
Chapter 9
Quality Assessment in Computer Graphics

Guillaume Lavoué and Rafał Mantiuk

9.1 Introduction

The realm of computer graphics is an intensive producer of visual content.
Depending on the concerned sub-areas (e.g., geometric modeling, animation,
rendering, simulation, high dynamic range (HDR) imaging, and so on) it generates
and manipulates images, videos, or 3D data. There is an obvious need to control and
evaluate the quality of these graphical data regardless of the application. The term
quality means here the visual impact of the artifacts introduced by the computer
graphics techniques. For instance, in the context of rendering, one needs to evaluate
the level of annoyance due to the noise introduced by an approximate illumination
algorithm. As another example, for level of details creation, one needs to measure
the visual impact of the simplification on the appearance of a 3D shape. Figure 9.1
illustrates these two examples of artifacts encountered in computer graphics. The
paragraphs below introduce several useful terms that also point out the main
differences between existing approaches for quality assessment in graphics.

Artifact Visibility vs. Global Quality For a given signal to evaluate (e.g., an
image), the term quality often refers to a single score (mean-opinion-score, MOS)
that aims at reflecting a kind of global level of annoyance caused by all artifacts and
distortions in an image. Such global quality index is relevant for many computer
graphics applications, e.g. to reduce/augment the sampling density in ray-tracing
rendering. However, beside this global information, it is also important in many
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Fig. 9.1 Illustration of a typical computer graphics work-flow and its different sources of
artifacts. Top row, from left to right: An original scanned 3D model (338K vertices); result
after simplification (50K vertices) which introduces a rather uniform high frequency noise;
result after watermarking [95] which creates some local bumps on the surface. Bottom row:
Result after rendering (radiance caching) which introduces a nonuniform structured noise

cases to obtain an information about the local visibility of the artifacts (i.e.,
predicting their spatial localization in the image). Such local information may allow,
for instance, an automatic local corrections of the detected artifacts, like in [30].

Objective vs. Subjective Quality Assessment The quality evaluation of a given
stimulus can be done directly by gathering the opinion of some observers by
means of a subjective experiment. However, this kind of study is obviously time-
consuming, expensive and cannot be integrated into automatic processes. Hence
researchers have focused on objective and automatic metrics that aim to predict this
subjective visibility and/or quality. Both approaches are presented in this chapter.

Reference vs. No Reference Objective quality metrics can be classified according
to the availability of the reference image (resp. video or 3D models): full-reference
(FR), reduced reference (RR), and no-reference (NR). FR and RR metrics require
at the quality evaluation stage that full or partial information on both images is
present, the reference and the distorted one. NR metrics are much more challenging
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because they only have access to the distorted data; however, they are particularly
relevant in computer graphics of which many techniques do not onlymodify but also
create visual content from abstract data. For instance, a rendering process generates
a synthetic image from a 3D scene, hence to evaluate the rendering artifacts the
metric will have access only to the test image since a perfect reference image without
artifact is often unavailable.

Image Artifacts vs. Model Artifacts Computer graphics involves coarsely two
main types of data: 3D data, i.e. surface and volume meshes issued from geometric
modeling or scanning processes and 2D images and videos created/modified
by graphical processes like rendering, tone-mapping, and so on. Usually, in a
computer graphicswork-flow (e.g., see Fig. 9.1), 3D data are first created (geometric
modelling), processed (e.g., filtering, simplification), and then images/videos are
generated from this 3D content (by rendering) and finally they can be post-
processed (tone-mapped, for instance). In such scenario, the visual defects at the
very end of the processing chain may be due to artifacts introduced both on the
3D geometry (what we call model artifacts) and on the 2D image/video (what
we called image artifacts). Since these two types of artifacts are introduced in very
distinct processes and evaluated using very distinct metrics, each part of this chapter
is divided according to this classification (except Sects. 9.2 and 9.3, respectively,
dedicated to each of them).

Black-Box Metrics vs. White-Box Metrics There are two main approaches to
modeling quality and fidelity: a black-box approach,which usually involvesmachine
learning techniques; and a white-box approach, which attempts to model processes
that are believed to exist in the human visual system. The visual difference predictors
(VDPs), such as VDP [20], are an example of a white-box approach, while the data-
driven metrics for non-reference quality prediction [30] or color palette selection
[65] are the examples of the black-box approach. Both approaches have their
shortcomings. The black-box methods are good at fitting complex functions, but
are prone to over-fitting. It is difficult to determine the right size of the training and
testing data sets. Unless very large data sets are used, nonparametric models used
in machine learning techniques cannot distinguish between major effects, which
govern our perception of quality, and minor effects, which are unimportant. They
are not suitable for finding a general patterns in the data and extracting a higher level
understanding of the processes. Finally, the success of the machine learningmethods
depends on the choice of feature vectors, which need to be selected manually, relying
in equal amounts on the expertise and a lucky guess.

