

© Springer International Publishing Switzerland 2015 751
A.P. Moreira et al. (eds.), CONTROLO’2014 - Proc. of the 11th Port. Conf. on Autom. Control,
Lecture Notes in Electrical Engineering 321, DOI: 10.1007/978-3-319-10380-8_72

Framework Using ROS and SimTwo Simulator
for Realistic Test of Mobile Robot Controllers

Tatiana Pinho1, António Paulo Moreira2, and José Boaventura-Cunha1

1 INESC TEC (formerly INESC Porto) and Universidade de Trás-os-Montes e Alto Douro,
UTAD, Escola de Ciências e Tecnologia, Quinta de Prados, 5000-801 Vila Real, Portugal

2 INESC TEC (formerly INESC Porto) and Faculty of Engineering,
University of Porto, Porto, Portugal

{al30888,jboavent}@utad.pt, amoreira@fe.up.pt

Abstract. In robotics, a reliable simulation tool is an important design and test
resource because the performance of algorithms is evaluated before being im-
plemented in real mobile robots. The virtual environment makes it possible to
conduct extensive experiments in controlled scenarios, without the dependence
of a physical platform, in a faster and inexpensive way. Although, simulators
should be able to represent all the relevant characteristics that are present in the
real environment, like dynamic (shape, mass, surface friction, etc.), impact si-
mulation, realistic noise, among other factors, in order to guarantee the accura-
cy and reliability of the results.

This paper presents a ROS (Robot Operating System) framework for the
SimTwo simulator. ROS is an open-source library that is commonly used for
the development of robotic applications since it provides standard services and
promotes large-scale integrative robotic research. SimTwo is a realistic simula-
tion software suitable for test and design of several types of robots. This simula-
tor conducts realistic navigation procedures, since the driving systems, the
sensors, the mechanical and physical properties of the bodies are precisely
modeled.

The framework presented in this research provides the integration of ROS-
based systems with the SimTwo simulator. Therefore, this framework reduces
the risk of damage of expensive robotic platforms and it can be used for the de-
velopment of new mobile robot controllers, as well as for educational purposes.

Keywords: simulation, SimTwo, ROS, framework.

1 Introduction

Robots development is a process that involves several engineering areas such as pro-
gramming, electronics and mechanics, among others. In this sense technological ad-
vanced materials and design methods are needed, which implies that the development of
new robotic solutions is often an expensive practice. However, nowadays, the increasing
of processing capacity allows the development of efficient simulation tools [1].

Considering the fact that a simulator doesn´t take into account hardware aspects
of the robot, it provides an ideal and efficient way to fulfill preliminary tests of the

752 T. Pinho, A.P. Moreira, and J. Boaventura-Cunha

developed algorithms, enabling the introduction of different configurations, without
materials and/or personal risks [2], leading to better decisions and economic savings.
Furthermore, it offers the possibility of test and direct debug in the robots programs
[3]. Therefore, a simulator is used to reduce the time and costs involved in the devel-
opment and validation of a robot model [4].

In addition to the modeling of the robot dynamics, simulators must allow interac-
tions between the robot and the environment by means of sensors and actuators repre-
sentations [5]. In this sense, the simulation environment can be used in cases in which
such real environment cannot be available [2]. The simulation also allows computing
variables that are difficult to access in real operation enabling a more exact monitor-
ing of the robot behavior [6].

Another simulation dimension concerns to its educational purpose. Namely, as the
robotics teaching requires equipment resources, specialized people for support, labo-
ratorial space, etc., simulation tools provide simple and accessible ways to achieve
these requirements [5].

In other words, simulators can be used to research robots technical features, teach-
ing, control manipulation qualities, model a virtual robot with simplified configura-
tion, develop the robot itself, etc. [4]. It should be noted that a simulator must have
validated sensor noise models [2].

In conclusion, a robotic simulator can be defined as a software tool which simu-
lates the real world and creates a virtual environment to robots [4]. So, it should in-
corporate important features of the real world, where the importance of an aspect is
different for each case [7]. A simulator will be more reliable, as closer to reality are
their results. In the ideal situation, for equal reference inputs, the same results are
achieved in real and simulated robots, as represented in Figure 1.

