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Abstract. The reconstruction of a 3D volume from a stack of 2D histol-
ogy slices is still a challenging problem especially if no external references
are available. Without a reference, standard registration approaches tend
to align structures that should not be perfectly aligned. In this work we
introduce a deformable, reference-free reconstruction method that uses
an internal structural probability map (SPM) to regularize a free-form
deformation. The SPM gives an estimate of the original 3D structure
of the sample from the misaligned and possibly corrupted 2D slices. We
present a consecutive as well as a simultaneous reconstruction approach
that incorporates this estimate in a deformable registration framework.
Experiments on synthetic and mouse brain datasets indicate that our
method produces similar results compared to reference-based techniques
on synthetic datasets. Moreover, it improves the smoothness of the re-
construction compared to standard registration techniques on real data.

1 Introduction

With a high resolution up to 0.25µm, microscopy histology is an important
technique to study anatomy on cellular level. Histology slices are created by
cutting a tissue sample into ultra thin slices. These slices are then stained with
certain chemicals in order to highlight different structures and finally the results
are observed under a microscope. This process, however, introduces structural
inconsistencies between slices: especially the stress put on the sample during
cutting leads to deformations and artifacts such as holes, tears or foldings. Such
artifacts make the reconstructing of a 3D volume from the individual slices very
challenging. Nevertheless, such a reconstruction is very useful when assessing the
progression of structures over several slices or creating atlases on micron level.

There are various techniques for reconstructing a histology volume. While
global rigid/affine approaches are not able to correct for the local deformations
resulting from the cutting procedure [1,2], a common approach applies several
rigid/affine transformations on successive smaller subdivision of each image [3].
While this approach produces good results with a reasonable runtime, a local
deformable registration is more suited to model the deformation of the cutting
precedure and therefore improve the consistency between consecutive pairs. On
the other hand this will also perfectly align structures that are not supposed to be
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aligned anatomically, therefore straightening all features in stack direction and
deviating from the original shape of underlying structures. Literally speaking, a
deformable registration of a stack forming a cone would turn it into a cylinder
which is not desirable.

One common approach to avoid this drift problem is to register each slice to
an external reference. Either 3D in-vivo images such as Magnetic Resonance Im-
ages (MRI) [4] or so called block-face images, acquired by taking an image of the
tissue block-face before cutting each histology slice [5], can be used as external
references. While these methods provide excellent results, a reference is often not
available. To circumvent the need for external references, Gaffling et al. [6] in-
troduced a reference-free method that uses the regression of manually extracted
landmarks to restrict the deformation. By using a polynomial regression over
corresponding landmark positions, they obtain a smooth and consistent recon-
struction of histology slices. Although the results of this method seem promising,
given the large size of histology slices, manual extraction of landmarks is not fea-
sible in practice and the author does not reference any method for automatic
detection. Another reference-free method was proposed in [7] which extracts
vessel structures from each slice and performs a rigid- followed by a deformable
registration, that are both based on the extracted features. While this seems
to produce very promising results on a liver sample, it is difficult to extend to
samples that do not contain washed out vessel structures, like brain datasets.

In this paper, we propose two new, reference-free methods for 3D histology
reconstruction that use the structural coherency of the histology data as an in-
ternal regularization. Our methods do not require any landmark extraction or
blockface image acquisition processes. Inspired by [8], we employ the tensor vot-
ing framework [9] to extract a structural probability map (SPM), which contains
a rough estimate of the original structures of the stack that should be retained
by the registration. For structures that were destroyed in one slice, SPM can still
be estimated from the surrounding slices. Coupled with the intensity similarity
and the deformation regularization, SPM is used as a structural regularization
constraint in the registration framework.

2 Methods

2.1 Structural Probability Map

Tensor voting is a conceptual grouping method that is employed for the inference
of salient structures from a set of incoherent input points [9]. Inference is based
on a communication scheme where every point, voter, casts its information that
is encoded as a second order symmetric tensor, T, to other sites, votee, over a hy-
pothesized smooth curve with low total curvature. The strength of the vote cast
depends on the voter’s perceptual salience, the voter-to-votee distance, as well
as the curvature of presumed curve connecting them. A votee at y accumulates
incoming votes from all voters x, using tensor addition T(y) =

∑
x∈P Ax(y)

where P is the set of voters and Ax(y) is a tensor vote that x casts at y. A

tensor is represented as T =
∑D

d=1 λdêdê
T
d which can be decomposed as
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êkê
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êkê
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where λ1 ≥ . . . ≥ λD ≥ 0 are eigenvalues, ê1 . . . êD are eigenvectors of T, sd
is the salience, Nd is the d-D normal space, and D is the dimensionality of
the space [10]. Every structure type is identified by the dimensionality, d, of its
normal space, Nd and its strength is determined by the magnitude of its salience,
sd. Similar to the above decomposition, a tensor vote Ax(y) can be written as

Ax(y) =
D∑

d=1

sxdA
x
d(y) with Ax

d(y) =
d∑

j=1

Sx
d,j(y) (2)

where Ax
d(y) is a vote for structure type d that consists of stick votes, Sx

d,j(y),
for each basis vector of N x

d . Due to the limited space, we refer the reader to [9,8]
for the details regarding the stick vote and communication scheme.

