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Abstract. Recently, patch-based label fusion methods have achieved many suc-
cesses in medical imaging area. After registering atlas images to the target im-
age, the label at each target image point can be subsequently determined by 
checking the patchwise similarities between the underlying target image patch 
and all atlas image patches. Apparently, the definition of patchwise similarity is 
critical in label fusion. However, current methods often simply use entire image 
patch with fixed patch size throughout the entire label fusion procedure, which 
could be insufficient to distinguish complex shape/appearance patterns of ana-
tomical structures in medical imaging scenario. In this paper, we address the 
above limitations at three folds. First, we assign each image patch with multis-
cale feature representations such that both local and semi-local image informa-
tion can be encoded to increase robustness of measuring patchwise similarity in 
label fusion. Second, since multiple variable neighboring structures could 
present in one image patch, simply computing patchwise similarity based on the 
entire image patch is not specific to the particular structure of interest under 
labeling and can be easily misled by the surrounding variable structures in the 
same image patch. Thus, we partition each atlas patch into a set of new label-
specific atlas patches according to the existing label information in the atlas  
images. Then, the new label-specific atlas patches can be more specific and 
flexible for label fusion than using the entire image patch, since the complex 
image patch has now been semantically divided into several distinct patterns. 
Finally, in order to correct the possible mis-labeling, we hierarchically improve 
the label fusion result in a coarse-to-fine manner by iteratively repeating the la-
bel fusion procedure with the gradually-reduced patch size. More accurate label 
fusion results have been achieved by our hierarchical label fusion method with 
multiscale feature presentations upon label-specific atlas patches.  

1 Introduction 

Many medical imaging based studies demand accurate segmentation of anatomical 
structures, in order to quantitatively measure structure differences across individuals 
or between two groups. To this end, automatic ROI (Region of Interest) labeling has 
been a hot topic in medical image processing areas, as evidenced by hundreds of labe-
ling and label fusion methods that have been developed to improve both segmentation 
accuracy and robustness.  
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In order to deal with high structural variations in the population, multiple atlases 
with delineated labels are commonly used for labeling the latent ROIs of the target 
image [1]. The basic assumption behind multi-atlas based segmentation is that the 
target image should bear the same label as the atlas image if both of them present 
similar shape/appearance. Thus, all atlas images are required to be registered to the 
target image before label fusion. To alleviate the possible mis-registration, patch-
based label fusion technique [1, 2] is also advocated by measuring the patchwise simi-
larity at each point. Intuitively, the higher the similarity between target image and a 
particular atlas image is, the more confidence we assign the label on that atlas to the 
target image.  

It is apparent that the patchwise similarity is the key in patch-based label fusion 
methods. Most of the current state-of-the-art methods only use the fixed patch size 
throughout entire label fusion procedure. For example, 7 ൈ 7 ൈ 7 or 9 ൈ 9 ൈ 9 cubic 
patches are usually used in the literature. In order to make the label fusion robust to 
noise, image patches are required to be large enough in order to capture sufficient 
image content. However, large image patch could raise a critical issue in labeling 
small anatomical structures, since the patchwise similarity could be dominated by the 
surrounding large structures in the image patch. The main reason for such dilemma is 
that the simple use of whole image patch lacks high-level knowledge to distinguish 
complex appearance patterns in medical imaging data.  

Many efforts have been made to improve the discrimination power of image 
patches. For instance, sparse dictionary learning technique is used in [3] to find the 
best feature representations in label fusion. However, the dictionary is still confined in 
using the whole image patch with fixed size. In this paper, we address the above limi-
tations in a new perspective of developing hierarchical and high-level feature repre-
sentations for image patch. In general, our contribution has three folds.  

First, we propose to adaptively treat each image point within the image patch by 
designing the image patch with multi-scale feature representations. We argue that 
image points close to the patch center should use fine-scale features to characterize 
the details of patch center, while the level of image features could gradually turn from 
fine to coarse as the distance toward the patch center increases. To this end, we assign 
the conventional image patch with the layerwise multi-scale feature representation by 
adaptively capturing image features in each layer with different scale.  

Second, it is very common that the to-be-segmented ROI, e.g., hippocampus, is 
surrounded by other complex structures. Those surrounding variable structures may 
mislead the patchwise similarity measurement. In computer vision area, recognizing 
object could be much easier if the foreground pattern can be separated from the back-
ground clutters [4]. In light of this, we present a new concept of label-specific patch 
partition to enhance the discriminative power of each atlas patch in label fusion. Spe-
cifically, since each atlas patch bears the well-determined labels, such information can 
provide the valuable heuristic about anatomical structures and thus can be used to 
guide the splitting of each atlas patch into a set of new complementary label-specific 
(or structure-specific) image patches. It is worth noting that each label-specific image 
patch carries only the image information at selected locations with same label. There-
fore, our label-specific partition not only enriches the representations for each atlas 
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patch but also encapsulates the high-level label information. To the best of our know-
ledge, such important label information is poorly used in the current label fusion me-
thods. Afterwards, sparsity constraint is further used in our proposed label fusion 
method to deal with the increased number of label-specific image patches. 