In this way, the control algorithms developed and tested in simulated environ-
ments, can be directly transferred to the real operating conditions, with time benefits
and avoiding robots damaging [1].

Fig. 1. Real and simulated robots comparison (Source: adapted from [1], p. 30)

time

Robotsim

 state

Reference
 input

time
Simulated

environment

Robotsim

time

Robotreal
state Real

environment

Robotreal

 Framework Using ROS and SimTwo Simulator for Realistic Test 753

Nowadays there are several available simulators for robotic systems, such as Über-
Sim [7, 8], SimRobot [3], Webots [9], UCHILSIM [10], USARSim [5], Stage [11],
Gazebo [12], ARGoS [13], V-REP [14], Delta3D, X-Plane, Microsoft Flight Simula-
tor, Actin, Microsoft Robotics Developer Studio (MRDS), OpenSimulator, Simbad,
FlightGear, Breve, Simspark, MURoSimF e OpenHRP3 [4, 5, 15], among others.

In this work a framework that integrates ROS systems and SimTwo simulation
software is proposed, in order to promote the design and test of robot controllers,
mainly in the educational context. This simulator choice was based on criteria such as
simplicity, installation easiness and cost. This work is organized in 5 sections. In sec-
tion 1 was made a brief introduction to the theme. Section 2 is dedicated to ROS (Ro-
bot Operating System). Section 3 presents the main features of the used simulator,
SimTwo. Section 4 describes the proposed framework architecture and the last section
(section 5), summarizes the main conclusions.

2 The ROS Framework

ROS is an open-source framework that provides an abstraction level to the complex
hardware and software configurations in robotic area [2]. It is composed by a wide
range of services and tools, available to users and developers, being included in its
concept criteria such as: peer-to-peer communication for data transfer, tools-based,
multi-lingual, thin and free and open-source [2, 16, 17]. In this way, ROS emerged
as a way to facilitate the development in the robotic area and incorporate common
solutions, once that this area involves a high level of complexity and constant update.

One of the ROS advantages is its high capacity of generalization to access to exter-
nal hardware, either as sensors and actuators. Furthermore, through its modular cha-
racter, it is possible to incorporate into the framework, new functionalities in a simple
way [18]. As ROS is a middleware system, supported by a large community, it pos-
sesses shared libraries by the community itself, accessible to all users [16].

ROS uses a proper nomenclature, in which can be defined nodes, messages, topics,
services, packages and stacks. Namely, nodes are processes that perform computation,
messages are strictly defined structures and a topic consists in a string such as “odo-
metry” or “map”. On the other hand, a service is defined by a string name and by two
strictly typed messages, one for request and the other for response. A ROS package is
a directory that contains a XML file with the package description and stating any
dependencies. An organized packages set is defined as stack [2, 17].

In ROS, messages are sent by nodes, as pictured in Figure 2. Publishing nodes send
their messages to a specific topic and the subscriber nodes receive that same message.
A master node exposes the two types of nodes by a service [19]. It should be noted
that publishing/subscribing and client/server are different communication types. The
first one is used in general cases, and the second one only in specific cases, particular-
ly when synchronism is needed [17]. It is also important to denote that several nodes
can be connected to a robot with different purposes [19]. ROS is a publish-
ing/subscribing system [16], or a client/server in the services case.

754 T. Pinho, A.P. Moreira, and J. Boaventura-Cunha

Fig. 2. ROS messaging mechanism (Source: adapted from [19], p. 3087)

3 SimTwo Simulator

SimTwo is a simulation tool developed in Object Pascal that allows the fast test and
the construction of several robots types, namely, differential, omnidirectional, indus-
trial, humanoids, among others, defined by the user in a 3D space [15, 20]. In a gener-
ic way, it can be said that any terrestrial robot type with rotating joints and/or wheels
can be simulated with SimTwo.

