Models of Autonomy and Coordination:
Integrating Subjective and Objective
Approaches in Agent Development Frameworks

Stefano Mariani, Andrea Omicini, and Luca Sangiorgi

Abstract. Objective and subjective approaches to coordination constitute two com-
plementary approaches, which, being both essential in MAS engineering, require to
be suitably integrated. In this paper, we (i) observe that a successful integration de-
pends on the models of autonomy and coordination promoted by agent technologies,
(ii) suggest that ignoring the two models may hinder agent autonomy, (iii) provide
an example of “autonomy-preserving” integration by discussing TUCSON4JADE.

1 Autonomy and Coordination: Issues

Autonomy is a core notion for agents as social entities in a multiagent system
(MAS) [8]. Interdependency between agent activities is the foundation for the need
for coordination [4], which becomes an essential facet of MAS design, as relevant
as individual agent design [5]. Coordinating a society of agents towards the achieve-
ment of a social goal necessarily influences agent course of action, potentially hin-
dering their autonomy—in particular when adopting the objective approach to the
design of MAS coordination [13].

Objective coordination [13] refers to the coordination approaches — typical of
the Software Engineering research field — where coordination-related concerns are
extracted from agents to be embodied within dedicated abstractions —e.g., coordina-
tion artefacts [14] — offering coordination as a service to agents [23]. Coordination
abstractions steer agent societies towards the achievement of social goals by man-
aging dependencies between agent activities, even despite individual agent goals.
On the other hand, subjective coordination [13] represents the dual approach, as it
is typically adopted in the (Distributed) Artificial Intelligence field [10]. There, co-
ordination issues are directly tackled by individual agents themselves, determining

Stefano Mariani - Andrea Omicini - Luca Sangiorgi

ALMA MATER STUDIORUM-Universita di Bologna

via Sacchi 3, 47521 Cesena, FC, Italy

e-mail: {s.mariani,andrea.omicini}@unibo.it,
luca.sangiorgi6@studio.unibo.it

© Springer International Publishing Switzerland 2015 69
D. Camacho et al. (eds.), Intelligent Distributed Computing VIII,
Studies in Computational Intelligence 570, DOI: 10.1007/978-3-319-10422-5 9



70 S. Mariani, A. Omicini, and L. Sangiorgi

their best course of action in the attempt to achieve their own goals—which typically
requires the intelligence to perform practical reasoning. As the result of agent own
deliberation activity, subjective coordination basically expresses agent autonomy.

Thus, objective and subjective coordination clearly constitute two complemen-
tary approaches, both essential in MAS design and development [19], hence requir-
ing to be suitably integrated—as also witnessed by many results already achieved.
In [19], Activity Theory was proposed as the conceptual framework reconciling the
objective and subjective approach, whereas in [16] TUCSoON coordination infras-
tructure [17] and JADE agent development framework [2] were integrated by offer-
ing TUCSON tuple-based coordination as a JADE service. In [20], the CArtAgO
framework [21] was integrated with three different agent platforms — Jason [3],
2APL [6] and simpA [22] — so as to enable and promote artefact-based interaction
of heterogeneous agents.

In this paper, we first observe that the successful integration of objective and
subjective coordination strongly depends on the technology level, that is, on the
abstractions and mechanisms actually promoted by the agent frameworks. In partic-
ular, when building a MAS, integration depends on the model of autonomy promoted
by the specific agent platform, and by its relationship with the model of coordination
implemented by the specific (objective) coordination framework. Then, we show
that any integration effort not taking into account such two aspects is likely to hin-
der agent autonomy by (unintentionally) creating artificial dependencies between
the individual and the social stances on coordination. Finally, we provide an exam-
ple of effective integration of objective and subjective coordination by discussing
TuCSoN4JADE!, where the model of autonomy promoted by the JADE platform
is seamlessly integrated with the model of coordination provided by the TuUCSoN
middleware.

2 Autonomy and Coordination: Models and Technologies

Given the centrality of autonomy in the definition of agents, any agent development
framework is required to provide architectural solutions to enable and support agent
autonomy. Either explicitly or implicitly, such architectures assume what we call a
model of autonomy, that is, a model defining (i) how agents behave as individual
(autonomous) entities, (ii) how they relate to each other as social entities, as well as
(iii) how the two things coexist. In Subsection 2.1 we analyse the model of auton-
omy promoted by two well-known agent development frameworks: JADE [2] and
Jason [3].

