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Preface

The measurement and assessment of scholarly impact have been experiencing rapid

changes over the past two decades thanks to developments in how scholarship is

communicated and advances in the tools and techniques that may be used to study

scholarly communication. Measures of research impact play an increasingly impor-

tant role in how individuals, research groups, journals, academic departments,

institutions, and countries are ranked in their respective areas of contribution to

scholarship. From the beginnings of metrics-related research in the early twentieth

century, when small-scale quantitative studies of scholarly communication first

revealed distinct patterns in the way publications are produced, research approaches

have evolved to today’s methods that employ a range of tools and techniques on

large-scale datasets. Research contributions from statistical sciences, scientific

visualization, network analysis, text mining, and information retrieval have pro-

vided tools and techniques to investigate metric phenomena and to assess scholarly

impact in new ways. The core and complementary interests of metric studies are

reflected in the names that are used to describe the field, which are also used in this

edited book. Authors may have preferred terms to describe what they research.

Regardless of the preferred term, there is an underlying theme of exploring how the

process and products of scholarly communication may be better understood. The

term bibliometrics, which is still widely used, can be traced back to the 1930s when

Otlet introduced the French term bibliométrie (Otlet, 1934). Bibliometrics was later

defined by Pritchard (1969) as “the application of mathematics and statistical

methods to books and other media of communication.” Around the same time,

the term scientometrics (Naukometriya) was proposed by Nalimov and Mul’chenko

(1969) as “the application of those quantitative methods which are dealing with the

analysis of science viewed as an information process.” Later, Nacke (1979) pro-

posed the term informetrics (Informetrie) to encompass all quantitative aspects of

the study of information, its production, dissemination, and use. More recently, the

term webmetrics has been used to describe the application of metric approaches to

information phenomena on the Internet, and more specifically the World Wide Web

(Almind & Ingwersen, 1997). Space limitations prevent us from providing a
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detailed overview of these topics. Readers who are interested in finding out more

about the history and scope of informetrics are encouraged to consult De Bellis

(2009), Björneborn and Ingwersen (2004), as well as Egghe and Rousseau (1990).

Informetrics research has expanded beyond the evaluation of traditional units of

measure such as authors and journals and now includes a broader array of units of

measure and assessment. At the same time, the availability of larger, more detailed

datasets has made it possible to study more granular levels of data in the production,

dissemination, and use of the products of scientific communication. In the current

era of data-driven research, informetrics plays a vital role in the evaluation of

research entities. The focus of this research has expanded to include entities such as

the datasets used in papers, genes, or drugs mentioned in papers as a focus for

analysis (Ding et al., 2013). More broadly, the scientific community has been

calling for scrutiny of the practice and reproducibility of research, particularly in

the biomedical arena (Researching the Researchers, 2014). Techniques used in

informetrics research can play a major role in this endeavor. Recently developed

methods, as outlined in this book—such as data and text mining methods, network

analysis, and advanced statistical techniques to reveal hidden relationships or

patterns within large datasets—are quickly becoming valuable tools for the assess-

ment of scholarly impact.

To date, there have been only a small number of monographs that have

addressed informetrics-related topics. None provide a comprehensive treatment of

recent developments or hands-on perspectives on how to apply these new tech-

niques. This book fills that gap. The objective of this edited work is to provide an

authoritative handbook of current topics, technologies, and methodological

approaches that may be used for the study of scholarly impact. The chapters have

been contributed by leading international researchers. Readers of this work should

bring a basic familiarity with the field of scholarly communication and

informetrics, as well as some understanding of statistical methods. However, the

tools and techniques presented should also be accessible and usable by readers who

are relatively new to the study of informetrics.

Each contributed chapter provides an introduction to the selected topic and

outlines how the topic, technology, or methodological approach may be applied

to informetrics-related research. The contributed chapters are grouped into four

themes: Network Tools and Analysis, the Science System, Statistical and Text-

based Methods, and Visualization. The book concludes with a chapter by Börner

and Polley that brings together a number of the ideas presented in the earlier

chapters.

A summary of each chapter’s focus, methods outlined, software tools applied

(where applicable), and data sources used (where applicable) appears below.
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Network Tools and Analysis

Chapter 1

Title: Community detection and visualization of networks with the map equation

framework.

Author(s): Ludvig Bohlin (Sweden), Daniel Edler (Sweden), Andrea Lancichinetti

(Sweden), and Martin Rosvall (Sweden).

Topic(s): Networks.

Aspect(s): Community detection, visualization.

Method(s): Map equation.

Software tool(s) used: Infomap, MapEquation software package.

Data source: None.

Chapter 2

Title: Link prediction.

Author(s): Raf Guns (Belgium).

Topic(s): Networks.

Aspect(s): Link prediction.

Method(s): Data gathering–preprocessing–prediction–evaluation; recall–precision

charts; using predictors such as common neighbors, cosine, degree product,

SimRank, and the Katz predictor.

Software tool(s) used: linkpred; Pajek; VOSViewer; Anaconda Python.

Data source: Web of Science (Thomson Reuters)—co-authorship data of

informetrics researchers.

Chapter 3

Title: Network analysis and indicators.

Author(s): Staša Milojević (USA).

Topic(s): Network analysis—network indicators.

Aspect(s): Bibliometric applications.

Method(s): Study of collaboration and citation links.

Software tool(s) used: Pajek; Sci2.

Data source(s): Web of Science (Thomson Reuters)—articles published in the

journal Scientometrics over the period 2003–2012.

Chapter 4

Title: PageRank-related methods for analyzing citation networks.

Author(s): Ludo Waltman (The Netherlands) and Erjia Yan (USA).

Topic(s): Citation networks.

Aspect(s): Roles played by nodes in a citation network and their importance.

Method(s): Page-rank-related methods.

Software tool(s) used: Sci2; MATLAB; Pajek.

Data source: Web of Science (Thomson Reuters)—all publications in the journal

subject category Information Science and Library Science that are of document

type article, proceedings paper, or review and that appeared between 2004

and 2013.
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The Science System

Chapter 5

Title: Systems Life Cycle and its relation with the Triple Helix.

Author(s): Robert K. Abercrombie (USA) and Andrew S. Loebl (USA).

Topic(s): Life cycle.

Aspect(s): Seen from a triple helix aspect.

Method(s): Technology Readiness Levels (TRLs).

Software tool(s) used: None.

Data source: From Lee et al. “Continuing Innovation in Information Technology.”

Washington, DC: The National Academies Press; plus diverse other sources.

Chapter 6

Title: Spatial scientometrics and scholarly impact: A review of recent studies, tools

and methods.

Author(s): Koen Frenken (The Netherlands) and Jarno Hoekman (The

Netherlands).

Topic(s): Spatial scientometrics.

Aspect(s): Scholarly impact, particularly, the spatial distribution of publication and

citation output, and geographical effects of mobility and collaboration on cita-

tion impact.

Method(s): Review.

Software tool(s) used: None.

Data source: Web of Science (Thomson Reuters): post 2008.

Chapter 7

Title: Researchers’ publication patterns and their use for author disambiguation.

Author(s): Vincent Larivière and Benoit Macaluso (Canada).

Topic(s): Authors.

Aspect(s): Name disambiguation.

Method(s): Publication patterns.

Software tool(s) used: None.

Data source: List of distinct university-based researchers in Quebec; classification

scheme used by the US National Science Foundation (NSF); Web of Science

(Thomson Reuters); Google.

Chapter 8

Title: Knowledge integration and diffusion: Measures and mapping of diversity

and coherence.

Author(s): Ismael Rafols (Spain and UK).

Topic(s): Knowledge integration and diffusion.

Aspect(s): Diversity and coherence.
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Method(s): Presents a conceptual framework including cognitive distance

(or proximity) between the categories that characterize the body of knowledge

under study.

Software tool(s) used: Leydesdorff’s overlay toolkit; Excel; Pajek; additional

software available at http://www.sussex.ac.uk/Users/ir28/book/excelmaps.

Data source: Web of Science (Thomson Reuters)—citations of the research center

ISSTI (University of Edinburgh) across different Web of Science categories.

Statistical and Text-Based Methods

Chapter 9

Title: Limited dependent variable models and probabilistic prediction in

informetrics.

Author(s): Nick Deschacht (Belgium) and Tim C.E. Engels (Belgium).

Topic(s): Regression models.

Aspect(s): Studying the probability of being cited.

Method(s): logit model for binary choice; ordinal regression; models for multiple

responses and for count data.

Software tool(s) used: Stata.

Data source: Web of Science—Social Sciences Citation Index (Thomson

Reuters)—2,271 journal articles published between 2008 and 2011 in five

library and information science journals.

Chapter 10

Title: Text mining with the Stanford CoreNLP.

Author(s): Min Song (South Korea) and Tamy Chambers (USA).

Topic(s): Text mining.

Aspect(s): For bibliometric analysis.

Method(s): Provides an overview of the architecture of text mining systems and

their capabilities.

Software tool(s) used: Stanford CoreNLP.

Data source(s): Titles and abstracts of all articles published in the Journal of the
American Society for Information Science and Technology (JASIST) in 2012.

Chapter 11

Title: Topic Modeling: Measuring scholarly impact using a topical lens.

Author(s): Min Song (South Korea) and Ying Ding (USA).

Topic(s): Topic modeling.

Aspect(s): Bibliometric applications.

Method(s): Latent Dirichlet Allocation (LDA).

Software tool(s) used: Stanford Topic Modeling Toolbox (TMT).
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Data source(s): Web of Science (Thomson Reuters)—papers published in the

Journal of the American Society for Information Science (and Technology)
(JASIS(T)) between 1990 and 2013.

Chapter 12

Title: The substantive and practical significance of citation impact differences

between institutions: Guidelines for the analysis of percentiles using effect

sizes and confidence intervals.

Author(s): Richard Williams (USA) and Lutz Bornmann (Germany).

Topic(s): Analysis of percentiles.

Aspect(s): Difference in citation impact.

Method(s): Statistical analysis using effect sizes and confidence intervals.

Software tool(s) used: Stata.

Data source: InCites (Thomson Reuters)—citation data for publications produced

by three research institutions in German-speaking countries from 2001 to 2002.

Visualization

Chapter 13

Title: Visualizing bibliometric networks.

Author(s): Nees Jan van Eck (The Netherlands) and Ludo Waltman (The

Netherlands).

Topic(s): Bibliometric networks.

Aspect(s): Visualization.

Method(s): As included in the software tools; tutorials.

Software tool(s) used: VOSviewer; CitNetExplorer.

Data source: Web of Science (Thomson Reuters)—journals Scientometrics and

Journal of Informetrics and journals in their citation neighborhood.

Chapter 14

Title: Replicable science of science studies.

Author(s): Katy Börner (USA) and David E. Polley (USA).

Topic(s): Science of Science.

Aspect(s): Data preprocessing, burst detection, visualization, geospatial, topical

and network analysis, career trajectories.

Method(s): Use of freely available tools for the actions described under “aspects.”

Software tool(s) used: Sci2 toolset.

Data source: Data downloaded from the Scholarly Database.
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Otlet, P. (1934). Traité de documentation: Le livre sur le livre. Bruxelles, Éditions Mundaneum.
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Staša Milojević
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Part I

Network Tools and Analysis



Chapter 1

Community Detection and Visualization

of Networks with the Map Equation

Framework

Ludvig Bohlin, Daniel Edler, Andrea Lancichinetti, and Martin Rosvall

Abstract Large networks contain plentiful information about the organization of a

system. The challenge is to extract useful information buried in the structure of

myriad nodes and links. Therefore, powerful tools for simplifying and highlighting

important structures in networks are essential for comprehending their organiza-

tion. Such tools are called community-detection methods and they are designed to

identify strongly intraconnected modules that often correspond to important func-

tional units. Here we describe one such method, known as the map equation, and its

accompanying algorithms for finding, evaluating, and visualizing the modular

organization of networks. The map equation framework is very flexible and can

identify two-level, multi-level, and overlapping organization in weighted, directed,

and multiplex networks with its search algorithm Infomap. Because the map

equation framework operates on the flow induced by the links of a network, it

naturally captures flow of ideas and citation flow, and is therefore well-suited for

analysis of bibliometric networks.

1.1 Introduction

Ever since Aristotle put the basis of natural taxonomy, classification and categori-

zation have played a central role in philosophical and scientific investigation to

organize knowledge. To keep pace with the large amount of information that we

collect in the sciences, scholars have explored different ways to automatically

categorize data ever since the dawn of computer and information science.

We now live in the era of Big Data and fortunately we have several tools for

classifying data from many different sources, including point clouds, images, text

documents (Blei, Ng, & Jordan, 2003; Kanungo et al., 2002; Ward, 1963), and

networks. Networks of nodes and links are simple yet powerful representations of

L. Bohlin • D. Edler • A. Lancichinetti • M. Rosvall (*)
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datasets of interactions from a great number of different sources (Barrat,

Barthelemy, & Vespignani, 2008; Dorogovtsev & Mendes, 2003; Newman,

2010). Metabolic pathways, protein–protein interactions, gene regulation, food

webs, the Internet, the World Wide Web, social interactions, and scientific collab-

oration are just a few examples of networked systems studied across the sciences.

In this chapter, we will focus on classification of nodes into communities and on

visualization of the community structure. In network science, communities refer to

groups of nodes that are densely connected internally. Community detection in

networks is challenging, and many algorithms have been proposed in the last few

years to tackle this difficult problem. We will briefly mention some of the possible

approaches to community detection in the next section. The rest of this chapter is

devoted to providing a theoretical background to the popular and efficient map

equation framework and practical guidelines for how to use its accompanying

search algorithm Infomap (Rosvall & Bergstrom, 2008).

The current implementation of Infomap is both fast and accurate. It can classify

millions of nodes in minutes and performs very well on synthetic data with planted

communities (Aldecoa & Marı́n, 2013; Lancichinetti & Fortunato, 2009). Further-

more, the map equation framework is also naturally flexible and can be straight-

forwardly generalized to analyze different kinds of network data. For instance,

Infomap not only provides two-level, multi-level, and overlapping solutions for

analyzing undirected, directed, unweighted, and weighted networks, but also for

analyzing networks that contain higher-order data, such as memory networks

(Rosvall, Esquivel, West, Lancichinetti, & Lambiotte, 2013) and multiplex

networks.

This chapter is organized as follows. In Sect. 1.2, we provide some background

on community detection in networks, in Sect. 1.3, we introduce the mathematics of

the map equation and the Infomap algorithm, and, in Sect. 1.4, we explain how to

run the software in the web applications and from the command line. We provide a

collaboration network and a journal citation network as examples. For illustration,

Fig. 1.1 shows a number of visualizations that can be created with the applications.

1.2 Overview of Methods

Most networks display a highly organized structure. For instance, many social

systems show homophily in their network representations: nodes with similar

properties tend to form highly connected groups called communities, clusters, or

modules. For a limited number of systems, we might have some information about

the classification of the nodes. For example, Wikipedia is a large network of articles

connected with hyperlinks, and each article is required to belong to at least one

category. In general, however, these communities are not known a priori, and, in the

few fortunate cases for which some information about the classification is available,

it is often informative to integrate it with the information contained in the network

structure. Therefore, community detection is one of the most used techniques

4 L. Bohlin et al.



among researchers when studying networks. Moreover, recommendation systems

and network visualizations are just two of many highly useful applications of

community detection.

Fortunato (2010) provided a comprehensive overview of community-detection

methods. Here we just mention three of the main approaches:

Null

models

Methods based on null models compare some measure of connectivity within

groups of nodes with the expected value in a proper null model (Blondel, Guil-

laume, Lambiotte, & Lefebvre, 2008; Lancichinetti, Radicchi, Ramasco, &

Fortunato, 2011; Newman & Girvan, 2004). Communities are identified as the sets

of nodes for which the connectivity deviates the most from the null model. This is

the approach of modularity (Newman & Girvan, 2004), which the commonly used

Louvain method (Blondel et al., 2008) implements.

Block

models

Methods based on block models identify blocks of nodes (Gopalan & Blei, 2013;

Karrer & Newman, 2011; Peixoto, 2013) with common properties. Nodes

assigned to the same block are statistically equivalent in terms of their connec-

tivity to nodes within the block and to other blocks. The latent block structure is

identified by maximizing the likelihood of observing the empirical data.

Flow

models

Methods based on flows (Rosvall & Bergstrom, 2008; van Dongen, 2000) operate

on the dynamics on the network rather than on its topological structure per se. The

rationale is that the prime function of networks is to capture the flow between the

components of the real systems they represent. Accordingly, communities consist

of nodes among which flow persists for a long time once entered. As we explain in

great detail in the next section, the map equation is a flow-based method.

Fig. 1.1 The map equation framework consists of several tools for analyzing and visualizing large

networks

1 Community Detection and Visualization of Networks with the Map Equation. . . 5



The performance of community-detection methods can be evaluated using

synthetic data generated with planted community structure, which the algorithms

are supposed to detect from the network topology only (Lancichinetti, Fortunato, &

Radicchi, 2008). By performing these benchmark tests, it has been found that

modularity optimization suffers from a so called resolution limit (Fortunato &

Barthelemy, 2007). A method is considered to have a resolution limit if the size

of identified groups depends on the size of the whole network. A consequence is

that well-defined modules can be merged in large networks. Several solutions to

this problem have been proposed. The Louvain method (Blondel et al., 2008)

provides a hierarchical tree of clusters based on local modularity maxima found

during the optimization procedure. Another approach is to use so called resolution-

free methods with a tunable resolution parameter (Traag, Van Dooren, & Nesterov,

2011; Waltman & Eck, 2012).

One advantage of using the map equation framework is that the resolution limit

of its two-level formulation depends on the total weight of links between commu-

nities rather than on the total weight of all links in the whole network (Kawamoto &

Rosvall, 2014). As a result, the outcome of the map equation is much less likely

than modularity maximization to be affected by the resolution limit, without

resorting to local maxima or tunable parameters. Moreover, for many networks

the resolution limit vanishes completely in the multilevel formulation of the map

equation.

Hierarchical block models (Peixoto, 2013) are also less likely to be affected by

the resolution limit, and which method to pick ultimately depends on the particular

system under study. For example, block models can also detect bipartite group

structures, and are therefore well suited for analyzing food webs. On the other hand,

the map equation framework is developed to capture how flow spreads across a

system, and is therefore well suited for analyzing weighted and directed networks

that represent the constraints on flow in the system. Since citation networks are

inherently directed, the map equation framework is a natural choice for analyzing

bibliometric networks.

Most of the algorithms mentioned above are implemented in open source

software. Of particular relevance are three network libraries that provide several

of these methods in a unified framework: NetworkX (http://networkx.github.io/),

graph-tool (http://graph-tool.skewed.de/), and igraph (http://igraph.sourceforge.

net/). Although igraph also has a basic implementation of Infomap, we recommend

the most updated and feature-rich implementation introduced in the next section

and available from www.mapequation.org.

1.3 The Map Equation Framework

Here we provide an overview of the map equation framework and the software for

network analysis that we have developed on top of it and made available on www.

mapequation.org. First we explain the flow-based and information-theoretic
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rationale behind the mathematics of the map equation, and then we outline the

algorithm implemented in Infomap for minimizing the map equation over possible

network partitions.

1.3.1 The Map Equation

The map equation is built on a flow-based and information-theoretic foundation and

was first introduced in Rosvall and Bergstrom (2008). Specifically, the map equa-

tion takes advantage of the duality between finding community structure in net-

works and minimizing the description length of a random walker’s movements on a

network. That is, for a given modular partition of the network, there is an associated

information cost for describing the movements of the random walker, or of empir-

ical flow, if available. Some partitions give shorter and some give longer descrip-

tion lengths. The partition with the shortest description length is the one that best

captures the community structure of the network with respect to the dynamics on

the network.

The underlying code structure of the map equation is designed such that the

description can be compressed if the network has regions in which the random

walker tends to stay for a long time. Therefore, with a random walker as a proxy for

real flow, minimizing the map equation over all possible network partitions reveals

important aspects of network structure with respect to the dynamics on the network.

That is, the map equation is a direct measure of how well a given network partition

captures modular regularities in the network.

The flow-based foundation of the map equation is well-suited for bibliometric

analysis, since a random walker on a citation network is a good model for how

researchers navigate scholarly literature by reading articles and following citations.

See Fig. 1.2 for an illustration of a random walker moving across a network. For

example, with a network of citing articles, or citing articles aggregated at the

journal level, the modules identified by the map equation would correspond to

research fields. Similarly, with a network of collaborators obtained from

coauthorships, the modules identified by the map equation would correspond to

research groups.

To explain the machinery of the map equation, we first derive its general

expression and then illustrate with examples from the interactive map equation

demo available on www.mapequation.org/apps/MapDemo.html (Figs. 1.2, 1.3,

and 1.4). However, we begin with a brief review of the foundations of the map

equation: the mathematics of random walkers on networks and basic information

theory. Readers not interested in the details of the map equation’s theoretical

foundation can skip to Sect. 1.3.1.4 for illustrative examples.
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Fig. 1.2 The rate view of the map equation demo showing a random walker moving across the

network

Fig. 1.3 The code view of the map equation demo showing the encoding of a random walker with

a two-module solution
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1.3.1.1 Dynamics on Networks Modeled with Random Walkers

The map equation measures the per-step theoretical lower limit of a modular

description of a random walker on a network. Instead of measuring the codelength

of a long walk and dividing by the number of steps, it is more efficient to derive the

codelength from the stationary distribution of the random walker on the nodes and

links. In general, given a network with n nodes and weighted directed links Wα!β

between nodes α, β2 1, 2, . . ., n, the conditional probability that the random walker

steps from node α to node β is given by the relative link weight

pα!β ¼
Wα!βX
β
Wα!β

: ð1:1Þ

In the Flash application available on www.mapequation.org/apps/MapDemo.html,

the random walker moves from node to node following the directed links propor-

tional to their weights. In the snapshot displayed in Fig. 1.2, the random walker has

taken 794 steps and visited the nodes according to the frequency distribution to the

right. The currently visited node is highlighted both in the network and in the

histogram.

Fig. 1.4 The code view of the map equation demo showing the encoding of a random walker with

the optimal five-module solution
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Assuming that the stationary distribution is given by pα, it can in principle be

derived from the recursive system of equations

pα ¼
X

β

pβpβ!α: ð1:2Þ

However, to ensure a unique solution independent of where the random walker

starts in directed networks, at a low rate τ the random walker instead teleports to a

random node. For more robust results that depend less on the teleportation param-

eter τ, we most often use teleportation to a node proportional to the total weights of

the links to the node (Lambiotte & Rosvall, 2012). The stationary distribution is

then given by

pα ¼ 1� τð Þ
X

β

pβpβ!α þ τ

X
β
Wβ!α

X
α,β

Wβ!α

: ð1:3Þ

This system of equations can efficiently be solved with the power-iteration method

(Golub & Van Loan, 2012).

To make the results even more robust to the teleportation parameter τ, we use

unrecorded teleportation steps and only record steps along links (Lambiotte &

Rosvall, 2012). We capture these dynamics with an extra step without teleportation

on a stationary solution similar to Eq. (1.3) but with teleportation to a node

proportional to the total weights of the links from the node,

p�α ¼ 1� τð Þ
X

β

p�βpβ!α þ τ

X
β
Wα!β

X
α,β

Wβ!α

: ð1:4Þ

The unrecorded visit rates on links qβ !α and nodes pα can now be expressed:

qβ!α ¼ p�βpβ!α ð1:5Þ
pα ¼

X

β

qβ!α: ð1:6Þ

This so called smart teleportation scheme ensures that the solution is independent of

where the random walker starts in directed networks with minimal impact on the

results from the teleportation parameter. A typical value of the teleportation rate is

τ¼ 0.15, but in practice the clustering results show only small changes for telepor-

tation rates in the range τ 2 (0.05, 0.95) (Lambiotte & Rosvall, 2012). For example,

for undirected networks the results are completely independent of the teleportation

rate and identical to results given by Eq. (1.2). For directed networks, a teleporta-

tion rate too close to 0 gives results that depend on how the random walker was

initiated and should be avoided, but a teleportation value equal to 1 corresponds to

using the link weights as the stationary distribution. Accordingly, the unrecorded
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teleportation scheme also makes it possible to describe the raw flow given by the

links themselves without first inducing dynamics with a random walker. The

Infomap code described in Sect. 1.3.2 can use any of these dynamics described

above, but we recommend the unrecorded teleportation scheme proportional to link

weights for most robust results.

The map equation is free from external resolution parameters. Instead, the

resolution scale is set by the dynamics. The dynamics described above correspond

to encoding one node visit per step of the random walker, but the code rate can be

set both higher and lower (Schaub, Lambiotte, & Barahona, 2012). A higher code

rate can be achieved by adding self-links and a lower code rate can be achieved by

adding nonlocal links to the network (Schaub et al., 2012). A higher code rate gives

smaller modules because the random walker becomes trapped in smaller regions for

a longer time. The Infomap code allows an increase of the code rate from the natural

value of encoding by one node visit per step of the random walker.

1.3.1.2 Basic Information Theory

While the map equation gives the theoretical lower limit of a modular description of

a random walker on a network, the interactive map equation demo illustrates the

description with real codewords. We use Huffman codes (Huffman, 1952), which

are optimal in the sense that no binary codes can come closer to the theoretical limit.

However, for identifying the optimal partition of the network, we are only inter-

ested in the compression rate and not the actual codewords. Accordingly, the

Infomap algorithm only measures the theoretical limit given by the map equation.

Shannon’s source coding theorem (Shannon, 1948) states that the per-step

theoretical lower limit of describing a stream of n independent and identically

distributed random variables is given by the entropy of the probability distribution.

That is, given the probability distribution P¼ {pi} such that ∑i pi¼ 1, the lower

limit of the per-step codelength is given by

L Pð Þ ¼ H Pð Þ � �
X

i

pilogpi; ð1:7Þ

with the logarithm taken in base 2 to measure the codelength in bits. In other words,

no codebook with codewords for the events distributed according to P can use fewer

bits on average.

Accordingly, the best compression of random walker dynamics on a network is

given by the entropy rate (Shannon, 1948)

X

α

pαH pα!β

� �
; ð1:8Þ

which corresponds to the average codelength of specifying the next node visit given

current node position, averaged over all node positions. This coding scheme takes
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advantage of the independent and identically distributed next node visits given

current node position, but cannot be used to take advantage of the modular structure

of the network. Instead, the map equation uses the extra constraint that the only

available information from one step to the next is the currently visited module, or

that the random walk switches between modules, forcing independent and identi-

cally distributed events within and between modules. From this assumption natu-

rally follows a modular description that is maximally compressed by the network

partition that best represents the modular structure of the network with respect to

the dynamics on the network.

1.3.1.3 The Mathematics of the Map Equation

Given a network partition, the map equation specifies the theoretical modular

description length of how concisely we can describe the trajectory of a random

walker guided by the possibly weighted, directed links of the network. We use M to

denote a network partition of the network’s n nodes into mmodules, with each node

α assigned to a module i. We then seek to minimize the description length L(M)

given by the map equation over possible network partitions M. Again, the network

partition that gives the shortest description length best captures the community

structure of the network with respect to the dynamics on the network.

The map equation can be expressed in closed form by invoking Shannon’s

source coding theorem in Eq. (1.7) for each of multiple codebooks, and by

weighting them by their rate of use. Both the description length and the rate of

use can be expressed in terms of the node-visit rates pα and the module-transition

rates qi↶ and qi↷ at which the random walker enters and exits each module i,
respectively:

qi↶ ¼
X

α2j 6¼i, β2i
qα!β ð1:9Þ

qi↷ ¼
X

α2i, β2j 6¼i
qα!β: ð1:10Þ

To take advantage of the modular structure of the network, m module codebooks
and one index codebook are used to describe the random walker’s movements

within and between modules, respectively. Module codebook i has one codeword

for each node α 2 i and one exit codeword. The codeword lengths are derived from
the frequencies at which the random walker visits each of the nodes in the module,

pα2i, and exits the module, qi↷. We use pi↻ to denote the sum of these frequencies,

the total use of codewords in module i, and Pi to denote the normalized probability

distribution. Similarly, the index codebook has codewords for module entries. The

codeword lengths are derived from the set of frequencies at which the random

walker enters each module, qi↶. We use qi↶ to denote the sum of these frequen-

cies, the total use of codewords to move into modules, and Q to denote the
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normalized probability distribution. We want to express the average length of

codewords from the index codebook and the module codebooks weighted by their

rates of use. Therefore, the map equation is

L Mð Þ ¼ q↶H Qð Þ þ
Xm

i¼1
Pi↻H Pið Þ: ð1:11Þ

Below we explain the terms of the map equation in detail and in Figs. 1.3 and 1.4 we

provide examples with Huffman codes for illustration.

L(M) The per-step description length for module partition

M. That is, for module partition M of n nodes into

m modules, the lower bound of the average length of

the code describing a step of the random walker. The

bottom right bit counts in Figs. 1.3 and 1.4 show the

description length for the given network partition.

q↶¼∑ m
i¼ 1qi↶ The rate at which the index codebook is used. The

per-step use rate of the index codebook is given by

the total probability that the random walker enters

any of the m modules. The total height of the blocks

under Index codebook in Figs. 1.3 and 1.4 corre-

sponds to this rate.

H(Q)¼�∑ m
i¼ 1(qi↶/q↶)log(qi↶/q↶) The frequency-weighted average length of codewords

in the index codebook. The entropy of the relative rates

to use the module codebooks measures the smallest

average codeword length that is theoretically possible.

The heights of individual blocks under Index codebook
in Figs. 1.3 and 1.4 correspond to the relative rates and

the codeword lengths approximately correspond to the

negative logarithm of the rates in base 2.

pi↻¼∑ α2 ipα + qi↷ The rate at which the module codebook i is used,
which is given by the total probability that any node

in the module is visited, plus the probability that the

random walker exits the module and the exit

codeword is used. This rate corresponds to the total

height of similarly colored blocks associated with the

same module under Module codebooks in Figs. 1.3

and 1.4.

H Pi
� � ¼ � qi↷=pi↻ð Þ log qi↷=pi↻ð Þj

�
X

α2i pα=pi↻ð Þlog pα=pi↻ð Þ
The frequency-weighted average length of

codewords in module codebook i. The entropy of the

relative rates at which the random walker exits mod-

ule i and visits each node in module i measures the

smallest average codeword length that is theoretically

possible. The heights of individual blocks under

Module codebooks in Figs. 1.3 and 1.4 correspond to

the relative rates and the codeword lengths approxi-

mately correspond to the negative logarithm of the

rates in base 2.
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1.3.1.4 The Machinery of the Map Equation

The map equation demo available on www.mapequation.org/apps/MapDemo.html

provides an interactive interface to help understand the machinery of the map

equation. The demo has two modes accessible with the two buttons Rate view
and Code view. The purpose of the rate view shown in Fig. 1.2 is to illustrate how

we use the random walker to induce flow on the network. The purpose of the code

view shown in Figs. 1.3 and 1.4 is to illustrate the duality between finding

regularities in the network structure and compressing a description of the flow

induced by the network structure.

In the Flash application available on www.mapequation.org/apps/MapDemo.

html, the random walker currently visits the green node with codeword

110 (Fig. 1.3). The height of a block under Index codebook represents the rate at

which the random walker enters the module. The bit sequence next to each block is

the associated codeword. Similarly, the height of a block under Module codebooks
represents the rate at which the random walker visits a node, or exits a module. The

blocks representing exit rates have an arrow on their right side. The text field in the

bottom left corner shows the encoding for the previous steps of the random walker,

ending with the step on the node with codeword 110. Steps in the two modules are

highlighted with green and blue, respectively, and the enter and exit codewords are

boldfaced. L(M) in the bottom right corner shows the theoretical limit of the

description length for the chosen two-module network partition given by

Eq. (1.11). LM(M) shows the limit of the Huffman coding given by the actual

codebooks and LWALK(M) shows the average per-step description length of the

realized walk in the simulation.

In the rate view, click Random walker and Start/stop and a random walker

begins traversing the network. Moving from one node to another, the random

walker chooses which neighbor to move to next proportional to the weights of the

links to the neighbors according to Eq. (1.1). As described in Sect. 1.3.1.1, to ensure

an ergodic solution, i.e., that the average visit rates will reach a steady-state solution

independent of where the random walker starts, the random walker sometimes

moves to a random node irrespective of the link structure. In this implementation,

the random walker teleports to a random node with a 15 % chance every step, or

about every six steps.

The histogram on the right in the rate view shows the node-visit distribution. The

colored bars show the average distribution so far in the simulation, and the bars with

a gray border show the ergodic solution. The visit rates of the ergodic solution

correspond to the eigenvector of the leading eigenvalue of the transition matrix

given by the network. This solution also corresponds to the PageRank of the nodes

(Brin & Page, 1998). After a long time the average visit rates of the random walker

will approach the ergodic solution, but this walk-based method is very inefficient

for obtaining the ergodic solution. In practice, since the map equation only takes the

ergodic visit rates as input, we use the power-iteration method to derive the ergodic

solution (Golub & Van Loan, 2012). The power-iteration method works by
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operating on the probability distribution of random walkers rather than on a specific

random walker. By selecting Init votes, each node receives an equal share of this

probability. By clicking Vote, the probability at each node is pushed to neighbors

proportional to the link weights, and 15 % is distributed randomly. As can be seen

by clicking a few times on Vote, the probability distribution quickly approaches the
ergodic solution.

Compared to the two-module solution in Fig. 1.3, the index codebook is larger

and used more often. Nevertheless, and thanks to the more efficient encoding of

movements within modules with the smaller module codebooks, the per-step

codelength is 0.32 bits shorter on average.

In the code view, each node is labeled with its codeword as shown in Figs. 1.3

and 1.4. Each event, i.e. that the random walker visits a node, enters a module, or

exits a module, is also represented as a block in the stacks on the right. The stack

under Index codebook shows module-enter events, and the stack under Module
codebooks shows within-module events. Mouseover a node or a block in the map

equation demo highlights the corresponding block or node. The height of a block

represents the rate at which the corresponding event occurs, and the bit string to the

right of each block is the codeword associated with the event. The codewords are

Huffman codes (Huffman, 1952) derived from their frequency of use. Huffman

codes are optimal for symbol-by-symbol encoding with binary codewords given a

known probability distribution. As explained in Sect. 1.3.1.2, the average

codelength of a Huffman code is bounded below by the entropy of the probability

distribution (Shannon, 1948). In general, the average codelength of a Huffman code

is somewhat longer than the theoretical limit given by the entropy, which has no

constraints on using integer-length codewords. For example, the average

codelengths with actual binary codewords shown in the lower right corners of

Figs. 1.3 and 1.4 are about a percent longer than the theoretical limit.

In practice, for taking advantage of the duality between finding the community

structure and minimizing the description length, we use the theoretical limit given

by the map equation. That is, we show the codewords in the map equation demo

only for pedagogical reasons. For example, note that frequently visited nodes are

assigned short codewords and that infrequently visited nodes are assigned longer

codewords, such that the description length will be short on average. Similarly,

modules which the random walker enters frequently are assigned short codewords,

and so on. The varying codeword lengths take advantage of the regularity that some

events happen more frequently than others, but does not take advantage of the

community structure of the network. Instead, it is the modular code structure with

an index codebook and module codebooks that exploits the community structure.

The optimal network partition corresponds to a modular code structure that

balances the cost of specifying movements within and between modules. Figure 1.3

shows a network partition with two modules. The lower bound of the average

description length for specifying movements within modules is 3.77 bits per step

and only 0.10 bit per step for specifying movements into modules. Describing

movements into modules is cheap because a single bit is necessary to specify which

of the two modules the random walker enters once it switches between modules,
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and it only switches between modules every ten steps on average. However, the

movements within modules are relatively expensive, since each module contains

many nodes, each one with a rather long codeword. The more events a codebook

contains, the longer the codewords must be on average, because there is a limited

number of short codewords. Figure 1.4 shows the optimal network partition with

five modules. In this partition, the smaller modules allow for more efficient

encoding of movements within modules. On average, specifying movements within

modules requires 3.13 bits per step, 0.64 bit less in the two-module solution in

Fig. 1.3. This compression gain comes at the cost of more expensive description of

movements into the five modules, but the overall codelength is nevertheless

smaller, 3.55 bits in the optimal solution compared to 3.87 bits in the two-module

solution. To better understand the inner-workings of the map equation, it is helpful

to change the partition of the network in the map equation demo and study how the

code structure and associated codelengths change.

Here we have described the basic two-level map equation. One strength of the

map equation framework is that it is generalizable to higher-order structures, for

example to hierarchical structures (Rosvall & Bergstrom, 2011), overlapping struc-

tures (Esquivel & Rosvall, 2011), or higher-order Markov dynamics (Rosvall et al.,

2013). For details about those methods, we refer to the cited papers.

1.3.2 Infomap

We use Infomap to refer to the search algorithm for minimizing the map equation

over possible network partitions. Below we briefly describe the algorithms for

identifying two-level and multilevel solutions.

1.3.2.1 Two-Level Algorithm

The core of the algorithm follows closely the Louvain method (Blondel et al.,

2008): neighboring nodes are joined into modules, which subsequently are joined

into supermodules, and so on. First, each node is assigned to its own module. Then,

in random sequential order, each node is moved to the neighboring module that

results in the largest decrease of the map equation. If no move results in a decrease

of the map equation, the node stays in its original module. This procedure is

repeated, each time in a new random sequential order, until no move generates a

decrease of the map equation. Then, the network is rebuilt, with the modules of the

last level forming the nodes at this level, and, exactly as at the previous level, the

nodes are joined into modules. This hierarchical rebuilding of the network is

repeated until the map equation cannot be reduced further.

With this algorithm, a fairly good clustering of the network can be found in a

very short time. Let us call this the core algorithm and see how it can be improved.

The nodes assigned to the same module are forced to move jointly when the
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network is rebuilt. As a result, what was an optimal move early in the algorithm

might have the opposite effect later in the algorithm. Two or more modules that

merge together and form one single module when the network is rebuilt can never

be separated again in this algorithm. Therefore, the accuracy can be improved by

breaking the modules of the final state of the core algorithm in either of the two

following ways:

Submodule movements. First, each cluster is treated as a network on its own and

the main algorithm is applied to this network. This procedure generates one or more

submodules for each module. Then all submodules are moved back to their respec-

tive modules of the previous step. At this stage, with the same partition as in the

previous step but with each submodule being freely movable between the modules,

the main algorithm is reapplied.

Single-node movements. First, each node is reassigned to be the sole member of

its own module, in order to allow for single-node movements. Then all nodes are

moved back to their respective modules of the previous step. At this stage, with the

same partition as in the previous step but with each single node being freely

movable between the modules, the main algorithm is reapplied. In practice, we

repeat the two extensions to the core algorithm in sequence and as long as the

clustering is improved. Moreover, we apply the submodule movements recursively.

That is, to find the submodules to be moved, the algorithm first splits the

submodules into subsubmodules, subsubsubmodules, and so on until no further

splits are possible. Finally, because the algorithm is stochastic and fast, we can

restart the algorithm from scratch every time the clustering cannot be improved

further and the algorithm stops. The implementation is straightforward and, by

repeating the search more than once—100 times or more if possible—the final

partition is less likely to correspond to a local minimum. For each iteration, we

record the clustering if the description length is shorter than the shortest description

length recorded before.

1.3.2.2 Multilevel Algorithm

We have generalized our search algorithm for the two-level map equation to

recursively search for multilevel solutions. The recursive search operates on a

module at any level; this can be all the nodes in the entire network, or a few

nodes at the finest level. For a given module, the algorithm first generates

submodules if this gives a shorter description length. If not, the recursive search

does not go further down this branch. But if adding submodules gives a shorter

description length, the algorithm tests if movements within the module can be

further compressed by additional index codebooks. Further compression can be

achieved both by adding one or more coarser codebooks to compress movements

between submodules, or by adding one or more finer index codebooks to compress

movements within submodules. To test for all combinations, the algorithm calls

itself recursively, both operating on the network formed by the submodules and on

the networks formed by the nodes within every submodule. In this way, the
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algorithm successively increases and decreases the depth of different branches of

the multilevel code structure in its search for the optimal hierarchical partitioning.

For every split of a module into submodules, we use the two-level search algorithm

described above.

1.4 Step-by-Step Instructions to the MapEquation

Software Package

Here we provide detailed instructions on how to analyze networks with the map

equation framework and the software we have developed on top of it. Networks can

be analyzed either by using the MapEquation web applications, or by downloading

the Infomap source code and run the program locally from the command line. Both

the MapEquation software package and the Infomap source code can be found on

the website www.mapequation.org. The MapEquation software package provides

applications for both analyzing and visualizing networks. The web application

interface offers helpful tools for visualizing the data, but the interface can be

slow for large networks and is not useful for clustering more than on the order of

10,000 nodes. The Infomap source code, on the other hand, is fast and more flexible.

It can cluster networks with hundreds of millions of nodes and comes with addi-

tional options for network analysis. After using Infomap, many of the results can be

imported and visualized in the web application.

This section is organized as follows. In Sect. 1.4.1, we provide instructions for

how to analyze and visualize networks with the MapEquation web applications. In

Sect. 1.4.2, we explain how to analyze networks with the Infomap source code from

the command line. Finally, in Sect. 1.4.3, we specify all available input and output

formats.

1.4.1 The MapEquation Web Applications

The MapEquation web applications are available on www.mapequation.org/apps.

html. They include the Map and Alluvial Generator for visualizing two-level

modular structures and change in those structures, and the Hierarchical Network
Navigator for exploring hierarchical and modular organization of real-world net-

works. Below we provide step-by-step instructions for how to use these

applications.
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1.4.1.1 The Map Generator

The Flash application on www.mapequation.org/apps/MapGenerator.html includes

the Map Generator and the Alluvial Generator for analyzing and visualizing single

networks and change in multiple networks, respectively. When you load your

weighted or unweighted, directed or undirected network into the application, the

Map Generator clusters the network based on the map equation and generates a map

for you to customize and save as a pdf file. To simplify and summarize important

structural changes in networks with alluvial diagrams, the Alluvial Generator

makes it possible to load multiple networks with coinciding node names and

partition them one by one with the Map Generator. Figure 1.5 shows the start

frame of the Map and Alluvial Generator for loading networks.

To load, analyze, and view networks with the Map Generator, the following

steps are essential:

1. Load the .net network file into the Map Generator by clicking the button Load
network and choose between undirected and directed network. For very large

networks, the load and clustering time can be long in the Flash-based Map

Generator. If you are encountering problems because of large networks, you

can run the clustering code offline and load the .map file into the application by

clicking Load map.

Fig. 1.5 The start frame of the Map and Alluvial Generator in the Flash application available on

www.mapequation.org/apps/MapGenerator.html
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If you just want to try out the Map Generator, a few sample networks are

provided in the application, including Modular demo network, Network scien-
tists 2010, and Social science 2004. The Modular demo network is the network
used in Sect. 1.3.1. The weighted undirected network Network scientists 2010 is
the largest connected component of a coauthorship network compiled (for

details of how weights are assigned, see Newman (2001)) from two network

reviews Newman (2003)) and Boccaletti, Latora, Moreno, Chavez, and Hwang

(2006) and one community detection review Fortunato (2010), and can be

downloaded1 in .net format. The weighted directed network Social science
2004, as well as Science 1998–2004 provided under Load map, come from

Thomson Reuters’ Journal Citation Reports 2004. The data tally on a journal-

by-journal basis the citations from articles published in a given year to articles

published in the previous 5 years, with self-citations excluded.

2. Cluster the network based on the map equation by clicking Calculate clusters or
alternatively provide a clustering in Pajek’s .clu format by clicking Load cluster
data. The Infomap algorithm tries to minimize the description length of a

random walker’s movement on the network as described in Sect. 1.3.2 and

reveals important aspects of network structure with respect to the dynamics of

the network.

Load the .net network file into the Map Generator by clicking the button Load

network and choose between undirected and directed network. When the net-

work is loaded, click Calculate clusters to cluster the network based on the map

equation and generate a map of the network.

3. Cluster the network based on the map equation by clicking Calculate clusters or
alternatively provide a clustering in Pajek’s .clu format by clicking Load cluster
data. The Infomap algorithm tries to minimize the description length of a

random walker’s movement on the network as described in Sect. 1.3.2 and

reveals important aspects of network structure with respect to the dynamics of

the network.

4. The Map Generator displays the network as a map. Every module represents a

cluster of nodes and the links between the modules represent the flow between

the modules. The default name of a module is given by the node with the largest

flow volume in the module. The size of a module is proportional to the average

time a random walker spends on nodes in the module and the width of a link is

proportional to the per step probability that a random walker moves between the

1 Collaboration network of network scientists is available for download here: http://mapequation.

org/downloads/netscicoauthor2010.net
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modules. The module’s internal flow is also distinguished from the flow out of

the module by a layer as shown for citation data below.

5. Customize the map by changing the position of the modules manually or

automatically (see Placement tools in the control panel), by changing the

names of the modules (double-click on a module to edit the name and list the

nodes within the module together with their flow values), by changing the color

of modules and links (see Color and size tools in the control panel), by moving

the labels, etc. All adjustments can also be applied only to selected modules

(shift-click selects a single module and shift-drag selects multiple modules).

6. Save the customized map in scalable vector graphics as a pdf file or as a .map file

for later access in the Map Generator.

Figure 1.6 shows the Map Generator after following steps 1–5 above with the

journal citation network Science 2004 provided in the application.

In this example, the network Science 2004 was loaded and the scientific fields

were identified and visualized by clicking Calculate clusters. The largest field has

been renamed to Molecular biology and the open window lists the top journals

assigned to the field together with their flow volume (PageRank).

Fig. 1.6 The map and the control panel of the Map Generator available on www.mapequation.

org/apps/MapGenerator.html
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1.4.1.2 The Alluvial Generator

The Alluvial Generator is integrated with the Map Generator. It can load multiple

networks with coinciding node names and partition them one by one with the Map

Generator. The alluvial diagram can reveal organizational changes with streamlines

between modules of the loaded networks, as shown on the right in Fig. 1.7. The

figure shows three scientific journal networks for years 1998, 2001, and 2004

loaded with the button Load map.
In this example, the three journal citation networks Science 1998, Science 2001,

and Science 2004 have been loaded as .map files. The alluvial diagram uses

streamlines to connect nodes assigned to modules in the different networks. Here

all journals assigned to the field Chemistry in 2004 have been highlighted in red,

and the streamlines trace back in which fields those journals were clustered in years

1998 and 2001. The Module explorer contains detailed information about individ-

ual journals.

To use the Alluvial Generator, the following steps are essential:

1. Follow the instructions for the Map Generator described in Sect. 1.4.1.1 above to

load a first network.

2. Click Add network above the control panel to load additional networks. You can
rearrange the order of loaded networks. Simply click a network thumbnail above

the control panel and drag it to its preferred position.

3. The alluvial diagram is displayed to the right of the control panel. If you need

more room, you can collapse the map by clicking the collapse button in the upper

left corner of the map. It is easy to rearrange the modules and the streamlines,

just click and drag to the new position. Highlighted nodes in a module can be

Fig. 1.7 The control panel and an alluvial diagram of the Alluvial Generator available on www.

mapequation.org/apps/MapGenerator.html
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rearranged if you press the mouse button for 2 s. The modules are first named by

the most important node in the module (highest PageRank), but all names can be

selected and changed appropriately. To change the layout of the diagram, use the

size controls under Alluvial diagram in the control panel.

4. To remove, highlight, or explore a module, just click the module and select one

of the options under Alluvial diagram in the control panel. A double-click takes

you directly to the Module explorer. Drag and select multiple modules to

perform actions to multiple modules at the same time.

5. In the Module explorer, you can select and highlight individual or groups of

nodes. The left column corresponds to the selected module(s) and the right

column corresponds to the module assignment in the network marked in the

drop-down list. Grayed out names belong to modules that are not included in the

diagram. To include such a module, just double-click the grayed-out module

name. A dash - means that the node does not exist in the network.

6. By clicking FULLSCREEN in the upper right corner you can use your entire

screen. For security reasons, Flash does not allow for inputs from the keyboard

in full screen mode and you cannot edit any text. Pressing ESC takes you back to

normal mode.

To separate change from mere noise, we provide separate code that simulta-

neously identifies modules and performs significance analysis with bootstrap net-

works. The code outputs a file with extension .smap described in Sect. 1.4.3 below.

To include significance information about the network clusters, download and run

the code conf-infomap2 on each network and load the resulting.smap files instead of

the networks by clicking Load map.

1.4.1.3 The Hierarchical Network Navigator

We have developed the Hierarchical Network Navigator to make it easier to explore

the hierarchical and modular organization of real-world networks. When you load

your network, the network navigator first runs the Infomap algorithm to generate a

hierarchical map. Then it loads the solution into the Finder and Network view for

you to explore. The Finder simultaneously shows modules in multiple levels but no

link structure, whereas the Network view shows the link structure within a single

module. Figure 1.8 shows the Hierarchical Network Navigator loaded with the

undirected network Network scientists 2010 provided in the application.

In this example, we have loaded the collaboration network Network scientists
2010 provided in the application and navigated three steps down to the finest level

in the hierarchical organization to show the connections between the actual scien-

tists in the module Latora, V.,. named after the researcher with strongest connec-

tions and largest flow value in the module. We use a period or multiple periods after

2 Code for generating significance modules is available for download here: http://www.tp.umu.se/

~rosvall/code.html

1 Community Detection and Visualization of Networks with the Map Equation. . . 23

http://www.tp.umu.se/~rosvall/code.html
http://www.tp.umu.se/~rosvall/code.html


a module name to indicate that there are one or more levels of nested modules

within the module.

To use the Hierarchical Network Navigator, the following steps are essential:

1. Click on the button Load network and browse your network file matching the file

formats.

2. Choose between Undirected/Directed links and Multilevel/Two-level clustering.

3. If you loaded a link list, you have to check Zero-based numbering if the node

numbers in the file starts from 0, otherwise they are assumed to start from 1.

4. Click on Calculate clusters.
5. The Infomap algorithm will start to cluster your network and print its progress in

the Network loader window. When it is finished, the Network loader window

will automatically close and you can navigate your network in the Finder and the

Network view. If Infomap exited with an error, please check the error message in

the Network loader window.

Because the Hierarchical Network Navigator makes it possible to navigate very

large networks, we have developed a streamable file format that supports fast

navigation without first loading the entire network file and subsequently clustering

the network in the Flash application with the integrated and therefore slower

Infomap code as described in steps 1–5 above. The binary file with suffix .bftree

can be generated with the fast Infomap source code described in Sect. 1.4.2. The file

format includes the hierarchical structure in a breath first order, including the flow

links of each subnetwork. In this way, only a small part of the file needs to be loaded

Fig. 1.8 The Finder and the Network view in the Hierarchical Network Navigator available on

www.mapequation.org/apps/NetworkNavigator.html
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to visualize the top structures, and the deeper structures can be loaded on demand. If

the stand-alone Infomap source code is used, the following steps are essential:

1. Run Infomap on the network with the flag –bftree (see instructions in

Sect. 1.4.2).

2. Click Load map in the Hierarchical Network Navigator and browse to your .

bftree file generated by Infomap.

3. The Network loader window will automatically close and the Finder and Net-

work view will open with the top level data visible.

Whichever method was used to generate the result, the following commands are

available to navigate and customize the network:

Navigation Use the keyboard arrows!, #, , and " to navigate in the Finder.

Use click and alt + click to navigate down and up, respectively, in the

Network view.

Use the search field in the Finder to directly navigate to nodes anywhere in the

hierarchical structure.

Customization Click the button in the top right in the Network view window to toggle the

Control panel.

Filter the number of nodes by setting the link limit.

Change the size and color scales in the corresponding tab.

Explanation The horizontal bars to the left of the node names in the Finder shows the flow

volume of the nodes as a fraction of the whole network (color) and as a fraction

of their parent nodes (size). The size is scaled logarithmically so that for each

halving the flow is reduced by a factor of 10. Thus, the two vertical lines within

the bar measures, from left to right, 1 and 10 % of the parent flow.

The numbers after the modules in the Finder shows the maximum depth under

that node in the tree. The same information is also encoded in the color of the

arrow.

The module names are automatically generated from their largest children,

adding a new period for each level.

Every module represents a cluster of nodes and the links between the modules

represent the flow between the modules. The size of a module is proportional to

the average time a random walker spends on nodes in the module and the width

of a link is proportional to the per step probability that a random walker moves

between the modules.

1.4.2 The Infomap Command Line Software

For large networks, the load and clustering time can be very long in the Flash-based

Map Generator. To overcome this problem, the Infomap source code for clustering

large networks can be executed from the command line. The code generates output

files that can be loaded in the MapEquation web applications. Here we describe how

to install and run Infomap from the command line with different options.
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1.4.2.1 Installation

The latest Infomap code can be downloaded on www.mapequation.org/code.html.

The source code is also available at Bit-bucket.3 Infomap is written in C++ and can

be compiled with gcc using the included Makefile. To extract the zipped archive

and compile the source code in a Unix-like environment, open a terminal and type:

Substitute [path/to/Infomap] with the folder where Infomap was downloaded,

e.g., �/Downloads. To be able to run on a Windows machine, you can install

MinGW/MSYS to get a minimalist development environment where the above

instructions will work. Please follow the instructions on MinGW—Getting Started4

or download the complete MinGW-MSYS Bundle.5

1.4.2.2 Running

To run Infomap on a network, use the following command:

The optional arguments can be put anywhere. Run ./Infomap –help or see

Sect. 1.4.2.3 for available options. The option network_data should point to a

valid network file and dest to a directory where Infomap should write the output

files. If no option is given, Infomap will assume an undirected network and try to

partition it hierarchically.

1.4.2.3 Options

For a complete list of options, run ./Infomap –help. Below we provide the most

important options to Infomap:

3 https://bitbucket.org/mapequation/infomap
4 http://www.mingw.org/wiki/GettingStarted
5 http://sourceforge.net/projects/mingwbundle/files/latest/download
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Argument types are defined by:

1.4.2.4 Examples

We begin with a simple example with the network file ninetriangles.net provided in

the root directory of the source code. First we create a new directory where we want

the put the results, and feed the destination to Infomap together with the input

network and the option to -N 10, which tells the code to pick the best result from ten

attempts.

Now Infomap will try to parse the file ninetriangles.net as an undirected net-

work, try to partition it hierarchically, and write the best result out of ten attempts to

the output directory as a .tree file described in Sect. 1.4.3. In the second example
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specified below, Infomap will treat the network as directed and try to find the

optimal two-level partition with respect to the flow. With this command, Infomap

will also create an output .map file that can be visualized with the Map Generator,

for example.

As mentioned earlier, for viewing large networks in the Hierarchical Network

Navigator, we recommend options –btree or –bftree to generate streamable binary .

btree and .bftree files, respectively.

For acyclic or time-directed networks, such as article-level citation networks, we

recommend the option –undirdir, which makes Infomap use a random walk model

with movements both along and against link directions but encoding only along link

directions. With the standard random walk model, a disproportional amount of flow

will reach the oldest articles.

1.4.3 Network Input and Output Formats

Here we specify all file formats that can be loaded as input or generated as output

from the applications in the MapEquation software package.

1.4.3.1 Pajek’s .net Format

Network data stored in Pajek’s .net format can be loaded in all applications of the

MapEquation software package. The Pajek format specifies both the nodes and the

links in two different sections of the file. In the .net file, the network nodes have one

unique identifier and a label. The definition of nodes starts with the line *Vertices N,

where N is the number of nodes in the network. Labels or node names are quoted

directly after the node identifier. The link section starts with the line *Edges L or

*Arcs L (case insensitive), where L is the number of links. Weights can be given to

nodes by adding a third column with positive numbers. Below we show an example

network with six nodes and eight directed and weighted links.
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Pajek uses *Edges for undirected links and *Arcs for directed links. The

MapEquation software package accepts both *Edges and *Arcs and the choice of

load button in the user interface determines whether the algorithm treats the

network as undirected or directed. Directed links have the form from to weight.

That is, the first link in the list above goes from node 1 to node 2 and has weight 3.0.

The link weight is optional and the default value is 1 (we aggregate the weights of

links defined more than once). Node weights are optional and sets the relative

proportion to which each node receives teleporting random walkers in the directed

version of the code.

1.4.3.2 The Link List Format

The Hierarchical Network Navigator can, in addition to a Pajek .net file, also load a

link list. A link list is a minimal format to describe a network by only specifying a

set of links as shown below. Each line corresponds to the triad source target weight,

which describes a weighted link between the nodes with specified numbers. The

weight can be any nonnegative value. If omitted, the default link weight is 1. The

nodes are assumed to start from 1 and the total number of nodes will be determined

by the maximum node number.

1.4.3.3 Pajek’s .clu Format

For a given network input file, it is also possible to specify the clustering of the

nodes in all applications. The cluster information must be provided in Pajek’s .clu

format. In the web applications, the file can be loaded after the network by clicking

Load cluster data. Infomap reads the cluster information with the option -c
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clusterfile.clu Pajek’s .clu format is just a list of module assignments as shown

below.

The cluster file above specifies that nodes 1–3 in the network belong to module

2 and that nodes 4–6 belong to module 1. Infomap generates a .clu file with the

option –clu.

1.4.3.4 The .map and .smap Formats

Information contained in the network and the cluster file together can be loaded in

the web applications as a single .map file, which also include link and node

information aggregated at the module level. The .map file begins with information

about the number of nodes, modules, and links in the network, followed by the

modules, nodes, and the links between modules in the network as shown below.
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This .map file also contains the codelength and the flow volumes of the nodes,

and was generated with Infomap. In the output from Infomap, the names under

*Modules are by default derived from the node with the highest flow volume within

the module and 0.5 0.0697722 represent, respectively, the aggregated flow volume

of all nodes within the module and the per step exit flow from the module. The

nodes are listed with their module assignments together with their flow volumes.

Finally, all links between the modules are listed in order from high flow to low flow.

Infomap generates a .map file with the option –map.

The .smap file below corresponds to the .map file above with additional signif-

icance information.

The .smap file contains the necessary information to generate a significance map

in the Alluvial Generator. Compared to the .map file above, this file also contains

information about which modules that are not significantly standalone and which

modules they most often are clustered together with. The notation 2< 1 under

*Insignificants 1 in the example above means that the significant nodes in module

2 are clustered together with the significant nodes in module1 more often than the

confidence level. In the module assignments, we use colons to denote significantly

clustered nodes and semicolons to denote insignificantly clustered nodes. For

example, the colon in 1:1 "Node 1" 0.209317 means that the node belongs to the

by flow largest set of nodes that are clustered together more often than the

confidence level number of bootstrap networks. This .smap file was generated

with code described in Sect. 1.4.1.2. For more information, see Rosvall and

Bergstrom (2010).

1 Community Detection and Visualization of Networks with the Map Equation. . . 31



1.4.3.5 The .tree Format

The default output from Infomap is a .tree file that contains information about the

identified hierarchical structure. The hierarchical structure in the .tree file below has

three levels.

Each row begins with the multilevel module assignments of a node. The module

assignments are colon-separated from coarse to fine level, and all modules within

each level are sorted by the total PageRank of the nodes they contain. Further, the

integer after the last comma is the rank within the finest-level module, the decimal

number is the steady state population of random walkers, and finally is the node

name within quotation marks. Infomap generates a .tree file by default or with the

option –tree.

1.4.3.6 The .btree and .bftree Formats

To be able to navigate the network as soon as the hierarchical structure has been

loaded into the Hierarchical Network Navigator, we use a customized streamable

format that includes the tree structure in a breath first order (.btree and .bftree),

including the flow links of each subnetwork (.bftree only). In this way, only a small

part of the file has to be loaded to visualize the top structures, and the deeper

structures can be loaded on demand. Infomap generates the .btree and .bftree files

with the options –btree and –bftree, respectively.

Conclusions

This chapter is meant to serve as a guideline for how to use the map equation

framework for simplifying and highlighting important structures in networks.

We have described several applications developed for analysis and visuali-

zation of large networks. However, we haven’t covered all features and new

software is under development. Ultimately, for maximal usability and user-

(continued)
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(continued)

friendly interface, we would like the web application to be as fast as the

command line software. We are continuously investigating different solutions

that become available with new web technology, and welcome all feedback.

Therefore, we encourage you to contact us if you have any questions or

comments. Please visit www.mapequation.org for the latest releases and

updates, including an up-to-date version of this tutorial.
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Chapter 2

Link Prediction

Raf Guns

Abstract Social and information networks evolve according to certain regularities.

Hence, given a network structure, some potential links are more likely to occur than

others. This leads to the question of link prediction: how can one predict which

links will occur in a future snapshot of the network and/or which links are missing

from an incomplete network?

This chapter provides a practical overview of link prediction. We present a

general overview of the link prediction process and discuss its importance to

applications like recommendation and anomaly detection, as well as its significance

to theoretical issues. We then discuss the different steps to be taken when

performing a link prediction process, including preprocessing, predictor choice,

and evaluation. This is illustrated on a small-scale case study of researcher collab-

oration, using the freely available linkpred tool.

2.1 Introduction

The field of informetrics studies quantitative aspects of knowledge and information.

This involves areas such as citation analysis, collaboration studies, web link studies,

and bibliometric mapping. These areas often comprise relations between people,

documents, social structures, and cognitive structures. Although such relations can

be looked at from many different angles, one of the most promising approaches is

the network perspective.

The study of networks is gaining increasing attention in fields of research as

diverse as physics, biology, computer science, and sociology. In informetrics as

well, network analysis is a central component. This is not a new phenomenon. It

was for instance recognized early on that the mathematical study of graphs might

also be beneficial to a better understanding of how documents influence each other

(as reflected in citation relations). Important early landmarks include work by

Pinski and Narin (1976), Price (1965), and Xhignesse and Osgood (1967).
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Later studies have expanded on these seminal works and broadened the scope to all

kinds of informational phenomena. Indeed, many interactions studied in

informetrics can be represented as networks, e.g. citation networks, collaboration

networks, web link networks, and co-citation networks. In recent years, several

studies employ measures and techniques borrowed from social network analysis

(e.g., Otte & Rousseau, 2002).

While a lengthy overview of social network analysis would lead us too far, we

briefly introduce the terminology used throughout this chapter. A network or

graph G¼ (V,E) consists of a set of nodes or vertices V and a set of links or

edges E. Each edge e¼ {u, v} connects the nodes u and v (u, v2V ) The set of nodes
N(v) connected to a given node v is called its neighbourhood. The number of nodes

adjacent to v (the cardinality of the neighbourhood) is called its degree and denoted
as |N(v)|.

Although networks are sometimes studied as if they are static, most social and

information networks tend to be dynamic and subject to change. In a journal

citation network, for instance, new journals emerge and old ones disappear, a

journal may start citing a journal it had never cited before, and so on. This kind

of change in a network is not entirely random; several mechanisms have been

proposed that explain how networks evolve. We point out two important ones:

• Assortativity is the tendency of actors to connect to actors that are, in some way,

similar to themselves (‘birds of a feather flock together’). The criterion for

similarity may be diverse: race, sex, age, interests, but also for instance node

degree. In some networks dissortativity has been determined: the tendency to

connect to others who are different from oneself (‘opposites attract’).

• Preferential attachment (Barabási & Albert, 1999) is the tendency to connect

with successful actors, where success is usually measured by degree. Preferential

attachment is a self-reinforcing ‘rich-get-richer’ mechanism, since every node

that links to a high-degree node increases the latter’s degree and thus its

attractiveness to other nodes. This eventually evolves into a network where the

degree distribution follows a power law (as is observed for many social net-

works). The mechanism is closely related to the Matthew effect (Merton, 1968)

and Price’s (1976) success-breeds-success principle.

Suppose that we have a snapshot of a network at some point in timeGt. Given the

existence of mechanisms like assortativity and preferential attachment, some

changes in Gt are more likely than others. For instance, the chance that two high-

degree actors with similar social background will connect in the next snapshot Gt+1

is probably higher than for two low-degree actors from different backgrounds.

Link prediction is a more formalized way of studying and evaluating this kind

of intuitions. The link prediction problem can be formulated as follows (Liben-

Nowell & Kleinberg, 2007): to what extent can one predict which links will occur in

a network based on older or partial network data? We can distinguish between

future link prediction and missing link prediction. Future link prediction (Guns,

2009, 2011; Guns & Rousseau, 2014; Huang, Li, & Chen, 2005; Spertus, Sahami, &

Buyukkokten, 2005; Yan & Guns, 2014) involves predicting links in a future
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snapshot of the network based on a current one. Missing link prediction (Clauset,

Moore, & Newman, 2008; Guimerà & Sales-Pardo, 2009; Kashima & Abe, 2006;

Zhou, Lü, & Zhang, 2009) involves predicting all links based on an incomplete or

damaged version of a network (missing certain links or containing spurious ones,

e.g. because of sampling or measurement errors). Both types can be addressed using

similar methods.

The remainder of this chapter is structured as follows. Section 2.2 reviews the

link prediction process and its applications. In Sect. 2.3 we describe the data set that

will be used as an example throughout the chapter. Section 2.4 introduces the

linkpred tool and Sect. 2.5 shows how it can be used for link prediction. Finally,

the last section provides the conclusions.

2.2 The Link Prediction Process and Its Applications

Figure 2.1 provides a schematic overview of the link prediction process. There are

four major steps: data gathering, preprocessing, prediction, and evaluation. In some

studies (e.g., Guns, 2009), an extra postprocessing step in between prediction and

evaluation can be distinguished. Because postprocessing is rare, it is left out here.

Data gathering may seem like an obvious step. It is explicitly included, because

the quality of input data has a profound effect on the quality of later predictions. In

this step, we also make a distinction between the training and the test data, both of

which are typically derived from the same data sources. We will refer to the

network that predictions are based on as the training network. If one wants to

compare the prediction results to a ‘ground truth’ network (e.g., a later snapshot of

Fig. 2.1 Overview of the link prediction process
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the same network), the latter network is called the test network. Note that the test

network is only needed for evaluation purposes.

Preprocessing is very common but not mandatory. The main preprocessing step

consists of filtering out certain nodes; the reasons and criteria for this are reviewed

in Sect. 2.5.1. Preprocessing applies to both the training and test networks.

The prediction step operates on the training network. This step involves the

choice of a predictor, a function or algorithm that calculates a likelihood score for

each node pair (or for a subset of node pairs). Applying a predictor to the

preprocessed training network yields a number of predictions. In practice, the

prediction step results in a list of potential links with an associated likelihood

score W. By ranking the potential links in decreasing order of W and choosing a

threshold, one can obtain a predicted network. This step does not affect the training

and test networks, which is reflected by the dotted lines in Fig. 2.1.

Evaluation involves comparing the test network with the predictions. There are

several possible techniques and methods for this, most of which stem from infor-

mation retrieval, data mining and related field (see Sect. 2.5.3).

At a high level, link prediction can be considered a statistical classification task.

The items to be classified are node pairs, which should be classified into two groups:

links and non-links. On the basis of empirical data (a training network, whose links

we will refer to as attested links) one assigns a probability of linkage to each pair.

These probability scores can then be used in different ways. We can generally

distinguish between link prediction proper—that is, usage of probabilities for the

actual purpose of prediction—and other applications, where these probabilities are

exploited in different ways. Below, we list five possible applications of link

prediction. The first two are mostly based on future link prediction, the next two

build on missing link prediction, and the final one involves the importance of link

prediction at a more theoretical level.

Let us first focus on link prediction proper. Typically, this happens when one is

genuinely interested which links may arise in the future (or in a network which is

related in a non-temporal way). In a scientometric context, this is interesting for

policy makers, for whom a good understanding of likely future evolutions is crucial.

Generally speaking, this use case is best served by a fairly small amount of very

likely interactions or, in other words, by a focus on precision rather than recall. In

the context of metadata generation, link prediction may help to alleviate sparsity of

available associations (Rodriguez, Bollen, & Van de Sompel, 2009, p. 11).

A related application is recommendation: rather than actually trying to predict

the future state of the network, one seeks to find likely but unattested links, often

involving a specific node. For instance, given node a, one can create a (usually

short) ranked list of candidate neighbours. These candidate neighbours are

presented to a as recommendations. Interestingly, by doing so, one may influence

the network’s evolution. Recommendation is, for example, of great interest to

smaller research groups that want to look into national or international collabora-

tion: who are likely partners? There exists a rather large amount of literature on

recommendation, recommender systems and collaborative filtering, where a and

the items recommended to a are of different kinds, such as a researcher and papers
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she should read or cite and a library user and materials that might be of interest to

him. Although most research into this kind of recommendation does not explicitly

involve networks, it can be conceptualized as a link prediction problem within a

two-mode network. Some studies explicitly study the role of link prediction in

recommendation (Guns & Rousseau, 2014; Yan & Guns, 2014).

