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Abstract. An efficient and accurate segmentation of 3D transrectal ul-
trasound (TRUS) images plays an important role in the planning and
treatment of the practical 3D TRUS guided prostate biopsy. However,
a meaningful segmentation of 3D TRUS images tends to suffer from
US speckles, shadowing and missing edges etc, which make it a chal-
lenging task to delineate the correct prostate boundaries. In this paper,
we propose a novel convex optimization based approach to extracting
the prostate surface from the given 3D TRUS image, while preserving
a new global volume-size prior. We, especially, study the proposed com-
binatorial optimization problem by convex relaxation and introduce its
dual continuous max-flow formulation with the new bounded flow con-
servation constraint, which results in an efficient numerical solver im-
plemented on GPUs. Experimental results using 12 patient 3D TRUS
images show that the proposed approach while preserving the volume-
size prior yielded a mean DSC of 89.5% + 2.4%, a MAD of 1.4+ 0.6 mm,
a MAXD of 5.2 + 3.2 mm, and a VD of 7.5% =+ 6.2% in ~ 1 minute,
deomonstrating the advantages of both accuracy and efficiency. In addi-
tion, the low standard deviation of the segmentation accuracy shows a
good reliability of the proposed approach.

Keywords: Image Segmentation, 3D Prostate TRUS Image, Convex
Optimization, Volume Preserving Constraint.

1 Introduction

Prostate adenocarcinoma (PCa) is the most common non-cutaneous malignancy
in American men with over 200,000 new cases diagnosed each year [1]. Defini-
tive diagnosis of PCa requires a transrectal ultrasound (TRUS) guided biopsy [2].
Recent developments of biopsy systems using the fusion of 3D prostate TRUS
and MR imagesdemonstrated an increased positive yield and greater number
of cores with higher Gleason grade [3]. An accurate and efficient automated
or semi-automated 3D prostate TRUS segmentation is highly beneficial for the
registration of the 3D MR prostate image to TRUS in those systems [4,5,6]. How-
ever, the accurate segmentation of 3D TRUS images often suffers from the low
quality of TRUS images, as shown in Fig. 1(a), such as US speckles, shadowing
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due to calcifications, missing edges or texture similarities between the inner and
outer regions of the prostate etc [7], which make it challenging to implement such
an automated or semi-automated 3D TRUS segmentation method. The target
of this study is to develop an accurate, efficient and reliable 3D prostate TRUS
image segmentation approach.

Even though there are extensive studies [8] in delineating prostate boundaries
from 3D TRUS images, most of them rely on classifiers, atlas or deformable
models. The deformable model based methods typically used a 3D deformable
surface as initialization, which is then automatically refined by forces, such as
image gradient and smoothness of the surface [9,10,11]. These methods were
designed and implemented in a local optimization style, such that the discrete
propagation step-size is restricted to be small enough to achieve convergence and
it results in low computational inefficiency. In addition, the local optimization
based segmentation methods are sensitive to the initialization, and would leak
at the locations with weak edges. The direct 3D segmentation methods worked
well for the reported applications, but are time consuming and require inten-
sive user interactions that leads to a high observer variability. Classifier based
technique, such as support vector machine (SVM), depended on the training
datasets [12]; however, the image quality in the datasets significantly varied due
to different US machine settings, which prevents this technique from practical
clinical applications.
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Fig. 1. Fig. 1(a) illustrates the typical 2D view of a 3D TRUS image with US speckles,
calcifications, weak edge information etc. Fig. 1(b) shows the flow configurations of the
proposed continuous max-flow model.

Contributions: In this study, we propose a novel convex optimization based
approach to segmenting the prostate from the given 3D TRUS image while
enforcing the new global volume-size prior, which is inspired by the work [13].
Such volume-size prior provides a global geometric description for the interesting
object region and helps the segmentation procedure avoid suffering from low
image quality of TRUS images. We, especially, introduced a non-smooth L1
volume prior function (its derivative cannot be directly computed) and employed
a continuous convex optimization framework, which yields better efficiency and
accuracy while avoiding metrification errors, and results in an efficient numerical
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solver implemented on GPUs. Promising experimental results demonstrate the
advantages of the proposed approach in both accuracy and efficiency, along with
a great reliability.