In a similar way, the architectural components offering coordination services in
agent infrastructures adhere to a model of coordination, which defines the semantics
of the admissible interactions between agents in a MAS, in particular, w.r.t. their ef-
fects on the agent’s control flow—hence, on agent autonomy. In Subsection 2.2 we

! Available at http: //bitbucket.org/smariani/tucson/downloads


http://bitbucket.org/smariani/tucson/downloads

Models of Autonomy and Coordination in Agent Development Frameworks 71

analyse the model of coordination provided by two well-known agent infrastruc-
tures: TUCSON [17] and CArtAgO [21].

2.1 Autonomy and Coordination in Agent Development
Frameworks

JADE

JADE (Java Agent DEvelopment Framework) [2] is a Java-based framework and
infrastructure to develop open, distributed agent-based applications in compliance
with FIPA standard specifications for interoperable, intelligent, multi-agent systems.
In JADE, autonomy of agents is supported by the behaviour mechanism, whereas
their mutual interaction depends on the Agent Communication Channel (ACC).

A behaviour can be logically interpreted as “an activity to perform with the goal
of accomplishing a task™. Thus, different “courses of actions” of a JADE agent are
encapsulated into distinct behaviours the agent executes simultaneously. Techni-
cally, JADE behaviours are Java objects, which are executed pseudo-concurrently
within a single Java thread by a non-preemptive, round-robin scheduler. During
JADE agent initialisation, behaviours are added to the ready queue, ready to be
scheduled. Then, method action () of the first behaviour — containing the agent’s
“course of action” — is executed. “Behaviours switch” occurs only when such
method returns; hence, meanwhile no other behaviour can start execution—non-
preemptive” scheduler. Behaviour removal from the ready queue occurs only when
the done () method returns true; otherwise, the behaviour is re-scheduled at the
end of the queue—"‘round-robin” scheduler. Notice method action () is executed
from the beginning every time: there is no way to “stop-then-resume” a behaviour.

The ACC is the run-time facility in charge of asynchronous message passing
among agents: each agent has its own mailbox, and is notified upon reception of any
message. JADE agents can communicate via several methods, among which:

receive () |to asynchronously retrieve the first message
blockingReceive () |to perform a synchronous receive

According to the JADE Programmers Guide [1], some care should be taken in us-
ing method blockingReceive (): in fact, it suspends the agent, not only the
calling behaviour. This semantics impacts the aforementioned third dimension of
the model of autonomy: “how the two things coexist”. In fact, resorting to a syn-
chronous communication mechanism hinders autonomy of the caller agent, since
all its other behaviours — not just the caller one — are suspended by the communica-
tion semantics. In order to preserve agents autonomy, the JADE Programmers Guide
suggests adoption of the following programming pattern: call receive () instead,
then call method block () — of the Behaviour class — if no message is found,
so as to let JADE suspend only the calling behaviour. The ubiquity of such pattern



72 S. Mariani, A. Omicini, and L. Sangiorgi

in JADE code factually witnesses the relevance of the issue of understanding and
suitably define the model of autonomy.

Summing up, JADE model of autonomy features (i) behaviours for individual
tasks, (ii) asynchronous messages for subjective coordination, (iii) the “block () -
then-resume” pattern to reconcile individual and social attitudes. Subsection 3.1
shows how any integration effort ignoring this semantics is bound to fail.

Jason

Jason [3] is both an agent language and an agent run-time system. As a language,
it implements a dialect of AgentSpeak [18]; as a run-time system, it provides the
infrastructure needed to execute a MAS. Although Jason is entirely programmed in
Java, it features BDI agents, so a higher-level language (the Jason language) is used
to program Jason agents using BDI abstractions. In Jason, autonomy of agents is
supported by the Jason plan/intention execution machinery and the message passing
facilities.