White-box methods rely on the vast body of research devoted to modeling visual
perception. They are less prone to over-fitting as they model only the effects that
they are meant to predict. However, the choice of the right models is difficult. But
even if the right set of models and right complexity is selected, combining and
then calibrating them all together is a major challenge. Moreover, such white-box
approaches are not very effective at accounting for higher level effects, such as
aesthetics and naturalness, for which no models exist.
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It is yet to be seen which approach will dominate and lead to the most successful
quality metrics. It is also foreseeable that the metrics that combine both approaches
will be able to benefit from their individual strengths and mitigate their weaknesses.

This chapter is organized as follows: Sects. 9.2 and 9.3, respectively, present
objective quality assessment regarding image artifacts and model artifacts. Then
Sect. 9.4 details the subjective quality experiments that have been conducted by the
computer graphics community as well as quantitative evaluations of the objective
metrics presented in Sects. 9.2 and 9.3. Finally Sect. 9.5 is dedicated to the emerging
trends and future research directions on the subject of quality assessment in
graphics.

9.2 Image Quality Metrics in Graphics

9.2.1 Metrics for Rendering Based on Visual Models

Computer graphics rendering methods often rely on physical simulation of light
propagation in a scene. Due to complex interaction of light with the environment
and massive amount of light particles in a scene, these simulations require huge
amount of computation. However, it has been long recognized that most applications
of computer rendering methods require perceptually plausible solution rather than
physically accurate results [71]. Knowing the limitations of the visual system,
it should be possible to simplify the simulation and reduce the computational
burden [66].

When rendering a scene, two important problems need to be addressed: (a) how
to allocate samples (computation) over the image to improve perceptual quality;
and (b) when to stop collecting samples as further computation does not result
in perceivable improvement. Both problems were considered in a series of papers
on perceptually based rendering, intended for both an accurate off-line techniques
[11, 12, 26, 30, 62–64, 72, 104] and interactive rendering [23, 53]. Although the
perceptual metrics used in these techniques operate in the image space, they are
different from the typical fidelity metrics, which compute the difference between
reference and test images. Since the reference image is usually not available when
rendering, these metrics aim at estimating error bounds based on approximation
of the final image. This approximation can be computed using fast GPU methods
[104], by simulating only direct light (ray-casting) [72], approximating an image in
the frequency domain [11, 12], using textures [94], intermediate rendering results
[62], or consecutive animation frames [63]. Such approximated images may not
contain all the illumination and shading details, especially those that are influenced
by indirect lighting. However, the approximation is good enough to estimate the
influence of both contrast and luminance masking in each part of the scene.
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The visual metrics used in the rendering methods are predominantly based
on VDPs [20, 51], often extended to incorporate spatio-temporal contrast sensi-
tivity function (CSF) [34, 63, 64], opponent color processing and chromatic CSF
[61], and saliency models [14, 31]. Threshold versus elevation function [23, 72],
photoreceptor non-linearity [62], or luminance-dependent CSF is used to model
luminance masking, which accounts for the reduced sensitivity of the visual system
at low luminance levels. Then, the image is decomposed into spatial-frequency
and orientation selective bands using the Cortex transform [62, 99], wavelets [12],
the DCT transform [94], or differences-of-Gaussians (DOGs) [26]. The spatial-
sensitivity is incorporated either by pre-filtering the image with a CSF [62] or
weighting each frequency band according to the CSF sensitivity value for its peak
frequency [26, 72]. The multi-band decomposition is necessary to model contrast
masking, which is realized either using a contrast transducer function [26, 102]
or threshold elevation function [62, 72]. The VDPs can be further weighted by a
saliency map, which accounts for low-level attention [31, 72] and/or task-driven
high-level attention [14].

Overall, the work on perceptual rendering influenced the way in which the
perception is incorporated in graphics. Most methods in graphics rely on the near-
threshold visual models and the notion of the just-noticeable-difference (JND). Such
near-threshold models offer high accuracy and good rigor since the near-threshold
models are well studied in the human vision research. But they also tend to result
in over-conservative predictions and are not flexible enough to allow for visible but
not disturbing distortions.