For the dynamic simulation of rigid bodies, the Open Dynamics Engine is used, be-
ing the robot design and behavior are defined in XML files and the virtual world is
represented by GLScene components. The robot control can be made by a script in the
simulator itself or by a remote client that communicates by UDP or serial port.

SimTwo simulator has a high level of realism. In terms of dynamic this realism is
conferred by robot separation into rigid bodies and electric motors. For each body, the
behavior is simulated using physical features as shape, mass, moments of inertia,
surface friction and elasticity [20]. Besides that, it possesses non-linear features that
are important to the representation of robot real behaviors [21].

The SimTwo graphical interface is a multiple document interface (MDI), as
represented in Figure 3, where all windows are under the “world view” window
control.

In more detail, the “code editor” presents an integrated development environment
(IDE) for a high-level programming in Pascal; the “configuration” window allows the
control of several elements in the virtual scene; in “spreadsheet” can be defined “edit
cells” and “button cells” with different purposes; in “chart” window all available va-
riables can be graphically represented for each robot; and in the “scene editor” the
scene is defined by several XML files [20].

Concerning to the control, SimTwo possesses two levels. Namely a high-level con-
troller defined by the user, executed with a 40 ms periodicity, and a low-level control-
ler, related to motors control, invocated with a 10 ms period. The model output is
updated at a 1 ms rate [15].

Topic

Node

Service invocation

Publication Subscription

Node

Service reply

 Framework Using ROS and SimTwo Simulator for Realistic Test 755

Fig. 3. SimTwo graphical interface

4 ROS/SimTwo Framework

This work proposes a framework development that allows the ROS and SimTwo sys-
tems integration. This will facilitate the transition to a real robot, since the developed
ROS communicates with the simulator in the same way that communicates with the
real robot. Furthermore, this system equally promotes the teaching and test of control-
lers in academic situation. Figure 4 represents the proposed framework architecture.
The mobile robot trajectory control is described in section 4.1.

Considering the reference trajectory to be executed by the robot, together with the
characteristic parameters of the model, the optimization is made to determinate which
are the controls regarding linear (V, Vn) and angular (ω) velocities of the robot in
order to follow the pre-defined trajectory.

Once calculated these controls, they are sent to the real robot by a ROS node
and/or to the simulated robot, for which the SimTwo communication is made by UDP
protocol, as shown in Figure 5. The synchronism between remote client and SimTwo
was guaranteed in order to assure a proper operation of the controller. At the same
time the real/simulated robot returns its localization data (x, y and θ), which are feed-
back into the controller to determine the following controls.

It should be noted that robot velocities V, Vn and ω conversion to each wheel ve-
locity is made only after controls are sent. In other words, this conversion occurs
independently of the remote client, giving it a generic character that allows its appli-
cation to any type of robot.

756 T. Pinho, A.P. Moreira, and J. Boaventura-Cunha

Fig. 4. Generic framework architecture

Fig. 5. Remote client – SimTwo communication

4.1 Framework Validation

For test and validation of the developed framework it were used MSL (Middle Size
League) robots from the robotic soccer team of the University of Porto (Figure 3).
The characteristic parameters of these robots implemented in SimTwo are described
in Table 1.

In this work, a proportional controller of the distance and orientation errors related
to a straight trajectory following was applied. The objective was to track a straight
line coincident with the abscissa axis. To test the controller performance the robot
was initially placed in a pose displaced 3 meters in y, and orientated in parallel to the
line. Robot evolution in x and y poses is represented in Figure 6. In the same way,

Remote

client
SimTwo UDP

Encoders and robot localization

Robot linear and angular
velocities

Robot localization (x, y, θ)

Wheels velocities

Control (V, Vn, ω)

Optimization

Control send by
UDP/ROS

Simulated/real
robot

Reference
trajectory

Model
parameters

 Framework Using ROS and SimTwo Simulator for Realistic Test 757

Table 1. MSL robot constraints

Constraint Measure Unity
Robot mass 26 kg
Wheel mass 0.660 kg
Wheel radius 0.051 m
Wheel width 0.042 m

