
Chapter 34
A SystemC/MATLAB Co-simulation Tool
for Networked Control Systems

Davide Quaglia, Riccardo Muradore and Paolo Fiorini

34.1 Motivation and Problem Statement

Networked control systems (NCS) are feedback control systems in which the control
loop is closed through a shared digital communication network rather than by an ideal
point-to-point connection. In NCS, the communication channel can significantly
affect the quality of the control due to communication delay and packet loss. Many
solutions have been proposed to address this issue [3]. The simulation of NCS plays
a crucial role in the verification, validation, and fine-tuning of these solutions. A
simulator should capture and represent both the control and communication aspects.
For instance, the control aspects include signal generation and analysis as well as
plant/controller specification, whereas the communication aspects include channel
and protocol specification as well as packet flow generation and routing.

This essay addresses the problem of building an accurate simulator for NCSs. For
example, MATLAB/Simulink is one of the most used tools to design and simulate
dynamic systems. Concerning the network, this tool provides low-level propagation
models, which slow down simulation, and abstract queuing models which do not
describe the network architecture in terms of nodes, links, and competing packet
flows. There are well-known tools for network simulation [4, 7], but they do not
address the simulation of dynamic systems in a native way. A possible solution to
handle the heterogeneity of NCSs is the co-simulation approach to make different
tools working together to simulate different parts of the overall system. The tools

D. Quaglia(B) · R. Muradore · P. Fiorini
Department of Computer Science, University of Verona, Strada Le Grazie 15, Ca’ Vignal 2, 37134
Verona, Italy
e-mail: davide.quaglia@univr.it

R. Muradore
e-mail: riccardo.muradore@univr.it

P. Fiorini
e-mail: paolo.fiorini@univr.it

© Springer International Publishing Switzerland 2015
J.H. van Schuppen and T. Villa (eds.), Coordination Control of Distributed Systems,
Lecture Notes in Control and Information Sciences 456,
DOI 10.1007/978-3-319-10407-2_34

283

284 D. Quaglia et al.

have to run simultaneously (to reduce the simulation time on amultiprocessor system)
and in a synchronized way (to provide correct results). Therefore, different problems
must be solved to achieve this objective.

The first problem to be solved is the interconnection of the simulation tools.
Assuming that each tool is executed by a specific process in the host operating system,
simulation data should be exchanged by using inter-process communications, e.g.,
shared memory or network sockets. The transfer of simulation data between tools
should be efficient and independent of the complexity of the simulated model.

Another problem consists in the introduction of new modeling entities in each
tool to represent the connection of the standard entities provided by the tool with the
other components modeled by the other tool. For instance, in MATLAB/Simulink
workspace, new blocks are needed to represent the fact that the controller and the
plant are connected together through a component modeled outside MATLAB to
simulate the network.

The third issue is the creation of the same time domain for the global simula-
tion. This implies that tools should perform simulation in a synchronized way and
that cause–effect relationship between events belonging to different tools should be
preserved.

To show how these issues can be solved, we refer to an actual co-simulation plat-
form in whichMATLAB/Simulink is connected to the SystemCNetwork Simulation
Library (SCNSL) [1, 2]. However, the explained concepts are quite general and they
can be adapted to other tools.

34.2 Framework Key Concepts

Regarding the interconnection of the simulation tools, network sockets are used
to handle data transfer and synchronization between MATLAB and SystemC. As
depicted in Fig. 34.1, socket management is separated from system/network model-
ing, thus making it independent of the complexity of the NCS model. In SystemC
simulator, socket communications have been implemented in the simulation kernel,
while in MATLAB, they are addressed by a special Simulink block named MAT-
LAB Wrapper, developed as Level-2 m-file s-function. The use of sockets, instead of
sharedmemorymechanisms, allows to distribute simulation not only among different
CPUs but also among different hosts to enable load balancing or remote on-demand
simulation services.