9.2.2 Open Source Metrics

The algorithms discussed for far incorporated visual metrics into rendering
algorithms, making them difficult to test, compare, or use as a fidelity metric
on a pair of test and reference images. These metrics are also complex and hence
challenging to reimplement with no source code publicly available. However, the
graphics community have several alternative metrics to choose from if they wish
to evaluate results without a need to reimplement visual models. pdiff [103] is a
simple perceptual difference metrics, which utilizes the CIE L�a�b� color space
for differences in color, CSF, and model of visual masking from Daly’s VDP [20],
and some speed improvements from [72]. The C source code is publicly available at
http://pdiff.sourceforge.net/. A more complex visual model is offered by the series
of HDR-VDP metrics [54, 55], which we discuss in more detail in Sect. 9.2.4. The
older version of this metric (HDR-VDP-1.7.1) is available as a C/C++ code, while
the latest version is provided as matlab sources (HDR-VDP-2.x). Both versions can
be downloaded from http://hdrvdp.sf.net/.

http://pdiff.sourceforge.net/
http://hdrvdp.sf.net/
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9.2.3 Data-Driven Metrics for Rendering

The majority of image metrics used in graphics rely on the models of the low-level
visual perception. These metrics are often constructed by combining components
from different visual models, such as saliency models, CSFs, threshold elevation
functions, and contrast transducers. While all these partial models well predict the
individual effects, there is no guarantee that the combination of them will actually
improve predictions. As shown in Sect. 9.4.4.1, complex metrics may actually
perform worse in some tasks than a simple arithmetic difference. An alternative to
such a white-box approach is the black-box approach, in which the metric is trained
to predict differences based on a large data set. In this section we discuss two such
metrics, one no-reference and one full-reference metric.

Both metrics rely on the data collected in an experiment, in which observers
were asked to label visible artifacts in computer graphics renderings, both when
the reference image is shown and when it was hidden. The data set was the same
as the one used to metric comparison, discussed in Sect. 9.4.4.1, though the non-
reference metric was trained with only ten images from that data set. Example of
such manually marked images are shown in the left-most column in Fig. 9.2. As
compared to typical image quality databases, such as TID2008 [69], the maps of
localized distortions provide much more data for the data-driven training. Instead of
assigning a single MOS to each image, the localized distortion maps provide up to
a million of such numbers per image, as the labeling is associated with every image
pixel. In practice a subsampled version of such a map is used because of limited
accuracy of manual labeling. The limitation of localized distortion maps is that they
do not provide the estimate of the perceived magnitude of distortion. Instead, the
maps contain the probability of detecting an artifact by an average observer.

Since a reference image is usually not available when rendering 3D scenes,
Herzog et al. [30] proposed a no-reference image quality metric (NoRM) for three
types of rendering distortions: VPL clamping, glossy VPL noise, and shadow map
aliasing. In contrast to other non-reference metrics, which can rely solely on a
single color image, computer graphics method can provide additional information,

Fig. 9.2 Manually marked distortions in computer graphics rendering (left) and the predictions of
image quality metrics: SSIM, HDR-VDP-2, sCorrel. Trained multi-metric uses the predictions of
the existing metrics as a features for a decision forest classifier. It is trained to predict the subjective
data
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such as a depth-buffer, or a diffuse material buffer. Such additional information
was used alongside the color buffer to solve a rather challenging problem: predict
visibility of artifacts given no reference image to compare with. The authors trained
a support-vector-machine (SVM) based classifier on ten images with manually
labeled artifacts. The features used for trainingwere an irradiancemap with removed
textures, screen-space ambient occlusion factor, unfolded textures described by the
histogram of oriented gradients, a high-pass image with edges eliminated using
the joint-bilateral filter and local statistics (mean, variance, skewness, kurtosis).
Despite a rather small training set of ten images, the metric was shown to provide
comparable or better prediction performance than the state-of-the-art full-reference
metrics for the three types of targeted distortions. The authors describe also an
application of this metric, in which detected artifacts are automatically corrected
by inpainting. The regions with detected artifacts are looked up in a dictionary
of artifact-free regions and replaced with a suitable substitute. The operation is
illustrated in Fig. 9.3.

The non-reference metrics are specialized in predicting only a certain kind of
artifacts as they solve heavily under-constraint problem. Their predictive strength
comes from learning the characteristic of a given artifacts and differentiating it from
a regular image content. If a metric is to be used for a general purpose and with
a wide variety of distortions, it needs to be supplied with both test and reference
images.