2 Methods

In this section, we introduce a novel global/convex optimization based approach
to segmenting an input 3D prostate TRUS image I(z) into the prostate region
Rp and the background region Rp, while imposing a new volume-size prior of
the prostate region. Actually, the volume-size information about the interesting
object region provides a global geometric description for the image segmentation
task; on the other hand, such knowledge can be easily obtained in most appli-
cations by learning the given training images or the other information sources.
In this work, the prostate volume-size )V of the specified patient is calculated
from the pre-segmented 3D prostate T2-weighted MR image of the same patient
(see Sec. 3 for more details of the pipeline and initializations). Note: the exact
volume-size is not necessary for the proposed approach in this paper and the
approximation of the prostate volume could also be obtained from the other
image source, for example the 3D prostate CT image.

Especially, we propose a new continuous min-cut formulation with the in-
troduced volume-size preserving prior and solve the challenging combinatorial
optimization problem by means of convex relaxation. To this end, a novel con-
tinuous max-flow model with a bounded unvanished flow conservation condition,
which is in contrast to the classical max-flow models with the exact vanishing
flow conservation constraint [14,15,16]; moreover, we show its duality to the con-
vex relaxaion of the studied continuous min-cut formulation with the volume-size
preserving constraint, which directly derives an efficient duality-based numerical
scheme implementing on the modern parallel computing platforms, e.g. GPUs.

Continuouse Min-Cut Model with Volume-Size Preserving. In this work,
the intensity appearance information of the input TRUS image I(x), i.e. the cor-
responding intensity probability density functions (PDFs) of both the prostate
region Rp and background region Rp, is utilized to assist the prostate TRUS
image segmentation task. Such intensity appearance models provide a global de-
scriptor of both regions of prostate and background in image statistics, which
can be learned by either sampled pixels or the specified training datasets. Let
wP (I(z)) be the intensity PDF of the prostate region R p appearing on the input
image I(z), which actually encodes the probability of each pixel = belonging to
the region Rp; and w?(I(x)) the PDF of the background region Rp. In conse-
quence, we define the cost function Dy(z) of labeling each pixel x to be in the
prostate region Rp, and D;(z) the labeling cost function w.r.t. the background
region R p, by the log-likelihoods of the respective PDFs, i.e.

Di(w) = —log (w"(I(x))), Di(x) = —log (W’ (I(x))) .

Let u(z) € {0,1} be the indicator/labeling function of the prostate region
Rp, where u(z) = 1 denotes the pixel x inside Rp, and otherwise outside Rp.
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With this regard, the classical way to segment the input TRUS image of I(z)
is to minimize the min-cut energy function [14,15], e.g. the spatially continuous
min-cut model [15]:

min  B(u) = (u,Dt>+(1—u,Ds)+/ (@) |Vl de (1)
u(z)€{0,1} Q

where g(xz) > 0 stands for the weight function assocaited with image edges,
hence the weighted total-variation function measures the weighted area of the
prostate region. In this paper, we also enforce preserving the specified volume-
size V in the continuous min-cut model (1) by penalizing the difference between
the volume of the prostate region Rp and V), such that

min  FE(u) + y|V — / udx 2
Lo E(w) [y [ udal. 2)
where v > 0 is a positive parameter to impose a soft volume-size constraint,
which is set once for segmenting the whole dataset.

In this work, we solve the introduced challenging combinatorial optimization
problem (2) by its convex relaxation, i.e.

min  E(u) + V—/udm 3
L (u) + 7| ; | (3)

where the binary labeling constraint u(x) € {0,1} in (2) is relaxed to the convex
set of u(x) € [0,1]. Given the convex energy function of (3), it results in the con-
vex optimization problem which is much simpler than its original combinatorial
optimization model (2) in mathematics.

