
Chapter 19
Team Theory and Information Structures
of Stochastic Dynamic Decentralized Decision

C.D. Charalambous and N.U. Ahmed

19.1 Motivation

Static team theory is a mathematical formalism of decision problems with multiple
decision makers acting on different information affecting a single payoff [1]. Its
generalization to dynamic team theory has far reaching implications in all human
activity including science and engineering systems. In general, decentralized sys-
tems consist of multiple local observation posts and decision or control stations,
in which the actions applied at the decision stations are calculated using different
information, that is, the arguments of the decision strategies are different. We call,
as usual, “information structures or patterns” the information available for decisions
at the decision stations to implement their actions, and we call such informations
“decentralized information structures” if the information available for decisions at
the various decisions stations are not identical to all stations. Moreover, we call an
information structure “classical” if all decision stations have the same information
structures, and the information structure at the decision stations is nested, also called
perfect recall, (i.e., a decision station that at some time has available certain infor-
mation will have available the same information at any subsequent times), otherwise
we call it “nonclassical.” Early work discussing the importance of information struc-
tures in decision making and its applications is found in [2, 3], while more recent
one is found in [4–6]. The most general examples with nested information structures
admitting closed form solutions appear to be the ones in [7] .

Stochastic discrete-time dynamic decision problems with nonclassical informa-
tion structures are often formulated using team theory; the two methods proposed
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over the years are based on identifying conditions so that discrete-time stochastic
dynamic team problems can be equivalently reduced to static team problems [5] and
dynamic programming [6].

In this chapter, we discuss recent results by the authors in [8–12] on stochas-
tic dynamic decision problems with nonclassical information structures, formulated
using dynamic team theory. For an introduction to static team theory and related
literature, we suggest the paper by Jan van Schuppen in this book.

Our objectives are the following.

(1) ApplyGirsanov’s change of probabilitymeasure to transform stochastic dynamic
team problems to equivalent problems in which the state and/or the observations
and information structures are not affected by any of the team decisions;

(2) apply stochastic maximum principle to derive necessary and sufficient team and
PbP optimality conditions.

We illustrate the importance of Girsanov’s change of probability measure [13] in
generalizing Witsenhausen’s [5] notion on equivalence between discrete-time sto-
chastic dynamic team problems which can be transformed to equivalent static team
problems, to continuous-time Itô stochastic nonlinear differential decentralized deci-
sion problems, and to general classes of discrete-time models. The optimal strategies
of Witsenhausen’s counterexample [2] can be derived using this method. We also
invoke the stochastic maximum principe to present necessary and sufficient team and
PbP optimality conditions described in terms of conditional variational inequalities
with respect to the information structures and BSDEs.

19.2 Team Theory of Stochastic Dynamic Systems

Given the information structure {I k(t) : t ∈ [0, T ]} available at the kth decision sta-
tion and the corresponding admissible regular strategiesU

k
reg[0, T ] for k = 1, . . . , K ,

the team decision problem is defined as follows.

inf{J (u1, . . . , uK ) : (u1, . . . , uK ) ∈ × K
k=1U

k
reg[0, T ]} (19.1)

J (u1, . . . , uK ) = E
{ ∫ T

0
�(t, x(t), u1(t, I 1), . . . , uK (t, I K ))dt + ϕ(x(T ))

}
,

(19.2)

subject to stochastic dynamics with state x(·) and noisy observations at the observa-
tion posts {yi (·) : i = 1, . . . , M}, which are solutions of the Itô differential equations

dx(t) = f (t, x(t), u1(t, I 1), . . . , uK (t, I K ))dt

+ σ(t, x(t), u1(t, I 1), . . . , uK (t, I K ))dW (t), x(0) = x0, (19.3)

dym(t) =hm(t, x(t), u1(t, I 1), . . . , uK (t, I K ))dt + Dm, 12 (t)d Bm(t), m = 1, . . . , M.

(19.4)
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Here, uk(t, I k) ∈ A
k ⊆ R

dk and {W (t) : t ∈ [0, T ]}, {Bm(t) : t ∈ [0, T ]} are
independent Brownian motion (BM) processes. The stochastic system (19.3) can
be specialized to any interconnected subsystems architectures. For simplicity, we
assume K = M ≡ N and we consider the following information structures. Denote
the observation posts which communicate to the i th decision station by O(i) ⊂
{1, 2, . . . , i − 1, i + 1, . . . , N } ⊂ ZN

�= {1, 2, . . . , N }, i = 1, . . . , N .
Nonclassical Information Structures. The decision applied at the i th decision

station, ui
t ≡ ui (t, I i ) at time t ∈ [0, T ] is a nonanticipative measurable function of

I i (s)
�= {yi (s), y j (s − ε j ) : ε j > 0, j ∈ O(i)}, 0 ≤ s ≤ T, i = 1, . . . , N .

