
Chapter 39
An Introduction to the Verification of Hybrid
Systems Using ARIADNE

Davide Bresolin, Luca Geretti, Tiziano Villa and Pieter Collins

39.1 Introduction

Hybrid systems are dynamical systems that exhibit both a discrete and a continuous
behaviors. Tomodel and specify hybrid systems in a formal way, the notion of hybrid
automata has been introduced [1]. Intuitively, a hybrid automaton is a “finite-state
automaton” with continuous variables that evolve according to dynamics charac-
terizing each discrete state (called a location or mode). Of particular importance
in the analysis of a hybrid automaton is the computation of the reachable set, i.e.,
the set of all states that can be reached under the dynamical evolution starting from
a given initial state set. Many approximation techniques and tools to estimate the
reachable set have been proposed in the literature. Most of the available software
packages, like PhaVer [8] and SpaceEx [9], are limited to affine dynamics. Others,
like HSOLVER [10] can handle non-linear dynamics, but can verify only safety
properties.

To overcome the limitations of current tools, we recently proposed a development
environment for hybrid systems verification, called Ariadne [3–5], which differs

D. Bresolin (B) · L. Geretti · T. Villa
Dipartimento di Informatica, Università di Verona, 37134 Verona, Italy
e-mail: davide.bresolin@univr.it

L. Geretti
e-mail: luca.geretti@univr.it

T. Villa
e-mail: tiziano.villa@univr.it

P. Collins
Department of Knowledge Engineering, Maastricht University,
6211 LH Maastricht, The Netherlands
e-mail: pieter.collins@maastrichtuniversity.nl

© Springer International Publishing Switzerland 2015
J.H. van Schuppen and T. Villa (eds.), Coordination Control of Distributed Systems,
Lecture Notes in Control and Information Sciences 456,
DOI 10.1007/978-3-319-10407-2_39

339

340 D. Bresolin et al.

from existing tools by being based on a rigorous function calculus [7]. This calculus
provides a rigorous mathematical semantics for the numerical analysis of dynamical
systems, suitable for implementing formal verification algorithms.

39.2 The Reachability Problem for Hybrid Automata

We first give a formal definition of a hybrid automaton.

Definition 39.1 Ahybrid automaton is a tupleA = 〈Loc,Edg, IRn, I nv, Dyn, Act,
Res〉 such that:
1. 〈Loc,Edg〉 is a finite directed graph; the vertices, Loc, are called locations or

control modes, and the directed edges, Edg, are called control switches;
2. each location q ∈ Loc is labeled by the invariant condition Inv[q] on IRn and

the dynamic law Dyn[q] on IRn × IRn × IR≥0 such that if Inv[q](x) is true then
Dyn[q](x, x, 0) is true;

3. each edge e ∈ Edg is labeled by the activation condition Act[e] on IRn and the
reset relation Res[e] on IRn × IRn .

A state � of a hybrid automatonA is a pair , vx , where v ∈ Loc is a location and
x ∈ IRn is an assignment of values for the continuous variables. A state vx is said to
be admissible if Inv[v](x) holds.

A trajectory ξ of a hybrid automaton is a (finite or infinite) sequence (ξi)i≥0 of
continuous functions ξi : [τi , τi+1] → Loc× IRn such that Dyn[q](ξi(s), ξi(t), t − s)
holds for all τi ≤ s ≤ t ≤ τi+1, and both Act[e](ξi(τi+1)) and Res[e](ξi(τi+1),

ξi+i (τi+1)) hold for some e ∈ Edg. Here, ξi (t) represents the state of the system
after i events and at time t .

Definition 39.2 Let A be a hybrid automaton. A state 〈qrr〉 reaches a state qss if
there exists a finite trajectory ξ = (ξi)0≤i≤n such that ξ0(0) = qrr and ξn(τn+1) =
qss.WeuseReachSetA (qrr) to denote the set of states reachable fromqr r .Moreover,
given a set of states X0 ⊆ Loc × IRn , we use ReachSetA (X0) to denote the set
∪qr r∈X0ReachSetA (qrr).

Checking safety properties on hybrid automata reduces to the reachability prob-
lem. Suppose we wish to verify that a safety property ϕ holds for a hybrid automaton
H ; in other words, that ϕ remains true for all possible executions starting from a
set X0 of initial states. Then, we only need to prove that ReachSetA (X0) ⊆ Sat(ϕ),
where Sat(ϕ) is the set of states where ϕ is true. Unfortunately, the reachability
problem is not decidable in general [1]. Nevertheless, formal verification methods
can be applied to hybrid automata: Suppose we can compute an over-approximation
S to ReachSetA (X0), that is, a set S ⊇ ReachSetA (X0). Then, if S is a subset of
Sat(ϕ), then so is the reachable set and the automaton H respects the property. Con-
versely, if we can compute an under-approximation S to ReachSetA (X0) (that is, a
set S ⊆ ReachSetA (X0)) that turns out to contain at least one point outside Sat(ϕ),
we have proved that H does not respect the safety property ϕ.