Like JADE behaviours, a Jason plan can be interpreted as a course of action to
be performed to accomplish a task. Technically, a Jason plan differs considerably
from JADE behaviours: (i) it is scheduled for execution as soon as a triggering event
occurs, (i) it is not directly executed “as is” (in general), but is instantiated as an in-
tention, then executed, (iii) intentions are pseudo-concurrently executed one action
each, according to a round-robin scheduler. Whereas in JADE the behaviour is the
basic execution step, in Jason the same role is played by the single action, not by
the plan/intention. Intentions may be suspended by the Jason reasoner, e.g. because
the agent needs to wait for a message.

Jason agents can in fact exchange beliefs/plans/goals in the form of messages.
Thus, subjective coordination is supported by these message passing facilities. In
Jason, intentions are automatically suspended whenever they perform a “communi-
cation action” which cannot complete—to be resumed as soon as the action obtains
its “completion feedback” (see [3], page 86). This preserves Jason agent autonomy
similarly to behaviours in JADE: namely, by decoupling the control flow of a given
“course of action” from the one of the agent undertaking them.

Summing up, Jason’s model of autonomy features (i) plans/intentions for indi-
vidual tasks, (ii) asynchronous message passing for subjective coordination, (iii)
intention suspension mechanism to reconcile individual and social attitudes.

2.2 Autonomy and Coordination in Agent Infrastructures

TuCSoN

TuCSoN [17] is a Java-based, (logic) tuple-based coordination model and infras-
tructure for open, distributed MAS. It extends the LINDA model [7] by featuring



Models of Autonomy and Coordination in Agent Development Frameworks 73

ReSpecT tuple centres [12] as its coordination artefacts [14], which are distributed
over a network of TUCSON nodes.

The TUCSON architectural component that mostly explains its model of coordi-
nation is the Agent Coordination Context (ACC) [11]. ACCs are assigned to agents
as they enter a TUCSoON-coordinated MAS to map coordination operations into
events, asynchronously dispatching them to the coordination medium. Thus, ACCs
are fundamental to guarantee and preserve agent autonomy: while the agent is free
to choose and undertake its course of actions, its associated ACC takes care of com-
municating “coordination-related” events to TUCSON—and of collecting results.
In particular, ACCs enable separation of the suspensive semantics of a coordination
operation from its invocation semantics. More precisely, the suspensive semantics
implies that the operation itself is suspended if needed. Instead, the synchronous
invocation semantics implies that the agent, too is suspended if the operation gets
suspended.

To do so, every TUCSON operation execution undergoes two steps:

invocation | the request to carry out a given coordination operation is sent to the
TuCSoN tuple centre target of the operation

completion | the response to the coordination operation invoked is sent back to
the requesting agent by the tuple centre

In other terms, any coordination operation in TUCSON is asynchronous by default.
Nevertheless, each of the TUCSON coordination operations can be invoked either
in a synchronous or in an asynchronous fashion—the agents choose.

Summing up, TUCSON coordination paradigm preserves agent autonomy by de-
coupling the suspensive semantics of coordination operations from their invocation
semantics, thanks to the ACC abstraction. In this way, synchronous calls are always
consequences of the agent own deliberation process.

CArtAgo

CArtAgO [21] is a Java-based framework and infrastructure based on the A&A
(agents & artefacts) meta-model [15]. A&A exploits artefacts as the tools that agents
use to achieve their own goals—as humans do with their tools [9]. Artefacts can be
used to uniformly represent any kind of environmental resource within a MAS—
sensors, actuators, databases, etc.

Even though CArtAgO does not focus on coordination, its general-purpose arte-
facts programming model allows coordination artefacts to be designed. Thus, a
model of coordination can be devised, in particular, based on the agent body ab-
straction. By exposing an effectors API and a perception API, CArtAgO agent bod-
ies are the architectural components enabling (and decoupling) agent interactions
with artefacts. By exploiting the effectors API, current agent activity is suspended
until an event reporting the action completion is received: then, the corresponding
activity resumed. Even if one activity is suspended, the agent is not: its working



74 S. Mariani, A. Omicini, and L. Sangiorgi

cycle can continue processing percepts and executing other actions related to other
activities.

Mediation by agent bodies is the mechanism preserving agent autonomy in
CArtAgO by uncoupling action suspension from caller agent suspension.

3  Autonomy-Preserving Integration Approaches

This section tackles the issue of preserving agent autonomy when integrating ob-
jective and subjective coordination at both the conceptual level — according to the
models of autonomy and coordination — and the technological level [16, 20].

