01 wbp 20 20 1 1523.2 280.7 35.4 37.3 15.6 72.3 4.0 160.8
bacp-27 1499.7 445.3 11.0 104.5 4.4 193.8 1.2 326.5
still life still life 9 1145.1 347.9 25.2 40.1 9.4 90.4 3.0 182.9
talent scheduling alt film117 566.1 386.4 15.0 34.4 6.0 75.8 1.8 175.8

total(s) and geom. average(r) 41694.5 347.1 632.6 66.4 260.8 124.8 75.0 223.9

Comparison of the Decomposition Algorithms. We denote Decseq , Dec//1 and
Dec//2 respectively the sequential decomposition, the naive parallel decomposition and
the new parallel decomposition.

Table 3 compares the decomposition time between different decomposition methods
with 512 workers and the speedup su of each decomposition algorithm. On the first
hand, we observe that the average speedup of the resolution time without the decompo-
sition time is closed to a linear factor (347.1). On the other hand, we notice that Dec//1
improvesDecseq by a factor of 3.4 and Dec//2 improvesDec//1 by a factor of 2.4. So,
the new parallel decomposition method improves the decomposition. Consequently, the
new parallel decomposition Dec//2 improves the overall speedup su from 66.4 with
the sequential decomposition Decseq to 223.9.

Scaling Analysis. We test the scalability of EPS for different numbers of workers.
Table 4 describes the details of the speedups. We notice that the resolution of Golomb-
ruler and the market-split instances scales very well with EPS (speedups su reach
around 400 for 512 workers). Instances cc base mzn rnd test.11 and ghoulomb 3-7-20
give the worst results with all workers. In general, we observe an average speedup near
to w/2. Figure 2 describes the speedup obtained by EPS for the decomposition phase,

Improvement of the Embarrassingly Parallel Search for Data Centers 633

Fig. 2. Geometric Speedup (all instances) for each number of workers with EPS

Table 4. Speedup detailed for each instance and for each number of workers with EPS

Instance number of workers
t0(s) su
1w 8w 16w 32w 64w 96w 128w 256w 512w

market split s5-02 3314.4 7.3 14.2 25.4 50.7 69.7 101.5 201.7 405.9
market split u5-09 3266.6 7.3 14.3 25.7 51.5 68.6 103.0 207.4 411.8
market split s5-06 3183.9 6.4 12.7 24.0 48.0 64.0 96.0 197.5 384.0
prop stress 0600 2729.2 3.8 6.7 16.1 24.1 32.2 48.3 104.2 193.1
nmseq 400 2505.8 4.1 7.2 15.0 30.1 40.1 60.1 117.7 240.4
prop stress 0500 1350.6 2.5 4.4 13.1 20.2 26.9 40.4 81.8 161.6
fillomino 18 763.9 2.4 5.1 11.4 18.8 25.1 37.7 72.4 150.7
steiner-triples 09 604.9 5.7 12.3 21.7 41.5 55.3 83.0 143.2 332.0
nmseq 300 555.3 2.4 5.1 8.2 16.5 21.9 32.9 69.3 131.7

golombruler 13 1303.9 7.3 14.7 27.3 53.7 89.5 117.4 213.1 427.9
cc base mzn rnd test.11 3279.5 1.7 5.1 8.9 14.3 20.4 30.6 59.7 122.6
ghoulomb 3-7-20 2993.8 2.3 3.9 8.2 17.4 21.8 32.8 76.3 131.1
pattern set mining k1 yeast 2871.3 2.9 5.8 11.5 23.9 30.5 45.8 91.6 183.2
still life free 8x8 2808.9 2.6 6.4 10.4 20.9 27.8 41.7 83.5 166.9
bacp-6 2763.3 6.7 12.1 23.7 47.4 63.1 94.7 212.4 378.9
depot placement st70 6 2665.1 3.4 7.3 14.7 29.4 39.2 58.8 147.6 235.1
open stacks 01 wbp 20 20 1 1523.2 3.1 6.5 10.0 23.1 26.8 40.2 95.4 160.8
bacp-27 1499.7 5.6 11.2 20.4 43.8 54.4 81.6 214.3 326.5
still life still life 9 1145.1 3.1 6.1 11.4 22.9 30.5 45.7 89.4 182.9
talent scheduling alt film117 566.1 2.4 4.3 11.0 22.0 31.3 51.7 95.9 175.8

total (t0) or geometric average (su) 41694.5 3.7 7.5 14.7 28.3 37.9 56.7 117.3 223.9

634 J.-C. Régin, M. Rezgui, and A. Malapert

the resolution phase without taking account the decomposition phase and the overall
resolution with all instances (by a geometric average) as a function of the number of
workers. EPS scales very well with a near-linear factor of gain for the resolution phase.
Thanks to the parallelization of decomposition, EPS obtains good results for the overall
resolution.

5.2 Comparison with Work Stealing

Table 5 shows a comparison between EPS and a work stealing implementation with
512 workers. The work stealing used in the datacenter is an MPI implementation based
on [10]. In our experiments, the work stealing obtains good speedup until 64 workers
but for more workers, the performances drop dramatically. With 512 workers, the aver-
age speedup of work stealing is 5.4. Many instances are not solved with 512 workers
whereas they are solved by the sequential resolution. However, the average speedup of
EPS is 223.9. Note that EPS is better than the work stealing on all selected instances.

Table 5. Comparison between work stealing and EPS with 512 workers

Instance Seq. Work stealing EPS

time(s) time(s) su time(s) su

market split s5-02 3314.4 - - 8.2 405.9
market split u5-09 3266.6 - - 7.9 411.8
market split s5-06 3183.9 - - 8.3 384.0
prop stress 0600 2729.2 1426.4 1.9 14.1 193.1
nmseq 400 2505.8 - - 10.4 240.4
prop stress 0500 1350.6 670.0 2.0 8.4 161.6
fillomino 18 763.9 - - 5.1 150.7
steiner-triples 09 604.9 79.0 7.7 1.8 332.0
nmseq 300 555.3 - - 4.2 131.7

golombruler 13 1303.9 15.5 83.9 3.0 427.9
cc base mzn rnd test.11 3279.5 - - 26.8 122.6
ghoulomb 3-7-20 2993.8 575.4 5.2 22.8 131.1
pattern set mining k1 yeast 2871.3 299.8 9.6 15.7 183.2
still life free 8x8 2808.9 1672.8 1.7 16.8 166.9
bacp-6 2763.3 330.1 8.4 7.3 378.9
depot placement st70 6 2665.1 1902.9 1.4 11.3 235.1
open stacks 01 wbp 20 20 1 1523.2 153.9 9.9 9.5 160.8
bacp-27 1499.7 579.6 2.6 4.6 326.5
still life still life 9 1145.1 140.1 8.2 6.3 182.9
talent scheduling alt film117 566.1 95.5 5.9 3.2 175.8

total (time) or geometric average (su) 41694.5 7941 5.4 195.7 223.9

Improvement of the Embarrassingly Parallel Search for Data Centers 635

6 Conclusion

The previous decomposition algorithms of the Embarrassingly Parallel Search are ac-
ceptable methods when there is only a few number of workers. These methods limit the
performance of EPS on a data center, that is on a system with hundreds of cores. In this
paper, we described an efficient parallel version of the decomposition. With paralleliz-
ing the problem decomposition and fixing 2 phases during the process, EPS gets a better
workload during the decomposition. Consequently, EPS reaches the scalability with a
data center and gives an average speedup at 223.9 with gecode for a set of benchmarks
on a machine with 512 cores. This clearly improves the work stealing approach which
does not scale well with hundred cores. EPS is more efficient by one or two orders of
magnitude.

References

1. Gecode 4.0.0 (2012), http://www.gecode.org/
2. Warren Burton, F., Ronan Sleep, M.: Executing functional programs on a virtual tree of

processors. In: Proceedings of the 1981 Conference on Functional Programming Languages
and Computer Architecture, FPCA 1981, pp. 187–194. ACM, New York (1981)

3. Chu, G., Schulte, C., Stuckey, P.J.: Confidence-Based Work Stealing in Parallel Constraint
Programming. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 226–241. Springer, Heidel-
berg (2009)

4. Halstead Jr., R.H.: Implementation of multilisp: Lisp on a multiprocessor. In: Proceedings
of the 1984 ACM Symposium on LISP and Functional Programming, LFP 1984, pp. 9–17.
ACM, New York (1984)

5. Jaffar, J., Santosa, A.E., Yap, R.H.C., Zhu, K.Q.: Scalable Distributed Depth-First Search
with Greedy Work Stealing. In: ICTAI, pp. 98–103. IEEE Computer Society (2004)

6. Kjellerstrand, H. (2014), http://www.hakank.org/
7. Menouer, T., Le Cun, B., Vander-Swalmen, P.: Partitioning methods to parallelize constraint

programming solver using the parallel framework bobpp. In: Nguyen, N.T., van Do, T., Thi,
H.A. (eds.) ICCSAMA 2013. SCI, vol. 479, pp. 117–127. Springer, Heidelberg (2013)

8. Michel, L., See, A., Hentenryck, P.V.: Transparent Parallelization of Constraint Program-
ming. INFORMS Journal on Computing 21(3), 363–382 (2009)

9. MiniZinc (2012), http://www.g12.csse.unimelb.edu.au/minizinc/
10. Nielsen, M.: Parallel search in gecode. PhD thesis, Masters thesis, KTH Royal Institute of

Technology (2006)
11. Pedro, V., Abreu, S.: Distributed Work Stealing for Constraint Solving. CoRR,

abs/1009.3800:1–18 (2010)
12. Perron, L.: Search Procedures and Parallelism in Constraint Programming. In: Jaffar, J. (ed.)

CP 1999. LNCS, vol. 1713, pp. 346–361. Springer, Heidelberg (1999)
13. Régin, J.-C., Rezgui, M., Malapert, A.: Embarrassingly parallel search. In: Schulte, C. (ed.)

CP 2013. LNCS, vol. 8124, pp. 596–610. Springer, Heidelberg (2013)
14. Schulte, C.: Parallel Search Made Simple. In: Proceedings of TRICS: Techniques for

Implementing Constraint programming Systems, a post-conference Workshop of CP 2000,
pp. 41–57 (2000)

15. Xie, F., Davenport, A.: Massively parallel constraint programming for supercomputers: Chal-
lenges and initial results. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS,
vol. 6140, pp. 334–338. Springer, Heidelberg (2010)

16. Zoeteweij, P., Arbab, F.: A Component-Based Parallel Constraint Solver. In: De Nicola, R.,
Ferrari, G.-L., Meredith, G. (eds.) COORDINATION 2004. LNCS, vol. 2949, pp. 307–322.
Springer, Heidelberg (2004)

http://www.gecode.org/
http://www.hakank.org/
http://www.g12.csse.unimelb.edu.au/minizinc/

Stochastic MiniZinc�

Andrea Rendl1, Guido Tack1, and Peter J. Stuckey2

1 National ICT Australia (NICTA) and Faculty of IT, Monash University, Australia
andrea.rendl@nicta.com.au, guido.tack@monash.edu

2 National ICT Australia (NICTA) and University of Melbourne, Victoria, Australia
pstuckey@unimelb.edu.au

Abstract. Combinatorial optimisation problems often contain uncertainty that
has to be taken into account to produce realistic solutions. However, existing
modelling systems either do not support uncertainty, or do not support combi-
natorial features, such as integer variables and non-linear constraints. This paper
presents an extension of the MINIZINC modelling language that supports uncer-
tainty. Stochastic MINIZINC enables modellers to express combinatorial stochas-
tic problems at a high level of abstraction, independent of the stochastic solving
approach. These models are translated automatically into different solver-level
representations. Stochastic MINIZINC provides the first solving technology ag-
nostic approach to stochastic modelling we are aware of.

1 Introduction

In contrast to deterministic optimisation problems where all problem parameters are
known a priori, stochastic optimisation problems deal with parameters that are uncer-
tain, such as customer demand, resource capacities or travel times. This uncertainty has
to be taken into account to provide realistic solutions.

Several stochastic modelling and solving systems have been established in recent
years, such as AIMMS [17], AMPL [23,24] or GAMS [11]. These systems provide a
strong support for stochastic linear problems on continuous variables, however have
only limited or no support for problems with integer variables and non-linear con-
straints. Moreover, these systems force the modeller to commit to a particular solving
approach at the modelling stage. This poses significant limitations to modellers who
are interested in formulating stochastic combinatorial problems and solving them using
different solving techniques.

For combinatorial problems, expressive high-level modelling languages have been
developed, such as ESRA [3], Essence [5], Essence’ [8], OPL [25], ZINC [12] and
MINIZINC [13,14]. The benefit of high-level modelling is that users can focus on the
problem formulation without committing to a particular solving approach. Some mod-
elling systems, including MINIZINC, perform automated translations from the high-level
model for different backend solvers, such as CP, MIP or SMT solvers. This way problems
can be solved using different solving approaches without any background knowledge of
the respective technique. Unfortunately, none of the existing combinatorial modelling

� NICTA is funded by the Australian Government through the Department of Communications
and the Australian Research Council through the ICT Centre of Excellence Program.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 636–645, 2014.
c© Springer International Publishing Switzerland 2014

Stochastic MiniZinc 637

languages provides means for dealing with uncertainty. Stochastic extensions for OPL
have been proposed in [27], however, they have never been made available [28].

In this work we present Stochastic MINIZINC, an extension of MINIZINC that
supports uncertainty. It allows the user to augment deterministic models to stochas-
tic models without the need to commit to a particular solving strategy. To solve these
stochastic models, we present transformations from Stochastic MINIZINC to determin-
istic MINIZINC for three different stochastic solving approaches: scenario-based [21]
and policy-based [26] deterministic equivalents, as well as progressive hedging [16].
These are the only known stochastic solving techniques that can deal with both inte-
ger decision variables and non-linear constraints. Our transformations generate stan-
dard MINIZINC, enabling the use of any backend solver technique that supports the
MINIZINC tool-chain.

2 Background

Stochastic optimisation deals with problems where some parameters are uncertain. Un-
certain parameters become known at some point in time, which divides the problem
into different stages: the stage before the parameter is known, and the stage after it is
known. Typically, decisions have to be made before the uncertain parameters become
known. For instance, a car factory has to decide how many cars to produce before the
actual demand is known. These ‘beforehand’-decisions are called first stage decisions.
The second stage decisions are made after the uncertain parameters are known. In the
car factory, after the demand is known (and the production is completed), decisions may
have to be made to deal with overproduction or shortage, depending on the actual de-
mand. The aim of second stage decisions is to compensate for ‘bad’ first stage decisions
with respect to the uncertain parameters. This is referred to as recourse.

The values of uncertain parameters can often be estimated, e.g. from historical data
or simulations, resulting in a set of possible outcomes called scenarios. All approaches
discussed here assume a finite number S of scenarios. Each scenario has a weight
w1, . . . , wS reflecting its likeliness. In the car factory example, we may have three dif-
ferent scenarios for the demand, d1 = 13, 000, d2 = 16, 000 and d3 = 22, 000, with
weights w1 = 1, w2 = 6 and w3 = 3.

Stochastic events may happen repeatedly, resulting in multiple stages. For instance,
the car factory may have to decide its production every quarter, taking into account
the surplus/shortage from the previous quarter. The yearly production plan then con-
tains four stochastic events (one for each quarter), dividing the problem into five stages,
where decisions at stage i influence the decisions at stage i + 1. Problems with only
one stochastic event are called two-stage problems, as opposed to multi-stage problems
with more than one event.

The stages of a stochastic optimisation problem divide its objective into different
parts. For instance, in the car factory example, the first stage objective is to minimise
production costs, while the second stage objective is to minimise storage costs (in
case of overproduction) and unmet demand penalties (in case of underproduction). The
first stage objective is independent of the stochastic parameters. The objectives in later
stages do depend on the stochastic parameters. The overall objective therefore requires
a probabilistic interpretation over all scenarios. Here, we focus on the expected value

638 A. Rendl, G. Tack, and P.J. Stuckey

of the objective. Given an objective function f(V) of the original problem formulation,
the stochastic objective then becomes E[f(V)]. Other interpretations, such as optimis-
ing for the worst case, can be realised in a similar manner.

Only three stochastic solving approaches exist for non-linear integer stochastic prob-
lems, all of which reformulate the problem into a deterministic model. The Scenario-
based Deterministic Equivalent [22,21] is a single model that expands the stochastic
model for each scenario and stage. All stochastic parameters and each second (and higher)
stage variable is copied for each scenario, as well as all constraints involving higher stage
parameters or variables. Policy-based Search [26] treats stochastic parameters as decision
variables and uses and-or-search to explore all possible scenarios. Finally, Progressive
Hedging [16] solves each scenario to optimality in isolation, and then iteratively adapts
the objective function to minimise the gap between the first stage variables.

3 Stochastic MINIZINC

The design of Stochastic MINIZINC follows four objectives. (1) The stochastic exten-
sion is conservative, the stochastic model can be run, debugged, and solved determinis-
tically, without changing the model. (2) The model is agnostic of the solving approach,
so that the user does not have to commit to a specific stochastic approach during mod-
elling. (3) Basic knowledge of stochastic optimisation should suffice to formulate a
stochastic problem. (4) The stochastic extensions are lightweight additions to the lan-
guage. As a result, Stochastic MINIZINC is a simple extension of standard MINIZINC

that includes stochastic annotations.
A stochastic MINIZINC problem specification has three parts: a core problem model,

a deterministic and a stochastic data specification. The core problem model is standard
MINIZINC, augmented with annotations to mark stochastic parameters and stages. The
deterministic data defines deterministic, first stage parameters. The stochastic data is
given as a list of deterministic data files, one per scenario. Note that the core model
combined with the deterministic data and a single scenario is a valid, deterministic
MiniZinc model for that scenario. From the scenario list and a list of scenario weights,
a combined stochastic data specification can be generated. Alternatively, the combined
representation can be specified directly.

3.1 Stochastic Annotations in MINIZINC

The annotation ::stage(n) associates a variable or parameter with stage n. A pa-
rameter in stage 1 is known from the outset and not stochastic. Variables and parameters
without stage annotations belong to the first stage. The objective function is annotated
to identify how the probabilistic nature of the scenarios is aggregated. We introduce an
annotation ::expected to optimise the expected value over all scenarios. The an-
notation ::scenario_weights identifies the weights that reflect the likeliness of
each scenario. The scenario weights have to be given as an array of the same length as
the number of scenarios.

Stochastic MiniZinc 639

3.2 An Example: The Stochastic Vehicle Routing Problem

We illustrate Stochastic MINIZINC by formulating a stochastic variant of the vehicle
routing problem (VRP) [10]. In the deterministic VRP, the aim is to find tours for m
vehicles to serve n customers, minimising travel costs. In the stochastic variant of the
VRP, the travel times are uncertain, and the aim is to find a vehicle-customer assign-
ment that minimises the expected travel times. This means that the vehicle-customer
assignments are the first stage decisions, and the optimal tours for each vehicle are the
second stage decisions.

Fig. 1 shows a stochastic VRP model based on the classical VRP formulation [10],
omitting the redundant predecessor variables for brevity. In line 13 we annotate the
stochastic parameter, and in lines 16-18 we annotate the stochastic variables with their
stages. The objective is annotated with expected since we want to find the optimal
solution wrt. the expected arrival times of each vehicle. Note that all parameters, vari-
ables, constraints and the objective are defined deterministically, and the model can thus
be solved as such. For instance, the data sets d1.dzn and d2.dzn in the bottom left
each correspond to a single scenario.

The stochastic data d stoch.dzn is generated from the scenarios d1.dzn and
d2.dzn using the specification in the bottom left. Each parameter has an added di-
mension for the scenario. The distance is now three-dimensional, the first dimen-
sion indexing the scenario. The transformations in the next section link the stochastic
parameter back to the model using the scenario as an index.

4 Transformations

This section shows how Stochastic MINIZINC can be implemented by transformation
into standard MINIZINC. We consider three different formulations: a scenario-based
deterministic model, a policy-based search, and a version of progressive hedging. Since
the transformations generate standard MINIZINC, all solvers that support MINIZINC

can be used. For policy-based search and progressive hedging, the backend solvers need
to support search combinators [20]. The results of transforming the VRP from Fig. 1
can be found at [15].

We only present the two-stage version of the transformations, multi-stage problems
are a straightforward generalisation [18]. In addition to the first and second stage sets of
decision variablesV1 and V2, we useC1 andC2 for the sets of first and second stage con-
straints, p for the set of stochastic parameters, and o for the original objective function.
The transformations rely on a substitution operation substitute(S, [x1/y1, . . . , xn/yn]),
meaning that all occurrences of each xi in S are simultaneously replaced by yi.

4.1 The Scenario-Based Deterministic Equivalent

A Stochastic MINIZINC model is transformed into the deterministic equivalent by cre-
ating a copy of the second stage variables, with the stochastic parameters substituted by
the concrete values for the scenario.

The objective from the stochastic model needs to be modified to represent the ex-
pected value over all scenarios. We introduce an array of variables o for the contribu-
tion of each scenario to the overall objective. The expected value is then computed as

640 A. Rendl, G. Tack, and P.J. Stuckey

1 % ============== Stochastic Vehicle Routing Problem ============= %
2 include "globals.mzn";
3 include "stochastic.mzn";
4

5 int: nC; int: nV; int: timeBudget;
6 set of int: VEHICLE = 1..nV;
7 set of int: CUSTOMER = 1..nC;
8 set of int: NODES = 1..nC+2*nV;
9 set of int: START_DEPOT_NODES = nC+1..nC+nV;

10 set of int: END_DEPOT_NODES = nC+nV+1..nC+2*nV;
11 set of int: TIME = 0..timeBudget;
12 array[NODES] of int: serviceTime;
13 array[NODES, NODES] of int: distance :: stage(2);
14

15 % -------- variables ------------- %
16 array[NODES] of var VEHICLE: vehicle :: stage(1);
17 array[NODES] of var NODES: successor :: stage(2);
18 array[NODES] of var TIME: arrivalTime :: stage(2);
19

20 % -------- first stage constraints ---------- %
21 constraint forall (n in START_DEPOT_NODES) % associate each start
22 (vehicle[n] = n-nC); % node with a vehicle
23 constraint forall (n in END_DEPOT_NODES) % associate each end
24 (vehicle[n] = n-nC-nV); % node with a vehicle
25

26 % -------- second stage constraints ---------- %
27 constraint forall (n in nC+nV+1..nC+2*nV-1) % successors of end nodes
28 (successor[n] = n-nV+1); % are start nodes
29 constraint successor[nC+2*nV] = nC+1;
30

31 constraint forall (n in START_DEPOT_NODES) % vehicles leave the
32 (arrivalTime[n] = 0); % depot at time zero
33 constraint circuit(successor); % hamiltonian circuit
34

35 constraint forall (n in CUSTOMER) % use the same vehicle
36 (vehicle[successor[n]] = vehicle[n]); % along a subtour
37 constraint forall (n in 0..nC+nV)
38 (arrivalTime[n] + serviceTime[n] + distance[n,successor[n]]
39 <= arrivalTime[successor[n]]); % time constraints
40

41 % -------- objective ------------ %
42 solve minimize % expected overall travel time of each vehicle
43 (sum (n in END_DEPOT_NODES) (arrivalTime[n])) :: expected;

1 % ====================== deterministic data =========================== %
2 nV = 1; nC = 3; timeBudget = 30;
3 serviceTime = [2,2,2,0,0];

1 % ==== d1.dzn ====== %
2 distance = [| 0, 4, 3, 5, 5
3 | 4, 0, 2, 3, 3
4 | 3, 2, 0, 2, 2
5 | 5, 3, 2, 0, 0
6 | 5, 3, 2, 0, 0 |];

1 % ==== d2.dzn ====== %
2 distance = [| 0, 4, 3, 5, 5,
3 | 4, 0, 2, 6, 3,
4 | 3, 2, 0, 2, 2,
5 | 5, 6, 2, 0, 0,
6 | 5, 3, 2, 0, 0 |];

1 % === implicit stochastic data == %
2 array[1..2] of string: scenarios =
3 ["d1.dzn","d2.dzn"];
4 array[1..2] of int: weights = [1,1];

1 % === d_stoch.dzn === %
2 distance = array3d(1..2, % scenarios
3 1..5, 1..5,
4 [0, 4, 3, 5, 5, % scenario 1
5 4, 0, 2, 3, 3,
6 3, 2, 0, 2, 2,
7 5, 3, 2, 0, 0,
8 5, 3, 2, 0, 0,
9

10 0, 4, 3, 5, 5, % scenario 2
11 4, 0, 2, 6, 3,
12 3, 2, 0, 2, 2,
13 5, 6, 2, 0, 0,
14 5, 3, 2, 0, 0]);
15 array[1..2] of int: weights = [1,1]
16 :: scenario_weights;

Fig. 1. A stochastic vehicle routing problem

Stochastic MiniZinc 641

the weighted average using the array of weights w. We use an integer representation for
simplicity, but if the target solver supports continuous variables, a version using float
variables could be used.

1 function var int: expected(array[int] of int: w, array[int] of var int: o) =
2 sum (i in index_set(o)) (w[i]*o[i]) div sum(w);

1 V1;
2 C1;
3 array[1..S] of var int: o;
4 constraint forall (s in 1..S) (let {
5 substitute(V_2, [p/p[s], o/o[s]]);
6 } in substitute(C_2, [p/p[s], o/o[s]]));
7 solve minimize expected(w,o);

The deterministic equivalent is then constructed by looping over all scenarios and
creating a fresh set of second stage variables for each scenario using a let construct.
The second stage constraints C2 are moved into the loop. For both these code sections
we add a scenario argument s to each second stage parameter.

4.2 Policy-Based Search

Policy-based search for stochastic constraint programming [26] turns stochastic param-
eters into decision variables and then uses backtracking search to explore the different
scenarios. Instead of copying the second stage model for each scenario as in Sect. 4.1,
policy-based search implements the forall over all scenarios using a variant of and-
or search. Decision variables are searched in the usual or-fashion, while stochastic
variables represent and-nodes.

Our implementation adds decision variables for each stochastic parameter p, and a
single integer variable scenario that selects the scenario. Element constraints con-
nect the parameter variables to the actual parameters for the selected scenario. The
original objective o is unchanged, but an additional expected objective eo is added as
in Sect. 4.1.

1 V1;
2 C1;
3 array[1..S] of var int: os;
4 var 1..S: scenario;
5 for each array[1..S] of int: p add var int: pV = p[scenario];
6 substitute(V2, [p/pV]);
7 substitute(C2, [p/pV]);
8 var int: eo = expected(w,os);
9 solve two_stage(eo,o,os);

The and-or search can be implemented elegantly using search combinators [20], an
expressive domain-specific language for sophisticated search strategies. The combina-
tor two_stage used above can be realised as follows:

1 combinator s_bab(svar int: i, array[int] of svar int: best, var int: o) =
2 post(scenario=i /\ o<best[i], and([search_stage_2,assign(best[i],o),prune]));
3 combinator two_stage(var int: eo, var int: o, array[int] of var int: os) =
4 bab(eo,
5 let { array[1..S] of svar int: best = [∞ | i in 1..S] } in
6 and([search_stage_1,
7 portfolio([for (i,1,S, s_bab(i,best,o)),
8 post(os = best)])]));

642 A. Rendl, G. Tack, and P.J. Stuckey

The main structure of the combinator is an outer branch-and-bound search (bab in line
4) over the expected objective, combined with an inner branch-and-bound for every
scenario (scenario_bab, line 7). The optimum of the second stage for each scenario
is collected in an array best, and after all scenarios have been processed, is posted
back into the variables os, constraining the expected objective. The search strategies
search_stage_1 and search_stage_2 can be user-defined or default searches
for the first and second stage variables, respectively.

4.3 Progressive Hedging

Progressive hedging [16] solves each scenario to optimality in isolation, producing dif-
ferent assignments to the first stage variables for each scenario. The objective of each
scenario is then augmented with a term to minimise these first stage differences between
scenarios. This is iterated until the differences between first stage variables across all
scenarios are sufficiently small.

The transformation of a stochastic model using progressive hedging adds weights
xw that will be updated after each iteration, and an augmented objective o_hedge that
accounts for the differences between the first stage variables:

1 V1;
2 C1;
3 var 1..S: scenario;
4 array[1..|V1|] of int: xw;
5 for each array[1..S] of int: p add var int: pV = p[scenario];
6 substitute(V2,[p/pV]);
7 substitute(C2,[p/pV]);
8 var int: o_hedge = o + hedge(xw,V1);
9 solve progressive_hedging(o_hedge);

1 combinator progressive_hedging(var int: o) =
2 restart(distance > epsilon,
3 let { array[1..S,1..|V1|] of svar int: V } in
4 portfolio(for (i,1,S,
5 let { svar int: best = ∞ } in
6 post(scenario=i /\ o < best,
7 and([search_stage_1, search_stage_2, assign(best,o),
8 assign(V[i],V1), prune]))
9),

10 update_weights(distance,xw,V)
11));

The progressive_hedging combinator iterates over all scenarios (line 4), per-
forming a branch-and-bound search on the modified objective o_hedge similar to
scenario_bab. The results of the first stage variables V1 are stored in the array
V (line 8). After search in all scenarios has completed, the distance between the V1
variables and the weights in the extended objective function are updated (line 10).
The update_weights function requires some integration with the underlying solver,
since it changes the parameters of an existing constraint. We are currently implementing
this feature.

5 Related Work
The closest related approach is Stochastic OPL [27], a proposed extension of the OPL
modelling language [25] with support for stochastic variables, chance constraints, and

Stochastic MiniZinc 643

an objective function based on expectation. Similar to Stochastic MINIZINC, the ex-
tended language is compiled into the deterministic equivalent in standard OPL. Our
approach is more general, with translations into policy-based search and progressive
hedging using search combinators. We also took a conservative approach to language
extension, where stochastic features are represented using annotations, while the basic
model is perfectly valid deterministic MINIZINC. Finally, using MINIZINC as the base
language yields a solver agnostic approach, enabling the modeller to experiment with
all the different backend solvers that support MINIZINC.

AIMMS [17] is a commercial modelling and solving framework, where models can
be formulated using a graphical user-interface or by employing the internal program-
ming language. It provides strong support for stochastic linear, continuous problems,
but has very limited support for non-linear integer problems.

AMPL is a commercial algebraic modelling language with a number of stochastic
extensions [6,7,4,22,24]. The SAMPL [24] extension, including the Stochastic Pro-
gramming Integrated Environment (SPiNE) [23], has been integrated into AMPL. It
has annotations for stochastic parameters and other stochastic features. However, the
modeller has to formulate the deterministic (scenario-based) equivalent and thus has to
commit to this approach.

GAMS is a commercial modelling and solving framework that incorporates a high-
level modelling language with a stochastic extension [11]. Stochastic models contain
annotations that associate parameters to random distributions and assign variables and
constraints to stages. The annotation compilation must be explicitly stated by the mod-
eller, and non-linear constraints are not supported.

Lingo [1] is a commercial optimisation framework for Microsoft Excel with support
for stochastic programming. It provides a modelling language and strong support for
stochastic linear problems, however, integer or non-linear problems can only be trans-
lated into their scenario-based deterministic equivalents.

PySP [29] is an open modelling and solving library based on Pyomo [9], an alge-
braic modelling language extending Python. PySP supports stochastic integer problems
that can be solved either as scenario-based deterministic equivalents or by progressive
hedging. It has no known support for non-linear constraints.

There is a close connection between stochastic constraint programming and
PSPACE-complete formalisms such as QCSP [2] and QBF [19]. It will be interest-
ing future work to explore automatic translations that target solvers for these problem
classes.

6 Conclusions

We have presented Stochastic MINIZINC, an extension of the MINIZINC modelling
language that introduces syntax for modelling stochastic constraint (optimisation) prob-
lems. We have shown how to translate Stochastic MINIZINC automatically into stan-
dard MINIZINC, using three different standard approaches for dealing with uncertainty:
the scenario-based deterministic equivalent, policy-based search, and progressive hedg-
ing. The resulting system enables modellers to express stochastic problems at a high
level of abstraction, and to experiment with different solving approaches. Stochastic

644 A. Rendl, G. Tack, and P.J. Stuckey

MINIZINC is the first solving technology agnostic approach to stochastic modelling we
are aware of.

The presented stochastic extensions of MINIZINC are implemented, as well as
the automated transformations that take fractions of a second to translate. Stochastic
MINIZINC is available at http://www.minizinc.org.

References

1. Atlihan, M., Cunningham, K., Laude, G., Schrage, L.: Challenges in adding a stochastic
programming/scenario planning capability to a general purpose optimization modeling sys-
tem. In: Sodhi, M.S., Tang, C.S. (eds.) A Long View of Research and Practice in Operations
Research and Management Science. International Series in Operations Research & Manage-
ment Science, vol. 148, pp. 117–135. Springer, US (2010)

2. Chen, H.M.: The Computational Complexity of Quantified Constraint Satisfaction. Ph.D.
thesis, Cornell University, Ithaca, NY, USA (2004)

3. Flener, P., Pearson, J., Ågren, M.: Introducing ESRA, a Relational Language for Modelling
Combinatorial Problems (Abstract). In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 971–
971. Springer, Heidelberg (2003)

4. Fourer, R., Lopes, L.: StAMPL: A Filtration-Oriented Modeling Tool for Multistage Stochas-
tic Recourse Problems. INFORMS Journal on Computing 21(2), 242–256 (2009)

5. Frisch, A.M., Harvey, W., Jefferson, C., Hernandez, B.M., Miguel, I.: Essence: A Constraint
Language for Specifying Combinatorial Problems. Constraints 13(3), 268–306 (2008)

6. Gassmann, H., Ireland, A.: Scenario formulation in an algebraic modelling language. Annals
of Operations Research 59, 45–75 (1995)

7. Gassmann, H., Ireland, A.: On the formulation of stochastic linear programs using algebraic
modelling languages. Annuals of Operations Research 64, 83–112 (1996), stochastic pro-
gramming, algorithms and models, Lillehammer (1994)

8. Gent, I.P., Miguel, I., Rendl, A.: Tailoring Solver-Independent Constraint Models: A Case
Study with ESSENCE′ and MINION. In: Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS
(LNAI), vol. 4612, pp. 184–199. Springer, Heidelberg (2007)

9. Hart, W.E., Watson, J.P., Woodruff, D.L.: Pyomo: modeling and solving mathematical pro-
grams in Python. Math. Program. Comput. 3(3), 219–260 (2011)

10. Kilby, P., Shaw, P.: Vehicle routing. In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of
Constraint Programming, ch. 23, pp. 799–834. Elsevier Science Inc., New York (2006)

11. Loewe, M., Ferris, M.: Stochastic programming (SP) with EMP (GAMS) (2013),
http://www.gams.com/dd/docs/solvers/empsp.pdf

12. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., de la Banda, M.G., Wallace, M.: The
design of the zinc modelling language. Constraints 13(3), 229–267 (2008)

13. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: To-
wards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741,
pp. 529–543. Springer, Heidelberg (2007)

14. NICTA: MiniZinc (2014), http://www.minizinc.org
15. NICTA: Stochastic MiniZinc examples (2014),

http://www.minzinc.org/stochastic/
16. Rockafellar, R.T., Wets, R.J.B.: Scenarios and policy aggregation in optimization under un-

certainty. Mathematics of Operations Research 16(1), 119–147 (1991)
17. Roelofs, M., Bisschop, J.: AIMMS: The language reference 3.9 (2009)
18. Ruszczyński, A., Shapiro, A.: Stochastic Programming. Handbooks in operations research

and management science. Elsevier (2003)

http://www.minizinc.org
http://www.gams.com/dd/docs/solvers/empsp.pdf
http://www.minizinc.org
http://www.minzinc.org/stochastic/

Stochastic MiniZinc 645

19. Samulowitz, H.: Solving Quantified Boolean Formulas. Ph.D. thesis. University of Toronto,
Toronto, ON, Canada (2007)

20. Schrijvers, T., Tack, G., Wuille, P., Samulowitz, H., Stuckey, P.J.: Search combinators. Con-
straints 18(2), 269–305 (2013)

21. Tarim, A., Manandhar, S., Walsh, T.: Stochastic Constraint Programming: A Scenario-Based
Approach. Constraints 11(1), 53–80 (2006)

22. Thénié, J., Delft, C., Vial, J.: Automatic formulation of stochastic programs via an algebraic
modeling language. Computational Management Science 4(1), 17–40 (2007)

23. Valente, C., Mitra, G., Poojari, C.: A Stochastic Programming Integrated Environement
(SPiNE), pp. 115–136. Society for Industrial and Applied Mathematics (SIAM), Philadel-
phia. MPS, Mathematical Programming Society, Philadelphia (2005)

24. Valente, C., Mitra, G., Sadki, M., Fourer, R.: Extending algebraic modelling languages for
stochastic programming. INFORMS Journal on Computing 21(1), 107–122 (2009)

25. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press, Cambridge
(1999)

26. Walsh, T.: Stochastic Constraint Programming. In: van Harmelen, F. (ed.) ECAI,
pp. 111–115. IOS Press (2002)

27. Walsh, T.: Stochastic OPL. In: Proceedings of the Workshop on Modelling and Solving with
Constraints (2002)

28. Walsh, T.: Personal Communication (2014)
29. Watson, J.P., Woodruff, D.L., Hart, W.E.: PySP: modeling and solving stochastic programs

in Python. Math. Program. Comput. 4(2), 109–149 (2012)

Decomposing Utility Functions in Bounded Max-Sum
for Distributed Constraint Optimization

Emma Rollon and Javier Larrosa

Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. Bounded Max-Sum is a message-passing algorithm for solving Dis-
tributed Constraint Optimization Problems (DCOP) able to compute solutions
with a guaranteed approximation ratio. In this paper we show that the introduc-
tion of an intermediate step that decomposes functions may significantly improve
its accuracy. This is especially relevant in critical applications (e.g. automatic
surveillance, disaster response scenarios) where the accuracy of solutions is of
vital importance.

Introduction

Bounded Max-Sum (BMS) [11] approximately solves Distributed Constraint Optimiza-
tion Problems (DCOP) with very little computation and communication demands. Ar-
guably, its most interesting feature is that it comes with a guarantee approximation
ratio, meaning that its approximate solution has a utility which is no more than a fac-
tor away from the optimum. The algorithm has been recently revisited and enhanced,
producing two improved versions: IBMS [12] and RN-BMS [9], with tighter upper and
lower bounds, respectively.

All the BMS algorithms have a relaxation phase in which some functions are re-
placed by smaller arity functions. In general, such replacement introduces some error,
which prevents the algorithms from computing the true optimal solution. In this pa-
per we study the possibility of an exact decomposition in which those binary functions
are replaced by pairs of unary functions which faithfully capture the same information.
Since, in the general case, functions do not have an exact decomposition, we consider
approximate decompositions in which the error introduced is minimized. We theoreti-
cally prove that our approach improves the upper bound obtained by IBMS and show
its performance in a set of graph coloring problems.

Preliminaries

In this Section we review the main elements to contextualize our work. Definitions
and notation are borrowed almost directly from [11]. We urge the reader to visit that
reference for more details and examples.

DCOP

A Distributed Constraint Optimization Problem (DCOP) is a tuple P = (A,X,D,F),
where A = {A1, . . . ,Ar} is a set of agents, and X = {x1, . . . , xn} and D =

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 646–654, 2014.
c© Springer International Publishing Switzerland 2014

Decomposing Utility Functions in Bounded Max-Sum 647

{d1, . . . ,dn} are variables and domains. F = {f1, . . . , fe} is a set of cost functions.
The objective function is F (x) =

∑e
j=1 fj(x

j) where xj ⊆ X is the scope of fj .
A solution is a complete assignment x. An optimal solution is a complete assignment
x∗ such that ∀x, F (x∗) ≥ F (x). The usual task of interest is to find x∗ through the
coordination of the agents.

In the applications under consideration, the agents search for the optimum via decen-
tralized coordination. We assume that each agent can control only its local variable(s)
and has knowledge of, and can directly communicate with, a few neighboring agents.
Two agents are neighbors if there is a relationship connecting variables and functions
that the agents control.

The structure of a DCOP problem P = (A,X,D,F) can be transformed into a
factor graph. A factor graph is a bipartite graph having a variable node for each variable
xi ∈ X, a factor node for each local function fj ∈ F, and an edge connecting variable
node xi to factor node fj if and only if xi is an argument of fj .

Bounded Max-Sum Algorithms

The BMS algorithm [11] and its improved versions IBMS [12] and RN-BMS [9] are
approximation methods built on Max-Sum [4,1]. From a possibly cyclic problem P , the
idea is to remove cycles in its factor graph by ignoring dependencies between functions
and variables, producing a new acyclic problem. Then, Max-Sum is used to optimally
solve the acyclic problem while simultaneously computing the approximation ratio.

Here, for simplicity purposes, we restrict ourselves to IBMS, which was proven to
be always superior to BMS and usually superior to RN-BMS. For the sake of simplicity,
we will restrict ourselves to the case of binary functions fj(xi, xk). The extension to
general functions is direct.

IBMS works in three phases:

– Relaxation Phase: First, the algorithm assigns a weight wij to each edge (i, j) of
the original factor graph. Then, it finds a maximum spanning tree with respect to the
weights. Next, the original problem P is transformed into an acyclic one P̃ having
the spanning tree as factor graph as follows: For each edge (i, j) in the original
graph that does not belong to the tree, the cost function fj(xi, xk) is transformed
into another function f̃j(xk) = maxxi{fj(xi, xk)}.
Let T denote the set of functions that have not been simplified. The objective func-
tion of P̃ is

F̃ (x) =
∑
j∈T

fj(xi, xk) +
∑
j /∈T

f̃j(xk)

– Solving Phase: IBMS solves P̃ with Max-Sum. Let x̃ be the solution given by
IBMS. Since the factor graph of P̃ is acyclic, x̃ is optimal for P̃ . IBMS returns x̃
as a sub-optimal solution for P .

– Bounding Phase: IBMS computes a guarantee approximation ratio as follows.
Note that F (x̃) is an obvious lower bound of the the optimal (F (x̃) ≤ F (x∗)).
Moreover, it can be shown that F̃ (x̃) is an upper bound of the optimal (F̃ (x̃) ≥
F (x∗)). Therefore, ρ = F̃ (x̃)

F (x̃) is a guarantee approximation ratio for IBMS.

648 E. Rollon and J. Larrosa

xi xk fj
a a 15
a b 30
b a 10
b b 25

xi gj
a 10
b 5

xk hj

a 5
b 20

Fig. 1. Example of a binary function fj that can be exactly decomposed into two unary functions
hj(xk) and gj(xi)

Decomposition

The IBMS algorithm relaxes the problem by replacing some binary functions fj(xi, xk)
by unary functions f̃j(xk). Clearly, the relaxed problem is in general not equivalent to
the original one because the transformation introduces an error.

Exact Decomposition

The idea of exact decomposition is to replace the binary function fj(xk, xi) by two
unary functions hj(xk) and gj(xi) such that there is no loss of information. Formally,
given a binary function fj(xi, xk) we can set a system of linear equations,

∀xi,xk
fj(xi, xk) = hj(xk) + gj(xi)

such that ∀xk, hj(xk) ≥ 0 and ∀xi, gj(xi) ≥ 0, where each entry of the unary func-
tions is a variable of the system. If the system has a solution, that solution is an exact
decomposition. Replacing the binary function by the two unary functions modifies the
factor graph without introducing any error. The system of linear equations can be solved
very efficiently with one of the many Integer Programming toolkits available.

As an example, consider the binary cost function fj(xi, xk), and the two unary func-
tions hj(xk) and gj(xi) in Figure 1, respectively. Observe that the combination of the
two unary functions is equivalent to the binary one. The reason being that the following
equations are satisfied,

hj(a) + gj(a) = fj(a, a) hj(b) + gj(a) = fj(a, b)
hj(a) + gj(b) = fj(b, a) hj(b) + gj(b) = fj(b, b)

Therefore, in this case, exact decomposition could be achieved.
The natural application of the previous idea constitutes our first algorithm called ex-

act decomposition-based IBMS (ED-IBMS). It differs from the previous ones only in
the relaxation phase. Before computing each f̃j(xk), ED-IBMS attempts an exact de-
composition. Let D be the set of functions in which exact decomposition was achieved.
The resulting objective function is

F̃ED(x) =
∑
j∈T

fj(xi, xk) +
∑
j∈D

(gj(xi) + hj(xk)) +
∑

j /∈T∪D

f̃j(xk)

Decomposing Utility Functions in Bounded Max-Sum 649

It is easy to see that the cost of any solution in the relaxed problem with exact de-
composition is smaller than or equal to its cost in the relaxed problem without exact
decomposition. In other words, ED-IBMS always obtains upper bounds tighter than
IBMS. Formally, F (x) ≤ F̃ED(x) ≤ F̃ (x) holds.

Approximate Decomposition

Note that exact decompositions do not exist in general. In a preliminary set of experi-
ments we observed that exact decomposition occurs very rarely which makes, in prac-
tice, IBMS and ED-IBMS behave identically. When we looked into the details, we
observed that very often exact decomposition was almost achievable, which leaded us
to approximate decomposition.

The idea of approximate decomposition is to replace a given binary function
fj(xi, xk) by the combination of two unary functions hj(xk) and gj(xi), and a binary
function rj(xi, xk). Formally,

∀xi,xk
, fj(xi, xk) = hj(xk) + gj(xi) + rj(xi, xk) (1)

such that ∀xi,xk
, rj(xi, xk) ≥ 0, ∀xk, hj(xk) ≥ 0, and ∀xi, gj(xi) ≥ 0. As before,

this expression can be seen as a system of linear equations where each entry in the
unary functions and in the binary function r(xi, xk) is a variable of the system. Note
that gj(xi) and hj(xk) represent the part of the utility function fj(xi, xk) that has been
decomposed, while rj(xi, xk) represents the part that has not been decomposed (the
residual utility function).

Moreover, we want to ensure that the decomposition improves the upper bound on
the original problem. In other words, the optimum of the relaxed problem with approx-
imate decomposition must be tighter than the optimum of the relaxed problem without
approximate decomposition. Formally,

∀xi,xj max
xi

{r(xi, xk)}+ g(xi) + h(xk) ≤ max
xi

{f(xi, xk)} (2)

This inequality can be rewritten using Expression 1 as,

∀xi,xk
max
xi

{r(xi, xk)} ≤ max
xi

{f(xi, xk)} − f(xi, xk) + r(xi, xk)

Each inequality can be transformed into a set of inequalities without the max operator
over function r(xi, xj) as follows,

∀xi,xk
∀a �=xi , r(a, xk) ≤ max

xi

{f(xi, xk)} − f(xi, xk) + r(xi, xk) (3)

As an example, consider function fj(xi, xk) in Figure 2. The system of linear equa-
tions required to approximatelly decompose that function is,

gj(a) + hj(a) + rj(a, a) = 20 rj(b, a) ≤ max{20, 10}− 20 + rj(a, a)
hj(a) + gj(b) + rj(a, b) = 30 rj(a, a) ≤ max{20, 10}− 10 + rj(b, a)
hj(b) + gj(a) + rj(b, a) = 10 rj(b, b) ≤ max{30, 25} − 30 + rj(a, b)
hj(b) + gj(b) + rj(b, b) = 25 rj(a, b) ≤ max{30, 25}− 25 + rj(b, b)

650 E. Rollon and J. Larrosa

xi xk fj
a a 20
a b 30
b a 10
b b 25

xi gj
a 5
b 0

xk hj

a 10
b 25

xi xk rj
a a 5
a b 0
b a 0
b b 0

Fig. 2. Example of a binary function fj that is approximate decomposed into gj(xi), hj(xk) and
rj(xi, xk)

subject to,

hj(a) ≥ 0 gj(a) ≥ 0 rj(a, a) ≥ 0 rj(b, a) ≥ 0
hj(b) ≥ 0 gj(b) ≥ 0 rj(a, b) ≥ 0 rj(b, b) ≥ 0

where hj(·), gj(·), and rj(·, ·) are the variables of the system. Figure 2 shows one
solution to the previous system.

Any solution to the system of linear equations from Expression 1 and Expression 3
is an approximate decomposition. Some solutions may be better than other. The worst
decomposition would be one in which hj and gj are zero because no decomposition
would have been achieved. In general, one may prefer those decompositions that mini-
mize in one way or another the residuals (note that exact decomposition coincides with
zero residuals). We consider two possibilities:

– Minimize the maximum residual: minmaxxi,xk
rj(xi, xk).

– Minimize the average residual: min
∑

xi,xk
rj(xi, xk).

Such objective functions can easily be added to the system of equations and subse-
quently solved with an Integer Programming toolkit.

Approximate decompositions introduce a new family of IBMS algorithms called
AD-IBMS. The idea is to compute an approximate decomposition of function fj(xi, xk)
before its relaxation. Then, the relaxation is performed not over the original function fj ,
but over the residual rj (i.e., r̃j(xk) = maxxi{rj(xi, xk)}). Thus, the objective func-
tion of the relaxed problem is,

F̃AD(x) =
∑

(i,j),(k,j)∈T

fj(xi, xk) +
∑

(i,j)/∈T

(gj(xi) + hj(xk) + r̃j(xk))

Since the system of linear equations enforce Expression 2, it is easy to see that AD-
IBMS always obtains tighter upper bounds than IBMS. Formally, F (x) ≤ F̃AD(x) ≤
F̃ (x) holds.

Empirical Evaluation

The purpose of the experiments is to compare IBMS with respect to AD-IBMS. In
particular, we want to evaluate the improvement of the bounds and approximation ratio

Decomposing Utility Functions in Bounded Max-Sum 651

5.6

5.8

6

6.2

6.4

6.6

6.8

7

10 15 20 25 30 35 40

P
er
ce
n
ta
ge

E
rr
or

U
B

Agents

GAMMA-2, link density = 2

L1

L∞

2

2.5

3

3.5

4

10 15 20 25 30 35 40

P
er
ce
n
ta
ge

E
rr
or

L
B

Agents

GAMMA-2, link density = 2

L1

L∞

Fig. 3. Percentage error of the upper (left) and lower bound (right) obtained by AD-IBMS mini-
mizing the maximum residual (L1) and minimizing the average residual (L∞)

of the IBMS algorithm using approximate decomposition. For the sake of completeness,
we will also report the results for standard BMS and RN-BMS. The percentage error of
a value vapprox (i.e., upper or lower bound) is computed as |v−vapprox|

v × 100 where v
is the optimum of the problem.

We consider the same set of problems from the ADOPT repository1 used in [11].
These problems represent graph coloring problems with two different link densities
(i.e., the average connection per agent) and different number of nodes. Each agent
controls one node (i.e., variable), with domain |di| = 3, and each edge of the graph
represents a pairwise constraint between two agents. Each edge is associated with a
random payoff matrix, specifying the payoff that both agents will obtain for every pos-
sible combination of their variables’ assignments. Each entry of the payoff matrix is a
real number sampled from two different distributions: a gamma distribution with α = 9
and β = 2, and a uniform distribution with range (0, 1). For each configuration, we
report average values over 25 repetitions. For the sake of comparison, we compute the
optimal utility with a complete centralized algorithm.

First, we evaluate if the accuracy of AD-IBMS depends on the way the residuals are
minimized. Figure 3 shows the percentage relative error of the upper bound (left) and
lower bound (right) obtained by AD-IBMS minimizing the maximum residual (L1) and
minimizing the average residual (L∞). We only report the results on gamma distribution
with link density 2 because the behavior pattern is very similar on the other classes of
problems. Although theoretically incomparable, L∞ is always superior to L1 across all
instances. Thus, in the following, AD-IBMS refers to the L∞ case.

In our second experiment, we compare the bounds obtained by standard BMS, RN-
BMS, IBMS, and AD-IBMS. Figure 4 (first two rows) shows the percentage relative
error of the upper bound obtained by each algorithm. The behavior of all algorithms is
very similar across all link densities and payoff distributions. As theoretically proved,
AD-IBMS always computes the tightest upper bound. Figure 4 (last two rows) shows
the percentage relative error of the lower bound obtained by the previous set of al-
gorithms. In general, AD-IBMS obtains more accurate lower bounds than BMS and

1 http://teamcore.usc.edu/dcop

http://teamcore.usc.edu/dcop

652 E. Rollon and J. Larrosa

2
4
6
8
10
12
14
16
18
20
22

10 15 20 25 30 35 40

P
er
ce
n
ta
ge

E
rr
or

U
B

Agents

GAMMA-2, link density = 2

BMS
IBMS

RN-BMS
AD-IBMS

0

5

10

15

20

25

30

10 15 20 25 30 35 40

P
er
ce
n
ta
ge

E
rr
or

U
B

Agents

GAMMA-3, link density = 3

BMS
IBMS

RN-BMS
AD-IBMS

0

5

10

15

20

25

30

10 15 20 25 30 35 40

P
er
ce
n
ta
ge

E
rr
or

U
B

Agents

UNIFORM-2, link density = 2

BMS
IBMS

RN-BMS
AD-IBMS

5

10

15

20

25

30

35

40

10 15 20 25 30 35 40

P
er
ce
n
ta
ge

E
rr
or

U
B

Agents

UNIFORM-3, link density = 3

BMS
IBMS

RN-BMS
AD-IBMS

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

10 15 20 25 30 35 40

P
er
ce
n
ta
ge

E
rr
or

L
B

Agents

GAMMA-2, link density = 2

BMS
IBMS

RN-BMS
AD-IBMS

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

10 15 20 25 30 35 40

P
er
ce
n
ta
ge

E
rr
or

L
B

Agents

GAMMA-3, link density = 3

BMS
IBMS

RN-BMS
AD-IBMS

4

4.5

5

5.5

6

6.5

7

7.5

10 15 20 25 30 35 40

P
er
ce
n
ta
ge

E
rr
or

L
B

Agents

UNIFORM-2, link density = 2

BMS
IBMS

RN-BMS
AD-IBMS

4.5

5

5.5

6

6.5

7

7.5

8

8.5

10 15 20 25 30 35 40

P
er
ce
n
ta
ge

E
rr
or

L
B

Agents

UNIFORM-3, link density = 3

BMS
IBMS

RN-BMS
AD-IBMS

Fig. 4. Percentage error of the upper (first two rows) and lower bound (last two rows) obtained by
BMS, IBMS, RN-BMS and AD-IBMS minimizing the maximum residual

Decomposing Utility Functions in Bounded Max-Sum 653

IBMS. In some cases, AD-IBMS is also superior to RN-BMS. Note that this improve-
ment is very relevant. On the one hand, recall that this class of algorithms are being
developed for applications in which the accuracy of the solution is extremely important.
On the other hand, since BMS, IBMS and specially RN-BMS are already very accurate
on this type of problems, one cannot expect dramatic improvements. This improvement
leads AD-IBMS to obtain very tight approximation ratios. Moreover, the computation
time of AD-IBMS is always smaller than twice the computation time of IBMS.

The maximum 95% confidence interval for the gamma and uniform payoff distribu-
tions is smaller than 5.5 for the upper bound and smaller than 1 for the lower bound.
This small confidence interval shows that 25 repetitions provide, for our experimental
setting, a good sample size to assess the statistical significance of the results.

Finally, note that in [12] IBMS was shown to be superior to BMS and to two region-
optimal criteria introduced in [13] and [14], which were shown to produce tighter approx-
imation ratios than the approach in [6]. Moreover, in [11] BMS was shown to produce
tighter approximation ratios than the approach in [2].

Discussion

The idea of exactly decomposing functions into smaller arity ones is far from new. In
the field of probabilistic graphical models [7], where functions are (conditional) prob-
ability distributions, exact decomposition is a central issue and can be achieved when
the probabilistic variables are (conditionally) independent. In the field of constraint sat-
isfaction, where functions are relations, exact decomposition has been studied at least
in [10]. The goal there was to compute the minimal network (i.e, transforming large
arity relations into sets of equivalent binary ones). More recently, [5] have studied the
power of decomposition in the context of combinatorial optimization graphical models.
The goal there was to avoid large arity functions in order to boost local consistency
enforcement.

Regarding approximate decomposition, the Mini-Bucket Elimination (MBE) algo-
rithm [3] is the closest to ours. MBE is a dynamic-programming approximation algo-
rithm that decomposes large functions into smaller arity ones in order to keep the space
complexity manageable. The algorithm is very general and leaves several aspects unde-
fined. [8] proposed an implementation that decomposes the functions while minimizing
the error of the decomposition. One of the main differences wrt our approach is the
system of linear equations solved.

Acknowledgment. This work was supported by project TIN2009-13591-C02-01.

References

1. Aji, S.M., McEliece, R.J.: The generalized distributive law. IEEE Trx. on Information The-
ory 46(2), 325–343 (2000)

2. Bowring, E., Pearce, J.P., Portway, C., Jain, M., Tambe, M.: On k-optimal distributed con-
straint optimization algorithms: new bounds and algorithms. In: Padgham, L., Parkes, D.C.,
Müller, J.P., Parsons, S. (eds.) AAMAS (2), pp. 607–614. IFAAMAS (2008)

654 E. Rollon and J. Larrosa

3. Dechter, R., Rish, I.: Mini-buckets: A general scheme for bounded inference. J. of the
ACM 50(2), 107–153 (2003)

4. Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination of low-power
embedded devices using the max-sum algorithm. In: AAMAS, pp. 639–646 (2008)

5. Favier, A., de Givry, S., Legarra, A., Schiex, T.: Pairwise decomposition for combinatorial
optimization in graphical models. In: IJCAI, pp. 2126–2132 (2011)

6. Kiekintveld, C., Yin, Z., Kumar, A., Tambe, M.: Asynchronous algorithms for approximate
distributed constraint optimization with quality bounds. In: AAMAS, pp. 133–140 (2010)

7. Koller, D., Friedman, N.: Probabilistic Graphical Models. The MIT Press (2009)
8. Larkin, D.: Approximate decomposition: A method for bounding and estimating probabilistic

and deterministic queries. In: UAI, pp. 346–353 (2003)
9. Larrosa, J., Rollon, E.: Risk-neutral bounded max-sum for distributed constraint optimiza-

tion. In: SAC, pp. 92–97 (2013)
10. Meiri, I., Pearl, J., Dechter, R.: Tree decomposition with applications to constraint process-

ing. In: AAAI, pp. 10–16 (1990)
11. Rogers, A., Farinelli, A., Stranders, R., Jennings, N.R.: Bounded approximate decentralised

coordination via the max-sum algorithm. Artif. Intell. 175(2), 730–759 (2011)
12. Rollon, E., Larrosa, J.: Improved bounded max-sum for distributed constraint optimization.

In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 624–632. Springer, Heidelberg (2012)
13. Vinyals, M., Shieh, E., Cerquides, J., Rodriguez-Aguilar, J.A., Yin, Z., Tambe, M., Bowring,

E.: Quality guarantees for region optimal dcop algorithms. In: AAMAS, pp. 133–140 (2011)
14. Vinyals, M., Shieh, E., Cerquides, J., Rodriguez-Aguilar, J.A., Yin, Z., Tambe, M., Bowring,

E.: Reward-based region optimal quality guarantees. In: OPTMAS Workshop (2011)

Insights into Parallelism

with Intensive Knowledge Sharing

Ashish Sabharwal1 and Horst Samulowitz2

1 Allen Institute for Artificial Intelligence (AI2), Seattle, WA 98103, USA
AshishS@allenai.org

2 IBM Watson Research Center, Yorktown Heights, NY 10598, USA
samulowitz@us.ibm.com

Abstract. Novel search space splitting techniques have recently been
successfully exploited to paralleliz Constraint Programming and Mixed
Integer Programming solvers. We first show how universal hashing can
be used to extend one such interesting approach to a generalized setting
that goes beyond discrepancy-based search, while still retaining strong
theoretical guarantees. We then explain that such static or explicit split-
ting approaches are not as effective in the context of parallel combina-
torial search with intensive knowledge acquisition and sharing such as
parallel SAT, where implicit splitting through clause sharing appears
to dominate. Furthermore, we show that in a parallel setting there ex-
ists a surprising tradeoff between the well-known communication cost
for knowledge sharing across multiple compute nodes and the so far ne-
glected cost incurred by the computational load per node. We provide
experimental evidence that one can successfully exploit this tradeoff and
achieve reasonable speedups in parallel SAT solving beyond 16 cores.

1 Introduction

There have recently been several successful proposals for parallelizing combina-
torial search and optimization, especially in the context of Constraint Program-
ming (CP) and Mixed Integer Programming (MIP), such as by Régin et al. [25],
Moisan et al. [22, 23], and Fischetti et al. [13]. A desirable strength of these and
prior approaches such as the guiding path heuristic [31] is that they achieve paral-
lelization without any communication between the compute cores. In one way or
another, they split the underlying search space upfront or statically amongst the
k available compute cores, which obviates the need for communication. Unlike
search schemes based on global load-balancing or work-stealing [10, 21, 26, 27],
these communication-less approaches compute a static assignment of subprob-
lems (or of subtrees induced by a static assignment of search tree leaves) to each
compute core.

We begin by discussing these static splitting, communication-less approaches
and proposing a novel generalized static search space splitting scheme that, un-
like some of these recent proposals, is not limited to a particular search strategy
(e.g., discrepancy-based search) or a class of problem instances. This general

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 655–671, 2014.
c© Springer International Publishing Switzerland 2014

656 A. Sabharwal and H. Samulowitz

scheme uses randomly generated XOR or parity constraints and relies on their
desirable universal hashing properties in order to achieve a dynamic balanced
split of the search space amongst the compute cores. Prior works by Bordeaux
et al. [8] and Plaza et al. [24] have alluded to XOR-based splitting, but only from
an empirical perspective and without a formal analysis, especially with respect
to the balanced effect of pruning any large-enough subtree of the whole space.

The formal correctness argument for our XOR-based splitting scheme high-
lights certain assumptions crucial to the success of some of the recent paralleliza-
tion proposals. We explain why these assumptions, unfortunately, often fail in
the context of search algorithms that dynamically learn from failures, such as
CDCL (conflict-directed clause learning) solvers for propositional satisfiability
(SAT) and Lazy Clause Generating CP solvers. In combinatorial search algo-
rithms that support knowledge acquisition from failures or conflicts, intensively
sharing that learned knowledge can provide an implicit way of splitting the
search space explored by each core. As long as the solvers running at each core
are sufficiently different, one of them will encounter a certain failed state before
others and, by informing others of the reason of its failure, will indirectly prevent
them from exploring this failed state as well as any search sub-space that fails
for the same reason.

When it comes to knowledge sharing, it is common wisdom that communi-
cation across a network is costly. When designing distributed constraint solvers
running on multiple machines and sharing information, it is deemed desirable
to pack as many solvers on compute cores on individual machines as possible,
so that inter-machine network latency does not hurt performance. This common
wisdom stems from the undisputed fact that communicating across processes (or
threads) on a single machine is much faster than communicating across differ-
ent machines. While true, this reasoning ignores the memory bandwidth aspect,
which can in principle have a negative impact on solvers. For example, it is folk-
lore knowledge that running multiple copies of the MIP solver CPLEX [18] on
the same machine notably degrades performances. The main reason is that more
threads running memory intensive applications lead to more cache misses and
involuntary context switches, both of which negatively impact performance. This
happens even if one uses fewer threads than the number of available compute
cores, because multiple cores tend to share at least the L3 cache. While cache
performance of SAT solvers on a single compute node has been analyzed earlier
[1, 32], its study in the context of multiple compute nodes and the resulting
trade-offs remain unexplored.

As a motivating example, we consider the performance of the state-of-the-
art parallel SAT solver Plingeling [6] across k = 1, 2, 4, . . . , 32 cores of a single
32-core machine. Plingeling, like most current parallel SAT solvers, implements
implicit search space partitioning. The results (geometric average runtime on our
dataset, discussed later) are shown in Figure 1. We observe a sharp decline in
performance when going from 16 to 32 cores. In this work, we ask: Is this decline
in performance caused mainly by duplication of work by cores given the lack of a
static search space splitting mechanism, or by over-utilization of the memory bus?

Insights into Parallelism with Intensive Knowledge Sharing 657

Fig. 1. Performance of Plingeling across k = 1, 2, 4, . . . , 32 core on a single node com-
pared to GlucoseX10 using various node-per-core configurations up to 64 cores

We find that reduced performance can be attributed to the latter and, more
surprisingly, to such a large extent that one can, in fact, even successfully trade
off the intra-node memory bandwidth bottleneck with the presumably high inter-
node network communication cost.

Can this surprising trade off be successfully exploited in practice? To assess
this, we first implement as a baseline two static splitting strategies that are
promising in the context of SAT, one of them based on universal hashing through
XOR constraints with strong theoretical guarantees as mentioned earlier. While a
careful implementation of these strategies allows full knowledge sharing amongst
the compute cores as well as the utilization of the highly effective dynamic search
heuristics embedded in SAT solvers, we find that static splitting strategies have
limited success in the context of SAT. However, exploiting our findings about the
communication vs. node utilization trade-off, we show that a simple distributed
variant of the Glucose 3.0 solver [3], created using the SatX10 framework [7]
and performing implicit search space splitting by sharing the shortest 5% of the
learned clauses, can continue to scale (i.e., have increasing speedups) on up to
64 cores when the copies of the solver are split carefully across multiple compute
nodes. As shown in Figure 1 on our dataset, this simple distributed solver is
more than competitive with Plingeling, the winner of the parallel track in the
Application instance category of the 2013 SAT Competition [4]. Even though
slower by as much as 1.5x when using 1 core, it clearly outperforms Plingeling
as one moves to 32 or more cores, demonstrating that our insights can indeed
be successfully exploited in practice.1

1 We emphasize that this comparison is not meant to argue that GlucoseX10 is superior
to Plingeling, but rather to illustrate that there exist unusual yet successful ways of
making use of available compute resources.

658 A. Sabharwal and H. Samulowitz

2 Generalizing Static Search Space Splitting

We begin this section with a brief recapitulation of recently proposed successful
parallelization strategies for CP and MIP search and optimization using what
we will refer to as static search space splitting. With k compute cores, the search
space is split upfront into k disjoint subspaces and then each core proceeds to
search in the subspace it is responsible for. The novelty here is to achieve such
a splitting in a way that requires no communication between the compute cores
what-so-ever, which means communication cost never becomes a bottleneck as
the number of compute cores is increased.

An interesting recent example of explicit search space splitting is the so-called
embarrassingly parallel search (henceforth referred to as EPS) [25]. Suppose the
problem instance has n variables, all of which are binary. The idea is to simply
split the entire search space of size 2n into 2ñ disjoint subspaces, by fixing the
value of some ñ variables, ñ < n, in all possible ways. The resulting 2ñ subprob-
lems are then divided up equally amongst k compute cores. As long as 2ñ 6 k,
by the law of large numbers, one expects the distribution of overall computa-
tion load across the compute cores to be roughly uniform. A related scheme [13]
recently proposed in the context of MIP makes each core branch on the top ñ
variables and then choose a 1/k fraction of the resulting child nodes in a round
robin fashion.

Another explicit parallelization technique—which in fact inspired some of our
work—is the recent proposal by Moisan et al. [22] who study parallelization
of a particular class of search heuristics in the context of CP, namely limited
discrepancy-based search (LDS) [16]. We will refer to this technique as PLDS.
It was shown that it is possible to assign the 2n leaves of the entire search tree
to the k available cores such that the leaves are visited by the k cores jointly
in roughly the same order as a sequential LDS and the total number of search
nodes visited by each core c (in the subtree induced by the leaves assigned to c)
is no more than (2n/k) log k. Further, and more importantly, each of the cores
is guaranteed to benefit roughly equally from any dynamic pruning of a subtree
T of the entire search space by constraint propagators. All this is achieved by
PLDS notably without any communication between the processors. This idea
can also be extended to Depth-bounded Discrepancy based search (DDS) [23].

In the context of SAT, earlier work by Bordeaux et al. [8] suggested a com-
pletely distributed strategy where each core fixes a small number ñ of variables
(e.g., at random) without coordinating with other cores. Each core is allowed to
independently select which ñ variables it wants to fix and the values it wants to
assign to them. To ensure completeness as well as to address the high likelihood
of load imbalance in this context, the authors employed an interesting strategy
of allowing the solver at each core to backtrack over the top ñ variables—but
only after it had proved its restricted sub-formula to be unsatisfiable. The au-
thors also suggested more traditional search space splitting strategies that added
new constraints to split the search space into disjoint subspaces, but, perhaps in
part because of no knowledge sharing, they found the distributed variable fixing
strategy to be the most effective. More recently, Heule et al. [17] and van der

Insights into Parallelism with Intensive Knowledge Sharing 659

Tak et al. [30] have proposed the use of more complex inference techniques than
unit propagation to split the search space in the first phase of search and then
solve the resulting sub-problems in parallel without knowledge sharing.

2.1 Generalized Splitting Using Universal Hashing

The theoretical balancing guarantees provided by the PLDS approach can in
fact be extended to a more general setting for dynamic search heuristics that
go well beyond LDS and DDS, including the conflict analysis driven heuristics
employed by SAT solvers (e.g., VSIDS) as well as impact based search (IBS) in
CP. We discuss here a novel way to achieve this in a search-independent and
problem-independent manner, using parity or XOR constraints.

XOR constraints of length � over binary variables xi are constraints of the
form

∑�
i=1 xi = p mod 2, where p ∈ {0, 1} is referred to as the parity of the

constraint. When generated at random by choosing the set of � variables as
well as the parity p uniformly amongst all choices, XOR constraints (of large
enough length) act as a family of uniform hash functions, resulting in desirable
search space splitting properties that have been exploited in theoretical com-
puter science [5, 29] as well as in the design of practically efficient approaches
for approximating the number of solutions of a combinatorial problem and for
probabilistic inference [9, 11, 14]. In the interest of space, we refer the reader to
any of these other works for formal properties of XOR constraints. In our con-
text, they have precisely the key properties exploited by the PLDS approach.
We discuss below how this observation can be exploited.

Consider a sequential search algorithm S. Given a problem instance I on n
binary variables, let σ be the ordered sequence of the subset of the 2n leaves
(at depth n) of the underlying search tree T (of size 2n) that S visits when
operating on I. To create a parallel version Sk of S that utilizes k compute
cores, where for simplicity of exposition we assume k is a perfect power of 2, we
generate at random log k sets Xj , 1 ≤ j ≤ log k, of � variables each and restrict
the search space explored by core i, 1 ≤ i ≤ k, to the sub-space determined by
XOR constraints Cij defined as

∑
x∈Xj

x = bij mod 2, where bij is the j-th bit

of the log k bit binary representation bi of the integer i. Let Ci =
∧

j Cij . The

i-th solver Si of S
k running on core i operates on the restricted problem instance

I ∧ Ci. Si follows the original leaf sequence σ, but simply skips the leaves that
do not satisfy its XOR constraints Ci. For efficiency, if there is a subtree T of
T none of whose leaves satisfy Ci, Si must identify this fact and not waste time
exploring T at all. This, in our case, is easily achieved as at least one constraint
Cij∗ for some j∗ must be violated by the partial truth assignment that defines
the root node of T , which means that the XOR propagator for Cij∗ would make
Si fail immediately as soon as it reaches T .

This restriction scheme ensures that every pair Si, Si′ of solvers operates in
disjoint subspaces of T , and that the k cores together cover all of T . Formally:

Proposition 1. For constraints Ci as defined above and for i �= i′, Ci∧Ci′ = ⊥
and

∨
i Ci = �. Further, (I ∧Ci) ∧ (I ∧ Ci′) = ⊥ and

∨
i(I ∧ Ci) = I.

660 A. Sabharwal and H. Samulowitz

Proof. Let j∗ be a bit in which the log k bit binary representations of i and i′

differ, i.e., bij∗ �= bi′j∗ . Then (Ci ∧Ci′) = (
∧

j Cij)∧ (
∧

j Cij)⇒ (Cij∗ ∧Ci′j∗)⇒
(
∑

x∈Xj∗
x = bij mod 2) ∧ (

∑
x∈Xj∗

x = bi′j∗ mod 2) ⇒ (bij∗ = bi′j∗), which,

by the choice of j∗, is never the case. Hence, Ci ∧ Ci′ = ⊥.
On the other hand,

∨
i Ci =

∨
i

∧
j Cij =

∧
j

∨
iCij =

∧
j

∨
i(
∑

x∈Xj
x = bij

mod 2). Since i spans the range {0, 1, . . . , k − 1} and we are working with log k
bit representations, for each j there must exist an i such that bij = 0 and an i′

such that bi′j = 1. Hence,
∨

i(
∑

x∈Xj
x = bij mod 2) = � for every j, implying∧

j

∨
i(
∑

x∈Xj
x = bij mod 2) = � and finishing the proof that

∨
iCi = �.

The remaining claims now follow from these results. First, (I∧Ci)∧(I∧Ci′) =
I ∧ (Ci ∧ Ci′) = ⊥. Next,

∨
i(I ∧ Ci) = I ∧

∨
i Ci = I ∧ � = I. ��

We thus have a static partition of the search space amongst the k solvers.
Moreover, the partition is balanced in the sense that each solver Si gets precisely
a 1/k fraction of the overall 2n size search space T (irrespective of I). Most
interestingly, the uniform hashing properties of XORs guarantee that, with large
enough �, with high probability, every large-enough subspace of T has roughly
equal representation in each of the k compute cores, which act as k “buckets”
for the underlying hash function. This is formalized in the following theorem,
which notably is independent of the properties of the search algorithm S (e.g.,
using LDS or not) or of the problem instance I.

Theorem 1. Let Sk be the parallel constraint solver for k cores as described
above, operating on a problem instance I over n binary variables forming the 2n

size search space T . For � = n/2, ε ∈ (0, 1), δ > 0, and k ≤ 2n/(2+δ),

1. the entire subtree Ti of T induced by the leaves assigned to Si contains no
more than (2n+1/k) log k internal and leaf nodes combined; and

2. for any arbitrarily chosen subtree T of T with L ≥ k2+δ/ε leaves, with prob-
ability at least 1 − ε over the choice of the random XOR constraints, the
following holds: For any core i, the number of leaves of T that are assigned
to Si lies within μ · (1± k−δ/2) where μ = L/k is the expected value.

Proof. To argue that the first claim holds, we observe that Ti has exactly 2n/k
leaves, which implies that the number of internal nodes of Ti with two children
must be exactly 2n/k − 1. Thus, the total number of nodes in Ti is higher
precisely when it has more internal nodes with only one child. As can be seen
from a tree rotation argument, the number of internal nodes with only one
child is maximized when the leaves of Ti, all at depth n of T , are uniformly
spread apart at distance k from each other. In this case, Ti contains all internal
nodes of T up to depth n − log k, for a total of 2n−log k+1 − 1 nodes, each of
which is extended to depth n by a unique path of length log k containing nodes
with one child. It follows that the number of nodes in Ti is upper bounded by
(2n−log k+1 − 1) log k < (2n+1/k) log k as desired.

In order to prove the second claim, we capitalize on the known fact that log k
random XORs of length n/2 act as a universal family of hash functions on the 2n

leaves of T , placing the leaves pairwise independently into k different “buckets”,

Insights into Parallelism with Intensive Knowledge Sharing 661

which correspond to our k cores. Let Li be a random variable (with randomness
over the choice of XORs) capturing the number of leaves of T assigned to core
i. Pairwise independence of the assignment of leaves to cores implies that the
variance Var(Li) of Li is no more than its expected value E(Li) = L/k = μ.
Applying first the Chebychev inequality and then the union bound,

Pr
[
|Li − μ| ≥ μk−δ/2

]
≤ Var(Li)

μ2k−δ
≤ μ

μ2k−δ
≤ 1

k

k2+δ

L
≤ ε

k

⇒ Pr
[
∃i. |Li − μ| ≥ μk−δ/2

]
≤

k∑
i=1

Pr
[
|Li − μ| ≥ μk−δ/2

]
≤ ε

Taking the complement of this probability finishes the proof. ��

We note that although the theorem is stated for � = n/2, Ermon et al. [12]
have recently shown that certain desirable hashing properties still hold with
XORs of length �7 n/2, which are often much easier to propagate.

As an illustration of the result, suppose ε = 1/n, δ = 1, and T is any subtree
of the search space with L ≥ nk3 leaves. Then the theorem states that with
probability at least 1 − 1/n over the choice of random XORs, the number of
leaves of T assigned to Si will be within L/k · (1± 1/

√
k), i.e., very close to the

ideal balancing value of L/k. As a consequence, each core will benefit roughly
equally if a constraint propagator prunes T .

2.2 Implementing XOR-Based Splitting with Knowledge Sharing

While the above reasoning shows that adding randomly generated XOR con-
straints can, in principle, qualitatively provide the guarantees of PLDS in a
much more generic setting, it is not obvious how best to implement this strat-
egy. One of the parallelization suggestions by Bordeaux et al. [8] was in fact to
add random XOR constraints by converting then into a CNF formulation. An
XOR constraint with � variables, however, requires adding 2�−1 clauses, which
quickly becomes impractical as � grows.2 Thus, for practical reasons, we limit
our evaluation to small values of �. Bordeaux et al. did not find this to be effec-
tive, but their tests were performed without communication while we now test
the approach in the presence of knowledge sharing, in the context of SAT. This,
however, immediately raises an implementation challenge, which we discuss next.

Since each Si operates on the original instance conjoined with new constraints
that differ from core to core, clauses learned by one core may not be valid for
other cores. In principle, one can label each learned clause C as sharable or
not based on the information used to derive C. However, due to subtleties in the
implementation of modern SAT solvers, it is insufficient to simply check whether
the conflict analysis that led to the derivation of C involved one of the clauses
encoding an XOR constraint. Other operations in the solver, such as propagation

2 One could alternatively use O(�) new variables to encode the XOR constraint, but
this is known to slow down the search [14].

662 A. Sabharwal and H. Samulowitz

of unit literals learnt based on XOR constraints and clause base reductions, must
also be appropriately altered to take the effect of the XOR constraints that differ
from core to core.

An interesting alternative to explicitly adding new constraints X to the for-
mula F is to alter the branching heuristic such that the solver automatically
searches only in the assignment subspace that satisfies the constraints X . The
idea is to pre-compute all solutions to X over the set of variables appearing in X
and add them to a solution pool S. Note that each σ ∈ S is a partial assignment
for F . Now one can iterate through these partial assignments σ1, σ2, . . . , σ|S| ∈ S,
moving from σi to σi+1 as soon as the solver refutes the subtree under σi. Since
we do not add XORs explicitly as constraints and instead just branch in a way
that is consistent with XORs, the original formula must logically entail any learnt
clause. Furthermore, since we enumerate the solution pool S exhaustively the
approach is both sound and complete.

A notable advantage of this approach is that all clauses learnt by any core
are valid for all other cores as well, and can thus be freely shared.3 This obviates
the need to implement mechanisms to decide which clauses are safe to share and
which aren’t. On the other hand, for the approach to be practical, the solution
pool S must have a succinct representation that the solvers can exploit. For
example, if X is the conjunction of log k XOR constraints of length � each on
disjoint sets of variables, then |S| = (2�−1)log k = k�−1, which can quickly become
huge as k grows. To avoid this blow up, we instead use log k solution sub-pools
of size 2�−1, one for each XOR constraint. The branching heuristic first fixes all
variables from one sub-pool before moving on to the next sub-pool.

Our implementation includes a range of variations and extensions. For in-
stance, we experimented with the setting where one core remains completely
unaltered while all other cores employ XOR based branching. This strategy was
motivated by the fact that altering branching decisions can have a tremendous
impact on the search, and adding one unchanged solver to the pool of solvers
would retain some of the original search pattern and the solver’s flexibility. Fur-
thermore, when branching according to the XOR variables at the top of the
search tree we take propagation results directly into account so that an implica-
tion that falsifies the current XOR assignment causes us to directly move on to
the next assignment. Since we have a sequence of XORs to branch on, this often
allows us to skip entire sets of assignments.

2.3 Limits of Static Splitting

To our surprise, none of the approaches discussed above was truly effective in
parallelizing SAT solvers. We tried several variations and parameter settings
and will describe some representative results in Section 3, Table 1. As we discuss
next, the reason might lie in the “rigid” static search space splitting interfering
with the highly dynamic conflict-directed search performed by SAT solvers.

3 Clauses learnt at core i could be filtered based on the alignment of XORs between
cores i and j so that only the ones that have a chance of ever being triggered at core
j are shared with it.

Insights into Parallelism with Intensive Knowledge Sharing 663

In general, the recent static splitting proposals discussed at the beginning of
this section and which inspired our XOR-based splitting mechanism, unfortu-
nately, have significant limitations in the context of search strategies that apply
aggressive search space pruning through powerful propagators or that use infor-
mation learned from failures to guide future search.

For example, the EPS approach and its variation for MIP implicitly assume
that once the huge pool of 2ñ subproblems has been created, one simply must
resolve each subproblem independently and knowledge learned from solving one
subproblem cannot significantly help inference on other subproblems. This is
clearly not the case for CDCL solvers which are heavily guided by clauses learned
from conflicts and are in fact able to quickly prune new subproblems based on
experience from previously encountered subproblems. The same applies also to
CP solvers that perform conflict analysis and lazy clause generation [28].

The PLDS and XOR-splitting approaches, on the other hand, do not address
the rather common case where the number of nodes s visited by a sequential
search algorithm is significantly less than 2n. In fact, s being vastly smaller than
2n on real-world instances of interest is precisely what allows us to tackle large
NP-complete problems in a reasonable amount of time. For example, consider
an infeasible instance where fixing well-selected ñ 7 (n − log k) variables lets
constraint propagators already deduce infeasibility. With k = 1024, this condi-
tion holds whenever ñ is much smaller than n − 10, which most SAT and CP
solvers will guarantee fairly easily. While it does holds that each Si will not pro-
cess more than (2n+1/k) log k nodes and subtree pruning will positively impact
each Si roughly equally, this is not a very useful guarantee as even a well-guided
sequential search would take only 2ñ 7 2n/k steps to begin with! In general,
uniform splitting of the näıve search space of size 2n across k cores does not
say much about speedups being close to k unless the underlying search algorithm
works in a rather brute force manner.

Further, PLDS has so far been demonstrated to be effective in a setting where
the leaves of the search tree are much more costly to process than internal nodes.
This, however, is usually not the case in most SAT, CP, and MIP applications,
where node processing time often decreases as one goes deeper in the search tree.

Finally, forcefully fixing variables at the top of the search tree, as is the case
in our XOR implementation and the random prefix method [8], seems to often
interfere with dynamic branching choices that tend to make search more effective.
This is especially true for SAT solvers, which heavily rely on recent conflicts for
branching decisions, and variable activities maintained by them often change
very rapidly. This behavior is also reflected in improved performance that we
observed when using shorter XORs and random prefixes.

3 Implicit Splitting through Intensive Knowledge Sharing

An alternative to static splitting is implicit search space splitting, where the k
compute cores start exploring the entire search space independently but dynami-
cally communicate to each other—ideally in a succinct fashion—which subspaces

664 A. Sabharwal and H. Samulowitz

Table 1. Performance of various search space splitting and knowledge sharing ap-
proaches for SAT, using k = 32 cores

Search Space Splitting Clause Sharing Runtime #Solved
Approach Length (%) (sec) (count)

Implicit – 2 139 62
Implicit – 5 119 63
Implicit – 8 113 64

Static, 5 XORs 2 5 132 60
Static, 5 XORs 3 5 161 59

Static, Random Prefix 5 5 141 61
Static, Random Prefix 10 5 173 59

they have already explored. We argue that in combinatorial search algorithms
that learn from failures, such as CDCL SAT solvers and CP solver employing
Lazy Clause Generation (LCG), implicit search space splitting achieved by shar-
ing succinct reasons of failures can be much more effective than explicit search
space splitting schemes such as those discussed above. When such solvers en-
counter a “conflict” or a failed state, they analyze the reason of the failure in
terms of constraint propagations and learn a clause (or a small set of clauses)
that would prevent the solver from wasting time in other states that fail for a
similar reason. By sharing such learned clauses with other cores, one can implic-
itly achieve search space splitting—as long as there is enough variation among
the solvers executing on different cores that one of them encounters a partic-
ular failed state before others do. While simply having different random seeds
at each core can make the search sufficiently different, in our experiments we
vary also some of the solver’s parameters, such as activity decay rate and restart
frequency, across various cores.

When viewing knowledge sharing as implicit search space splitting, one must
revisit the heuristics commonly used to decide how much to share and when.
Currently employed heuristics, again guided by the common wisdom of commu-
nication latency being the main hurdle to avoid, tend to share perhaps too little
information [19]. As the representative results in Table 1 (to be discussed shortly)
demonstrate, it can be better to pay the price of additional communication for
implicit search space splitting than use explicit splitting.

The results throughout the paper are for experiments on a cluster of 32-core
compute nodes. Each node is a 4x8 3.8 GHz Power7 machine (CHRP IBM 9125-
F2C), 4 MB cache per CPU, and 128 GB of RAM. The nodes are connected via a
network that supports the PAMI message passing interface [20]. The evaluation
is on SAT Race 2010 instances (all industrial/application category) restricted to
the 73 that 1-core Glucose 3.0 could not solve within 10 seconds. The timeout
(wall-clock) used was 5,000 seconds; our results remain qualitatively unchanged
for smaller timeouts as well.

Insights into Parallelism with Intensive Knowledge Sharing 665

In Table 1, we compare (a) the implicit splitting approach with each core
sharing the shortest 2%, 5%, and 8% of its learned clauses;4,5 (b) the XOR-
based explicit splitting approach with XORs of lengths 2 and 3; and (c) the
“random prefix” approach of Bordeaux et al. [8] fixing 5 or 10 variables and
enhanced with sharing the shortest 5% of the learned clauses. For the XOR-based
splitting approach, longer XORs achieved more load balancing as expected but
worsened per-core performance as XOR constraints do not unit propagate very
well. Shorter XORs led to significantly increased load imbalance, but we could
counter this and somewhat improve the overall performance by (i) restarting an
early finishing core on the full problem instance (no XORs) or (ii) using one
additional core in parallel on this full instance, in both cases continuing to share
information. The table reports numbers for the latter, which, as we see, was still
insufficient to outperform implicit search space splitting.

Implicit sharing was nearly always the best and sharing 5% yielded good,
stable performance for various values of k. This is the setup we use henceforth.

4 The Communication-Utilization Tradeoff

Suppose we have two machines M1 and M2 with 32 compute cores each. Let S
be a solver that we can run in parallel on one or both of these machines, and we
can share information learned from failures across copies of S running on these
machines. We are interested in minimizing the time the slowest of the parallel
copies of S takes. When running k ≤ 32 copies of S on a problem instance I, is
it better to run k copies on M1 or k/2 copies each on M1 and M2?

The answer, it turns out, is not that straightforward. It depends on k (in
relation to the number of cores, 32, on each machine), the amount c of commu-
nication between each pair of copies of S, and the intensity of memory accesses
(and the resulting cache hits and misses) performed by S. As one might expect,
when k 7 32 and c is small, either option results in about the same performance.
As one might also expect, when k 7 32 but c is substantial, network latency
does play a significant role and it is better to run k copies on M1 rather than
communicate across machines. On the other hand, when k ∼ 32 but the amount
c of communication is very small, the latency of inter-machine communication
does not play a significant role and it is actually better to run k/2 copies on two
machines because constraint solvers often require high memory bandwidth and
interfere (at the system level) more with each other the more copies of them are
run in parallel on a single machine (we quantify this interference later in the

4 Sharing of the shortest x% learned clauses is implemented by maintaining a dynamic
cutoff length L such that all learned clauses of length up to L are shared. L is adjusted
periodically to achieve the x% sharing target. In principle, x itself could be adjusted
based on the total number k of cores or properties of the problem instance.

5 We also experimented with more sophisticated sharing schemes such as those based
on the LBD level of the learned clause [3], but our main findings remained unaffected.
To avoid unintended consequences of complex sharing mechanisms, we report results
on the simplest setting which still achieved state-of-the-art performance on 64 cores.

666 A. Sabharwal and H. Samulowitz

paper). Remarkably, we find that this trend continues to hold for k ∼ 32 even
when the amount c of communication is high. Specifically, even if each copy of
solver S shares with every other k − 1 copy as many as 5% of the clauses that
it learns, it is better to run k/2 copies each on M1 and M2 and pay the price of
inter-machine network communication than have k copies compete for memory
bandwidth on M1. E.g., it is often better to run 16 copies on 2 machines, and
sometimes even better to run 8 copies on 4 machines, than run 32 copies on a
single machine with 32 cores. The best allocation of cores across nodes is clearly
dependent on the machine type. However, our empirical observations suggest
that the configuration process does not have to be very fine grained.

We note that with k = 32 copies, sharing 5% of the learned clauses results in
a significant amount of communication as each copy of S, when generating m
learned clauses per second on its own, is expected to receivem∗(k−1)∗5/100 =
1.55m clauses from other copies of S. In other words, each copy listens more to
others than spend time doing its own deductions.

4.1 Time Profile of SAT Solvers

When working in a parallel setting where solvers run possibly on different ma-
chines and intensively share information, it is important to understand where
these solvers spend most of their time and what role does the communication
cost play. For CDCL SAT solvers, the total time T can be divided up as follows:

T = Tconf + Tprop + Tcomm + Tmisc

=
Nconf

Rconf
+
Nprop

Rprop
+
Ncomm

Rcomm
+ Tmisc

Here Tconf represents the total time spent performing conflict analysis, Nconf

represents the number of times conflict analysis is performed, and Rconf =
Nconf/Tconf is the associated rate, i.e., time per conflict analysis. The other sym-
bols similarly correspond to the time, number, and rate of unit propagations,
and of communication between cores. Since our main interest is in studying
parallelization, we will compute and report all times in terms of wall-clock time.

There have been studies suggesting that SAT solvers spend a substantial
amount of time performing unit propagation, and this observation has been used
to help understand the behavior and limitations of parallel SAT solvers [15]. To
make the numbers concrete in our setting and with our solver, we computed
the values of Tconf and Tprop for Glucose 3.0 on our dataset. Figure 2 shows the
result in relative terms as a percentage of T . To make relative numbers meaning-
ful, the dataset was restricted to instances needing at least 30 seconds to solve.
Clearly, unit propagation does dominate the time Glucose spends solving most
instances, 71.01% on average6 and never less than 40% on our dataset. Conflict
analysis is the next most expensive operation. It can vary from 5% to 45%, with
the geometric average being 12.45%. We will return to these observations later.

6 All results are reported as a geometric mean, which is often more robust to high
outliers than arithmetic mean. Results remain qualitatively unchanged either way.

Insights into Parallelism with Intensive Knowledge Sharing 667

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Re
la

tiv
e

Ti
m

e
Sp

en
t

(%
 o

f t
ot

al
 w

al
lc

lo
ck

 ti
m

e

Instances, sorted by difficulty

Miscellaneous
Conflict Analysis
Unit Propagation

Fig. 2. Relative split of the total time spent by Glucose into Tconf, Tprop, and Tmisc

Fig. 3. Impact on Rconf when running k = 4, 8, 16, 32 independent copies of Glucose.
Shown, for a selected set of instances, is Rconf as a percentage of the baseline Rconf

obtained by running only a single copy of Glucose.

While it is folklore knowledge that running k independent processes on a single
compute node with m cores can slow down each process as k approaches m, the
large extent of slow down is rather surprising for SAT solvers. To quantify this
effect, we ran k independent copies of the 1-core solver on a compute node with
32 cores. The plot in Figure 3, which shows the results on individual instances
where Glucose on 1 core took between 600 and 1,800 seconds, demonstrates that
the rate Rconf of conflict analysis is significantly reduced as k increases, by as
much as 45% when increasing k from 8 independent copies to 32 copies. We
obtained similar results for Rprop (omitted due to space limitation).

4.2 Communication Cost vs. Node Utilization

Now suppose we run k cooperating copies of a solver in a parallel setting with in-
formation sharing among the copies. How does the slow down seen when running

668 A. Sabharwal and H. Samulowitz

Fig. 4. Trade-off: communication cost vs. node utilization

k ≈ m copies on a single compute node compare with the communication cost
incurred when running, say, k/2 copies on two different compute nodes?

Figure 4 depicts this trade-off, where on the horizontal axis we have the num-
ber N of compute nodes used, on the vertical axis is the performance (measured
as the geometric mean of the runtimes across instances), and each curve cor-
responds to a different total number k of cores used in parallel. Each compute
node thus runs k/N solvers in parallel.

While for small k (e.g., k = 8) performance, as expected, drops when increas-
ing N due to the communication overhead, for larger values of k, increasing
N surprisingly leads to significantly better performance. For example, the data
shows that when wanting to run k = 32 solvers in parallel, it is substantially
better to run only k/N = 16 or even 8 solvers per compute node than to fully
utilize the node by running k = 32 solvers on it. Based on these findings, we
used the following configurations of N nodes with k/N cores per node (for a
total of N × k/N = k cores) produce data for the GlucoseX10 curve in Figure 1:
1×1 = 1, 2×4 = 8, 2×8 = 16, 4×8 = 32, and 8×8 = 64.7 The figure shows that
GlucoseX10, while worse than Plingeling for k = 1, continues to scale reasonably
well even up to k = 64 and clearly outperforms Plingeling for k > 16.

To understand this behavior, let us consider the time profile of SAT solvers
discussed earlier. By increasing N and keeping everything else unchanged, we
must clearly decrease the communication rate Rcomm. Assuming Tmisc is not
affected significantly and neither are the total numbers Nconf and Nprop of con-
flicts and unit propagations, respectively, the only way the overall time T can
decrease, is for one or both of the rates Rconf and Rprop to significantly increase.
This, indeed, is the case. Across all problem instances Nconf is not systematically
altered one way or another by changing N from 1 to 4 with k = 32 cores in total.
However, as expected, Rconf increases quite consistently across all instances and

7 While the specific numbers reported here are based on evaluation on our compute
hardware, our qualitative findings are likely to be applicable to other compute sys-
tems as well. Simple experimentation can be used to identify the most effective split
of k cores of a parallel solver across multiple compute nodes.

Insights into Parallelism with Intensive Knowledge Sharing 669

the geometric mean of Rconf is roughly 20% larger when using 4 nodes compared
to 1 node. A similar trend holds also for Nprop and Rprop.

These results highlight the rather surprising tradeoff between the utilization
of each compute node and the communication cost across multiple nodes. They
also show that this tradeoff can be fruitfully exploited.

5 Concluding Remarks

Limited intra-node memory bandwidth has a substantial impact on the per-
formance of today’s combinatorial search methods when several such solvers,
or their parallel versions, operate on a single machine. One may näıvely con-
sider this impact smaller than the usually high latency of communication across
a network. Our results, however, demonstrate that one can significantly gain
in performance by distributing a parallel solver across multiple machines even
when the solver employs extensive knowledge acquisition and sharing. For exam-
ple, a SAT solver learning around 1,000 clauses per second and sharing 5% of
what it learns with other 31 solvers in turn receives 1,000 × 31 × 0.05, or over
1,500 clauses per second. Even then, as our results show, distributing 32 cores
across 4 or 8 compute nodes pays off. A testament to the practical importance
of this insight is that one is able to significantly outperform the state of the art
in parallel SAT solving on 32 or more cores.

This is, of course, not a complete solution to effective parallelization of SAT
solvers or CP solvers with lazy clause generation. By using only a subset of the
available cores on a machine and letting others idle, we are essentially wasting
resources. However, our results suggest that, rather than allocating idle cores to
other solvers running in parallel, one should consider other uses of the idle cores.
In particular, it may be worthwhile revisiting operations such as unit propaga-
tion and conflict analysis, which often take up nearly 90% of the solver’s time
and must be performed in any case. Our results motivate parallel propagation
and conflict analysis schemes as was also suggested earlier by Hamadi and Win-
tersteiger [15]. In this context, it is important to note that while unit propagation
is P-complete [15], the only known theoretical consequence of this completeness
observation is that a q-step unit propagation sequence cannot be parallelized to
logi q parallel steps for any constant i. However, this does not preclude reduc-
tions by large constant factors or even asymptotic reductions to, say,

√
q parallel

steps. This may be a more promising use of idle cores than running additional
copies of the solver as this is likely to have a more coherent memory footprint
across cores and thus be more amenable to better cache performance.

As the total number of compute cores grows, the communication cost must
eventually become dominant. It, therefore, remains important to consider more
sophisticated knowledge sharing schemes [2] or more parallelizable proofs [19],
both of which are promising research directions orthogonal to our findings. Any
improvements along these lines will affect our approach positively as well and
help it scale to more compute cores.