Third, current label fusion methods fix the patch size throughout the entire label 
fusion procedure. Here, we go one step further, e.g., propose to iteratively refine the 
labeling results by gradually reducing the patch size with the progress of label fusion. 
Specifically, we use the large image patches in the beginning, in order to make the 
label fusion robust. Sparsity constraint is used to allow only a small number of atlas 
patches for joining the label fusion. Then, for those selected atlas patches, we can 
reduce their patch size and repeat the label fusion procedure to refine their respective 
weights in the final label fusion.  

We comprehensively evaluate the performance of our new label fusion method 
both in segmenting hippocampus in ADNI dataset and labeling 54 ROIs in LPBA40 
dataset. More accurate labeling results are achieved, compared with the state-of-the-
art label fusion methods.  

2 Methods 

Given the target image ܶ, the goal of label fusion is to automatically determine a 
label map ்ܮ for the target image ܶ. To achieve it, we need to first register all atlas 
images as well as their labeled maps to the target image space. Here, we use ࡵ ൌሼܫ௦|ݏ ൌ 1,… , ܰሽ and ࡸ ൌ ሼܮ௦|ݏ ൌ 1,… ,ܰሽ to denote ܰ registered atlases and label 
maps, respectively. For each target image point ݔ) ݔ א ܶ), all the atlas patches1 with-
in a certain search neighborhood ݊ሺݔሻ, denoted as ߚറ௦,௬ റ௦,௬ߚ)  ؿ ,௦ܫ ݕ א ݊ሺݔሻ), are 
used to compute the patchwise similarities w.r.t. the target image patch ߙറ்,௫ (ߙറ்,௫   .റ்,௫, into a column vectorߙ റ௦,௬ andߚ ,It is worth noting that we arrange each patch .(ܶؿ

Next, label fusion strategies, e.g., non-local averaging, can be used to calculate the 
weighting vector  ݓሬሬറ ൌ -റ௦,௬. As we will exߚ ௡ሺ௫ሻ for each atlas patchא௦,௬൧௦ୀଵ,…,ே,௬ݓൣ

plain in Section 2.2, we adopt the sparsity constraint in our method by regarding the 
label fusion procedure as the problem of finding optimal combination among a set of 
atlas patches ሼߚറ௦,௬ሽ for the target image patch ߙറ்,௫ [5, 6]: 

ሬሬറ෡ݓ  ൌ argmin௪ሬሬറฮߙറ்,௫ െ ሬሬറฮଶݓ࡮ ൅ ሬሬറݓ .ሬሬറԡଵ, s.tݓԡߣ ൐ 0 (1) 

where the scalar ߣ controls the strength of sparsity constraint and ࡮ is the matrix by 
assembling all column vectors ሼߚറ௦,௬ሽ in a columnwise way. Assuming that we have ܯ  possible labels ሼ݈ଵ, … , ݈௠, … , ݈ெሽ  in the atlases, then the label on target image 
point ݔ can be efficiently determined by: 

ሻݔ෠்ሺܮ  ൌ argmax௠ୀଵ,…,ெ ∑ ∑ ௦,௬ݓൣ · ,ሻݕ௦ሺܮሺߜ ݈௠ሻ൧௬א௡ሺ௫ሻே௦ୀଵ  (2) 

                                                           
1 Some label fusion methods use patch pre-selection to discard the less similar patches. 
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where Dirac function ߜሺܮ௦ሺݕሻ, ݈௠ሻ is always zero except for the case when ܮ௦ሺݕሻ 
bears the label ݈௠. In that case, ߜሺܮ௦ሺݕሻ, ݈௠ሻ equals to 1. 

It is clear that image intensities in the entire image patch are used in label fusion 
(Eq. 1). Since one image patch may contain more than one anatomical structures and 
the to-be-segmented ROI may have very complex shape/appearance pattern, current 
patch-based label fusion methods have high risk of being misled by the current defini-
tion of patchwise similarities that are computed based on the entire image patch. In 
the following, we propose three ways to improve the label fusion accuracy: (1) sub-
stantially upgrading the feature discrimination power by using multi-scale feature 
representations (Section 2.1); (2) adaptively building label-specific atlas patches by 
using the existing label information in the atlases (Section 2.2); and (3) hierarchically 
improving label fusion accuracy in a coarse-to-fine manner by gradually reducing the 
patch size (Section 2.3).  