39 An Introduction to the Verification . . . 341

39.3 The ARIADNE Software Package

Ariadne’s computational engine is based on a rigorous function calculus, where
continuous functions f : Rm �→ R

n are the basic building blocks used to represent
and compute the evolution of hybrid automata [7]. Every component of a hybrid
automaton A can be represented in the function calculus setting as follows:

• For every discrete location, a function Dyn : Rn �→ R
n is used to represent the

continuous dynamics ẋ = Dyn(x).
• Invariants are represented using single-valued functions Inv : Rn �→ R that are

negative exactly when the invariant is true.
• Discrete transitions are represented using a function Act : Rn �→ R that is positive
when the guard of the transition is true (and negative otherwise), and a reset
function Res : Rn �→ R

n.

Additionally:

• Regions of space R ⊆ R
n are represented using ImageSets, i.e., functionsmapping

a box [−1, 1]p to a subset of Rn that approximates the desired region. 1

In particular, given f : Rm �→ R
n , and a point x ∈ R

m , an approximation of f
near x can be computed. The result is a pair f̂ = (T, I) where T is a polynomial
expansion of f to a given degree and I an interval such that f (z) − T (z) ∈ I for
all points z near x , giving an error bound on the approximation. We also call this
set an enclosure, since it encloses the exact set of points. If we express a starting set
S as an enclosure, the evolution under the continuous dynamics can be obtained by
numerical integration, using the flow tube of the continuous evolution: A function
f low : Rn+1 �→ R

n such that f low(S, t) is the set of points reached from S after
t time units of continuous evolution; taking also discrete evolution into account, we
call reached set the set of points reached from S after t time units.

39.3.1 Evolution of Enclosures

Ariadne is able to compute approximations to the reachable set by “patching
together” enclosures of the reached sets obtained by evolving the system for finite
time intervals. Such evolution uses either an upper semantics or a lower semantics:

• upper semantics implies that, if we evolve the system for a finite time, the set of
points that we obtain is a superset of the reachable set;

• lower semantics implies that, if we evolve the system for a finite time, each point
that we obtain has a bounded distance to a point of the reachable set.

1 ImageSets are used in the stable version of Ariadne. The development version uses a more
accurate representation based on ConstrainedImageSets [7].

342 D. Bresolin et al.

While the computation of evolution for a finite time is straightforward, the same
could not be said for the case of infinite time. To do that, we need to be able to
perform the intersection and subtraction of sets. Unfortunately, these two operations
cannot be performed on enclosures, which instead must be discretised onto a set of
cells according to a grid.

Given a hybrid automatonA , and an initial set of states S0,Ariadne can compute
two kinds of approximations to the reachable set:

• An outer approximation O of the reachable set using upper semantics, for both
finite and infinite time evolution. Formally, a closed set O such that the closure of
ReachSetA (S0) is strictly contained in the interior of O .

• An ε-lower approximation Lε of the reachable set using lower semantics, for both
finite and infinite time evolution. Formally, an open set Lε where for every point
x ∈ Lε there exists a point y ∈ ReachSetA (S0) such that |x − y| < ε.

In the case of O , the evolution can be performed either in the forward or backward
direction.On the contrary, backward evolution for Lε , while computable, has not been
implemented, since lower semantics causes backward transitions to yield very coarse
results that become ineffective for reachability analysis.

39.3.2 Verification

Verification inAriadne relies on reachability analysis.Ariadne currently offers two
classes of verification routines: safety and dominance. The safety verification routine
accepts a space region in which the reachable set should be included for all times.
The dominance checking routine instead compares the reachable sets of two hybrid
systems on a common subspace and decideswhich one is included into the other. Both
routines can be applied to a specific hybrid automaton or be parametric. Parametric
safety and parametric dominance verification identify some constants of the hybrid
automaton and treat them as parameters that take values within a given interval: The
routines split the parametric space and verify each subspace. This approach is able
to identify optima for design parameters of a system.

All verification routines based on approximations are necessarily dependent on
the coarseness of the approximation: An answer to the verification problem may be
unattainable only because the accuracy is insufficient to the task. Ariadne defines
the accuracy of computation by means of some settings, the most important being:

• the grid used for each location, to control the granularity of the state space;
• the integration step, to control the accuracy of evaluation of the flow function.