In [20], CArtAgO is integrated with three different agent development frame-
works: Jason [3], 2APL [6] and simpA [22]. There, CArtAgO is proposed as
a framework to enable and promote artefact-based interaction of heterogeneous
agents. Nevertheless, authors de facto integrate subjective and objective coordi-
nation: in fact, by allowing Jason, 2APL, and SimpA agents to exploit CArtAgO
artefacts, they make it possible to build & use coordination artefacts, effectively
integrating the message-based (subjective) coordination capabilities of agents with
the artefact-based (objective) ones. The approach taken in [20] is an example of
autonomy-preserving integration: e.g., in the case of Jason-CArtAgO, Jason inten-
tions suspension mechanism is successfully integrated with CArtAgO artefacts by
exploiting CArtAgO agent body abstraction. In particular, whenever a Jason agent
requests execution of an operation on a CArtAgO artefact, the caller intention is
automatically suspended until the “effector feedback™ is received. Thus, nothing
can hinder Jason agent autonomy if they simultaneously operate on artefacts while
exchanging messages with other agents.

In [16], integration between JADE and TUCSON technologies is successfully
achieved, allowing JADE agents to exploit TUCSON coordination services as part
of the JADE platform—however, without preserving autonomy. JADE model of au-
tonomy and TUCSON model of coordination were not considered: in fact, if a coor-
dination operation gets suspended, the caller behaviour is unavoidably suspended,
too, because of its single thread of control being stuck waiting for operation com-
pletion. This inevitably leads to the suspension of all other behaviours the agent is
(possibly) concurrently executing. Roughly speaking, the agent choice to rely on ob-
jective coordination may affect its ongoing subjective coordination activities. This
is a clear example of an artificial dependency (unintentionally) created by a “non
autonomy-preserving” approach—as [16] is.

In the remainder of this section, an autonomy-preserving integration called
TuCSOoN4JADE is presented, which successfully solves such an issue.



Models of Autonomy and Coordination in Agent Development Frameworks 75
3.1  Preserving Autonomy in TUCSON4JADE

The first step to integrate TUCSON and JADE is to implement TUCSON as a JADE
service, actually following the work in [16]. The main novelty here concerns the
BridgeToTucson class, as the component mediating all the interactions between
JADE and TUCSoN. In particular, it offers two methods for invoking coordination
operations, one for each invocation semantics JADE agents may choose:

synchronousInvocation() |lets agents invoke TUCSON coordination op-
erations synchronously w.r.t. the caller behaviour. This means the caller be-
haviour only is (possibly) suspended — and automatically resumed — as soon as
the requested operation completes, not the agent as a whole—as in [16].

asynchronousInvocation() | lets clients asynchronously invoke TuC-
SoN coordination operations. Regardless of whether the coordination operation
suspends, the agent does not, thus the caller behaviour continues.

Fig. 1 shows what happens when a synchronous operation is invoked —
asynchronous invocation is not so interesting for the purpose of the paper. The
“alt”’-labelled frame enclosing “JADE Behaviour” entity represents the equivalent of
JADE “block () -then-resume” programming pattern in TUCSON4JADE. In partic-
ular, once the synchronous invocation is requested (message 2), two scenarios may
occur:

completion ready | the TUCSON operation completion event has already been
generated by the TUCSON middleware, and is already available for inspection
within TUCSON4JADE bridge (messages 3.a-4.a)

operation pending | the completion event has not reached the BridgeToTucson
object yet—thus, from TUCSON4JADE standpoint, the invoked operation is still
pending (messages 3.b-9)

In the second case, the behaviour blocks (step 3b), waiting to be automatically re-
sumed by TUCSON4JADE as soon as the operation completion becomes available.
Meanwhile, BridgeToTucson delegates execution of the operation to its asso-
ciated ACC. Once such operation is finally completed, steps 7-9 cause the caller
behaviour to resume. Back to the first case, we understand how TUCSON4JADE
autonomy-preserving integration technically works. We know when JADE behaviour
is re-scheduled, its action () method re-starts from the beginning, thus, method
synchronousInvocation () is re-invoked. The whole TUCSON4JADE ma-
chinery works because such method internally (thus transparently) checks if the
completion of the operation just invoked is already available: only if it is not, the
whole path 3.b-9 is executed. In case it is available, BridgeToTucson immedi-
ately sends completion event back to the caller behaviour (step 3a).