Thirdly, many networks that derive from actual data are in some ways incom-

plete. Link prediction can then be considered a tool to detect missing information.

Conversely, erroneous data may sneak into a network and perhaps greatly affect

research results. If the erroneous data cases the existence of a link that should not be

present (similar to a completely random link inserted in the network), link predic-

tion methods may single out the spurious link as highly unlikely.

Fourthly, detecting spurious links is related to a secondary application of link

prediction: anomaly detection. Rattigan and Jensen (2005) suggest that anomaly

detection offers a more fruitful line of inquiry than link prediction proper. The basic

idea is that link prediction offers the tools to discover ‘anomalous links’, links that

are unexpected and therefore interesting. For instance, an unexpected citation in a

paper citation network may be a sign of interdisciplinarity (a paper building on

methods or insights from other disciplines).

Finally, the main promise of link prediction at the theoretical level is as a

practical way of testing and evaluating network formation and evolution models.

Predictors normally derive from an explicit or implicit hypothesis of how and why

links arise in a network. The performance of a predictor therefore also may help to

test the validity of the underlying hypothesis. If a predictor performs markedly

differently on different networks, this may point to variations in the factors that play

a role in the evolution of these networks.

2.3 Data

We will use collaboration data to illustrate the process of link prediction. The data

can be downloaded from https://raw.github.com/rafguns/linkpred/stable/examples/

inf1990-2004.net and https://raw.github.com/rafguns/linkpred/stable/examples/

inf2005-2009.net. The data represent a collaboration network between informetrics

researchers, based on co-authorships. Thus, each node represents a researcher and

each link represents a collaboration. A link’s weight is the number of

co-authorships of the two researchers. All data were downloaded from Thomson

Reuters’ Web of Science™.

The training network is in the file inf1990-2004.net (period 1990–2004) and the

test network is in the file inf2005-2009.net (period 2005–2009). This data set is a

subset of the data used by Guns, Liu, and Mahbuba (2011) and Guns (2011, 2012).

Both files are in the Pajek format and can be read and visualized with several

software packages, including Pajek and VOSviewer.

Table 2.1 summarizes basic descriptive statistics of these networks. It can be

seen that the networks are very sparse and not well connected. Although the largest
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component is significantly larger than the second largest component, it is not a real

‘giant component’ in either case. These properties may also affect the quality and

feasibility of link prediction.

2.4 The Linkpred Tool

Linkpred is a tool that aims to make the most common link prediction actions

available through a simple command-line interface. This means that linkpred is

used by typing commands, rather than mouse input in a graphical user interface.

Throughout the rest of this chapter, we assume that the operating system is

Microsoft Windows. Because linkpred is written in the ubiquitous Python language

(www.python.org), it can also be run under Apple’s OS X and different flavours of

Unix, including Linux.

An alternative software package that can be used for link prediction is LPmade

(Lichtenwalter & Chawla, 2011), available from https://github.com/rlichtenwalter/

LPmade.

2.4.1 Installation

The most straightforward way to get started is by installing the Anaconda Python

distribution (https://store.continuum.io/cshop/anaconda/), which includes all

required packages by default. One can then download and install linkpred as

follows. Open a command line window and issue the following command:

> pip install https://github.com/rafguns/linkpred/archive/stable.

zip

This will display some output as linkpred is downloaded and installed. If no error

messages are shown, linkpred is successfully installed. This can be verified by

trying to run it, which should display the following output:

Table 2.1 Descriptive

statistics of example data
1990–2004 2005–2009

Number of nodes 632 634

Number of links 994 1,052

Density 0.0050 0.0052

Number of components 95 105

Size of largest component 238 173
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> linkpred

usage: linkpred training-file [test-file] [options]

linkpred: error: too few arguments

If an error message states that the command is unknown, linkpred can be run by

referring to its exact location, for instance:

> C:\Anaconda\Scripts\linkpred

2.4.2 Basic Usage

Linkpred is a command-line tool. The command

> linkpred --help

should display basic usage information starting with the following line:

usage: linkpred training-file [test-file] [options]

We can see that linkpred expects a number of arguments: a training file, an

optional test file, which are followed by options. The most important options are -p

or --predictors, where a list of predictors is given, and -o or --output, where one can

specify what kind of output is desired. A list of possible values is given in the output

of linkpred --help.

The following examples give an idea how the tool can be used. This assumes that

the current directory is the one where the data files inf1990-2004.net and inf2005-

2009.net are located.

– To write all predictions based on the common neighbours predictor to a file:

> linkpred inf1990-2004.net -p CommonNeighbours –o cache-

predictions

The resulting file can be found alongside the training network and will have a

name of the format <training>-<predictor>-predictions_<timestamp>.txt

(e.g., inf1990-2004-CommonNeighbours-predictions_2013-10-25_14.47.txt).

– To apply the common neighbours and cosine predictors, and evaluate their

performance with a recall-precision chart and a ROC chart (see Sect. 2.5.3 for

details):

> linkpred inf1990-2004.net inf2005-2009.net -p

CommonNeighbours Cosine –o recall-precision roc
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The resulting charts can be found alongside the training network and will have a

name of the format <training>-<chart-type>_<timestamp>.pdf (e.g., inf1990-

2004-ROC_2013-10-25_14.47.pdf). If a different file format than PDF is desired,

this can be obtained by setting the -f (or --chart-filetype) option to another value

(e.g., png or eps).

2.5 Link Prediction in Practice

In this paragraph, we discuss the practical steps to be taken when performing a link

prediction study. We discuss preprocessing, the choice of predictor(s), the actual

prediction, and evaluation, all with the linkpred program. Basic information on how

to use linkpred as a module within Python is provided in the Appendix.

2.5.1 Preprocessing

Typically, some basic preprocessing operations need to be carried out before the

actual prediction takes place.

Link prediction, by definition, is the act of predicting links, not nodes. However,

as networks evolve, their node set evolves as well. Hence, one cannot assume that

the training and the test network both contain exactly the same set of nodes. To

allow for a fair comparison, we need to restrict our analysis to nodes that are

common to the training and test networks. This is automatically done by linkpred.

This way, it becomes possible—at least in theory—to do a perfect prediction with

100 % precision and 100 % recall.

It is notoriously difficult to predict anything about isolate nodes (nodes without

any neighbours), since one has no (network-based) information about them. Sim-

ilarly, low-degree nodes are sometimes discarded because one has too little infor-

mation about them (e.g., Liben-Nowell & Kleinberg, 2007). However, doing so

may lead to overestimating the precision of the predictions (Guns, 2012; Scripps,

Tan, & Esfahanian, 2009). By default, linkpred removes isolate nodes and leaves all

other nodes intact. This can be changed by setting min_degree to a different value

than 1 (in a profile, see Sect. 2.5.4).

Collaboration networks are undirected, i.e. links can be traversed in both direc-

tions. Directed networks, on the other hand, have links with an inherent direction;

citation networks are a prime example. Almost all link prediction studies deal

exclusively with undirected networks. Hence, linkpred has been mainly tested on

undirected networks and does not support directed networks. Shibata, Kajikawa,

and Sakata (2012) study link prediction in an article citation network. However,

they essentially treat the network as undirected and only predict the presence or

42 R. Guns



absence of a link between two nodes. It is then assumed that the more recent article

cites the older one. A similar approach is possible with linkpred: first, convert the

directed network to an undirected one, and subsequently apply link prediction.

2.5.2 Predictor Choice

At the moment, linkpred implements 18 predictors, several of which have one or

more parameters. Here, we will limit ourselves to discussing some of the most

important ones. We distinguish between local and global predictors. Most pre-

dictors—both local and global—implemented in linkpred have both a weighted and

an unweighted variant.

Local predictors are solely based on the neighbourhoods of the two nodes. Many

networks have a natural tendency towards triadic closure: if two links a� b and

b� c exist, there is a tendency to form the closure a� c. This property is closely

related to assortativity and was empirically confirmed in collaboration networks by

Newman (2001), who showed that the probability of two researchers collaborating

increases with the number of co-authors they have in common: ‘A pair of scientists

who have five mutual previous collaborators, for instance, are about twice as likely

to collaborate as a pair with only two, and about 200 times as likely as a pair with

none’. It can be operationalized by the common neighbours predictor (Liben-

Nowell & Kleinberg, 2007):

W u; vð Þ ¼ N uð Þ \ N vð Þj j ð2:1Þ

Despite its simplicity common neighbours has been shown to perform quite well on

a variety of social networks: triadic closure turns out to be a powerful mechanism

indeed.

The common neighbours predictor is sensitive to the size of the neighbourhood.

If both u and v have many neighbours, they are automatically more likely to have

more neighbours in common. Therefore, several normalizations have been intro-

duced in the literature, such as Dice’s index (Zhou et al., 2009) or the cosine

measure (Spertus et al., 2005). The latter, for instance, is defined as:

W u; vð Þ ¼ N uð Þ \ N vð Þj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N uð Þ �j jN vð Þj jp ð2:2Þ

Other implemented normalizations include Jaccard, maximum and minimum over-

lap, N measure, and association strength. These indicators are fairly well-known in

the information science literature, since they are frequently used as similarity

measures in information retrieval and mapping studies (e.g., Ahlgren, Jarneving,

& Rousseau, 2003; Boyce, Meadow, & Kraft, 1994; Salton & McGill, 1983; Van

Eck & Waltman, 2009). In most empirical studies, normalizations of common
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neighbours have an adverse effect on performance. In other words, two nodes that

have many neighbours in common are automatically likely to link to each other,

regardless of their total number of neighbours. One exception to this general rule

are bipartite networks, such as author–paper networks; Guns (2011) shows that the

cosine measure in particular forms a good predictor for this kind of networks.

The Adamic/Adar predictor starts from the hypothesis that a ‘rare’ (i.e.,

low-degree) neighbour is more likely to indicate a social connection than a high-

degree one. Its original definition stems from Adamic and Adar (2003) and was

adapted for link prediction purposes by Liben-Nowell and Kleinberg (2007):

W u; vð Þ ¼
X

z2N uð Þ\N vð Þ

1

log N zð Þj j ð2:3Þ

A very similar predictor is resource allocation, which was introduced by Zhou

et al. (2009):

W u; vð Þ ¼
X

z2N uð Þ\N vð Þ

1

N zð Þj j ð2:4Þ

Resource allocation is based on a hypothesis similar to that of Adamic/Adar, but

yields a slightly different ranking. In practice this predictor often outperforms

Adamic/Adar. Both Adamic/Adar and resource allocation tend to yield strong

predictions and outperform common neighbours.

If preferential attachment is the mechanism underlying network evolution, it can

be shown that the product of the degrees of nodes u and v is proportional to the

probability of a link between u and v (Barabási et al., 2002). Hence, we define the
degree product predictor (also known as the preferential attachment predictor):

W u; vð Þ ¼ N uð Þ �j jN vð Þj j ð2:5Þ

Note that the assumptions underlying Eq. (2.5) are almost the opposite of those

underlying Eq. (2.2) and similar normalizations: whereas the former rewards high

degrees, the latter punishes them. This strongly suggests that if degree product

performs well as a predictor, normalized forms of common neighbours will have

poor results, and vice versa. Whereas some studies report poor performance for

degree product (e.g., Liben-Nowell & Kleinberg, 2007), others have found degree

product to be fairly strong predictor (e.g., Yan & Guns, 2014). The cohesion and

density of the network appear to be influential factors.

Many networks have weighted links. In our case study, for instance, the link of a

weight is equal to the number of co-authored papers. Taking link weights into

account for link prediction seems like a logical step. It is therefore quite surprising

that this subject has usually been ignored (see Murata & Moriyasu, 2007 and Lü &

Zhou, 2010 for some exceptions). Guns (2012) argues that the vector interpretation

of set-based similarity measures (Egghe &Michel, 2002) offers a strong theoretical
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basis for weighted neighbour-based predictors. For instance, the weighted variant

of the cosine predictor becomes:

W u; vð Þ ¼
X

xi � yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
x2i
X

y2i

q ð2:6Þ

For each node i there is a corresponding vector element xi or yi If node i is connected
to u, then xi¼wu,i, the weight of the link between u and i (likewise for v and yi). If
node i is unconnected to u (or v) the corresponding vector element is zero. This way,

linkpred implements weighted versions of all local predictors.

Now let us turn to the global predictors. Even if two nodes do not share any

common neighbours, they still may be related and form a link in a later stadium. A

straightforward measure of relatedness is the graph distance between two nodes:

W u; vð Þ ¼ 1

d u; vð Þ ð2:7Þ

where d(u, v) denotes the length of the shortest path from node u to v. If link weights
are taken into account, graph distance is defined as:

W u; vð Þ ¼
Xt
i¼1

1

wi

 !�1

ð2:8Þ

where wi (i¼ 1, . . ., t) denotes the weight of the ith link in the shortest path (with

length t between u and v). Weighted graph distance is a much better predictor than

unweighted graph distance (Guns, 2012).

In 1953, Leo Katz proposed a centrality indicator that aims to overcome the

limitations of plain degree centrality (Katz, 1953). LetA denote the (full) adjacency

matrix of the network. The element aij is 1 if there is a link between nodes vi and vj

or 0 if no link is present. Each element a
ðkÞ
ij of Ak (the k-th power of A) has a value

equal to the number of walks with length k from vi to vj (Wasserman & Faust, 1994,

p. 159). The Katz predictor is then defined as:

W vi; vj
� � ¼X1

k¼1

βka kð Þ
ij ð2:9Þ

Generally, longer walks indicate a weaker association between the start and end

node. Katz (1953) therefore introduces a parameter β(0< β< 1), representing the

‘probability of effectiveness of a single link’. Thus, each walk with length k has a
probability of effectiveness βk. Its underlying hypothesis is that more and shorter

walks between two nodes indicate a stronger relatedness. Guns and Rousseau

(2014) show that the weighted variant of the Katz predictor can best be described
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in the context of a multigraph, a network where one pair of nodes can be connected

by multiple links. This predictor is among the most studied and best performing of

all predictors implemented in linkpred.

PageRank is well-known thanks to its implementation in the Google search

engine (Brin & Page, 1998). Assume the existence of a random walker

(a ‘random web surfer’, Page, Brin, Motwani, & Winograd, 1999), who starts at a

random node, randomly chooses one of its neighbours and navigates to that

neighbour, again randomly chooses a neighbour and so on. Moreover, at every

node, there is a small chance that the walker is ‘teleported’ to a random other node

in the network. The chance of advancing to a neighbour is α (0< α< 1) and the

chance of teleportation is 1� α. One can determine the probability that the walker is

at a given node. Some nodes are more important than others and will have a higher

associated probability. This probability is equal to that node’s PageRank. Rooted

PageRank is a variant of PageRank where the random walker traverses the network

in the same way, except that the teleportation is not randomized: the walker is

always teleported back to the same root node. The associated rooted PageRank

score can be interpreted as a predictor of other nodes’ relatedness to the root node.

SimRank is a measure of the similarity between two nodes in a network,

proposed by Jeh and Widom (2002). The SimRank thesis can be summarized as:

nodes that link to similar nodes are similar themselves. To compute SimRank we

start from the assumption that any node is maximally similar to itself: sim(a, a)¼ 1.

The unweighted formula is (Antonellis, Molina, & Chang, 2008):

W u; vð Þ ¼ c

N uð Þj j � N vð Þj j
X

p2N uð Þ

X
q2N vð Þ

W p; qð Þ ð2:10Þ

Here, c(0< c< 1) is the ‘decay factor’, which determines how quickly similarities

decrease. It is interesting to note that SimRank’s authors explicitly acknowledge its

bibliometric heritage: they regard SimRank as ‘a generalization of co-citation

where the similarity of citing documents is also considered, recursively. [. . .]
This generalization is especially beneficial for nodes with few neighbours (e.g.,

documents rarely cited)’ (Jeh & Widom, 2002). The performance of rooted

PageRank and SimRank seems to vary from study to study; even more than for

other predictors it is key to carefully tune the parameters. Furthermore, several

studies use their unweighted versions, whereas the weighted ones perform better in

most cases.

2.5.3 Prediction

Once a predictor has been chosen, it can be applied to the training network. In most

cases, one wants to predict new links only, i.e. links that are not present in the

training network. The default setting in linkpred is to predict only new links. It is,

46 R. Guns



however, possible and in some cases perfectly appropriate to predict both current

and new links. Anomaly detection, for instance, is based on likelihood scores that

are given to current links. Current links whose likelihood score is below a certain

threshold (or the bottom n) are potential anomalies. Predicting both current and new

links can be enabled with the -a (or –all) option. For instance, the following

command saves all predictions (according to SimRank) for the 2005–2009 network

to a file:

> linkpred inf2005-2009.net -a -o cache-predictions -p SimRank

In the resulting list the least expected links can be considered potential anom-

alies, co-authorships that are unlikely given the network topology. Note that this is

the opposite of ‘normal’ link prediction: instead of the most plausible links, we seek

the least plausible ones. Without attempting to interpret the results, the six least

expected co-authorships according to SimRank are the following (all of which had

the same likelihood score):

• Fowler, JH–Aksnes, DW

• Liu, NC–Liu, L

• Origgi, G–Laudel, G

• Prabowo, R–Alexandrov, M

• Rey-Rocha, J–Martin-Sempere, MJ

• Shin, J–Lee, W

2.5.4 Evaluation and Interpretation

The prediction step results in a (usually large) number of predictions, each with a

certain relatedness score W. It depends on one’s intentions what should be done

next. If no test file is supplied, the only possible output is saving the list of

predictions, by setting output to cache-predictions. The list is saved as a

tab-separated file with three columns: first node, second node, and relatedness

score. This format can be easily imported into a spreadsheet like MS Excel or a

statistical package like SPSS for further analysis.

If a test file is supplied, it becomes possible to evaluate the prediction results by

comparing them with the test network. The following additional output values are

possible:

• cache-evaluations: saves the evaluation data to a tab-separated file. Each line

contains the following four columns: true positive number, false positive num-

ber, false negative number, and true negative number.

• recall-precision: yields a recall-precision chart (this is the default).

• roc: yields a ROC chart, which plots the false positive rate against the true

positive rate (recall).
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• f-score: yields a chart showing the evolution of the F-score (the harmonic mean

of recall and precision) as more predictions are made.

• fmax: yields a single-number indicator of performance, namely the highest

F-score value.

Let us, as an example, try to compare the performance of the following pre-

dictors: common neighbours, cosine, degree product, SimRank, and Katz. We issue

the following command:

> linkpred inf1990-2004.net inf2005-2009.net -p CommonNeighbours

Cosine DegreeProduct SimRank Katz

This will apply the chosen predictors to the training network with their default

settings. Since no specific output has been specified, the default output (recall–

precision) is chosen. Figure 2.2 displays the results. This chart illustrates the

difficulty of comparing predictors. For instance, while Katz starts out as the best

predictor (left side), it is overtaken by common neighbours and cosine for slightly

higher recall levels. Degree product and SimRank appear to be weaker predictors in

comparison, but achieve higher recall levels.

The ROC chart provides another view on the same data. Figure 2.3 was obtained

with the command:

> linkpred inf1990-2004.net inf2005-2009.net -p CommonNeighbours

Cosine DegreeProduct SimRank Katz -o roc

Fig. 2.2 Recall–precision chart for five predictors
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This chart should be interpreted as follows. If predictions were purely random-

ized, they would follow the diagonal. A perfect prediction would follow a line from

the bottom left to the top left corner, and from there to the top right corner. In other

words, the higher, the better. Although this chart is based on exactly the same data

as Fig. 2.2, it suggests a different interpretation: here, SimRank appears to be the

best predictor. The main reason is that the largest part of Fig. 2.3 corresponds to

recall values above (roughly) 0.3, which three of the five predictors do not achieve.

Because most applications value precision over recall, we think recall–precision

charts are usually to be preferred in link prediction evaluation.

2.5.5 Profiles

The linkpred tool supports the usage of profiles. A profile is a file that describes

predictors and settings for a prediction run. Profiles have two advantages over

setting predictors and settings through the command line:

1. One does not need to enter a potentially lengthy list of settings each time.

2. A profile allows for more fine-grained control over settings. For instance,

predictor parameters can only be controlled through a profile.

Fig. 2.3 ROC chart for five predictors
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Profiles can be written in the JSON and YAML formats.1 We will use YAML

here and demonstrate its use with a typical application: recommendation.

Suppose that we want to generate recommendations for collaboration between

authors in informetrics. The main challenge here is to generate realistic recommen-

dations that are at the same time not too obvious. As for preprocessing, it seems

advisable that one does not exclude less prolific authors and sets min_degree to

1. The next step is prediction. Obviously we are only interested in unseen links,

which is the default setting. Which predictors should be chosen? Since most local

predictors yield rather obvious predictors, one will probably mainly use global

predictors with good performance, such as rooted PageRank and Katz. The param-

eters of these predictors influence how far apart a predicted node pair can be; we

choose to test two different values for each. Finally, since we are recommending,

there is no (formal) evaluation step and we set output to cache-predictions. The

corresponding profile looks like this:

output:

- cache-predictions

predictors:

- name: RootedPageRank

displayname: Rooted PageRank (alpha ¼ 0.5)

parameters:

alpha: 0.5

- name: RootedPageRank

displayname: Rooted PageRank (alpha ¼ 0.8)

parameters:

alpha: 0.8

- name: Katz

displayname: Katz (beta ¼ 0.01)

parameters:

beta: 0.01

- name: Katz

displayname: Katz (beta ¼ 0.001)

parameters:

beta: 0.001

Note that we can set predictor parameters and change a predictor’s display name

(the way it is displayed in chart legends, etc.) We save the profile as rootedpr.yaml

and use it as follows:

> linkpred inf2005-2009.net --profile rootedpr.yaml

1 See, e.g., http://en.wikipedia.org/wiki/JSON and http://en.wikipedia.org/wiki/YAML.
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Because it is hard to assess which parameter values will yield the best pre-

dictions, it is often advisable to first test different settings on a related set of training

and test networks. For instance, since we are recommending new links on the basis

of the 2005–2009 data set, we could test which α value for rooted PageRank yields

the best result for the 1990–2004 training network and the 2005–2009 test network.

As indicated by the recall–precision chart (not shown) and the maximum F-scores

(Table 2.2), a value around 0.5 appears to be optimal.

As a last example, we show how to compare the weighted and unweighted

variants of a predictor, in this case Jaccard, with a recall–precision and ROC

chart. The profile looks like this:

output:

- recall-precision

- roc

predictors:

- name: Jaccard

displayname: Jaccard, unweighted

parameters:

weight: null

- name: Jaccard

displayname: Jaccard, weighted

parameters:

weight: weight

Discussion and Conclusions

The use of network analysis techniques has become increasingly common in

informetric studies over the last 10 years. Link prediction is a fairly recent set

of techniques with both theoretical and practical applications. The techniques

were illustrated on a case study of collaboration between researchers in the

field of informetrics.

Generally speaking, it turns out that link prediction is possible, because
link formation in social and information networks does not happen at random.

Nonetheless, link prediction methods are also limited in several ways. First,

these methods rely only on network topology and are unaware of social,

cognitive and other circumstantial factors that may affect a network’s evolu-

tion. To some extent, such factors are reflected in the network’s topology but

(continued)

Table 2.2 Maximum

F-scores for rooted PageRank

with different α values

α Fmax

0.1 0.1538

0.5 0.1923

0.9 0.1554
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(continued)

the match is always imperfect. Second, the question which predictors are the

best choice in a given concrete situation is difficult to answer. Some pre-

dictors (e.g., Katz) exhibit good performance in many studies and are there-

fore a good ‘first choice’ in the absence of more specific information. At the

same time, it is typically a good idea to test different predictors on a

comparable data set (e.g., Yan & Guns, 2014) in order to make a more

informed decision on predictor choice. Third, there is a trade-off between

prediction accuracy and non-triviality: good predictors often yield predictions

that are predictable (!) and therefore less interesting.

As we have shown, the linkpred tool offers a simple but powerful way to

perform link prediction studies. Its main limitations pertain to speed and

network size: very large networks may be slow or even impossible to analyze

with linkpred (also depending on which predictors are used). Nevertheless,

the program has been applied to networks with several thousands of nodes

and links without any problems. Moreover, it is always possible to export

predictions (and evaluations) from linkpred for further analysis and

processing in other software. Finally, we mention that linkpred is available

as open source software (modified BSD license).

Appendix: Usage as a Python Module

Linkpred can be used both as a standalone tool and as a Python module. Here we

provide basic instructions for usage as a Python module.

Once linkpred is properly installed, we can open a Python console and load the

module from within Python.

> python

Python 2.7.3 (default, Apr 10 2012, 23:24:47) [MSC v.1500 64 bit

(AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>> import linkpred

The linkpred module is now loaded and can be used. First, let us open a network:

>>> G ¼ linkpred.read_network("inf1990-2004.net")

11:49:00 - INFO - Reading file ’inf1990-2004.net’. . .

11:49:00 - INFO - Successfully read file.

We can now explore some properties of the network (stored in variable G), such

as its number of nodes or links (see the NetworkX documentation at http://

networkx.github.io/ for further information):
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>>> len(G) # number of nodes

632

>>> G.size() # number of links

994

Predictors can be found in the linkpred.predictors submodule. Let us create a

SimRank predictor for our network as an example. By setting only_new to True, we

make sure that we only predict new links (i.e., links that are not present in the

current network).

>>> simrank ¼ linkpred.predictors.SimRank(G, only_new¼True)

The line above only sets up the predictor, it does not actually apply it to the

network. To do that, we invoke the predict method. Predictor parameters can be set

here; we will set c to 0.5.

>>> simrank_results ¼ simrank.predict(c¼0.5)

Finally we take a look at the top five predictions and their scores.

>>> top ¼ simrank_results.top(5)

>>> for authors, score in top.items():

. . . print authors, score

. . .

Tomizawa, H - Fujigaki, Y 0.188686630053

Shirabe, M - Hayashi, T 0.143866427916

Garfield, E - Fuseler, EA 0.148097050146

Persson, O - Larsen, IM 0.138516589957

Vanleeuwen, TN - Noyons, ECM 0.185040358711
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Chapter 3

Network Analysis and Indicators

Staša Milojević

Abstract Networks have for a long time been used both as a metaphor and as a

method for studying science. With the advent of very large data sets and the

increase in the computational power, network analysis became more prevalent in

the studies of science in general and the studies of science indicators in particular.

For the purposes of this chapter science indicators are broadly defined as “measures

of changes in aspects of science” (Elkana et al., Toward a metric of science: The

advent of science indicators, John Wiley & Sons, New York, 1978). The chapter

covers network science-based indicators related to both the social and the cognitive

aspects of science. Particular emphasis is placed on different centrality measures.

Articles published in the journal Scientometrics over a 10-year period (2003–2012)
were used to show how the indicators can be computed in coauthorship and citation

networks.

3.1 Introduction

Networks have become pervasive in modern life. We use them to describe and

understand, among other phenomena, social connections, disease transmission, the

human brain, and the Internet. The most commonly studied types of networks are:

social (e.g., friendship, kinship, affiliation, collaboration); technological (e.g., the

Internet, telephone network, power grids, transportation networks); biological (e.g.,

biochemical, neural, ecological); and information (e.g., document, citation, the

World Wide Web). The “science of networks” includes perspectives from various

fields, such as sociology, mathematics, physics, computer science, and biology. In

particular, it is social network analysis and network science that lead the interdis-

ciplinary effort to understand networks.
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Social network analysis provides the methodology to analyze social relation-

ships and patterns, and implications of those relationships (Wasserman & Faust,

1994). More broadly defined, network analysis provides a way to study any type of

relationship among different entities (not only people). Sociologists and other

social scientists made great advancements in the field of social network analysis

over the past 60 years (Freeman, 2004; Wasserman & Faust, 1994). In the 1990s

physicists and computer scientists started working in the area of what they called

network science on the similar types of problems, but on a slightly different scales

and aspects. While initially these two fields developed in parallel, there is recently

more acknowledgement of each other’s effort and cross-pollination of ideas

(Carrington & Scott, 2011). Börner, Sanyal, and Vespignani (2007) provide an

excellent overview of network science.

Network analysis/network science is today a mature field with its own introduc-

tory textbooks (Easley & Kleinberg, 2010; Newman, 2010; Scott, 2013;

Wasserman & Faust, 1994). In addition, network analysis is now accessible to

many researchers thanks to a number of free tools available for network analysis:

Pajek, Network Workbench, NodeXL, Gephi, and The Science of Science (Sci2)

Tool. Huisman and van Duijn (2011) provide an overview of the available software.

Social network methods developed as an integral part of the advances in social

theory, empirical research, and formal mathematics and statistics. Wasserman and

Faust (1994) identify graph theory, statistical and probability theory, and algebraic

models, as the three major mathematical foundations of network methods. Graph

theory is the branch of mathematics that studies graphs. A graph represents the

structure of a network. In graph theory, itself a branch of set theory, a graphG¼ (V,E)
is a set of nodes or vertices (V ) and a set of lines or edges (E) between specific pairs
of nodes. In a graph, nodes represent actors, while lines represent ties between the

actors. Graph theory provides both an appropriate representation of a social net-

work and a set of concepts that can be used to study formal properties of social

networks.

3.2 Networks and Bibliometrics

Networks have played a major role in studies of science (Ben-David & Collins,

1966; Crane, 1969, 1972; Mullins, 1972, 1973), both as a metaphor and as a

method. Chubin (1976) suggested that “the imagery of a network has captured

the fancy of most specialty analysts” (p. 463). Studies on the social production of

knowledge (Babchuk, Keith, & Peters, 1999; Crane, 1972; Friedkin, 1998; Kuhn,

1996) showed the relationship between the social position of scientists and their

beliefs and ideas. It is only recently, with the advancement of computer power and

digital data availability, that large-scale network studies of entire disciplines

became possible. A number of these studies were conducted by physicists who

used coauthorship networks to study network dynamics (Barabási & Albert, 1999;

Barabási et al., 2002; Farkas et al., 2002; Newman, 2001). Moody (2004) was

among the first to use large-scale networks to study structure of a scientific
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discipline from the sociological standpoint. His study of the structure of social

science collaboration network connects network topologies to empirical and theo-

retical findings from sociology of science.

One of the founders of the field of scientometrics, Derek de Solla Price,

introduced the idea of studying documents through networks in 1965 paper titled

“Networks of scientific papers” (De Solla Price, 1965). The study of networks has a

long tradition in the field of scientometrics, but the connection with the networks

literature in other fields was not fully established before the 2000s. More detailed

description of these developments is outside the scope of this chapter. However,

there are excellent articles already covering these topics. For example, Otte and

Rousseau (2002) demonstrate the usage of social network analysis in information

sciences, while Bar-Ilan (2008) provides a review of network studies of collabora-

tion and White (2011) of scientific and scholarly networks.

The focus of this chapter is on network analysis used for science indicators. For

the purposes of this chapter, science indicators are broadly defined as “measures of

changes in aspects of science” (Elkana et al., 1978). However, indicators are more

often viewed in a narrower sense as closely tied to research evaluation in general

and evaluative bibliometrics in particular. In that sense indicators are developed

and used to assess “the level of quality, importance, influence, or performance, of

individual documents, people, journals, groups, domains (subject areas, fields, or

disciplines), or nations” (Borgman & Furner, 2002, p. 6). As such, they are closely

tied to science policy and rewards in science. Narin (1976) and Moed (2010)

provide overviews of this subfield.

The remainder of the chapter will have the following structure. We will first

introduce basic network terminology combined with the description of some

network properties. We will then cover basics of network data. Following these

introductions, we will use coauthorship, author-citation, and paper-citation net-

works for the articles published in journal Scientometrics in the 10-year period,

2003–2012, as examples. We will introduce a variety of centrality measures,

describe how some of them have been used in scientometrics, and apply them to

the three types of networks and discuss the results and implications of using those

measures.

3.3 Basic Network Properties

Networks are a set of entities and relationships among these entities. Different fields

have used different terms to describe these two basic network components. For

example, in mathematics they are called vertices and edges/arcs; in computer

science nodes and links and in sociology actors and ties/relations. The main focus

of all network studies is to uncover the patterns within (social, informational,

technological or biological) structures. In order to achieve this goal network studies

focus on structural variables, i.e., the variables that measure the relationships

between the entities.

Here are the definitions of the basic terms related to social network analysis.
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Nodes are entities, such as discrete individuals and corporate or collective units,

whose linkages we are concerned with. Sometimes we are interested in the pairs of

actors and links between them, or dyads, or the triples of actors and links among

them or triads.
Nodes are associated to one another by links. Links can have different attributes.

They can be directed, i.e., they run in a particular direction from one node to

another, or undirected, or reciprocal. In addition, the links can be either dichoto-
mous, i.e., either present or absent, or weighted, i.e., have values that indicate either
frequency or intensity of a relation. Other attributes associated with links can be

rankings and types. Most network measures are defined only for undirected net-

works (Wasserman & Faust, 1994).

A bipartite or two-mode network is a special type of network in which there are

two sets of entities and relations that exist between these two sets and not within

them. An affiliation network is a type of two-mode network which has only one set

of nodes and a set of events to which these nodes belong.

One of the basic properties of a node is a degree. A degree is the number of links

connected to a node. In a directed network we differentiate in-degree, a number of

incoming links, and out-degree, a number of outgoing links. In the case of weighted

networks instead of a node degree one can calculate node strength as a sum of

weights (Barrat, Barthélémy, Pastor-Satorras, & Vespignani, 2004; Newman,

2004a). Opsahl, Agneessens, and Skvoretz (2010) propose a measure that incorpo-

rates both node degree and degree strength.

The density of a network indicates what proportion of the connections that may

exist between nodes is present. For the directed networks it is calculated as the ratio

of the number of edges E to the number of possible edges n(n� 1), i.e., D¼E/(n
(n� 1)) and for the undirected network as D¼ 2E/(n(n� 1)).

The most common way to study connectedness in the network is through

components. A network component is a maximally connected subgraph, i.e., “a

subgraph in which there is a path between all pairs of nodes in the subgraph (all

pairs of nodes in a component are reachable) and (since it is maximal) there is no

path between a node in the component and any node not in the component.”

(Wasserman & Faust, 1994, p. 109). In undirected networks one talks simply

about connected components. In directed networks there are strongly connected
components in which each node within a component can reach every other node in

the component by following the directed links and weakly connected components in
which each node within a component can reach every other node in the component

by disregarding the direction of the link. When the largest connected component

encompasses a significant fraction of the network (usually over 50 %) it is called the

giant component.
Finally, there are two measures that indicate how separated the entities in the

network are. These are geodesic distance, or the shortest path, which is the shortest
sequence of links connecting two nodes and the diameter, the longest shortest path
in the network.
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3.4 Network Data

The basic data collection techniques for network data are: questionnaires (roster

vs. free-recall; free vs. fixed choice; and rating vs. complete ranking); interviews;

observations; archival records; and experiments (Wasserman & Faust, 1994).

Archival records in this context have a very broad meaning and include any type

of record of interaction. Most bibliometric studies use archival records to collect

data. Furthermore, they mostly focus on two types of data: bibliographic records

(from one of the citation indexes, such as Thomson Reuters’ Web of Science,

Elsevier Scopus or Google Scholar) or patents. The usage of archival records has

enabled studies of very large networks over time, which were either not possible, or

would be much more labor-intensive using other techniques of data gathering.

There are three common ways to represent networks: graphs, adjacency matri-
ces, and adjacency lists (Fig. 3.1). Adjacency matrices are used to present

one-mode networks in which rows and columns index nodes. In an unweighted

adjacency matrix links are represented as dichotomous values such that

Aij ¼ 1 if node i has a link to node j
¼ 0 if node i does not have a link to node j

Aij¼Aji if the network is undirected, or if i and j share a reciprocated link.

In a weighted adjacency matrix Aij take values of weights, defined to be greater

than zero.

Two-mode networks are represented by rectangular matrixes called incidence
matrices.

Adjacency lists are much easier to work with than adjacency matrices, especially

for large and/or sparse networks, which is why they are the most widely used

network representation in different software tools.

One of the most widely used network formats today is .net, introduced in Pajek.

However, Pajek in itself does not provide a way to automatically extract networks

from bibliographic data retrieved from Web of Science or Scopus (although

separate software tool, WoS2Pajek, has been developed to convert Web of Science

Fig. 3.1 A five-node network presented as a graph, adjacency matrix and adjacency list
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to Pajek). Sci2 has the capability to extract network downloaded from these

databases, when the records have been saved using particular formats. For example,

for the Web of Science data the download format needs to be .isi, which is obtained

by using “Save to Other Reference Software” option and then renaming the file to .

isi. For the detailed description of data formats and types of networks that can be

extracted please check Sci2 documentation at https://sci2.cns.iu.edu/user/documen

tation.php.

3.5 Scientometrics Through Networks

For the remainder of the chapter we will focus on unweighted coauthorship, paper-

citation and author-citation networks extracted from papers published in the journal

Scientometrics. Scientometrics is the major specialized journal for the field of

scientometrics. It began publication in 1978. The bibliographic records for the

examples were downloaded from the Web of Science for the period 2003–2013.

The data set includes 1,644 journal articles.

For the analyses described in this chapter we primarily used Pajek (version 3.08),

while Sci2 (version 1.0 alpha) was used only for network extraction, computation of

PageRank, and network visualizations. While many of the tasks could also have

been performed using Sci2, the advantage of Pajek is the availability of a book (de

Nooy, Mrvar, & Batagelj, 2011), which not only introduces major social network

analysis concepts, but provides step-by-step instructions on how to obtain those

measures.

Once the records have been downloaded from the Web of Science in batches of

500 they were combined into a single file, which was then loaded into Sci2 using

File>Load. . . command (Fig. 3.2). After the data have been uploaded the details

regarding them will be shown in the Data Manager area.

The next step is the extraction of networks. All of the networks can be extracted

using Data Preparation suite of commands in Sci2. For the collaboration network

we need to extract the coauthor network (Fig. 3.3). In the pop-up window choose

“isi” file format. We will also use Extract Paper Citation Network to create the

citation network. Please note that the link direction of the extracted paper citation

network using Sci2 is different from what one would typically use. Namely, in

paper citation networks created by Sci2 the direction of a link is from the cited

paper to the citing paper, showing the relationship “paper B is cited by paper A,”

and not the more common one “paper A cites paper B.”

Once the network has been created it will be displayed in the Data Management

area. To save the network, select “Extracted Co-authorship network” and right-

click. Then choose option Save. In a pop-up window choose the output data type

Pajek .net (Fig. 3.4).
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Fig. 3.2 Using Sci2 to load the data

Fig. 3.3 Extracting networks in Sci2
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To open the network in Pajek go to File>Network>Read, or click on the Read

icon in the Networks row (Fig. 3.5).

Once the network has been successfully opened it will be shown in the Networks

area. One can open multiple networks in Pajek. Use the drop down menu to

choose the appropriate network. In order to get the basic network properties

once the network is opened, go to the report screen for networks by choosing

Fig. 3.4 Saving extracted networks in Pajek.net format

Fig. 3.5 Opening files in Pajek
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Network>Info>General and in the pop-up window keep the default value

(Fig. 3.6).

The report (Fig. 3.7) provides information on the number of nodes and lines,

network density as well as the average node degree.

Fig. 3.6 Obtaining a report for the properties of a network in Pajek

Fig. 3.7 Pajek report window showing basic network properties
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3.6 Collaboration Networks

We first focus on coauthorship networks. These networks have been used exten-

sively for studying collaboration in science, relying on coauthorship as the most

visible manifestation of collaboration. While this assumption has its problems,

discussing the collaboration networks in detail is beyond the scope of this paper.

Recent review articles that focus on coauthorship networks are Mali, Kronegger,

Doreian, and Ferligoj (2012) and Biancani and McFarland (2013).

There are 2,294 authors and 3,687 links among those authors in the data set. The

network is rather sparse, with a density of 0.001. The average node degree is 3.2.

However, 7.8 % of the authors have not collaborated at all during this time period.

The author with the largest number of collaborators (40) is Glänzel. Please note that

we use the term collaborators to represent the totality of authors (or, more pre-

cisely, distinct author names) with whom a given author has coauthored papers over

some time period, while the term coauthors is used to mean authors that appear on a

single paper.

The distribution of the number of collaborators is an important indicator of the

structure of an author network and of the processes that produce that structure.

Since the number of collaborators that each author has in a coauthorship network is

simply the degree of a node, the distribution of the number of collaborators is the

same as the node degree distribution. Networks in which the degree distribution is

typically right-skewed (meaning that the majority of nodes have less-than-average

degree and that a small fraction of hubs are many times more connected than the

average) are often scale-free networks and follow a power-law functional form at

least in the tail (Börner et al., 2007; Newman, 2003; Watts, 2004). The fact that a

network is scale-free may itself be an indicator that a small number of “stars”

(highly connected scientists) are responsible for connecting the network.

To obtain degree distribution in Pajek, go to Network>Create

Partition>Degree. For an undirected network choose All. For a directed network

if you are interested in in-degree choose Input, and if you are interested in

out-degree choose Output (Fig. 3.8).

Once Pajek has calculated the degree distribution you will see a new file in the

Partitions row (Fig. 3.9). To obtain the data click on the i icon under the Partitions,

or go to Partition>Info and leave the default options in the pop-up window.

The report window (Fig. 3.10) lists the frequency of degrees. However, if one

wants to present this as a graph, a different program is needed such as Excel. If the

list is not too long one can simply type in the values in Excel and create a plot. If the

list is long, or one is more comfortable doing it that way, one should save the values

by clicking the second icon (Save) under Partitions and choosing Save partition as

Pajek partition in .clu format option. Once you have imported the file in Excel you

will get only a single column with degree values. This is a list of degrees, rather

than their frequency. One then needs to calculate the frequencies and plot them.

The node degree distribution (Fig. 3.11) in our example is similar to the large

number of collaborator distributions identified in the literature (Barabási et al.,
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2002; Moody, 2004; Newman, 2004b) in that it is right-skewed. However, it also

has a so-called hook for the authors with small number of collaborators, a feature

identified by Wagner and Leydesdorff (2005) and further studied in Milojević

(2010). This feature is important and the recent model of scientific research team

formation and evolution (Milojević, 2014) has identified the likely underlying

reason for its existence. It follows from two modes of knowledge production: one

with relatively small core teams following Poisson distribution and another with

extended teams which due to preferential attachment can become very large. The

Fig. 3.8 Calculating degree distribution for undirected network in Pajek

Fig. 3.9 The results after calculating the degree distribution
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former distribution has a peak at small values and is reflected in the hook. These

processes affect the network topology.

An important property of a network is connectivity. If the network is discon-

nected, then some pairs of nodes cannot reach one another. One of the basic ways to

identify the existence of these cohesive subgroups is through the components. The

size of the giant component is expressed as the percentage of all nodes in the giant

component. Understanding the distribution of components, and particularly the

emergence of the giant component, has been used in the collaboration studies to

study the emergence of a discipline. Namely, the existence of a robust giant

component in a network has been interpreted as an indicator of field formation.

Increases in the size of the largest connected component signify a transition from a

relatively unorganized group of researchers into a scientific field.

To identify connected components in Pajek, go to Network>Create

partition>Components>Strong (Fig. 3.12). As discussed above in Sect. 3.3, for a

directed network there is a difference between the strongly connected and the

weakly connected components. The choice will depend on the questions one

wants to answer.

There are 586 connected components in the Scientometrics collaboration net-

work. The largest connected component contains 647 authors, i.e., 28.2 % of all the

Fig. 3.10 Pajek report for the frequency distribution of node degrees
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authors in the data set (Fig. 3.13). The next three largest components are much

smaller and have 28, 20 and 20 authors each, respectively. To visualize the network

in Sci2 go to Visualization>Networks>Guess, and then in the Layout choose

option GEM. For more information on network visualization consult Chap. 13.

Fig. 3.11 Node degree distribution for authors who have published in journal Scientometrics
2003–2012

Fig. 3.12 Identifying connected components in Pajek
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The average distance between the authors within the largest connected compo-

nent is 6.4 and the diameter is 17. To calculate the distances in Pajek go to

Network>Create Vector>Distribution of Distances. The above results may suggest

that researchers who publish in Scientometrics are not part of an established

scientific field. However, to say more about the field formation one would need to

evaluate longitudinal data and not just a snapshot in time.

After establishing these basic network properties let us turn our attention to some

of the network measures that have potential utility as indicators. One of the most

popular network measures is centrality (or prestige in directed networks). The

measures of centrality try to answer the question of who the most “important” or

central nodes in a network are. Freeman (1979) provides a comprehensive analysis

of the literature on centrality.

The major network measures of centrality can be divided into local: degree

centrality, and the ones relative to the rest of the network (i.e., based on node’s

location within a network): closeness, betweenness, and eigenvector (or Bonacich

power) centrality. These measures have originally been developed for unweighted

networks. While centrality measures for weighted networks have also been devel-

oped (Barrat et al., 2004; Newman, 2004a; Opsahl et al., 2010) the application and

interpretation of those measures is not as straightforward and we will not explore

those measures in this chapter. Many centrality and prestige measures have been

used in scientometrics. For example, Leydesdorff explored the usefulness of

betweenness centrality to measure the interdisciplinarity of journals (Leydesdorff,

2007; Leydesdorff & Rafols, 2011). He has found the normalized betweenness

centrality to be a good indicator of interdisciplinarity. He provides centrality

Fig. 3.13 The largest connected component of the collaboration network

70 S. Milojević



measures for 7,379 journals included in the Science Citation Index and Social
Science Citation Index 2004 (http://www.leydesdorff.net/jcr04/centrality/index.

htm). In another study of journal indicators Leydesdorff (2009) has compared

more traditional journal indicators (e.g., impact factor) with centrality measures

and PageRank, and found that PageRank (which we will discuss later on) is not an

impact indicator. Finally, Abbasi, Hossain, and Leydesdorff (2012) studied the

evolution of collaboration networks and found that the authors with high between-

ness centrality attract more collaborators than those with high degree and closeness

centrality.

To compute degree, eigenvector, betweenness, and closeness centralities in

Pajek go to Network>Create Vector>Centrality and choose Degree>All, Hubs-

Authorities, Betweenness, and Closeness>All, respectively (Fig. 3.14). Hubs-

Authorities in the directed networks computes hubs and authorities, but in undi-

rected networks hubs and authorities are identical and they are the same as

eigenvector centrality measures.

To view the results in the Report window click on the i icon in the Vectors area

of the Pajek. One can view all the names and the values attached to them by clicking

the magnifying glass icon (“View/Edit Vector”) in the same area.

One of the simplest local measures of centrality is the degree centrality. This

measure is tied to the idea of social capital. According to this measure of centrality,

the most prominent nodes are the ones that have the most ties to other nodes in the

network. These nodes can then use those connections to influence others, or can

gain access to information quicker. According to degree centrality, the five most

central authors in Scientometrics network are: W. Glänzel, R. Rousseau, F. De

Moya-Anegon, B. Klingsporn, and Ys Ho (Table 3.1). A very interesting author in

this group is B. Klingsporn. He illustrates the sensitivity of this measure to the

existence of very large coauthorship teams. Namely, he has published only two

papers in Scientometrics in the 10-year time period we have examined, one of those

papers with 21 coauthors, which is the second largest number of coauthors per

paper in the entire dataset. In the fields where the extensive authorship lists are

becoming a norm alternative ways of creating collaboration networks may be

warranted and measures such as degree centrality need to be carefully examined.

However, not all nodes are equal in terms of influence or power. Bonacich

(1987) was the first to propose the extension of the simple degree centrality that

takes into account node inequality. Namely, he proposed a measure that is based on

the idea that a node’s importance in a network may increase by having connections

to other nodes that are themselves important. This measure is known as eigenvector

centrality and is calculated by giving each node a score proportional to the sum of

the scores of its neighbors. Thus, eigenvector centrality can be large either because

a node has many neighbors or because it has important neighbors (or both). This

measure works best for undirected networks. According to the eigenvector central-

ity, the five most central authors in Scientometrics network are: W. Glänzel,

B. Thijs, A. Schubert, K. Debackere, and B. Schlemmer (Table 3.1). We see that

the list of the most central authors has changed significantly in comparison to the

one based on degree centrality (except for Glänzel who has the highest centrality in
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both). Apart from Glänzel and Debackere (who has degree centrality of 23, which

makes him the sixth most central author in terms of degree centrality), other most

central authors based on eigenvector centrality have relatively low degree central-

ity. The most obvious benefits of having a few connections, but to very influential

individuals, can be seen in the case of Schlemmer who has degree centrality of

3 (which makes him 670th most central author according to the degree centrality)

and yet is the fifth most central author in terms of eigenvector centrality. His

Fig. 3.14 Computing degree, eigenvector, betweenness and closeness centralities in Pajek

Table 3.1 The values and ranks (in parenthesis) for 14 authors that were top five authors in the

Scientometrics dataset based on at least one of four measures of centrality: degree centrality,

eigenvector centrality, betweenness centrality and closeness centrality

Name

Degree

centrality

Eigenvector

centrality

Betweenness

centrality

Closeness

centrality

Glänzel, W 40 (1) 0.63 (1) 0.05 (1) 0.08 (1)

Rousseau, R 36 (2) 0.07 (16) 0.02 (3) 0.07 (5)

De Moya-

Anegon F

26 (3) 0.03 (26) 0.008 (12) 0.07 (6)

Klingsporn, B 26 (4) 0.004 (89) 0.005 (21) 0.05 (174)

Ho, Ys 25 (5) 0 (2096) 0.005 (22) 0.03 (613)

Thijs, B 11 (63) 0.49 (2) 0.001 (65) 0.07 (10)

Schubert, A 16 (36) 0.32 (3) 0.003 (38) 0.06 (27)

Debackere, K 23 (6) 0.31 (4) 0.006 (16) 0.07 (4)

Schlemmer, B 3 (670) 0.15 (5) 0 (382) 0.06 (33)

Meyer, M 14 (43) 0.07 (14) 0.02 (2) 0.07 (2)

Leydesdorff, L 12 (54) 0.02 (46) 0.02 (4) 0.06 (42)

Rafols, I 2 (1058) 0.004 (83) 0.01 (5) 0.06 (45)

The authors are not listed in any particular order
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position has been warranted by coauthoring all five of his papers with the most

central person in the collaboration network, Glänzel. Interestingly, 21 out of

22 papers by Thijs (the second most important author in terms of eigenvector

centrality) were coauthored with Glänzel.

Degree centrality and its variations have proven useful in the studies of power,

status, and influence. However, these centrality measures may not be the best ones

for all contexts. For example, degree centrality is insufficient to describe the ability

to broker between groups, or likelihood that information originating anywhere in

the network will reach a particular node. A better centrality measure for those

instances is betweenness. Nodes with high betweenness centrality may serve both

as enablers of communication between otherwise disjointed communities, but also

as gatekeepers since they have the power to control the information that passes

between others. According to the betweenness centrality, the five most central

authors in the Scientometrics network are: W. Glänzel, M. Meyer, R. Rousseau,

L. Leydesdorff, and I. Rafols (Table 3.1). The most interesting author in this group

is I. Rafols who has published only three papers in this dataset with only two

coauthors (M. Meyer and A. Porter). Nevertheless through these collaborations he

is the only link between 57 researchers and the most central part of the graph around

Glänzel. A look at the graph (Fig. 3.15) makes it very obvious that the most central

authors according to this measure indeed serve as bridges.

Finally, there are contexts in which it is not very important to be in direct contact

with many nodes, nor to broker between different communities, but to be close to

the center. The measure that is used to identify individuals that can relatively

quickly reach others in the network is called closeness centrality. Closeness cen-

trality is based on the length of the average shortest path between a node and all

other nodes in a network. Nodes with high closeness centrality, i.e., those that are

fairly close to others in the network, can benefit from an opportunity to have their

opinions heard more quickly in the community. According to the closeness cen-

trality, the five most central authors in Scientometrics network are: W. Glänzel,

M. Meyer, H. Kretschmer, K. Debackere, and R. Rousseau.

Collaboration networks have been studied with the aim to better understand the

social structure of science, in general, and communication (and the potential for

communication) within scientific communities, in particular. Thus, the different

centrality measures we discussed have the potential to identify individuals who

either play, or have a potential to play, important roles in conveying information

through a particular community, share ideas, and promote interdisciplinarity and

cross-pollination. Two authors who we have identified as the most central for the

research community around the journal Scientometrics at the beginning of the

twenty-first century are W. Glänzel and R. Rousseau. Glänzel has been identified

to be the most central researcher according to all four measures of centrality

(as well as the most productive author within the data set). The central role of

this researcher for the community that publishes in this journal in a way has been

confirmed by his recent appointment as the new editor of the journal

Scientometrics. Another most central author, R. Rousseau, is among the top five

authors on all centrality measures except eigenvector centrality (as well as the
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second most productive author within the data set). His lower position (16th most

central author) on eigenvector centrality may be the combined result of fewer

repeated collaborations compared to other most active authors and his collabora-

tions with larger number of less collaborative individuals. The important role that

this researcher plays within the scientometrics community has an outside confir-

mation in the fact that he has been the president of the International Society for

Scientometrics and Informetrics since 2007.

3.7 Citation Networks

The most common type of scientific and scholarly network is a citation network.

There are different types of citation networks: author citation networks, which

aggregate the data to the level of an author’s oeuvre, paper citation networks,

which focus on individual papers as units of analysis, and journal citation networks

which focus on citation patterns among individual journals. Author citation net-

works have been used for evaluative purposes, i.e., to assess the impact of individ-

ual authors on a scientific field, rank them accordingly, and, finally, reward them.

Despite the extensive usage of bibliometrics for evaluative purposes, there are still

Fig. 3.15 The collaboration network of 14 authors that were top-five authors in the Scientometrics
dataset based on at least one of four measures of centrality and their collaborators
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unresolved problems, and scientometrics researchers have long cautioned against

the usage of any single metrics. Paper citation networks have been used primarily to

understand the intellectual aspects of science in descriptive bibliometrics. They

have been used to understand the knowledge base and the research front. This line

of research follows the assumption proposed by Small (1978) that referenced papers

stand in for particular ideas. The literature on citation networks is extensive and its

review is outside the scope of this chapter. For a recent overview of this literature

see Radicchi, Fortunato, and Vespignani (2012).

Typically, citation networks are acyclic directed networks, because in the

majority of cases (except, for example, in special issues of journals) the cited

reference cannot also cite the citing reference. Such networks require different

measures from the ones we covered for undirected collaboration networks. Node

degree can be computed for citation networks as well. However, instead of a single

node degree, we can now compute two measures: in-degree and out-degree. In the

case of a citation network the in-degree measure corresponds to the number of

citations received by an author, paper, or a journal. Out-degree of a node is defined

as the number of links emanating from that node. In citation networks out-degree

corresponds to a number of references per paper. In the case of an author this

measure corresponds to all the literature this author has referenced and in the case

of a journal it corresponds to all the literature referenced in that journal. Let us

examine the in-degree distribution of paper and author citation networks created

using the Scientometrics dataset described above. Note that this analysis is focused
on examining the knowledge base of research published in Scientometrics in the

most recent 10-year period, and does not include the citations received from other

sources.

As is obvious in Fig. 3.16 the in-degree distribution of the Scientometrics paper
citation network approximately follows a power law distribution. This means that

the contribution to the knowledge base is not evenly distributed, but that there are

clear “hubs”, or papers that attract disproportionately high attention. The paper that

is referenced the most in our dataset is Hirsch’s 2005 paper on h-index, with

202 citations. The second most cited paper is Katz & Martin’s 1997 paper “What

is research collaboration?” with 70 citations. These two papers are followed by de

Solla Price’s 1963 book Big Science, Little Science with 64 citations. King’s 2004

Nature paper “The scientific impact of nations” with 63 citations is the fourth

highest used document. Finally, the fifth most-cited document is Glänzel’s 2001

“National characteristics in international scientific co-authorship relations” paper.

The in-degree distribution for author citation networks also approximately

follows a power law (Fig. 3.17). The most central authors according to this measure

are: W. Glänzel, E. Garfield, L. Leydesdorff, L. Egghe, and H. Moed.

These results are in agreement with recent findings on the cognitive focus of

Scientometrics and its historical roots using different sources of evidence. Namely,

among the most central papers two deal with different international trends. This is

interesting because Milojević and Leydesdorff (2013) have found, by examining

the title words of articles published in Scientometrics (2007–2011), that this

journal, more than any other venue that publishes scientometrics research, focuses
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on geographic and international trends. They have also found a strong focus on

collaboration, evaluation, and assessment, which correspond to remaining three

most central papers. Some of the most central authors, on the other hand, corre-

spond to the intellectual foundation of the field. Namely, in the study of

Fig. 3.16 In-degree distribution for Scientometrics paper citation network

Fig. 3.17 In-degree distribution for Scientometrics author citation network
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historiography of iMetrics, Leydesdorff, Bornmann, Marx, and Milojević (2014)

have found that Scientometrics has been intellectually shaped in the early 1960s by

the work of historian of science, Derek de Solla Price and the creator of “citation

indexing”, Eugene Garfield. de Solla Price’s seminal book Big Science, Little
Science is among the top most cited works and Garfield is present in the list of

most central authors.

According to the betweenness centrality the five most central papers are:

Vanclay, J. (2012) “Impact factor: outdated artefact or stepping-stone to journal

certification” Scientometrics; Boyack, K., Klavans, R., & Börner (2005) “Mapping

the backbone of science” Scientometrics; Leydesdorff, (2003) “The mutual infor-

mation of university-industry-government relations: An indicator of the triple helix

dynamics” Scientometrics; Batista, P.D., Campiteli, M.G., & Kinouchi, O. (2006)

“Is it possible to compare researchers with different scientific interests?”

Scientometrics; Weingart, P. (2005) “Impact of bibliometrics upon the science

system: Inadvertent consequences?” Scientometrics. The centrality of these papers

is the result of their being on citation paths among many different papers. In a way

they serve as boundary objects among different communities.

The most central authors in the author citation network based on the between-

ness centrality are: W. Glänzel, L. Leydesdorff, L. Bornmann, L. Egghe, and

M. Meyer. It is interesting that three of these five authors, Glänzel, Leydesdorff,

and Meyer, have also been identified as the most central authors based on the

betweenness centrality in collaboration network. The central position of these

authors may be the result of multiple factors: high productivity, work on diverse

topics that are of interest to different communities, or work on a topic that is of

interest to multiple communities.

Finally, let us look at the PageRank of papers and authors. PageRank has been

introduced by Brin and Page (1998) as an algorithm to rank the results of Web

queries. At its core it has the same underlying assumption as eigenvector centrality

that not all nodes are equal and therefore not all endorsements are equal. The main

difference, which is particularly important in the Web environment, is that this

measure takes into account the out-degree. Namely, if a page is endorsed by an

influential node together with 100 other nodes, it should carry less weight than the

same node being endorsed by the same influential node together with only five other

nodes. PageRank also depends on a parameter called the damping factor. The most

commonly used values for the parameter d are 0.85, 0.5, and 0.15. The damping

factor of 0.85 stresses network topology, 0.5 stresses the short path of two, and 0.15

the random citation (Ding, 2011). Bollen, Rodriquez, and Van de Sompel (2006)

used weighted PageRank to determine the prestige of journals. A number of authors

have used PageRank, weighted PageRank and a number of its extensions to

evaluate or rank papers and authors (Ding, 2011; Ding, Yan, Frazho, & Caverlee,

2009; Radicchi, Fortunato, Markines, & Vespignani, 2009; Yan & Ding, 2011;

Życzkowski, 2010). For a more extensive discussion of PageRank please check

Chap. 4.

To compute the PageRank one can use Sci2. Go to Analysis>Networks>
Weighted & Directed>PageRank (Fig. 3.18). In the pop-up window choose the
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weight attribute (‘Treat all edges as weight one’ is the default, and is used here since

our paper citation network is unweighted) and the desired damping value (0.85 is

the default, and is used here).

Once the PageRank is obtained, one can inspect the top nodes: go to Preproces-

sing>Networks>Extract Top Nodes and choose the number of top nodes to be

displayed. One can open the results by right-clicking on the results in the Data

Manager (Fig. 3.19) and choosing the viewer application from the drop down menu

in the pop-up window.

As an illustration, we list the top papers for the unweighted PageRank for the

paper citation network with the damping value of 0.85: Hirsch’s 2005 PNAS paper

on h-index; Egghe’s 2006 Scientometrics paper “Theory and practice of the

g-index”; Bornmann & Daniel 2005 Scientometrics paper “Does the h-index for

ranking of scientists really work?”; Ball 2005 Nature paper “Index aims for fair

ranking of scientists”; and King 2004 Nature paper “The scientific impact of

nations”. Two of these five papers are also among the five top papers as measured

using in-degree centrality. It is interesting that all of these papers are on impact and

ranking. The five most central authors based on weighted PageRank applied to

author citation network are: W. Glänzel, T. Braun, L. Egghe, E. Garfield, and

L. Leydesdorff. Four of these authors are also most central as measured using

in-degree centrality.

Fig. 3.18 Computing PageRank using Sci2
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Conclusions

In this chapter we have focused on showing how different centrality measures

can be used to study science both as a social and an intellectual endeavor. The

focus of these measures, as presented in this chapter, has not been on ranking

and evaluating individual researchers or papers, but to show how these

measures can add to a scientometrician’s toolbox to study processes and

trends in science and the roles that different researchers and papers play in

these developments. While there are other network measures, related to

community detection, diffusion of ideas, and the network dynamics, which

would also be potentially useful to scientometrics, we focused on centrality

measures for a number of reasons: they can be applied to both directed and the

undirected networks, they are relatively simple to compute, and despite their

usefulness they have so far not been used widely (with the exception of

PageRank) to enhance our understanding of scientific and scholarly networks.
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Chapter 4

PageRank-Related Methods for Analyzing

Citation Networks

Ludo Waltman and Erjia Yan

Abstract A central question in citation analysis is how the most important or most

prominent nodes in a citation network can be identified. Many different approaches

have been proposed to address this question. In this chapter, we focus on

approaches that assess the importance of a node in a citation network based not

just on the local structure of the network but instead on the network’s global

structure. For instance, rather than just counting the number of citations a journal

has received, these approaches also take into account from which journals the

citations originate and how often these citing journals have been cited themselves.

The methods that we study are closely related to the well-known PageRank method

for ranking web pages. We therefore start by discussing the PageRank method, and

we then review the work that has been done in the field of citation analysis on

similar types of methods. In the second part of the chapter, we provide a tutorial in

which we demonstrate how PageRank calculations can be performed for citation

networks constructed based on data from the Web of Science database. The Sci2

tool is used to construct citation networks, and MATLAB is used to perform

PageRank calculations.

4.1 Introduction

How can we identify the most important or most prominent nodes in a citation

network? For instance, in a citation network of journals, how can we determine the

most important journals? Or in a citation network of individual publications, how

can we infer each publication’s importance? These are central questions in citation

analysis, a research area within the fields of bibliometrics and scientometrics that is

concerned with the study of citations in scientific literature. Mostly, researchers try
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to answer the above questions using relatively simple counting and aggregation

methods. Without doubt, the most famous examples of such methods are the journal

impact factor (Garfield, 1972) and the h-index (Hirsch, 2005). Impact factors,

h-indices, and other similar methods take into account only the local structure of

a citation network. For instance, to calculate the impact factor of a journal, one

needs to know the number of citations the journal has received, but it is not

important to know from which journals these citations originate and how many

times each of the citing journals has been cited itself. A citation originating from

Nature or Science has the same weight as a citation originating from some obscure

journal.

In this chapter, we consider methods that take into account the global structure of

a citation network rather than only the local structure. The main idea of these

methods is to give more weight to citations originating from highly cited nodes in a

citation network than to citations originating from lowly cited nodes. For instance,

being cited by a prestigious highly cited journal is considered more valuable than

being cited by an unknown lowly cited journal. Typically, methods that take into

account the global structure of a citation network are closely related to the well-

known PageRank method (Brin & Page, 1998; Page, Brin, Motwani, & Winograd,

1999). The PageRank method is employed by the Google search engine to rank web

pages. Using the PageRank method, the ranking of a web page increases if there are

many other web pages that link to it and especially if these linking web pages also

have a high ranking themselves. The PageRank idea can be translated relatively

easily from hyperlink networks of web pages to citation networks of publications,

journals, or authors. In fact, in citation analysis, the basic idea of PageRank was

already proposed more than 20 years before PageRank was introduced as a method

for ranking web pages (Pinski & Narin, 1976). However, the introduction of

PageRank as a method for ranking web pages has led to a renewed interest in the

use of PageRank-related methods in citation analysis. Especially in recent years, a

significant amount of work has been dedicated to this topic.

Our aim in this chapter is to explain the PageRank idea, to provide an overview

of the literature on PageRank-related methods in citation analysis, and to demon-

strate in a step-by-step manner how PageRank can be applied to citation networks

using two well-known software tools. We start by explaining the PageRank idea in

Sect. 4.2, followed by a review of the literature in Sect. 4.3. Next, in Sect. 4.4, we

provide a tutorial on the combined use of the Sci2 tool and MATLAB for

performing PageRank calculations. Finally, we conclude the chapter in Sect. 4.5.

4.2 PageRank

PageRank was introduced as a method for ranking web pages by Brin and Page

(1998) and Page et al. (1999). In this section, we offer a brief explanation of the

PageRank method. We refer to Langville and Meyer (2006) for an extensive

discussion of the PageRank method and the underlying mathematics.
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4.2.1 Definition of PageRank

The PageRank value of a web page i, denoted by pi, is given by

pi ¼ α
X

j2Bi

pj
mj

þ 1� αð Þ1
n
; ð4:1Þ

where α denotes a so-called damping factor parameter, Bi denotes the set of all web

pages that link to web page i, mj denotes the number of web pages to which web

page j links, and n denotes the total number of web pages to be ranked. The damping

factor parameter α can be set to a value between 0 and 1. Following Brin and Page

(1998) and Page et al. (1999), the typical value is 0.85.

Based on Eq. (4.1), the following observations can be made:

• The larger the number of web pages that link to web page i, the higher the

PageRank value of web page i.
• The higher the PageRank values of the web pages that link to web page i, the

higher the PageRank value of web page i.
• For those web pages that link to web page i, the smaller the number of other web

pages to which these web pages link, the higher the PageRank value of web

page i.
• The closer the damping factor parameter α is set to 1, the stronger the above

effects.

So the PageRank idea is that for a web page to be considered important there

must be a large number of other web pages linking to it, these linking web pages

must be sufficiently important themselves, and the number of other web pages to

which they link must not be too large. Somewhat informally, the PageRank method

can also be interpreted in terms of a voting system. In this interpretation, a link from

one web page to another represents a vote of the former web page for the latter one.

The more important a web page, the higher the weight of its vote. A web page may

vote for multiple web pages, in which case the weight of its vote is divided equally

over each of the web pages. The importance of a web page is determined by total

weight of all votes it receives.

A difficulty for the PageRank method is that some web pages do not link to any

other web page. Web pages without outgoing links are referred to as dangling nodes

in the PageRank literature. The most common way to deal with dangling nodes is to

create artificial links from each dangling node to all other web pages. We refer to

Langville and Meyer (2006) for a more extensive discussion of the dangling nodes

issue.1

1 For an empirical analysis of the dangling nodes issue in the context of citation networks, see Yan

and Ding (2011a).
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4.2.2 Calculation of PageRank

The PageRank definition given in Eq. (4.1) is recursive. To determine the PageRank

value of a web page, one needs to know the PageRank values of the web pages that

link to this web page. To determine the PageRank values of these linking web

pages, one needs to know the PageRank values of the web pages that link to these

linking web pages, and so on. In the end, one needs to have PageRank values p1, p2,
. . ., pn such that for all i¼ 1, 2, . . ., n the equality in Eq. (4.1) is satisfied. Each of

these PageRank values will be between 0 and 1, and the sum of the values will be

equal to 1. In practice, PageRank values are typically calculated using the power

method. The power method is an iterative method. It starts by assigning the same

PageRank value to all web pages. Hence, using ni
(k) to denote the PageRank value

of web page i in iteration k, it starts with p1
(0)¼ p2

(0)¼ . . .¼ pn
(0)¼ 1/n. The

PageRank values are then updated iteratively according to

p
kþ1ð Þ
i ¼ α

X

j2Bi

p
kð Þ
j

mj
þ 1� αð Þ1

n
: ð4:2Þ

The power method continues iterating until the PageRank values have converged,

that is, until the PageRank values in two successive iterations are very close to each

other.