In particular, the output of the reachability routines converges to the “best possi-
ble” approximations when the accuracy settings converge to zero. Now, since discre-
tised evolution routines are built upon the evolution of enclosures, and verification
makes use of approximations obtained using discretised evolution, it is apparent that

39 An Introduction to the Verification . . . 343

efficiency of verification (and effectiveness, if we have a limited time to obtain a def-
inite answer) depends on a proper choice of such accuracy settings. Since we cannot
decide beforehand which values are optimal for a given system and verification task,
we must resort to an iterative refinement procedure: if we do not obtain a result with
the current accuracy “level,” we repeat the calculation of the approximation for finer
values of the settings.

Apropermanual tuning of the accuracy settingswould be quite difficult, especially
if iterative refinement is considered. In other words, it is desirable to automate the
choice of the accuracy settings in order to improve both usability and efficiency.
Ariadne, therefore, does not require the user to tune these settings: Instead, it extracts
reasonable values after a pre-analysis of the domain, at each refinement step. This
implies that the choice of the domain for the state space is the only mandatory
information that must be provided together with the hybrid automaton.

39.4 The Water Tank Example

In the following, we consider an application from hydraulic control, i.e., a water
tank system composed of a cylindrical tank, equipped with an inlet pipe at the top,
an outlet pipe at the bottom, and a valve that controls the inlet flow. The outlet
flow is proportional to the water level, while the inlet flow is controlled by a valve
that receives open and close position commands from a controller. In response to a
command, the valve aperture α(t) changes linearly in time with a rate 1/T . The inlet
flow is proportional to the inlet pressure p(t) and to the valve aperture α(t) ∈ [0, 1]:

Fin(t) = α(t) f (p(t)).

Locationq1 of Fig. 39.1a represents the nominal state of the tank,when thewater level
is under the overflow limit, while location q2 represents overflow. When overflow
occurs, the automaton stays in location q2 until the inlet flow u(t) is less than or
equal to the outlet flow λ

√
H .

The current water level x(t) is measured by a sensor that outputs a signal xs(t)
affected by an unknown sensor error δ(t):

xs(t) = x(t) + δ(t), (39.1)

x = H ∧ u ≤ λ
√

H

q1 q2

ẋ(t) = −λ x(t) + u(t)

0 ≤ x ≤ H

ẋ(t) = 0

x(t) = H

u(t) ≥ λ
√

H

x = H ∧ u ≥ λ
√

H

r1

xs(t) = x(t) + δ(t)

(a) (b)

Fig. 39.1 The hybrid automata for the tank and the sensor. a Tank. b Sensor

344 D. Bresolin et al.

xs(t) ≥ lxs(t) ≤ h

xs ≥ h

close

l ≤ xs(t) ≤ h

xs ≤ l

open

xs ≤ l

open

xs ≥ h

close

v1 v2

v3v4

α = 0 0 ≤ α ≤ 1

α = 1

open

close

α = α =

close

open

α̇(t) = 0
u(t) = 0

α̇(t) = 1/T

u(t) = α(t)f(p(t))

α̇(t) = −1/T

u(t) = α(t)f(p(t))
α̇(t) = 0
u(t) = f(p(t))

0 ≤ α ≤ 1

(a) (b)

Fig. 39.2 The hybrid automata for the controller and the valve. a Hysteretic controller. b Valve

and can be modeled by the single location automaton of Fig. 39.1b, where x and δ

are input variables, and xs is the only output variable.
The automaton for the controller is depicted in Fig. 39.2a. It reads the water level

xs(t) measured by the sensor and sends the position commands open and close to
the valve following a simple hysteretic loop:

• when the valve is closed and the water level is decreasing, the open command is
produced when xs(t) ≤ l (location c3);

• conversely, when the valve is opened and the water level is increasing, the close
command is produced when xs(t) ≥ h (location c2).

where l and h represent lower and upper threshold values for thewater level. Location
c1 is the initial location, corresponding to the situation in which the controller does
not know whether the water level is increasing or decreasing. The automaton has no
output variables, two output events open and close, and one input variable xs .

Ariadne allows to specify these systems separately, and then automatically com-
pose them into a monolithic automaton for evolution and verification.

In this particular example, given an initial water level xi ∈ [6.5, 7.0], we want to
verify whether x ∈ [5.25, 8.25], where l ∈ [5.25, 6.25] and h ∈ [7.25, 8.25]. This
is a parametric safety verification problem, with parameters l and h. The algorithm
offered by the Ariadne library splits the parameter space with a granularity chosen
by the user; then for each subspace, a verification loop is performed, in which we
progressively refine the accuracy settings until a definite answer is obtained (or a
user-defined time budget is hit).

It must be noticed that if we reach the minimum allowed values for the accuracy
settings without getting a positive or negative answer, then an indeterminate result
is returned. Figure 39.3 shows the verification outcomes for this problem, where
the squares represent the verification subspaces. A safe result is shown in green, an
unsafe result in red and an indeterminate one in yellow. It can be noticed that low
values of h and high values of l are required to provide a positive answer.