670 A. Sabharwal and H. Samulowitz

References

[1] Aigner, M., Biere, A., Kirsch, C.M., Niemetz, A., Preiner, M.: Analysis of portfolio-
style parallel SAT solving on current multi-core architectures. In: POS-2013: Intl.
Workshop on Pragmatics of SAT, Helsinki, Finland (2013)

[2] Audemard, G., Hoessen, B., Jabbour, S., Lagniez, J.-M., Piette, C.: Revisiting
clause exchange in parallel sat solving. In: Cimatti, A., Sebastiani, R. (eds.) SAT
2012. LNCS, vol. 7317, pp. 200–213. Springer, Heidelberg (2012)

[3] Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: 21st IJCAI, Pasadena, CA, pp. 399–404 (July 2009)

[4] Balint, A., Belov, A., Heule, M., Järvisalo, M.: SAT competition (2013)

[5] Bellare, M., Goldreich, O., Petrank, E.: Uniform generation of NP-witnesses using
an NP-oracle. Information and Computation 163(2), 510–526 (2000)

[6] Biere, A.: Lingeling, Plingeling and Treengeling entering the SAT Competition
2013. In: Proc. of SAT Competition 2013, Univ. of Helsinki. Dept. of Computer
Science Series of Publications B, vol. B-2013-1, pp. 51–52 (2013)

[7] Bloom, B., Grove, D., Herta, B., Sabharwal, A., Samulowitz, H., Saraswat, V.:
SatX10: A scalable plug&play parallel SAT framework - (tool presentation). In:
Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 463–468.
Springer, Heidelberg (2012)

[8] Bordeaux, L., Hamadi, Y., Samulowitz, H.: Experiments with massively parallel
constraint solving. In: 21st IJCAI, pp. 443–448 (2009)

[9] Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable and nearly uniform generator
of SAT witnesses. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 608–623. Springer, Heidelberg (2013)

[10] Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in paral-
lel constraint programming. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732,
pp. 226–241. Springer, Heidelberg (2009)

[11] Ermon, S., Gomes, C., Sabharwal, A., Selman, B.: Taming the curse of di-
mensionality: Discrete integration by hashing and optimization. In: 30th ICML,
pp. 334–342 (June 2013)

[12] Ermon, S., Gomes, C., Sabharwal, A., Selman, B.: Low-density parity constraints
for hashing-based discrete integration. In: 31st ICML (2014)

[13] Fischetti, M., Monaci, M., Salvagnin, D.: Self-splitting of workload in parallel
computation (May 2014)

[14] Gomes, C.P., Sabharwal, A., Selman, B.: Model counting: A new strategy for
obtaining good bounds. In: 21st AAAI, Boston, MA, pp. 54–61 (July 2006)

[15] Hamadi, Y., Wintersteiger, C.M.: Seven challenges in parallel sat solving. In: 26th
AAAI (2012)

[16] Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: 14th IJCAI, Mon-
treal, Canada, pp. 607–615 (August 1995)

[17] Heule, M., Kullmann, O., Wieringa, S., Biere, A.: Cube and conquer: Guiding
cdcl sat solvers by lookaheads. In: Eder, K., Lourenço, J., Shehory, O. (eds.) HVC
2011. LNCS, vol. 7261, pp. 50–65. Springer, Heidelberg (2012)

[18] IBM ILOG. IBM ILOG CPLEX Optimization Studio 12.6 (2013)

[19] Katsirelos, G., Sabharwal, A., Samulowitz, H., Simon, L.: Resolution and paral-
lelizability: Barriers to the efficient parallelization of sat solvers. In: 27th AAAI
(2013)

Insights into Parallelism with Intensive Knowledge Sharing 671

[20] Kumar, S., Mamidala, A.R., Faraj, D., Smith, B., Blocksome, M., Cernohous, B.,
Miller, D., Parker, J., Ratterman, J., Heidelberger, P., Chen, D., Steinmacher-
Burrow, B.: PAMI: A parallel active message interface for the Blue Gene/Q su-
percomputer. In: IPDPS-2012: 26th IEEE International Parallel & Distributed
Processing Symposium, pp. 763–773 (2012)

[21] Michel, L., See, A., Hentenryck, P.V.: Transparent parallelization of constraint
programming. INFORMS Journal on Computing 21(3), 363–382 (2009)

[22] Moisan, T., Gaudreault, J., Quimper, C.-G.: Parallel discrepancy-based search.
In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 30–46. Springer, Heidelberg
(2013)

[23] Moisan, T., Quimper, C.-G., Gaudreault, J.: Parallel depth-bounded discrep-
ancy search. In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 377–393.
Springer, Heidelberg (2014)

[24] Plaza, S.M., Markov, I.L., Bertacco, V.: Low-latency sat solving on multicore pro-
cessors with priority scheduling and xor partitioning. In: International Workshop
on Logic Synthesis (IWLS) (2008)

[25] Régin, J.-C., Rezgui, M., Malapert, A.: Embarrassingly parallel search. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 596–610. Springer, Heidelberg (2013)

[26] Rolf, C.C., Kuchcinski, K.: Load-balancing methods for parallel and distributed
constraint solving. In: IEEE Conf. on Cluster Computing, pp. 304–309 (September
2008)

[27] Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T.: ParaSCIP – a
parallel extension of SCIP. In: Competence in High Performance Computing 2010,
pp. 135–148. Springer (February 2012)

[28] Stuckey, P.J.: Lazy clause generation: Combining the power of SAT and CP (and
MIP?) solving. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS,
vol. 6140, pp. 5–9. Springer, Heidelberg (2010)

[29] Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. Theo-
retical Comput. Sci. 47(3), 85–93 (1986)

[30] van der Tak, P., Heule, M., Biere, A.: Concurrent cube-and-conquer - (poster
presentation). In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317,
pp. 475–476. Springer, Heidelberg (2012)

[31] Zhang, H., Bonacina, M.P., Hsiang, J.: PSATO: a distributed propositional prover
and its application to quasigroup problems. J. Symb. Comput. 21(4), 543–560
(1996)

[32] Zhang, L., Malik, S.: Cache performance of SAT solvers: a case study for efficient
implementation of algorithms. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003.
LNCS, vol. 2919, pp. 287–298. Springer, Heidelberg (2004)

The Non-overlapping Constraint between

Objects Described by Non-linear Inequalities

Ignacio Salas1, Gilles Chabert1, and Alexandre Goldsztejn2

1 Mines de Nantes, LINA UMR 6241, France
{ignacio.salas,gilles.chabert}@mines-nantes.com

2 CNRS, LINA UMR 6241, France
alexandre.goldsztejn@univ-nantes.fr

Abstract. Packing 2D objects in a limited space is an ubiquitous prob-
lem with many academic and industrial variants. In any case, solving
this problem requires the ability to determine where a first object can be
placed so that it does not intersect a second, previously placed, object.
This subproblem is called the non-overlapping constraint. The complex-
ity of this non-overlapping constraint depends on the type of objects
considered. It is simple in the case of rectangles. It has also been studied
in the case of polygons. This paper proposes a numerical approach for
the wide class of objects described by non-linear inequalities. Our goal
here is to calculate the non-overlapping constraint, that is, to describe
the set of all positions and orientations that can be assigned to the first
object so that intersection with the second one is empty. This is done
using a dedicated branch & prune approach. We first show that the non-
overlapping constraint can be cast into a Minkowski sum, even if we take
into account orientation. We derive from this an inner contractor, that is,
an operator that removes from the current domain a subset of positions
and orientations that necessarily violate the non-overlapping constraint.
This inner contractor is then embedded in a sweeping loop, a pruning
technique that was only used with discrete domains so far. We finally
come up with a branch & prune algorithm that outperforms Rsolver,
a generic state-of-the-art solver for continuous quantified constraints.

1 Introduction

The goal of this article is to calculate the set of all positions and orientations
that can be given to an object so that it does not overlap a second one (see
the left graphic in Figure 1, which shows the simpler case where no orientation
is considered). We address the general case of objects described by nonlinear
inequalities. Calculating this set is a key task for solving packing problems, that
consists in placing a set of objects in a bounded space so that they do not overlap
pairwise.

In this introduction, we first define objects in our context and give a precise
statement of the non-overlapping constraint. Then, we explicit the type of objects
we consider and explain what we mean by calculating a set. We finally mention
related works.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 672–687, 2014.
© Springer International Publishing Switzerland 2014

The Non-overlapping Constraint between Objects 673

Fig. 1. Non-overlapping constraint. Left: two objects SR and SM , the region in
red represents the set of all positions xM for SM that violate the non-overlapping
constraint. Right: two objects SR and −SM and their Minkowski sum, which coincides
with the overlapping constraint (the negation of the non-overlapping constraint).

In Section 2, we show that our problem can be cast into the calculation of a
Minkowski sum. Based on this observation, we propose a branch & bound algo-
rithm in Section 3. Experimental results are shown in Section 4 and a conclusion
follows.

1.1 Object Definition

For clarity, let us first assume that the orientation is fixed, that is, objects can
only be translated.

Translating an object means fixing the position of a particular point that
we call the origin. This origin point can be arbitrarily chosen. For instance, in
rectangle packing, the origin of a rectangle can be a vertex or its center point.
Once this convention for the origin is made, the shape of the object is just a
regular constraint. To illustrate this, let us consider again rectangle packing. If
the origin is the lower-left corner, then a rectangle of dimensions l1 and l2 is the
set of all p ∈ R2 satisfying

c(p) ⇐⇒ 0 ≤ p1 ≤ l1 ∧ 0 ≤ p2 ≤ l2. (1)

Alternatively,

c(p) ⇐⇒ − l1
2
≤ p1 ≤

l1
2
∧ − l2

2
≤ p2 ≤

l2
2
. (2)

defines a rectangle with the center point as origin, which, of course, is just a
shift of the previous constraint. So, the shape of an object can be expressed as a
constraint, the latter containing an implicit convention for the origin. As a last
example, a circle of radius r is the set of all p ∈ R2 such that

c(p) ⇐⇒ ‖p‖ ≤ r (3)

the origin being, in this case, the center of the circle.
This definition of c(p) corresponds to an object with no translation nor ro-

tation. The general constraint corresponding to an object translated by x and

674 I. Salas, G. Chabert, and A. Goldsztejn

rotated by α is easily obtained as follows. In the case of translation only, the
part of the plane covered by an object placed at some position x is the set of
all p such that c(p− x) is satisfied. Let us introduce orientation. By a classical
geometric argument, an object placed at x and turned by some angle α is the
constraint

c
(
R−α(p− x)

)
(4)

where Rα is the rotation matrix with angle α:

Rα =

(
cos(α) − sin(α)
sin(α) cos(α)

)
. (5)

Equivalently, we can say that c(p) ≡ c(R0(p−0)) represents the object placed
at 0 and rotated by the angle 0. To conclude:

– an object is a constraint on the plane (i.e., with two variables),
– placing an object means fixing the coordinate of its implicit origin,
– orienting an object means fixing the angle of the rotation around its implicit

origin.

In this paper we consider objects described by nonlinear inequalities c(p) ⇐⇒
f(p) ≤ 0. E.g., a circle of radius 1 which origin is the center point is the set of
all p ∈ R2 such that f(p) ≤ 0 with f : p �→ ‖p‖ − 1. For the clarity of presen-
tation, we will assume each object to be described by a single inequality, but
our results can be easily extended to the more general case of objects described
by disjunctions of conjunctions of inequalities. This is possible by introducing
min and max operators. For instance, (f1(x) ≤ 0 ∨ f2(x) ≤ 0) is equivalent
to max{f1(x), f2(x)} ≤ 0. Differentiability is not required by our algorithm. In
fact, there is also no assumption on the functions involved, except that they are
defined by mathematical expressions based on usual operators (+, ×, √. , exp,
etc.). In particular, there is no convexity assumption on the input objects.

1.2 The Non-overlapping Constraint

We can now focus on the non-overlapping constraint. The non-overlapping con-
straint involves two objects, one being fixed, the other representing the unknowns
of the problem. For this reason, we will call “reference object” the first one and
denote by cR its describing constraint. The second one will be called “moving
object” and its constraint denoted by cM .

We will show at the end of this section that the general case, where both
objects are translated and/or rotated, can actually be obtained from the simpler
case where the reference object has no transformation. Intuitively, the frame
where the overlapping constraint is stated can be centered on the reference object
and aligned with its orientation, albeit the exact formula is not so trivial.

So, we shall only introduce in our definition below the position xM and the
rotation angle αM of the moving object. The non-overlapping constraint is the
negation of the overlapping constraint that can be stated as follows.

The Non-overlapping Constraint between Objects 675

Definition 1 (Overlapping Constraint)
Given two constraints cR and cM , a vector xR ∈ R2 and αR ∈ [0, 2π]:

overlap(cR,cM)(xM , αM) ⇐⇒ ∃p ∈ R2, cR(p) ∧ cM
(
R−αM (p− xM)

)
. (6)

In the case of translation only, this simplifies to

overlap(cR,cM)(xM) ⇐⇒ ∃p ∈ R2cR(p) ∧ cM (p− xM). (7)

Our goal is to calculate the overlapping constraint. By calculating, we mean
here that an explicit (numerical but verified) representation of the solution set
S ′ := {(xM , αM), overlap(cR,cM)(xM , αM)} (or S := {xM , overlap(cR,cM)(xM)}
in the case of translation only) has to be returned by our algorithm.

We show now that the overlapping constraint in the case where the reference
object is given a position xR and an orientation αR can be tested using S ′ (and
hence using its explicit representation). More precisely:

Proposition 1. The moving object with position xM and orientation αM over-
laps the reference object with position xR and orientation αR iff

(R−αR(xM − xR), αM − αR) ∈ S′ (8)

Proof.. By definition, (xM , αM) satisfies the overlapping constraint with the
reference object at position xR and orientation αR iff exists ∃p ∈ R2 such that
cR(R−αR(p−xR)) and cM (R−αM (p−xM)). This is equivalent to ∃q ∈ R2, namely

q = R−αR(p− xR) ⇐⇒ p = RαRq + xR, (9)

such that cR(q) and

cM (R−αM (RαRq+xR−xM)) ⇐⇒ cM (R−αM+αR(q+R−αR(xR−xM))). (10)

This is equivalent to (8). �
Remark 1. The non-overlapping constraint is usually considered for packing ap-
plications. Its description is easily obtained from the one of the non-overlapping
constraint. The former is preferred here because it simplifies the constraints
expressions and its link with the Minkowski sum presented in Section 2.

1.3 Intervals, Boxes and Paving

The representation we use is called a paving. This representation is a natural
choice in the context of constraint programming where the large majority of
algorithms dedicated to continuous variables, if not to say all, assume domains of
variables to be intervals (see, e.g., [BG06, JKDW01]). In the following definition,
we call box a Cartesian product of d intervals where d is either 2 in the case of
S or 3 in the case of S ′.

Definition 2 (Paving). A paving of a set S ⊂ Rd is a triplet (I,B,O) where I
(for “inside”), O (for “outside”) and B (for “boundary”) are three sets of boxes
verifying

∪I ⊂ S, (∪O) ∩ S = ∅ and ∪ (B ∪ I ∪ O) = Rd. (11)

An example of paving is shown in Figure 2.

676 I. Salas, G. Chabert, and A. Goldsztejn

Fig. 2. Paving of an ellipsis. The interior red boxes belongs to I, the unknown blue
boxes in the boundary belongs to B and the green outer boxes belongs to O.

1.4 Contribution and Related Works

This paper proposes an algorithm that computes a paving of the overlapping
constraint. One contribution is on the modeling aspect of this problem: we show
that the overlapping constraint can be expressed as a Minkowski sum. On the
one hand, this generalizes the approach and simplifies the description of the
algorithms. On the other hand, it allows handling the simple translation case
and the more involved translation and rotation case homogeneously by cast-
ing the rotation to a translation into an augmented space (see Proposition 2).
The other contribution is algorithmic. We propose an original inner contrac-
tor for this problem, that is, an operator that identifies parts of the solution
set. This operator implements a sweeping loop and exploits the properties of the
Minkowski sum. The second operator is an outer rejection test based on classical
constraint propagation. Both are interleaved in a branch and prune algorithm
that computes the desired paving.

From another point of view, definition 1 means that our problem falls into the
category of existentially-quantified constraints. A state-of-the-art algorithm for
calculating a paving with existentially-quantified inequalities is given in [Rat06]
and is implemented in theRsolver tool [Rat] (Rsolver implements a general algo-
rithm, somehow a numerical version of CAD, for solving quantified constraints).

General techniques [GJ06, IGJ12] for quantified equality constraints could
also be used: either by adapting [GJ06] to compute an over approximation of
the boundary of the overlapping constraint, or using a necessary condition for the
boundary of the overlapping constraint expressed as an under-constrained system
of equations and using [IGJ12]. However, the overlapping constraint naturally
involves inequality constraints and using costly techniques dedicated to equality
constraints turns out to be counterproductive.

Finally, we shall mention that an exact formula for the overlapping set S has
been given in [BGT01] in the case where objects are polytopes. The set, in this
case, is the convex hull of the points obtained by summing one vertex of the first
polytope to one vertex of the second one.

The Non-overlapping Constraint between Objects 677

2 Overlapping as a Minkowski Sum

In this section, we show that the overlapping constraint can be reformulated as
a Minkowski sum. This relation underlies our branch & bound solver, that will
be presented further. Let us first recall the definition of the Minkowski sum of
two sets:

Definition 3 (Minkowski sum)
Given two equi-dimensional sets S1, S2 ⊆ Rd, the Minkowski sum is

S1 + S2 = {x1 + x2 ∈ Rd : x1 ∈ S1, x2 ∈ S2}. (12)

The Minkowski difference is defined accordingly by:

S1 − S2 = {x1 − x2 ∈ Rd : x1 ∈ S1, x2 ∈ S2}. (13)

The right graphic of Figure 1 (page 673) shows an example of two sets and
their Minkowski sum.

Considering S1 as a constraint c1 (i.e., x ∈ S1 ⇐⇒ c1(x)) and, similarly, S2

as c2, we have, equivalently:

S1 + S2 = {x ∈ Rd : ∃p ∈ Rd, c1(p) ∧ c2(x− p)}. (14)

where d is the number of variables in the constraints. Comparing (14) and (7),
we immediately see that S = SR − SM , i.e. the overlapping constraint can be
represented as a Minkowski sum in the case of translation only.

We show now that S ′ is also a Minkowski sum, a less trivial result. To this
end, we embed the moving object SM ⊆ R2 into R3 encoding its rotation within
the additional dimension:

S ′
M := {(v, β) : cM (Rβ v)} = {(v, β) : Rβ v ∈ SM}. (15)

Now, the following proposition states that the overlapping constraint with rota-
tion S ′ can be written as a Minkowski difference of two such “augmented” sets
(see Figure 3).

Proposition 2

S ′ = SR × {0} − S′
M . (16)

Proof. By definition, (xM , αM) ∈ S ′ holds if and only if ∃p ∈ R2 such that cR(p)
and cM (R−αM (p − xM)). Equivalently, there exists uR ∈ SR and uM ∈ SM
such that uR = p and uM = R−αM (uR − xM) ⇐⇒ xM = uR − RαMuM .
Finally, the vector (xM , αM) is proved to be the sum of (uR, 0) ∈ SR × {0} and
(RαMuM , αM) ∈ S ′

M . �

678 I. Salas, G. Chabert, and A. Goldsztejn

Fig. 3. Sets whose Minkowski difference gives the overlapping constraint of two ellipsis,
when rotation is taken into account. Left: the augmented reference ellipsis, with rotation
coordinate set to 0. Right: the augmented moving ellipsis S′

M .

3 Algorithm

From now on, our goal is to calculate a paving (I,B,O) of the sum S of two sets
S1 and S2. According to the previous section, the link with the non-overlapping
constraint is made by setting S1 to either SR or S′

R and S2 to either −SM or
−S′

M .
Algorithm 1 below is based on a classical SIVIA-like branch & contract re-

cursive loop [JW93, CJ09]. The core operation made on a box [x] can be broken
into three steps. First, [x] is contracted to a box [x]′ by an inner contractor Cin,
that is, an operator that guarantees:

[x]′ ⊆ [x] ∧ [x]\[x]′ ⊆ I. (17)

If [x]′ �= ∅ then [x]′ is contracted to a box [x]′′ by an outer contractor Cout that
guarantees:

[x]′′ ⊆ [x]′ ∧ [x]′\[x]′′ ⊆ O. (18)

Finally, if [x]′′ �= ∅ then [x]′′ is bisected in two new boxes that are pushed in the
list of boundary boxes B. The recursion stops when the total surface of boxes in
B is less than ε% of the initial box surface (s0), ε being a user-defined parameter.

The originality of our approach lies in the inner contractor that we describe
now. It is dedicated to the handled problem as it makes use of the specific
structure of the quantified constraint (14).

3.1 Inner Contractor

Our inner contractor is based on the inner arithmetic and a sweep loop: The
former builds small inner boxes, and the latter makes the union of these boxes
in order to remove slices of the initial box, leading to a so called inner contraction.

The Non-overlapping Constraint between Objects 679

Algorithm 1: (I,B,O) = pave([x], ε)

s0 ← surface([x]); // initial surface1

I ← ∅; O ← ∅; B ← {[x]};2

s ← s0; // current surface of B3

while (s > ε × s0) do4

[x] ← box of B with the largest surface; // (use a heap structure for that)5

pop [x] from B;6

s ← s− surface([x]); // update the surface7

[x]′ ← Cin([x]); I ← I ∪ ([x]\[x]′); // inner contraction8

[x]′′ ← Cout([x]
′); O ← O ∪ ([x]′\[x]′′); // outer contraction9

if ([x]′′ �= ∅) then10

([x]1, [x]2) ← bisect([x]′′);11

push [x]1 and [x]2 in B;12

s ← s+surface([x]1)+surface([x]2); // update the surface13

end14

end15

return (I,B,O);16

The inner arithmetic is a variant of the classical interval arithmetic that al-
lows to build a sub-box of a box [x] that is inside a given set S described by
inequalities. This technique was first introduced in §3 of [CB10] and used in
[ATNC14] in the context of global optimization. This inner arithmetic can also
be used with a initial point (or initial box) that is inflated, that is to say, given
a box [x] and x̃ ∈ [x], it produces a box [x̃] such that

x̃ ∈ [x̃] ⊆ [x] ∧ [x̃] ⊆ S, (19)

or an empty box if x̃ �∈ S. This arithmetic has similar properties to its classical
counterpart: the time complexity is in the length of the constraint expression
and gives an optimal box [x̃] (i.e., of maximal size in every dimension) if no
variable occurs twice in the expression.

Before describing how to contract a box [x] with this new arithmetic, let us
first address a simpler question: how to find a subbox of [x] that is inside S ?

A possible answer is to look for two boxes [x]1 and [x]2 such that

[x]1 ⊆ S1, [x]2 ⊆ S2 and ([x]1 + [x]2) ∩ [x] �= ∅ (20)

because, in this case, ([x]1+[x]2) ⊆ [x]∩S. To find such boxes, one can calculate
in parallel two pavings, one of S1 and one of S2, and stop the process as soon
as two boxes satisfying (20) are found. By combining boxes of the first paving
with boxes of the second one, this approach amounts to run a branch & bound
in a (2 × d)-dimensional space. Note that this branch & bound is a sub-solver
embedded in the main one, the one for the x variable. Our goal is to reduce the
sub-solver to d dimensions only, which is, by the way, the incompressible price
to pay for handling d existentially-quantified parameters.

To this end, we use the same idea as above, but this time based on Relation
(14) (see Figure 4). To build an inner box in [x], let us first assume that we

680 I. Salas, G. Chabert, and A. Goldsztejn

Fig. 4. Steps of the inner Contractor

have picked some point x̃ inside [x] (this point is, in fact, automatically yield by
the sweep loop, as this will be explained in Figure 5). Then we look for another
point p̃ such that

c1(p̃) ∧ c2(x̃− p̃). (21)

Finding this point is the task of the subsolver.1

Once p̃ is found, it is “inflated” to a subbox [x]1 of (p̃+[x]−x̃) that is inside S1,
which is possible with the inner arithmetic. The point (x̃− p̃) is also inflated to
a sub-box [x]2 of ([x]− p̃) that is inside S2. However, if x̃ turns out to be outside
S, the last inflation cannot succeed and the process is interrupted in this case.
Otherwise, the resulting box satisfies ([x]1+[x]2) ⊆ S and ([x]1+[x]2)∩ [x] �= ∅.

Note that ([x]1 + [x]2) ∩ [x] �= ∅ is just a consequence of x̃ ∈ [x]. So the
initial boxes used for both inflations are somehow arbitrary, but fixing them as
we did is an heuristic that tends to maximize the surface of the final inner box
([x]1 + [x]2) ∩ [x].

Now that we have a technique to build an inner box inside [x] that contains a
specific point x̃, we can use this service inside a sweep loop. The sweep loop can

1 This subsolver is implemented with a standard branch & prune based on Hc4 [BG06].
Since only one solution is sought, at each node of the search, we check inequalities
with a point p̃ picked randomly in the current domain. If both are satisfied, the
search is interrupted and p̃ is returned. The depth of the search is also controlled
by a precision on the domain width, which ensures that the subsolver terminates
in bounded time. In case of normal termination, no p̃ hence no inner box has been
found.

The Non-overlapping Constraint between Objects 681

Fig. 5. The sweep loop. The sequence of pictures illustrates a contraction for the
lower bound of x1. At each step, the point x̃ to be inflated is the lower-left corner of
the gray box. The inner box [x̃] is painted in white. The lower bound of x1 can be
reduced as soon as the projection of the white boxes on x2 spans the face [x2], which
is the case at step e).

be simply viewed as a way to contract a box by “piling up” boxes until some face
is entirely covered. This is quickly depicted in Figure 5. The interested reader
may refer to [CB10] for further details.

3.2 Outer Contractor

The outer contractor is less sophisticated than the inner one and acts as a simple
rejection test: the box is either entirely discarded or kept intact.

Rejecting a box [x] means proving [x] �⊆ S1 + S2, that is

∀x ∈ [x] ∀p ∈ Rd, ¬(c1(p) ∧ c2(x− p)). (22)

This assertion can be checked by running the same subsolver we used for
the inner contractor, except that the point x̃ is replaced by the current box
[x]. If the subsolver finds no solution, the previous assertion is proven. Note that
only the coordinates of p are bisected, so the subsolver actually proves a stronger
assertion if the contraction with respect to c2 is not optimal (the actual assertion
depends on the consistency level enforced by the contraction with c2). Note also
that the precision used in the subsolver is dynamically set to the width of [x]
in order to have a somewhat uniform time spent by the subsolver throughout
the global search (on x). This dynamic precision also ensures that the outer
contractor is convergent, that is, it rejects any small enough boxes outside S.

One may be surprised by the simplicity of this rejection test and expect a
more elaborated contractor for the outer region, inspired by what we did for the
inner region. But the situation could be interpreted in the other way around.
Since the overlapping constraint is in two dimensions only, an inner satisfiability

682 I. Salas, G. Chabert, and A. Goldsztejn

test would probably fits, as long as it is fast and convergent. However, such a
test amounts to prove for [x] ⊆ S1 + S2 the following assertion

∀x ∈ [x] ∃p ∈ Rd, (c1(p) ∧ c2(x− p)).

and, contrary to (22), the ∀ and ∃ quantifiers are involved, which means that
the problem is much harder. So, the inner contractor can be seen here as a way
to make up for the lack of inner test.

Our previous argument is only based on running time. It is clear that an outer
contractor could also lead to a more compact paving, but the size of the paving
is anyway conditioned by the representation of the boundary so that a drastic
gain on this aspect is not really expectable.

4 Experimental Results

Experimental Setup

The algorithm proposed in this article calculates a paving (I,B,O) of the over-
lapping constraint. The difficulty of this task mainly depends on three criteria:

– variable occurrences: the number of times each variable appears in the ex-
pressions of the inequalities directly affects the efficiency of the contractors;
the more occurrences a variable, the less efficient contractors. This is a well-
known drawback of the classical interval arithmetic that carries over the
inner arithmetic (used by the inner contractor).

– convexity: if objects are non-convex, the boundary of the non-overlapping
constraint will be less smooth. So the paving will be more complicated (hence
more time consuming), especially near the boundary.

– degrees of freedom: that is, whether we take into account rotation or not.
Allowing rotation gives a problem of much higher difficulty for multiple rea-
sons. First, the size of the paving is exponential in the number of degrees of
freedom so we cannot expect to get a 3D paving within the time scale of a 2D
paving. Second, the angle in the inequalities creates a lot of multi-occurrences
(see Equations (4) and (5)) and considerably increase non-convexity by the
introduction of trigonometric functions.

Our benchmark is based on these criteria. We have made two types of exper-
iments. The first one is with translation only. We have considered three objects
of increasing difficulty. Object №1 is a simple ellipsis:

Object №1 : (p1/2)
2 + p22 ≤ 1. (23)

Object №2 is an ellipsis rotated by some fixed angle. Objects №1 and №2
are obviously of equal complexity if rotation is a degree of freedom, but not if
we limit ourselves to translation. This is because the rotated object introduces
multi-occurrences for p1 and p2:

Object №2 : 1.5× p21 + 1.5× p22 − p1 × p2 − 0.2 ≤ 0. (24)

The Non-overlapping Constraint between Objects 683

Fig. 6. Objects of increasing complexity. From left to right: objects №1, 2 and 3.

Finally, the third object has a “peanut” shape. It cumulates multiple occur-
rences and non-convexity, as depicted in Figure 6:

Object №3 : (p21 + p22)
2 − 2× (p1 × p2)− 0.02 ≤ 0. (25)

The non-overlapping constraint involves two objects: the “reference” one
(which coordinates are fixed at the origin of the frame) and the “moving” one
that represents the unknowns. We have considered all possible combinations with
the three types of objects above, that is, the 6 first cases in Table 1.

Table 1. Cases of study

Case Reference object Moving object Rotation

1 1 1 no
2 1 2 no
3 1 3 no
4 2 2 no
5 2 3 no
6 3 3 no

7 1 1 yes
8 3 3 yes

In the second set of experiments, we have introduced rotation and tested with
two ellipsis and two “peanuts” (cases 7 and 8).

In each experiment, the paving process is interrupted when the total surface
of the boundary B is less than ε% the surface of the initial box (initial domain
for the variables), where ε is a user-defined precision parameter. We have applied
the same policy with Rsolver, the tool we are comparing to.

Since the precision is in proportion of the initial domain surface, it should
be noted that the quality of the paving depends also on the width of the initial
enclosure. The larger the initial domain, the less precise the resulting paving.
For this reason, to give ε a meaningful value, we have set in the experiments the
initial box to a fairly accurate enclosure of the overlapping set S or S′ (as it can
be seen in Figure 7 and subsequent).

684 I. Salas, G. Chabert, and A. Goldsztejn

Results (without Rotation)

We first compare in Table 2 the running times obtained by Rsolver and our al-
gorithm for the 6 first cases, with a precision ε set each time to 3.25%. This choice
for ε corresponds to the minimal value that gives no timeout with Rsolver. The
pavings obtained are depicted in Figure 7.

We then provide in Figures 8 a more detailed analysis for the two extreme cases
(case 1 and 6), where ε varies from 10% downto 1%. They show some significant
absolute performance gain, as well as some better asymptotic behavior with
respect to RSolver.

Table 2. Running time (in s) for the 6 first cases (the precision is set to 3.25%)

Case Rsolver Our algorithm

1 4,07 0,37
2 51,55 2,67
3 611,85 7,90
4 132,46 5,58
5 656,11 12,00
6 771,00 26,82

The results first confirm the presumed complexity levels of the different cases,
since the “harder” instances indeed require more time to be solved. They also
show that our algorithm is more competitive than Rsolver. But, of course,
Rsolver is a generic solver that does not take advantage of the specific structure
of the handled problem. It should also be noted from the graphics that the gap
between our approach and RSolver, in a given case, increases as we use smaller
values for the precision.

Results (with Rotation)

We only present here preliminary results with rotation.
Figures 9 and 10 show 2D sections of the 3D pavings we have obtained in

cases 7 and 8 with a precision set to 3.25%. A 2D section is obtained by fixing
the angle to some value and selecting the boxes in the 3D pavings for which
the dimension of the angle contains this value. The two other dimensions are
plotted.

We have set the domain of the angle to the interval [0, 0.7] for the case 7,
and to the interval [0, 0.3] for the case 8. The only paving that was possible to
obtain within the time limit was with our algorithm and for the case 7. This
paving has been calculated in 9 minutes whereas RSolver does not return after
80 minutes. Both algorithm do not terminate after 100 minutes in the case 8.

When a program timeouts, only a partial result is displayed. A partial result
means that the surface of B exceeds ε% the initial width.

The Non-overlapping Constraint between Objects 685

Fig. 7. Pavings obtained for cases 3-6. The precision is set to 3.25%. Left: with
RSolver. Right: with our algorithm.

Fig. 8. Time vs Precision (left: case 1; right: case 6). Each curve represents the
paving time (vertical axis) with respect to the precision ε (horizontal axis). Both axis
are in logarithmic scale. The blue curve is RSolver and the red curve is our method.

Fig. 9. 2D section of the 3D paving obtained for the case 7. From left to right:
the rotation angle are 0, 0.4 and 0.7. Top: with Rsolver. Bottom: with our algorithm.

686 I. Salas, G. Chabert, and A. Goldsztejn

Fig. 10. 2D section of the 3D paving obtained for the case 8. From left to right,
the rotation angle are 0, 0.1 and 0.3. This paving is calculated with our algorithm.

The main purpose of this experiment is to show that our approach is still valid
in the case where rotations are taken into account. Rotations only transform
the expressions that describes the objects, without requiring any change in the
algorithm itself. It is clear however that calculating a full 3D paving is a heavy
task, whatever the algorithm is.

5 Conclusion

In the case of objects defined by non-linear inequalities, the non-overlapping
constraint can only be handled numerically. In this paper, we have given an
efficient way to generate verified pavings approximations for this constraint.
These pavings represent explicitly the constraint, that is, the set of all acceptable
positions and orientations of an object with respect to another. Our preliminary
experiments have shown strong efficiency gains with respect to the state of the
art solver for quantified numerical constraints RSolver, in particular in the case
where the orientation of the objects is taken into account. In our future work,
these pre-computed pavings will be incorporated within a packing algorithm, as
explicit descriptions of the overlapping constraints. However, with rotation, we
have seen that full 3D pavings are clearly too big so that a more adaptative
approach will probably have to be considered as well. The idea would be to
calculate on-the-fly sub-sets of the overlapping constraint, depending on the
actual domains of the objects positions assigned by the packing solver.

References

[ATNC14] Araya, I., Trombettoni, G., Neveu, B., Chabert, G.: Upper Bounding in
Inner Regions for Global Optimization under Inequality Constraints. In:
Journal of Global Optimization (to appear, 2014)

[BG06] Benhamou, F., Granvilliers, L.: Continuous and interval constraints. In:
Handbook of Constraint Programming, ch. 16, pp. 571–604. Elsevier
(2006)

[BGT01] Beldiceanu, N., Guo, Q., Thiel, S.: Non-Overlapping Constraints be-
tween Convex Polytopes. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239,
pp. 392–407. Springer, Heidelberg (2001)

The Non-overlapping Constraint between Objects 687

[CB10] Chabert, G., Beldiceanu, N.: Sweeping with Continous Domains. In: Co-
hen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 137–151. Springer, Heidelberg
(2010)

[CJ09] Chabert, G., Jaulin, L.: Contractor Programming. Artificial Intelli-
gence 173(11), 1079–1100 (2009)

[GJ06] Goldsztejn, A., Jaulin, L.: Inner and Outer Approximations of Existen-
tially Quantified Equality Constraints. In: Benhamou, F. (ed.) CP 2006.
LNCS, vol. 4204, pp. 198–212. Springer, Heidelberg (2006)

[IGJ12] Ishii, D., Goldsztejn, A., Jermann, C.: Interval-Based Projection Method
for Under-Constrained Numerical Systems. Constraints 17(4), 432–460
(2012)

[JKDW01] Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis.
Springer (2001)

[JW93] Jaulin, L., Walter, E.: Set Inversion via Interval Analysis for Nonlinear
Bounded-Error Estimation. Automatica 29(4), 1053–1064 (1993)

[Rat] Ratschan, S.: RSolver
[Rat06] Ratschan, S.: Efficient Solving of Quantified Inequality Constraints over

the Real Numbers. ACM Transactions on Computational Logic 7(4),
723–748 (2006)

Improving Relational Consistency Algorithms

Using Dynamic Relation Partitioning�

Anthony Schneider1, Robert J. Woodward1,2, Berthe Y. Choueiry1,
and Christian Bessiere2

1 Constraint Systems Laboratory, University of Nebraska-Lincoln, USA
{aschneid,rwoodwar,choueiry}@cse.unl.edu

2 LIRMM, CNRS & University of Montpellier, France
bessiere@lirmm.fr

Abstract. Relational consistency algorithms are instrumental for solv-
ing difficult instances of Constraint Satisfaction Problems (CSPs), often
allowing backtrack-free search. In this paper, we improve an algorithm
for enforcing relational consistency by exploiting the property that the
constraints of the dual encoding of a CSP are piecewise functional. This
property allows us to partition a CSP relation into blocks of equivalent
tuples at varying levels of granularity. Our new algorithm dynamically
exploits those partitions. Our experiments show a significant improve-
ment of the processing time for enforcing relational consistency.

1 Introduction
Algorithms for enforcing local consistency are a focal point of research in Con-
straint Programming because they are an efficient means to reduce the size of
the search space and effort [1]. In recent years, new techniques for enforcing
higher levels of consistency have been proposed. While most consider combina-
tions of two constraints [3,20–22], some operate on combinations of two or more
constraints [2, 6, 15, 16, 23, 24]. In this paper, we improve the performance of
the algorithm for enforcing the relational consistency property R(∗,m)C [15,16]
(originally known as m-wise consistency [10]). This property ensures that any
tuple can be consistently extended over every combination of m− 1 relations.

Samaras and Stergiou showed that the constraints of the dual encoding of a
CSP are piecewise functional [11, 22]. Given two constraints that are adjacent
in the dual graph, this property partitions the tuples of each relation into a set
of blocks , i.e., equivalence classes of tuples. They exploited those partitions in
an algorithm (PW-AC) for enforcing pairwise-consistency (i.e., R(∗,2)C), which
is defined on pairs of relations. Extending the work of Samaras and Stergiou,
we identify as coarse blocks those induced on a constraint’s relation by one
other adjacent constraint and as fine blocks those induced by all other adjacent

� This research was supported by NSF Grant No. RI-111795 and EU project ICON
(FP7-284715). Woodward was supported by an NSF GRF Grant No. 1041000 and a
Chateaubriand Fellowship. Experiments were conducted on the equipment of the Holland
Computing Center at the University of Nebraska–Lincoln.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 688–704, 2014.
c© Springer International Publishing Switzerland 2014

Improving Relational Consistency with Dynamic Relation Partitioning 689

constraints. We modify the PerTuple
1 algorithm for enforcing R(∗,m)C into

the PerFB algorithm, which exploits not only the fine and coarse blocks but
also intermediate ones induced by a subset of the constraint’s neighbors.

The contributions of this paper are as follows: a) The definitions of levels
of relation partitions and the specification of data structures to store and ma-
nipulate the coarse and fine blocks; b) The design of an algorithm that utilizes
those data structures to enforce R(∗,m)C; c) A complexity analysis of our data
structures and algorithm; and, d) An empirical evaluation of PerFB comparing
its performance to that of PerTuple.

In addition to the contribution of Samaras & Stergiou [22], our approach is
related to the following research. Karakashian et al. propose a compact data
structure, the index tree, which finds coarse blocks and stores them in the leaves
of the tree [16]. However, they fall short of exploiting them to improve constraint
propagation. Lecoutre et al. propose the algorithm STR3 to enforce GAC using
the size of the blocks induced, on a relation, by a variable in its scope [19]. Fur-
ther, Lecoutre et al. propose the algorithm eSTR to enforce pairwise-consistency
using only the size of the coarse blocks [20]. Our work is also related to the
computation of subproblem interchangeability [4, 5, 7, 18], where the variables’
domains (instead of constraints’ relations) are dynamically partitioned by the
constraints of a specified subproblem.

This paper is organized as follows. Section 2 gives some background informa-
tion. Section 3 discusses relation partitioning. Section 4 describes how to create
relation partitions and the data structures for storing them. Section 5 gives
the partition-based algorithms for enforcing R(∗,m)C. Section 6 discusses our
experiments and results. Finally, Section 7 concludes this paper.

2 Background

A constraint satisfaction problem (CSP) is defined by P= (X ,D, C), where X
is a set of variables, D is a set of domains, and C is a set of constraints. A
variable in X has a finite domain in D, and is constrained by constraints in C.
The constraints restrict the acceptable combinations of values for variables. A
solution to the CSP is an assignment to each variable of a value taken from its
domain such that all the constraints are satisfied. Deciding the existence of a
solution for a CSP is NP-complete.

Each constraint Ci ∈ C is defined by a relation Ri specified over the scope of
the constraint, scope(Ci), which is the set of variables to which the constraint
applies. The arity of a constraint is the cardinality of its scope. In this paper, we
study table constraints, where a tuple ti∈Ri is a combination of allowed values
for the variables in scope(Ci). We call the subscope of a constraint a subset of
its scope, and use it to denote the set of variables common to two constraints:
subscope(Ci, Cj) = scope(Ci)∩ scope(Cj). We use the relational operator project,
π, to restrict a partial assignment (e.g., a tuple) to a particular set of variables.

1
PerTuple was originally called ProcessQueue [16] and later renamed PerTuple

to contrast it to another algorithm, AllSol, that guarantees the same result [8,14].

690 A. Schneider et al.

Several graphical representations of a CSP exist. In the hypergraph, the ver-
tices represent the variables of the CSP, and the hyperedges represent the scopes
of the constraints. Figure 1 shows the hypergraph of our running example. In the
dual graph, the vertices represent the CSP constraints, and the edges connect
vertices representing constraints whose scopes overlap (see Figure 2). Thus, two
CSP constraints are adjacent or neighbors in the dual graph when their sub-
scope is not empty. The constraints of the dual graph enforce the equality of the
variables in the subscope of the two adjacent CSP constraints.

C3

B C D

E

A

C5

C1

C4

F

C2

G

Fig. 1. Hypergraph of a CSP example

C2

C1 A,B,C,D,G

A,B,E A,B,F C,F B,E,G

A,B A,B C

A,B

C3 C4

C5 B,E F

B,G

B

Fig. 2. Dual graph of CSP in Figure 1

Backtrack search is typically used to solve CSPs. To reduce the size of the
search tree, CSPs are usually filtered by enforcing a given local consistency prop-
erty. One common property is Generalized Arc Consistency (GAC). A CSP is
GAC iff for every constraint, any value in the domain of any variable in the
scope of the constraint can be extended to a tuple satisfying the constraint.
While GAC is enforced by filtering the domains, other consistency properties
are enforced by filtering the relations (which are then typically projected on the
domains). Karakashian et al. proposed a relation-filtering algorithm that allows
us to control the consistency level enforced while preserving the topology of the
constraint network [16]. Their algorithm enforces R(∗,m)C, which guarantees
that every relation is minimal in every combination of m relations.

Definition 1. A set of m constraints C = {C1, C2, . . . , Cm} with m ≥ 2 is said
to be R(∗,m)C iff every tuple in the relation of each constraint Ci ∈ C can be
extended to the variables in

⋃
Cj∈C scope(Cj) \ scope(Ci) in an assignment that

satisfies all the constraints in C simultaneously. A network is R(∗,m)C iff every
set of m constraints, m ≥ 2, is R(∗,m)C.

PerTuple, the algorithm for enforcing R(∗,m)C, ensures that each tuple in a
relation appears in a solution of the dual CSP induced by the m relations by
conducting a backtrack search on the tuples of them−1 relations (see Figure 3).

Samaras and Stergiou showed that the constraints of the dual graph are piece-
wise functional [11, 22]. Given two CSP constraints with nonempty overlapping
scopes, this property partitions the tuples of each relation into a set of blocks ,
equivalence classes of tuples, where each block is consistent with at most one
block in the other relation (see Figure 4). PW-AC, their algorithm for enforcing
pairwise-consistency, finds the partition induced on the relation of each con-
straint by each one of its neighbors in the dual graph. When a block of a

Improving Relational Consistency with Dynamic Relation Partitioning 691

..…
For every combination

of m-1 relations

Fig. 3. Illustrating R(∗,m)C

A B C D G
t1 0 0 0 0 0
t2 0 0 0 1 0
t3 0 0 1 0 0
t4 0 0 1 1 1
t5 0 1 1 0 1
t6 0 1 1 1 1
t7 1 1 1 1 1

A B E
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

R1 R2

Fig. 4. Piecewise functional constraint

relation is not supported in one of the constraint’s neighbors, the block’s tu-
ples are deleted. This operation may cause other blocks of the same relation to
lose tuples, eventually becoming empty. Propagation stops when the network is
pairwise-consistent or when a relation becomes empty. The effectiveness of PW-
AC was established on sparse networks and other structured benchmarks [22].2

3 Relation Partitioning

We exploit the equivalence classes induced, on the relation Ri of a constraint
Ci, by Ci’s neighbors in the dual graph. We distinguish three types of such
classes depending on the subset of neighbors considered: coarse (cb), fine (fb),
and intermediate blocks (ib). Figures 5 and 6 illustrate the above for R1. The
notations and data structures used in the following sections refer to this example.

Coarse blocks: Any single neighbor of Ci in the dual graph partitions Ri into
a set of coarse blocks. In Figure 5, subscope(C1,C2) = {A,B,C,D,G} ∩
{A,B,E} = {A,B} = o1. The tuples ti∈[1,4] ∈ R1 are equivalent for R1 given
o1=00,3 and consistent with (0,0,0) and (0,0,1) ∈ R2. Indeed, πo1(ti∈[1,4] ∈
R1) = (0, 0) and πo1((0, 0, 0) ∈ R2) = πo1((0, 0, 1) ∈ R2) = (0, 0). Further,
the above does not hold for any other tuple of R1. Thus, cb1 = {t1, t2, t3, t4}
is the coarse block of R1 induced by o1=00. The other two coarse blocks
are cb2 = {t5, t6} and cb3 = {t7}. Similarly, subscope(C1, Cj∈{3,4,5}) is o1 =
{A,B}, o2 = {B,G}, and o3 = {C} respectively. Thus, o1, o2, and o3 induce
on R1 the set of coarse blocks {cb1, cb2, cb3}, {cb4, cb5, cb6}, and {cb7, cb8},
respectively. Coarse blocks are the partitions identified and exploited by
Samaras and Stergiou [22].

Fine blocks: When we consider all the constraints adjacent to Ci in the dual
graph, they induce on Ri the finest possible partition, obtained by perform-
ing the intersections of all Ri’s coarse blocks. As a result, they yield the
(unique) set of Ri’s fine blocks. In Figure 6, the set of fine blocks of R1 is
{fb1, fb2, . . . , fb5}.

2 We suspect that PW-AC could be shown to be effective on dense networks had the
redundant edges of the dual CSPs been removed [12,16].

3 Abusing tuple/set assignment notation.

692 A. Schneider et al.

Intermediate blocks: Finally, the partition induced on a relationRi by a given
combination of m constraints depends on the neighboring constraints of Ci

that are included in m. The granularity of that partition is intermediate:
not finer than Ri’s fine partition and not coarser than any of its coarse
partitions. For example, {C2, C5} ⊂ neighbors(C1) induce the intermediate
blocks {ib1, ib2, ib3, ib4}.

A B C D G

fb1
t1 0 0 0 0 0
t2 0 0 0 1 0

fb2 t3 0 0 1 0 0
fb3 t4 0 0 1 1 1

fb4
t5 0 1 1 0 1
t5 0 1 1 1 1

fb5 t7 1 1 1 1 1

A B F
fb12 0 0 0
fb13 0 0 1
fb14 0 1 1
fb15 1 1 0
fb16 1 1 1

B E G
..

C F
..

R1 R3

R4 R5

A B E
fb6 0 0 0
fb7 0 0 1
fb8 0 1 0
fb9 0 1 1
fb10 1 0 0
fb11 1 0 1

R2

Fig. 5. Relations of CSP example

cb1

t1

t2

t3

t4

cb2
t5

t6

cb3 t7

cb4
t1

t2

t3

cb5 t4

cb6
t5

t6

t7

cb7
t1

t2

cb8

t3

t4

t5

t6

t7

fb1
t1

t2

fb2 t3

fb3 t4

fb4
t5

t6

fb5 t7

ib1
t1

t2

ib2
t3

t4

ib3
t5

t6

ib4 t7

o1={A,B} o2={B,G} o3={C} o1 o2 o3 o1 o3

Fig. 6. Coarse, fine, and intermediate blocks of R1

We compute and store the fine and coarse blocks before preprocessing. PerFB,
our new algorithm for enforcing R(∗,m)C, conducts backtrack search over the
fine blocks, and uses the coarse blocks during lookahead. It does not permanently
store any of the intermediate partitions.

4 Generating and Storing Partition Blocks

Because the partitions of a relation Ri are induced by an equivalence relation,
any coarse or intermediate block of Ri is made up of a number of Ri’s fine
blocks (e.g., in Figure 6, cb1 = {fb1, fb2, fb3} and ib2 = {fb2, fb3}). Also, any
fine block appears in exactly one block of a partition of a given granularity. For
this reason, we first build the fine blocks of a relation, then we build its coarse
blocks as sets of fine blocks. Below, we describe the data structures for storing
the blocks (both fine and coarse) of a relation. Then, we describe how to generate
them, and discuss their complexity.

4.1 Data Structures

Figure 7 partially depicts the data structures for the example of Figure 5. A
coarse block is uniquely determined by three entities: a subscope, values of the
subscope, and the relation that is being partitioned. For example, cb1 of Figure 6
is determined by o1, o1=00, and R1, and stored in cbR1,o1=00.

The structure rel-cbo1=00 stores an entry for all relations Ri (i.e., R1, R2, R3)
with at least one tuple ti where πo1(ti) = (0, 0). This entry points to the coarse

Improving Relational Consistency with Dynamic Relation Partitioning 693

vlso1

00 rel-cbo1=00

01 rel-cbo1=01

10 rel-cbo1=10

11 rel-cbo1=11

rel-cbo1=00

R1 cbR1,o1=00
R2 cbR2,o1=00
R3 cbR3,o1=00

cbR1,o1=00
fb1 fb2 fb3
#fb-alive=3

all-subscopes
o1={A,B} vlso1

o2={B,G} vlso2

o3={C} vlso3

o4={B} vlso4

o5={B,E} vlso5

o6={F} vlso6

rel-cbo1=11

R1 cbR1,o1=11
R3 cbR3,o1=11

cbR2,o1=00
fb6 fb7

#fb-alive=2

cbR3,o1=00
fb12 fb13

#fb-alive=2

cbR1,o1=11
fb5

#fb-alive=1

cbR3,o1=11
fb15 ,fb16

#fb-alive=2

Fig. 7. Data structures for storing coarse and fine blocks for the CSP in Figure 5

blocks of Ri with o1=00. Further, a back-pointer, not shown in Figure 7 for read-
ability, links each such coarse block back to rel-cbo1=00. All the coarse blocks
accessible from rel-cbo1=00 are pairwise consistent. If a relation Ri has the sub-
scope o1 but does not have an entry in rel-cbo1=00, or if Ri loses during constraint
propagation all its tuples ti where πo1(ti) = (0, 0), then all the coarse blocks ac-
cessible from rel-cbo1=00 are inconsistent. Thus, given any coarse block with
o1=00 (e.g., cbR2,o1=00), rel-cbo1=00 gives us constant-time access to the coarse
blocks that are pairwise consistent with it in all relations.

The structure vlso1 gives access to the structures storing rel-cbo1=vi for each
subscope value vi of o1 (i.e., 00, 01, 10, 11). For each vi, there is one such entry.

The structure all-subscopes gives access to the structures storing the sub-
scopes values vlsoi for each subscope oi in the problem. For example, for o1 =
{A,B}, all-subscopes gives access to vlso1.

In addition to the above structures, we use two constant-time lookup tables.
The table fb-subscope-2-cb gives the coarse block in which a fine block of a re-
lation appears given a subscope. For example, fb-subscope-2-cb[fb2, R1, {A,B}]
points to the coarse block cbR1,o1=00 shown in Figure 7. Similarly, tup-2-fb maps
a tuple ti in a relation to the fine block that contains ti. In the example in Fig-
ures 5 and 6, it maps t5 ∈ R1 to the structure storing fb4.

4.2 Fine Blocks

CreateFineBlocks (Algorithm 1) generates the fine blocks of a relation Ri.
We use the following accessors and notations:

– The function FineBlocks(Ri) returns the set of fine blocks of Ri.

– The accessor #tuples-alive(fbi) gives the count of living tuples of fbi. This
count is stored in the structure of fbi, and updated during search whenever
a tuple in fbi is marked or unmarked as deleted.

– The accessor #fb-alive(Ri) gives the number of fine blocks alive in Ri.

– The function FindEquivFB(Ri, subTuple) is a relational selection operator:
it iterates over the fine blocks in FineBlocks(Ri), and returns the fine block
with the values assignment matching subTuple.

694 A. Schneider et al.

CreateFineBlocks (Algorithm 1) groups tuples with the same values as-
signments for the variables in Us =

⋃
Cj∈neighbors(Ci)

subscope(Ci, Cj). In ad-
dition to grouping tuples, it keeps a counter storing the total number of living
tuples in the given fine partition. When a tuple is deleted during search, we use
the array tup-2-fb to update the count of living tuples in the tuple’s fine block.

Algorithm 1. Creating the fine partition of a relation Ri

1: function CreateFineBlocks(Ri)
2: FineBlocks(Ri) ← ∅
3: Us ←

⋃
Cj∈neighbors(Ci)

subscope(Ci, Cj)

4: for each tuple τ ∈ Ri do
5: subTuple ← πUs(τ)
6: fbcurr ← FindEquivFB(Ri, subTuple)
7: if fbcurr = nil then
8: fbcurr ← create a new fine block
9: FineBlocks(Ri) ← FineBlocks(Ri) ∪ {fbcurr}
10: #fb-alive(Ri) ← #fb-alive(Ri) + 1

11: fbcurr ← fbcurr ∪ {τ}
12: #tuples-alive(fbcurr) ← #tuples-alive(fbcurr) +1
13: tup-2-fb[τ] ← fbcurr

14: return FineBlocks(Ri)

Complexity: We use the following parameters in the complexity analysis. t is the
maximum number of tuples in a relation; k is the maximum constraint arity;
e = |C| is the number of constraints in the CSP; and |oi| is the size of the
largest subscope that a relation shares with a neighbor. The time complexity
of each of FineBlocks(Ri) and #fb-alive(Ri) is O(1). The creation of Us on
Line 3 of Algorithm 1 is O(e · |oi| · log(|oi|)) because a constraint may be adjacent
to all other constraints in the dual graph, and each edge requires inserting at
most |oi| variables into the set. In the worst case, the function FindEquivFB

performs k comparisons on t fine blocks to find an existing equivalent fine block.
Its complexity is thus O(t · k). Computing the subTuple in Line 5 is O(k). Thus,
CreateFineBlocks is O(e · |oi| · log(|oi|) + (t · (k + k · t))) = O(k · t2 + e · |oi| ·
log(|oi|)). When arity(Ci) = |Us|, Lines 5–10 are bypassed. In this case, each
fine block of Ri has a single tuple. Thus, while the time complexity is large, the
cost of Lines 5–10 is incurred only when a fine block can potentially have more
than one tuple.

The space complexity for storing the fine blocks of Ri is O(t), incurred when
each fine block inRi has one tuple. The array mapping tuples to the fine blocks to
which they belong is O(t), making the total space complexity O(t) per constraint.

4.3 Coarse Blocks

Below, we describe the creation of the coarse blocks, similar to the ones intro-
duced by Samaras and Stergiou [22]. Our design improves on theirs in that a) a

Improving Relational Consistency with Dynamic Relation Partitioning 695

coarse block stores fine blocks and not tuples, thus, potentially reducing the size
of each coarse block, and b) we iterate over subscopes, rather than pairs of rela-
tions (e.g., in Figures 5 and 6, R1 has four neighbors but only three subscopes).

CreateCoarseBlocks (Algorithm 2) generates the coarse blocks of a re-
lation Ri for a subscope oi out of Ri’s existing fine blocks. It first retrieves
all the values of oi (Line 2). Then, it iterates over the fine blocks fbi of Ri,
adding each fbi to the appropriate coarse partition. When a coarse block does
not exist (Line 9), it is created (Line 10). The accessor function #fb-alive(cbi)
maintains the number of fine blocks alive in the coarse block cbi. This function
has the same name as #fb-alive(Ri) (function-name overload), which operates
in a similar manner.

Algorithm 2. Creating the coarse partition of a relation Ri given a subscope oi

1: function CreateCoarseBlocks(Ri, oi)
2: vlsoi ← all-subscopes[oi]
3: for each fbi ∈ FineBlocks(Ri) do
4: if #tuples-alive(fbi) = 0 then
5: continue
6: vi ← πoi(fbi)
7: if vlsoi [vi] does not exist then
8: vlsoi [vi] ← create new rel-cb table

9: curr-rel-cb ← vlsoi [vi]
10: curr-cb ← curr-rel-cb[Ri]
11: if curr-cb does not already exist then
12: curr-cb ← create new coarse block
13: curr-cb ← curr-cb ∪ {fbi}
14: #fb-alive(curr-cb) ← #fb-alive(curr-cb) + 1
15: fb-subscope-2-cb[fbi, Ri, oi] ← curr-cb

16: return vlsoi

Complexity: The table lookups on Lines 2 and 10 of CreateCoarseBlocks

are O(1). The table lookups for vlsoi on Lines 6-9 are O(log(t) · |oi|) if vlsoi is
represented as a binary search tree that uses vi as a key. Creating vi on Line 6
is O(|oi|). The for-loop is executed O(t) times. The complexity for Create-

CoarseBlocks is thus O(|oi| · t · log(t)).
The time complexity to get the specific coarse block to which a particular

fine block belongs provided a subscope is O(1) thanks to the fb-subscope-2-cb
table. The time complexity to query all fine blocks in a relation Rj that are
consistent with a coarse block corresponding to a relation Ri is O(1) thanks to
the back-pointer to the rel-cb table stored in each coarse block.

The space complexity for a set of coarse blocks for a single subscope and
relation is O(t) because each fine block is in exactly one coarse block for a given
subscope. The space complexity for all coarse blocks is then O(k · t · e2) because,
in the worst case, each relation is partitioned by every other relation in the

696 A. Schneider et al.

problem, and each coarse block is identified by a subtuple of size k. Additionally,
the fb-subscope-2-cb table requires O(e2 · t) space, as each tuple is in exactly one
coarse block.

Note that the coarse blocks have the same space complexity as the index-tree
data structure [16], but can be more efficiently queried.

5 Consistency Algorithm: From PerTuple to PerFB

Below, we describe PerFB and FB-SearchSupport, which improve PerTu-

ple and SearchSupport [16], respectively, for enforcing R(∗,m)C on a CSP.
Like PerTuple, PerFB takes as input Q and Φ. Φ is the set of all combina-
tions of m relations. The queue Q is initialized to all the combination-relations
pairs 〈ϕ,Ri〉 such that ϕ∈Φ and Ri∈ϕ. PerFB iterates over all fine blocks of
a relation Ri in a combination ϕ, calling FB-SearchSupport to ensure that
a fine block can be extended to a solution in the dual CSP induced by ϕ by
conducting a backtrack search that maintains support structures. In addition to
the static fine and coarse blocks, PerFB and FB-SearchSupport make use of
intermediate blocks, dynamically induced by the relations in ϕ. In this section,
we abuse the notations and use subscope(Ri, Rj), scope(Ri), neighbors(Ri) to
refer to subscope(Ci, Cj), scope(Ci), neighbors(Ci), respectively.

5.1 PerFB

PerFB (Algorithm 3) improves PerTuple [16] in two ways in order to reduce
the number of costly calls to FB-SearchSupport:

1. PerFB ensures that all fine blocks, rather than all tuples, in a relation
Ri can be extended to a solution over the relations of a combination ϕ of
size m (Line 11). This difference can reduce the number of calls to FB-

SearchSupport.
2. The number of calls to FB-SearchSupport can be further reduced by

exploiting the dynamically induced intermediate blocks.

We use the following additional notations to describe how PerFB operates.

– The accessor CB((Ri, fbi), oi) retrieves the coarse block of Ri containing the
fine block fbi given the subscope oi. It uses the table fb-subscope-2-cb.

– The accessor Support(Rj ,CB(Ri, fbi, oij)) retrieves the coarse block of Rj

containing the fine blocks consistent with fbi of relation Ri given oij =
subscope(Ci, Cj). To this end, it uses the back-pointer to the rel-cb structures
from the coarse block CB(Ri, fbi, oij) and accesses rel-cb[Rj].

– The structure shared-fvars[l] stores, at the search level l in FB-

SearchSupport where Ri is ‘assigned’ a fine block, the variables in⋃
Rj∈ϕ subscope(Ri, Rj).

In Figure 6, fb2 and fb3 are equivalent in ϕ = {R1, R2, R5} yielding ib2 =
{fb2, fb3} for R1 by {o1∪o3}. PerFB exploits such intermediate blocks. The key

Improving Relational Consistency with Dynamic Relation Partitioning 697

Algorithm 3. Enforces R(∗,m)C using a queue Q and list Φ of combinations

1: function PerFB(Q,Φ)
2: while Q �= ∅ do
3: 〈ϕ,Ri〉 ← Pop(Q)
4: deleted ← false
5: Rf ← ϕ \ Ri

6: for Rj ∈ ϕ do
7: equiv-FBs[Rj] ← ∅
8: for i = 1 to m do
9: shared-fvars[i] ← ∅
10: shared-fvars[1] ←

⋃
Rj∈Rf

subscope(Ri, Rj)

11: for each living fbi ∈ FineBlocks(Ri) do
12: vi ← π(shared-fvars[1])(fbi)
13: if equiv-FBs[Ri, vi] does not exist then
14: equiv-FBs[Ri, vi]←FB-SearchSupport(fpi, 〈Ri,Rf 〉, equiv-FBs)

15: if equiv-FBs[Ri, vi] = false then
16: for each tuple τ ∈ fbi do
17: Delete(τ,Ri)

18: deleted ← true
19: #fb-alive(Ri) ← #fb-alive(Ri) − 1
20: if #fb-alive(Ri) = 0 then
21: return inconsistent
22: if deleted then
23: for each ϕ′ ∈ (Φ \ {ϕ}), Ri ∈ ϕ′ do
24: for each R′ ∈ (ϕ′ \ {Ri}) do
25: Q ← Q ∪ {〈ϕ′, R′〉}
26: return consistent

to dynamically identifying them is the table equiv-FBs[Ri, vi], which is created
at each call to PerFB, and returns true or false, given a relation Ri ∈ ϕ, and a
subset of values vi from a fine block fbi. The subset vi is determined by projecting
fbi over the variables in shared-fvars[1] (Lines 10–12 in Algorithm 3). Any other
fine block of Ri with the same vi is necessarily in the same intermediate block.
Thus, before executing FB-SearchSupport, we check equiv-FBs[Ri, vi] to see
if a result for this particular vi was already found (Line 13). If so, the result
is reused. Otherwise, FB-SearchSupport is called, and its result stored for
future use (Line 14). Similar to PerTuple, when fbi has no support, its tuples
are marked as deleted, and the count of fine blocks alive in Ri is decremented
(Lines 15–19). Inconsistency is detected when all fine blocks in Ri are deleted
(Lines 20–21). The updates of Q are identical to those in PerTuple. The only
relation used to access equiv-FBs in PerFB is Ri. Other relations’ entries in
equiv-FBs are discussed in Section 5.2.

When |shared-fvars[1]| = arity(Ci), PerFB reduces to PerTuple because
no two fine blocks in Ri are equivalent. In this case, the discovery of equivalent
fine blocks is bypassed to save on CPU time and memory.

698 A. Schneider et al.

Finally, note that m = 2 does not require any calls to FB-SearchSupport.
For this reason, form = 2, we use PW-AC [22] during preprocessing and PerFB

during search. Further, because, whenm = 2, the intermediate blocks are exactly
the stored coarse blocks, checking whether or not a coarse block is consistent
can be done in constant time by checking the #fb-alive(Rj) of the coarse block
returned by Support(Rj ,CB(Ri, fbi, oij)), where Rj is the other relation in the
combination. Thus, intermediate blocks are not used.

5.2 FB-SearchSupport

FB-SearchSupport performs backtrack search with forward checking on the
subproblem induced, on the dual of the CSP P , by the relations in the combina-
tion ϕ, denoted as PDϕ. The variables of PDϕ are the relations in the combination
ϕ = {Ri} ∪ Rf . The ‘variable’ Ri is assigned the ‘value’ fbi in the search. FB-

SearchSupport is called with the argument (fbi, 〈Ri,Rf 〉, equiv-FBs). The

R2

R3

R4

R5

R1←fb1 R2←fb6 R3←fb12 R4←fb17 R5←fb19

fb6
fb7
fb12
fb13
fb17
fb18
fb19
fb20

fb12
fb13
fb17

fb19
fb20

fb17

fb19 fb19

Fig. 8. Backtrack search on fine blocks using coarse and intermediate blocks

domain of a relation Rj ∈ Rf is the set of fine blocks (represented by their in-
dices) in the coarse block returned by Support(Rj ,CB((Ri, fbi), oij)), where oij
is the subscope of Ri and Rj . However, coarse blocks are not defined when Ri

and Rj are not neighbors (subscope(Ri, Rj) = ∅). Thus, the ‘domain’ of Rj is
either a) the set of living fine blocks from FineBlocks(Rj) when no relation
adjacent to Rj has been instantiated, or b) the set of fine blocks in the coarse
block Support(Rj ,CB((Rk, fbk), ojk)), where Rk, a relation adjacent to Rj , was
‘assigned’ fpk.

Figure 8 illustrates forward checking in FB-SearchSupport using the ex-
ample from Figure 5. Assume R4 contains only tuples (0, 0, 0) and (0, 1, 0),
and R5 only (0, 0) and (0, 1), denoted fb17, fb18, fb19, fb20, respectively. When
R2 ← fb6, forward checking removes fb18 from the domain of the dual vari-
able R4. As mentioned above, each fine block has an accessor index. The set of
fine blocks in a coarse block is represented by a sorted array of indices. Thus,
the ‘intersection’ of the current domain of R4 and cbx(R4), where cbx(R4) =
Support(R4,CB(R2, fb6), o24) is performed by iterating over the index of each

Improving Relational Consistency with Dynamic Relation Partitioning 699

fine block in the current domain of R4, performing a binary search on the fine
block indices of cbx(R4), and removing, from the current domain of R4, the
indices of the fine blocks not listed in cbx(R4).

We further exploit the intermediate partitions in the subproblem PDϕ in FB-

SearchSupport in order to bypass the exploration of entire redundant subtrees
during search. While this mechanism did not yield significant savings in the
number of nodes visited in our experiments for finding one solution, it may
prove useful when we search for all solutions (i.e., AllSol). Fine blocks are
passed over for instantiation by observing the following:

1. When instantiating a relation Rj at level l, we initialize shared-fvars[l] ←⋃
Rk∈Rf

subscope(Rj, Rk).
2. Prior to instantiating Rj ← fbj at level l in search, we check in equiv-FBs

whether or not an equivalent fine block was already instantiated. That is,
we check equiv-FBs[Rj , vj] where vj = πshared-fvars[l](fbj). If the entry is
false, fbj need not be instantiated because an equivalent fine block in the
same intermediate partition was already found inconsistent on a previous
path in the same search. (Note that the entry cannot be true because search
terminates after finding the first solution.) When the domain of a future
‘variable’ is annihilated during forward checking for vj , equiv-FBs[Rj , vj] is
marked as false.

3. When unlabeling a ‘variable’ Rj at a level l (upon backtracking),
equiv-FBs[Rj] and shared-fvars[l] are set to ∅.

Complexity. When deleting a tuple during search, it is important to main-
tain the correct counts of fine and coarse blocks. Each tuple deletion costs
O(e2) updates. Updates are constant time thanks to the fb-subscope-2-cb and
tup-2-fp tables. The cost of these updates is, in practice, greatly dwarfed by
that of FB-SearchSupport. The time complexity of PerFB is identical to
that of PerTuple, and dominated by the O(tm−1) search conducted in FB-

SearchSupport [16]. Additionally, PerFB performs at most as many calls to
FB-SearchSupport as PerTuple does, because

⋃
Rj∈ϕ\{Ri} subscope(Ri, Rj)

is the same as scope(Ri) in the worst case, and all fine blocks have a single tuple.
Insertion and retrieval of equivalent fine blocks for Ri is done in O(k · log(t))
time. Indeed, the entry for equiv-FBs[Ri] is a binary search tree with sub-tuples
of values vi as its keys, comparing each node in the tree is O(k), and O(log(t))
comparisons may be required when each fine block has only one tuple.

At each level of search in FB-SearchSupport, equiv-FBs holds O(t) fine
blocks, each represented by a sub-tuple of size O(k). Thus, an additional O(m ·
t ·k) space is required for PerFB to store the equivalent fine blocks at each level
of search in FB-SearchSupport.

6 Empirical Evaluations

We compare the performance of PerFB to that of PerTuple. We use the latest
strategy for enforcing R(∗,m)C obtained after removing redundant edges from

700 A. Schneider et al.

the dual graph [12], localizing consistency propagation to the clusters of a tree
decomposition of the CSP, and bolstering propagation between adjacent clusters
by the addition of constraint projections to the clusters’ separators [15]. (The
corresponding consistency property is denoted cl+proj-wR(∗,m)C.) Although
weakening the dual graph weakens consistency for m > 2, it also reduces the
number of combinations and, thus, cost. Importantly, localization of the con-
straints to clusters is an excellent ‘set up’ for testing intermediate partitions. For
both PerFB and PerTuple, we used m = {2, 3, 4, |ψ(cl)|} wherem = |ψ(cl)| is
the number of constraints in a cluster in the tree decomposition and corresponds
to enforcing the minimality of each cluster .

In our experiments, we find the first solution of an instance by backtrack
search, using the dynamic variable ordering dom/deg and doing full lookahead
with relational consistency (i.e., cl+proj-wR(∗,m)C for m = {2, 3, 4, |ψ(cl)|}).
For the evaluation, we use benchmarks from the CSP Solver Competition that
are either hard to solve, thus requiring high levels of consistency, or are chal-
lenging for R(∗,m)C, thus demonstrating the effectiveness of partitioning.4 We
limit maximum processing time to 2 hours, and the maximum memory alloca-
tion to 8GB. All CPU times are reported in seconds and include all processing
operations, including data-structure creation, preprocessing, and search.

Table 1 lists the min, max, and mean values of the fine block sizes averaged
over all instances in a benchmark, as well as the size of the largest block in any
instance in the benchmark. Table 2 lists similar results for the coarse blocks.
Benchmarks not shown in Table 1 all have one tuple per fine block. While the
average size tends to be fairly small, some benchmarks show rather large val-
ues (e.g., modifiedRenault and tightness0.9). Even though the block sizes may
seem small, our technique remains beneficial because cluster-based R(∗,m)C (i.e.,
cl+proj-wR(∗,m)C) restricts the neighborhood of a relation by localization.

Table 1. Absolute and averaged size of fine blocks

Absolute Averages
Benchmark Max Min Max Mean

geom 17 1.0 1.2 1.0
graphColoring-hos 3 1.0 2.0 1.0

graphColoring-sgb-book 12 1.0 7.7 1.1
hanoi 2 1.0 2.0 1.0

modifiedRenault 260 1.0 25.6 1.0
rand-10-20-10 2 1.0 1.3 1.0

renault 4 1.0 4.0 1.0
ssa 8 1.0 3.1 1.1

tightness0.9 38 1.0 28.1 1.0
varDimacs 16 1.0 3.4 1.1

4 Aim-(50, 100, 200), composed-(25-1-2, 25-1-25, 25-1-40, 25-1-80, 25-10-20, 75-1-
2, 75-1-25, 75-1-40, 75-1-80), dag-rand, dubois, geom, graphColoring-(hos, mug,
register-mulsol, sgb-book, sgb-games, sgb-queen), hanoi, lexVg, modifiedRenault,
pret, pseudo-aim, rand-(10-20-10, 3-20-20-fcd), renault, rlfapGraphsMod, rlfapScens-
Mod, ssa, super-queens, tightness0.9, varDimacs.

Improving Relational Consistency with Dynamic Relation Partitioning 701

Table 2. Absolute and averaged size of coarse blocks

Abs Averages Abs Averages
Benchmark Max Min Max Mean Benchmark Max Min Max Mean

aim-50,100,200,pseudo 4 1.0 4.0 2.1 grCol-sgb-queen 17 10.3 10.3 10.3
cmpsed-25-1-2,25,40,80 10 1.0 10.0 8.0-8.4 hanoi 3 1.0 3.0 2.9

cmpsed-25-10-20 10 1.0 10.0 7.6 lexVg 875 1.0 484.7 3.6
cmpsed-75-1-2,25,40,80 10 1.0 10.0 8.3-8.5 modifiedRenault 48,720 1.0 48,720.0 7.9

dag-rand 108 1.0 91.6 2.9 rand-10-20-10 1,046 1.0 119.2 1.3
dubois,pret 2 1.0 2.0 1.5 rand-3-20-20-fcd 190 1.0 181.5 12.8

geom 20 6.4 20.0 15.0 renault 48,720 1.0 48,720.0 7.7
grCol-hos 6 1.0 3.3 3.3 rlfapGr/ScensMod 44,43 1.0 30.0,35.6 18.5,19.4
grCol-mug 3 1.0 2.5 2.4 ssa 31 1.0 14.7 2.1

grCol-register-mulsol 48 23.2 23.2 23.2 super-queens 49 15.6 17.6 16.4
grCol-sgb-book 12 1.0 7.7 7.5 tightness0.9 40 1.0 36.3 16.9

grCol-sgb-games 8 1.0 6.3 6.1 varDimacs 512 1.0 115.0 5.6

Table 3 summarizes our results. It reports the numbers of instances completed
(#Completed) by each algorithm, those completed only by one algorithm, and
those completed by both algorithms. It also reports the average CPU time, the
number of calls to SearchSupport or FB-SearchSupport, and their ratio.
For each value of m, the average CPU time is computed over instances com-
pleted by both algorithms. The best values are bolded. Note that the entry for
SearchSupport calls for m = 2 is blank because PerFB does not call FB-

SearchSupport in this case.
PerFB clearly wins across the board. While few instances are solved only by

PerTuple, many more are solved only by PerFB. The discovery and exploita-
tion of equivalent fine blocks during PerFB clearly greatly reduces the number
of calls to find a support, with the poorest reduction (m = 4) still reducing the
number of searches by over half. This saving is reflected in the reduction of CPU
time because the cost of searching for a support in a combination of m relations
is much larger than that of identifying and storing equivalent fine blocks (see
Section 5). Although not shown here, the average percentages of nodes visited
that were skipped in FB-SearchSupport thanks to the usage of intermediate
partitions are .01%, .04%, and .10% for m = 3, 4, and ψ, respectively. Thus, the
use of intermediate partitions during FB-SearchSupport is largely ineffectual
when finding a single solution to the subproblem. (However, it may be useful for
improving the performance of AllSol.)

The scatter plots in Figure 9a and 9b compare the CPU time of PerFB and
PerTuple for solving all 853 instances for m = 2 and m = |ψ(cl)|. Marks below
the diagonal line represent instances where PerFB outperformed PerTuple.
Marks on the right (top) border denote instances that timed out only for Per-
Tuple (PerFB). Where PerTuple outperforms PerFB, the instances are
‘easier’ and the time difference is negligible for the majority of these (note the
logarithmic scale). On the other hand, for hard instances, PerFB is faster. This
difference is likely due to the cost of identifying the intermediate partitions in
PerFB; easy instances tend to not make use of the intermediate partitions, but
may still incur the cost of identifying them. The cumulative charts in Figures 9c,
9d, 9e, and 9f display the number of instances completed within a given time

702 A. Schneider et al.

(a) m = 2 (b) m = |ψ(cl)|

0

1000

2000

3000

4000

5000

6000

7000

8000

35
0

36
2

37
4

38
6

39
8

41
0

42
2

43
4

44
6

45
8

47
0

48
2

49
4

50
6

51
8

53
0

54
2

55
4

m=2
PerTuple
PerFB

(c) m = 2

0

1000

2000

3000

4000

5000

6000

7000

8000

45
0

46
0

47
0

48
0

49
0

50
0

51
0

52
0

53
0

54
0

55
0

56
0

57
0

58
0

59
0

60
0

61
0

m=3
PerTuple
PerFB

(d) m = 3

0

1000

2000

3000

4000

5000

6000

7000

8000

40
0

41
1

42
2

43
3

44
4

45
5

46
6

47
7

48
8

49
9

51
0

52
1

53
2

54
3

55
4

56
5

57
6

58
7

m=4
PerTuple
PerFB

(e) m = 4

0

1000

2000

3000

4000

5000

6000

7000

8000

40
0

41
2

42
4

43
6

44
8

46
0

47
2

48
4

49
6

50
8

52
0

53
2

54
4

55
6

56
8

58
0

59
2

60
4

m=|ψ(cl)|
PerTuple
PerFB

(f) m = |ψ(cl)|

0

1000

2000

3000

4000

5000

6000

7000

8000

40
0

40
4

40
8

41
2

41
6

42
0

42
4

42
8

43
2

43
6

44
0

44
4

44
8

45
2

45
6

46
0

46
4

46
8

47
2

47
6

48
0

48
4

48
8

49
2

49
6

50
0

50
4

50
8

51
2

51
6

52
0

52
4

52
8

53
2

53
6

54
0

54
4

54
8

55
2

55
6

56
0

56
4

56
8

57
2

57
6

58
0

58
4

58
8

59
2

59
6

60
0

60
4

60
8

61
2

61
6

PerFB m=2 m=3

m=4 m=|C| m=|ψ(cl)|

(g) PerFB for m = 2, 3, 4, |ψ(cl)|

Fig. 9. Pairwise comparisons of PerFB and PerTuple for tested values of m

Improving Relational Consistency with Dynamic Relation Partitioning 703

Table 3. Summary of results for each tested value of m over 853 instances

m = 2 m = 3 m = 4 m = |ψ(cl)|

P
e
r
T
u
p
l
e

P
e
r
F
B

P
e
r
T
u
p
l
e

P
e
r
F
B

P
e
r
T
u
p
l
e

P
e
r
F
B

P
e
r
T
u
p
l
e

P
e
r
F
B

#Completed 546 557 604 616 566 589 597 615
. . . only by 5 16 1 13 2 25 8 26
. . . by both 541 603 564 589

Avg. CPU (sec) 538 227 521 362 472 314 669 458

SearchSupport calls (109) 86.4 0 88.1 26.1 52.7 19.6 24.7 8.1
ratio – 3.37 2.69 3.06

by each algorithm, and show that PerFB outperforms PerTuple for every m.
Figure 9g compares PerFB for varying values of m. PerFB with m = 3, |ψ(cl)|
are the clear winners on the tested benchmarks.

We establish statistical significance by running a one-tailed paired t-test on
instances completed by both PerFB and PerTuple for each value of m. The
tests give p < .01 for each value of m. Thus, the two algorithms are extremely
unlikely to have equivalent performances. This result and those in Table 3 and
Figure 9 support our hypothesis that PerFB outperforms PerTuple.

7 Conclusion and Future Work

Given the importance of minimal CSPs in reasoning [9] and higher-level con-
sistencies in solving difficult problems [13], it seems important to improve the
performance of the techniques for enforcing them. In this paper, we extend the
work of Samaras & Stergiou [22] to improve the initial algorithm of Karakashian
et al. [16] for relational consistency by exploiting blocks of equivalent tuples at
various levels of granularity, and we empirically validate our approach.

We need to evaluate the effectiveness of the approach on AllSol, the alterna-
tive algorithm for minimality [8,14]. We believe that applying the ideas explored
in this paper to join computation in relational databases is a promising next
step [17], potentially highly rewarding in practice.

References

1. Bessiere, C.: Constraint Propagation. In: Handbook of Constraint Programming,
Elsevier (2006)

2. Bessiere, C., Cardon, S., Debruyne, R., Lecoutre, C.: Efficient Algorithms for Sin-
gleton Arc Consistency. Constraints 16(1), 25–53 (2011)

3. Bessière, C., Stergiou, K., Walsh, T.: Domain Filtering Consistencies for Non-
Binary Constraints. Artificial Intelligence 172, 800–822 (2008)

704 A. Schneider et al.

4. Choueiry, B.Y., Davis, A.M.: Dynamic Bundling: Less Effort for More Solutions.
In: Koenig, S., Holte, R. (eds.) SARA 2002. LNCS (LNAI), vol. 2371, pp. 64–82.
Springer, Heidelberg (2002)

5. Choueiry, B.Y., Noubir, G.: On the Computation of Local Interchangeability in
Discrete Constraint Satisfaction Problems. In: AAAI 1998, pp. 326–333 (1998)

6. Dechter, R., van Beek, P.: Local and Global Relational Consistency. Theor. Com-
put. Sci. 173(1), 283–308 (1997)

7. Freuder, E.C.: Eliminating Interchangeable Values in Constraint Satisfaction Prob-
lems. In: AAAI 1991, pp. 227–233 (1991)

8. Geschwender, D., Karakashian, S., Woodward, R., Choueiry, B.Y., Scott, S.D.: Se-
lecting the Appropriate Consistency Algorithm for CSPs Using Machine Learning
Techniques. In: Pre-PhD Student Abstract and Poster Program of AAAI 2013,
pp. 1611–1612 (2013)

9. Gottlob, G.: On Minimal Constraint Networks. In: Lee, J. (ed.) CP 2011. LNCS,
vol. 6876, pp. 325–339. Springer, Heidelberg (2011)

10. Gyssens, M.: On the Complexity of Join Dependencies. ACM Trans. Database
Systems 11(1), 81–108 (1986)

11. Van Hentenryck, P., Deville, Y., Teng, C.-M.: A Generic Arc Consistency Algo-
rithm and its Specializations. Artificial Intelligence 57, 291–321 (1992)

12. Janssen, P., Jégou, P., Nougier, B., Vilarem, M.-C.: A Filtering Process for General
Constraint-Satisfaction Problems: Achieving Pairwise-Consistency Using an Asso-
ciated Binary Representation. In: IEEE Workshop on Tools for AI, pp. 420–427
(1989)

13. Jeavons, P., Petke, J.: Local Consistency and SAT-Solvers. JAIR 43, 329–351
(2012)

14. Karakashian, S.: Practical Tractability of CSPs by Higher Level Consistency and
Tree Decomposition. PhD thesis, University of Nebraska-Lincoln (2013)

15. Karakashian, S., Woodward, R., Choueiry, B.Y.: Improving the Performance of
Consistency Algorithms by Localizing and Bolstering Propagation in a Tree De-
composition. In: AAAI 2013, pp. 466–473 (2013)

16. Karakashian, S., Woodward, R., Reeson, C., Choueiry, B.Y., Bessiere, C.: A First
Practical Algorithm for High Levels of Relational Consistency. In: AAAI 2010, pp.
101–107 (2010)

17. Lal, A., Choueiry, B.Y.: Constraint Processing Techniques for Improving Join Com-
putation: A Proof of Concept. In: Kuijpers, B., Revesz, P.Z. (eds.) CDB 2004.
LNCS, vol. 3074, pp. 143–160. Springer, Heidelberg (2004)

18. Lal, A., Choueiry, B.Y., Freuder, E.C.: Neighborhood Interchangeability and Dy-
namic Bundling for Non-Binary Finite CSPs. In: AAAI 2005, pp. 387–404 (2005)

19. Lecoutre, C., Likitvivatanavong, C., Yap, R.H.C.: A Path-Optimal GAC Algorithm
for Table Constraints. In: ECAI 2012, pp. 510–515 (2012)

20. Lecoutre, C., Paparrizou, A., Stergiou, K.: Extending STR to a Higher-Order Con-
sistency. In: AAAI 2013, pp. 576–582 (2013)

21. Paparrizou, A., Stergiou, K.: An Efficient Higher-Order Consistency Algorithm for
Table Constraints. In: AAAI 2012 (2012)

22. Samaras, N., Stergiou, K.: Binary Encodings of Non-binary Constraint Satisfaction
Problems: Algorithms and Experimental Results. JAIR 24, 641–684 (2005)

23. Woodward, R., Karakashian, S., Choueiry, B.Y., Bessiere, C.: Solving
Difficult CSPs with Relational Neighborhood Inverse Consistency. In: AAAI 2011,
pp. 112–119 (2011)

24. Woodward, R.J., Karakashian, S., Choueiry, B.Y., Bessiere, C.: Revisiting Neigh-
borhood Inverse Consistency on Binary CSPs. In: Milano, M. (ed.) CP 2012. LNCS,
vol. 7514, pp. 688–703. Springer, Heidelberg (2012)

Domain Views for Constraint Programming

Pascal Van Hentenryck1 and Laurent Michel2

1 NICTA, Australia, RI 02912
2 University of Connecticut, Storrs, CT 06269-2155, USA

Abstract. Traditional constraint-programming systems provide the
concept of variable views which implement a view of the type y = f(x) by
delegating operations on variable y to variable x. While the traditional
support is limited to bound consistency, this paper offers views that sup-
port domain consistency without any limitations. This paper proposes
the alternative concept of domain views which delegate all domain op-
erations. Domain views preserve the benefits of variable views, simplify
the implementation of value-based propagation, and also support non-
injective views compositionally. Experimental results demonstrate the
practical benefits of domain views. The paper also reveals a subtle in-
teraction between views and the exploitation of constraint idempotence,
which may lead to incomplete propagation.

1 Introduction

Constraint programming systems provide rich libraries of constraints, each of
which models some specific structure useful across a wide range of applications.
These constraints are important both from a modeling standpoint, as they make
it possible to state problems at a high level of abstraction, and from an efficiency
standpoint, as they allow dedicated algorithms to exploit the specific structure.
However, each of these constraints potentially come in many different forms as
they can be applied, not only on variables, but also on expressions involving
variables. This large number of variants presents a challenge for system devel-
opers who must produce, validate, optimize, and maintain each version of each
constraint. To avoid the proliferation of such variants, system developers often
prefer to design a unique variant over variables and introduce new variables
and constraints to model the more complex cases. For instance, a constraint
alldifferent(x1 + 1, . . . , xn + n) can be modeled by a system of constraints

{alldifferent(y1, . . . , yn), y1 = x1 + 1, . . . , yn = xn + n}

where the yi’s are new variables. This approach keeps the system core small
but introduces an overhead in time and space. Indeed, the new constraints must
be propagated through the constraint engine and the system must maintain
additional domains and constraints, increasing space/time costs.

System designers have sought ways to mitigate this difficulty and proposed
several solutions. Prolog-style languages offered indexicals [4,2] while C++ li-
braries like Ilog Solver [5] introduces the concept of variable views. For an in-
jective function f and a variable (or a view) x, a variable view y enforces the

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 705–720, 2014.
c© Springer International Publishing Switzerland 2014

706 P. Van Hentenryck and L. Michel

equivalent of the constraint y = f(x) but it does not introduce a new con-
straint: Instead, it delegates all domain and constraint operations (the ability
to wake constraints) on y to x, sometimes after applying f−1. Variable views
remove the time and space overhead mentioned above and keep the solver ker-
nel small, thus giving us a valuable abstraction for constraint programming.
Recently, [7,8] demonstrated how variable views can be implemented in terms
of C++ templates, providing further improvement in speed and memory usage.
The idea is to use parametric polymorphism to allow for code reuse and compile-
time optimizations based on code expansion and inlining. [8] demonstrates that
variable views provide significant software engineering benefits as well as great
computational improvements over the standard approach.

This paper considers constraint-programming systems where views are first-
class objects and can be composed arbitrarily, which is typically required when
implementing high-level modeling languages. It proposes to expand the scope of
constraint-programming views with an extremely simple abstraction: The con-
cept of domain views which delegate domain operations only and keep their own
constraint lists. Domain views preserve the benefits of variable views but simplify
the implementation of value-based propagation, i.e., the propagation of events of
the form 〈c, x, v〉, meaning that constraint cmust be propagated because variable
x has lost value v (e.g., [9,3]). Domain views also support non-injective views
elegantly and compositionally. Extensive experimental results demonstrate the
benefits of domain views. They also revealed a subtle interaction between views
and idempotence, which is present in a well-known system.

The paper is organized as follows. Sections 2, 3, and 4 present the preliminaries
on constraint programming and on views. Section presents the implementation
of variable views. Section 5 introduces the concept of domain views. Section 6
demonstrates how to generalize domain views to the case where the function
f is not injective. Section 7 briefly discusses how to exploit monotonicity and
anti-monotonicity. Section 8 explores the interplay of views and idempotence.
Section 9 presents experimental results. Section 10 discusses related work on
advisors [6] and Section 11 concludes the paper.

2 Preliminaries

A constraint-programming system is organized around a queue of events Q and
its main component is an engine propagating constraints in the queue, i.e.,

1 while ¬ empty (Q) do propagate (pop (Q)) ;

For simplicity, we only consider two types of events: 〈c, x〉 and 〈c, x, v〉. An
event 〈c, x〉 means that constraint c must be propagated because the domain
of variable x has been shrunk. An event 〈c, x, v〉 means that constraint c must
be propagated because the value v has been removed from D(x). Events of
the form 〈c, x〉 are sometimes called variable-based propagation, while those of
the form 〈c, x, v〉 are sometimes called value-based propagation. Note that some
systems also implement what is called constraint-based propagation, where the

Domain Views for Constraint Programming 707

1 i n t e r f a c e Var iab le
2 bool member (V v) ;
3 bool remove (V v) ;
4 void watch (C c) ;
5 void watchValue (C c) ;
6 void wake ;
7 void wakeValue (V v) ;

Fig. 1. The Variable Interface

1 implementation DomainVariable

2 {V} D ;
3 {C} SC ;
4 {C} SCv ;
5 DomainVariable ({V} Do) { D := Do ; SC := ∅ ; SCv := ∅ ; }
6 bool member (V v) { return v ∈ D ;}
7 bool remove (V v) { i f v ∈ D { D := D \ {v} ; wake () ; wakeValue (v) ;}}
8 void watch (C c) { SC := SC ∪ {c} ; }
9 void watchValue (C c) { SCv := SCv ∪ {c} ; }

10 void wake () { Q := Q∪ {〈c, this〉 | c ∈ SC} ;}
11 void wakeValue (V v) { Q := Q∪ {〈c, this, v〉 | c ∈ SCv} ;}

Fig. 2. The Implementation of a Domain Variable

event simply consists of constraint to propagate without additional information.
We do not discuss constraint-based propagation here since it is easier to handle.

The propagation of a constraint may change the domains of some variables
and thus introduce new events in the queue. As a result, a variable x not only
maintains its domain D(x) but also keeps track of the constraints it appears in
so that the proper events can be inserted in the queue. As a result, a variable x
is best viewed as a triple 〈D,SC, SCv〉, where D is the domain of the variable,
SC is the set of constraints involving x that use variable-based propagation, and
SCv is the set of constraints involving x that use value-based propagation. If x is
a variable, we use D(x), SC(x) and SCv(x) to denote these three components.

For simplicity, a variable implements the interface depicted in Figure 1, where
V denotes the set of values considered (e.g., integers or reals) and C the set of con-
straints. For a variable x, method member(v) tests v ∈ D(x), method remove(v)

implements D(x) := D(x) \ {v} and returns true if the resulting domain is not
empty, method watch(c) registers constraint c for variable-propagation, and
method watchValue(c) registers constraint c for value-propagation. The wake

methods are used for creating new events in the queue. With our conventions, a
variable can be implemented as depicted in Figure 2.

708 P. Van Hentenryck and L. Michel

3 Views

The purpose of this paper is to define and implement abstractions for constraints
of the form y = ψ(x). In a first step, the paper focuses on injective views, i.e.,
views in which function ψ is injective, which is the functionality provided by
many constraint-programming solvers.

Definition 1 (Injective Function). A function ψ : D → V is injective if

∀v, v′ ∈ D : ψ(v) = ψ(v′)⇒ v = v′.

The inverse ψ−1 : V → D⊥ (D⊥ = D ∪ {⊥}) of injective function ψ is

ψ−1(w) =

{
v if v ∈ D ∧ ψ(v) = w
⊥ otherwise

Note that the definition of ψ−1 is a specification: An actual implementation uses
a dedicated implementation of ψ−1 as the following two examples illustrate.

Example 1 (Shift View). Consider the view y = x + c where c is an integer
and x and y are integer variables. ψ : Z → Z can be specified (using lambda
calculus notation [1]) as λk.k+c. Its inverse ψ−1 : Z→ Z is defined as λk.k−c.

Example 2 (Affine View). Consider the view y = ax+ b where a, b ∈ Z and
x, y are integer variables. ψ : Z→ Z is λk.ak + b. Its inverse ψ−1 : Z→ Z is

ψ−1 =

{
λk.(k − b)/a if (k − b) mod a = 0
λk.⊥ otherwise.

In some systems (e.g., Choco 3.x), views are first-class objects and are composi-
tional: They can be specified by modelers and it is possible to state a view over
a view. Compositional views are also important when implementing high-level
modeling languages through model compilation and reformulation.

4 Variable Views

The fundamental idea of variable views [7], implemented in many systems [8],
is to delegate all domain and constraint operations of variable y to variable x.
A variable view thus implements an adapter pattern that stores neither domain
nor sets of constraints. The variable view simply stores a reference to variable x
and delegates all domain and constraint operations to x, possibly after applying
function ψ or ψ−1 on the arguments. Informally speaking, the membership test
w ∈ D(y) becomes ψ−1(w) ∈ D(x), the removal operation proceeds similarly
and variable x also watches all the constraints of y.

The only difficulty in variable views comes from the fact that variable x now
needs to watch constraints on both x and y. For variable-based propagation, it is
necessary to remember which variable is being watched for each constraint and

Domain Views for Constraint Programming 709

1 implementation DomainVariable
2 {V} D ;
3 {〈C,X〉} SC ;
4 {〈C,X ,F〉} SCv ;
5 DomainVariable ({V} Do) { D := Do ; SC := ∅ ; SCv := ∅ ;}
6 bool member (V v) { return v ∈ D ;}
7 bool remove (V v) { i f v ∈ D { D := D \ {v} ; wake () ; wakeValue (v) ;}}
8 void watch (C c,X y) { SC := SC ∪ {〈c, y〉} ; }
9 void watchValue (C c,X y,F ψ) { SCv := SCv ∪ {〈c, y, ψ〉} ;}

10 void watch (C c) { watch (c , t h i s) ; }
11 void watchValue (C c) { watch (c , th i s ,λk.k) ; }
12 void wake () { Q := Q∪ {〈c, x〉 | 〈c, x〉 ∈ SC} ;}
13 void wakeValue (V v){ Q := Q∪ {〈c, x, ψ(v)〉 | 〈c, x, ψ〉 ∈ SCv} ;}

Fig. 3. The Domain Variable for Variable Views

the set SC now consists of pairs 〈c, z〉 where c is a constraint and z is a variable.
For value-based propagation, it is necessary to store the function ψ since it must
be applied when method wakeValue is applied. Hence the set SCv now contains
triples of the form 〈c, z, ψ〉. These generalizations are necessary, since when a
value v is removed from the domain of x, the value-based events for variable y
must be of the form 〈c, y, ψ(v)〉.

The implementation of variables to support variable views is shown in Figure 3
where X denotes the set of variables/views and F the set of first-order functions.
Observe the types of SC and SCv in lines 3–4, the new methods in lines 8–9
allow to watch a constraint c for a view y, the matching redefinition of the watch
methods, and the wake methods that store additional information in the queue
by applying the stored function ψ on value v (line 13).

Figure 4 depicts a template for variable views in terms of an injective function
ψ. A shift view specialization is shown in Figure 5. Observe that variable views do
not store a domain nor constraint sets. Methods member and remove apply ψ−1 as
mentioned earlier with only the addition of a test for the ⊥ case. Methods watch
and watchValue (lines 10–11) state a view on the view itself. In particular, line
11 illustrates the need for function composition in the case of value propagation.

The instantiation for shift views in Figure 5 highlights some interesting points.
First, there is no need for a ⊥ test, since the inverse of ψ is always in the domain
of ψ. Second, value-based propagation requires the use of first-order functions
(see lines 8 and 10) or objects implementing the same functionalities. In contrast,
methods member and remove “inline” function φ−1 in the code, which is never
stored or passed as a parameter.

Optimization. Variable views now store tuples 〈c, z, ψ〉 for value-based propa-
gation. Observe however that z is an object so that it is possible to use it to
compute function ψ. This only requires the view to provide a method map that
maps the value v through ψ. Lines 9 and 13 in Figure 3 become

710 P. Van Hentenryck and L. Michel

1 implementation VariableView<ψ>
2 X x ;
3 VariableView (X x) { x := x ; }
4 bool member(V v) {
5 i f ψ−1(v) �= ⊥ return x . member (ψ−1(v)) ; else return f a l s e ;
6 }
7 bool remove (Z v) {
8 i f ψ−1(v) �= ⊥ return x . remove (ψ−1(v)) ; else return t rue ;
9 }

10 void watch (C c ,X y) { x . watch (c, y) ; }
11 void watchValue (C c ,X y ,F φ) { x . watchValue (c ,y ,φ ◦ ψ) ; }
12 void watch (C c) { x . watch (c , t h i s) ; }
13 void watchValue (C c) { x . watchValue (c , th i s ,ψ) ; }

Fig. 4. The Template for Variable Views

1 implementation Var i ab l eSh i f tV i ew
2 X x ;
3 Z c ;
4 Var i ab l eSh i f tV i ew (X x ,Z c) { x := x ; c := c ; }
5 bool member (Z v) { return x . member (v−c) ; }
6 bool remove (Z v) { return x . remove (v−c) ; }
7 void watch (C c ,X y) { x . watch (c, y) ; }
8 void watchValue (C c ,X y ,Z → Z φ) {x . watchValue (c ,y ,φ ◦ (λk.k + c)) ; }
9 void watch (C c) { x . watch (c , t h i s) ; }

10 void watchValue (C c) { x . watchValue (c , th i s ,λk.k + c) ; }

Fig. 5. A Variable View for Shift Views

1 void watchValue (C c,X y) { SCv := SCv ∪ {〈c, y〉} ;}
2 void wakeValue (V v) { Q := Q ∪ {〈c, x, x.map(v)〉 | 〈c, x〉 ∈ SCv} ;}

The map methods on standard variables and on views (defined over variable x
with injective function ψ) are respectively defined as

1 V map(V v) { return v ;}
2 V map(V v) { return ψ(x.map(v)) ;}

Observe the recursive call, since views can be posted on views. This optimization
clutters a bit the API of variables and views but only minimally.

Variable views are an important concept in constraint programming for injec-
tive functions. For constraint-based and variable-based propagation, the imple-
mentation is simple and efficient, although it requires to upgrade slightly the data
structure to watch constraints. For value-based propagation, the implementation
is a bit more cumbersome. It requires a generalization of the constraint queue
and the addition of a map method on variables and views to avoid manipulat-
ing first-order functions. Domain views provide an extremely simple alternative,
which also has the benefits of supporting non-injective functions elegantly.

Domain Views for Constraint Programming 711

1 implementation DomainVariable
2 {V} D ;
3 {C} SC ;
4 {C} SCv ;
5 {X} Views ;
6 DomainVariable ({V} Do) { D := Do ;SC := ∅ ;SCv := ∅ ;Views := ∅ ;}
7 void addView (X x) { Views := Views ∪ {x} ; }
8 bool member (V v) { return v ∈ D ;}
9 bool remove (V v) {

10 i f v ∈ D
11 D := D \ {v} ;
12 wake () ;
13 wakeValue (v) ;
14 f o ra l l y ∈ Views { y . wake () ; y . wakeValue (v) ; }
15 }
16 void watch (C c) { SC := SC ∪ {c} ;}
17 void watchValue (C c) { SCv := SCv ∪ {c} ;}
18 void wake () { Q := Q∪ {〈c, this〉 | c ∈ SC} ;}
19 void wakeValue (V v) { Q := Q∪ {〈c, this, v〉 | c ∈ SCv} ;}

Fig. 6. The Domain Variable for Domain Views

5 Domain Views

The key idea behind domain views is to delegate only domain operations from
variable y to variable x: The view for y maintains its own constraints to watch.
This removes the need to manipulate first-order functions. To implement domain
views, traditional variables (and views) must store which variables are viewing
them. When their domains change, they must notify their views.

Figure 6 depicts the revised implementation of domain variables to support
domain views. The variable now keeps its views (line 5) and provides a method
for adding a view (line 7). The only other change is in method remove in line 14:
The domain variable calls method wake and wakeValue on its views to inform
them of the loss of value v to let them schedule their own constraints.

Figure 7 shows a template for domain views in terms of an injective function
ψ. A specialization for shift views is shown in Figure 8. Observe how the domain
view maintains its own set of constraints. It delegates domain operations in
methods member and remove as variable views did, but it does not delegate its
watch methods, which are similar to those of a traditional domain variable. To
implement views on views, the wake methods also wake the views (lines 18 and
22), using ψ to send the appropriate value since v is the value removed from
D(x). D(x) may be explicit (variable) or implicit (views). The shift view in
Figure 8 inlines ψ−1 in lines 8 and 9 and ψ in line 18.