76 S. Mariani, A. Omicini, and L. Sangiorgi

JADE components TUCS6NA4JADE components TuCSoN components
JADE Agent BridgeToTucson TuCSoN ACC TuCSoN Tuple Centre
|1 (instantiate] ! | I
Lo | I I
o ! ! !
I
1 JADE BF“‘V'““' 21 synchronousinvocation(Op)_ | i |
| | |
i
| aly 33 [ TucsonOpCompletionEvent f j
I T I I
| | |
' o | |
! 4, n
| “ | |
! B o I I
| | |
| | |
I N |
[ ﬂ b plock( |
| o
f } 6: coordin:
i
i N
1 O: risk
|
I
|
I T

Fig. 1 TUCSON4JADE autonomy-preserving integration, allowing JADE model of autonomy and
TuCSoN model of coordination to integrate

3.2  Showcasing TUCSON4JADE: The “Book Trading” Example

The “book trading” example is included in JADE distribution to showcase support to
FIPA interaction protocols—thus, subjective coordination. In short, n seller agents
advertise their catalogue of books, whereas m buyer agents browse such catalogues
looking for books. The whole interaction takes the form of the well-known Con-
tractNet protocol: buyers start a call-for-proposals, sellers reply with actual propos-
als, buyers choose which one to accept, the purchase is carried out. A fundamental
requirement is that sellers should stay reactive to call-for-proposals even in the mid-
dle of a purchase transaction—otherwise they could lose potential revenues. We
call concurrency property such a requirement. In the following, we take the book
trading example as a paradigmatic example showcasing the practical relevance of
autonomy-preserving integration approaches.

In particular, we re-think the ContractNet protocol by integrating objective and
subjective coordination approaches: tuple-based call-for-proposals with message-
based purchase. In fact, since the call-for-proposals should reach all the sellers, it
is more efficient to put a single “call-for-proposals tuple” in a shared “contract-net
space”, rather than messaging each seller individually. On the contrary, since the
purchase is typically a 1-to-1 interaction, messaging can efficiently do the job. This
is not only conceptually correct, but also is more efficient — less messages, less
network operations, etc. — in integrating an objective approach to coordination with
a subjective one. We do so first exploiting the integration of TUCSON and JADE
proposed in [16] (Fig. 2), then using TUCSON4JADE? (Fig. 3): in the former case,
the concurrency property — thus, agent autonomy — is lost, whereas in the latter it is
preserved as expected.

Fig. 2 depicts one possible instance of the run-time interactions between a given
seller and a given buyer. In particular, the seller is replying to a previous call-for-

2 The code is available as part of the TUCSON4JADE distribution, downloadable from
http://bitbucket.org/smariani/tucson/downloads


http://bitbucket.org/smariani/tucson/downloads

Models of Autonomy and Coordination in Agent Development Frameworks 77

concurrent execution concurrent execution

BookSellerAgent TuCSoN Helper  JADE ACL BookBuyerAgent
| 1 addBehaviour) ] ! 1 addBehaviour(]

CFPHandler

CrPHandler

| 2 addBehaviour)

el

2: addBehaviour(

FurchaseHandler

——

Purchasetandicr |
3b: receive((proposal msa)) I
3b: send([proposal msg]) m
? ab restart) !
32 rd(CPP cuple) : éﬂ_z - [i—"
B

i
i

|

i

|

i

|

| !

i [a stuck> CPPHandler behaviaur stuck > BooksellerAgent stuck 1N
i

|

|

I

|

|

|

|

i

i |consequenty,the whole nteraction chaln s stuck until next CFP ] J
| T T |

b 4b: receive([purchase msgl} . | I

I T P sb: send([purchase msg]) | !