Čadík et al. [89] explored a possibility of building a more reliable full-reference
metric for rendering images using a data-driven approach. The motivation for this
work was a previous study, showing mixed performance of existing metrics in
this task (discussed in Sect. 9.4.4.1). They identified 32 image difference features,
some described by a single number, some by up to 62 dimensions. Features ranged

Fig. 9.3 Reduction of artifacts in rendered images by a metric-assisted inpainting [30]. Once
the artifacts are detected in an image by a non-reference quality metric, the affected patches are
replaced with similar non-distorted patches from the database. The operation is performed in an
unfolded 2D texture space. The image courtesy of the authors
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from a simple absolute difference to visual attention (measured with an eye-tracker)
and included predictions of several major fidelity metrics (SSIM, HDR-VDP-2)
and common computer vision descriptors (HOG, Harris corners, etc.). The metric
was trained using 37 images with the manually labeled distortion maps. The best
performancewas achieved with ensembles of bagged decision trees (decision forest)
used for classification. The classification was shown to perform significantly better
than the best performing general purpose metric (sCorrel) as measured using the
leave-one-out cross-validation procedure. Two examples of automatically generated
distortion maps are shown in the right-most column of Fig. 9.2 and compared with
the predictions of other metrics.

Another example of a data-driven approach to metric design is the no-reference
metric for evaluating the quality of motion deblurring, proposed by Liu et al. [50].
Motion deblurring algorithms aim at removing from photographs the motion blur
due to camera shake. This is a blind deconvolution problem, in which the blur kernel
is unknown. Since usually only blurry image is unavailable, it is essential to provide
a mean to measure quality without the need for a sharp reference image. The data
for training the metric was collected in a large scale crowd-sourcing experiment,
in which over one thousand users ranked in a pairwise comparison experiments
40 scenes, each processed with five different deblurring algorithms. The metric
was trained as a logistic regression explaining the relation between a number of
features and the scaled subjective scores. The features included several no-reference
measures of noise, sharpness, ringing, and sharpness. In a dedicated validation
experiment, the trained no-referencemetric performed comparably or better than the
state-of-the-art full-reference metrics. The authors suggested several applications
of the new metric, such as automatic selection of the deblurring algorithm which
performs the best for a given image, or, on a local level, fusing high quality image
by picking different image fragments from the result of each deblurring algorithm.

9.2.4 HDR Metrics for Rendering

The majority of image quality metrics consider quality assessment for one particular
medium, such as an LCD display or a print. However, the results of physically
accurate computer graphics methods are not tied to any concrete device. They
produce images in which pixels contain linear radiometric values, as opposed to
the gamma-corrected RGB values of a display device. Furthermore, the radiance
values corresponding to real-world scenes can span a very large dynamic range,
which exceeds the contrast range of a typical display device. Hence the problem
arises of how to compare the quality of such images, which represent actual scenes,
rather than their tone-mapped reproductions.

Aydin et al. [6] proposed a simple luminance encoding that makes it possible
to use PSNR and SSIM [97] metrics with HDR images. The encoding trans-
forms physical luminance values (represented in cd=m2) into an approximately
perceptually uniform representation (refer to Fig. 9.4). The transformation is derived



9 Quality Assessment in Computer Graphics 251

0.0001 0.01  1     100   10000 1e+06 

0

500

1000

1500

Luminance (cd/m2)

Lu
m

a

PU Encoding
sRGB

0.1 1  10 80 
−50

0

50

100

150

200

250

Luminance (cd/m2)

Lu
m

a

PU Encoding
sRGB

Fig. 9.4 Perceptually uniform (PU) encoding for evaluating quality of HDR images. The absolute
luminance values are converted into luma values before they are used with standard image quality
metrics, such as MSE, PSNR, or SSIM. Note that the PU encoding is designed to give a good fit
to the sRGB non-linearity within the range 0.1–80 cd=m2 so that the results for low dynamic range
images are consistent with those performed in the sRGB color space

from luminance detection data using the threshold-integration method, similar to
the one used for contrast transducer functions [102]. The transformation is further
constrained so that the luminance values produced by a typical CRT display
(in the range 0.1–80 cd=m2) are mapped to 0–255 range to mimic the sRGB non-
linearity. This way, the quality predictions for typical low-dynamic range images
are comparable to those calculated using pixel values. However, the metric can also
operate in a much greater range of luminance.