Domain views provide an elegant alternative to variable views. They remove
the need to modify the data structure for watching constraint and alleviate the
need for the map function, while preserving the benefits of variable views and
enabling more inlining for value-based propagation. They are based on a simple

712 P. Van Hentenryck and L. Michel

1 implementation DomainView<ψ>
2 X x ;
3 {C} SC ;
4 {C} SCv ;
5 {X } Views ;
6 DomainView(X x) { SC := ∅ ; SCv := ∅ ; Views := ∅ ;}
7 void addView(X x) { Views := Views ∪ {x} ; }
8 bool member(V v) {
9 i f ψ−1(v) �= ⊥ return x . member (ψ−1(v)) ; else return f a l s e ;

10 }
11 bool remove (Z v) {
12 i f ψ−1(v) �= ⊥ return x . remove (ψ−1(v)) ; else return t rue ;
13 }
14 void watch (C c) { SC := SC ∪ {c} ; }
15 void watchValue (C c) { SCv := SCv ∪ {c} ; }
16 void wake () {
17 Q := Q ∪ {〈c, this〉 | c ∈ SC} ;
18 f o ra l l (y ∈ Views) y . wake () ;
19 }
20 void wakeValue (V v) {
21 Q := Q ∪ {〈c, this, v〉 | c ∈ SCv} ;
22 f o ra l l (y ∈ Views) y . wakeValue (ψ(v)) ;
23 }

Fig. 7. The Template for Domain Views

idea: Only delegating the domain operations. Instead of delegating constraint
watching, constraints are watched locally. It is interesting to analyze the memory
requirements of both approaches. Variable views need to store variables in their
constraint lists, which require space proportional to the length of these lists.
In contrast, domain views only require a few pointers for their own lists, the
constraints themselves being present in both approaches albeit in different lists.
The viewed variables must also maintain the list of its views.

6 Non-injective Views

We now generalize domain views to non-injective functions.

Definition 2 (Inverse of a Non-Injective Function). The inverse ψ−1 :
V → 2D⊥ of non-injective function ψ : D → V is defined as

ψ−1(w) =

{
⊥ if � ∃ v ∈ D : ψ(v) = w
{v ∈ D | ψ(v) = w} otherwise.

Figure 9 gives the template for non-injective views. There are only a few mod-
ifications compared to the template for injective views. The member function
must now test membership for a set of values (line 9) and the remove function
must remove a set of values (line 14). Finally, method wakeValue(w) must test

Domain Views for Constraint Programming 713

1 implementation DomainShiftView
2 X x ;
3 {C} SC ;
4 {C} SCv ;
5 {X} Views ;
6 Z c ;
7 DomainShiftView(X x ,Z c) {SC := ∅ ;SCv := ∅ ;Views := ∅ ; c := c ;}
8 bool member (Z v) { return x . member (v−c) ; }
9 bool remove (Z v) { return x . remove (v−c) ; }

10 void watch (C c) { SC := SC ∪ {c} ; }
11 void watchValue (C c) { SCv := SCv ∪ {c} ; }
12 void wake () {
13 Q := Q ∪ {〈c, this〉 | c ∈ SC} ;
14 f o ra l l (y ∈ Views) y . wake () ;
15 }
16 void wakeValue (V v) {
17 Q := Q ∪ {〈c, this, v〉 | c ∈ SCv} ;
18 f o ra l l (y ∈ Views) y . wakeValue (v + c) ;

19 }

Fig. 8. A Domain View for Shift Views

membership of v = ψ(w) (line 25), since there may be multiple supports for v
in D(x).

The key advantage of domain views is that they own their constraints. In the
context of non-injective functions, this is critical since only the view “knows”
whether its constraints must be scheduled for propagation. It is more difficult
and less elegant, but not impossible, to generalize variable views to support non-
injective functions. For a view y = f(x), when a value v is removed from D(x),
it is no longer sufficient to just use the map function. The view must decide
whether f(v) is still supported for y. Moreover, if we have a view z = g(y) and
variable x is trying to decide whether to schedule a constraint involving z, it
must query z to find out whether g(f(v)) is still supported, which depends on
whether f(v) is still supported in variable y. Hence, to implement non-injective
functions in variable views, waking constraints up must be conditional. It is
necessary to implement a method needToSchedule on views to determine if the
original removal will remove a value on the views. Method wakeValue becomes

1 void wakeValue (V v) {
2 Q := Q ∪ {〈c, x, x.map(v)〉 | 〈c, x〉 ∈ SCv & x . needToSchedule (v)} ;}

The implementation of needToSchedule must also be recursive (like the map

function) to handle the case of views on views. The resulting complexity contrasts
with the simplicity of domain views.

Literal Views Reified constraints are a fundamental abstraction in constraint
programming. For instance, In a magic series s of length n, every si must satisfy
si =

∑n−1
j=0 (sj = i), i.e., it states that si should be the number of occurrences of

value i in s itself. To implement this behavior, one could rely on auxiliary Boolean

714 P. Van Hentenryck and L. Michel

1 implementation NonInjectiveDomainView<ψ>
2 X x ;
3 {C} SC ;
4 {C} SCv ;
5 {X } Views ;
6 NonInjectiveDomainView(X x) {SC := ∅ ;SCv := ∅ ;Views := ∅ ;}
7 void addView(X x) { Views := Views ∪ {x} ; }
8 bool member(V v) {
9 i f ψ−1(v) �= ⊥ return ∃w ∈ ψ−1(v) : x . member (w) ;

10 else return f a l s e ;
11 }
12 bool remove (V v) {
13 i f ψ−1(v) �= ⊥
14 f o ra l l (w ∈ ψ−1(v)) i f ¬ x . remove (w) return f a l s e ;
15 return t rue ;
16 }
17 void watch (C c) { SC := SC ∪ {c} ; }
18 void watchValue (C c) { SCv := SCv ∪ {c} ; }
19 void wake () {
20 Q := Q ∪ {〈c, this〉 | c ∈ SC} ;
21 f o ra l l (y ∈ Views) y . wake () ;
22 }
23 void wakeValue (V w) {
24 v = ψ(w) ;
25 i f x .member(v)
26 Q := Q ∪ {〈c, this, v〉 | c ∈ SCv} ;
27 f o ra l l (y ∈ Views) y . wakeValue (ψ(v)) ;
28 }

Fig. 9. The Template for Non-Injective Domain Views

variables bij ⇔ sj = i. for every i and j in 0..n−1 leading to a quadratic number
of Boolean variables and reified equality constraints. The reification b ⇔ x = i
can be seen as a non-injective view and Figure 10 describes its implementation.
The view uses two methods not described before: Method isBoundTo(i) on
variable x holds if D(x) = {i}, while method bind(i) succeeds if i ∈ D(x) and
reduces the domain D(x) to {i}. With these two functions, the implementation
is direct with the methods member, remove, and wakeValue carried out by case
analysis on the value of the “reified variable”.

Modulo Views We now show a view for a constraint y = x mod k with k ∈ Z.
The view implementation maintains the supports for each value v ∈ D(y), i.e.,

∀v ∈ D(y) sv = {w | w ∈ D(x) ∧ w mod k = v}

Figure 11 depicts a sketch of a simple implementation.

Domain Views for Constraint Programming 715

1 implementation ReifedDomainView
2 X x ;
3 {C} SC ;
4 {C} SCv ;
5 {X} Views ;
6 Z i ;
7 DomainReifiedView (X x ,Z i) {SC := ∅ ;SCv := ∅ ;Views := ∅ ; i := i ;}
8 bool member (Z v) {
9 i f v = 0 return ¬x . isBoundTo (i) ;

10 else return x . member (i) ;
11 }
12 bool remove (Z v) {
13 i f v = 0 return x . bind (i) ;
14 else return x . remove (i) ;
15 }
16 . . .
17 void wakeValue (V v) {
18 i f v = i

19 Q := Q∪ {〈c, this, 1〉 | c ∈ SCv} ;
20 f o ra l l (y ∈ Views) y . wakeValue (1) ;
21 else
22 i f ¬member (0)
23 Q := Q∪ {〈c, this, 0〉 | c ∈ SCv} ;
24 f o ra l l (y ∈ Views) y . wakeValue (0) ;
25 }

Fig. 10. A Domain View for Reified Views

Element Views. Even more strikingly perhaps is the ability to implement an el-
ement view1 replacing the classic constraint y = c[x] where x and y are variables
and c is an array of constants. The implementation of the non-injective view
(not shown here for brevity’s sake) maintains an additional simple data struc-
ture tracking the supports for values in c reachable thanks to x and achieves
domain-consistency. Awakenings caused by x prompts an update of the data
structure and the changes are immediately visible to the view. The benefit is
the elimination of the ‘micro’ constraint and the disappearance of value events
related to value losses emanating in D(x) or D(y).

7 Monotone and Anti-Monotone Views

We briefly mention how to exploit monotone and anti-monotone properties to
perform additional operations such as updateMin and updateMax. These tech-
niques are well-known and are only reviewed here for completeness.

Definition 3 (Monotone/AntiMonotone Function). An injective function
ψ is monotone if ∀v, w : v ≤ w → ψ(v) ≤ ψ(w). It is anti-monotone if ∀v, w :
v ≤ w → ψ(v) ≥ ψ(w).

1 Many thanks to Nicolas Beldiceanu for asking whether this would be possible.

716 P. Van Hentenryck and L. Michel

1 implementation ModuloDomainView . . .
2 int k ;
3 {Z} [] S ;
4 DomainReifiedView(X x ,Z k) { . . . }
5 bool member(Z v) { return Sv �= ∅ ; }
6 bool remove (Z v) {
7 f o ra l l (w ∈ Sv) i f ¬ x . remove (w) return f a l s e ;
8 return t rue ;
9 }

10 void wakeValue (V w) {
11 v := w mod k ;
12 i f ¬ member (v)
13 Q := Q ∪ {〈c, this, v〉 | c ∈ SCv} ;
14 f o ra l l (y ∈ Views) y . wakeValue (v) ;
15 }

Fig. 11. A Domain View for a Modulo Function

If ψ : Z → Z is a monotone function and y is a view on x, then the update
operations on bounds becomes

1 bool updateMin (Z v) { return x . updateMin (ψ−1(v)) ; }
2 bool updateMax (Z v) { return x . updateMax (ψ−1(v)) ; }

ignoring the case where ψ−1(v) is not well-defined. When ψ is anti-monotone,
they become

1 bool updateMin (Z v) { return x . updateMax (ψ−1(v)) ; }
2 bool updateMax (Z v) { return x . updateMin (ψ−1(v)) ; }

8 Idempotence and Views

Idempotence is a property often exploited in solvers. It enables to terminate the
propagation of a constraint even when some of its variables have been modified
without affecting the resulting pruning. For instance, the constraint

∑
i∈S ai ·

xi ≥ c often exploits idempotence and updates its variables at most once: Its
propagation is not iterated either internally or through the propagation loop.
However, such an implementation is incomplete when using views.

Example 1 (Simple Linear). Consider x1 ∈ {0, 1}, x2 = ¬x1, x3 ∈ {0, 1} where
x2 is a negated views on x1 and both x1 and x3 are Boolean variables. Assume
the addition of the constraint 5·x1+3·x2+3·x3 ≥ 7. When posted, the constraint
propagation concludes that x1 = 1 must hold in order to reach 7. However, the
propagator is unaware of the relation x2 = ¬x1 and is not iterated. Since the
propagator assumes that either x2 or x3 could be used to reach the target 7,
D(x3) is left untouched. This is wrong. Indeed, the x2 view has immediately
fixed x2 = 0 and the constraint propagator should have assigned x3 to 1.

Domain Views for Constraint Programming 717

In other words, views create side-channels that can invalidate the propagator
assumptions. This behavior is not a pure theoretical musing: Such an incom-
pleteness is in fact present in Choco 3.1.1, as reproduced below

1 public void buildModel () {
2 BoolVar x1 = Variab leFactory . bool (”x1” , s o l v e r) ;
3 BoolVar x2 = Variab leFactory . not (x1) ;
4 BoolVar x3 = Variab leFactory . bool (”x3” , s o l v e r) ;
5 IntVar [] av = new IntVar [] { x1 , x2 , x3 } ;
6 int [] c o e f = new int [] { 5 , 3 , 2 } ;
7 IntVar rhs = Var iab leFactory . f i x ed (7 , s o l v e r) ;
8 s o l v e r . post (In tConst ra in tFactory . s c a l a r (av , coe f , ”>=” , rhs)) ;
9 System . out . format (”Before : %s \n” , t oS t r i n g (av)) ;

10 try { s o l v e r . propagate () ; } catch (Exception e) {}
11 System . out . format (”After : %s \n” , t oS t r i n g (av)) ;
12 }

which produces the following output:

1 Before : x1 = [0 , 1] not (x1) x3 = [0 , 1]
2 After : x1 = 1 not (x1) x3 = [0 , 1]

The issue can be solved by simplifying the solver and eliminating the notion
of idempotence. One could instead analyze the constraint inputs to test for a
side-channel through a chain of views and enable idempotence adaptively.

9 Empirical Evaluation

The experiments were run on MacOS X 10.8.3 running on a Core i7 at 2.6Ghz,
using the Objective-CP optimization system [10]. The complete implementa-
tion of the integer and Boolean variables, along with their domain and their views
(including literal views) is around 3,200 lines of code, which is similar to the type
of code reuse advertised for Gecode [8]. Objective-CP pushes the methodology
advocated in [8] to the limit, only supporting core constraints and using views
to obtain more complex versions. For instance, the CP solver in Objective-CP

provides
∑n

i=0 xi ≤ b but not
∑n

i=0 ai · xi ≤ b. Cost-based propagation for COP
would, of course, mandate global constraints retaining the ai. Objective-CP

supports value-based propagation and non-injective views, which demonstrates
the additional functionalities provided by domain views. The experiments only
aim at demonstrating the practicability of domain views: See [8] for the benefits.

Benchmarks. Validation was carried out with classic benchmarks relying on
views. The experiments compare implementations with no views, with the op-
timized variable views (with subtype polymorphism), and domain views. When
no-views are used, the implementation uses the constraints and auxiliary vari-
ables introduced during the flattening of the model. The implementation uses
the same models and the search space and pruning are always identical. For
bibd, we follow [8] and rewrite Boolean relations like a ∧ b as ¬ (¬a ∨ ¬b) to

718 P. Van Hentenryck and L. Michel

force the use of negation views. Knapsack uses linear equations
∑

i∈S xi = b
and introduces views for the coefficients. The Steel Mill Slab relies on literal
views for the color constraint on slabs. Debruijn uses linear equations and reifi-
cations. Langford uses affine views to “shift” indices within element constraints.
Magicseries relies on reifications. Sport is the sport scheduling benchmark and
uses globals.

Measurements The benchmarks use a simple first-fail heuristic as decomposition
may change the behavior of more advanced heuristics (e.g., WDEG) and these
experiments are only interested in assessing view implementations, not inherent
speed. Table 1 offers a comparative view of the results. It is based on 50 runs
of each benchmark to account for the variability related to modern processors.
Columns μ(Tcpu) and μ(Twc) give the average user-time or wall-clock times in
milliseconds. Columns σ(Tcpu) and σ(Twc) report the standard deviations for
those run times. Column |M | reports the peak memory consumption in kilo-
bytes for the entire process. Measurements were taken at the level of malloc

and includes all memory allocations done by the executable. Finally, column P.
reports the number of propagation events recorded by the engine (in thousands).

Without surprise, a minimalist kernel must use views to be competitive as
differences in memory consumptions and running times can be quite significant

Table 1. Experimental Results on Variable and Domain Views

Bench type μ(Tcpu) μ(Twc) σ(Tcpu) σ(Twc) |M|(KB) P.(×1000)

bibd(6) No-View 1,088.4 1,130.5 222.1 227.9 44,652 1,984
bibd(6) Domain-View 729.8 759.2 107.6 111.0 29,197 804
bibd(6) Var-View 644.7 671.2 59.4 60.2 28,082 805

knapsack(4) No-View 8,857.5 8,873.9 180.9 184.8 987 33,207
knapsack(4) Domain-View 6,768.0 6,784.5 166.8 176.1 812 2,949
knapsack(4) Var-View 6,151.2 6,164.5 109.2 111.0 789 3,062

ais(30) No-View 1,341.8 1,348.9 52.2 57.6 1,336 2,734
ais(30) Domain-View 1,355.3 1,361.5 31.8 32.4 1,336 2,734
ais(30) Var-View 1,354.9 1,362.4 26.1 26.5 1,337 2,734

sport No-View 4,851.7 4,864.2 111.3 116.0 2,030 3,361
sport Domain-View 4,850.9 4,864.3 179.4 189.3 2,029 3,361
sport Var-View 4,936.1 4,949.5 231.8 236.7 2,029 3,361

langford(9/3) No-View 6,060.5 6,076.1 298.8 306.2 1,375 54,027
langford(9/3) Domain-View 7,008.3 7,026.6 316.8 323.5 1,368 56,893
langford(9/3) Var-View 6,859.5 6,877.9 242.7 248.5 1,366 56,887

debruijn(2/12) No-View 7,665.5 8,437.3 153.4 169.2 624,635 2,558
debruijn(2/12) Domain-View 7,292.2 8,014.2 111.2 144.1 552,515 946
debruijn(2/12) Var-View 6,935.2 7,628.2 384.9 422.4 550,792 967

slab No-View 4,845.2 4,919.4 108.6 115.4 84,092 4,403
slab Domain-View 2,243.5 2,294.0 128.7 138.8 51,725 909
slab Var-View 4,509.8 4,578.7 94.7 99.4 73,929 2,968

magicserie(300) No-View 17,951.2 18,164.7 284.0 300.8 231,622 30,771
magicserie(300) Domain-View 8,318.3 8,443.6 191.9 201.4 122,026 257
magicserie(300) Var-View 14,879.9 15,088.0 429.1 441.1 229,288 20,745

Domain Views for Constraint Programming 719

when forgoing views. In benchmarks involving only injective views, variable and
domain views are essentially similar in time and space efficiency. Given the stan-
dard deviations, the differences in efficiency are not statistically significant, al-
though variable views are often slightly more efficient. This is not always the
case, as the sport-scheduling problem indicates. Domain views, though, support
non-injective views simply and efficiently. This is particularly clear on the bench-
marks using reifications, i.e, slab and magicserie. The benefits are in terms of
runtime and memory consumption. The runtime gains are quite substantial, as
the running time is halved on the Steel Mill Slab problem. The dramatic drop
in the number of propagations is explained by the absence of constraints of the
form b ⇔ (x = v), yet, the same work is still carried out by the view, albeit
at a much lower overhead. Finally, the element view was also evaluated on the
Steel Mill Slab problem. The few (about 100) element constraints were replaced
by element views. While performance was virtually unchanged, memory usage
was reduced a little showing that the approach incurs no penalties. In summary,
domain views do not add any measurable overhead on injective views and bring
significant benefits on non-injective views, which they support elegantly.

10 Related Work

It is important to contrast the variable and domain view implementations pro-
posed here with another approach using delta-sets and advisors [6,8]. Advisors
are another way to “simulate” value-based propagation.2 An advisor is associ-
ated with a variable and a constraint and it modifies the state of the constraint
directly upon a domain modification for its variables. Advisors do not go through
the propagation queue but modify the state of their constraint directly. Advisors
also receive the domain change (called a delta set) which they may query.

Advisors can be associated with variable views. The view must now be up-
graded to query, not only the domain, but also the delta sets. In other words, the
queries on the delta must transform the domain delta, say {v1, . . . , vn}, through
the view to obtain {φ(v1), . . . , φ(vn)}. Gecode [8] does not compute delta sets ex-
actly but approximates them by intervals instead. A complete implementation of
value-based propagation would require the creation of these delta sets. Advisors
and delta sets can be used in the case of non-injective functions but that solu-
tion would still go through the propagation queue and use a constraint. Domain
views in constrast can implement non-injective views without going through the
propagation queue and do not need the concept of delta-sets.

11 Conclusion

This paper reconsidered the concept of views and proposed the concept of do-
main views as an alternative to the concept of variable views. Domain views only

2 It is only a simulation since an advisor updates the constraint state but does not
propagate a constraint itself. They are second-class citizens by choice in Gecode [6].

720 P. Van Hentenryck and L. Michel

delegate domain operations and maintain their own set of constraints to watch.
As a result, they simplify the implementation of constraint-programming sys-
tems featuring value-based propagation as they avoid manipulating first-order
functions (or objects implementing a similar functionality). Domain views also
make it possible to implement views for non-injective functions, which is partic-
ularly convenient for reified constraints. Experimental results demonstrate that
domain views introduce a negligible overhead (if any) over variable views and
that views over non-injective functions provide significant benefits.

References

1. Barendregt, H.P.: The Lambda Calculus – Its Syntax and Semantics. Studies in Logic and
the Foundations of Mathematics, vol. 103. North-Holland (1984)

2. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint solver.
In: Glaser, H., Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 191–206.
Springer, Heidelberg (1997)

3. Dynadec, I.: Comet v2.1 user manual. Technical report, Providence, RI (2009)
4. Hentenryck, P.V., Saraswat, V., Deville, Y.: Constraint processing in cc(fd). Technical

report (1992)
5. Ilog Solver 4.4. Reference Manual. Ilog SA, Gentilly, France (1998)
6. Lagerkvist, M.Z., Schulte, C.: Advisors for incremental propagation. In: Bessière, C. (ed.)

CP 2007. LNCS, vol. 4741, pp. 409–422. Springer, Heidelberg (2007)
7. Schulte, C., Tack, G.R.: Perfect derived propagators. In: Stuckey, P.J. (ed.) CP 2008.

LNCS, vol. 5202, pp. 571–575. Springer, Heidelberg (2008)
8. Schulte, C., Tack, G.: View-based propagator derivation. Constraints 18(1), 75–107 (2013)
9. Van Hentenryck, P., Deville, Y., Teng, C.: A Generic Arc Consistency Algorithm and Its

Specializations. Artificial Intelligence 57(2-3) (1992)
10. Van Hentenryck, P., Michel, L.: The Objective-CP Optimization System. In: Schulte, C.

(ed.) CP 2013. LNCS, vol. 8124, pp. 8–29. Springer, Heidelberg (2013)

Global Constraints in Distributed CSP:
Concurrent GAC and Explanations in ABT

Mohamed Wahbi and Kenneth N. Brown

Insight Centre for Data Analytics, School of Computer Science and IT,
University College Cork, Ireland

{mohamed.wahbi,ken.brown}@insight-centre.org

Abstract. The expressiveness of Distributed CSP has been recently enhanced
to include global constraints. Careful reformulation of contractible global con-
straints has been shown to improve efficiency. In this paper, we first show that
explained global constraints further improves the efficiency in distributed prob-
lems, sometimes by over two orders of magnitude. We then propose maintain-
ing GAC concurrently for any global constraint, without reformulation. We show
empirically that concurrent GAC significantly reduces both message passing and
computation time, achieving an order of magnitude improvement on some dis-
tributed meeting scheduling problems.

1 Introduction

The distributed constraint satisfaction problem models decision problems where phys-
ically distributed agents control different decision variables. To solve the problems, the
agents must perform local computation and exchange messages, to communicate value
choices, inferred no-goods, algorithm control decisions or problem descriptions. One
of the main reasons for the success of centralized constraint programming is the use of
global constraints, in which a relation between a group of variables comes equipped
with powerful filtering algorithms, which quickly infer consequences of value assign-
ments and greatly reduce search. Implementing global constraints in Distributed CSP
has been less successful, because the distributed control over the variables has led to de-
layed filtering. If Distributed CSP is to be more widely applied to real problems, more
effective filtering for global constraints in distributed problems is required.

Three ways to represent global constraints in DisCSP have been recently proposed
[3]. The nested representation of contractible global constraints offers significant im-
provements over the other approaches. In addition, propagating unconditional no-goods
(that is, values that cannot be in a solution, regardless of other choices) while enforcing
generalized arc-consistency (GAC) was also shown to offer an improvement.

Here, we propose two further improvements to the handling of global constraints
in Distributed CSP, implemented in ABT.1 First, we use explained global constraints,
which allows us to generate more efficient no-goods– that is, given an ordered partial

1 We focus on ABT, since it is the only DisCSP algorithm (apart from MACA [34]) we know
of that has been extended to maintain arc consistency. Our methods are applicable to any
algorithm, but without global constraint filtering would provide little benefit.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 721–737, 2014.
c© Springer International Publishing Switzerland 2014

722 M. Wahbi and K.N. Brown

assignment of values to variables, we identify the earliest inconsistent subset [13, 8].
Each agent evaluating a constraint maintains a copy of the domains of all other vari-
ables in the constraint, and whenever it receives either a value assignment or a no-good,
it maintains GAC on these domains. Secondly, we introduce a full representation of
each global constraint by each agent constrained by it. This allows us to maintain GAC
concurrently at each agent. Our aim is to trade off this potentially redundant filtering
for faster identification of no-goods, and reduce search and message passing.

We evaluate our algorithms empirically on a set of benchmarks from the litera-
ture, including random problems, quasi-groups with holes, and distributed meeting
scheduling problems. We demonstrate that the use of explained constraints significantly
improves performance over previous methods on the harder problems, sometimes
achieving over two orders of magnitude reduction in both non-concurrent computation
and messaging. We then show that concurrent filtering offers another significant im-
provement when added to explained constraints, achieving up to an order of magnitude
improvement on the meeting scheduling problems in both non-concurrent computa-
tion and messaging, without requiring any reformulation. Finally, we consider the total
computation load over all agents, and we show that, surprisingly, concurrent filtering
can reduce the total effort – it appears that early identification of relevant no-goods
outweighs any redundant filtering.

This paper is structured as follows. Section 2 gives the necessary background on cen-
tralized CSP, global constraints, and distributed CSP. It then discusses the use of global
constraints in distributed CSP. We present our use of explained global constraints on
DisCSP in Section 3, followed by a comparison to previous work. Section 4 introduces
concurrent filtering using the full representation of global constraints. We report exper-
imental results in Section 5. Finally, we conclude the paper in Section 6.

2 Background and Related Work

2.1 Centralised CSPs and Global Constraints

The constraint satisfaction problem is a triple (X ,D, C), where X is a set of variables
{x1, . . . , xn},D = {D1, . . . , Dn} is a set of domains, where Di is a finite set of values
from which one value must be assigned to variable xi, and C is a set of constraints.
A constraint C(X) ∈ C, on the ordered subset of variables X = (xj1 , . . . , xjk), is
C(X) ⊆ Dj1 × · · · × Djk , and specifies the tuples of values which may be assigned
simultaneously to the variables in X . |X | is the arity of C(X), and X is its scope. A
tuple τ = (vj1 , . . . , vjk) ∈ C(X) is a support for C(X), and τ [xi] is the value of xi in
τ . We denote by Ci ⊆ C all constraints that involve xi. A solution is an assignment to
each variable of a value from its domain, satisfying all the constraints.

A global constraint captures a relation over an arbitrary number of variables. For
example, the ALLDIFF constraint states that the values assigned to the variables in its
scope must all be different [22]. Filtering algorithms which exploit the specific structure
of global constraints are one of the main strengths of constraint programming [23]. A
value vi ∈ Di, xi ∈ X is generalized arc-consistent (GAC) with respect to C(X) iff
there exists a support τ for C(X) such that vi = τ [xi], and for every xj ∈ X , xi �=xj ,
τ [xj] ∈ Dj . Variable xi is GAC if all its values are GAC with respect to every constraint

Global Constraints in Distributed CSP: Concurrent GAC and Explanations in ABT 723

in Ci. A CSP is GAC if all its variables are GAC. During search, any value v ∈ Di that
is not GAC can be removed from Di.

Global constraint C(X) is binary-decomposable without extra variables [4] if it
is equivalent to a conjunction of binary constraints involving only variables in X .
ALLDIFF is binary-decomposable. For example, ALLDIFF(x1,x2,x3,x4) is equivalent
to (x1 �=x2) ∧(x1 �=x3) ∧ (x1 �=x4) ∧ (x2 �=x3) ∧ (x2 �=x4) ∧ (x3 �=x4). Global con-
straint C(X), where X = (xj1 , . . . , xjk+1

), is contractible [16] iff for any support
(vj1 , . . . , vjk , vjk+1

) for C(X), then (vj1 , . . . , vjk) is a support for C(xj1 , . . . , xjk).
ALLDIFF is a contractible constraint, since the projection of the supports for
ALLDIFF(x1, x2, x3, x4) onto (x1, x2, x3) are also supports for ALLDIFF(x1, x2, x3).
However, EXACTLY(k,X, v) that specifies that value v is assigned exactly to k vari-
ables in X is not contractible [2].

An explanation is a subset of the original constraints of the problem plus a set of
decision constraints (variable assignments) made during the search which together are
sufficient to justify domain reductions [13, 11]. Explanations were originally intro-
duced [14] to improve intelligent backtracking, allowing the search to jump back to
the cause of a failure. Computing an explanation for a reduction caused by binary con-
straints is relatively simple, but is more complex for a global constraint, where the ex-
planation will depend on the chosen filtering algorithm. For example, for the ALLDIFF

constraint [23], the filtering algorithm is based on computing a residual graph con-
structed from the maximum matching on the variable-value bipartite graph and from
the possible values of variables in the constraint. [25] shows how to generate corre-
sponding explanations: given the residual graph, the removal of an arc starting from
a vertex belonging to a strongly connected component S1 to a distinct strongly con-
nected component S2 is explained by all missing arcs from a descendant component of
S2 to an ancestor component of S1 (since any one of these arcs would merge S1 and
S2 into the same strongly connected component). Other global constraints have also
been explained [14, 24, 13, 11, 27, 8, 9, 10], with the explanations used to improve the
efficiency of backjumping.

2.2 Distributed CSPs

Distributed. CSP (DisCSP) [37] models problems where distinct agents control dif-
ferent variables. DisCSP is a 4-tuple (A,X ,D, C), where X ,D and C are as above,
and A is a set of agents {A1, . . . , Aa}, where each variable xi ∈ X is controlled by
a single agent in A. During a solution process, only the agent which controls a vari-
able can assign a value to this variable. Without loss of generality, we assume each
agent controls exactly one variable (a=n), so we use the terms agent and variable
interchangeably and no longer distinguish between Ai and xi. Each agent Ai knows
all constraints relevant to its variable (Ci) and the domains of other variables involved
in these constraints (its neighbours). A variety of problems have been tackled using
DisCSP, including tracking in sensor networks [1], distributed resource allocation [20]
and distributed meeting scheduling [18]. Many different algorithms have been pro-
posed, including asynchronous backtracking [36, 5], asynchronous forward checking
[19], asynchronous aggregation [29], dynamic programming [21], partially centralised
search [17], and dynamic ordering [28, 39, 31].

724 M. Wahbi and K.N. Brown

1 2 3 4

x1 zzZzzZ
x2 zZzzZz
x3 zzZzzZ
x4 zZzzZzq

q
q
q

A = {A1, . . . , A4}
X = {x1, . . . , x4}
D = {D1, . . . , D4},
where Di = {1, 2, 3, 4}
C = {c1, . . . , c7}

c1 :|x1 − x2 |�= 1

c2 :|x1 − x3 |�= 2

c3 :|x1 − x4 |�= 3

c4 :|x2 − x3 |�= 1

c5 :|x2 − x4 |�= 2

c6 :|x3 − x4 |�= 1

c7 : AllDiff(X)

Fig. 1. The distributed n-queens problem (where n = 4)

The original algorithm for DisCSP was Asynchronous Backtracking (ABT) [36, 5].
ABT is an asynchronous algorithm executed autonomously by each agent in the prob-
lem, and is guaranteed to converge to a global consistent solution (or detect inconsis-
tency) in finite time. Each agent proposes values for its own variable to other agents,
and reports no-goods. Agents operate asynchronously, but are subject to a known
total priority order, ≺. For simplicity, we assume ≺ is the lexicographic ordering
(A1, A2, . . . , An), with A1 having highest priority.≺ induces a directed acyclic graph,
and constraints are directed according to ≺.

ABT uses the priority ordering to control the asynchronous search. Each agent se-
lects an assignment for its variable that is consistent with known choices of higher pri-
ority neighbours, and then sends its selected value across the directed arcs to its lower
priority neighbours. When no value is possible for a variable, the inconsistency is re-
ported to a higher priority agent closest in the ordering, in the form of a no-good. The
higher agent then adds the no-good to its constraint store. For a non-binary constraint
C(X) (arity > 2), only the lowest agent in the ordering in the scope of the constraint
will evaluate C(X), and only when it is totally instantiated [7, 3].

Fig. 1 shows a model of a distributed n-queens problem using an ALLDIFF con-
straint. The goal is to put 4 queens on the board such that no queen attacks another
queen. There is an integer variable xi for every row i. There are four agents, each of
which controls one queen in one row. The domain of each xi is Di = {1, 2, 3, 4}.
There exists a global ALLDIFF constraint (i.e., ALLDIFF(x1, x2, x3, x4)) that forbids
the queens being placed in the same column. There is a binary constraint (e.g., c1) be-
tween each pair of queens that forbids those queens being placed on the same diagonal
(i.e., |xi − xj | �= | i− j | ∀i, j�=i ∈ {1..4}).

2.3 Global Constraints in Distributed CSPs

[3] formulated three different ways to model a global constraint in a DisCSP.

Direct Representation: Applicable to all global constraints. The direct representa-
tion of the constraint C(X) is a single copy of C(X) to be evaluated by the lowest
agent in its scope, Ai. Directed links from other agents in C(X) to Ai are established.

Global Constraints in Distributed CSP: Concurrent GAC and Explanations in ABT 725

In the example of Fig. 1, A1 starts with no constraints. A2 evaluates constraint c1, A3

evaluates c2 and c4, while A4 evaluates all other constraints (i.e., c3, c5, c6 and c7).

Nested Representation: Restricted to contractible global constraints. The nested repre-
sentation of the constraint {C(xj1 , . . . , xjk)} is the set of constraintsC(xj1 , . . . , xjm) |
m ∈ 2..k. In the example of Fig. 1, constraint c7 will be represented by 3 differ-
ent constraints: (c7) ALLDIFF(x1, x2, x3, x4), (cn8) ALLDIFF(x1, x2, x3), and (cn9)
ALLDIFF(x1, x2). Constraints c1 to c7 will be evaluated by the same agents as in the
direct representation. cn8 is evaluated by agent A3 and cn9 by agent A2.

Binary Representation: Restricted to binary-decomposable global constraints. The bi-
nary representation of a constraint C(X) is the set of constraints in its binary decom-
position. In the example of Fig. 1, constraint c7 will be represented by 6 constraints:
(cb8) (x1 �=x2), (cb9) (x1 �=x3), (cb10) (x1 �=x4), (cb11) (x2 �=x3), (cb12) (x2 �=x4) and (cb13)
(x3 �=x4). c1 to c6 will be evaluated by the same agents as in the direct representation.
Agent A2 will evaluate cb8, agent A3 will evaluate cb9 and cb11 and A3 will evaluate cb10,
cb12 and cb13.

In addition, in order to take advantage of the standard filtering algorithms for global
constraint in DisCSPs, [3] proposed ABT-UGAC (ABT with unconditional GAC).
ABT-UGAC maintains a limited form of GAC restricted to unconditional deletions
(values removed by a no-good with an empty precondition). In a preprocessing step,
the DisCSP is made GAC. Unconditional GAC is then enforced in ABT as follows.
When receiving a no-good with an empty precondition justifying the removal of its
value, an agentAi can unconditionally delete its value fromDi. This deletion may then
propagate, and cause further deletions (see [3] for details).

[3] showed that the direct representation is the least efficient, while the nested one
performs best. ABT-UGAC always improves the performance.

3 Maintaining GAC in ABT

In ABT, the lowest priority agent in the scope X is in charge of evaluating a global
constraint C(X) when it is fully instantiated [7, 3]. This method of evaluating global
constraints is a major weakness of representing global constraints in ABT. First, it does
not take advantage of the global constraints’ filtering power. Both nested and direct
representations only use global constraints as checkers instead of using their filtering
algorithm to prune inconsistent values. Second, it produces chronological backtracks
because the deduced no-good will contain all assignments of the agents on the global
constraints. Thus, it creates unnecessary work for the agents because it does not address
the real reason for the failure.

For example, in the direct representation of the problem of Fig. 1, agent A4 will not
evaluate constraint c7 until all assignments of variables x1, x2 and x3 are received.
Thus, agentA4 may receive the assignments x1 =1∧x2 =1∧x3 =1. In this situation,
A4 will send a no-good x1 =1∧x2 =1→ x3 �=1 to A3. Then, A3 will change its value
to 4 because 2 is removed by c4 and 3 by c2. The new assignment (x3 =4) will lead to
another deadend in A4 with the following no-good (x1 =1∧ x2 =1→ x3 �=4). Once it
receives this no-good,A3 discovers the real reason for the failure (i.e., x1 =1→ x2 �=1).
Thus, unnecessary work is performed when using this evaluation mechanism.

726 M. Wahbi and K.N. Brown

Instead of evaluating a constraint only when it is fully instantiated, we propose main-
taining GAC each time an event occurs on a variable involved in a constraint in the
agent’s constraint store. In order to get more precise no-goods we use explained global
constraints, so that all domain reductions are justified [13, 8], and when a dead-end
occurs, we will get more informative no-goods. For ALLDIFF, we implement the ex-
plained filtering algorithm described previously [23, 25]. For ATMOST(k,X, v) and
ATLEAST(k,X, v), we modify the implementations of [14] as below, and then use
both methods together for the EXACTLY(k,X, v) constraint.

ATMOST(k,X, v): whenever a constrained variable xi ∈ X is assigned the oc-
currence value (v) or its domain is reduced to the occurrence value (Di = {v}),
we label it as ’sure’ (sure(i) = true). A ‘sure’ variable can be either assigned (i.e,
xi = v | xi ∈ X ∧ sure(i)) or unassigned (i.e, Dj = {v} | xj ∈ X ∧ sure(j)).
If the number of ‘sure’ variables equals the number of occurrences (k), the value v
will be removed from the domain of all other variables in X . These removals are ex-
plained by the union of the set of decision constraints of ‘sure’ assigned variables xi
(i.e., xi = v | xi ∈ X ∧ sure(i)) with the union of the explanations that reduces the
other sure variable domains to v (i.e., Dj = {v} | xj ∈ X ∧ sure(j)).

ATLEAST(k,X, v): all constrained variables xi ∈ X that can be assigned v are
labelled as ’possible’ (possible(i) = true). If a variable xj ∈ X can not be assigned
v its ’possible’ flag is false (possible(j) = false). Whenever the number of ‘possible’
variables equals the number of occurrences (k), the domains of all these ‘possible’
variables are reduced to v (i.e., Di = {v} | xi ∈ X ∧ possible(i)). These reductions
are explained by the union of explanations that justify the removal of v from the domain
of other variables (i.e., v /∈ Dj | xj ∈ X ∧ ¬possible(j)).

To maintain GAC, some minor changes to ABT are required. First, when an agent
Ai receives a message containing an assignment or a no-good, it updates its AgentView
with the given assignment. The AgentView of an agent stores the most up-to-date as-
signments of its higher neighbours [5]. Then, Ai adds the received constraint (assign-
ment or no-good) to its constraint store (no-goods inconsistent with the AgentView
are removed to keep the space complexity polynomial [5]). Next, Ai maintains GAC.
Second, whenever an agent Ai assigns a value to its variable (xi = vi) it adds its as-
signment to its constraint store (Ci). Next, it maintains GAC. When agentAi maintains
GAC using explained constraints each domain reduction is justified by a precise ex-
planation. Thus, whenever a dead-end occurs, the no-good that will be generated will
be more precise (a subset of the AgentView). However, if non-explained constraints
are used, whenever a dead-end occurs, the generated no-good contains all assignments
in the AgentView.2 If the domain of a variable is emptied while maintaining GAC,
agent Ai generates a new no-good from the explanations stored for value removals of
that variable. If the generated no-good contains the assignment of agent Ai (i.e., vi
is not consistent after maintaining GAC), Ai tries to assign another value to xi. If no
value is possible for xi or if the generated no-good doesn’t contain its assignment, Ai

backtracks by sending the no-good justifying the failure to the closest agent in

2 Note that replacing the global constraint checker with the global constraint filter does not
change the operation of ABT, apart from detecting earlier no-goods and generating more in-
formed messages.

Global Constraints in Distributed CSP: Concurrent GAC and Explanations in ABT 727

the no-good. If Ci is GAC, Ai sends its new assignment (xi = vi) to all its lower
priority neighbours.

Now, in the direct representation example, when agent A4 maintains GAC on its
constraints (i.e., c3, c5, c6 and c7) it can directly discover the no-good (i.e., x1 =1 →
x2 �=1) without the assignment of x3.

3.1 Evaluation of Explained Global Constraints in ABT

We experimentally compare ABT(direct), ABT(nested), ABT-UGAC(direct) and ABT-
UGAC(nested) as presented in [3] (evaluating constraints when they are totally in-
stantiated) to ABT-GAC(direct) and ABT-GAC(nested) that maintain GAC thanks to
explained constraints as presented above. Algorithms are tested using the static max-
degree agent ordering. For all ABT versions we implemented an improved version of
Silaghi’s solution detection [30] and counters for tagging assignments. All experiments
were performed on the DisChoco 2.0 platform [33],3 in which agents are simulated by
Java threads that communicate only through message passing.

We reproduce the benchmark problems of [3]. Algorithms are evaluated on uniform
random binary DisCSP where some global constraints are injected. We evaluate the per-
formance of the algorithms by the total number of exchanged messages among agents
during algorithm execution (#msg) [15] and non-concurrent computation. The non-
concurrent computation is measured by the number of non-concurrent constraint checks
(#ncccs) [38], as a proxy for elapsed time. All GAC effort is counted in #ncccs, as
in [3], where for each call of the ALLDIFF propagator, which computes a maximum
matching in a graph, we increase #ncccs by the degree of that graph. For other con-
straints we increase #ncccs by the size of the data structure used in that constraint.

Uniform binary random DisCSPs are characterized by 〈n, d, p1, p2〉, where n is the
number of agents/variables, d is the number of values in each domain, p1 is the network
connectivity defined as the ratio of existing binary constraints to possible binary con-
straints, and p2 is the constraint tightness defined as the ratio of forbidden value pairs
to all possible pairs. We solved instances of two classes of constraint graphs: sparse
graphs 〈20, 5, 0.2, p2〉 and dense graphs 〈20, 5, 0.7, p2〉. We varied the tightness from
0.1 to 0.9 by steps of 0.1. For each pair of fixed density and tightness (p1, p2) we report
the average over 100 instances.

We generate two types of benchmarks: the ALLDIFF benchmark and the ATMOST

benchmark. An ATMOST(k,X, v) constraint specifies that at most k variables inX are
assigned value v. In the ALLDIFF benchmark, each binary instance includes 2 ALLDIFF

constraints, each involving 5 randomly chosen variables. In the ATMOST benchmark,
each binary instance includes 10 ATMOST(k,X, v) constraints, each involving from 3
to 10 randomly chosen variables (i.e., 3 ≤ |X | ≤ 10). The value v is randomly chosen
in the set of values in domains and its number of occurrences k = 2.4

3 http://dischoco.sourceforge.net/
4 ATMOST is not a contractible constraint [2]. To use nested representation, we changed the

number of occurrences on nested constraints.

http://dischoco.sourceforge.net/

728 M. Wahbi and K.N. Brown

1⋅10
3

2⋅10
3

3⋅10
3

4⋅10
3

5⋅10
3

2
 A

ll
D

if
f

#msg 〈n=20, d=5, p1=0.2, p2〉

ABT-GAC(direct)

ABT-GAC(nested)

ABT-UGAC(direct)

ABT-UGAC(nested)

ABT(direct)

ABT(nested)

2⋅10
3

4⋅10
3

6⋅10
3

8⋅10
3

1⋅10
4

#ncccs 〈n=20, d=5, p1=0.2, p2〉

ABT-GAC(direct)

ABT-GAC(nested)

ABT-UGAC(direct)

ABT-UGAC(nested)

ABT(direct)

ABT(nested)

10
3

10
4

10
5

10
6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1
0
 A

tM
o
st

 (
lo

g
 s

ca
le

)

p2

ABT-GAC(direct)

ABT-GAC(nested)

ABT-UGAC(direct)

ABT-UGAC(nested)

ABT(direct)

ABT(nested)

10
3

10
4

10
5

10
6

10
7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p2

ABT-GAC(direct)

ABT-GAC(nested)

ABT-UGAC(direct)

ABT-UGAC(nested)

ABT(direct)

ABT(nested)

(a) sparse instances

1.0⋅10
4

2.0⋅10
4

3.0⋅10
4

4.0⋅10
4

5.0⋅10
4

2
 A

ll
D

if
f

#msg 〈n=20, d=5, p1=0.7〉

ABT-GAC(direct)

ABT-GAC(nested)

ABT-UGAC(direct)

ABT-UGAC(nested)

ABT(direct)

ABT(nested)
2.0⋅10

4

4.0⋅10
4

6.0⋅10
4

8.0⋅10
4

#ncccs 〈n=20, d=5, p1=0.7〉

ABT-GAC(direct)

ABT-GAC(nested)

ABT-UGAC(direct)

ABT-UGAC(nested)

ABT(direct)

ABT(nested)

10
3

10
4

10
5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1
0
 A

tM
o
st

 (
lo

g
 s

ca
le

)

p2

ABT-GAC(direct)

ABT-GAC(nested)

ABT-UGAC(direct)

ABT-UGAC(nested)

ABT(direct)

ABT(nested)

10
3

10
4

10
5

10
6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p2

ABT-GAC(direct)

ABT-GAC(nested)

ABT-UGAC(direct)

ABT-UGAC(nested)

ABT(direct)

ABT(nested)

(b) dense instances

Fig. 2. Performance on the ALLDIFF benchmark and ATMOST benchmark (in logarithmic scale)

Results are shown in Fig. 2. ABT-GAC(direct) and ABT-GAC(nested) always re-
quire fewer messages than other algorithms, achieving up to two orders of magnitude
improvement in the harder region for the non-contractible ATMOST constraint. For
#ncccs, the results are similar, except for the sparse instances of ALLDIFF, where

Global Constraints in Distributed CSP: Concurrent GAC and Explanations in ABT 729

Constraints Explanations Chessboard
di

re
ct

c1 :| x1 − x2 |�= 1

cx1 : x1 = 1

cx1 → D1 = {1}
cx1 ∧ c1 → x2 �= 2

1 2 3 4

x1 5XqzZzzZ
x2 zZzzZzq

ne
st

ed

c1 :| x1 − x2 |�= 1

cn9 :AllDiff(x1, x2)

cx1 : x1 = 1

cx1 → D1 = {1}
cx1 ∧ cn9 → x2 �= 1

cx1 ∧ c1 → x2 �= 2

1 2 3 4

x1 5XqzZzzZ
x2 zZzzZzq

bi
na

ry

c1 :| x1 − x2 |�= 1

cb8 : x1 �= x2

cx1 : x1 = 1

cx1 → D1 = {1}
cx1 ∧ cb8 → x2 �= 1

cx1 ∧ c1 → x2 �= 2

1 2 3 4

x1 5XqzZzzZ
x2 zZzzZzq

fu
ll

c1 :| x1 − x2 |�= 1

c4 :| x2 − x3 |�= 1

c5 :| x2 − x4 |�= 2

cx1 : x1 = 1
c7 : AllDiff(x1, x2, x3, x4)

cx1 → D1 = {1}
cx1 ∧ c7 → x2 �= 1

cx1 ∧ c7 → x3 �= 1

cx1 ∧ c7 → x4 �= 1

cx1 ∧ c1 → x2 �= 2

1 2 3 4

x1 5XqzZzzZ
x2 zZzzZz
x3 zzZzzZ
x4 zZzzZz

qq

Fig. 3. Agent A2 running ABT with different representation after receiving the assignment of
x1 = 1 when solving the distributed 4-queen (Fig. 1)

ABT-GAC(direct) and ABT-GAC(nested) are improved by ABT(nested) and ABT-
UGAC(nested), and for dense instances of ALLDIFF, where ABT(nested) and ABT-
UGAC(nested) improve ABT-GAC(direct).

4 Maintaining GAC Concurrently Using a Full Representation of
Global Constraints

In the direct representation each global constraint will be represented by a single con-
straint. In the nested representation a contractible global constraint will be represented
by a set of constraints, which allows concurrent processing and earlier identification
of some inconsistencies. However, the filtering in these new constraints is weaker than
that of the original constraint (ALLDIFF for example). More importantly, not all global
constraints are contractible.

We now present a new way to represent a global constraint in DisCSPs, which we
call the full representation. In the full representation, the original constraint is evalu-
ated in the DisCSP by all agents that are involved in it, using their own copies of other
agents’ domains. As with direct, the full representation is applicable to all global con-
straints. The motivation is to benefit from the strength of filtering algorithms for global

730 M. Wahbi and K.N. Brown

constraints and to do more concurrent computation, to detect unfruitful decisions ear-
lier, and thus decrease the number of messages and #ncccs. Much of this concurrent
pruning may be redundant, though, and so we may increase the total amount of work av-
eraged over all agents. We note that the full representation weakens the domain privacy
of lower priority agents, but is fair for all agents involved in the constraint.

In the example of Fig. 1, A1 evaluates the constraints c1, c2, c3 and c7. A2 evaluates
the constraints c1, c4, c5 and c7. A3 evaluates the constraints c2, c4, c6 and c7. A4

evaluates the constraints c3, c5, c6 and c7. Fig. 3 shows the reasoning by agent A2 after
receiving the assignment of A1 (i.e., x1 =1) when running ABT with direct, nested,
binary and full representation. Once it receives this assignment, A2 adds the constraint
cx1 : (x1 =1) to its constraint store then maintains GAC. In direct representation only
value 2 is removed from D2. Thus, A2 assigns 1 to its variable. In nested and binary
representation, two values (1 and 2) are removed from D2. Thus, A2 assigns 3 to its
variable. In full representation, two values (1 and 2) are removed from D2, and value
1 from D3 and D4. Thus, A2 tries to assign value 3 to its variable. A2 again maintains
GAC and removes value 3 from D2 because it has no support in D3 (Fig. 3 (full),
circles). It then assigns 4 to its variable, i.e., x2 = 4.

We also extend ABT-GAC with the propagation of unconditional value deletions
from [3], to get ABT-GAC+U. ABT-GAC(full) and ABT-GAC+U(full) inherit the cor-
rectness, completeness and termination of ABT(direct) and ABT-UGAC(direct) [3].
The only changes we make are adding redundant copies of constraints and allowing
agents to do more powerful correct filtering.

4.1 Theoretical Analysis

We demonstrate that ABT-GAC(full) is sound, complete and terminates.

Theorem 1. ABT-GAC(full) is sound.

Proof. (Sketch) When the state of quiescence is reached, all agents know the assign-
ments of all their higher priority neighbours. Thus, any constraint has been successfully
checked by the lowest priority agent in its scope when it is fully instantiated. Otherwise,
that agent would have tried to change its value and would have either sent an message
containing its new value or a no-good, breaking the quiescence.

Theorem 2. ABT-GAC(full) is complete.

Proof. All explanation and no-goods are generated by logical inferences from existing
constraints. Therefore, an empty no-good cannot be inferred if a solution exists.

Theorem 3. ABT-GAC(full) terminates.

Proof. ABT-GAC(full) inherits the termination of ABT [37]. We can prove by induc-
tion on the agent ordering that agents can never fall into an infinite loop . First, we
can show that agent A1, never falls into an infinite loop. Then, assuming that all agents
higher that an agent Ai (i > 2) are in a stable state, we can show that agent Ai never
falls into an infinite loop.

Global Constraints in Distributed CSP: Concurrent GAC and Explanations in ABT 731

Table 1. Performance on hard region of sparse 2 ALLDIFF benchmark (p1=0.2, p2=0.7)

p2 = 0.7
#msg #ncccs #ccs

ABT-GAC ABT-UGAC ABT-GAC ABT-UGAC ABT-GAC ABT-UGAC

full 6 984 7 086 30 439 28 012 203 934 193 403

nested 8 173 8 605 26 099 26 859 170 798 179 706

direct 7 774 8 253 25 875 26 560 164 106 173 683
binary 7 857 8 358 28 491 29 499 188 500 198 213

Table 2. Performance on hard regions of instances with 5 ATMOST benchmark

(p1 = 0.2, p2 = 0.7) (p1 = 0.7, p2 = 0.3)

#msg #ncccs #msg #ncccs

GAC GAC +U GAC GAC +U GAC GAC +U GAC GAC +U

full 7 352 7 755 24 847 23 927 737 854 737 590 2 534 734 2 530 072

nested 8 509 9 153 21 756 22 709 747 080 745 303 1 745 611 1 739 681

direct 7 288 7 897 21 157 22 061 752 748 752 669 1 737 450 1 733 302

5 Experimental Results

We empirically compare the full representation to direct, nested and binary representa-
tions, all implemented within ABT-GAC and ABT-GAC+U. In our experiments, we im-
posed a cut-off on #ncccs of 109 and a cut-off on #msg of 109. In almost all instances,
ABT without explanations (ABT(direct), ABT(nested) and ABT(binary)) exceeds this
limit. Moreover, it runs out of memory in many instances. Thus, here we only present
results on explained versions (ABT-GAC). For the same reason, we only show results
for ABT-GAC+U.

5.1 Uniform Binary Random DisCSPs with Global Constraints

We solved instances of two classes of constraint graphs: sparse graphs 〈20, 10, 0.2, p2〉
and dense graphs 〈20, 10, 0.7, p2〉. We varied the tightness from 0.1 to 0.9 by steps of
0.1. For each pair of fixed density and tightness (p1, p2) we report averages over 100 in-
stances. From a binary instance, we generate 4 types of benchmarks: the ALLDIFF, AT-
MOST, ATLEAST and EXACTLY benchmarks. In the ALLDIFF benchmark, each binary
instance includes 2 ALLDIFF constraints, each involving 5 randomly chosen variables.
In the ATMOST benchmark, each binary instance includes 5 ATMOST(3, X, v) con-
straints, each involving from 5 to 7 randomly chosen variables. The value v is randomly
chosen from the set of values in domains. In the ATLEAST benchmark, each binary in-
stance includes 10 ATLEAST(3, X, v) constraints, each involving from 5 to 7 randomly
chosen variables. The value v is randomly chosen from the set of values in domains.
In the EXACTLY benchmark, each binary instance includes 5 EXACTLY(3, X, v) con-
straints, each involving from 5 to 7 randomly chosen variables. The value v is randomly
chosen from the set of values in domains.

732 M. Wahbi and K.N. Brown

10
2

10
3

10
4

10
5

10
6

10
7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p2

#msg (log scale) 〈n=20, d=10, p1=0.7, p2〉

ABT-GAC(nested)

ABT-GAC(direct)

ABT-GAC(full)

10
3

10
4

10
5

10
6

10
7

10
8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p2

#ncccs (log scale) 〈n=20, d=10, p1=0.7, p2〉

ABT-GAC+U(nested)

ABT-GAC+U(direct)

ABT-GAC+U(full)

Fig. 4. Performance on dense instances with 10 ATLEAST benchmark

4.0⋅10
5

8.0⋅10
5

1.2⋅10
6

1.6⋅10
6

0.2 0.3 0.4 0.5 0.6

p
2

#msg 〈n=20, d=10, p1=0.2〉

ABT-GAC+U(direct)

ABT-GAC+U(full)

ABT-GAC(direct)

ABT-GAC(full)

1.0⋅10
6

2.0⋅10
6

3.0⋅10
6

4.0⋅10
6

5.0⋅10
6

6.0⋅10
6

7.0⋅10
6

0.1 0.2 0.3 0.4 0.5 0.6

p
2

#ncccs 〈n=20, d=10, p1=0.2〉

ABT-GAC+U(direct)

ABT-GAC+U(full)

ABT-GAC(direct)

ABT-GAC(full)

Fig. 5. Performance on sparse instances with 5 EXACTLY benchmark

For space reasons, we only show a selection of results. In Table 1, for sparse
ALLDIFF problems, in the harder region (p2 = 0.7), we see a small improvement
in #msg and a small deterioration in #ncccs compared to direct, for the full repre-
sentation over the explained versions of the other representations. In Table 1, we also
show the total computational effort (total number of constraint checks by all agents
#ccs), and as expected, we show a small increase. For ATMOST problems (Table 2),
the three representations are similar in #msg, but full is almost 50% poorer on #ncccs
for dense problems. On dense ATLEAST problems (Fig. 4), we see at least an order of
magnitude improvement for the full representation over the nested for both #msg and
#ncccs, while direct is consistently worst. On sparse EXACTLY problems Fig. 5, we
gain a two-fold improvement compared to direct representation. ABT-GAC+U deteri-
orates compared to ABT-GAC. It seems that extra messages needed to propagate the
unconditional removals slows the search for both representations.

Global Constraints in Distributed CSP: Concurrent GAC and Explanations in ABT 733

Table 3. Performance on Quasi-Groups With Holes problems

#instances solved #msg #ncccs

ABT-GAC ABT-GAC+U ABT-GAC ABT-GAC+U ABT-GAC ABT-GAC+U

full 98 99 5 882 353 5 190 937 737 296 782 601

nested 95 99 10 495 843 6 852 796 1 413 990 1 087 459

direct 96 99 10 044 646 7 060 771 1 971 401 1 380 700

binary 87† 84‡ 11 765 454 11 910 842 3 930 123 3 884 403
† ABT-GAC(binary) runs out of memory for 8 instances
‡ ABT-GAC+U(binary) runs out of memory for 11 instances

5.2 Quasi-Groups with Holes

We also evaluate ABT-GAC and ABT-GAC+U on a set of satisfiable balanced quasi-
groups with holes (QGWH) instances [26, 6].5 The set contains 100 different instances.
Each instance contains 106 variables and 30 ALLDIFF constraints, and as before, each
variable is controlled by a different agent. Only 71 instances were solved by all algo-
rithms, and the average performance over these instances is presented in Table 3. We
see that the binary representation in QGWH performs relatively poorly. The concurrent
filtering (i.e., full) outperforms all other strategies.

5.3 Distributed Meeting Scheduling Problem

The distributed meeting scheduling problem (DMSP) [18, 35] consists of a set of n
agents having a personal private calendar and a set of m meetings each taking place in
a specified location. Each agent knows the set of the k among m meetings she must
attend, and knows the traveling time between the locations where her meetings will be
held. The traveling time between two meetings mi and mj is denoted by TT (mi,mj).
The following constraints apply: (i) all agents attending a meeting must agree on when
it will occur, (ii) an agent cannot attend two meetings at the same time, (iii) an agent
must have enough time to travel from one meeting to the next.

We encode the DMSP in DisCSP as follows. Each DisCSP agent represents a
real agent and contains k variables representing the k meetings in which the agent
participates. These k meetings are selected randomly among the m meetings. The
domain of each variable contains the d × h slots when a meeting can be scheduled. A
slot is one hour long, and there are h slots per day and d days. There is an ALLEQUAL

constraint for all variables corresponding to the same meeting in different agents
(constraint (i)). There is an arrival-time constraint between all variables/meetings
belonging to the same agent. The arrival-time constraint between two variables mi and
mj is | mi − mj | −duration > TT (mi,mj), where duration is the duration of

5 http://www.cril.univ-artois.fr/∼lecoutre/benchmarks.html

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

734 M. Wahbi and K.N. Brown

〈n=16, m=9, k=5, d=2, h=10〉

10
2

10
3

10
4

#
m

s
g

 (
lo

g
 s

c
a

le
)

ABT-GAC+U(binary)

ABT-GAC+U(nested)

ABT-GAC+U(direct)

ABT-GAC+U(full)

ABT-GAC(binary)

ABT-GAC(nested)

ABT-GAC(direct)

ABT-GAC(full)

10
3

10
4

1 2 3 4 5 6 7 8 9 10

#
n

c
c
c
s
 (

lo
g

 s
c
a

le
)

g

Fig. 6. Performance (log scale) on 16-agent DMSP

every meeting. This arrival-time constraint allows us to express both constraints (ii) and
(iii). We place meetings randomly on the nodes of a uniform grid of size g × g and the
traveling time between two adjacent nodes is 1 hour. The traveling time between two
meetings equals the Euclidean distance between their locations. To vary the tightness
of the arrival-time constraint we vary the size of the spatial grid.

Problems are characterized by 〈n, m, k, d, h, g〉, where n is the number of agents,
m is the number meetings, k is the number of meetings/variables per agent, d is the
number of days and h is the number of hours per day, and g is the grid size. The du-
ration of each meeting is one hour. In our implementation this encoding is translated
into an equivalent formulation where we have k (number of meetings per agent) vir-
tual agents for each real agent. Each virtual agent handles a single variable but #msg
does not take into account messages exchanged between virtual agents belonging to
the same real agent [35]. We solved instances for two classes 〈20, 11, 3, 2, 10, g〉 and
〈16, 9, 5, 2, 10, g〉where we vary g from 1 to 10 by steps of 1. For each g we generated
100 instances.

In Fig. 6, for the 16-agent problems, we see a consistent order of magnitude im-
provement for the full representation over the other approaches for both #msg and
#ncccs across all grid sizes. In Fig. 7, for the larger 20 agent problems, but with fewer
meetings, we see an improvement in both measures between a factor of 5 and a factor
of 10. We also plot in the same figure the total number of constraint checks over all
agents. Surprisingly, we see a reduction in total computational effort up to a factor of 5.
It appears that the gains from more powerful filtering, more efficient no-goods and the
reduced number of messages outweighs the extra effort of the redundant filtering.

Global Constraints in Distributed CSP: Concurrent GAC and Explanations in ABT 735

〈n=20, m=11, k=3, d=2, h=10〉

10
3

10
4

10
5

#
m

s
g

 (
lo

g
 s

c
a

le
)

10
3

10
4

10
5

#
n

c
c
c
s
 (

lo
g

 s
c
a

le
)

10
4

10
5

10
6

1 2 3 4 5 6 7 8 9 10

T
o
ta

l
#
cc

s
(l

o
g
 s

ca
le

)

g

ABT-GAC+U(binary)
ABT-GAC+U(nested)
ABT-GAC+U(direct)
ABT-GAC+U(full)

ABT-GAC(binary)
ABT-GAC(nested)
ABT-GAC(direct)
ABT-GAC(full)

Fig. 7. Performance (log scale) on 20-agent DMSP

6 Conclusion

The power of filtering algorithms for global constraints is one of the main features of
the success of constraint programming. In Distributed CSPs, however, global constraints
have received little attention, because of the distributed control of the variables and their
domains. Recently, a nested representation of contractible global constraints was shown
to reduce computational effort and communication. In this paper, we make two contribu-
tions to the handling of global constraints in Distributed CSP. First, we show that main-
taining GAC using explained constraints significantly improves the performance over
the previous approaches. Secondly, we introduce a full representation for any global
constraint, allowing every agent to evaluate any constraint it is involved in, and we
use this to implement concurrent maintenance of GAC. We demonstrate empirically
that concurrent GAC on the full representation offers a further significant improvement
in both non-concurrent computation and messaging. This appears to contradict recent
results that suggest reducing redundancy in Distributed CSP always improves perfor-
mance [12, 32]. We also show that for some problems, despite the redundant filtering,
we reduce the total computation cost over all the agents.

736 M. Wahbi and K.N. Brown

Future work will focus on extending other DisCSP algorithms to include MAC and
then exploiting full concurrent GAC, and on implementing global constraints and full
concurrent GAC with distributed dynamic ordering algorithms.

Acknowledgements. This work is funded by Science Foundation Ireland (SFI) under
Grant Number SFI/12/RC/2289.

References

[1] Béjar, R., Domshlak, C., Fernández, C., Gomes, C., Krishnamachari, B., Selman, B., Valls,
M.: Sensor networks and distributed csp: communication, computation and complexity. Ar-
tif. Intel. 161, 117–147 (2005)

[2] Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global constraint catalog. SICS Research Re-
port (2005)

[3] Bessiere, C., Brito, I., Gutierrez, P., Meseguer, P.: Global constraints in distributed constraint
satisfaction and optimization. The Computer Journal (2013)

[4] Bessière, C., Van Hentenryck, P.: To be or not to be... a global constraint. In: Rossi, F. (ed.)
CP 2003. LNCS, vol. 2833, pp. 789–794. Springer, Heidelberg (2003)

[5] Bessiere, C., Maestre, A., Brito, I., Meseguer, P.: Asynchronous backtracking without
adding links: a new member in the ABT family. Artif. Intel. 161, 7–24 (2005)

[6] Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting Systematic Search by Weight-
ing Constraints. In: Proceedings of ECAI 2004, pp. 146–150 (2004)

[7] Brito, I., Meseguer, P.: Asynchronous backtracking for non-binary discsp. In: DCR Work-
shop at ECAI-2006, DCR 2006, Riva di Garda, Italia (2006)

[8] Downing, N., Feydy, T., Stuckey, P.J.: Explaining alldifferent. In: Proceedings of ACSC
2012, Darlinghurst, Australia, Australia, pp. 115–124 (2012)

[9] Downing, N., Feydy, T., Stuckey, P.J.: Explaining flow-based propagation. In: Beldiceanu,
N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 146–162. Springer,
Heidelberg (2012)

[10] Francis, K., Stuckey, P.: Explaining circuit propagation. Constraints 19(1), 1–29 (2014)
[11] Gaudin, E., Jussien, N., Rochart, G.: Implementing explained global constraints. In: Pro-

ceedings of the CP 2004 Workshop on Constraint Propagation and Implementation (CPAI
2004), Toronto, Canada, Canada, pp. 61–76 (2004)

[12] Gutierrez, P., Meseguer, P.: Saving redundant messages in bnb-adopt. In: AAAI 2010 (2010)
[13] Jussien, N.: The versatility of using explanations within constraint programming. HDR,

Université de Nantes (September 2003)
[14] Jussien, N., Barichard, V.: The palm system: explanation-based constraint programming.

In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 118–133. Springer, Heidelberg (2000)
[15] Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Series (1997)
[16] Maher, M.J.: Open contractible global constraints. In: Proceedings of IJCAI 2009,

pp. 578–583. Morgan Kaufmann Publishers Inc., San Francisco (2009)
[17] Mailler, R., Lesser, V.R.: Asynchronous partial overlay: A new algorithm for solving dis-

tributed constraint satisfaction problems. JAIR 25(1), 529–576 (2006)
[18] Meisels, A., Lavee, O.: Using additional information in DisCSP search. In: Proceedings of

DCR 2004 (2004)
[19] Meisels, A., Zivan, R.: Asynchronous Forward-checking for DisCSPs. Constraints 12(1),

131–150 (2007)

Global Constraints in Distributed CSP: Concurrent GAC and Explanations in ABT 737

[20] Petcu, A., Faltings, B.V.: A Value Ordering Heuristic for Distributed Resource Alloca-
tion. In: Faltings, B.V., Petcu, A., Fages, F., Rossi, F. (eds.) CSCLP 2004. LNCS (LNAI),
vol. 3419, pp. 86–97. Springer, Heidelberg (2005)

[21] Petcu, A., Faltings, B.: DPOP: A Scalable Method for Multiagent Constraint Optimization.
In: Proceedings of IJCAI 2005, pp. 266–271 (2005)

[22] Régin, J.C.: A filtering algorithm for constraints of difference in csps. In: Proceedings of
AAAI 1994, pp. 362–367 (1994)

[23] Régin, J.C.: Global constraints: A survey. In: van Hentenryck, P., Milano, M. (eds.) Hybrid
Optimization, pp. 63–134. Springer, New York (2011)

[24] Rochart, G.: Explanations for global constraints. In: Rossi, F. (ed.) CP 2003. LNCS,
vol. 2833, pp. 993–993. Springer, Heidelberg (2003)

[25] Rochart, G.: Explications et programmation par contraintes avancée. Ph.D. thesis, Nantes
University, France (2005)

[26] Roussel, O., Lecoutre, C.: Xml representation of constraint networks: Format xcsp 2.1.
CoRR (2009)

[27] Schutt, A., Feydy, T., Stuckey, P.J., Wallace, M.G.: Explaining the cumulative propagator.
Constraints 16(3), 250–282 (2011)

[28] Silaghi, M.C.: Generalized Dynamic Ordering for Asynchronous Backtracking on DisCSPs.
In: Proceedings of DCR 2006 (2006)

[29] Silaghi, M.C., Faltings, B.: Asynchronous aggregation and consistency in distributed con-
straint satisfaction. Artif. Intel. 161, 25–53 (2005)

[30] Silaghi, M.C., Sam-Haroud, D., Faltings, B.: Asynchronous Search With Aggregations. In:
Proceedings of AAAI 2000/IAAI 2000, pp. 917–922 (2000)

[31] Wahbi, M.: Algorithms and Ordering Heuristics for Distributed Constraint Satisfaction
Problems. John Wiley & Sons, Inc. (2013)

[32] Wahbi, M., Ezzahir, R., Bessiere, C.: Asynchronous Forward Bounding Revisited. In:
Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 708–723. Springer, Heidelberg (2013)

[33] Wahbi, M., Ezzahir, R., Bessiere, C., Bouyakhf, E.H.: DisChoco 2: A Platform for Dis-
tributed Constraint Reasoning. In: Proceedings of workshop on DCR 2011, pp. 112–121
(2011), http://dischoco.sourceforge.net/

[34] Wahbi, M., Ezzahir, R., Bessiere, C., Bouyakhf, E.H.: Maintaining Arc Consistency Asyn-
chronously in Synchronous Distributed Search. In: Proceedings of ICTAI 2012, Athens,
Greece, pp. 33–40 (November 2012)

[35] Wahbi, M., Ezzahir, R., Bessiere, C., Bouyakhf, E.H.: Nogood-Based Asynchronous
Forward-Checking Algorithms. Constraints 18(3), 404–433 (2013)

[36] Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: Distributed constraint satisfaction for
formalizing distributed problem solving. In: Proceedings of 12th IEEE Int’l Conf. Dis-
tributed Computing Systems, pp. 614–621 (1992)

[37] Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The Distributed Constraint Satisfaction
Problem: Formalization and Algorithms. IEEE Trans. on Knowledge and Data Engineer-
ing 10, 673–685 (1998)

[38] Zivan, R., Meisels, A.: Message delay and DisCSP search algorithms. Annals of Mathemat-
ics and Artificial Intelligence 46(4), 415–439 (2006)

[39] Zivan, R., Zazone, M., Meisels, A.: Min-Domain Retroactive Ordering for Asynchronous
Backtracking. Constraints 14(2), 177–198 (2009)

http://dischoco.sourceforge.net/

The Impact of Wireless Communication
on Distributed Constraint Satisfaction

Mohamed Wahbi and Kenneth N. Brown

Insight Centre for Data Analytics, School of Computer Science and IT,
University College Cork, Ireland

{mohamed.wahbi,ken.brown}@insight-centre.org

Abstract. Distributed constraint satisfaction (DisCSP) models decision prob-
lems where physically distributed agents control different decision variables, but
must communicate with each other to agree on a global solution. Most DisCSP
research assumes an abstract communication layer based on a peer-to-peer wired
network. However, many practical applications of distributed reasoning require to
be implemented over wireless networks, which impose different communication
costs, and may affect the performance of DisCSP algorithms. We study the im-
pact of wireless network topology and routing on two leading DisCSP algorithms
– ABT and AFC-ng. We introduce a new framework for experiments which mod-
els different communication layers. We show that the communication layer has
a significant impact on the messaging costs, which can vary by over an order of
magnitude. We also show the impact on computation time, where the equivalent
non-concurrent constraint checks can vary by a factor of 6. Finally, we show that
given a fixed agent ordering, changing the communications topology can increase
the number of messages by up to 50%.

1 Introduction

Distributed Constraint Satisfaction (DisCSP) models constrained decision problems
where different variables are controlled by physically distributed agents. The agents
must communicate with each other to reach a global assignment which satisfies all con-
straints. The main algorithms and protocols include synchronous [37, 23, 33] and asyn-
chronous [38, 2] search, backtracking, local search [13, 39] and dynamic programming
methods [26], and algorithms which respect privacy and autonomy [34, 4, 18] versus
those which partially centralise the decision making [20]. The main metrics are non-
concurrent constraint checks (#ncccs) [21], which measures the longest sequence of
computation among the agents as a proxy for elapsed time, and messages (#msg)[19],
which counts the total number of messages exchanged between agents. Communica-
tion delays can be modelled by adding extra increments to get #encccs, the equivalent
non-concurrent constraint checks [5]. Most research assumes an abstract model of the
underlying communication network [41, 30, 17, 32, 11], equivalent to essentially a peer-
to-peer wired network. This model works well for applications operating over standard
internet architectures.

There is a rich domain of application problems for DisCSP which assume wireless
communication, including, for example, dynamic coordination of missions in unmanned

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 738–754, 2014.
c© Springer International Publishing Switzerland 2014

The Impact of Wireless Communication on Distributed Constraint Satisfaction 739

aerial vehicles (UAVs) [28], mobile robot coordination [6], decision making in wireless
sensor networks (WSNs) [1, 15, 36, 3], and dynamic channel selection [25] and time-
division scheduling for the self-configuration of ad hoc wireless networks. However, the
standard communication layer for DisCSP does not account for all the relevant details
of wireless communication, and so algorithms may behave radically differently when
implemented on physical devices. For example, in wireless communication, each radio
transmission consumes energy, and so the number and size of individual transmissions
required to deliver a message is significant, as opposed to the number of end-to-end mes-
sages. This is particularly important in remote operation (e.g., UAVs or WSNs) where
the agents have limited battery power. In addition, there are many different protocols for
exchanging information in a wireless network, ranging from peer-to-peer unicast to one-
to-many local broadcast, and from static routing to dynamic routing based on flooding
the network. Thus, the communications layer may significantly change the number of
individual message transmissions required. More message transmissions means longer
delays, and it is known [5, 7] that delays in exchanging messages adversely affects the
#encccs metric in some DisCSP algorithms. To establish DisCSP for wireless appli-
cations, we require a better understanding of how the underlying communication layer
affects the performance of different algorithms.

In this paper, we propose a new framework for analysing wireless DisCSP,
based on wireless communication networks. The framework distinguishes between
the constraint graph and the communications graph, which may be different. Direct
communication is only possible between adjacent nodes in the communication graph.
Exchanging messages between neighbours in the constraint graph thus may require mul-
tiple transmissions in the communications graph. We use the framework to re-evaluate
the asynchronous ABT algorithm [38, 2] and the partially synchronised AFC-ng [7, 33]
algorithm. We consider a range of different communication network topologies, from
linear chain trees to complete graphs. We consider the abstract source routing proto-
cols N-way unicast, multicast and multicast* (multicast with local broadcasts), which
vary in the number of individual transmissions required to send messages to a set of
recipients. We show that changing the topology has a significant impact on the number
of message transmissions, sometimes causing an order of magnitude increase for the
same algorithm and routing protocol. Similarly, we show that the topology and routing
protocol also combine to affect messaging, with N-way unicast on linear topologies re-
quiring significantly more messages than the standard DisCSP model assumes, while
multicast* on complete communication networks reduces the number of messages com-
pared to the standard model. Varying the communications layer also has an impact on
#encccs, increasing it in the worst case by a factor of six. The performance of static
DisCSP ordering heuristics is also influenced by the communication layer, with differ-
ent topologies increasing the message count by up to 50%. Finally, we propose future
directions for wireless DisCSP research, with the eventual aim of modifying the algo-
rithms and ordering heuristics to adapt to different communication layers.

2 Background

The Distributed Constraint Satisfaction Problem (DisCSP) is a 5-tuple (A,X ,D, C, φ),
where X is a set of variables {x1, . . . , xn}, D = {D1, . . . , Dn} is a set of domains,

740 M. Wahbi and K.N. Brown

where Di is a finite set of values from which one value must be assigned to variable xi,
C is a set of constraints,A is a set of agents {A1, . . . , Aa}, and φ : X → A is a function
specifying an agent to control each variable. During a solution process, only the agent
which controls a variable can assign it a value. A constraint C(X) ∈ C, on the ordered
subset of variables X = (xj1 , . . . , xjk), is C(X) ⊆ Dj1 × · · · ×Djk , and specifies the
tuples of values which may be assigned simultaneously to the variables in X . For this
paper, we restrict attention to binary constraints. We denote by Ci ⊆ C all constraints
that involve xi. A solution is an assignment to each variable of a value from its domain,
satisfying all constraints. Each agent Ai knows all constraints relevant to its variables
(Ci) and the other variables involved in its constraints (its neighbours in the constraint
graph). Without loss of generality, we assume each agent controls exactly one variable
(a=n), so we use the terms agent and variable interchangeably and do not distinguish
between Ai and xi. A variety of problems have been tackled using DisCSP, including
tracking in sensor networks [1], resource allocation [27] and meeting scheduling [22].

Asynchronous Backtracking (ABT) [38, 2] is an asynchronous algorithm executed
autonomously by each agent in the problem, and is guaranteed to compute a global con-
sistent solution (or detect inconsistency) in finite time. Each agent proposes values for
its own variable to other agents, and reports no-goods. Agents operate asynchronously,
but are subject to a known total priority order, o.

Nogood-Based Asynchronous Forward Checking (AFC-ng) [33] is a partially syn-
chronised algorithm that uses no-goods as justification for value removals. Following
a total priority agent ordering o, agents assign their variables one by one, recording
assignments in a data structure called the Current Partial Assignment (CPA). Once an
agent adds its variable assignment to the CPA, it sends the CPA to its unassigned neigh-
bours to perform forward checking (FC [12]) asynchronously. AFC-ng allows different
agents to perform backtracks concurrently to the same or different destinations. As a
result, several CPAs can be generated simultaneously by the destination agents. Due to
the timestamps integrated in the CPAs, the CPA coming from the highest level in the
agent ordering will eventually dominate.

In the standard DisCSP communication model [41, 30, 17, 32] each exchange of
information from one agent to another (e.g., value choice, acknowledgement, no-good,
constraint description) is represented as a message. This is an abstraction of the commu-
nication layer, based on the assumption that the number of source-to-destination mes-
sages is the main factor in communication cost. Zivan and Meisels (2006) proposed an
Asynchronous Message Delay Simulator (AMDS) [41] for distributed constraint rea-
soning algorithms. AMDS is a Mailer thread through which all messages are passed
to simulate message delays. The mailer holds a counter of non-concurrent computation
steps (LTC, Logical Time Counter) performed by agents, represented as the number of
non-concurrent constraint checks (#ncccs). Communication delays can be modelled
by adding extra increments to get #encccs. Each agent maintains its own LTC, and
attaches it to each message she sends. An agent that receives a message updates her
counter to the maximum value between the received LTC and her own counter. Next,
she performs a computation step and sends her outgoing messages. Immediately prior
sending a message, the agent increments her LTC by the number of constraints checks
performed during that step. When an agent desires to send a message she passes it to

The Impact of Wireless Communication on Distributed Constraint Satisfaction 741

source

recipients

(a) Communication network

N-way unicast
9 transmissions

(b) Unicast

multicast 6
transmissions

(c) Multicast

multicast* 4
transmissions

(d) Multicast*

Fig. 1. Different communication protocols

the dedicated mailer thread. Upon receiving that message, the mailer updates its LTC
by the value of the LTC carried by the message if its value is larger than that held in the
mailer. A delay for the message is then chosen and the message is added to the outgoing
queue. The queue is ordered by increasing LTC. When a message reaches the front of
the queue, it is removed, and delivered to the incoming queue of the receiving agent.

Each agent maintains a count of the messages it sends (#msg), incrementing it by
1 for each message sent to the mailer. Note that each message counts 1 regardless of
size, and is thus recording the instance of a single source-to-destination communication.
Most experimental comparisons of DisCSP algorithms record the maximum #ncccs
value over all agents at termination, and the sum of the message counts (#msg) over all
agents. Occasionally, the total number of constraints checks (summed over all agents)
or the number of communication cycles is also reported. The most important metric
is usually considered to be #ncccs, consistent with work in general distributed algo-
rithms [19, p. 22]. This model works well with applications implemented over standard
wired TCP/IP networks, where variation in routing and packet retransmissions can be
averaged over all agents and messages.

There are many practical application problems which rely on wireless networking.
For example, in dynamic mission scheduling in unmanned aerial vehicles (UAVs), clus-
ters of UAVs are remote from the base and must coordinate their actions and revise
their plans through negotiation with each other using wireless communication [28]. In
wireless sensor networks, small sensor nodes must relay sensed data to a base, and
may be required to coordinate their sensing in order to ensure the target phenomena is

742 M. Wahbi and K.N. Brown

adequately covered [1, 15, 36, 3]. This is further extended to wireless sensor actuator
networks, in which some of the nodes can control aspects of the physical environment.
In addition, the operation and configuration of ad hoc and mesh wireless networks re-
quires individual radio nodes to sense the topology of the network and to agree spectrum
use, time schedules for communication, and routing paths [25], all of which involve dis-
tributed combinatorial problems.

In wireless communication [24], each individual transmission of data consumes en-
ergy in order to radiate and receive the signal. The energy consumed depends on the
distance over which the data is transmitted, and on the amount of data. In wireless sen-
sor networks, the cost of transmitting one bit of information is estimated to be equal
to the cost of executing 1000 to 2000 logical instructions on the sensor node [14, p.
104], and so computation is considered much cheaper than communication. For bat-
tery powered nodes, limiting communication cost is the key to maintaining node, and
thus network, lifetime. In multi-hop networks (e.g., wireless sensor networks or ad hoc
networks), some nodes are not in range of each other, and so intermediate nodes must
receive and re-transmit the data in order for it to be delivered. Thus, the delivery of a
single message between nodesAi and Aj may require significantly more transmissions
than the same message delivered from Ai to Ak. Also, wireless communication is sub-
ject to radio interference, and so messages may have to be retransmitted in order to be
received successfully; alternatively, to avoid interference, nodes may have to wait until
the radio spectrum is free before they transmit. Thus, as well as incurring additional
energy costs, longer transmission paths impose additional delays on message delivery.

Within a multi-hop network, there are many different approaches for routing the
data [16]. Methods include flooding the network with messages, decentralised rout-
ing with each node maintaining a routing table, and source-level routing, in which
each node decides upon the end-to-end route it will use for each recipient. Within
source-level routing, options include N-way unicast , multicast , and multicast using the
broadcast medium (which we refer to as multicast*)(Fig. 1). For N -way unicasting,
a source sending to N recipients creates N copies of the message, and then initiates
each message along its chosen route. In multicasting, the source constructs a rooted
tree with itself as root and containing all the intended recipients. Messages are then sent
down the tree, with multiple copies only created when multiple branches leave from a
single node. Multicast* takes advantage of the fact that multiple nodes can receive
a single transmission, and thus each node in the multicast tree only needs to transmit a
single copy of the message (assuming an omnidirectional antenna).

The differences between the standard DisCSP communication model and the wire-
less communication model raises the question of how our algorithms perform when
deployed on wireless networks. The standard DisCSP model is essentially N -way uni-
casting, either on a complete communication network or on the constraint graph. Every
edge in the graph requires the same energy for a transmission – any agent can commu-
nicate directly with any neighbour, for a cost of 1 message (plus a delay increment of δ)
for each communication. In a problem instance with n agents, sending a variable assign-
ment tom (constraint graph) neighbours takesm transmissions each with delay δ. Even
if we assume that each transmission does consume the same energy, implementing the
same instance on a wireless network may incur different costs. If the communication

The Impact of Wireless Communication on Distributed Constraint Satisfaction 743

topology is a linear chain, with the source at one end and the recipients at the other, the
same variable assignment would require n∗m− (m(m−1)/2) transmissions, with the
longest delay n∗δ. Multicast on the same topology would require just n transmissions,
but with the longest delay still n ∗ δ. Finally, if the topology is a complete graph, using
multicast*, then we require just 1 transmission, with delay δ. Since increasing delays in
messages are known to adversely affect #encccs for DisCSP algorithms, we may also
see variation in the #encccs metric as we vary the communications layer. Therefore,
if we are to deploy DisCSP algorithms on wireless networks, we need to revisit the
algorithms, and assess their performance under different communication assumptions.

3 Network Communication Simulator Framework (NeCoS)

The standard DisCSP model views agents as distributed autonomous entities. Almost
all distributed constraint reasoning simulators implement agents as Java Threads [40,
30, 17, 32, 11]. Zivan and Meisels (2006) proposed AMDS counting non-concurrent
constraints-checks (#ncccs) for systems with message delays. In AMDS, agents run
concurrently, exchanging messages using a common mailer. In this section we gen-
eralize AMDS to simulate different communication topologies and routing protocols
(unicast, multicast, and multicast*). We call the new simulator Network Communi-
cation Simulator (NeCoS). NeCoS is a Thread to which all messages are passed to
simulate delays in communication networks using different communication protocols.
We assume two graphs: (i) the standard DisCSP constraint graph, where two agents are
neighbours if and only if they share a constraint, and (ii) the communications graph,
where two nodes are neighbours if and only if they can communicate directly with each
other in a single transmission. There is a function from the constraint graph vertex set
(agents) to the communications graph vertex set (nodes), but the edge sets may be arbi-
trarily different. NeCoS requires as input the communications graph and the function.
When Ai sends a message to Aj , the message must traverse a path in the communica-
tions graph, which may require multiple retransmissions of the message.

As in AMDS, NeCoS maintains a Logical Time Counter (LTC), which measures
the longest sequence of computation and communication between agents. Each agent
maintains its own counter. To simulate delays on message transmissions, each message
in the system carries the LTC value of its sender. Whenever an agent receives a message,
it updates its counter to the maximum value of the received LTC and its own counter.
It then performs its computation step and sends messages with the value of its counter
incremented by the amount of computation required during this step.

The NeCoS pseudo-code is presented in Figs. 2 and 3. In initialisation, NeCoS stores
the communications graph in network, and then computes all shortest paths using [8].
When an agent desires to send a message msg to a set of recipients, it emits the mes-
sage to NeCoS by calling sendMessage(msg, recipients). Depending on the routing
protocol used, NeCoS runs different procedures (lines 15-17):

unicast: for each recipient, NeCoS creates a copy (m) of the original message and
computes the routing tree for that copy. The routing tree is the shortest path in
the communications graph from the sender to the recipient (line 23). Then, NeCoS
calls procedure chooseDelay(m) (line 25) to select a random delay needed to

744 M. Wahbi and K.N. Brown

procedure NeCoS()
01. outQueue ← ∅; LTC ← 0; end ← false ;
02. network ← getCommunicationGraph() ;
03. network.computeAllShortestPaths(); /* Use Floyd-Warshall [8, 35] */
04. while (¬end) do
05. if (all agents are terminated) then end ← true ;
06. else if (all agents are idle) then LTC ← outQueue.first().getLTC();
07. deliverMessages() ;

procedure deliverMessages()
08. foreach (msg ∈ outQueue s.t. msg.getLTC() < LTC) do
09. tree ← msg.gettree() ;
10. As ← tree.getRoot() ;
11. if (As ∈ msg.getRecipients()) then deliver(msg) to As;
12. if (routingProtocol �= multicast*) then routingMessage(msg, tree,As);
13. else routingMulticast∗(msg, tree,As);

procedure sendMessage(msg, recipients)
14. switch (routingProtocol) do // routingProtocol ∈{unicast,multicast,multicast* }
15. unicast : sendUnicast(msg, recipients) ;
16. multicast : sendMulticast(msg, recipients) ;
17. multicast* : sendMulticast∗(msg, recipients) ;

procedure sendUnicast(msg, recipients)
18. As ← msg.getSender();
19. foreach (Ai ∈ recipients) do
20. As.nbMsgSent ← As.nbMsgSent+ 1;
21. m ← msg;
22. m.setRecipients(Ai);
23. tree ← network.shortestPath(As, Ai) ;
24. m.setRoutingTree(tree);
25. chooseDelay(m) ;
26. outQueue.add(m) ;

procedure sendMulticast(msg, recipients)
27. As ← msg.getSender() ;
28. tree ← network.steinerTree(As, recipients) ;
29. routingMessage(msg, tree,As) ;

procedure sendMulticast∗(msg, recipients)
30. As ← msg.getSender() ;
31. tree ← network.steinerTree(As, recipients) ;
32. routingMulticast∗(msg, tree,As) ;

procedure routingMessage(msg, tree, node)
33. foreach (subtree ∈ tree.getSubtreesOf(node)) do
34. node.nbMsgSent ← node.nbMsgSent+ 1 ;
35. m ← msg;
36. m.setRecipients(recipients ∩ subtree);
37. m.setRoutingTree(subtree);
38. chooseDelay(m) ;
39. outQueue.add(m) ;

Fig. 2. Network Communication Simulator (Part 1)

The Impact of Wireless Communication on Distributed Constraint Satisfaction 745

procedure routingMulticast∗(msg, tree, node)
40. node.nbMsgSent ← node.nbMsgSent+ 1 ;
41. chooseDelay(msg) ;
42. foreach (subtree ∈ tree.getSubtreesOf(node)) do
43. m ← msg ;
44. m.setRecipients(recipients ∩ subtree);
45. m.setRoutingTree(subtree);
46. outQueue.add(m) ;

procedure chooseDelay(msg)
47. LTC ← max(LTC,msg.getLTC()) ;
48. msg.LTC ← msg.getLTC() + δ ;

Fig. 3. Network Communication Simulator (Part 2)

transmit the message to the next node in the routing tree (lines 47-48). The copy of
the message is then added to the outgoing message queue (i.e., outQueue, line 26).

multicast: NeCoS constructs a rooted Steiner tree with the source (As) as root and
containing all recipients, line 28.1 Then, NeCoS mimics the multicast routing pro-
tocol (routingMessage call, line 29). In routingMessage, a message is trans-
mitted from the root node to each of its children (roots of its sub-trees, subtree,
line 33) in the routing tree, tree, and each of these in turn queues the message for
retransmission to its children (lines 38-39). We increment the number of messages
transmitted by node by the number of its children in routing tree (line 34).

multicast*: NeCoS constructs a rooted Steiner tree with the source (As) as root
and containing all recipients, line 31. Then, NeCoS mimics the multicast* rout-
ing protocol (routingMulticast∗ call, line 32). In routingMessage, a message
is transmitted from the root node to each of its children (roots of its sub-trees,
subtree, line 42) in the routing tree, tree requiring only one transmission (line 40)
from node with the same delay (line 41). However, to simulate this, NeCoS creates
a copy m of msg for all children of node in the routing tree, tree (lines 43) and
each of these in turn will queue the copy for retransmission to its children (line 46).

In the three communication protocols, the LTC of each transmitted message is up-
dated to the sum of the value of the message LTC and a random selected delay (line 48).
Then, the message is added to the outgoing queue (outQueue). The outgoing queue is
a priority queue in which messages are sorted by their LTC, so that the first message is
the message with the lowest LTC.

When there are no incoming messages, and all agents are idle, NeCoS increases the
value of its LTC to the LTC value of the first message in the outgoing queue (line 6)
and calls procedure deliverMessages (line 7). When deliverMessages is invoked
by NeCoS all messages carrying an LTC smaller than the counter of the simulator are
transmitted line 4. Thus, this message is delivered to the root of the routing tree if it is
one of the final recipients of that message, line 11. Next, we simulate a routing node for
that agent depending on the routing protocol used (lines 12-13).

1 In our experiments, we use a heuristic algorithm to compute good Steiner trees.

746 M. Wahbi and K.N. Brown

4 Experiments

In this section we evaluate ABT and AFC-ng under different network conditions. Al-
gorithms are tested on the same static agent ordering using the max-degree heuristic.
For ABT we implemented an improved version of Silaghi’s solution detection [29] and
counters for tagging assignments. All experiments were performed on the DisChoco 2.0
platform [32],2 in which agents are simulated by Java threads that communicate only
through message passing.

The algorithms are tested on uniform binary random DisCSPs which are charac-
terized by 〈n, d, p1, p2〉, where n is the number of agents/variables, d the number of
values per variable, p1 is the constraint graph connectivity defined as the ratio of exist-
ing binary constraints to possible binary constraints, and p2 is the constraint tightness
defined as the ratio of forbidden value pairs to all possible pairs. We solved instances
of two classes of constraint graphs: sparse constraint graphs 〈20, 5, 0.2, p2〉 and dense
ones 〈20, 5, 0.7, p2〉. We varied the tightness from 0.1 to 0.9 by steps of 0.1. For each
pair of fixed density and tightness (p1, p2) we report the average over 20 instances.

We evaluate the performance of the algorithms by communication load and computa-
tion effort. Communication load is measured by the total number of transmission mes-
sages in the communication network during algorithm execution (#transmission).
Computation effort is measured by the average of the equivalent non-concurrent
constraint checks (#encccs) [5] that extends the non-concurrent constraint checks
(#ncccs) [9]. The #encccs are a weighted sum of processing and communication
time. We simulate uniform random message delays on the communication network. For
each message a delay is randomly chosen between 10 and 100 constraint checks. We
simulated three communication protocols: unicast, multicast, and multicast*.

To assess the behaviour of ABT and AFC-ng on different communication layers we
generate 8 different connected network topologies, using only agents in the problem:
complete: the communication network is a complete graph, where all agents are con-
nected to each other – the maximum number of hops between any two agents is one;
constraint: the communication network matches the constraint graph exactly;
star: the communication network has a star topology where one randomly selected
agent is directly connected to all other agents, and there are no other connections;
random (0.7): dense random communication networks, where exactly 0.35∗(n(n−1))
randomly selected binary connections are created;
random (0.2): sparse random communication networks, where exactly 0.1∗ (n(n−1))
randomly selected binary connections are created;
spanning: the communication network is a random spanning tree that spans the agents
of the problem;
ring: the communication network is a random ring, and so the maximum distance be-
tween any agent pair is n/2 hops;
chain: the communication network is a linear chain tree, randomly selected; agents at
the ends of the chain are (n− 1) hops from each other.

2 http://dischoco.sourceforge.net/

http://dischoco.sourceforge.net/

The Impact of Wireless Communication on Distributed Constraint Satisfaction 747

Table 1. Performance on hard region when simulating unicast communication protocol

Communication (p1 = 0.2, p2 = 0.7) (p1 = 0.7, p2 = 0.3)

graph #transmission #encccs #transmission #encccs

Algorithm ABT AFC-ng ABT AFC-ng ABT AFC-ng ABT AFC-ng

complete 5 769 2 724 26 143 25 968 627 742 188 934 1 784 567 1 223 455

constraint 7 834 2 886 27 807 30 115 772 906 182 744 1 836 074 1 292 729

star 12 061 5 076 39 587 48 301 1 283 398 361 580 2 286 323 2 181 065

random (0.7) 7 846 3 518 29 640 32 344 846 561 242 956 1 929 618 1 505 303

random (0.2) 15 299 6 147 43 790 55 555 1 609 192 431 490 2 476 220 2 541 963

spanning 28 236 10 936 67 390 97 036 3 083 883 739 513 3 673 841 4 158 617

ring 40 274 13 654 86 113 120 862 4 602 738 972 699 4 564 197 5 528 475

chain 51 075 19 872 99 331 164 056 6 183 110 1 321 164 5 262 304 6 680 264

Table 2. Performance on hard region when simulating multicast communication protocol

Communication (p1 = 0.2, p2 = 0.7) (p1 = 0.7, p2 = 0.3)

graph #transmission #encccs #transmission #encccs

Algorithm ABT AFC-ng ABT AFC-ng ABT AFC-ng ABT AFC-ng

complete 5 604 2 774 26 187 26 758 624 311 188 967 1 776 765 1 241 699

constraint 6 629 2 764 28 361 29 793 678 895 183 789 1 832 203 1 279 464

star 8 657 3 483 38 680 46 047 881 339 215 746 2 276 400 2 051 918

random (0.7) 6 976 3 103 29 708 32 157 736 382 197 971 1 929 399 1 527 361

random (0.2) 12 022 4 442 45 536 55 573 1 153 096 242 460 2 625 804 2 588 631

spanning 19 066 6 497 66 879 91 341 1 741 666 304 504 3 610 608 3 823 730

ring 28 641 8 086 90 159 121 029 2 593 760 367 807 4 843 591 5 465 870

chain 32 553 10 917 97 718 153 332 3 055 454 430 339 5 182 070 5 984 795

Table 3. Performance on hard region when simulating multicast* communication protocol

Communication (p1 = 0.2, p2 = 0.7) (p1 = 0.7, p2 = 0.3)

graph #transmission #encccs #transmission #encccs

Algorithm ABT AFC-ng ABT AFC-ng ABT AFC-ng ABT AFC-ng

complete 2 643 993 25 493 25 959 230 833 35 028 1 764 498 1 113 742

constraint 4 167 1 273 27 977 30 186 313 675 37 869 1 817 239 1 181 323

star 5 416 1 805 37 564 44 317 487 496 67 289 2 242 006 1 905 299

random (0.7) 4 013 1 554 29 361 32 211 366 740 62 809 1 913 308 1 407 144

random (0.2) 9 004 3 257 44 894 56 056 874 364 151 131 2 613 529 2 505 835

spanning 15 522 5 382 65 817 91 692 1 442 528 213 293 3 600 303 3 728 196

ring 25 648 7 741 88 114 122 376 2 517 252 351 788 4 826 414 5 452 225

chain 31 882 10 580 97 689 153 234 2 972 596 415 085 5 161 530 5 977 598

748 M. Wahbi and K.N. Brown

1.0⋅10
4

2.0⋅10
4

3.0⋅10
4

4.0⋅10
4

5.0⋅10
4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p

2

#transmission 〈n=20, d=10, p1=0.2〉

ABT(chain)-unicast

ABT(complete)-unicast

ABT(complete)-multicast*

(a) ABT on sparse problems (#transmission)

2.0⋅10
4

4.0⋅10
4

6.0⋅10
4

8.0⋅10
4

1.0⋅10
5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p

2

#encccs 〈n=20, d=10, p1=0.2〉

ABT(chain)-unicast

ABT(complete)-unicast

ABT(complete)-multicast*

(b) ABT on sparse problems (#encccs)

1.0⋅10
6

2.0⋅10
6

3.0⋅10
6

4.0⋅10
6

5.0⋅10
6

6.0⋅10
6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p

2

#transmission 〈n=20, d=10, p1=0.7〉

ABT(chain)-unicast

ABT(complete)-unicast

ABT(complete)-multicast*

(c) ABT on dense problems (#transmission)

1.0⋅10
6

2.0⋅10
6

3.0⋅10
6

4.0⋅10
6

5.0⋅10
6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p

2

#encccs 〈n=20, d=10, p1=0.7〉

ABT(chain)-unicast

ABT(complete)-unicast

ABT(complete)-multicast*

(d) ABT on dense problems (#encccs)

Fig. 4. Comparison of the performance of ABT using unicast on chain communication tree and
complete graph, and using multicast* on complete graph

For each topology (except complete and constraint), we generated 5 different random
communication networks, and solve each problem instance on each one. The results
presented are averaged over 20 problem instances.