Letting G I i

0,t
�= σ

{
I i (s) : 0 ≤ s ≤ t

}
denote the minimal σ−algebra generated by

{I i (s) : 0 ≤ s ≤ t}, t ∈ [0, T ], then {G I i

0,t : i = 1, . . . N } are nonclassical because
they are different .

Restricting G I i

0,t to G
I i (t) �= σ

{
I i (t)}, then {G I i (t) : i = 1, . . . , N } are nonclassi-

cal because they are different, and nonnested, because G I i (t)
� G I i (τ ),∀τ > t, i =

1, . . . , N .

A generic information structure is denoted by G i
T

�= {G i
t : t ∈ [0, T ]}, which can

be specialized to {G yi

0,t : t ∈ [0, T ]}, {G I i

0,t : t ∈ [0, T ]}, {G I i (t) : t ∈ [0, T ]}.
Next, we describe the set of admissible relaxed strategies which are conditional

distributions, since regular strategies are special cases of delta measures [9, 11].

Definition 19.1 (The Admissible Relaxed Strategies) The strategy applied at i th
decision station is a conditional distribution defined by

ui
t (Γ ) = qi

t (Γ |G i
t ), for t ∈ [0, T ], and ∀ Γ ∈ B(Ai ), i = 1, . . . , N .

Each strategy is member of an appropriate function space [9, 11] denoted by
U

i
rel [0, T ], i = 1, . . . , N . An N tuple of relaxed strategies is U

(N )
rel [0, T ] �= ×N

i=1U
i
rel [0, T ].

The notation for relaxed strategies u ∈ U
(N )
rel [0, T ] is f (t, x, ut )

�= ∫
( f (t, x, ξ1, . . . , ξ N ))×

N
i=1ui

t (dξ i ) and similarly for {σ, h, �} in (19.1)–(19.4).
Problem 19.1 (Team and PbP Optimality) A relaxed strategy uo ∈ U

(N )
rel [0, T ] for

(19.1)–(19.4) is called team optimal if

J (u1,o, u2,o, . . . , uN ,o) ≤ J (u1, u2, . . . , uN ), ∀u
�= (u1, u2, . . . , uN ) ∈ U

(N )
rel [0, T ],

and it is called PbP optimal if it satisfies J̃ (ui,o, u−i,o) ≤ J̃ (ui , u−i,o),∀ui ∈
U

i
rel [0, T ], ∀i ∈ ZN , J̃ (v, u−i )

�= J (u1, u2, . . . , ui−1, v, ui+1, . . . , uN ).

Notation. C([0, T ], R
n): space of continuous R

n−valued functions defined on
[0, T ].
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L2
FT

([0, T ], R
n): space of {F0,t : t ∈ [0, T ]}−adaptedR

n−valued randomprocesses

{z(t) : t ∈ [0, T ]} such that E
∫
[0,T ] |z(t)|2Rndt < ∞.

L2
FT

([0, T ],L (Rm, R
n)): space of {F0,t : t ∈ [0, T ]}−adapted n ×m matrix valued

random processes {	(t) : t ∈ [0, T ]} such that E
∫
[0,T ] |	(t)|2L (Rm ,Rn)

dt < ∞.

B∞
FT

([0, T ], L2(Ω, R
n)): space of {F0,t : t ∈ [0, T ]}-adapted R

n− valued second-

order randomprocesses endowedwith thenorm topology ‖ x ‖2�= supt∈[0,T ] E|x(t)|2
Rn .