4.2.3 Damping Factor Parameter

It is important to understand the role of the damping factor parameter α in the

PageRank method. If this parameter is set to 1, which means that there is no

damping effect, it can in general not be guaranteed that the PageRank method

works properly. More specifically, without a damping effect, the PageRank values

r1, r2, . . ., rn need not be uniquely defined and the power method need not converge.

By setting the damping factor parameter α to a value below 1, PageRank values are

guaranteed to be uniquely defined and the power method is guaranteed to converge.

Nevertheless, values just below 1 for the damping factor parameter α are generally

not recommended, since they may cause PageRank values to be extremely sensitive

to small changes in the network of links between one’s web pages. For a more

detailed discussion of the role of the damping factor parameter α in the PageRank

method, we refer to Langville and Meyer (2006).2

2 In the context of citation networks, in addition to the typical value of 0.85 for the damping factor

parameter, the value of 0.5 is also sometimes used. See Chen et al. (2007) for some further

discussion.
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4.2.4 Interpretation of PageRank in Terms of Random
Surfing

Finally, we mention an alternative interpretation of the PageRank method. This

interpretation is based on the idea of a random surfer (Brin & Page, 1998; Page

et al., 1999). A random surfer is someone who is surfing on the Web by randomly

following hyperlinks. The random surfer randomly chooses a hyperlink on the web

page on which he or she currently finds himself or herself and then moves to the

web page to which the hyperlink points. On this new web page, the random surfer

again randomly chooses a hyperlink, and he or she then again follows this link. In

this way, the random surfer keeps moving from one web page to another in a kind of

random walk. Suppose now that occasionally the random surfer does not follow a

randomly chosen hyperlink on his or her current web page but that instead the

random surfer is “teleported” to a new web page chosen completely at random, with

each web page being equally likely to be selected. In this situation, there turns out to

be a close relationship between the frequency with which a web page is visited by

the random surfer and the PageRank value of the web page. More specifically, if

each time the random surfer moves to a new web page the probability of being

“teleported” equals 1 minus the damping factor parameter α of the PageRank

method, then in the long run the proportion of time the random surfer spends on a

web page is equal to the PageRank value of the web page. Hence, PageRank values

turn out to have a convenient interpretation in terms of random surfing behavior.

The PageRank value of a web page can simply be seen as the proportion of time a

random surfer spends on the web page.

4.3 Literature Review

In this section, we provide an overview of the literature on PageRank-related

methods in citation analysis. We first discuss predecessors of the PageRank method.

These predecessors have important elements in common with the PageRank

method, even though they were developed before the introduction of this method

in 1998. We then discuss methods that were developed more recently and that have

been inspired by the PageRank method. We first focus on PageRank-inspired

methods for analyzing journal citation networks, and we then consider methods

for analyzing author and publication citation networks.
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4.3.1 Predecessors of PageRank

When the PageRank method was introduced in 1998, the basic idea of the method

was not new. An interesting overview of the roots of the PageRank method is given

by Franceschet (2011). It turns out that before the introduction of the PageRank

method closely related ideas had already been studied in the fields of citation

analysis (Pinski & Narin, 1976), sociometry (Katz, 1953), and econometrics

(Leontief, 1941). We now discuss in more detail the early developments in citation

analysis.

In 1976, Gabriel Pinski and Francis Narin published their seminal work on

citation-based influence measures for journals (Pinski & Narin, 1976). Their main

idea is that to measure the influence of a journal one should not only count the

citations received by the journal, like the journal impact factor does, but also weigh

each citation based on the influence of the citing journal. In other words, citations

from highly influential journals should be given more weight than citations from

less influential journals. Clearly, this idea is closely related to the PageRank idea of

the importance of a web page being dependent not only on the number of other web

pages that link to it but also on the importance of these linking web pages. However,

there are a number of differences as well. First, the PageRank method, as it was

originally proposed, is based on binary relations, that is, a web page does or does

not link to another web page. Relations between journals, on the other hand, are of a

weighted nature, with weights being determined by the number of citations given

from one journal to another. Second, in the case of journals, one normally needs to

correct for the fact that some journals have more publications than others. There is

no need for a similar type of correction in the PageRank method. And third, in the

methodology proposed by Pinski and Narin, there is no parameter similar to the

damping factor parameter in the PageRank method. In other words, the methodol-

ogy of Pinski and Narin can best be compared with the PageRank method with the

damping factor parameter set to a value of 1.

Early work building on the ideas of Pinski and Narin (1976) was done by Geller

(1978) and Todorov (1984). Geller pointed out the relationship between the meth-

odology developed by Pinski and Narin and the mathematical literature on Markov

chains. Other work was done by Doreian (1985, 1987), who independently devel-

oped a methodology similar to the one proposed by Pinski and Narin.

Some interesting work has also been published outside the citation analysis

literature, in particular in the fields of economics and management. In the economic

literature, a methodology related to the one developed by Pinski and Narin (1976)

was introduced by Liebowitz and Palmer (1984). More recently, an axiomatic

characterization of this methodology was presented by Palacios-Huerta and Volij

(2004). In the management literature, a similar type of methodology was proposed

by Salancik (1986).
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4.3.2 PageRank-Inspired Methods for Analyzing Journal
Citation Networks

Applications of PageRank-related methods to journal citation networks have been

quite popular. As indicated above, all or almost all work in citation analysis on

predecessors of the PageRank method is related to journal citation networks. After

the introduction of the PageRank method in 1998, a number of new PageRank-

inspired methods for analyzing journal citation networks have been introduced. We

now discuss the most important work that has been done.

The first PageRank-inspired method for analyzing journal citation networks was

proposed by Bollen, Rodriguez, and Van de Sompel (2006). These authors referred

to their method as a weighted PageRank method. This is because, unlike link

relations between web pages, citation relations between journals are of a weighted

nature. The weighted PageRank method of Bollen et al. does not correct for the fact

that some journals have more publications than others. So journals with more

publications will generally have higher weighted PageRank values. This is a

difference with the method of Pinski and Narin (1976), in which a correction for

journal size can be made. Another difference between the two methods is that the

weighted PageRank method includes a damping factor parameter while the method

of Pinski and Narin does not.

A second PageRank-inspired method for analyzing journal citation networks is

the Eigenfactor method (Bergstrom, 2007; West, Bergstrom, & Bergstrom, 2010a).

This method in fact provides two values for each journal in a journal citation

network: An Eigenfactor value and an article influence value. The Eigenfactor

value of a journal depends on the size of the journal, just like the above-discussed

weighted PageRank value, while the article influence value of a journal has been

corrected for size. In this respect, article influence values are similar to journal

impact factors. A difference between the Eigenfactor method and the above-

discussed weighted PageRank method is that in the weighted PageRank method

each journal is equally likely to be selected in the case of “teleportation” while in

the Eigenfactor method the probability with which a journal is selected is propor-

tional to the number of publications of the journal. A special property of the

Eigenfactor method is that journal self citations are not counted. On the one hand

this makes the Eigenfactor method more robust to manipulation, but on the other

hand it also introduces a disadvantage for larger journals compared with smaller

ones. Like journal impact factors, Eigenfactor values and article influence values

are reported in Thomson Reuters’ Journal Citation Reports. In addition, Eigenfactor

values and article influence values are freely available at www.eigenfactor.org, but

the most recent values are missing on this website. A number of papers have

appeared in which the Eigenfactor method is discussed and analyzed (Davis,

2008; Franceschet, 2010a, 2010b, 2010c; West, Bergstrom, & Bergstrom, 2010b).

The relationship between the Eigenfactor method and the method of Pinski and

Narin (1976) was discussed by Waltman and Van Eck (2010).
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A third PageRank-inspired method for analyzing journal citation networks is the

SCImago Journal Rank (SJR) method. The SJR method was introduced by

González-Pereira, Guerrero-Bote, and Moya-Anegón (2010). Recently, the method

was revised (Guerrero-Bote & Moya-Anegón, 2012). Like article influence values,

SJR values have been corrected for journal size. The SJR method is of a more

complex nature than the above-discussed weighted PageRank and Eigenfactor

methods. The SJR method for instance includes two free parameters instead of

only one. In addition, in the case of the revised SJR method, the weight of a citation

depends not only on the “prestige” of the citing journal but also on the “thematic

closeness” of the citing journal to the cited journal. SJR values are available in

Elsevier’s Scopus database, but they can also be obtained freely at www.scimagojr.

com.

4.3.3 PageRank-Inspired Methods for Analyzing Author
Citation Networks

Perhaps the best-known PageRank-inspired method for analyzing author citation

networks is the SARA (science author rank algorithm) method proposed by

Radicchi, Fortunato, Markines, and Vespignani (2009). A very similar method,

referred to as the author-level Eigenfactor method, was introduced byWest, Jensen,

Dandrea, Gordon, and Bergstrom (2013), apparently independently from the work

by Radicchi et al. The two methods have a lot in common with the above-discussed

methods for analyzing journal citation networks, but with journals replaced by

authors. Replacing journals by authors is not entirely trivial. This is because a

publication can be associated with more than one author, while it can be related to

only one journal. Both the SARA and the author-level Eigenfactor method deal

with this by fractionalizing citations based on the number of authors of the citing

and the cited publication. For instance, if a publication with two authors cites a

publication with three authors, then for each of the 2� 3¼ 6 combinations of a

citing and a cited author this counts as a citation with a weight of 1/6. The SARA

method and the author-level Eigenfactor method are very similar, but a difference

between the two methods is that author self citations are not counted in the author-

level Eigenfactor method while they are counted in the SARA method.

In addition to the SARA method and the author-level Eigenfactor method, a

number of other proposals for PageRank-inspired methods for analyzing author

citation networks can be found in the literature. The interested reader is referred to

Ding (2011), Fiala (2012), Fiala, Rousselot, and Ježek (2008), Yan and Ding

(2011b), Zhou, Lü, and Li (2012), and Życzkowski (2010).
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4.3.4 PageRank-Inspired Methods for Analyzing Publication
Citation Networks

The first application of the PageRank method to publication citation networks was

reported by Chen, Xie, Maslov, and Redner (2007). These authors employed the

standard PageRank method, although instead of the commonly used value of 0.85

for the damping factor parameter they used a value of 0.5.

A fundamental difference between publication citation networks on the one hand

and journal and author citation networks on the other hand is that publication

citation networks contain no or almost no cycles (e.g., if publication A cites

publication B, then publication B usually will not cite publication A), while in

journal and author citation networks cycles are very common (e.g., if journal A cites

journal B, then in many cases journal B will also cite journal A). Because of the

acyclic nature of publication citation networks, applying the standard PageRank

method to these networks may not give satisfactory results. In particular, there will

be a tendency for older publications to have higher PageRank values than more

recent publications. A modification of the PageRank method that aims to correct for

this was proposed by Walker, Xie, Yan, and Maslov (2007). The proposed method,

referred to as the CiteRank method, has an additional parameter that can be used to

give more weight to recent publications compared with older ones.

After the appearance of the work by Chen et al. (2007) and Walker et al. (2007),

a number of other studies have been reported in which PageRank-related methods

are applied to publication citation networks. Ma, Guan, and Zhao (2008) followed

Chen et al. by performing an analysis using the standard PageRank method with a

value of 0.5 for the damping factor parameter. However, most studies proposed

improvements to the standard PageRank method or alternatives to it. These studies

have been reported by Gualdi, Medo, and Zhang (2011), Li and Willett (2009), Su

et al. (2011), and Wu, He, and Pei (2010).

We end this section by mentioning the possibility of developing more complex

PageRank-inspired methods that, for instance, combine ideas from journal-level,

author-level, and publication-level methods into a hybrid approach. For an example

of such an approach, we refer to Yan, Ding, and Sugimoto (2011).

4.4 Tutorial

We now provide a step-by-step demonstration of the combined use of two well-

known software tools, the Sci2 tool and MATLAB, for applying PageRank to

citation networks. The Sci2 tool is freely available at https://sci2.cns.iu.edu/.

MATLAB is not freely available. Readers who do not have access to MATLAB

may consider the use of Octave, which is a freely available software tool that is very

similar to MATLAB. Octave can be obtained from www.gnu.org/software/octave/.

In the tutorial presented in this section, we focus on the application of PageRank

to journal citation networks. PageRank can be applied to other types of citation
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networks, in particular author citation networks and publication citation networks,

in a very similar way, but we do not discuss this in the tutorial.

The tutorial is organized into three parts. We first briefly discuss how to

download bibliographic data from the Web of Science database, we then consider

the construction of a journal citation network using the Sci2 tool, and finally we

explain the use of MATLAB for performing PageRank calculations.

4.4.1 Downloading Bibliographic Data from the Web
of Science Database

To download the relevant bibliographic data from Thomson Reuters’ Web of

Science database, the following steps need to be taken:

1. In your web browser, go to www.webofscience.com.

2. Select the Web of Science™ Core Collection option.

3. Enter your search query and press the Search button. If needed, use the

Advanced Search functionality.

4. Select the Save to Other File Formats option.

5. Select the Records . . . to . . . option, and indicate the number of the first and the

last record that you want to download. In the Record Content drop-down box,

select the Full Record and Cited References option. In the File Format drop-

down box, select the Plain Text option. Press the Send button, and save the

resulting text file at an appropriate location. Notice that at most 500 records can

be downloaded at a time. If you need to download more than 500 records, you

need to do so in batches that each includes at most 500 records.

Figure 4.1 provides screenshots that illustrate steps 1–5.

For the purpose of this tutorial, we have downloaded bibliographic data of all

publications in the journal subject category Information Science & Library Science

that are of the document type article, proceedings paper, or review and that

appeared between 2004 and 2013. The data was downloaded on November

27, 2013. The number of publications is 29,303, distributed over 103 journals.

4.4.2 Constructing a Journal Citation Network Using
the Sci2 Tool

We use version 0.5.2 alpha of the Sci2 tool. In addition, two plug-ins are used: The

Database plug-in and Web of Science plug-in.3 We do not use the most recent

version of the Sci2 tool, version 1.1 beta. This is because we need the Database

3 See http://wiki.cns.iu.edu/display/SCI2TUTORIAL/3.2+Additional+Plugins
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plug-in and this plug-in is supported only by older versions of the Sci2 tool. We

further note that in order to process the bibliographic data of our 29,303 publica-

tions we needed to allocate additional memory to the Sci2 tool. We increased the

amount of memory allocated to the tool by 1 GB.4

Before you can load your bibliographic data into the Sci2 tool, you first need to

take some preprocessing steps:

6. Assuming that you are dealing with more than 500 publications, you need to

merge the various text files downloaded from the Web of Science database into a

single file. This can be done using a text editor, but with many thousands of

publications this can be quite tedious. There may then be better solutions

available. For instance, on Windows systems, a command such as copy *.

txt merged_data.txt can be entered in the Command Prompt tool. In the

resulting file, make sure to remove all lines ‘FN Thomson Reuters Web of

Fig. 4.1 Screenshots illustrating steps 1–5 in the tutorial (downloading Web of Science data)

4 See http://wiki.cns.iu.edu/display/SCI2TUTORIAL/3.4+Memory+Allocation
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Knowledge VR 1.0’ except for the first one and all lines “EF” except for the

last one.

7. Change the extension of the text file that contains your bibliographic data

from .txt into .isi.

After the above preprocessing steps have been taken, the Sci2 tool can be used to

construct a journal citation network. To do so, you need to proceed as follows:

8. Launch the Sci2 tool.

9. Choose File>Load. In the Select Files dialog box, select the file that contains

your bibliographic data and press the Open button. A Load dialog box will

now appear. Choose the ISI database option and press the Select button.

10. To improve the data quality, some data cleaning needs to be performed. Choose

Data Preparation>Database> ISI>Merge Identical ISI People. When this

operation is finished, choose Data Preparation>Database> ISI>Merge

Document Sources.

11. Choose Data Preparation>Database> ISI>Match References to Papers

to identify citation relations between the publications included in the analysis.

12. Choose Data Preparation>Database> ISI>Extract Document Source

Citation Network (Core Only) to obtain a network of citation relations

between the journals included in the analysis.

13. To transfer your journal citation network from the Sci2 tool to MATLAB, the

network needs to be saved in a file. A Pajek network file can for instance be

used for this purpose. Choose File> Save. In the Save dialog box, choose the

Pajek .net option and press the Select button. A Choose File dialog box will

now appear. Use this dialog box to save the Pajek network file at an appropriate

location.

Figure 4.2 provides screenshots that illustrate steps 8–13.

The Pajek network file that we have obtained based on our 29,303 information

science and library science publications can be downloaded from www.

ludowaltman.nl/pagerank/LIS_journals.net.

4.4.3 Performing PageRank Calculations Using MATLAB

PageRank calculations can be performed using the Sci2 tool. However, there are

some difficulties. Because of a bug in version 0.5.2 of the Sci2tool, it is not possible

in this version to perform PageRank calculations based on weighted networks. This

is possible in more recent versions of the Sci2 tool, but these versions do not support

the Database plug-in that is needed to create journal citation networks. Given these

difficulties, in this tutorial we choose to use MATLAB to perform PageRank

calculations.

First, you need to load your journal citation network into MATLAB. This can be

done as follows:
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14. Open the Pajek network file created in step 13 in a text editor.

15. Search for the line ‘*Arcs’ and copy all lines below this line to the clipboard.

16. Launch MATLAB.

17. Paste the contents of the clipboard into the MATLAB workspace. Make sure

that you obtain a single matrix rather than multiple column vectors. Label the

matrix cit.

18. In the MATLAB command window, enter the following commands:

n ¼ max(max(cit(:, 1:2)));

C ¼ sparse(cit(:, 2), cit(:, 1), cit(:, 3), n, n);

These commands create a journal citation matrix C. Element C(i, j) of this

matrix represents the number of citations from journal i to journal j.

Fig. 4.2 Screenshots illustrating steps 8–13 in the tutorial (constructing a journal citation network

using the Sci2 tool)
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After you have loaded your journal citation network into MATLAB, PageRank

calculations can be performed based on the network. To do so, take the following

steps:

19. Create a MATLAB function calc_PageRank. The MATLAB code of this

function is provided in Fig. 4.3. Save this code in a file named

calc_PageRank.m.

20. Set the current folder in MATLAB to the folder in which the file

calc_PageRank.m has been saved.

21. In the MATLAB command window, enter the following command:

p ¼ calc_PageRank(C, 0.85, 100);

The PageRank calculations will now be performed. The damping factor param-

eter is set to a value of 0.85, and the number of iterations of the power method is

set to 100. Performing 100 iterations of the power method is usually sufficient

to obtain accurate PageRank values. When the PageRank calculations are

finished, the result of the calculations is available in the vector p in the

MATLAB workspace. Element p(i) of this vector represents the PageRank

value of journal i.

Figure 4.4 provides screenshots that illustrate steps 14–21.

Using the Pajek network file created in step 13, the PageRank values calculated

in MATLAB can be linked to journal titles. For our 103 information science and

library science journals, the journal titles and the corresponding PageRank values

function p = calc_PageRank(C, alpha, n_iterations)

% Take care of dangling nodes.

m = sum(C, 2);

C(m == 0, :) = 1;

% Create a row-normalized matrix.

n = length(C);

m = sum(C, 2);

C = spdiags(1 ./ m, 0, n, n) * C;

% Apply the power method.

p = repmat(1 / n, [1 n]);

for i = 1:n_iterations

p = alpha * p * C + (1 - alpha) / n;

end

Fig. 4.3 MATLAB code of the function calc_PageRank
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are available in a text file that can be downloaded from www.ludowaltman.nl/

pagerank/LIS_journals.txt. The ten journals with the highest PageRank values are

also listed in Table 4.1. We emphasize that the PageRank values that we have

calculated are sensitive to the size of a journal. Other things equal, journals that

have more publications will also have higher PageRank values. To correct for

journal size, the PageRank value of a journal needs to be divided by the number

of publications of the journal. We also note that in the MATLAB code in Fig. 4.3

Fig. 4.4 Screenshots illustrating steps 14–21 in the tutorial (performing PageRank calculations

using MATLAB)

Table 4.1 The ten information science and library science journals with the highest PageRank

values. The PageRank values reported in the right column have been multiplied by 100

Journal of the American Society for Information Science and Technology 8.49

MIS Quarterly 8.28

Scientometrics 7.75

Information Systems Research 4.24

Information & Management 3.59

Journal of the American Medical Informatics Association 3.34

Information Processing & Management 3.06

Journal of Management Information Systems 3.02

Journal of Academic Librarianship 2.30

Journal of Informetrics 1.95
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each journal is equally likely to be selected in the case of “teleportation.” A more

sophisticated approach would be to make the probability with which a journal is

selected proportional to the number of publications of the journal, as is done in the

Eigenfactor method discussed in Sect. 4.3.

Conclusion

In this chapter, we have discussed the use of PageRank-related methods in

citation analysis. We first explained the original PageRank method developed

by Brin and Page (1998) and Page et al. (1999) for ranking web pages. We

then provided an overview of the literature on PageRank-related methods in

citation analysis, from the early work by Pinski and Narin (1976) to recent

work inspired by the introduction of the PageRank method in 1998. In our

discussion of the recent literature, we made a distinction between applications

of PageRank-related methods to journal, author, and publication citation

networks. In the second part of the chapter, we provided a tutorial explaining

in detail how PageRank calculations can be performed by combining two

software tools: The Sci2 tool and MATLAB. In the tutorial, we demonstrated

the calculation of PageRank values for journals based on bibliographic data

from the Web of Science database. Similar calculations can be performed for

authors and individual publications.
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The Science System



Chapter 5

Systems Life Cycle and Its Relation

with the Triple Helix

Robert K. Abercrombie and Andrew S. Loebl

Abstract This chapter examines the life cycle of complex systems in light of the

dynamic interconnections among the university, industry, and government sectors.

Each sector is motivated in its resource allocation by principles discussed elsewhere

in this book and yet remains complementary establishing enduring and fundamental

relationships. Industry and government depend upon an educated workforce; uni-

versities depend upon industry to spark the R&D which is needed and to sponsor

some basic research and much applied research. Government depends upon indus-

try to address operational needs and provide finished products while universities

offer government (along with industry) problem solving and problem solving

environments. The life cycle of complex systems in this chapter will be examined

in this context, providing historical examples. Current examples will then be

examined within this multidimensional context with respect to the phases of

program and project life cycle management from requirements definition through

retirement and closeout of systems. During the explanation of these examples, the

advances in research techniques to collect, analyze, and process the data will be

examined.

5.1 Introduction and Motivation

The concept of a “life cycle” is inherent to any notion of project or program

development. It may be viewed as an outgrowth of systems theory or management

theory but is more simply a framework which provides a sequence of activities for

designers, developers, managers, etc. to follow. In doing so, it allows for people of

different interests, training, disciplines and backgrounds to focus on common
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principles and allow each to understand the roles and responsibilities of each other.

One by-product of this process is the formation of teams of people who contribute

to a common vision through a commonly understood method of accomplishment. A

life cycle consists of a set of steps or phases in which each phase of the life cycle

uses the results of the previous phase. In any application of the concept, slight

variations in activities and phases occur. According to Taylor (Taylor, 2004), the

project life cycle encompasses all the activities of the project, while the systems

development life cycle focuses on realizing the product requirements. These spec-

ified requirements of the user must be satisfied by an implemented system.

Generically this framework is recognizable as consisting of important phases

that are essential to the development or the project and consist of planning, analysis,

design, and implementation, followed by project completion and close out for the

building, use, and termination of the system. A number of species of this framework

have emerged. Models, for example, of the software development life cycle have

been developed to address the context of development and application particular to

the user’s need. Commonly they include: waterfall, fountain, spiral, build and fix,

rapid prototyping, incremental, and synchronize and stabilize (“Information

Resources Management, The Department of Justice Systems Development Life

Cycle Guidance Document,” 2003). The oldest of these, and the best known, is the

waterfall model (Mohapatra, 2010; Schach, 1999): a sequence of stages in which

the output of each stage becomes the input for the next (Kay, 2002). While the

statements in Kay’s article are over a decade old, it is enlightening to know that

very little has changed. The advances that have occurred in terms of both software

and hardware since 2002 is amazing, but the process in designing and implementing

an efficient and scalable system has not changed much. The waterfall model and

basic components of the concept are still taught in colleges today. While Kay

focuses on the development of primarily software the concepts and steps used for

the much broader issue of a comprehensive IT system are the same (Drogo, 2012).

This is not to say that the waterfall model is inclusive. Many users and devel-

opers fault this line of reasoning because of the very nature of its past success. In

most instances users and developers are not always consistent about uses and

systems requirements (Boehm, 1988). The waterfall approach relies on a progres-

sive sequence which includes a complete understanding of requirements and

agreement upon requirements between user and developer. With IT systems com-

plexity growing and expectations for software to be more useful and complete, it is

clear that understanding requirements and uses are often evolutionary and not

sequential (Mohapatra, 2010).

Another dimension to the life cycle of complex systems deals with the perspec-

tive of readiness and system use as a metric. Systems engineers, policy makers, and

also users of technology need a quantifiable metric for measuring the readiness of a

system. Such a metric, the Technology Readiness Level (TRL), has been defined. It

is a measure used to assess the maturity of evolving technologies (devices, mate-

rials, components, software, work processes, etc.) during its research, development,

and implementation life cycles, and in some cases during early operations

(“Technology Readiness Level,” 2013). While this TRL model has evolved and
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been extended into concepts of Integration Readiness Level (IRL) and

System Readiness Level (SRL) and the mathematical properties have been articu-

lated (McConkie, Mazzuchi, Sarkani, & Marchette, 2013), the newer models are

still being validated for general application (Harper, Van-Nostrnad, Pennock, &

Algosos, 2010; Kujaswki, 2010). We, therefore, believe that the TRL model is

sufficient for discussions as they apply to the interaction of the complex systems life

cycle and its relation with the Triple Helix.

The concept of the Triple Helix of university-industry-government relations has

evolved into a model for studying knowledge-based economies. A series of work-

shops, conferences, and special issues of journals have developed under this title

since 1996 (Leydesdorff & Etzkowitz, 1996; Park, 2014). The Triple Helix model is

an evolution of the interplay between the relationship of the university, industry and

government (Etzkowitz & Leydesdorff, 2000). Initially, the interplay was described

as an “elastic” model (e.g., the relationship that existed in the former Soviet Union

and Eastern European countries), which was then modified to describe the “laissez-

fare”model (e.g., the relationship that existed around 2000 in Sweden and theUnited

States of America [USA]), and finally the Triple Helix model (e.g., the current

relationship described in 2000 whose objective is to an innovation arrangement to

foster innovation and is still applicable today) (Etzkowitz & Leydesdorff, 2000).

The Triple Helix Association provides a current definition of the “Triple Helix”

model with respect to innovation (“Concept: Theoretical Framework,” 2014).

5.2 Background Work Related to This Study

As discussed initially, each entity had been perceived to work solely, often

completely exclusive of one another. Under the Triple Helix model, the industrial

sector operates as the locus of production; the government as the source of

contractual relations that guarantee stable interactions and exchange; and the

university as a source of new knowledge and technology, the generative principle

of knowledge-based economies (“Concept: Theoretical Framework,” 2014). The

model of the Triple Helix of industry, academia and government has been invoked

in many successful examples during the twentieth and thus far in the twenty-first

centuries.

The Triple Helix model is being applied in both regional areas and nations. Its

previous successes have been documented in Amsterdam, Mexico, Brazil, Canada,

Sweden, and the USA (Etzkowitz & Leydesdorff, 2000; Etzkowitz & Ranga, 2010),

in Algeria, India, and Malaysia, United Arab Emirates, Thai dessert industry,

Tunisian pharmaceutical industry, Norwegian solar photovoltaic industry (“VIII

Triple Helix International Conference on University, Industry and Government

Linkages Book of Abstracts,” 2010; “XI Triple Helix International Conference

Program—Listing of Papers,” 2013), in technical facilities of the Czech Republic

(Kostalova & Tetrevova, 2013), and most recently with South Korea (Park, 2014).
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The Triple Helix model is further being applied with success in business-like

settings. In the Triple Helix IX International Conferences, the theme was “Silicon

Valley: Global Model or Unique Anomaly” (Smallwood, 2011). Further discussed

are successful science parks which embody the Triple Helix model of industry,

academic and government collaboration. One example is the Research Triangle Park

in North Carolina. Another version of a “science park” is a corporate-sponsored

research lab or an incubation lab on university campuses. Examples include the

Disney Research Lab at Carnegie Mellon University and the Stanford Research

Institute (Smallwood, 2011) and virtual “science parks,” which are really just open

collaboration practices. TheUniversity of California has also been demonstrated this

theme via its Industry-University Cooperative Research Program (IUCRUP), a

matching grant program created to catalyze innovation (Coccia, 2014b). Examples

of private company collaborations include security research projects of CA Tech-

nologies (a private company) with Dalhousie University and the US Department of

Homeland Security (Smallwood, 2011), or a project on insider threat with Royal

Melbourne Institute of Technology (RMIT) University and the Australian Research

Council (“CA Labs and Royal Melbourne Institute of Technology win Australian

Government Grant for Research into Insider Threat,” 2011).

5.3 Hypothesis to Test

The consistent theme in the previous examples, however, seems to be a sparking

mechanism to which these three sectors can respond and agree to collaborate

(Kostalova & Tetrevova, 2013). The success of these endeavors is the correct

amount of management involvement (Coccia, 2014b). In the previous examples,

there was also little to drive an empirical understanding of sector-specific contri-

butions made nor had there been a need to understand the execution of the

Triple Helix, parsimoniously. Metrics of performance and contributions were not

collected or sought. At other extremes there appears to be a number of examples of

initiatives that were sought to engage the Triple Helix that did not accomplish that

goal very effectively (Tetřevová & Kostalova, 2012). Recently, some of the failures

addressed, using Wales as an example (Pugh, 2013), were described as a lack of

cooperation. In the Wales decade long study, one of the findings indicates that the

business entity (industry) did not seem to be interacting with the established

governmental programs (Pugh, 2013). From a Czech study (Tetřevová &

Kostalova, 2012), similarly, a lack of mutual cooperation for the period from

2007 to 2013, identified the following risks: information disarrangement; numerous

application documentation process demands; non-transparent process of applica-

tion evaluation; changing rules; administrative demands; absence of preventive

checks; obligation to run a tender process; change management; complicated

check mechanism; formal orientation of the checking process; strict and rigid

financial management of the projects; and sustainability of project outputs. The

authors (Tetřevová & Kostalova, 2012) advocate that it will be necessary to

mitigate the above risks and problems both on the national and the European levels,
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in order for the Triple Helix model to reach its full potential. Also, all entities

(university-industry-government) in the partnership must share in the mitigation of

these risks and problems, for the Triple Helix model to be successful (Coccia,

2014a). The following sections of this chapter will investigate if the application of

the TRL model is sufficient to mitigate risk and problems identified with the

context of the interaction of the complex systems life cycle and its relation with

the Triple Helix.

5.4 Measurable States During the Life Cycle

of a Technology

Previous works have illustrated a model that tracks the life cycle or emergence of an

identified technology from initial discovery (via original scientific and conference

literature), through critical discoveries (via original scientific, conference literature

and patents), transitioning through Technology Readiness Levels (TRLs) and

ultimately on to commercial application (Abercrombie, Schlicher, & Sheldon,

2014; Abercrombie, Udoeyop, & Schlicher, 2012). During the period of innovation

and technology transfer during the life cycle of a complex system as evidenced by

the impact of scholarly works, patents and online web news sources can be

identified. As trends develop, currency of citations, collaboration indicators, and

online news patterns can be identified. The combinations of four distinct searchable

online networked sources (i.e., scholarly publications and citation, worldwide

patents, news archives, and online mapping networks) can be assembled to become

one collective network (a data set for analysis of relations).

The TRL is a tool which helps define the maturity of a system (devices,

materials, components, software, work processes, etc.) during its development

and in some cases during early operations (“Defense Acquisition Guidebook,”

2012). This model can serve to provide almost metric-level determination of the

specific state of the system and can be employed as a helpful standard and shorthand

for evaluating and classifying technology maturity (in the context of the life cycle).

However, this standard of definition must be applied with expert, experienced,

professional judgment. Expanding this model to extensively address the impact of

TRLs leads to a generalized metric (Abercrombie, Schlicher, & Sheldon, 2013) that

can be related to the Triple Helix models.

5.5 Step-by-Step Use of a Tool to Generate Results

The purpose of this section is to address the step-by-step use of a process to

illustrate the relationships among multiple disparate sources of information as a

way to systematically explain the life cycle emergence of technologies from
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innovation through to commercial application. Two examples will be explained to

illustrate the process. The logical sequence of milestones derived from our analysis

of a previously documented data set and technology (i.e., Simple Network Man-

agement Protocol [SNMP]) includes the initial discovery (evident via original

scientific and conference literature), the subsequent critical discoveries (evident

via original scientific, conference literature and patents), and the transitioning

through the various TRLs ultimately to commercial application (Abercrombie

et al., 2012). In another example, we investigate the combinations of five distinct

sources (i.e., university R&D, industry R&D, life cycle product documentation, and

two levels of annual market revenue [$1B and $10B]) (Abercrombie et al., 2013).

The data set from the second example was assembled by the United States National

Research Council of the National Academies, initially in 2003 (Innovation in

Information Technology, 2003) and then updated in 2010, being published in

2012 (Lee et al., 2012). These established relationships become the basis from

which to analyze the temporal flow of activity (searchable events) for the two cases

we investigated.

We previously articulated the emergence of one particular innovation into a

foundational technology enabling other innovations. The specific innovation we

investigated is the well-known network management protocol SNMP Version 1, 2,

and 3 (Note: each major version made earlier versions “obsolete”), and their impact

as a standard operations and maintenance Internet protocol (Frye, Levi, Routhier, &

Lucent, 2003). We selected the SNMP to both illustrate the process and test the

TRL model hypothesis. SNMP is a standard operations and maintenance Internet

protocol (Case, Fedor, Schoffstall, & Davin, 1990). SNMP-based management

produces management solutions for systems, applications, complex devices, and

environmental control systems, as well as supporting Web services. SNMPv3, the

most recent standard approved by the Internet Engineering Task Force (IETF), adds

secure capabilities (including encryption). SNMP is used in network management

systems to monitor network-attached devices (hubs, routers, bridges, etc.) for

conditions that warrant administrative attention. SNMP is a component of the

Internet Protocol Suite as defined by IETF. The IETF is a large open international

community of network designers, operators, vendors, and researchers concerned

with the evolution of the Internet architecture and the smooth operation of the

Internet. SNMP consists of a set of standards for network management, including

an application layer protocol, a database schema, and a set of data objects (“Simple

Network Management Protocol,” 2014).

Figure 5.1 identifies patterns from the assembled data sets that correspond to the

milestones of the life cycle of the technology (Abercrombie et al., 2012) defined

below, as milestones 1- 9, and abbreviated in the figure as M1 - M9.

Milestone 1: Initial discovery is the genesis of a specific subject domain and is

built on previous work that can be traced via initial original scientific and confer-

ence literature.

Milestone 2: Critical discoveries are those breakthrough discoveries that can

also be traced via initial original scientific, conference literature.
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Milestone 3: R&D activity is exhibited. The rate of growth in initial (i.e.,

original) scientific, conference, and patent literature activity can be traced as

identified by trend analysis.

Milestone 4: (Corollary to Milestone 3): The trending patterns of citations

follow the R&D activity. This phenomenon may be exhibited by a measure of the

currency of citations (i.e., a vitality score, mean reference age normalized in

relation to the sub-field set (Sandström & Sandström, 2009)) which may show an

aging vitality score.

Milestone 5: Technology Readiness Level (TRL) transitions occur and initial

scientific, conference and patent activity identifications are made. Literature trends

initially up then down. Patent trend patterns (up and down) should be identifiable.

Conference progression from papers to topics to sessions to independent confer-

ences is a notable trend pattern. Topic moves across journal types from basic to

applied research type publications may be prevalent.

Milestone 6: Applications emerge from proposed and viable initial scientific and

conference literature, and patents. Prototyped and commercial applications, which

originate from patents and business white papers, become visible via scholarly

literature and popular media searches.

Milestone 7: Collaboration indicators become evident as coauthors from dif-

ferent fields (unrelated or otherwise disparate) and group-to-group collaboration

patterns come to light. Such collaboration patterns aid in identifying subject matter

trends as will trending international collaboration.

M7-Collaboration
indicators 

Enterprise
relevant
applications 

M1-Initial discovery

M2-Critical discoveries

M5-TRL transitions

M6-Applications
emerge ( …) 

M8-Popular media excitement

Cross-over point: Leading researchers 
(1-5,7) drop out; tech-transfer has
occurred; Industry activity takes over.

M3-Resarch activity flat lines; development takes over
M4-Citation trending patterns emerge

M9-Publication/patent history/trends provide Scientometric indicators 

M5 Note: Early TRL transitions dots represent TRL 1-5
spirals whereas those in the later half (after the cross-over point) 
represent later (more matured) TRL spirals (e.g., 4-9 spirals).

Fig. 5.1 Generalized technology maturation milestones (defined as M1 through M9) over system

life cycle
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Milestone 8: Sentiment and excitement points determine when excitement

waxes (originates) in the popular media, trade journals, etc., or when it wanes

(exits from) in the same media and how long excitement last.

Milestone 9: Publication/patent history/trends of critical players (initial scien-
tific literature and conferences, and patents) provide measures and associated rate of

change help identify players and subsequent commercial industry involvement

(initial point, growth, changes).

5.5.1 Key Enhancements from Earlier Works

From enhancements to the original model, this version has been updated to allow

for multidimensionality:

1. Smaller sized dots in Fig. 5.1 are closer together and allow for interactive

releases for maturation.

2. The dots on both sides of the cross-over point are meaningful, allowing for

(a) Deep dive analysis both on the left and right side.

(b) Allowing for TRL finer resolution (see Expansion/Evolution of Milestone

5 Concerning Technology Readiness Levels section).

3. The dots are more contiguous, which in reality the distances can be analyzed via:

(c) Normalization

(d) Vitality scoring

(e) Application versioning emergence

(f) Collaboration indicator

(g) Sentiment and excitement tracking-both positive and/or negative

5.6 Expansion/Evolution of Milestone 5 Concerning

Technology Readiness Levels

Technology Readiness Level (TRL) has been defined as a means to assess the

maturity of a system (devices, materials, components, software, work processes,

etc.) during various stages of its life cycle and in some cases during early operations

(“Technology Readiness Level,” 2013).

Generally speaking, new inventions or discoveries are not easily converted to

immediate application. Instead, new discoveries are usually subjected to experi-

mentation, refinement, and their derived technologies (if any) are subjected to

increasingly rigorous testing prior to any implementation life cycle. Once the

discovery or invention moves into a technology development/implementation life

cycle, it can be suitable for use. In the earlier published model (Abercrombie et al.,
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Table 5.1 Technology Readiness Levels in the department of defense (DoD)-Adapted from:

(“Defense Acquisition Guidebook,” 2012) and (“Technology Readiness Assessment (TRA)

Guidance,” 2011)

Technology Readiness Level Description Supporting information

1. Basic principles observed

and reported

A lowest level of technology

readiness. Scientific research

begins to be translated into

applied research and develop-

ment (R&D). Examples

include paper studies of a

technology’s basic properties.

Published research that iden-

tifies the principles that

underlie this technology. Ref-

erences to who, where, when.

2. Technology concept

and/or application

formulated

Invention begins. Once basic

principles are observed, practi-

cal applications can be

invented. Applications are

speculative, and there may be

no proof or detailed analysis to

support the assumptions.

Examples are limited to ana-

lytic studies.

Publications or other refer-

ences that outline the applica-

tion being considered and that

provide analysis to support the

concept.

3. Analytical and experi-

mental critical function

and/or characteristic proof of

concept

Active R&D is initiated. This

includes analytical studies and

laboratory studies to physically

validate the analytical predic-

tions of separate elements of

the technology. Examples

include components that are

not yet integrated or

representative.

Results of laboratory tests

performed to measure param-

eters of interest and compari-

son to analytical predictions

for critical subsystems. Refer-

ences to who, where, and

when these tests and compar-

isons were performed.

4. Component and/or bread-

board validation in labora-

tory environment

Basic technological compo-

nents are integrated to establish

that they will work together.

This is relatively “low fidelity”

compared with the eventual

system. Examples include

integration of “ad hoc” hard-

ware in the laboratory.

System concepts that have

been considered and results

from testing laboratory-scale

breadboard(s). References to

who did this work and when.

Provide an estimate of how

breadboard hardware and test

results differ from the

expected system goals.

5. Component and/or bread-

board validation in relevant

environment

Fidelity of breadboard tech-

nology increases significantly.

The basic technological com-

ponents are integrated with

reasonably realistic supporting

elements so they can be tested

in a simulated environment.

Examples include “high-fidel-

ity” laboratory integration of

components.

Results from testing labora-

tory breadboard system are

integrated with other

supporting elements in a sim-

ulated operational environ-

ment. How does the “relevant

environment” differ from the

expected operational environ-

ment? How do the test results

compare with expectations?

What problems, if any, were

encountered? Was the bread-

board system refined to more

nearly match the expected

system goals?

(continued)
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2012, 2014), this would be Milestone 5. In this current model, we have expanded

that definition and allow the TRLs to span across multiple milestones.

Accomplishing this expansion, the model evolves and can be adapted to the

standards as illustrated in the definitions in Table 5.1.

Table 5.1 (continued)

Technology Readiness Level Description Supporting information

6. System/subsystem model

or prototype demonstration

in a relevant environment

Representative model or pro-

totype system, which is well

beyond that of TRL 5, is tested

in a relevant environment.

Represents a major step up in a

technology’s demonstrated

readiness. Examples include

testing a prototype in a high-

fidelity laboratory environment

or in a simulated operational

environment.

Results from laboratory test-

ing of a prototype system that

is near the desired configura-

tion in terms of performance,

weight, and volume. How did

the test environment differ

from the operational environ-

ment? Who performed the

tests? How did the test com-

pare with expectations? What

problems, if any, were

encountered? What are/were

the plans, options, or actions

to resolve problems before

moving to the next level?

7. System prototype demon-

stration in an operational

environment.

Prototype near or at planned

operational system. Represents

a major step up from TRL 6 by

requiring demonstration of an

actual system prototype in an

operational environment (e.g.,

in an aircraft, in a vehicle, or in

space).

Results from testing a proto-

type system in an operational

environment. Who performed

the tests? How did the test

compare with expectations?

What problems, if any, were

encountered? What are/were

the plans, options, or actions

to resolve problems before

moving to the next level?

8. Actual system completed

and qualified through test

and demonstration.

Technology has been proven to

work in its final form and under

expected conditions. In almost

all cases, this TRL represents

the end of true system devel-

opment. Examples include

developmental test and evalu-

ation (DT&E) of the system in

its intended weapon system to

determine if it meets design

specifications.

Results of testing the system

in its final configuration under

the expected range of envi-

ronmental conditions in which

it will be expected to operate.

Assessment of whether it will

meet its operational require-

ments. What problems, if any,

were encountered? What

are/were the plans, options, or

actions to resolve problems

before finalizing the design?
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5.7 Application of TRL Logic to the Modified Model

The correlation of TRL model logic with respect to Milestones of the modified

model is as follows:

• First Publications-TRL 1 Basic principles observed and reported.

• Publications become prominent and citations begin-TRL 2 Technology concept

and/or application formulated.

• Standards-Patents-Publications prevalent and media hype-TRL 3 Analytical

and experimental critical function and/or characteristic proof-of concept.

• First Patents-TRL 4 Component and/or breadboard validation in laboratory

environment.

• Patents continued-TRL 5 Component and/or breadboard validation in relevant

environment.

• Patents and/or patent trending may be used-TRL 6 System/subsystem model or

prototype demonstration in a relevant environment (ground or space).

• Patent and First Product Offering Overlap-TRL 7 System prototype demonstra-

tion in a space environment.

• First Product offering-TRL 8 Actual system completed and “flight qualified”

through test and demonstration (ground or space).

• Multiple Product offering-TRL 9 Actual system “flight proven” through suc-

cessful mission operations.

The first application of applying the TRL model logic to modified model

follows. The example is adapted from the SNMP baseline data set (Abercrombie

et al., 2012, 2014), reevaluated, and tabularized to reflect activity of four separate

data sources to determine associated TRLs:

• First Publications-TRL 1 Basic principles observed and reported:

– Initially observed and reported via Web News Sources 1987 and continuing

through 2008.

– Academic publications observed and reported in 1992 (Version 1-1992) and

continuing through 2008.

• Publications become prominent and citations begin-TRL 2 Technology concept

and/or application formulated:

– Scholarly academic articles begin in 1992 and continue through 2008,

peaking that year.

– Academic Citations begin in 1992 and peak 2008 at end of study indicating

that technology has emerged and is still active.

• Standards-Patents-Publications prevalent and media hype-TRL 3 Analytical

and experimental critical function and/or characteristic proof of concept:

– Patents peak 2008 at end of study (Fig. 5.2)-also indicating that technology

has emerged and is still active and may evolve further.
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– Trending.

SNMPv1-1988.

SNMPv2-1993 and then revised in 1996.

SNMPv3-appeared 2002 and then standardized in 2004 (Table 5.2).

• First Patents-TRL 4 Component and/or breadboard validation in laboratory

environment-1993 as illustrated in Table 5.3. This can further examined as a

breakout by country per year which results in an initial TRL 4 (first patent) for

each country as follows: Australia (AU)-2001, Brazil (BR)-2000, Canada (CA)-

1999, China (CN)-2002, Germany (DE)-1998, European Patent Office (EP)-

1994, France (FR)-2001, the UK (GB)-2001, Japan (JP)-1993, South Korea

(KR)-1997, the Netherlands (NL)-1996, Research Disclosure (RD)-1998, Swe-

den (SE)-1996, Taiwan (TW)-2000, the USA (US)-1995, and World Intellectual

Property Organization (WO)-1995.

• Patents continued-TRL 5 Component and/or breadboard validation in relevant

environment. Patents continue throughout the time period of the data set through

2008 into 2009. What is of particular interest is that different patterns emerge for

different countries as follows: Australia (AU)-2001 only, Brazil (BR)-2000 only,

Canada (CA)-1999, 2001, and 2006, China (CN)-2002, 2004–2008, Germany

(DE)-intermittent 1998–2006, European Patent Office (EP)-intermittent 1994–

2008, France (FR)-2001, 2004, 2006, the UK (GB)-intermittent 2001–2006,

Fig. 5.2 Number of patents per year per country/multi-national organizations identified—SNMP

data set. Legend key: Australia (AU), Brazil (BR), Canada (CA), China (CN), Germany (DE),

European Patent Office (EP), France (FR), the UK (GB), Japan (JP), South Korea (KR), the

Netherlands (NL), Research Disclosure (RD), Sweden (SE), Taiwan (TW), the USA (US), World

Intellectual Property Organization (WO)
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Japan (JP)-1993–2008, South Korea (KR)-1997, 1999–2008, the Netherlands

(NL)-1996, Research Disclosure (RD)-intermittent 1998–2008, Sweden (SE)-

1996, 1998, Taiwan (TW)-2000, 2002, the USA (US)-1995–2008, and World

Intellectual Property Organization (WO)-1995–1996, 1998–2008.

– Trending follows versions evolution and emergence as in TRL3.

– Peak Plotted-See milestones and radar chart (Abercrombie et al., 2012).

• Patents and/or patent trending may be used-TRL 6 System/subsystem model or

prototype demonstration in a relevant environment (ground or space).

– Peak-See milestones and radar chart (Abercrombie et al., 2012).

• Patent and First Product Offering Overlap-TRL 7 System prototype demonstra-

tion in a space environment.

– Sentiment-SNMPv1-1988, SNMPv2-1993 and then revised in 1996,

SNMPv3-appeared 2002 and then standardized in 2004.

– Peaks in 2001.

• First Product offering-TRL 8 Actual system completed and “flight qualified”

through test and demonstration (ground or space).

– In 1988, there are two product offerings, based on earlier version of SNMP

and then continue to be fairly consistent thereafter, but strong new product

showings in mid-late 1990s. These are correlated with standardization of

SNMPv2 and then new product offerings with the standardization of

SNMPv3.

• Multiple Product offering-TRL 9 Actual system “flight proven” through suc-

cessful mission operations.

– Peaks in 1999.

The second case of applying the TRL model logic to the current modified model

follows with the example of updated data used to create the popular “tire tracks”

model (Lee et al., 2012). This data set captures mutually reinforcing developments

between university research and development, industrial research and development,

and industrial growth (Madhavan et al., 2012). The data set was selected because it

is well documented, originally included in (Evolving the High Performance Com-

puting and Communications Initiative to Support the Nation’s Information Infra-

structure, 1995), with an update in (Innovation in Information Technology, 2003),

and more recent update (Lee et al., 2012).

From Table 5.4 the areas of fundamental research in IT and the industry interest

analog are as follows:

• Digital Communications (Broadband and Mobile).

• Computer Architecture (Microprocessors).

• Software Technologies (Personal Computing).

• Networking (Internet and Web).
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• Parallel and Distributed Systems (Cloud Computing).

• Databases (Enterprise Systems).

• Computer Graphics (Entertainment and Design).

• AI and Robotics (Robotics and Assistive Technologies).

Applying the TRL logic in this data set results in the following:

• First Publications-TRL 1 Basic principles observed and reported and Publica-
tions become prominent and citations begin-TRL 2 Technology concept and/or

application formulated are found to be:

– Digital Communications (Broadband and Mobile)-1965, Computer Architec-

ture (Microprocessors)-1976, Software Technologies (Personal Computing)-

1965, Networking (Internet and Web)-1968, Parallel and Distributed Systems

(Cloud Computing)-1968, Databases (Enterprise Systems)-1974, Computer

Graphics (Entertainment and Design)-1965, and AI and Robotics (Robotics

and Assistive Technologies)-1969.

• Standards-Patents-Publications prevalent and media hype-TRL 3 Analytical

and experimental critical function and/or characteristic proof-of-concept, First
Patents-TRL 4 Component and/or breadboard validation in laboratory environ-

ment, and Patents continued-TRL 5 Component and/or breadboard validation in

relevant environment are found to be:

– Digital Communications (Broadband and Mobile)-1981, Computer Architec-

ture (Microprocessors)-1976, Software Technologies (Personal Computing)-

1978, Networking (Internet and Web)-1979, Parallel and Distributed Systems

(Cloud Computing)-1972, Databases (Enterprise Systems)-1972, Computer

Graphics (Entertainment and Design)-1965, and AI and Robotics (Robotics

and Assistive Technologies)-1972.

• Patents and/or patent trending may be used-TRL 6 System/subsystem model or

prototype demonstration in a relevant environment (ground or space), Patent
and First Product Offering Overlap-TRL 7 System prototype demonstration in a

space environment, First Product offering-TRL 8 Actual system completed and

“flight qualified” through test and demonstration (ground or space), Multiple
Product offering-TRL 9 Actual system “flight proven” through successful mis-

sion operations are found to be:

– Digital Communications (Broadband and Mobile)-1991, Computer Architec-

ture (Microprocessors)-1981, Software Technologies (Personal Computing)-

1969, Networking (Internet and Web)-1977, Parallel and Distributed Systems

(Cloud Computing)-1985, Databases (Enterprise Systems)-1981, Computer

Graphics (Entertainment and Design)-1970, and AI and Robotics (Robotics

and Assistive Technologies)-1990.

One sees that several TRLs can be grouped together in this data set. This can be

explained as only three of the five parameters apply to the TRL model logic.

However, the last two parameters ($1B Market and $10B Market) are extremely
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important. What is quite impressive is the market space that these technologies are

seen to occupy, upwards to $10B.

5.8 Discussion

The first data set consists of four distinct and separately searchable online sources

(i.e., scholarly publications and citation, patents, news archives, and online map-

ping networks). The data reflects a time line of the technology transitions catego-

rized by TRLs as shown in Fig. 5.3. Analyses of these results convinced us to adapt

the model (Abercrombie et al., 2012) so that the TRLs are used to determine the

stage in the sequence of the life cycle of the particular technology being investi-

gated (Abercrombie et al., 2013).

The second case study uses the modified model to study a data set created from

survey data from within the IT Sector (Lee et al., 2012) measuring the relationships

among universities, industry, and governments’ innovations and leadership.

Figure 5.4 identifies the TRL transitions on eight subject areas of fundamental

research in IT and industry-specific categories (Abercrombie et al., 2013).

Applying the definitions of the TRL model logic transitions provides a stepwise

explanation for the subject system’s (or technology) evolution. This then adds

insight into its maturity and market impact (i.e., innovation in terms of the new

Triple Helix model).

The modeling of the TRL within the context of the life cycle examines and

clarifies how to systematically classify the system/technology evolution. This

model starts with an initial discovery via original scientific and conference

Fig. 5.3 SNMP technology identification by TRLs
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literature (the academic strand of the Triple Helix model). The model accounts for

technology development and implementation, often critical to its evolving and

maturing outcome. This process is accounted for via original scientific and confer-

ence literature (the academic strand of the Triple Helix model funded by govern-

ment grants and in some cases by direct industry funding). Patents are derived

primarily by the influence of industry or government research (multiple strands of

the Triple Helix model). Finally, the model fully accounts for transitioning through

TRLs to commercial application and significant global economic impact (the

industry strand of the Triple Helix model).

Conclusion and Future Research

The relationships among independent sources of information were addressed

as a way to systematically explain the identifiable states of new systems or

technologies, from innovation through to commercial application. In the first

case study, we selected a very well-known, documented technology to test the

TRL model logic transitioning hypothesis. In the second case study, the TRL

transitioning hypothesis was validated by selecting a cross-section of

fundamental IT research domains and their corresponding industry interest

category spanning 1965–2011. In both cases, applying the TRL transitioning

technique to the documented subject areas resulted in trends that clarified and

refined the identification of the technology within the definition of a life

cycle. The TRL transitions, in the modified model, are useful in the creation

(continued)

Fig. 5.4 Area of fundamental IT research technology identification by TRLs
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(continued)

of business intelligence in a knowledge-based economy. The Triple Helix

model has great importance in this context (Leydesdorff, 2010, 2013). Busi-

ness intelligence assists in providing a basis for strategic business decision

(s) for innovation, a strategic goal of the current Triple Helix model (“Con-

cept: Theoretical Framework,” 2014; Leydesdorff, 2012). Further research is

needed to refine the critical underlying data sources. In this study only two

economic impact categories were used. To better under the progression (i.e.,

enabling breakthroughs) of a technology’s life cycle, it will be necessary to

decompose the economic impact categories. Another area of investigation is

to address the associated supply chains among the industry interest catego-

ries. We would like to better understand how inventions from one category

affect (overlap) the emergence (development) properties in another category

(e.g., phone hardware versus iTunes software) within the context of both

systems and technology life cycles. Moreover, we intend to investigate

alternative techniques to better understand key agents of change (i.e., TRL

transitioning) toward a more robust identification of technology and its

systems life cycle.

This work examined an expanded model that clarifies and identifies the life

cycle of a system or a collection of systems (i.e., a technology) from initial

discovery (via original scientific and conference literature), through critical

evolution and development (via original scientific, conference literature and

patents), transitioning through TRLs and ultimately on to commercial appli-

cation. We modified a previously documented model (Abercrombie et al.,

2012) with the goal to utilize the TRL terms to address systems life cycle and

the relationship between the TRLmodel concepts and the Triple Helix model.

What we discovered is that this method allows for beneficial use of disparate

data sources. Once the data sets have been normalized, evaluations can

proceed. The stepwise process of this modified model (Abercrombie et al.,

2014) is as follows:

1. Search external databases or commercial sources for data associated with a

particular technology (the initial search string).

2. An ad-hoc network formed from a variety of sources, when investigated

in-total, becomes an integrated network.

(a) This allows the disparate online data set sources to be analyzed.

3. Normalize the different disparate data sets.

4. Determine the TRL transition(s) inherent in the data sets from step 3.

5. The TRL transition(s), as indicated in the modified model, result(s) in the

creation of business intelligence.

(continued)
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(continued)

6. Business Intelligence findings in a knowledge based economy provide/

assist in providing a basis for business decision(s).

This enhanced model has the potential to provide for tracking the life cycle

of a system or its associated technology from initial discovery (via original

scientific and conference literature), through critical discoveries (via original

scientific, conference literature and patents), transitioning through TRLs, to,

ultimately, commercial applications. The impact of scholarly works, patents

and online web news sources are identified during this process. Currently, one

of the most comprehensive and useful approaches is to search external

databases for data associated with a particular technology or a series of key

phrases. The raw data, however, can be confusing and may not provide

insight into a trend. But, when normalized, what actually is happening is

formation of an ad hoc network that when investigated as a whole can be

recognized as integrated. As integrated, these once disparate online data set

sources can be analyzed. In the future, we intend to apply a richer set of

machine learning techniques to the indicators for the TRL transitioning. We

anticipate such new work will result in a more robust identification of

systems/technology with respect to both current state in their respective life

cycles and clarification of their relationship to the Triple Helix model.
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Chapter 6

Spatial Scientometrics and Scholarly Impact:

A Review of Recent Studies, Tools,

and Methods

Koen Frenken and Jarno Hoekman

Abstract Previously, we proposed a research program to analyze spatial aspects of

the science system which we called “spatial scientometrics” (Frenken, Hardeman,

& Hoekman, 2009). The aim of this chapter is to systematically review recent (post-

2008) contributions to spatial scientometrics on the basis of a standardized litera-

ture search. We focus our review on contributions addressing spatial aspects of

scholarly impact, particularly, the spatial distribution of publication and citation

impact, and the effect of spatial biases in collaboration and mobility on citation

impact. We also discuss recent dedicated tools and methods for analysis and

visualization of spatial scientometric data. We end with reflections about future

research avenues.

6.1 Introduction

One of the main trends in scientometrics has been the increased attention to spatial

aspects. Parallel to a broader interest in the “geography of science” in fields as

history of science, science and technology studies, human geography and economic

geography (Barnes, 2001; Finnegan, 2008; Frenken, 2010; Livingstone, 2010;

Meusburger, Livingstone, & Jöns, 2010; Shapin, 1998), the field of scientometrics

has witnessed a rapid increase in studies using spatial data. In an earlier review,

Frenken et al. (2009, p. 222) labelled these studies as “spatial scientometrics” and
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defined this subfield as “quantitative science studies that explicitly address spatial

aspects of scientific research activities.”

The chapter provides an update of the previous review on spatial scientometrics by

Frenken et al. (2009), specifically focusing on contributions from the post-2008 period

that address spatial aspects of scholarly impact. We will do so by reviewing contribu-

tions that describe the spatial distribution of publication and citation impact, and the

effect of spatial biases in collaboration and mobility on citation impact, as two spatial

aspects of scholarly impact. We then discuss recent efforts to develop tools and

methods that visualize scholarly impact using spatial scientometric data. At the end

of the chapter, we look ahead at promising future research avenues.

6.2 Selection of Reviewed Papers

6.2.1 Scope of Review

We conducted a systematic review of contributions to spatial scientometrics that

focused on scholarly impact by considering original articles published since 2008.

Following the definition of spatial scientometrics introduced by Frenken et al. (2009),

we only included empirical papers that made use of spatial information as it can be

retrieved from publication data. Moreover, we paid special attention to three bodies of

research within the spatial scientometrics literature. First, studies were eligible when
they either describe or explain the distribution of publication or citation output across

spatial units (e.g., cities, countries, world regions). Second, studies were considered

when they explain scholarly impact of articles based on the spatial organization of

research activities (e.g., international collaboration). We refer to this body of research

as “geography of citation impact.” Third, the review considered studies that report on

tools and methods to visualize the publication and citation output of spatial units on

geographic maps.

Given the focus of this book on scholarly impact, we chose not to provide a

comprehensive overview of all spatial scientometrics studies published since 2008.

Hence we did not consider contributions focused on the spatial organization of

research collaboration or the localized emergence of research fields. For notable

advancements in these subfields of spatial scientometrics we refer amongst others

to Hoekman, Frenken, and Tijssen (2010); Waltman, Tijssen, and Eck (2011);

Leydesdorff and Rafols (2011); Boschma, Heimeriks, and Balland (2014).

6.2.2 Search Procedure

The procedure to select papers for review followed three steps. First, we retrieved
all papers that were citing the 2009 spatial scientometrics review paper (Frenken
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et al., 2009) either in Thomson Reuters Web of Science (from now on: WoS) or

Elsevier Scopus (from now on: Scopus). Second, we queried WoS to get a com-

prehensive overview of all spatial scientometric articles published since 2008. The

search was limited to WoS subject categories “information science & library

science,” “geography,” “planning & development,” and “multidisciplinary sci-

ences.” The following search query consisting of a combination of spatial and

scientometric search terms was performed on March 1, 2014:

TS¼ (spatial* OR “space” OR spatio* OR geograph* OR region* OR “cities” OR
“city” OR international* OR countr* OR “proximity” OR “distance” OR
“mobility”) AND TS¼ (“publications” OR “co-publications” OR “articles”
OR “papers” OR “web of science” OR “web of knowledge” OR “science
citation index” OR “scopus” OR scientometr* OR bibliometr* OR citation*)1

Third, a number of additional articles were included after full-text reading of key

contributions and evaluation of the cited and citing articles therein.

A total of 1,841 articles met the search criteria of the first two steps. Titles and

abstracts of all articleswere evaluatedmanually to exclude articles that (1) did notmake

use of publication data (n¼ 1,082) or (2) did not report on the spatial organization of

research (n¼ 405).All other 354publicationsweremanually evaluated and selected for

review when they focused on one of three research topics on scholarly impact men-

tioned above. Subsequently, articles not identified in the WoS search, but cited in or

citing key contributions were added.

6.3 Review

We organize our review in three topics. First, we focus on contributions that

analyze the spatial distribution of publication and citation impact accross world

regions, countries and subnational regions. We subsequently pay attention to the

geography of citation impact and provide an exhaustive review of all contributions

that have analyzed the effect of the spatial organization of research activities on

scholarly impact. In a third section we focus on the development of tools and

methods to support the analysis and visualization of spatial aspects of science.

6.3.1 Spatial Distribution of Publication and Citation Impact

The spatial distribution of research activities continues to be a topic of major

interest for academic scholars and policy makers alike. In Nature News, Van

1Document type¼Article; Indexes¼SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH;

Timespan¼ 2009–2014.
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Noorden (2010) discussed recent developments in the field by focusing on the

strategies of urban regions to be successful in the production of high-quality

scientific research. Another recent initiative that received attention is the Living

Science initiative (http://livingscience.inn.ac/) which provides real-time geo-

graphic maps of the publication activity of more than 100,000 scientists.

The interest in the spatial distribution of research activities is also noted in our

systematic search for spatial scientometric contributions in this sub-field. We found

more than 200 papers that analyzed distributions of bibliometric indicators such as

publication or citation counts across countries and regions. Space does not allow us

to review all these papers. What follows are a number of outstanding papers on the

topic organized according to the spatial level of analysis.

6.3.1.1 World Regions and Countries

Two debates have dominated recent analyses of the distribution of research activ-

ities over world regions and countries. First, it is well known that for many decades

scientific research activities were disproportionally concentrated in a small number

of countries, with the USA and the UK consistently ranking on top in terms of

absolute publication output and citation impact. Yet, in recent years this “hege-

mony” has been challenged by a number of emerging economies such as China,

India, and Brazil.

In particular the report of the Royal Society in 2011, “Knowledge, Networks
and Nations” emphasizes the rapid emergence of new scientific powerhouses.

Using data from Scopus covering the period 1996–2008, the report concludeds

that “Meanwhile, China has increased its publications to the extent that it is now
the second highest producer of research output in the world. India has replaced
the Russian Federation in the top ten, climbing from 13th in 1996 to tenth
between 2004 and 2008” (Royal Society, 2011, p. 18). Based on a linear

extrapolation of these observations, the report also predicts that China is

expected to surpass the USA in terms of publication output before 2020. The

prediction was widely covered in the media, yet also criticized on both substan-

tial (Jacsó, 2011) and empirical grounds (Leydesdorff, 2012). For instance,

Leydesdorff (2012) replicated the analysis using the WoS database for the period

2000–2010 and finds considerable uncertainty around the prediction estimates,

suggesting that the USA will be the global leader in publication output for at

least another decade. Moreover, Moiwo and Tao (2013) show that China’s

normalized publication counts for overall population, population with tertiary

education and GDP, is relatively low, while smaller countries such as Switzer-

land, The Netherlands and Scandinavian countries are world leaders on these

indicators.

Huang, Chang, and Chen (2012) also analyze changes in the spatial concen-

tration of national publication and citation output for the period 1981–2008 using

several measures such as the Gini coefficient and Herfindahl index. Using

National Science Indicators data derived from WoS, they show that publication
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activity continues to be concentrated in a small number of countries including the

USA, UK, Germany, and France. Yet, their analysis also reveals that the degree of

concentration is gradually decreasing over time due to the rapid growth of

publication output in China and other Asian countries such as Taiwan and

Korea. What is more, when the USA is removed from the analysis, concentration

indicators drop significantly and a pluralist map of publications and citations

becomes visible.

A second issue concerning the spatial distribution of research activities that has

received considerable interest in recent years is the debate about the European

Paradox. For a long time it was assumed that European countries were global

leaders in terms of impact as measured by citation counts, but lagged behind in

converting this strength into innovation, economic growth and employment (Dosi,

Llerena, & Labini, 2006). The idea originated from the European Commission’s

White Paper on Growth, Competitiveness and Employment which stated that “the
greatest weakness of Europe’s research base however, is the comparatively limited
capacity to convert scientific breakthroughs and technological achievements into
industrial and commercial successes” (Commission of the European Communities,

1993, p. 87). This assumption about European excellence became a major pillar of

the Lisbon Agenda and creation of a European Research Area.

To scrutinize the conjecture of Europe’s leading role in citation output,

Albarrán, Ortuño, and Ruiz-Castillo (2011a) compared the citation distributions

of 3.6 million articles published in 22 scientific fields between 1998 and 2002.

The contributions of the EU, USA and Rest of the World are partitioned to obtain

two novel indicators of the distribution of the most and least cited papers as

further explained in a twin paper (Albarrán, Ortuño, & Ruiz-Castillo, 2011b).

They observe that the USA “performs dramatically better than the EU and the RW
on both indicators in all scientific fields” (Albarrán, Ortuño, & Ruiz-Castillo,

2011a, p. 122), especially when considering the upper part of the distribution. The

results are confirmed using mean citation rates instead of citation distributions,

although the gap between the USA and Europe is smaller in this case (Albarrán,

Ortuño, & Ruiz-Castillo, 2011c). Herranz and Ruiz-Castillo (2013) further refine

the analysis by comparing the citation performance of the USA and EU in

219 subfields instead of 22 general scientific fields. They find that on this fine-

grained level the USA outperforms the EU in 189 out of 219 subfields. They do

not find a particular cluster of subfields in which the EU outperforms the USA. On

the basis of this finding they conclude that the idea of the European Paradox can

definitely be put to rest.

In addition to studies describing the spatial distribution of research activities

across countries and world regions, a number of studies have focused on explaining
these distributions using multivariate models with national publication output as the

dependent variable. For instance, Pasgaard and Strange (2013) and Huffman

et al. (2013) explain national distributions of publication output in climate change

research and cardiovascular research, while Meo, Al Masri, Usmani, Memon, and

Zaidi (2013) build a similar model to explain the overall publication count of a set

of Asian countries. All three studies observe significant positive effects of Research
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and Development (R&D) investments, Gross Domestic Product (GDP) and popu-

lation on publication output. Pasgaard and Strange (2013) and Huffman

et al. (2013) also find that field-related variables such as burden of disease in the

case of cardiovascular research and CO2 emissions in the case of climate change

research explain national publication output.

Focusing specifically on European countries, Almeida, Pais, and Formosinho

(2009) explain publication output of countries on the basis of specialization pat-

terns. Using principal component analysis on national publication and citation

distributions of countries by research fields, they find that countries located in

close physical proximity to each other also show similar specialization patterns.

This suggests that these countries profit from each other through knowledge

spillovers. We return to this issue in the next section where we discuss a number

of papers that explain publication output at the sub-national instead of national

level.

6.3.1.2 Regions and Cities

The interest in describing the spatial distribution of scientific output at the level of

sub-national regions and cities has been less than in analysis of the output of

countries or aggregates of countries. This is likely due to the fact that larger data

efforts are required to accurately classify addresses from scientific papers into

urban or regional categories as well as from the fact that science policy is mainly

organized at national and transnational levels. Nevertheless, the number of studies

addressing the urban and regional scales has been rapidly expanding after 2008 and

this trend is likely to continue given the increased availability of tools and methods

to conduct analysis at fine-grained spatial levels (see Sect. 6.3.3).