For space reason, we show only a subset of the obtained results. Tables 1, 2, 3 present
the obtained results on the hard regions (p1 = 0.2, p2 = 0.7) and (p1 = 0.7, p2 = 0.3).
On dense problems on complete communications graphs with multicast* (Table 3),
ABT can use 7 (resp. 1.7) times more #transmission (resp. #encccs) than AFC-ng.
On sparse problems on complete graphs when simulating multicast*, ABT requires
2.5 times more #transmission than AFC-ng while the #encccs value for both algo-
rithms is similar. On dense problems on chain communications network with multicast,
(Table 2), ABT requires 7 times more #transmission than AFC-ng, but ABT requires
slightly fewer #encccs. On sparse problems on chain communications network with
multicast, ABT requires 3 times more #transmission than AFC-ng, but AFC-ng
records 1.5 times more #encccs. For unicast (Table 1) we see a similar pattern,
but smaller differences. For sparse problems on the chain communication networks
ABT requires 2.5 times more #transmission than AFC-ng, but AFC-ng performs
1.6 times more #encccs. Thus, when we use unicasting on sparse communications
networks, ABT is better on #encccs, otherwise, AFC-ng is better, and particularly for

The Impact of Wireless Communication on Distributed Constraint Satisfaction 749

5.0⋅10
3

1.0⋅10
4

1.5⋅10
4

2.0⋅10
4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p

2

#transmission 〈n=20, d=10, p1=0.2〉

AFC-ng(chain)-unicast

AFC-ng(complete)-unicast

AFC-ng(complete)-multicast*

(a) AFC-ng on sparse problems
(#transmission)

4.0⋅10
4

8.0⋅10
4

1.2⋅10
5

1.6⋅10
5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p

2

#encccs 〈n=20, d=10, p1=0.2〉

AFC-ng(chain)-unicast

AFC-ng(complete)-unicast

AFC-ng(complete)-multicast*

(b) AFC-ng on sparse problems (#encccs)

2.5⋅10
5

5.0⋅10
5

7.5⋅10
5

1.0⋅10
6

1.2⋅10
6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p

2

#transmission 〈n=20, d=10, p1=0.7〉

AFC-ng(chain)-unicast

AFC-ng(complete)-unicast

AFC-ng(complete)-multicast*

(c) AFC-ng on dense problems (#transmission)

1.0⋅10
6

2.0⋅10
6

3.0⋅10
6

4.0⋅10
6

5.0⋅10
6

6.0⋅10
6

7.0⋅10
6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p

2

#encccs 〈n=20, d=10, p1=0.7〉

AFC-ng(chain)-unicast

AFC-ng(complete)-unicast

AFC-ng(complete)-multicast*

(d) AFC-ng on dense problems (#encccs)

Fig. 5. Comparison of the performance of AFC-ng using unicast on chain communication tree
and complete graph, and using multicast* on complete graph

dense communication networks with multicast*, where ABT requires 7 times more
#transmission than AFC-ng.

We note that, for the two algorithms we studied, changing just the routing proto-
col rarely changes the ranking, but it does affect the margin of improvement. For ex-
ample, for multicast on dense networks that match the constraint graph, the ratio of
#transmission for ABT against AFC-ng is 3.7, but for multicast* on the same prob-
lems, the ratio increases to 8.2. A change in the topology of the communications graph
does affect the ranking for #encccs. For example, for unicast on dense problems, on
complete networks AFC-ng offers an improvement over ABT of 45%, but for chain tree
networks, ABT is better by a factor of 27%.

Looking at just ABT, for sparse problems, for different communication layers, the
#transmission can vary by a factor of 20 (multicast* on complete, vs unicast on
chain), Fig. 4. If we assume unicast on a complete network is the standard DisCSP
model, then varying the communication layer could drop #transmission by a factor
of 2.5, or raise it by a factor of 8. For dense problems, the biggest factor is 25 for
#transmission (this factor can drop by 1/3 or rise by 9), and 2.7 for #encccs.

Looking at just AFC-ng on sparse problems (Fig. 5), again the range in
#transmission varies by a factor of 20, and for #encccs by a factor of 6.5. For

750 M. Wahbi and K.N. Brown

xo(1) xo(2) xo(3) xo(4) xo(5) xo(6) xo(7) xo(8) xo(9) xo(10)

(a) pattern1 (b) pattern2

(c) pattern3 (d) pattern4

Fig. 6. Patterns used to generate communication chain trees from the max-degree ordering o

dense problems, the variation factor for #transmission is 37 when comparing the
multicast* protocol on complete communications graph to the unicast protocol on chain
communications network. The variation is 6 for #encccs. These results show that the
#transmission for AFC-ng using the standard model used so far to compare DisCSP
algorithms (unicast on complete communications graph) could be factor of 6 too high
or a factor of 6 too low.

Changing just the routing protocol has only a small effect for ABT, varying by a
factor of approximately 2, but a larger effect for AFC-ng, of up to 5.5. We believe
this is because of the nature of the algorithms. Multicast* does not change the number
of no-goods, and ABT sends significantly more no-goods than AFC-ng. In general,
multicasting (multicast and multicast*) offers an improvement over unicast when the
communications graph is sparse, while multicast* improves over multicast when the
communications graph is dense.

On the chain communications network, AFC-ng appears to require more #encccs
than ABT, while ABT requires more #transmission. This is investigated more
closely in the next section. On chain communications, multicast and multicast* are
similar, apart from random variation in message delays.

4.1 Communication Chain Trees

In the following we evaluate the performance of ABT and AFC-ng on different chain
communication networks. Based on the max-degree ordering (o) (computed from the
constraint graph) 5 patterns are used to generate chain communication trees (T). In the
following we denote by xo(k) the kth agent in o. This patterns are presented on Fig. 6.

p1: every pair of adjacent agents in o are connected in the chain communication tree
(TE = {{xo(k), xo(k+1)} | k ∈ 1..n− 1}.

p2: for each pair of adjacent agents on the resulting communication tree T , we try to
maximise their separation in the ordering o. Thus, the first agent (xo(1)) is con-
nected to the last (xo(n)), the last the second, and so on: TE = {{xo(1), xo(n)};
{xo(n), xo(2)}; {xo(2), xo(n−1)}; . . . }.

The Impact of Wireless Communication on Distributed Constraint Satisfaction 751

5.0⋅10
5

1.0⋅10
6

1.5⋅10
6

2.0⋅10
6

2.5⋅10
6

3.0⋅10
6

 0.2 0.3 0.4 0.5 0.6

p
2

#transmission 〈n=20, d=10, p1=0.7〉 (multicast)
 on chain communication with max-deg

ABT(p1)

ABT(p2)

ABT(p3)

ABT(p4)

ABT(rnd)

(a) #transmission (multicast)

1.0⋅10
6

2.0⋅10
6

3.0⋅10
6

4.0⋅10
6

5.0⋅10
6

 0.2 0.3 0.4 0.5 0.6

p
2

#encccs 〈n=20, d=10, p1=0.7〉 (multicast)
 on chain communication with max-deg

ABT(p1)

ABT(p2)

ABT(p3)

ABT(p4)

ABT(rnd)

(b) #encccs (multicast)

Fig. 7. Performance of ABT on dense problems, multicast routing protocol, different communi-
cation chain trees

2.0⋅10
3

4.0⋅10
3

6.0⋅10
3

8.0⋅10
3

1.0⋅10
4

1.2⋅10
4

 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p
2

#transmission 〈n=20, d=10, p1=0.2〉 (multicast)
 on chain communication with max-deg

AFC-ng(p1)

AFC-ng(p2)

AFC-ng(p3)

AFC-ng(p4)

AFC-ng(rnd)

(a) #transmission

4.0⋅10
4

8.0⋅10
4

1.2⋅10
5

1.6⋅10
5

 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p
2

#encccs 〈n=20, d=10, p1=0.2〉 (multicast)
 on chain communication with max-deg

AFC-ng(p1)

AFC-ng(p2)

AFC-ng(p3)

AFC-ng(p4)

AFC-ng(rnd)

(b) #encccs

Fig. 8. Performance of AFC-ng on sparse problems, multicast routing protocol different commu-
nication chain trees

p3: we try to maximise the distance between the first and the second agent on
o. Thus, xo(1) and xo(2) are the extremities of the resulting chain communica-
tion tree T , TE = {{xo(2), xo(n−1)}; {xo(n−1), xo(n−2)}; {xo(n−2), xo(3)}; . . . ;
{xo(n

2), xo(n)}; {xo(n), xo(1)}}.
p4: we try to maximise the distance between the last and the second last agent on

o. Thus, xo(n−1) and xo(n) are the extremities of the resulting chain commu-
nication tree T , TE = {{xo(n−1), xo(2)}; {xo(2), xo(3)}; {xo(3), xo(n−2)}; . . . ;
{xo(n

2 +1), xo(1)}; {xo(1), xo(n)}}.
rnd: we generate random chain trees.

752 M. Wahbi and K.N. Brown

Again we show only a subset of results due to space reasons. Looking at ABT perfor-
mance on dense problems (Fig. 7), when the chain communication tree does not match
the max-degree agent ordering (pattern 1) the #transmission required is increased by
50%. For #encccs a small improvement can be seen for pattern 1 compared to other
patterns. For AFC-ng on sparse problems (Fig. 8), the pattern used doesn’t really matter
for the #transmission. For #encccs, if the chain communication fits the max-degree
we get an improvement of 30%.

5 Conclusion

There are many potential applications of Distributed Constraint Satisfaction that rely
on wireless networking for the agent to communicate. The standard DisCSP commu-
nication model does not represent important features of wireless communication, par-
ticularly the topology of the communications graph and the routing protocols. We have
introduced a new simulator for modelling wireless communication in DisCSP, NeCoS,
which allows different topologies and routing protocols to be modelled. We have shown
that varying the communications layer can have a significant effect on the performance
metrics for existing DisCSP algorithms, sometimes varying the number of messages by
a factor of over 30. The topology of the network also has an impact on the performance
of the algorithms, causing a variation of up to 50% in the number of transmissions for
ABT and almost 30% in the number of #encccs for AFC-ng.

These results indicate that, if DisCSP is to be applied to wireless network appli-
cations, further research is required on the interaction between the algorithms and the
communications layer. In particular, we will investigate ordering heuristics that adapt to
the wireless network structure. We will explore algorithm variants that exploit the com-
munication structure; for example, in distributed optimisation, we believe the broadcast
mechanism of the AFB family [10, 31] will work well with multicast*. Finally, we will
extend these ideas to explore more features of wireless networking, including cases
where the communication network is dynamic or agents are mobile, and so areas of the
network may become temporarily disconnected [28].

Acknowledgements. This work is funded by Science Foundation Ireland (SFI) under
Grant Number SFI/12/RC/2289. We are grateful to Cormac Sreenan for many conversa-
tions about wireless networking, and to Pedro Meseguer and the anonymous reviewers
for their helpful comments on this submission.

References

[1] Béjar, R., Domshlak, C., Fernández, C., Gomes, C., Krishnamachari, B., Selman, B., Valls,
M.: Sensor networks and distributed csp: communication, computation and complexity. Ar-
tif. Intel. 161, 117–147 (2005)

[2] Bessiere, C., Maestre, A., Brito, I., Meseguer, P.: Asynchronous backtracking without
adding links: a new member in the ABT family. Artif. Intel. 161, 7–24 (2005)

[3] Bijarbooneh, F.H., Flener, P., Ngai, E., Pearson, J.: Optimising quality of information in data
collection for mobile sensor networks. In: 2013 IEEE/ACM 21st International Symposium
on Quality of Service (IWQoS), pp. 1–10. IEEE (2013)

The Impact of Wireless Communication on Distributed Constraint Satisfaction 753

[4] Brito, I., Meisels, A., Meseguer, P., Zivan, R.: Distributed Constraint Satisfaction with Par-
tially Known Constraints. Constraints 14, 199–234 (2009)

[5] Chechetka, A., Sycara, K.: No-commitment Branch and Bound Search for Distributed Con-
straint Optimization. In: Proc. of the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2006, pp. 1427–1429. ACM, New York (2006)

[6] Doniec, A., Bouraqadi, N., Defoort, M., Le, V.T., Stinckwich, S.: Distributed Constraint
Reasoning Applied to Multi-robot Exploration. In: Proc. of the 21st IEEE International
Conference on Tools with Artificial Intelligence, ICTAI 2009, pp. 159–166. IEEE Computer
Society, Washington, DC (2009)

[7] Ezzahir, R., Bessiere, C., Wahbi, M., Benelallam, I., Bouyakhf, E.H.: Asynchronous Inter-
level Forward-checking for DisCSPs. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp.
304–318. Springer, Heidelberg (2009)

[8] Floyd, R.W.: Algorithm 97: Shortest path. Commun. ACM 5(6), 345 (1962)
[9] Gershman, A., Meisels, A., Zivan, R.: Asynchronous Forward-Bounding for Distributed

Constraints Optimization. In: Proc. of the 2006 Conference on ECAI 2006: 17th European
Conference on Artificial Intelligence, pp. 103–107. IOS Press, Amsterdam (2006)

[10] Gershman, A., Meisels, A., Zivan, R.: Asynchronous Forward Bounding for Distributed
COPs. JAIR 34, 61–88 (2009)

[11] Grubshtein, A., Herschorn, N., Netzer, A., Rapaport, G., Yaffe, G., Meisels, A.: The Dis-
tributed Constraints (DisCo) Simulation Tool. In: Proc. of the IJCAI workshop on DCR
211, Barcelona, Catalonia, Spain, pp. 30–42 (2011)

[12] Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction
problems. Artif. Intel. 14(3), 263–313 (1980)

[13] Hirayama, K., Yokoo, M.: The Distributed Breakout Algorithms. Artif. Intel. 161, 89–116
(2005)

[14] Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. Wiley
(2005)

[15] Kho, J., Rogers, A., Jennings, N.R.: Decentralized control of adaptive sampling in wireless
sensor networks. ACM Trans. Sen. Netw. 5(3), 19:1–19:35 (2009)

[16] Kurose, J.F., Ross, K.W.: Computer Networking, p. 63. Addison Wesley (2013)
[17] Léauté, T., Ottens, B., Szymanek, R.: FRODO 2.0: An Open-Source Framework for

Distributed Constraint Optimization. In: Proceedings of the IJCAI 2009 Workshop on Dis-
tributed Constraint Reasoning, Pasadena, California, USA, pp. 160–164 (2009)

[18] Léauté, T., Faltings, B.: Protecting privacy through distributed computation in multi-agent
decision making. J. Artif. Int. Res. 47(1), 649–695 (2013)

[19] Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Series (1997)
[20] Mailler, R., Lesser, V.R.: Asynchronous partial overlay: A new algorithm for solving dis-

tributed constraint satisfaction problems. JAIR 25(1), 529–576 (2006)
[21] Meisels, A., Kaplansky, E., Razgon, I., Zivan, R.: Comparing Performance of Distributed

Constraints Processing Algorithms. In: Proc. of DCR 2002, pp. 86–93 (2002)
[22] Meisels, A., Lavee, O.: Using additional information in DisCSP search. In: Proc. of DCR

2004 (2004)
[23] Meisels, A., Zivan, R.: Asynchronous Forward-checking for DisCSPs. Constraints 12(1),

131–150 (2007)
[24] Molisch, A.F.: Wireless Communications, 2e. Wiley-Blackwell (2010)
[25] Newton, M., Pham, D., Tan, W., Portmann, M., Sattar, A.: Stochastic Local Search Based

Channel Assignment in Wireless Mesh Networks. In: Schulte, C. (ed.) CP 2013. LNCS,
vol. 8124, pp. 832–847. Springer, Heidelberg (2013)

[26] Petcu, A., Faltings, B.: DPOP: A Scalable Method for Multiagent Constraint Optimization.
In: Proc. of IJCAI 2005, pp. 266–271 (2005a)

754 M. Wahbi and K.N. Brown

[27] Petcu, A., Faltings, B.: A value ordering heuristic for local search in distributed resource
allocation. In: Faltings, B.V., Petcu, A., Fages, F., Rossi, F. (eds.) CSCLP 2004. LNCS
(LNAI), vol. 3419, pp. 86–97. Springer, Heidelberg (2005)

[28] Pujol-Gonzalez, M., Cerquides, J., Meseguer, P., Rodrı́guez-Aguilar, J., Tambe, M.: En-
gineering the Decentralized Coordination of UAVs with Limited Communication Range.
In: Bielza, C., Salmerón, A., Alonso-Betanzos, A., Hidalgo, J.I., Martı́nez, L., Troncoso,
A., Corchado, E., Corchado, J.M. (eds.) CAEPIA 2013. LNCS, vol. 8109, pp. 199–208.
Springer, Heidelberg (2013)

[29] Silaghi, M.C., Sam-Haroud, D., Faltings, B.: Asynchronous Search With Aggregations. In:
Proc. of AAAI 2000/IAAI 2000, pp. 917–922 (2000)

[30] Sultanik, E.A., Lass, R.N., Regli, W.C.: Dcopolis: a framework for simulating and deploy-
ing distributed constraint reasoning algorithms. In: Proc. of AAMAS 2008, pp. 1667–1668
(2008)

[31] Wahbi, M., Ezzahir, R., Bessiere, C.: Asynchronous Forward Bounding Revisited. In:
Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 708–723. Springer, Heidelberg (2013)

[32] Wahbi, M., Ezzahir, R., Bessiere, C., Bouyakhf, E.H.: DisChoco 2: A Platform for Dis-
tributed Constraint Reasoning. In: Proceedings of workshop on DCR 2011, pp. 112–121
(2011), http://dischoco.sourceforge.net/

[33] Wahbi, M., Ezzahir, R., Bessiere, C., Bouyakhf, E.H.: Nogood-Based Asynchronous
Forward-Checking Algorithms. Constraints 18(3), 404–433 (2013)

[34] Wallace, R.J., Freuder, E.C.: Constraint-based reasoning and privacy/efficiency tradeoffs in
multi-agent problem solving. Artif. Intel. 161, 209–228 (2005)

[35] Warshall, S.: A theorem on boolean matrices. J. ACM 9(1), 11–12 (1962)
[36] Wu, X., Brown, K.N., Sreenan, C.J.: Data pre-forwarding for opportunistic data collection

in wireless sensor networks. In: 2012 Ninth International Conference on Networked Sensing
Systems (INSS), pp. 1–8 (2012)

[37] Yokoo, M.: Algorithms for distributed constraint satisfaction problems: A review. Journal
of AAMAS 3(2), 185–207 (2000)

[38] Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: Distributed Constraint Satisfaction for
Formalizing Distributed Problem Solving. In: Proc. of 12th IEEE International Conference
on Distributed Computing Systems, pp. 614–621 (1992)

[39] Zhang, W., Wang, G., Xing, Z., Wittenburg, L.: Distributed stochastic search and distributed
breakout: properties, comparison and applications to constraint optimization problems in
sensor networks. Artif. Intel. 161, 55–87 (2005)

[40] Zivan, R., Meisels, A.: Dynamic Ordering for Asynchronous Backtracking on DisCSPs.
Constraints 11(2-3), 179–197 (2006)

[41] Zivan, R., Meisels, A.: Message delay and DisCSP search algorithms. Annals of Mathemat-
ics and Artificial Intelligence 46(4), 415–439 (2006)

http://dischoco.sourceforge.net/

Adaptive Parameterized Consistency

for Non-binary CSPs by Counting Supports�

Robert J. Woodward1,2, Anthony Schneider1, Berthe Y. Choueiry1,
and Christian Bessiere2

1 Constraint Systems Laboratory, University of Nebraska-Lincoln, USA
{rwoodwar,aschneid,choueiry}@cse.unl.edu

2 CNRS, University of Montpellier, France
bessiere@lirmm.fr

Abstract. Determining the appropriate level of local consistency to en-
force on a given instance of a Constraint Satisfaction Problem (CSP) is
not an easy task. However, selecting the right level may determine our
ability to solve the problem. Adaptive parameterized consistency was re-
cently proposed for binary CSPs as a strategy to dynamically select one
of two local consistencies (i.e., AC and maxRPC). In this paper, we pro-
pose a similar strategy for non-binary table constraints to select between
enforcing GAC and pairwise consistency. While the former strategy ap-
proximates the supports by their rank and requires that the variables
domains be ordered, our technique removes those limitations. We em-
pirically evaluate our approach on benchmark problems to establish its
advantages.

1 Introduction

There is an abundance of local consistency techniques of varying cost and prun-
ing power to apply to a Constraint Satisfaction Problem (CSP), but choosing
the right one for a given instance remains an open question. In a portfolio ap-
proach [22,11,7], we typically choose a single consistency level and enforce it on
the entire problem (or a subproblem). Heuristic-based methods have been pro-
posed to dynamically switch, at various stages of search and depending on the
constraint, between a weak and a strong level of consistency, AC and maxRPC
for binary CSPs [20] and GAC and maxRPWC for non-binary CSPs [18]. The
above-mentioned approaches do not allow us to enforce different levels of consis-
tency on the values in the domain of the same variable. To this end, Balafrej et
al. introduced adaptive parameterized consistency, which selects, for each value
in the domain of a variable, one of two consistency levels based on the value of a
parameter [1]. That parameter is determined by the rank of the support of the
value in a constraint (assuming a fixed total ordering of the variables’ domains),

� This research was supported by NSF Grant No. RI-111795 and EU project ICON
(FP7-284715). Woodward was supported by an NSF GRF Grant No. 1041000 and a
Chateaubriand Fellowship. Experiments were conducted on the equipment of the Holland
Computing Center at the University of Nebraska–Lincoln.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 755–764, 2014.
c© Springer International Publishing Switzerland 2014

756 R.J. Woodward et al.

and updated depending on the weight of the constraint [5]. Their study targeted
enforcing AC and maxRPC on binary CSPs.

In this paper, we extend their mechanism to enforcing GAC and pairwise-
consistency on non-binary CSPs with table constraints. Our approach is based
on counting the number of supporting tuples, which is automatically provided
by the algorithms that we use. Thus, we remove the restriction on maintaining
ordered domains and the approximation of a support’s count by its rank. We
establish empirically the advantages of our approach.

The paper is structured as follows. Section 2 provides background informa-
tion. Section 3 describes our approach, and Section 4 discusses our empirically
evaluation on benchmark problems. Finally, Section 5 concludes the paper.

2 Background

We first summarize the main concepts and definitions used.

2.1 Constraint Satisfaction Problem

A Constraint Satisfaction Problem (CSP) is defined by a tuple (X ,D, C), where
X is a set of variables, D is a set of domains, and C is a set of constraints. Each
variable xi ∈ X is associated a finite domain dom(xi) ∈ D. We denote a variable-
value pair as 〈xi, vi〉, where vi ∈ dom(xi). Each constraint cj ∈ C is defined in
extension by a relation Rj specified over the scope of the constraint, scope(cj),
which is the set of variables to which the constraint applies. For readability,
we refer to the scope of a relation scope(Rj) = scope(cj). A tuple τ ∈ Rj is a
combination of allowed values for the variables in scope(Rj). τ [xi] is the value
that the variable xi takes in τ . We denote cons(xi) as the set of constraints that
apply to variable xi, and neigh(cj) the set of constraints whose scopes overlap
with cj . When |scope(cj)| = 2, cj is said to be a binary constraint, otherwise,
it is non-binary. A solution to the CSP assigns, to each variable, a value taken
from its domain such that all the constraints are satisfied. Deciding the existence
of a solution for a CSP is NP-complete.

2.2 Local Consistency Properties

CSPs are typically solved with backtrack search. To reduce the severity of the
combinatorial explosion, CSPs are usually filtered by enforcing a given local
consistency property [2].

A variable-value pair 〈xi, vi〉 has an arc-consistent support (AC-support)
〈xj , vj〉 if the tuple (vi, vj) ∈ Rij where scope(Rij) = {xi, xj} [16,3]. A CSP is
arc consistent if every variable-value pair has an AC-support in every constraint.
Generalized Arc Consistency (GAC) generalizes arc consistency to non-binary
CSPs [16]. 〈xi, vi〉 has a GAC-support in constraint cj if ∃τ ∈ Rj such that
τ [xi] = vi. A CSP is GAC if every 〈xi, vi〉 has a GAC-support in every con-
straint in cons(xi). GAC can be enforced by removing domain values that have

Adaptive Parameterized Consistency for Non-binary CSPs 757

no GAC-support, leaving the relations unchanged. Simple Tabular Reduction
(STR) algorithms not only enforce GAC on the domains, but also remove all
tuples τ ∈ Rj where ∃xi ∈ scope(Rj) such that τ [xi] /∈ dom(xi) [21,13,14].

A CSP is m-wise consistent if, every tuple in a relation can be extended to
every combination ofm−1 other relations in a consistent manner [8,10]. Keeping
with relational-consistency notations, Karakashian et al. denoted m-wise consis-
tency by R(∗,m)C, and proposed a first algorithm for enforcing it [12]. Their
implementation finds an extension (i.e., support) for a tuple by conducting a
backtrack search on the other m− 1 relations, and removes the tuples that have
no support. After all relations are filtered, they are projected onto the domains of
the variables. Pairwise consistency (PWC) corresponds tom=2, R(∗,2)C≡PWC.
Lecoutre et al. introduced the algorithm extended STR (eSTR) [15], which en-
forces PWC on a CSP using the STR mechanism [21]. eSTR maintains counters
on the intersections of two constraints to determine if a tuple is pairwise consis-
tent or not. In this paper, we enforce PWC using the algorithm for R(∗,2)C [12],
and not eSTR, because it is prohibitively expensive to continuously maintain the
counters of eSTR in a strategy where PWC is only selectively enforced.

2.3 Adaptive Parameterized Consistency

Balafrej et al. introduced the distance to the end of value vi for variable xi as:

Δ(xi, vi) =
|domo(xi)| − rank(vi, dom

o(xi))

|domo(xi)|
where domo(xi) is the original, unfiltered domain of xi, and rank(vi, dom

o(xi))
is the position of vi in the ordered set domo(xi) [1]. In Figure 1, borrowed from
[1], Δ(x2, 1) = 0.75, Δ(x2, 2) = 0.50, Δ(x2, 3) = 0.25, and Δ(x2, 4) = 0.00.

Further, for a given parameter p, they defined 〈xi, vi〉 to be p-stable for AC
for cij where scope(cij) = {xi, xj} if there exists an AC-support 〈xj , vj〉 with
Δ(xj , vj) ≥ p for cij . Figure 1 illustrates an example for the constraint x1 ≤ x2
with p = 0.25. 〈x1, 1〉,〈x1, 2〉,〈x1, 3〉 are all 0.25-stable for AC for the constraint,
but 〈x1, 4〉 is not, because its only AC-support, 〈x2, 4〉, has distance 0.

x1

1

2

3

4

x2

1

2

3

4

p=0.25

ac support

(4-1)/4 = 0.75

(4-2)/4 = 0.50

(4-3)/4 = 0.25

(4-4)/4 = 0.00

Δ (x2,vi)

Fig. 1. The constraint x1 ≤ x2. 〈x1, 4〉 is not 0.25-stable for AC [1]

The parameterized strategy p-LC [1] enforces, on each variable-value pair,
either AC or some local consistency (LC) property strictly stronger than AC

758 R.J. Woodward et al.

depending on the value of the parameter p. The idea is to enforce LC only on
the variable-value pairs with few supports, approximated with the rank (< p)
of the first found AC-support. We focus on the constraint-based version, pc-LC,
where 〈xi, vi〉 is pc-LC if for every constraint cj ∈ cons(xi), 〈xi, vi〉 is p-stable
for AC on cj or 〈xi, vi〉 is LC on cj . In pc-LC, the value of p is given as input. In
the adaptive version, apc-LC, it is dynamically determined for each constraint cj
using the weight of cj , w(cj), which is the number of times cj caused a domain
wipe-out like in the variable-ordering heuristic dom/wdeg [5]:

p(cj) =
w(cj)−minck∈C(w(ck))

maxck∈C(w(ck))−minck∈C(w(ck)) + 1
. (1)

In [1],apc-maxRPCwas experimentally shown to outperformACandmaxRPC [6].

3 Modifying apc-LC for Non-binary CSPs

For binary CSPs, p-stability for AC of 〈xi, vi〉 estimates how many supports
are left for 〈xi, vi〉 in other constraints using the rank of the AC-support in the
corresponding domain. This estimate should not directly applied to non-binary
table constraints because the GAC-support of 〈xi, vi〉 is a tuple in a relation
that is unsorted, which would make the estimate way too imprecise. Consider
the example with 〈xi, vi〉 and a relation Rj of 100 tuples. Assume that the only
tuple τ ∈ Rj supporting 〈xi, vi〉 appears at the top of the table of Rj . The
estimate would indicate that there are many supports for 〈xi, vi〉 because there
are 99 tuples that appear after it. However, in reality, 〈xi, vi〉 has a unique
support. Below, we introduce p-stability for GAC, which counts the number
of supports for each variable-value pair. Then, we introduce a mechanism to
compute p-stability for GAC, and finally give an algorithm for enforcing apc-
LC, which adaptively enforces STR or LC. In this paper, we study R(∗,2)C as
LC, and discuss the implementation of apc-R(∗,2)C.

3.1 p-Stability for GAC

We say that 〈xi, vi〉 is p-stable for GAC if for every constraint cj ∈ cons(xi),
|σxi=vi(Rj)|

|Ro
j |

≥ p(cj),

where σxi=vi(Rj) selects the tuples in Rj where 〈xi, vi〉 appears, and Ro
j is the

original, unfiltered relation. A CSP is p-stable for GAC if every variable-value
pair is p-stable for GAC for every constraint that applies to it.

Figure 2 gives the relation for the constraint x1 ≤ x2. 〈x1, 1〉 and 〈x1, 2〉 are
0.25-stable for GAC. Indeed, σx1=1 returns four rows {0, 1, 2, 3} in the table, and
〈x1, 1〉 is 0.25-stable: 4

10 ≥ 0.25. Similarly, 〈x1, 2〉 also is 0.25-stable: 3
10 ≥ 0.25.

〈x1, 3〉 and 〈x1, 4〉 are not 0.25-stable, because 2
10 �≥ 0.25 and 1

10 �≥ 0.25. This
example illustrates how, on binary constraints, and for a given p, p-stable for
AC does not guarantee p-stable for GAC. (Recall that 〈x1, 3〉 is 0.25-stable for
AC in Figure 1).

Adaptive Parameterized Consistency for Non-binary CSPs 759

x1 x2
0
1
2
3
4
5 2 3
6 2 4
7 3 3
8 3 4
9 4 4

gacSupports[Rj](x1,1)={0,1,2,3}
gacSupports[Rj](x1,2)={4,5,6}
gacSupports[Rj](x1,3)={7,8}
gacSupports[Rj](x1,4)={9}

gacSupports[Rj](x2,1)={0}
gacSupports[Rj](x2,2)={1,4}
gacSupports[Rj](x2,3)={2,5,7}
gacSupports[Rj](x2,4)={3,6,8,9}

Fig. 2. The relation of x1 ≤ x2. 〈x1, 3〉 and 〈x1, 4〉 are not 0.25-stable for GAC.

3.2 Computing p-Stability for GAC

For each constraint cj , we introduce for every 〈xi, vi〉 a set of integers indi-
cating the position of the tuples returned by σxi=vi(Rj), which is similar to the
data structure in GAC4 [17]. We denote this table gacSupports[Rj][〈xi, vi〉]. The
check for p-stable can be verified by using |gacSupports[Rj][〈xi, vi〉]|. Figure 2,
shows the gacSupports[Rj] for the constraint x1 ≤ x2. For each relation, the
space complexity to store each gacSupports[Rj] is O(k · t), where k is the maxi-
mum constraint arity and t is the maximum number of tuples in a relation. The
time complexity to generate gacSupports[Rj] is O(k · t), by iterating through
every tuple.

3.3 Algorithm for Enforcing apc-LC

With the gacSupports data-structure, we can apply STR by verifying, for each
constraint cj , that every variable xi ∈ scope(cj) and vi ∈ dom(xi) has a non-
zero |gacSupports[Rj][〈xi, vi〉]|. Living-STR (Algorithm 1) does precisely this
operation (ignoring Lines 1 and 1, which apply to the apc-LC operation intro-
duced next). past(P) denotes the variables of the CSP P already instantiated by
search, and delTuples(Rk, S, level) deletes all the tuples in the subset S ⊆ Rk,
and marks their removal level at the level of search level. When deleting a
tuple from the relation Rk, ck’s neighboring constraints, neigh(ck), should be
re-queued to be processed with Living-STR. Initially, all constraints are in the
queue. Living-STR is similar to STR3 in that it iterates over variable-value
pairs rather than over tuples. However, it does not use as much book-keeping
for optimizing the number of STR checks as STR3 [14]. Instead, Living-STR

uses the same data structures as STR and STR2(+) to manage tuple deletions
in a relation [13,21].

Including Lines 1 and 1 in Algorithm 1 yields apc-LC, which adaptively ap-
plies LC. The adaptive level p(cj) is defined by Balafrej et al. [1] and recalled
in Equation (1). The local consistency technique used here is the implemen-
tation of R(∗,2)C [12], apc-R(∗,2)C. Apply-R(∗,2)C (Algorithm 2) takes as
input the list of tuples of a constraint on which R(∗,2)C must be enforced.

760 R.J. Woodward et al.

Algorithm 1. Living-STR(ci): set of variables

Input: cj : a constraint of P
Output: Set of variables in scope(cj) whose domains have been modified
Xmodified ← ∅1

foreach xi ∈ scope(cj) | xi /∈ past(P) do2

foreach vi ∈ dom(xi) do3

if |gacSupports[Rj](〈xi, vi〉)| �= 0 and
|gacSupports[Rj](〈xi,vi〉)|

|Ro
j |

�≥ p(cj)4

then
Apply-LC(Rj , gacSupports[Rj](〈xi, vi〉))5

if |gacSupports[Rj](〈xi, vi〉)| = 0 then6

foreach ck ∈ cons(xi) do7

delTuples(ck, gacSupports[Rk](〈xi, vi〉), |past(P)|)8

dom(xi) ← dom(xi) \ {vi}9

if dom(xi) = ∅ then throw INCONSISTENCY10

Xmodified ← Xmodified ∪ {xi}11

return Xmodified12

Algorithm 2. Apply-R(∗,2)C(ci, tuples)
Input: ci: a constraint; tuples: a set of tuples from the constraint ci
Output: The tuples are either R(∗,2)C or deleted
foreach τ ∈ tuples do1

foreach cj ∈ neigh(ci) do2

if SearchSupport(Ri, τ, {Rj}) returns inconsistent then3

delTuples(ci, {τ}, |past(P)|)4

SearchSupport(Ri, τ, {Rj}) on Line 2 of Algorithm 2 searches for a support
for the tuple τ ∈ Ri, the pairwise check [12].

Theoretical analysis: Let k be the maximum constraint arity, d the maximum
domain size, and δ the maximum number of neighbors of a constraint. The time
complexity of Algorithm 1 is O(k · d). Algorithm 2 is O(δ · t2) because it makes
O(δ · t) calls to SearchSupport, which is O(t) in our context. The correctness
of Algorithms 1 and 2 can be shown in straightforward manner by contradiction.

4 Empirical Evaluations

The goal of our experimental analysis is to assess if apc-R(∗,2)C effectively selects
when to apply STR and R(∗,2)C when used in a pre-processing step and in a
real full lookahead strategy [9] during backtrack search to find the first solution
to a CSP. In our experiments, we use the variable ordering dom/wdeg [5]. The
experiments are conducted on the benchmarks of the CSP Solver Competition1

1 http://www.cril.univ-artois.fr/CPAI08/

http://www.cril.univ-artois.fr/CPAI08/

Adaptive Parameterized Consistency for Non-binary CSPs 761

with a time limit of two hours per instance and 8 GB of memory. Because STR
and R(∗,2)C enforce the same level of consistency on binary CSPs [4], we focus
our experiments on 21 non-binary benchmarks2 consisting of 623 CSP instances.
We chose these benchmarks because they are given in extension and at least one
algorithm completed 5% of the instances in the benchmark.

Table 1 summarizes the results in terms of number of instances solved. Im-
portantly, apc-R(∗,2)C completes the largest number of instances (552). Consid-
ering the instances solved by all algorithms (485 instances), apc-R(∗,2)C has the
smallest average and median CPU time. Row 3 indicates the number of instances
STR solved but R(∗,2)C and apc-R(∗,2)C did not solve (18 and 11 instances,
respectively), thus showing that apc-R(∗,2)C, although it may have enforced
R(∗,2)C too often, outperformed R(∗,2)C and missed fewer instances than it
(11 vs. 18). Row 4 exhibits similar results showing the number of instances that
R(∗,2)C could solve, but that were missed by STR and apc-R(∗,2)C (64 and 6 in-
stances, respectively). Here, apc-R(∗,2)C did not enforce R(∗,2)C often enough,
but managed to outperform STR missing significantly fewer instances than STR
(6 vs. 64).

Table 1. Number of instances completed by the tested algorithms

STR R(∗,2)C apc-R(∗,2)C
1 #instances completed by 504 550 552
2 #instances completed only by 10 5 0

3 #instances solved by STR, but missed by 0 18 11
4 #instances solved by R(∗,2)C, but missed by 64 0 6
5 #instances solved by apc-R(∗,2)C, but missed by 59 8 0

Average CPU time (sec.) over 458 instances 328.41 378.12 313.31
Median CPU time (sec.) over 458 instances 7.23 17.35 7.21

Table 2 gives a finer analysis of the data, showing the number of completions
and average and median CPU time per benchmark. Averages computed over only
the instances completed by all techniques are shown in the column All. We split
the table into four categories based on the average CPU time of apc-R(∗,2)C:
a) apc-R(∗,2)C performs the best (5 benchmarks); b) apc-R(∗,2)C is compet-
itive, performing between STR and R(∗,2)C (13 benchmarks); c) apc-R(∗,2)C
performs the worst (2 benchmarks); and d) STR does not solve the benchmark
but R(∗,2)C and apc-R(∗,2)C do (1 benchmark). The best average CPU time
appears in bold face in the corresponding column. The median CPU time of
apc-R(∗,2)C is bold faced when its rank differs from that of the average CPU
time (on which the four categorized are based). On TSP-20, apc-R(∗,2)C ranks
bottom on average CPU time but between STR and R(∗,2)C on median CPU
time. On aim-100, jnhUnsat, rand-8-20-5, and ukVg, apc-R(∗,2)C is between
STR and R(∗,2)C for average CPU time, but best for median CPU time.

2 Aim-(50,100,200), allIntervalSeries, dag-rand, dubois, jnh(Sat/Unsat), lexVg,
modifiedRenault, pret, rand-10-20-10, rand-3-20-20(-fcd), rand-8-20-5, ssa,
travellingSalesman-20, travellingSalesman-25, ukVg, varDimacs, wordsVg.

762 R.J. Woodward et al.

Table 2. Results of the experiments per benchmark, organized in four categories

#Completed Average CPU time (sec) Median CPU time (sec)

Benchmark #
In

st
a
n
c
e
s

S
T
R

R
(∗

,2
)C

a
p
c
-R

(∗
,2
)C

A
ll

S
T
R

R
(∗

,2
)C

a
p
c
-R

(∗
,2
)C

S
T
R

R
(∗

,2
)C

a
p
c
-R

(∗
,2
)C

a) apc-R(∗,2)C is the best

aim-50 24 24 24 24 24 0.04 0.07 0.04 0.02 0.04 0.03
allIntervalSeries 25 22 22 22 22 7.09 141.85 6.00 0.13 0.31 0.12

jnhSat 16 16 16 16 16 13.07 357.66 11.74 8.15 142.24 7.21
modifiedRenault 50 50 50 50 50 6.39 11.17 6.29 7.24 8.79 6.98

rand-3-20-20 50 31 43 41 31 1,666.10 939.88 932.77 1,211.50 822.54 811.74

b) apc-R(∗,2)C is competitive

aim-100 24 24 24 24 24 0.38 0.26 0.41 0.18 0.25 0.16
aim-200 24 22 24 24 22 414.48 6.52 286.27 2.39 1.37 2.60

jnhUnsat 34 34 34 34 34 13.61 294.77 13.95 10.74 153.50 9.78
lexVg 63 63 63 63 63 69.81 341.87 338.74 0.50 1.38 0.89
pret 8 4 4 4 4 117.89 347.03 136.04 115.81 354.82 145.70

rand-3-20-20-fcd 50 39 48 47 39 928.06 546.84 615.23 501.30 422.24 464.00
rand-8-20-5 20 9 20 20 9 2,564.94 355.57 372.76 1,987.35 314.26 261.68

rand-10-20-10 20 12 12 12 12 6.72 1.67 2.76 6.40 1.66 2.75
ssa 8 6 5 6 5 64.60 100.64 69.59 1.51 1.60 1.58

TSP-25 15 13 10 13 10 232.38 1,072.72 743.33 69.00 211.41 131.69
ukVg 65 37 31 34 31 166.82 796.90 421.35 36.29 54.65 30.39

varDimacs 9 6 6 6 6 89.23 587.55 319.20 1.56 6.43 2.94
wordsVg 65 65 58 58 58 119.76 532.05 400.22 0.39 0.95 0.59

c) apc-R(∗,2)C is the worst

dubois 13 7 8 6 6 1,000.54 451.91 1,456.01 552.13 255.25 779.57
TSP-20 15 15 15 15 15 101.20 318.37 335.13 23.32 61.55 46.34

d) Not solved by STR

dag-rand 25 0 25 25 0 - 123.70 149.64 - 124.47 151.33

Table 3 shows the average number of STR and R(∗,2)C checks that apc-
R(∗,2)C performs per benchmark. In allIntervalSeries, no calls are made to
R(∗,2)C because the instance is solved backtrack free with STR alone. For apc-
LC, no call to LC is done during pre-processing because the weights of all the

Table 3. Number of calls to STR and R(∗,2)C by benchmark

Benchmark STR checks R(∗,2)C checks Benchmark STR checks R(∗,2)C checks

a) apc-R(∗,2)C is the best b) apc-R(∗,2)C is competitive
aim-50 456,823 39,491 aim-100 7,731,585 894,353

allIntervalSeries 38,281,694 0 aim-200 1,160,334,482 163,177,907
jnhSat 22,119,135 599,080 jnhUnsat 51,688,166 1,918,781

modifiedRenault 4,618,778 601,641 lexVg 564,010,457 2,180,503,026
rand-3-20-20 489,441,126 3,480,216,943 pret 422,987,946 13,973,748

rand-3-20-20-fcd 455,664,100 2,956,467,994
c) apc-R(∗,2)C is the worst rand-8-20-5 77,470,561 184,764,543
dubois 3,343,830,604 4,668,288 rand-10-20-10 72,608 3,972
TSP-20 622,949,698 991,590,957 ssa 156,631,370 11,689,961

TSP-25 2,903,953,315 3,947,391,769
ukVg 341,565,892 1,002,334,753

d) Not solved by STR varDimacs 720,843,958 84,123,204
dag-rand 359,248 21,870 wordsVg 514,840,737 2,052,367,934

Adaptive Parameterized Consistency for Non-binary CSPs 763

constraints are set to 1 (giving p(cj) = 0 for all cj ∈ C) and updated only during
search. For dag-rand, there is a smaller number of R(∗,2)C calls than STR calls
(21,870 vs. 359,248). However, those few calls allow us to solve all the instances
of this benchmark whereas STR alone could not solve any instance. This result
is a glowing testimony of the ability of apc-R(∗,2)C to apply the appropriate
level of consistency where needed.

5 Conclusions

In this paper, we extend the notion of p-stability for AC to GAC, and provide
a mechanism for computing it. We give an algorithm for enforcing apc-R(∗,2)C
on non-binary table constraints, which adaptively enforces GAC and R(∗,2)C.
We validate our approach on benchmark problems. Future work is to investigate
other adaptive criteria for selecting the level of consistency to apply, in particular
one that operates during both pre-processing and search. To apply our approach
to constraints defined in intension and other global constraints, we could use
techniques that approximate the number of solutions in those constraints [19].

References

1. Balafrej, A., Bessiere, C., Coletta, R., Bouyakhf, E.H.: Adaptive Parameterized
Consistency. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 143–158. Springer,
Heidelberg (2013)

2. Bessiere, C.: Constraint Propagation. In: Handbook of Constraint Programming,
pp. 29–83. Elsevier (2006)

3. Bessière, C., Régin, J.C., Yap, R.H., Zhang, Y.: An Optimal Coarse-Grained Arc
Consistency Algorithm. Artificial Intelligence 165(2), 165–185 (2005)

4. Bessière, C., Stergiou, K., Walsh, T.: Domain Filtering Consistencies for Non-
Binary Constraints. Artificial Intelligence 172, 800–822 (2008)

5. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting Systematic Search by
Weighting Constraints. In: Proc. ECAI 2004, pp. 146–150 (2004)

6. Debruyne, R., Bessière, C.: From Restricted Path Consistency to Max-Restricted
Path Consistency. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 312–326.
Springer, Heidelberg (1997)

7. Geschwender, D., Karakashian, S., Woodward, R., Choueiry, B.Y., Scott, S.D.: Se-
lecting the Appropriate Consistency Algorithm for CSPs Using Machine Learning
Techniques. In: Proc. of AAAI 2013, pp. 1611–1612 (2013)

8. Gyssens, M.: On the Complexity of Join Dependencies. ACM Trans. Database
Systems 11(1), 81–108 (1986)

9. Haralick, R.M., Elliott, G.L.: Increasing Tree Search Efficiency for Constraint Sat-
isfaction Problems. Artificial Intelligence 14, 263–313 (1980)

10. Janssen, P., Jégou, P., Nougier, B., Vilarem, M.C.: A Filtering Process for General
Constraint-Satisfaction Problems: Achieving Pairwise-Consistency Using an Asso-
ciated Binary Representation. In: IEEE Workshop on Tools for AI, pp. 420–427
(1989)

11. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-
rithm Selection and Scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp.
454–469. Springer, Heidelberg (2011)

764 R.J. Woodward et al.

12. Karakashian, S., Woodward, R., Reeson, C., Choueiry, B.Y., Bessiere, C.: A
First Practical Algorithm for High Levels of Relational Consistency. In: Proc.
AAAI 2010, pp. 101–107 (2010)

13. Lecoutre, C.: STR2: Optimized Simple Tabular Reduction for Table Constraints.
Constraints 16(4), 341–371 (2011)

14. Lecoutre, C., Likitvivatanavong, C., Yap, R.H.C.: A Path-Optimal GAC Algorithm
for Table Constraints. In: Proc. of ECAI 2012, pp. 510–515 (2012)

15. Lecoutre, C., Paparrizou, A., Stergiou, K.: Extending STR to a Higher-Order Con-
sistency. In: Proc. AAAI 2013, Bellevue, WA, pp. 576–582 (2013)

16. Mackworth, A.K.: Consistency in Networks of Relations. AI 8, 99–118 (1977)
17. Mohr, R., Masini, G.: Good Old Discrete Relaxation. In: European Conference on

Artificial Intelligence (ECAI 1988), pp. 651–656. W. Germany, Munich (1988)
18. Paparrizou, A., Stergiou, K.: Evaluating Simple Fully Automated Heuristics for

Adaptive Constraint Propagation. In: Proc. of ICTAI 2012, pp. 880–885 (2012)
19. Pesant, G., Quimper, C.G., Zanarini, A.: Counting-Based Search: Branching

Heuristics for Constraint Satisfaction Problems. JAIR 43, 173–210 (2012)
20. Stergiou, K.: Heuristics for Dynamically Adapting Propagation. In: Proc. of ECAI

2008, pp. 485–489 (2008)
21. Ullmann, J.R.: Partition Search for Non-binary Constraint Satisfaction. Informa-

tion Sciences 177(18), 3639–3678 (2007)
22. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-Based Al-

gorithm Selection for SAT. JAIR 32, 565–606 (2008)

Proactive Workload Dispatching

on the EURORA Supercomputer

Andrea Bartolini, Andrea Borghesi, Thomas Bridi, Michele Lombardi,
and Michela Milano

DISI, University of Bologna, Italy
{a.bartolini,andrea.borghesi3,michele.lombardi2,michela.milano}@unibo.it

thomas.bridi@gmail.com

Abstract. In the era of Cloud Computing, Big Data, and Quantum
Physics Simulations, data centers play in the world ICT infrastructure a
role as big as (sadly) their power consumption. In many cases, a surpris-
ing amount of such consumption is due to idle resources, either intro-
duced to face workload peaks or leftovers of workload fragmentation. In
this context, proactive workload dispatching has the chance to improve
the utilization of computing resources, thus reducing the idle time and
improving the ability to handle peaks. In this paper, we devise a CP
based approach for proactive workload dispatching on the EURORA su-
percomputer placed at the CINECA computing center in Bologna. The
new system is evaluated on simulated job traces, where it leads to re-
markable improvements in terms of both machine utilization and waiting
times for queued jobs with respect to the currently used dispatcher, i.e.,
Portable Batch System (PBS).

1 Introduction

Computing centers play a key role in modern ICT architectures: they run our
internet services, keep track of our savings, make our research possible. They
are also well known to be power hungry: in Italy, data centers make for ∼2% of
the national energy consumption, for a total of 6.6 TWh (roughly that of the
Calabria region, according to data by Fondazione Politecnico di Milano, 2010).

The mainstream solution to reduce such a gigantic consumption is to em-
ploy efficient hardware or efficient design. By doing so, it is possible to obtain
remarkable reductions of the PUE index (Power Usage Effectiveness), i.e. the
ratio between the power consumption of the whole data center and the power
consumption of the IT equipment alone. Recently, a joint effort by the CINECA
inter-university consortium [1] in Italy and the Eurotech group [2] has led to the
design of the EURORA system. Thanks to an innovative liquid based cooling
system and carefully chosen hardware components, this new machine has a PUE
of just 1.05 and managed to reach the top of the Green 500 ranking in the first
half of 2013, effectively becoming for a time the most efficient supercomputer on
earth. As a comparison, PUE values of around 3 were still common in 2009.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 765–780, 2014.
c© Springer International Publishing Switzerland 2014

766 A. Bartolini et al.

However, reducing the PUE is just a half of the problem. Data by McKinsey [3]
for US data centers reveals that on average only 6-12% of the power is employed
for actual computation. The reason for this dramatically low value lies in how
efficiently the existing IT resources are used. In particular, redundant resources
are usually employed to maintain the quality of service under workload peaks.
More redundant resources are also needed to compensate for the fragmentation
resulting from suboptimal dispatching choices. As a consequence, a typical data
center ends up packing a lot of idle muscles. Unfortunately, idle resources still
consume energy: for a 1MW center with a 1.5 PUE, a 30% utilization means a
1Me annual cost and 3,500 tons of CO2. In this context, optimization techniques
can enable dramatic improvements in the resource management, leading to lower
costs, better response times, and fewer emissions.

In this paper, we tackle the problem of performing workload dispatching over
the EURORA supercomputer, operating at the CINECA computing center in
Bologna. The machine is employed for High Performance Computing (HPC)
applications and has a job submission system currently managed by a PBS
Dispatcher (Portable Batch System [9]). The dispatcher relies on a number of
heuristic techniques to tentatively maintain a high machine utilization and keep
the waiting times as small as possible. The CINECA staff has hints that the
current system operation could be improved, but finding a more effective PBS
configuration is a cumbersome and error-prone task: hence there is interest in
alternative approaches. We propose to tackle workload dispatching via proactive
scheduling using Constraint Programming. We adopt a rolling horizon approach,
where our scheduler is awakened at certain events. At each of such activations,
we build a full schedule and resource assignment for all the waiting jobs, but
then we dispatch only those jobs that are scheduled for immediate execution.
By taking into account forthcoming jobs, we avoid making dispatching decisions
with undesirable consequences; by starting only the ones scheduled for immediate
execution, the system can manage uncertain execution times.

Our long-term goal is the development of a state of the art workload dis-
patching approach to replace the current PBS logic. However, at this stage, our
main objective is just is to assess the degree of improvement (in terms of waiting
times and reduced idleness) that can be obtained by acting on the dispatching
decisions. Since our focus is on investigating the solution quality, we do not en-
force tight restrictions on the approach run-time (over-exploiting a bit the fact
that HPC jobs tend to have large durations). We evaluated our approach by
simulating its behavior on real workload traces from the EURORA machine. We
compare the results of our approach with those of the currently operating PBS
system, demonstrating that substantial improvements are indeed possible.

2 System Description and Motivations for Using CP

This section contains a brief presentation of the architecture of the EURORA
supercomputer, a discussion about the current dispatching system, and a review
to the motivations behind our choice of CP for building an alternative dispatcher.

Proactive Workload Dispatching on the EURORA Supercomputer 767

The EURORA Supercomputer: As described in [5] EURORA has a modular ar-
chitecture based on nodes (blades). In its the current state, the system counts 64
nodes, each one comprising 2 octa-core CPUs and 2 expansion cards configured
to host an accelerator module: currently, 32 nodes host 2 powerful NVidia GPUs,
while the remaining ones are equipped with 2 Intel MIC accelerators. Each node
has 16GB of installed RAM memory. EURORA is interfaced with the outside
world through a few dedicated computing nodes, physically positioned outside
the rack: in particular, a designated login node connects EURORA to the users
and runs the job dispatcher (PBS). One of the main boosting factors for the
energy efficiency of the supercomputer is the adoption of a hot liquid cooling
technology, i.e. the water inside the system can reach up to 50◦C. This strongly
reduces the energy required for operating the system, since no power is used
for actively cooling down the water, and the waste-heat can be recovered as an
energy source for other applications.

The PBS Dispatcher: The tool currently used to manage the workload on EU-
RORA system is PBS (Portable Batch System), a proprietary job scheduler by
Altair PBS Works with the primary duty of allocating computational tasks, i.e.
batch jobs, among available computing resources. The main components of PBS
are a server (which manages the jobs) and several daemons running on the exe-
cution hosts (i.e. the 64 nodes of EURORA), which track the resource usage and
answer to polling request about the host state issued by the server component.

Jobs are submitted by the users into one of multiple queues, each one charac-
terized by different access requirements and by a different approximate waiting
time. Users submit their jobs by specifying 1) the number of required nodes; 2)
the number of required cores per node; 3) the number of required GPUs and
MICs per node (never both of them at the same time); 4) the amount of re-
quired memory per node; 5) the maximum execution time. All processes that
exceed their maximum execution time are killed. The main available queues on
the EURORA system are called debug, parallel, and longpar, and are described
in Table 1 - for each of those queues we report the maximum number resources
that a job could ask if it desires to belong to that queue, i.e. maximum num-
ber of nodes, maximum number of cores and GPUs (second column), maximum
execution time, and also the approximate time it might wait before starting its
execution.

Cyclically, PBS selects a job for execution by polling the state of one or more
nodes, trying to find enough available resources to actually start the job execu-
tion. If the attempt is unsuccessful, the job is sent back to its queue and PBS
proceeds to consider the following candidate. The choices are guided by prior-
ity values and hard-coded constraints defined by the EURORA administrators
with the aim to have a good machine utilization and small waiting times. For
example, the administrators decided to reserve some nodes to the debug queue
and to force jobs in the longpar queue to start at night.

Why CP? In its current state, the PBS system works mostly as an on-line
heuristic, incurring the risk to make poor resource assignments due to the lack

768 A. Bartolini et al.

Table 1. Access requirements and waiting times for the PBS queues in EURORA

Queue Max Nodes Max Cores/GPUs Max Time Approx. Wait

debug 2 32/4 00:30:00 seconds
parallel 32 512/64 06:00:00 minutes
longpar 16 256/32 24:00:00 hours

of an overall plan. Also the hard-coded mapping constraints, designed as a way
to ensure low waiting times for specific job classes (e.g. the debug queue), may
easily cause resource under-utilization, and long waiting times for the remaining
jobs (e.g. those in the longpar queue). A proactive dispatching approach should
intuitively be able to improve the resource utilization and reduce the waiting
times without the need of devising such hard-coded restrictions. The task of
obtaining a proactive dispatching plan on EURORA can be naturally framed as
a resource allocation and scheduling problem, for which CP as a long track of
success stories.

3 Design of a CP Approach

We adopt a rolling horizon approach, in which our scheduler is awakened when-
ever a job 1) enters the system or 2) ends its execution. At each iteration, we
build a full schedule and mapping for all the jobs in the input queues, taking
into account resource capacity limitations. We consider different performance
metrics, which we treat either as objective functions or as soft-constraint. Then
we dispatch only those jobs that are scheduled for immediate execution.

The schedule is computed based on the worst-case durations (as provided
by the users), but the dispatcher reactivation is triggered by the job actual
terminations (besides of course by their arrivals). Whenever this occurs, the
jobs currently in execution cannot be migrated, but all the waiting ones can be
re-scheduled to take advantage of the released resources.

3.1 Formal Problem Definition

We can now provide a precise definition of the scheduling problem solved at each
activation of the dispatcher. Each job i enters the system at a certain arrival
time qi, by being submitted to a specific queue (depending on the user choices
and on the job characteristics). By analyzing existing execution traces coming
from PBS, we have determined an estimated waiting time for each queue, which
applies to each job it contains: we refer to this value as ewti.

When submitting the job, the user has to specify several pieces of information,
including the maximum allowed execution time Di, the maximum number of
nodes to be used rni, and the required resources (cores, memory, GPUs, MICs).
By convention, the PBS systems consider each job as if it was divided into
a set of exactly rni identical “job units”, to be mapped each on a single node.

Proactive Workload Dispatching on the EURORA Supercomputer 769

It is therefore convenient to specify the resource requirements on a job-unit basis.
Formally, let R be a set of indexes corresponding to the resource types (cores,
memory, GPUs, MICs), and let the capacity of a node k for resource r ∈ R be
denoted as capk,r. We recall that the system has m = 64 nodes, each with 16
cores and 16 GB of RAM memory; 32 nodes have 2 GPUs each (and 0 MICs),
and the remaining 32 nodes have 2 MICs each (and 0 GPUs). Finally, let rqi,r
be the requirement of a unit of job i for resource r. The dispatching problem
at time t consists in assigning a start time si ≥ t to each waiting job i and a
node to each of its units. All the resource capacity limits should be respected,
taking into account the presence of jobs already in execution. Once the problem
is solved, only the jobs having si = t are actually dispatched.

Informally speaking, in the big picture, the goal is to increase the resource
utilization and reduce the waiting times, but those metrics can be meaningfully
evaluated only once the actual job durations become known. Hence we formulate
the problem in terms of several objective functions that are intuitively correlated
with the metrics we are interested in. After extensive preliminary experimenta-
tions, we settled for the following possible problem objectives:

max
i=0..n−1

(si +Di) (makespan) (1)∑
i=0..n−1

max

(
0,
si − qi − ewti

ewti

)
(weighted tardiness) (2)

∑
i=0..n−1

[[si − qi > ewti]] (num of late jobs) (3)

where n is the number of jobs and the notation [[−]] stands for the reification of
the constraint between brackets. The makespan has been chosen because com-
pressing the schedule length tends to increase the resource utilization. For the
tardiness and the number of late jobs, we consider a job to be late if it stays
queued for a time larger than ewti. The tardiness is weighted, because we assume
that users that are already expecting to wait more (i.e. jobs with higher ewti)
should adjust better to prolonged queue times. Both the tardiness based objec-
tives are chosen to improve the perceived response time, in one case by avoiding
(proportionally) long waiting times, in the second by reducing the number of
jobs in the queues.

3.2 CP Model

Employed CP Techniques: We defined for the described scheduling problem a
CP model that is based on Conditional Interval Variables (CVI, see [8]). A CVI
τ represents an interval of time: the start of the interval is referred to as s(τ) and
its end as e(τ); the duration is d(τ). The interval may or may not be present,
depending on the value of its existence expression x(τ). In particular, if x(τ) = 0
the interval is not present and does not affect the model: for this situation we
also use the notation τ = ⊥.

770 A. Bartolini et al.

CVIs can be subject to a number of constraints, including the classical cu-
mulative [4] to model finite capacity resources, and the more specific alternative
constraint [8]. This last global constraint has the following signature:

alternative(τ0, [τ1, .., τnτ],mτ) (4)

The constraint forces all the interval variables τ1, τ2, . . . to have the same start
and end time as τ0. Moreover, exactly mτ of τ1, τ2, . . . will be actually present if
τ0 is present. Formally, the constraint enforces:

s(τ0) = s(τi), e(τ0) = e(τi) ∀i = 1..nτ

nt∑
i=1

x(τi) = mτ x(τ0) (5)

Modeling Decisions and Constraints: In our model, we use a CVIs to model
the scheduling decisions. In particular, we introduce an interval variable τi with
duration Di for each job waiting in the input queues or already in execution.
Then, we fix the start of all τi corresponding to running jobs to their real value
(which is known at this point). For the waiting jobs we have s(τi) ∈ t..eoh,
where t is the time instant for which the model is built and eoh can be given
for example by t plus the sum of the maximum duration of all jobs1. All the τi
variables are mandatory, i.e. x(τi) = 1.

Mapping decisions should be taken at the level of single job-units. The model-
ing style we adopt for them is best explained by temporarily introducing a sim-
plifying assumption, namely that no two units of the same job can be mapped on
a single node. With this assumption, the mapping decisions can be modeled by
introducing a second set of optional interval variables υi,k such that x(υi,k) = 1
iff a unit of job i is mapped to node k.

However, mapping multiple units of the same job on the same node is possible
and can be beneficial. To account for this possibility, we have to introduce for
each job i multiple sets of υ variables. Specifically, we add one more index and
we maintain the semantic, so that we have variables υi,j,k such that x(υi,j,k) = 1
iff a unit of job i is mapped to node k. The j index is only used to control the
number of job units that can be mapped to the same node. Finding a suitable
range for the index is a critical step: on the one hand, allowing j to range on
0..rni − 1 (i.e. one set of υ variables for each requested node) is a safe choice.
On the other hand, it is impossible to map multiple units of the same job on the
same node if doing so would exceed the availability of some resource. Hence, a
valid upper bound on the number of υ variable sets for a single job i is given by:

pi = min

(
rni,min

r∈R

⌊
capk,r
ri,r

⌋)
(6)

1 Note that it is possible to shift all the domains by subtracting the smallest si to all
values, so that at least one s(τi) has a minimum of 0.

Proactive Workload Dispatching on the EURORA Supercomputer 771

and for each job i, the index j can range in 0..pi−1. Then we have to specify that
exactly rni job-units should be mapped, i.e. that exactly such number of υi,j,k
intervals should be present. This can be done by using an alternative constraint:

alternative(τi, [υi,j,k], rni) ∀i = 0..n− 1 (7)

Additionally, the alternative constraint forces all the job-units to start at the
same time instant as τi. Now, the resource capacity restrictions can be modeled
via a set of cumulative constraints:

cumulative([υi,j,k], [D
(pi)
i], [r

(pi)
i,r], capi,r) ∀k = 0..m− 1, ∀r ∈ R (8)

where m is the number of nodes and the notation D
(pi)
i stands for a vector

containing D0 repeated p0 times, then D1 repeated p1 times, and so on. As
mentioned in Section 2 we disregard all the hard-coded constraints introduced
by the PBS administrator and we trust the decision making capabilities of our
optimization system with providing waiting times as low as possible.

Handling the Objective Function: We consider several variants of our dispatch-
ing problem, differing one from each other for the considered objective and for
the possible presence of soft constraints. First, we have three “pure” models,
obtained by adding on top of the presented formulation one of the problem
objectives that we have discussed in Section 3.1:

min max
i=0..n−1

e(τi) (makespan) (9)

min
∑

i=0..n−1

max

(
0,
s(τi)− qi − ewti

ewti

)
(weighted tardiness) (10)

min
∑

i=0..n−1

[[s(τi)− qi − ewti > 0]] (num. of late jobs) (11)

Then we consider three “composite” formulations obtained by choosing as a
main cost function one of Equations (9)-(11), and then by posting a constraint
on the value of the remaining ones. For example, assuming the makespan is the
main objective, we get:

min max
i=0..n−1

e(τi) (12)

s.t.
∑

i=0..n−1

max

(
0,
s(τi)− qi − ewti

ewti

)
≤ δ0 θ0 (13)

∑
i=0..n−1

[[s(τi)− qi − ewti > 0]] ≤ δ1 θ1 (14)

The values θ0 and θ1 are obtained by solving the pure models corresponding to
the constrained functions. The parameters δ0, δ1 allow to tune the tightness of the
constraints. The three new composite formulations are loosely inspired by multi-
objective optimization approaches and aim at obtaining good solutions according
to one global metric (say, resource utilization), while keeping acceptable levels
for the other (say, waiting times).

772 A. Bartolini et al.

Table 2. An example of problem instance

i rni rqi,core rqi,gpu rqi,mic rqi,mem Di

000 32 4 1 0 1000000 14000
001 1 14 1 0 400000 600
002 2 4 1 0 200000 14400
003 32 16 0 0 400000 800
004 32 3 0 2 800000 400

Table 3. A feasible solution for the instance from Table 2

i s(τi) υi,0,0 υi,0,1 υi,0,2..31 υi,0,32..63 υi,1,0 υi,1,1 υi,1,2..31 υi,1,32..63

000 0 ⊥ 0 0 ⊥ ⊥ 0 ⊥ ⊥
001 0 1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
002 600 600 ⊥ ⊥ ⊥ 600 ⊥ ⊥ ⊥
003 0 ⊥ ⊥ ⊥ 0 ⊥ ⊥ ⊥ ⊥
004 800 ⊥ ⊥ ⊥ 800 ⊥ ⊥ ⊥ ⊥

Example of a solution: Let us suppose we have the set of waiting jobs described
in Table 2, then a feasible solution to this instance is described in Table 3. As
reported in the table, jobs 000, 001 and 002 can execute only on the nodes
equipped with GPUs (i.e. node 0 to 31), job 004 can execute only in nodes with
MICs (i.e. node 32 to 63). Tow units of job 000 are allocated on node 1, the other
30 units of job 000 are allocated in nodes from 2 to 31; node 0 is completely free
and can run job 001 while job 000 is executing; job 003 can execute on nodes
from 32 to 63; after the termination of job 001, job 002 can start its execution
with two units on node 0 and after the termination of job 003, job 004 can start
in nodes from 32 to 63.

4 Added Value of CP

The scheduler we realized is currently a prototype: it will eventually be deployed
on the EURORA supercomputer, but this requires still considerable development
and research effort. At this stage we (and the CINECA consortium) are interested
in investigating the kind of improvements that could be obtained by changing the
dispatcher behavior. On this purpose, we have compared the results we obtained
with our dispatcher and the ones achieved by PBS as it is currently configured
on EURORA.

We performed the comparison on real PBS execution traces, which contain all
the information that is usually available at the job arrival times (i.e. the chosen
queue, the resource requirements, the maximum execution time). Additionally,
the traces report for each job two important pieces of information, namely the
actual duration (which we use together with the arrival time to simulate the
scheduler activation events) and the start time assigned by PBS.

Our approach was implemented using IBM ILOG CP Optimizer [6] using its
default search strategy, which is based on Self-adapting Large Neighborhood

Proactive Workload Dispatching on the EURORA Supercomputer 773

Table 4. Models comparison, queue times

Average Queue Time

Model all debug parallel longpar

MKS 187.14 4.77 161.81 0.01
MKS WT/NL 165.98 0.10 160.04 0.01
NL 722.04 2.30 316.92 369.14
NL MKS/WT 201.32 0.31 145.59 18.99
WT 662.18 2.16 203.50 446.34
WT MKS/NL 861.81 0.76 278.60 572.29

PBS 6840.81 17.34 2825.05 3600.40

Table 5. Models comparison, system load

Average Resource Utilization

Model cores GPUs MICs cores (%) Avg jobs

MKS 678.81 45.21 3.99 66% 121.68
MKS WT/NL 701.92 45.61 3.99 68% 121.92
NL 614.75 45.89 3.99 60% 116.58
NL MKS/WT 670.75 45.00 3.99 65% 121.21
WT 671.41 47.67 3.98 66% 120.50
WT MKS/NL 620.45 41.72 3.99 61% 119.07

PBS 447.98 29.16 0.33 46% 63.04

Search [7] guided by an Linear Programming relaxation. At each scheduler ac-
tivation we use the best solution found within a time limit to decide the jobs
that should start. To allow a fair comparison, all traces were pre-processed to
reset the waiting time of all jobs that are in queue at the beginning of the trace,
so that this is not taken into account. Additionally, we have subtracted from
the PBS waiting times the overhead required for implementing the dispatching
decision. This was experimentally identified by analyzing the traces themselves.

4.1 Evaluation of Our Models

We performed an evaluation of all our models on a PBS execution trace con-
taining data for a batch of jobs that was considered for dispatching in a 2-hour
long interval. The main performance metrics considered are (1) the time spent
by the jobs in the queues while waiting their execution to begin (ideally as low
as possible), and (2) the overall utilization of the system (ideally as large as
possible). Waiting times are measure of the perceived quality of services, while
a high utilization directly translates to a low number of idle (but still power
consuming) resources.

The results for the first batch (BATCH1) are presented in Table 4 and Table 5;
the models evaluated are the three “pure” ones (Makespan [MKS], Weighted
Tardiness [WT] and Num. of late jobs [NL]) plus the three composite ones (i.e.
with Makespan as main objective and constraints on Weighted tardiness and

774 A. Bartolini et al.

Table 6. Job traces composition

BATCH1 BATCH2 BATCH3

#jobs 437 434 619
#jobs DEBUG 237 133 127
#jobs PAR 130 240 415
#jobs LONGPAR 62 25 12
#jobs req. GPUs 85 203 224
#jobs req. MICs 3 1 1
#jobs req. 1 core 298 197 258
#jobs req. 2 cores 2 73 38
#jobs req. 4 cores 1 4 7
#jobs req. 5 cores 1 1 0
#jobs req. 6 cores 6 2 3
#jobs req. 8 cores 59 56 187
#jobs req. 8+ cores 70 101 126

Num. of late jobs [MKS WT/NL], and similarly for the others). In the table
we can see the average waiting time per job (both total and per-queue). There
is a remarkable improvement w.r.t PBS for all the models, and those using
the Makespan as main objective (MKS and MKS WT/NL). All the composite
models perform better than their pure counterparts when dealing with the jobs
from debug queue (short and with relatively low requirements). The models with
Makespan as primary objective do their best when dealing with the long jobs
from the longpar queue.

The corresponding resource utilization statistics are reported in Table 5, show-
ing for each model and PBS the average number of used cores, GPUs and MICs
over time. Again, we can see a significant improvement in comparison to PBS
performance, but in this case the differences between our models are less clear.
In particular, the average numbers of used GPUs and MICs is very similar –
probably because not every job needs an accelerator –, but we can notice that
MKS WT/NL is the model which performs a bit better in terms of the average
number of active cores. In the fifth column of the table we see the average num-
ber of jobs that are in execution at each time instant: more running jobs usually
correspond to a higher utilization and a smaller time to complete the execution
of the batch. Finally in the last column we report the average percentage of
active cores on EURORA, which is a good index for the utilization of the whole
system. As one can see, our best results (coming from the MKS WT/NL) are
around 20% better than those of PBS. No approach was able to reach a 100%
utilization: to a large extent, this appears to be due to the presence of bottleneck
resources (e.g. GPUs) and to their allocation.

4.2 Comparison with PBS

The previous results show that our best model is a composite one, namely MKS
WT/NL, thus such mode was chosen for a more detailed comparison with PBS

Proactive Workload Dispatching on the EURORA Supercomputer 775

(a) Running Jobs (b) Active cores

Fig. 1. EURORA utilization on the first trace (BATCH1)

on three PBS execution traces, each one corresponding once again to a two-hour
time frame of the EURORA activity. The features of the job batches considered
in each trace (i.e. BATCH1, BATCH2, BATCH3) are summarized in Table 6,
which reports the total number of jobs, the number of jobs in each queue2, the
number of jobs requiring at least one GPU or MIC and the number of jobs
requiring a certain number of cores.

We start by presenting the results for BATCH1, which is the same we used for
evaluating the model. The jobs considered in this trace belong to a wide range
of classes, with different resource requirements and different execution times.
In Fig. 1a we can observe the number of active jobs in the considered time
frame, for both our approach (solid line) and PBS (dashed line). Fig. 1b reports
instead the number of active cores. Our approach significantly outperforms PBS,
being able to execute more jobs concurrently and to use a larger fraction of the
available cores. Neither approach managed to reach the optimal system usage:
this could be due to (a combination of) the presence of bottleneck resources,
to suboptimal allocation choices, or simply to the lack of more workload to be
dispatched. Fig. 2a shows the number of waiting jobs at each time step for our
approach and PBS. From the data in the figure, we can deduce that our approach
managed to dispatch most of the incoming jobs immediately, suggesting that the
machine underutilization is at least in part to blame on the lack of more jobs.
Still, suboptimal choices and resource bottlenecks cause some jobs to wait (a
relatively high number of them, in the case of PBS).

Fig. 2b contains a histogram with the waiting times for our model, weighted
by the (inverse of) the Estimated Waiting Time of the queue they belong to. The
histogram shows how many jobs (y-axis) wait for a certain amount of times their
ewti (y-axis). The majority of the waiting jobs with our approach stay in their
queue for a very short time, unlike in the case of PBS, where especially the jobs

2 The sum of those values may be lower than the total, because we do not report
detailed statistics for some minor queues.

776 A. Bartolini et al.

(a) Jobs in Queue

0.0 0.2 0.4 0.6 0.8 1.0
Queue time

0

5

10

15

20

25

30

35

N
u
m

b
e
r

o
f

jo
b
s

(b) Times in Queue

Fig. 2. Waiting jobs and queue time for BATCH1

in the longpar queue tend to be considerably delayed. We recall that currently
these jobs (which are characterized by longer durations than the remaining ones)
are forced to execute only at night, for fear or delaying jobs in the debug or
parallel queue. The evidence we provide here leads us to believe that such a
strong constraint is in fact not needed when using a proactive approach, and
its removal could provide benefits in terms of both queue time and average
utilization of the supercomputer resources.

Fig. 3 and Fig. 4 refer instead to our second trace, i.e. to the jobs in BATCH2.
This is another mixed group of jobs in terms of computational and resource
requirements, but in this case we have many more GPU requests, putting a
great strain on the dispatcher since GPUs in EURORA are a much fewer than
cores. The consequences of this situation can be observed in Fig. 3a and Fig. 3a,
respectively showing the number of running jobs and active cores over time. For
both PBS and our model we notice that the number of jobs in execution, after
an initial spike, reaches a cap in the middle section of the trace, although the
percentage of actives cores is not even close to 100%. This cap occurs because
in many cases, basically all waiting jobs are requiring a GPU and hence, even
if there are have available cores, they cannot be used. Despite that, we still
manage to achieve a largely improved schedule than the one of PBS in term of
number of running jobs. In particular, the average number of active GPUs with
our dispatcher is higher than 63: given that the whole supercomputer counts
only 64 GPUs, this means that the performance obtained by our approach for
the GPU-requiring jobs is very close to the theoretical limit.

We owe this result to the proactive nature of our scheduler, which allow us to
more efficiently use constrained resources. For example, suppose we have node
A and B, where A has n cores and 1 GPU while B has only n cores, and suppose
that A and B are fully occupied by a previous job. We also have job1 and job2
waiting to start their execution: job1 needs n cores and a GPU, whereas job2
requires only the cores and has higher priority (for PBS). When the job currently

Proactive Workload Dispatching on the EURORA Supercomputer 777

(a) Running Jobs (b) Active cores

Fig. 3. EURORA utilization on the second trace (BATCH2)

occupying nodes A and B terminates, PBS selects job2, then it checks if on A
there are enough cores to satisfy the requirements. Since this is true in our
example, PBS dispatches job2 on node A, using up all node cores and leaving
the GPU idle. In this scenario, job2 cannot start executing until the other job
has terminated. Conversely our dispatcher would have made a smarter - and in
this particular case obvious - decision, that is putting job1 on B, since it only
needs cores, and job2 on A, without further delay. In Figure 4 we can see our
performance in terms of queue times for BATCH2. We outperform PBS again
but at the same time we notice how the number of jobs in queue (Fig 4a) follow
a similar pattern in both systems, with a distinctive spike after a relatively low
initial value: this happens because of the congestion on the GPUs resources we
mentioned earlier – after all, optimization can provide improvement only as long
as spare resources are available.

(a) Jobs in Queue

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Queue time

0

2

4

6

8

10

12

14

16

N
u
m

b
e
r

o
f

jo
b
s

(b) Times in Queue

Fig. 4. Waiting jobs and queue time for BATCH2

778 A. Bartolini et al.

(a) Running Jobs (b) Active cores

Fig. 5. EURORA utilization on the third trace (BATCH3)

(a) Jobs in Queue

0 5 10 15 20 25 30
Queue time

0

20

40

60

80

100

120

140

160

N
u
m

b
e
r

o
f

jo
b
s

(b) Times in Queue

Fig. 6. Waiting jobs and queue time for BATCH3

Finally, we can eventually consider BATCH3 and the results are displayed in
Fig. 5 and Fig. 6. The jobs considered in this trace require, on average, a higher
number of cores than all other traces and, for a large part, were submitted to
the parallel queue. They require proportionally fewer GPUs than the jobs in
BATCH2, but still more than BATCH1. We manage again to obtain a better
usage of computational resources on EURORA, as revealed in Fig. 5b and from
the average percentage of actives cores (85% in our model versus 55% with PBS).
One more time, these results are due to a smarter management of the different
types of resources, although the limitations imposed by the relatively low number
of available GPUs still has an impact on the number of running jobs (Fig. 5a).
In Figure 6a we can see our model is able not to force to wait as many jobs
as PBS, but only during the first half of the trace, while after that point the
number of jobs in queue is comparable between the two dispatchers. One possible

Proactive Workload Dispatching on the EURORA Supercomputer 779

explanation for this is again the limit imposed by the GPUs availability, given
that not all the cores are occupied, which forces more jobs to wait when a certain
threshold for the number of GPUs required is reached.

5 Conclusions

In this paper have presented a CP based proactive workload dispatcher for the
HPC EURORA supercomputer and compared its performance with those of the
system currently in use (PBS). Our goal is to manage the computational re-
sources on the platform so as to achieve a twofold result: increase the machine
utilization and then reduce the job waiting times. A higher machine utilization
translates into a lower consumption from idle resources and a large number of
accepted jobs, with benefits for the supercomputer owner and on the environ-
mental side. Short waiting times correspond to a higher quality of service for the
system users.

The problem we tackled was not an easy one, owing to the need to manage
multiple objectives and to the limited availability of multiple, heterogeneous, re-
sources. In both the considered metrics (machine utilization and waiting times)
we considerably outperformed the current scheduler, showing that there are great
margins for improvement when a proactive approach is used. The current, funda-
mentally reactive approach currently in use proved to have particular difficulties
with the simultaneous management of different classes of resources (e.g. cores
and GPUs). As a future long-term goal, we plan to further develop our model
to replace (or at least complement) the scheduler currently in use on EURORA,
with focus on improving its energetic behavior. To achieve this result, we will
need to research and develop techniques to allow our approach to operate quickly
enough to match the frequency of job arrivals. Moreover, we will need to make
some adjustments to take into account the complex policies which regulate ex-
actly the services provided by the supercomputer to its users.

Acknowledgement. This work was partially supported by the FP7 ERC Ad-
vance project MULTITHERMAN (g.a. 291125). We also want to thank CINECA
and Eurotech for granting us the access to their systems.

References

1. Cineca inter-university consortium web site, http://www.cineca.it//en (accessed:
April 14, 2014)

2. Eurotech group web site, http://www.eurotech.com/en/ (accessed: April 14, 2014)
3. Ny times article about a survey by mc kinsey & co.,

http://www.nytimes.com/2012/09/23/technology/

data-centers-waste-vast-amounts-of-energy-belying-industry-image.html

(accessed: April 14, 2014)
4. Baptiste, P., Laborie, P., Le Pape, C., Nuijten, W.: Constraint-based scheduling and

planning. Foundations of Artificial Intelligence 2, 761–799 (2006)

http://www.cineca.it//en
http://www.eurotech.com/en/
http://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-amounts-of-energy-belying-industry-image.html
http://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-amounts-of-energy-belying-industry-image.html

780 A. Bartolini et al.

5. Bartolini, A., Cacciari, M., Cavazzoni, C., Tecchiolli, G., Benini, L.: Unveiling eurora
- thermal and power characterization of the most energy-efficient supercomputer in
the world. In: Design, Automation Test in Europe Conference Exhibition (DATE)
(March 2014)

6. Laborie, P.: IBM ILOG CP Optimizer for detailed scheduling illustrated on three
problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547,
pp. 148–162. Springer, Heidelberg (2009)

7. Laborie, P., Godard, D.: Self-adapting large neighborhood search: Application to
single-mode scheduling problems. In: Proc. of MISTA (2007)

8. Laborie, P., Rogerie, J.: Reasoning with conditional time-intervals. In: Proc. of
FLAIRS, pp. 555–560 (2008)

9. Altair PBS Works. Pbs professional R©12.2 administrator’s guide (2013),
http://resources.altair.com/pbs/documentation/

support/PBSProAdminGuide12.2.pdf

http://resources.altair.com/pbs/documentation/support/PBSProAdminGuide12.2.pdf
http://resources.altair.com/pbs/documentation/support/PBSProAdminGuide12.2.pdf

Scheduling B2B Meetings

Miquel Bofill	, Joan Espasa	,		, Marc Garcia, Miquel Palah́ı	,			, Josep Suy	,
and Mateu Villaret	

Departament d’Informàtica, Matemàtica Aplicada i Estad́ıstica
Universitat de Girona, Spain

{mbofill,jespasa,mgarciao,mpalahi,suy,villaret}@imae.udg.edu

Abstract. In this work we deal with the problem of scheduling meet-
ings between research groups, companies and investors in a scientific and
technological forum. We provide a CP formulation and a Pseudo-Boolean
formulation of the problem, and empirically test the performance of dif-
ferent solving techniques, such as CP, lazy clause generation, SMT, and
ILP, on industrial and crafted instances of the problem. The solutions
obtained clearly improve expert handmade solutions with respect to the
number of idle time slots and other quality parameters.

1 Introduction

Business-to-business (B2B) events typically provide bilateral meeting sessions
between participants with affine interests. These B2B events occur in several
fields like sports, social life, research, etc. In this paper we describe the appli-
cation developed to generate the timetable of such meetings in the 4th Forum
of the Scientific and Technological Park of the University of Girona.1 The goal
of this forum is to be a technological marketplace in Girona by bringing the op-
portunity to companies, research groups, investors, etc., to find future business
partnerships.

The scheduling of the meetings is a tough task and requires expertise at dis-
tinct levels: on the one side, the human matchmaker should choose the appropri-
ate matches maximizing somehow the potential results of the meetings according
to the interests of the participants. On the other hand side, the timetable gen-
eration must satisfy several constraints, e.g., avoid meeting collisions, avoid un-
necessary idle time between meetings for each participant or too many meeting
location changes, etc.

In previous editions of the forum, and in other events with B2B meetings
held in the park of the University of Girona, the human matchmaker made both
tasks by hand. This process showed to be highly unsatisfactory with respect to

� Supported by the Spanish Ministry of Science and Innovation (project TIN2012-
33042).

�� Supported by UdG grant (BR 2013).
��� Supported by UdG grant (BR 2010).

1 http://www.forumparcudg.com

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 781–796, 2014.
c© Springer International Publishing Switzerland 2014

http://www.forumparcudg.com

782 M. Bofill et al.

the human effort required and also with respect to the final result obtained.
Moreover, the growing participation makes the work much harder.

As far as we know, there are no many works dealing with this problem. On the
one hand, in [12] we can find a system that is used by the company piranha womex
AG for computing matchmaking schedules in several fairs. This system differs
from ours in some aspects. For instance, it does not consider forbidden time slots
but unpreferred ones, and it allows meeting collisions under the assumption that
the companies can send another participant. Moreover, it is based on answer
set programming, whereas we follow a different model-and-solve approach. On
the other hand, the system B2Match [1] is a commercial system which does not
support location change minimization.

Our work focuses on the generation of the meetings’ timetable. That is, the
human matchmaker provide us with the meetings that she wants to be scheduled
and we generate the timetable. We provide both a CP model and a Pseudo-
Boolean model for the problem, and compare the efficiency of different solving
techniques such as CP, lazy clause generation, SMT, and ILP, on several real
instances.

The obtained results for this year’s edition of the Forum of the Scientific
and Technological Park of the University of Girona have been very satisfactory.
Moreover, using instances of previous years we have observed that the number
of idle time slots could be dramatically improved.

The rest of the paper is structured as follows. In Section 2 we define the
problem at hand. In Section 3 we present the different models considered, and in
Section 4 we check the efficiency of distinct solvers on these models, using real
instances. Conclusions are given in Section 5.

2 The B2B Problem

In the Forum of the Scientific and Technological Park of the University of Girona,
the participants answer some questions about their interests and expertise, in
the event registration phase. This information is made public to the participants,
who may ask for bilateral meetings with other participants with a (normal or
high) priority. They also indicate their time availability for the meetings (notice
that in the forum there is also a conference with talks given by the participants
and therefore they should reserve some time slots for their own talks). Moreover,
the participants may ask for meetings in the morning or the afternoon session.
Then, according to this information (participants availability and priorities for
the desired meetings), the human matchmaker proposes a set of matches (meet-
ings) to be scheduled. Once this schedule is obtained, the matchmaker asks the
participants for confirmation of the meetings timetable. Then, the confirmed ones
are fixed and the rejected ones are retracted. With this partial timetable, and
considering the late arrivals of participants interested in having some meeting,
the expert tries to add other meetings in the timetable by individually contact-
ing with the participants. Finally, the distribution of tables is made. Below we
formally define the basic problem.

Scheduling B2B Meetings 783

Definition 1. Let P be a set of participants, T a list of time slots and L a set
of available locations (tables). Let M be a set of unordered pairs of participants
in P (meetings to be scheduled). Additionally, for each participant p ∈ P , let
f(p) ⊂ T be a set of forbidden time slots.

A feasible B2B schedule S is a total mapping from M to T ×L such that the
following constraints are satisfied:

– Each participant has at most one meeting scheduled in each time slot.

∀m1,m2 ∈M such that m1 �= m2 :

π1(S(m1)) = π1(S(m2)) =⇒ m1 ∩m2 = ∅ (1)

– No meeting of a participant is scheduled in one of her forbidden time slots.

∀p ∈ P,m ∈M :

p ∈ m =⇒ π1(S(m)) /∈ f(p) (2)

– At most one meeting is scheduled in a given time slot and location.

∀m1,m2 ∈M such that m1 �= m2 :

π1(S(m1)) = π1(S(m2)) =⇒ π2(S(m1)) �= π2(S(m2)) (3)

The B2B scheduling problem (B2BSP) is the problem of finding a feasible
B2B schedule.

The B2BSP is clearly in NP, and can be easily proved to be NP-complete by
reduction from the restricted timetable problem (RTT) in [11].

Typically, we are interested in schedules that minimize the number of idle
time periods. By an idle time period we refer to a group of idle time slots be-
tween a meeting of a participant and her next meeting. Before formally defining
this optimization version of the B2BSP, we need to introduce some auxiliary
definitions.

Definition 2. Given a B2B schedule S for a set of meetings M , and a partic-
ipant p ∈ P , we define LS(p) as the list of meetings in M involving p, ordered
by its scheduled time according to S:

LS(p) = [m1, . . . ,mk], with

∀i ∈ 1..k : p ∈ mi

∀m ∈M : p ∈ m⇒ ∃!i ∈ 1..k : mi = m

∀i ∈ 1..(k − 1) : π1(S(mi)) < π1(S(mi+1))

By LS(p)[i] we refer to the i-th element of LS(p), i.e., mi.

Definition 3. We define the B2B Scheduling Optimization Problem (B2BSOP)
as the problem of finding a feasible B2B schedule S, where the total number of
idle time periods of the participants is minimal, i.e., minimizes∑

p∈P

#{LS(p)[i] | i ∈ 1..|LS(p)| − 1, π1(S(mi)) + 1 �= π1(S(mi+1))} (4)

784 M. Bofill et al.

It is also quite common to ask for the minimization of location changes be-
tween consecutive meetings of the same participants. Due to the requirements of
the event organization (there is a phase where the human matchmaker manually
arranges new meetings by reusing time slots and participants’ availabilities), we
do this minimization with the time slots of the meetings already fixed.

Definition 4. We define the B2B location scheduling optimization problem
(B2BLOP) as the problem of, given a B2B schedule S, re-assign to each meeting
a location in a way such that the total number of location changes for consecutive
meetings of the same participant is minimal, i.e., minimizes∑

p∈P

#{LS(p)[i] |

i ∈ 1..|LS(p)| − 1, π1(S(mi)) + 1 = π1(S(mi+1)), π2(S(mi)) �= π2(S(mi+1))}

As an additional constraint, we consider the case where meetings may have
a morning/afternoon requirement, i.e., that some meetings must necessarily be
celebrated in the morning or in the afternoon. Let’s then consider that the set
of time slots T is divided into two disjoint sets T1 and T2 and, moreover, that
we have a mapping t from meetings m in M to {1, 2, 3}, where 1 means that the
meeting m must take place at some time slot in T1, 2 means that it must take
place at some time slot in T2, and 3 means that it does not matter. Then the
schedule should also satisfy the following requirement:

∀m ∈M :

(t(m) = 1 =⇒ π1(S(m)) ∈ T1) ∧ (t(m) = 2 =⇒ π1(S(m)) ∈ T2) (5)

Summing up, the scheduling process goes as follows:

1. The human matchmaker arranges the meetings taking into account the par-
ticipants’ requirements and preferences (who they want to meet, with which
priority, and a possible restriction to the morning or afternoon frame for
the meeting) and their forbidden hours (for example, the hours where the
participant is giving a talk at the event).

2. We solve the B2BSOP with the chosen meetings.
3. The human matchmaker removes the revoked meetings (for instance, one

participant may not be interested in a meeting requested by another partici-
pant) from the solution found in Step 2, and manually adds new last-arrival
meetings.

4. We solve the B2BLOP with the meetings proposed in Step 3.

3 Models

It is our aim to model the aforementioned problem by means of a declarative CP
language and evaluate the performance of several solvers taking this formulation
as input. To this purpose, MiniZinc [15] is almost a perfect target, as it is a

Scheduling B2B Meetings 785

medium-level solver-independent CP modelling language, which is supported by
an increasing number of backend solvers, constituting a de facto standard.

For the sake of completeness, we also consider WSimply [6], a system with a
similar language to that of MiniZinc, but supporting weighted constraints and
several predefined meta-constraints which allow to express, e.g., homogeneity in
violations, in order to enforce fairness of solutions. A proposal for incorporating
similar ideas into MiniZinc has been presented in [5].

Moreover, since a priori it is not clear if a high-level or a low-level model will
be better in terms of performance, we have considered two different models: a CP
model (with finite domain variables like ti, denoting the time at which meeting
i takes place) and a Pseudo-Boolean model (with 0/1 variables like xi,j , stating
that meeting i is celebrated at time j).

3.1 A WCSP Model for the B2BSOP

Here we give the WSimply version of the CP model for the B2BSOP, expressed
as a weighted CSP.

Parameters

int nParticipants; % # of participants

int nMeetings; % # of meetings

int nTables; % # of locations

int nTimeSlots; % # of time slots

int nMorningSlots; % # of morning time slots

int meetings[nMeetings,3]; % Meetings to schedule

int tnForbidden; % Total # of forbidden slots

int forbidden[tnForbidden]; % Forbidden slots

int indexForbidden[nParticipants+1]; % Start indices in forbidden

int nMeetingsParticipant[nParticipants]; % # of meetings of each part.

The number of afternoon time slots is nTimeSlots− nMorningSlots, and for
this reason it is not explicitly defined.

The meetings matrix has three columns, denoting the number of the first
participant, the number of the second participant and the type of session required
(1: morning, 2: afternoon, 3: don’t care) for each meeting to be scheduled.

The indexForbidden array contains the indices where the forbidden time slots
of each participant do begin in the forbidden array. This array has an extra
position in order to ease the modelling of the constraints (see the Forall state-
ments below), with indexForbidden[nParticipants+1] = tnForbidden+1.

Variables and Domains

Dom dTimeSlots = [1..nTimeSlots];

Dom dUsedSlots = [0..1];

Dom dTables = [0..nTables];

786 M. Bofill et al.

IntVar schedule[nMeetings]::dTimeSlots;

IntVar tablesSlot[nTimeSlots]::dTables;

IntVar usedSlots[nParticipants,nTimeSlots]::dUsedSlots;

IntVar fromSlots[nParticipants,nTimeSlots]::dUsedSlots;

The array variable schedule shall contain the time slot assigned to each
meeting.

The array variable tablesSlot will indicate the number of meetings to be
celebrated at each time slot (and hence the number of tables needed). Note that
by setting the domain to [0..nTables] we are already restricting the number
of tables available.

The variable usedSlots is a two dimensional 0/1 array representing, for each
participant i and time slot j, if i has a meeting scheduled at time j.

Finally, the variable fromSlots is a two dimensional 0/1 array such that, for
each participant i, fromSlots[i, j] = 1 for all j from the first time slot at which
a meeting for i is scheduled on.

These two last variables are used for optimization, as shown below.

Constraints

– Each participant has at most one meeting scheduled at each time slot, i.e.,
constraint (1). We force two meetings sharing one member to be scheduled
at a different time slot:

Forall (n in [1..nMeetings]) {

Forall (m in [n+1..nMeetings]) {

If (meetings[n,1] = meetings[m,1] Or

meetings[n,2] = meetings[m,1] Or

meetings[n,1] = meetings[m,2] Or

meetings[n,2] = meetings[m,2])

Then { schedule[n] <> schedule[m]; };

};

};

– No meeting of a participant is scheduled in one of her forbidden time slots,
i.e., constraint (2). We force, for each meeting, to be scheduled in a time slot
distinct from all forbidden time slots for both members of the meeting:

Forall(j in [1..nMeetings]) {

Forall(k in [indexForbidden[meetings[j,1]]..

indexForbidden[meetings[j,1]+1]-1]) {

schedule[j] <> forbidden[k];

};

Forall(k in [indexForbidden[meetings[j,2]]..

indexForbidden[meetings[j,2]+1]-1]) {

schedule[j] <> forbidden[k];

};

};

Scheduling B2B Meetings 787

– At most one meeting is scheduled in a given time slot and location, i.e., con-
straint (3). This constraint is ensured by matching the number of meetings
scheduled in time slot i with tablesSlot[i], whose value is bounded by the
number of tables available:

Forall(i in [1..nTimeSlots]) {

Sum([If_Then_Else(schedule[n] = i)(1)(0) | n in [1..nMeetings]],

tablesSlot[i]);

};

Note that we are not assigning a particular table to each meeting, but just
forcing that there are enough tables available for the meetings taking place
at the same time.

– Each meeting must be scheduled in a required (if any) set of time slots, i.e.,
constraint (5). Since we know the number of morning time slots, we can
easily enforce this constraint:

Forall (n in [1..nMeetings]) {

If (meetings[n,3] = 1) Then {schedule[n] =< nMorningSlots;}

Else {If (meetings[n,3] = 2) Then {schedule[n] > nMorningSlots;};

};

};

– Channeling constraints. In order to be able to minimize the number of idle
time periods, i.e., objective function (4), we introduce channeling constraints
mapping the variable schedule to the variable usedSlots. That is, if meet-
ing k is scheduled at time slot j, we need to state that time j is used by
both members of meeting k, by setting accordingly the corresponding value
in usedSlots:

Forall(j in [1..nTimeSlots]) {

Forall(k in [1..nMeetings]) {

(schedule[k] = j) Implies

(usedSlots[meetings[k,1],j] = 1 And

usedSlots[meetings[k,2],j] = 1);

};

};

In the reverse direction, for each participant e, her number of meetings as
derived from usedSlots must match her known total number of meetings
nMeetingsParticipant[e]:

Forall(e in [1..nParticipants]) {

Sum([usedSlots[e,f] | f in [1..nTimeSlots]],

nMeetingsParticipant[e]);

};

Next, we impose the required constraints on the variable fromSlots:

788 M. Bofill et al.

Forall(e in [1..nParticipants]) {

Forall(f in [1..nTimeSlots]) {

usedSlots[e,f] = 1 Implies fromSlots[e,f] = 1;

};

Forall(f in [1..nTimeSlots-1]) {

fromSlots[e,f] = 1 Implies fromSlots[e,f+1] = 1;

};

};

It is worth noting that, for any participant e, having fromSlots[e, f] = 1
for all f is possible, even if e has no meeting at time slot 1. However, the
soft constraints used for optimization will prevent this from happening, as
commented below.

Optimization. Minimization of the objective function (4) is achieved by means
of soft constraints, where a group of contiguous idle time slots between two
meetings of the same participant is given a cost of 1.

Soft constraints are labeled with Holes[e, f], where e denotes a participant
and f denotes a time slot, and state that if e does not have any meeting in time
slot f , but it has some meeting before, then she does not have any meeting in
the following time slot:

Forall(e in [1..nParticipants], f in [1..nTimeSlots-1]) {

#Holes[e,f]:((usedSlots[e,f] = 0 And fromSlots[e,f] = 1) Implies

usedSlots[e,f+1] = 0)@{1};

};

We claim that, with these constraints, an optimal solution will be one having
the least number of groups of contiguous idle time slots between meetings of the
same participant. Note that, for each participant, we increase the cost by 1 for
each meeting following some idle period. Moreover, it is not difficult to see that
the (possibly null) period of time preceding the first meeting of a participant e
will have no cost, since fromSlots[e, f] can freely take value 0 for all f prior to
the time of the first meeting.

Finally, since we are not only interested in optimal solutions, but in fair ones,
we can add the following meta-constraint, stating that the difference between
the number of idle periods of any two distinct participants is, e.g., at most 2:

homogeneousAbsoluteNumber([[Holes[e,f] | f in [1..nTimeSlots-1]] |

e in [1..nParticipants]], 2);

Note that this meta-constraint makes use of the labels introduced in the soft
constraints. It has as first argument a list of lists ll of soft constraint labels, and
as second argument a natural number n. It ensures that, for each pair of lists

Scheduling B2B Meetings 789

in ll, the difference between the number of violated constraints in the two lists
is at most n. The meta-constraints supported by WSimply are described in [6].
The precise syntax and semantics of the language can be found in a technical
report.2

The WSimply model presented above has been translated to MiniZinc in order
to test the performance of a greater number of different solvers (see Section 4).
The translation of hard constraints is straightforward, due to the similarities
between the two languages. Soft constraints have been translated into a linear
objective function, as they are not directly supported in MiniZinc. The meta-
constraint used in the WSimply model has been translated into the MiniZinc
constraints that would result from the translation process implemented in the
WSimply compiler.

3.2 A PB Model for the B2BSOP

Here we give the WSimply version of the Pseudo-Boolean model for the B2BSOP.
The parameters are the same as in the CP model but, in this case, we only use
0/1 variables.

Variables and Domains

Dom pseudo = [0..1];

IntVar schedule[nMeetings,nTimeSlots]::pseudo;

IntVar usedSlots[nParticipants,nTimeSlots]::pseudo;

IntVar fromSlots[nParticipants,nTimeSlots]::pseudo;

IntVar holes[nParticipants,nTimeSlots-1]::pseudo;

IntVar nHoles[nParticipants,5]::pseudo;

IntVar max[5]::pseudo;

IntVar min[5]::pseudo;

Here, the array variable schedule shall contain a 1 at position i, j if and only
if meeting i is celebrated at time slot j.

The variables usedSlots and fromSlots are the same as in the CP case.
The variable holes will indicate, for each participant, when a time slot is the

last of an idle period of time.
The variable nHoles will hold the 5-bit binary representation of the number

of idle time periods of each participant, i.e., the number of groups of contiguous
idle time slots between meetings of each participant.

The variables max and min will hold the 5-bit binary representation of an
upper bound and a lower bound of the maximum and minimum values in nHoles,
respectively. As we will see, these variables will be used to enforce fairness of
solutions, by restricting their difference to be less than a certain value.

All variables but schedule are only necessary for optimization.