19.3 Equivalent Stochastic Dynamic Team Problems

In this section, we invoke Girsanov’s theorem to transform the original stochastic
dynamic decision problem to an equivalent decision problem with corresponding
observations and information structures which are independent and independent of
any of the team decisions. Consider

(WP1) x(0) = x0: an R
n-valued random variable with distribution Π0(dx);

(WP2) {W (t) : t ∈ [0, T ]}: an R
m-valued standard BM, independent of x(0);

(WP3) {yi (t)
�= ∫ t

0 Di, 12 (s)d Bi (s) : t ∈ [0, T ]}: R
ki -valued, i = 1, . . . , N ,

mutually independent BMs, independent of {W (t) : t ∈ [0, T ]}.
where W (·) ∈ C([0, T ], R

m), with Borel σ−algebraFW
0,T

�= B(C[0, T ], R
m)) and

P
W its Wiener measure on it, similarly for yi (·), with F

yi

0,T
�= B(C(0, T ], R

ki )),

P
yi
, i = 1, . . . , N , and B(C(0, T ], R

k))
�= ⊗N

i=1B(C(0, T ], R
ki )), k = ∑N

i=1 ki ,

P
y �= × N

i=1P
yi
. Then, we define the reference probability space (Ω, F, {F0,t : t ∈

[0, T ]}, P), by Ω
�= R

n × C([0, T ],�m) × C([0, T ],Rk), F
�= B(Rn) ⊗ B(C([0, T ],Rm) ⊗

B(C([0, T ],Rk), F0,t
�= B(Rn) ⊗ FW

0,t ⊗ G
y
0,t , t ∈ [0, T ], P

�= Π0 × P
W × P

y , the
independent observations (WP3), which are independent of the decisions, and the
state process by

dxu(t) = f (t, xu(t), ut )dt + σ(t, xu(t), ut )dW (t), x(0) = x0, t ∈ (0, T ].
(19.5)

Then, we introduce the exponential functions for i = 1, . . . , N :

Λi,u(t)
�= exp

{ ∫ t

0
hi,∗(s, x(s), us)Di,−1(s)dyi (s)

− 1

2

∫ t

0
hi,∗(s, x(s), us)Di,−1(s)hi (s, x(s), us)ds

}
, Λu(t)

�=
N∏

i=1

Λi,u(t),

dΛu(t) =Λu(t)
N∑

i=1

hi,∗(t, x(t), ut )Di,−1(t)dyi (t), Λu(0) = 1, t ∈ [0, T ]. (19.6)
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For u ∈ U
(N )
rel [0, T ], the payoff under the reference probability space (Ω, F, P) is

J (u)
�= E

{ ∫ T

0
Λu(t)�(t, x(t), ut )dt + Λu(T )ϕ(x(T )

}
. (19.7)

Under the reference probability measure P, the payoff (19.7) with Λu(·) given by
(19.6), and the state process satisfying (19.5) is a transformed problem with obser-
vations which are not affected by any of the team decisions. If {Λu(t) : t ∈ [0, T ]}
is an ({F0,t : t ∈ [0, T ]}, P)-martingale, then, we define a probability measure by
setting

dPu

dP

∣∣∣
FT

= Λu(T ). (19.8)

Under the probability measure (Ω, F, P
u), the observations, state, and payoff are

defined by (19.2)–(19.3), with Bi (·) replaced by Bi,u(·), i = 1, . . . , N , and E byE
u .

Fact 1. There formulation of the stochastic dynamic team problem under proba-
bility space (Ω, F, {F0,t : t ∈ [0, T ]}, P

u), (19.1)–(19.4), is equivalent to that under
the reference probability space (Ω, F, {F0,t : t ∈ [0, T ]}, P), (19.5)–(19.7), in which
{yi (t) : t ∈ [0, T ]}, i = 1, . . . , N are Brownian motions, and hence, the information
structures are independent of the team decisions.

Fact 2. Girsanov’s approach implies that the probability measure P
u and the

Brownian motions {Bi,u(t) : t ∈ [0, T ]} depend on u but {yi (t) : t ∈ [0, T ]} and
{G yi

0,t : t ∈ [0, T ]}, i = 1, . . . , N , are fixed â priori and independent of u. When
the information structures are functionals of the state process {x(t) : t ∈ [0, T ]},
then for σ independent of u, we can also make {x(t) : t ∈ [0, T ]} to be independent
of u by replacing (19.5) by dx(t) = σ(t, x(t))dW (t) [12]. We can derive a BSDE
relating the value process and PbP optimality [12].

Fact 3. Girsanov’s measure transformation generalizes and makes precise Wit-
senhausen’s [5] equivalence of discrete-time stochastic dynamic decision problems
to static team problems. The “common denominator condition" and “change of vari-
ables" described in [5] are equivalent to the “change of probability measure” via
(19.8) and the associated Bayes’ theorem of expressing J (u) via (19.7) [11, 12].

