
Distributed Runtime Verification
of JADE Multiagent Systems

Daniela Briola, Viviana Mascardi, and Davide Ancona

Abstract. Verifying that agent interactions in a multiagent system (MAS) are com-
pliant to a given global protocol is of paramount importance for most systems, and
is mandatory for safety-critical applications. Runtime verification requires a proper
formalism to express such a protocol, a possibly non intrusive mechanism for cap-
turing agent interactions, and a method for verifying that captured interactions are
compliant to the global protocol. Projecting the global protocol onto agents’ sub-
sets can improve efficiency and fault tolerance by allowing the distribution of the
verification mechanism. Since many real MASs are based on JADE, a well known
open source platform for MAS development, we implemented a monitor agent that
achieves all the goals above using the “Attribute Global Types” (AGT) formalism
for representing protocols. Using our JADE monitor we were able to verify FYPA,
an extremely complex industrial MAS currently used by Ansaldo STS for allocating
platforms and tracks to trains inside Italian stations, besides the Alternating Bit and
the Iterated Contract Net protocols which are well known in the distributed systems
and MAS communities. Depending on the monitored MAS, the performances of
our monitor are either comparable or slightly worse than those of the JADE Sniffer
because of the logging of the verification activities. Reducing the log files dimen-
sion, re-implementing the monitor in a way independent from the JADE Sniffer, and
heavily exploiting projections are the three directions we are pursuing for improving
the monitor’s performances, still keeping all its features.

1 Introduction

Verification of the compliance of interaction protocols in distributed and dynamic
systems is of paramount importance for most applications. This can take place at
design-time (offline or static verification) or at runtime (online or dynamic). In the
latter case, a layer between the monitor executing the verification and the system

Daniela Briola · Viviana Mascardi · Davide Ancona
DIBRIS, Genoa University, Italy
e-mail: {daniela.briola,viviana.mascardi,davide.ancona}@unige.it

© Springer International Publishing Switzerland 201 81
D. Camacho et al. (eds.), Intelligent Distributed Computing VIII,
Studies in Computational Intelligence 570, DOI: 10.1007/978-3-319-10422-5_10

5

82 D. Briola, V. Mascardi, and D. Ancona

Fig. 1 Our modular framework for distributed runtime verification of MASs

under monitoring must exist, so that interactions can be captured and verified against
the protocol.

If the system has been engineered as a multiagent system (MAS), then the choice
of JADE1 as the platform for implementing it may be a very natural one. JADE,
implemented in Java, is the state-of-the-art tool for MAS development and has been
used for many real industrial applications, as described in the JADE Homepage.
FYPA (Find Your Path, Agent! [6–8]) is another industrial MAS developed in JADE
and currently being used by Ansaldo STS, the Italian leader in railways signaling
and automation, for allocating platforms and tracks to trains inside Italian stations
in quasi-real time. Many academic applications spanning different domains are also
described in the literature ([4, 13], just to cite a few ones). Due to the wide range
of possible application fields and to the large amount of real use cases of JADE,
supporting runtime verification of interaction protocols in JADE MASs would be a
concrete step towards the reliability reinforcement and the industrial exploitation of
MASs: in this paper we describe our contribution for the achievement of this goal.

We have designed and implemented a framework for distributed runtime verifi-
cation of MASs and a dedicated layer for monitoring JADE interactions. The frame-
work consists of (1) a formalism for describing “agent interaction protocols” (AIPs)
based on Attributes Global Types (AGT) [1, 10]; (2) an algorithm to project AIPs
onto subsets of agents, to obtain simpler protocols expressed in the same AGT for-
malism [2]; (3) a mechanism for capturing messages between the JADE agents un-
der monitoring, in a transparent way; and (4) a method for verifying that interactions
are compliant with the AIP [3].

The strength of our framework, represented in Figure 1, is its high modularity and
potential for code reuse, because the first three components are independent from
the actual MAS under monitoring. The fourth one (in a dashed box in the figure) is
the subject of this paper, and has been expressly developed for JADE. A layer has
been developed for Jason2 too [3].