2 http://imae.udg.edu/recerca/lap/simply/docs/technical-report.pdf

http://imae.udg.edu/recerca/lap/simply/docs/technical-report.pdf

790 M. Bofill et al.

Constraints

– Each participant has at most one meeting scheduled at each time slot :

Forall (f in [1..nTimeSlots]) {

Forall (n in [1..nParticipants]) {

AtMost([schedule[m,f] |

m in [1..nMeetings],

(meetings[m,1] = n Or meetings[m,2] = n)], 1, 1);

};

};

The atMost(l, e, n) global constraint (where l is a list, e is an expression of
the same type of the elements in l, and n is an integer arithmetic expression)
forces the number of elements in l that match e to be at most n.

– No meeting of a participant is scheduled in one of her forbidden time slots :

Forall (r in [1..nMeetings]) {

Forall (p in [indexForbidden[meetings[r,1]]..

indexForbidden[meetings[r,1]+1]-1]) {

schedule[r,forbidden[p]] = 0;

};

Forall (p in [indexForbidden[meetings[r,2]]..

indexForbidden[meetings[r,2]+1]-1]) {

schedule[r,forbidden[p]] = 0;

};

};

– At most one meeting is scheduled in a given time slot and location. We
ensure this by forcing that no more than nTables meetings are scheduled in
the same time slot:

Forall(f in [1..nTimeSlots]) {

AtMost([schedule[n,f] | n in [1..nMeetings]],1,nTables);

};

– Each meeting must be scheduled in the required (if any) set of time slots. By
means of sums, we force that each meeting is scheduled exactly once in its
required set of time slots:

Forall (n in [1..nMeetings]) {

If (meetings[n,3] = 1) Then {

Sum([schedule[n,f] | f in [1..nMorningSlots]], 1);

[schedule[n,f] = 0 | f in [nMorningSlots+1..nTimeSlots]];

} Else {

If (meetings[n,3] = 2) Then {

[schedule[n,f] = 0 | f in [1..nMorningSlots]];

Sum([schedule[n,f] | f in [nMorningSlots+1..nTimeSlots]], 1);

} Else {

Sum([schedule[n,f] | f in [1..nTimeSlots]], 1);

}};

};

Scheduling B2B Meetings 791

Note that list comprehensions can be used to post constraints.
– Channeling constraints. The channeling constraints are analogous to before:

Forall(j in [1..nTimeSlots]) {

Forall(k in [1..nMeetings]) {

(schedule[k,j] = 1) Implies

(usedSlots[meetings[k,1],j] = 1) And

(usedSlots[meetings[k,2],j] = 1));

};

};

Forall(e in [1..nParticipants]) {

Sum([usedSlots[e,f] | f in [1..nTimeSlots]],

nMeetingsParticipant[e]);

};

Forall(e in [1..nParticipants]) {

Forall(f in [1..nTimeSlots]) {

usedSlots[e,f] = 1 Implies fromSlots[e,f] = 1;

};

Forall(f in [1..nTimeSlots-1]) {

fromSlots[e,f] = 1 Implies fromSlots[e,f+1] = 1;

};

};

Optimization. The soft constraints are the same as in the CP model:

Forall(e in [1..nParticipants], f in [1..nTimeSlots-1]) {

((usedSlots[e,f] = 0 And fromSlots[e,f] = 1) Implies

usedSlots[e,f+1] = 0)@{1};

};

The homogeneity meta-constraint homogeneousAbsoluteNumber used in the
CP model cannot be used in the Pseudo-Boolean model since, in its current
implementation, WSimply will translate this meta-constraint into a set of non
(Pseudo-)Boolean constraints. For this reason, this meta-constraint needs to be
simulated here. We proceed as follows.

On the one hand, we post the constraints for the array variable holes which
contains, for each participant, the last time slot of each idle period of time:

Forall(e in [1..nParticipants], f in [1..nTimeSlots-1]) {

(usedSlots[e,f] = 0 And fromSlots[e,f] = 1 And usedSlots[e,f+1] = 1)

Implies holes[e,f]=1;

holes[e,f]=1 Implies

(usedSlots[e,f] = 0 And fromSlots[e,f] = 1 And usedSlots[e,f+1] = 1);

};

On the other hand, we post the constraints defining the 5-bit binary represen-
tation of the number of idle time periods of each participant (the sum1 function
returns the sum of the elements in the list it receives as argument):

792 M. Bofill et al.

Forall(e in [1..nParticipants]){

sum1([holes[e,f] | f in [nTimeSlots-1]]) =

16*nHoles[e,1]+8*nHoles[e,2]+4*nHoles[e,3]+2*nHoles[e,4]+nHoles[e,5];

};

Finally, we constrain the difference between the number of idle time periods
of any two distinct participants to be at most 2. We do this by constraining
the difference between an upper bound and a lower bound of the maximal and
minimal number, respectively, of idle time periods of all participants, to be at
most 2:

Forall(e in [1..nParticipants]){

16*max[1]+8*max[2]+4*max[3]+2*max[4]+max[5] >=

16*nHoles[e,1]+8*nHoles[e,2]+4*nHoles[e,3]+2*nHoles[e,4]+nHoles[e,5];

16*nHoles[e,1]+8*nHoles[e,2]+4*nHoles[e,3]+2*nHoles[e,4]+nHoles[e,5]

>= 16*min[1]+8*min[2]+4*min[3]+2*min[4]+min[5];

};

2 >= 16*max[1]+8*max[2]+4*max[3]+2*max[4]+max[5] -

16*min[1]+8*min[2]+4*min[3]+2*min[4]+min[5];

4 Experiments and Comparisons with Manually
Generated Solutions

In this section we compare the performance of several state-of-the-art CSP,
WCSP, ILP and PB solvers with the proposed models. We also analyse which
is the improvement of our solution over some handmade solutions from past
editions of the forum.

As said, apart from the two (CP and PB) WSimply models presented, we
have also considered a MiniZinc model in order to test the performance of a
greater number of different solvers. The MiniZinc model considered is an accurate
translation of the first WSimply (CP) model. All models and data used in this
paper can be found in http://imae.udg.edu/recerca/lap/simply/.

For solving the WSimply instances we have used the SMT solver Yices
1.0.33 [10] through its API, with two different solving methods:

– WPM1, as described in [6]. This is an adaptation of the algorithms intro-
duced in [7,14] for (weighted) MaxSAT to the context of weighted MaxSMT.

– SBDD, as described in [9]. In this approach, the weighted SMT constraints
are replaced by a linear objective function, which is encoded as a shared
BDD using the compact and generalized arc-consistent encoding of [3].

We have also considered the translation of the CP model written in WSimply
into ILP, and used IBM ILOG CPLEX 12.6 for solving the resulting instances.
The translation of high-level CP models into ILP is a new feature supported by
the WSimply system, using similar transformations to that applied for the PB
case, as described in [8].

http://imae.udg.edu/recerca/lap/simply/

Scheduling B2B Meetings 793

For solving the MiniZinc instances we have used Gecode 4.2.1 [17], a state-of-
the-art CP solver, and Opturion 1.0.2 [2], winner of the 2013MiniZinc Challenge3

in the free search category, using lazy clause generation [16].
For solving the PB WSimply instances we have used CPLEX 12.6, SCIP

3.0.1 [4] and clasp 3.1.0 [13]. The two former obtained the best results in the
last PB competition4 in the category ”optimisation, small integers, linear con-
straints”, which fits our problem. However, the latter has shown a much better
performance on this problem. The transformations used to obtain plain PB in-
stances from WSimply are described in [8].

All experiments have been run on a cluster of Intel R© XeonTMCPU@3.1GHz
machines, with 8GB of RAM, under 64-bit CentOS release 6.3, kernel 2.6.32,
except for the experiments with Opturion, where we have used a slightly differ-
ent computer (Intel R© CoreTMCPU@2.8GHz, with 12GB of RAM, under 64-bit
Ubuntu 12.04.3, kernel 3.2.0) due to some library dependence problems. We have
run each instance with a cutoff of 2 hours.

We have considered four industrial instances provided by the human expert:
instances tic-2012a and tic-2013a, from past editions of a technology and health
forum, and instances forum-2013a and forum-2014a, from the previous year and
this year’s editions of the scientific and technological forum.

Taking as basis these four instances, we have crafted five more instances of
distinct hardness by increasing the number of meetings, reducing the number
of locations and changing the morning/afternoon preferences of some meetings.
Table 1 summarizes the results of the experiments.

Looking at the results, it can be said that clasp is the best solver on the easier
instances (only beaten by CPLEX in two cases), and SBDD is the best on the
harder instances, both of them using conflict driven solvers. The latter is also
the most robust method when considering all instances, with a good compromise
between solving time and quality of the solutions. Due to the fact that SBDD is
based on representing the objective function as a BDD, and iteratively calling
the decision procedure (an SMT solver) with successively tighter bounds, we can
obtain a feasible solution at each stage of the optimization process. The WPM1
method also exhibits good performance on many instances, but it cannot provide
suboptimal solutions as, roughly, it approaches to solutions from the unsatisfiable
side.

An interesting aspect is that, in all real instances from past editions (tic-2012a,
tic-2013a and forum-2013a) we obtained an optimum of 0 idle time periods be-
tween meetings of the same participant, whereas the expert handmade solutions
included 20, 39 and 99 idle time periods respectively, as shown in Table 2. Note
also that only for some crafted instances, and the bigger real instance from the
last forum, we could not certify the optimality of the solutions found within two
hours.

In Section 3 we have not included the model used for the B2BLOP due to
lack of space. However, one aspect of the model that deserves a comment is the

3 http://www.minizinc.org/challenge2013/results2013.html
4 http://www.cril.univ-artois.fr/PB12/

http://www.minizinc.org/challenge2013/results2013.html
http://www.cril.univ-artois.fr/PB12/

794 M. Bofill et al.

Table 1. Solving time (in seconds) and optimum found (number of idle time periods)
per instance, model and solver. The instances are tagged with (#meetings, #partic-
ipants, #locations, #time slots, #morning time slots). TO stands for time out and
MO for memory out. The cutoff is 2 hours. For aborted executions we report the
(sub)optimum found if the solver reported any. Best running times and upper bounds
of the objective function are indicated in boldface.

Instance
CP Model PB Model

WSimply MiniZinc WSimply
WPM1 SBDD CPLEX Gecode Opturion CPLEX SCIP clasp

tic-2012a
(125,42,21,8,0)

2.0 0 2.7 0 3375.6 0 1.4 0 8.1 0 7.3 0 126.1 0 0.1 0

tic-2012c
(125,42,16,8,0)

51.1 0 235.4 0 TO 4 TO - 2206.2 0 18.0 0 1692.7 0 977.9 0

tic-2013a
(180,47,21,10,0)

25.0 0 65.2 0 TO 9 2923.1 0 394.5 0 1345.3 0 TO 13 2.1 0

tic-2013b
(184,46,21,10,0)

5.6 0 24.1 0 TO 8 3.4 0 108.0 0 121.0 0 4975.4 0 2.1 0

tic-2013c
(180,47,19,10,0)

TO - TO 8 TO 18 TO - TO 8 TO 4 TO 31 TO -

forum-2013a
(154,70,14,21,13)

5542.3 0 3128.1 0 MO 83 TO - 1142.8 0 TO 20 TO - 52.4 0

forum-2013b
(195,76,14,21,13)

TO - TO 12 TO - TO - TO 50 MO - TO - TO 24

forum-2013c
(154,70,12,21,13)

TO - TO 20 MO 50 TO - TO 23 TO 30 TO - TO -

forum-2014a
(302,78,22,22,12)

TO - TO 7 TO - TO - TO 90 MO - TO - TO -

use of meta-constraints, to ensure fairness in the number of location changes of
the participants. With the meta-constraint

homogeneousAbsoluteNumber([[Changes[e,f] | f in [1..nTimeSlots-1]]

| e in [1..nParticipants]], Hfactor);

the user can look for solutions where the difference on the number of location
changes between participants is at most HFactor, and with the meta-constraint

maxCost([[Changes[e,f] | f in [1..nTimeSlots]]

| e in [1..nParticipants]], MaxChanges);

the user can look also for solutions where the number of location changes per
participant is at most MaxChanges.

We have solved the B2BLOP with the schedules obtained from real instances
of previous editions (tic-2012a, tic-2013a and forum-2013a), in order to compare
the obtained results to the handmade ones, and with the schedule proposed
for this year’s edition of the forum. This last schedule, which we refer to as
forum-2014a-t, has been obtained by the human expert by retracting 6 cancelled
meetings, and by adding 15 last arrival meetings, to the schedule obtained for
forum-2014a with the WPM1 method, in approximately 2.5 hours. The resulting
B2BLOP instances have been solved with the WPM1 method in approximately
3, 120, 420 and 480 seconds respectively.

In Table 2 we provide a comparison on the quality of the solutions with respect
to the number of idle time periods and location changes, when solved by hand
and with WSimply.

Scheduling B2B Meetings 795

Table 2. Number of idle time periods and location changes for the real instances when
solved by hand and with WSimply. The maximum difference (homogeneity) between
those numbers for distinct participants is given between parentheses.

Instance
idle periods # location changes

Handmade WSimply Handmade WSimply

tic-2012a 20 (4) 0 (0) 112 (7) 103 (3)
tic-2013a 39 (4) 0 (0) 191 (9) 156 (4)
forum-2013a 99 (5) 0 (0) 27 (5) 105 (4)
forum-2014a-t 22 (2) 249 (6)

Note that the number of idle time periods is reduced to 0 when solving the
problem with WSimply in almost all cases. In spite of this, we are still able to
reduce the number of location changes with respect to the handmade solutions,
except for the case of forum-2013a. But the solution obtained with WSimply in
this case is still significantly better than the handmade one, which implied 99 idle
time periods and was far less homogeneous. In any case, we are prioritizing the
minimization of idle time periods of participants and the fairness of solutions,
and leave location change minimization as a secondary desirable property.

5 Conclusion

In this work we have provided two distinct models for the B2BSOP and com-
pared the efficiency of several types of solvers when dealing with some industrial
and crafted instances of this problem, in a ’model-and-solve’ approach. We also
provide several new nontrivial industrial timetabling instances to the community.

The solutions found have been highly satisfactory for the human matchmaker,
as they dramatically improve the handmade ones with respect to the number of
idle time periods as well as location changes for the participants and, obviously,
with quite less effort. Another aspect that the human matchmaker has really
appreciated is the facility of adding meta-constraints to the model, like the ones
we have used for achieving some level of fairness in the solutions. Fairness is
crucial since participants may complain if they have the feeling of being dis-
criminated, either with respect to idle time periods or with respect to location
changes. The possibility of being able to fix partial solutions and adding new
meetings to schedule has also been appreciated, since this is a hard task to do
typically the day before the event due to last meeting request arrivals.

With respect to performance, we have noted that clasp is especially good
on small instances, while WSimply (with the SBDD approach) appears to be
better on bigger ones. However, it is not easy to draw conclusions, as we have
not tuned the model for any solver in particular. The good results in the PB
approach encourage us to develop a plain SAT model in the future, and to use
MaxSAT solvers on this problem. Finally, it would be interesting to consider
a handcrafted MIP model, and compare it against the MIP models obtained
automatically from our models.

796 M. Bofill et al.

References

1. http://www.b2match.com (accessed April 11, 2014)
2. http://www.opturion.com (accessed April 11, 2014)
3. Ab́ıo, I., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E., Mayer-Eichberger,

V.: A New Look at BDDs for Pseudo-Boolean Constraints. Journal of Artificial
Intelligence Research (JAIR) 45, 443–480 (2012)

4. Achterberg, T.: SCIP: solving constraint integer programs. Mathematical Program-
ming Computation 1(1), 1–41 (2009)

5. Ansótegui, C., Bofill, M., Palah́ı, M., Suy, J., Villaret, M.: W-MiniZinc: A Proposal
for Modeling Weighted CSPs with MiniZinc. In: Proceedings of the 1st Interna-
tional Workshop on MiniZinc (MZN 2011) (2011)

6. Ansótegui, C., Bofill, M., Palah́ı, M., Suy, J., Villaret, M.: Solving weighted CSPs
with meta-constraints by reformulation into Satisfiability Modulo Theories. Con-
straints 18(2), 236–268 (2013)

7. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (Weighted) Partial MaxSAT through
Satisfiability Testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 427–
440. Springer, Heidelberg (2009)

8. Bofill, M., Espasa, J., Palah́ı, M., Villaret, M.: An extension to Simply for solv-
ing Weighted Constraint Satisfaction Problems with Pseudo-Boolean Constraints.
In: XII Spanish Conference on Programming and Computer Languages (PROLE
2012), Almeŕıa, Spain, pp. 141–155 (September 2012)

9. Bofill, M., Palah́ı, M., Suy, J., Villaret, M.: Boosting Weighted CSP Resolution
with Shared BDDs. In: Proceedings of the 12th International Workshop on Con-
straint Modelling and Reformulation (ModRef 2013), Uppsala, Sweden, pp. 57–73
(September 2013)

10. Dutertre, B., de Moura, L.: The Yices SMT solver (August 2006) Tool paper avail-
able at, http://yices.csl.sri.com/tool-paper.pdf (accessed April 11, 2014)

11. Even, S., Itai, A., Shamir, A.: On the complexity of time table and multi-
commodity flow problems. In: Foundations of Computer Science, 16th Annual
Symposium, pp. 184–193. IEEE (1975)

12. Gebser, M., Glase, T., Sabuncu, O., Schaub, T.: Matchmaking with Answer Set
Programming. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS, vol. 8148,
pp. 342–347. Springer, Heidelberg (2013)

13. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A Conflict-Driven
Answer Set Solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007.
LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)

14. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for Weighted Boolean
Optimization. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508.
Springer, Heidelberg (2009)

15. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.: MiniZ-
inc: Towards a Standard CP Modelling Language. In: Bessière, C. (ed.) CP 2007.
LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

16. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation.
Constraints 14(3), 357–391 (2009)

17. Schulte, C., Lagerkvist, M., Tack, G.: Gecode. Software download and online ma-
terial at the website (2006), http://www.gecode.org (accessed April 11, 2014)

http://www.b2match.com
http://www.opturion.com
http://yices.csl.sri.com/tool-paper.pdf
http://www.gecode.org

Solving a Judge Assignment Problem

Using Conjunctions of Global Cost Functions

Simon de Givry1, Jimmy H.M. Lee2, Ka Lun Leung2, and Yu Wai Shum2

1 MIA-T, UR 875, INRA, 31320 Castanet Tolosan, France
Simon.Degivry@toulouse.inra.fr

2 Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

{jlee,klleung,ywshum}@cse.cuhk.edu.hk

Abstract. The Asia Pacific Information and Communication Technol-
ogy Alliance (APICTA) Awards has been held for 12 years, rewarding
the most innovative solutions in different categories of Information and
Communication Technology (ICT). To maintain professionalism, judges
are nominated from each economy, and appointed to panels of different
categories. Judge assignment is a difficult task, since it has to optimize
between expertise, distribution of workloads, fairness and sometimes even
political correctness. In this paper, we describe our experience in ana-
lyzing and automating the APICTA judge assignment process using Soft
Constraint Programming for the 13th APICTA hosted in Hong Kong on
November, 2013. We chose the weighted constraint satisfaction (WCSP)
framework since both hard constraints and preferences can be modeled
by cost functions. Consistency algorithms can effect strong propagation
by redistributing costs among cost functions. We observe that a num-
ber of restrictions in the judge assignment problem involves counting. In
our first attempt, we utilized the Soft Among

var global cost function
for these counting conditions but we could not solve the problem within
a day. Soft GCC

val is another possible global cost function to model
counting, which is what we used in the second attempt. We can compute
the optimum in a few hours, which is far from practical.

We apply similar techniques as Régin to show that the combination
of Soft GCC

val and Soft Among
var is flow-based. We further prove

that the combination results in a flow-based projection-safe cost function,
meaning that soft arc consistencies can be enforced efficiently. By using
this combination in our final model, we can solve the judge assignment
problem within a few minutes. We consider this a success story where
theory and practice meet.

1 Introduction

TheAsia Pacific Information andCommunicationTechnologyAlliance (APICTA)
Awards1 is an international Awards Program. It aims at increasing the awareness

1 http://www.apicta.org/

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 797–812, 2014.
c© Springer International Publishing Switzerland 2014

http://www.apicta.org/

798 S. de Givry et al.

of Information and CommunicationTechnology (ICT) in the community, facilitat-
ing technology transfers, and offering business matching opportunities, by provid-
ing networking and product benchmarking opportunities to ICT innovators and
entrepreneurs. Up to 2013, 13 economies have joined the APICTAAwards, includ-
ing China, Malaysia, Thailand, to name a few. In 2013, the APICTA Awards was
hosted in Hong Kong2. Preparation becomes a hard work due to limited resources.
The APICTA Awards organizers require planning for two different scenarios.

1. Scheduling the presentations for nominated candidates, and;
2. Assigning judges into panels for each award category representing different

aspects of the current ICT fields.

The former subjects to venue and time constraints, which has been completed
beforehand. The latter involves various logistical and political factors, which are
optimization in nature. Judges are nominated by different economies. After nom-
ination, judges of each category are selected by a standard procedure to ensure
professionalism and fairness. However, the manual procedure is tedious and in-
efficient, resulting in large number of complaints from judges and economies. As
the resources are limited, the organizers seek for automation that can produce
high-quality assignments under a tight schedule.

To eliminate manual and inefficient processes and improve the quality of as-
signments, we introduce an automated solution to generate judge assignments
using weighted constraint satisfaction [9]. We identify a number of global cost
functions [1,5] in the problem model, which help capture all the restriction and
preference requirements much more succinctly. More importantly, global cost
functions provide much stronger propagation. We also benefited further by con-
joining global cost functions into a single global cost function, which utilizes the
flow algorithm from Régin [8]. During the assignment process, we can deliver
a new assignment within a few minutes every time requirements are changed.
With our automation, judge assignments can be finalized in two weeks.

The rest of the paper is arranged as follows. Section 2 further describes the
scenario. We give the current practice in Section 3, which also explains our
choice of solving techniques. Section 4 analyzes the problem and lists all the
constraints and preferences. Section 5 gives the corresponding WCSP model,
and shows how global cost functions can be conjoined in this problem. Section
6 shows that conjoining global cost functions can give optimal solutions in a
few minutes. Section 7 discusses the consequence after introducing automated
approaches. We conclude the paper in Section 8.

2 Problem Description

The APICTA Awards is an international awards program organized by APICTA.
The competition is divided into 16 categories, ranging from School Project to
Industry Application. Each category opens for candidates in 13 economies to

2 http://www.apicta2013.com/

http://www.apicta2013.com/

Judge Assignment Problem 799

join. Each economy nominates at most three entries in each category. Nomi-
nated candidates travel to the economy hosting the Awards, and present their
ICT solutions to a panel of judges specialized in the corresponding category.
The judge panel picks the award winners of each category from all candidates
according to their innovation and quality of work. The assessment of each cate-
gory usually takes one day, but some categories require two days due to a large
number of entries.

The hosting economy of APICTA Awards needs to plan for the presentation
schedule for each nominated candidate and the assignments of categories for each
nominated judge. The presentation schedule is constrained by the availability of
presentation rooms and the number of entries in each category. In APICTA 2013,
the presentation schedule had been planned by the organizers and given as parts
of the input to the judge assignment process.

To ensure a fair and equitable judging process, the organizers follow a set of
procedures to assign judges. Each economy has nominated at most five special-
ists or experts in ICT fields as judges of the APICTA Awards. The chief judge
panel examines their qualifications and finalizes a list of eligible judges. In the
APICTA Awards 2013, 61 judges from 13 economies are eligible. Each judge has
a set of declared specialties, which corresponds to the categories in the APICTA
Awards. Some judges have experience in judging the APICTA Awards before
but some are new. The judge assignment process begins by assigning judges into
different categories according to their specialties and experiences. Judges com-
ment on the assignments and the organizers make modifications accordingly.
This process iterates until all judges are satisfied. After the judge assignments
have been confirmed, the chief judge and advisory judge panels choose a head
judge for each category. The whole process is completed after all head judges
are chosen. The assignments will then be announced to the public along with
the presentation schedule. Therefore, the process must be completed within one
month before the APICTA Events. However, the assignments usually go through
a series of modifications due to negotiations and political arguments. An auto-
mated solution is desirable to ensure the judge panels can be formed on time.

The assignment of judge panels must satisfy the following criteria.

Size Restriction. Each panel must be approximately the same size, consisting
of 3 to 5 judges. Larger judge panels are preferred.

Maintain Fairness. To ensure no domination of an economy, judges in the
same panel must come from different economies. The assignment must also
minimize chances that judges assess entries from their own economies, which
are unavoidable but give an impression of conflicts during evaluation.

Balanced Workload. As most judges are sponsored by APICTA, the assign-
ment must ensure a reasonable amount of workloads to every judge. No
judges should be left behind, and no judges should be in more than one
panel in a day of the APICTA Events. To avoid work overload, if judges are
in a category spanning two days, they should not serve in other categories
throughout the Events.

800 S. de Givry et al.

Respect Expertise. To ensure professional judgments, no judges should be
assigned to categories outside of their declared expertises.

Ensure Experienced Leaders. Each judge panel must have at least one judge
that had been a head judge before, so that their experience can be passed to
inexperienced judges. More experienced judges in each panel are preferred.

Political Correctness. Due to political issues, judges from some economies
should not be placed together in the same categories.

Allow Partial Assignments. To increase flexibility, the organizers can force
or avoid certain judges to be in a particular category.

3 Current Practice versus Constraint Programming

In the past 12 years, the judge assignments were done purely by hand following
hunches. Since the criteria and objectives are not laid down explicitly, the process
was far from transparent and the initial results were always complained by judges
and economy leaders. The results were revised purely by hand and iterated
for numerous times until (forced) consensus were reached. The processes were
tedious and inefficient, especially when there were always many modifications
due to negotiations and political arguments, but the resources were limited.

We propose a CP approach to develop the optimization engine in solving the
judge assignment problem. A key advantage of CP is the separation of concerns
in modeling and solving. Modeling involves determination of variables, domains,
constraints, and objective functions. The rich constraint language allows for the
model being relatively close to problem statements, making the model easy to
verify and adapt. Indeed, after we delivered the first prototype, the hosting orga-
nization proposed various changes in problem statements before the assignment
was finalized, and we could deliver a new solution by simply changing the model
but not the implementation of solvers.

A number of attempts were tried before we arrived at the final approach and
model. Instead of traditional constraint optimization, we chose the weighted con-
straint satisfaction problem (WCSP) framework after we analyzed the problem.
Due to its optimization nature, the problem contains not just hard constraints
but also a number of preferences. The “soft-as-hard” approach [7] in traditional
constraint optimization is weak when compared with WCSP framework, which
specialized in modeling preferences. As shown by Lee and Leung [5], the strong
∅-inverse consistency [5], which is a weak consistency in WCSP, is stronger
in propagation than the “soft-as-hard” approach [7] in constraint optimization.
We also identified global cost functions in the problem. Global cost functions in
WCSP provide not just a simple language to express complex ideas, but also help
increase propagation power. However, the native WCSP model failed to solve the
problem within a day. We re-modeled the problem by grouping multiple global
cost functions as a single one. The result could be found in a few hours, still far
from being practical. We further conjoined more global cost functions as a single
one. We show that the conjoined global cost function can utilize the flow algo-
rithm from Régin [8]. Eventually, we manage to deliver a new solution within a

Judge Assignment Problem 801

few minutes even if the problem statements are changed. The assignment could
be finalized after two weeks of blood and sweat.

4 Domain Analysis

In the following, we formally analyze the judge assignment problem and identify
the corresponding constraints and objectives. The APICTA Events are hosted
during DAY = {day1, . . . , dayP }. In APICTA 2013, P = 2. In dayj , a set
of categories CATj ⊆ CAT , where CAT = {cat1, . . . , catM} and M = 16 in
APICTA 2013, are judged. Each category catk will have a set of entries, denoted
by entry(catk), for judges to assess. We represent a judge as judi ∈ JUD, where
JUD ∈ {jud1, . . . , judN} andN = 61 in APICTA 2013. Each judge judi is nom-
inated from the economy From(judi) ∈ ECO, where ECO = {eco1, . . . , ecoQ}
and Q = 13 in APICTA 2013. Each judge judi ∈ JUD had also declared the spe-
cialties defined as SPi ⊆ CAT . The task at hand is to find out a time table TT ,
where TTi,j represents the set of categories assigned to the judge judi ∈ JUD
at dayj ∈ DAY , subject to a set of hard constraints and preferences.

4.1 Hard Constraints

The judge assignment must obey the following constraints.

Constraints on judge panel sizes
1. The size of each judge panel is at most 5 and at least 3.

Constraints on judge attendance
2. Each judge judi can only be in at most 1 judge panel in each day.
3. Each judge judi must be in at least 1 judge panel throughout the event.
4. To ensure fairness of judging, if judi and judj are in the same judge panel,

they cannot be from the same economy, i.e. From(judi) �= From(judj).

Constraints on cross-day categories A cross-day category cati ∈ CATcross is one
spanning across two days due to a large number of entries. In APICTA 2013, 3
out of 17 are cross-day categories.
5. Judges in a cross-day category cannot be in another category, and;
6. Each judge can only be in at most 1 judge panel of a cross-day category.

Constraints on experienced judges
7. A judge judi is a previous head judge, i.e. judi ∈ JUDhead ⊆ JUD iff judi

was a head judge in APICTA before APICTA 2013. Each judge panel of a
category must have at least 1 previous head judge.

Constraints on judge placement
8. Given two specific economies ecoX ∈ ECO and ecoY ∈ ECO, where ecoX �=

ecoY . Judges from ecoX and ecoY cannot be placed in the same panel.

802 S. de Givry et al.

Constraints on specialties
9. A judge judi is in category catk iff catk is a specialty of judi, i.e. catk ∈ SPi.

Constraints on pre-setting We define, for each judge judi ∈ JUD, Assigni ⊆
SPi to be the categories that judi must be in, and Avoidi ⊆ SPi to be the cate-
gories that judi must not be in. In APICTA 2013, |Assigni| ≤ 1 and |Avoidi| ≤ 1
for every judge judi ∈ JUD.
10. A judge judi is in category catk ∈ Assigni iff Assigni �= ∅, and;

11. A judge judi is not in category catk ∈ Avoidi iff Avoidi �= ∅.

Constraint on judge workload
12. The workload of a judge judi in a category catk is the number of entries in

catk. All judges evaluate at least 7 entries in total.

4.2 Preferences

The objective is to minimize the weighted sum of the following preference func-
tions. The weights determine the importance of each preference, i.e. the most
important one will have the highest weight. We adjusted the weights through
experiments.

Preference on conflicts Define a conflict as a function conf : JUD×CAT �→ N,
which returns the number of entries in catk from From(judi), i.e. the same
economy as judi.
13. Minimize the total number of conflicts, i.e.

min
∑

judi∈JUD

∑
dayj∈DAY

∑
catk∈TTi,j

conf(judi, catk)

Preference on maximizing judge panel sizes The assignment prefers larger judge
panels,and penalize the judge panels with size less than 5.
14. Minimize the total penalties due to small panel sizes, i.e.

min
∑

dayj∈DAY

∑
catk∈CATj

(5− |{judi | catk ∈ TTi,j}|)

Preference on maximizing experienced share A judge judi ∈ JUDexp is experi-
enced iff judi has judged in APICTA before. Note that JUDhead ⊆ JUDexp.
More experienced judges in each panel are preferred, and penalize the judge
panels with number of experienced judges less than 5.
15. Minimize the total penalties due to less experienced judges in panels, i.e.

min
∑

dayj∈DAY

∑
catk∈CATj

(5− |{judi | catk ∈ TTi,j ∧ judi ∈ JUDexp|)

Judge Assignment Problem 803

5 Problem Modeling

We first give a background on weighted constraint satisfaction problems (WCSP)
and global cost functions. While there are many ways of formulating the judge
assignment problem into WCSP, we give the one that allows natural expression
of cost functions and utilizes global cost functions. Based on the model, we
further propose how the global cost functions can be combined to give stronger
propagation power.

5.1 Weighted Constraint Satisfaction and Global Cost Functions

A WCSP [9] is a tuple (X ,D, C,�). X is a set of variables {x1, x2, . . . , xn}. Each
variable has its finite domain D(xi) ∈ D containing possible values for xi. A
tuple � ∈ L(S) = D(xs1) × . . . ×D(xsn) is used to represent an assignment on
S = {xs1 , . . . , xsn} ⊆ X . The notation �[xi] denotes the value assigned to xi in
�, and �[S′] denotes the tuple formed from projecting � onto S′ ⊆ S. C is a set
of cost functions. Each cost function WS ∈ C has its scope S ⊆ X , and maps
� ∈ L(S) to a cost in the valuation structure V (�) = ([0 . . .�],⊕,≤). V (�)
contains a set of integers [0 . . .�] with standard integer ordering ≤. � is a finite
or infinite integer corresponding to forbidden assignments. Addition ⊕ is defined
by a⊕ b = min(�, a+ b). Subtraction : is defined only for a ≥ b, a: b = a− b
if a �= � and � : a = � for any a. The cost of a tuple � ∈ L(X) in a WCSP is
defined as cost(�) =

⊕
WS∈C WS(�[S]). A tuple � is an optimal valid solution of

a WCSP if cost(�) is minimum among all tuples in L(X) and cost(l) < �.
A global cost function [1,5] is a cost function with special semantics, based on

which efficient algorithms can be designed for consistency enforcements. In par-
ticular, we denote a global cost function as Soft GC

μ
m(S) if it is derived from

the corresponding hard global constraint GC with variable scope S, a violation
measure μ, and a weight constant m. The cost function Soft GC

μ
m(S) returns

m ·μ(�) to indicate how much a tuple � ∈ L(S) has violated GC, or 0 if the tuple
satisfies GC. Two examples of violation measures for global constraints involves
counting are μvar and μval: Soft GC

var
1 (S) returns the minimum number of

assignments modified to satisfy GC [7]; while Soft GC
val
1 (S) returns the num-

ber of values exceeding the boundaries allowed by GC [11]. We assume m = 1 if
m is not specified. If m = �, a global cost function represents a hard constraint.

5.2 Problem Formulation

Define P = (X ,D, C,�) to be the WCSP model for the judge assignment prob-
lems. The variable xi,j ∈ X gives the category that judi assesses on dayj . The
domain D(xi,j) of each variable xi,j is the set of categories CATj ⊆ CAT judged
on dayj , with a dummy category cat0 to indicate no judging on a day. Each con-
straint and preference are enforced as follows.

Constraints on judge panel sizes. Constraint 1 can be enforced by the global cost
function soft among

var(S, lb, ub, V), which returns max(0, lb− t(�), t(�)− ub)

804 S. de Givry et al.

for each tuple � ∈ L(S), where t(�) = |{xi ∈ S | �[xi] ∈ V }| [10]. For each
dayj ∈ DAY , we place one Soft Among

var
� (Xj , 3, 5, {cati}) for each cati ∈

CATj , where Xj = {xi,j | judi ∈ JUD}.

Constraints on judge attendance. Constraint 2 is always satisfied for all valid as-
signments. Constraint 3 can be enforced by placing one Soft among

var
� ({xi,j |

dayj ∈ DAY }, 1, |DAY |, CAT) for each judi. As |DAY | = 2, binary table cost
functions were used instead. Constraint 4 can be enforced by the global cost
functions Soft GCC

val(S,LB,UB) [11]. Given Σ =
⋃

xi∈S D(xi). Define the
number of occurrences of a value v ∈ Σ in � by #(�, v) and two functions s(�, v)
and e(�, v) as follows.

s(�, v) =

{
LB(v):#(�, v), if #(�, v) ≤ LB(v)
0, otherwise

e(�, v) =

{
#(�, v): UB(v), if #(�, v) ≥ UB(v)
0, otherwise

The global cost function Soft GCC
val is defined for each tuple � ∈ L(S) as fol-

lows [11].

Soft GCC
val(S,LB,UB)(�) =

⊕
v∈Σ

s(�, v)⊕
⊕
v∈Σ

e(�, v)

Define {Xj,ecot} to be the partition of X according to the day of the events and
the economies the judges represent, i.e. xi,j ∈ Xj,ecot iff From(judi) = ecok.
For each dayj and economy ecot, we place one Soft GCC

val
� (Xj,ecot , LB,UB),

which LB(catk) = 0 for all catk ∈ CATj ∪{cat0} and UB are defined as follows.

UB(catk) =

{
1, k �= 0,
|X |, otherwise.

(1)

Constraints on cross-day categories. Constraints 5 and 6 can be enforced by
the binary cost function JoinOnlyCrossCat placed on each pair of variables
{(xi,h, xi,k) | h �= k ∧ dayh, dayk ∈ DAY }. The cost function is defined for each
pair of values (vh, vk), where vh ∈ D(xi,h) and vk ∈ D(xi,k) as follows.

JoinOnlyCrossCat{xi,h,xi,k}(vh, vk) =

⎧⎨
⎩

0, if vh /∈ CATcross and vk /∈ CATcross

0, if vh ∈ CATcross and vk = vh
�, otherwise

Constraints on experienced judges. Constraint 7 enforced by placing one
Soft GCC

val
� ({xi,j | judi ∈ JUDhead}, LB,UB) for each dayj ∈ DAY , where

LB and UB are defined as follows.

LB(catj) =

{
1, j �= 0,
0, otherwise.

UB(catj) =

{
1, j �= 0,
|X |, otherwise.

Constraints on judge placement. Constraint 8 can be fused in constraint 4 by
considering ecoX and ecoY as a single economy.

Judge Assignment Problem 805

Constraints on specialties. Constraint 9 can be enforced by placing the unary
cost function Specialty on each variable xi,j ∈ X . The function Specialty is
defined for each value v ∈ D(xi,j) as follows.

Specialty{xi,j}(v) =

{
0, if v = cat0 or v ∈ SPi

�, otherwise

Constraints on pre-setting. Constraints 10 and 11 can be enforced by the unary
cost functions Set and Unset placed on each variable xi,j ∈ X , defined for each
value v ∈ D(xi,j) as follows.

Set{xi,j}(v) =

⎧⎨⎩
0, if v ∈ Assigni

or Assigni = ∅;
�, otherwise.

Unset{xi,j}(v) =

⎧⎨⎩
�, if v ∈ Avoidi

and Avoidi = ∅;
0, otherwise.

Constraint on judge workload. Define entry(cat0) = 0. Since |DAY | = 2, con-
straint 12 can be simply enforced by the binary cost function WLLimit placed
on each pair of variables {(xi,h, xi,k) | h > k ∧ dayh, dayk ∈ DAY }. The cost
function is defined for each pair of values (vh, vk), where vh ∈ D(xi,h) and
vk ∈ D(xi,k), as follows.

WLLimit{xi,h,xi,k}(vh, vk) =

⎧⎨⎩
�, if entry(vh) + entry(vk) < 7 if vh �= vk, or

entry(vh) < 7 if vh = vk;
0, otherwise

Preference on conflicts. We define the weight of preference 13 as εconflict. Pref-
erence 13 can be enforced by the unary cost function Conflict placed on each
variable xi,j ∈ X , which Conflict{xi,j}(v) = εconflict · conf(judi, v) for every
v ∈ D(xi,j).

Preference on maximizing judge panel size. We observe that preference 14 is
a special case of Soft Among

var. We define the weight of preference 14 as
εmaxsize. One Soft Among

var
εmaxsize

(Xj , 5, 5, {catk}) is posted for each dayj and
each category catk.

Preference on maximizing experienced share. Define the weight of preference 15
as εexp. One Soft Among

var
εexp

({xi,j | judi ∈ JUDexp}, 5, 5, {catk}) is posted for
each dayj and each category catk.

5.3 Conjoining Cost Functions

As the original WCSP model cannot be solved within a day, we consider conjoin-
ing global cost functions to further reduce the search space. Lee et al. [6] give a
general technique on conjoining global cost functions using linear programs, and
show that enforcing consistencies on a conjoined cost function is stronger than
enforcing the same consistencies on separate cost functions. In this section, we
give a special case on conjoining global cost functions using flow networks.

806 S. de Givry et al.

A flow network G = (V,E,w, c, d) is a connected directed graph (V,E), in
which each edge e ∈ E has a weight we, a capacity ce, and a demand de ≤ ce.
An (s, t)-flow f from a source s ∈ V to a sink t ∈ V of a value value(f) in G is
defined as a mapping from E to real numbers such that:

–
∑

(s,u)∈E f(s,u) =
∑

(u,t)∈E f(u,t) = value(f);

–
∑

(u,v)∈E f(u,v) =
∑

(v,u)∈E f(v,u) ∀ v ∈ V \ {s, t};
– de ≤ fe ≤ ce ∀ e ∈ E.

For simplicity, we call an (s, t)-flow as a flow if s and t have been specified.
The cost of a flow f is defined as cost(f) =

∑
e∈E wefe. A minimum cost flow

problem of a value α is to find the flow f of value(f) = α such that its cost is
minimum. If α is not given, it is assumed to be the maximum value among all
flows.

A global cost function WS is flow-based if WS can be represented as a flow
network G = (V,E,w, c, d) such that min{WS(�) | � ∈ L(S)} = min{cost(f) |
f is the maximum (s, t)-flow of G}, where s ∈ V is the fixed source and t ∈
V is the fixed destination. One example of flow-based global cost function is
Soft GCC

val [11].
Theglobal cost functions{Soft Among

var(Xj , lbi, ubi, {catk}) | catk ∈ CAT }
in constraint 1, preferences 14 and 15 can be conjoined respectively as a single
Soft GCC

val for each dayj ∈ DAY . We show as follows.

Proposition 1. Given a set {Soft Among
var(S, lbi, ubi, Ωi) | i = 1 . . . h}. If

Ωi ∪ Ωj = ∅ for i �= j and |Ωi| = 1 for every i, the following holds for every
tuple � ∈ L(S):

Soft GCC
val(S,LB,UB)(�) =

m⊕
i=0

Soft Among
var(S, lbi, ubi, Ωi)(�)

The lower bound LB is defined as LB(v) = lbi iff v ∈ Ωi, and the upper bound
UB is defined as UB(v) = ubi iff v ∈ Ωi.

Proof. Define vi ∈ Ωi. By definitions, for every tuple � ∈ L(S), max(0, lbi −
t(�), t(�)− ubi) = s(�, vi)⊕ e(�, vi). Results follow. ��

By conjoining Soft Among
var into Soft GCC

val, the problem instance can
be solved within a few hours, but is still far from being practical. We further con-
join Soft Among

var in constraint 1 and preference 14 and Soft GCC
val in con-

straints 4 and 8 into a single global cost function Soft GCC Among
val+bvar.We

found that the Soft GCC Among
val+bvar is flow-based, allowing consistencies

in WCSP to be enforced by flow networks.
The cost functions {Soft Among

var
� (Xj , 3, 5, {catk}) | catk ∈ CAT } in con-

straint 1 and {Soft Among
var(Xj , 5, 5, {catk}) | catk ∈ CAT } in preference 14

can be conjoined into a single Soft Among
bvar(Xj , 3, 5, CAT) for each dayi ∈

DAY . The new violation measure μbvar forbids the number of specified values
exceeding the boundaries given by cost functions, and favor the tuple containing

Judge Assignment Problem 807

more specified values. The cost function Soft Among
bvar(S, lb, ub,Ω) is defined

for each � ∈ L(S) as follows.

Soft Among
bvar(S, lb, ub,Ω) =

{
ub: t(�), if t(�) ≥ lb and t(�) ≤ ub
�, otherwise

We further conjoin Soft Among
bvar and Soft GCC

val into
Soft GCC Among

val+bvar . The violation measure μval+bvar is a con-
joined violation measure from μbvar and μval used by Soft Among

bvar

and Soft GCC
val respectively. Given a set of global cost func-

tions CGCC = {Soft GCC
val(Si, LBi, UBi) | i = 1, . . . ,m} and

CAmong = {Soft Among
bvar(Kj, lbj, ubj, Ωj) | j = 1, . . . , h}, the cost

function Soft GCC Among
val+bvar({(Si, UBi, LBi)}{(Kj, lbj, ubj, Ωj)}) is

defined as a global cost function formed by conjoining CGCC and CAmong, i.e.

for every tuple � ∈ L(
⋃m

i=1 Si ∪
⋃h

j=1Kj):

Soft GCC Among
val+bvar(�) =

m⊕
i=1

Soft GCC
val(Si, LBi, UBi)(�[Si])⊕

h⊕
j=1

Soft Among
bvar(Kj , lbj, ubj, Ωj)(�[Kj])

We show Soft GCC Among
val+bvar is flow-based as follows.

Theorem 1. The cost function Soft GCC Among
val+bvar({(Si, LBi, UBi)},

{(K, lbj, ubj, Ωj)}) is flow-based if the following condition holds.

– Si ∩ Sj = ∅ if i �= j;
– LB(v) = 0 for v ∈ Σi, where Σi =

⋃
xj∈Si

D(xj), for each i = 1, . . . ,m;
– Ωi ∩Ωj = ∅ if i �= j, and;
– K =

⋃m
i=1 Si for each j = 1, . . . , h.

Proof. Without loss of generality, we assume Σ =
⋃h

j=1Ωj . If there ex-

ists a value u ∈
⋃h

j=1Ωj that does not exist in Σ, we can add a dummy
Soft Among

var(K, 0, |K|, {u}) into the set of cost functions.
The flow network can be constructed using the method suggested by Régin [8].

We construct a single flow network G = (V,E,w, c, d) representing a set of
Soft GCC

val and Soft Among
var as follows.

– V = K ∪ {υiv | v ∈ Σi} ∪ {μj | j = 1, . . . , h} ∪ {s, t};
– E = As ∪AK ∪Av ∪At ∪Agcc−ex∪Aamong−short ∪Aamong−vio ∪Aamong−ex,

where:
• As = {(s, xj) | xj ∈ X};
• AK = {(xj , υiu) | xj ∈ Xi ∧ u ∈ D(xj)};
• Av = {(υiu, μj) | u ∈ Vj ∧ j = 1, . . . , h};
• At = {(μj , t) | j = 1, . . . , h};
• Agcc−ex = {(υiu, μj) | u ∈ Σi ∧ u ∈ Ωj} ;

808 S. de Givry et al.

• Aamong−vio = {(s, μj) | j = 1, . . . , h};
• Aamong−short = {(s, μj) | j = 1, . . . , h}, and;
• Aamong−ex = {(μj, t) | j = 1, . . . , h}.

– ce =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
UBi(u), if e = (υiu, μj) ∈ Av

ubj, if e = (μj , t) ∈ At

ubj : lbj, if e = (s, μj) ∈ Aamong−short

|K|, if e ∈ Agcc−ex ∪ Aamong−ex

1, otherwise

– de =

{
ubj , if e = (μj , t) ∈ At

0, otherwise

– we =

⎧⎨⎩
�, if e ∈ Aamong−vio ∪Aamong−ex

1, if e ∈ Agcc−ex ∪ Aamong−short

0, otherwise

In the flow network, there may exist multiple edges between two nodes. The
edges Av enforce Soft GCC

val while Agcc−ex give the corresponding violation
cost. The edges At enforce Soft Among

bvar while Aamong−short give the corre-
sponding violation cost. The edges Aamong−ex and Aamong−vio ensure all tuples
have corresponding maximum flows.

Using the similar reasoning as in Proposition 7 given by Régin [8], a maximum
(s, t)-flow in G corresponds to an assignment to K. With the similar reasoning
by van Hoeve [11], the minimum cost of maximum flows corresponds to the
minimum of Soft GCC Among

val+bvar. Results follow. ��

An example of the flow network G is shown in Figure 1, based on a set
of variables S = {xi | i = 1, . . . 5} and D(xi) = {cat1, cat0} ⊆ CAT . The
Soft GCC Among

val+bvar consists of the following cost functions.

– Soft Among
bvar({x1, x2, x3, x4, x5}, 2, 5, {cat1})

– Soft Among
bvar({x1, x2, x3, x4, x5}, 0, 5, {cat0})

– Soft GCC
val({x1, x2}, LB,UB), and;

– Soft GCC
val({x3, x4, x5}, LB,UB), where LB and UB are defined as in

constraint 4.

The pair of numbers on the edges represent the demands and capacities of the
edges. If no numbers are on the edge, the edge has zero demand and unit capacity.
If the edge is dotted, the edge has unit weight. Otherwise, the edge has zero
weight. For simplicity, we omit the edges with weight equal to �. The thick lines
show the flow corresponding to the tuple � = (cat1, cat1, cat0, cat0, cat0) having
a cost of 4: 1 from Soft GCC

val and 3 from Soft Among
bvar.

We further show that the conjoined cost function is flow-based projection-
safe [5]. If the cost function is flow-based projection-safe, stronger consistencies
like GAC* [2,5], FDGAC* [5], and weak EDGAC* [5] can be enforced in polyno-
mial time throughout the search. Stronger consistencies help remove more search
places, and reduce the runtime if the reduction in search space can compensate
the time on enforcing consistencies.

A global cost functionWS is flow-based projection-safe [5] iffWS is flow-based,
and for all W ′

S derived from WS by a series of projections and extensions, W ′
S is

Judge Assignment Problem 809

(0,5)

(0,3)
(0,5)

(0,5)

(0,5)

(0,5)

(0,5)

(0,5)

(5,5)

(5,5)

x2

x1

x3

x4

x5

υ1,1

υ2,1

υ1,0

υ2,0

μ1

μ0
s

t

Fig. 1. An example of the flow network

flow-based. Lee and Leung [5] give sufficient conditions on flow-based projection-
safety.

1. WS is flow-based, with the corresponding network G = (V,E,w, c, d) with a
fixed source s ∈ V and a fixed destination t ∈ V ;

2. there exists a subjective function mapping each maximum flow f in G to
each tuple �f ∈ L(S), and;

3. there exists an injection mapping from an assignment (xi, v) that set the
variable xi to v ∈ D(xi) to a subset of edges Ē ⊆ E such that for all
maximum flow f and the corresponding tuple �f ,

∑
e∈Ē fe = 1 whenever

�f [xi] = v, and
∑

e∈Ē fe = 0 whenever �f [xi] �= v

We show that Soft GCC Among
val+bvar is flow-based projection-safe as fol-

lows.

Theorem 2. If the cost function Soft GCC Among
val+bvar({(Si, UBi, LBi)},

{(Kj, lbj, ubj, Ωj)}) satisfies the conditions stated in Theorem 1, it is flow-based
projection-safe.

Proof. Theorem 1 already shows the Soft GCC Among
val+bvar satisfies con-

ditions 1 and 2. In addition, the edge (xj , υiu) corresponds to assigning u to xj .
Results follow. ��

The cost functions in constraints 1, 4, 8, and preference 14 satisfies the condi-
tions given in Theorem 1 if they are grouped by dayj ∈ DAY . The conjoined cost
function shown below, defined for dayj ∈ DAY , is flow-based projection-safe.

Soft GCC Among
val+bvar ({(Xj,ecot , LB,UB) | ecot ∈ ECO},

{(Xj , 3, 5, {cati}) | cati ∈ CAT })

By applying the above conjoined cost functions, the assignments can be found
within a few minutes, even if the requirements are changed frequently. In the
following, we show the robustness of our solution by experiments.

810 S. de Givry et al.

6 Experiments

As the data from previous years are not available, the experiments are purely
based on the data from APICTA 2013 and conducted on Toulbar2 3, an open-
source WCSP solver. In the experiments, variables are assigned in lexicographic
order. Value assignments start with the values having the minimum unary costs.
Weak EDGAC* [5] is enforced during search with no initial upper bound. Each
test is conducted on a Linux Cluster (4 × 2GHz CPU) machine with 3GB mem-
ory. In all experiments, we set εconflict = 1, εmaxsize = 200, and εexp = 50.

We first compare the runtime in solving the APICTA 2013 instance using
different models. The solver cannot give the optimal for the native model as
stated in Section 5.2 after 3 days of execution. The model applying Proposition 1
can be solved after 5.3 hours. With soft GCC Among

val+bvar , the solver gives
the optimal solution in 107.6 seconds.

We further show the robustness of our solution by simulating the judge assign-
ment process using the conjoined model. We mark the instance from APICTA
2013 as instance 0. Each instance i, where i > 0, is modified from instance 0.
We keep around 10% of judge assignments in the solution of instance 0 as the
preset assignments of instance i. We randomly modify the requirements of the
remaining 90% of judges on top of instance i as follows.

– Remove a judge and add a new judge from a different economy;
– Modify the specialties of a judge;

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700 800 900

Frequency

Runtime (seconds)

Fig. 2. Frequency distribution according to the runtime

3 https://mulcyber.toulouse.inra.fr/projects/toulbar2/

https://mulcyber.toulouse.inra.fr/projects/toulbar2/

Judge Assignment Problem 811

– Avoid a judge to be in a specific category, and;
– Withdraw some entries so that the conflict is changed.

We generate 400 instances, each of which is allowed to run for 15 minutes.4

We present the results as the frequency distribution as shown in Figure 2. The
x-axis is the runtime and the y-axis gives the number of instances able to be
solved within the runtime. We observe that 93% of the instances can be solved
within 200 seconds, while only 29 out of 400 instances cannot be solved within
15 minutes.

7 Discussion

After we gave an initial solution to the organizers, we were asked to do modifica-
tions, as simulated in the previous section, before finalization. The modifications
were unpredictable, but we could cope with the modifications and gave an up-
dated optimal solution within a few minutes.

The organizers also received far less requests on modifications from the judges
on the assignments. Throughout the process, only one judge complained the
assignments, and it was resolved by correcting the specialties.

Besides, our solution speeded up the process. The judge assignment needs
to be completed one month before the APICTA event. In previous years, the
assignment was completed only a few days before the deadline. With automation,
the process was completed in two weeks, including endorsement from advisory
judges. Compared with previous years, the time required was greatly reduced.

8 Conclusion

Judge assignment problems have been studied in the field of sport tournaments.
Lamghari and Ferland [4] formulates the problems into linear programs and
solves by tabu search. Fernando et al. [3] also use integer linear programming to
compute referee assignments in football matches.

Our contributions are three-fold. First, we implement an automated solution
for APICTA 2013 to generate the most preferred assignments of each judge to
each category. Our solution helps lay down all restrictions and preference ex-
plicitly, and generate a new assignment within a few minutes every time the
requirements and preferences are changed, shortening the process to two weeks.
Second, we give a real-life example on global cost functions [1, 5] in WCSP.
By using Soft GCC

val [11] and Soft Among
var [10], WCSP can model re-

strictions that involves several variables. Third, we further give special cases of
conjoining a group of Soft GCC

val and Soft Among
var via flow networks.

The original model cannot be solved in a day. We refine the model by group-
ing a set of Soft Among

var into Soft GCC
val, but still not practical. We

further conjoin Soft Among
var and Soft GCC

val in the model as a single

4 The solver and instances can be found online:
http://www.cse.cuhk.edu.hk/~klleung/cp14/JudgeAssign.tar.gz

http://www.cse.cuhk.edu.hk/~klleung/cp14/JudgeAssign.tar.gz

812 S. de Givry et al.

Soft GCC Among
val+bvar , which is flow-based projection-safe [5]. We show

by experiments that conjoining global cost functions can solve an instance within
a few minutes after requirements are modified.

We plan to refine our solution for judge assignments in APICTA 20145 to
produce solutions in a shorter time. Eventually, we hope our technique can be
applied to other similar scenarios such as banquet seating planning.

Acknowledgment. We are grateful to the anonymous referees for their con-
structive comments. The work described in this paper was substantially sup-
ported by grant CUHK413710 from the Research Grants Council of Hong Kong
SAR and grant F-HK019/12T from the Consulate General of France of Hong
Kong and the Research Grants Council of Hong Kong SAR.

References

1. Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner, T.: Soft
Arc Consistency Revisited. Artificial Intelligence 174, 449–478 (2010)

2. Cooper, M., Schiex, T.: Arc Consistency for Soft Constraints. Artifical Intelli-
gence 154, 199–227 (2004)

3. Fernando, A., Durán, G., Guajardo, M.: Referee Assignment in the Chilean Foot-
ball League Using Integer Programming and Patterns. International Transactions
in Operational Research 21(3), 415–438 (2014)

4. Lamghari, A., Ferland, J.A.: Assigning Judges to Competitions of Several Rounds
Using Tabu Search. European Journal of Operational Research 210(3), 694–705
(2011)

5. Lee, J.H.M., Leung, K.L.: Consistency Techniques for Global Cost Functions in
Weighted Constraint Satisfaction. Journal of Artificial Intelligence Research 43,
257–292 (2012)

6. Lee, J.H.M., Leung, K.L., Shum, Y.M.: Consistency Techniques for Poly-
time Linear Global Cost Functions in Weighted Constraint Satisfaction. CON-
STRAINTS 19(3), 270–308 (2014)

7. Petit, T., Régin, J.-C., Bessière, C.: Specific Filtering Algorithm for Over-
Constrained Problems. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 451–463.
Springer, Heidelberg (2001)

8. Régin, J.-C.: Combination of among and cardinality constraints. In: Barták, R.,
Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 288–303. Springer, Heidel-
berg (2005)

9. Schiex, T., Fargier, H., Verfaillie, G.: Valued Constraint Satisfaction Problems:
Hard and Easy Problems. In: Proceedings of IJCAI 1995, pp. 631–637 (1995)

10. Solnon, C., Cung, V., Nguyen, A., Artigues, C.: The Car Sequencing Problem:
Overview of State-of-the-Art Methods and Industrial Case-Study of the ROAD-
DEF 2005 Challege Problem. European Journal of Operational Research 191(3),
912–927 (2008)

11. van Hoeve, W.-J., Pesant, G., Rousseau, L.-M.: On Global Warming: Flow-based
Soft Global Constraints. J. Heuristics 12(4-5), 347–373 (2006)

5 https://www.facebook.com/APICTA2014

https://www.facebook.com/APICTA2014

Worst-Case Scheduling of Software Tasks
A Constraint Optimization Model to Support Performance Testing

Stefano Di Alesio1,2, Shiva Nejati2, Lionel Briand2, and Arnaud Gotlieb1

1 Certus Centre for Software Verification and Validation, Simula Research Laboratory, Norway
{stefano,arnaud}@simula.no

2 Interdisciplinary Centre for Reliability, Security and Trust (SnT), University of Luxembourg,
Luxembourg

{shiva.nejati,lionel.briand}@uni.lu

Abstract. Real-Time Embedded Systems (RTES) in safety-critical domains,
such as maritime and energy, must satisfy strict performance requirements to
be deemed safe. Therefore, such systems have to be thoroughly tested to ensure
their correct behavior even under the worst operating conditions. In this paper,
we address the need of deriving worst case scenarios with respect to three com-
mon performance requirements, namely task deadlines, response time, and CPU
usage. Specifically, we investigate whether this worst-case analysis can be ef-
fectively re-expressed as a Constrained Optimization Problem (COP) over the
space of possible inputs to the system. Solving this problem means finding the
sets of inputs that maximize the chance to violate performance requirements at
runtime. Such inputs can in turn be used to test if the target RTES meets the
expected performance even in the worst case. We develop an OPL model for
IBM ILOG CP OPTIMIZER that implements a task priority-based preemptive
scheduling, and apply it to a case study from the maritime and energy domain.
Our validation shows that (1) the input to our model can be provided with rea-
sonable effort in an industrial setting, and (2) the COP effectively identifies test
cases that maximize deadline misses, response time, and CPU usage.

1 Introduction: Performance Testing in Safety-Critical Systems

Systems in domains such as avionics, automotive, and maritime are often safety-critical,
implying that their failure could result in catastrophic consequences. For this reason,
their safety-related software components are usually subject to third-party certifica-
tion to be deemed operationally safe. In particular, software certification has to take
into account performance requirements specifying how the system should execute on
its hardware platform, and how it should react to its environment [15]. Such require-
ments often specify constraints on response time, jitter, task deadlines, and computa-
tional resources utilization [13, 20]. Widely used safety standards, such as IEC 61508
and IEC 26262, state that performance testing is highly recommended to provide an
evidence that the system is safe [6]. However, safety-critical systems are progressively
relying on real-time embedded software that features multi-threaded application design,
highly configurable operating systems, and multi-core architectures for computing plat-
forms [17]. The concurrent nature of embedded software also entails that the order of

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 813–830, 2014.
c© Springer International Publishing Switzerland 2014

814 S. Di Alesio et al.

external events triggering the systems tasks is often unpredictable [12]. Such increas-
ing software complexity renders performance testing more and more challenging. This
aspect is reflected by the fact that most existing software testing approaches target only
the system functionality, even though the degradation in performance can have more
severe consequences than mere incorrect behavior [27].

In this paper, we consider three common classes of performance requirements, con-
cerning respectively hard real-time, soft real-time, and resource constraints. Specifi-
cally, (1) we relate the hard real-time constraints to task deadlines requirements, stating
that the system tasks should always terminate before a given completion time. Such
strict requirements entail that even a single deadline miss severely compromises the
system operational safety. (2) For the soft real-time constraints, we consider response
time requirements, stating that the system should respond to external inputs within a
specified time. Failure to do so poses negative consequences over the Quality of Ser-
vice (QoS). (3) Finally, we consider CPU usage requirements, stating that the system
should always keep a certain percentage of free CPU. Limiting the CPU usage is a nec-
essary safety precaution. Indeed, if the CPU usage trespasses a certain threshold, the
system may fail to timely respond to safety-critical alarms.

To check whether the system satisfies these requirements, we need to identify worst-
case scenarios with respect to deadline misses, response time, and CPU usage. Such
scenarios are determined by the way tasks are scheduled to execute at runtime by the
Real-Time Operating System (RTOS). The schedules in turn depend on real-time, un-
predictable events, on constraints deriving from software design, and on the system ex-
ecution platform. For instance, critical tasks in RTES are usually ready to be executed
upon triggers that depend on the external environment. Furthermore, the system design
constrains the way tasks interact with each other, specifying temporal relationships, and
communication through shared resources with exclusive access. Finally, RTOS are in
general configured with a priority-based scheduling policy, which entails that the low-
est priority task must be preempted when a higher priority task is ready for execution.
However, this preemption can only occur when the running task is not locking a shared
resource, and is only necessary when there is no available processor core. This mix
of real-time, software design, and execution platform constraints on task scheduling
renders the analysis of runtime scenarios challenging in the context of RTES.

Our work focuses on performance testing, whose goal is to identify scenarios that
exercise a system in a way to either violate performance requirements, or be as close
as possible to doing so. Consistent with widely used terminology [5], we refer to this
activity as stress testing. We propose a strategy to find combinations of system inputs
that maximize the likelihood of violating performance requirements. Such input combi-
nations are characterized by sequences of arrival times for aperiodic tasks in the target
software system, and we refer to each sequence as a stress test case. Finding these test
cases is not trivial, since the set of all possible arrival times for aperiodic tasks quickly
grows as the system size increases. Therefore, it is practically impossible to investigate
all the potential ways in which the arrival times can determine task schedules at run-
time. This reason motivates the need of a systematic search that effectively finds stress
test cases likely to reveal deadline misses, long response time, and high CPU usage.

Worst-Case Scheduling of Software Tasks 815

Contributions of This Paper. The main contribution of this paper is to address the
systematic generation of stress test cases by applying Constraint Programming. Specif-
ically, we present a Constraint Optimization Model (COP) to automate the generation
of stress test cases, which is inspired by the work done in this field to solve tradi-
tional scheduling problems [4]. We evaluate our model using a practical application on
a RTES from the maritime and energy domain. We cast the problem of generating stress
test cases as an OPL model designed for the IBM ILOG CP OPTIMIZER, that models
the system design, executing platform, and performance requirements. The OPL model
in this paper builds on our previous work [10,11,22]. Specifically, we started [22] with
a COMET optimization model, where we addressed the validation of CPU Usage and
response time. Then [10], we devised an OPL version of the model where we focused
on task deadlines. Finally [11], we included a dedicated search procedure for a smarter
labeling of variables, and compared our constraint-based approach with metaheuristic
search techniques. Our earlier work included a variable boolean matrix showing tasks
execution over time, that proved to severely limit the efficiency of our model. In this
work, we significantly improve the data structures representing task executions, and
demonstrate the applicability of our new COP to an industrial case study. Specifically,
1. We provide a detailed OPL model which implements a task priority-based schedul-

ing process by considering a discretized matrix, as opposed to a boolean one, which
represents task executions over time. In addition, we address the search for solu-
tions adapting the dedicated heuristic proposed in previous work [11].

2. We demonstrate the efficiency of our OPL model by applying it to an industrial
case study representing a multi-threaded I/O driver with several instances running
concurrently on a multi-core platform. Our approach successfully found scenarios
violating the three performance requirements in a few minutes.

2 The Fire and Gas Monitoring System

The main motivation behind our work comes from a case study of a Fire and gas Mon-
itoring System (FMS) in the maritime and energy domain. The goal of the system is
to monitor potential gas leaks in oversea oil extraction platforms, and trigger an alarm
in case a fire is detected. The system displays to human operators data coming from
smoke and heat detectors, and gas flow sensors. When the system receives critical data
from the hardware sensors, it automatically triggers actuators, such as fire sprinklers
and audio/visual alarms. An older version of this case study was presented in our previ-
ous work [22], where we discussed the detailed design and modeling of the I/O drivers.
The FMS software architecture is shown in Figure 1a.

Drivers implement I/O communication between the control modules of the system,
and the external environment, such as hardware sensors, actuators, and human oper-
ators. In the FMS, thousands of instances of I/O drivers run concurrently interacting
with several hundreds sensors. The software components of the FMS are executed on a
Real-Time Operating System that runs on a tri-core computing platform.

Drivers in the FMS share the same design pattern, featuring six tasks that commu-
nicate through three buffers which have fixed capacity and cannot be simultaneously
accessed by different tasks. Figure 1b shows the typical operational scenario, that is a

816 S. Di Alesio et al.

(a) Software architecture of the FMS (b) Typical drivers data transfer scenario

Fig. 1. Description of the Fire and gas Monitoring System

unidirectional data transfer between hardware sensors and control modules. (1) Pull-
Data periodically receives data from sensors or human operators, formats the data in
an appropriate command form, and (2) writes it in the buffer BoxIn. (3) When BoxIn is
full, the check signal activates IOBoxRead that (4) reads the data from the buffer and
(5) triggers IOQueueWrite. IOQueueWrite extracts the commands from the data, and
(6) stores them in the priority Queue. When Queue reaches a critical capacity, (7) the
check signal activates IOQueueRead that (8) reads the highest priority command and
(9) triggers IOBoxWrite which in turn (10) writes the command to BoxOut. When the
periodic scan signal (11) activates PushData, the task (12) reads the commands from
BoxOut and finally (13) sends them to the control modules for processing.

The data transfer functionality is subject to strict performance requirements. Specif-
ically, in each FMS driver, (1) no task should miss its deadline, (2) the response time
should be less than one second, and (3) the average CPU usage should be below 20%.
The main variables determining whether or not these requirements will be satisfied at
runtime are the arrival times of the check signal. These arrival times depend on the ex-
ternal environment, in the sense that depend on the data sent by the hardware sensors
via PullData. The arrival times also vary across different system executions, as a con-
sequence of the impossibility to predict the data coming from the sensors. Therefore, in
order to evaluate task deadlines, response time, and CPU usage, we need a strategy to
search all the possible task arrival times. This search has the objective of finding scenar-
ios that are predicted to violate the requirements, or be close to violating them. Indeed,
the more likely a scenario is predicted to violate a performance requirement, the higher
the chances that the test case characterized by such scenario will stress the system.

3 Related Work

Testing multi-threaded concurrent software has largely focused on functional proper-
ties, rather then system performance [27]. Specific methods [12] for design-time per-
formance analysis have been proposed to estimate the schedulability of a set of tasks
through formulas and theorems from the Real-Time Schedulability Theory [26], or with
model checking techniques [2]. In our experience, performance analysis is addressed

Worst-Case Scheduling of Software Tasks 817

in industry mainly with Performance Engineering, which extensively relies on profil-
ing and benchmarking tools to dynamically analyze performance properties [16]. Such
tools, however, are limited to producing a small number of system executions, and re-
quire their manual inspection. Performance analysis can check the overall sanity of the
system performance, but cannot replace systematic stress testing.

For performance testing, search-based approaches have extensively been used [1],
especially in the domain of distributed systems. Specifically, Genetic Algorithms (GA)
have successfully been used to support performance testing, in particular with respect
to QoS constraints [24] or computational resources consumption [7]. GA have also
been used to generate test cases for testing tasks timeliness [23]. As for hard real-time
properties such as deadline misses, the state-of-the-art is represented by the work of
Briand et al. [8], that we used as a baseline for comparison in our previous work [11].

For schedulability analysis, CP approaches [4] have been studied for long time, es-
pecially in the domain of job-shop scheduling problems [19]. Among those, several ap-
proaches target task real-time constraints such as task deadlines [14], or timeliness [21].
Preemptive scheduling problems have also been solved both with pure CP [9], and
with hybrid approaches featuring combinations with GA [28]. Furthermore, recent im-
plementations [18] have successfully used IBM ILOG CP OPTIMIZER and OPL for
scheduling problems, albeit not addressing task preemption.

Despite the extensive literature for constraint based scheduling, we are unaware of
CP approaches targeted to test case generation, such as the generation of worst case sce-
narios, and of approaches addressing all the complexities of RETS such as multi-core
architectures, task dependencies, aperiodic tasks, and preemptive scheduling policies.

4 Supporting Performance Testing: A New Application of COPs

We address the problem of determining worst-case schedules of tasks with an approach
inspired by the work done in Constraint Programming to solve traditional scheduling
problems [4]. Specifically, we cast the search for real-time properties that character-
ize the worst-case schedules, namely arrival times for aperiodic tasks, as a Constraint
Optimization Problem (COP). The key idea behind our formulation relies on five main
points. (1) First, we model the system design, which is static and known prior to the
analysis, as a set of constants. The system design mainly consists of the tasks of the
real-time application, their dependencies, period, duration, deadline, and priority. Con-
stants of our model are described in Section 4.3. (2) Then, we model the system proper-
ties that depend on runtime behavior as a set of variables. The main real-time properties
are the number of task executions, the arrival times of aperiodic tasks, and the specific
runtime schedule of the tasks. (3) We model the RTOS scheduler as a set of constraints
among such constants and variables. Indeed, the real-time scheduler periodically checks
for triggering signals of tasks and determines whether tasks are ready to be executed or
need to be preempted. (4) We model the performance requirement to be tested (i.e.,
task deadlines, response time, or CPU usage) as an objective function to be maximized.
(5) Finally, we encapsulate the logic behind the RTOS scheduler in an effective label-
ing strategy over the variables of the model. By design, the scheduler tries to execute
high priority tasks as soon as possible, potentially preempting tasks with lower priority.

818 S. Di Alesio et al.

We exploit this behavior by proposing a labeling strategy for the variables related to
tasks execution. Our analysis is subject to two main assumptions:

1. The RTOS scheduler checks the running tasks for potential preemptions at reg-
ular and fixed intervals of time, called time quanta. Therefore, each time value
in our problem is expressed as a multiple of a time quantum. Accordingly to the
specification of the RTOS executing the FMS, we will consider the length of ten
milliseconds for time quanta.

2. The interval of time in which the scheduler switches context between tasks is neg-
ligible compared to a time quantum.

These two assumptions are reasonable in the context of RTES, as the scheduling rate of
operating systems varies in the ranges of few milliseconds, while the time needed for
context switching is usually in the order of nanoseconds [25]. These assumptions allow
us to consider time as discrete, and model the COP as an Integer Program (IP) over finite
domains. We implemented the COP in OPL, and solved it with IBM ILOG CPLEX
CP OPTIMIZER. This choice was motivated by practical reasons, such as extensive
documentation, strong supporting community, and its acknowledged efficiency to solve
optimization problems. Despite the scheduling nature of our problem, we implemented
our model as a traditional IP as opposed to using the scheduling features of OPL and
CP OPTIMIZER. This is because we could not express a preemptive priority-driven
scheduling behavior in an effective way that exploited the capabilities of the solver.

Fig. 2. Real-time scheduling example of four tasks on a dual-core platform

The rest of this section details our constraint model using the example shown in
Figure 2. This system features four tasks in increasing priority order, j0 to j3, running
on a dual-core platform for 10 time units. j0 and j1 are executed once, while j2 and
j3 are executed twice. The figure reports the arrival times and deadlines of the tasks,
respectively labeled by at and dl, where the first index represents the task, and the sec-
ond the task execution. In this example, j0 is aperiodic, while j2 and j3 are periodic.

Worst-Case Scheduling of Software Tasks 819

Note that task j1 is triggered by j0 upon termination, and that j1 and j2 share the
resource r12 with exclusive access.

4.1 Constants

Constants are implemented as integers (int), integer ranges (range), tuples (tuple), sets
of tuples (setOf) and integer expressions. Integers values are defined as external data.

Observation Interval. Let T be an integer interval of length tq, i.e., T
def

= [0, tq − 1],
representing the time interval during which we observe the system behavior. T is an
integer interval, as a consequence that time is discretized in our analysis. Therefore,
each time value t ∈ T is a time quantum. In Figure 2, tq = 10 and T = [0, 9].

Number of Platform Cores. Let c be the number of cores in the execution platform.
Therefore, c represents the maximum number of tasks that can be executed in parallel.
In Figure 2 c = 2, as at most two tasks are allowed to run in parallel.

Set J of Tasks. Let J be the set of tasks of the system. Each task j ∈ J has a set of static
properties, defined as constants, and a set of dynamic properties, defined as variables.
Let Jp, Ja, and Jg respectively be the set of periodic, aperiodic, and triggered tasks
of the system. Jp, Ja, and Jg define a partition over J . We assume that OS tasks have
lower priority than system tasks and can be preempted at any time, and hence, can be
abstracted away in our analysis. Each task j is implemented as an OPL tuple named
Task, whose fields are the following non-relation constants. J is implemented as an
OPL tuple set, while Jp, Ja, and Jg are OPL generic sets derived from J . In Figure 2,
J = {j0, j1, j2, j3}, Ja = {j0}, Jp = {j2, j3}, and Jg = {j1}.
Priority of Tasks. Let pr(j) be the priority of task j. For simplicity, we define the
set HPj of tasks having higher or equal priority than j: HPj

def

= {j1 ∈ J | j �=
j1∧pr(j1) ≥ pr(j)}. In Figure 2, pr(j0) = 0, pr(j1) = 1, pr(j2) = 2, and pr(j3) = 3.

Period of Tasks. Let pe(j) be the period of the task j, only defined if j is periodic. In
Figure 2, pe(j2) = 5 and pe(j3) = 6.

Offset of Tasks. Let of(j) be the offset of the task j, i.e., the time, counted from the
beginning of T , after which the first period of task j begins. of is only defined if j is
periodic. In Figure 2, of(j2) = 0 and of(j3) = 1.

Minimum and Maximum Inter-Arrival Times of Tasks. Let mn(j) and mx(j) re-
spectively be the minimum and maximum inter-arrival times of task j, i.e., the minimum
and maximum time separating two consecutive arrival times of j. mn(j) andmx(j) are
only defined if j is aperiodic since for all periodic tasks j, mn(j) = mx(j) = pe(j)
trivially holds. In Figure 2, we assumed mn(j0) = 5 and mx(j0) = 10.

Duration of Tasks. Let dr(j) be the estimated Worst Case Execution Time (WCET)
of task j. For simplicity, we define the integer interval Pj of execution slots as Pj

def

=[
0, dr(j) − 1

]
. Since OPL does not support indexed ranges, Pj is implemented as a

single range P
def

= [0,max
j∈J

dr(j) − 1]. This definition entails that ∀j ∈ J · Pj ⊆ P .

820 S. Di Alesio et al.

The iteration through values in Pj is emulated with a logic implication. Indeed, the
following properties hold for every logic predicate C and arithmetic expression E:

∀p ∈ Pj · C(p) ⇐⇒ ∀p ∈ P · p < dr(j) =⇒ C(p) (1)

∑
p∈Pj

E(p) =
∑
p∈P

(
p < dr(j)

)
· E(p) (2)

Note that in Equation 2
(
p < dr(j)

)
is a boolean expression that is true if p < dr(j),

and false otherwise. For the rest of this paper, equalities and inequalities written within
parentheses represent boolean expressions that evaluate to the integer 1 if true, and to
the integer 0 if false. This is also the default behavior in CP OPTIMIZER. In Figure 2,
dr(j0) = 3 and Pj0 = [0, 1, 2].

Deadline of Tasks. Let dl(j) be the time, with respect to its arrival time, before which
task j should terminate. In Figure 2, dl(j0) = 7, dl(j1) = 6, dl(j2) = 4, and dl(j3)=3.

Triggering Relation between Tasks. Let tg(j1, j2) be a binary relation between tasks
j1 and j2 that holds if the event triggering j2 occurs when j1 finishes its execution.
The relation triggers is defined as irreflexive and antisymmetric. For simplicity, we
respectively define the sets TSj and STj of tasks triggered by and triggering j: TSj

def

=

{j1 ∈ J | tg(j, j1)} and STj
def

= {j1 ∈ J | tg(j1, j)}. tg is implemented as an OPL
tuple with two fields, the first being the task triggering, and the second being the task
triggered. In Figure 2, tg(j0, j1) holds.

Dependency Relation between Tasks. Let de(j1, j2) be a binary relation between tasks
j1 and j2 that holds if there exists a computational resource r such that j1 and j2 access
r during their execution in an exclusive way. This implies that j1 and j2 cannot be
executed in parallel nor can preempt each other, but one can execute only after the other
has released the lock on the resource. The relation dependent is defined as reflexive
and symmetric. For simplicity, we define the set DSj of tasks depending on j: DSj

def

=
{j1 ∈ J | j �= j1 ∧ de(j1, j)}. de is implemented as an OPL tuple with two fields,
each being one of the task depending on the other. In Figure 2, de(j1, j2) holds.

4.2 Variables

Independent variables in our model are implemented as OPL finite domain variables
(dvar int). Dependent variables are implemented as OPL variable expressions (dexpr
int) defined through equality constraints. The first three variables described hereafter,
namely the number of task executions, their arrival times, and active sets, are indepen-
dent variables. The remaining variables described in this section are all dependent.

Number of Task Executions. Let te(j) be the number of times task j is executed
within T . For simplicity, we define the integer interval Kj of task executions for the
task j as Kj

def

= [0, te(j) − 1]. Furthermore, we refer to the kth execution of task j
as the couple (j, k). We assume the minimum and maximum inter-arrival times bound
the number of executions of an aperiodic task. This means that, for aperiodic tasks,

Worst-Case Scheduling of Software Tasks 821

te(j) is defined as a variable with domain
[⌊

tq
mx(j)

⌋
,
⌊

tq
mn(j)

⌋]
. Similarly, we assume

that offset and period statically determine the number of executions of periodic tasks

so that te(j) =
⌊
tq−of(j)
pe(j)

⌋
. Therefore, the number of task executions of periodic tasks

is constant, rather than variable. However, we do not formally distinguish it from the
number of task execution for aperiodic tasks. te is implemented as an integer array
ranging over Jp if the task is periodic (or ranging over Jg if triggered by a periodic task),
and as an integer variables array ranging over Ja if the task is aperiodic (or ranging over
Jg if triggered by an aperiodic task). Since OPL does not support ranges with variable
bounds, Kj is implemented as a single constant range K:

K
def

=

[
0, max

(
max
j∈Jp

⌊
tq − of(j)

pe(j)

⌋
,max
j∈Ja

⌊
tq

mn(j)

⌋)]
Note that K is defined as a range from 0 to the largest upperbound for task executions
of periodic and aperiodic tasks. This definition entails that ∀j ∈ J · Kj ⊆ K . The
iteration through values in Kj is performed in a similar way as the case of Pj , thanks
to the following properties for each logic predicate C and arithmetic expression E:

∀k ∈ Kj · C(k) ⇐⇒ ∀k ∈ K · k < te(j) =⇒ C(k) (3)

∑
k∈Kj

E(k) =
∑
k∈K

(
k < te(j)

)
·E(k) (4)

In Figure 2 te(j0) = 1, te(j3) = 2, Kj1 = [0], and Kj2 = [0, 1].

Arrival Time of Task Executions. Let at(j, k) be the time when an event notifies the
RTOS that task j should be executed for the kth time. We say that j arrives for the kth

time at time t iff at(j, k) = t. When the specific execution k of j is understandable
from the context, we will simply say that j arrives at time t. In our analysis, we assume
that the arrival time of periodic tasks is constant: ∀j ∈ Jp, k ∈ Kj · at(j, k) =
of(j) + k · pe(j). Similarly to the case of te, we do not formally distinguish the arrival
times of periodic and aperiodic tasks. at has domain T for aperiodic tasks. In Figure 2,
at(j0, 0) = 0 and at(j2, 1) = 5.

Active Set of Task Executions. Let ac(j, k, p) be the pth time quantum in T in which
task j is running for the kth execution. We refer to the set of all ac variables as the
schedule produced by the arrival times of the tasks in J . ac variables have domain T .
In Figure 2, ac(j0, 0, 0) = 0, ac(j0, 0, 1) = 2.

Preempted Set of Task Executions. Let pm(j, k, p) be the number of time quanta
for which the kth execution of task j is preempted for the pth time: pm(j, k, p)

def

=
ac(j, k, p)−ac(j, k, p−1)−1. pm is only defined for p > 0. In Figure 2, pm(j0, 0, 1) =
1, and pm(j0, 0, 2) = 0.

Start and End Times of Task Executions. Let st(j, k) and en(j, k), respectively be
the first and the one after the last time quantum in which task j is executing for the kth

time. We say that j starts or ends for the kth time at time t iff respectively st(j, k) = t or

822 S. Di Alesio et al.

en(j, k) = t− 1. By definition, st(j, k)
def

= ac(j, k, 0) and en(j, k)
def

= ac
(
j, k, dr(j) −

1
)
+ 1. In Figure 2, st(j0, 0) = 0 and en(j1, 0) = 6.

Waiting Time of Task Executions. Let wt(j, k) be the time that j has to wait after
its arrival time before starting its kth execution. By definition, wt(j, k)

def

= st(j, k) −
at(j, k). In Figure 2, wt(j0, 0) = 0, and wt(j2, 1) = 1.

Deadline of Task Execution. Let ed(j, k) be the absolute deadline of the kth execution
of j, i.e., the time, with respect to the beginning of T , before which j should terminate
to meet its deadline. By definition, ed(j, k)

def

= at(j, k) + dl(j)− 1. ed is implemented
as two-dimensional array of integer variable expressions ranging over the set J and the
range K . In Figure 2, ed(j0, 0) = 6, and ed(j1, 0) = 8.

Deadline Miss of Task Execution. Let dm(j, k) be the amount of time by which j
missed its deadline during its kth execution. By definition, dm(j, k)

def

= en(j, k) −
ed(j, k) − 1. dm is implemented as two-dimensional array of integer variable expres-
sions ranging over the set J and the range K . In Figure 2, dm(j0, 0) = −3.

Blocking Task Execution Time Quantum. Let bl(j, k, j1, k1, p1) be a boolean variable
that is true if in the interval

[
at(j, k), st(j, k)

)
the task execution (j1, k1) is active at

the time slot p1:

bl(j, k, j1, k1, p1)
def

= at(j, k) ≤ ac(j1, k1, p1) < st(j, k)

In Figure 2, bl(j2, 1, j1, 0, 1) = true, since (j2, 0) waits at t = 5 for the last time
quantum of (j1, 0) before starting.

Higher Priority Active Tasks. Let ha(j, k) be the number of time quanta in the interval[
at(j, k), st(j, k)

)
where exactly c tasks having higher priority of j and not depending

on j are active. Consider the summation indexes j1, k1, p1 respectively defined in the
sets HPj \ DSj , Kj1 , and Pj1 , and the summation indexes j2, k2, p2 respectively
defined in the sets HPj \DSj , Kj2 , and Pj2 . We define:

ha(j, k)
def

=
∑

j1,k1,p1

(
bl(j, k, j1, k1, p1) ∧

((∑
j2,k2,p2

bl(j, k, j2, k2, p2)
)
= c

))

Note that for the definition of ha(j, k), it is important that HPj also includes tasks with
equal priority than j. This is because, in the RTOS scheduling policy we consider, tasks
can only preempt tasks with strictly lower priority. In Figure 2, ha(j, k) = 0 for all task
executions (j, k), since in no case there are 2 tasks active when a task is waiting.

Dependent Active Tasks. Let da(j, k) be the number of time quanta in the interval[
at(j, k), st(j, k)

)
where task executions depending on j is active. Consider the sum-

mation indexes j1, k1, p1 respectively defined in the sets DSj , Kj1 , and Pj1 :

da(j, k)
def

=
∑

j1,k1,p1

bl(j, k, j1, k1, p1)

In Figure 2, da(j2, 1) = 1, because j1 is active for the time quantum t = 5 between the
arrival and the start of j2.

Worst-Case Scheduling of Software Tasks 823

Dependent Preempted Tasks. Let dp(j, k) be the number of time quanta in the interval[
at(j, k), st(j, k)

)
where task executions depending on j have been preempted. Con-

sider the summation indexes j1, k1, p1 respectively defined in the sets DSj , Kj1 , and
Pj1 . Then, we define

dp(j, k)
def

=
∑

j1,k1,p1

pm(j1, k1, p1) · bl(j, k, j1, k1, p1)

In Figure 2, dp(j, k) = 0 for all task executions (j, k), since there are no dependent
task preempted that block the execution of any task.

System Load. Let ld(t) be the load of the system at time t, i.e., the number of tasks
active at time t. Consider the summation indexes j, k, p respectively defined in the sets
J , Kj , and Pj . Then we define

ld(t)
def

=
∑
j,k,p

(
ac(j, k, p) = t

)
In Figure 2, ld(0) = 2, and ld(3) = 1.

4.3 Constraints

We define five groups constraints related to different aspects of the RTOS.
Well-formedness Constraints, specifying relations among variables that directly fol-
low from their definition in the schedulability theory.

Each task execution starts after its arrival time, and ends after the task duration.

∀j ∈ J, k ∈ Kj · at(j, k) ≤ st(j, k) ≤ end(j, k)− dr(j) (WF1)

Arrival times of aperiodic tasks are separated by their minimum and maximum inter-
arrival times.

∀j ∈ Ja, k ∈ Kj \ {0} · at(j, k − 1) +mn(j) ≤ at(j, k) ≤ at(j, k − 1) +mx(j)
(WF2)

The time indexes p ∈ Pj define an order over the active time quanta of tasks.

∀j ∈ J, k ∈ Kj , p ∈ Pj \ {0} · ac(j, k, p− 1) < ac(j, k, p) (WF3)

Temporal Ordering Constraints, specifying the relative ordering of tasks basing on
their dependency and triggering relations.

Each triggered task is executed the same number of times of its triggering task.

∀j1 ∈ J, j2 ∈ TSj · te(j1) = te(j2) (TO1)

Each triggered task execution arrives when its triggering task execution ends.

∀j1 ∈ J, k ∈ Kj1 j2 ∈ TSj · end(j1, k) = at(j2, k) (TO2)

824 S. Di Alesio et al.

Executions of dependent tasks cannot overlap, i.e., one task can only start after the
one it depends on has ended.

∀j1 ∈ J, k1 ∈ Kj1 j2 ∈ DSj , k2 ∈ Kj2 · en(j1, k1) ≤ st(j2, k2) ∨ (TO3)

en(j2, k2) ≤ st(j1, k1)

If two tasks that depend on each other arrive at the same time, the higher priority
task executes first.

∀j1 ∈ J, k1 ∈ Kj1 , j2 ∈
(
DSj ∩ (J \HPj)

)
, k2 ∈ Kj2 · (TO4)

at(j1, k1) = at(j2, k2) =⇒ st(j1, k1) < st(j2, k2)

Multi-core Constraint, capturing the specification of the number c of cores of the
computing platform, and stating that no more than c tasks are allowed to be active in
parallel at any time.

The system load should be less than the number of cores at any time.

∀t ∈ T · ld(t) ≤ c (MC)

Note that, when c = 1, MC is equivalent to an alldifferent constraint over ac.

Preemption Constraint, capturing the priority-driven preemptive scheduling of the
RTOS, and stating that each task should be preempted when a higher priority task is
ready to be executed and no cores are available.

The number of time quanta where a task execution is preempted times c is equal
to the number of time quanta where higher priority tasks are active. Considering the
summation indexes j1, k1, p1 respectively defined in the sets HPj , Kj1 , and Pj1 ,

∀j ∈ J, k ∈ Kj, p ∈ Pj · (PC)

pm(j, k, p) · c =
∑

j1,k1,p1

(
ac(j, k, p− 1) < ac(j1, k1, p1) < ac(j, k, p)

)

Scheduling Efficiency Constraint, ensuring that there is no unnecessary task preemp-
tion, and that tasks are executed as soon as possible.

For each time quanta in which a task execution (j, k) is waiting, there should be
either (1) exactly c tasks with higher priority that do not depend on j active, or (2) one
task execution dependent on j that is active, or (3) one task execution dependent on j
that is preempted.

∀j ∈ J, k ∈ Kj · wt(j, k) = ha(j, k) + da(j, k) + dp(j, k) (SE)

4.4 Objective Functions

We formalized three objective functions, each modeling one performance requirement,
and each meant to be maximized in a separate constraint model having the same con-

Worst-Case Scheduling of Software Tasks 825

stants, variables, and constraints. In this way, solutions to each of the three constraint
models characterize worst-case scenarios for the requirement modeled by the function.

Task Deadline Misses Function, modeling the performance requirement involving task
deadlines with the function FDM :

FDM =
∑

j∈J, k∈Kj

2 dm(j,k)

To properly reward scenarios with deadline misses, FDM assigns an exponential contri-
bution to deadline misses towards the sum [11]. Recall from Section 4.2 that dm(j, k)
is positive if the task execution (j, k) misses its deadline, and negative otherwise.

Response Time Function, modeling the system response time with the function FRT :

FRT =

(
max

j∈J, k∈Kj

en(j, k)

)
−
(

min
j∈J, k∈Kj

at(j, k)

)
FRT measures the total length in time quanta of the schedule, starting from when the
first task arrives, up to when the last ends. This function is also known in traditional
scheduling as makespan.

CPU Usage Function, modeling the system CPU usage with the function FCU :

FCU =

∑
t∈T

(
ld(t) > 0

)
tq

FCU measures the average CPU usage of the system over T , by counting all the time
quanta where at least one task is active, i.e., where the system load is greater than 0.

4.5 Search Heuristic

We defined a search heuristic that refines the branching process of the CP OPTIMIZER

solving algorithm. The heuristic specifies that the solver should mimic the behavior of a
RTOS by first trying to schedule tasks with higher priority. This is done by choosing the
ac variables to branch on by decreasing priority, and then by assigning their time values
in increasing order. For example, consider a system where c = 1, j0, j1 ∈ J, pr(j1) >
pr(j0). Suppose that, for given k0, p0, k1, j1 the filtering algorithm reduced the domains
of the ac variables to the set [0, 1]. Figure 3a shows the branching tree in case the solver
runs with default settings.

In the root node, the ac variables have domain [0, 1]. The solver then tries the first
variable assignment in the branch b1, stating that j0 is executing at time 0. Then, the
solver tries the second assignment in the branch b2, stating that j1 is executing at time
0. This variable assignment violates the multi-core constraint MC since both j0 and j1
are executing at the same time. Therefore, the solver prunes the node, backtracks to the
father node, and tries the assignment in b3 where j1 is executing at time 1. This assign-
ment violates the preemptive scheduling constraint PC, since j1 has higher priority, but
j0 is running instead. Only after backtracking up to the root node, the solver tries the

826 S. Di Alesio et al.

ac(j0, k0, p0) ∈ [0, 1]
ac(j1, k1, p1) ∈ [0, 1]

ac(j0, k0, p0) = 0
ac(j1, k1, p1) ∈ [0, 1]

ac(j0, k0, p0) = 0
ac(j1, k1, p1) = 0

b2

ac(j0, k0, p0) = 0
ac(j1, k1, p1) = 1

b3

b1

ac(j0, k0, p0) = 1
ac(j1, k1, p1) ∈ [0, 1]

ac(j0, k0, p0) = 1
ac(j1, k1, p1) = 0

b5

b4

(a)

ac(j0, k0, p0) = [0, 1]
ac(j1, k0, p0) = [0, 1]

ac(j0, k0, p0) = [0, 1]
ac(j1, k0, p0) = 0

ac(j0, k0, p0) = 0
ac(j1, k0, p0) = 0

b2

ac(j0, k0, p0) = 1
ac(j1, k1, p1) = 0

b3

b1

(b)

Fig. 3. Branch and bound backtracking without (a) and with (b) our search heuristic

assignments in b4 and b5 which do not violate any constraint. Note that several other
branching steps might have been necessary if ac(j1, k1, p1) had a larger domain.

Consider Figure 3b, where the solver has been instructed to first branch by assigning
the smallest value in its domain to the ac variable associated with the highest priority
task. In this case, the solver tries the first assignment ac(j1, k1, p1) = 0 in the branch
b1. Then, it tries the second assignment in the branch b2, that violates MC. However,
the third assignment in b3 does not violate any constraint, making the solver perform
only one backtracking step.

The semantics of this heuristic, i.e., highest priority tasks should be scheduled first, is
the same as the semantics of the RTOS scheduler, which in turn is captured by preemp-
tive scheduling constraint. By using this concept in the branching process, the solver
will be less likely to assign values for ac that violate the preemptive scheduling con-
straint, and thus will find solutions faster. We implemented the search heuristic within a
stand-alone application that solves the OPL model using the .NET CONCERT library to
interface with the CP OPTIMIZER. Experimentation with our search heuristic showed a
significant decrease in the time needed by the solver to find solutions [11].

5 Industrial Experience

Context and Process. The work reported in this paper originates from the interaction
over the years with Kongsberg Maritime (KM)1, a leading company in the maritime and
energy field. KM has pressing needs to improve its practices related to safety certifica-
tion, and this involves improving the validation of performance requirements. There-
fore, we proposed the work reported in this paper to provide support for systematic
performance testing.

Through regular meetings with KM engineers, we first identified the need for a
model-based testing approach defining the abstractions required for performance analy-
sis [22]. Then, we casted such analysis as an optimization problem over a mathematical
model of the tasks preemptive scheduling policy. To prepare for industrial adoption,

1 http://www.km.kongsberg.com

http://www.km.kongsberg.com

Worst-Case Scheduling of Software Tasks 827

we initially evaluated our methodology in five publicly available case studies of sev-
eral RTES domains [11]. This preliminary evaluation showed encouraging results when
comparing our approach with a state-of-the-art optimization strategy based on Genetic
Algorithms [8]. In this paper, we provide an improved constraint model and evaluate it
in the context of the KM Fire and gas Monitoring System.

Results. The main goal of our evaluation is to investigate whether CP can effectively
be used for performance testing in an industrial context. For our approach to be used
in practice, we need to discuss (1) whether the input data to our approach, i.e., the val-
ues for the constants in the constraint model, can be provided with reasonable effort,
and (2) whether engineers can use the output of our analysis, i.e., the values for the
variables in the constraint model, to derive stress test cases for different performance
requirements. We discussed the first question in our previous work [22]. Specifically,
we demonstrated that the effort to capture the input data for our approach was approxi-
mately 25 man-hours of effort. This was considered worthwhile as such drivers have a
long lifetime and are certified regularly. We discuss the second question below.

Recall from Section 2 that we characterize stress test cases by arrival times of aperi-
odic tasks in the FMS drivers. Therefore, such arrival times are the main variables in our
constraint model. We performed an experiment with the FMS drivers with an observa-
tion interval T of five seconds, assuming time quanta of 10 ms. We run our OPL model
for three times on a single Amazon EC2 m2.xlarge instance 1. Each run maximized one
objective function defined in Section 4.4, and had a duration of five hours. Figure 4
shows the feasible solutions with the best objective value that were found within five
hours. Consistent with the terminology used in Integer Programming, we refer to these
solutions as incumbents [3]. In each graph, the x-axis reports the incumbent computa-
tion times in the format hh:mm:ss, and the y-axis reports the corresponding objective
value. The constraint problems had almost 600 variables and more than one million
constraints, and used up to 10 GB RAM during resolution.

(a) FDM value over time (b) FRT value over time (c) FCU value over time

Fig. 4. Objective values over time, where we highlighted the time when the first incumbent pre-
dicted to violate a performance requirement was found

Note that, for practical use, software testing has to accommodate time and budget
constraints. It is then essential to investigate the trade-off between the time needed to

1 http://aws.amazon.com

http://aws.amazon.com

828 S. Di Alesio et al.

generate test cases, and their revealing power for violations of performance require-
ments. For this reason, we also recorded the computation times of the first incumbents
predicted to violate the three performance requirements as expressed in Section 2.

The run optimizing FDM is shown in Figure 4a. The solver found 55 out of a total
of 81 incumbents with at least one deadline miss in their schedule; the first of such
solutions was found after three minutes. The solution yielding the best value for FDM

produced a schedule where the PushData task missed its deadline by 10 ms in three
executions over T . Figure 4b shows the results for the run optimizing FRT . The solver
found 18 out of 19 incumbents with response time higher than one second; the first
of such solutions was found after two minutes. The best solution with respect to FRT

produced a schedule where the response time of the system was 1.2 seconds. Finally, the
solutions found by optimizing FCU are shown in Figure 4c. The solver found 16 out of
20 incumbents with CPU usage above 20%; the first of such solutions was found after
four minutes. The solution with the highest value for FCU produced a schedule where
the CPU usage of the system was 32%. In all of the three runs the solver terminated after
five hours, our time budget, without completing the search with proof of optimality.
However, for each objective function, the solver was able to find, within few minutes,
solutions that are candidates to stress test the system as they may lead to requirements
violations. These solutions can be used to start testing the system while the search
continues, because the highest the objective value, the more likely the solutions are to
push the system to violating its performance requirements.

6 Conclusions and Future Work

Currently, KM engineers spend several days simulating the behavior of the FMS and
monitoring its performance requirements. We expect that, by following the systematic
strategy proposed in this paper, they can effectively derive stress test cases to produce
satisfactory evidence that no safety risks are posed by violating performance require-
ments at runtime. We note that our methodology draws on context factors (Section 4)
that need to be ascertained prior to successful application. While the generalizability
of these factors needs to be further studied, we have found the factors to be common-
place in many industry sectors relying on RTES. Furthermore, we note how casting
the worst-case scenario analysis as a search problem relies on modeling the property
to stress test as an objective function to be maximized. This is a flexible design when
it comes to adapting the constraint model to test different performance requirements.
In such cases, it is only needed to substitute the objective function with one modeling
a difference performance requirement. Moreover, the final users of our approach, i.e.,
software testers and engineers, do not need to be aware of the mathematical details of
the constraint model, as they can simply use our methodology as a black box test cases
generator. Finally, note that there is no randomization process in the search: this means
that solving a model multiple times will always find the same set of solutions in a given
time budget. To achieve diversity among the test cases, we plan to consider hybrid ap-
proaches combining CP with meta-heuristic search strategies. As future work, we also
plan to further investigate the scheduling capabilities of CP OPTIMIZER and OPL.