19.4 Team and PbP Optimality Conditions

In this section, we describe some of the consequences of Fact 1, Fact 2, Fact 3, in
deriving necessary and sufficient team and PbP optimality conditions.
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19.4.1 Discrete-Time Equivalence of Static and Dynamic Team
Problems

Consider a discrete-time team problem on the probability space (Ω, F, {F0,t : t ∈
N

T
0 }, P

u), N
T
0

�= {0, 1, . . . , T }, N
T
1

�= {1, 2, . . . , T } described by

x(t + 1) = f (t, x(0), . . . , x(t), u1(t), . . . , uN (t)) + G(t)wu(t + 1), t ∈ N
T −1
0 , (19.9)

ym(t) = hm(t, x(t), u1(t), . . . , uN (t)) + D
1
2 ,m(t)bm,u(t), t ∈ N

T
0 , ∀m ∈ ZN , (19.10)

J (u) =E
u{

T −1∑
t=0

�(t, x(t), u1(t), . . . , uN (t)) + ϕ(x(T ))}, (19.11)

where {x(0), wu(·), bm,u(·)} are independent, distributed according to Π0(dx),
{w(t) ∼ ζt (·) �= Gaussian(0, In×n) : t ∈ N

T
1 }, {bm,u(t) ∼ λm

t (·) �= Gaussian(0, Ikm×km ) : t ∈
N

T
0 }, and G(·), D

1
2 ,m(·) invertible, for m = 1, . . . , N .

Next, we specify the information structures. For t ∈ {0, 1, . . . , T }, let Yt
�=

{(τ, m) ∈ {0, 1, . . . , t} × {1, 2, . . . , N }}. A data basis at time t ∈ {0, 1, . . . , T }
for the kth decision station is a subset Yt,k ⊆ Yt . The interpretation is that the
decision applied by the kth station at time t is based on {yμ(τ) : (τ, μ) ∈ Yt,k}, i.e.,
uk(t) ≡ γ k

t ({yμ(τ) : (τ, μ) ∈ Yt,k}, t ∈ N
T
0 , k = 1, . . . , N .

We introduce Girsanov’s measure transformation via the following quantity.

Θu
0,t

�=
t∏

τ=1

ζτ (G−1(τ − 1)(x(τ ) − f (τ − 1, x(0), . . . , x(τ − 1), u1(τ − 1), . . . , uN (τ − 1))))

|G(τ − 1)|ζτ (x(τ ))

.
λτ (D− 1

2 (τ )(y(τ ) − h(τ, x(τ ), u1(τ ), . . . , uN (τ ))))

|D 1
2 (τ )|λτ (y(τ ))

, t ∈ N
T
1 , (19.12)

where Θu
0,0

�= λ0(D− 1
2 (0)(y(0)−h(0,x(0),u1(0),...,uN (0))))

|D 1
2 (0)|λ0(y(0))

. Under (Ω, F, {F0,t : t ∈
N

T
0 }, P), {(x(t), ym(t)) : t ∈ N

T
0 } are independent, with x(0) having distribution

Π0(dx), {x(t) ∼ ζt (·) : t ∈ N
T
1 }, and {ym(t) ∼ λm

t (·) : t ∈ N
T
0 }, for m = 1, . . . , N ,

unaffected by the team decisions, and the discrete-time team payoff is given by

J (u) =
∫ {

Θu
0,T (x(0), u1(0), . . . , uN (0), y(0), . . . , x(T ), u1(T ), . . . , uN (T ), y(T ))

.
( T −1∑

t=1

�(t, x(t), u1(t), . . . , uN (t)) + ϕ(x(T ))
)}

.Π0(dx(0)).λ0(y(0)).
T∏

t=1

ζt (x(t)).λt (y(t))dx(t).dy(t), (19.13)

J (γ ∗[0,T ]) = inf
{

J (γ[0,T ]) : γ[0,T ] ∈ U
(N )[0, T ], J (·) ≡ (19.3)

}
. (19.14)

This is the transformed equivalent stochastic team problem.
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Fact 4. Dynamic team (19.9)–(19.11) is equivalent to the static team (19.13),
(19.14), and hence, optimality conditions in [4] are applicable to (19.14). This is
applied in [11] to compute the optimal strategies of Witsenhausen’s [2] counterex-
ample.