The paper is organized as follows: Section 2 describes the design and implemen-
tation of the JADE monitor; Section 3 describes the three MASs we have monitored

1 http://jade.tilab.com
2 http://jason.sourceforge.net

http://jade.tilab.com
http://jason.sourceforge.net

Distributed Runtime Verification of JADE Multiagent Systems 83

in order to assess the feasibility of our proposal, Section 4 describes our experiments
and presents a performance analysis, and Section 5 discusses related approaches and
concludes.

2 Runtime Verification of JADE MASs

In order to verify at runtime the interactions taking place in a JADE MAS, we have
designed a monitor meeting the following requirements for non intrusiveness and
code reuse:

1. the monitor must be able to supervise the execution of the MAS without inter-
fering with it,

2. the monitor activity must require no changes to the agents’ code,
3. the formalism for representing the AIP must be AGT,
4. the Prolog code already developed for implementing verification of interac-

tions w.r.t. AGT and for protocol projection must be re-used as it is.
To meet requirements 1 and 2 we extended the JADE Sniffer agent, which is able

to capture all the messages exchanged during the execution of the MAS in a non
intrusive way: JADE is developed under the LGPL (Lesser General Public License)
and the Java source code is available to the research community, so we were able to
modify it to achieve our goals.

To meet requirements 3 and 4 we exploited the JPL library3, providing a bidirec-
tional interface between Java and SWI Prolog. As all our previous works on AGT
were implemented in Prolog, allowing our JADE Monitor to use Prolog programs
and predicates was the best way to ensure reusability.

The monitor is sketched in Figure 2 and is highly modular: we modified the
code of the JADE Sniffer’s class just as little as possible and we defined the method
which converts a JADE message into a Prolog representation amenable for runtime
verification in a separate class, to allow developers to modify that class only if a
parsing different from the one we provided is required.

The monitor reads a file containing the Prolog code implementing verification
and projection, and a configuration file listing the agents to be monitored, and onto
which the protocol projection will be performed. A log file is written as the moni-
toring goes on.

The Prolog file contains definitions for three predicates:
– initialize(LogFile, SniffedAgents), which sets LogFile as

the file where writing the outcome of the verification, and projects the global proto-
col defined by the global_type/1 predicate onto SniffedAgents.

– remember(ParsedMsg), which inserts the Prolog representation of the
JADE captured message into a message list, where messages are ordered by time
stamp (if they have a time stamp, which is not mandatory) or in order of arrival.

– verify(CurrentTime), which verifies the compliance to the global pro-
tocol of each message remembered in the message list and whose time stamp is
lower than CurrentTime.

3 http://www.swi-prolog.org/packages/jpl/java_api/

http://www.swi-prolog.org/packages/jpl/java_api/

84 D. Briola, V. Mascardi, and D. Ancona

Fig. 2 The JADE monitor

These predicates are called in different methods of the monitor code:
– in the toolSetup() method, which initializes the agent, the Prolog file is

consulted to make the predicates defined there available, and theinitialize(Log-
File, SniffedAgents) predicate is called;

– in the action() method of the SniffListenerBehaviour class, the
JADE message msg is translated into a Prolog term by calling ParsedMsg =
MsgParser.format_message(msg) and the obtained term is saved into the
Prolog message list by calling remember(ParsedMsg);

– a new Ticker behavior, re-executed every tickmilliseconds (tick is set to
100 in our setting) is added to the monitor in the setup. This behavior calls the pred-
icate verify(CurrentTime), so that every 100 milliseconds all the messages
exchanged in the last 100 milliseconds are verified.