Encoder 12288 PPR
Gear ratio 12

Resistance of the motor 0.316 Ω
Electric constant of the motor 0.0302 Nm/A
Maximum voltage on motor 24 V
Maximum allowed current 12 A
Moment of inertia (x axis) 0.388 kgm2
Moment of inertia (y axis) 0.388 kgm2
Moment of inertia (z axis) 0.705 kgm2

Fig. 6. Robot position, x, y, evolution, in m

Fig. 7. Robot orientation, θ, evolution, in rad

its orientation evolution is presented in Figure 7. It should be noted that controller
generic character was validated by the implementation of a dimensioned version for a
differential traction robot in an omnidirectional robot.

0 1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

X Pose (m)

Y
 P

os
e

(m
)

0 2 4 6 8 10 12
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Time (s)

θ
(r

ad
)

758 T. Pinho, A.P. Moreira, and J. Boaventura-Cunha

According to Figures 6 and 7, it is possible to observe that the robot effectively
corrects its localization in a relatively fast way, in order to be closer to the pretended
trajectory, keeping afterwards coincident to the line. In this way it will be expected
that after the transition to the real robot, its behavior will be similar to the simulated
robot. This fact occurs because the ROS communicates in an identical way with the
robot in the real environment.

5 Conclusions

This work proposes a framework to support the design and validation of robot control-
lers, mainly in educational context, integrating a ROS system and SimTwo simulation
software. With this framework it is pretended to facilitate the passage of simulated to
real situations, since ROS system communicates with the simulator in a similar way it
communicates with the real robot. Furthermore, this work also aims to support the
teaching and test of robotic controllers developed in academic environment.

In order to analyze the proposed framework performance, it was implemented a
controller to coordinate a MSL soccer robot in way to follow a pre-defined trajectory.
Its efficiency was confirmed by this application. Since the controls sent to the simu-
lator refer to robot’s linear and angular velocities, this work also possesses an abstrac-
tion character that provides the possibility of being implemented in any type of robot.

In the future, this work can be extended throughout the incorporation of other phe-
nomena in the models, such as sensors noise, and the implementation of different
control strategies aiming the evaluation of distinct control algorithms performances in
simulations closer to the real environment robot operation.

Acknowledgements. The author also thanks the FCT for supporting this work
through the project PTDC/EEI-AUT/1450/2012 – Optimal Control: Health, Energy
and Robotics Applications.

References

1. de Lima, J.L.S.M.: Construção de um Modelo Realista e Controlo de um Robô Hu-
manóide, Tese de Doutoramento em Engenharia Electrotécnica e de Computadores da
Faculdade de Engenharia da Universidade do Porto (2008)

2. Balakirski, S., Kootbally, Z.: USARSim/ROS: A combined framework for robotic control
and simulation. In: Proceedings of the ASME 2012 International Symposium on Flexible
Automation, St. Louis, Missouri, USA, pp. 1–8 (June 2012)

3. Laue, T., Spiess, K., Röfer, T.: SimRobot – A General Physical Robot Simulator and Its
Application in RoboCup. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.)
RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 173–183. Springer, Heidelberg (2006)

4. Kumar, K., Reel, P.S.: Analysis of Contemporary Robotics Simulators. In: Proceedings of
ICETECT, pp. 661–665 (2011)

5. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: a robot simulator
for research and education. In: IEEE International Conference on Robotics and Automa-
tion, Roma, Italy, pp. 1400–1405 (April 2007)

 Framework Using ROS and SimTwo Simulator for Realistic Test 759

6. Gonçalves, J., Lima, J., Malheiros, P., Costa, P.: Realistic simulation of a Lego
Mindstorms NXT based robot. In: 18th IEEE International Conference on Control Appli-
cations, Part of IEEE Multi-Conference on Systems and Control, Saint Petersburg, Russia,
pp. 1242–1247 (July 2009)