The pixel encoding of Aydin et al. accounts for luminance masking, but it does
not account for other luminance-dependent effects, such as inter-ocular light scatter
or the frequency shift of the CSF peak with luminance. Those effects were modeled
in the visual difference predictor for high dynamic range images (HDR-VDP) [54].
The HDR-VDP extends Daly’s VDP [20] to predict differences in HDR images. In
2011 the metric was superseded with a completely redesigned metric HDR-VDP-2
[55], which is discussed below.

HDR-VDP-2 is the visibility (discrimination) and quality metric capable of
detecting differences in achromatic images spanning a wide range of absolute
luminance values [55]. Although the metric originates from the classical VDP [20],
and its extension—HDR-VDP [54], the visual models are very different from those
used in those earlier metrics. The metric is also an effort to design a comprehensive
model of the contrast visibility for a very wide range of illumination conditions.

As shown in Fig. 9.5, the metric takes two HDR luminance or radiance maps
as input and predicts the probability of detecting a difference between the pair of
images (Pmap and Pdet ) as well as the quality (Q and QMOS ), which is defined as
the perceived level of distortion.
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Fig. 9.5 The processing stages of the HDR-VDP-2 metric. Test and reference images undergo
similar stages of visual modeling before they are compared at the level of individual spatial-
and-orientation selective bands (BT and BR). The difference is used to predict both visibility
(probability of detection) and quality (the perceived magnitude of distortion)

One of the major factors limiting the contrast perception in high contrast (HDR)
scenes is the scattering of the light in the optics of the eye and on the retina
[58]. The HDR-VDP-2 models it as a frequency-space filter, which was fitted to
an appropriate data set (inter-ocular light scatter block in Fig. 9.5). The contrast
perception deteriorates at lower luminance levels, where the vision is mediated
mostly by night-vision photoreceptors—rods. This is especially manifested for small
contrasts, which are close to the detection threshold. This effect is modeled as
a hypothetical response of the photoreceptor (in steady state) to light (luminance
masking block in Fig. 9.5). Such response reduces the magnitude of image difference
for low luminance according to the contrast detection measurements. The masking
model (neural noise block in Fig. 9.5) operates on the image decomposed into
multiple orientation-and-frequency-selective bands to predict the threshold eleva-
tion due to contrast masking. Such masking is induced both by the contrast within
the same band (intra-channel masking) and within neighboring bands (inter-channel
masking). The same masking model incorporates also the effect of neural CSF,
which is the contrast sensitivity function without the sensitivity reduction due to
inter-ocular light scatter. Combining neural CSF with masking model is necessary
to account for contrast constancy, which results in “flattening” of the CSF at the
super-threshold contrast levels [27].

Figure 9.6 demonstrates the metric prediction for blur and noise. The model
has been shown to predict numerous discrimination data sets, such as ModelFest
[98], historical Blackwell’s t.v.i. measurements [9], and newly measured CSF [35].
The source code of the metric is freely available for download from http://hdrvdp.
sourceforge.net. It is also possible to run the metric using an on-line web service at
http://driiqm.mpi-inf.mpg.de/.

http://hdrvdp.sourceforge.net
http://hdrvdp.sourceforge.net
http://driiqm.mpi-inf.mpg.de/
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Fig. 9.6 Predicted visibility differences between the test and reference images. The test image
contains interleaved vertical stripes of blur and white noise. The images are tone-mapped versions
of an HDR input. The two color-coded maps on the right represent the probability that an average
observer will notice a difference between the image pair. Both maps represent the same values,
but use different color maps, optimized either for screen viewing or for grayscale/color printing.
The probability of detection drops with lower luminance (luminance sensitivity) and higher texture
activity (contrast masking). Image courtesy of HDR-VFX, LLC 2008

9.2.5 Tone-Mapping Metrics

Tone-mapping is the process of transforming an image represented in approximately
physically accurate units, such as radiance and luminance, into pixel values that can
be displayed on a screen of a limited dynamic range. Tone-mapping is a part of
an image processing stack of any digital camera. A “raw” images captured by a
digital sensor would produce unacceptable results if they were mapped directly to
pixel values without any tone-mapping. But similar process is also necessary for
all computer graphics methods that produce images represented in physical units.
Therefore, the problem of tone-mapping and the quality assessment of tone-mapping
results have been extensively studied in graphics.