Matthiessen and Schwarz (2010) study the 100 largest cities in the world in

terms of publication and citation output for two periods: 1996–1998 and 2004–

2006. Even during this short period they observe a rapid rise of cities in Southeast

Asia as major nodes in the global science system when considering either publica-

tion or citation impact. They also note the rise of Australian, South American, and

Eastern European cities. These patterns all indicate that the traditional dominance

of cities in North America and Western Europe is weakening, although some of

these cities remain major world-city hubs such as the San Francisco Bay Area,

New York, London-Cambridge, and Amsterdam.

Cho, Hu, and Liu (2010) analyze the regional development of the Chinese

science system in great detail for the period 2000–2006. They observe that the

regional distribution of output and citations is highly skewed with coastal regions

dominating. However, mainland regions have succeeded in quickly raising their

scientific production, but still have low citation impact, exceptions aside. Tang and

Shapira (2010) find very similar patterns for the specific field of nanotechnology.

An interesting body of research has analyzed whether publication and citation

output within countries is concentrating or de-concentrating over time. A compre-

hensive study by Grossetti et al. (2013) covering WoS data for the period
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1987–2007 finds that in most countries in the world, the urban science system is

de-concentrating, indicating that the largest cities are undergoing a relative decline

in a country’s scientific output (see also an earlier study on five countries by

Grossetti, Milard, and Losego (2009)). The same trend is observed by looking at

citation instead of publication output. Two other studies on France, with a specific

focus on small and medium-sized cities (Levy & Jégou, 2013; Levy, Sibertin-

Blanc, & Jégou, 2013), and a study on Spain (Morillo & De Filippo, 2009), support

this conclusion. The research results are significant in debunking the popular policy

notion that the spatial concentration of recourses and people supports scientific

excellence.

Remarkably, the explanation of publication output at the regional level has

received a great deal of attention in recent years. That is, a number of contributions

address the question why certain regions generate more publication output than

others. This body of research relies on a so-called knowledge production function

framework where number of publications are considered as the output variables and

research investment, amongst other variables, as input in the knowledge production

system. Acosta, Coronado, Ferrándiz, and León (2014) look at the effect of public

spending on regional publication output using Eurostat data on R&D spending in

the Higher Education sector. They find a strong effect of public investment on

regional publication output. Interestingly, this effect is strongest in less developed

regions (“Objective 1 regions” in the European Union) when compared to more

developed regions, meaning that an increase in budget has a higher payoff in less

developed regions than in more developed regions. This result is in line with

Hoekman, Scherngell, Frenken, and Tijssen (2013) who find that the effect of

European Framework Program subsidies is larger in regions that publish less

compared to regions that publish more.

Sebestyén and Varga (2013) also apply a knowledge production framework with

a specific focus on the role of inter-regional collaboration networks and knowledge

spillover effects between neighboring regions. They find that scientific output is

dependent on embeddedness in national and international networks, while it is not

supported by regional agglomeration of industry or publication activity in neigh-

boring regions. They conclude that regional science policy should focus on net-

working with other regions domestically and internationally, rather than on local

factors or regions in close physical proximity. Their results also confirm the results

of an earlier study on Chinese regions which highlight the importance of spillovers

stemming from international collaborations (Cho et al., 2010).

Finally, some papers analyze the impact of exogenous events on the publication

output of regions or countries. Magnone (2012) studies the impact of the triple

disaster in Japan (earthquake, tsunami and nuclear accident) on the Materials

Science publication output in the cities of Sendai, Tsukuba and Kyoto (the latter

being a “non-disaster situation” control). As expected, the author observes clear and

consistent negative effects of the disaster on publication output in Sendai and

Tsukuba, compared to Kyoto. Studies with similar research questions include

Braun (2012) who studies the effect of war on mathematics research activity in

Croatia; Miguel, Moya-Anegón, and Herrero-Solana (2010) scrutinizing the effect
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of the socio-economic crisis in Argentina on scientific output and impact, and

Orduña-Malea, Ontalba-Ruipérez, and Serrano-Cobos (2010) focusing on the

impact of 9/11 on international scientific collaboration in Middle Eastern countries.

6.3.2 Geography of Citation Impact

6.3.2.1 Collaboration

A topic which has received considerable attention is the effect of geography,

particularly international collaboration, on the citation impact of articles. These

geographical effects can be assessed at both the author level and the article level.

Typically, studies use a multivariate regression method with the number of citations

of a paper or article as the dependent variable, following an early study by Frenken,

Hölzl, and Vor (2005). This research set-up allows to control for many other factors

that may affect citation impact, such as the number of authors and country effects

(e.g., English speaking countries) when explaining citations to articles, and age and

gender when explaining citations to individual scientists.

He (2009) finds for 1,860 papers written by 65 biomedical scientists in

New Zealand that internationally co-authored papers indeed receive more citations

than national collaborations, while controlling for many other factors. More inter-

estingly, he also finds even higher citation impact of local collaborations within the

same university when compared to international collaborations. This suggests that

local collaboration, which is often not taken into account in the geography of

citation impact, may have much more benefits than previously assumed.

The importance of local collaboration is confirmed by Lee, Brownstein, Mills,

and Kohane (2010) who consider the effect of physical distance on citation impact

by analyzing collaboration patterns between first and last authors that are both

located at the Longwood campus of Harvard Medical School. They find that at this

microscale, physical proximity in meters and within-building collaboration is

positively related to citation impact. The authors do not, however, control for

alternative factors that may explain these patterns such as specialization.

Frenken, Ponds, and Van Oort (2010) test the effects of international, national

and regional collaboration for Dutch publications in life sciences and physical

sciences derived from WoS. They show that research collaboration in the life

sciences has a higher citation impact if organized at the regional level than at the

national level, while the opposite is found for the physical sciences. In both fields

the citation impact of international collaboration exceeds the citation impact of both

national and regional research collaboration, in particular for collaborations with

the USA. Sin (2011) compares the impact of international versus national collab-

oration in the field of Library and Information Sciences. In line with other studies, a

positive effect for international collaboration is found, while no significant effect of

national collaboration as compared to single authorships is observed.
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One problem in interpreting the positive effect of international collaboration on

citation impact holds that this finding may indeed signal that international collab-

oration results in higher research quality, yet also that the results from internation-

ally coauthored papers diffuse from centers in multiple countries, as noted by

Frenken et al. (2010). These two effects are not necessarily mutually exclusive.

Lancho Barrantes, Bote, Vicente, Rodrı́guez, and de Moya Anegón (2012) try to

disentangle between the “quality” and “audience” effect by studying whether

national biases on citation impact are larger in countries that produce many papers.

They find that the “audience” effect is especially large in relatively small countries,

while the quality effect of internationally co-authored papers seems to be a general

property irrespective of country size.

Nomaler, Frenken, and Heimeriks (2013) do not look at the effect of interna-

tional versus national collaboration, but at the effect of kilometric distance between

collaborating authors. On the basis of all scientific papers published in 2000 and

coauthored by two or more European countries, they show that citation impact

increases with the geographical distance between the collaborating countries.

Interestingly, they also find a negative effect for EU countries, suggesting that

collaborations with a partner outside the EU are more selective, and, hence, have

higher quality.

An interesting study by Didegah and Thelwall (2013a) looks at the effects of

the geographical properties of references of nanotechnology papers. In particular,

they test the hypothesis that papers with more references to “international”

journals—defined as journals with more geographic dispersion of authors—have

more citation impact. They indeed find this effect. Moreover, after controlling for

the effect they no longer observe an effect of international collaboration on

citation impact. However, in a related paper that studies the effect of 11 factors

on citation impact, of which international collaboration is one, Didegah and

Thelwall (2013b) do observe a positive effect of international collaboration on

citation impact.

Finally, a study by Eisend and Schmidt (2014) is worth mentioning in this

context. They study how the internationalization strategies of business research

scholars affect their research performance in terms of citation impact. Their study is

original in that they specifically look at how this effect is influenced by the

knowledge resources of individual researchers. They find that international collab-

oration supports performance more if researchers lack language skills and knowl-

edge of foreign markets. This indicates that international collaboration provides

researchers with access to complementary skills. Collaboration also improves the

performance of less experienced researchers with the advantage diminishing with

increasing research experience.

A methodological challenge of studies that assess the effect of international

collaboration on citation impact is self-selection bias. Indeed, one can expect that

better scientists are more likely to engage in international collaboration. For

example, Abramo, D’Angelo, and Solazzi (2011) find that Italian natural scientists

who produce higher quality research tend to collaborate more internationally. The

same result was found by Kato and Ando (2013) for chemists worldwide. To control

6 Spatial Scientometrics and Scholarly Impact: A Review of Recent Studies. . . 135



for self-selection, they investigate whether the citation rate of international papers

is higher than the citation rate of domestic papers, controlling for performance, that

is, by looking at papers with at least one author in common. Importantly, they still

find that international collaboration positively and significantly affects citation

impact. Obviously, the issue of self-selection should be high on the agenda for

future research.

6.3.2.2 Mobility

An emerging research topic in spatial scientometrics of scholarly impact concerns

the question of whether internationally mobile researchers outperform other

researchers in terms of productivity and citation impact. Although descriptive

studies have noted a positive effect of international mobility on the citation impact

of researchers (Sandström, 2009; Zubieta, 2009), it remains unclear whether higher

performance is caused by international mobility (e.g., through the acquisition of

new skills), or by self-selection (better scientists being more mobile).

In a recent study, Jonkers and Cruz-Castro (2013) explored this effect for a

sample of Argentinian researchers with foreign work experience. When

returning home, these researchers show a higher propensity to co-publish with

their former host country than with other countries. These researchers also have a

higher propensity to publish in high-impact journals as compared to their

non-mobile peers, even when the mobile scientists don’t publish with foreign

researchers. Importantly, the study accounted for self-selection (better scientists

being more mobile) by taking into account the early publication record of

researchers as an explanatory variable for high-impact publications after their

return to Argentina.

Another study by Trippl (2013) investigates the impact of internationally mobile

star scientists on regional knowledge transfer. Here, the question holds whether a

region benefits from attracting renowned scientists from abroad. It was found that

mobile star scientists do not differ in their regional knowledge transfer activities

from non-mobile star scientists. However, mobile scientists have more interregional

linkages with firms which points to the importance of mobile scientists for

complementing intraregional ties with interregional ones.

6.3.3 Tools and Methods

Besides empirical contributions to the field of spatial scientometrics, a growing

group of scholars have focused on the development of tools and methods to support

the analysis and visualization of spatial aspects of science. Following a more

general interest in science mapping (see for instance: http://scimaps.org/maps/

browse/) and a trend within the academic community to create open source
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analytical tools, most of the tools reviewed below are freely available for analysis

and published alongside the publication material.

Leydesdorff and Persson (2010) provide a comprehensive review and user’s

guide of several methods and software packages that were freely available to

visualize research activities on geographic maps up to 2010. They focus specifically

on the visualization of collaboration and citation networks that can be created on the

basis of author-affiliate addresses on publications. In their review they cover,

amongst others, the strengths and weaknesses of CiteSpace, Google Maps, Google
Earth, GPS Visualizer and Pajek for visualization purposes. One particular strength
of the paper is that it provides software to process author-affiliate addresses of

publication data retrieved from Web of Science or Scopus for visualization on the

city level. The software has been refined over the last years and can be found on:

http://www.leydesdorff.net/software.htm.

Further to the visualization of research networks, Bornmann et al. (2011) focus

on the geographic mapping of publication and citation counts of cities and regions.

They extract all highly cited papers in a particular research field from Scopus, and

develop a method to map “excellent cities and regions” using Google Maps. The
percentile rank of a city as determined on the base of its contribution to the total set

of highly cited papers is visualized by plotting circles with different radii (fre-

quency of highly cited papers) and colors (city rank) on a geographic map. The

exact procedure including a user guide for this visualization tool is provided at:

http://www.leydesdorff.net/mapping_excellence/index.htm.

A disadvantage of the approach in Bornmann et al. (2011) is that it visualizes the

absolute number of highly cited papers of a particular city without normalizing for

the total number of publications in that city. Bornmann and Leydesdorff (2011)

provide such a methodological approach using a statistical z test that compares

observed proportions of highly cited papers of a particular city with expected

proportions. “Excellence” can then be defined as cities in which “authors are
located who publish a statistically significant higher number of highly cited papers
than can be expected for these cities” (Bornmann & Leydesdorff, 2011, p.1954).

The authors use similar methods as in Bornmann et al. (2011) to create geographic

maps of excellence for three research fields: physics, chemistry and psychology.

The maps confirm the added value of normalization as cities with high publication

output do not necessarily have a disproportionate number of highly cited papers.

Further methodological improvement to this method is provided by Bornmann and

Leydesdorff (2012) who use the Integrated Impact Indicator (I3) as an alternative to

normalized citation rates. Another improvement is that they correct observed

citation rates for publication years.

Researchers using the above visualization approaches should be aware of a

number of caveats that are extensively discussed in Bornmann et al. (2011). Visu-

alization errors may occur due to amongst others imprecise allocation of

geo-coordinates or incomplete author-affiliate addresses. Created geographic

maps should therefore be always carefully scrutinized manually.

Building on the abovementioned contributions, Bornmann, Stefaner, de Moya

Anegón, and Mutz (2014a) introduce a novel web application (www.
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excellencemapping.net) that can visualize the performance of academic institutions

on geographic maps. The web application visualizes field-specific excellence of

academic institutions that frequently publish highly-cited papers. The underlying

methodology for this is based on multilevel modeling that takes into account the

data at the publication level (i.e., whether a particular paper belongs to the top 10 %

most cited papers in a particular institution) as well as the academic institution level

(how many papers of an institution belong to the overall top 10 % of most cited

papers). Using this methodology, top performers by scientific fields who publish

significantly more top-10 % papers than an “average” institution in a scientific field

are visualized. Results are visualized by colored circles on the location of the

respective institutions on a geographic map. The web application provides the

possibility to select the circles for further information about the institutions. In

Bornmann, Stefaner, de Moya Anegon, and Mutz (2014b) the web application is

further enhanced by adding the possibility to control for the effect of covariates

(such as the number of residents of a country in which an institution is located) on

the performance of institutions. Using this method one can visualize the perfor-

mance of institutions under the hypothetical situation that all institutions have the

same value on the covariate in question. For instance, institutions can be visualized

that have a very good performance once controlled for their relatively low national

GDP. In the coming years, further development of the scientific excellence tool is

anticipated.

Bornmann and Waltman (2011) use a somewhat different approach to map

regions of excellence based on heat maps. The visualization they propose uses

density maps that can be created using the VOSviewer software for bibliometric

mapping (Van Eck & Waltman, 2010). A step-by-step instruction to make these

maps is provided on: http://www.ludowaltman.nl/density_map/. In short, the heat

maps rely on kernel density estimations of the publication activity of geographic

coordination and a specification of a kernel width (in kilometers) for smoothing.

Research excellence is then visualized for regions instead of individual cities,

especially when clusters of cities with high impact publication activity are located

in close proximity to each other. The created density maps reveal clusters of

excellence running from South England, over Netherlands/Belgium and Western

Germany to Northern Switzerland.

An entirely different approach to visualizing bibliometric data is explored by

Persson and Ellegård (2012). Inspired by the theory of time-geography which was

initially proposed by Thorsten Hägerstrand in 1955, they reconstruct time-space

paths of the scientific publications citing the work of Thorsten Hägerstrand. Pub-

lications are plotted on a two dimensional graph with time (years) on the vertical

axis, space (longitude) on the horizontal axis and paths between a time-space

location indicating citations between articles.
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Conclusions and Recommendations

Clearly, the interest in analyzing spatial aspects of scientific activity using

spatial scientometric data is on the rise. In this review we specifically looked

at contributions that focused on scholarly impact and found a large number of

such papers. While previously most studies focused solely on national levels,

many scientometrics contributions now take into account regional and urban

levels. What is more, in analyzing relational data, kilometric distance is

increasingly taken into account as one of the determinants of scholarly

impact. The research design of spatial scientometric papers is also more

elaborate than for earlier papers, with theory-driven hypotheses and increas-

ingly a multivariate regression set-up. Progress has also been made in the

automatic generation of data as well as in visualization of this data on

geographic maps. Having said this, we identify below some research avenues

that fill some existing research gaps in theory, topics, methodology and data

sources.

Little theorizing: As noted, many studies start from hypotheses rather

than from data. Yet, most often, hypotheses are derived from general theo-

retical notions rather than from specific theories of scientific practices.

Indeed, spatial scientometrics makes little reference to theories in economics,

geography or science and technology studies, arguably the fields closest to the

spatial scientometric enterprise. And, conversely, more theory-minded

researchers have also shown little interest in developing more specific theo-

ries about the geography of science, so far (Frenken, 2010). Clearly, more

interaction between theory and empirics is welcome at this stage of research

in spatial scientometrics. One can think of theories from network science,

including the “proximity framework” and social network analysis, which aim

to explain both the formation of scientific collaboration networks and their

effect on scholarly impact (Frenken et al., 2009). A second possibility is to

revive the links with Science and Technology Studies, which have exempli-

fied more strategic and discursive aspects of science and scientific publishing

(Frenken, 2010). Thirdly, modern economic geography offers advanced the-

ories of localization, specifically, regarding the source of knowledge spill-

overs that may underlie the benefits of clustering in knowledge production

(Breschi & Lissoni, 2009; Scherngell, 2014). Lastly, evolutionary theorizing

may be useful to analyze the long-term dynamics in the geography of science,

including questions of where new fields emerge and under what conditions

existing centers lose their dominance (Boschma et al., 2014; Heimeriks &

Boschma, 2014). Discussion of such possibilities in further detail is, however,

beyond the purpose and scope of this chapter.

Self-selection as methodological challenge: As repeatedly stressed, a

major problem in assessing the effect of geography (such as mobility or

long-distance collaboration) on researchers’ scholarly impact arises from

(continued)
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self-selection effects. One can expect that more talented researchers are more

internationally oriented, if only because they search for more specialized and

state-of-the-art knowledge. Hence, the positive effects of internationalization

on performance may not reflect, or only partially, the alleged benefits from

international collaboration as such. We have highlighted some recent

attempts to deal with self-selection in the case of international mobility

(Jonkers & Cruz-Castro, 2013) and international collaboration (Kato &

Ando, 2013). Obviously, more research in this direction is welcome.

Mobility as an underdeveloped topic: A research topic which remains

underinvestigated in the literature, despite its importance for shaping spatial

aspects of the science system, is scientific mobility. Although we identified a

number of papers (e.g. Jonkers & Cruz-Castro, 2013; Trippl, 2013) dealing

with the topic, the total number of papers is relatively low and most papers

focus on theoretical rather than empirical questions. One of the reasons for

this state of affairs is the known difficulty in disambiguating author names

purely based on information derived from scientific publications. The chal-

lenge in these cases is to determine whether the same or similar author names

on different publications refer to the same researcher (for an overview see:

Smalheiser and Torvik (2009)). Arguably, the increase in authors with a

Chinese last name has made such disambiguation even more difficult, due

to the large number of scholars sharing only a few family names such as

Zhang, Chen or Li (Tang & Walsh, 2010). To deal with this issue scholars

have started to develop tools and methods to solve the disambiguation

problems. Recent examples include but are not limited to Tang and Walsh

(2010); D’Angelo, Giuffrida, and Abramo (2011); Onodera et al. (2011);

Wang et al. (2012); Wu and Ding (2013). Most of these studies now agree

on the necessity to rely on external information (e.g. name lists) for a better

disambiguation or to complement bibliometric data with information from

other sources (e.g. surveys, curriculum vitae). For an overview of author

name disambiguation issues and methods, please see the Chap. 7.

Data source dependency: All spatial scientometric analyses are depen-

dent on the data sources that are being used. It is important to note in this

context that there are differences between the set of journals that are covered

in Web of Science and Scopus, with Scopus claiming to include more

‘regional’ journals. Moreover, the coverage of bibliometric databases

changes over time, which may have an effect on longitudinal analyses of

research activities. A telling example of this is the earlier mentioned pre-

dictions of the rise of China in terms of publication output. Leydesdorff

(2012) showed in this respect that predictions of China’s growth in publica-

tion output differ considerably between an analysis of the Scopus or Web of

(continued)
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Science database. Basu (2010) also observes a strong association between the

number of indexed journals from a particular country and the total number of

publications from that country. Other notable papers focusing on this issue

include Rodrigues and Abadal (2014); Shelton, Foland, and Gorelskyy (2009)

and Collazo-Reyes (2014). A challenge for further research is therefore to

distinguish between changes in publication output of a particular spatial unit

due to changes in academic production or changes in coverage of scientific

journals with a spatial bias. Following Martin and Irvine (1983) and

Leydesdorff (2012) we suggest relying on “partial indicators” where results

become more reliable when they indicate the same trends and results across a

number of databases.

Alternative data sources: Finally, a limitation of our review is that we

only focused on spatial scientometric papers of scholarly impact and papers

that made use of spatial information as it can be retrieved from individual

publications. As noted in Frenken et al. (2009) there are a number of other

topics that analyze spatial aspects of research activities, including the spatial

analysis of research collaboration and the localized emergence of new

research fields. Moreover, in addition to publication data there are other

large datasets to analyze spatial aspects of science including but not limited

to Framework Programme data (Autant‐Bernard, Billand, Frachisse, &

Massard, 2007; Scherngell & Barber, 2009) and student mobility flows

(Maggioni & Uberti, 2009). Due to space limitations we were not able to

review all these contributions. Yet, while performing the systematic search of

the scientometrics literature, we came across a number of innovative research

topics such as those focusing on spatial aspects of editorial boards (Bański &

Ferenc, 2013; Garcı́a-Carpintero, Granadino, & Plaza, 2010; Schubert &

Sooryamoorthy, 2010); research results (Fanelli, 2012); authorships

(Hoekman, Frenken, de Zeeuw, & Heerspink, 2012); journal language

(Bajerski, 2011; Kirchik, Gingras, & Larivière, 2012); and the international-

ity of journals (Calver, Wardell-Johnson, Bradley, & Taplin, 2010; He & Liu,

2009; Kao, 2009). They provide useful additions to the growing body of

spatial scientometrics articles.

References

Abramo, G., D’Angelo, C. A., & Solazzi, M. (2011). The relationship between scientists’ research

performance and the degree of internationalization of their research. Scientometrics, 86(3),
629–643.

Acosta, M., Coronado, D., Ferrándiz, E., & León, M. D. (2014). Regional scientific production and

specialization in Europe: the role of HERD. European Planning Studies, 22(5), 1–26.

doi:10.1080/09654313.2012.752439.

6 Spatial Scientometrics and Scholarly Impact: A Review of Recent Studies. . . 141

http://dx.doi.org/10.1080/09654313.2012.752439


Albarrán, P., Ortuño, I., & Ruiz-Castillo, J. (2011a). High-and low-impact citation measures:

empirical applications. Journal of Informetrics, 5(1), 122–145. doi:10.1016/j.joi.2010.10.001.
Albarrán, P., Ortuño, I., & Ruiz-Castillo, J. (2011b). The measurement of low-and high-impact in

citation distributions: Technical results. Journal of Informetrics, 5(1), 48–63. doi:10.1016/j.joi.
2010.08.002.

Albarrán, P., Ortuño, I., & Ruiz-Castillo, J. (2011c). Average-based versus high-and low-impact

indicators for the evaluation of scientific distributions. Research Evaluation, 20(4), 325–339.
doi:10.3152/095820211X13164389670310.

Almeida, J. A. S., Pais, A. A. C. C., & Formosinho, S. J. (2009). Science indicators and science

patterns in Europe. Journal of Informetrics, 3(2), 134–142. doi:10.1016/j.joi.2009.01.001.
Autant‐Bernard, C., Billand, P., Frachisse, D., &Massard, N. (2007). Social distance versus spatial

distance in R&D cooperation: Empirical evidence from European collaboration choices in

micro and nanotechnologies. Papers in Regional Science, 86(3), 495–519. doi:10.1111/j.1435-
5957.2007.00132.x.

Bajerski, A. (2011). The role of French, German and Spanish journals in scientific communication

in international geography. Area, 43(3), 305–313. doi:10.1111/j.1475-4762.2010.00989.x.
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Nomaler, Ö., Frenken, K., & Heimeriks, G. (2013). Do more distant collaborations have more

citation impact? Journal of Informetrics, 7(4), 966–971.
Onodera, N., Iwasawa, M., Midorikawa, N., Yoshikane, F., Amano, K., Ootani, Y., . . . &

Yamazaki, S. (2011). A method for eliminating articles by homonymous authors from the

large number of articles retrieved by author search. Journal of the American Society for
Information Science and Technology, 62(4), 677–690.
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Chapter 7

Researchers’ Publication Patterns and Their

Use for Author Disambiguation

Vincent Larivière and Benoit Macaluso

Abstract In recent years we have been witnessing an increase in the need for

advanced bibliometric indicators for individual researchers and research groups, for

which author disambiguation is needed. Using the complete population of univer-

sity professors and researchers in the Canadian province of Québec (N¼ 13,479),

their papers as well as the papers authored by their homonyms, this paper provides

evidence of regularities in researchers’ publication patterns. It shows how these

patterns can be used to automatically assign papers to individuals and remove

papers authored by their homonyms. Two types of patterns were found: (1) at the

individual researchers’ level and (2) at the level of disciplines. On the whole, these

patterns allow the construction of an algorithm that provides assignment informa-

tion for at least one paper for 11,105 (82.4 %) out of all 13,479 researchers—with a

very low percentage of false positives (3.2 %).

7.1 Introduction

Since the creation of the Science Citation Index in the 1960s—and the subsequent

online availability of Thomson’s various citation indexes for the sciences, social

sciences, and the humanities through the Web of Science (WoS)—most large-scale

bibliometric analyses have mainly been performed using the address (institutions,

countries, etc.) journal, paper, or discipline field. Analyses made using the author
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C.P. 6128, Succ., Centre-Ville, Montréal, QC, Canada, H3C 3J7
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e-mail: macaluso.benoit@uqam.ca

© Springer International Publishing Switzerland 2014

Y. Ding et al. (eds.), Measuring Scholarly Impact,
DOI 10.1007/978-3-319-10377-8_7

147

mailto:vincent.lariviere@umontreal.ca
mailto:macaluso.benoit@uqam.ca


field are much rarer, and typically have used small samples of researchers.1 There

is, thus, an important part of the bibliometric puzzle that was missing: the individual

researcher, to which we can attribute socio-demographic characteristics (gender,

age, degree, etc.). Until the last few years, issues related to the attribution of papers

to individuals had not been discussed extensively in the bibliometric community

(Enserink, 2009). However, the advent of h-indexes (Hirsch, 2005) and its numer-

ous variants (Egghe, 2006; Schreiber, 2008; Zhang, 2009) aimed at evaluating

individual researchers, as well as the need for more advanced bibliometric data

compilation methods for measuring the research output of research groups whose

names do not appear on papers (e.g. interuniversity groups, departments) or for

measuring the effect of funding on researchers’ output and impact (Campbell et al.,

2010), has increased the need for author disambiguation.

The main challenge for author-level analyses is the existence of homonyms

(or the inexistence of a researcher unique identifier), which makes the attribution of

papers to distinct individuals quite difficult. Two general types of problems can be

found at the level of authors (Smalheiser & Torvik, 2009). First and foremost, two

or more individuals can share the same name (homonyms). Second, one researcher

can sign papers in more than one manner (with or without initial(s), maiden name,

etc.). These difficulties are exacerbated by two characteristics of the Web of

Science (WoS). First, prior to 2006, only the surname and initial(s) of authors’

first name(s) were indexed, for a maximum of three initials. Hence, researchers

sharing the same surname and initial(s)—for example, John Smith and Jane

Smith—were grouped under the same distinct string (Smith-J). Although the

complete given name of authors is now indexed in the WoS, it only does so for

journals providing this information in the author section of their papers,2 in addition

to the fact that it obviously does not solve the problem for papers published before

2006. Similarly, prior to 2008, no link was made in the database between an author

and his/her institutional address. Although this was not a problem for sole authored

papers—which only represent a slight fraction of papers published—it was more

problematic for coauthored papers. More specifically, for a paper authored by three

researchers and on which three institutional addresses are signed, it is impossible to

know the exact institutional affiliation of each author, as several combinations are

possible. Hence, the search for “Smith-J” among papers on which McGill Univer-

sity appears will, for example, retrieve papers from John Smith and Jane Smith, but

also from Joseph Smith who, albeit not from McGill University, has collaborated

with an author from McGill (homonymy of collaborators). Along these lines, there

is a dearth of information on the extent of the homographic problem in the scientific

community. Apart from Aksnes (2008) and Lewison (1996) who, respectively,

1 The recent collection of Scientometrics papers dealing with individual researchers published by

Academia Kiado (Braun, 2006) illustrates this trend: the study with the highest number of

researchers included has less than 200. Similarly, notable studies in the sociology of science by

Cole and Cole (1973), Merton (1973) and Zuckerman (1977) analyzed small datasets.
2 Physics journals, for instance, often having very long author lists, only provide initial(s) of author

(s) given name(s).
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compiled data on the extent of homonyms among Norwegian researchers and on the

frequency of authors’ initial(s)—but did not test directly their effect on the compi-

lation of bibliometric data on individual researchers—there is very little informa-

tion on the extent to which researchers share the same name and its effect on the

compilation of bibliometric data at the level of individual researchers.

This papers aims to contribute to this literature by presenting regularities found

in papers manually assigned to the entire population of university professors and

researchers (N¼ 13,479) in the Canadian province of Québec3 as well as all the

papers that were authored by their homonyms. It first reviews some of the relevant

literature on the topic, and then presents a series of regularities found in researchers’

publication patterns and how these can be used to automatically assign papers to

individual researchers. Two types of patterns are presented: (1) individual

researchers’ past publication behavior and how it determines subsequent behavior

and (2) the relationship between researchers’ departmental affiliation and the

disciplines in which they publish. These patterns are then used, in a reverse

engineering manner, to automatically assign papers to these individuals. Results

in terms of both false positives and false negatives are presented and discussed in

the conclusion.

7.2 Previous Studies on the Attribution of Individual

Authors’ Publications

Over the last few years, several studies have provided algorithms for the disam-

biguation of individual researchers. However, most studies—with the notable

exception of Reijnhoudt, Costas, Noyons, Borner, and Scharnhorst (2013) and

Levin, Krawczyk, Bethard, and Jurafsky (2012) have been performed using rela-

tively small datasets (Gurney, Horlings, & van den Besselaar, 2012; Wang et al.,

2012) and, quite often, without actually having clean data on the papers authored by

homonyms and papers authored by the “real” researcher. Jensen, Rouquier,

Kreimer, and Croissant (2008) attempted to compile publication and citation files

for 6,900 CNRS researchers using the Web of Science. Instead of removing, in each

researchers’ publication file, the papers written by homonyms, they evaluated the

probability that a given researcher has homonyms, and, if this probability was high,

they completely removed the researcher from the sample. More precisely, they first

measured, by comparing the surname and initials of each researcher

(VLEMINCKX-S) with some of its variants (VLEMINCKX-SG, VLEMINCKX-

SP, etc.), the probability that the researcher has homonyms. If the researcher had

too many variants, it was removed. Their second criterion was related to the number

of papers published: if a researcher had too many papers, it was considered as an

3 See for example Gingras, Larivière, Macaluso, and Robitaille (2008) and Larivière, Macaluso,

Archambault, and Gingras (2010) for the some results based on this population.
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indication that more than one scientist was behind the records. Hence, researchers

had to publish between 0.4 and 6 papers per year to be considered in the sample.

Their third criterion was that the first paper of each researcher to have been

published when the researcher was between 21 and 30 years old. Their resulting

database contained 3,659 researchers (53 % of the original sample).

This method has at least two major shortcomings. First, the fact that a name

(e.g. VLEMINCKX-S) is unique does not imply that it represents only one distinct

researcher. In this particular case, it could be the surname and initial combination

for Serge Vleminckx, Sylvain Vleminckx, Sophie Vleminckx, etc. Second, it

removes from the sample highly active researchers (who published more than six

papers per year), which obviously distorts their results. This method is similar to

that of Boyack and Klavans (2008), who used researchers with uncommon sur-

names to reconstitute individual researchers’ publication and patenting activities.

Using the combination of the name of the author/inventor and the research institu-

tion4 signed on the paper, they calculated the odds that the paper belonged to the

given author.

Another method is that of Han, Zha, and Giles (2005) who, using K-means

clustering algorithms and Naı̈ve Bayes probability models, managed to categorize

70 % of the papers authored by the very common “strings” Anderson-J and Smith-

J into distinct clusters. The variables they used were the names of coauthors, the

name of journals, and the title of the papers. The assumption behind this algorithm

is that researchers generally publish papers on the same topics, in the same

journals, and with the same coauthors. A similar method was also used by Torvik,

Weeber, Swanson, and Smalheiser (2005) using Medline. Similarly, Wooding,

Wilcox-Jay, Lewison, and Grant (2006) used coauthors for removing homonyms

from a sample of 29 principal investigators funded by the Arthritis Research

Campaign. For each author, they first found a core of papers which, without a

doubt, belonged to the right researcher. Using this “core” subset of papers in the

specialty of arthritis, they created for each researcher, a list of coauthors which

were used to gather papers in areas other than arthritis. A novel aspect of this

study is that several rounds of coauthor inclusion were performed, increasing

between each round the number of coauthors in the core. After three rounds of the

algorithm, 99 % of the authors’ papers were assigned—which could be considered

as the recall of papers—with only 3 % of false positives (97 % precision). This

method is very similar to that used by Kang et al. (2009), and has been expanded

by Reijnhoudt et al. (2013), to include additional heuristics, such as email address

and reprint author, among others. Cota, Ferreira, Nascimento, Gonçalves, and

Laender (2010) also used similar heuristics, coauthor, title of paper, and publica-

tion venue) and manage to disambiguate authors of about 4,500 papers of the

DBLP and BDBComp collections.

4 The bibliometric part of their paper used the Scopus database, which, contrary to Thomson

Reuters’ databases, links names of authors with institutional addresses for papers published

since 1996.
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Aswani, Bontcheva, and Cunningham (2006) used, in addition standard biblio-

graphic information (abstract, initials of the authors, titles, and coauthors), auto-

matic web-mining for grouping papers written by the same author. The web-mining

algorithm searches for the full names of the authors and tries, for example, to find

their own publications’ page. Their results show that web-mining improves the

clustering of papers into distinct authors, but the small sample used in the study

makes the results less convincing. On the whole, most of these studies indeed

manage to (1) automatically disambiguate authors or to (2) automatically assign

papers to authors, although most of them do so with very small datasets, and

often without a thorough analysis of false negatives, false positives, and various

error rates. Finally, Levin et al. (2012) developed a large-scale citation-based

bootstrapping algorithm—with an emphasis on self-citations—to disambiguate

54 million WoS author–paper combinations. They show that, when combined

with emails, author names, and language, self-citations were the best bootstrapping

element. They then manually disambiguated 200 authors—which, in this context, is

not a very large sample—to assess the precision and recall of the algorithm, and

found values of 0.832 and 0.788, respectively.

7.3 Methods

Contrary to most existing studies on the topic, this study uses, as a starting point, a

list of distinct university based researchers (N¼ 13,479), including their depart-

ment and university (Larivière et al., 2010). The database of university researchers’

papers and of those authored by homonyms was thus obtained by matching the

surname and initials of these researchers contained in the list to the surname and

initials of authors of Quebec’s scientific articles indexed in the Web of Science.

This first match resulted in a database of 125,656 distinct articles and 347,421

author–article combinations. Each article attributed to each researcher was then

manually validated in order to remove the papers authored by homonyms. This

manual validation is generally made by searching the title of each of the papers on

Google to find their electronic versions on which, generally, the complete names of

the authors are written. This often helps to decide if the papers belong to the

researcher. Another method is to search the name of the researcher on Google to

find his/her website to get an indication of his/her publications’ list or CV. After a

few papers, one generally understands the publication pattern of the researcher and

correctly attributes his/her papers. This essential but time-consuming step reduced

the number of distinct papers by 51 % to 62,026 distinct articles and by 70 % to

103,376 author–article combinations. Analysis of this unique dataset, including the

characteristics of both assigned and rejected papers, sheds light on the extent of

homonyms in Quebec’s scientific community.

To assess the reliability and reproducibility of the manual validation of univer-

sity researchers and professors’ publication files, tests with different individual

“attributors” were performed for a sample of 1,380 researchers (roughly 10 % of the

7 Researchers’ Publication Patterns and Their Use for Author Disambiguation 151



researchers). It showed that for most publication files, the two coders manually

assigned exactly the same papers. More specifically, for 1,269 files (92 %)

researchers had exactly the same papers assigned. A difference of one paper was

found in 72 cases (5.2 %), two papers in 15 cases (1.1 %), three papers in 9 cases

(0.7 %) and four papers in 3 cases (0.2 %). The remaining 12 files had a maximum

difference of 12 papers each. In terms of author–article combinations, the error rates

are even lower. Out of the 12,248 author–article links obtained the first time, 12,124

(or 99 %) remained unchanged the second time. Manual validation is thus quite

reliable and reproducible.

In order to find patterns in researchers’ publication output, this study uses, for

each of Quebec’s university researchers and professors, a dataset of all the

WoS-Indexed papers with authors that matched their authors’ name (for example,

Smith-J) amongst all papers with at least one Canadian address for the 2000–2007

period. These papers were manually categorized as belonging to the right researcher

or as belonging to a homograph, which allows—contrary to most studies presented

in the preceding section—to test how these patterns could be used to discriminate

false positives from papers that correctly belong to a researcher. The difference

between researchers’ papers that were manually assigned and those rejected allows

the testing of the algorithm.

In order to help the search for patterns, each journal indexed in the WoS was

assigned a discipline and a specialty according to the classification scheme used by

U.S. National Science Foundation (NSF) in its Science and Engineering Indicators

series (Appendix 1).5 The main advantage of this classification scheme over that

provided by Thomson Reuters is that (1) it has a two-level classification (discipline

and specialty), which allows the use of two different levels of aggregation and,

(2) it categorizes each journal into only one discipline and specialty, which

prevents double counts of papers when they are assigned to more than one

discipline. Similarly, a discipline was assigned to each of the researchers’ depart-

ments (Appendix 2). These disciplines were assigned based on the 2000 revision of

the U.S. Classification of Instructional Programs (CIP) developed by the

U.S. Department of Education’s National Center for Education Statistics

(NCES).6 This dataset serves as the backbone for finding the relationships

between the disciplinary affiliation of university researchers and the discipline of

their publications.

5More details on the classification scheme can be found at: http://www.nsf.gov/statistics/seind06/

c5/c5s3.htm#sb1
6 For more details on the CIP, see: http://nces.ed.gov/pubs2002/cip2000/.
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7.4 Regularities in Researchers’ Publication Patterns

A first interesting piece of information found in this dataset is the percentage of

papers of each researcher that was retained after manual validation. More specif-

ically, these cleaned publication files made it possible to estimate the extent of

homonym problems for all Quebec university researchers for whom at least one

article was automatically matched (N¼ 11,223) using the name of the researcher

within papers having at least one Quebec institutional address.7 With an automatic

matching of researchers’ names, compared to a cleaned publication file (Fig. 7.1):

– The papers matched for 2,972 researchers (26.5 %) were all rejected which, in

turn, meant that they had not actually published any papers (all papers were

written by homonyms).

– Between 0.1 and 25 % of the papers matched were assigned to 1,862 researchers

(16.6 %).

– Between 25.1 and 50 % of the papers matched were assigned to 975 researchers

(8.7 %).
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Fig. 7.1 Percentage of papers assigned after manual validation, by researcher

7 Thus, 2,256 of Quebec’s researchers did not publish any papers during that period nor had any of

their homonyms.
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– Between 50.1 and 75 % of the papers matched were assigned to 722 researchers

(6.4 %).

– Between 75.1 and 99.9 % of the papers matched were assigned to 818 researchers

(7.3 %).

– The papers matched for 3,874 researchers (34.5 %) were all conserved after

manual validation (i.e., they had no homonyms within the subset of Quebec

papers).

Crude matching—without removing papers authored by homonyms—is thus

valid for slightly more than a third of the researchers. On the other hand, the

scientific production of the remaining two-thirds was overestimated. Since it is

impossible to know a priori which researchers will be overestimated and which

ones will not, the validation of each paper from each researcher is, theoretically,

needed. As mentioned previously, papers of these publication files were all manu-

ally validated (assigned or rejected) and serve, in a reverse engineering manner, as a

test bed for finding patterns in the publications of researchers.

In a manner similar to that of Wooding et al. (2006) for arthritis research, papers

were then analyzed in order to find characteristics which could help isolating a core

of papers for each researcher—i.e. a subset of all of each researcher’s papers that we

are sure are not those of homonyms. This was more complex in the context of this

paper, as core papers had to be found for researchers that could be active in any field

of science and not only in arthritis. After several rounds of empirical analysis, the

combination of three variables optimized the ratio between the number of papers

found and the percentage of false positives. Figures 7.2 and 7.3 present the two sets

of criteria with which a core set of papers could be found for university-based

researchers. Figure 7.2 presents the first matching criteria: the complete name of

researchers matched with the complete name of authors—including the complete

given name (available in the Web of Science since 2006)—and the name of the

researcher’s university matched with the name of the university on the paper.

Figure 7.3 presents the second matching criteria. Firstly, the name of the author

of the paper had to be written exactly in the same manner as the name of the

researcher in the list. Secondly, the institution appearing on the paper (or its

affiliation, e.g. Royal Victoria Hospital is affiliated to McGill University) had to

be the same as the institution appearing on the list and, thirdly, the discipline of the

journal in which the paper is published, the department or the institution of

the authors had to be similar8 to the department of the researcher as it appeared

on the list of university professors and researchers or the discipline of the paper had

to be among the five disciplines in which researchers from this department

published most.

8 The similarity threshold (MinSimilarity) was set at 0.25 in Microsoft SQL Server SQL Server

Integration Services (SSIS). More details on the system can be found at: http://technet.microsoft.

com/en-US/library/ms345128(v¼SQL.90).aspx
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Following Boyack and Klavans (2008), an analysis of rare surnames was also

performed, which were defined as surnames only belonging to one individual in the

list of university researchers. Hence, all papers authored by researchers having a

rare name, and on which their institution of affiliation appears, were included in

core papers. As shown in Table 7.1, these three criteria allow the creation of a core

set of papers for more than 75 % of the individual researchers for which at least one

paper has been manually assigned (8,081), matches 56.4 % of their distinct papers

and 47.5 % of the author–paper combinations, e.g. LARIVIERE-V and paper ‘X’.

At each level of analysis, the number of false positives is rather low; and is

especially low at the level of author–paper combinations (less than 1 %).

Another set of regularities was found in individual researchers’ publication

patterns. The idea behind this search for patterns for individual researchers was to

be able, using subset of papers in the core, to find other papers that belonged to the

researchers but that did not exhibit the characteristics found in Figs. 7.2 and 7.3.

Fig. 7.2 First matching criteria for creating the core of papers

Fig. 7.3 Second matching criteria for creating the core of papers
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To do so, each researcher’s publication record was divided into two distinct time

periods: 2000–2003 and 2004–2007.

Using the characteristics of the papers published by each given researcher during

the first time period, we then tried to automatically assign to the same researcher the

papers published during the second time period. Two indicators were quite suc-

cessful in doing so: 1) the use of the same words in the title, author keywords, and

abstract fields of upcoming publications (Fig. 7.4) and 2) the citation of the same

references (Fig. 7.5) of papers for which the Thomson name [e.g. LARIVIERE-V]

and the institution [MCGILL-UNIV] also matched. Figure 7.4 presents the per-

centage of rightly and wrongly attributed papers, as a function of the keyword

index. The keyword index is a simple indicator compiled for each 2004–2007 paper

matched to a researcher, based on the keywords of the papers assigned to the

researcher for the period 2000–2003. Its calculation is as follows:

Table 7.1 Results of the matching of core papers at the levels of university researchers, articles,

and author–paper combinations

Unit of analysis Manual validation (N)

Automatic assignment False positives

N % N %

Researchers 8,081 6,117 75.7 % 344 4.3 %

Articles 62,629 35,353 56.4 % 772 1.2 %

Author–paper combinations 97,850 46,472 47.5 % 809 0.8 %
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Fig. 7.4 Percentage of rightly assigned and wrongly assigned papers, as a function of the

keywords previously used by a university researcher, 2000–2003 and 2004–2007
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Kipr ¼ Nkpm

Nkp
� 1

ffiffiffiffiffiffiffi

Nkt

p
� �

� 100 ð7:1Þ

where Nkpm is the number of keywords of a 2004–2007 paper that match the

keywords used in the 2000–2003 papers of a researcher, Nkp is the total number

of keywords of the 2004–2007 paper and Nkt is the total number of keywords used

in all the 2000–2003 papers assigned to the researcher. The square root of Nkt was

used instead of Nkt alone in order to obtain an overall number of keywords

(denominator) that is not too high—especially for very productive researchers.

The result is multiplied by 100 in order to be closer to an integer.

Figure 7.4 shows that when the keyword index is at 2, about 90 % of the papers

rightly belong to the researcher and that slightly greater than 10 % are false

positives. When the keyword index is greater than 2 (3 or more), the percentage

of rightly assigned papers rises above 95 %, and stays at this level until 7, where

about 100 % of the papers are assigned to the right researcher. These numbers mean

that it is possible to rightly assign papers to a researcher using the regularities found

in the title words, keywords, and words of the abstract.

Figure 7.5 presents the references index for 2004–2007 papers, based on papers

published between 2000 and 2007. The references index is very similar to the

keyword index previously presented; it is based on the pool of references made

previously (2000–2003) by the researcher. Its calculation is as follows:
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Fig. 7.5 Percentage of rightly assigned and wrongly assigned papers, as a function of the

references previously made by a university researcher, 2000–2003 and 2004–2007
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Ripr ¼ Nrpm

Nrp
� 1

ffiffiffiffiffiffi

Nrt

p
� �

� 100 ð7:2Þ

Where Nrpm is the number of references of a 2004–2007 paper that match the

references used in the 2000–2003 papers of a researcher, Nrp is the total number of

references of the 2004–2007 paper and Nrt is the total number of references used in

all the 2000–2003 papers assigned to the researcher. Again, The square root of Nrt

was used instead of Nrt alone in order to have an overall number of cited references

(denominator) that is not too high. The result is also multiplied by 100 in order to be

closer to an integer.

Figure 7.5 shows that as soon as a signal is obtained, i.e. that at least one of the

referenced works of the 2004–2007 paper was previously made in the 2000–2003

dataset, more than 90 % of the papers rightly belong to the researcher. When the

references index increases to 1 or above, the quasi-totality of the papers rightly

belong to the researcher.

Using the keywords and references found in the papers assigned in the core (set

at 2 or more for the keyword index and at >0 for the references index), 10,892

additional papers were assigned, with only 236 papers being false positives (2.2 %

of the added papers), for an overall error rate of 2.2 % for papers and 1.7 % for

author–paper combinations (Table 7.2). Since this matching of papers can only be

made for researchers for which a certain number of core papers were matched, the

number of researchers stays the same, but slightly more researchers have at least

one paper wrongly assigned (6.7 %).

Another round of automatic matching of papers was also performed with the

same references and keywords (set at the same thresholds), but using only the

Thomson name [e.g. LARIVIERE-V] and the province [QC], but not the institution

[MCGILL-UNIV]. Using this method, 3,645 additional papers were retrieved, of

which 674 were false positives (Table 7.3). Although this percentage seems quite

high, the overall proportion of false positives at the level of articles remains quite

low (3.2 %) and is even lower for author–paper combinations (2.3 %).

In order to increase the number of researchers for which a certain number of core

papers could be found, the relationship between the discipline of the researchers

and the specialty of the papers was analyzed. An increase in the number of

researchers for which core papers could be found is important because core papers

Table 7.2 Results of the matching of core papers and papers with the same keywords or cited

references, at the levels of university researchers, articles, and author–paper combinations

Unit of analysis Manual validation (N)

Automatic

assignment False positives

N % N %

Researchers 8,081 6,117 75.7 % 407 6.7 %

Articles 62,629 46,245 73.8 % 1,008 2.2 %

Author–paper combinations 97,850 64,765 66.2 % 1,078 1.7 %
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are the starting point for the automatic assignment of several other papers. For each

of the 5,615 existing combinations of disciplines of publications (Appendix 1) and

of discipline of departments (Appendix 2), a matrix of the percentage of papers

from each discipline of publications that rightly belonged to researchers from each

department was calculated. Unsurprisingly, it was found that papers published in

the main specialty in which researchers from a given specialty publish were more

likely to belong to the right researchers. For example, 100 % of the 186 papers

published in geography journals that matched the names of authors of geography

departments belonged to the right researcher. The same is true for several other

obvious department–specialty relationships, such as university researchers from

chemical engineering departments publishing in chemical engineering journals

(99 % of the 1,017 papers rightly assigned), but also for less obvious relationships

such as researchers in civil engineering publishing in Earth and planetary science

journals (95 % of the 316 papers rightly assigned).

On the other hand, all the 333 papers published in biochemistry and molecular

biology journals that matched authors’ names from the disciplines of anthropology,

archaeology, and sociology belonged to the wrong researcher. The same is also true

for the 202 papers published in organic chemistry that matched authors from

business departments. Given that no university-affiliated researcher from these

domains has ever published in journals of these specialties during the period studied,

there are low chances that researchers from the same domain will do so in the future.

Figure 7.6 presents the matrix of the percentage of assigned papers, for each

combination of discipline of departments (x-axis) and specialty of publication

(y-axis). Darker zones are combinations of specialties of publications and discipline

of departments where a larger proportion of papers was accepted during manual

validation; lighter zones are combinations where a majority of papers were rejected

during manual validation. This figure illustrates that there is a majority of discipline

of department/specialty of publication combinations where the quasi totality of

papers were authored by homonyms (light zones), and a few darker zones where a

large proportion of papers belonged to the right researcher. Unsurprisingly, zones

where most of the papers were assigned are generally cases where the discipline of

the department is related with the discipline of the journal—for example, researchers

from departments of information science and library science publishing in journals

of library and information science. The presentation of this landscape clearly shows

Table 7.3 Results of the matching of core papers and papers with the same keywords or cited

references, without the ‘same institution’ criteria, at the levels of university researchers, articles,

and author–paper combinations

Unit of analysis Manual validation (N)

Automatic

assignment False positives

N % N %

Researchers 8,081 6,117 75.7 % 576 9.4 %

Articles 62,629 49,890 79.7 % 1,577 3.2 %

Author–paper combinations 97,850 72,918 74.5 % 1,682 2.3 %
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that there are some combinations where the majority of papers were assigned during

manual validation and others where only a minority of papers was assigned during

the process. We can, thus, focus on these light zones to automatically exclude papers

from a given department published in given specialty, and on dark zones to auto-

matically include papers from other department/specialty combinations.

Figure 7.7 aggregates, by rounded percentage of properly attributed papers, the

numbers of rejected and of accepted author–paper combinations. We see that the

number of wrongly assigned papers drops significantly for department/specialty

combinations greater than 80 %, and even more after 95 %. These percentages were

thus used to automatically assign papers in specific disciplines that matched

Fig. 7.6 Percentage of papers assigned after manual validation, for each combination of discipline

of departments (x-axis) and specialty of publication (y-axis)
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researchers from given departments. In order to reduce the number of false posi-

tives, a 95 % assignment rate was chosen for papers on which the institution of the

author does not appear (but only its province). This includes a total of 17,002

papers, of which 16,518 are properly attributed and only 484 are inaccurately

attributed (2.8 %). For papers on which the institution of the researcher appears,

an 80 % attribution rate was used. This attributed 68,785 papers, of which 10.7 %

were false positives.

One must note that all these processes were performed in parallel; a paper

assigned with one of these criteria could have been already attributed during

another step of the matching process. Hence, the numbers of papers presented

here include several papers that were already matched using one of the criteria

previously presented in this section. Table 7.4 presents the error rates for all of the
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Table 7.4 Overall results of the automatic matching of papers, using core papers, keywords, and

references previously made, and the matrix of discipline of departments and specialty of papers

Unit of analysis Manual validation (N)

Automatic

assignment False positives

N % N %

Researchers 8,081 6,427 79.5 % 610 9.5 %

Articles 62,629 50,353 80.4 % 1,633 3.2 %

Author–paper combinations 97,850 73,771 75.4 % 1,750 2.4 %
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steps combined. The inclusion of the algorithm based on the matrix of departments

and disciplines of publication added 310 researchers in the subset of those with at

least one paper in the core. On the whole, the multiple algorithms used so far for

automatically attributed papers for 6,427 researchers, for a total of 50,353 papers

and 73,331 author–paper combinations.

Patterns presented so far in this paper allow the creation of a dataset of papers

that is likely to belong to the right researcher and assign at least one paper to almost

80 % of the researchers. They make possible the creation of a core set of papers, as

well as of a few other layers of papers, based on the similarity of their character-

istics to those included in the core. The following algorithm does the opposite and

aims at finding indications that the paper clearly does not belong to the researcher.

As shown on Fig. 7.6, there are several combinations of discipline of depart-

ments and specialties of papers where the vast majority of papers were rejected

during manual validation. Indeed, if no university researcher from department X

has ever published in the specialty Y, no researcher is likely to do so. Papers falling

into these combinations could thus automatically be rejected.

These patterns not only allow the rejection of papers, but also to close

researchers’ publication files, as all of their papers can either all have been

assigned—using the methods previously presented—or rejected using the depart-

ment/specialty matrix. Using a 50 % threshold was optimal, as it automatically

rejected 202,928 author–paper combinations, of which 183,656 were real negatives

(91 %), and only 19,272 were false negatives (9 %). These rejected author–paper

combinations account for a significant share (90 %) of all rejected combinations

(226,325).

After all these steps, 5,036 publications files out of the 13,479 (37.4 %) were

automatically marked as closed (including the 2,256 files for which no paper, either

authored by a researcher in the list or by a homograph), as all of their papers were

either all assigned or all rejected. Another 6,069 researchers had at least one of their

papers automatically assigned (45 %), for a total of 50,353 papers, with 1,633 being

false positives (3.2 %). On the whole, this algorithm provides attribution informa-

tion on at least one paper for 11,105 (82.4 %) out of all 13,479 researchers, or on

8,849 out of the 11,223 researchers (78.8 %), when one excludes the 2,256 files for

which no paper matched, either authored by the researcher or a homograph. Hence,

there are still 2,374 researchers for which no automatic decision on any of their

matched papers can be made (attribution or rejection) and, hence, for which a

complete manual validation needs to be performed. This algorithm can nonetheless

be very helpful, as it automatically assigns a large proportion of papers, excludes an

even larger proportion and reduces from 11,223 to 2,374 (79 %) the number of

researchers for which a complete manual validation has to be performed.
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Conclusion

This paper has provided evidence of regularities in researchers’ publication

patterns, and that these patterns could be used to automatically assign papers

to individual and remove papers authored by their homonyms. Two types of

patterns were found: (1) at the individual researchers’ level and (2) at the

collective level.

At the level of individuals, we found that researchers were quite regular in

their referencing practices. This could be expected: as shown elsewhere,

researchers tend to cite the same material throughout their careers (Barnett

& Fink, 2008; Gingras et al., 2008). We thus tested this finding for the subset

of Quebec researchers and found that papers with the same surname and

initial were always those of the “right” researcher when at least one of the

references of the paper had already been made in one of the papers previously

assigned to the researcher. Similarly, researchers also tend to work on the

same topics. Using the pool of keywords previously used by researchers and

comparing them with papers subsequently published, we found that the use of

the same keywords meant in most of the cases that the paper belonged to the

same researcher.

At the collective level, two general patterns emerged. The first pattern we

found was that the institution of affiliation of a given researcher appeared on

most of the papers that rightly belonged to him/her. This simple regularity

allowed the creation of a core subset of papers, which could then be used to

gather researchers’ other papers using the previous references and previous

keywords methods. The other pattern relates to the relationship between the

department discipline and the specialty of the journal in which papers are

published. For some departments/specialty combinations, a majority of

papers belonged to the “right” researcher, while for other combinations, a

majority belonged to homonyms. Thus, the former combinations allowed the

automatic attribution of papers, while the latter made automatic rejection of

author–paper combinations possible.

Compared with most existing studies on author disambiguation, which

were generally performed for a small subset of researchers (Aswani et al.,

2006; Han et al., 2005; Wooding et al., 2006) or for specific author–article

combinations (Boyack & Klavans, 2008) this is an important step forward.

That being said, the recent developments in bibliographic databases used in

bibliometrics—such as the researcher ID, ORCID, the link between each of

the authors and their addresses as well as the indexation of the complete given

names of authors—are perhaps even more important, as they are likely to

make this attribution easier in the future.
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Appendix 1: List of Disciplines Assigned to Journals

Arts
Fine Arts & Architecture

Performing Arts

Biology
Agricultural & Food Sciences

Botany

Dairy & Animal Science

Ecology Entomology

General Biology

General Zoology

Marine Biology & Hydrobiology

Miscellaneous Biology

Miscellaneous Zoology

Biomedical Research
Anatomy & Morphology

Biochemistry & Molecular Biology

Biomedical Engineering

Biophysics

Cellular Biology Cytology & Histology

Embryology

General Biomedical Research

Genetics & Heredity

Microbiology Microscopy

Miscellaneous Biomedical Research

Nutrition & Dietetic

Parasitology

Physiology

Virology

Chemistry
Analytical Chemistry

Applied Chemistry

General Chemistry

Inorganic & Nuclear Chemistry

Organic Chemistry

Physical Chemistry

Polymers

Clinical Medicine
Addictive Diseases

Allergy

Anesthesiology

Arthritis & Rheumatology

Cancer

Cardiovascular System

Dentistry

Dermatology & Venereal Disease

Endocrinology

Environmental & Occupational Health

Fertility

Gastroenterology

General & Internal Medicine

Geriatrics

Hematology

Immunology

Miscellaneous Clinical Medicine

Nephrology

Neurology & Neurosurgery

Obstetrics & Gynecology

Ophthalmology

Orthopedics

Otorhinolaryngology

Pathology

Pediatrics

Pharmacology

Pharmacy

Psychiatry

Radiology & Nuclear Medicine

Respiratory System

Surgery

Tropical Medicine

Urology

Veterinary Medicine

Earth and Space
Astronomy & Astrophysics

Earth & Planetary Science

Environmental Science

Geology

Meteorology & Atmospheric Science

Oceanography & Limnology

Engineering and Technology
Aerospace Technology

Chemical Engineering

Civil Engineering

Computers

Electrical Engineering & Electronics

General Engineering

Industrial Engineering

Materials Science

Mechanical Engineering

Metals & Metallurgy

Miscellaneous Engineering & Technology

(continued)

164 V. Larivière and B. Macaluso



Nuclear Technology

Operations Research

Health
Geriatrics & Gerontology

Health Policy & Services

Nursing

Public Health

Rehabilitation

Social Sciences, Biomedical

Social Studies of Medicine

Speech-Language Pathology and Audiology

Humanities
History

Language & Linguistics

Literature

Miscellaneous Humanities

Philosophy

Religion

Mathematics
Applied Mathematics

General Mathematics

Miscellaneous Mathematics

Probability & Statistics

Physics
Acoustics

Applied Physics

Chemical Physics

Fluids & Plasmas

General Physics

Miscellaneous Physics

Nuclear & Particle Physics

Optics

Solid State Physics

Professional Fields

Communication

Education

Information Science & Library Science

Law

Management

Miscellaneous Professional Field

Social Work

Psychology
Behavioral Science & Complementary

Psychology

Clinical Psychology

Developmental & Child Psychology

Experimental Psychology

General Psychology

Human Factors

Miscellaneous Psychology

Psychoanalysis

Social Psychology

Social Sciences

Anthropology and Archaeology

Area Studies

Criminology

Demography

Economics

General Social Sciences

Geography

International Relations

Miscellaneous Social Sciences

Planning & Urban Studies

Political Science and Public Administration

Science studies

Sociology

Appendix 1 (continued)
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Appendix 2: List of Disciplines Assigned to Departments

Basic Medical Sciences
General Medicine

Laboratory Medicine

Medical Specialties

Surgical Specialties

Business & Management
Education
Engineering
Chemical Engineering

Civil Engineering

Electrical & Computer Engineering

Mechanical & Industrial Engineering

Other Engineering

Health Sciences
Dentistry

Kinesiology/Physical Education

Nursing

Other Health Sciences

Public Health & Health Administration

Rehabilitation Therapy

Humanities
Fine & Performing Arts

Foreign Languages, Literature, & Linguistics

Area Studies

French/English

History

Philosophy

Religious Studies & Vocations

Non-health Professional
Law & Legal Studies

Library & Information Sciences

Media & Communication Studies

Planning & Architecture

Social Work

Sciences
Agricultural & Food Sciences

Biology & Botany

Chemistry

Computer & Information Science

Earth & Ocean Sciences

Mathematics

Physics & Astronomy

Resource Management & Forestry

Social Sciences
Anthropology, Archaeology,

& Sociology

Economics

Geography

Other Social Sciences & Humanities

Political Science

Psychology
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Chapter 8

Knowledge Integration and Diffusion:

Measures and Mapping of Diversity

and Coherence

Ismael Rafols

Abstract In this chapter, I present a framework based on the concepts of diversity

and coherence for the analysis of knowledge integration and diffusion.

Visualisations that help to understand insights gained are also introduced. The

key novelty offered by this framework compared to previous approaches is the

inclusion of cognitive distance (or proximity) between the categories that charac-

terise the body of knowledge under study. I briefly discuss different methods to map

the cognitive dimension.

8.1 Introduction

Most knowledge builds on previous knowledge—given the cumulative nature of

science and technology. But the fact that knowledge mainly draws on previous

knowledge also means that it does not build on “other” types of knowledge. This is

what in an evolutionary understanding of science is called a cognitive trajectory—

which is often associated with lock-in.1 Under such conditions, the combination of

different types of knowledge (perspectives, but also data, tools, etc.) has long been

seen as a way to leap out of stagnation and create new knowledge. This perspective

has been emphasised in the case of research aiming to solve social and economic

problems—seen as requiring interdisciplinary efforts, both in terms of sources

(i.e. requiring the integration of different types of knowledge) and it terms of
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constructivist sociologists such as Bijker (Pinch & Bijker, 1984) and positivist economists such as

Dosi (1982).
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impacts (i.e. diffusion over different areas of research and practice) (Lowe &

Phillipson, 2006; Nightingale & Scott, 2007).

Changes in science in the last two decades have been characterised as a pro-

gressive blurring of the well-defined categories of post war science. Science has

shifted towards a so-called Mode 2 of knowledge production that is presented as

more interdisciplinary, more heterogeneous, closer to social actors and contexts,

and more susceptible to social critique (Gibbons et al., 1994; Hessels & van Lente,

2008).

In Mode 2 research, knowledge integration and diffusion play a crucial role as

the processes that bridge the gaps between disciplines, organisations, institutions

and stakeholders. Building on Boschma’s notion of multiple dimensions of prox-

imity (Boschma, 2005), Frenken, Boschma, and Hardeman (2010) proposed to:

Reformulate the concept of Mode 2 knowledge production analytically as a mode of

distributed knowledge production, where we operationalize the notion of distribution in

five proximity dimensions [i.e. cognitive, organisational, social, institutional, geographical]

(. . .) Mode 1 stands for scientific knowledge production in which actors are distributed, yet

proximate, while Mode 2 knowledge production stands for distributed knowledge produc-

tion processes, in which actors are distant.

While cognitive proximity is the primary dimension to analyse knowledge

integration and diffusion in science, it is worth realising that other dimensions of

proximity mediate the possibility of knowledge integration and diffusion.2 These

other dimensions are important to understand how changes in cognitive proximity

happen. Policy and management instruments such as personnel recruitment,

organisational reforms or incentives directly address these others dimensions

(social, organisational or institutional) and it is through them that decision makers

aim to influence the cognitive dimension. The Triple Helix framework, for exam-

ple, investigates the institutional-cognitive-organisational relations (Etzkowitz &

Leydesdorff, 2000). One can study “translational research institutes”, which

increase geographical and organisational proximity between, for example a cell

biologist and an oncologist, as efforts to favour integration and diffusion of

knowledge between basic research and practice related to cancer (Molas-Gallart,

Rafols, D’Este, & Llopis, 2013).

In this chapter, I review quantitative methods and some visualisation techniques

developed in recent years in order to assess where, how and to which extent

knowledge integration and diffusion took place regarding specific organisation,

problem-solving efforts or technologies. While this chapter focuses on mapping of

the cognitive dimension, I invite the reader to think, following Boschma and

Frenken’s proposal, that the understanding of the dynamics of science consists in

being able to relate the different analytical dimensions.

2 The use of these five dimensions is an expedient simplification. One may easily conceive more

dimensions within each of the dimensions listed, making a more fine-grained description of

cognitive or social dimensions, for example.
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8.2 Conceptual Framework: Knowledge Integration

and Diffusion as Shifts in Cognitive Diversity

and Coherence3

Let me start by defining knowledge integration as the process bringing into relation

bodies of knowledge or research practice hitherto unrelated or distant. Similarly, I

define knowledge diffusion as the movement or translation of a piece of knowledge

to bodies of knowledge where it had not been used before. These “specialised

bodies” of knowledge can refer to perspectives, concepts, theories but also to tools,

techniques or information and data sources (National Academies, 2004). For

example, some of the key contributions of the very successful US National Center

for Ecological Analysis and Synthesis (NCEAS) in UCSB were based precisely on

cross-fertilisation of methods and data sources used in different fields within

ecology (Hackett, Parker, Conz, Rhoten, & Parker, 2008).

The difference between integration and diffusion is mainly one of perspective.

For example, from the perspective of a Valencian laboratory working on breast

cancer, RNA interference (RNAi) is integrated to their portfolio of methods for

genetic manipulation, i.e. a piece of knowledge is integrated into the knowledge

base of an organisation. However, from the perspective of an emergent technology

such as RNAi, it is the RNAi technique which has diffused into a laboratory—a

laboratory which is a point in a space that may be characterise by geography

(València), discipline (oncology) or research problem (breast cancer). In this

chapter, the emphasis is given to integration, but the frameworks proposed and

many of the tools used can be used as well to analyse knowledge diffusion (Carley

& Porter, 2012).

Both integration and diffusion are dynamic processes and, therefore, they should

be analysed over time (Leydesdorff & Rafols, 2011a; Liu & Rousseau, 2010). It is,

nevertheless also possible to make a static comparison of the degree of integration

represented in different entities such as publications (Porter & Rafols, 2009),

researchers (Porter, Cohen, Roessner, & Perreault, 2007) or university departments

(Rafols, Leydesdorff, O’Hare, Nightingale, & Stirling, 2012).

The framework proposed here analyses separately the two key concepts neces-

sary for the definition of knowledge integration. On the one hand, diversity
describes the differences in the bodies of knowledge that are integrated, and on

the other hand, coherence describes the intensities of the relations between these

bodies of knowledge. Notice that the concept of diversity is interpreted in the same

way in the case of integration and of diffusion. However, for coherence the

interpretation differs for integration and diffusion. More coherence can be

interpreted as an increase in integration (because knowledge has become more

3 This framework was first introduced in Rafols and Meyer (2010), then represented in more

general form in Liu, Rafols, and Rousseau (2012) and again in an empirical case in Rafols,

Leydesdorff, O’Hare, Nightingale, and Stirling (2012) with some substantial changes. Here I try

to make a further generalisation of the concept of coherence with some incremental improvements.
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related). In the case of diffusion, more coherence does not mean necessarily more

diffusion, but a specific type of diffusion: spread over topics in which these topics

have become related.

Another way of studying knowledge integration (and interdisciplinarity) is to

focus on the bridging role, or intermediation role, of some specific scientific

contributions, typically using notions from social network analysis such as

betweenness centrality (Chen et al., 2009; Leydesdorff, 2007). In Rafols

et al. (2012), we developed intermediation as a framework, complementary to

diversity and coherence, which is useful to explore fine-grained, bottom-up per-

spectives of dynamics. However, given space constraints, I will leave intermedia-

tion outside of the scope of this chapter.