The choice of first remembering the captured messages, and then verifying them,
is due to problems with the order in which messages are forwarded to the JADE
Sniffer agent, that sometimes do not respect their actual order: if this happens, the
monitor could identify a violation of the protocol due to the wrong order of messages
when, actually, the violation does not exist. To avoid this risk, we decided to split
the interaction verification into two phases. In this way no problems due to the
captured messages order arise, provided that the capturing delay is lower than the
tick value. On the other hand, a violation of the protocol could be identified some
milliseconds later, because messages are not checked as soon as they arrive. Our
choice of delaying the violation identification rather then raising false violations can
be easily changed calling the verify predicate as soon as a message is received,
after the call to the remember predicate. The log file (the excerpt below refers to
the Alternating Bit Protocol mentioned in Section 3) stores the result of parsing and
verification in the form:

Conversion from Jade message (INFORM
:sender(agent-identifier:name bob@... :addresses(sequence ...))
:receiver(set(agent-identifier:name carol@... :addresses (...)))
:content "m2")

Distributed Runtime Verification of JADE Multiagent Systems 85

to Prolog message
msg(performative(inform),sender(bob),receiver(carol),content(m2))

which leads from protocol state
(m2:m3:m1:**|(a1, 0):(m1, 1):**)|(m2, 1):(a2, 0):**|(m3, 1):(a3, 0):**
to protocol state
(m3:m1:m2:**|(a1, 0):(m1, 1):**)|(a2, 0):(m2, 1):**|(m3, 1):(a3, 0):**

Messages are also printed on the shell, for getting an immediate feedback on the
MAS execution.

3 Test Cases

By means of AGT we were able to concisely represent protocols which are well
known in the concurrent systems and MAS communities, like the Alternating Bit
Protocol (ABP4) and the FIPA Iterated Contract Net Protocol (ICNP5). We devel-
oped two MASs that are expected to adhere to these protocols, in order to verify the
ability of our monitor to detect deviations from the expected behavior and to assess
its performances.

Our instance of the ABP MAS involves one agent bob that sends m1 to alice,
m2 to carol, m3 to dave, and waits for their respective acknowledges a1, a2, a3
before resending m1, m2, m3, with the constraint that for each iteration i, m1i must
precede m2i, which must precede m3i, and each acknowledge aki must follow mki

and precede mki+1, with k ranging from 1 to 3.
The ICNP MAS exploits the JADE implementation of the ICNP FIPA protocol

offered by the jade.proto package6 and one implementation of the ICNP MAS
provided by JADE’s developers7: in our instance, one sender agent playing the
role of Initiatior interacts with three receivers playing the role of Responder,
numbered from 1 to 3.

The representation of the ABP and ICNP protocols using our AGT formalism is
described in [10], where the advantages in terms of readability and conciseness with
respect to other existing proposals are widely discussed. Due to space constraints,
the reader is invited to refer to [10] for more details.

The FYPA (Find Your Path, Agent!) MAS was developed in JADE starting from
2009. It automatically allocates trains moving into a railway station to tracks, in or-
der to allow them to enter the station and reach their destination (either the station’s
exit or a node where they will stop) considering real time information on the traffic
inside the station and on availability of tracks. The station can be modeled as a di-
rect non planar graph, where nodes are special railway tracks where trains can stop,
and arcs are railway tracks connecting two nodes. The FYPA Reservation protocol
described in AUML in Figure 3 involves agents representing trains and nodes. Each
train knows the paths {P1 = Ns...Ne; ...; Pk = Ns...Ne} it could follow to go from
the node where it is (Ns, for start), to the node where it needs to stop (Ne, for end).

4 en.wikipedia.org/wiki/Al-ter-na-ting_bit_protocol
5 fipa.org/specs/fipa00030
6 http://jade.tilab.com/doc/api/jade/proto/package-summary.html
7 http://jade.tilab.com/doc/examples/protocols.html

fipa.org/specs/fipa00030
http://jade.tilab.com/doc/api/jade/proto/package-summary.html
http://jade.tilab.com/doc/examples/protocols.html

