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Abstract. Interventional cardiologists are often challenged by a high degree of
variability in the coronary venous anatomy during coronary sinus cannulation
and left ventricular epicardial lead placement for cardiac resynchronization ther-
apy (CRT), making it important to have a precise and fully-automatic segmen-
tation solution for detecting the coronary sinus. A few approaches have been
proposed for automatic segmentation of tubular structures utilizing various ves-
selness measurements. Although working well on contrasted coronary arteries,
these methods fail in segmenting the coronary sinus that has almost no contrast in
computed tomography angiography (CTA) data, making it difficult to distinguish
from surrounding tissues. In this work we propose a multiscale sparse appearance
learning based method for estimating vesselness towards automatically extract-
ing the centerlines. Instead of modeling the subtle discrimination at the low-level
intensity, we leverage the flexibility of sparse representation to model the inher-
ent spatial coherence of vessel/background appearance and derive a vesselness
measurement. After centerline extraction, the coronary sinus lumen is segmented
using a learning based boundary detector and Markov random field (MRF) based
optimal surface extraction. Quantitative evaluation on a large cardiac CTA dataset
(consisting of 204 3D volumes) demonstrates the superior accuracy of the pro-
posed method in both centerline extraction and lumen segmentation, compared to
the state-of-the-art.

1 Introduction

Coronary sinus cannulation is a challenging task in cardiac resynchronization therapy
(CRT) for novice interventional cardiologists and low-volume operators. Failure to im-
plant left ventricular lead occurs in up to 12% of the procedures as revealed by large
clinical trials [1]. This is often due to inability to cannulate the coronary sinus or unfa-
vorable venous anatomy resulting in the inability to find a stable lead position. There-
fore, precisely localizing the coronary sinus becomes an urgent demand and would help
interventional cardiologists to utilize prior knowledge of coronary venous anatomy for
both the selection of patients suitable for CRT and guidance of lead implantation.
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Several segmentation methods have been proposed to facilitate the identification and
localization of coronary venous anatomy from 3D whole-heart acquisitions in com-
puted tomography angiography (CTA) or cardiac magnetic resonance (CMR). In [2],
the heart segmentation is achieved automatically but the coronary venous anatomy has
to be manually segmented by clinical experts. Sometimes, a few seed points have to
be specified by a user to perform a semi-automatic segmentation of the coronary si-
nus [3,4]. In [5], a 3D cardiac model is applied to extract cardiac chambers and great
vessels, including the proximal segment of the coronary sinus. However, the middle and
distal segments of the coronary sinus have to be segmented manually. To the best of our
knowledge, there is only one study [6] that addresses the fully automatic segmentation
of the coronary sinus, which uses the segmented chambers to guide the extraction of
coronary sinus.

Quite a few approaches have been proposed for automatic segmentation of coronary
arteries in CTA data utilizing various vesselness measurements [7], which potentially
can be adapted to segment the coronary sinus. However, most coronary artery segmen-
tation methods are data-driven using no or little high-level prior knowledge, thereby
lacking robustness under severe stenosis or low contrast. Recently, Zheng et al. [8]
present a model-driven approach to predict the initial centerline of a major coronary
artery. The initial centerline is further refined using a machine learning based vessel-
ness measurement, which relies on the low-level image intensity features (e.g., it relies
on the fact that a coronary artery is brighter than surrounding tissues in CTA). Although
this method has achieved excellent robustness on extracting centerlines of coronary ar-
teries (which are contrasted in CTA), it does not work well on coronary sinus because,
unlike coronary arteries, the coronary sinus has very weak or no contrast at all in CTA.
This presents a big challenge in distinguishing the coronary sinus from surrounding tis-
sues. The problem is further complicated by the large intensity variations inside/outside
the coronary sinus.