Let I = (I1, ..., In) be a stack of 2D images. We consider this stack as a
volumetric image. We further define structural probability map images SPM =
(SPM1, ..., SPMn) where SPMi(y) is the structural saliency at y. In this paper,
we consider strong edges in images Ii detected by a standard 2D edge detector
as the set of voters P = (P1, ...,Pn) and every point in the SPM as votees.
Inference is done by performing a voting for each votee and then extracting
surface saliences from the accumulated tensors T(y) using Eq.1, which are set
as scalar values for SPM(y).

2.2 Consecutive Registration

We assume that the histology stack was already roughly pre-aligned by a stan-
dard rigid registration, thus our method aims to improve the smoothness by
performing a modified deformable registration based on 2D Free-Form Deforma-
tions (FFDs). We model the deformations as a discrete optimization problem
using Markov Random Fields (MRFs) [11]. A 2D FFD grid Gi is assigned to
every slice Ii, thus each control point p resembles a node in the MRF. In order
to model the actual displacement of control points we designate a labeling l of
discrete values to all nodes. Each label lp therefore describes the displacement
dlp of the control point p (see Fig. 1). The labeling problem can then be solved
with a quadratic pseudo-boolean optimization (QPBO) algorithm [12].

In our first approach the labeling is solved consecutively for each slice Ii in
the stack:

Ei(l) =
∑

p∈Gi

(
Edata(Ii, Ii+1, lp) + γESPM (Pi, SPMi, lp) + ρR(dlp)

)
(3)
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Fig. 1. Example for MRF labeling around a control point

γ and ρ weight the contribution of the regularization. Edata compares the
deformed slice with the undeformed neighbour with a Normalized Cross Corre-
lation (NCC), that yields robust results with lower computational cost. Other
similarity measures like Mutual Information are possible but have not been tested
yet.

Edata(Ii, Ii+1, lp) =
∑

x

NCC(Ii(x+ dlp), Ii+1) (4)

We are not registering to the deformed neighbouring slice because this would
accumulate deformations and therefore introduce a strong drift. Therefore this
term alone can only align the slices roughly, because the deformations of two
neighboring slices are not connected. However, the smoothness is improved by
ESPM that aligns the edges with the estimated structure map. Since the SPM
represents the 3D structure of the stack, it also contrains the 2D FFDs in order
to respect the global consistency of the structures and avoid clustering.

ESPM (Pi, SPMi, lp) =
∑

x

NCC(Pi(x+ dlp), SPMi) (5)

The energy R penalizes implausible or unnatural deformations and, in our
case, depends only on the distance of all in-plane neighboursN(p) of each control
point p:

R(lp) =
∑

r∈N(p)

||dlp − dlr ||2 (6)

The consecutive registration method has the advantage of being fast and
performs well when the stack does not involve too complex structures or de-
formations (e.g. the synthetic data used in section 3.1). However, because the
deformations are not directly connected between slices, its performance deteri-
orates when the tissue deformations are complicated which is often the case in
real histology data.
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(a) (b) (c) (d)

Fig. 2. Synthetic dataset: (a) undeformed stack, (b) corrupted stack, (c) edge map,
(d) structural probability map

2.3 Simultaneous Registration

Therefore, we extended our algorithm to register the whole stack simultaneously,
which is computational more expensive but also produces better results. For this
we employ a method similar to the one proposed in [5], which splits the MRF
energy into one pair-wise term and two unary ones.

E(l) =

n−1∑

i=1

∑

p∈Gi

q∈Gi+1

Edata(Ii, Ii+1, lp, lq) +
n∑

i=1

∑

p∈Gi

(
γESPM(Pi, SPMi, lp) + ρR(lp)

)

(7)

In this formulation, the unary terms ESPM and R stay the same as Eqs. 5 and
6 respectively and act as in-plane regularizations. However, to make the model
better, we recapitulate the data term Edata in a pair-wise manner by coupling
the deformations of neighboring slices.

Edata(Ii, Ii+1, lp, lq) =
∑

x

NCC(Ii(x+ dlp), Ii+1(x+ dlq)) (8)

Contrary to Eq. 4, the term now connects the control points (or more accurately
its labels) of neighboring slices, thus significantly increasing their possible align-
ment. This also means that the weighting γ should be treated differently in the
simultaneous case (Eq. 7) than in the consecutive one (Eq. 3), because ESPM is
now only responsible for the regularization and no more for the smoothness itself.
For the consecutive one we empirically found out that γ = 1.0 is good overall
value but can be increased if the structure map is of good quality. Whereas for
the simultaneous registration, a lower value around 0.5 usually produces regu-
larized but still structurally consistent results.