86 D. Briola, V. Mascardi, and D. Ancona

Fig. 3 FYPA Reservation protocol

Such paths are computed by a legacy Ansaldo application which is wrapped by an
agent named PathAgent, not modeled here. Each train also knows which path it is
currently trying to reserve, how many nodes answered to its requests and in which
way, and how much delay it can accept: to reserve a path, the train must obtain a
reservation for each node in it. To reserve a node, a train T1 asks if it is free, waits
for the answer from the node (free or already reserved by another train in an over-
lapping time slot) and then reserves the resource, which might also mean stealing it
to the train T2 that reserved it before (this usually takes place if the priority of T1
is higher than that of T2). In this case, the node will inform train T2 by following
the Cancel protocol, and T1 will try to reserve the same path in different time slots.
Each node knows the arcs that it manages (those that enter in it). It also knows which
trains optioned or reserved the node, in which time slots, from which node they are
expected to arrive, and which arc they can traverse.

In [11] we presented the formalization of the FYPA protocol using AGTs. That
formalization, with minor modifications, has been used for verifying the MAS actual
executions as discussed in Section 4.

In the instance of FYPA we tested, train treno_1 tries to reserve the path
nodo_1, nodo_3, nodo_4, nodo_6 under the following conditions:
– FYPA1: all the nodes in the path are free, as there were no previous reservations:
the reservation is completed without any problem;
– FYPA2: there was a previous reservation for one node (nodo_3), by a train with
priority higher than treno_1’s priority: treno_1 must change the reservation
slots for its path;

Distributed Runtime Verification of JADE Multiagent Systems 87

– FYPA3: there was a previous reservation for one node (nodo_3), by a train
with priority lower than treno_1’s priority: treno_1 steals the reservation and
successfully reserves the full path.

4 Experiments

We tested our JADE monitor with the ABP, the ICNP, and FYPA. With the ABP,
which does not use attributes, we were also able to successfully check that projection
works as expected. The results were the expected ones in case of both absence and
presence of protocol violations.

Because of space constraints, we cannot provide details on all the three MASs.
In this section we give the flavor of which kind of properties we were able to test
with the FYPA MAS.

The test station consists of six nodes and train treno_1, with priority 2, enters
from nodo_1 and then moves to nodo_3, nodo_4, nodo_6.

The AGT modeling the FYPA protocol has been described in [11]. As discussed
below, we were able to test “local”, “horizontal” and “vertical” properties of mes-
sages. All our tests gave the expected result, namely a violation was correctly de-
tected when we manually inserted some error in the message content or order, and
the protocol verification correctly terminated when we did not insert any error.

“Local” properties of messages. Each message must have the right type. For ex-
ample, a query_if message must be sent by an agent playing the “Train” role, like
treno_1, to an agent playing the “Node” role, like nodo_3, and the arguments of
the query_if content must contain the priority of the sender, the node from which
the train will arrive and a coherent time interval. This message satisfies them:
msg(treno_1, nodo_3, query_if, free(2,240000,310000,nodo_1), cid(1), ts(1))

“Horizontal” properties of messages sequences. When a train contacts a sequence
of nodes to verify whether they are free in order to optionally issue a reservation
request, the arguments of the query_if messages must form a coherent path: the
“From” argument in message mi+1 must be the same as the receiver of message
mi, the time slot’s first extreme in message mi+1 must be the same as the time
slot’s second extreme in message mi, the conversation id must be the same, and
the train cannot change its priority, apart from setting it equal to infinity (inf) for
requests than must necessarily be satisfied. For example, this trace (an extract of a
real monitor log file) respects these constraints:
msg(treno_1,nodo_1,query_if,free(inf,156000,186000,init), cid(1),ts(1))
msg(treno_1,nodo_3,query_if,free(2,186000,256000,nodo_1), cid(1),ts(2))
msg(treno_1,nodo_4,query_if,free(2,256000,286000,nodo_3), cid(1),ts(3))
msg(treno_1,nodo_6,query_if,free(2,286000,326000,nodo_4), cid(1),ts(4))

Note that in the query_if message sent to the station entering node (in this case,
nodo_1), the From field is set to the value initial (init) because there is no “com-
ing from” node (the train is arriving from outside the station).