Given that integration can be analysed at different levels, let us first make a

rather abstract description of diversity and coherence. We will consider the system
or unit of analysis (e.g., university department), the elements (e.g. articles), the

categories (e.g. Web of Science (WoS) categories) and the relations between

categories (e.g. citations from one WoS category to another).

Diversity is a “property of the apportioning of elements or options in any

system” (Stirling, 1998, 2007, p. 709). For example, the disciplinary diversity of

a university (system) can be proxied by the distribution of the articles (elements)

published in WoS categories (categories) (as shown in Fig. 8.1). Diversity can have

three distinct attributes as illustrated in Fig. 8.2:

• Variety: number of categories into which the elements are apportioned (N ).

• Balance: evenness of the distribution of elements across categories.

• Disparity: degree to which the categories of the elements are different.

The novelty and key contribution in Stirling’s heuristic for diversity (1998,

2007) is the introduction of a distance metrics dij between categories. The idea, as

illustrated in Fig. 8.2, is that diversity of a system increases not only with more

categories (higher variety), or with a more balanced distribution (higher balance),
but also if the elements are allocated to more different categories (higher disparity).

System
(University)

Diversity: property of apportioning elements into categories

Category
(Discipline)

Element
(Article)

System
(University)

Coherence: property of relating categories via elements 

Relation
(Citation)

Fig. 8.1 Illustration of definitions of diversity (left) and coherence (right). In parenthesis, an
example of the concept: the disciplinary diversity of a university by assigning articles to disci-

plines, and the disciplinary coherence by means of cross-disciplinary citations. Large circles
represent categories. Small figures (triangles, squares and small circles) represent elements
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All other things being equal, there is more diversity in a project including cell

biology and sociology than in one including cell biology and biochemistry. While

measuring the proportion pi of elements in a category is straight-forward, providing

an estimate of cognitive distance dij is more challenging. For this purpose, the

metrics behind the global maps of science developed in the 2000s have been very

useful (Boyack, Klavans, & Börner, 2005; Klavans & Boyack, 2009; Moya-Anegón

et al., 2007; Rafols, Porter, & Leydesdorff, 2010).

Coherence, on the other hand, aims to capture the extent to which the various

parts in the system are directly connected via some relation. For example, the

disciplinary coherence of a university (system) can be proxied by the citations

(relations) from articles in oneWoS category to references in another WoS category

(categories) (Rafols et al., 2012). Or it may be explored using network properties at

the element level, such as network density or intensity (Rafols & Meyer, 2010).

Further research is needed to establish how and whether coherence can be

measured. In this chapter, I tentatively propose that coherence can be thought as

having the attributes of density (analogue of variety), intensity (analogue of bal-

ance) and disparity, as shown in Fig. 8.3. For this purpose, let me define M as the

number of existing relations in the systems (out of N(N�1) relations possible with
N categories), intensity of a relation iij as the scalar representing the relative

strength of a relation between categories i and j. Now we can define:

• Density: number of relations between categories

• Intensity: overall intensity of the relations in the system.

• Disparity: degree to which the categories of the relations are different.

Since both diversity and coherence have various aspects, one can generate

different, equally legitimate measures of each depending on how these aspects are

weighted, as illustrated in Table 8.1. Stirling (2007) proposed a generalised

formulation for diversity which can be turned into specific measures of diversity

such variety or the Simpson diversity, by assigning values to the parameters

α and β. Ricotta and Szeidl (2006) achieved the same result with a different

mathematical formulation (possibly more rigorous but also more cumbersome). In

this chapter, I tentatively introduce the same type of generalisation for the

concept of coherence.

From these considerations, it follows that none of the measures in Table 8.1

should be taken then as a “definitive” and “objective” manner of capturing diversity

and coherence. Instead, all measures of diversity and coherence are subjective in

the sense that they are derived from judgements about: (1) the choice of categories,

(2) the assignment of elements to categories, (3) what constitutes an adequate

metric of intensity iij, (4) of a cognitive distance dij and, finally (5) a judgment

regarding what are the useful or meaningful values of α and β for a specific purpose
of the study. For example, assuming a distance 0< dij< 1, the analyst would use

small values of β to emphasise the importance of distance in the problem under

study (this is relevant in issues such as climate change where understandings from
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Density:
Number of 
relations

Intensity:
Strength 
of relations

Disparity :
Degree of difference
that relations bridge

Increasing
Coherence

Fig. 8.3 Schematic representation of the attributes of coherence. Each circle represents the system
under study. The figures inside the circle are the categories into which the elements are appor-

tioned. The lines represent the relations between categories. Thicker lines indicate higher intensity

in relations. Different shapes indicate more difference between categories

Variety:
Number of 
categories

Balance:
Evenness of 
distribution

Disparity :
Degree of difference

Increasing
Diversity

Fig. 8.2 Schematic representation of the attributes of diversity, based on Stirling (1998, p. 41).

Each full circle represents a system under study. The coloured figures inside the circle are the

categories into which the elements are apportioned. Different shapes indicate more difference

between categories. Source: Rafols and Meyer (2010)
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social natural sciences need to be integrated). Small values of α, on the contrary,

highlight the importance of contributions by tiny proportions. Another possibility is

to use various measures of diversity, each of them highlighting one single aspect, as

proposed by Yegros-Yegros, Amat, D’Este, Porter, and Rafols (2013) (see also in

Rafols et al. (2012) and Chavarro, Tang, and Rafols (2014)). Visualisation in

overlay science maps is a way of providing a description of diversity and coherence

without need to collapse the data into a single figure (Rafols et al., 2010).

For the sake of parsimony, in practice most applications have used the simplest

formulations with α¼ 1 and β¼ 1. This leads to the Rao-Stirling variant of diver-

sity,
X

i, j i 6¼jð Þ
pipjdij. This measure had been first proposed by Rao (1982) and has

become known in population ecology as quadratic entropy (Ricotta & Szeidl,

2006). It can be interpreted as a distance-weighted Simpson diversity (also

known as Herfindahl-Hirschman index in economics-related disciplines).

Rao-Stirling can be interpreted as the average cognitive distance between elements,

as seen from the categorisation, since it weights the cognitive distance dij over the
distribution of elements across categories pi. Similarly, if the intensity of relations is

defined as the distribution of relation (i.e. if iij¼ pij), the simplest form of

Table 8.1 Selected measures of diversity and coherence

Notation

Proportion of elements in category i: pi
Intensity of relations between categories i and j: iij
Distance between categories i and j: dij
Diversity Indices

Generalised Stirling diversity
X

i, j i6¼jð Þ
pipj
� �α

dij
β

Variety (α¼ 0, β¼ 0) N

Simpson diversity (α¼ 1, β¼ 0)
X

i, j i6¼jð Þ
pipj ¼ 1�

X

i

pi
2

Rao-Stirling diversity (α¼ 1, β¼ 1)
X

i, j i6¼jð Þ
pipjdij

Coherence Indices

Generalised coherence
X

i, j i6¼jð Þ
iij

γdij
δ

Density (γ¼ 0, δ¼ 0) M

Intensity (γ¼ 1, δ¼ 0)
X

i, j i6¼jð Þ
iij ¼ 1�

X

i

iii

Coherence (γ¼ 1, δ¼ 1)
X

i, j i6¼jð Þ
iijdij

The two comprehensive measures which have been used and tested in the literature are highlighted
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coherence, for γ¼ 1 and δ¼ 1,
X

i, j i6¼jð Þ
pijdij, can be interpreted as the average

distance over the distribution of relations pij, rather than the distribution of

elements pi.
4

Each node in the network represents a cognitive category. Light grey lines show

strong similarity between categories. Same shapes illustrate clusters of similar

categories. The size of nodes portrays the proportion of elements in a given

category. Dark (or green) lines represent relations between categories. Knowledge

integration is achieved when an organisation becomes more diverse and establishes

more relations between disparate categories. Source: Rafols et al. (2012).

The analytical framework proposed understands knowledge integration as an

increase in diversity, an increase in coherence, or both. This would mean moving

from top to bottom, from left to right, or in diagonal from top-left to bottom-right in

Fig. 8.4. Similarly, a diffusion process would be seen as an increase in diversity.

Higher coherence in diffusion means that as a research topic reaches new areas and

it brings them together, whereas lower coherence means that the “topic” is used

instrumentally without necessarily linking the new areas.

Fig. 8.4 Conceptualisation of knowledge integration as increase in cognitive diversity and

coherence

4 To my knowledge, coherence had only been introduced in this single form, with intensity defined

as the proportion of citations between WoS categories iij¼ pij. The form of coherence I adopt in

this chapter follows from Soós and Kampis (2012) rather than Rafols, Leydesdorff et al. (2012). In

the latter, coherence, i.e.
X

i, j i 6¼jð Þ
pijdij was normalised (divided) by Rao-Stirling diversity, i.e.

X

i, j i6¼jð Þ
pipjdij. Such normalisation was useful to remove the correlation between the two variables,

but it seems unnecessarily complicated for a general framework.
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8.3 Choices on Data and Methods for Operationalisation

The framework presented so far is very general and does not presuppose a com-

mitment to specific data or methods. Now I will operationalise the approach as it

was originally developed in order to capture knowledge integration in scientific

processes using bibliometric data. Let us first discuss the variety of possible choices

in scientometrics regarding the system (unit of analysis), elements, categories and

relations to investigate (see Liu, Rafols, & Rousseau (2012) for a previous discus-

sion on these choices).

8.3.1 Unit of Analysis

The unit of analysis for measuring diversity can be an article, a researcher, a

department or institute, a university or a research topic such as an emergent

technology. One thing to notice is that for small units such as articles, diversity

can sometimes be interpreted as knowledge integration, without need of further

investigating coherence. For example, Alan Porter’s work calls Integration Score
the specific measure of diversity of WoS Categories in the references of an article

(Porter, Cohen, Roessner, & Perreault, 2007; Porter, Roessner, & Heberger, 2008).

One needs to be cautious with choices of units of analysis that involve small

numbers, such as article and researcher, because they may not have enough

elements for a robust statistical analysis and the resulting measures could be very

noisy, particularly when the low numbers are compounded by inaccurate assign-

ment of elements to categories (as it happens when references are assigned to WoS

categories). Thus, article or researcher level measures should be treated with

caution—most of the time they will not be reliable individual descriptions, but

they can be used averaged over classes—e.g., comparing interdisciplinarity

between disciplines using the average disciplinary diversity of references in arti-

cles, using samples of some hundred articles (Porter & Rafols, 2009), or to carry out

econometric regression models using thousands of articles to investigate the influ-

ence of diversity of references on some variables such as number of citations

(Yegros-Yegros et al., 2013) or local orientation of the research (Chavarro, Tang,

& Rafols, 2014).

An important consideration in choosing the unit of analysis is the recent finding

by Cassi, Mescheba, and Turckheim (2014) that the Rao-Stirling diversity can be

added over scales (under some plausible assumptions, in particular the use of cosine

similarity). This means, that the diversity of a research institute is the sum of the

diversities within each article it published, plus the diversity between the articles.

This property opens up the possibility of measuring the diversity of large organi-

sations in a modular manner.
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8.3.2 Classifying Elements into Categories

Next, we need to choose the elements “contained” within the unit of analysis and

the categories into which they will be classified. The choice of elements is straight-

forward. They will typically be articles, references, authors, organisations

(as shown in the address or affiliation), or keywords that are listed in the biblio-

graphic record. The challenge is how to classify the elements into categories.

Table 8.2 provides a partial review of different choices of unit of analysis, elements

and categories. Since cognitive distance is a key component in the measures of

diversity and coherence, the availability of a cognitive metrics among the catego-

ries of the classification used is a relevant factor to take into account. For the choice

of metrics, see reviews (Börner, Chen, & Boyack, 2003; Boyack et al., 2011).

In science, disciplines are the most conventional cognitive categories. Most

database providers assign articles (usually via journals) to some type of disciplinary

categories. Therefore, the most straightforward way of assigning bibliographic

elements such as articles or references to categories is to rely on categories provided

by databases. The most widely used classification is Thomson-Reuters’ Web of

Science categories, which is journal-based and very problematic (Rafols &

Leydesdorff, 2009), given that articles within a journal do not necessarily share a

similar topic or disciplinary perspective.

The next step is to compute the cognitive distance between categories. As in the

case of the classification, the choice of a specific cognitive distance has to be based

on judgement. A plausible choice is to take dij¼ (1�sij), where sij is the cosine

similarity of the WoS categories. This data is available in Excel files at Loet

Leydesdorff’s website (http://www.leydesdorff.net/overlaytoolkit) from 2007

onwards (Leydesdorff, Carley, & Rafols, 2012).

There is, though, the possibility of defining distance in different ways even if you

start from the cosine similarity between WoS categories. For example, Soós and

Kampis (2012) proposed to define dij as the sum of the (1�sij) weights of edges in
the shortest path from WoS categories i to j. Jensen and Lutkouskaya (2014) use

dij¼ 1/sij instead. In these two choices, more weight is given to the co-occurrence of

very disparate categories (where the shortest path is long and 1/sij is high) than in

the standard similarity. The downside of these alternatives is that the diversity

measure is not any more bounded between 0 and 1.

In order to avoid using the journal classifications from data providers (lacking

transparency), another possibility is to use journals as categories per se to compute

diversity measures (Leydesdorff & Rafols, 2011b). The problem here is that most

journals are only similar to a small set of related journals. As a result the cosine

distances between most journals are practically zero. Since, in principle, the

measure of cognitive distance aims to describe differences between distant areas,

this result is not useful to capture cognitive distances across disciplines. To over-

come this difficulty, Leydesdorff, Rafols, and Chen (2013) have recently proposed

to use the distance observed in the two dimensional projection of a map of the

+10,000-dimensions of the actual distance matrix. This is a very coarse
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approximation, but has the advantage of distributing quite evenly the distances

among journals between zero and a maximum value (which we redefine as one).

Another alternative to the inaccuracies of WoS or Scopus categories to is to carry

out clustering using bibliometric data (Rafols & Leydesdorff, 2009). These bottom-

Table 8.2 Examples of different choices of systems, elements, categories and metrics used in

measures of diversity

System (unit

of analysis) Elements Category Metrics Examples

Article References

in article

WoS categories Cosine similarity

of WoS categories

Porter & Rafols, 2009

Article Citations to

article

WoS categories Cosine similarity

of WoS categories

Carley and Porter (2012)

Author Articles WoS categories Cosine similarity

of WoS categories

Porter et al. (2007)

University

department

or Institutes

Articles WoS categories Cosine similarity

of WoS categories

Rafols et al. (2012); Soós

and Kampis (2011)

Institutes Articles 250 Clusters

from 300,000

French publica-

tions (2007–

2010)

Cosine similarity

of clusters

Jensen and Lutkouskaya

(2014)

Topic

(emergent

technology)

Articles WoS categories Cosine similarity

of WoS categories

Leydesdorff and Rafols

(2011a)

Journals References

in articles

of journals

Journals Cosine similarity

of journals

Leydesdorff and Rafols

(2011b)

Topic

(emergent

technology)

Articles Medical subject

headings

(MeSH)

Co-occurrence of

MeSH terms in

articles

Leydesdorff, Kushnir,

and Rafols (2012)

Topic

(emergent

technology)

Articles Medical subject

headings

(MeSH)

Self-organising

maps based on

MeSH, titles,

abstracts,

references

Skupin, Biberstine, and

Börner (2013)

Topic

(research)

Patents Keywords Self-organising

maps

Polanco, François, and

Lamirel (2001)

Open-

ended:

Topic,

Country,

Organisation

Patents International

Patent Classifi-

cation (IPC)

Classes

Cosine similarity

of IPC classes

Kay, Newman, Youtie,

Porter, and Rafols

(2012); Leydesdorff,

Kushnir, and Rafols

(2012)

Open-

ended:

Topic,

Country,

Organisation

Patents Technological

aggregations of

IPC classes

Co-occurrence of

IPC classes

Schoen et al. (2012)
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up categories may be more consistent with research practices, at least as seen from

citation patterns. They can be based on journal clustering (e.g. more than 500 cat-

egories in the UCSD by Börner et al. (2012),5 see also Rosvall and Bergstrom

(2008)) or on paper-level clustering (e.g. about 700 categories by Waltman & van

Eck, 2012).6

In all this analysis so far, we have relied on static classifications with stable

categories of all science.7 In the case of knowledge integration, this is useful to

characterise the knowledge background from a traditional perspective of science

(e.g. in terms of subdisciplines). In the case of emergent technologies, though, new

research topics do not conform to these traditional categories and it is often

illuminating to complement the traditional view with a more fine-grained, local,

bottom-up and dynamic classification. The difficulty of this approach is that

constructing very fine-grained and/or dynamic clusters that are meaningful is very

demanding (Havemann, Gläser, Heinz, & Struck, 2012). Since noise increases as

the sample becomes smaller, many clusters become unstable (are born, die, divide,

etc.) below a threshold around 100–1,000 papers (Boyack, Klavans, Small, &

Ungar, 2014), and their local structure may differ from the one obtained with a

global map (Klavans & Boyack, 2011). This clustering has been the approach of

Kajikawa and colleagues, using direct-citation-link clustering, for example in

studies on energy technologies (Kajikawa, Yoshikawa, Takeda, & Matsushima,

2008) or bionanotechnology (Takeda, Mae, Kajikawa, & Matsushima, 2009).

Boyack, Klavans, Small, and Ungar (2014) are also following this approach with

very small clusters which are derived from a global data set. In principle, the

framework proposed here might also work with small and dynamic categories—

in practice, the challenge is constructing these categories.

Rather than relying on aggregate categories, one may try to use directly the

elements as categories calculating their cognitive distance without further

categorisation, as a contrast to the coarse-grained, static classification (Rafols &

Meyer, 2010; Soós & Kampis, 2011). Jensen and Lutkouskaya (2014) use various

measures of diversity with different categorisations in order to have a more plural

view of the degree of interdisciplinarity of French national laboratories. These

efforts align with the conceptualisation of scientometric advice as helping the

opening-up of perspectives in science policy debate, rather than narrowing the

scope of decisions (i.e. closing-down) (Barré, 2010; Rafols, Ciarli, Van

Zwanenberg, & Stirling, 2012).

Finally, instead of using classifications that relate bibliometric elements with a

cognitive category based on scientific point of view such as a subdiscipline, an

emergent field or a research topic, as discussed above, one may instead relate the

5 This classification and underlying map can be downloaded and publicly used. It is available at

http://sci.cns.iu.edu/ucsdmap/.
6 This classification is available at http://www.ludowaltman.nl/classification_system/.
7 According to Boyack, Klavans, Small and Ungar (2014), more than 99 % of clusters are stable at

a level of aggregation of about 500 clusters for all science.
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elements with categories from outside science such as diseases or technologies. The

Medical Subject Headings (MeSH) of PubMed offer a way of making the linkages

between elements of a publication and the specific practitioner-oriented perspec-

tives of its hierarchical classification, such as descriptors for disease, techniques

and equipment, chemicals/drugs, and healthcare. Using one or more of these

practitioner-oriented categories might be particularly helpful when analysing the

social impact of research. Leydesdorff, Rotolo and Rafols (2012) and Skupin,

Biberstine, and Börner (2013) have recently created global MeSH maps. However,

unlike the global maps of science, which show consensus (Klavans & Boyack,

2009), these maps could not be matched. Hence, the underlying cognitive structure

and metrics of MeSH deserves further investigation.

8.3.3 Capturing Relations

In order to measure coherence one needs to associate relations observed in the

system with links among categories. Since these relations are derived from infor-

mation within or between elements, the discussion in the previous subsection on the

assignment of elements into categories is directly applicable to relations as well.

For example, a citation allows us to relate the category of an article to the category

of one its references. The challenge, as discussed, is how the article and the

reference are classified into WoS categories, journals, bottom-up clusters, or

MeSH terms, etc. Another straightforward way to create relations is from

co-occurrences of some article attributes. For example, if MeSH terms are taken

as categories, the strength of the relation between two MeSH can be estimated as

their normalised number of shared publications.

An interesting point to notice regarding relations is that they do not need to be

symmetrical, i.e. iij 6¼ iji. This is obvious for directed flows: it is well known, for

example, that an applied research field like oncology cites cell biology proportion-

ally more than the reverse (4.5 % vs. 7.5 % citations in 2009). In the case in which

relations are non-directed (i.e. edges), such as co-occurrences, it is also possible to

do an asymmetrical normalisation, i.e. to normalise iij according to counts in

i category only. This raises the interesting question of whether cognitive distances,

which in most studies are symmetrical (dij¼ dji), should also be taken as asymmet-

rical—an issue which deserves a full separate discussion.

8.3.4 Visualisation

Given that diversity and coherence are multidimensional concepts, visualisation

can be helpful to intuitively present the various aspects without collapsing all the

information into a single value. The method proposed here relies on the ideas of

overlaying (projecting) the elements of the unit of analysis over the cognitive space
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Fig. 8.5 Expected (top) and observed (bottom) citations of the research centre ISSTI (University

of Edinburgh) across different Web of Science categories. The grey lines in the background show

the global map of science (Rafols et al., 2010). The size of the nodes reflects the aggregate number
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selected, an idea that I borrowed from Kevin Boyack and colleagues (Boyack,

Börner, & Klavans, 2009). The visualisation has three steps. First, one builds a

“basemap” representing the cognitive space selected. A widely used “basemap” is

the global map of science, representing the disciplinary structure of science (freely

available at Rafols et al., 2010). The map intuitively portrays the cognitive distance

between its nodes, the WoS categories (or others).

Second, one projects the distribution of elements into categories over the

basemap by making the size of each category (node) proportional to the frequency

of elements in that specific category. This means for example that the size of a node

in the global map of science is made proportional to the number of articles

published in that WoS category in the sample studied. This projection or overlay

allows the viewer to capture intuitively the three attributes of diversity: First, the

map captures variety by portraying the number of categories in which a unit of

analysis (e.g. university) is engaged. Second, it captures balance by presenting the

nodes with different sizes. Third, unlike bar charts, the map conveys disparity
among categories by illustrating the cognitive distance by means of the physical

distance in the map (Rafols et al., 2010, p. 1883).

The third step is to project the relations over the map as illustrated in Fig. 8.5

(Rafols et al., 2012). This projection is perhaps the most unconventional step, since

it consists of overlaying the links in the unit of analysis, over the structure of the

global map, without re-positioning the nodes. The intensity of the relations is shown

by the thickness of the links. It is precisely the contrast between the local relations

(in thick darker lines) in comparison to the global relations (in finer lighter lines)

what allows us to understand the nature and extent of knowledge integration that is

being carried out. The visualisation of relations between hitherto unrelated bodies

of knowledge conveys intuitively the concept of coherence.

The maps show intuitively the three aspects of coherence: whether coherence is

achieved across many categories (density), the thickness of links (intensity) and

whether they are linked across distant categories (disparity). Since the probability

of links does not only depend on cognitive proximity, it is useful to make an overlay

of the expected relations (in the case of citation, this depends both on citation

sources and probability flows) and one overlay of the observed relations, as shown

in Fig. 8.5.

⁄�

Fig. 8.5 (continued) of citations given to a field from all ISSTI’s publications. Blue lines show the

expected citations between fields, given where ISSTI is publishing. The computation of expected

citations is based on the number of publications in a field, and the average proportion of citations to

other fields in all the WoS. It can be observed that the expected citations tend to be within

disciplines: within biological sciences, within health services, and within social sciences. Orange
lines show the citations between fields observed in ISSTI’s publications. The citations between

fields criss-cross the map of science both within disciplines and across disciplines. (Only citations

larger than 0.2 % of ISSTI’s total are shown). Source: Rafols, Leydesdorff et al. (2012)
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8.4 How to Compute and Visualise Knowledge Integration

This section describes the protocol of the method to compute and visualise diversity

and coherence. To do so, I will follow the most well-established application of this

framework, based on the so-called global maps of science based onWoS categories.

Since these categories are not very accurate, it is best to think this analysis as

merely exploratory or illustrative. Detailed information on this method is presented

in the Annex of Rafols et al. (2010). The data and basemaps used here are publicly

available at Loet Leydesdorff’s website http://www.leydesdorff.net/overlaytoolkit.

8.4.1 Illustrative Introduction to Measures of Diversity

This protocol illustrates how to compute diversity and coherence using excel files

and Pajek maps. Supplementary files are available here: http://www.sussex.ac.uk/

Users/ir28/book/excelmaps.

8.4.1.1 Data Collection

1. Delineate and download the data set from the Web of Science.

8.4.1.2 Measure of Diversity

For the sake of helping non-expert readers, the measures are presented in the

spreadsheet calculations.

2. Create a list with the distribution of WoS categories. These are listed in the

field “WC” in the file downloaded.

3. Open the spreadsheet file “DiversityComputation2009.xlsx.”

4. Paste the list in the tab “INPUT.” Notice that only the WoS Categories in the

Journal Citation Index in 2009 are present. Other categories will not be

counted.

5. Go to tab “OUTPUT.” Select a threshold for the minimum proportion to be

taken into account in counting variety and disparity (default¼ 0.01, i.e. 1 %)

6. The file provides values for Rao-Stirling diversity and other measures of

diversity as described in Table 8.1.

8.4.1.3 Measure of Coherence

7. Create a matrix with the ordered distribution of citations from the WoS

categories to WoS categories in the data set. (Unfortunately, to my knowledge
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this cannot be done with publicly available software. VantagePoint8 provides

an easy template to create it).

8. Open the spreadsheet file “CoherenceComputation2009.xlsx.”

9. Paste the matrix in the tab “INPUT matrix.”

10. Go to tab “OUTPUT” to retrieve the data on coherence.

8.4.1.4 Visualisation of Diversity with Pajek

11. Open the Pajek file “ScienceMap2009.paj” (press F1).

12. Upload the vector file (.vec) with the distribution list of WoS categories

“ListWoSCats.vec.”

Press Ctrl-Q to visualise the overlay map (details provided in the appendix of

Rafols et al. (2010)).

8.4.2 R Script for Computing Diversity of a set of Articles

This protocol provides a script for computing diversity over large data sets.

Supplementary files are available here: http://www.sussex.ac.uk/Users/ir28/book/

diversity.zip.

The file “diversity_measures_1.R” contains the script with the programming

language R to compute the Rao-Stirling diversity for each individual article of a list

of articles, based on the assignment of references to WoS categories. It requires the

file with the proximity matrix (“cosine_similarity_matrix_sc.csv”) and an input file

with the list distribution of WoS in the reference list, as shown in “articles_sample.

csv.” The directory with the file needs to be written up into the script before

running it.

Conclusions

In this chapter I have presented a framework for the analysis of knowledge

integration and diffusion based on the concepts of cognitive diversity and

coherence. Knowledge diffusion is seen as an increase in the cognitive

diversity of the areas to which a given discovery or technology has spread.

Knowledge integration is seen as an increase in cognitive diversity and/or

coherence. The chapter introduced the general mathematical formulation of

these concepts. It has proposed that diversity has the attributes of variety,

balance and disparity, whereas coherence has the attributes of density, inten-

sity and disparity. Diversity and coherence can be formulated in various

(continued)

8 http://www.thevantagepoint.com/.
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(continued)

manners depending on the relative weight of the attributes—hence their

values will depend on the choice of weight given to them.

Given the importance of the choices of elements, and the relations and

classifications to characterise diversity, I have discussed different approaches

to classify science into categories, from the top-down and coarse classifica-

tions such as the WoS categories to more fine-grained categories. I have

briefly mentioned the possibilities of characterising science with more

practitioner-oriented perspectives such as those provided by MeSH terms. I

have illustrated with a spreadsheet how to compute diversity and coherence

using WoS categories. Since WoS categories are very inaccurate, this method

should be interpreted as exploratory.

The fact that diversity and coherence can be measured using various

mathematical formulations and that, for each of them, various operationa-

lisations are possible in terms of the elements and categories chosen. This

should send a serious message of caution: knowledge integration and diffu-

sion are strongly dependent on the perspective taken. It could be that with a

disciplinary perspective, a research topic has become stagnant (staying within

the same discipline), but with a medical perspective, the topic is diffusing to

new areas such as new diseases. Hence, the measures and maps should be

read as inevitably partial perspectives—covering only a few of the possibil-

ities for capturing knowledge dynamics. Other dynamics of knowledge inte-

gration, not covered by diversity and coherence, are also possible. For

example, “intermediation” would be another way to capture knowledge

integration focussing in the bridging processes (Chen et al., 2009; Rafols

et al., 2012).

The framework proposed has been developed for mapping in the conven-

tional cognitive dimension of science (disciplines and topics), but it can easily

be extended to other cognitive perspectives such as those arising from

medicine (via MeSH). Similarly, the approach can be easily extended to

patents, using global maps of technology (Kay, Newman, Youtie, Porter, &

Rafols, 2012; Leydesdorff, Kushnir & Rafols, 2012; Schoen et al., 2012), and

closely related measures of diversity (Nesta & Saviotti, 2005, 2006).

Finally, I would like to highlight that while the framework has been

applied to cognitive distance, it can in principle be applied as well to other

analytical dimensions. For example, one might look at the geographical

diversity of a collaborative project not counting the number of countries,

but investigating collaborations or citations in terms of geographical distance

(Ahlgren, Persson, & Tijssen, 2013). Or, one might investigate the diversity

in organisations in a new topic by not just counting organisations, but taking

into account the cognitive proximity of the organisations. As proposed by

(continued)
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(continued)

Frenken (2010), by extending this framework to other analytical dimensions,

it would be possible to investigate how knowledge integration is mediated by

geographical, organisational, institutional and social networks.
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Chapter 9

Limited Dependent Variable Models

and Probabilistic Prediction in Informetrics

Nick Deschacht and Tim C.E. Engels

Abstract This chapter explores the potential for informetric applications of lim-

ited dependent variable models, i.e., binary, ordinal, and count data regression

models. In bibliometrics and scientometrics such models can be used in the analysis

of all kinds of categorical and count data, such as assessments scores, career

transitions, citation counts, editorial decisions, or funding decisions. The chapter

reviews the use of these models in the informetrics literature and introduces the

models, their underlying assumptions and their potential for predictive purposes.

The main advantage of limited dependent variable models is that they allow us to

identify the main explanatory variables in a multivariate framework and to estimate

the size of their (marginal) effects. The models are illustrated using an example data

set to analyze the determinants of citations. The chapter also shows how these

models can be estimated using the statistical software Stata.

9.1 Introduction

A topic search in the Social Science Citation Index on November 13, 2013 identi-

fied over 700 journal articles in Library and Information Science (LIS) that use

regression analysis. In the top 25 of source titles, we find Scientometrics (64 arti-

cles), Journal of the American Society for Information Science and Technology
(46), Information Processing & Management (24), Journal of Informetrics (12),

and Journal of Documentation (9). Until 2004 the annual number of LIS papers that

implemented a regression model did not exceed 20; then, in the period 2005–2010,
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a gradual increase to about 50 papers per year is apparent. Since 2011 the annual

number jumped to about 100, illustrating the rise of regression models in LIS. In the

aforementioned journals, binary, ordinal, Poisson and negative binomial regression

models are common because classification issues (e.g., authorship attribution,

classification of journals, user profiles) and count data (e.g., number of papers,

patents or their citations) abound in LIS. In this chapter we specify these limited

dependent variable models with a view of facilitating the implementation of such

models in LIS research.

Limited dependent variable models are a group of regression models in which

the range of possible values of the variable of interest is limited. In some cases the

outcome variable is binary, such as when the interest is in whether a journal article

was cited over a certain period (yes or no). The outcome variable can also take

multiple discrete values as is often the case in peer review and assessments. When

frequencies are counted for a certain event the outcome variable consists of count

data, such as the number of patents in a given year or the number of books published

by publishing houses. In these cases the choice of the regression model may follow

directly from the research question. Often, however, the choice of the regression

model will be subject to careful deliberation and more than one model may be

appropriate. Running multiple models on the same dataset may be instructive and

can sometimes serve as a robustness check of the results. We illustrate this

throughout this chapter. In the conclusions we provide the reader with some advice

regarding model choice.

The strength of regression models is that they allow us to estimate the size of the

“effect” of an explanatory variable on the dependent variable (the word “effect”

may be misleading because it suggests causation while a regression analysis in itself

does not exclude the possibility of inverse causation or spurious causation resulting

from omitted variables). As opposed to association analysis, a regression analysis

allows the researcher to quantify the effect of changes in the independent variables

on the dependent variable. Another advantage is that regression analysis easily

allows one to distinguish and isolate the effects of different explanatory variables.

An interesting example in this regard is the multilevel logistic analysis of the

Leiden ranking by Bornmann, Mutz, and Daniel (2013), which shows that only

5 % of the variation between universities in terms of the percentage of their

publications that belong to the 10 % most cited in a certain field is explained by

between university differences, whereas about 80 % is explained by differences

among countries. Regression models can also be used for prediction, although the

quality of such predictions is obviously conditional on the quality of the model. For

most models, methods or rules of thumb to evaluate the quality of the resulting

predictions are available.

The chapter introduces the main limited dependent variable models and illus-

trates their use to analyze the determinants of citations using data on the 2,271

journal articles published between 2008 and 2011 in the journals Journal of
Informetrics (JOI), Journal of the American Society for Information Science and
Technology (JASIST), Research Evaluation (RE), Research Policy (RP), and

Scientometrics (SM). The data used in this illustration are available through the
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publisher’s website for interested readers to experiment with on their own. The next

section introduces the data set and the variables used in the illustration. Section 9.3

discusses the logit model for binary choice. The models for multiple responses and

count data are discussed in Sects. 9.4 and 9.5. The final sections present some

concluding remarks and practical guidance on how to estimate these models using

the statistical software Stata (Long & Freese, 2006). We opted to illustrate the

models in Stata because this program appears to be most commonly used in

informetrics. However, all the models mentioned here may be run in R, and many

in SPSS and other packages.

The aim of this chapter is primarily to demonstrate the possibilities of limited

dependent variable models in LIS and to compare their strengths and weaknesses in

an applied setting. The theoretical description of the various models was kept brief

for reasons of space. Readers looking for more elaborate treatments are referred to

econometric textbooks (Greene, 2011; Wooldridge, 2012) or specialized texts (e.g.,

Agresti, 2002, 2010; Hilbe, 2011).

9.2 The Data: Which Articles Get Cited in Informetrics?

Several studies have investigated intrinsic and extrinsic factors that influence the

citation impact of papers. In the models in this chapter we include 12 explanatory

variables—the first five of which are inspired by the literature review in Didegah

and Thelwall (2013b)—to explain the number of citations (including self-citations)

in the calendar year following publication. Our aim is to illustrate the applicability

and the use of limited dependent variable models. The 12 variables included in the

analysis are the following:

– The journal in which an article is published (8 % of the articles in our sample

were published in the JOI, 33 % in SM, 21 % in RP, 6 % in RE, and 32 % in

JASIST). The popularity of a journal tends to correlate positively with the

impact of the articles that appear in it.

– The number of authors of the article (NumAut: min¼ 1, max¼ 11, avg¼ 2.40;

SD¼ 1.34). We included this variable because collaborative articles tend to

receive more citations.

– The number of countries mentioned in the address field of the article (NumCoun:

min¼ 1, max¼ 9, avg¼ 1.31, SD¼ 0.60). International collaboration too tends

to increase the number of citations.

– The number of cited references included in the article (NumRef: min¼ 0,

max¼ 282, avg¼ 40.20, SD¼ 25.34). Papers with more references often attract

more citations.

– The length in terms of number of pages of the article (NumPag: min¼ 1,

max¼ 37, avg¼ 13.33, SD¼ 4.88). Longer papers can have more content,

including more tables and/or figures, which in turn may translate into the receipt

of more citations.
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– The length of the article title in terms of number of characters (NumTitle:

min¼ 10, max¼ 284, avg¼ 87.48, SD¼ 31.10). On the one hand shorter titles

might be more to the point, on the other hand longer titles might occur more in

article searches.

– Whether the article is the first in an issue or not (First: 8 % are first articles). An

article that is the first in an issue, is likely to attract more attention and may

therefore receive more citations.

– Whether funding information is included in the acknowledgments of the article

or not (Fund: 20 % of the articles have funding information). Rigby (2013)

reports a weak positive link between more funding information and impact of

papers.

– The publication year of the article (PubYear: min¼ 2008, max¼ 2011,

avg¼ 2009.60, SD¼ 1.10). Over time the number of citations tends to increase

(e.g., because more source titles are added to the WoS), so we need to correct for

publication year.

– The month in which the article appeared (PubMon: min¼ 1, max¼ 12,

avg¼ 6.63, SD¼ 3.42). This measure is based on information in WoS on the

date of the print publication and does not account for the fact that some journals

may be late or that articles could be available for “early view.” We included this

variable because the number of citations received in the year following publi-

cation (dependent variable) is likely to be influenced by the timing of the

publication of the articles.

– Whether the article deals with the h-index or not (H: 7 % of the articles are about

the h-index). Articles were classified as dealing with the h-index if “h-ind*”, “h

ind*” and/or “Hirsch” occurred in their abstract. Among other things the

h-bubble article by Rousseau, Garcia-Zorita, and Sanz-Casado (2013), which

shows that h-index-related articles inflated short-term citations to a large extent,

inspired us to include this variable.

– Whether the article deals with issues related to innovation and patenting or not

(InnoPat: 18 % of the articles are related to these topics). Articles were classified

as related to innovation and patenting if “innovation” and/or “patent*” occurred

in their title and/or abstract. As innovation is high on governments’ agendas, we

wondered whether researching innovation would also pay off in terms of number

of citations.

An issue that should be kept in mind when estimating regression models is the

degree of correlation between these explanatory variables. Too much correlation

(multicollinearity) inflates the standard errors on the estimated coefficients so that

the estimated effects become unstable and sensitive to small variations in the data.

As an indicator of the degree of collinearity, one can calculate Variance Inflation

Factors (VIF) for every explanatory variable.1 In our dataset the maximal VIF was

1 If R2
k is the coefficient of determination of a linear regression model that predicts the explanatory

variable Xk as a function of the other explanatory variables, then the Variance Inflation Factor

VIFk ¼ 1
1�R2k

.
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2.0, which we consider to be tolerable since thresholds of 5 or more are common in

the literature (Menard, 1995; O’Brien, 2007).

9.3 Binary Regression

In bibliometrics and informetrics binary logistic models are often used for analyz-

ing and/or predicting whether articles will be cited or not (Van Dalen & Henkens,

2005), whether patents are commercialized (Lee, 2008), used in military applica-

tions (Acosta, Coronado, Marı́n, & Prats, 2013) or will be infringed (Su, Chen, &

Lee, 2012). These models are also used in studies of funding and editorial decisions

(Fedderke, 2013), winning scientific prizes or awards (Heinze & Bauer, 2007;

Rokach, Kalech, Blank, & Stern, 2011), career transitions and promotions (Jensen,

Rouquier, & Croissant, 2009) and the use of public libraries by internet users

(Vakkari, 2012). Many other outcomes that can be analyzed through binary regres-

sion can be thought of, e.g., whether a researcher belongs to the editorial board of a

certain journal, is likely to collaborate or publish a book, will file a patent, will

move to another institution, or will pass a certain threshold in terms of citations or

h-index.

(a) The binary logit model

If yi is a binary variable that can take only the values 0 and 1, then the logit model

writes the probability P(yi¼ 1) as a function of the explanatory variables:

P yi ¼ 1 x1ij x2i, . . . , xkið Þ ¼ Pi ¼ G β0 þ β1x1i þ . . .þ βkxkið Þ ð9:1Þ

where G zð Þ ¼ ez

1þez is the logistic function. The range of the logistic function is

between 0 and 1 which ensures that the predicted probabilities are limited to this

same range. This is one of the reasons why logit models are more appropriate than

OLS in the case of a binary dependent variable. OLS should also be avoided

because it assumes that the error terms are normally distributed with constant

variances, while neither of these conditions apply when the dependent variable is

binary (for similar reasons OLS should be avoided in models of ordinal or count

dependent variables). The interpretation of the coefficients is not straightforward in

the logit model. This can be seen when we rewrite the model as

ln
Pi

1� Pi

� �
¼ logit Pið Þ ¼ β0 þ β1x1i þ . . .þ βkxki ð9:2Þ

where Pi

1�Pi
are the odds of yi¼ 1 (e.g., if Pi¼ 0.8 then the odds are 4 to 1). From this

equation it is clear that βi is the change in the log-odds when xi increases by one unit
and the other variables are held constant. The exponentiated coefficients eβi can then
be interpreted as the factor by which the odds increase when xi increases by one unit
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(eβi is the odds ratio). However, effects in terms of odds cannot be interpreted

unambiguously in terms of probabilities, because the change in probability when xi
increases by one unit depends on the level of xi and on the values of the other

explanatory variables. One way around this problem is to estimate the “marginal

effect at the means” of an explanatory variable xi, which measures the change in the

prediction function if xi increases by one unit.2 Although such marginal effects

cannot substitute for the estimated coefficients or odds ratios (which remain correct

even when the explanatory variables deviate from their means), the marginal effects

are usually informative.

The coefficients of the logit model are estimated by maximizing the likelihood of

the data with respect to the coefficients. Most statistical software packages carry out

the necessary iterative numerical optimization and calculate corresponding stan-

dard errors, which allow for significance tests on the coefficients (which test

whether the estimated effects could be attributable to sampling variability). A

global test on all parameters in the model tests whether the likelihood of the

observed data using the estimated coefficients is significantly greater than the

likelihood of a model that has no independent variables. This test is referred to as

the likelihood ratio test and uses a test statistic that has an approximate chi-square

distribution under the null hypothesis that all parameters are zero.

(b) Illustration

We now use the logit model to study the citation of journal articles in the field of

informetrics. The dependent variable measures whether or not the article was cited

in another published article during the calendar year following its publication. 66 %

of all articles in our sample were cited, whereas the remaining 34 % were not.

Table 9.1 presents the estimated coefficients in the model with standard errors and

significance tests, and the corresponding odds ratios and marginal effects.

The results indicate that—holding all the other explanatory variables in the

model constant—articles published in the JOI, SM, and RP have a significantly

greater probability (than the reference category JASIST) of being cited, while that

probability is lower for articles in RE. The publication month control variable has a

negative effect, which was expected because the probability of citation depends on

the duration since publication. Other significant effects are found for international

collaboration, the number of references listed in the article and for articles about the

h-index.

The coefficients, odds ratios and marginal effects give an indication of the size of

these effects. The estimated coefficient for JOI is 0.85, which implies that—ceteris

paribus—the log-odds of JOI articles being cited are 0.85 greater than those of

JASIST articles. The corresponding odds ratio is e.85¼ 2.34, which implies that the

odds of JOI articles being cited are 2.34 times greater than those of JASIST articles.

2 Next to the marginal effect at the means, other approaches are possible to calculate marginal

effects. For a discussion and an example using bibliometric data, see Bornmann and

Williams (2013).
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The marginal effect provides an indication of the effect in terms of probabilities

evaluated at the means of the explanatory variables: articles in the JOI are 18 per-

centage points more likely of being cited than articles in JASIST (remember that the

overall unconditional probability of being cited is around 66 %, so 18 percentage

Table 9.1 The binary logit model

(1) (2) (3)

Coefficients

estimate/(SE)

Odds ratio

estimate/(SE)

Marginal effects

estimate/(SE)

JOI 0.851*** 2.342*** 0.175***

(0.209) (0.489) (0.038)

RE �0.706*** 0.493*** �0.174***

(0.212) (0.104) (0.052)

RP 0.510** 1.665** 0.112**

(0.164) (0.273) (0.035)

SM 0.356** 1.428** 0.081**

(0.128) (0.183) (0.029)

NumAut �0.005 0.995 �0.001

(0.036) (0.036) (0.008)

NumCoun 0.181* 1.198* 0.040*

(0.086) (0.103) (0.019)

NumRef 0.007** 1.007** 0.002**

(0.003) (0.003) (0.001)

NumPag 0.006 1.006 0.001

(0.011) (0.011) (0.003)

NumTitle �0.000 1.000 �0.000

(0.002) (0.002) (0.000)

First 0.266 1.304 0.056

(0.182) (0.238) (0.037)

Fund �0.131 0.877 �0.029

(0.124) (0.109) (0.028)

PubYear 0.048 1.049 0.011

(0.043) (0.045) (0.010)

PubMon �0.085*** 0.918*** �0.019***

(0.014) (0.013) (0.003)

H 0.953*** 2.594*** 0.176***

(0.228) (0.592) (0.033)

InnoPat �0.242 0.785 �0.055

(0.139) (0.109) (0.032)

Constant �96.290 0.000

(86.854) (0.000)

Chi2 154.2 154.2 154.2

p 0.000 0.000 0.000

Pseudo-R2 0.05 0.05 0.05

N 2,271 2,271 2,271

*p<0.05; **p<0.01; ***p<0.001
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points is a substantial effect). Another sizeable marginal effect is that articles in RE

are—holding all the other variables constant—17 percentage points less likely of

being cited than articles in JASIST. Articles about the h-index also increase their

citation probability by 18 percentage points (compared to articles that do not write

about the h-index). It appears that getting published in the JOI with an article on

h-indices was a strategy worth considering for scholars in the field looking to

improve their own h-index!

The model can now be used to make predictions by calculating predicted citation

probabilities for articles with given values on the explanatory variables. Moreover,

such predicted probabilities can also be calculated for the articles in our sample.

This is a way to evaluate the predictive power of our model since we know whether

these articles eventually were cited or not. If we use the common decision rule to

predict citation when the predicted probability of an article is greater than 0.5, then

the model makes correct predictions for 17 % of the non-cited articles and 94 % of

the cited articles (Table 9.2).

In order to evaluate the quality of our model, these numbers should be compared

to a baseline of correct predictions that would be made in absence of the explan-

atory variables. Since the overall proportion of cited articles is 66 %, the best guess

would then be to predict citation for any given article. In the non-cited category the

proportion of correct predictions improves from 0 % (baseline) to 17 % in the logit

model, while the proportion decreases from 100 to 94 % among the cited articles.

The sum of the proportions of correct predictions should be greater than 100 % for a

good model (Verbeek, 2008), which is the case in our example (the sum of the

diagonal elements 17 %+ 94 %¼ 111 %).3 The most common goodness-of-fit

statistic for logit models is McFadden’s R2 (reported in Table 9.1 as “Pseudo-

R2”), which is defined as the percent increase in the log-likelihood when moving

from the baseline model with no explanatory variables to the full model.

Note that this evaluation of the predictive power of our model relates to the

internal validity of the model (“to what extent is the model capable of reproducing

the sample data?”). Good internal validity does not imply that the model would

Table 9.2 Prediction table for the binary logit model

Predicted category

Baseline Logit

Observed category Not cited Cited Not cited Cited

Not cited 0 % 100 % 17.1 % 82.9 %

Cited 0 % 100 % 6.0 % 94.0 %

3 A related measure for model quality which is also based on the prediction table and which has the

interesting property of ranging between 0 and 100 %, is the Adjusted Count R2 (see Long &

Freese, 2006).
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perform equally well on new data. One way to assess external validity is to use only

a subset (e.g., 90 %) of the available observations to estimate the model (the

training data) and to subsequently use the excluded observations (the test data) to

evaluate the model’s predictive capacity.

9.4 Ordinal Regression

In the binary regression analysis of citations we lumped all articles that were cited

(66 % of the sample) together in one group. However, there may be important

differences between articles that have just a few citations and those that have many

citations. By not using this information the tests in the binary choice model have

less power, which increases the risk of failing to demonstrate a true effect (a type II

error). Ordered response or ordinal regression models are appropriate when the

dependent variable is an ordinal scale.

Recent examples of applications of categorical or ordered logistic models in

bibliometrics and informetrics include analyses and prediction of the factors that

explain information seeking behavior of academic scientists (Niu & Hemminger,

2012), of the impact of international coauthorship on citation impact (Sin, 2011), of

peer assessments of research groups (Engels, Goos, Dexters, & Spruyt, 2013) and of

the popularity of new Twitter hashtags (Ma, Sun, & Cong, 2013). Other examples

of outcomes that can be analyzed through ordered models include the outcomes of

peer review of manuscripts submitted for publication (acceptance, minor review,

major review, rejection), and the rank of professors (assistant professor, associate

professor, full professor). In some cases, e.g., the published outcomes of a research

project (academic papers only; patent only; academic papers plus patent; academic

plus popularizing papers) the response categories may not be strictly ordered. In

such cases a multinomial model can be used to analyze the data.

(a) The ordered logit model

If yi is an ordinal variable that can take only the values j¼ 1, 2, . . ., J, then the

cumulative probability is the probability that an observation i is in the jth category

or lower:

γij ¼ P yi � jð Þ ð9:3Þ

The ordered logit model is then defined as

logit γij
� � ¼ αj � β1x1i � β2x2i � � � � � βkxki ð9:4Þ

The model has a different intercept αj for each category j (the cutpoints), whereas
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the slope coefficients are assumed constant over the categories.4 βi is then the

increase in the log-odds of being in a higher category when xi increases by one

unit while the other variables are held constant. As in the binary model the odds

ratio eβi is the factor by which the odds of being in a higher category increase when
xi increases by one unit.

In the ordered logit model the slope coefficients are assumed equal at every

categorical level. This “proportional odds assumption” can be evaluated using the

Brant test, which tests whether the slope coefficients are equal across separate

binary models. In case the test does not support the assumption, an alternative

model could be considered in which the coefficients are allowed to vary with the

categorical levels (i.e., a multinomial logit model).

(b) Illustration

We now use the ordered logit model to study the determinants of journal article

citations. The dependent variable in the analysis is an ordinal variable with three

categories: (1) no citations during the year following publication, (2) few citations

(i.e., one or two citations), and (3) many citations (i.e., three or more). In our sample

of 2,271 articles from the field of informetrics, 34 % were not cited, 39 % received

one or two citations and the remaining 27 % received three or more. Table 9.3

presents the estimated ordered logit model.

The odds ratio for JOI is 2.3, which implies that—ceteris paribus—the odds of

JOI articles being in a higher category are 2.3 times greater than those of JASIST

articles. It is informative to compare these results with the ones from the binary

model in Table 9.3. Most of the coefficients have smaller p-values, which reflects

the increased power by differentiating between articles with few and many cita-

tions. For example, the coefficient for international collaboration is now highly

significant ( p< 0.001 as opposed to p¼ 0.035 in the binary model). The dummy

variable indicating whether the article is the first article published in the journal

issue is now significant ( p¼ 0.005) while it was not in the binary model

( p¼ 0.135). A further analysis shows the reasons for this finding: while first articles

have a similar probability (than other articles) of not being cited, they have a much

larger probability of having many citations. This indicates that the proportional

odds assumption underlying the ordered logit model may be violated here (the

effect on the odds of not being cited versus being cited is not the same as the odds of

receiving a few citations versus many citations). There is one variable where an

inverse scenario takes place: the indicator for articles published in RP is no longer

significant in the ordered logit model. The reason is that in comparison with the

JASIST reference category a large proportion of its articles are not cited (producing

the effect in the binary analysis), while at the same time a slightly larger proportion

4 The negative signs before the coefficients are needed because cumulative probabilities were

defined using a less-than or equal to symbol, while the coefficients should estimate the effect of

explanatory variables on increasing levels of the dependent variable.
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Table 9.3 The ordered logit model

(1) (2)

Coefficients estimate/(SE) Odds ratio estimate/(SE)

JOI 0.841*** 2.319***

(0.166) (0.385)

RE �0.796*** 0.451***

(0.202) (0.091)

RP 0.234 1.264

(0.137) (0.173)

SM 0.310** 1.363**

(0.112) (0.152)

NumAut �0.012 0.989

(0.032) (0.031)

NumCoun 0.296*** 1.344***

(0.072) (0.097)

NumRef 0.009*** 1.009***

(0.002) (0.002)

NumPag �0.006 0.994

(0.010) (0.010)

NumTitle �0.001 0.999

(0.001) (0.001)

First 0.427** 1.533**

(0.153) (0.234)

Fund �0.127 0.881

(0.110) (0.097)

PubYear 0.036 1.037

(0.037) (0.039)

PubMon �0.088*** 0.916***

(0.012) (0.011)

H 1.026*** 2.789***

(0.173) (0.482)

InnoPat �0.177 0.838

(0.117) (0.098)

cut1

Constant 72.331 2.589e + 31

(74.884) (1.939e + 33)

cut2

Constant 74.098 1.515e + 32

(74.885) (1.135e + 34)

Chi2 222.2 222.2

p 0.000 0.000

Pseudo-R2 0.04 0.04

N 2,271 2,271

*p<0.05; **p<0.01; ***p<0.001
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of the RP articles have many citations (cancelling out the effect in the ordinal

analysis).

The estimated ordered logit model can now be used to calculate predicted

cumulative probabilities for every category. Because the cutpoints increase as the

categorical level increases, the cumulative probabilities increase as well. Differ-

ences between adjacent cumulative probabilities yield predicted probabilities for

each category. If we use as a decision rule to predict the category with the largest

predicted probability, then the model makes correct predictions for 43 % of the

non-cited articles, 60 % of the articles with few citations, and 24 % of the articles

with many citations (Table 9.4).

A baseline model with no explanatory variables would predict a few citations for

every article, because that is the category with the largest overall proportion (38 %).

The sum of the diagonal elements for the ordered logit model in Table 8.4 (127.2 %)

is greater than that in the baseline model (always 100 %), which is a minimum

quality requirement for any model.

The Brant test to evaluate the proportional odds assumption (equality of the

slope coefficients over the categories) results in a test statistic value of

χ2¼ 23.5 ( p¼ 0.07). If p> 0.05 then the evidence against the proportional odds

assumption is not significant. It may be worth to keep in mind that significance tests

are all about sample sizes, which in this case implies that even small differences in

slope coefficients could result in a rejection of the null hypothesis if the sample is

large (while large differences may be insignificant in small samples). Because our

p-value is not much greater than the significance level we also estimated a multi-

nomial model, which consists of multiple binary logit models so that the slope

coefficients are allowed to vary (the specification and estimates are not reported).

For this model the sum of the diagonal elements in a prediction table (not shown)

increases to 131.8 %. However, this small increase in predictive power requires the

estimation of much more parameters in the model, which increases the risk of

overfitting. Although both the ordered and the multinomial models have their

merits, the authors favor the ordinal model in this case because of its parsimony

and the fact that the proportional odds assumption is not implausible. A

Table 9.4 Prediction table for the ordered logit model

Predicted category

Baseline Ordered logit

Observed

category

No

citations

Few

citations

Many

citations

No

citations

Few

citations

Many

citations

No

citations

0 % 100 % 0 % 43.4 % 48.7 % 7.9 %

Few

citations

0 % 100 % 0 % 29.2 % 60.2 % 10.6 %

Many

citations

0 % 100 % 0 % 16.5 % 59.9 % 23.6 %

204 N. Deschacht and T.C.E. Engels

http://dx.doi.org/10.1007/978-3-319-10377-8_8#Tab4_8


multinomial model would be appropriate if the proportional odds assumption is

clearly violated as well as in the case of a non-ordinal dependent variable.

9.5 Count Data Models

If the variable of interest measures the frequency of an event, then count data

models may be appropriate to take advantage of the cardinal (rather than ordinal)

nature of the data. The standard regression framework for analyzing count data is

the Poisson model, but in most practical applications extensions of this model (the

quasi-Poisson and negative binomial models) are needed to overcome violations of

underlying assumptions (discussed below).

Abbasi, Altmann, and Hossain (2011) implement a Poisson model to identify the

effects of coauthorship networks on performance of scholars; Niu and Hemminger

(2012) complemented their logistic analysis of information seeking behavior with a

Poisson regression. Negative binomial regression models have been applied to

model the number of papers (Barjak & Robinson, 2007; Gantman, 2012) and in

the study of citation counts, for example when comparing sets of papers (Bornmann

& Daniel, 2006, 2008) or the relative importance of authors and journals (Walters,

2006). Lee, Lee, Song, and Lee (2007) pioneered the use of a zero-inflated negative

binomial in informetrics in their analysis of citations of patents of the Korean

Institute of Science and Technology (KIST). Zero-inflated models have two parts:

A binary model to predict group membership and a count model for the data in the

latter group (Hoekman, Frenken, & van Oort, 2009; Long & Freese, 2006).

Recently, Chen (2012), Didegah and Thelwall (2013a) and Yoshikane (2013)

implemented zero-inflated negative binomial models in their studies of, respec-

tively, predictive effects of structural variation on citation counts, of citation impact

in nanoscience, and of citations of Japanese patents. Zero-inflated models assume

two sources and hence different underlying causes of zeros: Perfect zeros for which

structural factors explain the observation of zeros (e.g., the number of academic

papers per toddler) and zeros that occur in the count distribution (e.g., some

academics may have no papers during a number of years). As illustrated by Didegah

and Thelwall (2013b) hurdle models may provide a good alternative, at least in the

case of citations, as receiving its first citation can be considered a real hurdle for a

paper after which it becomes more likely to be cited again. In the section below we

limit the explanation to the standard negative binomial regression; readers inter-

ested in truncated and other variations may consult Hilbe (2011).

(a) The Poisson, the quasi-Poisson and the negative binomial regression models

If yi is a count variable taking only non-negative integer values (yi¼ 0, 1, 2, . . .) and
we assume that yi conditional on the values of the explanatory variables has a

Poisson distribution:
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P yi ¼ y x1i; x2i; . . . ; xkijð Þ ¼ e�μi :μi
y

y!
y ¼ 0, 1, 2, . . . ð9:5Þ

where μi is the expected value of the distribution. Note that the assumption refers to

the conditional distribution of yi and not to the unconditional distribution of yi.
Because the latter distribution also depends on the distribution of the explanatory

variables, the distribution of the observed yi is not a valid argument for preferring

this model over another. The following example makes this clear: In a model with

only one binary explanatory variable in which the conditional distribution is

Poisson, the unconditional observed yi would in many cases have a bimodal

distribution (and so clearly not be Poisson).

The expected value μi is usually modelled by

μi ¼ E yi x1i, . . . , xkij½ � ¼ eβ0þβ1x1iþ...þβkxki ð9:6Þ

For technical reasons, the log of the conditional mean of Poisson (and negative

binomial) models is estimated, rather than the mean itself. The Poisson regression

model can thus be defined as

P yi¼ y x1i,x2i, . . . , xkijð Þ¼ e� eβ0þβ1x1iþ...þβkxkið Þ: eβ0þβ1x1iþ...þβkxki
� �y
y!

y¼ 0,1,2, . . . ð9:7Þ

of which the coefficients are usually estimated using maximum likelihood. How to

interpret these coefficients becomes clear if we write the expected value as

ln E yi x1i, . . . , xkij½ �ð Þ ¼ β0 þ β1x1i þ . . .þ βkxki ð9:8Þ

which is a semi-log model familiar from linear regression. βi is then the relative

(percent) increase in μi when xi increases by one unit while the other variables are

held constant.5

A limitation of the Poisson regression model is that any Poisson distribution is

completely determined by its mean and that the variance is assumed to equal that

mean (the equidispersion assumption). This restriction is violated in many appli-

cations because the variance is often greater than the mean. In such cases there is

overdispersion, by which we mean that the variance is greater than the variance

implied by assuming a Poisson distribution. However, the maximum likelihood

estimator is considered to produce consistent estimates for the coefficients regard-

less of the actual conditional distribution (Wooldridge, 1997). The procedure of

using Poisson maximum likelihood estimation without assuming that the Poisson

distribution is correct, is referred to as the quasi-Poisson model or the Poisson

5 This interpretation is only approximately correct as it follows from differentiating ln(E[yi|x1i, . . .,

xki]) with respect to xi. An exact interpretation is that the exponentiated coefficient e
β1 is the factor

change in μi.
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QMLE (quasi-maximum likelihood estimator). In the case of overdispersion the

standard errors of the coefficients will be underestimated in the Poisson regression,

thereby increasing the risk of making a type I error (incorrectly concluding that an

effect is significant). The quasi-Poisson model adjusts the standard errors by

estimating an additional parameter in the model (the quasi-Poisson assumes the

variance to be a fixed multiple of the mean).6 The Poisson and quasi-Poisson will

always return the same estimates of the coefficients.

Another possibility in the case of overdispersion is to estimate a negative

binomial regression model. This model also allows the conditional mean of yi(μi)
to differ from its variance (μi + α. μi

2) by estimating an additional parameter (the

dispersion parameter α). Since the negative binomial model assumes the variance to

be a quadratic function of the mean, this model allows for far greater variances for

large estimates of the mean than the quasi-Poisson.7 The Poisson model can be

regarded as a special case of this more general negative binomial model when α is

zero. A significance test on α can thus be regarded as a test for the presence of

overdispersion in the Poisson model. The probability mass function of the negative

binomial distribution differs from the Poisson distribution so that the estimated

coefficients—unlike those from the quasi-Poisson model—are not the same as in

the Poisson model, although they tend to be similar.

A common goodness-of-fit statistic for count data regression models is a pseudo-

R2 that is calculated as the square of the correlation between the observed yi and the
values predicted by the model ŷ i. This R

2 is indicative of the (internal) validity of

the model when it is used for making predictions. An additional measure is the

Akaike information criterion (AIC), which trades off goodness-of-fit with model

complexity, by adding a penalty for the number of parameters estimated in the

model.8

(b) Illustration

We now apply the Poisson regression model to analyze journal article citations

during the year following their publication. Figure 9.1 summarizes the distribution

of the number of citations in our sample of 2,271 articles.

The mean number of citations is 1.94 while the variance in the distribution is

7.38. This indicates that there may be overdispersion in a Poisson regression model,

so alternatives should be considered. Table 9.5 presents the estimated coefficients

of a Poisson, a quasi-Poisson and a negative binomial regression model.

6 The quasi-Poisson model assumes that Var[yi]¼φ2.E[yi] where φ is an overdispersion param-

eter. An estimator for φ2 is φ̂ 2 ¼ 1
n�k�1

X
yi�ŷ ið Þ2
ŷ i

. Standard errors for the quasi-Poisson coeffi-

cients can then be obtained by multiplying those of the Poisson MLE by φ̂ .
7 An extension that could further improve the fit is the Generalized Negative Binomial Regression

that models the overdispersion parameter (see the gnbreg command in Stata).
8AIC¼� 2 ln(likelihood) + 2k, where k is the number of parameters estimated in the model. So

models with lower values for the AIC are to be preferred. Unlike R2, the AIC is a relative measure

and is only useful for comparing models on the same data.
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In the Poisson model the estimated coefficient for the JOI is 0.47, which implies

that—holding the other variables constant—the predicted number of citations of

JOI articles is 47 % higher than that of JASIST articles. Articles about the h-index

have 66 % more citations than other articles. Note that the coefficient estimates in

the quasi-Poisson model are identical to those of the Poisson model. As could be

expected the standard errors in the quasi-Poisson are substantially greater than

those in the Poisson model. In fact they all are 77 % greater because the

overdispersion statistic was φ̂ ¼ 1:77 (not in the table). This indicates that the

Poisson distribution assumption was violated and that the Poisson model should not

be used for inference. For example, it would be wrong to conclude that the effect of

the variable “First” is significant, since that result in the Poisson model is based on

underestimated standard errors. Significance tests in the quasi-Poisson model show

a positive effect of articles published in the JOI and a negative effect for articles

published in RE (compared to articles in JASIST). We also find significant positive

effects from international collaboration, the number of cited references, articles

about the h-index and the publication month control variable. The results of the

negative binomial model are very similar to those of the quasi-Poisson: the same

effects are significant at the same significance levels and with very similar esti-

mated effect sizes. For example, the predicted number of citations for an article on

the h-index is 70 % higher than for other articles, whereas the effect of one

additional reference is 0.7 %. Hence 100 additional references had the same effect

than switching to an h-index related topic, which illustrates the effect of the

h-bubble (Rousseau et al., 2013). The estimated dispersion parameter α is 0.88

Fig. 9.1 Frequency distribution of the number of citations
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indicating overdispersion. A likelihood-ratio test that compares the negative bino-

mial model with a model where α is zero (the Poisson model) confirms that the

overdispersion parameter is significant (χ2¼ 1544, p<.001) so that the Poisson

Table 9.5 Count data models

(1) (2) (3)

Poisson

estimate/(SE)

Quasi-Poisson

estimate/(SE)

Negative binomial

estimate/(SE)

JOI 0.470*** 0.470*** 0.549***

(0.052) (0.092) (0.097)

RE �0.716*** �0.716*** �0.690***

(0.104) (0.183) (0.141)

RP �0.079 �0.079 �0.046

(0.053) (0.094) (0.090)

SM 0.094* 0.094 0.133

(0.043) (0.077) (0.073)

NumAut 0.006 0.006 �0.000

(0.012) (0.022) (0.020)

NumCoun 0.190*** 0.190*** 0.229***

(0.022) (0.039) (0.044)

NumRef 0.007*** 0.007*** 0.007***

(0.001) (0.001) (0.001)

NumPag �0.009* �0.009 �0.011

(0.004) (0.007) (0.006)

NumTitle �0.001 �0.001 �0.001

(0.000) (0.001) (0.001)

First 0.148** 0.148 0.151

(0.054) (0.096) (0.095)

Fund �0.127** �0.127 �0.122

(0.045) (0.079) (0.072)

PubYear 0.009 0.009 0.023

(0.014) (0.025) (0.024)

PubMon �0.056*** �0.056*** �0.062***

(0.004) (0.008) (0.008)

H 0.655*** 0.655*** 0.691***

(0.049) (0.087) (0.097)

InnoPat �0.072 �0.072 �0.099

(0.047) (0.083) (0.080)

Constant �16.849 �16.849 �46.448

(28.634) (50.618) (48.594)

α 0.88

R-squared 0.09 0.09 0.08

AIC 9,854 9,854 8,312

N 2,271 2,271 2,271

*p<0.05; **p<0.01; ***p<0.001
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model is not reliable and the quasi-Poisson or the negative binomial should be

preferred.

In order to evaluate the goodness-of-fit we calculated Pearson correlation coef-

ficients between the observed number of citations and the predicted counts in the

(quasi-) Poisson model (r¼ 0.300) and those in the negative binomial model

(r¼ 0.290), resulting in values for pseudo-R2 of 0.09 and 0.08 respectively. On

the other hand, the Akaike information criterion (AIC) indicates a better fit in the

negative binomial model, which has a smaller value for the AIC.

The effects that are found in the count data models are mostly the same effects

that we found earlier in the categorical (binary and ordinal) models. This indicates

that the main results of the analysis are robust to alterations in the model specifi-

cation. Yet while the results were fairly robust, each approach did yield additional

insights that might have been overlooked had only one approach been used. For

example, the explanatory variable First, indicating whether an article is the first in a

journal issue or not, did have a significant effect in the ordinal model, but not in the

binary model nor in the count data models. With regard to the effect of the journals,

one would draw similar conclusions from each of the models for JOI and for RE

(the first yielding higher citation impact during the year following publication than

papers in JASIST; the latter resulting in lower such citation impact). For RP and

SM, however, a comparison of the results of the different models leads to a more

nuanced idea as regards the citation impact of their papers in comparison with

papers in JASIST.

9.6 Limited Dependent Variable Models in Stata

The data used for the analyses presented above are available via the publisher’s

webpage. We now show how our results can be obtained using the statistical

software Stata.

To estimate the binary logit model where the dummy variable “D_cited” indi-

cates the outcome of an article being cited and in which JASIST (the second

journal) is the reference category:

logit D_cited ib2.Journal NumAut NumCoun NumRef NumPag NumTitle i.

First i.Fund PubYear PubMon i.H i.InnoPat

A prediction table, the adjusted count R2, odds ratios and marginal effects at the

means in the binary logit model were obtained by:

estat classification

fitstat

logit D_cited ib2.Journal NumAut NumCoun NumRef NumPag NumTitle i.