Worst-Case Scheduling of Software Tasks 829

Acknowledgments. We gratefully thank Arnaud Malapert and Jean-Charles Régin for
their invaluable input in refining the constraint model. The first and fourth authors ac-
knowledge funding from the Research Council of Norway (ModelFusion project and
Certus). The second and the third authors are supported by the Luxembourg National
Research Fund (FNR/P10/03 Validation and Verification Laboratory).

References

1. Afzal, W., Torkar, R., Feldt, R.: A systematic review of search-based testing for non-
functional system properties. Information and Software Technology 51(6), 957–976 (2009)

2. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In:
Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, LICS
1990, pp. 414–425. IEEE (1990)

3. Atamtürk, A., Savelsbergh, M.W.: Integer-programming software systems. Annals of Oper-
ations Research 140(1), 67–124 (2005)

4. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-based scheduling: applying constraint pro-
gramming to scheduling problems, vol. 39. Springer (2001)

5. Beizer, B.: Software testing techniques. Dreamtech Press (2002)
6. Bell, R.: Introduction to IEC 61508. In: Proceedings of the 10th Australian Workshop on

Safety Critical Systems and Software, vol. 55, pp. 3–12. Australian Computer Society, Inc.
(2006)

7. Berndt, D.J., Watkins, A.: High volume software testing using genetic algorithms. In: Pro-
ceedings of the 38th Annual Hawaii International Conference on System Sciences 2005.
IEEE (2005)

8. Briand, L.C., Labiche, Y., Shousha, M.: Using genetic algorithms for early schedulability
analysis and stress testing in real-time systems. Genetic Programming and Evolvable Ma-
chines 7(2), 145–170 (2006)

9. Cambazard, H., Hladik, P.E., Déplanche, A.M., Jussien, N., Trinquet, Y.: Decomposition and
learning for a hard real time task allocation problem. In: Wallace, M. (ed.) CP 2004. LNCS,
vol. 3258, pp. 153–167. Springer, Heidelberg (2004)

10. Di Alesio, S., Gotlieb, A., Nejati, S., Briand, L.: Testing deadline misses for real-time sys-
tems using constraint optimization techniques. In: 2012 IEEE Fifth International Conference
on Software Testing, Verification and Validation (ICST), pp. 764–769. IEEE (2012)

11. Di Alesio, S., Nejati, S., Briand, L., Gotlieb, A.: Stress testing of task deadlines: A con-
straint programming approach. In: 2013 IEEE 24th International Symposium on Software
Reliability Engineering (ISSRE), pp. 158–167. IEEE (2013)

12. Gomaa, H.: Designing concurrent, distributed, and real-time applications with UML. In:
Proceedings of the 28th International Conference on Software Engineering, pp. 1059–1060.
ACM (2006)

13. Henzinger, T.A., Sifakis, J.: The embedded systems design challenge. In: Misra, J., Nipkow,
T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 1–15. Springer, Heidelberg (2006)

14. Hladik, P.E., Cambazard, H., Déplanche, A.M., Jussien, N.: Solving a real-time allocation
problem with constraint programming. Journal of Systems and Software 81(1), 132–149
(2008)

15. Jackson, D., Thomas, M., Millett, L.I., et al.: Software for Dependable Systems: Sufficient
Evidence? National Academies Press (2007)

16. Jain, R.: The art of computer systems performance analysis. John Wiley & Sons (2008)
17. Kopetz, H.: Real-time systems: design principles for distributed embedded applications.

Springer (2011)

830 S. Di Alesio et al.

18. Laborie, P.: IBM ILOG CP Optimizer for detailed scheduling illustrated on three problems.
In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 148–162.
Springer, Heidelberg (2009)

19. Le Pape, C., Baptiste, P.: An experimental comparison of constraint-based algorithms for the
preemptive job shop scheduling problem. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330,
Springer, Heidelberg (1997)

20. Lee, E.A., Seshia, S.A.: Introduction to embedded systems: A cyber-physical systems ap-
proach. Lee & Seshia (2011)

21. Malapert, A., Cambazard, H., Guéret, C., Jussien, N., Langevin, A., Rousseau, L.M.: An
optimal constraint programming approach to the open-shop problem. INFORMS Journal on
Computing 24(2), 228–244 (2012)

22. Nejati, S., Di Alesio, S., Sabetzadeh, M., Briand, L.: Modeling and analysis of CPU usage
in safety-critical embedded systems to support stress testing. In: France, R.B., Kazmeier,
J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 759–775. Springer,
Heidelberg (2012)

23. Nilsson, R., Offutt, J., Mellin, J.: Test case generation for mutation-based testing of timeli-
ness. Electronic Notes in Theoretical Computer Science 164(4), 97–114 (2006)

24. Shams, M., Krishnamurthy, D., Far, B.: A model-based approach for testing the performance
of web applications. In: Proceedings of the 3rd International Workshop on Software Quality
Assurance, pp. 54–61. ACM (2006)

25. Singh, A.: Identifying Malicious Code Through Reverse Engineering. Springer (2009)
26. Tindell, K., Clark, J.: Holistic schedulability analysis for distributed hard real-time systems.

Microprocessing and Microprogramming 40(2), 117–134 (1994)
27. Weyuker, E.J., Vokolos, F.I.: Experience with performance testing of software systems: is-

sues, an approach, and case study. IEEE Transactions on Software Engineering 26(12),
1147–1156 (2000)

28. Yun, Y.S., Gen, M.: Advanced scheduling problem using constraint programming techniques
in SCM environment. Computers & Industrial Engineering 43(1), 213–229 (2002)

Continuous Casting Scheduling

with Constraint Programming

Steven Gay1, Pierre Schaus1, and Vivian De Smedt2

1 Université Catholique de Louvain, Belgium
2 PSI Metals, Belgium

Abstract. Although the Steel Mill Slab problem (prob 38 of CSPLib)
has already been studied by the CP community, this approach is unfor-
tunately not used anymore by steel producers since last century. Contin-
uous casting is preferred instead, allowing higher throughput and better
steel quality. This paper presents a CP model related to scheduling of op-
erations for steel making with continuous casting. Activities considered
range from the extraction of iron in the furnace to its casting in con-
tinuous casters. We describe the problem, detail a CP scheduling model
that is finally used to solve real-life instances of some of the PSI Metals’
customers.

Keywords: Continuous Casting, Steel Production, Scheduling, Con-
straint Programming.

1 Introduction

Steel Production problems have already been tackled with CP. In particular
the Steel Mill Slab problem (prob 38 of CSPLib) has been studied in [4,5,14,7].
Although interesting from a theoretical point of view, this problem is of lim-
ited practical interest since this technique has been replaced since 1950’s by
continuous casting.

A schematic representation of continuous casting is given on Fig. 1. A ladle is
poured into the tundish, a reservoir of hot metal, to feed the casting machine. The
strand (solidifying metal, output of the casting machine) passes through straight-
ening rolls before being cut into predetermined lengths by mechanical shears. We
refer to [16] for more information related to steel production in general.

The continuous casting depicted on Fig. 1 is the last of a three step process,
the first two steps being the carbon removal and the steel refining. The goal of
the continuous casting scheduling problem (CCSP) is to determine the timing of
operations on molten steel at the three steps of production and the device/facility
where they happen, when some flexibility is allowed.

There are two reasons for using computer optimization for scheduling oper-
ations related to continuous casting. The first one is the cost of the machines
involved in the process. They are so costly that they should effectively be used
24 hours per day. The cost of a modern steel making facility is on the order of 10
billion euros. A single continuous caster costs on the order of half a billion euros.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 831–845, 2014.
c© Springer International Publishing Switzerland 2014

832 S. Gay, P. Schaus, and V. De Smedt

Fig. 1. 1: Ladle. 2: Tundish. 3: Mold. 4: Plasma torch. 5: Stopper. 6: Straight zone
(Image from [19]).

Since the lifetime of a caster is around 30 years of lifetime, which is around 45
thousand euros per day. Thus, one of the main objective is to ensure continuity
of the production process at the caster. The second reason is satisfiability. Many
instances are very constrained, some constraints compete and make it difficult to
solve the problem manually or using heuristics. The problem requires typically
to plan operations up to 36 hours which means about 500 activities to schedule.

PSI Metals develops software for decision making in steel production. This
work aims at developping flexible and maintainable tools to deal with continuous
casting in the software suite of PSI Metals.

Outline. Section 2 describes the CCSP problem in detail. Section 3 motivates
the usage of CP for solving the problem. Section 4 details the CP model, before
experimenting the model in Section 5 on real-life instances.

2 Description of the Problem

The problem is a scheduling problem presenting some similarities with the job-
shop problem in the sense that some activities must be processed sequentially
by different machines. Each job is a heat, which is a pocket of molten metal,
that undergoes several transformations ; each transformation may be modeled
as an activity with start date, duration and end. However, application-specific
requirements makes this problem different from a pure job-shop problem.

Continuous Casting as a Scheduling Problem. A heat job is composed of activities
that must take place in a fixed order, as represented in Fig. 2.

The first activity of a heat is its creation in a converter, either a blast oxygen
furnace that processes iron ore or an electric furnace that melts recycled scrap.
At this end of this activity, metal is tapped in liquid state into a ladle. The metal

Continuous Casting Scheduling with Constraint Programming 833

{Refining steps
(Degasser, etc)

Converter

Caster

time

Fig. 2. A heat job: the converter activity must happen first, then the refining activities
(degasser, stew, transports, etc), and finally the caster activity

contents of a ladle is a heat, it embodies a discrete unit of molten metal. Note
that this discretization into heat/ladles comes from a physical reality.

Then the heat is treated in various facilities, to undergo treatments that will
modify the metal’s final properties. These treatments and the transports be-
tween the facilities can be described as activities of the heat, with start date,
duration, end date, and associated resource. For the plant considered in our
experiments, there are two intermediate treatments, alloying (addition of exter-
nal components) and vacuum degassing (removal of excess oxygen blown by the
conversion process).

Finally a heat is tapped into a continuous caster, to be transformed into solid
metal. This is the last activity of a heat and the end of the problem under
consideration.

Application-Specific requirements. Although the problem presents some simi-
larities with the job-shop problem, there are some constraints specific to the
CCSP. The first is the temperature requirement, depicted in Fig. 3. From its
generation in the converter facility to its final transformation in the caster, a
heat has to remain in liquid state. Even though there are no release times nor
deadlines specified, there is a maximum time a heat can spend in the relatively
cold atmosphere before solidifying. To avoid this situation, a maximum duration
is specified between the exit of the converter and the entry in the caster. Note
that it is not possible to raise the initial temperature at the converter artificially
to ensure arrival at the caster in liquid state, since the metal could boil away
and the containing equipment could be damaged. Moreover, heating metal has
an energy cost.

The second is the continuity requirement, also depicted in Fig. 3. Continuous
casting is a technique where to make n shapes that are effectively truncated
cylinders (such as I-beams, sheets . . .), a single cylinder is cast in a continuous
process in a first stage, and cut into the required lengths in the following stage,
on-the-fly. The advantages are better metal quality and cheaper processing costs,

834 S. Gay, P. Schaus, and V. De Smedt

time

time

liquid
level

at caster

temperature
of heat’s steel

solidification

time

Converter Transport Degasser Caster

Fig. 3. As a heat undergoes treatments in different facilities, it cools down and the
level of the molten metal in the caster waiting for it decreases

but the drawback is that during the first stage, the caster can not be stopped.
This translates into additional constraints for the scheduling: a program is a set
of heats that will be used for the continuous casting of one object. The heats of
a program have thus to be treated consecutively at the caster (without any gap
between corresponding activities). This is shown in the bottom part of Fig. 3
Adjacent heats may arrive on-time, early, but not late. Typically, the allocation
of programs to the casters and the order of programs at each caster is received
from a previous computation in the planning and must remain unchanged.

Example 1. A heat has to undergo several transformations before being cast in a
solid shape, as shown in Fig. 3. The top part of this diagram shows a heat going
through different facilities along the timeline, from conversion to casting. The
middle part shows the temperature of the metal inside the heat, which starts
decreasing as soon as the heat leaves the converter. Then, the temperature starts
decreasing, and the heat must undergo all its treatments and arrive at the caster
before it turns solid. Temperature is only relevant between these two events. The
bottom part shows the level of the liquid metal at the caster as it is waiting for
the heat to arrive: if the caster is in the middle of a program, then the heat must
arrive before the liquid level reaches 0.

The last typical variation on job-shop is the running time production, where
some activities have already been scheduled. Keeping in mind that steel making
is a 24 hours per day operation, in practice, there are always fixed activities in

Continuous Casting Scheduling with Constraint Programming 835

the schedule: when adding activities required by a command from a customer,
the schedule is not remade from scratch ; instead, some activities that may be
happening while the algorithm is re-computing a new schedule are fixed.

Example 2. This example is depicted on Fig. 4. There are two programs repre-
sented with gray and white activities. There are two casters, the gray program
must be scheduled on caster 1 and the white program on caster 2. The converter
and the degasser can each process two heats in parallel. Each activity has du-
ration 1 to simplify the example. There is a maximum delay of 2 from exit of
converter to entry into caster to avoid solidifying metal. Notice how heat number
3 of the gray program is scheduled at the last possible moment to avoid solidi-
fying. On the right, an unexpected event occurred: heat 2 of the white program
took more time than expected at caster. Unfortunately, heat 3 of the white pro-
gram was started at the converter and heat 1 is already being treated at caster
1, so no matter the schedule, heat 3 of the gray program can never arrive on
time at the caster.

Fig. 4. Representation of Example 2

Instance-Specific requirements There may be additional constraints depending
on the plant and its casting facilities (converter, degasser, etc).

Although facilities may be cumulative (able to treat several heats in parallel)
with fixed capacity, some might require that sub-parts of the activities do not
overlap. In particular, referring to Fig. 5, the converter activity of a heat is
made of three internal continuous parts: Loading, Converting and Tapping. The
converter has two chambers and can be seen as a resource with capacity 2.
However, there is only one oxygen blower, so that the actual conversion part can
not overlap the conversion part of another. While the loading and tapping parts
may still overlap with the same conditions as a resource of capacity 2, the non
overlapping constraint induced by the oxygen blower prevents the two activities
of chamber 2 to be scheduled consecutively: some gap must be introduced to
prevent conversion parts from overlapping.

836 S. Gay, P. Schaus, and V. De Smedt

L C T

L C T L C T

time

Chamber

2

1

Fig. 5. Illustration of the disjunctive aspect for sub-part of the converter activities

Generally a program can be treated only in a specific caster, but some activ-
ities might have alternatives, i.e. they can be treated indifferently in one facility
or another (say they might use vacuum degasser number 1 or 2 indifferently).
However, another activity may require vacuum degasser number 1 only, dis-
tinguishing the two facilities and preventing us from using a single cumulative
constraint for both degassers.

Some facilities might be unavailable for a fixed interval of time for mainte-
nance; in flexible cases, the maintenance activity may be schedulable. Further-
more, casters require a setup time in-between programs.

An incident may force an activity to take longer than scheduled, or may break
down some facility. In such an event, activities that have not yet happened
have to be re-scheduled just for feasibility, since temperature and continuous
casting constraints may become violated, see Example 2. In the event where a
schedule is infeasible due to a continuity violation at a caster, a program may
be split in two parts, even though it will probably interfere with the subsequent
operations on the slab (typically the subsequent cutting will not be able to
stop at a whole number of smaller cylinders). If the temperature constraint of
a heat will be violated, the liquid metal can be re-heated in some facilities or
even recycled in the converter. In these exceptional cases, the schedule has to
be heavily penalized; we do not take the possibility of splitting programs into
account here.

3 Using CP for Caster Scheduling

In order to satisfy clients at reasonable development costs, PSI needs a framework
that enables the coding of algorithms that yield good feasible solutions at industrial
scales while requiring little tuning to minimize the development time. The frame-
work should also be expressive enough to allow direct encoding of side constraints.
We believe CP offers these advantages thanks to its high level declarative model-
ing. Furthermore, CP has proved competitive for scheduling applications, mainly
due to effective filtering algorithms for global scheduling constraints [18,10] ; Large

Continuous Casting Scheduling with Constraint Programming 837

Neighborhood Search (LNS) [15] makes it scalable [8,12,3,11]. Consequently, we
believe CP is a good candidate for solving the CCSP.

3.1 Two Sources of Difficulty

Two other problem-specific arguments support the choice for CP on this prob-
lem:

1. The continuous casting problem is very constrained, making it sometimes
difficult to find a feasible solution.

2. Bottleneck resources are instance dependent, making it difficult to build
generic heuristics.

These two points are discussed next.

A very constrained problem. There is a basic strategy to ensure continuity of
heats of a same program at the caster: make heats ahead of time, then deliver
stored heats at the caster. The major obstacle to this strategy is the temperature
constraint, that prevents us from creating heats too long in advance. Recall that
the temperature constraint is ensured by allowing a maximum delay from the
exit of the converter to the entry at the caster, representing a maximum initial
temperature. This tension between the desire to produce in advance to ensure
continuity and the just-in time aspect induced by the temperature constraint
may cause some instances to be unsatisfiable or at best difficult to solve.

Instance-dependent bottlenecks. As in most scheduling problems, some resources
behave more or less like a bottleneck in the schedule. An interesting aspect of
the continuous casting scheduling problem is that the bottleneck resource(s) are
very instance-dependent. Let us approximate the metal as a continuous flow go-
ing through facilities instead of being discretized in heats. Then one can think of
facilities as having a continuous throughput, say in tonne/minute; each step of
the transformation process is taken care of by one or several facilities, amount-
ing to a total throughput of the step. The step with the smallest throughput is
a bottleneck that limits the maximum throughput of the whole factory. From
experience, this approximation still holds when the liquid metal is discretized
as heats (remind that this is a physical constraint due to the metal being con-
tained, moved and treated in ladles). Identifying the bottleneck facility/resource
is a valuable indicator in order to construct good feasible solutions. Indeed, those
resources will be used at maximal throughput in a good solution, and a partial
instantiation that satisfies the resource constraint of the bottleneck facility can
most likely be extended into a complete feasible schedule. The key factors im-
pacting bottleneck resources are the wide range of parameters possible in each
step of the process. For instance, a customer may want a cylinder of small di-
ameter, and thus the throughput at the corresponding caster will be decreased
enough to move the bottleneck from another step to the casting step. If the
customer wants a higher quality metal, a step corresponding to some secondary
treatment will take longer and have a smaller throughput, making it the new
bottleneck.

838 S. Gay, P. Schaus, and V. De Smedt

3.2 Alternative/Existing Approaches

Although we were not able to find exactly the same problem description in
the literature, the problem described in [1] presents many similarities with our
CCSP: although the central problem is similar, the objective function and the
modeling of facilities are different.

The authors decompose the resolution in two phases. First an Ant Colony Op-
timization (ACO) metaheuristic is used to sequence the jobs using MATLAB.
Then a second phase assigns starting time with CONOPT non-linear optimiza-
tion solver. In [17], the authors describe a decomposition approach for solving
a similar problem combining Lagrangian relaxation, dynamic programming and
heuristics.

Although similar local search, decomposition and heuristics have been engi-
neered in the past for other problems, PSI finds it requires much manpower for
tuning heuristics and designing moves. Recall that the CCSP problem is strongly
constrained, it is thus difficult to design efficient feasible moves manually. LS was
also evaluated as a difficult approach to maintain on this CCSP because require-
ments change according to both the specificities of each production plant and
the typical set of programs to schedule.

MILP requires time discretization, and the logical constraints used lead to
rather weak linear relaxations. The current solution developed by PSI uses MIP
but it required a lot of simplifications (such as time bucketing) and tuning, just
to come up with solvable instances. Moreover, these simplifications generally
lead to sub-optimal final solutions, when compared to solutions found by CP.

4 Modeling Using CP

Our model for the CCSP uses standard resource constraints for scheduling with
additional side constraints where needed mainly to impose offsets, set-up times
and precedence constraints between activities.

4.1 Model Overview

The activities to schedule are structured hierarchically in heats, programs and
casters: an activity belongs to a heat, a heat to a program, and a program to a
caster.

– ∀c caster, the activities of programs p1, . . . , pnc at the caster must be sched-
uled in a predefined order, separated by a setup time of the caster.

– ∀p program, the activities of heats h1, . . . , hnp of p happening at the caster
must be scheduled in listed order, and be contiguous.

– ∀h heat, activities a1, . . . , anh
of the heat must be scheduled in listed order.

Every activity a has a fixed duration da, a set of resources Ra it can be
scheduled on, and a delay ta that modelizes the temperature constraint. Every
resource has an associated capacity, ranging from 0 to +∞. The demand of our
activities is always 1.

Continuous Casting Scheduling with Constraint Programming 839

Transport,
infinite capacity

2 Degassers,
each of capacity 2

Transport,
infinite capacity

Stew, capacity 2

Converter, capacity 2

4 Casters,
each has capacity 1

3

3

3

3

32

2

3

2

2

2

2

1

1

1

1

1

1

Fig. 6. A small example of continuous casting schedule

Example 3. Fig. 6 represents a schedule respecting all given constraints. Every
resource has a capacity limit, e.g. here 1 for the casters, 2 for the converter, +∞
for the transports, etc. Activities of the same program have the same color, we
single out the white program in this example. Caster order constrains the white
program to be scheduled before the blue one. Program order forces the activities
of the white program at the caster to be consecutive. Heat order constrains the
order of activities of the same heat, here the converter activity of white-1 must
happen before its stew activity, which must happen before its first transport,
etc. Temperature constrains the gap between the converter and caster activities
to be smaller than some value, given as an input.

4.2 CP Model

The pure model uses conventional scheduling constraints for disjunctive and
cumulative resources (see [2] for more information on scheduling constraints).
The temperature constraint is modeled with a fixed time delay depending on
the heat.

Variables. We write the decision variables in boldface. They are, for each ac-
tivity a, start sa, duration da, end ea, and resource ra. The set of all activities
equipped with their decision variables is written A. Durations are fixed, the ini-
tial domain for starts and ends is N, and resources are initialized according to
user specifications, for instance, it is expected, for a resource variable of activity
a at caster c, that the initial domain of ra is {c}.

Constraints. There are two types of constraints in this problem, resource limi-
tations and time dependencies:

840 S. Gay, P. Schaus, and V. De Smedt

– Resource constraints. For every resource r, depending on its capacity C(r),
we add a constraint :
• C(r) = 0: the resource is not available, add the constraints ∀a ∈ A, ra �=
r

• C(r) = 1: disjunctive(A)
• C(r) > 1: cumulative(A, C(r))
• C(r) = +∞: the resource does not constrain the problem, no constraint
added

– Time Dependencies. We write h(c) the activity of heat h at caster c, and
setupc the setup time that must separate programs at caster c.
• Caster order. ∀c caster, ∀pi, pi+1 consecutive programs of c with pi =
h1 . . . hn and pi+1 = h′1 . . . h

′
n′ , ehn(c) + setupc ≤ sh′

1(c)
.

• Program order. ∀p program, ∀hj, hj+1 consecutive heats of p,
ehj(c) = shj+1(c).

• Heat order. ∀h heat, ∀ak, ak+1 consecutive activities of h, eak
≤ sak+1

.
• Temperature. ∀h = a1 . . . an, ea1 + delayh ≥ san

Objective. The goal of the optimization here is to minimize the sum of the
completion times at casters, so if last(c) is the last activity at the caster c,
the objective value to minimize is

∑
c elast(c). This forces the resources to be

free earlier, to deal with new customer demands that are unknown at scheduling
time: a makespan objective would only be relevant if all jobs were known in
advance.

Search Heuristic. The problem sizes are so large (more than 500 activities) that
there is little hope to complete the search on real instances. Designing custom
heuristic and search strategies is thus crucial for CCSP. An important aspect for
PSI customers is the anytime behavior of the application. The operator should
have a solution available quickly, and the application can not afford to return
no solution. To this end, we designed a search heuristic behaving similarly to a
greedy manual schedule construction minimizing the risk of any backtrack before
reaching the first feasible solution. Recall that one important constraint is that
activities of a same program at a caster should be contiguous. We order the
heats (jobs) in a static order to ensure the feasibility of the continuity property.
This order on the jobs is obtained as follows (see Fig. 7):

1. Caster activities are placed without any gap between them (unfortunately
this schedule for caster activities is surely not feasible because of capacity
limitations at the converter, degasser, etc).

2. Programs are numbered according to their earliest starting time (see numbers
1 to 7 on top of the programs on Fig. 7)).

3. Heats are numbered increasingly inside a program by numbering first pro-
grams with lowest starting time (see numbers 1 to 18 in each heat on Fig. 7)).

Then for a given heat (job) activities are scheduled facility by facility, starting
at the converter and finishing with the caster activity, in their program order.
Because the domains are huge (duration are specified in seconds) a binary split

Continuous Casting Scheduling with Constraint Programming 841

2

10

3

4

5

7

6

1 2

4 65

83 9

7

16

11 12

1514

13 17 18

1

Caster1

Caster2

Fig. 7. Job ordering strategy obtained by first ordering programs, then heats inside
each programs. Heats in a same program have the same color.

search is used instead of a labeling search. This static search is randomized by
applying some random modifications on the activity durations when creating the
program ordering.

Although the previous strategy is very good to obtain quickly feasible solu-
tions, it is too conservative to obtains high quality values for the sum of comple-
tion times. Indeed, this strategy may introduce large gaps between the programs
at the casters.

We use a Large Neighborhood Search (LNS) to improve the incumbent solu-
tion. Some structure of the current best solution is kept by restricting a random-
ized partial order schedule between the programs at the caster (inspired from
[6]). At each LNS restart we randomly choose between two searches:

– The safe search with static (randomized) ordering, or
– A schedule or postpone search (also called SetTimes) described in [9] on all

the activities of the problem.

SetTimes is a search that tries to assign early activities at their earliest starting
time (EST), postponing on backtrack the scheduling of activities that failed
until their EST changes: it only considers them again when their EST change
from propagation. This search exploits dominance properties that do not hold
for our problem. Indeed, it may be interesting in our case to postpone activities
on the converter to satisfy the itemperature constraints. Thus SetTimes is not
necessarily complete on our problem. However, this search proves very useful
in practice to minimize the sum of completion times when it finds a feasible
solution.

5 Experiments

Table 1 shows the results obtained for 48 CCSP instances. Those instances were
generated as variants of 2 real-life instances coming from a customer of PSI. The
horizon varies from 12 to 48 hours of operations to schedule, where 36 hours is
a good enough time horizon for the industrial setting.

The number of activities given in the table does not take into account subpart
activities, in this particular instance 3 resources need subparts, our modeling

842 S. Gay, P. Schaus, and V. De Smedt

Fig. 8. A real-life schedule

codes them as additional activities ; the number of activities the solver actually
has to handle is roughly the number in the table times 1.5.

Durations of activities were artificially changed to make the bottleneck re-
source change, allowing us to test the robustness of the search. In table 1, “step”
is the bottleneck resource (Converter or STEW), and “extension” is a fixed num-
ber of seconds added to the duration of each activity on this resource, making
the step slower and more bottleneck-like.

Example 4. Fig. 8 shows an example of a real-life schedule produced by our
model. The two bottom lines are subpart activities (as explained on Fig. 5). This
schedule is well optimized since activities are very well packed on the bottleneck
resources. For the first half of the schedule, the second facility is the bottleneck,
then the casters become the bottleneck.

A time-out of 30 seconds is given to the algorithm1 and we compare the final
objective function (sum of completion times) using different searches:

– A ”Safe” search as the one described above diving quickly toward feasible
solution.

– A SetTimes search on the whole set of activities.
– A LNS search using a partial order schedule relaxation and alternating be-

tween the two previous searches on each LNS restart.

The LNS search obtains the best objective most of the time on 34/48 instances.
The SetTimes search obtains the best solutions on 25/48 instances but is not able
to find any feasible solution for 10/48 instances. As expected the ”safe” search is
always able to find a feasible solution, but the quality of the objective is generally
worse compared to the two previous searches.When the LNS search is not the opti-
mal one, it is reasonably close to the SetTimes results and it has themain advantage
to always produce a feasible solution.This search is thus themost robust and should
be preferred for the final deployment of the application.

1 30s was chosen as a realistic wait an operator can allow, 300s would be unrealistic.

Continuous Casting Scheduling with Constraint Programming 843

Table 1. Results on 48 CCSP instances testing 3 different search strategies with a
timeout of 30 seconds

Safe SetTimes LNS

instance limit activities step extension objective objective objective

Instance1 12 234 Converter 600 274620 250740 250740
900 308280 270060 265200
1200 342720 298140 298140

STEW 600 253980 222600 221640
900 255180 223800 221640
1200 282300 221640

24 436 Converter 600 493560 440760 437760
900 570720 474480 474480
1200 630420 515940 513900

STEW 600 448440 378060 382441
900 449640 379260 383344
1200 482100 424500

36 598 Converter 600 588660 540720 536641
900 718560 610440 610440
1200 760920 658860 652920

STEW 600 539820 469440 475800
900 541020 470640 477181
1200 573480 574140

48 736 Converter 600 658260 610680 610441
900 776940 676380 676380
1200 861900 759660 757981

STEW 600 614580 553020 559080
900 615780 554160 559980
1200 649200 589140

Instance2 12 240 Converter 600 294258 268228 268583
900 318596 284783 279656
1200 358828 296848 290128

STEW 600 266398 243448 243448
900 271672 251478 251478
1200 282533 264348 264348

24 420 Converter 600 427218 421996 421996
900 547138 462369
1200 609786 482013 492857

STEW 600 388098 344727 347307
900 386397 352757 352757
1200 414408 374121

36 576 Converter 600 514408 509266 475486
900 641972 579460
1200 740546 687380 691115

STEW 600 475288 431917 436177
900 473587 439947 439947
1200 501598 461311

48 666 Converter 600 595276 590134 557004
900 723262 580207
1200 863598 782701 873943

STEW 600 556156 512876 516145
900 554455 520815 520815
1200 582466 542179

844 S. Gay, P. Schaus, and V. De Smedt

6 Conclusion and Future Work

We have described the continuous casting scheduling problem (CCSP) for steel
production and introduced a complete CP model and search strategy using LNS
for solving this problem with good any-time behavior. Although the application
is still in the prototyping phase, the high quality results obtained using CP and
the ease of maintaining and modifying the CP model should allow to deploy it
in the near future at some of PSI’s customers.

As a future work, we would like to experiment the Variable Objective Large
Neighborhood Search (VO-LNS) introduced in [13]. We believe VO-LNS might
be a good strategy to focus on a different restricted number of casters at each
LNS restart. We may also try to optimize activities according to a rolling hori-
zon scheduling strategy. This should allow us to consider a limited number of
activities, fix some of the earliest scheduled ones before sliding the horizon and
considering a few more activities. Finally we believe dominances and/or redun-
dant constraints may be inferred to improve the filtering on this problem.

References

1. Atighehchian, A., Bijari, M., Tarkesh, H.: A novel hybrid algorithm for schedul-
ing steel-making continuous casting production. Computers & Operations Re-
search 36(8), 2450–2461 (2009)

2. Baptiste, P., Pape, C.L., Nuijten, W.: Constraint-based scheduling: applying con-
straint programming to scheduling problems, vol. 39. Springer (2001)

3. Carchrae, T., Beck, C.: Principles for the design of large neighborhood search.
Journal of Mathematical Modelling and Algorithms 8(3), 245–270 (2009)

4. Frisch, A.M., Miguel, I., Walsh, T.: Modelling a steel mill slab design problem. In:
Proceedings of the IJCAI 2001 Workshop on Modelling and Solving Problems with
Constraints, Citeseer (2001)

5. Gargani, A., Refalo, P.: An efficient model and strategy for the steel mill slab design
problem. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 77–89. Springer,
Heidelberg (2007)

6. Godard, D., Laborie, P., Nuijten, W.: Randomized large neighborhood search for
cumulative scheduling. In: ICAPS, vol. 5, pp. 81–89 (2005)

7. Heinz, S., Schlechte, T., Stephan, R., Winkler, M.: Solving steel mill slab design
problems. Constraints 17(1), 39–50 (2012)

8. Laborie, P., Godard, D.: Self-adapting large neighborhood search: Application to
single-mode scheduling problems. In: Proceedings MISTA 2007, Paris, pp. 276–284
(2007)

9. Pape, C.L., Couronné, P., Vergamini, D., Gosselin, V.: Time-versus-capacity com-
promises in project scheduling. In: Proceedings of the Thirteenth Workshop of the
UK Planning Special Interest Group (1994)

10. Letort, A., Carlsson, M., Beldiceanu, N.: A synchronized sweep algorithm for the
k-dimensional cumulative constraint. In: Gomes, C., Sellmann, M. (eds.) CPAIOR
2013. LNCS, vol. 7874, pp. 144–159. Springer, Heidelberg (2013)

11. Monette, J.-N., Deville, Y., Hentenryck, P.V.: Just-in-time scheduling with con-
straint programming. In: ICAPS (2009)

Continuous Casting Scheduling with Constraint Programming 845

12. Pacino, D., Van Hentenryck, P.: Large neighborhood search and adaptive ran-
domized decompositions for flexible jobshop scheduling. In: Proceedings of the
Twenty-Second International Joint Conference on Artificial Intelligence, vol. 3,
pp. 1997–2002. AAAI Press (2011)

13. Schaus, P.: Variable objective large neighborhood search: A practical approach to
solve over-constrained problems. In: IEEE International Conference on Tools with
Artificial Intelligence (ICTAI 2013) (2013)

14. Schaus, P., Hentenryck, P.V., Monette, J.-N., Coffrin, C., Michel, L., Deville, Y.:
Solving steel mill slab problems with constraint-based techniques: Cp, lns, and
cbls. Constraints 16(2), 125–147 (2011)

15. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520,
pp. 417–431. Springer, Heidelberg (1998)

16. steel.org. The online resource for steel (accessed: April 20, 2014)
17. Tang, L., Luh, P.B., Liu, J., Fang, L.: Steel-making process scheduling using la-

grangian relaxation. International Journal of Production Research 40(1), 55–70
(2002)

18. Vilım, P.: Global constraints in scheduling. PhD thesis, PhD thesis, Charles Uni-
versity in Prague, Faculty of Mathematics and Physics, Department of Theoretical
Computer Science and Mathematical Logic, KTIML MFF, Universita Karlova,
Malostranské námestı 2/25, 118 00 Praha 1, Czech Republic (2007)

19. Wikipedia. Continuous casting — Wikipedia, the free encyclopedia (2013)
(accessed: April 20, 2014)

Case Study: Constraint Programming

in a System Level Synthesis Framework

Shuo Li and Ahmed Hemani

Department of Electronic Systems
School of Information and Communication Technology

Royal Institute of Technology
Isafjördsgatan 39, 16440, Stockholm, Sweden

{shuol,hemani}@kth.se

Abstract. This article presents a case study of using a constraint pro-
gramming solver in a system level synthesis framework called SYLVA.
The solver is used to find the repetition vector of a synchronous data flow
graph and serving as the design space exploration engine, which rapidly
finds qualified system implementations by solving a constraint satisfac-
tion optimization problem. Each system implementation is a combina-
tion of a number of function implementation instances and their cycle
accurate execution schedules. The problem to be solved is automatically
generated based on the user inputs: 1) a system model to be synthesized,
2) a library containing all the usable function implementations, 3) the
performance/cost constraints, and 4) the optimization objectives. Use of
constraints programming technique enabled a low cost development of
design space exploration engine in addition to gaining ease of use.

Keywords: System Level Synthesis, Design Space Exploration,
Constraint Programming.

1 System Level Architectural Synthesis (SYLVA)

System level hardware synthesis is an evolutionary next step after the high-level
synthesis. It synthesizes abstract Digital Signal Processing (DSP) sub-systems
like modems and codecs, e.g. WLAN, LTE mode, etc. modeled as Synchronous
Data Flow (SDF) graphs [1] in terms of pre-characterized Function Implementa-
tions (FIMPs). SYLVA [2] is a system level hardware synthesis framework under
development in our group. Currently, SYLVA only supports acyclic SDF. It ex-
plores the design space in terms of a) number and type of FIMPs, b) number of
buffers for each FIMP, and c) pipeline parallelism among them. It also automat-
ically generates the global interconnect and control logic to glue the FIMPs and
buffers together into a working system. The design flow based on SYLVA has
four steps of which the first two are the focus of this paper. 1) SDF to HSDF con-
version 2) Design Space Exploration (DSE) 3) Global interconnect and control
synthesis, and 4) Code generation

The key difference with the existing work on CP methods for scheduling tasks
on processors, e.g. [3], is that of hardware synthesis vs. software compilation.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 846–861, 2014.
c© Springer International Publishing Switzerland 2014

Constraint Programming in System Level Synthesis Framework 847

Processors can host multiple tasks that are scheduled. In the hardware synthesis
case (SYLVA), a FIMP (corresponding to a processor) is a dedicated hardware
implementation for a specific function like FFT and only one instance of it can
be executed at a time. The scheduling in the context of SYLVA is the relative
ordering of the HSDF nodes that are mapped to FIMP instances. The relative
order decides the number of FIMPs but not the type. The type selection has
been formulated as a CP problem.

Another key difference is that in software compilation, the critical path is
known because the arithmetic parallelism of each task is fixed because the pro-
cessor hardware is fixed. Whereas in case of SYLVA, critical path is not fixed.
It depends on the FIMP types that the CP tool evaluates as part of the design
space exploration. FIMP types vary in the degree of arithmetic parallelism and
can change the total number of cycles that a particular path takes.

1.1 SDF to HSDF Conversion

In this step, the system modeled as SDF graph is converted into a Homogeneous
SDF (HSDF) graph [1].

An SDF graph is a directed graph S = {A,E}. Each vertex is called an actor
a ∈ A that represents a DSP function. The number of data tokens produced or
consumed by each actor on each invocation is specified a priori. Each communi-
cational edge e ∈ E represents a data dependency between two actors. By this
definition, two communicating actors as (the source) and ad (the destination)
may have different producing and consuming data rates (data token per invoca-
tion). Therefore, as and ad have to be invoked at different frequencies to match
the data rate of each other. An example SDF graph with four actors is shown
in Fig. 1(a), where a, b, c, and d are names of four DSP functions and the data
rates are not matched at all.

b
2 1

c
2 1

1 2

a

d

b0

b1

d0

d1

d2

d3

a0

c1

c0

c2

c3

(a) Original SDF Graph (b) Converted HSDF Graph

In the HSDF graph, the
number of data tokens on all
the edges are one.

Fig. 1. SDF to HSDF Conversion

848 S. Li and A. Hemani

An HSDF graph in this article is an SDF graph that all the data rates for all
data producer and consumer actor pairs are matched as formulated in 1, where
se and de are the source and destination actors for edge e, respectively.

se = de ∀e ∈ E (1)

Each HSDF actor represents an execution of a DSP function, while each SDF
actor represents a DSP function. And the SDF to HSDF conversion will increase
the number of nodes. For example, the SDF graph shown in Fig. 1(a) can be
converted into the HSDF graph with 11 actors shown in Fig. 1(b), where a0
is an execution of a, {b0, b1} are two executions of b, {c0, c1, c2, c3} are four
executions of c and, {d0, d1, d2, d3} are four executions of d.

SDF to HSDF Conversion can be done by finding the null space of the
topology matrix [1]. In SYLVA, we compute the null space by solving a simple
Constraint Satisfaction Problem (CSP). The number of variables equals to the
number of actors (|A|) in the original SDF graph. The possible values of each
variable are set to integers from 1 to 232 − 1. Although the number of possible
values is large, experience shows that only a few branches are enough to get the
result. For all the experiments in this article, one branch is enough to get the
number of SDF actor repetitions and the solver runtime is similar to computing
the null space using C# program. The details of the CSP modeling and solving
can be found in section 3.

1.2 Design Space Exploration (DSE)

After the first step, we have a number of function executions (HSDF actors) to
be implemented by hardware (Function Implementations - FIMPs, which will
be explained later in this subsection). The second step is to find the optimal
system implementation (solution) in a reasonable time. Each solution specifies
the type and number of FIMPs, the number of buffers for each FIMP, and the
cycle accurate schedules for them.

The design space can be quite large, since for each HSDF actor, we need to
determine following parameters: 1) the FIMP instance to execute it (multiple
HSDF actors may share the same FIMP instance in a time-multiplexing fashion)
2) the buffer usage (if each function execution has its own output buffer or not),
and 3) the cycle accurate execution schedule (when to start function execution
to achieve the desired parallelism) The total number of solutions is the size of
the design space |D| and it can be calculated by 2.

|D| =
|A|−1∏
i=0

(2Mi · (Tmax − ti · fi)). (2)

|A| is the number of SDF actor.Mi is the number of possible FIMPs for the ith
SDF actor (ai). The term 2Mi represents the decision of having output buffer for
each HSDF actor or each FIMP instance. Tmax is the maximum system latency

Constraint Programming in System Level Synthesis Framework 849

constraint and ti is a horizontal vector that contains the execution times for all
the FIMPs for ai. The jth element in ti is the execution time of the jth FIMP
for ai. fi is a vertical vector that represents the FIMP assignment decision. The
values of each element in fi can be only 1 or 0 and only one element equals 1
(∀i fi ∈ {0, 1} and

∑
fi = 1). The jth element represents the decision of using

the jth FIMP (1) or not (0) to implement ai. The term Tmax− ti · fi represents
the number of possible schedules. In most of the cases, we have more freedom
on the schedule side and less freedom on the FIMP type selection side.

If |A| = 10, Mi = 5 for all actors, Tmax = 100 and all FIMPs have the same
execution time of 10 clock cycles (∀i ti · fi ≡ 10), the total number of solutions
|D| will be (2 ∗ 5 ∗ (100 − 10))10 = 90010 = 3.49 × 1029. In this example, the
schedule term 100 − 10 contributes much more than the FIMP type selection
term 2 ∗ 5. The Constraint Satisfaction Optimization Problem (CSOP) model
will be explained in detail in section 3.

FIMP represents an implementation of a DSP function in terms of three views:
interface view, execution view and implementation view. In the rest of this article,
a FIMP in a library is called a FIMP while a FIMP instantiated for executing
one or more HSDF actors is called a FIMP instance.

The interface view provides the unique function name, and the input/output
data structure of the FIMP. The unique function name defines the name of the
DSP function that can be executed by the FIMP. For example, if a FIMP has
name = FFT 64, this FIMP can only be used to execute 64-point FFT function,
i.e. the HSDF actors derived from the SDF actor whose name = FFT 64. The
input and output data structure provides the number of producing/consuming
data tokens on each invocation. Three data structure examples with different
degrees of parallelism are shown in Fig. 2. All of them has 64 data tokens. Each
data token is a 32-bit complex numbers (16-bit fixed point for real and imagi-
nary components). In Fig. 2(a), all 64 numbers are input simultaneously (fully
parallel). In Fig. 2(b), all 64 numbers are input one by one (fully sequential). In
Fig. 2(c), all 64 numbers are input four by four (partially parallel). At present,
two communicating FIMP instances, source and destination, should share same
data structure or an explicit data structure conversion should be applied.

The execution view provides a) the function execution timing model (Fig. 3),
b) the energy consumption in nJ (nanojoule), and c) the area usage in equiv-
alent gate count. The timing model and the energy consumption are for single
execution. In Fig. 3, ts is the FIMP start time. tie is the input end time. All
input data should be read up by the FIMP till tie. tos is the output start time.
From tos, the FIMP starts sending the output data. te is the FIMP end time.
Everything is done for one execution till te. tie, tos and te are relative times
referring to ts. All of these times are in number of clock cycles and used in the
CSOP model.

The implementation view provides a) the implementation style (e.g. ASIC,
FPGA, or a specified CGRA) and b) the implementation template (e.g.
VHDL code, CGRA configware) for the computation and the output buffer.

850 S. Li and A. Hemani

…{16, 16} {16, 16} {16, 16}…

{16, 16}
{16, 16}

{16, 16}

…{16, 16} {16, 16} {16, 16}
…{16, 16} {16, 16} {16, 16}
…{16, 16} {16, 16} {16, 16}
…{16, 16} {16, 16} {16, 16}

(a) (b) (c)

Fig. 2. Data Structure Examples

Computation phase

tie tos tets = 0

Input phase

Output phase

Fig. 3. Function Execution Timing Model

For example, the implementation view of an 64-point FFT can be either a com-
putation core with SRAM in VHDL for ASIC or a MATLAB function for a
CGRA to be compiled by the CGRA specific compiler to a configware. This
view is not involved in DSE.

Cycle accurate schedule defines the execution schedule of an HSDF actor on
a FIMP instance. It consists of a function execution timing model (in terms of
ts, tie, tos and te) and an output buffer end time tbe (when the output buffer
is released by the data consumer HSDF actor). For example, the HSDF in Fig.
1(b) can have the cycle accurate schedule shown in Fig. 4(a) and (b).

Fig. 4 also illustrates the influence of the output buffer on the FIMP execution
schedule. In Fig. 4(a), the FIMP instance B0 has only one data buffer. Therefore,
the second execution of B0, which is HSDF actor b1, cannot start until the output
buffer of B0 is released by FIMP instance C0 and C1 (HSDF actors c0 and c1).
The overall system latency is 22 clock cycles. In Fig. 4(b), each of the HSDF
actors that are executed by FIMP instance B0 has its own data buffer. In this
case, b1 can start directly after b0. The overall system latency becomes 20 clock
cycles. The decision of having output buffer for each FIMP instance or each
HSDF actor is made be solving the DSE CSOP problem.

1.3 Other Steps

In these steps, the FIMP interconnection and control logics are automatically
generated. and the final system implementation is generated. The details can be
found in [4] and [5].

Constraint Programming in System Level Synthesis Framework 851

A0

B0

D0

D1

C0

C1

0 4 8 12 16

A0

B0

D0

D1

C0

C1

0 4 8 12 16 20
(a) B0 has no extra output buffer

22
(b) B0 has extra output buffer

Input phase Computation Phase Output phase

a0

d0 d1

d2 d3

b0 b1

c0 c1

c2 c3

a0

d0 d1

d2 d3

b0 b1

c0 c1

c2 c3

Fig. 4. Cycle Accurate Schedule Example

2 Why Choose Constraint Programming

SYLVA is a research project in which new ideas are constantly emerging and
we need a system which enables a high level formal modeling of the problem
with minimal effort. This led us to choose the Constraints Programming (CP)
framework. Specifically, we list three main motivations:

1) CP has much lower modeling complexity compared with other approaches.
2) CP is suitable for solving scheduling problems, which is critical for us.
3) CP is easy to integrate with other components (e.g. code generator).

2.1 Low Modeling Complexity

CP model supports logical constraints (e.g. logical AND and logical OR) and
a full range of arithmetic expressions such as minimum, maximum, or an ex-
pression which indexes an array of values by a decision variable. By using CP,
constraints can be easily ported from the specification in human language to the
solver supported format. In contrast, if we use another approach (e.g. integer
linear programming, simulated annealing, genetic algorithm or any other evolu-
tionary algorithms) we need to model the problem in a more complex manner
and also define the searching strategy in detail. For example, if integer linear
programming is used, we need to formulate the constraints by using linear equa-
tions or inequalities, and we cannot use a variable to index another variable
or perform logical operations. If an evolutionary algorithm is used, we need to
model the problem as well as define the searching strategy by assigning parame-
ters for searching (e.g. randomness simulated annealing or mutation function in
genetic algorithm). These parameters have strong impact on the quality of the

852 S. Li and A. Hemani

result and the time required for searching. Finding a good search parameter is
in itself a complex problem and there are no default values to be used. If CP
is used, the modeling is much more flexible than other approaches and we can
benefit from the default constraint propagator and searching strategies.

The low modeling complexity of CP gives us the opportunity to have very
fast prototyping and high maintainability. We could try out our new ideas and
set up new experiments just by adding/deleting/modifying a few constraints or
selecting another search strategy among the built ones. For example, finding
an ASAP (As Soon As Possible) schedule can be achieved by searching from
the lowest value, and finding an ALAP (As Late As Possible) schedule can be
achieved by searching from the largest value.

2.2 Suitable for Scheduling Problem

As stated in section 1, the schedule term (Tmax − ti · fi in 2) contributes much
more than the FIMP type selection term (2Mi in 2) to the number of solutions
(|D|). Since CP is suitable for finding solutions to scheduling problems, it is
suitable in our case.

2.3 Easy to be Integrated

Since CP is a programming paradigm and it is rooted in computer science, a
CP solver usually has interfaces to a number of programming languages. For
example, in the SYLVA project, we choose the CP solver from Google’s or-tools
[6]. It has interfaces to C++, JAVA, Python and C#. Another popular solver
GECODE [7] has interfaces to ECLiPSe, AMPL, YAP Prolog, Python, Haskell,
Ruby and Common Lisp.

In our case, most of the SYLVA components are implemented in C#. If the
DSE problem modeling and solving is also implemented in C#, model trans-
lation (converting CSOP model in C#to the format the solver supports) and
the resulting deserialization (converting CSOP solution to an C#object) can be
eliminated.

3 Constraint Satisfaction Optimization Problem Model

In SYLVA, we have two Constraint Satisfaction Optimization Problem (CSOP)
models. The first one (named as P1) is for the SDF to HSDF conversion. The
other one (named as P2) is for the Design Space Exploration (DSE). In the rest of
this section, we use the following annotations. The number of actors in the SDF
graph is denoted as |A| and the number of edges in the SDF graph is denoted as
|E|. The ith SDF actor is denoted as ai and the jth SDF edge is denoted as ej .

3.1 P1, SDF to HSDF Conversion

Variables in P1 are the set of function execution countsX . The ith variable xi ∈
X represents the number of executions of the ith SDF actor ai. ∀i xi ∈ N≥0

Constraint Programming in System Level Synthesis Framework 853

(N≥0 stands for Natural number that greater or equal to zero). The number of
variables |X | equals to the number of SDF actors |A|. In our model, we constraint
the possible values to be less than 232−1. Although the number of possible values
is large, the constraints will result in a small amount of branches when solving
P1, since we only need the simplest valid solution. It can be found by taking
the smallest value in the domain of the variable associated with the root node,
propagating this choice and iterating. For example, the conversion in Fig. 1 only
has one branch.

Constraints in P1 are such that all edges have matched data rate. Denoting
the set of constraints of P1 as C1, the number of constraints |C1| equals to the
number of SDF edges |E|.

Before explaining the implementation of the constraints, we need to introduce
topology matrix T . T is a |E| × |A| matrix. Each row of T represents one edge
and each column of T represents one SDF actor. The ith row of T is denoted
as Ti and the jth element in Ti is denoted as Ti,j. Ti,j is the number of data
tokens produced or consumed by the jth SDF actor aj on the ith edge ei. Also
denoting as,i as the source actor in ei and ad as the destination actor in ei, the
value of Ti,j is defined in 3.

Ti,j =

⎧⎪⎨⎪⎩
si aj = as,i

−di nj = ad,i

0 nj �= as,i and nj �= ad,i

(3)

The SDF to HSDF conversion constraint can be expressed by 4.

X · Ti = 0 ∀ 0 ≤ i < |A| (4)

For example, the topology matrix T of the SDF graph illustrated in Fig. 1(a)
is listed in 5. The first row is for the edge from a to b. The second row is for the
edge from d to b. The last row is for the edge from b to c. The solution for the
SDF graph shown in Fig. 1(a) is v1 = [1, 2, 4, 4].

P =

⎡⎣2 −1 0 0
0 −2 0 1
0 2 1 0

⎤⎦ (5)

HSDF Construction can be done by the pseudo-code shown in Algorithm 1.
It has two steps. The first step (line 6 to 8) is to create HSDF actors based on the
value of X . The second step (line 9 to 31) is to create edges based on the original
SDF graph. Note that in this article, we assume that we only have multiple source
actors to single destination actor or single source actor to multiple destination
actors data communications. It is formulated by 6, where xs,i and xd,i are the
number of executions of the source and destination actors for ei.

(xs,i − .xd,i/xs,i/ · xs,i) · (xd,i − .xs,i/xd,i/ · xd,i) ≡ 0 ∀ 0 ≥ i < |E| (6)

854 S. Li and A. Hemani

3.2 P2, Design Space Exploration

In the current development stage, the number of used FIMP instances is not
decided using CP but an exhaustive search. All the load balanced SDF schedules
(which FIMP for which HSDF actors) are checked from the most parallel one
(each FIMP instance executes one HSDF actor) to the most serial one (each
FIMP instance executes all HSDF actors for the same SDF actor).

The load balance is defined as that HSDF actor executions should be dis-
tributed equally or approximately equally on proper FIMPs. It is formulated by
7, where Ai,f is the set of HSDF actors to be executed by the fth FIMP for
SDF actor ai and Fi is the set of FIMP instances for executing all HSDF actors
derived from ai.

0 ≤ |Ai,f | − .xi/|Fi|/ ≤ 1 ∀ 0 ≤ i < |A| and 0 ≤ j < |Fi| (7)

The algorithm to generate the load balanced SDF schedules is shown in Al-
gorithm 2 line 1 to 10. The used functions: PossibleNumbers, Modify and
Generate are defined in line 12 to 23. Each SDF schedule produced by the
Generate function is for further design space exploration.

Variables in P2 are denoted as V and it has four parts, which are FIMP type
selection matrix FT , buffer usage indicator vector BU , execution start time
vector Ts and buffer end time vector Tbe.

The first part FT represents the FIMP types. FT is a Mmax × |A| matrix,
where Mmax is the maximum number of FIMPs for implementing one function.
The ith row fti represents the FIMP type selection vector for SDF actor ai. The
possible values of the elements in FT are 0 (the FIMP is not used) or 1 (the
FIMP is used). All the FIMP instances for the same SDF actor are in the same
FIMP type. For the SDF graph example in Fig. 1(a), if the numbers of possible
FIMPs to implement actors [a, b, c, d] are [4, 3, 2, 5]. Thus, Mmax = 5.

The second part BU represents the output buffer usage. The ith element is
bui and it represents the buffer usage for SDF actor ai. BU is a vector with |A|
elements. The value of each element in BU can be 0 (one FIMP has one output
buffer) or 1 (one HSDF actor has one buffer).

The third part Ts represents the execution start time for all HSDF actors.
It is a vector and |Ts = |AH . For the ith element ts,i in Ts, its value is set to
integers from 0 to Tmax − ti,max, where ti,max is the maximum execution time
of ai and it is determined by the FIMP types for implementing ai. Since other
time values (tie, tos and te in Fig. 3) are in constant relation to ts, we do not
need to search them as well.

The fourth part Tbe represents the time to free the output buffer of each HSDF
actor. It is a vector and |Tbe = |AH . The ith element in Tbe is denoted as tbe,i
and its value can be integers from 0 to Tmax − 1.

Therefore, |V | = Mmax · |A| + |A| + |AH | + |AH |. In the example shown in
Fig. 1, |V | = 5 ∗ 4 + 4 + 10 + 10 = 44.

Constraint Programming in System Level Synthesis Framework 855

Algorithm 1. HSDF Construction

1: A is the actor set of the SDF graph
2: E is the edge set of the SDF graph
3: AH is the actor set of the HSDF graph
4: EH is the edge set of the HSDF graph
5: initialize AH = EH = empty array
6: for all actor ai in A do
7: for j in 0 to xi − 1 do
8: AHi,j = ai

9: for all edge ei in E do
10: p is the index of the source actor as in ei
11: q is the index of the destination actor ad in ei
12: si is the number of source data token of ei
13: di is the number of destination data token of ei
14: if xs > xd then
15: for j in 0 to xd − 1 do
16: for k in 0 to xs/xd − 1 do
17: add a new edge en to EH

18: sn is the number of source data token of en
19: dn is the number of destination data token of en
20: as of en is AHp,j∗xs/xd+k]
21: ad of en is AHq,j

22: sn = dn = si
23: else
24: for j in 0 to xs − 1 do
25: for k in 0 to xd/xs − 1 do
26: add a new edge en to E
27: sn is the number of source data token of en
28: dn is the number of destination data token of en
29: as of en is AHp,j

30: ad of en is AHq,j∗xd/xs+k]
31: sn = dn = di

Constraints in P2 can be sorted into six categories. They are automatically
generated based on the user input.

1. The first category is data dependency for execution. A function can only
start its execution after all the dependent functions are complete. For example
in Fig. 4, the actor b0 should start execution after actor a0 is complete. This
category of constraints is formulated in 8, where ts,d is the execution start time
of the destination HSDF actor and te,s is execution end time of the source HSDF
actor. For the example, it is expressed as ts,b0 > te,a0 .

ts,d > te,s ∀ edges in EH . (8)

There are |EH | number of constraints in this category. |EH | is the number of
edges in the HSDF graph.

856 S. Li and A. Hemani

Algorithm 2. HSDF Schedule

1: A is the actor set of the SDF graph
2: F is the FIMP instance set for the SDF graph
3: ∀ 0 ≤ i < |A|, Fi is the set of FIMP instances used for ai

4: Fmax is the set of maximum numbers of FIMP instances used for A
5: for all actor ai in A do
6: Fmax,i = xi

7: for all actor ai in A do
8: |Fi| = Fmax,i

9: for all n in PossibleNumbers(Fmax,i) do
10: Modify(i, n)
11: Generate()

12:
13: PossibleNumbers(u):
14: output an array of numbers {n | 0 < n ≤ u and �u/n� ∗ n = u}
15:
16: Modify(i, n):
17: if |Fi| > n then
18: ratio r = Fi/n
19: for all actor aj in A do
20: Fi = #Fi/r$
21:
22: Generate():
23: for all actor ai in actor set of the SDF graph do
24: equally and linearly assign HSDF actors that are derived from ai to Fi FIMPs

2. The second category is data dependency for output buffer. The producing
and consuming actors cannot output and input at the same time to/from the
output buffer. For example in Fig. 4, the actor b0 should complete its input
phase before the buffer end time of actor d0. This category of constraints is
formulated in 9, where tie,d is the input end time of the destination HSDF actor
and tbe,s is output buffer end time of the source HSDF actor. For the example,
it is expressed as tie,b0 ≤ tbe,d0 .

tie,d ≤ tbe,s ∀ edges in EH . (9)

There are |EH | number of constraints in this category.
3. The third category is resource dependency for execution. Only one actor

can be executed on a FIMP instance at a time. For example in Fig. 4, the actor
b1 should start execution after actor b0 is complete. This category of constraints
is formulated in 10. Ai,j is the HSDF actors that are executed on the jth FIMP
instance for executing SDF actor ai. ts,p+1 is the execution start time for the
actor ap+1, which is the p+ 1th actor in Ai,j . te,p is the execution end time for
actor ap, which is the pth actor in Ai,j . For the example in Fig. 4, Ad,1 has d2
and d3, and both of them are executed on FIMP instance D1.

ts,p+1 > te,p ∀ ap ∈ Ai,j . (10)

Constraint Programming in System Level Synthesis Framework 857

There are |AH |−|F | number of constraints in this category. |AH | is the number
of HSDF actors and |F | =

∑
Fi (0 ≤ i < |A|) is the total number of used FIMP

instances and it is determined in the HSDF scheduling step.
4. The fourth category is resource dependency for output buffer. One output

buffer can only be written by one HSDF actor at a time. For example in Fig.
4(a), the actor b1 cannot start writing data into the output buffer before it is
freed by c0 and c2. This category of constraints is formulated in 11. tos,p+1 is
the output start time for the actor ap+1, which is the p+1th actor in Ai,j . tbe,p
is the output buffer end time for actor ap, which is the pth actor in Ai,j . Ai,j

is the HSDF actor set that is derived from the SDF actor ai and executed on
the jth FIMP instances ai. For the example in Fig. 4(a), tos,b1 should be larger
than tbe,b0 since no extra buffer is used (bub = 0). While in Fig. 4(b), tos,b1 can
be smaller than tbe,b0 since extra buffer is used (bub = 1). There are |AH | − |F |
number of constraints in this category.

(tos,p+1 > tbe,p or bui) = True ∀ ap ∈ Ai,j . (11)

5. The fifth category is cost constraints. There are area, energy and timing
cost constraints.

The total area usage AREA can be computed by 12, where |Fi| is the number
of FIMP instances for executing SDF actor ai, areai is a vector that represents
the area usage for all the FIMPs for executing SDF actor ai and fti is the ith
row of FT (FIMP type variables for ai). The term areai · fti is the area usage
for the used FIMP instance for ai.

AREA =

|A|−1∑
i=0

(|Fi| · areai · fti). (12)

The total energy cost ENERGY can be computed by 13, where energyi is a
vector that represents the energy cost for all the FIMPs for executing SDF actor
ai. The term energyi · fti is the energy cost for one execution of ai.

ENERGY =

|A|∑
i=0

(xi · energyi · fti). (13)

The timing costs consist of system latency LATENCY (the time between the
first input data token is consumed till the last output data token is produced)
and system sample interval INTERVAL (the time for one system iteration).
They can be computed by 14 and 15, respectively. AH is the actor set of the
HSDF graph. aq and a0 are the last and the first HSDF actor, respectively, in
Ai,j , which is a actor set containing all HSDF actors that are derived from SDF
actor ai and executed on the jth FIMP instance for ai.

LATENCY = max(te,p) ∀ ap ∈ AH (14)

INTERVAL = max(tbe,q − tos,0, te,q − ts,0) ∀ aq, a0 ∈ Ai,j (15)

858 S. Li and A. Hemani

In the example shown in Fig. 4(a), LATENCY = 22 and INTERVAL = 14.

INTERVAL = max(te,a0 − ts,a0 , tbe,a0 − tos,a0 , ...)

= max(6, 7− 4, 13− 2, 14− 4, 17− 6, 21− 7)

= max(6, 3, 11, 10, 11, 14) = 14

The area, energy and timing cost constraints are shown in 16.

AREA ≤ Amax,
ENERGY ≤ Emax,
LATENCY ≤ Tmax,
INTERVAL ≤ Rmax.

(16)

In SYLVA, providing values to Amax, Emax, Tmax and Rmax is optional. If
any of them is not provided by user, the default value 264−1 will be used. There
are 4 constraints in this category as shown in 16.

6. The sixth category is the FIMP type constraint. Only one FIMP can be
used to implement an SDF actor ai. This constraint is shown in 17, where fti,j
is usage of the jth FIMP for implementing ai

Mmax∑
j=0

fti,j = 1 ∀ 0 ≤ i < |A| (17)

There are |A| number of constraints in this category.
The number of constraints in P2 is |C2| = 2 · |EH |+2 · (|AH | − |F |) + 4+ |A|.

In the example shown in Fig. 1, |C2| = 2 ∗ 10 + 2 ∗ 6 + 4 + 4 = 40.

Optimization Objective is to minimize the total cost C, which is calculated
by 18. KA, KE , KT and KR are four predefined constants for optimizing the
solution in terms of area usage, energy cost, system latency and system sample
interval, respectively. They can be provided by user or be the default value ([0,
1, 0, 0] for [KA, KE , KT , KR]).

C = KA ·AREA+KE ·ENERGY +KT ·LATENCY +KR ·INTERV AL (18)

3.3 Solving CSOPs

In SYLVA, P1 and P2 are modeled and solved in C# by using the CP solver in or-
tools from Google. For branching strategy, we set the solver to always select the
first unbound variable (INT VAR DEFAULT) and assign the minimum possible
value first (ASSIGN MIN VALUE).

The efficiency and efficacy of SYLVA are evaluated by synthesizing five ex-
amples (Fig. 5): 1) a sub-system composed of two FIR filters feeding an FFT, 2)
a correlation pool (part of UMTS rake receiver), 3) a sigma delta demodulator,
4) a JPEG Encoder for 1920 × 1080, and 5) a simplified MPEG2 Encoder for a
720 × 480 @25 frames per second.

Constraint Programming in System Level Synthesis Framework 859

src fftfir
fir

sink
1

6432 1 1
1 32

32 64
32

(a) FIR-FFT Example

mac

scrb
ovsf

col

xor2div 512src 5122560
2512

1

22
2

2

22

5122 sink102

worker
25

6

(b) Correlation Pool – Part of UMTS Rake Receiver

cicsrc dc fir hb sink32128 112111 21

(c) Sigma-Delta Demodulator

Image
Src

RGB to
YUV

DCT Q Huffman
EncodingSort

Y

Cr

Cb1920x1080 1

1

1
64

1

64 1 1 64 64 64

Compressed
Image

64

64

DCT Q Huffman
EncodingSort

64 64 1 1 64 64 64 64

DCT Q Huffman
EncodingSort

64 64 1 1 64 64 64 64
64

64

(d) JPEG Encoder

Src
Block DCT Q VLC64 64 1 64 64

IDCT IQ

Sink1 64-

+Motion
Compensation

6464
64

Motion
Estimation VLCCoded I

Frame

64

6464

64

64
64

6464 6464 64

COPY1 1

1

1

1
64

64

64

64

720x480
720x480

720x480
720x480

(e) Part of MPEG2 Encoder

Fig. 5. Examples for Experiments

The individual components of the SYLVA flow have been implemented in
C# and integrated at script level. This script was invoked for each of the five
examples (in the form of SDF graphs) with the maximum sampling interval
(Rmax) and the maximum total latency (Tmax) as command line parameters.
The experimental result shows that on average, the SYLVA runtime for the five
examples are 15s, 13s, 20s, 74s, and 97s, respectively, and for all the examples,
only one branch is required to find the SDF repetition vectors. They are much
faster than the commercial high level synthesis tool we compared with. SYLVA
gets speed advantage compared to commercial synthesis tools because of its use
of very large grain design objects (FIMPs) that are 2-3 orders smaller than the
objects used by commercial tools. This dramatically reduces the design space
for SYLVA. The details of the quality of result comparison can be found in [2].

4 Conclusion and Future Work

4.1 Development Cost

Learning Cost: Before coding SYLVA, one of the authors has taken a CP
course, which lasts for two months. The author also spent an additional month

860 S. Li and A. Hemani

to get familiar with the C# port of the CP solver in Google’s or-tools. Time
Cost:By using CP, the first SYLVA release came out after one month of intensive
coding in C#. The time spent on the Design Space Exploration (DSE) CSOP
model is only one week and it includes coding, debugging and experimenting. By
using CP, modifying and maintaining the DSE model are quite straightforward
and simple. We only need to add/remove/modify the concerned constraints.
Software Cost: The used software copies are all free. The text editor and or-
tools from Google are free software and the Windows SDK is also free to use.

4.2 Usage Difficulty

Using SYLVA to synthesize a system SDF graph into a hardware description is
quit simple and does not require any knowledge of CP. The user is required to
provide an SDF graph. Providing Amax, Emax, Tmax, Rmax, KA, KE, KT and
KR are all optional. In most of the cases of hardware design, the final system
implementations should be optimized to have minimal area or energy. In this
case, KA and KE should be 1, while KT and KR are 0’s.

4.3 Conclusion

By using CP, we saved a lot of time on implementing the model of the problem.
Compared to other approaches, e.g. integer linear programming or evolutionary
algorithms, CP provides a straightforward framework for modeling and solving
problems. After three months of non-intensive learning of CP fundamentals and
a CP solver, we were able to write a complex CSOP model, which has four
categories of variables and six categories of constraints in a short time. We hope
the work in this article could serve as a good application example of CP.

4.4 Future Work

Currently, we are updating SYLVA to support more features, such as scenario-
aware SDF that supports dynamic streaming and signal processing applications,
and I/O data structure matching that match not only the number of data tokens
but the data structure of the data tokens to improve the timing performance of
the system.

References

1. Lee, E., Messerschmitt, D.: Synchronous Data Flow. Proceedings of the IEEE 75(9)
(September 1987)

2. Li, S., Farahini, N., Hemani, A., Rosvall, K., Sander, I.: System Level Synthesis
of Hardware for DSP Applications Using Pre-Characterized Function Implemen-
tations. In: International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), pp. 1–10 (September 2013)

Constraint Programming in System Level Synthesis Framework 861

3. Bonfietti, A., Benini, L., Lombardi, M., Milano, M.: An efficient and complete ap-
proach for throughput-maximal sdf allocation and scheduling on multi-core plat-
forms. In: Design, Automation Test in Europe Conference Exhibition (DATE),
pp. 897–902 (March 2010)

4. Li, S., Hemani, A.: Global Interconnect and Control Synthesis in System Level
Architectural Synthesis Framework. In: Euromicro Conference on Digital System
Design (DSD), pp. 11–17 (September 2013)

5. Li, S., Malik, J., Liu, S., Hemani, A.: A Code Generation Method for System-
Level Synthesis on ASIC, FPGA and Manycore CGRA. In: Proceedings of the First
International Workshop on Many-core Embedded Systems (2013)

6. Operations Research Tools from Google, https://code.google.com/p/or-tools/
7. Gecode: generic constraint development environment, http://www.gecode.org/

https://code.google.com/p/or-tools/
http://www.gecode.org/

Scheduling Agents Using Forecast Call Arrivals

at Hydro-Québec’s Call Centers

Marie Pelleau1, Louis-Martin Rousseau2, Pierre L’Ecuyer1,
Walid Zegal3, and Louis Delorme3

1 Université de Montréal, Montreal, Canada
me.pelleau@umontreal.ca,lecuyer@iro.umontreal.ca

2 Polytechnique Montréal, Montreal, Canada
louis-martin.rousseau@polymtl.ca

3 Institut de recherche d’Hydro-Québec, Montreal, Canada
{zegal.walid,delorme.louis}@ireq.ca

Abstract. The call center managers at Hydro-Québec (HQ) need to
deliver both low operating costs and high service quality. Their task is
especially difficult because they need to handle a large workforce (more
than 500 employees) while satisfying an incoming demand that is typ-
ically both time-varying and uncertain. The current techniques for de-
termining the schedule of each employee according to the forecast call
volumes at HQ are often unreliable, and there is a need for more accurate
methods. In this paper, we address the concerns of the call center man-
agers at HQ by modeling the problem of multi-activity shift scheduling.
This model has been implemented and tested using real-life call center
data provided by HQ. The main contribution of this paper is to demon-
strate that a constraint programming (CP) model with regular language
encoding can solve large problems in an industrial context. Furthermore,
we show that our CP-based formulation has considerably better perfor-
mance than a well-known commercial software package.

1 Introduction

The management of call center operations at Hydro-Québec (HQ) is a highly
complicated task that often involves balancing contradictory objectives. Man-
agers need to achieve simultaneously high levels of service quality and operational
efficiency. The service quality is typically measured by key target performance
metrics such as the average caller waiting time, i.e., the délai moyen de réponse
(DMR). The daily target DMR is 120 seconds. The operational efficiency is typ-
ically measured by the proportion of time that agents are busy handling calls.

It can readily be seen that high levels of service quality are associated with
low levels of operational efficiency, and vice versa. It is challenging to achieve
the right balance. First, there is the problem of determining the appropriate
staffing level, weeks or even months in advance, based on long-term forecasts
of future incoming demand (i.e., future call volumes); this demand is typically
both time-varying and random. Second, there is the problem of scheduling (and

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 862–869, 2014.
c© Springer International Publishing Switzerland 2014

Scheduling Agents Using Forecast Call Arrivals at HQ Call Centers 863

rescheduling) the available pool of agents based on updated forecasts, typically
made several days or weeks in advance, which is a problem of resource deploy-
ment. Finally, short-term decisions must be made, such as the routing of in-
coming calls in real-time to available agents or the mobilizing of agents at short
notice because of unforeseen fluctuations in the incoming demand. At HQ, addi-
tional real-time control involves moving agents between the front office (where
they answer calls) and the back office (where they perform other tasks such as
paperwork). These decisions are based on short-term forecasts, updated one day
or a few hours in advance.

In this paper, we focus on the resource deployment problem. Given a staffing
level, we wish to specify which activity (such as taking calls, responding to
emails, or working in the back office) each worker should perform in each period
of the day. The creation of such a detailed schedule is generally referred to as the
multi-activity assignment problem and is much more difficult than the traditional
mono-activity version. The need to specify the occupation of an employee in each
time period drastically increases the number of possible work shifts, which makes
classical formulations (such as set covering [4]) intractable in this context.

In recent years, researchers have investigated using formal languages to solve
complex scheduling problems where employees need to perform several tasks
during a shift. These approaches can be combined with MIP (mixed integer
programming) formulations and then solved directly, through column generation
[5,11,2], via metaheuristics such as large neighborhood search [10] or tabu search
[3], via a hybrid MIP/CP approach [12], or directly in CP through lazy clause
generation [7].

As in [8,6] we solve the activity assignment problem, which involves shift
scheduling where the shift positions and breaks are fixed. The main contribution
of this paper is to demonstrate that a constraint programming (CP) model with
regular language encoding can solve large problems in an industrial context. In
the data provided by HQ, there are 40 periods of 15 minutes covering the period
from 8 a.m. to 6 p.m. There are between 129 and 142 activities, and from 369
to 544 employees to schedule. The problem is significantly larger than the test
cases used in the existing literature on multi-activity scheduling. Furthermore,
we show that our CP-based formulation has considerably better performance
than a well-known commercial software package.

This paper is organized as follows. Section 2 introduces the problem and
the main limitations of the current tool used by HQ. In Section 3, we present
the model we used to address these limitations. Section 4 provides concluding
remarks.

2 Problem Description

We consider the problem of designing work schedules for the agents. Given a
day divided into periods, a set of employees, and a staffing requirement, we
must select which activities should be performed by each employee during each
period of the day, in order to satisfy the demand.

864 M. Pelleau et al.

2.1 Problem Characteristics

We now detail the different characteristics of the problem and give some of the
notation.

Activities. In HQ, there are more than 100 different activities. Let the set
of all the activities be A. There are two types of activities. The nonproductive
activities are the breaks. We denote by Arest the set of nonproductive activities.
The productive activities are all the activities that are not in Arest. The set of
such activities is denoted by Aprod. And may be split into three disjoints sets:
the phone activities Aphone (taking the calls), the back-office activities Aoffice

(doing paperwork), and the web activities Aweb (responding to emails). We must
distinguish between the different activities to formalize some of the concerns of
the call center managers; see Section 2.2.

Periods. The call arrival process is uncertain and time-varying. In order to
approximate it, the day is divided into m periods of 15 minutes. We retained
this time division in the scheduling process. We define T = {1, . . . ,m} to be the
set of periods in a day.

Employees. Let E be the set of employees. Each employee has a set of skills
Se ⊆ A. For each employee e ∈ E in each period t ∈ T , we must determine
which activity should be performed. Let xe,t ∈ Se be the activity performed by
employee e in period t.

Staffing and Deviation. The staffing requirement indicates the desired num-
ber of staff for each activity in each period of the day; it is calculated beforehand.
We denote by da,t the staffing requirement for activity a ∈ A in period t ∈ T .
The goal is to ensure that the number of employees for each activity in each
period of the day is greater than or equal to the requirement. However, it may
not be possible to provide a schedule that fully satisfies the demand. In this
context, the aim is to minimize the sum of the weighted staff shortages over all
activities and periods, with weights that depend on both activities and time.
This is referred to as deviation or undercover and denoted by ua,t with a ∈ A
and t ∈ T .

Thus, given a set of skills and a staffing requirement, building an optimal
schedule corresponds to assigning activities to each employee for every period of
the day. Each assigned employee must have the necessary skills, and the goal is
to minimize the total deviation.

2.2 HQ’s Solution

HQ currently applies a widely used commercial scheduling software. This system
is able to compute the staffing requirement, and given a staffing requirement it

Scheduling Agents Using Forecast Call Arrivals at HQ Call Centers 865

Employee 3 Rest Office Phone Break

Employee 2 Office Phone Break Phone

Employee 1 Rest Phone Break Web

8:00 8:30 9:00 9:30 10:00 10:30

Fig. 1. Example of HQ schedule for three employees between 8 and 10:30

designs a schedule that satisfies the demand. Figure 1 shows an example of a
schedule for three employees between 8:00 and 10:30. However, the current tool
does not consider some of the following critical aspects of the management of
HQ’s call centers.

Priority Management. Some activities have priority over others. For instance
the activity of answering failure call type has priority over other call types.
Moreover, any phone activity has priority over office and web activities. One
may also want to prioritize certain times of the day, such as lunchtime when
many employees are unavailable. The tool currently used at HQ does not allow
the prioritization of activities, resources, and calls.

Activity Transitions. The current tool is unable to efficiently manage se-
quences of different activities. It computes solutions in which employees must
switch from one activity to another after only a short interval. For example,
in Figure 1, Employee 3 has just 15 minutes of office work before switching to
phone activity. However, HQ’s managers wish to establish a minimum duration
of one hour for each activity type. The current tool cannot enforce this rule, so
the schedules must be corrected manually.

Multi-skill Management. Multi-skill management is necessary only for the
phone activities. Given the stochastic context of call arrivals, it is desirable to
assign an agent to a set of phone activities during the same period. However,
the current tool is unable to select a subset of activities and assigns an employee
to all the phone activities in his or her set of skills. In practice, the multi-
skill assignment is performed using an internal simulator. This simulator is part
of the software and is not documented. We do not know if it is stochastic or
deterministic, or how the call arrival process is modeled. Furthermore, we do
not have access to the results of the simulator. It generates a distribution of
skills per agent per period. We define the phone activity distribution ratio to
be the percentage of time allocated to a specific call type for an agent who is
assigned to phone activities for a given period. This distribution is important
because the good coverage of calls by agents relies on it. HQ thus uses the ratio
below that is proportional to each activity’s demand to evaluate the quality of
a schedule.

866 M. Pelleau et al.

Proportional Ratio for Multi-skill Management. This ratio is designed
to satisfy the conditions of the call center by taking into account the demand
for a period. Let e ∈ E be an employee, and Se ⊆ A his or her set of skills. Let
Sphone
e ⊆ Se be the phone-related skills and da,t the demand for activity a ∈ A

in period t ∈ T . If employee e is assigned to phone activities during period t, the
ratio for each phone activity a ∈ Sphone

e is

re,a,t =
da,t∑

a′∈Sphone
e

da′,t
.

For all the other activities, this ratio is equal to 1. This ratio can be seen as a
realistic assessment of the current conditions in HQ’s call centers.

In previous work, HQ has implemented a MIP model using CPLEX. However,
for large instances, this method sometimes returns an out-of-memory error. To
address the limitations introduced above, and to reduce the large number of
variables, we decided to use CP.

3 Constraint Programming Formulation

3.1 Proposed Solutions to Address the Limitations

We address the issues of priority management and sequence limitations. For
multi-skill management we currently use the method applied in HQ’s existing
tool: we assign an employee to all the phone activities in his or her set of skills,
and we compute the deviation using the ratio introduced in the previous section.

Priority Management. Assigning a cost Ca,t to each activity a ∈ A and each
period t ∈ T allows us to prioritize some activities and periods over others.

Activity Transition. As part of the scheduling process, we propose to use
a regular language to model the transition rule between the different types of
activities. This rule states that an employee must perform productive activities
of the same type (phone, office, or web) for a fixed duration (e.g., 1 hour) before
switching to another activity. The rule is based not on activities but rather on
families of activities. In addition, the rule must be validated for each employee
e ∈ E. To model this sequence rule, we use an automaton and state that, for an
employee, the word formed by the activities performed during the day must be
recognized by the automaton.

Let Σ = {n, p, o, w} be the alphabet of the automaton, where n ∈ Arest, p ∈
Aphone, o ∈ Aoffice, and w ∈ Aweb belong respectively to the set of nonproductive,
phone, office, and web activities. Let Q = {0, ..., 9} be the set of states. The
automaton defined on (Σ,Q) is given in Figure 2. Starting from the initial state
0, the automaton ensures that if an employee is assigned to a phone activity
(state 1), an office activity (state 4), or a web activity (state 7) for a period of

Scheduling Agents Using Forecast Call Arrivals at HQ Call Centers 867

0 1 2 3

4 5 6

7 8 9

o

w

p

o

w

n

p

n

p

n

p

n

pn

o

n

o

n

on

w

n

w

n

w

Fig. 2. Automaton for the activity transition rule

15 minutes, then they must perform an activity from that category for at least
one hour. Breaks can occur during or after this block of activities. Moreover, the
fact that state 0 is accepting ensures that even the last block of activities lasts
at least one hour.

This automaton is represented by its transition table and modeled using a
Table constraint. For each employee e and each period t, qe,t ∈ Q gives the state
in the automaton.

3.2 Model

This model is a simplified version because all the breaks are fixed. We used the
schedules designed by HQ’s software and fixed the breaks at the same periods.

Variables
xe,t ∈ Se Activity performed by employee e during period t
ua,t ∈ N Shortage of employees performing activity a during period t
qe,t ∈ Q State in the automaton

Constraints

min
∑

a∈Aprod

∑
t∈T

Ca,t × ua,t (1)

s.t.∑
e∈E

((xe,t == a)× re,t,a) + ua,t ≥ da,t, ∀a ∈ Aprod, t ∈ T (2)

Table((qe,t, xe,t, qe,t+1), automaton) ∀e ∈ E, t ∈ {1, . . . ,m− 1} (3)

qe,1 = 0 ∀e ∈ E (4)

qe,m = 0 ∀e ∈ E (5)

868 M. Pelleau et al.

10%

20%

30%

Objective Value with HQ’s tool

O
b
je
ct
iv
e
V
a
lu
e
w
it
h
C
P

(a) Impact Based Search

10%

20%

30%

Objective Value with HQ’s tool

(b) Phone First

Fig. 3. Comparison of the CP results and the HQ schedules

3.3 Implementation

We implemented thismodel using theOr-Tools[9] library for Java.Themain reason
for using Java is to be able in future work to communicate directly with the call-
center simulator [1]. In this version we used pure CP, with a timeout of 5 minutes.
We try several strategies to select the next branching variable during the search.
We report here the results for the classical Impact Based Search and a dedicated
search strategy we call Phone First, which consist of first assigning employees that
canperformphoneactivities and focus onoffice,web, and rest activities afterwards.

We tested our implementation on daily data for February to May 2011. In
these instances, there are 40 periods of 15 minutes corresponding to 8 a.m. to 6
p.m. There are between 129 and 142 activities, of which 40 are phone activities,
and from 369 to 544 employees to schedule. The experiments were run on a
1.7-GHz Intel Core i7.

A comparison of our solution and the HQ solution on 82 instances shows
that we reduced the understaffing by an average of 5% with the Impact Based
Search, and 9% with the Phone First strategy. Figure 3 compares the HQ’s
currently used tool with CP for both search strategies. Points below the bisector
are instances on which CP outperforms the current solution, we can thus see
that both search strategies perform quite well. Phone First, however, seems to
be more robust as it degrades the solution in only two cases.

4 Conclusion

In this paper, we have investigated a large industrial multi-activity assignment
problem. We took into account the concerns of the call center managers and pro-
posed a solution that considers issues not handled by their current tool. We im-
plemented this model with Or-Tools and tested it on a significant number of real
instances. Future work will involve solving the full multi-activity shift scheduling
problem, where the shift positions and breaks are not fixed.

Scheduling Agents Using Forecast Call Arrivals at HQ Call Centers 869

References

1. Buist, E., L’Ecuyer, P.: A java library for simulating contact centers. In: Proceed-
ings of the 37th Conference on Winter Simulation, pp. 556–565 (2005)

2. Côté, M.-C., Gendron, B., Rousseau, L.-M.: Grammar-based column generation
for personalized multi-activity shift scheduling. INFORMS Journal on Comput-
ing 25(4), 461–474 (2013)

3. Dahmen, S., Rekik, M.: Solving multi-activity personalized shift scheduling
problems with a hybrid heuristic. Technical report, Faculté des sciences de
l’administration, Université Laval (2012)

4. Dantzig, G.B.: A comment on edie’s “traffic delays at toll booths”. Journal of the
Operations Research Society of America 2(3), 339–341 (1954)

5. Demassey, S., Pesant, G., Rousseau, L.-M.: A cost-regular based hybrid column
generation approach. Constraints 11(41), 315–333 (2006)

6. Elahipanah, M., Desaulniers, G., Lacasse-Guay, È.: A two-phase mathematical-
programming heuristic for flexible assignment of activities and tasks to work shifts.
Journal of Scheduling 16(5), 443–460 (2013)

7. Gange, G., Stuckey, P.J., Van Hentenryck, P.: Explaining propagators for edge-
valued decision diagrams. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp.
340–355. Springer, Heidelberg (2013)

8. Lequy, Q., Bouchard, M., Desaulniers, G., Soumis, F., Tachefine, B.: Assigning
multiple activities to work shifts. Journal of Scheduling 15(2), 239–251 (2012)

9. Google OR-Tools, https://code.google.com/p/or-tools/
10. Quimper, C.-G., Rousseau, L.-M.: A large neighbourhood search approach to the

multi-activity shift scheduling problem. Journal of Heuristics 16(3), 373–392 (2010)
11. Restrepo, M.I., Lozano, L., Medaglia, A.L.: Constrained network-based column

generation for the multi-activity shift scheduling problem. International Journal of
Production Economics 140(1), 466–472 (2012)

12. Salvagnin, D., Walsh, T.: A hybrid mip/cp approach for multi-activity shift
scheduling. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 633–646. Springer,
Heidelberg (2012)

https://code.google.com/p/or-tools/

Deployment of Mobile Wireless Sensor Networks
for Crisis Management:

A Constraint-Based Local Search Approach

Cédric Pralet and Charles Lesire

ONERA – The French Aerospace Lab, 31055, Toulouse, France
{firstname.lastname}@onera.fr

Abstract. In this paper, we consider a problem of management of crisis
situations (incidents on nuclear or chemical plants, natural disasters...)
that require remote sensing, using a set of ground and aerial robots.
In this problem, sensed data must be transmitted in real-time to an
operation center even in case of unavailability of traditional communica-
tion infrastructures. This implies that an ad hoc wireless communication
network must be deployed, for instance using a fleet of UAVs acting
as communication relays. From a technical point of view, we tackle a
scheduling problem in which activities of mobile sensing robots and mo-
bile relays must be synchronized both in time and space. Schedules pro-
duced must also be flexible and robust to the uncertainty about the
duration of robot moves at execution time. The problem is modeled and
solved using constraint-based local search, with some calls to graph al-
gorithms that help defining good communication networks.

1 Problem Description

The first step in crisis management consists in performing sensing operations,
to assess the situation before choosing appropriate measures. In many cases,
sensing cannot be directly performed by humans, due either to the difficulty to
reach some areas, e.g. in case of natural disasters, or to the dangerousness to do
so, e.g. in case of incidents on nuclear or chemical plants. As a result, the use
of Unmanned Ground Vehicles (UGVs) and Unmanned Aerial Vehicles (UAVs)
is more and more considered to help rescue forces in such situations. These
vehicles can be equipped with various sensors, allowing to measure radioactivity,
to measure the concentration of a chemical element, to take pictures of damaged
buildings, or to capture audio/video streams on critical areas.

Data collected may have to be transmitted to an operation center in real-
time (or at least quite fast), first because the amount of memory available on-
board each vehicle may be limited, and second because providing immediate
feedback allows the operators to instantaneously analyze the situation. However,
traditional communication infrastructures may be unavailable during crises. A
solution for maintaining communication links is to deploy an ad hoc wireless
communication network, using a fleet of UAVs acting as communication relays.
These relays also allow operators to take the remote control of a vehicle.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 870–885, 2014.
c© Springer International Publishing Switzerland 2014

Deployment of Mobile Wireless Sensor Networks for Crisis Management 871

In this paper, we gather all these features and consider a system composed of
mobile sensors and mobile relays, respectively in charge of realizing acquisitions
and transmitting acquisition data in real-time. Some vehicles may change roles
dynamically during the mission, such as UAVs equipped with both a camera
and a wireless router. The goal is to decide on the sequence of activities of each
vehicle so that a set of requested acquisitions is performed as fast as possible, and
sensors-operators communication links are maintained. The main constraint is
that activities of UAVs and UGVs must be synchronized both in time and space,
since communication between two vehicles is possible only at a certain distance.
We must also manage cumulative resource consumptions, since each relay can
transmit data coming from several sensors only if the total amount of data to be
transmitted simultaneously does not exceed a given relay capacity. The problem
obtained is a combinatorial scheduling problem, potentially hard to solve for
human operators, and we propose to use automatic optimization tools [1].

Fig. 1 illustrates the kind of deployment strategies which we obtain, on a mis-
sion involving seven acquisitions (a1 to a7) and five UAVs (r1 to r5). Fig. 1(a)
shows the trajectories of vehicles. Four specific relay positions are used (positions
p1 to p4). For each relay position p, the large dotted circle around p represents
the communication range of a relay placed at p. Fig. 1(b) gives the schedule,
which involves two kinds of activities: acquisitions and communications. The
setup durations between activities are induced by the durations of moves be-
tween locations. Acquisitions such as a4 do not require any communication relay,
because they are near enough from the operation center. Acquisitions such as a1
require the simultaneous use of several relays (r2 at position p3, r4 at position
p2, r5 at position p1). The communication network is dynamic because relays
are mobile, such as robot r2 which moves from position p3 to position p4 as soon
as it is no more needed in p3. Last, a communication relay can receive data from
several robots simultaneously: see the example of robot r5, which receives data
from both r3 and r4 when acquisitions a6 and a8 are performed.

Operation
Center

p1

p2

p3

p4
a6

a7
r1

r1

r1
r2

r2 r3

r3

r3

r4

r5

a5

a1

a2

a3

a4

r4

a8

r4

(a) Acquisition locations and
 trajectories of vehicles

ACQ a4I

I

I

I

I

(b) Schedule executed

COM3 at p2

COM4 at p1

ACQ a3

ACQ a1

COM1 at p3

ACQ a5

ACQ a2 ACQ a6

ACQ a8

r1

r2

r3

r4

r5

ACQ a7

COM2 at p4

Fig. 1. Example of deployment of sensors and communication relays

872 C. Pralet and C. Lesire

The paper is organized as follows. We first describe some related work (Sec-
tion 2). We then introduce a constraint-based model (Section 3). Next, a local
search procedure is defined (Section 4). Last, experimental results are presented
(Section 5). This work was performed during the French-German ANR AN-
CHORS project, whose goal is the definition of UAV-assisted ad hoc networks
for crisis management and hostile environment sensing.

2 Related Work

The mobile sensor and relay deployment problem considered can be decomposed
into two subproblems: (1) exploration, consisting in allocating acquisition activ-
ities to sensors and in ordering these acquisition activities; (2) communication,
consisting in maintaining a communication network for transmitting acquisition
data to the operation center.

The exploration subproblem can be seen as a kind of multiple Traveling Sales-
man Problem (mTSP [2]). This problem involves a set of salesmen and a set of
cities, and the goal is to find minimum cost tours for the salesmen so that each
city is visited exactly once. In our case, cities correspond to acquisitions and
salesmen correspond to mobile sensors. In the robotics field, viewing the realiza-
tion of a set of tasks by a set of robots as an mTSP is not new [3]. Constraint
programming approaches for solving mTSPs also exist, with an emphasis on the
flexibility of constraints for modeling additional specifications [4].

The communication subproblem is related to the literature on wireless sensor
networks (WSNs [5,6]). WSNs are composed of two types of nodes: sensor nodes,
which collect data, and relay nodes, which transmit data. Each node is usually
placed at a static position, and two nodes can communicate when the distance
between them is within range. A major problem on WSNs is to place relay nodes
so that in the network, there is a path between any two sensor nodes. When the
number of relays must be minimized, the problem obtained is called the Steiner
Minimum Tree with Minimum Steiner Points, which is NP-hard [7]. Another
problem on WSNs is to build networks robust to relay failures. This has already
been tackled in [8] using a constraint programming approach. Deployment as-
pects can also be considered, e.g. when minimizing the length of a tour which
deploys new relays to repair a broken WSN [9].

The two above subproblems have been combined in the robotics field, where
strategies were defined to explore an unknown environment while maintaining
connectivity to a base station [10]. These strategies consist in maintaining an
exploration frontier and in extending this frontier progressively, with some explo-
ration robots taking the role of relays when the frontier to base station distance
becomes too big [11]. In other contexts, static relays are deployed using one
relay-deployment node, and the objective is both to place relays and minimize
the length of the path for the relay-deploying robot [12,13].

Contribution. In previous approaches mixing exploration and communication
maintenance, sensors and relays are deployed during successive rounds. At each

Deployment of Mobile Wireless Sensor Networks for Crisis Management 873

round, the planning process decides on how to extend the exploration frontier
and on how to place relays. Once relays are placed, sensing and data transmission
occur. When planning acquisitions for the current round, future rounds are not
considered. Such a greedy deployment strategy can lead to suboptimal plans,
therefore we propose to reason over a larger horizon by viewing the problem as a
scheduling problem. As scheduling is one of the most successful application area
of constraint programming, we explore the use of a constraint-based approach
for deploying the team of cooperative vehicles. To the best of our knowledge,
no prior constraint programming or scheduling approach has been proposed for
solving the mixed exploration/communication problem.

Another drawback of existing exploration strategies with communication
maintenance is that they synchronize actions of all mobile robots at each ex-
ploration round. This induces executions in which at each round, each vehicle
waits for the placement of all relays, even if it could start its exploration task
earlier, and then each vehicle waits for the end of the exploration of all other
vehicles, even if it could perform another exploration task. One benefit offered by
the scheduling approach we propose is that it has the capacity to avoid synchro-
nizing activities which do not need to be synchronized. Schedules produced only
require an ordering between conflicting activities, and not between all activities.
This may improve reactivity during crises.

Operationally speaking, we consider that schedules are produced at the opera-
tion center, in a centralized way, before being dispatched and executed on-board
each vehicle, in a distributed way. For this reason, schedules produced must also
be flexible and robust to the uncertainty about the durations of robot moves.
These durations may be shorter or longer than expected, especially for ground
robots which may encounter unforeseen terrain conditions.

3 Modeling

Good deployment strategies must be generated quickly, in order to be reactive
during the crisis. As problems considered may involve numerous acquisitions and
possible positions for communication relays, we define a model in the framework
of Constraint-Based Local Search [14].

3.1 Constraint-Based Local Search (CBLS)

In CBLS, models are defined by decision variables, constraints, and criteria, as
in classical constraint programming. One specificity of CBLS models is the use of
so-called invariants, which correspond to one-way constraints x← exp, where x
is a variable and exp is a functional expression of other variables of the problem,
such as x← sum(i ∈ [1..N]) yi. The set of invariants in a model must be acyclic,
so that a variable is not a function of itself. Fig. 2 shows a CBLS model together
with the Directed Acyclic Graph (DAG) of invariants associated with it.

In CBLS, the search space is explored more freely than with standard tree
search with backtrack. When searching for a solution to a given CBLS model, all

874 C. Pralet and C. Lesire

Decision variables:
var{bool} b
var{int}x ∈ [0..10]
var{int} y ∈ [2..5]

Invariants:
var{int} z ← ite(b, x, y)
var{int} t ← (x − y)
var{bool} u ← (z < t)
var{int} v ← (t+ 2)

< +
vu

x

−ite
z

2
t

b y

Fig. 2. Example of a CBLS model (ite(b, x, y) stands for “if b then x else y”)

decision variables are always assigned, i.e. the approach manipulates complete
variable assignments. At each step during search, a local move is performed by
reassigning some decision variables. Afterwards, all invariants impacted by the lo-
cal move are reevaluated, following a topological order of the DAG of invariants.
A specific procedure is attached to each type of invariant, so that the reevaluation
is performed as fast as possible. On previous example x← sum(i ∈ [1..N]) yi, in
case of change of yk for some k ∈ [1..N], x can be incrementally reevaluated by
adding to it the difference between the current and previous values of yk, instead
of recomputing the sum from scratch (reevaluation in constant time). More gen-
erally, invariants allow combinatorial constraints, temporal constraints, resource
constraints, and criteria to be very quickly evaluated from a variable assignment
and reevaluated from a small change in this assignment.

Several CBLS solvers were developed in the past few years, from the seminal
work on Localizer [15] to solvers like COMET [14], iOpt [16], LocalSolver [17],
Kangaroo [18], OscaR.cbls [19], or InCELL [20]. In this paper, we use InCELL,
which offers flexibility for modeling complex scheduling problems, e.g. involving
time-dependent scheduling aspects or continuously evolving states. In InCELL,
invariants are formally defined as triples (I, O, f) with I and O sequences of
variables called the input and output variables respectively, and f a function
mapping assignments of I to assignments of O.

3.2 Data of the Mobile Sensor and Relay Deployment Problem

In the following, R denotes the number of robots involved in the mission, A
denotes the number of acquisitions to be performed, and P denotes the number
of 3D-positions (x, y, z) used in the modeling. [Hs,He] denotes the scheduling
horizon: every activity must start after Hs and end before He.

Each robot r ∈ [1..R] is available from time TimeIni[r], and located at po-
sition PosIni[r] at that time. The duration required by r to move between two
positions p, p′ ∈ [1..P] is given by DuTrans[r](p, p′). This duration depends on
the robot, because robots may have different motion capabilities. DuTrans[r] is
defined implicitly by a specific code: for a UAV, DuTrans[r](p, p′) can return the
Euclidean distance between p and p′ divided by the speed of robot r; for a UGV,
DuTrans[r](p, p′) can be computed by a path-planning algorithm.

Each acquisition a ∈ [1..A] can be realized following a certain number of ac-
quisition modes Nmodes[a]. The latter correspond to different ways of scanning
the acquisition area. For instance, an acquisition between two points p and p′

can be performed from p to p′ or from p′ to p. With each acquisition mode m are

Deployment of Mobile Wireless Sensor Networks for Crisis Management 875

associated positions AcqPosSta[a,m] and AcqPosEnd[a,m] at the start and
end of a, and an acquisition duration AcqDu[a,m]. Each acquisition generates
a data flow with rate Qos[a] (quality of service requested for a, in Mb/s).

For each acquisition a ∈ [1..A] and each robot r ∈ [1..R], boolean data
AcqFeas[a, r] takes value true iff robot r is equipped with the instrument re-
quired for realizing a. Boolean data IsRelay[r] takes value true iff robot r is
equipped with a wireless router and can serve as a relay. The maximum capacity
of each relay in terms of data transmission (in Mb/s) is denoted by RelCap.
We assume that Qos [a] ≤ RelCap holds for every acquisition a.

As for communications, we consider that relays can be placed only at prede-
fined locations called candidate communication nodes. To define these nodes, one
can discretize the environment into a certain number of cells and put one candi-
date communication node at the center of each cell. In the following, N denotes
the number of candidate communication nodes and NodePos[n] denotes the
position of a node n. We assume that one particular node denoted by OpNode
is associated with the operation center. We also associate with each acquisition
a ∈ [1..A] a node AcqNode[a] such that a relay placed at this node is able to
receive data sensed during the whole realization of a. If an acquisition is too wide
to be covered by a unique node, it is always possible to split it into smaller ac-
quisitions. Boolean function Linked(n, n′) returns true iff a relay placed at node
n can communicate with a relay placed at node n′. For communication between
UAVs, this function checks whether the distance between the two nodes is not
greater than the communication range. Last, the length of each communication
path from a sensor node to the base station (number of relays on this path)
must not be greater than a given limit, denoted by NhopsMax. We assume
that for every acquisition a considered individually, a valid communication path
from AcqNode[a] to OpNode can be built.

3.3 Decision Variables

Decision variables are given in Eq. 1 to 6. Similarly to IBM ILOG CpOpti-
mizer or to the CAIP framework [21], InCELL represents activities based on
the notion of interval. An interval itv is defined by a boolean presence variable
pres(itv), indicating whether the activity is present, and two time-points de-
noted by start(itv) and end(itv), representing respectively the start and the
end of the activity.