2.1 Multi-scale Feature Representations 

In current patch-based label fusion methods, every point in the image patch uses its 
own intensity value and equally contributes in computing the patchwise similarity. 
Here, we allow each point to use adaptive scale for capturing local appearance charac-
teristics. Specifically, we first partition the whole image patch into several nested 
non-overlapping layers, spreading from the center point to the bound of image patch. 
Next, we use small scale to capture the fine-scale features for the layer closest to the 
patch center. Gradually, we use larger and larger scale to capture the coarse-scale 
information as the distance to the patch center increases. Although advanced pyramid 
image technique can be applied for multiscale feature representation, we choose a 
more efficient way by replacing the intensity value with the average intensity in a 
certain neighborhood, due to the consideration of computational time. For example, 
for the points in the first layer that is the closest to the patch center (including the 
patch center and its 6 immediate neighboring points), we still keep using their original 
intensities. For each point in the second layer, we replace its intensity value with the 
average intensity value in its 3 ൈ 3 ൈ 3 neighborhood. Similarly, we use intensity 
average in a larger neighborhood as the feature representation for the image points 
beyond the second layer. In this way, the image patch is now equipped with the multi-
scale feature representation. Hereafter, ߙറ்,௫ and ߚറ௦,௬ denote the image patches after 
replacing the original intensities with the multi-scale feature representations.  

2.2 Label-Specific Atlas Patch Partition 

Since atlas image patches have label information, we can partition each atlas patch 
into a set of new label-specific atlas patches for encoding the label information. Given 
the atlas patch ߚറ௦,௬, we use ߛറ௦,௬ to denote its associated labels. Suppose there are ܯ 
kinds of labels in ߛറ௦,௬. Then, the proposed label-specific atlas patch set ࡼ௦,௬ consists 
of ܯ label-specific atlas patches, i.e., ࡼ௦,௬ ൌ ൛݌റ௦,௬௠ |݉ ൌ 1,… റ௦,௬௠݌ ൟ, whereܯ,  is the 

column vector. Each element ݑ in ݌റ௦,௬௠  keeps the intensity value ߚറ௦,௬ሺݑሻ if and only 
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if ߛറ௦,௬ሺݑሻ has label ݈௠; otherwise, ݌റ௦,௬௠ ሺݑሻ ൌ 0. Mathematically, we have ݌റ௦,௬௠ ሺݑሻ ൌߚറ௦,௬ሺݑሻ · ,ሻݑറ௦,௬ሺߛ൫ߜ ݈௠൯, where ߜሺ. , . ሻ is the same Dirac function as used in Eq. 2.  
Note that the number of image patches increases significantly after we partition 

each atlas patch into the label-specific atlas patch set. Thus, we propose to use the 
sparsity constraint again in label fusion, in order to select only a small number of 
label-specific atlas patch ݌റ௦,௬௠  to represent the target image patch ߙറ்,௫. By replacing 
each conventional atlas patch with label-specific atlas patches, the matrix of atlas 
patches ࡮ in Eq. 1 now expands to ࡼ ൌ  ௡ሺ௫ሻ. Then, the new energyא௦,௬൧௦ୀଵ,…,ே,௬ࡼൣ

function for label fusion can be reformulated as:  

റመߦ  ൌ argminకሬറฮߙറ்,௫ െ റฮଶߦࡼ ൅ റߦ .റฮଵ, s.tߦฮߣ ൐ 0, (3) 

where ߦറ ൌ ௦,௬௠ߦൣ ൧  is the weighting vector for each label-specific atlas patch ݌റ௦,௬௠ . 

Since each ݌റ௦,௬௠  is only related with a particular label ݈௠ , each element ߦ௦,௬௠  in ߦറ 
represents the probability of labeling the center point ݔ of the target image patch ߙറ்,௫ by label ݈௠. Therefore, the labeling result on the target image point ݔ can be 
obtained by: 

ሻݔ෠்ሺܮ  ൌ argmax௠ୀଵ,…,ெ ∑ ∑ ௡ሺ௫ሻே௦ୀଵא௦,௬௠௬ߦ  (4) 

Fig. 1 demonstrates the construction of label-specific atlas patch set ࡼ for the case 
with only two labels, i.e., ܯ ൌ 2. As displayed in Fig. 1(a), each atlas patch ߚറ௦,௬ is 
split into two label-specific atlas patches ݌റ௦,௬ଵ  and ݌റ௦,௬ଶ , where we use the black to 
denote the zero elements. For example, the zero elements in ݌റ௦,௬ଵ  have their label as ݈ଶ, instead of ݈ଵ. The objective function in Eq. 1 is to minimize the appearance differ-
ence between ߙറ்,௫ and ݓ࡮ሬሬറ. In our method, we first divide each whole atlas patch 
into several label-specific patches and then recognize the structural patterns in ߙറ்,௫ in 
a label-by-label manner. In this way, our method makes the representation of ߙറ்,௫ 
more selective and flexible.  