Continuous Max-Flow Formulation with Bounded Flow Conservation.
Now we propose a new continuous maz-flow model along with the same flow
configuration as in [15] (also see Fig. 1(b) for illustration), such that:

max / psdx + 1V (4)
Q

Ps;Pt,q,"

subject to

— Flow capacity constraints: the source, sink and spatial flows p,(z), pi(z) and
q(z) suffice:

ps(®) < Ds(x), pi(@) < Di(x), |g(z)| < g(x); Vo € 2; (5)

— Bounded flow conservation constraints: the total flow residue is not vanishing
at any pixel z € {2 but bounded, i.e.

(divq - Dps + pt)(x) =rc [*’Vaﬁ”a Va € (2. (6)

Obviously, the proposed continuous max-flow model (4) is distinct from the
classical continuous max-flow formulation investigated in [15], in that the flow
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residue at each pixel x for (4) does not vanish, but is equal to a constant value
r which is bounded within the range [—+v,~], while a strict flow conservation
condition is required for the classical max-flow model of [15]. In addition, the
total energy of (4) is evaluated by the total flow streaming from the source plus
the total flow residue V.

Follow the same analysis proposed in [15,16], we can prove

Proposition 1. The continuous max-flow model (4) and the convex relaxation
of volume-preserving continuous min-cut model (3) are dual (equivalent) to each
other, i.e.

(4) <= (3).

The proof is omitted due to the limited space.

Clearly, maximizing the proposed continuous maz-flow model (4) enjoys great
numerical advantages such that it successfully avoids directly tackling the non-
linear and non-smooth function terms of the studied convex relaxed optimization
problem (3). Additionally, it also derives an efficient multiplier-augmented al-
gorithm based on the modern convex optimization theory (see [15] for details),
which can be readily implemented on the modern parallel computing platforms,
i.e. GPUs, to significantly improve the computational efficiency in practice.

3 Experiments and Results

Image Acquisition: All subjects involved in this study were suspected to have
tumors identified by multi-spectral MR imaging. The images were acquired with
a rotational scanning 3D TRUS-guided prostate biopsy system, which made use
of a commercially available end-firing TRUS transducer (Philips, Bothell WA).
The size of each 3D image was 448 x 448 x 350 voxels of size 0.19x0.19 x 0.19mmS3.
12 patient images were tested in this paper.

Implementations: The prostate volume size of each patient used as the vol-
ume preserving prior was calculated from the manually pre-segmented prostate
T2 weighted MR image of the same patient by three experts. The proposed ap-
proach was initialized by a closed surface, which is constructed by the thin-plate
spline with positioning ten initial points on the boundary of the prostate (six

Fig. 2. Segmented ventricles (green contour, DSC: 92.5%) overlapped with manual
segmentations (red contour). Left to right: segmented surface, sagittal view, coronal
view, and transverse view.
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at the transverse view, four at the sagittal view) [17,18]. The inside and outside
voxels of the estimated surface are used to generate prior intensity probability
density functions (PDFs) for the prostate and background regions, and the cost
functions Dj (x) were calculated by the log-likelihood of the respective inten-
sity PDF's [18]. The closed surface also defines the initial guess of the prostate
region and gives the starting value of the labeling function u(z) for the proposed
approach. The proposed algorithm was implemented on the parallel computing
architecture (CUDA, NVIDIA Corp., Santa Clara, CA) and the user interface in
Matlab (Natick, MA). The GPU based algorithm was developed and integrated
with the non-optimized Matlab program, which ran on a Windows desktop with
an 4-core Intel 17-2600 CPU (3.4 GHz) and a NVIDIA Geforce 5800X GPU.