Concerning the introduction of new modeling entities, the MATLAB Wrapper
plays this role in MATLAB/Simulink, while special objects named registers have
been introduced in SystemC (Fig. 34.1). The MATLAB Wrapper can be connected
to a user-defined number of scalar and vector input and output ports. Each port has a
unique identification number and a given update frequency. MATLAB executes the
Wrapper at the highest of these frequency values and, for each input port, creates a co-
simulation message bearing data, the port identification number, and the simulation
timestamp. Messages coming from SystemC with a given identification number

34 A SystemC/MATLAB Co-simulation Tool . . . 285

Fig. 34.1 Relationship between the new entities in MATLAB and SystemC and example of tele-
operation system sharing the network with concurrent traffic

are decoded, and data are written on the corresponding output port. The SystemC
simulator, born to model HW components, represents input/output ports as registers,
which have been extended to let themodel send/receive data to/fromMATLAB. Each
instance of these ports has a unique identification number which is used to associate
it to the corresponding port in the MATLAB Wrapper.

Concerning the creation of the same time domain, a synchronization protocol has
been created by using the blocking read primitive of the socket library [5].MATLAB
and SystemC exchange the time information about the next co-simulation event and
then perform local simulation until this time is reached. Then, one of the peers
waits for a co-simulation message from the other peer and the protocol is repeated.
MATLAB simulation advances time according to a given sampling frequency, which
allows to determine the time of the next co-simulation event. SystemC kernel is an
event-driven simulator which manages a list of time-sorted simulation events; the
next co-simulation event can be either the next event in the queue or a periodic
synchronization point whose frequency is set by the designer to trade-off between
time accuracy and simulation speed.

34.3 SystemC Network Simulation Library

SystemCNetwork Simulation Library (SCNSL) is an extension of SystemC to allow
modeling packet-based networks such as wireless networks, ethernet, fieldbus, etc.
As done by basic SystemC for signals on the bus, SCNSL provides primitives to
model packet transmission, reception, propagation, and contention on the channel
and wireless path loss. The use of SCNSL allows the easy and complete modeling
of distributed applications of networked embedded systems such as wireless sensor
networks, routers, and distributed plant controllers. The network scenario is described
in an object-oriented way by instantiating tasks, nodes, and channels. Tasks are used

286 D. Quaglia et al.

to model node functionality in terms of packet transmission and reception; in the
context of NCS, tasks are used to interface with the MATLABWrapper through the
already mentioned registers; when data arrive from MATLAB, the corresponding
task transmits them on the network and vice versa. Tasks are hosted by Nodes,
which represent physical devices. Thus, tasks deployed on different nodes shall
communicate through the channel. In case of wireless channel, some transmission
properties are bound to the nodes, i.e., position in a 3D space, transmission power, and
bitrate. Such properties are used by the simulator to reproduce mobility, propagation
delay, loss of signal strength as a function of distance, and collisions. The channel
represents the transmission medium; SCNSL provides models for both point-to-
point (full-duplex, half-duplex, and unidirectional) and shared channels as described
below. In this work, instances of point-to-point full-duplex channel are used tomodel
a wired network, while the shared channel is used to model a wireless network.

Point-to-Point Channel Models

Point-to-point channels are used to connect node pairs. A point-to-point channel is
characterized by its capacity and delay; the former represents the amount of bits
that can be delivered in the time unit, while the latter represents the propagation
delay; both are assumed constant during the simulation. Full-duplex channels allow
transmission in both directions at the same time while half-duplex in different time
intervals.

Shared Channel Models

Shared channels are used to connect more than two nodes. For each transmitting
node, signal power and distance are considered with respect to all the other nodes
to evaluate whether the transmitted packet can be reached and whether it generates
collisions with other packets. A shared channel is characterized by its attenuation
exponent which is applied to the distance to compute the power attenuation. Simple
shared channels are also characterized by a constantpropagation delay,while delayed
shared channels are characterized by a propagation speed which allows to compute
the propagation delay as a function of the distance between the transmitter and the
receiver.

34.4 Applications

In this section, two NCS applications are presented and modeled by using the co-
simulation tool to show its potentiality. For each application, the network model is
detailed and some experimental results are presented.