In this work, rather than modeling the weak discrimination at the low-level inten-
sity, we exploit the flexibility of sparse representation to model the spatial coherence
of local appearance inside and outside the coronary sinus. We propose a multiscale
sparse appearance learning based approach to estimating a vesselness, which measures
the probability of a voxel being at the center of the coronary sinus. Sparse learning has
previously been shown to be effective in exploiting spatial coherence in several appli-
cations [9]. Here, we employ a multiscale sparse representation model of the local ap-
pearance of vessels and background tissues with two series of appearance dictionaries.
The appearance dictionaries discriminate image patterns by reconstructing them in the
process of sparse learning. We derive an appearance discriminant from the residues as
the vesselness measurement score and incorporate the discriminant into a model-driven
centerline extraction procedure [8]. After centerline extraction, the original CTA vol-
ume is resampled along the extracted centerline for the subsequent boundary detection.
The optimal lumen surface is computed by correlating the boundary probabilities with a
convex Markov random field (MRF) based graph optimization approach. Experiments
on 204 CTA datasets demonstrate that the proposed approach clearly outperforms the
state-of-the-art, leading to superior accuracy in both centerline extraction and lumen
segmentation.



Sparse Appearance Learning Based Automatic Coronary Sinus Segmentation in CTA 781

y2 (WE Q,

Fig. 1. Construction of appearance vectors for voxels inside (£2}) and outside (§22) of the coro-
nary sinus

2 Coronary Sinus Centerline Extraction

Model-Driven Centerline Extraction. Given an input volume, the heart chambers
are segmented using the method presented in [10], and they are then used to predict
the initial centerline of the coronary sinus. Afterward, a dynamic programming based
optimization is applied to refine the initial centerline path. The initial centerline is rep-
resented as a set of evenly sampled points P;, for7 = 0, 1, ...,n — 1. For each point F;,
41 x 41 candidate positions P/ are uniformly sampled on a plane perpendicular to the
centerline path at P;. The candidates Pij are sampled on a regular grid of 20 x 20 mm?
(with grid spacing of 0.5 mm) centered at P;. We then solve the following shortest path
computation problem [8] to select the best position for each point P;,
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Here, the first term is the negative of vesselness, penalizing voxels not inside the
coronary sinus. The second term is the total length of the path by summing the Eu-
clidean distance between two neighboring points on the path. Free parameter w, which
is used to balance the two terms, is heuristically tuned on a few datasets and then fixed
throughout the experiments. In [8], a vesselness measuring the likelihood of a voxel
being at the vessel center is learned and estimated via low-level intensity features [11].
To overcome the limitations of this vesselness, in this work, we use a multiscale sparse
learning based approach to estimate the likelihood.

Multiscale Sparse Learning for Vesselness Estimation. In cardiac CT images, ves-
sels and background tissues present different appearance in terms of local image pat-
terns. Let {2 denote the 3D image domain. We describe the multiscale local appearance
at a voxel u € (2 with a series of appearance vectors y*(u) € R" at different appear-
ance scales s = 1,...,5. y®*(u) is constructed by concatenating orderly the voxels
within a block centered at u, as illustrated in Fig. 1. In the following, to simplify the
notation, we drop superscript s in y° if it does not cause a confusion. Under a sparse
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model, an appearance vector y € R™ can be represented as a sparse linear combina-
tion of the atoms from an appearance dictionary D € R™*K , K > n, which encodes
the typical patterns of a corresponding appearance class. Different classes of local ap-
pearance are modeled with different appearance dictionaries. Learning an overcomplete
dictionary D € R"** from a training set Y = [y1, ..., yas] of M appearances is ad-
dressed by minimizing the following reconstruction residual error,

. 2
— .t. <
rg)l})r(lHY DX]|3, s.t., || X[|lo < T, 2)

where X = [x1,...,Xx]| represent the sparse representation of Y and 7' is a sparsity
factor. We employ the K-SVD algorithm [12] to solve the dictionary learning problem.

For extracting the coronary sinus centerline, we need to discriminate the vessel and
the background tissues. Let 2! (the coronary sinus) and 22 (background) denote two
local appearance classes, which can be sparsely coded using two appearance dictionar-
ies D; and Dy trained with corresponding samples, respectively [9]. The reconstruction
residue of an appearance vector y; from class 4 with respect to dictionary D, at the s**
scale is defined as