Finally, in Fig. 39.4, we show the result for approximations to the reachable set as
computed for two different values of the two parameters. The green region represents

39 An Introduction to the Verification . . . 345

Fig. 39.3 The verification results for the contract satisfaction and dominance problems

(a) (b)

Fig. 39.4 Reachable set for two choices of the l and h thresholds, with a safe (a) and unsafe (b)
result. a l = [5.75, 5.781], h = [7.75, 7.781]. b l = [5.75, 5.781], h = [8.125, 8.156]

the safe region, while the red region is the computed approximation. In Fig. 39.4a,
the O approximation is used to verify that safety is guaranteed. In Fig. 39.4b, the
Lε approximation allows us to state that the system is unsafe. The yellow region
represents the ε-tolerance on the safe region given by the approximation error. These
results look rather coarse, but this is due to the fact that we need to periodically
discretise the reached set onto a grid in order to decide when to stop evolving.

39.5 Conclusions and Future Work

Formal verification of hybrid systems is still in its infancy, but tools like Ariadne
show promising results also on non-trivial case studies (see Chap. 40). Further infor-
mation on the framework can be found in [7] about functional calculus, [4] regarding
the reachability routines, and [5] for advanced verification strategies.

Ariadne can manage non-linear dynamics and can compute both outer and lower
approximations to the reachable set. However, this high expressivity is also the main

http://dx.doi.org/10.1007/978-3-319-10407-2_40

346 D. Bresolin et al.

reason for some shortcomings, in particular with respect to scalability and accuracy
of the approximations. The recent introduction of support functions increased sub-
stantially the size of linear hybrid systems that can be verified [9] and showed that the
choice of the correct set representation is crucial. To overcome the current limitations
of the tool, we are working on the following improvements: addressing scalability
by means of counter-example based abstraction refinement techniques [2], handling
specification properties beyond safety [6], extending the tool to synthesize switching
controllers with respect to safety properties [11].

References

1. Alur R, Courcoubetis C, Henzinger TA, Ho PH (1992) Hybrid automata: an algorithmic
approach to the specification and verification of hybrid systems. In: Hybrid systems, LNCS.
Springer, Berlin, pp 209–229

2. Alur Rajeev, Dang Thao, Ivančić Franjo (2006) Counterexample-guided predicate abstraction
of hybrid systems. Theor Comput Sci 354(2):250–271

3. Ariadne: An open tool for hybrid system analysis. http://ariadne.parades.rm.cnr.it
4. Benvenuti L, Bresolin D, Collins P, Ferrari A, Geretti L, Villa T (2012) Ariadne: Dominance

checking of nonlinear hybrid automata using reachability analysis. Reachability Problems.,
volume 7550 of LNCSSpringer, Berlin Heidelberg, pp 79–91

5. Benvenuti L, Bresolin D, Collins P, Ferrari A, Geretti L, Villa T (2014) Assume-guarantee
verification of nonlinear hybrid systems with ARIADNE. Int J Robust Nonlinear Control
24(4):699–724

6. Bresolin D (2013) Improving HyLTL model checking of hybrid systems. In: Proceedings of
the 4th international symposium on games, automata, logics and formal verification (Gan-
dALF2013), vol 119 of EPTCS, pp 79–92

7. Collins P, Bresolin D, Geretti L, Villa T (2012) Computing the evolution of hybrid systems
using rigorous function calculus. In: Proceedings of the 4th IFAC conference on analysis and
design of Hybrid Systems (ADHS12), pp 284–290

8. Frehse G (2008) PHAVer: algorithmic verification of hybrid systems past HyTech. Int J Softw
Tools Technol Transf (STTT) 10:263–279

9. Frehse G, Le Guernic C, Donzé A, Cotton S, Ray R, Lebeltel O, Ripado R, Girard A, Dang
T, Maler O (2011) SpaceEx: scalable verification of hybrid systems. In: Proceedings 23rd
international conference on computer aided verification (CAV 2011), volume 6806 of LNCS.
Springer, Berlin, pp 379–395

10. Ratschan S, She Z (2007) Safety verification of hybrid systems by constraint propagation based
abstraction refinement. ACM Trans Embed Comput Syst 6(1)

11. Tomlin CJ, Lygeros J, Sastry SS (2000) A game theoretic approach to controller design for
hybrid systems. Proc IEEE 88(7):949–970

http://ariadne.parades.rm.cnr.it

	39 An Introduction to the Verification of Hybrid Systems Using Ariadne
	39.1 Introduction
	39.2 The Reachability Problem for Hybrid Automata
	39.3 The Ariadne Software Package
	39.3.1 Evolution of Enclosures
	39.3.2 Verification

	39.4 The Water Tank Example
	39.5 Conclusions and Future Work
	References