Tone-mapping inherently produces images that are different from the original
HDR reference. In order to fit the resulting image within available color gamut
and dynamic range of a display, tone-mapping often needs to compress contrast
and adjust brightness. Tone-mapped image may lose some quality as compared to
the original seen on a HDR display, yet the images look often very similar and
the degradation of quality is poorly predicted by most quality metrics. Smith et al.
[82] proposed the first metric intended for predicting loss of quality due to local
and global contrast distortion introduced by tone-mapping. However, the metric
was only used in the context of controlling countershading algorithm and was not
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Fig. 9.7 The dynamic range independent metric [5] distinguished between the change of contrast
that does and does not result in structural change. Blue continuous line shows a reference signal
(from a band-pass pyramid) and magenta dashed line the test signal. When contrast remains visible
or invisible after tone-mapping, no distortion is signalized (top and middle right). However, when
the change of contrast alters the visibility of details, making visible details becoming invisible
(top-left), it is signalized as a distortion

validated against experimental data. Aydin et al. [5] proposed a metric for comparing
HDR and tone-mapped images that is robust to contrast changes. The metric was
later extended to video [7]. Both metrics are invariant to the change of contrast
magnitude as long as that change does not distort contrast (inverse its polarity) or
affect its visibility. The metric classifies distortions into three types: loss of visible
contrast, amplification of invisible contrast, and contrast reversal. All three cases
are illustrated in Fig. 9.7 on an example of a simple 2D Gabor patch. These three
cases are believed to affect the quality of tone-mapped images. Figure 9.8 shows
the metric predictions for three tone-mapped images. The main weakness of this
metric is that produced distortion maps are suitable mostly for visual inspection and
qualitative evaluation. The metric does not produce a single-valued quality estimate
and its correlation with subjective quality assessment has not been verified.

Yeganeh and Wang [105] proposed a metric for tone-mapping, which was
designed to predict on overall quality of a tone-mapped image with respect to an
HDR reference. The first component of the metric is the modification of the SSIM
[97], which includes the contrast and structure components, but does not include
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the luminance component. The contrast component is further modified to detect
only the cases in which invisible contrast becomes visible and visible contrast
becomes invisible, in a similar spirit as in the dynamic range independent metric
[5], described above. This is achieved by mapping local standard deviation values
used in the contrast component into detection probabilities using a visual model,
which consists of a psychometric function and a CSF. The second component of
the metric describes “naturalness.” The naturalness is captured by the measure
of similarity between the histogram of a tone-mapped image and the distribution of
histograms from the database of 3,000 low-dynamic range images. The histogram is
approximated by the Gaussian distribution. Then, its mean and standard deviation
is compared against the database of histograms. When both values are likely
to be found in the database, the image is considered natural and is assigned a
higher quality. The metric was tested and cross-validated using three databases,
including one from [91] and authors’ own measurements. The Spearman rank-order
correlation coefficient (SROC) between the metric predictions and the subjective
data was reported to be approximately 0.8. Such value is close to the performance
of a random observer, which is estimated as the correlation between the mean and
random observer’s quality assessment.

Some visible distortions are desirable as long as they are not objectionable.
An example of that is contrast enhancement through unsharp masking (high spatial
frequencies) or countershading (low spatial frequencies) [37], commonly used in
tone-mapping. In both cases, smooth gradients are introduced at both sides of
an edge in order to enhance the contrast of that edge. This is demonstrated in
Fig. 9.9 where the base contrast shown in the bottom row is enhanced by adding
countershading profiles. Note that the brightness of the central part of each patch

Fig. 9.8 Prediction of the dynamic range independent metric [5] (top) for tone-mapped images
(bottom). The green color denotes the loss of visible contrast, the blue color the amplification of
invisible contrast and the red color is contrast, reversal (refer to Fig. 9.7)
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Fig. 9.9 Contrast enhancement by countershading. The figure shows the square-wave pattern
with a reduced amplitude of the fundamental frequency, resulting in countershading profiles. The
regions of indistinguishable (from a step edge) and objectionable countershading are marked with
dotted and dashed lines of different color. The higher magnitude of countershading produces higher
contrast edges. But if it is too high, the result appears objectionable. The marked regions are
approximate and for illustration and actual regions will depend on the angular resolution of the
figure

remains the same across all rows. The region marked with the blue dashed line
denotes the range of the Cornsweet illusion, where the gradient remains invisible
while the edge is still enhanced. Above that line the Cornsweet illusion breaks
and the gradients become visible. In practice, when countershading is added to
tone-mapped images, it is actually desirable to introduce such visible gradients.
Otherwise, the contrast enhancement is too small and does not improve image
quality. But too strong gradient results in visible contrast reversal, also known
as “halo” artifact, which is disturbing and objectionable. Trentacoste et al. [86]
measured the threshold when countershading profiles become objectionable in
complex images. They found that the permissible strength of the countershading
depends on the width of the gradient profile, which in turn depends on the size
of an image. They proposed a metric predicting the maximum strength of the
enhancement and demonstrated its application to tone-mapping. The metric is an
example of a problemwhere it is more important to predict when an artifact becomes
objectionable rather than just visible.
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9.2.6 Aesthetics and Naturalness