{R(yi(u),De)}s = llyi (u) — {DcXic(u) }s|l2, Vi,c € {1,2}, 3)

where X;. is the sparse representation of y; obtained via sparse learning (2). Intuitively,
an appearance vector from 2! should be reconstructed more accurately using the cor-
responding dictionary D1, and vice versa. It is naturally to expect that { R(y1(u))}s >
{R(y2(u))}s when u € 22, and {R(y1(u))}s < {R(y2(u))}s when u € 2. We
utilize this local appearance discrimination to estimate the likelihood of a voxel being
at the coronary sinus center. By combining the multiscale discriminative information,
we obtain a vesselness score for each voxel as

S
p(w) = ws.sgn{R(y(u), D2)s — R(y(u), D1)s}, 4)

s=1

where w, is the weighting parameter of the s appearance scale. This probability indi-

cates the likelihood of voxel u being at the coronary sinus center, which can be incor-
porated into the shortest path computation (1) as the cost for a single node.

3 Coronary Sinus Lumen Segmentation

Once the centerline is extracted, the CTA volume is warped and resampled along the
centerline path for the subsequent boundary detection. The optimal lumen surface is
further computed by correlating the boundary probabilities with a convex Markov ran-
dom field (MRF) based graph optimization approach [13]. This section describes the
necessary steps to segment the coronary sinus lumen surface.

Warping the Volumetric Data. In the first step of lumen segmentation, a warped
and re-sampled version of the image volume is generated. The centerline is resampled
to a certain resolution (e.g., 0.1 mm) to get a homogeneous slice distance. For each
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Fig. 2. Coronary sinus lumen segmentation. (a) A cylindrical coordinate space of the warped
volume using an extracted centerline; (b) Ray-casting for a discrete sampling; and (c) The tubular
MREF graph for lumen surface extraction.

centerline point, an image slice orthogonal to the vessel centerline is extracted where
the image is interpolated with bi-linear interpolation at positions between voxels. As
illustrated in Fig 2a, the height in the warped volume is expressed by the coordinate z,
whereas the angle o € [0,27) and the radial distance » € R > 0 uniquely define a
point in the other two dimensions, as depicted in Fig. 2a.

Detecting Lumen Boundary. For each slice, R points along each of the 7" rays are
generated. By this way, 7" x Z x R directed candidate boundary points are generated.
In this work we utilize the boundary classifier proposed in [10] to calculate boundary
probability. Without loss of generality, the predicted boundary probability is a scalar
between [0, 1].

Segmenting Lumen Surface. At last, out of all potential boundary candidates we
need to select the optimum boundary position as the final segmentation results. The
problem is formulated as a first order Markov random field (MRF) with discrete mul-
tivariate random variables [13]. A globally optimal configuration for MRFs can be
exactly found by calculating the minimal cut in a graph. We thus reduce the surface
segmentation task to a network flow problem which can be solved efficiently using the
max-flow algorithm.

We firstly re-organize all the boundary candidates in a form such that we can directly
incorporate them as the probability distribution of an Ng-label graph-cut problem in the
space, X = LYV = {0... Ng — 1}10:Ns=1}x{0..Na=1} "where the probabilities of the
candidates along with Nr-configurations of ray length are denoted as label assignments
L ={0... Ng—1} forevery slice Ng and every ray N 4. The corresponding candidates
are denoted as the set of vertices V' in MRF notation. Thus, a vertex v,, € V of
the MRF graph represents one element in the problem domain as z is attached to the
corresponding slice and a to the ray angle (see Fig. 2¢). A network graph G= (V, E)
can be constructed with the dimensionality of Ng x Ng x N 4.

After the graph construction, the max-flow-min-cut algorithm proposed by Boykov
and Kolmogorov [14] is utilized to estimate the lumen surface. The minimal “s-t” cut
bi-partitions the network graph G into two groups S and 1" along the set of labels L such
that each vertex v, o,; € V' is assigned a unique label ¢ € {0, ..., Ngp — 1}. The lumen
surface can then be defined as a set of contours corresponding to the cross-sections.
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Table 1. Comparison of the coronary sinus centerline extraction accuracy of the proposed sparse
learning based method and previous vesselness using low-level intensity features [8] on 204 CTA
datasets

Methods / Error (mm) Mean Std Median Min Max 80" Percentile
Vesselness Using Low-Level Intensity [8] 3.00 1.26 2.84 0.98 9.57 3.82
Proposed Sparse Coding Method 1.52 0.89 1.29 0.50 8.68 1.92

(@

Fig. 3. Automatically extracted coronary sinus centerlines on four CTA volumes. For each vol-
ume, the first column shows the ground truth; the second column shows the centerline extracted
using [8]; and the last column shows the centerline extracted using the proposed method.