The advantage of using label-specific atlas patches is demonstrated by the toy ex-
ample in Fig. 1(b), where we use red and blue to denote two different labels and num-
bers represent the intensity values. To be simple, only two atlas patches are used in 
this example. Apparently, the first atlas patch (first column in ࡮) and ߙറ்,௫ belongs to 
the same structure since their intensity values are both in the ascending order. If we 
estimate the weighting vector ݓሬሬറ based on the entire atlas patch by Eq. 1 (ߣ ൌ 0.01), 
the weights for the first and second atlas patches are 0.43 and 0.49, respectively. Ac-
cording to Eq. 2, we have to assign the target point with the blue (incorrect) label. In 
our method, we first extend the matrix ࡮ to label-specific atlas patch set ࡼ, as shown 
in the bottom of Fig. 1(b) and then solve the new weighing vector ߦറ by Eq. 3. As 
suggested by ߦറ, the overall weights for red and blue labels are 0.885 (0.88+0.005) and 
0.800 (0.69+0.11), respectively. Therefore, we can correctly assign the target point 
with red label. This example demonstrates the power of our method.  
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baseline sparse patch-based label fusion method (Sparse PBL), to evaluate the contri-
bution of each component in our label fusion method, we further compare our method 
with the three degraded versions of our method, (1) Degraded_1: our method using 
only the multi-scale feature representation (with patch size 11 ൈ 11 ൈ 11), (2) De-
graded_2: our method using only the label-specific atlas patches (with patch size 11 ൈ 11 ൈ 11), and (3) Degraded_3: our method using only the hierarchical labeling 
mechanism. 

We evaluate each of the above five label fusion methods with a leave-one-out 
cross-validation. From all 66 leave-one-out cases, the mean and standard deviation of 
Dice ratios in hippocampus and the surface distance are calculated and provided in 
Table 1. It is clear that: (1) Our full method achieves the highest Dice ratio and lowest 
surface distance over other four comparison methods, where we obtain almost 1.2% 
improvement over the baseline Sparse PBL method; (2) Each component in our label 
fusion method has contribution in improving the labeling accuracy, as evidenced by 
0.6%, 0.9%, and 0.3% Dice ratio increases over the baseline Sparse PBL by De-
graded_1, Degraded_2, and Degraded_3, respectively. Also, we find all degraded 
methods have significant improvement over the baseline method in paired t-test. 

Table 1. The statistics of Dice ratios in hippocampus labeling by 5 different methods 

 Sparse PBL Degraded_1 Degraded_2 Degraded_3 Our method 
Dice Ratio 87.3±3.4 87.9±3.0 88.2±2.5 87.6±2.9 88.5±2.2 
Surf. Dist 0.38mm 0.35mm 0.34mm 0.35mm 0.33mm 

3.2 Evaluation on LPBA40 Dataset 

LPBA 40 dataset4 consists of 40 MR brain images, each with 54 manually labeled 
ROIs. We randomly select 20 images as atlases and another 20 as the target images. 
The statistics of overall Dice ratio across 54 ROIs are given in Table 2, where our full 
method achieves 1.5% improvement over the baseline Sparse PBL method. Apparent-
ly, each component in our proposed label fusion method has its contribution in  
enhancing the label fusion results. Fig. 2 shows the Dice ratio in each left-and-right-
combined ROI by Sparse PBL (in blue) and our full method (in red), from which  
we can observe significant improvements in 12 out of 27 ROIs (‘*’ denoting the  
significant improvement confirmed by paired t-test (݌ ൏ 0.05)).  

Table 2. The statistics of Dice ratios in labeling 54 ROIs on LPBA40 dataset by 5 diffent 
methods 

 Sparse PBL Degraded_1 Degraded_2 Degraded_3 Our method 
Dice Ratio 80.3±3.2 81.1±2.5 81.5±2.4 80.6±3.0 81.8±2.1 

                                                           
4 http://www.loni.usc.edu/atlases/Atlas_Detail.php?atlas_id=12 
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