Evaluation Metrics: A manual segmentation of each image used as the ground
truth was compared to the algorithm segmented result, using volume-based met-
rics: Dice similarity coefficient (DSC); distance-based metrics: the mean abso-
lute surface distance (MAD) and maximum absolute surface distance (MAXD);
and volume measurement metrics: absolute volume difference (VD), |(Varanual —

Valgorithm ) /VManual | .

Table 1. Segmentation results of 12 patient 3D TRUS images in terms of DSC, MAD,
MAXD, and VD, represented as Mean + SD, using the continuous max-flow algorithm
with (CM Fyp) and without (CM F [15]) volume preserving constraint

DSC (%) MAD (mm) MAXD (mm) VD (%)
CMFyvp 895+24 1.44+0.6 5.2+3.2 7.5£6.2
CMF 783+ 74 3.5+1.3 9.4+£3.0 15.0+10.2

Accuracy: Figure 2 shows one algorithm segmented prostate (green contours)
and manual delineations (red contours) of one patient, visually demonstrating a
good agreement. Table 1 shows the mean quantitative segmentation results for
12 patient images using the proposed method. Our approach obtained a mean
DSC of 89.5% =+ 2.4%, a MAD of 1.4 + 0.6 mm, a MAXD of 5.2 &+ 3.2 mm,
and a VD of 7.5% + 6.2% for the used 12 patient images. More specifically,
the proposed continous max-flow algorithm with the volume-preserving prior
impoved the accuracy by more than 11% in terms of DSC comparing to the
continous max-flow algorithm without priors [15].

Computational Efficiency: The mean segmentation time of the GPU imple-
mented algorithm for one 3D TRUS image, calculated as a mean time using all
3D TRUS images, was 35+ 5 s in addition to 30 + 5 s for initialization, hence
less than 1.2 minutes for a given 3D TRUS image in avarage.

4 Discussion and Conclusion

This paper proposes an accurate and efficient segmentation algorithm for 3D
prostate TRUS images. The experimental results using 12 patient images show
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that the proposed method yielded a mean DSC of 89.5% + 2.4%, a MAD of
1.4 4+ 0.6 mm, a MAXD of 5.2+ 3.2 mm, and a VD of 7.5% =+ 6.2% within 1.2
minutes compared to manual segmentations. The low standard deviation of the
segmentation accuracy in terms of metrics above shows a good consistency during
all the segmentations, which is an important aspect in clinic. We compared our
proposed approach with the prostate segmentation algorithms using 3D TRUS
images, which used similar evaluation metrics and provided best segmentation
accuracy in a literature reviewing paper [8]. The mean DSC of 89.5% obtained
by our method are comparable to a volume overlap of 83.5% obtained by Tutar
et al. [9] and 86.4% obtained by Garnier et al. [11], and a volume overlap error of
6.63% obtained by Mahdavi et al. [10]. The mean MAD of 1.4 mm obtained by
our method is comparable to 1.26 mm obtained by Tutar et al. [9]. In addition,
the computational time of 35 seconds of our method excluding initialization
time is less than 1-4 minutes obtained by Tutar et al. [9]. Although Mahdavi
et al. [10] reported 14 seconds for one image segmentation in their experiments,
their method required additional 1-3 minutes for modification. The method by
Garnier et al. [11] required 26 seconds, but it was implemented in C language and
the computation was limited in an user defined ROI. Note that the computation
of the energy formulations F(u) in (1) including the data cost functions D +(z)
and the image edge weight function g(x) were developed using a Matlab code
and run on CPU, which could be parallelized or converted to the C program to
speed up computation.

In conclusion, this paper proposed a novel globally optimized volume-
preserving segmentation approach for 3D TRUS images. The quantitative valida-
tion results using different metrics (DSC, MAD, MAXD, and VD) showed that
it is capable of delineating the prostate surface accurately and efficiently. Its
performance results suggest that it may be suitable for the clinical use involving
the image guided prostate biopsy procedures.
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