| [ ot B

I Sb: restart) | [ | }

e i o |

Fig. 2 Non autonomy-preserving approach taken in [16]: rd suspensive semantics extends to the
caller behaviour, then to the caller agent, blocking all its activities

concurrent execution concurrent exe cution

BooksellerAgent TUCSON4JADE  JADE ACL BookBUyerAgent

| 1: addBehaviouro Ox addBehaviour 0

,,,,,,, e ol

CFPHandler CrPHandler
2: addBehaviour) 2 addBehaviour()
FurchaseHandler PurchaseHandler
3b: receive (proposal msg))
3b: send(lproposal msql) <

———

gt ab: restart)
3a: r nchrdnousinvocation([ rd(CFP i:rle) B T EZEss T nsitiond
“[rd stuck> CFPHandler behaviour stuck 1N -
consequently.interactons ci carry on | =

4ab: receive([purchase msg]

A

»
"1 _ 5b: send((purchase msgl)

5b: restartQ)

-

Fig. 3 TUCSON4JADE autonomy-preserving approach: rd suspensive semantics is confined to
the caller behaviour only, then the caller agent can carry on its other activities

proposals (message 3b). Meanwhile, it is also ready to serve new incoming call-for-
proposals (3a). Here is the problem: the suspensive coordination operation rd gets
stuck until a call-for-proposals is issued by a buyer. This is fine: it is exactly for this
suspensive semantics that the LINDA model works. What is not so fine is the non
autonomy-preserving approach taken by the TucsonHelper class in [16]: the rd
is stuck on a network-level call and no “defensive” programming mechanism has
been implemented to shield the caller behaviour. Thus it is stuck too, hindering the
caller agent from scheduling other behaviours in the meanwhile—in particular, the
“purchase” interaction chain (4b-5b) cannot carry on until a new call-for-proposals
is issued.

Fig. 3 depicts the same scenario programmed upon the TUCSON4JADE bridge,
preserving autonomy. Since the rd call is shielded by a proper mechanism within
the bridge, the suspensive semantics is confined to the caller behaviour. This means
that only the caller behaviour is suspended — using the proper mechanisms pro-
vided by JADE, e.g. method block () — whereas other activities can carry on
concurrently—e.g., the purchase transaction already in place (4b-5b).



78 S. Mariani, A. Omicini, and L. Sangiorgi

The general applicability of the ContractNet protocol and its suitability for im-
plementation as an “hybrid” protocol, drawing from both objective and subjective
approaches, makes a correct integration of the two even more relevant in the context
of agent development frameworks and coordination technologies.

4 Conclusion

Our goal is not just to show how JADE and TUCSON were better integrated w.r.t.
[16]—technically, it may even be seen as just a smarter implementation of the well-
known OO “bridge pattern”. Instead, we aim at stressing how technology-level de-
tails may have deep consequences on the higher levels of abstraction, whenever
the models (possibly implicitly) brought about by technologies are not properly ac-
counted for and understood. In particular, we demonstrate how the models of auton-
omy and coordination promoted by agent development frameworks may hamper an
essential feature of agents: autonomy. Even though we discussed just a few agent-
oriented frameworks, the issue of autonomy-preserving approaches in integrating
subjective and objective coordination is quite a general one—thus, further work will
be devoted to analyse other frameworks.

References

1. Bellifemine, F., Caire, G., Trucco, T., Rimassa, G.: Jade programmer’s guide. Jade version 3
(2002)

2. Bellifemine, FEL., Poggi, A., Rimassa, G.: JADE-a FIPA-compliant agent framework. In: 4th
International Conference and Exhibition on the Practical Application of Intelligent Agents and
Multi-Agent Technology (PAAM 1999), April 19-21, pp. 97-108. The Practical Application
Company Ltd., London (1999)

3. Bordini, R.H., Hiibner, J.F., Wooldridge, M.J.: Programming Multi-Agent Systems in AgentS-
peak using Jason. John Wiley & Sons (October 2007)

4. Castelfranchi, C., Cesta, A., Conte, R., Miceli, M.: Foundations for interaction: The depen-
dence theory. In: Torasso, P. (ed.) AI*IA 1993. LNCS, vol. 728, pp. 59-64. Springer, Heidel-
berg (1993)

5. Ciancarini, P., Omicini, A., Zambonelli, F.: Multiagent system engineering: The coordina-
tion viewpoint. In: Jennings, N.R. (ed.) ATAL 1999. LNCS (LNAI), vol. 1757, pp. 250-259.
Springer, Heidelberg (2000)