First i.Fund PubYear PubMon i.H i.InnoPat, or

margins, dydx(*) atmeans
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To reduce the code needed to estimate the other models, we first define a list of

independent variables which we call “indeps”:

local indeps JOI SM RP RE NumAut NumCoun NumRef NumPag NumTitle First

Fund PubYear PubMon H InnoPat

For the estimation of coefficients and odds ratios in the ordered logit model

where the categorical variable “citation_categories” contains the three outcome

categories:

ologit citation_categories ‘indeps’

ologit citation_categories ‘indeps’, or

brant, detail

The Poisson, quasi-Poisson, and negative binomial models for the count variable

“citations” are obtained by9:

poisson citations ‘indeps’

glm citations ‘indeps’, family(poisson) link(log) scale(x2)

nbreg citations ‘indeps’

Conclusion

Outcome variables that are categorical or frequency counts are common in

informetrics. This chapter introduced and compared common limited depen-

dent variable regression models that can be used to analyze such data. The use

of linear models may often not be justified in informetrics, as the assumptions

underlying them often do not apply in informetric datasets (Leydesdorff &

Bensman, 2006). A practical issue for researchers is to decide which of the

limited dependent variable models and their variations is most appropriate. In

many cases the nature of the data will determine that choice (e.g., if the

outcome variable is binary then there are no other options than to estimate a

binary model). But sometimes the data will offer different options for model-

ling, as in the example of citations counts used throughout this chapter. In this

case the researcher might strive to maximally exploit the information and

variation in the data by avoiding to group observations into broader catego-

ries. However, there may be valid reasons for estimating categorical models

(continued)

9 These models are part of a broader class of Generalized Linear Models (GLM). The quasi-

Poisson model is estimated in Stata as a GLM in which the standard errors are adjusted (“scaled”)

using the Pearson chi-square (“x2”) of the observed and predicted values in the model (i.e., the

estimated overdispersion parameter φ̂ that we discussed earlier).
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(continued)

in those cases too (e.g., if aggregated categories are considered more appro-

priate for a certain research question). In such cases it may be instructive to

estimate and compare different models. Yoshikane (2013), for example, used

linear, logistic as well as zero-inflated negative binomial models to analyze

patent citation frequencies; Niu and Hemminger (2012) ran a Poisson and two

logistic models in their analysis of information seeking behavior. Altering the

specification is a way to check the robustness of the main results of a study

and to detect interesting anomalies in the data.
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Chapter 10

Text Mining with the Stanford CoreNLP

Min Song and Tamy Chambers

Abstract Text mining techniques have been widely employed to analyze various

texts from massive social media to scientific publications and patents. As a biblio-

graphic analysis tool the technique presents the opportunity for large-scale topical

analysis of papers covering an entire domain, country, institution, or specific

journal. For this project, we have chosen to use the Stanford CoreNLP parser due

to its extensibility and enriched functionalities which can be applied to bibliometric

research. The current version includes a suite of processing tools designed to take

raw English language text input and output a complete textual analysis and linguis-

tic annotation appropriate for higher-level textual analysis. The data for this project

includes the title and abstract of all articles published in the Journal of the American

Society for Information Science and Technology (JASIST) in 2012 (n¼ 177). Our

process will provide an overview of the concepts depicted in the journal that year

and will highlight the most frequent concepts to establish an overall trend for

the year.

10.1 Introduction

Since Feldman and Dagan (1995) introduced Text Data Mining, the technique has
been widely employed to analyze texts from massive social media to scientific

publications and patents. Text mining is the process by which naturally occurring

text is analyzed for the purpose of discovering and capturing useful information

contained within. As such, text mining utilizes different algorithms to identify

interesting patterns from a vast array of available data. While it employs similar

exploratory data analysis functions as data mining, text mining also relies on the
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application of techniques and methodologies from the areas of information

retrieval, information extraction, computational linguistics, and natural language

processing to process the text-based corpus (Feldman & Sanger, 2007).

One, therefore, employs similar procedures as the traditional data mining pro-

cess, while changing the focus of the analysis from general data to text documents.

This change of focus results in new questions and challenges. The first, and main,

challenge relates to problems that arise—from the data modeling perspective—

because of the use of unstructured data sets. To address this, research in the field has

employed various traditional techniques, such as text representation, classification,

clustering, and information extraction to search for hidden patterns and important

concepts or themes within the text. In this context, both the selection of character-

istics and the influence of domain knowledge and domain-specific procedures play

a crucial role in the performance of mining techniques.

The major methodologies of text mining include automatic classification, auto-

matic extraction, and link analysis (Feldman & Sanger, 2007). For this reason

researchers have often asserted the synergy between text mining and bibliometric

study (Kostoff, del Rı́o, Humenik, Garcı́a, & Ramı́rez, 2001). As a bibliographic

analysis technique, therefore, text mining presents the opportunity to analyze the

paper production of an entire domain, country, institution, or in the case presented

here, a journal. Widely used in business and the life sciences, it has also become a

standard technique in the broader study of informetrics (Bar-Ilan, 2008).

In this chapter, we first present a history of the use of text mining in

bibliometrics, followed by an overview of the architecture of a text mining system

and its capabilities. We then introduce the Stanford CoreNLP parser and present an

example of its use for bibliographic analysis by analyzing the title and abstracts of

177 papers published in the Journal of the American Society for Information
Science and Technology in 2012. Finally, we conclude with a discussion of possible
future uses of text mining for bibliographic analysis.

10.2 Text Mining in Bibliometric Research

The method of scientific domain analysis, through co-occurring keywords or title

terms, was developed by Callon, Courtial, Turner, and Bauin (1983) in the late

1980s and extended by themselves (Callon, Courtial, & Laville, 1991) and other

researchers throughout the early 1990s (Van Raan & Tijssen, 1993; Zitt, 1991; Zitt

& Bassecoulard, 1994). However, it was Feldman and Dagan (1995) who first

introduced Text Data Mining as a knowledge discovery tool. Their framework

was based on a concept hierarchy, categorization of texts by concept, and compar-

ison of the concept distribution to identify unexpected patterns within the Reuters-

22173 text categorization test collection (Feldman & Dagan, 1995; Feldman,

Klösgen, & Ziberstein, 1997).

Around the same time, Ronald Kostoff, a Navel researcher, demonstrated though

multiple studies that the “frequency with which phrases appeared in full-text
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narrative technical documents was related to the main themes of the text” (Kostoff,

Toothman, Eberhart, & Humenik, 2001, p. 225). He and his colleagues patented a

technique called database tomography (Kostoff, Miles, & Eberhart, 1995) which

mined words from article abstracts and then employed more traditional bibliometric

methods to analyze the results and identify the research domain and agenda. Over

the following decade Kostoff and others would use this method to analyze various

domains based on their literature, including near-earth space (Kostoff, Eberhart, &

Toothman, 1998), chemistry (Kostoff, Eberhart, Toothman, & Pallenbarg, 2006),

and aircraft science (Kostoff, Green, Toothman, & Humenik, 2000).

The most widely used technique in bibliometric text mining focuses on

co-occurring keywords extracted from titles, abstracts, or even full-text analysis,

whether it is extended further to co-word, coheading or coauthor clustering

(Janssens, Leta, Glänzel, & De Moor, 2006). As such, many researchers have

used this method to investigate various domains from the natural sciences

(De Looze & Lemarie, 1997), to information retrieval (Ding, Chowdhury, & Foo,

1999), and to medicine (Onyancha & Ocholla, 2005). Other researchers have used

text mining to extract keywords from titles and combined this with co-word

analysis to identify potential relationships between and the meanings of concepts

within different contexts, across different domains, and through different mediums

(Leydesdorff & Hellsten, 2005; Onyancha & Ocholla, 2005).

Text mining has also been combined with citation analysis to mine citations

from the text in a process called citation mining. Kostoff et al. (2001) used this

method to identify researcher profiles. Porter, Kongthon, and Lu (2002) proposed a

similar research profiling strategy to enhance traditional literature reviews by

identifying topical relationships and research trends. More recently, researchers

have used both descriptor profiling and journal profiling to investigate archiving

research trends (Kim & Lee, 2009) and digital library research (Lee, Kim, & Kim,

2010) in the library and information science domain. Liu, Zhang, and Guo (2012)

also used citation mining identify the most significant publications by topic.

Text mining has long been a standard technique in patent analysis. Lent,

Agrawal, and Srikant (1997) used a large patent collection to create the PatentMiner

system which identified sequential patterns and shape queries through text mining

techniques to analyze and visualize trends among patents. Bhattacharya,

Kretschmer, and Meyer (2003) used text mining to identify co-words and citations

in their study of the connections between scientific literature and patent documents.

Others have used text mining to identify templates (Lawson, Kemp, Lynch, &

Chowdhury, 1996), features (Tseng, Wang, Lin, Lin, & Juang, 2007), and citation

patterns (Li, Chambers, Ding, Zhang, & Meng, 2014) within patents.

Glenisson and his colleagues (Glenisson, Glänzel, Janssens, & De Moor, 2005;

Glenisson, Glänzel, & Persson, 2005) combined full-text analysis and traditional

bibliometric methods to create a hybrid approach to text analysis. His work

confirmed that such a methodology was effective in research evaluation. Song

and Kim (2013) more recently used full-text mining to build a citation database

of PubMed articles to study the knowledge structure of the bioinformatics field.
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Liu et al. (2012) recently used full-text mining of citations in their study identifying

the most signification publications by topic.

Bibliometric research using text mining has also moved from co-word analysis

to word and document clustering. Kostoff et al. (2007) used document clustering to

identify the technical structure of the Mexican science and technology literature and

Janssens et al. (2006) used a variety of clustering methods to map the library and

information science domain. Similarly, Kim and Lee (2008) used document clus-

tering to explore the emerging intellectual structure of archival studies. Other

researchers have focused on refining the algorithms used to cluster documents,

such as Liu et al. (2010) who proposed a hybrid clustering framework to analyze

journal sets and Janssens, Glänzel, and De Moor (2008) who proposed an approach

based on Fisher’s inverse chi-square.

10.3 Text Mining System Architecture

At the most basic level text mining systems input raw natural language documents

and output patterns, connections, and tends related to those to documents. During

the initial stages, unstructured natural language data is converted into analyzable

structured data. Natural language processing is used to tokenize (remove punctua-

tion), filter (removal of words with little significance), lemmatize (converting verbs

to their infinitive tense and nouns to their singular form), or stem (stripping word

endings ing, ed, er, etc.) the text prior to analysis (Hotho, Nürnberger, & Paaß,

2005).

Natural language processing (NLP) is a computational technique for the

automatic analysis and representation of human language. The goal of NLP

research is to implement intelligent techniques to understand normal human lan-

guage (Cambria & White, 2014). As such, this research has evolved from the era of

batch and manual processing to the era of Google and big data-driven companies.

Although semantics advocates argue a transition from syntax-oriented NLP to

semantics-oriented NLP is crucial and inevitable, the vast majority of NLP studies

continue to utilize a syntax approach. Either shallow or full-text parsing may be

used to assign syntactic structure. Shallow parsing includes probabilistic

approaches such as memory-based parsing or the use of statistical decision trees

(Rajman & Vesely, 2004), while full parsing requires constituency or dependency

grammars, the latter of which uses dependency graphs where words are represented

as nodes and the relationships between them exist as edges (Feldman & Sanger,

2007).

Keyword extraction is the most basic and popular approach within NLP due to

its accessibility. The Penn Treebank (Marcus, Santorini, & Marcinkiewizc, 1993) is

a corpus consisting of over 4.5 million words for American English annotated for

part-of-speech (POS) information and is based on keyword extraction. Similarly,

PageRank (Page, Brin, Motwani, & Winograd, 1999), the famous Google ranking

algorithm, LexRank (Gunes & Radev, 2004), a stochastic graph-based method for
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computing the relative importance of textual units, and TextRank (Mihalcea &

Tarau, 2004), a graph-based ranking model for text processing, are all based on

NLP keyword and sentence extraction.

Statistical NLP, a version of syntax-oriented NLP, has been the mainstream NLP

technique used in research since the late 1990s. The method relies on language

models and is based on popular machine-learning algorithms, such as Maximum-

Likelihood (Berger, Pietra, & Pietra, 1996), Expectation Maximization (Nigam,

McCallum, Thrun, & Mitchell, 2000), Conditional Random Fields (Lafferty,

McCallum, & Pereira, 2001), and Support Vector Machines (Joachims, 2002). By

using a machine-learning algorithm over a large training corpus of annotated texts,

the NLP system cannot only learn the valence of keywords (as in the keyword

spotting approach), but also account for the valence of other arbitrary keywords,

punctuation, and word co-occurrence frequencies. Note that advanced keyword

clustering techniques such as topic modeling are discussed in Chap. 11.

Statistical methods, however, lack the semantics necessary to give the method

effective predictive value individually. While statistical NLP works well for large

text input, it does not work as well on smaller text units such as sentences or clauses.

Semantic-based NLP is needed to focus on the intrinsic meaning associated with

natural language text (Sebastiani, 2002). Rather than simply processing documents

at a syntax-level, semantics-based approaches rely on implicit denotative features

associated with natural language text, and thus avoid the blind use of keywords and

word co-occurrence count. Linguistic processing techniques, such as part-of-speech

tagging which annotates each term based on its role in the sentence (noun, verb,

adjective, proper noun, etc), text chunking which groups adjacent words such as

“government shutdown,” and Word Sense Disambiguation (WSD) which uses the

term meaning instead of the single term (“financial institution” instead of “bank”)

to provide deeper semantic representation for each term (Feldman & Sanger, 2007;

Hotho et al., 2005). Concept-based approaches are also able to detect the semantics

expressed in a more subtle manner, such as through the analysis of concepts that do

not explicitly convey relevant information, but which are implicitly linked to other

concepts that do so. Semantic-based NLP approaches usually either leverage

techniques based on external knowledge sets process (e.g., ontologies) (Suchanek,

Kasneci, & Weikum, 2007) or semantic knowledge bases (Cambria, Rajagopal,

Olsher, & Das, 2013).

After this process, the system moves from a “machine readable representation of

the documents to a machine understandable form of the documents” (Feldman &

Sanger, 2007) by structuring the document collection using clustering, classifica-

tion, relation extraction, and entity extraction techniques.

Document clustering uses an unsupervised learning process to group unlabeled

documents into meaningful document clusters where documents similar to one

another are grouped within the same cluster, without any prior information about

the document set. Although a number of document clustering approaches have been

developed over the years (Rajman & Vesely, 2004), most approaches are based on

the vector space representation, hierarchical, or partitional approaches (Aggarwal
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& Zhai, 2012; Cutting, Karger, & Pederson, 1993; Lin & Demner-Fushman, 2007;

Wang, McKay, Abbass, & Barlow, 2002).

Initially document clustering was investigated as a means of improving infor-

mation retrieval (IR) performance (Wang et al., 2002). However, it has more

recently been used to facilitate nearest-neighbor search (Aggarwal, Zhao, & Yu,

2012), to support an interactive document browsing paradigm (Cutting et al., 1993),

and to construct hierarchical topic structures (Ming, Wang, & Chua, 2010). In the

biomedical domain, Lin and Demner-Fushman (2007) introduced an interesting

semantic document clustering approach that automatically clusters biomedical

literature (MEDLINE) search results into document groups for greater understand-

ing of literature search results. Unlike traditional document clustering methods,

semantic clustering techniques provide a coherent summary of the collection in the

form of word-clusters (Bekkerman, El-Yaniv, Tishby, & Winter, 2001), which can

be used to provide summary insight into the overall content of the underlying

corpus. Variants of such methods, especially sentence clustering, can also be used

for document summarization.

Classification techniques, on the other hand, assign classes to text documents

using index term selection, probabilistic classifiers, nearest neighbor classifiers,

decision tree classifiers, or supervised classification algorithms (Hotho et al., 2005).

Document classification, which assumes categorical values for the labels, has been

widely studied in the database, data mining, and information retrieval communities.

Document classification has also found application in a wide variety of domains

such as opinion mining, email classification, and news filtering. Opinion mining

mines customer reviews or opinions, often short text documents, to determine

useful information from the review (Brody & Elhadad, 2010; Ding, Liu, &

Zhang, 2009). Email classification and spam filtering classifies email (Carvalho &

Cohen, 2005) in order to determine either the subject or to determine if it is a junk

email (Cui, Mondal, Shen, Cong, & Tan, 2005) in an automated way. News

filtering, or text filtering (Du, Safavi-Naini, & Susilon, 2003), is used by most

news services today to organize the large volume of news articles created by news

organizations on a daily basis. Volume prohibits this being done manually, and

automated methods have been very useful for categorization in a variety of Web

portals (Hepple et al., 2004; Lang, 1995).

Relation extraction reduces information loss by extracting pairs of entities

(employee–employer, organization–location) using morphological analysis and

shallow parsing, while entity extraction assigns predefined labels to textual entities

with interesting semantic properties such as company names, dates, phone numbers,

etc. (Rajman & Vesely, 2004). Recent research has used text mining to extract the

predefined named entities (genes, drugs, diseases) and build entity relationships

based on citations to discover drug relations (Ding et al., 2013; Song, Han, Kim,

Ding, & Chambers, 2013).

As a final step, many text-mining systems display results as visualizations for

further exploratory data analysis. Visualizations provide analyzable view of the

analytical results, as well as, a summary overview of the whole document collec-

tion. Similar to data analysis, results are most often presented in geometric
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representations (scatterplots, matrices, etc.), but can also be presented as pixel-

oriented (recursive patterns, circle segments, etc.), icon-oriented (stick figures,

shape coding, etc.), or hierarchical (treemap, Venn-diagram, etc.) representations

(Rajman & Vesely, 2004). Self-organizing maps are often used to visualize docu-

ment collections as they allow for low-dimensional clusters to be arranged based on

a topology that preserves high-dimensional neighborhood relations. That is, docu-

ments are clustered by similarity, but are also mapped close to other similar clusters

(Hotho et al., 2005).

10.4 The Stanford CoreNLP Parser

For this project, we have chosen to use the Stanford CoreNLP parser. This parser is

a statistical, unlexicalized, natural language parser trained on the Wall Street

Journal (De Marneff, MacCartney, & Manning, 2006; Klein & Manning, 2003a,

2003b). The current version (Stanford CoreNLP version 3.3.0) includes a suite of

processing tools designed by the Stanford Natural Language Processing group with

the goal of taking raw English language text input and outputting a complete textual

analysis and linguistic annotation appropriate for higher-level textual analysis and

understanding. As such, the suite includes tools which give “the base forms of

words, their parts of speech, whether they are names of companies, people, etc.,

normalize dates, times, and numeric quantities, and mark up the structure of

sentences in terms of phrases and word dependencies, and indicate which noun

phrases refer to the same entities” (The Stanford Natural Language Processing

Group, 2013). To accomplish this, the Stanford CoreNLP uses annotations, which

structure and map the data, and annotators, which serve as functions over the

annotations. The annotations supported by the Stanford CoreNLP are summarized

in Table 10.1.

The Stanford CoreNLP is actually a suite of tools developed by the Stanford

Natural Language Processing group, all of which can be downloaded as individual

tools and which are summarized in Table 10.1. In addition to the parser, the suite

includes the following: a part-of-speech tagger (Toutanova, Klein, Manning, &

Singer, 2003) which reads in text and assigns a part-of-speech to each word (noun,

verb, adjective, etc.) as denoted by an abbreviation from the Penn Treebank tag set

(Marcus, Marcinkiewicz, & Santorini 1993a, 1993b); a named entity recognizer

(NER), also known as CRFClassifier (Finkel, Grenager, & Manning, 2005), which

uses a liner chain sequence model to identify and label sequences of words in the

text which are identifiable things (people, company names, locations, etc.); a

co-reference resolution system (Lee et al., 2011); and sentiment analysis tools

(Socher et al., 2013), which employ a deep learning model to build a representation

of the whole sentence based on structure and then computes the sentiment based on

word composition meaning in longer phrases.
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The entire Stanford CoreNLP suite is written in Java and licensed under the

GNU General Public License. It requires Java version 1.6 or higher and is

recommended to run on a 64-bit machine, as it requires at least 3 GB of memory

depending on the file size to parse. The suite can be downloaded from http://nlp.

stanford.edu/downloads/corenlp.shtml as a 215 MB zip file.

Table 10.1 Stanford CoreNLP-supported property annotators, the annotations they generate, and

description

Property Annotator class Generated annotation

tokenize PTBTokenizerAnnotator TokensAnnotation (list of tokens), and Character-

OffsetBeginAnnotation, CharacterOffsetEndAn-

notation, TextAnnotation (for each token)

Tokenizes the text.

cleanxml CleanXmlAnnotator XmlContextAnnotation

Remove xml tokens from the document.

ssplit WordToSentenceAnnotator SentencesAnnotation

Splits a sequence of tokens into sentences.

pos POSTaggerAnnotator PartOfSpeechAnnotation

Labels tokens with their POS tag.

lemma MorphaAnnotator LemmaAnnotation

Generates the word lemmas for all tokens in the corpus.

ner NERClassifierCombiner NamedEntityTagAnnotation and

NormalizedNamedEntityTagAnnotation

Recognizes named (person, location, organization, misc) and numerical entities
(date, time, money, number).

regexner RegexNERAnnotator NamedEntityTagAnnotation

Implements a simple, rule-based NER over token sequences using Java regular
expressions to incorporate NE labels that are not annotated in traditional NL
corpora.

sentiment SentimentAnnotator SentimentCoreAnnotations.AnnotatedTree

Implements Socher et al.’s sentiment model to attach a binarized tree of the
sentence to the sentence level CoreMap. The nodes of the tree indicate the predicted
class and scores for that subtree.

truecase TrueCaseAnnotator TrueCaseAnnotation and

TrueCaseTextAnnotation

Recognizes the true case of tokens in text where this information was lost, e.g., all
upper case text.

parse ParserAnnotator TreeAnnotation, BasicDependenciesAnnotation,

CollapsedDependenciesAnnotation,

CollapsedCCProcessedDependenciesAnnotation

Provides full syntactic analysis, using both the constituent and the dependency
representations.

dcoref DeterministicCorefAnnotator CorefChainAnnotation

Implements both pronominal and nominal coreference resolution.

Adapted from the Stanford CoreNLP website, http://nlp.stanford.edu/software/corenlp.shtml
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10.5 An Example of Text Mining for Bibliometric Analysis

As an example of the use of text mining in a bibliometric study, we have chosen to

use a dataset of all articles published in the Journal of the American Society of
Information Science and Technology (JASIST) in 2012 (n¼ 177). For each of these

articles we have extracted the title and abstract for further analysis. Our process will

provide an overview of the concepts depicted in the journal that year and will

highlight the most frequent concepts to establish an overall trend for the year.

To analyze this we will use, in addition to the Stanford CoreNLP, the

MetricsConversionHandler program (http://informatics.yonsei.ac.kr/stanford_met

rics/stanford_metrics.zip) and Gephi (https://gephi.org/) for visualizing the results.

Both of these programs are open source and can be downloaded from the

provided links.

Our workflow, as visualized in Fig. 10.1, begins with the Stanford CoreNLP.

This is used to provide the text analysis of the text file jasist_2012.txt, which

contains, as described above, the titles and abstract of all articles published by the

Fig. 10.1 Workflow from text file to visualization
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JASIST in 2012. An output file from this process is then converted to a network file

using the MetricsConversionHandler. Finally, that file is read in Gephi to identify

the most connected and important nodes and ultimately to create a visualization of

the topics depicted in JASIST articles in 2012.

The Stanford CoreNLP Process: After downloading and uncompressing the

Stanford CoreNLP parser file, one will need to open a command line, and change

the path to the folder with the uncompressed parser files. The following command

(1) will be used to initiate the program.

(1) java -cp stanford-corenlp-3.3.0.jar;stanford-corenlp-3.3.0-models.jar;xom.jar;

joda-time.jar;jollyday.jar -Xmx3g edu.stanford.nlp.pipeline.StanfordCoreNLP

-annotators tokenize,ssplit,pos,lemma,ner,parse,dcoref -file jasist_2012.txt

The first part of command (1), “java -cp stanford-corenlp-3.3.0.jar;stanford-

corenlp-3.3.0-models.jar;xom.jar;joda-time.jar;jollyday.jar -Xmx3g edu.stan

ford.nlp.pipeline.StanfordCoreNLP” calls java and the specific jars used to

execute the program. The option “-Xmx3g” specifies the amount of computer

memory that Java reserves. On a 64-bit machine, the Stanford CoreNLP typically

requires 3 GB to run depending on the size of the document to parse. For Windows,

the semi-colon (;) is used for separating jars whereas the colon (:) is used in Mac OS

X or Linux. The next part of command (1), “-annotators tokenize,ssplit,pos,

lemma,ner,parse,dcoref” specifies the annotators to be used on the text. This

command is not mandatory if using the standard annotators as the code uses a

built-in properties file, which enables the following default annotators: tokenization

and sentence splitting, POS tagging, lemmatization, NER, parsing, and coreference

resolution. Additional annotators are listed in Table 10.1 and instruction for their

use can be found on the Stanford CoreNLP website (http://nlp.stanford.edu/down

loads/corenlp.shtml). The final part of the command (1), “-file jasist_2012.txt”

calls the input text file, which in this case is jasist_2012.txt.

After successful execution, the output file will be written in XML to the same

directory and with the same name as the input file but with an .xml extension added.
For each input file, the Stanford CoreNLP generates, by default, an XML file with

all the relevant annotations. An example, the output for the jasist_2012.txt file

(Fig. 10.2) shows each of the tokens processed by Stanford CoreNLP: (1) word,

(2) lemma, (3) part of speech (POS), and (4) named entity recognition (NER). The

word token identifies the word, which is delimited by whitespaces in a sentence.

The Lemma token identifies the lemma, or canonical form of the word. For

example, retrieves, retrieved, and retrieving are forms of the same lexeme, and

have the same lemma, retrieve. The POS token is the linguistic category for the

word, which is generally defined by its syntactic or morphological behavior in the

sentence such as, noun or verb. The NER token identifies the word as an entity of a

predefined category such as, the name of a person, organization, or location. The

typical results of NER are a set of entity names for meaningful words extracted

from each sentence.

After this, the XML output can then be rendered by the CoreNLP-to-HTML.xsl

file into an easily readable HTML file. This is accomplished by running the
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following command (2) from the command window in a similar way as the previous

command.

(2) org.apache.xalan.xslt.Process -in jasist_2012.txt.xml -xsl CoreNLP-to-HTML.

xsl -out jasist_2012.html

Note that in command (2) the – in command calls the previously created file

(jasist_2012.txt.xml) and the – out command names the new html file (jasist_2012.

html). The xsl style sheet used for this process comes standard with the Stanford

CoreNLP package and enables a human-readable display of the XML content.

Figure 10.3 shows an example of the results for jasist_2012 file presented in

HTML format.

MetricsConversionHandler Process: To use these results for bibliometric

study, we used a program called the MetricsConversionHandler, which converts

the XML output from the Stanford CoreNLP parser. The MetricsConver-

sionHandler program first reads the output XML (jasist_2012.txt.xml) using a

SAX processing technique, then selects the terms that are nouns and in the form

of a lemma as the input for the co-word analysis by POS and lemma in the XML

Fig. 10.2 Example XML output results from the Stanford CoreNLP parser for the jasist_2012.txt

input file
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output. After which the program counts each pair of words per sentence and creates

a GraphML file from the word pairs. An example output, using the jasist_2012.txt.

xml file is shown in Fig. 10.4.

The MetricsConversionHandler program can be downloaded from http://infor

matics.yonsei.ac.kr/stanford_metrics/stanford_metrics.zip. After unzipping the file,

one will need to run the following command (3) from the command line to produce

the corresponding GraphML file:

(3) java -Xms64m -Xmx2550m -cp .:./build:./bin:./lib/* edu.yonsei.metrics.

MetricsConversionHandler jasist_2012.txt.xml jasist_2012.graphml

Note again that the MetricsConversionHandler program calls the XML file

originally created by the Stanford CoreNLP (jasist_2012.txt.xml) to produce a

GraphML file by the same name. The resulting GraphML file (in this case

jasist_2012.graphml) can then be used as input in the Gephi visualization

program (https://gephi.org/) for further analysis and visualization of the

co-word network.

Fig. 10.3 An example of the HTML output as converted from the XML for the jasist_2012 file
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10.6 Results

Results of the analysis of the co-word network produced from the described process

are presented in Table 10.2 and visualized in Fig. 10.5. The results show that the

concepts of system, citation, web, search, and knowledge have the highest

degrees within the network. This indicates that these concepts were the most

presented that year in JASIST and that they are the concepts most associated with

other concepts that year. Given that these concepts serve as information hubs in

JASIST that year, they could reasonably be attributed to reflecting the general

content of the journal that year. Additionally, we note that system and citation also

have the highest betweenness scores which indicate that these concepts serve as

bridges between other sub-concepts in the given network.

Fig. 10.4 The GraphML Result of MetricsConversionHandler Program
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The visualization using Gephi shows similar results but detail the interaction

between the nodes in more depth. As such we can see that outstanding themes of

JASIST in 2012 were information retrieval, information network, and

informetrics in the context of the Web. Specifically speaking, two major research

themes are outstanding. First, information retrieval related studies interact with

information network related studies. In addition, information retrieval is studied

in the context of the Web. Second, citation analysis is heavily studied. Studies on

citation analysis are carried out in bibliometrics, as well as, information networks

such as the Web.

Table 10.2 Top 25 nodes listed by degree and including closeness and betweenness centrality

measures

Node Degreea Closeness centralityb Betweenness centralityc

system 72 1.37931 249.9775

citation 70 1.396552 252.0744

web 70 1.396552 212.4804

search 69 1.405172 213.9665

knowledge 67 1.422414 178.2214

method 64 1.448276 150.9842

task 60 1.482759 143.0883

user 59 1.491379 187.5244

model 58 1.5 155.9161

impact 57 1.508621 129.9933

term 57 1.508621 113.7171

publication 56 1.517241 159.7068

network 56 1.517241 148.5817

behavior 55 1.525862 104.3287

document 55 1.525862 99.88509

evidence 50 1.568966 81.63788

use 49 1.577586 86.14172

process 48 1.586207 82.94188

query 46 1.603448 81.10262

source 46 1.603448 72.36623

researcher 45 1.612069 72.14743

framework 45 1.612069 61.90369

evaluation 42 1.637931 71.98185

measure 41 1.646552 70.18668

retrieval 41 1.646552 61.44948
aThe degree of a node is the number of links that node has with other nodes. Nodes with higher

degrees act as information hubs in the network
bThe closeness centrality of a node indicates the extent of its influence over the entire network
cThe betweenness centrality of a node indicates the number of shortest paths that pass through that

node. Nodes with high Betweenness centrality serve as bridges in a network that connect different

sub groups
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Conclusions

As a bibliometric tool, text mining offers the ability for large-scale topical

analysis. The example provided here shows that processing large amounts of

text data can easily be accomplished through the use of various programs and

that the results can give researchers new insight into the topical offerings of a

journal. Although there are other text mining tools available, we chose to use

the Stanford CoreNLP due to its extensibility and enriched functionalities

which can be applied to bibliometric research. Through the example

(continued)

Fig. 10.5 Gephi Visualization of the Co-word Network based on JASIST Papers 2012
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(continued)

presented in the chapter, we have demonstrated how the Stanford CoreNLP

can easily be used for the co-word analysis of a set of abstracts.

Tseng, Lin, and Lin (2007) correctly summarized the text mining process

in their explanation of text mining in patent analysis: “the text mining process

involves a series of user interactions with the text mining tools to explore the

repository to find such patterns. After, supplemented with additional infor-

mation and interpreted by experienced experts, these patterns can become

important intelligence for decision-making” (p. 1219). To this end, we rec-

ommend the Stanford CoreNLP processing suite and encourage interested

researchers to apply the demonstrated technique to their text mining-driven

bibliometric research.
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Chapter 11

Topic Modeling: Measuring Scholarly

Impact Using a Topical Lens

Min Song and Ying Ding

Abstract Topic modeling is a well-received, unsupervised method that learns

thematic structures from large document collections. Numerous algorithms for

topic modeling have been proposed, and the results of those algorithms have been

used to summarize, visualize, and explore the target document collections. In

general, a topic modeling algorithm takes a document collection as input. It then

discovers a set of salient themes that are discussed in the collection and the degree

to which each document exhibits those topics. Scholarly communication has been

an attractive application domain for topic modeling to complement existing

methods for comparing entities of interest. In this chapter, we explain how to

apply an open source topic modeling tool to conduct topic analysis on a set of

scholarly publications. We also demonstrate how to use the results of topic model-

ing for bibliometric analysis.

11.1 Introduction

Clustering algorithms have been widely used to study scholarly communication.

Most clustering methods group words together based on their similarity, character-

ized as “distance.” Topic modeling is the next level of clustering; it groups words

based on hidden topics. It can discover hidden topics in a collection of articles based

on the assumption that, given that a document is about a certain topic, particular

words related to this topic will appear in this article with higher frequency than in

articles that are not about that topic. For example, “rain” and “snow” will appear

often in documents talking about weather, while “apple” and “grape” will appear

often in documents discussing fruit.
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Topic modeling methods have proved useful for analyzing and summarizing

large-scale textual data. They can handle streaming data, and have been applied in

biomedical data, images, videos, and social media (Blei, 2012). The goal of topic

modeling is to group sets of words that co-occur within texts as topics by assigning

a high probability to words about the same topics. The most useful aspect of topic

modeling is that it does not require any pre-annotated datasets, which often demand

tremendous manual effort in annotating or labeling, and make output quality

heavily dependent on training datasets.

In the family of topic modeling algorithms, Latent Dirichlet Allocation (LDA)

is, in our opinion, the simplest. The concept behind LDA is that one document

contains multiple topics, and each topic requires specific words to describe it. For

example, a paper is entitled “Topics in dynamic research communities: An explor-

atory study for the field of information retrieval.” This document deals with topic

modeling, community detection, scholarly communication, and information

retrieval. So terms such as “LDA,” “author-conference topic modeling,” and

“statistical methods” are used for the topic, “topic modeling”; “Newman’s

method,” “community detection,” “clustering,” and “graph partition” are used to

describe the topic of “community detection”; “co-authorship network,” “research

topics,” and “scientific collaboration” are used for the topic, “scholarly communi-

cation”; and “information retrieval model,” “information retrieval method,” “use

case,” and “search” are used for the topic, “information retrieval.”

LDA is a generative model, like Naı̈ve Bayes, that is a full probabilistic model of

all the variables. In generative modeling, data is derived from a generative process,

which defines a joint probability distribution of observed and hidden variables. It

stands in contrast to discriminative modeling (e.g., linear regression), which only

models the conditional probability of unobserved variables on the observed vari-

ables. In LDA, the observed variables are words in the documents, and the hidden

variables are topics. This follows the assumption that authors first decide a number

of topics for an article, and then pick up words related to these topics to write the

article. So in LDA, all documents in the corpus cover the same set of topics, but

each document contains different proportions of those topics (Blei, 2012).

Topic modeling algorithms aim to capture topics from a corpus automatically by

using the observed words in documents to infer the hidden topic structure (e.g.,

document topic distribution and word topic distribution). The number of topics,

usually decided by perplexity, can be heuristically set in a range from 20 to

300 (Blei, 2012). Perplexity is usually applied to measure how a probability

distribution fits a set of data. It equals the inverse of the geometric mean

per-word likelihood, and is used to evaluate models. A lower perplexity indicates

a model that can achieve enhanced generalization performance (Blei, Ng, & Jordan,

2003). The inference mechanics in topic models are independent of language and

content. They capture the statistical structure of language used to represent thematic

content. LDA approximates its posterior distribution by using inference (e.g., Gibbs

sampling) or optimization (e.g., variational methods) (Asuncion, Welling, Smyth,

& Teh, 2009).
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This chapter is organized as follows: Section 11.2 introduces several widely used

topic models. Section 11.3 provides an overview of how topic models have been

applied to study scholarly communication. Section 11.4 provides a use case with

detailed guidelines on how to apply TMT (i.e., the topic-model software developed

by Stanford University) to conduct analysis on 2,434 papers published in the

Journal of the American Society for Information Science (and Technology)
(JASIS(T)) between 1990 and 2013. Section 11.5 concludes the chapter with a

brief summary.

11.2 Topic Models

Topics can be automatically extracted from a set of documents by utilizing different

statistical methods. Figure 11.1 shows the plate notation for the major topic models,

with gray and white circles indicating observed and latent variables, respectively.

An arrow indicates a conditional dependency between variables and plates

(Buntine, 1994). Here, d is a document, w is a word, ad is a set of co-authors, x is
an author, and z is a topic. α, β, and μ are hyperparameters, and θ, ϕ, and ψ are

multinomial distributions over topics, words, and publication venues, respectively.

Table 11.1 lists notations for these formulas.

11.2.1 Language Model (LM)

The language model is an early effort to model topics in natural language

processing and information retrieval. There is no latent variable in this model

(see Fig. 11.1). For a given query q, the probability between a document and a

query word is calculated as (Ponte & Croft, 1998)

P w
��d� � ¼ Nd

Nd þ λ
� tf w; dð Þ

Nd
þ 1� Nd

Nd þ λ

� �
� tf w;Dð Þ

ND
ð11:1Þ

where tf(w,d) is the word frequency of a word w in a document d, Nd is the number

of words in the current document, ND is the number of words in the entire

collection, tf(w,D) is the frequency of a word w in the collection D, and λ is the

Dirichlet smoothing factor that is usually set equal to the average document length

in the collection (Zhai & Lafferty, 2001).
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11.2.2 Probabilistic Latent Semantic Indexing (pLSI)

Hofmann (1999) proposed the probabilistic latent semantic indexing (pLSI) model

by introducing a latent topic layer z between words and documents (see Fig. 11.1).

In this model, the probability of generating a word w from a document d is based on
the latent topic layer as

P w
��d� � ¼

XT

z¼1
P w

��z� �
P z

��d� � ð11:2Þ

where pLSI does not provide a mathematical grounding for this latent topic layer

and is thus susceptible to severe overfitting (Blei et al., 2003).

11.2.3 Latent Dirichlet Allocation (LDA)

Latent Dirichlet allocation (LDA) provides a probabilistic model for the latent topic

layer (Blei et al., 2003). For each document d, a multinomial distribution θd over
topics is sampled from a Dirichlet distribution with parameter α. For each word wdi,

a topic zdi is chosen from the topic distribution. A word wdi is generated from a

Fig. 11.1 Various LDA models
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topic-specific multinomial distribution ϕzdi . The probability of generating a word

w from a document d is

P w
��d, θ, ϕ� � ¼

X
z2TP w

��z, ϕz

� �
P z

��d, θd
� � ð11:3Þ

Therefore, the likelihood of a document collection D is defined as

P Z,W
��Θ,Φ� � ¼

Y
d2D

Y
z2Tθ

ndz
dz �

Y
z2T

Y
v2Vϕ

nzv
zv ð11:4Þ

where ndz is the number of times that a topic z has been associated with a document

d, and nzv is the number of times that a word wv has been generated by a topic z. The
model can be explained as follows: an author first decides on topics and then, to

Table 11.1 Notations for various LDA formulas

Notations Meaning

d Document

w Word

x Author

z Topic

c Publication venue

Nd The number of words in the current document

ND The number of words in the entire collection of documents

ad The set of co-authors

α The hyperparameter for generating Θ from Dirichlet distribution

β The hyperparameter for generating φ from Dirichlet distribution

μ The hyperparameter for generating Ψ from Dirichlet distribution

Θ A multinomial distribution over topics

φ A multinomial distribution over words

Ψ A multinomial distribution over publication venues

D Collection of documents

A Collection of authors

T Collection of topics

CWT
mj The number of times the mth word in a lexicon is assigned to topic j

CDT
dj The number of times the dth document is assigned to topic j

CAT
aj

The number of times the ath author is assigned to topic j

CCT
cj

The number of times the cth conference is assigned to topic j

z� di All word-topic assignment does not include current situation (assign word i in
document d to a random topic in current instance)

x� di All word-author assignment does not include current situation (assign word i in
document d to a random author in current instance)

mxz The number of times topic z is assigned to author x

nzv The number of times word v is assigned to topic z

nzc The number of times conference c is assigned to topic z
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write a paper, uses words that have a high probability of being associated with these

topics.

11.2.4 Author-Topic Model

Rosen-Zvi, Griffiths, Steyvers, and Smyth (2004) proposed the author-topic model

to represent both document content and author interests. In this model, an author is

chosen randomly when a group of authors ad decide to write a document

d containing several topics. A word w is generated from a distribution of topics

specific to a particular author. There are two latent variables, z and x. The formula to

calculate these variables is

P zi, xi
��z�i, x�i, w, ad, α, β

� � / CwT
mj þ βX

m0 CwT
m, j þ Vβ

� �� CAT
kj þ αX

j
0 CAT

kj
0 þ Tα

� � ð11:5Þ

where zi and xi represent the assignments of the ith word in a document to a topic

j and an author k, respectively, w represents the observation that the ith word is the

mth word in the lexicon, z� i and x� i represent all topic and author assignments not

including the ith word, and CAT
kj is the number of times an author k is assigned to a

topic j, not including the current instance. The random variables ϕ (the probability

of a word given a topic) and θ (the probability of a topic given an author) can be

calculated as

ϕmj ¼
CwT
mj þ βX

m0 CwT
m, j þ Vβ

� � ð11:6Þ

θkj ¼
CAT
kj þ αX

j
0 CAT

kj
0 þ Tα

� � ð11:7Þ

This model can be used to recommend reviewers for peer-reviewed journals. The

outcome of this model is a list of topics, each of which is associated with the

top-ranked authors and words. Top-ranked authors are not necessarily the most

highly cited authors in that area, but are those productive authors who use the most

words for a given topic (Steyvers, Smyth, & Griffiths, 2004). Top-ranked words of a

topic are those having a high probability of being selected when an author writes a

paper on that particular topic.
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11.2.5 Author-Conference-Topic Model

Tang, Jin, and Zhang (2008) proposed the author-conference-topic (ACT) model,

an extended LDA used to model papers, authors, and publication venues simulta-

neously. Conference represents a general publication venue (e.g., journal, work-

shop, or organization). The ACT model can be interpreted as: Co-authors determine

the topics for a paper, and each topic generates words and determines a publication

venue. The ACT model calculates the probability of a topic for a given author, the

probability of a word for a given topic, and the probability of a conference for a

given topic. Gibbs sampling is used for inference, and the hyperparameters α, β, and
μ are set at fixed values (α¼ 50/T, β¼ 0.01, and μ¼ 0.1). The posterior distribution

is estimated on x and z, and the results are used to infer θ, φ, and ψ. The posterior
probability is calculated as

P zdi, xdi
��z�di, x�di, w, c, α, β, μ

� � / m�di
xdizdi

þ αzdiX
z
m�di

xdiz
þ αz

� �

� n�di
zdiwdi

þ βwdiX
wv

n�di
zdiwv

þ βwv

� �

� n�d
zdicd

þ μcdX
c
n�d
zdic

þ μc

� � ð11:8Þ

After Gibbs sampling, the probability of a word given a topic φ, probability of a

conference given a topic ψ, and probability of a topic given an author θ, can be

estimated as

ϕzwdi
¼ nzwdi

þ βwdiX
wv

nzwv
þ βwv

� � ð11:9Þ

ψ zcd ¼
nzcd þ μcdX
c
nzc þ μcð Þ ð11:10Þ

θxz ¼ mxz þ αzX
z0

mxz0 þ αz0
� � ð11:11Þ

A paper d is a vector wd of Nd words, in which each wdi is chosen from a vocabulary

of size V. A vector ad of Ad authors is chosen from a set of authors of size A, and cd
represents a publication venue. A collection of papers D is defined by D¼
{(w1, a1, c1), . . . (wD, aD, cD)}. The number of topics is denoted as T.

11 Topic Modeling: Measuring Scholarly Impact Using a Topical Lens 241



11.2.6 Hierarchical Latent Dirichlet Allocation
(Hierarchical LDA)

Learning a topic hierarchy from a corpus is a challenge. Blei, Griffiths, and Jordan

(2010) presented a stochastic process to assign probability distributions to form

infinitely deep branching trees. LDA assumes that topics are flat with no hierarchi-

cal relationship between two topics; therefore, it fails to identify different levels of

abstraction (e.g., relationships among topics). Blei et al. (2010) proposed a nested

Chinese restaurant process (nCRP) as a hierarchical topic-modeling approach and

applied Bayesian nonparametric inference to approximate the posterior distribution

of topic hierarchies. Hierarchical LDA data treatment is different from hierarchical

clustering. Hierarchical clustering initially treats every datum (i.e., word) as a leaf

in a tree, and then merges similar data points until no word is left over—a process

that finally forms a tree. Therefore, the upper nodes in the tree summarize their

child nodes, which indicate that upper nodes share high probability with their

children. In hierarchical topic modeling, a node in the tree is a topic that consists

of a distribution of a set of words. The upper nodes do not summarize their child

nodes, but instead reflect the shared distribution of words of their child nodes

assigned to the same paths with them.

11.2.7 Citation LDA

Scientific documents are linked using citations. While common practices in graph

mining focus on the link structure of a network (e.g., Getoor & Diehl, 2005), they

ignore the topical features of nodes in that network. Erosheva, Fienberg, and

Lafferty (2004) proposed the link-LDA as the mixed-membership model that

groups publications into different topics by considering abstracts and their biblio-

graphic references. Link-LDA models a document as a bag of words and a bag of

citations. Chang and Blei (2010) proposed a relational topic model by considering

both link structures and node attributes. This model can be used to suggest citations

for new articles, and predict keywords from citations of articles. Nallapati, Ahmed,

Xing, and Cohen (2008) proposed pairwise-link-LDA and link-LDA-PLSA models

to address the issue of joint modeling of articles and their citations in the topic-

modeling framework. The pairwise-link-LDA models the presence or absence of

citations in each pair of documents, and is computationally expensive; Link-PLSA-

LDA solves this issue by assuming that the link structure is a bipartite graph, and

combines PLSA and LDA into one single graph model. Their experiments on

CiteSeer show that their models outperform the baseline models and capture the

topic similarity between contents of cited and citing articles. The link-PLSA-LDA

performs better on citation prediction and is also highly scalable.
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11.2.8 Entity LDA

LDA usually does not distinguish between different categories or concepts, but

rather treats them equally as text or strings. But with the significant increase of

available information, there exists a great need to organize, summarize, and visu-

alize information based on different concepts or categories. For example, news

articles emphasize information about who (e.g., entity person), when (e.g., entity

time), where (e.g., entity location), and what (entity topic). In the biomedical

domain, for example, genes, drugs, diseases, and proteins are major entities for

studies and clinical trials. Newman, Chemudugunta, and Smyth (2006) proposed a

statistical entity-topic method to model entities and make predictions about entities

based on learning on entities and words. Traditional LDA assumes that each

document contains one or more topics, and each topic is a distribution over

words, while Newman’s entity-topic models relate entities, topics, and words

altogether. The conditionally independent LDA model (CI-LDA) makes a priori

distinctions between words and entities during learning. SwitchLDA includes an

additional binominal distribution to control the fraction of topic entities. But the

word topics and entity topics generated by CI-LDA and SwitchLDA can be

decoupled. CorrLDA1 enforces the connection between word topics and entity

topics by first generating word topics for a document, and then generating entity

topics based on the existing word topics in a document. This results in a direct

correlation between entities and words. CorrLDA2 improves CorrLDA1 by

allowing different numbers of word topics and entity topics. These entity-topic

models can be used to compute the likelihood of a pair of entities co-occurring

together in future documents. Kim, Sun, Hockenmaier, and Han (2012) proposed an

entity topic model (ETM) to model the generative process of a term, given its topic

and entity information, and the correlation between entity word distributions and

topic word distributions.

11.3 Applying Topic Modeling Methods in Scholarly

Communication

Mann, Mimno, and McCallum (2006) applied topic modeling methods to 300,000

computer science publications, to provide a topic-based impact analysis. They

extended journal impact factor measures to topics, and introduced three topic

impact measures: topical diversity (i.e., ranking papers based on citations from

different topics), topical transfer (i.e., ranking papers based on citations from

outside of their own topics), and topical precedence (i.e., ranking papers based on

whether they are among the first to create a topic). They developed the topical

N-Grams LDA, using phrases rather than words to represent topics. Gerrish and

Blei (2010) proposed the document influence model (DIM) based on the dynamic

LDA model to identify influential articles without using citations. Their hypothesis
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is that the influence of an article in the future is corroborated by how the language of

its field changes subsequent to its publication. Thus, an article with words that

contribute to the word frequency change will have a high influence score. They

applied their model to three large corpora, and found that their influence measure-

ment significantly correlates with an article’s citation counts.

Liu, Zhang, and Guo (2012) applied labelled LDA to full-text citation analysis,

to enhance traditional bibliometric analysis. Ding (2011a) combined topic-

modeling and pathfinding algorithms to study scientific collaboration and endorse-

ment in the field of information retrieval. The results show that productive authors

tend to directly coauthor with and closely cite colleagues sharing the same research

topics, but they do not generally collaborate directly with colleagues working on

different research topics. Ding (2011b) proposed topic-dependent ranks based on

the combination of a topic model and a weighted PageRank algorithm. She applied

the author-conference Topic (ACT) model to extract the topic distribution for

individual authors and conferences, and added this as a weighted vector to the

PageRank algorithm. The results demonstrated that this method can identify rep-

resentative authors with different topics over different time spans. Later, Ding

(2011c) applied the author-topic model to detect communities of authors, and

compared this with traditional community detection methods, which are usually

topology-based graph partitions of co-author networks. The results showed that

communities detected by the topology-based community detection approach tend to

contain different topics within each community, and communities detected by the

author-topic model tend to contain topologically diverse sub-communities within

each community. Natale, Fiore, and Hofherr (2012) examined the aquaculture

literature using bibliometrics and computational semantic methods, including latent

semantic analysis, topic modeling, and co-citation analysis, to identify main themes

and trends. Song, Kim, Zhang, Ding, and Chambers (2014) adopted the Dirichlet

multinomial regression (DMR)-based topic modeling method to analyze the overall

trends of bioinformatics publications during the period between 2003 and 2011.

They found that the field of bioinformatics has undergone a significant shift, to

coevolve with other biomedical disciplines.

11.4 Topic Modeling Tool: Case Study

In this section, we introduce an open-source tool for topic modeling and provide a

concrete example of how to apply this tool to conduct topic analysis on a set of

publications.

The Stanford Topic Modeling Toolbox (TMT) is a Java-based topic modeling

tool (http://nlp.stanford.edu/software/tmt/tmt-0.4/), and a subset of the Stanford

Natural Language Processing software. The current version of TMT is 0.4, and

the tool is intended to be used by non-technical personnel who want to apply topic

models to their own datasets. TMT accepts tab-separated and comma-separated

values, and is seamlessly integrated with spreadsheet programs, such as Microsoft
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Excel. While TMT provides several topic models—such as LDA, labeled LDA, and

PLDA—it unfortunately cannot support the author-topic model or author-

conference topic. Mallet (http://mallet.cs.umass.edu/) provides a toolkit for LDA,

Pachinoko LDA, and hierarchical LDA. At David Blei’s homepage (http://www.cs.

princeton.edu/~blei/topicmodeling.html), there are codes for a variety of LDA

models.

To run TMT, the following software needs to be pre-installed:

1. Any text editor, such as NotePad, for creating TMT processing scripts; and

2. Java 6SE, or a higher version.

Once the prerequisite software is in place, the TMT executable program needs to

be downloaded from the TMT homepage (http://nlp.stanford.edu/software/tmt/tmt-

0.4/tmt-0.4.0.jar). The simple GUI of TMT can be seen by either double-clicking

the file to open the toolbox, or running java -jar tmt-0.4.0.jar from the command

line (Fig. 11.2).

Once the GUI is displayed, there is an option for designating a CSV or

tab-delimited input file. To demonstrate how topic modeling via TMT can be

applied to analyze scientific publication datasets, we downloaded 2,534 records

published in the Journal of the American Society for Information Science (and
Technology) (JASIS(T)) between 1990 and 2013 from Web of Science. We made

the dataset publicly available at http://informatics.yonsei.ac.kr/stanford_metrics/

jasist_2012.txt.

Figure 11.3 shows the JASIST input data, opened in Microsoft Excel. To load

the dataset into TMT, select “Open script . . .” from the file menu of the TMT GUI.

Fig. 11.2 Welcome page of TMT
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If the dataset is successfully loaded, as shown in Fig. 11.4, below, the message is

“Success: CSVFile (“JASIST-oa-subset.csv”) contains 2534 records” is displayed.

First, prepare the input data. As explained earlier, the dataset can be imported

from a CSV file. Once the dataset is loaded into TMT, a simple Scala script that

comes with TMT will convert a column of text from a file into a sequence of words.

To this end, the script that comes with TMT must be executed; a basic understand-

ing of the script is required to do this. Figure 11.5 shows a snippet of the script.

Fig. 11.3 Input data from JASIST for TMT

Fig. 11.4 Execution result of loading the example dataset
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In line 12, TMT is instructed to use the value in column 1 as the record ID, a unique

identifier for each record in the file. If you have record IDs in a different column,

change the 1 in line 12 to the right column number.

After identifying the record id, tokenization must be applied (lines 14–19 in

Fig. 11.5). The SimpleEnglishTokenizer class (line 15) is used to remove punctu-

ation from the ends of words and then split up the input text by white-space

characters. The CaseFolder (line 16) is then used to lower-case each word. Next,

the WordsAndNumbersOnlyFilter (line 17) is used to remove words that are

entirely punctuation and other non-word or non-number characters. Finally, the

MinimumLengthFilter class (line 18) is used to remove terms that are shorter than

three characters.

After defining the tokenizer (line 14–19), the tokenizer is used to extract text

from the appropriate column(s) in the CSV file. If your text data is in a single

column (for example, the text is in the fourth column), this procedure is coded in

line 21–29: source ~>Column (3,4) ~>TokenizeWith(tokenizer). After that, the

function of lines 25–29 is to retain only meaningful words. The code above removes

terms appearing in fewer than four documents (line 26), and the list of the 30 most

common words in the corpus (line 27). The DocumentMinimumLengthFilter

(5) class removes all documents shorter than length 5.

Fig. 11.5 Snippet of the Scala code for converting text into a sequence of words
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The next step is to select parameters for training an LDA model (line 37–47).

First, the number of topics needs to be pre-defined, as in the K-means clustering

algorithm. In the code snippet above (Fig. 11.6), besides the number of topics, LDA

model parameters for a smoothing term and topic need to be pre-defined to build

topic models. Those parameters are shown in the LDAModelParams constructor on

lines 35 and 36: termSmoothing is 0.01 and topicSmoothing is set to 0.01. The

second step is to train the model to fit the documents. TMT supports several

inference techniques on most topic models, including the possibility to use a

collapsed Gibbs sampler (Griffiths & Steyvers, 2004) or the collapsed variational

Bayes approximation to the LDA objective (Asuncion et al., 2009). In the example

above (Fig. 11.6), the collapsed variational Bayes approximation is used (line 44).

To learn the topic model, the script “example-2-lda-learn.scala” is run by using

the TMT GUI. The topic model outputs status messages as it trains, and writes the

generated model into a folder in the current directory named, in this case, “lda-

59ea15c7-30-75faccf7,” as shown in Fig. 11.7. This process may take a few

minutes, depending on the size of the dataset.

After the learning of topic models is successfully done, the model output folder

“lda-59ea15c7-30-75faccf7” is generated. As shown in Fig. 11.8, the folder con-

tains the following files that are required to analyze the learning process and to load

the model back in from disk: description.txt, document-topic-distributions.csv.gz,

tokenizer.txt, summary.txt, term-index.txt, and topic-term-distributions.csv.gz.

Description.txt contains a description of the model saved in this folder, while

document-topic-distributions.csv.gz is a csv file containing the per-document

topic distribution for each document in the dataset. Tokenizer.txt contains a

tokenizer that is employed to tokenize text for use with this model. Summary.txt

provides the human-readable summary of the topic model, with the top 20 terms per

topic. Term-index.txt maps terms in the corpus to ID numbers, and topic-term-

distributions.csv.gz contains the probability of each term for each topic.

Fig. 11.6 Snippet of the code of learning topic models
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The next code snippet shows how to slice the results of the topic model

(Fig. 11.9). The code snippet shown in Fig. 11.9 is from the script “example-4-

lda-slice.scala.” The technique embodied in this snippet is helpful in examining

how a topic is used in each slice of the data, where the slice is the subset of data

Fig. 11.8 Output folder as a result of learning topic models

Fig. 11.7 Output message of running the script for learning topics
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associated with one or more meta-data items, such as year, author, and journal. As

before, the model is re-loaded from the disk (line 26–30). In the sample data used in

this chapter, the time period of the publication year each document belongs to is

found in column 2, and this is the categorical variable used for slicing the dataset. In

lines 32–37, the code loads the per-document topic distributions generated during

training. In lines 42–58, it shows the usage of each topic in the dataset by the slice of

data. In line 49, QueryTopicUsage prints how many documents and words are

associated with each topic. In addition, the top words associated with each topic

within each group are generated (line 57). The generated -sliced-top-terms.csv file

is used to determine if topics are used consistently across sub-groups.

Time period is indicated on the X-axis, count is the value field, and topic is the

legend field. The three CSV files (document-topic-distributions.csv, JASIST-oa-

subset-sliced-top-terms.csv, and JASIST-oa-subset-sliced-usage.csv) generated by

the script “example-4-lda-slice.scala” are directly imported into Microsoft Excel to

visualize the results of topic models for understanding, plotting, and manipulating

the topic model outputs. In the JASIST-oa-subset-sliced-usage.csv file, the first

column is the topic id, the second column is the group which is year, the third

column contains the total number of documents associated with each topic within

each slice, and the fourth column contains the total number of words associated

with each topic within each slice.

Figure 11.10 shows several interesting results. First, there are topics showing a

consistent increase in topic trends (topics 1, 3, 4, 7, 8, and 9). These topics are

information resource, informetrics, information network, information science—

Fig. 11.9 Snippet of the code for slicing the topic model’s output
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general, and information structure. Second, the topic information retrieval shows a

fluctuating pattern (i.e., a decrease in period 1995–1999, an increase in period

2000–2004, and then another decrease). User study (topic 2), has a big increase

between the period 1995–1999 and the period 2000–2004, and then a mild decrease.

Informetrics (topic 3) and information network (topic 4) show a similar pattern.

With the advent of the Internet, informetrics and information network have become

trendy topics published in JASIS(T). Digital library (topic 5) shows an increasing

pattern until 2004, then decreases.

Table 11.2 shows 20 topical terms per topic for 10 topics. These topical terms are

generated by TMT and stored in the summary.txt file.

The results of topic modeling indicate which salient topics were covered in

JASIS(T). In addition, the results show that informetrics is the dominant topic

studied by papers published in JASIS(T) for the past two decades.

The major limitations of TMT when applied to bibliometric research are as

follows: First, it is not quite clear what common stop-word list is used by TMT. In

the Scala script provided by TMT, the option for applying the stop-word list is

TermDynamicStopListFilter(30), which removes the most common 30 terms. How-

ever, it is not clear what those 30 terms are and how to change them. Second, this

filter is not adequate for processing a huge amount of data. To generate topic

models from millions of records, TMT needs to be extended to the MapReduce

platform. Third, the front end of TMT, written in Scala, does not provide as rich a

set of functionalities as those of back-end components written in Java.
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Fig. 11.10 Graphic representation of slicing results
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Table 11.2 20 topical terms for 10 topics

Topic 00 Topic 01 Topic 02 Topic 03 Topic 04

Information
retrieval

Information
resource

User study Informetrics-
citation analysis

Information network

Query Internet Users Impact Knowledge

Documents Online User Number Social

Document About Searching Citation Management

Relevance Not Task Distribution Technology

Term Content Image Indicators Communication

Performance They Design Papers Behavior

Method Source Behavior Citations Factors

Queries Electronic They Publications Community

Terms Sites Systems Between Group

Used Other Tasks Different How

Systems Than Findings Authors Network

Approach May Students Also Technologies

Effectiveness Most Participants Not Organizational

Space Such Used Countries Learning

Based Personal Different Bibliometric Collaborative

Methods But Two Distributions Through

Not Site Process Than Tagging

Our Health Interface Index Between

Database Social Terms Law Perceived

Models Quality Cognitive One Environment

Topic 05 Topic 06 Topic 07 Topic 08 Topic 09

Digital
library

Cataloging and
classification

Informetrics Information
science

Information structure
and analysis

Digital Text Citation Science structure

Library Indexing Journals Systems Measures

Development Approach Journal Knowledge Network

Access Language Science Theory Clustering

Design Words Articles Work Two

Systems Documents Citations What Based

Libraries Classification Scientific Approach Between

Metadata Chinese Literature Concepts Relationships

Resources Based Impact View Different

Has Automatic Scholarly Understanding New

Services Semantic Cited Its Clusters

Electronic Techniques Published How Used

Tools Our Publication Between Similarity

Project Terms Authors Concept Map

Collection Method Between Not Networks

New Has Sciences Nature Pages

How Been Disciplines New Measure

Technology Word Databases Framework Mapping

Support Algorithm Than Role Categories

Been Features Subject Process Author
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Conclusion

Topic modeling represents a recent surge in text-mining applications for

analyzing large amounts of unstructured text data. Among a number of

topic modeling algorithms, LDA is the best-received topic modeling method.

LDA and its variations—such as hierarchical LDA and labeled LDA—are

used in different research domains, such as Physics, Computer Science,

Information Science, Education, and Life Sciences. In an effort to help

bibliometric researchers adapt LDA to their own research problems, the

present chapter provides an overview of topic modeling techniques, and

walks readers through the steps needed to perform analysis on datasets for a

bibliometric study.

To this end, we demonstrate how the topic-modeling technique can be

applied to real-world research problems by using the Stanford Topic Model-

ing Tool (TMT). Stanford TMT allows for (1) importing and manipulating

data from Microsoft Excel, (2) training topic models with summaries of the

input data, (3) selecting parameters (such as the number of topics) with

several easy steps, and (4) generating CSV-style outputs to track word

usage across topics and time.

LDA can be applied in any field where texts are the main data format.

There are several challenges for LDA, however. First, the labeling of topics

can be done in different ways (Mei, Shen, & Zhai, 2007), usually using the

top-ranked keywords with high probabilities from each topic to label that

topic. But such labels can be hard to interpret, and they are sometimes

contradictory. Since LDA uses soft clustering, one keyword can appear in

more than one topic, and some topics can have very similar labels. How to

provide a meaningful label for each topic automatically remains a challenge.

Evaluating LDA is another challenge (Chang, Gerrish, Wang, Boyd-Graber,

& Blei, 2009) because LDA is an unsupervised probabilistic model, and the

generated latent topics are not always semantically meaningful. LDA

assumes that each document can be described as a set of latent topics,

which are multinomial distributions of words. Chang et al. (2009) found

that models achieving better perplexity often generate less interpretable latent

topics. By using the Amazon Mechanical Turk, they found that people

appreciate the semantic coherence of topics, and they therefore recommended

incorporating human judgments into the model-fitting process as a way to

increase the thematic meanings of topics.

In the present chapter, we use the Stanford TMT to demonstrate how topic-

modeling techniques can help bibliometric studies. As described earlier,

Stanford TMT provides the following features: (1) Imports text datasets

from cells in Microsoft Excel’s CSV spreadsheets; (2) uses LDA modeling

to create summaries of the text datasets; (3) selects parameters for training

LDA models, such as the number of topics, the number of top words in each

(continued)
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(continued)

topic, the filtering of most common words, and the selection of columns

containing the text datasets; and (4) slices the LDA topic-model output and

converts it into rich Microsoft-Excel-compatible outputs for tracking word

usage across topics and respondent categories. As a case study, we collected

2,534 records published in the Journal of the American Society for Informa-
tion Science (and Technology) (JASIS(T)) between year 1990 and year 2013

from Web of Science. With topic modeling, we discover hidden topical

patterns that pervade the collection through statistical regularities and use

them for bibliometric analysis. In the future we plan to explore how to

combine a citation network with topic modeling, which will map out topical

similarities between a cited article and its citing articles.

Appendix: Normalization, Mapping, and Clustering

Techniques Used by VOSviewer

In this appendix, we provide a more detailed description of the normalization,

mapping, and clustering techniques used by VOSviewer.

Normalization

We first discuss the association strength normalization (Van Eck &Waltman, 2009)

used by VOSviewer to normalize for differences between nodes in the number of

edges they have to other nodes. Let aij denote the weight of the edge between nodes

i and j, where aij¼ 0 if there is no edge between the two nodes. Since VOSviewer

treats all networks as undirected, we always have aij¼ aji. The association strength

normalization constructs a normalized network in which the weight of the edge

between nodes i and j is given by

sij ¼ 2maij
kikj

; ð11:12Þ

where ki (kj) denotes the total weight of all edges of node i (node j) and m denotes

the total weight of all edges in the network. In mathematical terms,

ki ¼
X
j

aij and m ¼ 1

2

X
i

ki: ð11:13Þ
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We sometimes refer to sij as the similarity of nodes i and j. For an extensive

discussion of the rationale of the association strength normalization, we refer to

Van Eck and Waltman (2009).

Mapping

We now consider the VOS mapping technique used by VOSviewer to position the

nodes in the network in a two-dimensional space. The VOS mapping technique

minimizes the function

V x1; . . . ; xnð Þ ¼
X
i<j

sij xi � xj
		 		2 ð11:14Þ

subject to the constraint

2

n n� 1ð Þ
X
i<j

xi � xj
		 		 ¼ 1; ð11:15Þ

where n denotes the number of nodes in a network, xi denotes the location of node

i in a two-dimensional space, and ||xi� xj|| denotes the Euclidean distances between

nodes i and j. VOSviewer uses a variant of the SMACOF algorithm (e.g., Borg &

Groenen, 2005) to minimize (11.14) subject to (11.15). We refer to Van Eck

et al. (2010) for a more extensive discussion of the VOS mapping technique,

including a comparison with multidimensional scaling.

Clustering

Finally, we discuss the clustering technique used by VOSviewer. Nodes are

assigned to clusters by maximizing the function

V c1; . . . ; cnð Þ ¼
X
i<j

δ ci; cj
� �

sij � γ
� � ð11:16Þ

where ci denotes the cluster to which node i is assigned, δ(ci, cj) denotes a function
that equals 1 if ci¼ cj and 0 otherwise, and γ denotes a resolution parameter that

determines the level of detail of the clustering. The higher the value of γ, the larger
the number of clusters that will be obtained. The function in (11.16) is a variant of

the modularity function introduced by Newman and Girvan (2004) and Newman

(2005) for clustering the nodes in a network. There is also an interesting
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mathematical relationship between on the one hand the problem of minimizing

(11.14) subject to (11.15) and on the other hand the problem of maximizing (11.16).

Because of this relationship, the mapping and clustering techniques used by

VOSviewer constitute a unified approach to mapping and clustering the nodes in

a network. We refer to Waltman et al. (2010) for more details. We further note that

VOSviewer uses the recently introduced smart local moving algorithm (Waltman &

Van Eck, 2013) to maximize (11.16).

References

Asuncion, A., Welling, M., Smyth, P., & Teh, Y. (2009). On smoothing and inference for topic

models. Proceedings of the Conference on Uncertainty in Artificial Intelligence, Montreal,

Canada, 18–21 June.

Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77–84.
Blei, D. M., Griffiths, T. L., & Jordan, M. (2010). The nested Chinese restaurant process and

Bayesian nonparametric inference of topic hierarchies. Journal of the ACM, 57(2), 1–30.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine

Learning Research, 3, 993–1022.
Borg, I., & Groenen, P. J. F. (2005). Modern multidimensional scaling (2nd ed.). New York:

Springer.

Buntine, W. L. (1994). Operations for learning with graphical models. Journal of Artificial
Intelligence Research, 2, 159–225.

Chang, J., & Blei, D. M. (2010). Hierarchical relational models for document networks. The
Annals of Applied Statistics, 4(1), 124–150.

Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J. L., & Blei, D. M. (2009). Reading tea leaves:

How humans interpret topic models. Proceedings of 23rd Advances in Neural Information
Processing Systems, Vancouver, Canada, 7–12 December.

Ding, Y. (2011a). Scientific collaboration and endorsement: Network analysis of coauthorship and

citation networks. Journal of Informetrics, 5(1), 187–203.
Ding, Y. (2011b). Topic-based PageRank on author co-citation networks. Journal of the American

Society for Information Science and Technology, 62(3), 449–466.
Ding, Y. (2011c). Community detection: Topological vs. topical. Journal of Informetrics, 5(4),

498–514.

Erosheva, E., Fienberg, S., & Lafferty, J. (2004). Mixed-membership models of scientific publi-

cations. Proceedings of the National Academy of Sciences, 101(1), 5220–5227.
Gerrish, S., & Blei, D. M. (2010). A language-based approach to measuring scholarly impact.

Proceedings of the 26th International Conference on Machine Learning, Haifa, Israel,

21–24 June.

Getoor, L., & Diehl, C. P. (2005). Link mining: A survey. ACM SIGKDD Explorations Newsletter,
7(2), 3–12.

Griffiths, T. L., & Steyvers, M. (2004). Finding scientific topics. Proceedings of the National
Academy of Sciences, 101, 5228–5235.