88 D. Briola, V. Mascardi, and D. Ancona

“Vertical” properties of conversations between a train and a node. Apart from the
requirement that during a single conversation the train does not change the conver-
sation id, we can identify one more constraint: if a node is reserved, it must inform
the train that sent a query_if message of the arc it could have used to reach it and of
the time slot when it will be free again. This time slot must start after the time slot’s
start indicated by the train in its query_if message, even if it may overlap with it. A
trace like this (again from a real log file) respects both constraints:

msg(treno_1,nodo_3,query_if,free(2,24000,31000,nodo_1), cid(1),ts(1))
msg(nodo_3,treno_1,inform,reserved(da0,1,2,dummy,31001,38001),cid(1),ts(2))

Since a train can interact with the same node many times, for example because the
attempt to reserve a path failed and then the train has to try to reserve a new one, we
added and successfully tested another vertical constraint that involves conversation
loops: if a train sends more than one query_if message to the same node, the con-
versation id must be different since the messages belong to different conversations.

Performances. Table 1 shows the performance analysis of three categories of exe-
cution: with our monitor, with the “plain” JADE Sniffer, with none of them.
– Column Test refers to the test we run among those discussed in Section 3.
– Column R (for Runs) reports the number of runs of a MAS. For example, R equal
to 10 means that we performed 10 MAS executions with our monitor, 10 executions
with the JADE Sniffer, and 10 executions with none.
– Column Msg (for Messages) reports the average number of messages exchanged
among the agents per run. While in ABP and FYPA the average number is always
the same as the exact number per run, as the MAS evolution is deterministic, in
the ICNP MAS there is a random choice that participants can make about bidding
or not. This means that the runs are not always the same and the number of mes-
sages per run can change. We run the MAS many times and we selected 5 runs
for each execution category (with monitor, with JADE Sniffer, with none) which
show homogeneous features, namely a number of iterations between the initiator
and the participants between 4 and 7, and which guarantee that the average number
of messages is the same for each category.
– Column M (for Monitor) reports the average number of milliseconds per message
when using our monitor. This value changes from MAS to MAS, as deciding to send
one message may require less or more reasoning from the agent, and hence less or
more time. JS (for JADE Sniffer) reports the average number of milliseconds per
message when using the JADE Sniffer and N (for None) reports the average number
of milliseconds per message when using none of them.
– Column M/JS (deg.) reports the ratio between the performances with our monitor
and with the JADE Sniffer and the degradation in percentage (“deg.” field in round
brackets). Similarly, M/N (deg.) reports the performances ratio and degradation be-
tween the execution with the monitor and with no JADE built-in agent, and JS/N
(deg.) reports the performances ratio and degradation between the execution with
the JADE Sniffer and with no JADE built-in agent.

For each test, we measured the complete execution time of the MAS. In particu-
lar, we measured the number of milliseconds between the start of the protocol (first

Distributed Runtime Verification of JADE Multiagent Systems 89

Table 1 Performances of the monitor execution

Test R Msg M JS N M/JS (deg.) M/N (deg.) JS/N (deg.)
ABP 10 20000 1.93 1.62 0.14 1.19 (19%) 13.78 (1278%) 11.38 (1038%)
ICNP 5 13 12.28 10.47 2.26 1.17 (17%) 5.43 (443%) 4.63 (363%)
FYPA1 5 12 8.10 8.05 2.77 1.01 (1%) 2.92 (192%) 2.90 (190%)
FYPA2 5 20 6.43 6.56 2.63 0.98 (-2%) 2.44 (144%) 2.49 (149%)
FYPA3 5 12 6.61 6.35 2.83 1.04 (4%) 2.33 (130%) 2.24 (124%)

message sent) and the protocol completion (last message received). Since the ABP
is an infinite protocol, we measured the time between bob’s setup and the 10000th
execution of its action() method.