6. Dastani, M., Meyer, J.-J.C.: A practical agent programming language. In: Dastani, M., El Fal-
lah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS (LNAI), vol. 4908,
pp. 107-123. Springer, Heidelberg (2008)

7. Gelernter, D.: Generative communication in Linda. ACM Transactions on Programming Lan-
guages and Systems 7(1), 80-112 (1985)

8. Hexmoor, H., Castelfranchi, C., Falcone, R. (eds.): Agent Autonomy, Multiagent Systems,
Artificial Societies, and Simulated Organizations, vol. 7. Springer (2003)

9. Nardi, B.: Context and Consciousness: Activity Theory and Human-computer Interaction.
MIT Press (1996)

10. O’Hare, G.M., Jennings, N.R. (eds.): Foundations of Distributed Artificial Intelligence. Sixth-
Generation Computer Technology. John Wiley & Sons (April 1996)



Models of Autonomy and Coordination in Agent Development Frameworks 79

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Omicini, A.: Towards a notion of agent coordination context. In: Marinescu, D.C., Lee, C.
(eds.) Process Coordination and Ubiquitous Computing, ch. 12, pp. 187-200. CRC Press,
Boca Raton (2002)

Omicini, A., Denti, E.: From tuple spaces to tuple centres. Science of Computer Program-
ming 41(3), 277-294 (2001)

Omicini, A., Ossowski, S.: Objective versus subjective coordination in the engineering of
agent systems. In: Klusch, M., Bergamaschi, S., Edwards, P., Petta, P. (eds.) Intelligent Infor-
mation Agents. LNCS (LNAI), vol. 2586, pp. 179-202. Springer, Heidelberg (2003)
Omicini, A., Ricci, A., Viroli, M.: Coordination artifacts as first-class abstractions for MAS
engineering: State of the research. In: Garcia, A., Choren, R., Lucena, C., Giorgini, P., Holvoet,
T., Romanovsky, A. (eds.) SELMAS 2005. LNCS, vol. 3914, pp. 71-90. Springer, Heidelberg
(2006)

Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent systems.
Autonomous Agents and Multi-Agent Systems 17(3), 432-456 (2008)

Omicini, A., Ricci, A., Viroli, M., Cioffi, M., Rimassa, G.: Multi-agent infrastructures for ob-
jective and subjective coordination. Applied Artificial Intelligence 18(9-10), 815-831 (2004)
Omicini, A., Zambonelli, F.: Coordination for Internet application development. Autonomous
Agents and Multi-Agent Systems 2(3), 251-269 (1999)

Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: Per-
ram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42-55. Springer,
Heidelberg (1996)

Ricci, A., Omicini, A., Denti, E.: Activity Theory as a framework for MAS coordination.
In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS (LNAI), vol. 2577,
pp- 96-110. Springer, Heidelberg (2003)

Ricci, A., Piunti, M., Acay, L.D., Bordini, R.H., Hiibner, J., Dastani, M.: Integrating
artifact-based environments with heterogeneous agent-programming platforms. In: 7th Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008),
May 12-16, pp. 225-232. IFAAMAS, Estoril (2008)

Ricci, A., Viroli, M., Omicini, A.: CArtAgO: A framework for prototyping artifact-based
environments in MAS. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4AMAS 2006.
LNCS (LNAI), vol. 4389, pp. 67-86. Springer, Heidelberg (2007)

Ricci, A., Viroli, M., Piancastelli, G.: simpA: A simple agent-oriented Java extension for de-
veloping concurrent applications. In: Dastani, M., El Fallah Seghrouchni, A., Leite, J., Torroni,
P. (eds.) LADS 2007. LNCS (LNAI), vol. 5118, pp. 261-278. Springer, Heidelberg (2008)
Viroli, M., Omicini, A.: Coordination as a service. Fundamenta Informaticae 73(4), 507-534
(2006)



	Models of Autonomy and Coordination: Integrating Subjective and Objective Approaches in Agent Development Frameworks
	1 Autonomy and Coordination: Issues
	2 Autonomy and Coordination: Models and Technologies
	3 Autonomy-Preserving Integration Approaches
	4 Conclusion
	References