Eq. 1 defines one acquisition interval acqItv [a] per acquisition a ∈ [1..A], and
decision variable acqMode [a] introduced in Eq. 2 represents the realization mode
chosen for a. Next, intervals comItv [k] are introduced in Eq. 3 for representing
communication activities. Performing a communication activity consists in plac-
ing a robot at one of the N candidate communication nodes and in using this
robot as a data transmission relay. The communication node in which the kth
communication interval is placed corresponds to decision variable comNode[k]
given in Eq. 4. Through this choice of variables, we impose that during a single
communication activity, the relay robot used must stay at the chosen node. As
they are at most A acquisitions and as each communication path can contain at

876 C. Pralet and C. Lesire

most NhopsMax relays, we bound the number of possible communication activ-
ities by K = A · NhopsMax . The schedule provided in Fig. 1(b) involves eight
acquisition activities (ACQ(a1) to ACQ(a8)) and four communication activities
(activities “COM1 at p3” and “COM2 at p4” for robot r2, activity “COM3 at p2”
for robot r4, and activity “COM4 at p1” for robot r5).

In order to synchronize acquisition and communication intervals, we intro-
duce, for each acquisition a ∈ [1..A] and for each communication interval index
k ∈ [1..K], one integer decision variable useCom [a, k] representing the transmis-
sion rate (in Mb/s) reserved by a in communication interval k (Eq. 5).

The last set of decision variables (Eq. 6) represents the choice in the se-
quences of activities activitySeqs performed by robots. We use here a type
of InCELL called DisjointIntSequences(M ,T). A variable of this type allows
to compactly represent M sequences sm = [im,1, . . . , im,km] composed of in-
tegers belonging to [1..T], and such that any integer appears at most once
over all sequences. By viewing integers as task indices and sequences as ma-
chines, a variable of type DisjointIntSequences(M ,T) represents, for each of
the M machines, the sequence of indices of tasks which are successively per-
formed on this machine. For the mobile sensor and relay deployment problem,
we need to consider R machines (one per robot) and A+K tasks (one task
per acquisition and communication interval), hence we use a variable of type
DisjointIntSequences(R,A+K). An integer i ∈ [1..A] corresponds to the ith ac-
quisition, and an integer i ∈ [A+1..A+K] corresponds to the (i−A)-th commu-
nication interval. The ordering of activities in Fig. 1 would be represented by the
five sequences of integers r1 = [4, 5, 7], r2 = [9, 10], r3 = [1, 2, 6], r4 = [3, 11, 8],
r5 = [12]. Variables of type DisjointIntSequences(M ,T) support several local
moves, including the insertion of an integer i ∈ [1..T] in the sequence of a
machine m ∈ [1..M], or the removal of an integer i ∈ [1..T] from sequences.
Internally, as shown in Eq. 6, they are implemented using three variables per
integer i ∈ [1..T]: two integer variables prev [i] and next[i] representing the inte-
ger preceding and following integer i in some sequence, and one integer variable
seq[i] representing the sequence in which integer i appears, with value 0 when
i does not appear in any sequence. Specific indices and values not detailed here
are also added to represent the start and end of each sequence.

∀a ∈ [1..A], Interval acqItv [a] ∈ [Hs,He] //acquisition intervals (1)
∀a ∈ [1..A], var{int} acqMode [a] ∈ [1..Nmodes [a]] //acquisition modes (2)
∀k ∈ [1..K], Interval comItv [k] ∈ [Hs,He] //communication intervals (3)
∀k ∈ [1..K], var{int} comNode[k] ∈ [1..N] //communication node (4)
∀a ∈ [1..A], ∀k ∈ [1..K], var{int} useCom[a, k] ∈ [0,RelCap] //relay use (5)
DisjointIntSequences(R,A+K) activitySeqs //sequences of activities (6)⎡⎣∀i ∈ [1..A+K+R], var{int} prev [i] ∈ [1..A+K+R]

∀i ∈ [1..A+K+R], var{int} next[i] ∈ [1..A+K+R]
∀i ∈ [1..A+K], var{int} seq[i] ∈ [0..R]

Deployment of Mobile Wireless Sensor Networks for Crisis Management 877

3.4 Invariants, Constraints, and Criterion

Invariants and constraints, as well as the criterion, are defined in Eq. 7 to 20.
Constraint 7 expresses that every acquisition a must be performed and as-

signed to a robot. Constraint 8, expresses that a communication interval is
present iff it appears in one of the sequences of activities. Constraint 9 enforces
that each acquisition is performed by an appropriate robot (we assume that
AcqFeas[a, 0] = true). Similarly, Constraint 10 enforces that the sequence which
contains the kth communication interval must correspond to a robot capable
of being a relay (we assume that IsRelay [0] = true). Constraint 11 expresses
that relay capacities can only be reserved on communication intervals which are
present. Invariants given in Eq. 12 to 14 define the start and end positions of
each acquisition, function of the acquisition mode, as well as the position of each
communication interval, function of the communication node chosen.

Next, Eq. 15 to 17 specify the temporal constraints of the model. These con-
straints are all simple precedence constraints between start/end time-points of
activities. Constraint 15 expresses that the duration of an acquisition interval
must be equal to the duration associated with the chosen realization mode. Con-
straint 16 expresses that if acquisition a uses communication interval k for trans-
mitting data (boolean condition useCom [a, k] > 0), then acquisition interval
acqItv [a] must be included in communication interval comItv [k]. Constraint 17
imposes that for each robot r, there is no overlap between activities assigned
to r when these activities are sequenced as specified in activitySeqs . Constraint
noOverlap(TimeIni ,PosIni ,DuTrans, Itvs,PosSta,PosEnd , activitySeqs) used
in Eq. 17 is a generic temporal constraint of InCELL. It has seven inputs: (1) a
table TimeIni defining the initial availability time of each machine usable for
realizing tasks, (2) a table PosIni defining the configuration of each machine at
that time, (3) a table DuTrans of functions giving the setup time required from
one configuration to another, (4) a table of intervals Itvs which may be placed
on machines, (5) a table PosSta such that PosSta[i] defines the configuration
required at the start of interval Itvs[i], (6) a table PosEnd such that PosEnd [i]
gives the configuration obtained at the end of interval Itvs[i], (7) an element
activitySeqs , of type DisjointIntSequences, which defines the successive indices
of intervals to be realized on each machine. In InCELL, the noOverlap constraint
is implemented using several invariants, and formally it ensures that:

– for an activity j placed just after activity i on machine r,
start(Itvs[j]) ≥ end(Itvs [i]) +DuTrans[r](PosEnd [i],PosSta[j]);

– for the first activity j on a machine r,
start(Itvs[j]) ≥ TimeIni [r] +DuTrans[r](PosIni [r],PosSta[j]).

Constraint 18 enforces that for every acquisition a, there must exist a com-
munication path, i.e. a sequence of communication nodes [n1, . . . , nl], such that:
(1) n1 is node AcqNode[a] associated with a, (2) nl is node OpNode associ-
ated with the operation center, (3) the length l of the path is not greater than
NhopsMax , (4) every two successive nodes are such that Linked(ni, ni+1) holds.
Also, it imposes that the total capacity reserved by a on a node n, defined

878 C. Pralet and C. Lesire

by
∑

k∈[1..K] | comNode[k]=n useCom[a, k], is equal to Qos [a] if n belongs to the
path, and to 0 otherwise. The constraint takes as an input the nodes in which
communication intervals are placed as well as all capacities reserved by a on
communication intervals. It is expressed in a rather global form because it is
handled using specific graph algorithms (see Sect. 4.3). Note that we do not for-
bid several relays to be placed side by side at the same node. More generally, we
consider that possible conflicts on trajectories of robots are handled at execution
time, using online collision avoidance techniques.

Constraint 19 imposes that for every communication interval k, the sum of the
maximum resource usages of robots on k does not exceed the relay capacity. For

R
el

C
ap

m1

m2

m3

Communication interval k

example, in the figure on the right, if m1,m2,m3

are the maximum resource usages in interval k by
robots r1, r2, r3 resp., then m1+m2+m3 ≤ RelCap
must hold. This guarantees that relay capacity is
not exceeded whatever the real activity dates are at
execution time. The approach may be suboptimal,
but it is robust and does not require any synchro-
nization between users of a communication interval.

The criterion given in Eq. 20 corresponds to the makespan, defined as the
earliest end time of the last acquisition in the schedule.

∀a ∈ [1..A],pres(acqItv [a]) ∧ (seq[a] �= 0) (7)
∀k ∈ [1..K],pres(comItv [k])↔ (seq [k +A] �= 0) (8)
∀a ∈ [1..A],AcqFeas[a, seq [a]] (9)
∀k ∈ [1..K], IsRelay [seq[k +A]] (10)
∀a ∈ [1..A], ∀k ∈ [1..K], (useCom [a, k] > 0)→ pres(comItv [k]) (11)
∀a ∈ [1..A], var{int} spos [a]← AcqPosSta[a, acqMode [a]] (12)
∀a ∈ [1..A], var{int} epos [a]← AcqPosEnd [a, acqMode [a]] (13)
∀k ∈ [1..K], var{int} comPos [k]← NodePos [comNode[k]] (14)
∀a ∈ [1..A], durationEq(acqItv [a],AcqDu[a, acqMode[a]]) (15)
∀a ∈ [1..A], ∀k ∈ [1..K], during(useCom [a, k] > 0, acqItv [a], comItv [k]) (16)
noOverlap(TimeIni ,PosIni ,DuTrans, Itvs,PosSta,PosEnd , activitySeqs) (17)

with : Itvs = (all(a ∈ [1..A]) acqItv [a]) · (all(k ∈ [1..K])comItv [k])
PosSta = (all(a ∈ [1..A]) spos [a]) · (all(k ∈ [1..K])comPos [k])
PosEnd = (all(a ∈ [1..A]) epos [a]) · (all(k ∈ [1..K])comPos [k])

∀a ∈ [1..A], ComPathConstraint(AcqNode[a],OpNode,Linked ,
NhopsMax ,Qos[a], comNode, all(k ∈ [1..K])useCom [a, k])

(18)

∀k ∈ [1..K], (
∑

r∈[1..R]

max
a∈[1..A] | seq[a]=r

useCom [a, k]) ≤ RelCap (19)

minimize max
a∈[1..A]

earliestTime(end(acqItv [a])) (20)

Deployment of Mobile Wireless Sensor Networks for Crisis Management 879

4 Local Search Algorithm

We now describe a local search procedure which produces schedules satisfying
all constraints of the model, as the schedule given in Fig. 1.

A possible strategy could be to solve first the exploration problem and then the
communication maintenance problem. Solving the exploration problem would
consist in choosing sequences of acquisition activities, while solving the com-
munication maintenance problem would consist in adding communication relay
activities in the sequences found at the first step. The drawback of such a de-
composition approach is that synchronization constraints between acquisition
and communication activities are taken into account too late, and poor quality
schedules may be produced. See Fig. 3 for an example.

a4a3

a2 a1 a3I

I

I

a2 a4

com2 at p2

a4a3

a1 a2 I

I

I

a3

a2

a4

a1
r1 r1

r2

r2

r2
Op1 p2

r1

(b)

com1 at p1 com2 at p2

r1

r2

r3

r1

r1

r1

r2

r2

r2

a1

Op1 p2(a)

com1 at p1

r1

r2

r3

Fig. 3. An example involving two robots r1, r2 capable of making acquisitions and one
relay robot r3: (a) schedule obtained by first computing optimal exploration tours, and
then adding communication relay activities; (b) a better schedule, which uses longer
exploration tours but synchronizes the accesses to relay r3 by robots r1 and r2

The strategy we propose uses two phases: (1) a constructive phase, which
produces an initial schedule containing all acquisitions; this phase iteratively
adds activities at the end of the robot schedules, using a greedy randomized
heuristics; (2) a local search phase, during which the makespan of the schedule
found at the previous step is improved; unlike the constructive phase, the local
search phase can modify the schedule in a non chronological way. The two phases
are iterated: when the local search phase does not create any new improvement,
a restart from an empty schedule occurs, as in the GRASP metaheuristics [22].

4.1 Constructive Phase

The constructive phase starts from an empty schedule. While there exist acquisi-
tions not scheduled yet, we select a pair (r, a) composed of a robot r ∈ [1..R] and
an acquisition a ∈ [1..A]. Robot r is selected randomly among robots which are
capable of realizing an acquisition not performed yet, with a probability func-
tion of the current end time of the schedule of r (earliest idle robot heuristics).
Acquisition a is an acquisition which is (1) feasible by r, (2) not performed yet,

880 C. Pralet and C. Lesire

and (3) as near as possible from the position of r at the end of its current sched-
ule (nearest neighbor heuristics). These selection operations are implemented
with the help of set invariants, such as candidateRobots ← {r ∈ [1..R] | ∃a ∈
[1..A]¬pres(acqItv [a]) ∧ AcqFeas[a, r]}. The latter CBLS invariant efficiently
maintains the set of robots which are candidates for selection.

Acquisition a is then inserted at the end of the schedule of robot r. To do this,
interval acqItv [a] is marked as present, and integer a is added at the end of the
rth sequence in activitySeqs . Next, the communication network allowing a to be
covered is built following the graph-based procedure described in Section 4.3.
This procedure computes a communication path from a to the operation center,
and adds a set of communication intervals comItv [k] at the end of plans of
some robots r′ �= r. The procedure also chooses the resource usage of a in each
communication interval (decision variables useCom [a, k]).

The schedule obtained after the constructive phase satisfies all constraints and
contains all acquisitions (provided that the horizon end He is large enough).

4.2 Local Search Phase

To improve the schedule generated by the constructive phase, we use local moves
that try to relocate acquisitions belonging to the critical path, that is to the list
of successive activities justifying the value of the makespan.

The main issue is to avoid considering local moves which create cycles in the
temporal precedence graph, and which are therefore trivially inconsistent. To
solve this issue, we maintain an ordered list containing all acquisitions. This
ordered list is denoted by NetAccess, and the meaning of this list is that if
an acquisition a1 appears before an acquisition a2 in NetAccess, then it is
guaranteed that no communication interval reserved for a2 on a relay r is placed
strictly before a communication interval reserved for a1 on r.

Then, each step of the local search works as follows:

1. we randomly select an acquisition a on the critical path; a is removed from
the schedule by removing interval acqItv [a], as well as all capacity usages
reserved by a; if a was the only user of a communication interval comItv [k],
the latter is also removed from the schedule;

2. we then choose a permutation of robots capable of realizing a; as long as a
better insertion position has not been found for a, we select the next robot r
in the permutation and go to point 3 below; if all robots of the permutation
have already been considered, the schedule before the local move is restored
and a is marked as currently not relocatable;

3. we try to perform a local move of addition of a into the schedule of r, for each
position in the NetAccess order; assume that NetAccess corresponds to
list [a1, . . . , an]; the insertion of a in the schedule of r, between ai and ai+1

in NetAccess, is tested as follows; first, we determine, for each robot r′, the
ongoing activity lastItv [r′] on r′ after the realization of [a1, . . . ai]; if r′ is free
after the realization of [a1, . . . ai], new activities can be added to the plan
of r′ just after lastItv [r′] without creating precedence cycles; the only case

Deployment of Mobile Wireless Sensor Networks for Crisis Management 881

a2

a0

a3a1

a0

a1

a2

a4a3

a5

a0

a1 a

a2 com3 at p3
users: [a3,a5]

a4a3

com5 at p2
users: [a4] a5

a0

a1

a2

a4a3

com5 at p2
users: [a4] a5

(c) Insertion of acq a + network for covering a

(d) Merging of communication intervals

I

I

I

I com2 at p2
users: [a1]

com1 at p1
users: [a0,a1]

com4 at p1
users: [a2,a3,a5]

com7 at p4
users: [a]

users: [a]
com6 at p1

I

I

I

I com2 at p2
users: [a1]

com7 at p4
users: [a]

com1 at p1
users: [a0,a1,a,a2]

com4 at p1
users: [a3,a5]

com3 at p3
users: [a3,a5]

a

r1

r2

r3

r4

r1

r2

r3

r4

(b) Communication interval split at the insertion position

(a) Schedule after the removal of a

I

I

I

I

a4

a5

com3 at p3
users: [a3,a5]

com1 at p1
users: [a0,a1,a2,a3,a5]

com2 at p2
users: [a1,a4]

I

I

I

I com2 at p2
users: [a1]

com1 at p1
users: [a0,a1]

com4 at p1
users: [a2,a3,a5]

com3 at p3
users: [a3,a5]

com5 at p2
users: [a4]

r1

r2

r3

r4

r1

r2

r3

r4

Fig. 4. Example of a local move: addition of acquisition a in the schedule of robot r2,
between a1 and a2 in the NetAccess order given by [a1, a2, a3, a4, a5]

in which r′ may not be free is when activity lastItv [r′] is a communication
interval k, and this communication interval is also used by an acquisition in
[ai+1, . . . , an]; in this case, inserting new activities for r′ between ai and ai+1

may create cycles; to avoid this, we create a new communication interval k′
just after k in the schedule of r′, and all acquisitions in [ai+1, . . . , an] that
use capacity on k are redirected to k′; an example is given in Fig. 4(b), which
explicitly mentions the list of acquisitions which use a given communication
interval; in this figure, the insertion of acquisition a between a1 and a2
induces a split of communication intervals com1 and com2 compared to the
schedule given in Fig. 4(a); the two new intervals created, com4 and com5,
contain all users of com1 and com2 placed after a2 in NetAccess; note that
splitting communication intervals may postpone acquisition tasks;

4. acquisition a is added to the schedule of r at the chosen position; from
the state of the communication network after the realization of [a1, . . . ai], a
communication network is built for covering a, using the procedure described
in Sect. 4.3; communication activities corresponding to this new network are
also added to the schedules, as in Fig. 4(c);

5. to reduce the makespan, we try to merge communication intervals that were
split at step 3 for avoiding the creation of cycles, or that have become con-
tiguous following the removal of a at step 1; merging two intervals k, k′ means
transferring from k′ to k as many relay capacity usages as possible; transfers
are performed following the NetAccess order and they stop as soon as one
transfer fails; for instance, in Fig. 4(d), intervals com1 and com6 are merged,
and capacity usage of a2 over com4 is transferred to com1;

6. insertions are tested at all positions in the NetAccess order, with the best
possible acquisition mode; the best insertion on robot r is kept provided
that it improves the makespan; ties are broken by keeping the option that
minimizes the sum of the durations of the robot schedules, so as to occupy
resources as least as possible; if the relocation of a succeeds, all acquisitions
marked as non-relocatable are marked as relocatable again.

882 C. Pralet and C. Lesire

Local search ends when all acquisitions of the critical path are marked as not
relocatable. A restart is performed if there is still some computing time left.

4.3 Building Communication Paths

To build a communication path for covering an acquisition a, we first build a
sequence of connected communication nodes starting at AcqNode[a] and ending
at OpNode. This point is tackled using EQAR [23], an algorithm capable of
building wireless sensor networks with quality of service requirements, when
sensors produce data with a certain rate and when relays have a limited capacity.
In short, EQAR is an iterative algorithm which considers each sensor in turn.
For covering a sensor, it adds a set of relays at some nodes of the communication
grid. At each step of the algorithm, each node n of the grid may already contain
some relays and have a so-called residual capacity resCap[n], which corresponds
to the amount of Mb/s that are still available on relays placed at n. EQAR
then computes a good communication path by solving a shortest-path problem
(using Dijkstra’s algorithm) in the graph where there are arcs between any two
connected communication nodes, and each arc pointing to node n is weighted by
0 if the residual capacity resCap[n] of n is greater than the quality of service qos
required for the sensor (traversing n is free in this case), and by 1−resCap[n]/qos
otherwise. An illustration of EQAR is given in Fig. 5.

A

which reuses residual capacities
communication path computed by EQAR,

A

possible communication link

candidate communication node

operation center

acquisition to be covered

node with residual capacity Q
(node already containing relays)O

Q1

Q2

Q3

Q4

O

Q

Fig. 5. Illustration of the EQAR algorithm [23]

Using EQAR for covering an acquisition a is quite straightforward. When a
must be added to the schedule of robot r, the ongoing activity on each robot
r′ �= r is first determined. If the ongoing activity on r′ is a communication
activity in node n, then we compute the residual capacity offered by r′ in n.
Using all residual capacities of all robots, except for robot r, we compute a good
communication path following the EQAR procedure. This communication path
may require the use of new relays at some communication nodes. Deciding on
which robot to send to which node in order to build the communication path
as fast as possible can be seen as a Linear Bottleneck Assignment Problem [24].
Polynomial algorithms do exist for such problems, but we use here a simple
greedy procedure which successively sends to each node n a relay robot r able

Deployment of Mobile Wireless Sensor Networks for Crisis Management 883

to reach n as fast as possible. An associated communication interval k is added
to the schedule of r, and the capacity consumed by acquisition a on k is chosen
as high as possible, in order to use the minimum number of relays for covering
Qos [a]. The communication intervals introduced are merged with previous com-
munication intervals when possible. These steps guarantee the satisfaction of all
constraints given in Eq. 18.

5 Experiments

We consider here a 1km×1km crisis area. A communication grid containing
100 cells of size 100m×100m is built, and candidate communication nodes are
placed at the center of these cells. The range of a communication relay is 150m,
hence each cell can communicate with its eight neighbors. The operation center
is placed at a corner of the environment. Two third of the robots can relay
communications, the capacity of a relay is 45Mb/s, and we do not limit the
length of communication paths. Acquisitions are performed using two types of
instruments. Instruments of the first (resp. second) type generate 3Mb (resp.
6Mb) of data per second. Each robot has zero, one or two instrument(s).

As we do not dispose of real data, we build instances by defining sets of
acquisition strips of a certain length. These strips are specified by end points
chosen randomly, and each strip is split into acquisitions which can be covered by
a unique communication node. Table 1 reports some statistics on such instances,
concerning the CBLS model and the search phases. Results are obtained on an
Intel i5-520 1.2GHz, 4GBRAM. They show that the approach scales quite well
when the number of tasks involved in schedules increases (column nItvs).

Fig. 6 details results for two specific scenarios involving 14 UAVs. The first
one involves 20 acquisitions generated as previously described. The second one
involves 100 acquisitions positioned regularly at the center of the 100 cells of the
communication grid, which simulates an exploration of the whole environment.
Fig. 6 shows the best schedules generated after 50 restarts, as well as the evolu-
tion of the makespan during the first 10 restarts. It appears that restarts help in
escaping local minima, and that local search quickly improves the value of the
makespan given by the greedy constructive phase.

Table 1. Statistics on the CBLS approach; column nMovesPerSec counts one local
move each time an acquisition is added to a robot using a particular position in the
NetAccess order (one local move corresponds to the set of operations given in Fig. 4)

A R nVars nInvariants nItvs tCreateModel (sec.) tGreedySol (sec.) nMovesPerSec
20 14 69550 12343 200 0.26 0.002 8295
50 14 238778 30433 500 0.45 0.03 1626
100 14 700827 60583 1000 1.09 0.093 637
20 30 161178 33465 357 0.49 0.008 1532
50 30 632050 97287 1050 1.21 0.06 573
100 30 1760500 193987 2100 2.21 0.197 351

884 C. Pralet and C. Lesire

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 0 20 40 60 80 100 120 140

m
ak

es
pa

n

cpuTime (sec.)

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 500 1000 1500 2000 2500

m
ak

es
pa

n

cpuTime (sec.)

Fig. 6. Schedules produced by the local search and evolutions of the makespan; upper
part: scenario involving 20 acquisitions; lower part: scenario involving 100 acquisitions;
acquisitions (resp. communications) are depicted in black (resp. white)

6 Conclusion

This paper introduced a CBLS approach for deploying mobile wireless sensor
networks. This approach computes efficient schedules which remain executable
despite the uncertainty about the duration of robot moves. In terms of model-
ing, additional resource constraints such as energy limitations could be taken into
account, and we could build a CP model in which relays can move during com-
munications. The latter point requires to interleave more finely scheduling with
the planning of robot paths, which raises new modeling issues. The next step
will be to tackle real scenarios and perform real demonstrations. On this point,
we are currently developing a supervision layer able to manage plan execution
and to request plan repairs/optimizations when robot moves are longer/shorter
than expected, or when operators request new acquisitions during the mission.

References

1. Hentenryck, P.V.: Computational disaster management. In: Proc. of IJCAI 2013,
pp. 12–18 (2013)

2. Bektas, T.: The multiple traveling salesman problem: an overview of formulations
and solution procedures. OMEGA: The International Journal of Management Sci-
ence 34(3), 209–219 (2006)

Deployment of Mobile Wireless Sensor Networks for Crisis Management 885

3. Sariel-Talay, S., Balch, T., Erdogan, N.: Multiple traveling robot problem: A solu-
tion based on dynamic task selection and robust execution. IEEE/ASME Transac-
tions on Mechatronics, Special Issue on Mechatronics in Multirobot Systems 14(2),
198–206 (2009)

4. Pesant, G., Gendreau, M., Potvin, J.Y., Rousseau, J.M.: On the flexibility of con-
straint programming models: From single to multiple time windows for the traveling
salesman problem. European Journal of Operational Research 117, 253–263 (1999)

5. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Computer Networks 38, 393–422 (2002)

6. Younis, M., Akkaya, K.: Strategies and techniques for node placement in wireless
sensor networks: A survey. Ad Hoc Networks 6(4), 621–655 (2008)

7. Hwang, F., Richards, D., Winter, P.: The Steiner tree problem. Annals of Discrete
Mathematics, vol. 53. Elsevier (1992)

8. Quesada, L., Brown, K., O’Sullivan, B., Sitanayah, L., Sreenan, C.: A constraint
programming approach to the additional relay placement problem in wireless sensor
networks. In: Proc. of ICTAI 2013, pp. 1052–1059 (2013)

9. Truong, T.T., Brown, K.N., Sreenan, C.J.: Repairing wireless sensor network con-
nectivity with mobility and hop-count constraints. In: Cichoń, J., Gȩbala, M.,
Klonowski, M. (eds.) ADHOC-NOW 2013. LNCS, vol. 7960, pp. 75–86. Springer,
Heidelberg (2013)

10. Pal, A., Tiwari, R., Shukla, A.: Communication constraints multi-agent territory
exploration task. Applied Intelligence 38(3), 357–383 (2013)

11. Mukhija, P., Krishna, K.M., Krishna, V.: A two phase recursive tree propagation
based multi-robotic exploration framework with fixed base station constraint. In:
Proc. of IROS 2010 (2010)

12. Pei, Y., Mutka, M.W.: Steiner traveler: Relay deployment for remote sensing in het-
erogeneous multi-robot exploration. In: Proc. of ICRA 2012, pp. 1551–1556 (2012)

13. Pei, Y., Mutka, M.W., Xi, N.: Connectivity and bandwidth-aware real-time explo-
ration in mobile robot. Wireless Communications and Mobile Computing 13(9),
847–863 (2013)

14. Hentenryck, P.V., Michel, L.: Constraint-based local search. The MIT Press (2005)
15. Michel, L., Hentenryck, P.V.: Localizer. Constraints 5(1-2), 43–84 (2000)
16. Voudouris, C., Dorne, R., Lesaint, D., Liret, A.: iOpt: A software toolkit for heuris-

tic search methods. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 716–719.
Springer, Heidelberg (2001)

17. Benoist, T., Estellon, B., Gardi, F., Megel, R., Nouioua, K.: Localsolver 1.x: a
black-box local-search solver for 0-1 programming. 4OR: A Quarterly Journal of
Operations Research 9(3), 299–316 (2011)

18. Newton, M.H., Pham, D., Sattar, A., Maher, M.: Kangaroo: An efficient constraint-
based local search system using lazy propagation. In: Lee, J. (ed.) CP 2011. LNCS,
vol. 6876, pp. 645–659. Springer, Heidelberg (2011)

19. Landtsheer, R.D.: OscaR.cbls: a Constraint-Based Local Search Engine (2012)
20. Pralet, C., Verfaillie, G.: Dynamic online planning and scheduling using a static

invariant-based evaluation model. In: Proc. of ICAPS 2013 (2013)
21. Frank, J., Jónsson, A.: Constraint-based attribute and interval planning. Con-

straints 8(4), 339–364 (2003)
22. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of

Global Optimization 6, 109–133 (1995)
23. Lee, S., Younis, M.F.: EQAR: Effective QoS-aware relay node placement algorithm

for connecting disjoint wireless sensor subnetworks. IEEE Transactions on Com-
puters 60(12), 1772–1787 (2011)

24. Burkard, R.E., Dell’Amico, M., Martello, S.: Assignment Problems. SIAM (2009)

Air Traffic Controller Shift Scheduling

by Reduction to CSP,
SAT and SAT-Related Problems�

Mirko Stojadinović

Faculty of Mathematics
University of Belgrade, Serbia

mirkos@matf.bg.ac.rs

Abstract. In this paper we present our experience in solving Air Traf-
fic Controller Shift Scheduling Problem. We give a formal definition of
this optimization problem and introduce three encodings. The encodings
make possible to formulate a very wide set of different scheduling re-
quirements. The problem is solved by using SAT, MaxSAT, PB, SMT,
CSP and ILP solvers. In combination with these solvers, three different
optimization techniques are presented, a basic technique and its two mod-
ifications. The modifications use local search to modify some parts of the
initial solution. Results indicate that SAT-related approaches outperform
other solving methods used and that one of the introduced techniques
which uses local search can significantly outperform the basic technique.
We have successfully used these approaches to make shift schedules for
one air traffic control center.

1 Introduction

In the last few decades, personnel scheduling problems have been extensively
studied (e.g., nurse scheduling problem [7], course timetabling [9]). Given the
input parameters (e.g., the number of available workers, their skills and skills
needed for working positions) and constraints (e.g., maximum number of consec-
utive working days for each worker), a schedule satisfying specified constraints
needs to be generated.

In this paper we consider a type of scheduling problem called Air Traffic
Controller (ATCo) Shift Scheduling Problem (ATCoSSP). The objective is to
make a shift schedule, so that at each working hour every position is filled by a
sufficient number of controllers with adequate skills. Because of the nature and
the importance of their job, controllers need to be fully concentrated while they
are on position. Therefore, their schedule must satisfy a stricter set of constraints
compared to other personnel scheduling problems. To the best of our knowledge,
there are no papers which describe encodings or instances of the problem, nor
its solving methods in detail. We focus on solving this problem by using different
exact methods: CSP (COP), SAT, Partial MaxSAT, SMT, ILP and PB.

� This work was partially supported by the Serbian Ministry of Science grant 174021.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 886–902, 2014.
c© Springer International Publishing Switzerland 2014

Air Traffic Controller Shift Scheduling by Reduction to CSP, SAT 887

Constraint satisfaction problems (CSP) and constraint optimization problems
(COP) [1] are wide classes of problems that include many problems relevant
for real world applications (e.g., scheduling, timetabling, sequencing, routing,
rostering, planning). Many different approaches for solving CSPs and COPs exist
(e.g., constraint programming, mathematical programming, systematic search
algorithms, forward checking, answer set programming). Global constraints [3]
describe relations between a non-fixed number of variables and their purpose is
to improve the readability and the efficiency of CSP solving.

Propositional satisfiability problem (SAT) [6] is the problem of deciding if
there is a truth assignment under which a given propositional formula (in con-
junctive normal form) evaluates to true. It is a canonical NP-complete problem
[10] and it holds a central position in the field of computational complexity.
Partial MaxSAT problem [6] is an optimization version of SAT which consists of
finding an assignment that satisfies all hard clauses and maximizes the number
of satisfied soft clauses. Satisfiability modulo theories (SMT) [6] is a research
field concerned with the satisfiability of formulae with respect to some decidable
background theory (or combination of them). Some of these theories are Linear
Integer Arithmetic, Integer Difference Logic, Linear Real Arithmetic, etc. Integer
linear programming (ILP) problem deals with minimizing a linear function while
satisfying a set of linear constraints over integer variables. Pseudo-boolean (PB)
problem [6] is a restriction of ILP problem where the domains of variables are
restricted to {0, 1}. It can be considered as a generalization of SAT problem.

Contributions of this work are the following.

– A formal definition of ATCoSSP is given (to the best of our knowledge only
informal descriptions are available in literature).

– Three encodings of the problem are introduced. The first two encodings
formulate problem as a COP: the first encoding uses linear arithmetic con-
straints and the well-known global constraint count , whereas the second uses
linear arithmetic constraints only. The third encoding formulates the prob-
lem as a PB problem.

– Different solving methods are compared and a variety of solvers are used.
Experimental results indicate that, due to the nature of the constraints,
non-SAT-related solvers cannot be on a par with SAT-related solvers when
solving this problem is in question. Results show that solver Sugar [29] using
reduction to SAT outperforms all other solvers. Sugar efficiently handles
arithmetic constraints and can process large number of problem constraints.

– Three optimization techniques are defined and applied to ATCoSSP . In each
of them we run the solver on instances that differ only in values of optimiza-
tion variable. The first technique uses a variant of binary search to determine
the next value of this variable. The second is intended to improve the solu-
tions of the first approach by using local search specifically adapted to this
problem. The third is even more adapted to this problem. It uses a two-step
approach that can significantly speed up the solution process by overcoming
the main difficulty: a great number of variables and constraints. It finds an

888 M. Stojadinović

initial solution and iteratively searches for a better solution by fixing some
parts of the initial solution and then optimizing its other parts.

– As stated by Burke et al. [7], the drawback of many developed scheduling
algorithms is that they were not applied in practice. We have applied the
solving methods described in this paper to make shift schedules for one air
traffic control center. Instances of the problem are made available online.

Related work. The overview of available results related to ATCoSSP is presented
by Arnvig et al. [2]. Some software tools for generating ATCo schedules already
exist [16]. The advantages and the disadvantages of using these tools have already
been recognized [31]. Some of them are in-house tools, and the details about
them are not available. The others are more general tools (e.g., Shift Scheduler
Continuous1) that can be used only with restricted versions of ATCoSSP (e.g.,
controllers are divided into teams and this is usually the case at big airports).

Scheduling problems have been extensively studied in literature. One of these
problems is Nurse Scheduling Problem (NSP) [7]. Although there are many sim-
ilarities between this problem and the problem we discuss, the important differ-
ence is that (in its most frequent form) NSP does not include scheduling on an
hourly basis. Course Timetabling (CTT) [9] is well studied problem that does
scheduling on an hourly basis. ATCoSSP differs from both cited problems as
schedule requirements are much stricter. This implies a great number of hard
and a small number of soft constraints, and finding any solution is often very
difficult. Most often, known heuristic methods which successfully solve NSP and
CTT assume easy way of finding initial solution. The described differences make
it very hard to adapt known heuristic methods to ATCoSSP .

Overview of the paper. In Section 2 we give the problem description. In Section 3
we describe encodings of the problem and the optimization techniques used. We
present our implementation and experimental evaluation in Section 4. Section
5 contains details about the real world application of our implementation. In
Section 6 we draw some final conclusions and present ideas for further work.

2 Problem Description

ATCoSSP is a problem of assigning shifts to controllers in a considered period
(usually a month or a year) with respect to some requirements. There are many
documents that describe these requirements (e.g., [2], [16], [17]). The period
consists of a number of days and the days consist of time slots. Each day a
controller takes exactly one of three possible types of shifts. During working
shifts a controller works in an ATCo facility on a given day from the first until
the last time slot of that shift (including both these time slots) and rests in the
remaining time slots. Working shifts may have different lengths and depending
on the first time slot, we distinguish between morning, day, afternoon and night
shifts. It is assumed that the time slots of working shifts are known in advance.

1 http://www.bizpeponline.com/Helpssce.html

http://www.bizpeponline.com/Helpssce.html

Air Traffic Controller Shift Scheduling by Reduction to CSP, SAT 889

If a controller does not take working shift on some day, we say the controller
takes a rest shift on that day (it is equivalent to weekend day for the majority
of professions as teachers, lawyers, etc.). Each controller is allowed a number of
paid vacation days and we say this person takes a vacation shift on these days.
Vacations for the period are approved or disapproved in advance by the officials.
For each controller, a number of working hours in the considered period must be
greater than some value min (in order to get a full wage) and smaller than some
value max (to avoid fatigue). Each working shift implies a number of working
hours equal to the duration of that shift. A rest shift is not counted as working
hours. A vacation shift implies some predetermined number of working hours.

Each controller must not take more than a specified number of consecutive
working/rest shifts (usually 2 or 3). Only some controllers have the licence to
be the heads of the working shift. On each day in each time slot when a facility
works, at least one of these controllers has to be in the facility2. Each controller
must take at least a minimum number of rest shifts per month. All controllers
need rest between working shifts, and regulations usually specify a minimum
number of rest time slots between working shifts (e.g., 12 hours).

Assigning controllers to positions within their working shifts is also a part of
the problem. There are different types of positions in ATCo facilities (e.g., tower,
terminal, en route) and depending on a facility size some or all of the positions
are present. In any time slot of a working shift a controller can either be on
position or can have a break. In any time slot a controller can be assigned to
maximum one position. In two consecutive time slots a controller can be on two
different positions. A controller must not be on position longer than the specified
number m of consecutive time slots. Based on expected air traffic intensity, for
each day in each time slot of working hours of a facility (some facilities work
24 hours a day while others do not) a number of controllers is needed for each
position. A controller needs certain skills in order to obtain a licence to work on
some position. It is assumed that the licences of controllers and the number of
needed controllers for each time slot are known in advance3.

The description so far has been focused only on hard constraints which are
essential for shift schedule correctness and thus have to be satisfied. Soft con-
straints represent staff wishes (or preferences). Controllers may prefer different
working shifts (e.g., they may prefer morning shifts), they may prefer to take
consecutive working shifts as rarely as possible, etc. The reasons for including
the staff to make schedules and some of most usual preferences are described by
Arnvig et al. [2], subsection 6.5.

3 Encodings of the Problem

Time slots can be of any fixed specified length but we assume the length of
time slot is 1 hour. Shift schedules are generated for a period of one month and

2 This requirement can be expressed in terms of shifts instead of time slots.
3 Actually, determining the number of controllers for each position is a problem itself,
and it has been extensively studied in literature (e.g., [17], [31]).

890 M. Stojadinović

for each month, a new shift schedule needs to be generated. There are many
reasons for this: expected monthly traffic intensity changes, different controllers
take vacation days in different months, etc. We assume that there are only two
types of positions: tower and terminal, and that there are no night shifts. These
assumptions are not a limitation since the encodings can be easily extended to
support more types of positions and night shifts.

Let us assume that the days are 1, . . . , nd, the controllers are 1, . . . , nc and the
shifts are 1, . . . , ns. In order to make the encodings compact and more efficient,
we assume that working shifts are 1, . . . , ns − 2, that res = ns − 1 is rest shift
and vac = ns is vacation shift. Time slots take values 0, . . . , 23 and for each shift
s, the first (sf) and the last (sl) working hour of that shift are fixed.

We experimented with different encodings and constraints. In the following
3 subsections, we describe 3 encodings which showed good results. Only the
values of variables that determine controllers shifts for each day and controllers
positions for each time slot are used when making tabular schedule for employees.
Other variables are auxiliary and they are used to improve the readability and
the efficiency of the encodings. The fact that vacation shifts and vacation working
hours are fixed for the period is used to make the encodings more compact. Due
to space limit, we omit the descriptions of some constraints4. In subsection 3.4
we describe how optimization instances are solved.

3.1 The First Encoding

Linear arithmetic constraints and global constraint count [3] are imposed on in-
teger variables. The count constraint requires that the number of occurrences of
the value of the expression e in the set of expressions e1, . . . , ek is in some arith-
metic relation (=, �=, ≤, <, ≥, >) with the expression n. E.g., count({x1, x2, x3,
x4}, 5) > 3 (where e = 5, ei = xi, the relation is >, and n = 3) specifies that
the value 5 occurs more than 3 times in the set of variables {x1, x2, x3, x4}.

Integer variables.

– dcd,c: on the day d the controller5 c can be assigned any from the possible
shifts 1, . . . , ns. Note that the fact that the working shifts are 1, . . . , ns − 2
allows us to state that the controller c is working in a facility on the day d
by imposing constraint dcd,c ≤ ns − 2.

– dhcd,h,c: in the hour h of the day d the controller c can be assigned different
tasks: c can be on position on tower (TOW = 0) or terminal (TER = 1), c
can have break hour in a facility (B = 2), vacation hour (V = 3) or a rest
time (R = 4). Note that this allows us to state that c is having working hour
in the facility in the hour h of the day d by imposing constraint dhcd,h,c ≤ B.

– hd,c: on the day d the controller c is counted a certain number of working
hours (0, . . . , 12).

4 The omitted variable relationships and the constraints of the encodings are available
online from: http://jason.matf.bg.ac.rs/~mirkos/Atco.html

5 Most of the constraints have to be true for all controllers, but we use some fixed
controller c in the descriptions. Similarly for days, hours and shifts.

http://jason.matf.bg.ac.rs/~mirkos/Atco.html

Air Traffic Controller Shift Scheduling by Reduction to CSP, SAT 891

Variable Relationships

– If the controller c takes the working shift s on the day d, then c works on
working hours of that shift and rests during other hours of the day. So, for
any j ∈ {sf , . . . , sl}: dcd,c = s → dhcd,j,c ≤ B. For any j ∈ {0, . . . , 23} \
{sf , . . . , sl}: dcd,c = s→ dhcd,j,c = R.

– If the controller c takes the non-rest shift s with working hours sf , . . . , sl
on the day d, then this implies c is working sl − sf + 1 hours on that day:
dcd,c = s→ hd,c = sl−sf+1. In case of the rest shift: dcd,c = res→ hd,c = 0.

Hard Constraints

– Assigning shifts: On the day d the controller c takes one of the possible shifts
(already imposed as variable dcd,c takes one from the values 1, . . . , ns).

– Consecutive working shifts: The controller c must take at least one rest shift
in cws days in a row starting from the day d, if c does not take vacation
shift on any of these days: count({dcd,c, . . . , dcd+cws,c}, res) ≥ 1.

– Maximum working hours: The controller c must not work more than the
specified max working hours in a month:

∑nd

d=1 hd,c ≤ max.
– Positions filled: If in the hour h of the day d at least k controllers are needed

for tower position, then the following constraint is imposed: count({dhcd,h,1,
. . . , dhcd,h,nc}, TOW) ≥ k. Analogously for terminal position6.

– Consecutive time slots on position: On the day d starting from the hour h
the controller c is on position not more than the specified numberm of hours
in a row: dhcd,h,c ≥ B ∨ . . . ∨ dhcd,h+m,c ≥ B.

Soft Constraints. Each wish of a controller is expressed as a constraint that is
true iff the wish is not satisfied. Each of these constraints is made equivalent to
a fresh integer variable with the domain {0, 1}. If all these variables take value
0, then all wishes are satisfied. For the fixed controller c a new fresh variable is
denoted by xc,i, where index i takes the smallest unused non-negative number.

– Shift preferences: If the controller c prefers working shifts s1, . . . , sz, then
each shift s that is different from these shifts, rest or vacation shift is con-
sidered undesirable on any day d: xc,i ↔ dcd,c = s. E.g., if the month has 30
days and if the smallest unused non-negative index of the variables associated
with the controller c is j, then for undesired shift s variables xc,j , . . . , xc,j+29

are introduced.
– Minimize consecutive working shifts: The controller c prefers to take con-

secutive working shifts as rarely as possible. For each day d: xc,i ↔ dcd,c ≤
ns − 2 ∧ dcd+1,c ≤ ns − 2.

3.2 The Second Encoding

As the syntax of some solvers does not allow the usage of global constraints, we
adapt the first encoding not to use these constraints. Integer variables, variable
relationships and soft constraints are the same as in the first encoding.

6 Actually, several count constraints are replaced by one global cardinality constraint
[3] in order to obtain stronger filtering, but we omit the details.

892 M. Stojadinović

Hard Constraints. As most of the hard constraints are the same as in the first
encoding, we only describe differently encoded constraints. New variables and
constraints specifying their relationships are introduced for if-then-else expres-
sions, so this encoding can be of much greater size than the first one.

– Consecutive working shifts: The controller c must take at least one rest shift
in cws days in a row starting from the day d, if c does not take vacation
shift on any of these days: dcd,c = res ∨ . . . ∨ dcd+cws,c = res.

– Positions filled: If in the hour h of the day d at least k controllers are
needed for tower position, then the following constraint is imposed:

∑nc

c=1(if
(dhcd,h,c = TOW) then 1 else 0) ≥ k. Analogously for terminal position.

3.3 The Third Encoding

If l1, . . . , ln are Boolean literals, then the formula l1+. . .+ln # k, k ∈ N, # ∈
{≤, <,≥, >,=} is called Boolean cardinality constraint (BCC) [27]. In our pre-
sentation of the constraints we use equivalences, implications and clauses as
often as possible in order to improve the readability of the paper, but the third
encoding actually uses BCCs only. Each equivalence can be converted to 2 im-
plications (from left to right and vice versa). The implication a → b can be
directly translated to a clause ¬a∨ b and more complicated implications can be
translated to clauses by using De Morgans laws and distributivity rules7. Note
that each clause l1 ∨ . . . ∨ ln is actually BCC l1 + . . .+ ln ≥ 1.

Propositional Variables

– dcsd,c,s: on the day d the controller c takes the shift s.
– dcd,c: on the day d the controller c takes a working shift.
– dhcd,h,c: the hour h of the day d for the controller c is a working hour (in a

facility or on vacation). If false, c is having rest hour.
– towd,h,c/terd,h,c/posd,h,c: in the hour h of the day d the controller c is on

position on tower/on position on terminal/on any position.
– bd,h,c/vd,h,c: in the hour h of the day d the controller c has break hour in a

facility/has vacation working hour.

Variable Relationships

– If the controller c takes the working shift s on the day d, then c works on
working hours of that shift and does not work during other hours of the day.
So, for any j ∈ {sf , . . . , sl}: dcsd,c,s → dhcd,j,c. For any j ∈ {0, . . . , 23} \
{sf , . . . , sl}: dcsd,c,s → ¬dhcd,j,c.

– The controller c works in the hour h of the day d iff c is on position on tower
or on position on terminal or has break hour in a facility or has vacation
working hour: dhcd,h,c ↔ towd,h,c ∨ terd,h,c ∨ bd,h,c ∨ vd,h,c.

– The controller c is on position in the hour h of the day d iff c is on position
on tower or on terminal: posd,h,c ↔ towd,h,c ∨ terd,h,c.

7 There is no risk of exponential blow-up as implications in this encoding have small
number of literals.

Air Traffic Controller Shift Scheduling by Reduction to CSP, SAT 893

Hard Constraints

– Assigning shifts: On the day d the controller c takes one of the possible shifts
(any of working shifts, rest or vacation shift): dcsd,c,1 + . . .+ dcsd,c,ns = 1.

– Consecutive working shifts: The controller c must not work in a facility more
than cws days in a row starting from the day d, if c does not take vacation
shift on any of these days: ¬dcd,c ∨ . . . ∨ ¬dcd+cws,c.

– Maximum working hours: The controller c must not work more than the
specified max working hours in a month:

∑nd

d=1

∑23
h=0 dhcd,h,c ≤ max.

– Positions filled: If in the hour h of the day d at least k controllers are needed
for tower position, then the following constraint is imposed:

∑nc

c=1 towd,h,c ≥
k. Analogously for terminal position.

– Consecutive time slots on position: On the day d starting from the hour h
the controller c is on position not more than the specified numberm of hours
in a row: ¬posd,h,c ∨ . . . ∨ ¬posd,h+m,c.

Soft Constraints. Fresh Boolean variables are introduced in the same way as
integer variables with the domain {0, 1} in the first encoding.

– Shift preferences: If the controller c prefers working shifts s1, . . . , sz, then
any other shift s that is different from these shifts, rest or vacation shift is
considered undesirable on any day d: xc,i ↔ dcsd,c,s = 1.

– Minimize consecutive working shifts: The controller c prefers to take consecu-
tive working shifts as rarely as possible. For each day d: xc,i ↔ dcd,c∧dcd+1,c.

3.4 Search for Optimum

Controllers indicate importance for their wishes and this is expressed by associ-
ating integer weight with each wish they have. In order to make the schedule fair,
the weights are scaled so that for each controller the sum of weights of all wishes
is equal to some fixed value. If the controller c specifies mc wishes expressed by
the Boolean variables xc,i (introduced in the description of soft constraints), and
if associated weights are scaled to the values wc,i, then controllers penalty is de-
fined: cpenalty =

∑mc

i=1 wc,i ·xc,i. For each controller c, the constraint of the form
cpenalty ≤ cost is imposed (for the fixed value of some integer variable cost). The
goal is to find a minimum non-negative value for this variable (the maximum of
all controllers penalties is to be minimized). Note that all xc,i have the domain
{0, 1}, so the upper constraint can be encoded either as a linear expression (for
the first two encodings) or BCC (for the third encoding).

Three optimization techniques are used. For all of them, instances for different
values of cost (with bounds costl and costr) are generated and solved by new
runs of the associated solver. The solving process starts from the beginning for
each new value of cost on the instance which differs from the previous instance
only in this value. We are aware that there are approaches that can improve
efficiency by using incremental solving [14,30], but the improvements should not
be significant due to results of conducted experiments (Subsection 4.2). Linear
search, binary search and many other algorithms [6] can be used to find an
optimal value of cost variable. In all three techniques we use (asymmetric) binary
search algorithm combined with some additional techniques.

894 M. Stojadinović

The first technique (bsBasic). In this approach pure (asymmetric) binary search
is used. If a solution is found and the maximum controllers penalty is some value
sol (sol = maxnc

c=1 cpenalty , where cpenalty is calculated for the found values of
xc,i), then costr = sol − 1. If no solution exists, then costl = cost + 1. Next
instance considers the value cost = costl + k · (costr − costl). For k = 1/2 this
is symmetric binary search, and for k ≥ 1/2 the satisfiable instances are favored
(they are usually easier). The search is ended and an optimum is found when
costl becomes greater than costr.

The second technique (bsShExc). Having found a solution with the maximum
penalty sol, a local search is used in order to improve the solution (to reduce
sol). The local search is based on shift exchanges. Two shifts can be exchanged
between two controllers if they are of the same length and if the exchange does
not violate any of the hard constraints. In the example schedule given in Table
1, if Alice and Charlie have licences for the same positions and Alice prefers
working in the morning, then their working shifts on the day 4 are promising
candidates for exchange. The shifts are exchanged whenever the greater of two
controllers penalties is not increased. This assures that sol cannot be increased.
In order to escape from local minimum, after a number of iterations a certain
number of random shift exchanges is performed (thus maybe increasing sol).
After a number of local search iterations, the binary search continues.

The third technique (bsNoPos). The third and the second technique are similar.
The difference is in the way the local search is performed. This technique assumes
that all controllers have the licence to work on all positions. We aim to get
much smaller encodings by replacing position requirements with working shift
requirements. A number of controllers is needed for each position in each time
slot, as noted in Section 3. In the initially found solution, a sufficient number of
controllers is assigned to each position in each time slot and at the same time a
number of controllers is assigned to each working shift on each day (e.g., on the
day 2 in the example given in Table 1, 2 controllers are assigned to the shift 3
and no controllers are assigned to the shift 1).

The goal is to reduce the number of assigned controllers to each working shift
and to get less filled shift schedule than the one initially found. Let us first assume
that for some days d1 and d2 the same number of controllers is needed for each
position in each time slot of these days (we assume this is the case with days 1
and 3 in the example). The second assumption is that for each working shift, the

Table 1. Small example of schedule for only 4 days (no position schedule presented).
Shifts are 1 (04-12), 2 (08-16), 3 (12-20), 4 (rest), 5 (vacation).

Name Day 1 Day 2 Day 3 Day 4
Alice 2 (08-16) 4 (rest) 2 (08-16) 3 (12-20)
Bob 4 (rest) 3 (12-20) 3 (12-20) 4 (rest)

Charlie 1 (04-12) 4 (rest) 1 (04-12) 2 (08-16)
Dave 4 (rest) 3 (12-20) 5 (vac.) 5 (vac.)

Air Traffic Controller Shift Scheduling by Reduction to CSP, SAT 895

number of assigned controllers to that shift on day d1 is less or equal than the one
on day d2. The third assumption is that for at least one working shift, the number
of assigned controllers to that shift on day d1 is strictly less than the one on day
d2 (days 1 and 3 fulfill both the second and the third requirement). If these three
assumptions are met, then the number of needed controllers for each working shift
of d2 is made equal to the corresponding number of d1, thus decreasing the number
of needed controllers for working shifts of the day d2 (no controller is needed for the
shift 3 on day 3). The positions assignment for d1 is copied to position assignment
for d2. We repeat this until there is not a day for which the number of needed
controllers for any working shift can be reduced.

The search is now continued in the encodings where instead of positions vari-
ables and constraints, the constraints specifying the number of needed controllers
for each working shift on each day are imposed (e.g., in the first encoding for day
2: count({dc2,1, . . . , dc2,4}, 3) ≥ 2). Each time slot of these shifts is already asso-
ciated with a position. This significantly reduces the encodings size (we denote
the original encoding as complete and this encoding as reduced encoding). When
an optimum on the reduced encoding is found, it is not necessary the optimum
of the initial problem. The binary search then continues on complete encoding.

4 Experimental Evaluation

All the tests were performed on a multiprocessor machine with AMDOpteron(tm)
CPU 6168 on 1.9Ghz with 2GB of RAM per CPU, running Linux. Value k = 4/5
is used for optimization as it showed good results in initial experiments. The
timeout is 600 minutes (10 hours) for each instance, including both encoding
and solving time (the first is negligible in comparison to the second).

Instances. We experimented with making monthly shift schedules for 2 different
months for an airport in Vršac, Serbia, that employs 12 controllers. Officials
specified different input parameters as they wanted to choose among several
schedules. Parameters differed in number of working shifts (from 3 to 5) and their
working hours (from 8 to 12), in number of controllers allowed to take vacation,
and in few other parameters. For each month 9 instances were generated. Officials
selected one of the solutions to be an official schedule8. In this way, 18 real-world
instances were generated9. Additionally, we generated 4 harder instances in order
to estimate the scalability of different solving methods. These instances include
more controllers (17-25), longer periods (60-120 days) and more controllers are
needed for certain positions in certain time slots.

Table 2 shows the average number of variables, constraints and average do-
main size for each of the encodings. The numbers are presented both for the

8 The most important parameter in selection was the number of controllers allowed
to go on vacation - the intention was to maximize this number.

9 The source code of our implementation and the instances used in experiments (but
without third-party solvers, due to specific licensing) are available online from:
http://jason.matf.bg.ac.rs/~mirkos/Atco.html

http://jason.matf.bg.ac.rs/~mirkos/Atco.html

896 M. Stojadinović

Table 2. Average numbers of variables and constraints, and average domain size on
all instances

Variables Constraints Domain
Encoding complete reduced complete reduced complete reduced

1 10215 3951.7 81295.3 13400 4.79 2.79
2 35222.2 4467 131840 14430 2.82 2.70
3 55447.9 12964 160314 65293.1 2 2

complete and reduced encodings used during local search in bsNoPos technique.
The numbers indicate that the size of reduced encoding is significantly smaller
compared to complete encoding. This is due to a large number of variables and
constraints directly connected to position requirements. Both these variables and
constraints need to be introduced for each controller, day and time slot, so we
advocate that the sizes of complete encodings can not be significantly reduced.
Although the first two encodings differ only in the way some of the constraints are
encoded, the first encoding is much more compact as it uses global constraints.

4.1 Solving Methods and Preliminary Experiments

Solving methods. Four exact solving methods were used to make schedules.
The first method uses state-of-the-art non-SAT-oriented CSP solvers for solv-

ing generated CSP and COP instances in two formats. The first two encodings
specifications can be directly translated to these formats. XCSP [25] format is
used by solversMistral 1.545 [19] and Abscon 112v4 [23]. MiniZinc [24] input for-
mat is used by solversmzn-g12cpx,mzn-g12fd,mzn-g12lazy,mzn-g12mip included
in MiniZinc 1.6 distribution and mzn-gecode from Gecode-4.2.0 [26] distribution.

The second method reduces CSP and COP instances in the described formats
to satisfiability problems SAT, Partial MaxSAT and SMT (in Linear Integer
Arithmetic theory). In this approach, input instances are translated to instances
of satisfiability problems in standardized input formats (e.g., DIMACS10 for
SAT, WCNF11 for Partial MaxSAT, SMT-LIB12 for SMT). Modern efficient
satisfiability solvers are used for finding solutions that are then converted back
to the solutions of the original CSPs and COPs. Systems Sugar v2-0-3 [29] and
Sat4j 2.3.4 [4] are used for reduction to SAT. We performed the reduction to
SMT and solvers Z3 v4.2 [11] and Yices 2.2 [12] are used for solving generated
instances. Partial MaxSAT solversQMaxSAT 0.4 [21] andMSUnCore-20130422
[22] are used for solving (slightly modified) instances generated by Sugar.

The third method solves the problem instances of the third encoding directly
encoded in satisfiability input formats (PBS13 for PB and already mentioned
DIMACS format for SAT) by corresponding satisfiability solvers. We used SAT

10 ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/satformat.dvi
11 http://maxsat.ia.udl.cat/requirements
12 http://www.smt-lib.org
13 http://www.cril.univ-artois.fr/PB12/format.pdf

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/satformat.dvi
http://maxsat.ia.udl.cat/requirements
http://www.smt-lib.org
http://www.cril.univ-artois.fr/PB12/format.pdf

Air Traffic Controller Shift Scheduling by Reduction to CSP, SAT 897

Table 3. Comparison of techniques on interesting instances (timeout 600 minutes):
cells contain average objective value achieved, the smaller the number, the better the
result is; rows represent techniques; clasp is used for solving PB instances

Encoding 1 2 2 3 3
Method Sugar Sugar Yices clasp MiniSat

bsBasic 31.5 29.3 50.8 53.2 66.3
bsNoPos 23.1 22.5 33.2 72.7 73.7

solvers clasp 2.1.3 [18], MiniSat 2.2 [13] and Lingeling aqw-27d9fd4-130429 [5],
and PB solvers clasp 2.1.3 and MiniSat+ 1.0 [15]. In all further experiments
in case of SAT and Partial MaxSAT solvers reduction to clauses is done using
sequential counters (as they outperformed cardinality networks, that we used
in experiments) implemented in system meSAT [28]. This system implements
5 encodings of CSP problems to SAT and it uses different encodings of BCCs
to SAT. When number of variables is greater than 20, at-most-one constraint
(special type of BCC where # is ≤ and k is 1) is encoded in a way described by
Chen [8]. Otherwise, it is encoded in a way described by Klieber [20].

The fourth method uses ILP solver IBM ILOG CPLEX Optimization Studio14

with the second encoding specification translated to its input format.

Preliminary experiments. These were conducted on 5 randomly selected in-
stances with the goal to eliminate less efficient solvers. All solvers except Partial
MaxSAT solvers were used with the described optimization techniques, as they
outperformed the built-in optimization algorithms. All solvers were used in their
default configurations.

4.2 Experimental Results

In this subsection we present the results only for the solvers that achieved the
best results in preliminary experiments and for the interesting instances, the
ones for which not all of the best solvers found optimum within given timeout.

Comparison of techniques. In bsShExc approach we used 106 iterations. After
each 104 iterations random shift exchanges were performed. However, there was
no improvement in the value of sol, so we excluded this approach from the
experimental results. Table 3 summarizes the results of comparison between the
two remaining techniques using the best solvers. The average objective value
achieved on interesting instances is given. The results show that in case of the
best solvers (Sugar and Yices) bsNoPos technique outperforms bsBasic technique.

Detailed results. Table 4 shows the results of the best solver/technique combi-
nations. Instances 19-22 are the additionally generated harder instances. If the
best achieved objective value from all the methods used (column Best) equals
the optimum, the content of the cell is printed in italic font. For cells contain-
ing 2 numbers, the first number is the value of objective variable achieved by

14 http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

898 M. Stojadinović

Table 4. Results on interesting instances (timeout 600 minutes): each cell contains
objective value; the time needed to achieve this value is given in parenthesis; rows
represent different instances; clasp stands for using clasp on PB instances

Encoding 1 2 3
Instance Best Sugar Sugar Yices QMaxSAT clasp MiniSat

bsNoPos bsNoPos bsNoPos built-in opt. bsBasic bsBasic

2 52 61 (1) 55 (1) 52 (1) 160 (0) 54 (51) 52 (35)
3 52 55 (3) 60 (1) 54 (8) 160 (0) 58 (0) 52 (129)
4 28 34 (8) 28 (41) 36 (413) 160 (0) 36 (99) 38 (538)
5 6 6 (54) 10 (455) 12 (457) 160 (0) 20 (95) 10 (587)
6 20 20 (28) 28 (272) 20 (77) 20 (45) 20 (70) 20 (342)
10 16 16 (137) 20 (6) 22 (15) 26 (11) 22 (2) 16 (105)
14 0 6 (78) 0 (36) 0 (37) 0 (223) 0 (21) 0 (447)
15 4 20 (587) 18 (125) 4 (418) 160 (0) 42 (109) 66 (577)
18 12 13 (88) 20 (18) 14 (414) 12 (77) 15 (242) 18 (411)
19 8 8 (25) 8 (40) 8 (329) 160 (0) 10 (522) 110 (563)
20 8 14 (220) 15 (67) 8 (329) 160 (0) 95 (109) 160 (0)
21 12 13 (573) 12 (300) 42 (145) 160 (0) 160 (0) 160 (0)
22 18 34 (89) 18 (125) 160 (0) 160 (0) 160 (0) 160 (0)
average 18.2 23.1 22.5 33.2 115.2 53.2 66.3

the method in the given timeout. Number 160 denotes that the solver did not
find any solution on a given instance (160 is used as it is greater than all the
objective values obtained). The number in parenthesis is the time (in minutes)
needed to achieve the objective value. The cells which represent the best method
for each instance are printed bold. In the last row we present the arithmetic mean
(average objective value) from the obtained objective values.

Results show that among the best solvers there were no non-SAT-oriented
solvers (mzn-g12cpx and Abscon were the only ones that managed to solve some
of the instances but could not refine any of the found solutions). Interestingly,
CPLEX could not solve any instance. By removing constraint Positions filled,
CPLEXmanaged to solve some of the instances so probably these constraints are
the reason for inefficiency. We attribute success of SAT-oriented solvers to small
domains of variables and large number of connection constraints (they represent
about 75% of the generated constraints). The best results in average are achieved
by reduction to SAT using Sugar. However, there are cases when other solvers
achieved better performance. When we look at the hard instances (19-22), we
can see that Sugar significantly outperforms other solvers. As BCC encodings of
hard instances for the third encoding are very large, MiniSat and clasp are less
successful with these instances. Sugar efficiently handles arithmetic constraints
by using order encoding. This solver can process large number of constraints of
the problem as it uses efficient built-in propagation. These are the reasons why
it outperforms other solvers. Its success cannot be attributed to the underlying
SAT solver, asMiniSat achieved only slightly better performance than Lingeling.

Figure 1 shows the change of average objective value achieved on the interest-
ing instances during time (as if tests were run in parallel) for each of the solving
methods presented in Table 4. It is taken that objective value achieved in the

Air Traffic Controller Shift Scheduling by Reduction to CSP, SAT 899

101 102 103 104

101.4

101.6

101.8

102

102.2

Time (seconds)

A
v
er
a
g
e
o
b
je
ct
iv
e
va

lu
e

Sugar (1) bsNoPos

Sugar (2) bsNoPos

Yices (2) bsNoPos

QMaxSAT (2) built-in opt.

clasp (3) bsBasic

MiniSat (3) bsBasic

Fig. 1. Average objective value achieved in time - each mark on the curves represents
one decrease in value; the encoding for each solver is given in parentheses

beginning is 160 for all solving methods and all instances. Solver Sugar shows the
best performance and it achieves similar performance on the first and the second
encoding. This can be attributed to similarity of these encodings, with the dif-
ference in encoding some of the constraints only. Reduction to PB achieves good
results in the beginning and is the best solving method for finding quick solu-
tions. However, it does not scale well in time. The average number of solver runs
is 19 when an optimum was found, otherwise it is 3. In presentation of Sugar++
[30] (a version of Sugar using incremental solving) in Third International CSP
Solver Competition15, the authors indicate that the solving time of incremental
search can be significantly increased when the number of solver runs is small
(less than 6). For these reasons, we advocate that incremental search could not
significantly improve the objective values found, although it could reduce the
time in cases when optima were found.

5 Real World Applications

The schedules for the airport in Vršac were generated manually prior to us-
ing techniques described in this paper. The need for automated generation of
schedules is seasonal. The number of needed working hours in summer months
increases and the number of available controllers decreases, as this is the time
when most of employees go on vacation. Therefore, it becomes too hard to gen-
erate schedules manually for these months, and the airport staff is trying to find
the way to automate this process. Last year scheduling was offered as a service,
not as a tool, as we have not yet developed GUI-based tool to enter input (but
we plan to address this issue in our further work). We generated schedules for

15 http://www.cril.univ-artois.fr/CPAI08/

http://www.cril.univ-artois.fr/CPAI08/

900 M. Stojadinović

summer months of 2013. It took us about a month to develop the application
that reads the input, automatically generates instances, solves them and outputs
tabular schedules (their correctness is automatically checked). The automated
generation of schedules is also planned for summer months of 2014.

We generated two schedules manually in order to compare them with the
automatically generated ones. On average, we achieved objective value 50 in 3
hours by manually generating and objective value 28 in 11 minutes by automated
generation (Sugar (2) bsNoPos). Many wishes in soft constraints became possible
to satisfy by using the automation. This lead to higher satisfaction of the staff.
Since automatically generated schedules reduce the overall controllers workload,
the controllers are less subject to fatigue, so the overall safety is improved. Also,
the manual scheduling was very error-prone. No improvement of solution could
be made by using simple shift exchanges, as suggested by the results of bsShExc
technique. The solution can be improved if we consider the exchange of a larger
number of controllers and shifts of different lengths. But in our experience, this
is almost impossible to achieve manually.

6 Conclusions and Further Work

In this paper, we have presented the air traffic controller shift scheduling prob-
lem. We have described three encodings of the problem in detail and presented
three optimization techniques for solving the problem. A variety of solvers have
been used for this problem. We have used the described solving methods to
design shift schedules for one air traffic control center.

To our knowledge, the presented encodings are the most compact way to in-
troduce position variables and constraints as they are needed for each controller,
for each day and for each time slot in all three encodings. These variables and
constraints represent the largest part of generated instances. Non-SAT-related
approaches are inefficient in processing these instances. SAT-related approaches
are significantly more efficient as they compactly encode the variables with small
domains and directly encode connection constraints. Experimental results show
that the technique bsNoPos that fixes assigned positions in local search improves
efficiency of the best solver (Sugar). Generally, main lessons learned from the use
of CP are that different CP techniques should be tried and that it is beneficial
to hybridize CP with other techniques (e.g., local search).

Our experience shows that stated requirements can be very diverse and can
change over time. Existing software cannot express these requirements. The en-
codings we have developed offer a rich modeling language and a possibility to
formulate a very diverse set of requirements.

We plan to address unexpected condition changes (e.g., sick leave) in future.
Also, the promising directions for further work are improvements of bsShExc
technique and the usage of other types of local search.

Acknowledgments. We thank Filip Marić, Milan Banković, Mladen Nikolić
and anonymous reviewers for valuable comments on the first versions of this
manuscript.

Air Traffic Controller Shift Scheduling by Reduction to CSP, SAT 901

References

1. Apt, K.R.: Principles of constraint programming. Cambridge University Press
(2003)

2. Arnvig, M., Beermann, B., Köper, B., Maziul, M., Mellett, U., Niesing, C., Vogt, J.:
Managing shiftwork in european atm. Literature Review. European Organisation
for the Safety of Air Navigation (2006)

3. Beldiceanu, N., Carlsson, M., Rampon, J.-X.: Global constraint catalog. Technical
report, SICS (2005)

4. Berre, D.L., Parrain, A.: The sat4j library, release 2.2. JSAT 7(2-3), 59–64 (2010)
5. Biere, A.: Lingeling, plingeling, picosat and precosat at sat race 2010. FMV Report

Series Technical Report 10(1) (2010)
6. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfia-

bility, February 2009. Frontiers in Artificial Intelligence and Applications, vol. 185.
IOS Press, Amsterdam (2009)

7. Burke, E.K., De Causmaecker, P., Berghe, G.V., Van Landeghem, H.: The state of
the art of nurse rostering. J. Scheduling 7(6), 441–499 (2004)

8. Chen, J.: A new sat encoding of the at-most-one constraint. In: Proceedings of the
9th International Workshop on Constraint Modelling and Reformulation (2010)

9. Chiarandini, M., Birattari, M., Socha, K., Rossi-Doria, O.: An effective hybrid
algorithm for university course timetabling. J. Scheduling 9(5), 403–432 (2006)

10. Cook, S.A.: The complexity of theorem-proving procedures. In: Harrison, M.A.,
Banerji, R.B., Ullman, J.D. (eds.) STOC, pp. 151–158. ACM (1971)

11. de Moura, L., Bjørner, N.S.: Z3: An efficient smt solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

12. Dutertre, B., De Moura, L.: The yices smt solver, vol. 2, p. 2 (2006), Tool paper
at, http://yices.csl.sri.com/tool-paper.pdf

13. Eén, N., Sörensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A.
(eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

14. Eén, N., Sörensson, N.: Temporal induction by incremental sat solving. Electr.
Notes Theor. Comput. Sci. 89(4), 543–560 (2003)

15. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into sat. JSAT 2(1-
4), 1–26 (2006)

16. EUROCONTROL. Shiftwork practices study - atm and related industries.
DAP/SAF-2006/56 Brussels: EUROCONTROL (2006)

17. Committee for a Review of the En Route Air Traffic Control Complexity and
Workload Model. Air traffic controller staffing in the en route domain: A review of
the federal aviation administration’s task load model (2010)

18. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A Conflict-Driven
Answer Set Solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007.
LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)

19. Hebrard, E.: Mistral, a constraint satisfaction library. In: Proceedings of the 3rd
International CSP Solver Competition, pp. 31–39

20. Klieber, W., Kwon, G.: Efficient cnf encoding for selecting 1 from n objects. In:
Proc. International Workshop on Constraints in Formal Verification (2007)

21. Koshimura, M., Zhang, T., Fujita, H., Hasegawa, R.: Qmaxsat: A partial max-sat
solver. JSAT 8(1/2), 95–100 (2012)

22. Marques-Silva, J.: The msuncore maxsat solver. In: SAT 2009 competitive events
booklet: preliminary version, p. 151 (2009)

http://yices.csl.sri.com/tool-paper.pdf

902 M. Stojadinović

23. Merchez, S., Lecoutre, C., Boussemart, F.: Abscon: A prototype to solve csps with
abstraction. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 730–744. Springer,
Heidelberg (2001)

24. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.R.: Miniz-
inc: Towards a standard cp modelling language. In: Bessière, C. (ed.) CP 2007.
LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)

25. Roussel, O., Lecoutre, C.: Xml representation of constraint networks: Format xcsp
2.1. CoRR, abs/0902.2362 (2009)

26. Schulte, C., Lagerkvist, M., Tack, G.: Gecode (2006), Software download and online
material at the website, http://www.gecode.org

27. Sinz, C.: Towards an optimal cnf encoding of boolean cardinality constraints. In:
van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005)

28. Stojadinović, M., Marić, F.: mesat: Multiple encodings of csp to sat. Constraints
(2014), doi:10.1007/s10601-014-9165-7

29. Tamura, N., Banbara, M.: Sugar: A csp to sat translator based on order encoding.
In: Proceedings of the Third Constraint Solver Competition, pp. 65–69 (2008)

30. Tanjo, T., Tamura, N., Banbara, M.: Sugar++: a sat-based max-csp/cop solver.
In: Proc. the Third International CSP Solver Competition, pp. 144–151 (2008)

31. EATCHIP Human Resources Team. Ats manpower planning in practice: Introduc-
tion to a qualitative and quantitative staffing methodology. HUM.ET1.ST02.2000-
REP-01 Brussels: EUROCONTROL (1998)

http://www.gecode.org

Optimization Bounds from Binary Decision

Diagrams�

(Extended Abstract)

David Bergman1, Andre A. Ciré2, Willem-Jan van Hoeve2, and John N. Hooker2

1 University of Connecticut
david.bergman@business.uconn.edu

2 Carnegie Mellon University
andrecire@cmu.edu, {vanhoeve,jh38}@andrew.cmu.edu

1 Introduction

Bounds on the optimal value are often indispensable for the practical solution of
discrete optimization problems, particularly in the branching procedures used by
constraint programming (CP) and integer programming solvers. Such bounds are
frequently obtained by solving a continuous relaxation of the problem, perhaps
a linear programming (LP) relaxation. In this paper, we explore an alternative
strategy of obtaining bounds from a discrete relaxation, namely a binary decision
diagram (BDD). Such a strategy is particularly suitable for CP, because BDDs
provide enhanced propagation as well [2–5].

Binary decision diagrams are compact graphical representations of Boolean
functions [6–8]. They were originally introduced for applications in circuit design
and formal verification [9, 7] but have since been used for a variety of other
purposes, such as sequential pattern mining and genetic programming [10, 11].

A BDD can represent the feasible set of a 0-1 optimization problem, because
the constraints can be viewed as defining a Boolean function f(x) that is 1 when
x is a feasible solution. Unfortunately, a BDD that exactly represents the feasible
set can grow exponentially in size. We circumvent this difficulty by creating a
relaxed BDD of limited size that represents a superset of the feasible set. The
relaxation is created by merging nodes of the BDD in such a way that no feasible
solutions are excluded. A bound on any additively separable objective function
can now be obtained by solving a longest (or shortest) path problem on the
relaxed BDD. The idea is readily extended to general discrete (as opposed to
0-1) optimization problems by using multivalued decision diagrams (MDDs).

As a test case, we apply the proposed method to the maximum independent
set problem on a graph. We find that BDDs can deliver tighter bounds than those
obtained by a strong LP formulation, even when the LP is augmented by cutting
planes generated at the root node by a state-of-the-art mixed integer solver. In
most instances, the BDD bounds are obtained in less computation time, even
though we used a non-default barrier LP solver that is faster for these instances.

� This is a summary of the paper: D. Bergman, A.A. Ciré, W.-J. van Hoeve, J.N.
Hooker, Optimization bounds from binary decision diagrams INFORMS Journal on
Computing 26 (2014) 253–268.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 903–907, 2014.
c© Springer International Publishing Switzerland 2014

904 D. Bergman et al.

v1

v2 v3

v4

v5v6

x1

x2

x3

x4

x5

x6

rB

tB

rB′

tB′

(a) (b) (c)

Fig. 1. (a) Instance of the independent set problem. (b) Exact BDD for the instance.
(c) Relaxed BDD for the instance.

2 Exact and Relaxed BDDs

An exact BDD for an optimization problem is one that represents precisely the
feasible solutions of the problem. A relaxed BDD, introduced in [2], represents a
superset of the feasible solutions.

Figure 1(b) illustrates an exact zero-suppressed BDD for the maximum inde-
pedent set problem on the graph in Fig. 1(a). The problem is to find a largest
subset of nonadjacent vertices. Binary variable xi is 1 when vertex vi is selected
(solid arc) and 0 otherwise (dashed arc). The 10 paths from top to bottom cor-
respond to the 10 possible indepedent sets. If a length of 1 is assigned to solid
arcs and 0 to dashed arcs, any longest path is an optimal solution.

Figure 1(c) illustrates a relaxed BDD, which encodes a superset of the in-
dependent sets. The width (maximum number of nodes per layer) of a relaxed
BDD can be restricted while it is generated. In this case, the width is 1.

3 BDD Compilation

We exhibit an efficient top-down compilation algorithm that generates exact
reduced BDDs for the independent set problem, and prove its correctness. We
then modify the algorithm to generate a limited-size relaxed BDD, prove its
correctness, and show that it has polynomial time complexity.

We also discuss variable ordering for exact and relaxed BDD compilation, as
this can have a significant impact on the size of the exact BDD and the bound

Optimization Bounds from Binary Decision Diagrams 905

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1 1.2 1.4 1.6 1.8 2 2.2

B
D

D
 1

00
0

bo
un

d
/ o

pt
im

um

LP+cuts bound / optimum

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1 1.2 1.4 1.6 1.8 2 2.2

B
D

D
 1

00
00

 b
ou

nd
 /

op
tim

um

LP+cuts bound / optimum

(a) (b)

Fig. 2. (a) Bound quality for an LP relaxation with cuts vs. width 1000 BDDs for
random instances. The BDD bounds are obtained in about 5% of the time required
for the LP bounds. (b) Bound quality comparison for width 10,000 BDDs. The BDD
bounds are obtained in less time overall than the LP bounds, but somewhat more time
for sparse instances.

provided by relaxed BDDs. We prove that for the independent set problem on
n vertices, there is a variable ordering such that the width of an exact BDD is
bounded by the nth Fibonacci number. In addition, we describe heuristics for
deciding which nodes to merge while building a relaxed BDD and investigate
their effectiveness experimentally. This is further explored in [1].

4 Computational Results

We provide here a sampling of computational results on two sets of instances of
the maximum independent set problem. One set consists of 180 randomly gen-
erated graphs on 200 vertices in which each pair of vertices is joined by an edge
with probability p ∈ {0.1, 0.2, . . . , 0.9}. The second set consists of complement
graphs of the well-known DIMACS benchmark for the maximum clique prob-
lem, obtained from http://cs.hbg.psu.edu/txn131/clique.html. The tests
ran on an Intel Xeon E5345 with 8 GB RAM in single core mode.

We compared the bound obtained from the BDD relaxation with that ob-
tained from a traditional LP relaxation and cutting planes. To obtain a tight
initial LP relaxation, we used a clique cover model [12] of the maximum inde-
pendent set problem, which requires computing a clique cover before the model
can be formulated. We then augmented the LP relaxation with all cutting planes
generated at the root node by the CPLEX 12.4 MILP solver.

Scatterplots comparing bound quality appear in Fig. 2 for random instances
and in Fig. 3 for DIMACS instances. BDD bounds are shown for BDDs of

http://cs.hbg.psu.edu/txn131/clique.html

906 D. Bergman et al.

 1

 2

 5

 10

 15

 1 2 5 10 15

B
D

D
 1

00
0

bo
un

d
/ o

pt
im

um

LP+cuts bound / optimum

 1

 2

 5

 10

 1 2 5 10

B
D

D
 1

00
00

 b
ou

nd
 /

op
tim

um

LP+cuts bound / optimum

(a) (b)

Fig. 3. (a) Bound quality for an LP relaxation with cuts vs. width 1000 BDDs for
DIMACS instances. The BDD bounds are obtained in about 15% as much time overall
as the LP bounds. (b) Bound quality comparison for width 10,000 BDDs. The BDD
bounds are generally obtained in less time for all but the sparsest instances.

maximum width 1000 and 10,000. The fact that almost all points lie below
the diagonal indicates the superior quality of BDD bounds.

5 Conclusion

We found that when applied to the maximum independent set problem, BDD-
based bounding usually yields significantly better bounds, in less time, than
cutting plane technology obtains at the root node in a state-of-the-art mixed-
integer solver. This suggests that BDD-based relaxations may have promise as
a general technique for bounding the optimal value of discrete problems. They
have particular relavance to CP, because BDDs provide enhanced propagation
as well.

In addition, BDD-based bounds can be obtained for combinatorial problems
that are not formulated as mixed integer models. Unlike LP relaxations, BDD
relaxations do not presuppose that the constraints take the form of linear in-
equalities. Finally, The BDD algorithms presented here are relatively simple,
compared with the highly developed technology of LP and mixed-integer solvers.
Future research may yield improvements in BDD-based bounding and extend its
usefulness to a broader range of discrete optimization problems.

Future research will include the use of BDD-based bounding within a general-
purpose BDD-based solver for discrete optimization. Testing of such a solver is
now underway for the maximum stable set problem, the maximum cut problem,
and the maximum 2-satisfiability problem.

Optimization Bounds from Binary Decision Diagrams 907

References

1. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Variable ordering for the
application of BDDs to the maximum independent set problem. In: Beldiceanu, N.,
Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 34–49. Springer,
Heidelberg (2012)

2. Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based
on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741,
pp. 118–132. Springer, Heidelberg (2007)

3. Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate compilation
of constraints into multivalued decision diagrams. In: Stuckey, P.J. (ed.) CP 2008.
LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008)

4. Hoda, S., van Hoeve, W.J., Hooker, J.N.: A systematic approach to MDD-based
constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–
280. Springer, Heidelberg (2010)

5. Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for
combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011.
LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011)

6. Akers, S.B.: Binary decision diagrams. IEEE Transactions on Computers C-27,
509–516 (1978)

7. Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell
Systems Technical Journal 38, 985–999 (1959)

8. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers C-35, 677–691 (1986)

9. Hu, A.J.: Techniques for efficient formal verification using binary decision diagrams.
Thesis CS-TR-95-1561, Stanford University, Department of Computer Science (De-
cember 1995)

10. Loekito, E., Bailey, J., Pei, J.: A binary decision diagram based approach for mining
frequent subsequences. Knowl. Inf. Syst. 24(2), 235–268 (2010)

11. Wegener, I.: Branching programs and binary decision diagrams: theory and appli-
cations. SIAM monographs on discrete mathematics and applications. Society for
Industrial and Applied Mathematics (2000)

12. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization, vol. 2. Springer (1993)

Reformulation Based MaxSAT Robustness�

(Extended Abstract)

Miquel Bofill1,		, Dı́dac Busquets2,			, and Mateu Villaret1,		

1 Departament d’Informàtica, Matemàtica Aplicada i Estad́ıstica,
Universitat de Girona, Spain

{mbofill,villaret}@imae.udg.edu
2 Department of Electrical and Electronic Engineering,

Imperial College London, UK
didac.busquets@imperial.ac.uk

Abstract. The presence of uncertainty in the real world makes robust-
ness a desirable property of solutions to Constraint Satisfaction Prob-
lems (CSP). A solution is said to be robust if it can be easily repaired
when unexpected events happen. This has already been addressed in
the frameworks of Boolean satisfiability (SAT) and Constraint Program-
ming (CP). In this paper we consider the unaddressed problem of robust-
ness in weighted MaxSAT, by showing how robust solutions to weighted
MaxSAT instances can be effectively obtained via reformulation into
pseudo-Boolean formulae. Our encoding provides a reasonable balance
between increase in size and performance. We also consider flexible ro-
bustness for problems having some unrepairable breakage, in other words,
problems for which there does not exist a robust solution.

1 Introduction

Uncertainty is inherent to most real world problems. For instance, in job-shop
scheduling, if a machine breaks down, a new solution must be computed. Such
a new solution should be fast to compute and, ideally, should also be close to
the initial one (e.g., in the job-shop problem, it is not desirable to reassign a
large number of tasks). Thus, instead of looking for an optimal solution, which
may be brittle and not comply with these two requirements, one could directly
look for a solution that can be easily repaired (easy referring both to time and

� This is a summary of the paper: Miquel Bofill, Dı́dac Busquets, Vı́ctor Muñoz, Ma-
teu Villaret, “Reformulation based MaxSAT robustness”, Constraints, April 2013,
Volume 18, Issue 2, pp 202-235, doi link: 10.1007/s10601-012-9130-2. A prelimi-
nary version of this work was published in: Miquel Bofill, Dı́dac Busquets, Mateu
Villaret, “A declarative approach to robust weighted Max-SAT”, Proceedings of
the 12th international ACM SIGPLAN symposium on Principles and practice of
declarative programming (PPDP 2010).

�� Supported by the Spanish Ministry of Science and Innovation (project TIN2012-
33042).

��� Supported by the UK EPSRC Grand Challenge Project Autonomic Power System.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 908–912, 2014.
c© Springer International Publishing Switzerland 2014

http://dx.doi.org/10.1007/s10601-012-9130-2

Reformulation Based MaxSAT Robustness 909

number of repairs). Such a solution is said to be robust. Obviously, this robust
solution may be suboptimal, compared to a non-robust one. This fact has been
sometimes called the price of robustness [2] but, in many real world situations,
it is worth sacrificing some optimality for a stronger solution.

In this paper we consider the unaddressed problem of seeking robust solutions
in weighted MaxSAT. MaxSAT is becoming a competitive approach for solving
combinatorial optimization problems [11] in the CP framework, as well as to
deal with Max-Constraint Satisfaction Problems (Max-CSP) [1].

Existing works on robust solutions for (plain) SAT [4,13] and CP [6,7,8,9,10]
are based on two main approaches: reformulation and search-based algorithms.
The idea of reformulation is to extend the initial instance so that a solution to the
extended instance is a robust solution to the initial one [4]. On the other hand,
search-based algorithms look for robust solutions with backtracking, propagation
and consistency techniques [6,7,8,9,10]. Previous works [5] claim that, at least
for CP, the reformulation approach results in prohibitively large formulas.

In this paper we show that reformulation is still feasible in the setting of
weighted MaxSAT. This has several advantages. First, the notion of robustness
can be directly expressed in the original formulation of the problem with no need
of changing the underlying solving method. Additionally, the reformulation can
be easily adapted to interesting extensions of the notion of robustness such as
adding dependencies between breakable and repairable variables, or introducing
failure probabilities, among others. Contrarily, in search-based approaches, if the
notion of robustness is modified, the algorithm must probably be modified too.

2 Weighted MaxSAT Robustness

The following definition generalizes the one of Ginsberg et al. [4] to partial
weighted MaxSAT.

Definition 1. Let F be a partial weighted MaxSAT formula and S1, S2 and S3

be sets of variables occurring in F , such that (S1∪S2)∩S3 = ∅. A (Sa
1 , S

b
2, S3, β)-

supermodel of F is a (minimal cost) model of F such that if we modify the
values taken by the variables in a subset of S1 of size at most a (breakage),
then another model can be obtained by modifying the values of the variables in a
disjoint subset of S2 of size at most b (repair) and the values of any number of
variables in S3 (don’t-care variables), and moreover the solution and all possible
repaired solutions have a cost of at most β. When the set of don’t-care variables
S3 is empty we simply talk of (Sa

1 , S
b
2, β)-supermodels. Also, if the sets S1, S2

and S3 are unrestricted, we talk of an (a, b, β)-supermodel.

The idea behind S3 is that sometimes a formula contains auxiliary or redun-
dant variables, whose values are implied by others, and a change in their values
should not be counted neither as a break nor as a repair.

In the following we assume that F = C ∧W is a partial weighted MaxSAT
formula, where C denotes the set of mandatory clauses and W denotes the set
of weighted, non-mandatory clauses. W.l.o.g., we assume that W consists only

910 M. Bofill, D. Busquets, and M. Villaret

of unary clauses, i.e., W = (l1, w1) ∧ · · · ∧ (lk, wk), where li is a literal and wi is
a weight for all i in 1..k. We define B =

∑
j∈1..k lj · wj , which amounts to the

cost of the unsatisfied clauses in W .
We now show how we can reformulate an initial formula F to an extended

formula FSM , whose solution is a robust solution to F . We achieve this by
means of Boolean cardinality constraints, which allow us to state, for a given set
of Boolean variables E and a given number p, that at most p variables of E can
be true [12]. A formula which is only O(na) larger than F is obtained (where n
is the number of variables). This is especially important, since it means that the
complexity (in size) of our approach does not depend on the number of repairs,
but only on the number of breakages, which is usually assumed to be low. This
is an important improvement from the encoding in [4], whose size is O(na+b).

The key idea of the encoding is the following: instead of encoding the different
repairs by explicitly flipping (i.e., negating) the variables (as done in [4]), simply
rename the variables and restrict the number of variables that can change their
value by means of cardinality constraints. As we need a different repair for each
possible breakage, a different renaming of the repair (and don’t-care) variables
is necessary for each possible breakage. To this end, each variable of a repair set
R is tagged with the name of the breakage set S which is repairing.

Definition 2. (Variable renaming). Let R and S be sets of variables. The func-
tion renR,S : X → X is defined as renR,S(x) = xS for every variable x ∈ R, where
xS is a new atom, and renR,S(x) = x if x /∈ R.

Definition 3. (Formula renaming). Let F be a Boolean (or pseudo-Boolean)
formula, and R and S be sets of variables. Then F renR,S denotes the formula F
where all occurrences of each variable x have been replaced by renR,S(x).

Definition 4. (Difference cardinality). Let R and S be sets of variables, and
renR,S be a variable renaming function. Then we define the difference cardinality
formula as ∇renR,S =

∑
x∈R(x �= renR,S(x)) =

∑
x∈R(x �= xS).

The encoding of FSM , which will give us a (Sa
1 , S

b
2, S3, β)-supermodel of F , is

the following pseudo-Boolean Optimisation (PBO) instance:

F∇
SM = Minimize B

Subject To C ∧ (B ≤ β)∧∧
S⊆S1, 1≤|S|≤a

(
C

ren(S2\S)∪S3, S

S
∧Bren(S2\S)∪S3, S

S
≤ β ∧ ∇renS2\S, S ≤ b

)
Roughly speaking, the meaning of the PBO instance FSM is the following:

we have first replaced the weighted clauses W of the original formula F by the
objective function to be minimized, which corresponds to B, the sum of the
weights of the falsified clauses. Then we have C, that is, the mandatory clauses
of the original formula, and we add B ≤ β to bound the cost. Next, we need
to be able to repair all possible breakages. The big and accounts for all possible
(breakage) sets S of size smaller than or equal to a. For each of these breakages,

Reformulation Based MaxSAT Robustness 911

we flip the broken variables in the original mandatory clauses and rename those
allowed to change in C

ren(S2\S)∪S3, S

S
, we bound the cost of the new solution with

B
ren(S2\S)∪S3, S

S
≤ β, and limit the number of repairs with ∇renS2\S, S ≤ b. Note

that ren(S2\S)∪S3, S is a renaming of the variables in (S2 \ S) ∪ S3, by labeling
them with S. Since a different renaming is needed for every considered subset S
of S1, we just choose that set S for the renaming, as it improves readability.

In [3] we also provide: the correctness proofs of the F∇
SM encoding for find-

ing supermodels of a partial weighted MaxSAT formula F ; the generalizations
of our definitions and encodings so that partially robust solutions can be ob-
tained for problem instances lacking totally robust solutions, and an extensive
benchmarking section considering resource allocation problem instances.

3 Conclusion

In this paper we have proposed a mechanism for finding robust solutions to
weighted MaxSAT problems. We have extended the approach of Ginsberg et
al. [4] to deal with cost constraints and don’t-care variables. By using cardinality
constraints, the reformulation results in a much smaller problem in the pseudo-
Boolean framework. Moreover, with our approach, the solution to the extended
instance provides not only the supermodel for the initial problem, but also a
possible repair for each of the potential breakages.

(a, b, β)-super solutions do not exactly match (a, b)-super solutions of [7] be-
cause the cost β is not explicitly considered there. Notice that imposing a con-
straint on the cost of (a, b)-super solutions would only guarantee it for the
solution found, but not on the possible repairs. Therefore, if we wanted such
restriction to hold also for the repairs, we should modify the algorithm to find
(a, b)-super solutions, whilst our approach guarantees a cost of β both for the ini-
tial solution and for every possible repair. Using state-of-the-art pseudo-Boolean
solvers we have been able to find (a, b, β)-super solutions for combinations of a
ranging from 1 to 2 breakages, b ranging from 1 to 8 repairs, and β ranging from
a 60% to a 90% of optimality, for several resource allocation problems, most
of the times in far less than 1000 seconds. This is quite successful, especially
compared to previous works on robustness, which were restricted to (1,0)- and
(1,1)-supermodels [4] for reformulation approaches, and to at most (1,3)-super
solutions to CSP problems with search-based approaches [5].

Our approach can be seen as a generic framework for robustness through
reformulation, since slight changes in the encoding allow to model other notions
of robustness. For example, a variant could be to directly designate the potential
breaks to handle: instead of using Sa

1 , we could decide what (combinations of)
breaks deserve being repaired, which would be always a subset of 2S1 . This
would be useful if we only want to consider those breaks having a non negligible
probability of occurring, particularly in very large problems. We could also think
of a robustness notion where each breakable variable has a corresponding set of
associated repairable variables.

912 M. Bofill, D. Busquets, and M. Villaret

References

1. Argelich, J., Cabiscol, A., Lynce, I., Manyà, F.: Modelling Max-CSP as Partial
Max-SAT. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996,
pp. 1–14. Springer, Heidelberg (2008)

2. Bertsimas, D., Sim, M.: The Price of Robustness. Operations Research 52(1), 35–53
(2004)

3. Bofill, M., Busquets, D., Muñoz, V., Villaret, M.: Reformulation based MaxSAT
robustness. Constraints 18(2), 202–235 (2013)

4. Ginsberg, M.L., Parkes, A.J., Roy, A.: Supermodels and robustness. In: 15th Na-
tional Conference on Artificial Intelligence and 10th Innovative Applications of
Artificial Intelligence Conference, AAAI/IAAI 1998, pp. 334–339. AAAI Press /
The MIT Press (1998)

5. Hebrard, E.: Robust Solutions for Constraint Satisfaction and Optimisation under
Uncertainty. PhD thesis, University of New South Wales (2006)

6. Hebrard, E., Hnich, B., O’Sullivan, B., Walsh, T.: Finding Diverse and Similar
Solutions in Constraint Programming. In: 20th National Conference on Artificial
Intelligence and 17th Innovative Applications of Artificial Intelligence Conference,
AAAI/IAAI 2005, pp. 372–377. AAAI Press / The MIT Press (2005)

7. Hebrard, E., Hnich, B., Walsh, T.: Robust Solutions for Constraint Satisfaction
and Optimization. In: 16th Eureopean Conference on Artificial Intelligence, ECAI
2004, pp. 186–190. IOS Press (2004)

8. Hebrard, E., Hnich, B., Walsh, T.: Super Solutions in Constraint Programming.
In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 157–172.
Springer, Heidelberg (2004)

9. Hebrard, E., Hnich, B., Walsh, T.: Improved Algorithm for Finding (a,b)-Super
Solutions. In: Workshop on Constraint Programming for Planning and Scheduling,
pp. 236–248 (2005)

10. Holland, A., O’Sullivan, B.: Weighted Super Solutions for Constraint Programs.
In: 20th National Conference on Artificial Intelligence and 17th Innovative Appli-
cations of Artificial Intelligence Conference, AAAI/IAAI 2005, pp. 378–383. AAAI
Press / The MIT Press (2005)

11. Li, C.M., Manyà, F.: MaxSAT, Hard and Soft Constraints. In: Handbook of Sat-
isfiability, pp. 613–631. IOS Press (2009)

12. Roussel, O., Manquinho, V.: Pseudo-Boolean and Cardinality Constraints. In:
Handbook of Satisfiability, pp. 695–734. IOS Press (2009)

13. Roy, A.: Fault Tolerant Boolean Satisfiability. Journal of Artificial Intelligence
Research 25, 503–527 (2006)

Probabilistic Constraints

for Nonlinear Inverse Problems�

(Extended Abstract)

Elsa Carvalho, Jorge Cruz, and Pedro Barahona

Centro de Inteligência Artificial, Universidade Nova de Lisboa, Portugal
elsac@uma.pt, {jcrc,pb}@fct.unl.pt

The probabilistic continuous constraint (PC) framework complements the repre-
sentation of uncertainty by means of intervals with a probabilistic distribution of
values within such intervals. This paper, published in Constraints [8], describes
how nonlinear inverse problems can be cast into this framework, highlighting
its ability to deal with all the uncertainty aspects of such problems, and illus-
trates this new methodology in Ocean Color (OC), a research area widely used in
climate change studies with significant applications in water quality monitoring.

Manyproblems of practical interest canbe formulated as nonlinear inverse prob-
lems [20]. Such problems aim to estimate parameters from observed data based on
a model of the system behavior. The model variables are divided into model pa-
rameters, m = (m1, . . . ,mn), whose values completely characterize the system
and observable parameters, o = (o1, . . . , ok), that can be measured. The model,
o = g(m), is typically a forwardmapping g from the model parameters to the ob-
servable parameters. It allows predicting the results of measurements based on the
model parameters.

Uncertainty arises from measurement errors on the observed data or approx-
imations in the model specification. When the model equations g are nonlinear,
the problem is a nonlinear inverse problem. Nonlinearity and uncertainty play a
major role in modeling the behavior of most real systems.

Nonlinear inverse problems are typically ill-posed problems: they may have no
exact solutions (no combination of parameter values are capable of predicting
exactly all the observed data), solutions are not necessarily unique (different
combinations of parameter values may induce the same observable values) and
the stability of solutions is not guaranteed (small change in the observed data
may induce arbitrarily large changes in the model parameters).

Classical approaches for these problems are based on nonlinear regression
methods [2] which search for the model parameter values that best-fit a given
criterion. Best-fit approaches, often based on local search methods, provide a non
reliable single scenario which may be inadequate to characterize the parameters.

In contrast continuous constraint programming [14,4,19], provides a frame-
work to characterize the set of all scenarios consistent with the constraints of
a problem given the uncertainty on its parameters modeled by intervals includ-
ing all their possibilities. This is achieved through constraint reasoning, which

� This is a summary of the paper: E. Carvalho, J. Cruz, and Pedro Barahona. Proba-
bilistic constraints for nonlinear inverse problems. Constraints, 18(3):344-376, 2013.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 913–917, 2014.
c© Springer International Publishing Switzerland 2014

914 E. Carvalho, J. Cruz, and P. Barahona

relies on branch-and-prune algorithms to obtain sets of boxes that cover exact
solutions for the constraints (the feasible space). These algorithms begin with
an initial crude cover of the feasible space which is recursively refined by inter-
leaving pruning and branching until a stopping criterion is satisfied. Branching
splits a box from the covering into sub-boxes. Pruning either eliminates a box
from the covering or reduces it into a smaller (or equal) box maintaining all the
exact solutions. Safe pruning is based on safe methods from interval analysis [16]
combined within a constraint propagation algorithm [3].

Nevertheless, the application of classical constraint approaches to nonlinear
inverse problems [12,10] suffers from the major pitfall of considering the same
likelihood for all values in the intervals. To account for different likelihoods,
stochastic Monte Carlo techniques [11,1] use extensive random sampling over the
different scenarios to characterize the distribution of the model parameter values
given the forward model and the observations. However, even after intensive
computations, such characterization may be inaccurate, because a significant
subset of the probabilistic space may have been missed.

This is not the case of our previous work [6] where we developed an extension
to the continuous constraint framework that complements the interval bounded
representation of uncertainty with a probabilistic characterization of values dis-
tribution. Such information makes it possible to characterize scenarios with a
likelihood value, allowing their comparison. Our main emphasis was on the for-
malization of the framework, which relied on a simplified integration method for
computing probability distributions. In [7] we applied this previous approach to
two types of simple applications (inverse and reliability problems).

In the present paper we a) provide a validated integration method supported
on constraint-based algorithms to compute these distributions, b) study approx-
imations obtained by their hybridization with Monte-Carlo methods, and c)
obtain a better uncertainty characterization, by including methods to compute
expected values and standard deviations.

The validated integration method relies on the efficiency of constraint reason-
ing to get a tight box covering of the region of integration, and on the efficacy
of interval Taylor methods [5,9] to obtain sharp enclosures for the integrals over
the obtained boxes (see figure 1).