7. Go, J., Browning, B., Veloso, M.: Accurate and Flexible Simulation for Dynamic, Vision-
Centric Robots, pp. 1–8. AAMAS, New York (2004)

8. Browning, B., Tryzelaar, E.: ÜberSim: A Multi-Robot Simulator for Robot Soccer, pp.
948–949. AAMAS, Melbourne (2003)

9. Michel, O.: Cyberbotics Ltd. WebotsTM: Professional Mobile Robot Simulation. Interna-
tional Journal of Advanced Robotic Systems 1(1), 39–42 (2004)

10. Zagal, J.C., Ruiz-del-Solar, J.: UCHILSIM: A Dynamically and Visually Realistic Simula-
tor for the RoboCup Four Legged League. In: Nardi, D., Riedmiller, M., Sammut, C.,
Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 34–45. Springer,
Heidelberg (2005)

11. Gerkey, B.P., Vaughan, R.T., Howard, A.: The Player/Stage Project: Tools for Multi-
Robot and Distributed Sensor Systems. In: Proceedings of the International Conference on
Advanced Robotics (ICAR), Coimbra, Portugal, pp. 317–323 (July 2003)

12. Koenig, N., Howard, A.: Design and Use Paradigms for Gazebo, An Open-Source Multi-
Robot Simulator. In: Proceedings of 2004 IEEE/RSJ International Conference on Inteli-
gent Robots and Systems, Sendai, Japan, pp. 2149–2154 (October 2004)

13. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N.,
Ferrante, E., Caro, G.D., Ducatelle, F., Birattari, M., Gambardella, L.M., Dorigo, M.:
ARGoS: a modular, parallel, multi-engine simulatator for multi-robot systems. Swarm
Intell. 6, 271–295 (2012)

14. Freese, M., Singh, S., Ozaki, F., Matsuhira, N.: Virtual Robot Experimentation Platform
V-REP: A Versatile 3D Robot Simulator. In: Ando, N., Balakirsky, S., Hemker, T.,
Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472, pp. 51–62. Springer,
Heidelberg (2010)

15. Lima, J.L., Gonçalves, J.A., Costa, P.G., Moreira, A.P.: Humanoid Gait Optimization Re-
sorting to an Improved Simulation Model. International Journal of Advanced Robotic
Systems 10(67), 1–7 (2013)

16. De Marco, K., West, M.E., Collins, T.R.: An Implementation of ROS on the Yellowfin
Autonomous Underwater Vehicle (AUV), pp. 1–7. IEEE, OCEAN (2011)

17. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R.,
Ng, A.: ROS: an open-source Robot Operating System. ICRA, 1–6 (2009)

18. Hax, V.A., Filho, N.L.D., Botelho, S.S.D.C., Mendizabal, O.M.: ROS as middleware to In-
ternet of Things. Journal of Applied Computing Research 2(2), 91–97 (2012)

19. Arumugam, R., Enti, V.R., Bingbing, L., Xiaojun, W., Baskaran, K., Kong, F.F., Kumar,
A.S., Meng, K.D., Kit, G.W.: DAvinCi: A Cloud Computing Framework for Service Ro-
bots. In: IEEE International Conference on Robotics and Automation, Anchorage, Alaska,
USA, pp. 3084–3089 (May 2010)

20. Costa, P., Gonçalves, J., Lima, J., Malheiros, P.: SimTwo Realistic Simulator: A Tool for
the Development and Validation of Robot Software. Theory and Applications of Mathe-
matics & Computer Science 1, 17–33 (2011)

21. Nascimento, T.P., Moreira, A.P., Costa, P., Costa, P., Conceição, A.G.S.: Modeling omni-
directional mobile robots: an approach using SimTwo. In: 10th Portuguese Conference on
Automatic Control, Funchal, Portugal, pp. 117–122 (July 2012)

	Framework Using ROS and SimTwo Simulator for Realistic Test of Mobile Robot Controllers
	1 Introduction
	2 The ROS Framework
	3 SimTwo Simulator
	4 ROS/SimTwo Framework
	5 Conclusions
	References