Hofmann, T. (1999, August 15–19). Probabilistic latent semantic indexing. Proceedings of the
22nd Annual International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (pp. 50–57), Berkeley, CA, USA.

Kim, H., Sun, Y., Hockenmaier, J., & Han, J. (2012). ETM: Entity topic models for mining

documents associated with entities. 2012 I.E. 12th International Conference on Data Mining
(pp. 349–358). IEEE.

256 M. Song and Y. Ding



Liu, X., Zhang, J., & Guo, C. (2012). Full-text citation analysis: Enhancing bibliometric and

scientific publication ranking. Proceedings of the 21st ACM International Conference on
Information and Knowledge Management (pp. 1975–1979), Brussels, Belgium. ACM.

Mann, G. S., Mimno, D., & McCallum, A. (2006). Bibliometric impact measures leveraging topic

analysis. The ACM Joint Conference on Digital Libraries, Chapel Hill, North Carolina, USA,

11–15 June.

Mei, Q., Shen, X., & Zhai, C. (2007). Automatic labeling of multinomial topic models. Pro-
ceedings of Knowledge Discovery and Data Mining Conference (pp. 490–499).

Nallapati, R., Ahmed, A., Xing, E. P., & Cohen, W. W. (2008). Joint latent topic models for text

and citations. Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Las Vegas, Nevada, USA, 24–27 August.

Natale, F., Fiore, G., & Hofherr, J. (2012). Mapping the research on aquaculture. A bibliometric

analysis of aquaculture literature. Scientometrics, 90(3), 983–999.
Newman, D., Chemudugunta, C., & Smyth, P. (2006). Statistical entity-topic models. Proceedings

of 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Philadelphia, Pennsylvania, USA, 20–23 August.

Newman, M., & Girvan, M., (2004). Finding and evaluating community structure in networks.

Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 69, 026113
Newman, M. E. J. (2005), Power laws, Pareto distributions and Zipf’s law. Contemporary Physics,

46(5), 323–351
Ponte, J. M., & Croft, W. B. (1998, August 24–28). A language modeling approach to information

retrieval. Proceedings of the 21st Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Melbourne, Australia (pp. 275–281).

Rosen-Zvi, M., Griffiths, T., Steyvers, M., & Smyth, P. (2004). The author-topic model for authors

and documents. Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence,
Banff, Canada (pp. 487–494).

Song, M., Kim, S. Y., Zhang, G., Ding, Y., & Chambers, T. (2014). Productivity and influence in

bioinformatics: A bibliometric analysis using PubMed central. Journal of the American Society
for Information Science and Technology, 65(2), 352–371.

Steyvers, M., Smyth, P., & Griffiths, T. (2004 August 22–25). Probabilistic author-topic models

for information discovery. Proceeding of the 10th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (pp. 306–315), Seattle, Washington, USA.

Tang, J., Jin, R., & Zhang, J. (2008, December 15–19). A topic modeling approach and its

integration into the random walk framework for academic search. Proceedings of 2008 I.E.
International Conference on Data Mining (ICDM2008) (pp. 1055–1060), Pisa, Italy.

Van Eck, N.J., & Waltman, L. (2009). How to normalizecooccurance data? An analysis of some

well-known similarity measures. Journal of the American Society for Information Science and
Technology, 60(8), 1635–1651.

Van Eck, N. J., Waltman, L., Noyons, E. C. M., & Butter, R.K. (2010). Automatic term

identification for bibliometric mapping. Sceientometrics, 82(3), 581–596.
Zhai, C., & Lafferty, J. (2001, September 9–13). A study of smoothing methods for language

models applied to ad hoc information retrieval. Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(pp. 334–342), New Orleans, LA, USA.

11 Topic Modeling: Measuring Scholarly Impact Using a Topical Lens 257



Chapter 12

The Substantive and Practical Significance

of Citation Impact Differences Between

Institutions: Guidelines for the Analysis

of Percentiles Using Effect Sizes

and Confidence Intervals

Richard Williams and Lutz Bornmann

Abstract In this chapter we address the statistical analysis of percentiles: How

should the citation impact of institutions be compared? In educational and psycho-

logical testing, percentiles are already used widely as a standard to evaluate an

individual’s test scores—intelligence tests for example—by comparing them with

the scores of a calibrated sample. Percentiles, or percentile rank classes, are also a

very suitable method for bibliometrics to normalize citations of publications in

terms of the subject category and the publication year and, unlike the mean-based

indicators (the relative citation rates), percentiles are scarcely affected by skewed

distributions of citations. The percentile of a certain publication provides informa-

tion about the citation impact this publication has achieved in comparison to other

similar publications in the same subject category and publication year. Analyses of

percentiles, however, have not always been presented in the most effective and

meaningful way. New APA guidelines (Association American Psychological, Pub-
lication manual of the American Psychological Association (6 ed.). Washington,

DC: American Psychological Association (APA), 2010) suggest a lesser emphasis

on significance tests and a greater emphasis on the substantive and practical

significance of findings. Drawing on work by Cumming (Understanding the new
statistics: effect sizes, confidence intervals, and meta-analysis. London: Routledge,
2012) we show how examinations of effect sizes (e.g., Cohen’s d statistic) and

confidence intervals can lead to a clear understanding of citation impact

differences.
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12.1 Introduction

Researchers in many fields, including bibliometricians, have typically focused on

the statistical significance of results. Often, however, relatively little attention has

been paid to substantive significance. Chuck Huber (2013, p. 1) provides an

example of the possible fallacies of the typical approaches:

What if I told you that I had developed a new weight-loss pill and that the difference

between the average weight loss for people who took the pill and those who took a placebo

was statistically significant? Would you buy my new pill? If you were overweight, you

might reply, “Of course!” . . . Now let me add that the average difference in weight loss was

only one pound over the year. Still interested? My results may be statistically significant but

they are not practically significant. Or what if I told you that the difference in weight loss

was not statistically significant—the p-value was “only” 0.06—but the average difference

over the year was 20 lb? You might very well be interested in that pill. The size of the effect

tells us about the practical significance. P-values do not assess practical significance.

The American Psychological Association (APA) (2010) has recently called on

researchers to pay greater attention to the practical significance of their findings.

Geoff Cumming (2012) has taken up that challenge in his book, Understanding the
New Statistics: Effect Sizes, Confidence Intervals, and Meta-Analysis. The need for

the methods he outlines is clear: despite the serious flaws of approaches that only

examine statistical significance, Tressoldi, Giofre, Sella, and Cumming (2013) find

that “Null Hypothesis Significance Testing without any use of confidence intervals,

effect size, prospective power and model estimation, is the prevalent statistical

practice used in articles published in Nature, 89 %, followed by articles published in

Science, 42 %. By contrast, in all other journals [The New England Journal of

Medicine, The Lancet, Neuropsychology, Journal of Experimental Psychology-

Applied, and the American Journal of Public Health], both with high and lower

impact factors, most articles report confidence intervals and/or effect size mea-

sures.” In bibliometrics, it has been also recommended to go beyond statistical

significance testing (Bornmann & Leydesdorff, 2013; Schneider, 2012).

In this chapter we review some of the key methods outlined by Cumming (2012),

and show how they can contribute to a meaningful statistical analysis of percentiles.

The percentile of a certain publication provides information about the citation

impact this publication has achieved in comparison to other similar publications

in the same subject category and publication year. Following Cumming’s (2012)

lead, we explain what effect sizes and confidence intervals (CIs) are. We further

explain how to assess the ways in which the percentile scores of individual

institutions differ from some predicted values and from each other; and how the

proportions of highly cited papers (i.e., the top 10 % most frequently cited papers)

can be compared across institutions. Throughout, our emphasis will be in not only

demonstrating whether or not statistically significant effects exist, but in assessing

whether the effects are large enough to be of practical significance.

We begin by discussing the types of measures that bibliometricians will likely

wish to focus on when doing their research. Specifically, we argue that percentile
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rankings for all papers, and the proportion of papers that are among the top 10 %

most frequently cited, deserve special consideration.

12.2 Percentile Rankings

Percentiles used in bibliometrics provide information about the citation impact of a

focal paper compared with other comparable papers in a reference set (all papers in

the same research field and publication year). For normalizing a paper under study,

its citation impact is evaluated by its rank in the citation distribution of similar

papers in the corresponding reference set (Leydesdorff & Bornmann, 2011;

Pudovkin & Garfield, 2009). For example, if a paper in question was published in

2009 and was categorized by Thomson Reuters into the subject category “physics,

condensed matter”, all papers published in the same year and subject category build

up its reference set. Using the citation ranks of all papers in the reference set,

percentiles are calculated which also lead to a corresponding percentile for the

paper in question. This percentile expresses the paper’s citation impact position

relative to comparable papers.

This percentile-based approach arose from a debate in which it was argued that

frequently used citation impact indicators based on using arithmetic averages for

the normalization—e.g., “relative citation rates” (Glänzel, Thijs, Schubert, &

Debackere, 2009; Schubert & Braun, 1986) and “crown indicators”(Moed, De

Bruin, & Van Leeuwen, 1995; van Raan, van Leeuwen, Visser, van Eck, &

Waltman, 2010)—had been both technically (Lundberg, 2007; Opthof &

Leydesdorff, 2010) and conceptually (Bornmann & Mutz, 2013) flawed. Among

their many advantages, percentile rankings limit the influence of extreme outliers.

Otherwise, a few papers with an extremely large number of citations could have an

immense impact on the test statistics and parameter estimates.

An example will help to illustrate this. The Leiden Ranking uses citation impact

indicators based on using arithmetic averages for the normalization (the mean

normalized citation score, MNCS) and based on percentiles (PPtop 10 %, which

measures the proportion of papers among the 10 %most frequently cited papers in a

subject category and publication year). For the University of Göttingen, an extreme

outlier leads to a large ranking position difference between MNCS and PPtop 10 %:

This university is ranked 2nd based on the MNCS indicator, while it is ranked 238th based

on the PPtop 10 % indicator. The MNCS indicator for University of Göttingen turns out to

have been strongly influenced by a single extremely highly cited publication. This publi-

cation . . .was published in January 2008 and had been cited over 16,000 times by the end of

2010. Without this single publication, the MNCS indicator for University of Göttingen

would have been equal to 1.09 instead of 2.04, and University of Göttingen would have

been ranked 219th instead of 2nd. Unlike the MNCS indicator, the PPtop 10 % indicator is

hardly influenced by a single very highly cited publication. This is because the PPtop 10 %

indicator only takes into account whether a publication belongs to the top 10 % of its field

or not. The indicator is insensitive to the exact number of citations of a publication

(Waltman et al., 2012, p. 2425).
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Since the percentile approach has been acknowledged in bibliometrics as a

valuable alternative to the normalization of citation counts based on mean citation

rates, some different percentile-based approaches have been developed (see an

overview in Bornmann, Leydesdorff, & Mutz, 2013). More recently, one of

these approaches (PPtop 10 %, also known as the Excellence Rate) has been prom-

inently used in the Leiden Ranking (Waltman et al., 2012) and the SCImago

institutions ranking (Bornmann, de Moya Anegon, & Leydesdorff, 2012) as eval-

uation tools.

Three steps are needed in order to calculate percentiles for a reference set: First,

all papers in the set are ranked in ascending order of their numbers of citations.

Second, each paper is assigned a percentile based on its rank (percentile rank).

Percentiles can be calculated in different ways (Bornmann et al., 2013; Cox, 2005;

Hyndman & Fan, 1996). The most commonly used formula is (100 * (i� 1)/n),
where n is the total number of papers, and i the rank number in ascending order. For

example, the median value or the 50th percentile rank separates the top-half of

the papers from the lower half. However, one can also calculate percentiles as

(100 * (i/n)). This calculation is used, for example, by InCites (Thomson Reuters,

see below). Third, the minimum or maximum of the percentile rank can be adjusted.

Papers with zero citations can be assigned a rank of zero. By assigning the rank zero

to the papers with zero citations, one ensures that the missing citation impact of

these papers is reflected in the percentiles in the same way in every case. Different

ranks for papers with zero citations would arise if percentiles are calculated without

using a constant rank of zero at the bottom (Leydesdorff & Bornmann, 2012; Zhou

& Zhong, 2012).

A technical issue in the case of using percentiles for research evaluation pertains

to the handling of ties (e.g., Pudovkin & Garfield, 2009; Schreiber, 2013; Waltman

& Schreiber, 2013). Imagine 50 papers with 61, 61, 61, 58, 58, 58, 58, 58, 58, 58

citations, with the rest (40 papers) each receiving 1 citation. For this fictitious

reference set it is not possible to calculate exactly the top 10 % most frequently

cited papers. You can take 3/50 (6 %) or 10/50 (20 %). Thus, the tying of the ranks

at the threshold level generates an uncertainty (Leydesdorff, 2012). Schreiber

(2012) and Waltman and Schreiber (2013) solved this problem by proposing

fractional counting in order to attribute the set under study to percentile rank classes

that are predefined (for example, PPtop10 %).

By proportional attribution of the fractions to the different sides of the threshold,

the uncertainty can be removed from the resulting indicator. However,

this approach can only be used to determine the exact proportion of PPtop x %

(e.g., with x = 10) papers in a reference set, but cannot be used for the calculation of

percentile ranks of the individual papers under study. Furthermore, the fractional

attribution of percentile ranks is computationally intensive. Since individual papers

are the units of analysis in many studies, the fractional attribution of percentile

ranks is not functional in many situations.
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12.3 Data and Statistical Software

Publications produced by three research institutions in German-speaking countries

from 2001 and 2002 are used as data. Institutions 1, 2, and 3 have 268, 549, and

488 publications, respectively, for 1,305 publications altogether. The percentiles

for the publications were obtained from InCites (Thomson Reuters, http://incites.

thomsonreuters.com/), which is a Web-based research evaluation tool allowing the

assessment of the productivity and citation impact of institutions. Percentiles are

defined by Thomson Reuters as follows: “The percentile in which the paper ranks in

its category and database year, based on total citations received by the paper. The

higher the number of citations, the smaller the percentile number. The maximum

percentile value is 100, indicating 0 cites received. Only article types article, note,
and review are used to determine the percentile distribution, and only those same

article types receive a percentile value. If a journal is classified into more than one

subject area, the percentile is based on the subject area in which the paper performs

best, i.e., the lowest value” (see http://incites.isiknowledge.com/common/help/h_

glossary.html). Since in a departure from convention low percentile values mean

high citation impact (and vice versa), the percentiles received from InCites are

inverted percentiles. To identify papers which belong to the 10 % most frequently

cited papers within their subject category and publication year (Ptop 10 %), publica-

tions from the universities with an inverted percentile smaller than or equal to

10 are coded as 1; publications with an inverted percentile greater than 10 are coded

as 0.

For the calculation of the statistical procedures, we used Stata (StataCorp, 2013).

However, many other statistical packages could also be used for these calculations

(e.g., SAS or R).

12.4 Effect Sizes and related concepts

Cumming (2012, p. 34) defines an effect size as the amount of something that might

be of interest. He offers several examples. In Table 12.1, we present measures of

effect size that we think are of special interest to bibliometricians.

In isolation, however, effect sizes have only limited utility. First, because of

sampling variability, estimated effect sizes will often be larger or smaller than the

true effect is, i.e., just by chance alone an institution’s performance could appear to

be better or worse than it truly is; or apparent differences between institutions could

seem larger or smaller than they actually are. Second, we need a criterion by which

effect sizes can be evaluated. A common criterion is to look at statistical signifi-

cance, e.g., are the differences between two institutions so large that they are

unlikely to be due to chance alone? The APA, however, has called on researchers

to go beyond statistical significance and assess substantive significance as well.

This can be done both via theory (e.g., theory or past experience might say that a
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5-point difference between institutions is substantively important while a 1-point

difference is not) and via empirical means (using suggested guidelines for when

effects should be considered small, moderate, or large).

Therefore, when discussing effect sizes, we present not only the measure of

effect size itself, but the related measures that are needed to assess the statistical and

substantive significance of the measure. We begin with the mean percentile

ranking.

Table 12.2 presents the mean percentile rankings for the three institutions along

with related measures.

The mean is one of the simplest and most obvious measures. It is simply the

arithmetic average of the rankings for all the papers published for an institution.

Because of the way percentile ranking is coded (see above), a lower score is a better

score. There are obvious ways to use the mean to assess the citation impact of an

institution. The population mean (50) is known. We can tell at a glance whether an

institution is above the average or below it. However other criteria can also be used.

An institution may wish to compare itself with the known values of its peer

Table 12.1 Examples of effect size measures for bibliometric analyses

Sample effect size Example

Mean (M) Mean percentile ranking, e.g., institution’s average

percentile ranking is 20

Difference between two means Institution A’s average percentile ranking is

40, Institution B’s is 50, for a 10 % point difference

Cohen’s d (both for individual institutions

and for institutional comparisons)

The average effect of institution type (A or B) on

percentile rankings is .25

Proportiona 20 % of the institution’s publications are PPtop 10 %

Relative proportions and/or differences in

proportionsa
Institution B is twice as likely to have PPtop 10 % as

is institution A
aCumming (2012) uses the terms risk and relative risk. His examples refer to accidents. But we can

also think of “risk” as pertaining to other events that might happen, e.g., a published paper is “at

risk” of becoming highly cited

Table 12.2 Effect sizes and significance tests using mean percentile rankings for individual

institutions

Statistical measure Institution 1 Institution 2 Institution 3

Mean 49.67 32.15 45.98

Standard deviation 30.66 27.49 29.40

Standard error of the mean 1.87 1.17 1.33

Lower bound of the 95 % CI 45.99 29.85 43.37

Upper bound of the 95 % CI 53.36 34.46 48.59

T (for test of μ¼ 50) �0.17 �15.21 �3.02

N 268 549 488

P value (two-tailed test) .8613 .0000 .003

Cohen’s d �.011 �.649 �.137
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institutions or aspirational peers. Peer institutions might include other elite univer-

sities; schools located in the same general geographic area; or colleges that an

institution competes against for students and grant money. Aspirational peers might

include schools that are known to currently be stronger but who set a standard of

excellence that the school is striving to achieve. Hence a university that considers

itself among the best in the country or even the world might feel that its publications

should average at least among the top 25 %. Conversely a school that sees itself as

less research oriented might feel that an average ranking of 75 is sufficient if that is

what its regional competitors are achieving.

Table 12.2 shows us that Institution 1 scores barely better than the population

mean (49.67), Institution 3 is about 4 points better than the mean (45.98), while

Institution 2 is nearly 18 points better than average (32.15).

However, the mean percentile of an institution should NOT be the only measure

used to assess citation impact. The mean is merely a point estimate. Chance factors

alone could increase or lower the value of the estimated mean. CIs (Confidence

Intervals) therefore provide a more detailed way of assessing the importance of

mean scores. Cumming (2012) and others discuss several ways in which CIs can be

interpreted and used for assessment purposes. CIs provide a feel for the precision of

measures. Put another way, they show the range that the true value of the mean may

plausibly fall in. For example, if the observed mean was 40, the 95 % CI might

range between 35 and 45. So, while 40 is our “best guess” as to what the mean truly

is, values ranging between 35 and 45 are also plausible alternative values.

CIs also provide an approach to hypothesis testing. If the hypothesized value

(e.g., the population mean of 50) falls within the CI, we do not reject the null

hypothesis. Put another way, if the hypothesized value of 50 falls within the CI,

then 50 is a plausible alternative value for the mean and hence cannot be ruled out

as a possibility.1

Table 12.2 shows us the CIs for each of the three institutions, but Fig. 12.1

provides a graphical display of the same information that may be easier to under-

stand. At a glance, we can see what the mean for each institution is and what the

range of plausible values for the mean is. The horizontal line for mean¼ 50 makes

it easy to see whether the CI does or does not include the value specified by the null

hypothesis (the citation impact is equal to a medium impact, i.e., the population

mean of 50). If the horizontal line passes through the CI we do not reject the null

hypothesis; otherwise we do.

For Institution 1, the CI ranges between 45.99 (about 4 points better than

average) to 53.36. Because the average value of 50 falls within that interval, we

cannot rule out any of the possibilities that Institution 1 is below average, average,

1 Cumming (2012) refers to the CI obtained from an analysis as “One from the dance.” What he

means is that it is NOT correct to say that there is a 95 % chance that the true value of the mean lies

within the confidence interval. Either the true value falls within the interval or it doesn’t. It is

correct to say that, if this process were repeated an infinite number of times, then 95 % of the time

the CI would include the true value of the mean while 5 % of the time it would not. Whether it does

in the specific data we are analyzing, we don’t know.
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or above average. The CI for Institution 2 ranges from 29.85 to 34.46, suggesting

that it is almost certainly well above average. For Institution 3 the CI range is

43.37–48.59, implying that it is probably at least a little better than average.

Significance tests (in this case, one-sample t-tests) can also be used to see

whether the difference between the observed mean for an institution and the

hypothesized mean is statistically significant. In our case we test whether the

institutional mean differs from the known population mean of 50, but another

criterion could be used if it was thought that a higher or lower criterion was

appropriate. The formula for the one-sample t-test, along with the specific calcula-

tion for Institution 2, is

t ¼ x � μ0
sffiffiffi
N

p ¼ 32:15 � 50
27:49ffiffiffiffiffiffi
549

p ¼ �17:85

1:1732
¼ �15:21 ð12:1Þ

where x ¼ the sample mean, μ0 is the value for the mean specified under the null

hypothesis (in this case 50), s is the standard deviation of x, and N is the sample size.

s=
ffiffiffiffi
N

p
is also known as the standard error of the mean. Both the standard deviation

of x and the standard error of the mean are reported in Table 12.2.

If the null hypothesis is true—in this case, if the population mean of Institution

2 really is 50—the t statistic will have a t distribution with N� 1 degrees of

freedom. The larger in magnitude the t statistic is (positive or negative), the less

likely it is that the null hypothesis is true. The critical value for the t statistic, i.e.,
the value at which we conclude that the null hypothesis is unlikely to be true,

depends on the sample size. In samples this large, the absolute value of the t statistic

0
5

10
15

20
25

30
35

40
45

50
55

Inst 1 Inst 2 Inst 3
Institution

95% confidence intervals

P
er

ce
nt

ile

Fig. 12.1 Average percentile score by institution, with 95 % CIs

266 R. Williams and L. Bornmann



needs to be 1.96 or greater for us to conclude that observed deviations from the null

hypothesis are probably not just due to chance factors alone. The t-test in Table 12.2
shows us that the difference between the mean for Institution 1 and the population

mean is not statistically significant. The t values for Institutions 2 and 3 are

statistically significant, but the t value for Institution 2 is more than five times as

large as the t value for Institution 3.

Significance tests have their own limitations though. In particular, statistically

significant results are not necessarily substantively meaningful. Significance tests

are strongly affected by sample size. If the sample is large enough even trivial

differences can be statistically significant. Conversely if the sample is small even a

seemingly large difference may not achieve statistical significance. For example, if

the sample is large enough, a mean score of 49 may statistically differ from the

population mean of 50 at the .05 level of significance. Conversely if a sample is

small a mean score of 40 might only be statistically significant at, say, the .06 level.

As argued earlier, while significance tests can be helpful, their utility is also limited.

To make this important point clear, consider an example that is similar to our

opening weight loss example: If you were told that an institution had scores that

were statistically significantly above average, would you be impressed? Perhaps.

But if you were also told that it was 1 point better than average and that this was

statistically significant at the .04 level, would you still be impressed? Probably not.

Conversely, if you were told that an institution’s scores were not statistically

significant from the average, would you be unimpressed? Perhaps. But if you

were told that its observed score was 10 points better than average and that the

difference was statistically significant at the .06 level, would you be impressed

then? Probably in most cases more people would be impressed by the latter

institution, even though its higher scores barely missed being statistically signifi-

cant at the .05 level.

We may have enough of a theoretical or intuitive feel to decide whether an effect

is large enough to care about, e.g., theory or intuition or past experience may tell us

that a 1-point difference from the mean is not worth caring about while a 10-point

difference is. However, in situations that are less clear, measures such as Cohen’s d

give us another way of assessing the substantive significance of effects.

12.5 Cohen’s d (for Individual Institutions)

Table 12.2 also includes the Cohen’s d statistic for each institution. Cohen’s d, and

related measures (e.g., Cohen’s h, see below), try to illustrate the magnitude of an

effect. Put another way, they try to illustrate the substantive importance, as opposed

to the statistical significance, of results. Cohen’s d and similar measures may be

especially useful when it is not otherwise clear whether an effect is large or small.

So, for example, if an institution scores 3 points above the mean, should that be

considered a substantively large difference, a substantively small difference, or

what?
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Those with expertise in a well-understood field may be able to offer an informed

opinion on that. But in less clear situations, Cohen’s d provides a potentially

superior means of assessing the substantive significance of results as opposed to

simply noting what the observed differences are. As Cumming (2012) notes,

Cohen’s d “can help ES [effect size] communication to a wide range of readers,

especially when the original units first used to measure the effect are not widely

familiar” (p. 282). Cumming (2012) also notes that Cohen’s d can be useful in meta-

analysis where different researchers have measured key variables in different ways.

In the single sample case, Cohen’s d equals the difference between the observed

mean and the hypothesized mean (e.g., 50) divided by the sample standard devia-

tion, i.e.,

Cohen0s d ¼ x � μ0
s

ð12:2Þ

Through simple algebra, it can also be shown that Cohen’s d ¼ t=
ffiffiffiffi
N

p
. So, for

example, the Cohen’s d value for institution 2 is

Cohen0s d ¼ x � μ0
s

¼ 32:15 � 50

27:49
¼ �17:85

27:49
¼ �:649 ð12:3Þ

As Cohen (1988) notes, Cohen’s d is similar to a z-score transformation. For

example, a Cohen’s d value of .2 would mean that the mean in the sample was .2

standard deviations higher than the hypothesized mean. Cohen (1988) suggested

that effect sizes of 0.2, 0.5, and 0.8 (or, if the coding is reversed, �.2, �.5 and �.8)

correspond to small, medium, and large effects.

Put another way, the usefulness of Cohen’s d depends, in part, on how obvious

the meaning is of observed differences. If, for example, we knew that students in an

experimental teaching program scored one grade level higher than their counter-

parts in traditional programs, such a difference might have a great deal of intuitive

meaning to us. But if instead we knew that they scored 7 points higher on some

standardized test, something like Cohen’s d could help us to assess how large such a

difference really is.2

Returning to table 12.2 and our three institutions, the Cohen’s d statistic for

Institution 1 is, not surprisingly, extremely small, almost 0. For Institution 3, even

though the difference between the institution’s sample mean and the population

mean 50 is statistically significant, the Cohen’s d statistic is only�.137. This falls

below the value of �.2 that Cohen (1988) had suggested represented a small

effect. For Institution 2, Cohen’s d is equal to �.649. This falls almost exactly

halfway between Cohen’s suggested values of �.5 for medium and �.8 for large.

2 Cumming (2012) notes various cautions about using Cohen’s d (p. 283). For example, while it is

common to use sample standard deviations as we do here, other “standardizers” are possible, e.g.,

you might use the standard deviation for a reference population, such as elite institutions.

Researchers should be clear exactly how Cohen’s d was computed.
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Therefore, if we had no other clear criteria for assessing the magnitude of effects,

Cohen’s d would lead us to conclude that differences between institutions 1 and

3 and the population mean of 50 are not substantively important, while the

difference between Institution 2 and the population mean is moderately to highly

important.

Before leaving Table 12.2, it should be noted that we did additional analyses to

confirm the validity of our results. In Table 12.2 (and also in Table 12.3), we make

heavy use of t-tests and related statistics. As Acock (2010) points out, t-tests assume

that variables are normally distributed; and, when two groups are being compared,

it is often assumed that the variances of the two groups are equal. Percentile

rankings violate these assumptions in that they have a uniform, rather than normal,

distribution. However, Acock (2010) also adds that t-tests are remarkably robust

against violations of assumptions.

Nonetheless, to reassure ourselves that our results are valid, we double-

checked our findings by using techniques that are known to work well when

distributional assumptions are violated. In particular, for both Tables 12.2 and

12.3, we verified our findings using bootstrapping techniques. Bootstrapping

is often used as an alternative to inference based on parametric assumptions

when those assumptions are in doubt (Cameron & Trivedi, 2010). Bootstrapping

resamples observations (with replacement) multiple times. Standard errors, con-

fidence intervals, and significance tests can then be estimated from the multiple

resamples. Bootstrapping produced significance tests and confidence intervals

that were virtually identical to those reported in our tables, giving us confidence

that our procedures are valid.

Table 12.3 Effect sizes and significance tests for differences in percentile rankings across

institutions

Statistical measure

Institution 1 vs.

Institution 2

Institution 1 vs.

Institution 3

Institution 3 vs.

Institution 2

Difference between means 17.52 3.69 13.83

Standard deviation (pooled) 28.57 29.85 28.40

Standard error of the mean

difference

2.13 2.27 1.77

Lower bound of the 95 % CI

for the difference

13.34 �.76 10.36

Upper bound of the 95 % CI for

the difference

21.70 8.15 17.30

T (for test of μs are equal) 8.23 1.63 7.83

P value (two-tailed test) .0000 .1042 .0000

Cohen’s d .613 .124 .487
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12.6 Mean Differences Between Institutions

Rather than use some absolute standards for assessment (e.g., is the average score

for an institution above or below the population average?) we may wish to compare

institutions against each other. For example, a school might wish to compare itself

against a school that it considers its rival, or that competes for students in the same

geographic area. Does one institution have average scores that are significantly

higher than the others, or are their scores about the same? Alternatively, we might

want to compare the same institution at two different points in time—have its

average scores gotten better across time or have they gotten worse? Table 12.3

presents such comparisons for the institutions in our study.

As Table 12.3 shows, Institution 1 scores 17.52 points worse than Institution

2. Similarly, Institution 2 averages almost 14 points better than Institution 3. The

mean difference between institutions 1 and 3 is a much more modest 3.69 points.

Again, simply comparing the means for two institutions is not adequate. Appar-

ent differences may not be statistically significant; just by chance alone one

institution could have scored higher than the other. And even if more than chance

was likely involved in the differences, the substantive significance of differences

still needs to be assessed.

CIs can again be useful. Referring back to Fig. 12.1, we can see whether the

95 % CIs for two institutions overlap. As Cumming (2012) notes, if they do, then

the difference between the institutions is not statistically significant at the .01 level.

A common error is to assume that if two 95 % CIs overlap then the difference in

values is not statistically significant at the .05 level. This is wrong because it is

unlikely that, by chance alone, one variable would have an atypically low observed

value while the other would have a value that was atypically high.

Even more useful is that we can compute the CI for the difference between the

scores of two institutions. If 0 falls within the 95 % CI, then the difference between

the two groups is not statistically significant. Or, if the observed difference is 10 but

the CI ranges between 5 and 15, then the actual difference could plausibly be as low

as 5 points or as much as 15. Figure 12.2 provides a graphical and possibly clearer

illustration of the information that is also contained in Table 12.3. If the horizontal

line at y¼ 0 crosses the CI, we know that the difference between the two means is

not statistically significant. The CIs show that the differences between 1 and 3 are

modest or even nonexistent while the differences between 2 and the other institu-

tions are large (10 points or more) even at the lower bounds of the CIs.

Significance tests (in this case an independent sample t-test) can again be used.

Because two groups are being compared, the calculations are somewhat more

complicated but still straightforward. It is often assumed that the two groups have

the same variance.3 But, in the samples there are separate estimates of the variance

3With independent samples there are two different types of t-tests that can be conducted. The first

type, used here, assumes that the variances for each group are equal. The second approach allows

the variances for the two groups to be different. In our examples, it makes little difference which
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for each group. A pooled estimate for the variance of the two groups is therefore

estimated as follows (again we show the general formula, and the specific calcula-

tion for institutions 1 and 2).

sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � 1ð Þs21 þ n2 � 1ð Þs22

n1 þ n2 � 2

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
268� 1ð Þ30:662 þ 549� 1ð Þ27:492

815

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
816:098

p
¼ 28:57 ð12:4Þ

The standard error of the difference (again, both in general, and specifically for

institutions 1 and 2) is

sep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2p

N1 þ N2

N1N2

� �s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
28:572

249þ 568

249 � 568
� �s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
28:572

817

141432

� �s
¼ 2:13 ð12:5Þ

The t-test (both in general and for institutions 1 and 2) is

approach is used, since, as Table 12.2 shows, the standard deviations for the three groups are

similar. In cases where the variances do clearly differ the second approach should be used. Most,

perhaps all, statistical software packages can compute either type of t-test easily.
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t ¼ x1 � x2
sep

¼ 49:67� 32:15

2:13
¼ 17:52

2:13
¼ 8:23 ð12:6Þ

The tests confirm that Institution 2 does better than the other two institutions and

that these differences are statistically significant, while the differences between

1 and 3 are small enough that they could just be due to chance factors.

As noted earlier, bootstrapping techniques, which are often used when the

validity of parametric assumptions is in doubt (e.g., variables are normally distrib-

uted), produced results virtually identical to those reported in Table 12.3. As an

additional check, for Table 12.3 we also computed Mann–Whitney tests. Mann–

Whitney tests are appropriate when dependent variables have ordinal rather than

interval measurement (Acock, 2010), and percentile rankings clearly have at least

ordinal measurement. The Mann–Whitney test statistics were virtually identical to

the t-test statistics we reported in the table, again increasing our confidence that our
results are valid. Further, we think that the approach we are using for Table 12.3 is

superior to nonparametric alternatives such as Mann–Whitney because statistics

such as Cohen’s d and confidence intervals can be estimated and interpreted,

making the substantive significance of results clearer.

Significance tests (t-test or Mann–Whitney test) have similar problems as before.

If sample sizes are large, even small differences between the two groups can be

statistically significant, e.g., a difference of only 1 point could be statistically

significant if the samples are large enough. Conversely, even much larger differ-

ences (e.g., 10 points) may fail to achieve significance at the .05 level if the samples

are small.

To better assess substantive significance, Cohen’s d can be calculated for the

difference between means. The formula (both in general and for institutions 1 and

2 is)

Cohen0s d ¼ x1 � x2
sp

¼ 49:67� 32:15

28:57
¼ 17:52

28:57
¼ :613 ð12:7Þ

The Cohen’s d indicates that the differences between Institution 2 and Institution

1 (.613) and between Institution 2 and Institution 3 (.487) are at least moderately

large. Conversely, the Cohen’s d statistic of .124 for comparing institutions 1 and

3 falls below Cohen’s suggested level for a small effect.

12.7 Proportions (Both for One Institution

and for Comparisons Across Institutions)

As noted above, one way of evaluating institutions is to see how their average

scores compare. However, it could be argued that evaluations should be made, not

on average scores, but on how well an institution’s most successful publications

272 R. Williams and L. Bornmann



do. In particular, what proportion of an institution’s publications rank among the

10 % most frequently cited papers?

Again, there is an obvious criterion: overall we know that 10 % of all papers rank

among the top 10 % of those most cited. We use that criterion here, but the criterion

could be made higher or lower as deemed appropriate for the type of institution.

There are important differences in how statistics and significance tests are

computed for binary outcomes. Binary variables do not have a normal distribution,

nor are their means and variances independent of each other. If the mean of Y¼ P,

then V(Y)¼ P(1� P), e.g., if there is a .3 probability that Y¼ 1, then V

(Y)¼ .3 * 7¼ .21. As the Stata 13 Reference Manual (2013) points out, several

different formulas have been proposed for computing confidence intervals (e.g., the

Table 12.4 Effect sizes and significance tests for PPtop 10 %—individual institutions

Statistical measure Institution 1 Institution 2 Institution 3

PPtop 10 %a 11.19 29.14 11.68

Standard errora 1.93 1.94 1.45

Lower bound of the 95 % CIa 7.42 25.34 8.83

Upper bound of the 95 % CIa 14.97 32.95 14.53

Z (for test of PPtop 10 %¼ .10) .65 14.95 1.24

P value (two-tailed test) .51 .0000 .22

Cohen’s h .039 .497 .054

N 268 549 488
aNumbers are multiplied by 100 to convert them into percentages
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Fig. 12.3 PPtop 10 % by institution, with 95 % CIs
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Wilson, Agresti, Klopper-Pearson, and Jeffries methods) and several other statis-

tics. We use the large sample methods used by Stata’s prtest command, but

researchers, especially those with smaller samples, may wish to explore other

options.

But, other than that, the arguments are largely the same as earlier. Significance

tests and CIs have the same strengths and weaknesses as before. Visual means of

presenting results are also quite similar. Effect size measures help to provide

indicators of the substantive significance of findings. In short, the most critical

difference from before is that a different criterion is being used for the assessment

of impact.

Table 12.4 presents the effect sizes and related measures for PPtop 10 % for each

institution separately. Figure 12.3 illustrates how the proportions and their CIs can

be graphically depicted.

Note that Z-tests rather than t-tests are used for binomial variables. Further, the

observed sample standard deviation is not used in the calculation of the test statistic;

rather, the standard deviation implied by the null hypothesis is used. The Z statistic

for Institution 2 is calculated as follows:

z ¼ p� p0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0 1� p0ð Þ=Np ¼ :2914� :10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

:1 � :9=549p ¼ :1914

:0128
¼ 14:95 ð12:8Þ

The results are very consistent with what we saw when we analyzed mean percen-

tile rankings. Institutions 1 and 3 are slightly above average in that a little over 11 %

of their papers rank in the PPtop 10 %. Correspondingly, the CIs for each include

10, and the significance tests also indicate that the null hypothesis that PPtop

10 %¼ 10 cannot be rejected. Institution 2, on the other hand, has more than 29 %

PPtop 10 %. Both the CIs and the significance test indicate that such a strong

performance is highly unlikely to be due to chance alone.

Note that the table does not include Cohen’s d, because it is not appropriate

for dichotomous dependent variables. Instead, for binary variables Cohen, 1988)

proposes an effect size measure he calls h.4 The formula is not particularly intuitive,

but it has several desirable properties. h is calculated as follows:

o ¼ 2 � arcsin ffiffiffi
P

p� �
,

o0 ¼ 2 � arcsin ffiffiffiffiffi
P0

p� �
,

h ¼ o� o0

ð12:9Þ

So, for example, for Institution 2, P¼ .2914 (PPtop 10 %¼ 29.14). Since we are using

P0¼ .10, The h value for institution 2 is

4Nonetheless, as we found for other measures in our analysis, Cohen’s d seems robust to violations

of its assumptions. When we estimated Cohen’s d using binary dependent variables, we got almost

exactly the same numbers as we did for Cohen’s h.
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o ¼ 2 � arcsin ffiffiffi
P

p� � ¼ 2 � arcsin ffiffiffiffiffiffiffiffiffiffiffi
:2914

p� � ¼ 1:1404341,

o0 ¼ 2 � arcsin ffiffiffiffiffi
P0

p� � ¼ 2 � arcsin ffiffiffiffiffiffiffi
:10

p� � ¼ :64350111,
h ¼ o� o0ð Þ ¼ 1:1404341 � :64350111ð Þ ¼ :497

ð12:10Þ

According to Cohen (1988) the suggested small, medium and large values of .2, .5,

and .8, respectively, continue to be reasonable choices for the h statistic, at least

when there is little guidance as to what constitutes a small, medium or large effect.

He further notes that in the fairly common case of P0¼ .5, h will equal approxi-

mately 2 * (P� .5).

Table 12.5 presents the corresponding measures for institutional comparisons.

Again, the results are very consistent with before. The differences between

institutions 1 and 3 are very slight and may be due to chance factors alone.

Institution 2, on the other hand, has more than twice as many PPtop 10 % as do

institutions 1 and 3, and the differences are highly statistically significant. The

calculation of Cohen’s h is similar to before, except that P2 is substituted for P0,

e.g., for institutions 1 and 2.

o1 ¼ 2 � arcsin ffiffiffiffiffi
P1

p� � ¼ 2 � arcsin ffiffiffiffiffiffiffiffiffiffiffi
:1119

p� � ¼ :68218016,

o2 ¼ 2 � arcsin ffiffiffiffiffi
P2

p� � ¼ 2 � arcsin ffiffiffiffiffiffiffiffiffiffiffi
:2914

p� � ¼ 1:1404341,
h ¼ o1 � o2ð Þ ¼ :68218016 � 1:1404341ð Þ ¼ �:458

ð12:11Þ

Incidentally, several other measures of effect size have been proposed and are

widely used for analyses of binary dependent variables. These include risk ratios,

odds ratios, and marginal effects. For a discussion of some of these methods, see

Williams (2012), Bornmann and Williams (2013), Deschacht and Engels (this

book), and Long and Freese (2006).

Table 12.5 Effect sizes and significance tests for differences in PPtop 10 % across institutions

Statistical measure

Institution 1 vs

Institution 2

Institution 1 vs

Institution 3

Institution 3 vs

Institution 2

Difference between proportions �17.95 �0.49 �17.47

Standard error 2.73 2.43 2.42

Lower bound of the 95 % CI for

the difference

�23.31 �5.22 �22.21

Upper bound of the 95 % CI for

the difference

�12.59 4.24 �12.71

Z (for test of PPtop10 % are

equal)

�5.70 �0.20 �6.90

Cohen’s h �.458 �.015 �.443

P value (two-tailed test) .0000 .8411 .0000
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Conclusions

The APA has called on researchers to employ techniques that illustrate both

the statistical and the substantive significance of their findings. Similarly, in

the statistics paragraph of the Uniform Requirements for Manuscripts (URM)

of the International Committee of Medical Journal Editors (ICMJE, 2010) it

is recommended to “describe statistical methods with enough detail to enable

a knowledgeable reader with access to the original data to verify the reported

results. When possible, quantify findings and present them with appropriate

indicators of measurement error or uncertainty (such as confidence intervals).

Avoid relying solely on statistical hypothesis testing, such as P values, which

fail to convey important information about effect size.”

In this chapter, we have shown that the analysis of effect sizes for both

means and proportions are worthwhile, but must be accompanied by criteria

with which the statistical and the substantive significance of effect sizes can

be assessed. Measures of statistical significance are, in general, well known,

but we have shown how they can be applied to bibliometric data. Assessment

of substantive significance depends, in part, on theory or empirical means:

how large does an effect size need to be in order to be considered important?

But, when theory and empirical evidence are unclear, measures such as

Cohen’s d can provide guidelines for assessing effects. As we have seen,

effects that are statistically significant may not have much substantive impor-

tance. Conversely there may be situations where effects fail to achieve

statistical significance but may nonetheless have a great deal of substantive

significance. Using tools presented in this paper and in Cumming’s (2012)

book, researchers can assess both the statistical and substantive significance

of their findings.

For those who would like to replicate our findings or try similar analyses

with their own data, the Appendix shows the Stata code for the analyses

presented in this chapter and for the additional double-checks we did to verify

the validity of our results.

Appendix: Stata Code Used for These Analyses

* Stata code for Williams & Bornmann book chapter on effect sizes.

* Be careful when running this code – make sure it doesn’t

* overwrite existing files or graphs that use the same names.

version 13.1

use "http://www3.nd.edu/~rwilliam/statafiles/rwlbes", clear

gen inst12 ¼ inst if inst!¼3

gen inst13 ¼ inst if inst!¼2

gen inst23 ¼ inst if inst!¼1
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gen top10 ¼ perc <¼ 10

* Limit to 2001 & 2002; this can be changed

keep if py <¼2002

}
* Table 12.2

* Single group designs - pages 286-287 of Cumming

* For each institution, test whether percentile mu ¼ 50

* Note that negative differences mean better than average performance

forval instnum ¼ 1/3 {

display

display "Institution ‘instnum’"

ttest perc ¼ 50 if inst¼¼‘instnum’

display

display "Cohen’s d ¼ " r(t) / sqrt(r(N_1))

* DOUBLE CHECK: Compares above CIs and t-tests with bootstrap

* Results from the test command should be similar to the t-test

* significance level

bootstrap, reps(100): reg perc if inst¼¼‘instnum’

test _cons ¼ 50

}

}
* Table 12.3

* Two group designs - Test whether two institutions

* differ from each other on mean percentile rating.

* Starts around p. 155

* Get both the t-tests and the ES stats, e.g. Cohen’s d

* Note: you should flip the signs for the 3 vs 2 comparison

}
foreach iv of varlist inst12 inst13 inst23 {

display "perc is dependent, ‘iv’"

}
ttest perc, by(‘iv’)

scalar n1 ¼ r(N_1)

scalar n2 ¼ r(N_2)

scalar s1 ¼ r(sd_1)

scalar s2 ¼ r(sd_2)

display

display "Pooled sd is " ///

sqrt(((n1 - 1) * s1^2 + (n2 - 1) * s2^2 ) / (n1 + n2 - 2))

display

esize two perc, by(‘iv’) all

display

* DOUBLE CHECKS: Compare Mann-Whitney & bootstrap results with above

* Mann-Whitney test

ranksum perc, by(‘iv’)
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* Bootstrap

bootstrap, rep(100): reg perc i.‘iv’

}

}
}
* Table 12.4

* Proportions in Top 10, pp. 399-402

* Single institution tests

* Numbers in table are multiplied by 100

forval instnum ¼ 1/3 {

display

display "Institution ‘instnum’"

prtest top10 ¼ .10 if inst¼¼‘instnum’

display

display

scalar phi1 ¼ 2 * asin(sqrt(r(P_1)))

scalar phi2 ¼ 2 * asin(sqrt(.10))

di "h effect size ¼ " phi1 - phi2

display

}

}
}
* Table 12.5

* Proportions in Top 10 - pairwise comparisons of institutions

* Numbers in table are multiplied by 100

foreach instpair of varlist inst12 inst13 inst23 {

display

display "‘instpair’"

prtest top10, by (‘instpair’)

display

scalar phi1 ¼ 2 * asin(sqrt(r(P_1)))

scalar phi2 ¼ 2 * asin(sqrt(r(P_2)))

di "h effect size ¼ " phi1 - phi2

display

* NOTE: Cohen’s d provides very similar results to Cohen’s h

esize two top10, by (‘instpair’) all

display

}

* Do graphs with Stata

* NOTE: Additional editing was done with the Stata Graph Editor

* Use ciplot for Univariate graphs

}
* Figure 12.1 - Average percentile score by inst with CI

ciplot perc, by(inst) name(fig1, replace)

}
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* Figure 12.3

* Was edited to multiply by 100

ciplot top10, bin by(inst) name(fig3, replace)

}
*** Save figures before running figure 12.2 code

}
* Figure 12.2 - Differences in mean percentile rankings

* Use statsby and serrbar for tests of group differences

* Note: Data in memory is overwritten

gen inst32 ¼ inst23 * -1 + 4

tab2 inst32 inst23

statsby _b _se, saving(xb12, replace) : reg perc i.inst12

statsby _b _se, saving(xb13, replace) : reg perc i.inst13

statsby _b _se, saving(xb32, replace) : reg perc i.inst32

clear all

append using xb12 xb13 xb32, gen(pairing)

label define pairing 1 "1 vs 2" 2 "1 vs 3" 3 "3 vs 2"

label values pairing pairing

serrbar _stat_2 _stat_5 pairing, scale(1.96) name(fig2, replace)
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Part IV

Visualization



Chapter 13

Visualizing Bibliometric Networks

Nees Jan van Eck and Ludo Waltman

Abstract This chapter provides an introduction to the topic of visualizing

bibliometric networks. First, the most commonly studied types of bibliometric

networks (i.e., citation, co-citation, bibliographic coupling, keyword

co-occurrence, and coauthorship networks) are discussed, and three popular visu-

alization approaches (i.e., distance-based, graph-based, and timeline-based

approaches) are distinguished. Next, an overview is given of a number of software

tools that can be used for visualizing bibliometric networks. In the second part of

the chapter, the focus is specifically on two software tools: VOSviewer and

CitNetExplorer. The techniques used by these tools to construct, analyze, and

visualize bibliometric networks are discussed. In addition, tutorials are offered

that demonstrate in a step-by-step manner how both tools can be used. Finally,

the chapter concludes with a discussion of the limitations and the proper use of

bibliometric network visualizations and with a summary of some ongoing and

future developments.

13.1 Introduction

The idea of visualizing bibliometric networks, often referred to as “science map-

ping,” has received serious attention since the early days of bibliometric research.

Visualization has turned out to be a powerful approach to analyze a large variety of

bibliometric networks, ranging from networks of citation relations between publi-

cations or journals to networks of coauthorship relations between researchers or

networks of co-occurrence relations between keywords. Over time, researchers

have started to analyze larger and larger networks, leading to the need for more

advanced visualization techniques and tools. At the same time, professional users of

bibliometrics, for instance research institutions, funding agencies, and publishers,

have become more and more interested in bibliometric network visualizations. To

make bibliometric network visualizations available to a wider public, both inside
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and outside the bibliometric research community, researchers have developed a

number of software tools, most of which are freely available. In this chapter, we

focus mainly on two of these tools: VOSviewer and CitNetExplorer. VOSviewer is

a tool that we have developed over the past few years and that offers in a relatively

easy way the basic functionality needed for visualizing bibliometric networks.

CitNetExplorer is a more specialized tool that we developed recently for visualizing

and analyzing citation networks of publications.

This chapter offers an introduction to the topic of visualizing bibliometric

networks. It first provides an overview of the literature and of the main software

tools that are available. It then focuses specifically on the VOSviewer and

CitNetExplorer tools. The most important techniques used by these tools are

discussed, and tutorials are offered that provide step-by-step instructions on how

the tools can be used. The chapter concludes with a discussion of the limitations and

the proper use of bibliometric network visualizations and with a summary of some

ongoing and future developments.

13.2 Literature Review

We first provide a brief overview of the literature on visualizing bibliometric

networks. We start by discussing the types of bibliometric networks that have

received most attention in the literature. We then discuss a number of commonly

used visualization approaches. We refer to Börner, Chen, and Boyack (2003) and

Börner (2010) for more extensive overviews of the literature.

13.2.1 Types of Bibliometric Networks

A bibliometric network consists of nodes and edges. The nodes can be, for instance,

publications, journals, researchers, or keywords. The edges indicate relations

between pairs of nodes. The most commonly studied types of relations are citation

relations, keyword co-occurrence relations, and coauthorship relations. In the case

of citation relations, a further distinction can be made between direct citation

relations, co-citation relations, and bibliographic coupling relations. Bibliometric

networks are usually weighted networks. Hence, edges indicate not only whether

there is a relation between two nodes or not but also the strength of the relation.

Below, we discuss the different types of relations in bibliometric networks in more

detail.

Two publications are co-cited if there is a third publication that cites both

publications (Marshakova, 1973; Small, 1973). The larger the number of publica-

tions by which two publications are co-cited, the stronger the co-citation relation

between the two publications. Small and colleagues proposed to use co-citations to

analyze and visualize relations between publications (Griffith, Small, Stonehill, &
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Dey, 1974; Small & Griffith, 1974). Later on, the use of co-citations to study

relations between researchers and between journals was introduced by, respec-

tively, White and Griffith (1981) and McCain (1991). A well-known co-citation-

based analysis is the study by White and McCain (1998) of researchers in the field

of information science.

Bibliographic coupling is the opposite of co-citation. Two publications are

bibliographically coupled if there is a third publication that is cited by both

publications (Kessler, 1963). In other words, bibliographic coupling is about the

overlap in the reference lists of publications. The larger the number of references

two publications have in common, the stronger the bibliographic coupling relation

between the publications. Although bibliographic coupling was introduced earlier

than co-citation, it initially received less attention in the literature on visualizing

bibliometric networks. In more recent years, however, the popularity of biblio-

graphic coupling increased considerably (e.g., Boyack & Klavans, 2010; Jarneving,

2007; Small, 1997; Zhao & Strotmann, 2008).

Compared with co-citation and bibliographic coupling, direct citations, some-

times referred to as cross citations, offer a more direct indication of the relatedness

of publications. Nevertheless, in the literature on visualizing bibliometric networks,

it is relatively uncommon to work with direct citations. This is probably because the

use of direct citations often leads to very sparse networks (i.e., networks with only a

very small number of edges). In spite of this issue, there seems to be an increasing

interest in direct citations in the more recent literature (e.g., Boyack & Klavans,

2010; Persson, 2010; Small, 1997; Waltman & Van Eck, 2012). Direct citations

also play an essential role in Eugene Garfield’s work on algorithmic historiography

(Garfield, Pudovkin, & Istomin, 2003). We will come back to Garfield’s work in

Sect. 13.3.

In addition to the above-discussed citation-based bibliometric networks, net-

works of co-occurrences of keywords have also been studied extensively. Key-

words can be extracted from the title and abstract of a publication, or they can be

taken from the author-supplied keyword list of a publication. In some cases,

especially in the older literature, keywords are restricted to individual words, but

in other cases they also include terms consisting of multiple words. The number of

co-occurrences of two keywords is the number of publications in which both

keywords occur together in the title, abstract, or keyword list. For examples of

early work on keyword co-occurrence networks, we refer to Callon, Courtial,

Turner, and Bauin (1983), Callon, Law, and Rip (1986), and Peters and Van

Raan (1993).

Finally, we briefly mention bibliometric networks based on coauthorship. In

these networks, researchers, research institutions, or countries are linked to each

other based on the number of publications they have authored jointly. Coauthorship

networks have been studied extensively, but relatively little attention has been paid

to the visualization of these networks. At the level of countries, the visualization of

coauthorship networks is discussed by Luukkonen, Tijssen, Persson, and

Sivertsen (1993).
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13.2.2 Visualization Approaches

Many different approaches have been proposed for visualizing bibliometric net-

works. Our focus in this chapter is on three popular approaches. We refer to these

approaches as the distance-based approach, the graph-based approach, and the

timeline-based approach. We emphasize that these three approaches are definitely

not the only approaches available. Alternative approaches for instance include

circular visualizations (e.g., Börner et al., 2012) and self-organizing maps (e.g.,

Skupin, Biberstine, & Börner, 2013).

In the distance-based approach, the nodes in a bibliometric network are posi-

tioned in such a way that the distance between two nodes approximately indicates

the relatedness of the nodes. In general, the smaller the distance between two nodes,

the higher their relatedness. Nodes are usually positioned in a two-dimensional

space. Edges between nodes are normally not shown. The most commonly used

technique for determining the locations of the nodes in a distance-based visualiza-

tion is multidimensional scaling (e.g., Borg & Groenen, 2005). The use of this

technique for visualizing bibliometric networks has a long tradition, going back to

early work on the visualization of co-citation networks by Griffith et al. (1974) and

White and Griffith (1981). More recently, some alternatives to multidimensional

scaling were introduced in the literature. One alternative is the VOS technique (Van

Eck, Waltman, Dekker, & Van den Berg, 2010), which is used in the VOSviewer

software that we will discuss in detail in the second part of this chapter. Another

alternative is the VxOrd technique, also known as DrL or OpenOrd (http://www.

sandia.gov/~smartin/software.html). The VxOrd technique has been used to create

distance-based visualizations of very large bibliometric networks (e.g., Boyack,

Klavans, & Börner, 2005; Klavans & Boyack, 2006). An example of a distance-

based visualization is presented in Fig. 13.1. This example has been taken from a

well-known study by White and McCain (1998). The visualization displays a

co-citation network of researchers in the field of information science.

In the graph-based approach, nodes are positioned in a two-dimensional space,

just like in the distance-based approach. The difference between the two approaches

is that in the graph-based approach edges are displayed to indicate the relatedness of

nodes. The distance between two nodes need not directly reflect their relatedness.

The graph-based approach is most suitable for visualizing relatively small net-

works. Visualizing larger networks using the graph-based approach often does not

give good results because of the large number of edges that need to be displayed.

The most commonly used technique for creating graph-based visualizations of

bibliometric networks is the graph drawing algorithm of Kamada and Kawai

(1989). An alternative technique is the algorithm of Fruchterman and Reingold

(1991). Graph drawing algorithms are sometimes used in combination with the

pathfinder network technique for graph pruning (Schvaneveldt, Dearholt, & Durso,

1988). For examples of graph-based visualizations of bibliometric networks, we

refer to Chen (1999), De Moya-Anegón et al. (2007), Leydesdorff and Rafols

(2009), and White (2003). Figure 13.2 shows an example of a graph-based
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visualization. This visualization displays the same researcher co-citation network as

the visualization presented in Fig. 13.1, but instead of a distance-based approach a

graph-based approach is used. The example shown in Fig. 13.2 has been taken from

White (2003).

A third approach for visualizing bibliometric networks is the timeline-based

approach. Unlike the distance-based and graph-based approaches, the timeline-

based approach assumes that each node in a bibliometric network can be linked

to a specific point in time. The timeline-based approach is especially suitable for

visualizing networks of publications, since a publication can be easily linked to a

specific point in time based on its publication date. In a timeline-based visualiza-

tion, there are two dimensions, one of which is used to represent time. The other

dimension can be used to represent the relatedness of nodes. The location of a node

in the time-dimension is determined by the specific point in time to which the node

is linked. The location of a node in the other dimension can be determined based on

the relatedness of the node to other nodes. Timeline-based visualizations have for

instance been used by Chen (2006), Garfield et al. (2003), and Morris, Yen, Wu,

and Asnake (2003). They are also used in the CitNetExplorer software that will be

discussed later on in this chapter. An example of a timeline-based visualization is

provided in Fig. 13.3. The example, taken from Garfield (2004), displays a citation

network of publications on the so-called small world phenomenon.

Fig. 13.1 Example of a distance-based visualization. Co-citation network of researchers in the

field of information science. Source: White & McCain (1998, Fig. 4). Copyright 1998 by John

Wiley & Sons, Inc. Reprinted with permission
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13.3 Software Tools

There are many software tools that can be used for visualizing bibliometric net-

works. Some of these tools are general statistical or network analysis tools. Other

tools have been developed specifically for visualizing bibliometric networks. In this

section, we do not aim to give a comprehensive overview of all available tools.

Instead, we have selected a number of tools that seem to be among the most

important or most popular ones. We briefly discuss the main features of each of

these tools. We refer to Cobo, López-Herrera, Herrera-Viedma, and Herrera (2011)

for another recent overview of software tools for visualizing bibliometric networks.

This overview includes a number of tools that are not considered in this section.

Below, we first discuss two general network analysis tools (Pajek and Gephi).

We then discuss three tools (CiteSpace, Sci2, and VOSviewer) that have been

developed specifically for analyzing and visualizing bibliometric networks. Finally,

we consider two tools (HistCite and CitNetExplorer) that focus entirely on the

analysis and visualization of one specific type of bibliometric network, namely

citation networks of publications. The tools that we discuss are all freely available,

at least for specific types of use. Some tools are open source, but most are not.

Table 13.1 provides for each tool the URL of its website.

Fig. 13.2 Example of a graph-based visualization. Co-citation network of researchers in the field

of information science. Source: White (2003, Fig. 1). Copyright 2003 by Wiley Periodicals, Inc.

Reprinted with permission
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Fig. 13.3 Example of a timeline-based visualization. Citation network of publications on the

small world phenomenon. Source: Garfield (2004, Fig. 12). Copyright 2004 by SAGE Publica-

tions. Reprinted with permission

Table 13.1 URLs of the websites of a number of software tools that can be used for visualizing

bibliometric networks

CitNetExplorer http://www.citnetexplorer.nl

CiteSpace http://cluster.cis.drexel.edu/~cchen/citespace/

Gephi http://www.gephi.org

HistCite http://www.histcite.com

Pajek http://pajek.imfm.si

Sci2 https://sci2.cns.iu.edu

VOSviewer http://www.vosviewer.com
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13.3.1 General Network Analysis Tools

Two general network analysis tools that have been used for visualizing bibliometric

networks are Pajek (De Nooy, Mrvar, & Batagelj, 2005) and Gephi (Bastian,

Heymann, & Jacomy, 2009). Since these are general network analysis tools, they

have no specific functionality for processing bibliographic data, for instance for

extracting bibliometric networks from output files of the Web of Science biblio-

graphic database. Other software tools are required to take care of this. In the case

of Pajek, a tool calledWoS2Pajek is available for this purpose. In the case of Gephi,

Sci2 (discussed below) can be used.

Pajek is a popular software tool for social network analysis. Many different

techniques for social network analysis are available in Pajek. From a bibliometric

perspective, important techniques offered by Pajek include clustering and main

path analysis (Hummon & Doreian, 1989). The visualization capabilities of Pajek

are somewhat limited in comparison with some of the tools discussed below. Pajek

provides graph-based visualizations, for instance based on the techniques of

Kamada and Kawai (1989) and Fruchterman and Reingold (1991). An interesting

feature of Pajek is the support it offers for three-dimensional visualizations.

Recently, a link to VOSviewer (discussed below) was included in Pajek, allowing

networks analyzed in Pajek to be visualized in VOSviewer.

Compared with Pajek, Gephi is focused less on network analysis and more on

network visualization. Gephi offers extensive visualization capabilities, making it

possible to customize visualizations in great detail. Gephi also supports various

network analysis techniques, but not as many as Pajek. A comparison between the

use of Gephi and the use of VOSviewer (discussed below) for visualizing

bibliometric networks is made by Leydesdorff and Rafols (2012).

13.3.2 Tools for Analyzing and Visualizing Bibliometric
Networks

We now discuss three software tools that have been developed specifically for

analyzing and visualizing bibliometric networks: CiteSpace (Chen, 2004, 2006),

Sci2, and our own VOSviewer (Van Eck &Waltman, 2010). All three tools can take

Web of Science output files as input.

Unlike other software tools, CiteSpace has a strong focus on dynamic visuali-

zations that show how bibliometric networks evolve over time. CiteSpace offers

both graph-based and timeline-based visualizations. It also provides users with a

large range of options. Because of the many options that are available, the user

interface of CiteSpace may appear a bit overwhelming to new users, and it may take

some effort to learn how to use the tool.

Sci2 is a general software tool for analyzing bibliometric networks. Many

different analysis techniques are available in Sci2. Some of these techniques are
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implemented in external programs that have been linked to Sci2. To visualize a

bibliometric network, Sci2 also relies on external software tools. By default, Sci2

uses a tool called GUESS (http://graphexploration.cond.org). Using this tool,

graph-based visualizations of bibliometric networks are provided. Two other net-

work visualization tools that can be used together with Sci2 are Gephi (discussed

above) and Cytoscape (http://www.cytoscape.org).

Our aim with VOSviewer is to offer an easy-to-use software tool that is

completely focused on the visualization of bibliometric networks. Unlike the

above-discussed tools, VOSviewer provides distance-based visualizations of

bibliometric networks. By default, VOSviewer therefore displays only the nodes

in a bibliometric network and does not display the edges between the nodes. In the

visualizations provided by VOSviewer, the distance between two nodes approxi-

mately indicates the relatedness of the nodes. By providing distance-based visual-

izations rather than graph-based ones, VOSviewer is especially suitable for

visualizing larger networks. Because of its strong focus on visualization,

VOSviewer offers less functionality for analyzing bibliometric networks than

other tools. However, VOSviewer does have some special text mining features.

VOSviewer will be discussed in more detail in the second part of this chapter.

13.3.3 Tools for Analyzing and Visualizing Publication
Citation Networks

Finally, we consider two software tools that focus exclusively on the analysis and

visualization of networks of direct citation relations between publications. These

tools are Eugene Garfield’s HistCite (Garfield et al., 2003) and our own recently

developed CitNetExplorer. Both tools offer timeline-based visualizations of publi-

cation citation networks.

HistCite takes Web of Science output files as input. Based on the bibliographic

data in these files, various statistics on publications, researchers, journals, etc. are

presented. The bibliographic data can also be edited, for instance to correct errors

and to add missing data elements. After the bibliographic data has been processed,

the next step is to visualize the publication citation network. A visualization of a

publication citation network is referred to as a historiograph in HistCite, and the

algorithmic construction of such a visualization is called algorithmic historiography

(Garfield et al., 2003). By default, HistCite includes the 30 most frequently cited

publications in the visualization of a publication citation network. An example of a

visualization produced by HistCite is shown in Fig. 13.3.

Compared with HistCite, CitNetExplorer offers more extensive analysis and

visualization capabilities. Most importantly, CitNetExplorer provides functionality

for drilling down into a publication citation network. This functionality makes it

possible to explore a publication citation network in an interactive fashion. Initially,

for instance, we may start with a large network that includes several millions of
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publications. We may then gradually drill down into this network until for instance

we have reached a small subnetwork that includes no more than, say, 100 publica-

tions, all dealing with a specific topic that we are interested in. Like HistCite,

CitNetExplorer is able to process Web of Science output files. CitNetExplorer will

be discussed in more detail in the next two sections.

13.4 Techniques

In this section, we discuss the main techniques used in the two software tools on

which we focus in the rest of this chapter: VOSviewer and CitNetExplorer. We first

consider VOSviewer and then CitNetExplorer. The discussion relates to version

1.5.5 of VOSviewer and version 1.0.0 of CitNetExplorer. Readers who are inter-

ested mainly in the practical application of the two tools and not so much in the

underlying techniques may skip this section and proceed to the next one.

13.4.1 VOSviewer

VOSviewer takes a distance-based approach to visualizing bibliometric networks.

Any type of bibliometric network can be visualized. Directed networks, for instance

networks based on direct citation relations, are treated as undirected. Networks may

consist of several thousand nodes. Because of computational limitations and mem-

ory constraints, networks with more than 10,000 nodes tend to be difficult to handle

in VOSviewer.

13.4.1.1 Normalization, Mapping, and Clustering

In a bibliometric network, there are often large differences between nodes in the

number of edges they have to other nodes. Popular nodes, for instance representing

highly cited publications or highly prolific researchers, may have several orders of

magnitude more connections than their less popular counterparts. In the analysis of

bibliometric networks, one usually performs a normalization for these differences

between nodes. VOSviewer by default applies the association strength normaliza-

tion. This normalization is discussed in detail by Van Eck and Waltman (2009).

After a normalized network has been constructed, the next step is to position the

nodes in the network in a two-dimensional space in such a way that strongly related

nodes are located close to each other while weakly related nodes are located far

away from each other. For this purpose, VOSviewer uses the VOS mapping

technique, where VOS stands for “visualization of similarities.” A detailed discus-

sion of the VOS mapping technique is provided by Van Eck et al. (2010).
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VOSviewer by default also assigns the nodes in a network to clusters. A cluster

is a set of closely related nodes. Each node in a network is assigned to exactly one

cluster. The number of clusters is determined by a resolution parameter. The higher

the value of this parameter, the larger the number of clusters. In the visualization of

a bibliometric network, VOSviewer uses colors to indicate the cluster to which a

node has been assigned. The clustering technique used by VOSviewer is discussed

by Waltman, Van Eck, and Noyons (2010). The technique requires an algorithm for

solving an optimization problem. For this purpose, VOSviewer uses the smart local

moving algorithm introduced by Waltman and Van Eck (2013).

We refer to the Appendix for a technical summary of the normalization, map-

ping, and clustering techniques used by VOSviewer.

13.4.1.2 Displaying a Bibliometric Network

After the nodes in a bibliometric network have been positioned in a

two-dimensional space and have been assigned to clusters, the network can be

displayed. VOSviewer uses various techniques to optimize the way in which

networks are displayed. In order to ensure that labels of nodes do not overlap

each other, labels are displayed only for a selection of all nodes. This selection is

determined in such a way that as many labels as possible are displayed while labels

of more important nodes (i.e., nodes that have more edges) are given priority over

labels of less important nodes. Like computer software for exploring geographical

maps (e.g., Google Maps), VOSviewer offers zooming and panning (scrolling)

functionality. This is especially useful for exploring larger networks consisting of

hundreds or thousands of nodes. When zooming in, the selection of nodes for which

labels are displayed is updated and labels that previously were not shown may

become visible.

VOSviewer also supports overlay visualizations. In an overlay visualization, the

color of a node indicates a certain property of the node. For instance, nodes may

represent journals and the color of a node may indicate the number of times a

journal has been cited. We refer to Van Eck, Waltman, Van Raan, Klautz, and Peul

(2013) for an example of the use of overlay visualizations in VOSviewer. Another

visualization supported by VOSviewer is the density visualization. In this visual-

ization, colors indicate how nodes are distributed in the two-dimensional space

underlying the visualization. The density visualization allows one to immediately

identify dense areas in which many nodes are located close to each other. We refer

to Van Eck and Waltman (2010) for a discussion of the technical details of the

density visualization.

13.4.1.3 Fractional Counting Methodology

As will be demonstrated in Sect. 13.5, VOSviewer is able to process output files of

the Web of Science bibliographic database. Based on these files, VOSviewer can
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construct co-citation and bibliographic coupling networks of publications, journals,

and researchers. A special feature of VOSviewer is the possibility to construct

co-citation and bibliographic coupling networks using a fractional counting meth-

odology. To explain this methodology, we take bibliographic coupling networks of

publications as an example, but the methodology works in a similar way for other

types of networks.