Many quality assessment problems in graphics cannot be easily addressed by
objective image and video metrics because they involve high-level concepts, such
as aesthetics or naturalness. For example, there is no computational algorithm that
could tell whether an animation of a human character looks natural, or whether a
scene composition looks pleasing to the eye. Yet, such tasks are often the goals of
graphics methods. The common approach to such problems is to find a suitable
set of numerical features that could correlate with subjective assessment, collect
a large data set of subjective responses and then use machine learning techniques
to train a predictor. Such methods proved to be effective for selecting the best
viewpoint of a mesh [78], or selecting color palettes for graphic designs [65]. Yet,
it is hard to expect that a suitable metric will be found for each individual problem.
Therefore, graphics more often needs to rely on efficient subjective methods, which
are discussed in Sect. 9.4.

9.3 Quality Metrics for 3D Models

The previous section focused on the quality evaluation of 2D images coming
from computer graphics methods, mostly from rendering, HDR imaging, or tone-
mapping.Hencemost of the involvedmetrics aimed to detect specific image artifacts
like aliasing, structured noise due to global illumination or halo artifacts from tone-
mapping. However, in computer graphics, visual artifacts do not come only from the
final image creation process but they can occur on the 3D data themselves before
the rendering. Indeed, 3D meshes are now subject to a wide range of processes
which include transmission, compression, simplification, filtering, watermarking,
and so on. These processes inevitably introduce distortions which alter the geometry
or texture of these 3D data and thus their final rendered appearance. Hence quality
metrics have been introduced to detect these specific 3D artifacts, i.e. geometric
quantization noise, smooth deformations due to watermarking, simplification arti-
facts, and so on. A comprehensive review has been recently published about 3D
mesh quality assessment [19]. Two kinds of approaches exist for this task: model-
based and image-based approaches. Model-based approaches operate directly on
the geometry and/or texture of the meshes being compared while image-based
approaches consider rendered images of the 3D models (i.e., snapshots from
different viewpoints) to evaluate their visual quality. Note that some image-based
quality assessment algorithms consider only some specific viewpoints and thus are
view-dependent.



258 G. Lavoué and R. Mantiuk

9.3.1 Model-Based Metrics

In the fields of computer graphics, the first attempts to evaluate the visual fidelity
of 3D objects were simple geometric distances, mainly used for driving mesh
simplification [77]. A widely used metric is the Hausdorff distance, defined as
follows:

Ha.M1; M2/ D max
p2M1

e.p; M2/ (9.1)

with M1 and M2, the two 3D objects to compare and e.p; M / the Euclidean distance
from a point p in the 3D space to the surface M . This value is asymmetric; a
symmetrical Hausdorff distance is defined as follows:

H.M1; M2/ D max fHa.M1; M2/; Ha.M2; M1/g (9.2)

We can also define an asymmetric mean square error:

MSEa.M1; M2/ D 1

jM1j
Z

M1

e.p; M2/
2 ds (9.3)

The most widespread measurement is the Maximum Root Mean Square Error
(MRMS):

MRMS.M1; M2/ D max
np

MSEa.M1; M2/;
p

MSEa.M2; M1/
o

(9.4)

Cignoni et al. [16] provided the Metro software1 with an implementation of
Hausdorff and MRMS geometric distances between 3D models.

However these simple geometric measures are very poor predictor of the visual
fidelity, like demonstrated in several studies [44, 88]. Hence, researchers have
introduced perceptually motivated metrics. These full-reference metrics compare
the distorted and original 3D models to compute a score which reflects the visual
fidelity.

Karni and Gotsman [32], in order to evaluate properly their compression
algorithm, consider the mean geometric distance between corresponding vertices
and the mean distance of their geometric Laplacian values (which reflect a degree
of smoothness of the surface) (this metric is abbreviated as GL1 in Table 9.1).
Subsequently, Sorkine et al. [83] proposed a different version of this metric (GL2),
which assumes slightly different values of the parameters involved. The performance
of these metrics in terms of visual quality prediction remains low.