(a)

�3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3

(b)

�3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3

(c)

Fig. 1. Given a probability distribution a), the probability of an event is computed
through interval Taylor quadrature over tighter box coverings b) and c)

Probabilistic Constraints for Nonlinear Inverse Problems 915

Although this alternative outputs guaranteed results it is computationally
demanding. This justified an hybrid approach which relies on constraint pro-
gramming to obtain the feasible space and then uses Monte Carlo Integration to
sample on this reduced space. We show that this technique, although outputting
approximate values, achieves quite accurate results even with small sampling
rates and it is much faster than the previous one. Its success relies on the hy-
bridization with constraint programming, since a pure non-naive Monte Carlo
method is not only hard to tune but also impractical in small error settings.

Both alternatives allow the computation of probability distributions (both
joint and marginal, conditional or unconditional) and extra information, not
previously addressed in [6], such as expected values and variances. All these
features are illustrated in the OC application (see figure 3 and tables 1 and 2).

OC satellite missions can provide cost-effective environmental indicators at
large spatial scales by deriving optically active seawater compounds (OC prod-
ucts) through remote sensing measurements of the sea-surface reflectance [18].
Semi-analytical approaches [15,21,13] handle this problem as a nonlinear inverse
problem where field data are used to configure a forward model [17,22] that
expresses sea-surface reflectance as a function of the OC products (see figure 2).

In the paper we show how to apply the PC framework to invert the forward
model and compute all OC product scenarios consistent with the model, charac-
terized by a probability distribution conditioned by the measurement error. Such
information is of extreme importance to understand the impact of measurement
uncertainties on the derived OC products, providing support to: a) investigate
the applicability of ocean color inversion schemes in different water types; and b)
define accuracy requirements for the radiometric sensors to guarantee specified
levels of uncertainty for the estimated concentrations. This is an innovative and
remarkable contribution to the OC community and can be extended to different
parameterizations of the semi-analytical model.

To assess the approach we studied a set of 12 simulated cases representative
of different seawater types found in nature. Figure 3 shows the results obtained
for the uncertainty on the model parameters given the measurements. Table 1
shows the results obtained to compute the Chla expected value and standard
deviation, where the enclosures get sharper as time proceeds.

Fig. 2. The forward model is a function from the OC products (Chla, NPPM and
CDOM) to the remote sensing reflectance (Rrs) at a given wavelength (λ)

916 E. Carvalho, J. Cruz, and P. Barahona

(a) (b) (c)

Fig. 3. Joint and marginal uncertainty distributions computed by the PC framework

Table 1. Interval enclosures computed for E[Chla] and STD[Chla]

E[Chla] STD[Chla]
enclosure midpoint error enclosure midpoint error

10 min [6.5366, 6.7694] 6.6530 0.1164 [2.6983, 2.9418] 2.8201 0.1218
20 min [6.5924, 6.7092] 6.6508 0.0584 [2.7716, 2.9011] 2.8364 0.0648
60 min [6.6260, 6.6742] 6.6501 0.0241 [2.8193, 2.8753] 2.8473 0.0280

300 min [6.6393, 6.6609] 6.6501 0.0108 [2.8400, 2.8644] 2.8522 0.0122

The hybrid approach, that combines constraint reasoning and Monte Carlo
integration, is shown to provide very accurate results in a fraction of the com-
putation time (see table 2). It was also demonstrated that this technique clearly
benefits from the contribution of constraint programming to reduce the sample
space into a sharp enclosure of the feasible space, combined with the efficiency
of Monte Carlo integration.

Table 2. Approximations computed for E[Chla] and STD[Chla]

N E[Chla] STD[Chla]
2 min 5 6.6543 2.8627
3 min 10 6.6545 2.8631
4 min 20 6.6553 2.8629
7 min 50 6.6547 2.8629

In summary the paper overviews the Ocean Color inversion problem and
discusses the preliminary results obtained with the PC framework, confirming
the relevance of improving methods to control error propagation in the semi-
analytical models, an important issue for decisions about the sensors used in
satellite-based studies.

Probabilistic Constraints for Nonlinear Inverse Problems 917

References

1. Alrefaei, M.H., Abdul-Rahman, H.M.: An adaptive Monte Carlo integration algo-
rithm with general division approach. Math. Comput. Simul. 79, 49–59 (2008)

2. Bates, D.M., Watts, D.G.: Nonlinear Regression Analysis and Its Applications.
Wiley Series in Probability and Mathematical Statistics. John Willey & Sons (1988)

3. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F.: Revising hull and box
consistency. In: Procs. of ICLP, Cambridge, MA, USA, pp. 230–244. MIT (1999)

4. Benhamou, F., McAllester, D., van Hentenryck, P.: CLP(intervals) revisited. In:
ISLP, pp. 124–138. MIT Press (1994)

5. Berz, M., Makino, K.: New methods for high-dimensional verified quadrature. Re-
liable Computing 5, 13–22 (1999)

6. Carvalho, E., Cruz, J., Barahona, P.: Probabilistic continuous constraint satisfac-
tion problems. In: ICTAI (2), pp. 155–162 (2008)

7. Carvalho, E., Cruz, J., Barahona, P.: Reasoning with uncertainty in continuous
domains. In: Huynh, V.-N., Nakamori, Y., Lawry, J., Inuiguchi, M. (eds.) Integrated
Uncertainty Management and Applications. AISC, vol. 68, pp. 357–369. Springer,
Heidelberg (2010)

8. Carvalho, E., Cruz, J., Barahona, P.: Probabilistic constraints for nonlinear inverse
problems. Constraints 18(3), 344–376 (2013),
http://dx.doi.org/10.1007/s10601-012-9139-6

9. Goldsztejn, A., Cruz, J., Carvalho, E.: Convergence analysis and adaptive strategy
for the certified quadrature over a set defined by inequalities. J. of Comp. and
Applied Math. 260, 543–560 (2014)

10. Granvilliers, L., Cruz, J., Barahona, P.: Parameter estimation using interval com-
putations. SIAM J. Scientific Computing 26(2), 591–612 (2004)

11. Hammersley, J.M., Handscomb, D.C.: Monte Carlo Methods. Methuen, London
(1964)

12. Jaulin, L., Walter, E.: Set inversion via interval analysis for nonlinear bounded-
error estimation. Automatica 29(4), 1053–1064 (1993)

13. Lee, Z., Arnone, R., Hu, C., Werdell, P.J., Lubac, B.: Uncertainties of optical
parameters and their propagations in an analytical ocean color inversion algorithm.
Appl. Opt. 49(3), 369–381 (2010)

14. Lhomme, O.: Consistency techniques for numeric CSPs. In: Proc. of the 13th IJ-
CAI, pp. 232–238 (1993)

15. Maritorena, S., Siegel, D.A.: Consistent Merging of Satellite OC Data Sets Using
a Bio-optical Model. Remote Sensing of Environment 94(4), 429–440 (2005)

16. Moore, R.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)
17. Morel, A., Prieur, L.: Analysis of Variation in Ocean Colour. Limnol. Oceanogr. 22,

709–722 (1977)
18. Robinson, I.S.: Discovering the Ocean from Space. Springer (2010)
19. Sam-Haroud, D., Faltings, B.: Consistency techniques for continuous constraints.

Constraints 1(1/2), 85–118 (1996)
20. Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Esti-

mation. SIAM, Philadelphia (2004)
21. Wang, P., Boss, E.S., Roesler, C.: Uncertainties of inherent optical properties ob-

tained from semianalytical inversions of ocean color. Applied Optics 44 (2005)
22. Zibordi, G., Voss, K.: Field radiometry and ocean colour remote sensing. In:

Barale, V., Gower, J., Alberotanza, L. (eds.) Oceanography from Space, ch. 18,
pp. 307–334. Springer (2010)

http://dx.doi.org/10.1007/s10601-012-9139-6

Multivalued Decision Diagrams

for Sequencing Problems�

(Extended Abstract)

Andre A. Ciré and Willem-Jan van Hoeve

Tepper School of Business, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

{acire,vanhoeve}@andrew.cmu.edu

1 Introduction

Sequencing problems are among the most widely studied problems in opera-
tions research. Specific variations of sequencing problems include single machine
scheduling, the traveling salesman problem with time windows, and precedence-
constrained machine scheduling. In this work we propose a new approach for
solving sequencing problems based on multivalued decision diagrams (MDDs).
Decision diagrams are compact graphical representations of Boolean functions,
originally introduced for applications in circuit design by Lee [7], and widely
studied and applied in computer science. They have been recently used to rep-
resent the feasible set of discrete optimization problems, as demonstrated in [2]
and [3, 4]. This is done by perceiving the constraints of a problem as a Boolean
function f(x) representing whether a solution x is feasible. Nonetheless, such
MDDs can grow exponentially large, which makes any practical computation
prohibitive in general.

To circumvent this issue, Andersen et al. [1] introduced the concept of a
relaxed MDD, which is a diagram of limited size that represents an over-approx-
imation of the feasible solution set of a problem. We argue in this paper that
such MDDs can be particularly useful as a discrete relaxation of the feasible set
of sequencing problems. In particular, we embed relaxed MDDs within a state-
of-the-art constraint-based scheduling system, and show that the resulting MDD
propagation can reduce the solving time by several orders of magnitude.

2 Problem Definition

Let J = {j1, . . . , jn} be a set of n jobs to be processed on a machine that can
perform at most one job at a time. Each job j ∈ J has an associated processing
time pj , which is the number of time units the job requires from themachine, and a
release date rj , the time fromwhich job j is available to be processed. For each pair

� This is a summary of the paper “A. A. Cire and W.-J. van Hoeve. Multivalued
Decision Diagrams for Sequencing Problems. Operations Research, 61(6):1411–1428,
2013”.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 918–922, 2014.
c© Springer International Publishing Switzerland 2014

Multivalued Decision Diagrams for Sequencing Problems 919

of distinct jobs j, j′ ∈ J a setup time tj,j′ is defined, which indicates the minimum
time thatmust elapse between the end of j and the beginning of j′ if j′ is the first job
processed after j finishes. We assume that jobs are non-preemptive, i.e., we cannot
interrupt a job while it is being processed on the machine.

We are interested in assigning a start time sj ≥ rj for each job j ∈ J such
that job processing intervals do not overlap, the resulting schedule observes a
number of constraints, and an objective function f is minimized. Two types of
constraints are considered in this work: precedence constraints, requiring that
sj ≤ sj′ for certain pairs of jobs (j, j′) ∈ J × J , which we equivalently write
j 7 j′; and time window constraints, where the completion time cj = sj + pj of
each job j ∈ J must be such that cj ≤ dj for some deadline dj . Furthermore,
we study three representative objective functions in scheduling: the makespan,
where we minimize the completion time of the schedule, or maxj∈J cj ; the total
tardiness, where we minimize

∑
j∈J (max{0, cj−δj}) for given due dates δj ; and

the sum of setup times, where we minimize the value obtained by accumulating
the setup times tj,j′ for all consecutive jobs j, j′ in a schedule. Note that for
these objective functions we can assume that jobs should always be processed
as early as possible (i.e., idle times do not decrease the value of the objective
function).

Since jobs are processed one at a time, any solution to such scheduling problem
can be equivalently represented by a total ordering π = (π1, π2, . . . , πn) of J .
The start time of the job j implied by π is given by sj = rj if j = π1, and
sj = max{rj , sπi−1 + pπi−1 + tπi−1,j} if j = πi for some i ∈ {2, . . . , n}. We say
that an ordering π of J is feasible if the implied job times observe the precedence
and time window constraints, and optimal if it is feasible and minimizes f .

3 MDD Representation

For the purpose of this work, an (exact) MDD M is a directed acyclic graph
whose paths represent the feasible orderings of J . The set of nodes of M are
partitioned into n+1 layers L1, . . . , Ln+1, where layer Li corresponds to the i-th
position πi of the feasible orderings encoded by M, for i = 1, . . . , n. Layers L1

and Ln+1 are singletons representing the root r and the terminal t, respectively.
An arc a = (u, v) ofM is always directed from a source node u in some layer Li

to a target node v in the subsequent layer Li+1, i ∈ {1, . . . , n}. We write �(a) to
indicate the layer of the source node u of the arc a (i.e., u ∈ L�(a)).

With each arc a of M we associate a label val (a) ∈ J that represents the
assignment of the job val (a) to the �(a)-th position of the orderings identified
by the paths traversing a. Hence, an arc-specified path (a1, . . . , an) from r to t
identifies the ordering π = (π1, . . . , πn), where πi = val (ai) for i = 1, . . . , n. Ev-
ery feasible ordering is identified by some path from r to t inM, and conversely
every path from r to t identifies a feasible ordering.

A relaxed MDD is an MDD M that represents a superset of the feasible
orderings of J ; i.e., every feasible ordering is identified by some path inM, but
not necessarily all paths inM identify a feasible ordering. We construct relaxed

920 A.A. Ciré and W.-J. van Hoeve

Job Parameters

Job rj dj pj

j1 2 20 3
j2 0 14 4
j3 1 14 2

Setup Times

j1 j2 j3

j1 - 3 2
j2 3 - 1
j3 1 2 -

a. Instance data

r

u1

u2

t

j1 j2 j3

j1 j2 j3

j1 j2 j3

π1

π2

π3

b. MDD relaxation
(width 1)

r

u1 u2

u3 u4

t

j2 j3

j1 j3 j2 j1

j3 j2

j1

π1

π2

π3

c. MDD relaxation
(width 2)

Fig. 1. Example MDD relaxations for a scheduling problem

MDDs by limiting the size to a fixed maximum allowed width W . Thus, the
strength of the relaxed MDD can be controlled by increasing W ; we obtain an
exact MDD by setting W to infinity.

Figures 1.b and 1.c present two examples of a relaxed MDD with maximum
width W = 1 and W = 2, respectively, for the sequencing problem given in
Figure 1.a. In particular, the MDD in Figure 1.b encodes all the orderings rep-
resented by permutations of J with repetition, hence it trivially contains the
feasible orderings of any sequencing problem.

4 Filtering and Refinement

Considering that a relaxed MDDM can be easily constructed for any sequencing
problem (e.g., the width-1 relaxation of Figure 1.b), we modify M in order to
strengthen the relaxation it provides while observing the maximum width W .
These are based on the compilation procedures developed by Hadzic et al. [5]
and Hoda et al. [6] for general constraint satisfaction systems, which apply MDD
filtering and refinement.

MDD filtering consists in identifying infeasible arcs and removing them from
M, which hence eliminates one or more infeasible orderings that are encoded
in M. We provide such filtering rules for all constraints and objective functions
given in Section 2. Of particular note is the following result regarding MDD
filtering for precedence constraints, which shows that MDDs can provide stronger
inference than existing scheduling rules based on domain propagation, such as
edge finding or not-first/not-last:

Theorem 1. Let M be an exact MDD representing a sequencing problem. The
set of all precedence relations that must hold in any feasible ordering can be
extracted from M in O(n2 |M|) time.

Multivalued Decision Diagrams for Sequencing Problems 921

MDD refinement consists in identifying nodes in M that are encompassing
multiple equivalence classes, and splitting them into two or more new nodes to
represent such classes more accurately (as long as the maximum width W is
not violated). Our refinement strategies aim at exactly representing the most
important jobs in J .

5 Constraint-Based Scheduling with MDD Propagation

We next provide a brief summary of the application of MDD propagation to
the constraint-based scheduling system of IBM ILOG CP Optimizer. We com-
pare the performance of CP Optimizer with (CPO+MDD) and without (CPO) the
additional inference that the MDD relaxations provide.

As illustration, we present results for the TSP with time windows (TSPTW)
in Figure 2. Figure 2.a shows that MDD propagation can improve the perfor-
mance of CPO by several orders of magnitude, which translates in being able to
optimally solve more than twice as many problems (Figure 2.b).

Similar results were obtained for other problem classes, including the TSP
with precedence constraints (Sequential Ordering Problem), and objective func-
tions, including makespan and total tardiness minimization. We note that using
our approach we were able to close three open instances of the Sequential Or-
dering Problem from TSPLIB.

1e−01 1e+00 1e+01 1e+02 1e+03

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03

CPO − Time (s)

C
P

O
+

M
D

D
 W

id
th

 1
02

4
−

 T
im

e
(s

)

a. Scatter plot of solution time

0
50

10
0

15
0

20
0

25
0

30
0

35
0

Time(s)

N
um

be
r

of
 In

st
an

ce
s

S
ol

ve
d

0 300 600 900 1200 1500 1800

CPO
CPO+MDD − Width 1024

b. Performance plot

Fig. 2. Performance comparison between CPO and CPO+MDD for minimizing sum of setup
times on Dumas, Gendreau, and Ascheuer TSPTW classes using default depth-first
CPO search. The horizontal and vertical axes in (a) are in logarithmic scale.

922 A.A. Ciré and W.-J. van Hoeve

References

[1] Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based
on multivalued decision diagrams. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741,
pp. 118–132. Springer, Heidelberg (2007)

[2] Becker, B., Behle, M., Eisenbrand, F., Wimmer, R.: BDDs in a branch and cut
framework. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 452–463.
Springer, Heidelberg (2005)

[3] Bergman, D., van Hoeve, W.-J., Hooker, J.N.: Manipulating MDD relaxations for
combinatorial optimization. In: Achterberg, T., Beck, J.C. (eds.) CPAIOR 2011.
LNCS, vol. 6697, pp. 20–35. Springer, Heidelberg (2011)

[4] Bergman, D., Cire, A.A., van Hoeve, W.-J., Hooker, J.N.: Variable ordering for the
application of bdds to the maximum independent set problem. In: Beldiceanu, N.,
Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 34–49. Springer,
Heidelberg (2012)

[5] Hadzic, T., Hooker, J.N., O’Sullivan, B., Tiedemann, P.: Approximate compilation
of constraints into multivalued decision diagrams. In: Stuckey, P.J. (ed.) CP 2008.
LNCS, vol. 5202, pp. 448–462. Springer, Heidelberg (2008)

[6] Hoda, S., van Hoeve, W.-J., Hooker, J.N.: A systematic approach to MDD-based
constraint programming. In: Cohen, D. (ed.) CP 2010. LNCS, vol. 6308, pp. 266–
280. Springer, Heidelberg (2010)

[7] Lee, C.Y.: Representation of switching circuits by binary-decision programs. Bell
Systems Technical Journal 38, 985–999 (1959)

Robustness and Stability in Constraint Programming
under Dynamism and Uncertainty�

(Extended Abstract)

Laura Climent1, Richard J. Wallace1, Miguel A. Salido2, and Federico Barber2

1 Insight Center for Data Analytics, University College Cork, Ireland
2 Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Spain

{laura.climent,richard.wallace}@insight-centre.org,
{msalido,fbarber}@dsic.upv.es

1 Introduction

Because of the dynamism and uncertainty associated with many real life problems,
these problems and their associated Constraint Satisfaction Problem (CSP) models may
change over time; thus an earlier solution found for the latter may become invalid.
Moreover, many approaches proposed in the literature cannot be applied when the re-
quired information about dynamism is unknown ([9], [4], [5], [11], [10], etc.). This
fact has motivated us to consider dynamic situations where, in addition, only limited
assumptions about changes can be made. Our analysis focuses on CSPs with ordered
and discrete domains that model problems for which the order over the elements of the
domain is significant. In these cases, a common type of change that problems may un-
dergo is restrictive modifications over the bounds of the solution space. A discussion of
these assumptions, their motivation and real life examples can be found in [3].

In this paper, we present an algorithm that meets the goal of combining solution sta-
bility (meaning that solutions can often be repaired using other similar values if they
undergo a value loss) and robustness (meaning that solutions have a high likelihood
of remaining solutions after changes). The desireability of this combination of features
was noted in the survey [8]. Furthermore, in this work we have extended both concepts
to apply to the type of CSP analyzed. The paper is organized as follows. Section 2
presents the new conceptions of robustness and stability. Section 3 describes our ap-
proach for finding solutions that simultaneously meet both these criteria. In Section 4
we present some experimental results. Section 5 gives conclusions.

2 Extending Robustness and Stability Concepts

Given CSPs with ordered domains, where only limited assumptions are made about
changes in the problem that are related to their inherent structure, it is reasonable to

� This is a summary of the paper: L. Climent, R. J. Wallace, M. A. Salido, and F. Barber. Ro-
bustness and Stability in Constraint Programming under Dynamism and Uncertainty. Journal
of Artificial Intelligence Research, 49:49-78, 2014.
http://www.jair.org/media/4126/live-4126-7626-jair.pdf

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 923–927, 2014.
c© Springer International Publishing Switzerland 2014

http://www.jair.org/media/4126/live-4126-7626-jair.pdf

924 L. Climent et al.

assume that the original bounds of the solution space (delimited by the domains and
constraints of the CSP) can only be restricted or relaxed, even if this does not cover all
possible changes. Note that the possibility of solution loss only exists in the restrictive
case. For this reason, we specialize the definition of robustness as follows.

Definition 1. The most robust solution of a CSP with ordered domains without detailed
dynamism data is the solution that maximizes the distance from all the dynamic bounds
of the solution space.

In addition, we can define the notion of stability more precisely in this framework
because it is possible to define a more specific notion of closeness between two solutions
thanks to the existent order over domain values than the one introduced in [6]. Here, we
use the Manhattan distance (

∑n
i=1 |s1i − s2i|, where s1 and s2 are solutions).

Definition 2. Given an order relationship over the values of a set of solutions, a solu-
tion s1 is more stable than another solution s2 iff, in the event of a change that inval-
idates them, there exists an alternative solution to s1 with lower Manhattan distance
than the Manhattan distance of any alternative solution to s2.

3 Searching for Robust and Stable Solutions

In this section we explain our strategy for searching for solutions that combine robust-
ness and stability according to the definitions of Section 2. The measure of the distance
from the dynamic bounds of the solution space (required for the robustness measure-
ment) is not always obvious or easy to derive, since the constraints of the CSP may
be extensionally expressed. However, some deductions about minimum distances to the
bounds can be made based on the feasibility of the neighbours of a solution. This idea
is first motivated with a very simple example and then is formalized.

Example 1. Figure 1 shows two solution spaces (composed by the variables x and y)
whose dynamic bounds are marked by contiguous lines. The most robust solutions ac-
cording to Definition 1 are highlighted. Note that there are two contiguous feasible
neighbours on both sides of each assignment (discontinuous lines).

From Example 1, we conclude that we can only ensure that a solution s is located
at least at a distance d from a bound in a certain direction of the n-dimensional space
if all the tuples at distances lower or equal to d from s in this direction are feasible.
Therefore, the number of feasible contiguous surrounding neighbours of the solution is
a measure of its robustness and also of its stability. Because if the value assigned to a
variable has at least one feasible neighbour value, then this variable is repairable.

Let Nk denote the neighbourhood of feasible contiguous surrounding values for a
given value (assuming a specific variable and a feasible partial or complete assignment)
at distance not greater than k in increasing, or decreasing, or both directions with re-
spect to the order relationship. For the general case of CSPs with ordered domains, the
desirable goal is to find contiguous surrounding feasible neighbours on both sides. For
instance, in Figure 1(b), considering the partial assignment {x = 2}, Nk = {1, 3} for

Robustness and Stability in Constraint Programming 925

(a) Convex Space (b) Non-convex Space

Fig. 1. Most robust solutions for different solution spaces

the value 2 in the y axis (for any k value). However, for some problems it is important
to consider the feasibility of neighbours only in an increasing/decreasing order [2].

In order to find solutions with the maximum number of contiguous feasible neigh-
bours, we implemented a Branch & Bound algorithm that maximizes the sum of the
sizes of Nk for all the variables of the assignment s. If s is an incomplete assignment,
we calculate the maximum size ofNk of the analyzed variable, for each value of its fea-
sible domain with respect s. Note that this objective function is an upper bound on the
final total number of feasible contiguous neighbours of the solution. For the inference
process, we developed an extension of the well-known Generalized Arc Consistency
(GAC) that checks the feasiblity of both the analyzed value and its Nk. An earlier de-
scription of this search algorithm can be found in [1]. For the highlighted solutions of
both Figures 1(a) and 1(b) the objective function is equal to four for k ≥ 1 (every value
assigned to each solution has two contiguous neighbours on both sides).

4 Experimental Results

In this section, we describe a very limited part of the evaluation that was carried out.
Experiments were run on an Intel Core i5-650 Processor (3.20 Ghz) with a time cutoff
of 100 seconds. Figure 2 shows, for a fixed k = 1, the solutions obtained by our search
algorithm (“neighbour solutions” and “(R)” is a variant). We also evaluated an ordinary
CSP solver (“simple solutions”) and two other methods: a WCSP modeling technique
[3] (“WCSP-mod solutions”) and the (1, 0)-super-solutions [6].

Figure 2(a) shows an analysis of robustness as a function of the tightness of the
constraints (ratio of the number of forbidden assignments to the total number possible)
of random CSPs with 25 variables, domain size 30 and 200 binary constraints. Here
we made 500 random changes to each solution by increasing or decreasing two of their
values and then checking if they were still solutions. The more neighbours that are
not solutions of the CSP, the higher the likelihood of the solution becoming infeasible
after changes over the bound/s. Note that our search algorithm outperformed the other
approaches, specially for lower tightness. At higher tightness values, there is a lower
probability of neighbour solutions (i.e. all solutions are located close to the bounds).

926 L. Climent et al.

 0

 50

 100

 150

 200

0.1 0.2 0.3

A
ve

ra
ge

 s
am

pl
in

g
of

 th
e

nu
m

be
r

of
 n

ei
gh

bo
ur

 s
ol

ut
io

ns

Tightness

neighbours solution
neighbours (R) solution

simple solution
(1,0)-super-solution

WCSP-mod solution

(a) Robustness analysis based on the tightness

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 10 20 30 40 50 60 70 80 90 100

M
ea

n
nu

m
be

r
of

 b
uf

fe
rs

Time(s)

neighbours solution
neighbours solution (R)

simple solution
(1,0)-super-solution

(b) Stability analysis based on computing time

Fig. 2. Robustness and stability analysis for random CSPs and scheduling problems

Figure 2(b) shows a stability analysis based on the computing time of the algorithms
(discretization of 10 seconds) of the CSPs of the “e0ddr1” scheduling benchmark [7].
The mean number of buffer times is a measure of the stability because the start time of
a task with an associated buffer can be delayed, for instance when there are delays in
previous tasks. The most noteworthy aspect is that our search algorithm clearly outper-
formed the other approaches, specially when the computation time cutoff was higher.

5 Conclusions

In this paper we extend the concept of robustness and stability to deal with CSPs
with discrete and ordered domains where only limited assumptions can be made about
changes in these problems due to a lack of detailed dynamism information. Further-
more, we present a new search algorithm that combines criteria for both robustness and
stability in this framework by searching for a solution that maximizes the sum of con-
tiguous feasible surrounding neighbours at distances of k or less from the values of the
solution. The obtained solutions have a higher probability of remaining valid after pos-
sible future restrictive changes over the constraints and domains of the original problem
(robustness criterion), and they also have a high number of variables that can be eas-
ily repaired with a value at a distance lower or equal to k if they undergo a value loss
(stability criterion).

Our experiments showed that our search algorithm outperformed other approaches
that need only limited information about dynamism, with respect to robustness and
stability as we have defined them, in cases where there were real differences in the
robustness of solutions that could be obtained. The latter occurs when the problem is
not so constrained that there are only a few valid solutions.

Acknowledgements. The first author is supported by the research grant from Science
Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289. The work was also
supported by the FPU fellowship (Min. de Ciencia e Innovación, Spain) and the project
TIN2013-46511-C2-1 (pending).

Robustness and Stability in Constraint Programming 927

References

1. Climent, L., Wallace, R., Salido, M., Barber, F.: An algorithm for finding robust and sta-
ble solutions for constraint satisfaction problems with discrete and ordered domains. In:
24th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2012),
pp. 874–879 (2012)

2. Climent, L., Wallace, R.J., Salido, M.A., Barber, F.: A constraint programming approach
to solve scheduling problems under uncertainty. In: Workshop on Constraint Satisfac-
tion Techniques for Planning and Scheduling Problems (COPLAS 2013) in ICAPS 2013,
pp. 28–37 (2013)

3. Climent, L., Wallace, R.J., Salido, M.A., Barber, F.: Finding robust solutions for constraint
satisfaction problems with discrete and ordered domains by coverings. In: Artificial Intelli-
gence Review (AIRE) (2013), doi:10.1007/s10462-013-9420-0

4. Fargier, H., Lang, J.: Uncertainty in constraint satisfaction problems: A probabilistic
approach. In: Moral, S., Kruse, R., Clarke, E. (eds.) ECSQARU 1993. LNCS, vol. 747,
pp. 97–104. Springer, Heidelberg (1993)

5. Fargier, H., Lang, J., Schiex, T.: Mixed constraint satisfaction: A framework for decision
problems under incomplete knowledge. In: Proceedings of the 13th National Conference on
Artificial Intelligence (AAAI 1996), pp. 175–180 (1996)

6. Hebrard, E.: Robust Solutions for Constraint Satisfaction and Optimisation under Uncer-
tainty. PhD thesis, University of New South Wales (2006)

7. Sadeh, N., Fox, M.: Variable and value ordering heuristics for the job shop scheduling con-
straint satisfaction problem. Artificial Intelligence 86(1), 1–41 (1996)

8. Verfaillie, G., Jussien, N.: Constraint solving in uncertain and dynamic environments: A
survey. Constraints 10(3), 253–281 (2005)

9. Wallace, R., Freuder, E.: Stable solutions for dynamic constraint satisfaction problems. In:
Maher, M.J., Puget, J.-F. (eds.) CP 1998. LNCS, vol. 1520, pp. 447–461. Springer, Heidel-
berg (1998)

10. Walsh, T.: Stochastic constraint programming. In: Proceedings of the 15th European Confer-
ence on Artificial Intelligence (ECAI 2002), pp. 111–115 (2002)

11. Yorke-Smith, N., Gervet, C.: Certainty closure: Reliable constraint reasoning with in-
complete or erroneous data. Journal of ACM Transactions on Computational Logic
(TOCL) 10(1), 3 (2009)

Monotone Temporal Planning: Tractability,
Extensions and Applications�

(Extended Abstract)

Martin C. Cooper, Frédéric Maris, and Pierre Régnier

IRIT, University of Toulouse III, 31062 Toulouse, France
{cooper,maris,regnier}@irit.fr

Abstract. We describe a polynomially-solvable class of temporal planning
problems. Polynomiality follows from two assumptions. Firstly, by sup-
posing that each fluent (fact) can be established by at most one action, we
can quickly determine which actions are necessary in any plan. Secondly,
the monotonicity of fluents allows us to express planning as an instance
of STP�= (Simple Temporal Problem with difference constraints). This class
includes temporally-expressive problems requiring the concurrent execu-
tion of actions, with potential applications in the chemical, pharmaceuti-
cal and construction industries. Any (temporal) planning problem has a
monotone relaxation, which can lead to the polynomial-time detection of
its unsolvability in certain cases. Indeed our relaxation is orthogonal to
the relaxation based on ignoring deletes used in classical planning since
it preserves deletes and can also exploit temporal information.

1 Temporal Planning

Temporal planning is an important extension of classical planning in which ac-
tions are durative and may overlap. Classical propositional planning is already
PSPACE-Complete [1], and temporal planning is EXPSPACE-complete [8].
An important aspect of temporal planning is that, unlike classical planning,
it permits us to model so-called temporally-expressive problems in which the
execution of two or more actions in parallel is essential in order to solve the
problem [5]. We define the first polytime-solvable class of temporal planning.
This class includes temporally-expressive problems. It also leads to a novel re-
laxation of arbitrary temporal planning problems which provides a polytime
sufficient condition for the detection of certain properties of actions, fluents and
instances. Preliminary (and weaker) versions of this tractable class and tempo-
ral relaxation appeared in conference proceedings [2,3] before being improved
in the journal paper [4] corresponding to this extended abstract.

A fluent is an atomic proposition (such as door-open). Changes to the value
of a fluent are instantaneous, but conditions on the value of a fluent may be

� This is a summary of the paper Cooper M.C., Maris F., Régnier P., Monotone Tempo-
ral Planning: Tractability, Extensions and Applications, JAIR 50, 447-485, 2014. This
research is supported by ANR Project ANR-10-BLAN-0210.

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 928–932, 2014.
c© Springer International Publishing Switzerland 2014

Monotone Temporal Planning: Tractability, Extensions and Applications 929

imposed over an interval. An action a = 〈Cond(a),Add(a),Del(a),Constr(a)〉
consists of a set Cond(a) of fluents which are required to be true for a to be
executed, a set Add(a) of fluents which are established by a, a set Del(a) of
fluents which are destroyed by a, and a set Constr(a) of interval constraints be-
tween the relative times of events which occur during the execution of a. An
event corresponds to one of four possibilities: the establishment or destruction
of a fluent by an action a, or the beginning or end of an interval over which a
fluent is required by an action a. We represent an action by a rectangle whose
length corresponds to its duration. Conditions are written above an action, and
effects (adds or deletes) below. For example, consider the two actions shown
below: LIGHT-MATCH and LIGHT-CANDLE. The action LIGHT-MATCH re-
quires that the match be live, in order to light it. The match remains lit until it
is blown out at the end of the action. A constraint in Constr(LIGHT-MATCH)
imposes that the duration of the action is at most 10 seconds (at which moment
the whole match has burnt). The second action LIGHT-CANDLE requires that
the match be lit during two seconds for the candle to be lit.

Live
LIGHT-MATCH

¬Live

Match-lit
¬Match-lit

Match-lit

LIGHT-CANDLE

Candle-lit

A temporal planning problem 〈I, A,G〉 consists of a set of actions A, an initial
state I and a goal G, where I and G are sets of fluents. In a positive problem all
fluents inG and Cond(a) (for all actions a) are positive. A temporal plan P for the
problem 〈I, A,G〉 is a mapping τ from the events in a set of instances of actions
from A to the time dimension such that all conditions of actions are true when
required, all goal fluents g ∈ G are true at the end of the execution of P and
the constraints Constr(a) of each action a are satisfied (together with a technical
condition ensuring that P is robust under infinitesimal shifts in the starting
times of actions). Thus a temporal plan does not schedule its action-instances
directly but schedules all the events in its action-instances. A plan is minimal if
removing any non-empty subset of action-instances produces an invalid plan.
For an initial state I = {live, ¬Match-lit} and a set of goals G = {Candle-
lit}, it is clear that all minimal temporal plans for our example problem involve
executing the two actions in parallel with the start (respectively, end) of LIGHT-
MATCH being strictly before (after) the start (end) of LIGHT-CANDLE.

2 Monotonicity and Establisher-Uniqueness Imply
Tractability

A set of actions A is establisher-unique (EU) if no fluent can be established by
two distinct actions of A.

930 M.C. Cooper, F. Maris, and P. Régnier

A fluent f is −monotone* (relative to a positive temporal planning problem
〈I, A,G〉) if, after being destroyed f is never re-established in any minimal tem-
poral plan for 〈I, A,G〉. Similarly, a fluent f is +monotone* if, after having been
established f is never destroyed in any minimal temporal plan. A fluent is
monotone* if it is either + or −monotone*.

An action a ∈ A is unitary for a temporal planning problem 〈I, A,G〉 if each
minimal temporal plan for the 〈I, A,G〉 contains at most one instance of a. An
action landmark is an action which occurs in each temporal plan [7].

In our example problem, both actions are clearly essential and hence land-
marks. There is only one match available, which means that LIGHT-MATCH
can be executed at most once (and is hence unitary). This means that the fluent
Match-lit is −monotone* since it cannot be established after being destroyed.
This same fluent Match-lit is not +monotone* since it is destroyed after be-
ing established. If �ai, aj ∈ A such that f ∈ Add(ai) ∩ Del(aj), then f is both
+monotone* and −monotone*. This is the case for f = Candle-lit in our exam-
ple. In certain IPC benchmark domains (parcprinter, crewplanning, tms), we
found that many fluents were monotone* (respectively, 100%, 95% and 50% of
those fluents that are either goals or liable to be established in minimal plans).

The following theorem follows from a reduction to STP�= [6]. The constraints
created by this reduction are given in Section 3. The proof of this and all other
results are given in the journal version [4] of this extended abstract.

Theorem 1. The class of positive temporal planning problems 〈I, A,G〉 in which A is
establisher-unique, all fluents are monotone* and all fluents in I are −monotone* can
be solved in O(n3) time and O(n2) space, where n is the total number of events in the
actions in A. Indeed, we can even find a temporal plan with the minimum number of
action-instances or of minimal cost in the same complexity. Furthermore, if all actions
in A are rigid (i.e. intervals between different events in the action are fixed) then the
problem of finding a plan with minimum makespan is polytime approximable.

3 Temporal Relaxation

Relaxation is ubiquitous in Artificial Intelligence. A valid relaxation of an in-
stance I has a solution if I has a solution. Hence when the relaxation has no
solution, this implies the unsolvability of the original instance I . A tractable
relaxation can be built and solved in polynomial time. Our tractable class of
EU monotone planning allows us to define a relaxation TR (temporal Relax-
ation) which is an alternative to the traditional relaxation of propositional non-
temporal planning problems consisting of simply ignoring deletes. In fact, TR
is a solution procedure for the class described in Theorem 1 (see [4] for a proof).

We use the notation a → f (resp., a → ¬f) to denote the event that action a
establishes (destroys) fluent f , and f |→ a and f →|a, respectively, to denote
the beginning and end of the interval over which action a requires condition f .
We use the notation τfirst(e) (respectively, τlast(e)) to represent the time in a plan
at which an event e occurs first (resp., last).

Monotone Temporal Planning: Tractability, Extensions and Applications 931

By applying the following simple rule until convergence we can transform
(in polynomial time) any temporal planning problem into a relaxed version
which is EU: if a fluent f is established by two distinct actions, then delete
f from the goal G and from Cond(a) for all actions a. From now on we as-
sume the temporal planning problem is EU. We denote by ALM the set of action
landmarks that have been detected. Establisher-uniqueness implies that we can
easily identify many such actions. The constraints of TR are as follows:

intrinsic constraints: ∀a ∈ ALM, for all events e of a, τfirst(e) ≤ τlast(e).
inherent constraints: ∀a ∈ ALM, τfirst and τlast both satisfy the interval con-

straints in Constr(a).
contradictory-effects constraints: no fluent is simultaneously established and

destroyed by two actions.
−authorisation constraints: For each positive fluent f which is known to be

−monotone*, ∀ai, aj ∈ ALM, if f ∈ Del(aj) ∩Cond(ai), then τlast(f →|ai) <
τfirst(aj → ¬f). (If i = j then the inequality is not strict [4]).

+authorisation constraints: For each positive fluent f which is known to be
+monotone*, ∀ai, aj ∈ ALM, if f ∈ Del(aj)∩Add(ai), then τlast(aj → ¬f) <
τfirst(ai → f).

causality constraints: For each positive fluent f , ∀ai, aj ∈ ALM, if f ∈
(Cond(aj) ∩Add(ai)) \ I then τfirst(ai → f) < τfirst(f |→ aj). (If i = j then
the inequality is not strict).

goal constraints: Cond(ALM) ⊆ I ∪ Add(A), G ⊆ (I \ Del(ALM)) ∪ Add(A),
and for each g ∈ G, ∀ai, aj ∈ ALM, if g ∈ Del(aj) ∩ Add(ai), then τlast(aj →
¬g) < τlast(ai → g).

unitary constraint: For each action a which is known to be unitary (see [4] for
rules for the polytime detection of unitary actions), for all events e in a,
τfirst(e) = τlast(e).

Theorem 2. A temporal planning problem in the tractable class described in Theo-
rem 1 has a solution if and only if TR has a solution.

We can use TR to detect certain properties of actions, fluents and problems.

Lemma 1. If the temporal relaxation TR(I, A,G) of a positive temporal planning prob-
lem 〈I, A,G〉 has no solution, then 〈I, A,G〉 has no solution. If TR(I, A \ {a}, G) has
no solution, then a is a landmark action in 〈I, A,G〉.

The detection of monotonicity* is theoretically as difficult as temporal plan-
ning, since it is EXPSPACE-complete [4]. However, TR together with extra con-
straints provides a powerful polytime method for detecting monotonicity*.

Lemma 2. If ∀a, b ∈ A s.t. f ∈ Add(a) ∩ Del(b), TR together with the constraint
τfirst(a→ f) < τlast(b→ ¬f) is inconsistent, then f is +monotone*. If ∀a, b ∈ A s.t.
f ∈ Add(a) ∩Del(b), TR together with the constraint τfirst(b→ ¬f) < τlast(a→ f)
is inconsistent, then f is −monotone*.

932 M.C. Cooper, F. Maris, and P. Régnier

The class of temporal planning problems described in Theorem 1 which also
have the property that all fluents can be detected as monotone* by Lemma 2
constitutes a tractable class that can be detected and solved in polynomial time.

Further research is required to determine if interesting tractable classes can
be defined without the restrictive assumption of establisher-uniqueness.

References

1. Bylander, T.: The Computational Complexity of Propositional STRIPS Planning. Arti-
ficial Intelligence 69(1-2), 165–204 (1994)

2. Cooper, M.C., Maris, F., Régnier, P.: Tractable monotone temporal planning. In: Pro-
ceedings ICAPS 2012, pp. 20–28 (2012)

3. Cooper, M.C., Maris, F., Régnier, P.: Relaxation of Temporal Planning Problems.
In: International Symposium on Temporal Representation and Reasoning (TIME),
pp. 37–44 (2013)

4. Cooper, M.C., Maris, F., Régnier, P.: Monotone Temporal Planning: Tractability, Ex-
tensions and Applications. JAIR 50, 447–485 (2014),
http://www.irit.fr/publis/ADRIA/MonotoneJAIR.pdf

5. Cushing, W., Kambhampati, S., Mausam, W.D.S.: When is Temporal Planning Really
Temporal? In: Proc. International Joint Conference on Artificial Intelligence (IJCAI
2007), pp. 1852–1859 (2007)

6. Gerevini, A., Cristani, M.: On Finding a Solution in Temporal Constraint Satisfac-
tion Problems. In: Proc. International Joint Conference on Artificial Intelligence (IJCAI
1997), pp. 1460–1465 (1997)

7. Karpas, E., Domshlak, C.: Cost-optimal planning with landmarks. In: Proc. Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 1728–1733 (2009)

8. Rintanen, J.: Complexity of Concurrent Temporal Planning. In: Proc. 17th Interna-
tional Conference on Automated Planning and Scheduling (ICAPS 2007), pp. 280–287
(2007)

http://www.irit.fr/publis/ADRIA/MonotoneJAIR.pdf

Anytime AND/OR Depth-First Search
for Combinatorial Optimization�

(Extended Abstract)

Lars Otten1,		 and Rina Dechter2

1 University of California, Irvine, USA
lotten@uci.edu

2 University of California, Irvine, USA
dechter@ics.uci.edu

Abstract. One popular and efficient scheme for solving combinatorial optimiza-
tion problems over graphical models exactly is depth-first Branch and Bound.
However, when the algorithm exploits problem decomposition using AND/OR
search spaces, its anytime behavior breaks down. This article 1) analyzes and
demonstrates this inherent conflict between effective exploitation of problem de-
composition (through AND/OR search spaces) and the anytime behavior of depth-
first search (DFS), 2) presents a new search scheme to address this issue while
maintaining desirable DFS memory properties, and 3) analyzes and demonstrates
its effectiveness through comprehensive empirical evaluation. Our work is appli-
cable to any problem that can be cast as search over an AND/OR search space.

1 Introduction

Max-product problems over graphical models, generally known as MPE (most probable
explanation) or MAP (maximum a posteriori) inference, have many applications with
practical significance, ranging from computational biology and genetics to scheduling
tasks and coding networks. One established and efficient class of algorithms for solving
these problems exactly is depth-first Branch and Bound over AND/OR search spaces.
Developed in the past decade within the probabilistic reasoning and constraint commu-
nities, these methods are effective because they use sophisticated lower bound schemes
such as soft arc-consistency [1] or the mini-bucket heuristic [2,3], because they avoid
redundant computation using caching schemes, and most significantly, because they
take advantage of problem decomposition by exploring an AND/OR search space [4]
or an equivalent representation. The efficiency of these algorithms was established in
several evaluations, including recent UAI competitions [5], and their properties when
used for exact computation are well documented [6,3,7].

A principled alternative is presented by best-first schemes, but while provably supe-
rior in terms of number of node expansions, these often fail when a problem has large
induced width due to the generally exponential size of the algorithm’s OPEN list; more-
over, they can only provide a solution at termination [7]. Depth-first search is therefore

� This is a summary of the full article published in AI Communications, Volume 25(3) [13].
�� Now at Google Inc. (ottenl@google.com).

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 933–937, 2014.
c© Springer International Publishing Switzerland 2014

ottenl@google.com

934 L. Otten and R. Dechter

often preferred because of its flexibility in working with bounded memory – the OPEN
list of nodes grows linearly – and because of its anytime behavior. Namely, when find-
ing a feasible solution is easy but an optimal one is hard, depth-first Branch and Bound
generates solutions that get better and better over time, until it eventually discovers
an optimal one. Thus it can function also as an approximation scheme for otherwise
infeasible problems or when time is limited [8].

Indeed, in the 2010 UAI Approximate Inference Challenge participating Branch and
Bound solvers performed competitively with respect to approximation (placing 1st and
3rd in some categories). But we also observed an inability to produce even a single solu-
tion on some instances, especially when the time bound was small. Thus motivated, this
article demonstrates that the issue is rooted in the underlying AND/OR search space.

These search spaces were originally introduced to graphical models to facilitate prob-
lem decomposition during search (e.g. [9]) and can be explored by any search strategy.
When traversed depth-first, however, all but one decomposed subproblem will be fully
solved before a single overall solution can be composed, voiding the algorithm’s any-
time characteristics.

This article’s main contribution is a new Branch and Bound scheme over AND/OR
search spaces, called Breadth-Rotating AND/OR Branch and Bound (BRAOBB) that ad-
dresses the anytime issue in a principled way, while maintaining the favorable complex-
ity guarantees of depth-first search. The algorithm combines depth-first and breadth-first
exploration by periodically rotating over the different subproblems, each of which is
processed depth-first.

Experimental evaluation is conducted on a variety of benchmark domains, includ-
ing haplotype computation problems in genetic pedigrees, random grid networks, and
protein side-chain prediction instances. We compare BRAOBB against one of the best
variants of AND/OR branch and Bound search, AOBB [3], and against an “ad hoc” fix
that we suggest – the latter algorithm relies on a heuristic to quickly find a solution to
each subproblem before reverting to depth-first search. We furthermore compare against
a state-of-the-art stochastic local search solver, which is specifically targeted at anytime
performance but cannot provide any proof of optimality [10].

The empirical results demonstrate superior anytime behavior of BRAOBB, espe-
cially over problematic cases where standard AOBB and its ad hoc fix fail, including
several very hard instances from the 2010 UAI Approximate Inference Challenge that
were made available and three weighted constraint satisfaction problem instances that
are known to be very complex. We also show how combining local search and exhaus-
tive AND/OR search lets us enjoy the benefits of both approaches. Notably, a solver
based on this concept recently won all three categories (20 seconds, 20 minutes, and 1
hour) in the MPE track of the PASCAL 2011 Inference Challenge [11,12], the successor
to the 2010 UAI Challenge.

2 Brief Overview of Results

As noted above, in AND/OR search spaces depth-first traversal of a set of independent
subproblems will solve to completion all but one subproblem before the last one is even
considered. As a consequence, the first generated overall non-optimal solution contains

Anytime AND/OR Depth-First Search for Combinatorial Optimization 935

Fig. 1. Anytime performance of AOBB for differing subproblem oderings. Specified for each
network: number of variables n , max. domain size k , induced widthw along the chosen ordering,
height of the corresponding pseudo tree h . The dashed gray line indicates the optimal solution.

conditionally optimal solutions to all subproblems but the last one. Furthermore, de-
pending on the problem structure and the complexity of the independent subproblems,
the time to return even this first non-optimal overall solution can be significant, practi-
cally negating the anytime behavior of depth-first search (DFS).

To illustrate, consider Figure 1, which depicts the anytime performance (best-known
solution cost over time) of AOBB on two example problem instances. For demonstra-
tion purposes we apply a simple heuristic which has AOBB consider independent sub-
problems by increasing or decreasing hardness, based on the subproblem induced width.
If decomposition yields only one large subproblem and several smaller ones, the latter
can be solved depth-first in relatively little time, to be then combined with the incre-
mentally improving solutions of the larger subproblem. This is exemplified by applying
the “increasing” order to pedigree30x1, which has one hard subproblem and several
other, simple ones: we see a suboptimal overall solution right away which is gradually
improved upon; using the “decreasing” order AOBB spends a long time on solving the
hardest subproblem to completion before returning any overall solution.

In case of pedigree34x2, however, decomposition yields two complex subproblems:
the increasing subproblem order still outperforms its inverse, yet it returns the initial
solution only after about 1,000 seconds. In fact, no possible subproblem ordering can
lead to acceptable anytime behavior in this case due to the structure of subproblems,
clearly highlighting the limits of this approach.

2.1 Breadth-Rotating AND/OR Branch and Bound (BRAOBB)

To remedy this issue, BRAOBB combines depth-first exploration with the notion of
“rotating” through different subproblems in a breadth-first manner. Namely, node ex-
pansion still occurs depth-first as in standard AOBB, but the algorithm takes turns in
processing subproblems, each up to a given number of operations at a time, round-robin
style. This lets us develop all branches of the solution tree “simultaneously”.

More systematically, the algorithm maintains a list of currently open subproblems
and repeats the following high-level steps until completion:

936 L. Otten and R. Dechter

Fig. 2. Anytime performance of BRAOBB (“rotate”) compared against “plain” AOBB and two
other schemes (OR search and AOBB with “dive” extension, as outlined in the full article)

1. Move to next open subproblem P in a breadth-first fashion.
2. Process P depth-first, until either:

(a) P is solved optimally,
(b) P decomposes into child subproblems, or
(c) a predefined threshold number of operations is reached.

The threshold in (c) is needed to ensure the algorithm does not get stuck in one large
subproblem where the other two conditions, (a) and (b), do not occur for a long time.
Furthermore, in order to focus on a single solution tree at a time, a subproblem is only
considered “open” if it does not currently have any child subproblems. More details,
algorithm pseudo code, and theoretical analysis are given in the full article [13].

Figure 2 shows four examples for the anytime perfomance of BRAOBB. For ref-
erence the plots also include AOBB and plain OR search, as well as AOBB with a
“dive” extension (which performs an initial greedy dive into each subproblem – details
in the full article). From the results it is clear that BRAOBB holds a decisive advantage
over the other schemes evaluated here. It generally returns a first solution quickly and
is consistently the first scheme, or one of the first, to do so. Furthermore, in almost all
cases it proceeds to improve upon the initial solution quickly, again outperforming other
schemes in the evaluation.

The full article also contains a number of summary statistics, for instance showing
that after 5 seconds BRAOBB has found an initial solution for 510 out of 543 problem
instances, compared to 269 for plain AOBB. And after 1 minute, BRAOBB has found
the optimal solution for 321 instances compared to 274 for plain AOBB – again, refer
to the full article for more details [13].

Moreover, the article also provides analysis of BRAOBB from several angles, in-
cluding complexity analysis that shows that BRAOOB retains the favorable asymptotic
guarantees of “plain” AND/OR search.

Anytime AND/OR Depth-First Search for Combinatorial Optimization 937

References

1. Larrosa, J., Schiex, T.: Solving weighted CSP by maintaining arc consistency. Artif. In-
tell. 159(1-2), 1–26 (2004)

2. Dechter, R., Rish, I.: Mini-buckets: A general scheme for bounded inference. Journal of the
ACM 50(2), 107–153 (2003)

3. Marinescu, R., Dechter, R.: AND/OR Branch-and-Bound search for combinatorial optimiza-
tion in graphical models. Artif. Intell. 173(16-17), 1457–1491 (2009)

4. Nilsson, N.: Artificial Intelligence: A New Synthesis. Morgan Kaufmann, San Francisco
(1998)

5. Elidan, G., Globerson, A.: UAI 2010 approximate inference challenge,
http://www.cs.huji.ac.il/project/UAI10/

6. Jégou, P., Terrioux, C.: Decomposition and good recording for solving max-CSPs. In: Proc.
of the 16th Eureopean Conference on Artificial Intelligence (ECAI 2004), pp. 196–200. IOS
Press, Amsterdam (2004)

7. Marinescu, R., Dechter, R.: Memory intensive AND/OR search for combinatorial optimiza-
tion in graphical models. Artif. Intell. 173(16-17), 1492–1524 (2009)

8. Zilberstein, S.: Using anytime algorithms in intelligent systems. AI Magazine 17(3), 73–83
(1996)

9. Dechter, R., Mateescu, R.: AND/OR search spaces for graphical models. Artif. Intell.
171(2-3), 73–106 (2007)

10. Hutter, F., Hoos, H.H., Stützle, T.: Efficient stochastic local search for MPE solving.
In: Proc. of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005),
pp. 169–174. Professional Book Center, Denver (2005)

11. Elidan, G., Globerson, A., Heinemann, U.: PASCAL 2011 probabilistic inference challenge,
http://www.cs.huji.ac.il/project/PASCAL/

12. Otten, L., Ihler, A., Kask, K., Dechter, R.: Winning the PASCAL 2011 MAP Challenge with
Enhanced AND/OR Branch-and-Bound.

13. Otten, L., Dechter, R.: Anytime AND/OR depth-first search for combinatorial optimization.
AI Communications 25(3) (2012)

http://www.cs.huji.ac.il/project/UAI10/
http://www.cs.huji.ac.il/project/PASCAL/

View-Based Propagator Derivation"

(Extended Abstract)

Christian Schulte1 and Guido Tack2

1 SCALE, KTH Royal Institute of Technology, Sweden
cschulte@kth.se

2 National ICT Australia (NICTA) and Monash University, Australia
guido.tack@monash.edu

Abstract. When implementing a propagator for a constraint, one must de-
cide about variants: When implementing min, should one also implement max?
Should one implement linear equations both with and without coefficients? Con-
straint variants are ubiquitous: implementing them requires considerable effort,
but yields better performance. This abstract shows how to use views to derive
propagator variants where derived propagators are perfect in that they inherit es-
sential properties such as correctness and domain and bounds consistency. Tech-
niques for systematically deriving propagators are developed, and the abstract
sketches an implementation architecture for views that is independent of the un-
derlying constraint programming system. Evaluation of views implemented in
Gecode shows that derived propagators are efficient and that views often incur no
overhead. Views have proven essential for implementing Gecode, substantially
reducing the amount of code that needs to be written and maintained.

1 Introduction

When implementing a propagator for a constraint, one typically must also decide
whether to implement some of its variants. When implementing a propagator for the
constraint max{x1, . . . ,xn} = y, should one also implement min{x1, . . . ,xn} = y? The
latter can be implemented using the former as max{−x1, . . . ,−xn}=−y. When imple-
menting a propagator for the reified linear equation (∑n

i=1 xi = c)⇔ b, should one also
implement (∑n

i=1 xi �= c)⇔ b? These two constraints only differ by the sign of b, as the
latter is equivalent to (∑n

i=1 xi = c)⇔¬b.
The two straightforward approaches for implementing constraint variants are to ei-

ther implement dedicated propagators for the variants, or to decompose. In the last
example, for instance, the reified constraint could be decomposed into two propagators,
one for (∑n

i=1 xi = c)⇔ b′, and one for b↔¬b′, introducing an additional variable b′.
Implementing the variants inflates code and documentation and is error prone. Given

the potential code explosion, one may be able to only implement some variants (say, min
and max). Other variants important for performance (say, ternary min and max) may be
infeasible due to excessive programming and maintenance effort. Decomposing, on the
other hand, massively increases memory consumption and runtime.

" This is a summary of the paper View-based propagator derivation by Christian Schulte and
Guido Tack, Constraints 18(1), 75–107 (2013).

B. O’Sullivan (Ed.): CP 2014, LNCS 8656, pp. 938–942, 2014.
c© Springer International Publishing Switzerland 2014

View-Based Propagator Derivation 939

Our paper View-based Propagator Derivation [9] presents a third approach, introduc-
ing views to derive propagators, which combines the efficiency of dedicated propagator
implementations with the simplicity and effortlessness of decomposition. Some prelim-
inary results from this paper were presented as a poster at CP 2008 [8] which contains
a formal model of views and derived propagators, which was used to prove that derived
propagators inherit properties such as correctness and propagation strength.

This extended abstract focuses on the majority of the material in the journal paper
that has not been presented at a conference. In particular, it describes techniques for sys-
tematically deriving propagators such as transformation, generalization, specialization,
and type conversion; it presents an implementation architecture for views based on para-
metric polymorphism; and it summarizes the experimental evaluation that shows that
derived propagators are efficient and that views often incur no runtime overhead.

2 Deriving Propagators Using Views

We call the basic building block for propagator derivation a view. A view can be re-
garded as a restricted form of a bi-directional indexical [2,10], or an expression such
as those supported by IBM ILOG CP Optimizer [4], where the restrictions have been
chosen carefully such that the resulting derived propagator satisfies important proper-
ties concerning correctness and effectiveness, and such that the implementation does
not incur any overhead.

Consider a propagator for the constraint max(x,y) = z. Given three additional propa-
gators for x′ =−x, y′=−y, and z′=−z, we could propagate the constraint min(x′,y′) =
z′ using the propagator for max(x,y) = z. Instead of these three additional propagators,
we will derive a propagator for max from the propagator for min using views that per-
form the simple negation transformations.

Views transform input and output of a propagator. For example, a minus view on a
variable x transforms the variable domain of x by negating each element. When a prop-
agator reads the domain of the minus view, the view returns this transformed domain
of x. When the propagator updates the domain (e.g. changing a bound or removing a
value), the view performs the inverse transformation before updating the domain of x.
With views, the implementation of the maximum propagator can be reused: a propa-
gator for the minimum constraint can be derived from a propagator for the maximum
constraint and a minus view for each variable.

3 Propagator Derivation Techniques

This section introduces systematic techniques for deriving propagators using views. The
techniques capture the transformation, generalization, specialization, and type conver-
sion of propagators. Each technique is illustrated with an example.

Transformation. A transformation view performs a simple operation such as a negation
or inversion of a variable domain. The most basic examples are negation views for
Boolean variables, which correspond to literals in SAT solvers. From disjunction x∨
y = z one can then derive conjunction x∧ y = z with negation views on x, y, z, and

940 C. Schulte and G. Tack

implication x→ y = z with a negation view on x. From equivalence x↔ y = z one can
derive exclusive or x⊕ y = z with a negation view on z.

Scheduling propagators. Many propagation algorithms for constraint-based schedul-
ing [1] are based on tasks t characterized by start time, processing time, and end time.
These algorithms are typically expressed in terms of earliest start time (est(t)), latest
start time (lst(t)), earliest completion time (ect(t)), and latest completion time (lct(t)).

Another particular aspect of scheduling algorithms is that they are often required in
two dual variants. Let us consider not-first/not-last propagation as an example. Assume
a set of tasks T and a task t �∈ T to be scheduled on the same resource. Then t cannot
be scheduled before the tasks in T , if ect(t) > lst(T) (where lst(T) is a conservative
estimate of the latest start time of all tasks in T) and hence est(t) can be adjusted. The
dual variant is that t is not-last: if ect(T)> lst(t) then lct(t) can be adjusted. Running the
dual variant of a scheduling algorithm on tasks t ∈ T is the same as running the original
algorithm on the dual tasks t ′ ∈ T ′, which are simply mirrored at the 0-origin of the
time scale: est(t ′) =− lct(t), ect(t ′) =− lst(t), lst(t ′) = −ect(t), and lct(t ′) =−est(t).
The dual variant of a scheduling propagator can be automatically derived using a minus
view that transforms the time values. In our example, only a propagator for not-first
needs to be implemented and the propagator for not-last can be derived (or vice versa).

Generalization. Common views for integer variables capture linear transformations of
the integer values: an offset view for a variable x and a constant offset o behaves like
x+ o, while a scale view for a ∈ Z on x behaves like a× x.

Offset and scale views are useful for generalizing propagators. Generalization has
two key advantages: simplicity and efficiency. A more specialized propagator is often
simpler to implement (and simpler to implement correctly) than a generalized version.
The specialized version can save memory and runtime during execution.

We can devise an efficient propagation algorithm for the common case of a linear
equality constraint with unit coefficients ∑n

i=1 xi = c. The more general case ∑n
i=1 aixi =

c can be derived by using scale views for ai on xi.

Specialization. We employ constant views to specialize propagators. A constant view
behaves like an assigned variable. In practice, specialization has two advantages. Fewer
variables require less memory. And specialized propagators can be compiled to more
efficient code (constants are known at compile time). Few examples for specialization
are: a propagator for binary linear inequality x+y≤ c derived from a propagator for x+
y+ z≤ c by using a constant 0 for z; propagators for the counting constraints |{i | xi =
c}| = z and |{i | xi = y}| = c from a propagator for |{i | xi = y}| = z; a propagator for
set disjointness from a propagator for x∩ y = z and a constant empty set for z.

Type conversion. A type conversion view lets propagators for one type of variable
work with a different type, by translating the underlying representation. For example,
Boolean variables are essentially integer variables restricted to the values {0,1}. CP
systems may choose a more efficient implementation for Boolean variables and hence
the types for integer and Boolean variables differ. By wrapping an efficient Boolean
variable in an integer view, all integer propagators can be directly reused.

View-Based Propagator Derivation 941

4 Implementation

The implementation architecture for views and derived propagators is based on making
propagators parametric. Deriving a propagator then means instantiating a parametric
propagator with views. The architecture is an orthogonal layer of abstraction on top of
any solver implementation.

In an object-oriented implementation of this model, a propagator is an object with
a propagate method that accesses and modifies a domain through the methods of
variable objects. Such an object-oriented model is used for example by ILOG Solver [7]
and Choco [5], and is the basis of most of the current propagation-based constraint
solvers.

In order to derive a propagator using view objects, we use parametricity, a mech-
anism provided by the implementation language that supports the instantiation of the
same code (the propagator) with different parameters (the views). In C++, for example,
a propagator is based on C++ templates, it is parametric over the types of the views
it uses and can be instantiated with any view that provides the necessary operations.
This type of parametricity is called parametric polymorphism, and is available in other
programming languages for example in the form of Java generics [3] or Standard ML
functors [6].

In Gecode (version 3.7.2), views are used to derive 616 propagators from 154 propa-
gator implementations. On average, every propagator implementation therefore results
in four derived propagators. Propagator implementations in Gecode account for almost
40000 lines of code and 21000 lines of documentation. As a rough estimate, deriving
propagators using views thus saves around 120000 lines of code and 60000 lines docu-
mentation to be written, tested, and maintained. Views make up less than 8000 lines of
code, yielding a 1500% return on investment.

5 Experimental Evaluation

This section is a summary of our experimental evaluation of views in Gecode (version
3.7.2).

Our experiments showed that generalization and specialization can be implemented
without any performance overhead compared to handwritten propagators. Transforma-
tion views on Boolean and integer variables (negation) showed negligible overhead. For
set constraints, the basic view operations cannot be fully optimized by the compiler, re-
sulting in an overhead of 32% (geometric mean) across a number of experiments. We
also evaluated a decomposition of a constraint compared to a propagator derived using
views. The geometric mean of the runtime overhead in this case was 175%, with some
examples running almost four times slower. Finally, we evaluated the effect of using
parametric polymorphism in C++, comparing it to virtual function calls, which we found
to be 28% slower in the geometric mean.

The experiments show that deriving propagators using C++ templates yields competi-
tive (in many cases optimal) performance compared to dedicated handwritten propaga-
tors. The results also clarify that deriving propagators is vastly superior to decomposing
the constraints into additional variables and simple propagators.

942 C. Schulte and G. Tack

Acknowledgements. Christian Schulte has been partially funded by the Swedish Re-
search Council (VR) under grant 621-2004-4953. NICTA is funded by the Australian
Government through the Department of Communications and the Australian Research
Council through the ICT Centre of Excellence Program.

References

1. Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-based Scheduling. International Series in
Operations Research & Management Science. Kluwer Academic Publishers (2001)

2. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint solver.
In: Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 191–206. Springer,
Heidelberg (1997)

3. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification, 3rd edn.
Addison-Wesley Professional (2005)

4. IBM Corporation: IBM ILOG CP Optimizer V2.3 User’s Manual (2009)
5. Laburthe, F.: Choco: Implementing a CP kernel. In: Beldiceanu, N., Harvey, W., Henz, M.,

Laburthe, F., Monfroy, E., Müller, T., Perron, L., Schulte, C. (eds.) Proceedings of TRICS:
Techniques foR Implementing Constraint Programming Systems, a Post-Conference Work-
shop of CP 2000, pp. 71–85 (2000)

6. Milner, R., Tofte, M., MacQueen, D.: The Definition of Standard ML. MIT Press, Cambridge
(1997)

7. Puget, J.F.: A C++ implementation of CLP. In: Proceedings of the Second Singapore Interna-
tional Conference on Intelligent Systems (SPICIS), Singapore, pp. B256–B261 (November
1994)

8. Schulte, C., Tack, G.: Perfect derived propagators. In: Stuckey, P.J. (ed.) CP 2008. LNCS,
vol. 5202, pp. 571–575. Springer, Heidelberg (2008)

9. Schulte, C., Tack, G.: View-based propagator derivation. Constraints 18(1), 75–107 (2013),
http://dx.doi.org/10.1007/s10601-012-9133-z

10. Van Hentenryck, P., Saraswat, V.A., Deville, Y.: Design, implementation, and evaluation of
the constraint language cc(FD). Journal of Logic Programming 37(1-3), 293–316 (1998)

http://dx.doi.org/10.1007/s10601-012-9133-z

Author Index

Ab́ıo, Ignasi 75
Abramé, André 92
Akgün, Özgür 590
Amadini, Roberto 108
Audemard, Gilles 125

Barahona, Pedro 913
Barber, Federico 923
Bartolini, Andrea 765
Beck, J. Christopher 424
Beldiceanu, Nicolas 142
Bergman, David 903
Berkholz, Christoph 158
Bessiere, Christian 174, 688, 755
Blet, Löıc 190
Bofill, Miquel 207, 781, 908
Borghesi, Andrea 765
Briand, Lionel 813
Bridi, Thomas 765
Brown, Kenneth N. 721, 738
Busquets, Dı́dac 908

Carbonnel, Clément 224
Carlsson, Mats 142
Carvalho, Elsa 913
Chabert, Gilles 672
Choueiry, Berthe Y. 688, 755
Chu, Geoffrey 240
Ciré, Andre A. 903, 918
Climent, Laura 923
Cooper, Martin C. 9, 224, 256, 928
Cruz, Jorge 913

Darwiche, Adnan 42
Dechter, Rina 481, 933
de Givry, Simon 797
de Haan, Ronald 272
Delorme, Louis 862
Derrien, Alban 289, 298
De Smedt, Vivian 831
Deville, Yves 382
Di Alesio, Stefano 813
Dodaro, Carmine 564

Egly, Uwe 514
El Mouelhi, Achref 9
Espasa, Joan 781

Fioretto, Ferdinando 307
Flener, Pierre 142
Fontaine, Daniel 324
Fox, Maria 1
Francis, Kathryn 340
Francisco Rodŕıguez, Maŕıa Andréına

142

Garcia, Marc 781
Gay, Steven 831
Gent, Ian P. 356, 590
Goldsztejn, Alexandre 672
Gomes, Carla P. 440
Goncalves, Gilles 125
Gotlieb, Arnaud 25, 813
Grandi, Umberto 366

Habet, Djamal 92
Hebrard, Emmanuel 174, 224
Hemani, Ahmed 846
Hooker, John N. 903
Houndji, Vinasétan Ratheil 382
Hussain, Bilal Syed 356

Ishii, Daisuke 398

Jefferson, Christopher 356, 590
Jégou, Philippe 407
Joshi, Saurabh 531

Kanj, Iyad 272
Katsirelos, George 174
Kiziltan, Zeynep 174
Kotthoff, Lars 356
Ku, Wen-Yang 424

Lallouet, Arnaud 58
Larrosa, Javier 646
Le, Tiep 307
Le Bras, Ronan 440
Lecoutre, Christophe 125
L’Ecuyer, Pierre 862
Lee, Jasper C.H. 449

944 Author Index

Lee, Jimmy H.M. 449, 465, 797
Lelis, Levi H.S. 481
Lesire, Charles 870
Leung, Ka Lun 797
Li, Shuo 846
Likitvivatanavong, Chavalit

497
Lombardi, Michele 765
Lonsing, Florian 514
Luo, Hang 366
Lynce, Inês 531

Malapert, Arnaud 622
Manquinho, Vasco 531
Maris, Frédéric 928
Marques-Silva, Joao 564
Martins, Ruben 531
Maudet, Nicolas 366
McCreesh, Ciaran 549
Meling, Hein 25
Michel, Laurent 324, 705
Miguel, Ian 356, 590
Milano, Michela 765
Morgado, Antonio 564
Mossige, Morten 25

Ndiaye, Samba Ndojh 190
Nejati, Shiva 813
Nguyen, Thi-Van-Anh 58
Nieuwenhuis, Robert 574
Nightingale, Glenna F. 356
Nightingale, Peter 356, 590

Otten, Lars 481, 933
Oztok, Umut 42

Palah́ı, Miquel 207, 781
Pearson, Justin 142
Pelleau, Marie 862
Perez, Guillaume 606
Petit, Thierry 289, 298
Picard-Cantin, Émilie 174
Pinheiro, Thiago 424
Pontelli, Enrico 307
Porumbel, Daniel 125
Pralet, Cédric 870
Prosser, Patrick 3, 549

Quimper, Claude-Guy 174

Régin, Jean-Charles 606, 622
Régnier, Pierre 928
Rendl, Andrea 636
Rezgui, Mohamed 622
Rollon, Emma 646
Rossi, Francesca 366
Rousseau, Louis-Martin 4, 862

Sabharwal, Ashish 655
Salas, Ignacio 672
Salido, Miguel A. 923
Samulowitz, Horst 655
Samy-Modeliar, Mouny 125
Saraswat, Vijay 6
Schaus, Pierre 382, 831
Schneider, Anthony 688, 755
Schulte, Christian 938
Selman, Bart 440
Shum, Yu Wai 797
Solnon, Christine 190
Son, Tran Cao 307
Stojadinović, Mirko 886
Stuckey, Peter J. 75, 108, 240, 340, 636
Suy, Josep 207, 781
Suzumura, Toyotaro 398
Szeider, Stefan 272

Tack, Guido 636, 938
Terrioux, Cyril 9, 407

Van Hentenryck, Pascal 324, 705
van Hoeve, Willem-Jan 903, 918
Villaret, Mateu 207, 781, 908

Wahbi, Mohamed 721, 738
Wallace, Richard J. 923
Walsh, Toby 174
Wolsey, Laurence 382
Woodward, Robert J. 688, 755

Xia, Wei 497

Yap, Roland H.C. 497
Yeoh, William 307
Yoshizoe, Kazuki 398

Zampelli, Stéphane 298
Zanuttini, Bruno 9
Zegal, Walid 862
Zhu, Zichen 465

	Preface
	Prize-Winning Papers
	Tutorials and Workshops
	Conference Organization
	The Association for Constraint Programming
	Table of Contents
	Invited Talks
	A Modular Architecture for Hybrid Planning with Theories
	References

	Teaching Constraint Programming
	One Problem, Two Structures, Six Solvers,and Ten Years of Personnel Scheduling
	References

	Concurrent Constraint Programming Research Programmes – Redux
	References

	Best Technical Track Paper
	On Broken Triangles
	1 Introduction
	2 Value Merging in Binary CSP Based on the BTP
	3 Experimental Trials
	4 Generalising BTP-Merging to Constraints of Arbitrary Arity
	5 A Tractable Class of General-Arity CSP
	5.1 Directional General-Arity BTP
	5.2 Merging
	5.3 Tractability of DGABTP for a Known Variable Ordering
	5.4 Finding a DGABTP Variable Ordering Is NP-Hard

	6 Conclusion
	References

	Best Application Track Paper
	Using CP in Automatic Test Generationfor ABB Robotics’ Paint Control System
	1 Introduction
	2 Robotized Painting
	2.1 Example of Robotized Painting

	3 Testing the IPS
	3.1 Continuous Integration
	3.2 Testing in a CI Environment

	4 CP Model of the IPS
	4.1 Decision Variables and Domains
	4.2 Test Scenarios
	4.3 Avoiding Trivial and Enforcing Diversity
	4.4 Search and Optimization
	4.5 Search Heuristics

	5 Implementation and Exploitation
	5.1 Selection of CP and the CP Solver
	5.2 Overall Implementation
	5.3 Execution of the Model
	5.4 Using the Flexibility of CP
	5.5 Performance of Model

	6 Lessons Learned and Conclusions
	6.2 Actual Defects Found with the CP Model
	6.3 Return on Investment with the Use of CP
	6.4 Further Work

	References

	Best Student Paper
	On Compiling CNF into Decision-DNNF
	1 Introduction
	2 Technical Preliminaries
	3 Compiling CNFs into Decision-DNNFs
	3.1 Decision-DNNF
	3.2 Decision Vtrees
	3.3 A Compilation Algorithm
	3.4 Decision-Width
	3.5 Relationship to Treewidth

	4 Decision-DNNFs and Model Counters
	5 From Decision-DNNF to SDD
	6 Related Work
	7 Conclusion
	References

	Runner-Up Best Student Paper
	A Complete Solver for Constraint Games
	1 Introduction
	2 Constraint Games
	3 Modeling with Constraint Games
	4 Pruning Techniques
	5 An Algorithm for Nash Equilibrium Enumeration
	6 Experiments
	7 Conclusion
	References

	Technical Track
	Encoding Linear Constraints into SAT
	1 Introduction
	2 Preliminaries
	2.1 SAT Solving
	2.2 LCG and LD Solvers
	2.3 Order and Logarithmic Encoding
	2.4 Multi Decision Diagrams

	3 Linear Integer Constraints
	4 Construction of the MDD
	5 Encoding MDDs into CNF
	6 Optimization Problems
	7 Improvements
	7.1 Grouping Identical Coefficients
	7.2 Removing Subsumed Clauses
	7.3 Solution Phase Saving
	7.4 Lazy Decomposition

	8 Related Work and Extensions
	9 Experimental Results
	9.1 Multiple Knapsack
	9.2 RCPSP
	9.3 Graph Coloring
	9.4 Sport Leagues Scheduling

	10 Conclusion
	References

	Efficient Application of Max-SAT Resolutionon Inconsistent Subsets
	1 Introduction
	2 Formalism and Definitions
	3 Max-SAT Resolution
	4 Transforming Inconsistent Subsets
	5 Improved Transformation of Inconsistent Subsets
	6 Experimental Study
	7 Conclusion
	References

	Sequential Time Splittingand Bounds Communicationfor a Portfolio of Optimization Solvers
	1 Introduction and Related Work
	2 Solving Behaviour and Timesplit Solvers
	3 Splitting Selection and Evaluation
	3.1 Evaluation Metrics
	3.2 TimeSplit Algorithm
	3.3 TimeSplit Evaluation

	4 Timesplit Portfolio Solvers
	4.1 Static Splitting
	4.2 Dynamic Splitting

	5 Empirical Evaluation
	5.1 Test Results

	6 Conclusions and Future Work
	References

	Scoring-Based Neighborhood Dominance for the Subgraph Isomorphism Problem
	1 Introduction
	2 CP for the Subgraph Isomorphism Problem
	2.1 Technical Background
	2.2 Isomorphism Model and Filtering Procedures

	3 Scoring-Based Neighborhood Dominance
	3.1 Principle and Correctness
	3.2 Filtering SND Constraints
	3.3 Simplifying the Target Graph

	4 Theoretical Filtering Comparisons
	5 A Weak SND Algorithm
	6 Experimental Results
	7 Conclusion
	References

	Linking Prefixes and Suffixes for ConstraintsEncoded Using Automata with Accumulators
	1 Introduction
	2 Background: Automata with Accumulators
	3 Reverse Constraints and Glue Constraints
	3.1 The Reverse of a Constraint
	3.2 Glue Constraints
	3.3 Deriving the Glue Constraint

	4 Implied Constraints on Prefixes and Suffixes
	5 Experiments
	6 Constant-Time Move Probing in Local Search
	7 Conclusion
	References

	The Propagation Depth of Local Consistency
	1 Introduction
	2 Preliminaries
	2.1 CSP-Refutations
	2.2 Results and Related Work
	2.3 The Existential Pebble Game

	3 The Construction
	3.1 Overview of the Construction
	3.2 The Gadgets
	3.3 Proof of Theorem 1

	4 Conclusion
	References

	The Balance Constraint Family
	1 Introduction
	2 Background
	3 The Balance Constraint Family
	4 Decompositions
	4.1 Constraints Implied by ALLBALANCE
	4.2 Special Cases of ALLBALANCE

	5 A Filtering Algorithm for ATMOSTALLBALANCE
	5.1 Finding a Support
	5.2 Filtering the Domains

	6 Related Work
	7 Experimental Results
	7.1 Balanced Academic Curriculum Problem (BACP)
	7.2 Shift Scheduling

	8 Conclusions
	References

	Experimental Comparison of BTD and Intelligent Backtracking: Towards an Automatic Per-instance Algorithm Selector
	1 Introduction
	2 Generic Framework for Binary CSPs
	3 Experimental Comparison
	4 Per-instance Algorithm Selector
	4.1 Basic Framework of the Selector
	4.2 Selection of a Subset of Solvers

	5 Experimental Evaluation
	6 Conclusion
	References

	Solving Intensional Weighted CSPsby Incremental Optimization with BDDs
	1 Introduction
	2 Preliminaries
	2.1 WCSPs and COPs
	2.2 SMT and Weighted SMT
	2.3 Solving WCSP with (Weighted) SMT

	3 Binary Decision Diagrams
	3.1 SAT Encodings of Pseudo-Boolean Constraints Using BDDs

	4 Solving WCSPs by Incremental Optimization Using Shared ROBDDs
	4.1 Incremental Optimization Algorithm

	5 Benchmarking
	5.1 WSimply Solving Methods Comparison
	5.2 SBDD-Based versus State-of-the-Art CSP and WCSP Solvers
	5.3 SBDD Incrementality

	6 Conclusions and Future Work
	References

	On Backdoors to Tractable ConstraintLanguages
	1 Introduction
	2 Preliminaries
	3 General Hardness
	3.1 Hardness on Bounded Arity CSPs
	3.2 Hardness When the Parameter Is the Size of the Backdoor

	4 Combined Parameters: Helly Classes and Limits
	5 Related Work
	6 Conclusion
	References

	Nested Constraint Programs
	1 Introduction
	2 Preliminaries
	3 Aggregators and Nested Constraint Programs
	4 Solving NCP’s
	4.1 Complexity
	4.2 Learning for NCPs

	5 Experiments
	6 Related Work
	7 Conclusion
	References

	Beyond Consistency and Substitutability
	1 Introduction
	2 Value Elimination
	3 Variable Elimination
	4 Practical Considerations
	5 Recovering All Solutions
	6 Theoretical Discussion
	7 Conclusion
	References

	Subexponential Time Complexity of CSP with Global Constraints
	1 Introduction
	2 Preliminaries
	2.1 CSP
	2.2 Global Constraints
	2.3 Subexponential Time Complexity

	3 The Problem CSP=
	4 The Problems CSP=, CSP≥, and CSP≤
	5 The Problem CSPc
	6 Conclusion
	References

	A New Characterization of Relevant Intervals for Energetic Reasoning
	1 Introduction
	2 Background
	3 The Energetic Reasoning Checker Revisited
	4 Characterization of Intervals for the Propagator
	5 Algorithms and Experiments
	5.1 Checker
	5.2 Propagator
	5.3 Experiments

	6 Discussion and Conclusion
	References

	A Declarative Paradigm for Robust Cumulative Scheduling
	1 Introduction
	2 Robust Cumulative Scheduling
	3 Filtering Technique
	4 Experiments with Side Constraints
	5 Conclusion
	References

	Improving DPOP with Branch Consistency for Solving Distributed Constraint Optimization Problems
	1 Introduction
	2 Background
	2.1 Distributed Constraint Optimization Problems (DCOPs)
	2.2 Distributed Pseudo-Tree Optimization Procedure (DPOP)

	3 Branch-Consistent DPOP (BrC-DPOP)
	3.1 Preliminaries
	3.2 High-Level Algorithm Description
	3.3 Messages and Data Structures
	3.4 Algorithm Description

	4 Theoretical Analysis
	5 Related Work
	6 Experimental Results
	7 Conclusions and Future Work
	References

	Constraint-Based Lagrangian Relaxation
	1 Introduction
	2 Generalized Lagrangian Relaxation
	2.1 Violation and Satisfiability Degrees
	2.2 Generalized Lagrangian Relaxations

	3 Generalized Lagrangian Duals
	4 Generalized Lagrangian Primal Methods
	5 Practical Implementation
	6 Empirical Results
	6.1 Graph Coloring
	6.2 GLR versus SLR
	6.3 Primal Lagrangian Tabu Search

	7 Related Work
	8 Conclusion
	References

	Loop Untangling
	1 Introduction
	2 Motivating Examples
	3 General Loop Untangling Technique
	3.1 Programs as Ordered State Changes and State Queries
	3.2 Flattening
	3.3 Creating Iterations
	3.4 Modelling State Queries
	3.5 Modelling the Execution Path
	3.6 Redefining before
	3.7 Optimisations and Simplifications

	4 Experimental Results
	5 Related and Further Work
	6 Conclusion
	References

	Discriminating Instance Generation for Automated Constraint Model Selection
	1 Introduction and Background
	2 Racing for Automated Model Selection
	3 Methods for Generating Discriminating Instances
	4 Uniform Versus Non-Uniform Sampling
	5 Experimental Results
	6 Conclusions
	References

	Aggregating CP-nets with Unfeasible Outcomes
	1 Introduction
	2 Background
	2.1 CP-nets
	2.2 Constraints
	2.3 Constrained CP-nets
	2.4 Voting Theory
	2.5 Aggregating CP-nets

	3 Consistency in Constrained CP-nets
	3.1 Consistency Notions
	3.2 Checking the Consistency Notions
	3.3 Achieving Top and Local Consistency in Constrained CP-nets

	4 Constrained Profiles
	5 Aggregating Preferences in Constrained Profiles
	5.1 Top, Local, and Dependency Consistency
	5.2 Aggregation in Non-consistent Profiles
	5.3 Properties of CLA

	6 Conclusions
	References

	The StockingCost Constraint
	1 Introduction
	2 The StockingCost Constraint
	3 Pruning the Cost Variable
	4 Pruning the Item Variable
	5 A Complete Filtering Algorithm in O(n)
	6 Experimental Results
	7 Conclusion
	References

	Scalable Parallel Numerical CSP Solver
	1 Introduction
	2 Numerical Constraint Satisfaction Problems
	3 Parallel Branch and Prune
	4 Experimental Results
	4.1 Discussions

	5 Conclusions
	References

	Tree-Decompositions with Connected Clusters for Solving Constraint Networks
	1 Introduction
	2 Solving CSPs Using Graph Decomposition
	3 Disconnected Clusters and Their Impact on the Efficiency of Decomposition Methods
	4 A New Parameter for Graph Decomposition of CSPS
	4.1 Bag-Connected Tree-Decomposition
	4.2 Computing a Bag-Connected Tree-Decomposition

	5 Experiments
	5.1 Instances for Which Min-Fill Produces Some Disconnected Clusters
	5.2 Instances for Which Min-Fill Produces a Bag-Connected Tree-Decomposition
	5.3 Comparisons of the Structural Parameters

	6 Conclusion
	References

	CIP and MIQP Models for the Load BalancingNurse-to-Patient Assignment Problem
	1 Introduction
	2 Background
	3 Mathematical Models
	3.1 The CP Model
	3.2 The MIQP Model
	3.3 The CIP Model

	4 Global Constraints
	4.1 The Quadratic Constraint
	4.2 The Global Cardinality Constraint
	4.3 The Spread Constraint

	5 Branching Heuristics
	6 Computational Results
	6.1 Experimental Setup
	6.2 Test Sets
	6.3 Results

	7 Discussion
	8 Conclusions
	References

	On the Erd˝os Discrepancy Problem
	References

	Towards Practical Infinite Stream ConstraintProgramming: Applications and Implementation
	1 Introduction
	2 Background
	2.1 Infinite Strings and Stream Constraint Satisfaction Problems
	2.2 The Stream Constraint Language
	2.3 Normalising Constraints
	2.4 Search Trees
	2.5 Solving St-CSPs

	3 Application on Real-Time PID Control
	4 Improved Handling of the first Operator
	4.1 Constraint Normalisation
	4.2 Search Algorithm

	5 Benefitting from the New Implementation
	5.1 Symmetry Breaking
	5.2 Sequential Planning

	6 Experimental Results
	6.1 Juggling Patterns
	6.2 Document Circulation Planning Problem

	7 Concluding Remarks
	References

	An Increasing-Nogoods Global Constraint for Symmetry Breaking During Search
	1 Introduction
	2 Background
	3 A Global Constraint for Increasing Nogoods
	4 Deriving incNGs(I,E,N)(X) from SBDS and Its Variants
	4.1 Light ReSBDS
	4.2 Deriving incNGs(I,E,N)(X)

	5 A Filtering Algorithm
	6 Incremental Filtering Algorithm
	7 Experiments
	7.1 N-Queens
	7.2 Graceful Graph
	7.3 Balanced Incomplete Block Design
	7.4 Cover Array Problem (CA)

	8 Conclusion and Future Work
	References

	Memory-Efficient Tree Size Prediction for Depth-First Search in Graphical Models
	1 Introduction
	2 Background
	2.1 The Knuth-Chen Method
	2.2 Two-Step Stratified Sampling (TSS)
	2.3 Graphical Models

	3 Retentive Stratified Sampling
	3.1 Asymptotically Perfect Predictions
	3.2 Time and Space Complexity of Retentive Stratified Sampling

	4 Experiments
	4.1 Empirical Methodology
	4.2 Select Individual Results
	4.3 Comparison with TSS
	4.4 Comparison with WBE

	5 Related and Future Work
	6 Conclusion
	References

	Higher-Order Consistencies through GAC on Factor Variables
	1 Introduction
	2 Preliminaries
	3 Reformulation
	3.1 Example

	4 The k-Interleaved Encoding
	5 Enforcing k-Wise Consistency through Reduced Join Tables
	6 Experiments
	7 Conclusion
	References

	Incremental QBF Solving
	1 Introduction
	2 Preliminaries
	3 Search-Based QBF Solving
	4 Incremental Search-Based QBF Solving
	4.1 Clause Learning
	4.2 Cube Learning

	5 Implementing an Incremental QBF Solver
	5.1 QBF Solving under Assumptions
	5.2 Stack-Based CNF Representation
	5.3 Handling Clause Deletions
	5.4 Handling Clause Additions
	5.5 Incremental QBF Solver API

	6 Experimental Results
	7 Conclusion
	References

	Incremental Cardinality Constraints for MaxSAT
	1 Introduction
	2 Preliminaries
	2.1 MaxSAT Algorithms
	2.2 Totalizer Encoding

	3 Incremental Approaches
	3.1 Incremental Blocking
	3.2 Incremental Weakening
	3.3 Iterative Encoding

	4 Related Work
	5 Experimental Results
	6 Conclusions and Future Work
	References

	Reducing the Branching in a Branch and BoundAlgorithm for the Maximum Clique Problem
	1 Introduction
	2 Algorithms for the Maximum Clique Problem
	2.1 Are Colour Classes Roughly Sorted by Size?
	2.2 Reordering Colour Classes to Reduce the Branching Factor
	2.3 Tie-Breaking
	2.4 Compatibility with Other Improvements

	3 Experimental Results
	3.1 Random Graphs
	3.2 Standard Benchmark Problems

	4 Conclusion
	References

	Core-Guided MaxSAT with Soft Cardinality Constraints
	1 Introduction
	2 Preliminaries
	3 The OLL Algorithm
	4 Experimental Results
	5 Conclusions
	References

	The IntSat Method for Integer Linear Programming
	1 Introduction
	2 The Basic IntSat Procedure
	3 Implementation
	4 Further Work
	5 Experiments
	5.1 MIPLIB Instances
	5.2 Optimizing the MIPLIB Instances

	6 Related Work and Conclusions
	References

	Automatically Improving Constraint Models in Savile Row through Associative-Commutative Common Subexpression Elimination
	1 Introduction
	2 Related Work
	2.1 Flattening and CSE
	2.2 Normalisation and Active CSE
	2.3 Associative-Commutative CSE

	3 The X-CSE Algorithm
	3.1 Heuristics
	3.2 Complexity Analysis
	3.3 Comparison with I-CSE(-NC)

	4 Preprocessing and Reformulation
	5 Case Studies
	5.1 Case Study 1: BIBD
	5.2 Case Study 2: The SONET Problem
	5.3 Case Study 3: Killer Sudoku
	5.4 Case Study 4: Molnar’s Problem
	5.5 I-CSE and I-CSE-NC
	5.6 Other Problems

	6 Future Work
	7 Conclusions
	References

	Improving GAC-4 for Table and MDD Constraints
	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 GAC-4
	2.3 Sparse Set
	2.4 Multi-valued Decision Diagram

	3 GAC-4R
	4 MDD-4R
	4.1 MDD Reformulation
	4.2 MDD-4 Algorithm
	4.3 MDD-4R

	5 Related Work
	6 Experiments
	6.1 General Comparison

	7 Conclusion
	References

	Improvement of the Embarrassingly Parallel Search for Data Centers
	1 Introduction
	2 Preliminaries
	2.1 Work Stealing
	2.2 EPS
	2.3 Definitions

	3 Decomposition Algorithms
	3.1 Sequential Decomposition
	3.2 A Naive Parallel Decomposition

	4 The New Parallel Decomposition
	5 Experiments
	5.1 Sensitivity Analysis
	5.2 Comparison with Work Stealing

	6 Conclusion
	References

	Stochastic MiniZinc
	1 Introduction
	2 Background
	3 Stochastic MINIZINC
	3.1 Stochastic Annotations in MINIZINC
	3.2 An Example: The Stochastic Vehicle Routing Problem

	4 Transformations
	4.1 The Scenario-Based Deterministic Equivalent
	4.2 Policy-Based Search
	4.3 Progressive Hedging

	5 Related Work
	6 Conclusions
	References

	Decomposing Utility Functions in Bounded Max-Sum for Distributed Constraint Optimization
	References

	Insights into Parallelismwith Intensive Knowledge Sharing
	1 Introduction
	2 Generalizing Static Search Space Splitting
	2.1 Generalized Splitting Using Universal Hashing
	2.2 Implementing XOR-Based Splitting with Knowledge Sharing
	2.3 Limits of Static Splitting

	3 Implicit Splitting through Intensive Knowledge Sharing
	4 The Communication-Utilization Tradeoff
	4.1 Time Profile of SAT Solvers
	4.2 Communication Cost vs. Node Utilization

	5 Concluding Remarks
	References

	The Non-overlapping Constraint betweenObjects Described by Non-linear Inequalities
	1 Introduction
	1.1 Object Definition
	1.2 The Non-overlapping Constraint
	1.3 Intervals, Boxes and Paving
	1.4 Contribution and Related Works

	2 Overlapping as a Minkowski Sum
	3 Algorithm
	3.1 Inner Contractor
	3.2 Outer Contractor

	4 Experimental Results
	5 Conclusion
	References

	Improving Relational Consistency AlgorithmsUsing Dynamic Relation Partitioning
	1 Introduction
	2 Background
	3 Relation Partitioning
	4 Generating and Storing Partition Blocks
	4.1 Data Structures
	4.2 Fine Blocks
	4.3 Coarse Blocks

	5 Consistency Algorithm: From PerTuple to PerFB
	5.1 PerFB
	5.2 FB-SearchSupport

	6 Empirical Evaluations
	7 Conclusion and Future Work
	References

	Domain Views for Constraint Programming
	1 Introduction
	2 Preliminaries
	3 Views
	4 Variable Views
	5 Domain Views
	6 Non-injective Views
	7 Monotone and Anti-Monotone Views
	8 Idempotence and Views
	9 Empirical Evaluation
	10 Related Work
	11 Conclusion
	References

	Global Constraints in Distributed CSP: Concurrent GAC and Explanations in ABT
	1 Introduction
	2 Background and Related Work
	2.1 Centralised CSPs and Global Constraints
	2.2 Distributed CSPs
	2.3 Global Constraints in Distributed CSPs

	3 Maintaining GAC in ABT
	3.1 Evaluation of Explained Global Constraints in ABT

	4 Maintaining GAC Concurrently Using a Full Representation of Global Constraints
	4.1 Theoretical Analysis

	5 Experimental Results
	5.1 Uniform Binary Random DisCSPs with Global Constraints
	5.2 Quasi-Groups with Holes
	5.3 Distributed Meeting Scheduling Problem

	6 Conclusion
	References

	The Impact of Wireless Communication on Distributed Constraint Satisfaction
	1 Introduction
	2 Background
	3 Network Communication Simulator Framework (NeCoS)
	4 Experiments
	4.1 Communication Chain Trees

	5 Conclusion
	References

	Adaptive Parameterized Consistencyfor Non-binary CSPs by Counting Supports
	1 Introduction
	2 Background
	2.1 Constraint Satisfaction Problem
	2.2 Local Consistency Properties
	2.3 Adaptive Parameterized Consistency

	3 Modifying apc-LC for Non-binary CSPs
	3.1 p-Stability for GAC
	3.2 Computing p-Stability for GAC
	3.3 Algorithm for Enforcing apc-LC

	4 Empirical Evaluations
	5 Conclusions
	References

	Application Track
	Proactive Workload Dispatchingon the EURORA Supercomputer
	1 Introduction
	2 System Description and Motivations for Using CP
	3 Design of a CP Approach
	3.1 Formal Problem Definition
	3.2 CP Model

	4 Added Value of CP
	4.1 Evaluation of Our Models
	4.2 Comparison with PBS

	5 Conclusions
	References

	Scheduling B2B Meetings
	1 Introduction
	2 The B2B Problem
	3 Models
	3.1 A WCSP Model for the B2BSOP
	3.2 A PB Model for the B2BSOP

	4 Experiments and Comparisons with Manually Generated Solutions
	5 Conclusion
	References

	Solving a Judge Assignment ProblemUsing Conjunctions of Global Cost Functions
	1 Introduction
	2 Problem Description
	3 Current Practice versus Constraint Programming
	4 Domain Analysis
	4.1 Hard Constraints
	4.2 Preferences

	5 Problem Modeling
	5.1 Weighted Constraint Satisfaction and Global Cost Functions
	5.2 Problem Formulation
	5.3 Conjoining Cost Functions

	6 Experiments
	7 Discussion
	8 Conclusion
	References

	Worst-Case Scheduling of Software Tasks
	1 Introduction: Performance Testing in Safety-Critical Systems
	2 The Fire and Gas Monitoring System
	3 Related Work
	4 Supporting Performance Testing: A New Application of COPs
	4.1 Constants
	4.2 Variables
	4.3 Constraints
	4.4 Objective Functions
	4.5 Search Heuristic

	5 Industrial Experience
	6 Conclusions and Future Work
	References

	Continuous Casting Schedulingwith Constraint Programming
	1 Introduction
	2 Description of the Problem
	3 Using CP for Caster Scheduling
	3.1 Two Sources of Difficulty
	3.2 Alternative/Existing Approaches

	4 Modeling Using CP
	4.1 Model Overview
	4.2 CP Model

	5 Experiments
	6 Conclusion and Future Work
	References

	Case Study: Constraint Programmingin a System Level Synthesis Framework
	1 System Level Architectural Synthesis (SYLVA)
	1.1 SDF to HSDF Conversion
	1.2 Design Space Exploration (DSE)
	1.3 Other Steps

	2 Why Choose Constraint Programming
	2.1 Low Modeling Complexity
	2.2 Suitable for Scheduling Problem
	2.3 Easy to be Integrated

	3 Constraint Satisfaction Optimization Problem Model
	3.1 P1, SDF to HSDF Conversion
	3.2 P2, Design Space Exploration
	3.3 Solving CSOPs

	4 Conclusion and Future Work
	4.1 Development Cost
	4.2 Usage Difficulty
	4.3 Conclusion
	4.4 Future Work

	References

	Scheduling Agents Using Forecast Call Arrivalsat Hydro-Qu´ebec’s Call Centers
	1 Introduction
	2 Problem Description
	2.1 Problem Characteristics
	2.2 HQ’s Solution

	3 Constraint Programming Formulation
	3.1 Proposed Solutions to Address the Limitations
	3.2 Model
	3.3 Implementation

	4 Conclusion
	References

	Deployment of Mobile Wireless Sensor Networks for Crisis Management:A Constraint-Based Local Search Approach
	1 Problem Description
	2 Related Work
	3 Modeling
	3.1 Constraint-Based Local Search (CBLS)
	3.2 Data of the Mobile Sensor and Relay Deployment Problem
	3.3 Decision Variables
	3.4 Invariants, Constraints, and Criterion

	4 Local Search Algorithm
	4.1 Constructive Phase
	4.2 Local Search Phase
	4.3 Building Communication Paths

	5 Experiments
	6 Conclusion
	References

	Air Traffic Controller Shift Schedulingby Reduction to CSP,SAT and SAT-Related Problems
	1 Introduction
	2 Problem Description
	3 Encodings of the Problem
	3.1 The First Encoding
	3.2 The Second Encoding
	3.3 The Third Encoding
	3.4 Search for Optimum

	4 Experimental Evaluation
	4.1 Solving Methods and Preliminary Experiments
	4.2 Experimental Results

	5 Real World Applications
	6 Conclusions and Further Work
	References

	Journal Presentation Track
	Optimization Bounds from Binary DecisionDiagrams
	1 Introduction
	2 Exact and Relaxed BDDs
	3 BDD Compilation
	4 Computational Results
	5 Conclusion
	References

	Reformulation Based MaxSAT Robustness
	1 Introduction
	2 Weighted MaxSAT Robustness
	3 Conclusion
	References

	Probabilistic Constraintsfor Nonlinear Inverse Problems
	References

	Multivalued Decision Diagramsfor Sequencing Problems
	1 Introduction
	2 Problem Definition
	3 MDD Representation
	4 Filtering and Refinement
	5 Constraint-Based Scheduling with MDD Propagation
	References

	Robustness and Stability in Constraint Programming under Dynamism and Uncertainty
	1 Introduction
	2 Extending Robustness and Stability Concepts
	3 Searching for Robust and Stable Solutions
	4 Experimental Results
	5 Conclusions
	References

	Monotone Temporal Planning: Tractability, Extensions and Applications
	1 Temporal Planning
	2 Monotonicity and Establisher-Uniqueness Imply Tractability
	3 Temporal Relaxation
	References

	Anytime AND/OR Depth-First Search for Combinatorial Optimization
	1 Introduction
	2 Brief Overview of Results
	2.1 Breadth-Rotating AND/OR Branch and Bound (BRAOBB)

	References

	View-Based Propagator Derivation
	1 Introduction
	2 Deriving Propagators Using Views
	3 Propagator Derivation Techniques
	4 Implementation
	5 Experimental Evaluation
	References

	Author Index