In order to verify the portability of our framework across different operating
systems, the experiments with FYPA were run on an Acer 7750 with Intel Core
I5 2.3 GHz, 6 GB RAM and Windows 7 Home, whereas the others on an Acer
TravelMate 6293 with Intel Core 2 Duo P8400/2.26 GHz, 4 GB RAM, and Mandriva
Linux 2009 operating system.

Table 1 shows that the degradation due to the exploitation of the monitor agent
with respect to the exploitation of the plain JADE Sniffer is usually between 1% and
19%, with only one test, FYPA2, where the monitor performed slightly better than
the JADE Sniffer. The degradation when using the monitor should be mainly due to
the fact that the monitor performs many I/O operations for writing the log both on
file and on standard output. To make an example, the average dimension of the log
files for our ABP tests is 300KB, which justifies the required additional time.

The JADE Sniffer agent is very time-consuming due both to its sniffing capabil-
ities and to its complex graphical interface which requires updates on the fly. Using
the JADE Sniffer w.r.t. not using it degrades the MAS performances up to 1038%. It
is not surprising then the degradation due to the usage of the monitor w.r.t not using
it, up to 1278%, since the monitor adds features to the JADE Sniffer.

From Table 1 we may also notice that the degradation of both the monitor and
the JADE Sniffer with respect to using none worsens with the number of exchanged
messages. In communication intensive MASs, the presence of agents like the JADE
Sniffer and our monitor may represent a bottleneck. By implementing the monitor
from scratch instead of relying on the Sniffer agent, keeping the textual interface
and removing the GUI, by reducing the dimensions of the monitor’s log files re-
porting only the identified problems, and by exploiting the projections presented
in [2] that avoid bottlenecks due to the single centralized monitor, we are confident
to overcome most problems related with the monitor’s performance.

5 Related Work and Conclusions

Although there are many proposals for runtime verification of agent interaction pro-
tocols, that we carefully analyzed in our previous papers on this subject, the attempts

90 D. Briola, V. Mascardi, and D. Ancona

to integrate such mechanisms into JADE are, to the best of our knowledge, still
missing.

Tools supporting the engineering of JADE MAS are described for example in
[12] and [9]. In [12] data mining tools processing the results of the execution of large
scale MASs in a monitored environment are discussed. They have been integrated
in the INGENIAS Development Kit8, in order to facilitate the verification of MAS
models at the design level rather than at the programming level. The achieved results
could be applied to JADE even if, to the best of our understanding, this has not been
done. In [9], the authors present a unit testing approach for MASs based on the use
of Mock Agents. Each Mock Agent is responsible for testing a single role of an
agent under successful and exceptional scenarios. Aspect-oriented techniques are
used to monitor and control the execution of asynchronous test cases. The approach
has been implemented on top of JADE platform. None of these attempts has the
same aim as ours, and thus those proposals and ours cannot be compared. Rather,
they could be complemented for providing an integrated framework for engineering
and developing JADE MASs.

The work probably most similar to ours, but not interfaced with JADE, is Scrib-
ble9, a tool chain for runtime verification of distributed Java or Python programs
against Scribble protocols specifications. Given a Scribble specification of a global
protocol, the tool chain validates consistency properties and generates Scribble local
protocol specifications for each participant (role) defined in the protocol. At runtime,
an independent monitor is assigned to each Java (or Python) endpoint and verifies
the local trace of communication actions executed during the session. Besides the
different target languages, the main difference of Scribble w.r.t. our work is that we
can monitor legacy MASs whose source code is not available because our monitor
does not require any change to the agents’ code, whereas the Scribble toolchain gen-
erates the executable code for the protocol endpoints starting from the specification
of the protocol, hence it is suitable for monitoring systems which are created from
the protocol specification, but not for legacy ones.