Suppose we have 100 publications that all cite the same publication. Using an

ordinary full counting methodology, each of the 100 publications has a biblio-

graphic coupling relation with a weight of 1 with each of the 99 other publications.

This yields a total bibliographic coupling weight of 99� 1¼ 99 for each of the

100 publications. Using the fractional counting methodology, on the other hand,

each of the 100 publications has a bibliographic coupling relation with a weight of

1/99 with each of the 99 other publications, yielding a total bibliographic coupling

weight of 99� (1/99)¼ 1 for each publication. In other words, using the fractional

counting methodology, giving a citation to a publication always results in a total

bibliographic coupling weight of 1, irrespective of the number of other publications

that also cite the same publication (although there must of course be at least one

other citing publication). Hence, in the case of the fractional counting methodology,

highly cited publications play a less important role in the construction of a biblio-

graphic coupling network. In the same way, publications with a long reference list

(e.g., review articles) play a less important role in the construction of a co-citation

network. In general, we recommend the use of VOSviewer’s fractional counting

methodology instead of the ordinary full counting methodology.

13.4.1.4 Text Mining Techniques

Finally, we briefly mention VOSviewer’s text mining functionality for constructing

co-occurrence networks of terms extracted from English-language textual data, for

instance from titles and abstracts of publications (Van Eck & Waltman, 2011).

VOSviewer relies on the Apache OpenNLP toolkit (http://opennlp.apache.org) to

perform part-of-speech tagging (i.e., to identify verbs, nouns, adjectives, and so on).

It then uses a linguistic filter to identify noun phrases. The filter selects all word

sequences that consist exclusively of nouns and adjectives and that end with a noun.

Plural noun phrases are converted into singular ones. Some noun phrases (e.g.,

“conclusion,” “interesting result,” and “new method”) are very general, and one

usually does not want these noun phrases to be included in one’s co-occurrence

network. VOSviewer therefore calculates for each noun phrase a relevance score.

Essentially, noun phrases have a low relevance score if their co-occurrences with

other noun phrases follow a more or less random pattern, while they have a high

relevance score if they co-occur mainly with a limited set of other noun phrases.

Noun phrases with a low relevance score tend to be quite general, while noun

phrases with a high relevance score typically have a more specific meaning.

VOSviewer allows one to leave out noun phrases with a low relevance score. In

this way, one gets rid of many general noun phrases. The remaining noun phrases
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usually represent relevant terms in the domain of interest. VOSviewer can be used

to visualize the co-occurrence network of these terms.

13.4.2 CitNetExplorer

CitNetExplorer visualizes networks of direct citation relations between publica-

tions. A timeline-based approach is taken. CitNetExplorer supports very large

networks. Networks may include millions of publications and citation relations.

The maximum size of the networks that can be handled by CitNetExplorer depends

mainly on the amount of computer memory that is available.

13.4.2.1 Constructing a Publication Citation Network

CitNetExplorer is able to construct a publication citation network based on Web of

Science output files. Web of Science output files contain bibliographic data on

publications, but they do not directly indicate the citation relations that exist

between these publications. For each publication in a Web of Science output file,

the list of cited references is given. To find out which publications cite which other

publications, the cited references in a Web of Science file need to be matched with

the publications in the file. For some cited references, it will not be possible to

match them with a publication. This usually means that these cited references point

to publications that are not included in the Web of Science file. For other cited

references, matching will be possible. Cited references that can be matched with a

publication indicate the existence of a citation relation between two publications in

the Web of Science file.

Citation matching can be performed in different ways. CitNetExplorer first

attempts to match based on DOI. However, DOI data often is not available. In

that case, matching is done based on first author name (last name and first initial

only), publication year, volume number, and page number. A perfect match is

required for each of these data elements. Data on the title of the cited journal

usually is available as well, but this data is not used by CitNetExplorer. This is

because in many cases the title of a journal is not written consistently in the

same way.

CitNetExplorer assumes publication citation networks to be acyclic. This for

instance means that it is not allowed to have both a citation from publication A to

publication B and a citation from publication B to publication A. Likewise, it is not

allowed to have a citation from publication A to publication B, a citation from

publication B to publication C, and a citation from publication C to publication

A. In other words, when moving through a publication citation network by follow-

ing citation relations from one publication to another, one should never get back

again at a publication that has already been visited. In practice, publication citation

networks are not always perfectly acyclic. There may for instance be publications in
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the same issue of a journal that mutually cite each other. CitNetExplorer solves this

problem by checking whether a publication citation network is acyclic and by

removing citation relations that cause the network to have cycles. CitNetExplorer

also removes all citation relations that point forward in time, for instance a

publication from 2013 citing a publication from 2014.

13.4.2.2 Displaying a Publication Citation Network

If a publication citation network consists of more than 50 or 100 publications,

displaying all publications and all citation relations is typically of little or no use.

There will usually be lots of citation relations, and when displaying these citation

relations, many of them will inevitably cross each other, leading to a visualization

that is hard to interpret. For this reason, in the case of a larger network,

CitNetExplorer displays only a selection of all publications. By default, this

selection consists of the 40 most frequently cited publications in the network, but

the selection of publications to be displayed may be changed by the user. To keep

things simple, in the discussion below, we assume that we are dealing with a small

network and that all publications in the network are displayed. Larger networks are

visualized in the same way as described below, with the exception that only a

selection of all publications are included in the visualization.

In the timeline-based visualization of CitNetExplorer, the vertical dimension is

used to represent time, with more recent years being located below older years.

Publications are positioned in the vertical dimension based on the year in which

they appeared. The vertical dimension is organized into layers, each of equal height.

A year is represented by at least one layer, but some years may be represented by

multiple layers. Multiple layers are used if there are citation relations between

publications from the same year. The horizontal dimension in the timeline-based

visualization of CitNetExplorer is used to provide an indication of the relatedness of

publications. In general, publications that are strongly related to each other, based

on citation relations, are positioned close to each other in the horizontal dimension.

Positioning the publications in a publication citation network in the horizontal

and vertical dimensions of a timeline-based visualization is a hierarchical graph

drawing problem. Following the literature on hierarchical graph drawing (e.g.,

Healy & Nikolov, 2013), CitNetExplorer first assigns each publication to a layer

in the vertical dimension. This is done based on the year in which a publication

appeared. In addition, publications are assigned to layers in such a way that

citations always flow in an upward direction in the visualization. In other words,

for any citation relation, the layer to which the citing publication is assigned must

be located below the layer of the cited publication. After each publication has been

assigned to a layer, CitNetExplorer positions the publications in the horizontal

dimension.

Publications are assigned to layers in the vertical dimension in a year-by-year

fashion. If the publications from a given year do not cite each other, they are all

assigned to the same layer, unless the number of publications exceeds the maximum
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number of publications per layer. By default, the maximum number of publications

per layer is 10. If the publications from a given year do cite each other, they are

assigned to multiple layers in such a way that the layer of a citing publication is

always located below the layer of the corresponding cited publication. This ensures

that citations always flow in an upward direction. Assigning publications to multi-

ple layers is done using a simple heuristic algorithm that aims to minimize the

number of layers that are needed.

Publications are positioned in the horizontal dimension based on their citation

relations with other publications. In addition to direct citation relations, various

types of indirect citation relations (e.g., co-citation and bibliographic coupling

relations) are taken into account as well. In general, the higher the relatedness of

two publications, the closer the publications are located to each other in the

horizontal dimension. However, publications that have been assigned to the same

layer in the vertical dimension must have at least a certain minimum distance from

each other in the horizontal dimension. This is done in order to minimize the

problem of overlapping publications in the visualization. The technique used by

CitNetExplorer to position publications in the horizontal dimension is fairly similar

to the VOS mapping technique discussed in Sect. 13.4.1 and in the Appendix.

To optimize the way in which a publication citation network is displayed,

CitNetExplorer uses similar techniques as VOSviewer. CitNetExplorer labels pub-

lications by the last name of the first author. To prevent labels from overlapping

each other, labels may sometimes be displayed only for a selection of all publica-

tions. Like VOSviewer, CitNetExplorer offers zooming and panning functionality.

13.4.2.3 Analysis Techniques

CitNetExplorer offers various techniques for analyzing publication citation net-

works. At the moment, techniques are available for extracting connected compo-

nents, for clustering publications, for identifying core publications, and for finding

shortest and longest paths between publications. More techniques are expected to

become available in future versions of CitNetExplorer.

Clustering of publications is accomplished following the methodology proposed

by Waltman and Van Eck (2012). This methodology optimizes a variant of the

modularity function of Newman and Girvan (2004) and Newman (2004). The level

of detail of the clustering is determined by a resolution parameter. Like VOSviewer,

CitNetExplorer uses the optimization algorithm introduced by Waltman and Van

Eck (2013).

The identification of core publications is based on the idea of k-cores introduced

by Seidman (1983). A core publication is a publication that has at least a certain

minimum number of citation relations with other core publications. Both incoming

and outgoing citation relations are counted. Hence, for the purpose of identifying

core publications, a publication citation network is treated as undirected. The

identification of core publications makes it possible to get rid of unimportant

publications in the periphery of a publication citation network.
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13.5 Tutorials

We now offer two tutorials, one for VOSviewer and one for CitNetExplorer. The

aim of the tutorials is to provide a basic introduction to both software tools. For each

tool, step-by-step instructions are given on how the tool can be used. The

bibliometric networks that are analyzed and visualized in the two tutorials deal

with the field of scientometrics and closely related fields. Analyses for other fields

of science can be performed in a similar way. To run VOSviewer and

CitNetExplorer, one needs to have a computer system that offers Java support.

Java version 6 or higher needs to be installed.

13.5.1 Data Collection

Data was collected from the Web of Science bibliographic database produced by

Thomson Reuters.1 Bibliographic data was downloaded for all 25,242 publications

in the 13 journals listed in Table 13.2. To select these journals, we started with

Scientometrics and Journal of Informetrics, which we regard as the two core

journals in the field of scientometrics. We then used the 2012 edition of Thomson

Reuters’ Journal Citation Reports to identify closely related journals. We took all

journals listed among the five most closely related journals to either Scientometrics
or Journal of Informetrics, excluding journals that seem to be mainly nationally

oriented. For each of the selected journals, we determined whether it has any

predecessors. These predecessors were included in the selection as well, provided

that they are indexed in the Web of Science database. In this way, the list of

13 journals shown in Table 13.2 was obtained.

Bibliographic data for the 25,242 publications in the journals listed in Table 13.2

was downloaded from the Web of Science database. The database supports various

file formats. We used the tab-delimited format. For each publication, the full record

including cited references was obtained. In the Web of Science database, biblio-

graphic data can be downloaded for at most 500 publications at a time.

Downloading therefore took place in batches. We ended up with a large number

of Web of Science output files, each containing bibliographic data for at most

500 publications.

As can be seen in Table 13.2, the publications included in the data collection

cover the period 1945–2013. Bibliographic data was downloaded separately for

publications from the period 1945–1999 and for publications from the period 2000–

2013. In the VOSviewer tutorial, only publications from the latter period will be

considered. In the CitNetExplorer tutorial, publications from both periods will be

included in the analysis.

1 The data collection took place on November 7, 2013.
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13.5.2 VOSviewer

In this tutorial, we demonstrate the visualization of three bibliometric networks: A

bibliographic coupling network of researchers, a co-citation network of journals,

and a co-occurrence network of terms.

13.5.2.1 Bibliographic Coupling Network of Researchers

To construct and visualize a bibliographic coupling network of researchers, we take

the following steps:

1. Launch VOSviewer. If VOSviewer has not yet been downloaded, then first

download it from http://www.vosviewer.com.

2. Press the Create button on the Action tab to open the Create Map dialog box.

3. Select the Create a map based on a network option button and press the Next

button.

4. Go to the Web of Science tab to open the Select Web of Science File dialog

box. In this dialog box, the Web of Science output files that we want to work

with can be selected. The CTRL key can be used to select multiple files. We

select the files that we obtained in Sect. 13.5.1. We only include files containing

bibliographic data for publications from the period 2000–2013. After the files

have been selected, first press theOK button to close the Select Web of Science

File dialog box and then press the Next button.

5. Select the Bibliographic coupling of authors and Fractional counting option

buttons and press the Next button. By selecting the Fractional counting option

Table 13.2 Journals included in the data collection

Journal Time period No. of pub.

American Documentation 1956–1969 796

ASLIB Proceedings 1956–2013 2,697

Information Processing &Management 1975–2013 3,036

Information Scientist 1968–1978 254

Information Storage and Retrieval 1963–1974 372

Journal of Documentation 1945–2013 3,778

Journal of Information Science 1979–2013 1,855

Journal of Informetrics 2007–2013 399

Journal of the American Society for Information Science 1970–2000 2,995

Journal of the American Society for Information Science

and Technology

2001–2013 2,486

Research Evaluation 2000–2013 383

Research Policy 1974–2013 2,596

Scientometrics 1978–2013 3,595
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button, we indicate that we want to use the fractional counting methodology

discussed in Sect. 13.4.1.

6. VOSviewer asks for the minimum number of publications a researcher must

have in order to be included in the bibliographic coupling network. We choose

the default value of five publications. In our data set, there turn out to be

792 researchers with at least five publications. To go to the next step, press the

Next button.

7. Some researchers may have no or almost no bibliographic coupling relations

with other researchers. It is usually best to exclude these researchers from a

bibliographic coupling network. VOSviewer asks for the number of researchers

to be included in the bibliographic coupling network. We choose to include

500 researchers. This means that the 792� 500¼ 292 researchers with the

smallest number of bibliographic coupling relations will be excluded. To go to

the next step, press the Next button.

8. VOSviewer lists the 500 researchers included in the bibliographic coupling

network and offers the possibility to remove individual researchers from the

network. We choose not to remove anyone. To finish the construction of the

bibliographic coupling network and to close the Create Map dialog box, press

the Finish button.

VOSviewer now applies the normalization, mapping, and clustering techniques

discussed in Sect. 13.4.1. Since we are working with a relatively small network, this

will take at most a few seconds. VOSviewer then provides us with the visualization

shown in Fig. 13.4.

Fig. 13.4 VOSviewer visualization of a researcher bibliographic coupling network
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In the visualization presented in Fig. 13.4, each circle represents a researcher.

Large circles represent researchers that have many publications. Small circles

represent researchers with only a few publications. In general, the closer two

researchers are located to each other in the visualization, the more strongly they

are related to each other based on bibliographic coupling. In other words,

researchers that are located close to each other tend to cite the same publications,

while researchers that are located far away from each other usually do not cite the

same publications. Colors indicate clusters of researchers that are relatively

strongly related to each other. There are 15 clusters, most of which are fairly

small. It may be helpful to reduce the number of clusters a bit. This can be done

as follows:

9. Go to the Map tab in the left part of the VOSviewer window.

10. In the Clustering resolution text box, decrease the value of the resolution

parameter (see Sect. 13.4.1) from 1.00 to 0.50.

11. Select the Clustering only option button and press the Run button.

Instead of 15 clusters, we now have only six, of which three are very small. The

three larger clusters consist of researchers in scientometrics (upper left area in the

visualization), researchers in information science and information retrieval (right

area), and researchers in technology and innovation studies (lower left area).

13.5.2.2 Co-citation Network of Journals

We now demonstrate the construction and visualization of a co-citation network of

journals. The first four steps that we take are the same as described above for

analyzing a bibliographic coupling network of researchers. After these four steps

have been taken, we proceed as follows:

1. Select the Co-citation of sources and Fractional counting option buttons and

press the Next button.

2. VOSviewer asks for the minimum number of citations a journal must have

received in order to be included in the co-citation network. The default value

is 20 citations, but we choose to require at least 50 citations. This means that a

journal can be included in the co-citation network only if in our Web of Science

output files there are at least 50 cited references that point to the journal. There

turn out to be 619 journals that satisfy this requirement. To go to the next step,

press the Next button.

3. VOSviewer asks for the number of journals to be included in the co-citation

network. The journals with the smallest number of co-citation relations will be

excluded. Since the 619 journals selected in the previous step have all been cited

quite significantly (i.e., at least 50 times), we do not think there is a need to

exclude any journals. We therefore simply choose to include all 619 journals. To

go to the next step, press the Next button.
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4. VOSviewer lists the 619 journals included in the co-citation network and offers

the possibility to remove individual journals from the network. We do not

remove any journal. To finish the construction of the co-citation network and

to close the Create Map dialog box, press the Finish button.

The visualization that we obtain of our journal co-citation network is shown in

Fig. 13.5.2

Each circle in the visualization presented in Fig. 13.5 represents a journal. The

size of a circle reflects the number of citations a journal has received. Journals that

are located close to each other in the visualization tend to be more strongly related,

based on co-citations, than journals that are located far away from each other. Three

broad groups of journals can be distinguished: Journals that publish scientometrics

research in the upper area of the visualization, journals that publish information

science and information retrieval research in the lower left area, and journals that

publish technology and innovation studies research in the lower right area. These

three groups of journals can also be easily recognized in the density visualization

that is available on the Density View tab.

Fig. 13.5 VOSviewer visualization of a journal co-citation network

2 To improve the visualization, the Size variation parameter in the Options dialog box has been

set to a value of 0.40. In addition, theNo. of lines parameter has been set to a value of 500. This has

the effect that 500 lines, representing the 500 strongest co-citation relations between journals, are

displayed in the visualization.
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VOSviewer has identified six clusters of journals.3 These clusters are indicated

using colors in the visualization shown in Fig. 13.5. Two clusters are very small and

can be ignored. Of the four larger clusters, the yellow one consists mainly of

journals publishing scientometrics research, while the green one covers journals

focusing on technology and innovation studies research. The red and the blue

cluster both consist of journals publishing information science and information

retrieval research. By zooming in on the lower left area in the visualization, it can

be seen that the journals in the blue cluster are more computer science oriented,

focusing mainly on technical information retrieval research, while the journals in

the red cluster are more social science oriented, focusing on general information

science and library science research.

13.5.2.3 Co-occurrence Network of Terms

Finally, we consider the construction and visualization of a co-occurrence network

of terms extracted from the titles and abstracts of publications. We take the

following steps:

1. Launch VOSviewer.

2. Press the Create button on the Action tab to open the Create Map dialog box.

3. Select the Create a map based on a text corpus option button and press the

Next button.

4. Go to theWeb of Science tab, select the Web of Science output files to be used,

and press the Next button. We use the same files as we did above in the analysis

of researcher bibliographic coupling and journal co-citation networks.

5. Select the Title and abstract fields option button and press the Next button.

VOSviewer will now extract noun phrases from the titles and abstracts of the

publications in our Web of Science output files (see Sect. 13.4.1). This may take

some time.

6. Select the Binary counting option button and press theNext button. The use of a

binary counting methodology means that in the construction of a co-occurrence

network the number of times a noun phrase occurs in the title and abstract of a

publication plays no role. A noun phrase that occurs only once in the title and

abstract of a publication is treated in the same way as a noun phrase that occurs

for instance ten times.

7. VOSviewer asks for the minimum number of occurrences a noun phrase must

have in order to be included in the co-occurrence network. We choose the default

value of ten occurrences. There turn out to be 3,158 noun phrases that occur in

the title or abstract of at least ten publications. To go to the next step, press the

Next button.

3 The resolution parameter of VOSviewer’s clustering technique is set to its default value of 1.00,

not to the value of 0.50 that was used in the case of the author bibliographic coupling network.
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8. VOSviewer asks for the number of noun phrases to be included in the

co-occurrence network. By default, VOSviewer suggests to include 60 % of

the noun phrases selected in the previous step. We follow this suggestion and

choose to include 1,894 noun phrases in the co-occurrence network. To deter-

mine the noun phrases to be excluded, VOSviewer will calculate for each noun

phrase a relevance score (see Sect. 13.4.1). The noun phrases with the lowest

relevance scores will be excluded. To go to the next step, press the Next button.

VOSviewer will now perform the calculation of the relevance scores. This may

take some time.

9. VOSviewer lists the 1,894 noun phrases included in the co-occurrence network

and offers the possibility to remove individual noun phrases from the network.

We order the noun phrases alphabetically and indicate that we want to remove

all noun phrases starting with “Elsevier.” These noun phrases result from

copyright statements in the abstracts of publications in Elsevier journals. After

removing six noun phrases that start with “Elsevier,” we end up with a

co-occurrence network of 1,888 noun phrases. We refer to these noun phrases

as terms. To finish the construction of the co-occurrence network and to close the

Create Map dialog box, press the Finish button.

Figure 13.6 shows the visualization of our term co-occurrence network.4

In the visualization presented in Fig. 13.6, each circle represents a term. The size

of a circle indicates the number of publications that have the corresponding term in

their title or abstract. Terms that co-occur a lot tend to be located close to each other

in the visualization. VOSviewer has grouped the terms into six clusters, of which

four are of significant size. The red cluster, located in the upper left area in the

visualization, consists of scientometric terms. The green cluster, located in the

lower left area, covers terms related to technology and innovation studies. In the

right area in the visualization, the blue and yellow clusters consist of terms related

to information science and information retrieval. Similar to what we have seen in

the case of the journal co-citation network, one cluster (the blue one) is more

computer science-oriented while the other (the yellow one) is more focused on

the social sciences.

Comparing the visualizations shown in Figs. 13.4, 13.5, and 13.6, it can be

concluded that we have obtained a quite consistent picture of the structure of the

field of scientometrics and closely related fields. The three visualizations all suggest

a similar division into subfields. The differences between the visualizations are

fairly small and relate mainly to the positioning of the subfields relative to each

other and to the level of detail that is provided.

4 To improve the visualization, the Size variation parameter in the Options dialog box has been

set to a value of 0.40. A few terms in the upper part of the visualization are not visible in Fig. 13.6.
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13.5.3 CitNetExplorer

In this CitNetExplorer tutorial, we analyze and visualize the citation network of

publications in the field of scientometrics.

We start by opening the network:

1. Launch CitNetExplorer. If CitNetExplorer has not yet been downloaded, then

first download it from http://www.citnetexplorer.nl.

2. The Open Citation Network dialog box will appear. On the Web of Science

tab, we select the Web of Science output files that we want to work with. These

are the files that we obtained in Sect. 13.5.1. All files are included, covering the

full period 1945–2013. By default, the Include non-matching cited references

check box is checked. We leave it this way. If the Include non-matching cited

references check box is not checked, only publications for which bibliographic

data is available in our Web of Science output files will be included in the

citation network. If the check box is checked, all publications with at least a

certain minimum number of citations will be included, even if no bibliographic

data (other than the data that can be extracted from cited references) is available.

For the minimum number of citations, we choose the default value of ten.

Fig. 13.6 VOSviewer visualization of a term co-occurrence network
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3. Press the OK button to close the Open Citation Network dialog box. The

citation network will now be opened. CitNetExplorer will perform citation

matching and will make sure that the network is acyclic (see Sect. 13.4.2).

This may take some time.

The visualization of the citation network is shown in Fig. 13.7. Recall from

Sect. 13.4.2 that only the 40 most frequently cited publications in the network are

displayed. When the mouse is moved over a publication, some bibliographic

information (e.g., authors, title, and journal) is displayed in the left part of the

CitNetExplorer window. The visualization presented in Fig. 13.7 has a clear

structure. Publications on information science and information retrieval can be

found in the left part of the visualization, publications on scientometrics in the

middle part, and publications on technology and innovation studies in the right part.

The curved lines indicate citation relations between publications.

Suppose we are interested to learn more about the literature on visualizing

bibliometric networks. Among the 40 publications displayed in Fig. 13.7, we

recognize three publications on this topic: Small (1973), White and Griffith

Fig. 13.7 CitNetExplorer visualization of our publication citation network
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(1981), and White and McCain (1998). All three publications were discussed in the

literature review presented in Sect. 13.2. We use these publications to drill down

into the citation network:

4. Click on Small (1973). This publication has now been marked. To indicate this,

the publication is displayed using a square instead of a circle.

5. Click on White and McCain (1998). This publication has now been marked as

well. Notice that Small (1973), White and McCain (1998), and a few other

publications are displayed using a red border. This border indicates that these

publications are selected. By default, a publication is selected if it has been

marked or if it is on a citation path from one marked publication to another. For

instance, White and Griffith (1981) is selected because it is on a citation path

from White and McCain (1998) to Small (1973). White and Griffith (1981) is

cited by White and McCain (1998) and is citing Small (1973). Publications that

are not among the 40 displayed in the visualization may also be selected, but this

is not directly visible. The number of selected publications is reported in the

upper left part of the CitNetExplorer window. In our case, there turn out to be

261 selected publications. Each of these publications is on a citation path from

White and McCain (1998) to Small (1973).

6. Press the Drill down button in the upper part of the CitNetExplorer window. By

pressing this button, we drill down from the full citation network to a citation

network that includes only the 261 selected publications. This network is now

referred to as the current network.

After drilling down, we obtain the visualization shown in Fig. 13.8. Of the

261 publications, the 40 most frequently cited are displayed in the visualization.

Many of the publications displayed in Fig. 13.8 do not directly deal with the

topic of visualizing bibliometric networks. We therefore drill down deeper into the

citation network. We use a clustering technique (see Sect. 13.4.2) for this purpose:

7. Press the Analysis button in the upper part of the CitNetExplorer window. In

the Analysis menu, choose the Clustering option. The Clustering dialog box

will appear.

8. We use the default parameter values presented in the Clustering dialog box.

Press theOK button to close the dialog box. The 261 publications in the current

network will now be clustered.

9. A message box is displayed indicating that five clusters of publications have

been identified. Press the OK button to close the message box. Publications

now have colors in the visualization. The color of a publication indicates the

group to which the publication belongs. There are five groups, each

corresponding with one of the five clusters that have been identified.

10. Publications on the topic of visualizing bibliometric networks turn out to be

concentrated in group 2. These publications have a green color. In the Selection

parameters frame in the left part of the CitNetExplorer window, choose the

Based on groups option in the Selection drop-down box. In the Groups list

13 Visualizing Bibliometric Networks 309



box, check Group 2. The 66 publications belonging to group 2 are now

selected. These publications are displayed using a red border in the

visualization.

11. Press the Drill down button.

The visualization obtained after drilling down is shown in Fig. 13.9.5 The current

network now includes 66 publications. The 40 most frequently cited ones are

displayed in the visualization.

We now have an overview of an important part of the literature that appeared in

the period 1973–1998 on the topic of visualizing bibliometric networks. However,

Fig. 13.8 CitNetExplorer visualization of our publication citation network after drilling down the

first time

5Notice that in the visualization shown in Fig. 13.9, publications are displayed in green rather than

in gray. This is because the publications included in the visualization all belong to the same cluster

identified by CitNetExplorer’s clustering technique.
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it may be that not all important publications from the period 1973–1998 are

included in the current network. Moreover, publications from earlier and later

periods are not included at all. To include a larger part of the literature, we expand

the current network. We first look at publications that precede the 66 publications in

the current network. We expand the current network with all publications cited by

at least one of these 66 publications:

12. Press the Expand button in the upper part of the CitNetExplorer window. The

Expand Current Network dialog box will appear.

13. In the Publications drop-down box, choose the Predecessors option. Do not

change the values of the Min. number of citation links and Max. distance

parameters, and do not check the Add intermediate publications check box.

Press the OK button to close the Expand Current Network dialog box. The

current network will now be expanded.

Fig. 13.9 CitNetExplorer visualization of our publication citation network after drilling down the

second time
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After expansion, the current network includes 342 publications. Among these

publications, we for instance find classical works by Alfred Lotka, Eugene Garfield,

and Derek de Solla Price.

Suppose we also want to see publications that are preceded by the above-

mentioned 66 publications. In other words, we want to see publications by which

the 66 publications are cited. The number of publications that cite at least one of our

66 publications will probably be quite large, and many of these publications may

not be directly related to the topic of visualizing bibliometric networks. We

therefore require publications to cite at least three of our 66 publications. We

take the following steps:

14. Press the Back button in the upper part of the CitNetExplorer window. The

expansion of the current network from 66 to 342 publications will be undone.

15. Press the Expand button to open the Expand Current Network dialog box.

16. In the Publications drop-down box, choose the Successors option. Set the

Min. number of citation links parameter to a value of three. Do not change the

Fig. 13.10 CitNetExplorer visualization of our publication citation network after the second

expansion
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value of theMax. distance parameter, and do not check the Add intermediate

publications check box. Press the OK button to close the Expand Current

Network dialog box and to perform the expansion.

The visualization obtained after the expansion is shown in Fig. 13.10. The

current network now includes 248 publications. Among the more recent publica-

tions, we find publications on the topic of visualizing bibliometric networks by for

instance Kevin Boyack, Chaomei Chen, Richard Klavans, and Loet Leydesdorff.

The above tutorial has demonstrated the most essential elements of the user

interface of CitNetExplorer. However, there are many features of the software that

have not been discussed in this short tutorial. Some of these features are discussed in

a more extensive tutorial available at http://www.citnetexplorer.nl/gettingstarted/.

Conclusion

In this chapter, we have provided an introduction into the topic of visualizing

bibliometric networks. An overview has been given of the literature on this

topic and of the main software tools that are available. Our focus has been

mostly on two software tools: VOSviewer and CitNetExplorer. We have

discussed the most important techniques used by these tools, and we have

provided tutorials with step-by-step instructions on the use of the tools.

To conclude this chapter, we first discuss the limitations of bibliometric

network visualizations and the proper use of these visualizations. We then

summarize some ongoing and future developments in the visualization of

bibliometric networks.

Limitations and Proper Use of Bibliometric Network Visualizations

The main idea of bibliometric network visualization is to allow large amounts

of complex bibliographic data to be analyzed in a relatively easy way by

visualizing core aspects of data. The strength of bibliometric network visu-

alization is in the simplification it provides, but simplification comes at a cost.

It typically implies a loss of information.

Loss of information takes place in reducing bibliographic data to a

bibliometric network. For example, when textual data is reduced to a

co-occurrence network of terms, information on the context in which terms

co-occur is lost. Similarly, when we have constructed a citation network, we

can see who is citing whom, but we can no longer see why someone may be

citing someone else.

Loss of information also occurs in the visualization of a bibliometric

network. In the case of a distance-based visualization, for instance, it is

usually not possible to position the nodes in a two-dimensional space in

such a way that for any pair of nodes the distance between the nodes reflects

the relatedness of the nodes with perfect accuracy. Distances reflect related-

ness only approximately, and we therefore lose information. In the case of

graph-based and timeline-based visualizations, we may need to restrict

(continued)
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(continued)

ourselves to visualizing a limited number of nodes, for instance, the nodes

with the highest degree in a network. This means that we lose information on

the other nodes in the network.

Loss of information is especially problematic because it is often difficult to

assess how much information is lost and to what extent this may affect the

conclusions that can be drawn from a bibliometric network visualization. For

instance, to what extent do the distances between the nodes in a distance-

based visualization accurately reflect the relatedness of the nodes? To what

extent does a visualization of a term co-occurrence network change if the

selection of terms included in the visualization is changed? Even if we are

aware that there may be inaccuracies in a bibliometric network visualization,

it remains difficult to assess the magnitude and the consequences of these

inaccuracies.

Related to this, it is often difficult to assess the sensitivity of a bibliometric

network visualization due to various technical choices. Would other technical

choices have resulted in a completely different visualization, or would the

differences have been minor? How strongly does a visualization depend on

the values of all kinds of technical parameters, and is it possible to justify the

choice of particular parameter values? Is a certain structure suggested by a

visualization a reflection of the underlying data, or is it merely an artifact of

the techniques used to produce the visualization? Researchers who regularly

work with bibliometric network visualizations develop an intuition that helps

them to give approximate answers to these types of questions, but most users

of bibliometric network visualizations lack such an intuition, making it

difficult for them to assess the accuracy of a visualization.

Given the above difficulties, our general recommendation is to use

bibliometric network visualizations as a complement rather than as a substi-

tute to expert judgment. When expert judgment and bibliometric network

visualizations are in agreement with each other and point in the same direc-

tion, they strengthen each other. When they do not agree, this may be a reason

for experts to reconsider their opinion, it may also be a reason to ask for the

opinion of additional experts, or it may be a reason to check whether the

visualizations may be inaccurate because important information has been lost

or because of methodological issues. Bibliometric network visualizations are

most useful when they are interpreted in a careful manner and used in

combination with expert judgment. Also, visualization should be a means to

an end, not an end in itself. For instance, when dealing with only a small

amount of data, there often is no added value in the use of visualization. It

may be much better to simply study the data directly.

(continued)
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(continued)

Ongoing and Future Developments in the Visualization of Bibliometric

Networks

Finally, we discuss some ongoing and future developments in the visualiza-

tion of bibliometric networks.

An important development, made possible by the enormous growth in

computational resources that has taken place, is the increasing attention that

is given to visualizing large bibliometric networks. Examples include the

work by Boyack et al. (2005) on large journal networks, the work by Klavans

and Boyack (2006) on large publication networks, and the work by Skupin

et al. (2013) on large term networks. Interesting alternative data sources are

being explored as well (e.g., Bollen et al., 2009).

A second and related development is the increasing use of interactive

visualizations. The use of interactive visualizations is especially important

given the above-mentioned trend toward visualizing increasingly large

bibliometric networks. Static visualizations of large networks tend to be of

limited use. It is rather difficult to show the detailed structure of a large

network in a static visualization. Interactive visualizations allow large net-

works to be visualized and explored in a much more powerful way, for

instance by allowing users to drill down from a general high-level overview

to a very detailed low-level picture. The drill down functionality offered by

CitNetExplorer can be seen as an example of this idea.

A third development is the increasing interest in dynamic visualizations

that show how bibliometric networks have evolved over time. Traditionally,

most attention has been paid to visualizations that offer a static picture

showing the structure of a bibliometric network at a given point in time.

Dynamic visualizations have received less attention, although some interest-

ing work has been done, for instance in the CiteSpace tool (Chen, 2004, 2006)

and in general network analysis tools such as Gephi and Visone (http://

visone.info). Like visualizations of large networks, dynamic visualizations

may benefit a lot from interactive visualization approaches.

In summary, we expect a trend toward more and more interactive and

dynamic visualizations that involve increasingly large bibliometric networks.

Clearly, an exciting and highly challenging research agenda lies ahead of us.
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Appendix: Normalization, Mapping, and Clustering

Techniques Used by VOSviewer

In this appendix, we provide a more detailed description of the normalization,

mapping, and clustering techniques used by VOSviewer.

Normalization

We first discuss the association strength normalization (Van Eck &Waltman, 2009)

used by VOSviewer to normalize for differences between nodes in the number of

edges they have to other nodes. Let aij denote the weight of the edge between nodes
i and j, where aij = 0 if there is no edge between the two nodes. Since VOSviewer

treats all networks as undirected, we always have aij= aji. The association strength

normalization constructs a normalized network in which the weight of the edge

between nodes i and j is given by

sij ¼ 2maij
kikj

; ð1Þ

where ki (kj) denotes the total weight of all edges of node i (node j) and m denotes

the total weight of all edges in the network. In mathematical terms,

ki ¼
X

j

aij and m ¼ 1

2

X

i

ki: ð2Þ

We sometimes refer to sij as the similarity of nodes i and j. For an extensive

discussion of the rationale of the association strength normalization, we refer to

Van Eck and Waltman (2009).

Mapping

We now consider the VOS mapping technique used by VOSviewer to position the

nodes in the network in a two-dimensional space. The VOS mapping technique

minimizes the function

V x1; . . . ; xnð Þ ¼
X

i<j

sij xi � xj
�� ��2 ð3Þ

subject to the constraint

316 N.J. van Eck and L. Waltman



2

n n� 1ð Þ
X

i<j

xi � xj
�� �� ¼ 1; ð4Þ

where n denotes the number of nodes in a network, xi denotes the location of node i
in a two-dimensional space, and ||xi� xj|| denotes the Euclidean distances between

nodes i and j. VOSviewer uses a variant of the SMACOF algorithm (e.g., Borg &

Groenen, 2005) to minimize (3) subject to (4). We refer to Van Eck et al. (2010) for

a more extensive discussion of the VOS mapping technique, including a compar-

ison with multidimensional scaling.

Clustering

Finally, we discuss the clustering technique used by VOSviewer. Nodes are

assigned to clusters by maximizing the function

V c1; . . . ; cnð Þ ¼
X

i<j

δ ci; cj
� �

sij � γ
� �

; ð5Þ

where ci denotes the cluster to which node i is assigned, δ(ci, cj) denotes a function
that equals 1 if ci= cj and 0 otherwise, and γ denotes a resolution parameter that

determines the level of detail of the clustering. The higher the value of γ, the larger
the number of clusters that will be obtained. The function in (5) is a variant of the

modularity function introduced by Newman and Girvan (2004) and Newman

(2004) for clustering the nodes in a network. There is also an interesting mathe-

matical relationship between on the one hand the problem of minimizing (3) subject

to (4) and on the other hand the problem of maximizing (5). Because of this

relationship, the mapping and clustering techniques used by VOSviewer constitute

a unified approach to mapping and clustering the nodes in a network. We refer to

Waltman et al. (2010) for more details. We further note that VOSviewer uses the

recently introduced smart local moving algorithm (Waltman & Van Eck, 2013) to

maximize (5).
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Chapter 14

Replicable Science of Science Studies

Katy Börner and David E. Polley

Abstract Much research in bibliometrics and scientometrics is conducted using

proprietary datasets and tools making it hard if not impossible to replicate results.

This chapter reviews free tools, software libraries, and online services that support

science of science studies using common data formats. We then introduce plug-and-

play macroscopes (Börner, Commun ACM 54(3):60–69, 2011) that use the OSGi

industry standard to support modular software design, i.e., the plug-and-play of

different data readers, preprocessing and analysis algorithms, but also visualization

algorithms and tools. Exemplarily, we demonstrate how the open source Science of

Science (Sci2) Tool can be used to answer temporal (when), geospatial (where),

topical (what), and network questions (with whom) at different levels of analysis—

from micro to macro. Using the Sci2 Tool, we provide hands-on instructions on

how to run burst analysis (see Chapter 10 in this book), overlay data on geospatial

maps (see Chapter 6 in this book), generate science map overlays, and calculate

diverse network properties, e.g., weighted PageRank (see Chapter 4 in this book) or

community detection (see Chapter 3 in this book), using data from Scopus, Web of

Science or personal bibliography files, e.g., EndNote or BibTex. We exemplify tool

usage by studying evolving research trajectories of a group of physicists over

temporal, geospatial, and topic space as well as their evolving co-author networks.

Last but not least, we show how plug-and-play macroscopes can be used to create

bridges between existing tools, e.g., Sci2 and the VOSviewer clustering algorithm

(see Chapter 13 in this book), so that they can be combined to execute more

advanced analysis and visualization workflows.
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14.1 Open Tools for Science of Science Studies

Science of science studies seek to develop theoretical and empirical models of the

scientific enterprise. Examples include qualitative and quantitative methods to

estimate the impact of science (Cronin & Sugimoto, 2014) or models to understand

the production of science (Scharnhorst, Börner, & van den Besselaar, 2012). There

exist a variety of open-source tools that support different types of analysis and

visualization. Typically, tools focus on a specific type of analysis and perform well

at a certain level, e.g., at the micro (individual) level or meso level—using datasets

containing several thousand records. What follows is a brief survey of some of the

more commonly used tools that support four types of analyses and visualizations:

temporal, geospatial, topical, and network.

Many tools have a temporal component, but few are dedicated solely to the

interactive exploration of time-series data. The Time Searcher project is an excel-

lent example of a tool that allows for interactive querying of time stamped data

through the use of timeboxes, a graphical interface that allows users to build and

manipulate queries (Hochheiser & Shneiderman, 2004). Now in its third iteration,

the tool can handle more than 10,000 data points and offers data-driven forecasting

through a Similarity-Based Forecasting (SBF) interface (Buono et al., 2007). The

tool runs on Windows platforms and is freely available.

There are many tools available for advanced geospatial visualization and most

require some knowledge of geographical information science. Exemplary tools

include GeoDa, GeoVISTA, and CommonGIS. GeoDa is an open-source and

cross-platform tool that facilitates common geospatial analysis functionality, such

as spatial autocorrelation statistics, spatial regression functionality, full space-time

data support, cartograms, and conditional plots (and maps) (Anselin, Syabri, &

Kho, 2006). Another tool, GeoVISTA Studio, comes from the GeoVISTA Center at

Penn State, which produces a variety of geospatial analysis tools. Studio offers an

open-source graphical interface that allows users to build applications for

geocomputation and visualization and allows for interactive querying, 3D rendering

of complex graphics, and 2D mapping and statistical tools (Takatsuka & Gahegan,

2002). Finally, CommonGIS is a java-based geospatial analysis tool accessible via

the web. This service allows for interactive exploration and analysis of geograph-

ically referenced statistical data through any web browser (Andrienko et al., 2002).

There are a variety of topical data analysis and visualization tools used in a

variety of disciplines from bibliometrics to digital humanities and business.

TexTrend is a freely available, cross-platform tool that aims to support decision-

making in government and business. Specifically, the tool facilitates text mining

and social network analysis, with an emphasis on dynamic information (Kampis,

Gulyas, Szaszi, Szakolczi, & Soos, 2009). The aim of the tool is to extract trends

and support predictions based on textual data. VOSviewer is another cross-platform

and freely available topical analysis tool, designed specifically for bibliometric

analysis (Van Eck & Waltman, 2014). The tool allows users to create maps of

publications, authors, and journals based on co-citation networks or keywords,
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illuminating the topic coverage of a dataset. VOSviewer provides multiple ways to

visualize data, including a label view, density view, cluster density view, and a

scatter view.

Finally, there are many tools that are dedicated to network analysis and visual-

ization. Some of the more prominent tools include Pajek and Gephi. Pajek has long

been popular among social scientists. Originally designed for social network

analysis, the program is not open-source but is freely available for noncommercial

use on the Windows platform. Pajek is adept at handling large networks containing

thousands of nodes (Nooy, Mrvar, & Batageli, 2011). The tool handles a variety of

data objects, including networks, partitions, permutations, clusters, and hierarchies.

Pajek offers a variety of network analysis and visualization algorithms and includes

bridges to other programs, such as the ability to export to R for further analysis.

Gephi is a more recent, and widely used network analysis and visualization

program (Bastian, Heymann, & Jacomy, 2009). This tool is open-source and

available for Windows, Mac OS, and Linux. Gephi is capable of handling large

networks, and provides common network analysis algorithms, such as average

network degree, graph density, and modularity. Gephi is also well suited for

displaying dynamic and evolving networks and accepts a wide variety of input

formats including NET and GRAPHML files.

14.2 The Science of Science (Sci2) Tool

The Science of Science (Sci2) Tool is a modular toolset specifically designed for

the study of Science (Sci2 Team, 2009). Sci2 can be downloaded from http://sci2.

cns.iu.edu and it can be freely used for research and teaching but also for commer-

cial purposes (Apache 2.0 license). Extensive documentation is provided on

the Sci2 Wiki (http://sci2.wiki.cns.iu.edu), in the Information Visualization

MOOC (http://ivmooc.cns.iu.edu), and the Visual Insights textbook (Börner &

Polley, 2014).

Instead of focusing on just one specific type of analysis, like many other tools,

it supports the temporal, geospatial, topical, and network analysis and visualiza-

tion of datasets at the micro (individual), meso (local), and macro (global) levels.

The tool is built on the OSGi/CIShell framework that is widely used and

supported by industry (http://osgi.org). It uses an approach known as “plug-and-

play” in macroscope construction (Börner, 2011), allowing anyone to easily add

new algorithms and tools using a wizard-supported process, and to customize the

tool to suit their specific research needs. The tool is optimized for datasets of up to

100,000 records for most algorithms (Light, Polley, & Börner, 2014). This section

reviews key functionality—from data reading to preprocessing, analysis, and

visualization.
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14.2.1 Workflow Design and Replication

The Sci2 Tool supports workflow design, i.e., the selection and parameterization of

different data readers, data analysis, visualization and other algorithms, via a

unified graphical interface, see Fig. 14.1.

Workflows are recorded and can be re-run to replicate results. They can be run

with different parameter values to test and understand the sensitivity of results or to

perform parameter sweeps. Workflows can also be run on other datasets to compare

results. Last but not least, the same workflow can be run with different algorithms

(e.g., clustering techniques) in support of algorithm comparisons. For a detailed

documentation of workflow log formats and usage, please see our documentation

wiki.1

All workflows discussed in this paper have been recorded and can be re-run.

They can be downloaded from section 2.6, Sample Workflows, on the Sci2 wiki.2

Fig. 14.1 Sci2 user interface with Menu on top, Console below, Scheduler in lower left, and Data
Manager and Workflow Tracker on right

1 http://wiki.cns.iu.edu/display/CISHELL/Workflow+Tracker
2 http://wiki.cns.iu.edu/display/SCI2TUTORIAL/2.6+Sample+Workflows
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14.2.2 Data Readers

The Sci2 Tool reads a number of common file formats, including tabular formats

(.CSV); output file formats from major data providers such as Thomson Reuter’s

Web of Science (.isi), Elsevier’s Scopus (.scopus), Google Scholar, but also funding

data from the U.S. National Science Foundation (.nsf) and the U.S. National

Institutes of Health (using .CSV); output formats from personal bibliography

management systems such as EndNote (.enw) and Bibtex (.bib). In addition, there

exist data readers that retrieve data from Twitter, Flickr, and Facebook.3 Last but

not least, Sci2 was codeveloped with the Scholarly Database (SDB) (http://sdb.cns.

iu.edu) that provides easy access to 27 million paper, patent, grant, clinical trials

records. All datasets downloaded from SDB in tabular or network format, e.g.,

coauthor, coinventor, coinvestigator, patent–citation networks, are fully compatible

with Sci2. File format descriptions and sample data files are provided at the Sci2

Wiki in section 4.2.4

14.2.3 Temporal Analysis (When)

14.2.3.1 Data Preprocessing

The “Slice Table by Time” algorithm5 is a common data preprocessing step in

many temporal visualization workflows. As an input, the algorithm takes a table

with a date/time value associated with each record. Based on a user-specified time

interval the algorithm divides the original table into a series of new tables.

Depending on the parameters selected, these time slices are either cumulative or

not, and aligned with the calendar or not. The intervals into which a table may be

sliced include: milliseconds, seconds, minutes, hours, days, weeks, months, quar-

ters, years, decades, and centuries.

14.2.3.2 Data Analysis

The “Burst Detection” algorithm6 implemented in Sci2, adapted from Jon

Kleinberg’s (2002), identifies sudden increases or “bursts” in the frequency-of-

use of character strings over time. It identifies topics, terms, or concepts important

to the events being studied that increase in usage, are more active for a period of

time, and then fade away. The input for the algorithm is time-stamped text, such as

3 http://wiki.cns.iu.edu/display/SCI2TUTORIAL/3.1+Sci2+Algorithms+and+Tools
4 http://wiki.cns.iu.edu/display/SCI2TUTORIAL/4.2+Data+Acquisition+and+Preparation
5 http://wiki.cns.iu.edu/display/CISHELL/Slice+Table+by+Time
6 http://wiki.cns.iu.edu/display/CISHELL/Burst+Detection
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documents with publication years. From titles, abstracts or other text, the algorithm

generates a list of burst words, ranked according to burst weight, and the intervals of

time in which these bursts occurred. Figure 14.2 shows a diagram of bursting letters

(left) next to the raw data (right). The letter “b” (solid blue line plots frequency,

dashed blue line plots burst) experienced a burst from just before 1985 to just after

1990. Similarly, the letter “c” (red line) experienced a burst starting just after 1995

and ending just before 2005. However, the letter “a” (green line) remains constant

throughout this time series, i.e., there is no burst for that term.

14.2.3.3 Data Visualization

The “Temporal Bar Graph” visualizes numeric data over time, and is the only truly

temporal visualization algorithm available in Sci2.7 This algorithm accepts tabular

(CSV) data, which must have start and end dates associated with each record.

Records that are missing either start or end dates are ignored. The other input

parameters include “Label,” which corresponds to a text field and is used to label

the bars; “Size By,” which must be an integer and corresponds to the area of the

Fig. 14.2 A burst analysis diagram for three letters (right) compared with the raw data (left)

7 http://wiki.cns.iu.edu/display/CISHELL/Temporal+Bar+Graph
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horizontal bars; “Date Format,” which can either be in “Day-Month-Year Date

Format (Europe, e.g. 31/10/2010)” or “Month-Day-Year (U.S., e.g. 10/31/2010)”;

and “Category,” which allows users to color code bars by an attribute of the data.

For example, Fig. 14.3 shows the National Science Foundation (NSF) funding

Profile for Dr. Geoffrey Fox, Associate Dean for Research and Distinguished

Professor of Computer Science and Informatics at Indiana University, where each

bar represents an NSF award on which Dr. Fox was an investigator. Each bar is

labeled with the title of the award. The total area of the bars corresponds to the total

amount awarded, and the bars are color-coded by the institution/organization

affiliated with the award.

14.2.4 Geospatial Analysis (Where)

14.2.4.1 Data Preprocessing

The “Extract ZIP Code” algorithm8 is a common preprocessing step in geospatial

visualization workflows. This algorithm takes US addresses as input data and extracts

the ZIP code from the address in either the standard five-digit short form (xxxxx) or the

Fig. 14.3 Temporal Bar Graph showing the NSF funding profile for Dr. Geoffrey Fox

8 http://wiki.cns.iu.edu/display/CISHELL/Extract+ZIP+Code
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standard nine-digit long form (xxxxx-xxxx). This feature facilitates quick spatial

analysis and simplifies geocoding. However, the algorithm is limited to U.S. or U.

S.-based ZIP code systems. Another useful preprocessing step for geospatial and other

workflows is data aggregation. Redundant geo-identifiers are common in geospatial

analysis and require aggregation prior to visualization. Sci2 provides basic aggrega-

tion with the “Aggregate Data” algorithm,9 which groups together values in a column

selected by the user. The other values in the records are aggregated as specified by the

user. Currently, sum, difference, average, min, and max are available for numerical

data. All text data are aggregated when a text delimiter is provided.

14.2.4.2 Data Analysis

Sci2 has a variety of geocoding options. The “Generic Geocoder”10 is the most

basic of these options. It converts U.S. addresses, U.S. states, and U.S. ZIP codes

into longitude and latitude values. The input for this algorithm is a table with a

geo-identifier for each record, and the output is the same table but with a longitude

and latitude value appended to each record. There are no restrictions on the number

of records that can be geocoded using the “Generic Geocoder.”

The “Bing Geocoder”11 expands the functionality of the “Generic Geocoder,”

allowing Sci2 to convert international addresses into longitude and latitude values.

All coordinates are obtained by querying the Bing geocoder service and Internet

access must be available while using this algorithm. Users must obtain an API key

from Bing Maps in order to run this algorithm, and there is a limit of 50,000 records

which can be geocoded in a 24 hour period. Finally, Sci2 provides a “Congressional

District Geocoder,”12 which converts nine-digit ZIP codes (five-digit ZIP codes can

contain multiple districts) into congressional districts and geographic coordinates.

The algorithm is available as an external plugin that can be downloaded from the

Sci2 wiki.13 The database that supports this algorithm is based on the 2012 ZIP

Code Database for the 113th U.S. Congress and does not take into account any

subsequent redistricting.

14.2.4.3 Data Visualization

The Sci2 Tool offers three geospatial visualization algorithms: a proportional

symbol map, a choropleth map, or region-shaded map, and a network geomap

overlay. The “Proportional Symbol Map” algorithm14 takes a list of coordinates

9 http://wiki.cns.iu.edu/display/CISHELL/Aggregate+Data
10 http://wiki.cns.iu.edu/display/CISHELL/Geocoder
11 http://wiki.cns.iu.edu/display/CISHELL/Bing+Geocoder
12 http://wiki.cns.iu.edu/display/CISHELL/Congressional+District+Geocoder
13 http://wiki.cns.iu.edu/display/SCI2TUTORIAL/3.2+Additional+Plugins
14 http://wiki.cns.iu.edu/display/CISHELL/Proportional+Symbol+Map
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and at most three numeric attributes and visualizes them over a world or United

States base map. The sizes and colors of the symbols are proportional to the

numeric values. The “Choropleth Map” algorithm15 allows users to color countries

of the world or states of the United States in proportion to one numeric attribute.

Finally, Sci2 has the ability to visualize networks overlaid on a geospatial basemap.

As input, the “Geospatial Network Layout with Base Map” algorithm16 requires a

network file with latitude and longitude values associated with each node. The

algorithm produces a network file and a PostScript base map. The network file is

visualized in GUESS or Gephi, exported as a PDF, and overlaid on the PDF of the

base map. Figure 14.4 shows an exemplary proportional symbol map (left),

choropleth map (center), and the geospatial network layout with base map (right).

14.2.5 Topical Analysis (What)

14.2.5.1 Data Preprocessing

The topic or semantic coverage of a scholar, institution, country, paper, journal or

area of research can be derived from the texts associated with it. In order to analyze

and visualize topics, text must first be normalized. Sci2 provides basic text nor-

malization with the “Lowercase, Tokenize, Stem, and Stopword Text” algorithm.17

This algorithm requires tabular data with a text field as input and outputs a table

with the specified text field normalized. Specifically, the algorithm makes all text

lowercase, splits the individual words into tokens (delimited by a user-selected

separator), stems each token (removing low content prefixes and suffixes), and

removes stopwords, i.e., very common (and therefore dispensable) words or phrases

such as “the” or “a”. Sci2 provides a basic stopword list,18 which can be edited to fit

users’ specific needs. The goal of text normalization is to facilitate the extraction of

unique words or word profiles in order to identify topic coverage of bodies of text.

Fig. 14.4 Proportional symbol map (left), choropleth map (center), and network layout overlaid

on world map (right)

15 http://wiki.cns.iu.edu/display/CISHELL/Choropleth+Map
16 http://wiki.cns.iu.edu/display/CISHELL/Geospatial+Network+Layout+with+Base+Map
17 http://wiki.cns.iu.edu/display/CISHELL/Lowercase%2C+Tokenize%2C+Stem%2C+and

+Stopword+Text
18 yoursci2directory/configuration/stopwords.txt
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14.2.5.2 Data Analysis

Burst detection, previously discussed in the temporal section, is often used for

identifying the topic coverage of a corpus of text. Since burst detection also

involves a temporal component, it is ideal for demonstrating the evolution of

scientific research topics as represented by bodies of text.

14.2.5.3 Data Visualization

Sci2 provides a map of science visualization algorithm to display the topical

distributions, also called expertise profiles. The UCSD Map of Science (Börner

et al., 2012) is a visual representation of 554 sub-disciplines within the 13 disci-

plines of science and their relationships to one another. There are two variations of

this algorithm: “Map of Science via Journals”19 and “Map of Science via

554 Fields”.20 The first works by matching journal titles to the underlying

sub-disciplines, as specified in the UCSD Map of Science classification scheme.21

The second works by directly matching the IDs for the 554 fields, integers 1–554, to

the sub-disciplines. Both algorithms take tabular data as input, the first with a

column of journal names and the second with a column of field IDs. It is

recommended that users run the “Reconcile Journal Names” algorithm22 prior to

science mapping. Both map of science algorithms output a PostScript file and the

“Map of Science via Journals” also outputs two tables: one for the journals located,

and one for journals not located. Figure 14.5 shows the topic distribution of the

FourNetSciResearchers.isi file, a dataset containing citations from four major

network science researchers: Eugene Garfield, Stanley Wasserman, Alessandro

Vespignani, and Albert-László Barabási with a total of 361 publication records.

14.2.6 Network Analysis (with Whom)

14.2.6.1 Data Preprocessing

Many datasets come in tabular format and a key step in most network visualization

workflows involves extracting networks from these tables. Sci2 supports this

process with a variety of network extraction algorithms. The “Extract

Co-Occurrence Network” algorithm can be used to extract networks from columns

19 http://wiki.cns.iu.edu/display/CISHELL/Map+of+Science+via+Journals
20 http://wiki.cns.iu.edu/display/CISHELL/Map+of+Science+via+554+Fields
21 http://sci.cns.iu.edu/ucsdmap
22 http://wiki.cns.iu.edu/display/CISHELL/Reconcile+Journal+Names
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that contain multiple values.23 The “Extract a Directed Network” algorithm24 will

create a network between two columns with data of the same type. Sci2 makes

extracting co-occurrence networks specific to bibliometric analysis even easier by

providing algorithms such as “Extract Co-Author Network”,25 “Extract Word

Co-Occurrence Network”,26 and “Extract Reference Co-Occurrence (Bibliographic

Coupling) Network.”27 Finally, for two columns that contain different data types,

the “Extract Bipartite Network” algorithm28 can be used.

14.2.6.2 Data Analysis

Sci2 offers a large variety of network analysis algorithms for directed or undirected,

and weighted or unweighted networks. A full list of all available network analysis

algorithms can be found in section 3.1 Sci2 Algorithms and Tools of the online

wiki.29 Two of the more interesting algorithms for network analysis include the

PageRank and Blondel Community Detection algorithms (also known as the Lou-

vain algorithm). The PageRank algorithm was originally developed for the Google

search engine to rank sites in the search result by relative importance, as measured

Fig. 14.5 Map of Science via Journals showing the topic coverage of the FourNetSciResearchers.
isi file, see wiki for legend and additional information analogous to Fig. 14.8

23 http://wiki.cns.iu.edu/display/CISHELL/Extract+Word+Co-Occurrence+Network
24 http://wiki.cns.iu.edu/display/CISHELL/Extract+Directed+Network
25 http://wiki.cns.iu.edu/display/CISHELL/Extract+Co-Author+Network
26 http://wiki.cns.iu.edu/display/CISHELL/Extract+Word+Co-Occurrence+Network
27 http://wiki.cns.iu.edu/display/CISHELL/Extract+Reference+Co-Occurrence+%28Biblio

graphic+Coupling%29+Network
28 http://wiki.cns.iu.edu/display/CISHELL/Extract+Bipartite+Network
29 http://wiki.cns.iu.edu/display/SCI2TUTORIAL/3.1+Sci2+Algorithms+and+Tools
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by the number of links to a page (Brin & Page, 1998).30 The same process can be

used in directed networks to rank the relative importance of nodes. There are two

versions of the “PageRank” algorithm in Sci2, one for directed and unweighted

networks, which simply measures the importance of nodes based on the number of

incoming edges, and one for directed and weighted networks, which measures the

importance nodes based on incoming edges and takes into consideration the weight

of those edges. Both algorithms are useful for identifying important nodes in very

large networks. The “Blondel Community Detection” algorithm is a clustering

algorithm for large networks.31 The algorithm detects communities in weighted

networks using an approach based on modularity optimization (Blondel, Guil-

laume, Lambiotte, & Lefebvre, 2008). The resulting network will be structurally

the same but each node will have an attribute labeled

“blondel_community_level_x.”

14.2.6.3 Data Visualization

The Sci2 Tool offers multiple ways to view networks. While the tool itself does not

directly support network visualization, GUESS, a common network visualization

program comes already bundled with the tool (Adar & Kim, 2007). For users who

already have Gephi (Bastian et al., 2009) installed on their machines, Sci2 provides

a bridge, allowing a user to select a network in the Data Manager, then run Gephi,

and the tool will start with the selected network file loaded. Gephi is available for

download at http://gephi.org. Cytoscape (Saito et al., 2012) was also made available

as a plugin to the Sci2 Tool, further expanding network visualization options. The

Cytoscape plugin is available for download from section 3.2 of the Sci2 wiki.32

14.3 Career Trajectories

This section demonstrates Sci2 Tool functionality for the analysis and visualization

of career trajectories, i.e., the trajectory of people over time. In addition to studying

movement over geospatial space, e.g., via the addresses of different institutions

people might study and work at, the expertise profile of physicists are analyzed.

Specifically, we use a dataset of authors in physics with a large number of

institutional affiliations—assuming that those authors engaged in a large number

of Postdocs. The original dataset of the top-10,000 authors in physics with the most

affiliations was retrieved by Vincent Larivière. For the purposes of this study, we

selected ten of top paper producing authors. Using the name-unification method

30 http://wiki.cns.iu.edu/display/CISHELL/PageRank
31 http://wiki.cns.iu.edu/display/CISHELL/Blondel+Community+Detection
32 http://wiki.cns.iu.edu/display/SCI2TUTORIAL/3.2+Additional+Plugins
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introduced by Kevin W. Boyack and Richard Klavans (2008), we consider names to

refer to one person if the majority of his or her publications occur at one institution.

Uniquely identifying people in this way is imperfect but practical. The resulting

dataset contains ten authors that have more than 70 affiliation addresses in total and

published in more than 100 mostly physics journals between 1988 and 2010.

Subsequently, we show how Sci2 can be used to clean and aggregate data, provide

simple statistics, analyze the geospatial and topical evolution of the different career

trajectories over time and visualize results. We conclude this section with an

interpretation of results and a discussion of related works.

14.3.1 Data Preparation Analysis

The list of the top 10,000 physicists was loaded into OpenRefine for cleaning.33 The

author names were normalized by placing them in uppercase and trimming leading

and trailing white spaces. Then, the text facets feature of OpenRefine was used to

identify groups of names. The count associated with each name corresponds to the

number of papers associated with that name, which starts to give some idea which

names uniquely identify a person, reducing homonymity. Once a name was iden-

tified as potentially uniquely identifying a person, the text facet was applied to this

person’s institutions, showing the number of papers produced at each institution. If

the majority of the papers associated with a name occurred at one institution, the

name was considered to uniquely identify one person in this dataset. Following this

process for the highest producing authors in this dataset resulted in the final list of

ten physicists, see Table 14.1.

Next, the addresses for each institution were obtained by searching the Web. The

data for each of the ten authors was then saved in separate CSV files and loaded into

Sci2. The “Bing Geocoder” algorithm34 was used to geocode each institution. Then,

the “Aggregate Data” algorithm35 was used to aggregate the data for each author by

institution, summing the number of papers produced at those institutions and

summing the total citations for those papers. This aggregation was performed

because many authors had affiliations with institutions far away from their home

institutions for short periods of time, either due to sabbaticals or as visiting scholars.

In addition, the citation data for each of the ten physicists was downloaded from

the Web of Science. The full records plus citations were exported as ISI-formatted

text files. The extensions were changed from .txt to .isi and loaded into Sci2. Next,

33 http://code.google.com/p/google-refine/
34 http://wiki.cns.iu.edu/display/CISHELL/Bing+Geocoder
35 http://wiki.cns.iu.edu/display/CISHELL/Aggregate+Data
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the “Reconcile Journal Names” algorithm36 was run, which ensures all journal titles

are normalized and matched to the standard given in the UCSD Map of Science

Standard (Börner et al., 2012).

14.3.2 Data Visualization and Interpretation

Initially a comparison of all the authors, their paper production, and resulting

citation counts was created in MS Excel. The ten authors followed more or less

similar trajectories, with earlier works receiving more citations and newer works

fewer. Figure 14.6 shows the number of papers per publication year (blue line) and

Table 14.1 Top-ten

physicists with the most

publications plus the number

of their institutions, papers,

and citation counts

Name Institutions Papers Citations

AGARWAL-GS 7 163 3,917

AMBJORN-J 3 185 3,750

BENDER-CM 6 118 3,962

BRODSKY-SJ 14 119 4,566

CHAICHIAN-M 7 123 2,725

ELIZALDE-E 16 135 2,151

GIANTURCO-FA 4 130 1,634

PERSSON-BNJ 6 100 3,472

YUKALOV-VI 8 150 1,772

ZHDANOV-VP 6 147 1,594

Fig. 14.6 Paper and citation counts over 23 years for each of the ten physicists

36 http://wiki.cns.iu.edu/display/CISHELL/Reconcile+Journal+Names
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the number of all citations received up to 2009 by the papers published in a specific

year (red line). As expected, the bulk of the paper production tends to happen at one

“home” institution.

Next, the geocoded files for each author were visualized in Sci2 to show the

world-wide career trajectories over geospatial space. Specifically, the “Proportional

Symbol Map” algorithm37 was applied to the physicist with the highest combined

number of papers and citation count and the resulting map was saved as PDFs and

further edited in Adobe Illustrator to add the directed edges connecting the institu-

tion symbols. The resulting map for Dr. Girish Agarwal is shown in Fig. 14.7. Each

circle corresponds to an institution and is labeled with the institution’s name and the

date range in years that the physicist is associated with the institution. The symbols

are sized proportional to the number of papers produced at each institution and

colored proportional to the number of citations those papers have received. A green

“Start” label was added to the first institution associated with the physicist in the

dataset, and a red “End” label was added to the last. Green numbers indicate the

sequence of transitions between start, intermediary, and end institutions.

As expected, the majority of the paper production occurred at the institutions

where Dr. Agarwal spent the most time, University of Hyderabad and Physical

Research Laboratory, where he was the director for 10 years. The papers produced

at these institutions also have the highest citations counts, as these papers are much

Fig. 14.7 Career trajectory for Dr. Girish Agarwal, 1988–2010

37 http://wiki.cns.iu.edu/display/CISHELL/Proportional+Symbol+Map
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older than the others in the dataset. Visualizing the dataset over a geographic map

gives a sense of the geospatial trajectory of Agarwal’s career, but the limited scope

of the dataset results in a somewhat misleading visualization. Simply by looking at

the map, one might assume that Dr. Agarwal started his career at Hyderbad

University, but he actually received his Ph.D. from the University of Rochester in

1969. It is highly likely there are other publications at other institutions that, due to

the limited date range, are not captured by this visualization.

Next, to visualize the topical distribution Dr. Agarwal’s publications, his ISI file

was mapped using the “Map of Science via Journals” using the default parameter

values. Figure 14.8 shows the topic distribution of Dr. Agarwal. As expected, the

majority of his publications occur in the fields of Math and Physics and Electrical

Engineering and Computer Science.

Finally, to analyze the connections between the ten different physicists and the

112 journals in which they publish, a bipartite network was created. A property file

was used to add the total citation counts to each node. Figure 14.9 shows the graph

of all ten physicists, where the circular nodes represent the authors and the square

nodes represent the journals. The author nodes are sized according to their

out-degree, or the number of journals in which they publish, and the journal

nodes are sized by their in-degree, or more popular publication venues within the

context of this dataset. The nodes are colored from yellow to red based on citation

count, with all author nodes labeled and the journal nodes with the highest citation

counts also labeled.

The author with the most diverse publication venues is Vyacheslav Yukalov who

published in 38 unique journals. The author with the highest citation count in this

dataset is Girish Agarwal, with 3,917 citations to 163 papers. The journal with

publications by the greatest number of authors in this dataset is Physical Review B,
but the journal with papers that have the highest total citation count is Physics
Letters B, with 4,744 citations.

14.4 Discussion and Outlook

The Sci2 Tool is one of several tools that use the OSGi/CIShell framework

(Börner, 2011, 2014). Other tools comprise the Network Workbench (NWB)

designed for advanced network analysis and visualization (http://nwb.cns.iu.

edu); the Epidemiology tool (EpiC) that supports model building and real time

analysis of data and adds a bridge to the R statistical package (http://epic.cns.iu.

edu); and TexTrend for textual analysis (http://textrend.org) (Kampis et al.,

2009). Thanks to the unique plug-and-play macroscope approach, plugins can

be shared between the different tools, allowing individuals to customize the tool

to suit their specific research needs.

Current work focuses on the integration of the smart local moving (SLM)

algorithm (Waltman & van Eck, 2013) into Sci2 making it possible to run clustering

on any network file (Fig. 14.10). This algorithm detects communities based on the
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Fig. 14.8 Topic distribution of Dr. Agarwal’s ISI publications on the Map of Science and

discipline specific listing of journals in which he published. Note the one journals in “Unclassified”

that could not be mapped
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relative number of links to nodes in a network. Future development will incorporate

the full community detection capabilities of VOSviewer, which allows users to

specify the level of granularity for clustering, resulting in fewer larger communities

or more smaller communities (Van Eck & Waltman, 2010).

In addition, the Sci2 Tool can be run as a web service making it possible to

request analyses and visualizations online and to execute more computing intensive

jobs in the cloud. A first interface will soon be deployed at the National Institutes of

Health RePORTER site. Eventually, Sci2 as a web service will be released publicly

with full build support so that users can build and deploy Sci2 to the Web

themselves. Furthermore, algorithms developed for the desktop version will be

compatible with the online version. Ideally, users will be able to use the workflow

tracker combined with the Sci2 web service functionality to create web applications

that read in data and output visualizations.

Fig. 14.9 Bi-modal network of all ten authors and the 112 journals in which they publish
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