Bilateral Teleoperation System

A particular example of NCS is the bilateral teleoperation system [5] shown in
Fig. 34.1, which consists of the master device through which the operator controls
the remote slave robot and a packet-based networkwhich delivers all the signals (e.g.,
commands and measurements). Task0 and Task1 are the counterparts of master
and slave devices in the network simulator. They are hosted by nodes n0 and n1.

34 A SystemC/MATLAB Co-simulation Tool . . . 287

Nodes are connected by point-to-point full-duplex channels to create the so-called
bottleneck topology; peripheral nodes are connected through dedicated links to a
common backbone link. Nodes have queues to store packets exiting toward a busy
link; since the backbone capacity is shared among the different traffic flows, queue
levelmayvary during simulation and congestionmayhappen.Over this topology, two
end-to-end application flows have been defined between applications endpoints; in
Fig. 34.1, they are represented by curved arrows. The packet flow betweenmaster and
slave sides in the teleoperation application (in general, between controller and plant
in a NCS) has a constant bit rate since samples of commands and measurements are
taken at constant rate and put in packets.A concurrent flowhas beenmodeled between
nodes n4 and n5. It features an ON/OFF behavior with constant bit rate during
ON periods. Teleoperation has been simulated in both uncongested and congested
network conditions.

Figure 34.2a has been generated by MATLAB, and it shows the tracking error for
one of the joints of the slave robot. The dashed black line refers to the uncongested
scenario, whereas the red continuous line refers to the congested scenario in which
control performance are affected by packet delays and losses. Figure 34.2b, c have
been generated by the network simulator, and they show the packet loss rate and the
communication delay, respectively, of the path from the master to the slave. In all
the figures, the vertical lines separate the ON and OFF intervals of the concurrent
traffic. DuringOFF periods, the delay isminimumand equal to the propagation delay.
When the concurrent source is switched on, queues at the edges of the bottleneck
link start to grow and the delay increases. When the queues are full, arriving packets
are dropped. When the concurrent traffic is switched off, the number of enqueued
packets decreases as well as the delay. These results show that the co-simulation tool
works as expected. More complex network scenarios and concurrent traffic models
(e.g., probabilistic, actual recorded traffic, etc.) can be easily implemented to model
all possible kinds of working conditions.

Formation Control

Formation control is a traditional control problem in which autonomous vehicles
should adapt their trajectory and speed to keep relative position with respect to each
other [6]. In our scenario (Fig. 34.3a), each vehicle (except the formation leader)
has only one leader and zero or more followers. We assume that each vehicle knows
its position and speed and periodically broadcasts this information by using wireless
messages so that followers can know it. Therefore, each vehicle receives position
and speed of neighbors but considers only the information coming from its leader
and changes its trajectory and speed accordingly. As depicted in Fig. 34.3b, each
vehicle can be considered a NCS where the dynamic model of the vehicle represents
the plant which receives directly the command ui from the controller; the output yi

(position and speed of the vehicle) is sent back to the controller and to the neighbors
by using wireless messages; the output of a given vehicle is the reference signal
ri for all its followers; each vehicle (i.e., the corresponding plant) is affected by a
perturbation signal (e.g., due to wind, water flow, obstacles) which alters its position
and speed.

288 D. Quaglia et al.

Fig. 34.2 Tracking error, packet loss rate, and delay from the teleoperation simulation

(a) (b)

Fig. 34.3 Formation control scenario (a) and architecture of each NCS with tool mapping (b)

One of the most critical issues of this scenario is related to wireless transmis-
sion on the shared channel. Messages may not arrive to the followers because of
packet collisions (i.e., overlapping of more transmitted signals at the receiver side)
and out-of-range transmission. If the position of the leader is not heard, then the
follower cannot react promptly to trajectory changes and perturbations so that colli-

34 A SystemC/MATLAB Co-simulation Tool . . . 289

(a) (b)

Fig. 34.4 Vehicle trajectories in two different communication scenarios: minimum (a) and maxi-
mum (b) transmission power

sions between vehicles and loss of vehicles may occur. Reaction delay depends on
the timely reception of reference messages which depends on channel arbitration
(to avoid or compensate collisions) and propagation delay as a function of distance.
Analytical approaches to study channel behavior are not scalable with the number
of vehicles, and therefore, simulation is crucial to identify problems and to validate
solutions before the actual deployment. As depicted in Fig. 34.3b, we used the pro-
posed co-simulation tool in which MATLAB simulates the different vehicles (i.e.,
controllers, plants, and perturbations), while SystemC reproduces the behavior of
the wireless channel in between and the communication protocol.