19.4.2 Continuous-Time Stochastic Maximum Principle for Team
Optimality

Next,wepresent the optimality conditions for Problem19.1, derived in [11].Consider
the equivalent team problem under the reference probability space (Ω, F, {F0,t : t ∈
[0, T ]}, P), described by {Λ, x} satisfying (19.6), (19.5), and reward (19.7). Let
X

�= V ector{Λ, x} ∈ R × R
n, W (·) �= V ector{∫ ·

0 D
1
2 (s)d B(s), W (·)} ∈ R

k+m ,

h(t, x, u)
�= V ector{h1(t, x, u), . . . , hN (t, x, u)}, L(t, X, u)

�= Λ�(t, x, u), Φ(X)
�=

Λϕ(x), then

d X (t) =F(t, X (t), ut )dt + G(t, X (t), ut )dW (t), X (0) = X0, t ∈ (0, T ]. (19.15)

J (u) =E{
∫ T

0
L(t, X (t), ut )dt + Φ(X (T ))}. (19.16)

The Hamiltonian H : [0, T ] × R
n+1 × R

n+1 × L (Rm+k ,Rn+1) × M1(A
(N )) → R is

H (t, X, Ψ, Q, u)
�= 〈F(t, X, u), Ψ 〉 + tr(Q∗G(t, X, u)) + L(t, X, u). (19.17)

For any u ∈ U
(N )
rel [0, T ], the state process satisfies (19.15), the adjoint process

(Ψ, Q) ∈ L2
FT

([0, T ], R
n+1) × L2

FT
([0, T ],L (Rm+k, R

n+1)) and it satisfies the
BSDE

dΨ (t) = −HX (t, X (t), Ψ (t), Q(t), ut )dt + Q(t)dW (t), Ψ (T ) = ΦX (X (T )). (19.18)

Theorem 19.1 ([11] Team Optimality Conditions. Necessary Conditions) For an
element uo ∈ U

(N )
rel [0, T ] with the corresponding solution Xo ∈ B∞

FT
([0, T ], L2(Ω,

R
n+1)) to be team optimal, it is necessary that

(1) There exists (Ψ o, Qo) ∈ L2
FT

([0, T ], R
n+1) × L2

FT
([0, T ],L (Rm+k, R

n+1)).
(2) The variational inequality is satisfied:

N∑
i=1

E

{ ∫ T

0
H (t, Xo(t), Ψ o(t), Qo(t), u−i,o

t , ui
t − ui,o

t )dt
}

≥ 0, ∀u ∈ U
(N )
rel [0, T ].

(3) (Ψ o, Qo) is a unique solution of the BSDE (19.18) with uo ∈ U
(N )
rel [0, T ] satis-

fying
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E

{
H (t, Xo(t),Ψ o(t), Qo(t), u−i,o

t , νi )|G i
t

}
≥ E

{
H (t, Xo(t), Ψ o(t), Qo(t), uo

t )|G i
t

}
,

∀νi ∈ M1(A
i ), a.e.t ∈ [0, T ],P|G i

t
− a.s., i ∈ ZN (19.19)

Sufficient Conditions. Let (Xo(·), uo(·)) denote an admissible state and decision
pair and let Ψ o(·) the corresponding adjoint processes and assume

(C) H (t, ·, Ψ, Q, ν) is convex in X ∈ R
n+1; Φ(·) is convex in X ∈ R

n+1.
Then, (Xo(·), uo(·)) is optimal if it satisfies (19.19).

Fact 5. The necessary conditions for team optimality are equivalent to those
of PbP optimality, and under (C), PbP optimality implies team optimality. Since
regular strategies U

(N )
reg [0, T ] are embedded into relaxed strategiesU(N )

rel [0, T ], from
Theorem 19.1, we obtain the optimality conditions for regular strategies [8, 11].
Applications of (19.19) lead to fixed point-type equations. Example can be carried
out as in [9].

19.5 Additional Results and Open Issues

For noiseless and noisy nonclassical information structures, related results and exam-
ples, without invoking Girsanov’s measure transformation, are found in [9, 10].

Extensions to a stochastic differential equation driven by continuous and jump
martingales can be derived from those in [8].

Extensions of the stochasticmaximumprinciple to discrete-time dynamic systems
can be derived from those in [9–11].

Extensions to minimax or Nash-equilibrium strategies are still open problems.
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