Our implementation of a JADE monitor agent suffers from some limitation, but
our tests with three real MASs are very promising. The three problems that we
experienced with our monitor are all related to the decision of extending the JADE
Sniffer agent. The first is the one described in Section 2, regarding the messages
order, the second arises when an agent that is under capturing by the monitor is
born: the monitor needs some milliseconds to react and start capturing it, but if in the
meanwhile the agent starts sending messages, the monitor could not receive them,
and in this case a violation of the protocol is surely identified (even if it is a false
positive). The last problem is related with performances, as discussed in Section 4.

We are studying a new version of the monitor that implements a JADE kernel
service that captures all messages exchanged by the agents: in this way we should
be able to avoid all the three problems above. A comparison with similar solutions
including [5] and Scribble is also under way.

8 ingenias.sourceforge.net/
9 http://www.scribble.org

ingenias.sourceforge.net/
http://www.scribble.org

Distributed Runtime Verification of JADE Multiagent Systems 91

References

1. Ancona, D., Barbieri, M., Mascardi, V.: Constrained global types for dynamic checking of
protocol conformance in multi-agent systems. In: SAC. ACM (2013)

2. Ancona, D., Briola, D., Seghrouchni, A.E.F., Mascardi, V., Taillibert, P.: Efficient verification
of MASs with projections. In: EMAS Pre-proceedings (2014)

3. Ancona, D., Drossopoulou, S., Mascardi, V.: Automatic generation of self-monitoring MASs
from multiparty global session types in Jason. In: Baldoni, M., Dennis, L., Mascardi, V., Vas-
concelos, W. (eds.) DALT 2012. LNCS, vol. 7784, pp. 76–95. Springer, Heidelberg (2013)

4. Balachandran, B.M., Enkhsaikhan, M.: Developing multi-agent e-commerce applications with
JADE. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part III. LNCS (LNAI),
vol. 4694, pp. 941–949. Springer, Heidelberg (2007)

5. Baldoni, M., Baroglio, C., Capuzzimati, F.: 2COMM: A commitment-based MAS architec-
ture. In: Winikoff, M. (ed.) EMAS 2013. LNCS, vol. 8245, pp. 38–57. Springer, Heidelberg
(2013)

6. Briola, D., Mascardi, V.: Design and implementation of a NetLogo interface for the stand-
alone FYPA system. In: WOA, pp. 41–50 (2011)

7. Briola, D., Mascardi, V., Martelli, M.: Intelligent agents that monitor, diagnose and solve
problems: Two success stories of industry-university collaboration. J. of Inf. Assurance and
Security 4, 106–117 (2009)

8. Briola, D., Mascardi, V., Martelli, M., Caccia, R., Milani, C.: Dynamic resource allocation in
a MAS: A case study from the industry. In: WOA (2009)

9. Coelho, R., Kulesza, U., von Staa, A., Lucena, C.: Unit testing in multi-agent systems using
mock agents and aspects. In: SELMAS, pp. 83–90. ACM (2006)

10. Mascardi, V., Ancona, D.: Attribute global types for dynamic checking of protocols in logic-
based multiagent systems. TPLP 13(4-5-Online-Supplement) (2013)

11. Mascardi, V., Briola, D., Ancona, D.: On the expressiveness of attribute global types: The
formalization of a real multiagent system protocol. In: Baldoni, M., Baroglio, C., Boella, G.,
Micalizio, R. (eds.) AI*IA 2013. LNCS, vol. 8249, pp. 300–311. Springer, Heidelberg (2013)

12. Serrano, E., Gómez-Sanz, J.J., Botía, J.A., Pavón, J.: Intelligent data analysis applied to debug
complex software systems. Neurocomput. 72(13-15), 2785–2795 (2009)

13. Ughetti, M., Trucco, T., Gotta, D.: Development of agent-based, peer-to-peer mobile applica-
tions on ANDROID with JADE. In: UBICOMM (2008)

	Distributed Runtime Verification of JADE Multiagent Systems
	1 Introduction
	2 Runtime Verification of JADE MASs
	3 Test Cases
	4 Experiments
	5 RelatedWork and Conclusions
	References