3 Experimental Validation and Results

3.1 Synthetic data

We performed experiments on synthetic and real data. The synthetic data con-
sists of a stack of 20 slices with a resolution of 128x96 and a pixel spacing of
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(a) (b) (c) (d)

Fig. 3. Reconstruction results in the first row and absolute difference with Fig. 2(a)
in the second. (a) Consecutive Registration w/o SPM, (b) Consecutive Registration
w/ SPM, (c) Simultaneous Registration w/o SPM, (d) Simultaneous Registration
w/ SPM.

1mm. An example of an original slice is shown in Fig. 2(a). The slices contain a
circular tissue which grows to the middle and several skewed vascular structures.
Each slice is deformed by a random FFD with a maximum displacement of 5mm
and the deformation field is saved as ground truth. Additional tears are intro-
duced in randomly selected slices to simulate the real histology cutting process.
Distorted slices are shown in Fig. 2(b).

In order to quantify the results of our method, we calculated the absolute
end point error (EE) and the relative angular error (AE) between the resulting
deformation fields and the ground truth fields [13]. Table 1 shows the errors after
the application of different reconstruction approaches discussed here.

Table 1. End point error (EE) and angular error (AE) of the presented methods

Method EE AE

Error (mm) STD (mm) Error (◦) STD (◦)

Consecutive Registration w/o SPM 2.91 1.78 60.31 31.41
Consecutive Registration w/ SPM 1.69 1.25 45.39 26.63
Simultaneous Registration w/o SPM 2.37 1.27 57.31 33.17
Simultaneous Registration w/ SPM 1.68 1.13 45.95 26.89

For the registration we used a grid spacing of 15mm and 2 grid levels. In the
consecutive case both ρ and γ were set to 1.0 in order to put more emphasis on
the structural map. For the simultaneous method, we used 0.5 for both instead.
The results in Fig. 3 show the same coronal slice as Fig. 2.

The consecutive registration without the SPM regularization performs worst
in terms of the error but also in it’s visual appearance (c.f. Fig. 3(a)). All curvilin-
ear structures get straightened in stack direction and especially two vessel struc-
tures on the right side cluster into four distinctive structures. Extending this with
our SPM maintains the outer round shape but also preserves the curvilinearity of
the vessels inside (Fig. 3(b)). This is similiar for the simultaneous method: while
the unregularized registration (Fig. 3(c)) does perform significantly better than
the unregularized consecutive method from a visual perspective, it still produces
a high error which can be again compensated with the use of our SPM. Since the
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(a) (b)

(c) (d)

Fig. 4. Coronal view of the reconstructed mouse brain dataset: (a) rigidly aligned
source stack, (b) simultaneous registration w/o SPM, (c) consecutive registration
w/ SPM, (d) simultaneous registration w/ SPM.

simultaneous methods put more emphasis on aligning the actual image data, the
reconstructed stacks have a slightly smoother appearance (Fig. 3(c)). However,
without the regularization through a structure map, there is a drift error. Also
the results of both of our methods are visually closer to the original stack in Fig.
2(a) than the unregularized methods.

3.2 Mouse Brain

We also performed experiments on a mouse brain dataset of 100 slices with
213x168 pixel that was provided online by [14]. Since the spacing was missing,
we assumed it to be 1mm. The FFD grid size was therefore set to 20mm and
subdivided on 3 grid levels. γ and ρ were set to 0.5 again. The slices were aligned
rigidly before hand (see Fig. 4(a)). Since there is no ground truth available,
only visual results are provided. As indicated before, the consecutive method
(Fig. 4(c)) improves the stack consistency over the source stack but the result
is less smooth than the unregularized simultaneous method (Fig. 4(b)). Our
simultaneous method (Fig 4(d)), however, improves the results significantly over
the other two approaches. It especially corrects drift errors that are present on
the highlighted structures in Fig. 4(b). The overall simultaneous reconstruction
including the tensor voting took around 20 minutes while the consecutive one
only needs around 7 minutes which is a potential advantage on big datasets.

4 Discussion and Conclusion

In this work we presented a new, reference free method for histology stack align-
ment. We make use of tensor voting technique as a means to recover structural
information that has been corrupted by the histology cutting process. Our ex-
periments show that the proposed algorithm can improve upon conventional
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method. However, our method can only maintain structures that are still present
in the corrupted stack and is therefore not meant as a replacement for reference-
based methods but in the case when no reference is available. Due to the FFD
formulation, the proposed method is unable to correctly close tears, a problem
that should be addressed in future work. In order to use the algorithm on full
resolution histology stack, the implementation also requires a more sophisticated
memory management and subdivision of the data both for the tensor voting and
the registration itself. This project has been partially supported by SFB 824.
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