Each contour is generated by determining the length of the N4 rays, resulting in a set
of three-dimensional points that define the contour at a specific cross-section. The third
dimension of the contour points is given by the index of the corresponding slice, which
is attached to a centerline point. The estimated lumen surface in the warped volume is
then transferred back to the original volume space.

4 Experiments

In this section we evaluate the proposed coronary sinus segmentation method on CTA
data for both the centerline extraction and lumen segmentation. We collected a total of
204 cardiac CTA volumes and manually annotated coronary sinus centerline and lumen
mesh for each volume. In our annotation, the coronary sinus starts from its ostium
at the right atrium and ends at the bifurcation to great cardiac vein and left marginal
vein. A 10-fold cross-validation is performed to evaluate the segmentation accuracy. We
also compare our method with the state-of-the-art coronary artery centerline extraction
method [8] re-trained for the coronary sinus.

Centerline Extraction Accuracy. Two different centerline extraction algorithms are
used to generate the centerline. Both algorithms are model-driven and the only dif-
ference is on the vesselness used for shortest path computation in (1). The first algo-
rithm [8] utilizes the low-level intensity features to train a vesselness measurement [11]
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Table 2. Coronary sinus lumen segmentation accuracy on 204 CTA datasets

Methods / Error (mm) Mean Std Median Min Max 80" Percentile
Based on Centerlines Extracted Using [8] 2.10 1.14 1.92 0.44 7.54 2.80
Proposed Method 0.99 0.73 0.81 0.24 6.30 1.29

Fig. 4. Coronary sinus lumen segmentation results on three CTA datasets. For each volume, the
first column shows the ground truth; the second column shows the segmentation based on cen-
terlines extracted using [8]; and the last column shows the segmentation based on centerlines
obtained with sparse learning.

and the second algorithm uses the proposed sparse learning based vesselness measure-
ment.

Table 1 shows the centerline accuracy on the evaluation set. The proposed method
clearly outperforms the low-level intensity based vesselness [11] with mean error of
1.52 mm vs. 3.00 mm. It demonstrates that the multiscale sparse learning based ves-
selness is more effective in distinguishing the voxels inside and outside the coronary
sinus. The maximum centerline error often occurs at the distal end, mainly due to the
inaccuracy in determining sinus length. Using a dedicated end-point detector (which
is missing in this work) may further improve the centerline accuracy. In Fig. 3, we
show centerlines extracted using both approaches on a few representative volumes with
various contrast concentration. The proposed method can handle large variation of con-
trast by the appearance dictionaries learned from a large training set, covering common
variations observed in clinical practice. The variations are automatically encoded as
different dictionary atoms after training.

Lumen Segmentation Accuracy. In the following experiments, we evaluate the coro-
nary sinus lumen segmentation accuracy. As shown in Table 2, using the proposed
method we achieve a mean mesh error of 0.99 mm. Since the lumen segmentation
is based on the extracted centerline, the centerline accuracy affects the final lumen seg-
mentation quality. Feeding the lumen segmentation module with the centerlines ex-
tracted using [8], we obtain a lumen segmentation error as large as 2.10 mm. Clearly,
the multiscale sparse appearance learning based centerline extraction method is a valu-
able pre-processing step which leads to superior performance in lumen segmentation.
Fig. 4 shows a few examples of the coronary sinus lumen segmentation results.
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5 Conclusions

In this work we proposed a novel automatic coronary sinus centerline extraction method
combining the advantages of the model-driven approach and multiscale sparse appear-
ance learning. The sparse appearance learning based vesselness can effectively distin-
guish the coronary sinus from background tissues. Based on the extracted centerline,
the lumen surface is segmented using a machine learning based boundary detector and
MREF based optimal surface extraction. The proposed method has been evaluated on a
large dataset of 204 CTA volumes, showing superior accuracy compared to the state-
of-the-art.
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