Figure 34.4 shows the simulated behavior of the vehicles when the leader changes
trajectory in the presence of perturbations as a function of two different transmission
power settings. In the scenario shown in Figure 34.4.a, the transmission power of
each vehicle is set to the minimum required to reach the followers when the distance
requirements are satisfied. In the transient period, one vehicle (and its follower) gets
lost since it cannot hear the reference signal of its leader. In the scenario shown
in Figure 34.4.b, the transmission power of each vehicle is set to the maximum
so that messages can be heard over a great distance. In the transient period, the
perturbed vehicle increases the distance from the leader but, after a delay, rejoins
the group since messages continue to be heard even if the distance is great. The
drawback of this approach is the higher number of ripples in the trajectories (see
dashed region) due to problems in the reception of reference messages caused by an
increased number of collisions; in fact, nodes interfere with each other over a larger
area due to the higher transmission power. The results in Table 34.1 confirm this
conjecture; the higher variability of position error is related to the higher number of
packet losses depending on message collisions. In the table, the position error is also
compared to the one obtained with pure MATLAB simulation in which inter-node
communications are modeled as constant delay blocks. It is worth noting that the
purpose of this table is not to assess the performance of a particular control strategy,
protocol, or simulation tool but to show that no verification is possible without the
accurate modeling of the network provided by a suitable co-simulation tool.

290 D. Quaglia et al.

Table 34.1 Relationship between control performance and network behavior as a function of the
simulation strategy

Simulation strategy Position error (m) Packet loss rate

Mean Std. deviation

Co-sim. with minimum TX power 2.0 5.5 29%

Co-sim. with maximum TX power 2.3 9.4 72%

MATLAB only 0.4 1.0 N/A

34.5 Further Research

In general, co-simulation has some computational overhead due to synchronization.
To avoid this, a new trend in this context consists in representing both the discrete-
and the continuous-time components of the system by a single hybrid model. The
application of this approach to NCS should be still investigated in detail.

34.6 Further Reading

This co-simulation tool can be fruitfully used to fine-tune joint control/network
design techniques as those proposed in Chap. 33.

References

1. Accellera. IEEE Std 1666–2005 IEEE Standard SystemC Language Reference Manual. IEEE
Std 1666–2005, pages 1–423, 2006.

2. SystemC Network Simulation Library - version 2, 2012. URL: http://sourceforge.net/projects/
scnsl

3. Hespanha JP, Naghshtabrizi P, Xu Y (2007) A survey of recent results in networked control
systems. Proceedings of the IEEE 95(1):138–162

4. S. McCanne and S. Floyd. NS Network Simulator - version 2. URL: http://www.isi.edu/nsnam/
ns

5. Quaglia D, Muradore R, Bragantini R, Fiorini P (2012) A SystemC/Matlab co-simulation tool
for networked control systems. Simulation Modelling Practice and Theory 23:71–86

6. Wang PKC (1991) Navigation Strategies for Multiple Autonomous Mobile Robots Moving in
Formation. J. Robot. Syst. 8(2):177–195

7. Zhu C, Yang OWW, Aweya J, Ouellette M, Montuno DY (Jun. 2002) A comparison of active
queue management algorithms using the OPNET Modeler. IEEE Communications Magazine
40(6):158–167

http://dx.doi.org/10.1007/978-3-319-10407-2_33
http://sourceforge.net/projects/scnsl
http://sourceforge.net/projects/scnsl
http://www.isi.edu/nsnam/ns
http://www.isi.edu/nsnam/ns

	34 A SystemC/MATLAB Co-simulation Tool for Networked Control Systems
	34.1 Motivation and Problem Statement
	34.2 Framework Key Concepts
	34.3 SystemC Network Simulation Library
	34.4 Applications
	34.5 Further Research
	34.6 Further Reading
	References