Several authors use the curvature information to derive perceptual quality met-
rics. Lavoué et al. [45] introduce the mesh structural distortion measure (MSDM)

1http://vcg.isti.cnr.it/activities/surfacegrevis/simplification/metro.html.

http://vcg.isti.cnr.it/activities/surfacegrevis/simplification/metro.html
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which follows the concept of structural similarity introduced for 2D image quality
assessment byWang et al. [97] (SSIM index). The localLMSDM distance between
two mesh local windows a and b is defined as follows:

LMSDM.a; b/ D .˛L.a; b/3 C ˇC.a; b/3 C �S.a; b/3/
1
3 (9.5)

L, C , and S represent, respectively, curvature, contrast, and structure comparison
functions:

L.a; b/ D k�a � �bk
max.�a; �b/

C.a; b/ D k�a � �bk
max.�a; �b/

(9.6)

S.a; b/ D k�a�b � �abk
�a�b

with �a, �a, and �ab are, respectively, the mean, standard deviation, and covariance
of the curvature over the local windows a and b. A local window is defined as
a connected set of vertices belonging to a sphere with a given radius. The global
MSDM measure between two meshes is then defined by a Minkowski sum of the
local distances associated with all local windows; it is a visual distortion index
ranging from 0 (objects are identical) to 1 (theoretical limit when objects are
completely different). A multi-resolution improved version, named MSDM 2, has
recently been proposed in [42]. It provides better performance and allows one to
compare meshes with arbitrary connectivities. Torkhani et al. [85] introduced a
similar metric called TPDM (Tensor-based Perceptual Distance Measure) which
takes into account not only the mesh curvature amplitude but also the principal
curvature directions. Their motivation is that these directions represent structural
features of the surface and thus should be visually important. These metrics own the
benefit of providing also a distortion map that predicts the perceived local artifacts
visibility, like illustrated in Fig. 9.10.

Váša and Rus [88] consider the per-edge variations of oriented dihedral angles
for visual quality assessment. The angle orientation allows to distinguish between
convex and concave angles. Their metric (DAME for Dihedral Angle Mesh Error)
is obtained by summing up the dihedral angle variations for all edges of the mesh
being compared, as follows:

DAME D 1

ne

X
ne

k˛i � N̨i k :mi :wi (9.7)

with ne the number of edges of the meshes being compared, ˛i and N̨i the respective
dihedral angles of the i th edge of the original and distorted mesh. mi is a weighting
term relative to the masking effect (enhancing the distortion on smooth surfaces
where they are the most visible). wi sis a weighting term relative to the surface
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Fig. 9.10 From left to right: The Lion model; a distorted version after random noise addition;
Hausdorff distortion map; MSDM2 distortion map. Warmer colors represent higher values

visibility; indeed, a region almost always invisible should not contribute to the global
distortion. This metric has the advantage of being very fast to compute but only
works for comparing meshes of shared connectivity.

The metrics presented above consider local variations of attribute values at vertex
or edge level, which are then pooled into a global score. In contrast, Corsini et al.
[18] and Wang et al. [96] compute one global roughness value per 3D model
and then derive a simple global roughness difference to derive a visual fidelity
value between two 3D models. Corsini et al. [18] propose two ways of measuring
the global model roughness. The first one is based on statistical considerations
(at multiple scales) about the dihedral angles and the second one computes the
variance of the geometric differences between a smoothed version of the model and
its original version. These metrics are abbreviated as 3DWPM1 and 3DWPM 2

in Table 9.1. Wang et al. [96] define the global roughness of a 3D model as a
normalized surface integral of the local roughness, defined as the Laplacian of the
discrete Gaussian curvature. The local roughness is modulated to take into account
the masking effect. Their metric (FMPD for Fast Mesh Perceptual Distance)
provides good results and is fast to compute. Moreover a local distortion map
can be obtained by differencing the local roughness values. Figure 9.11 illustrates
some distorted versions of the Horse 3D model, with their corresponding MRMS ,
MSDM 2, and FMPD values.

Given the fact that all metrics above rely on different features, e.g. curvature
computations [42, 45, 85], dihedral angles [18, 88], Geometric Laplacian [32, 83],
and Laplacian of Gaussian curvature [96]. Lavoué et al. [43] have hypothesized
that a combination of these attributes could deliver better results that using them
separately. They propose a quality metric based on an optimal linear combination of
these attributes determined through machine learning. They obtained a very simple
model which still provides good performance.

Some authors also proposed quality assessment metrics for textured 3D mesh
[67,84] dedicated to optimizing their compression and transmission. These metrics,
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Fig. 9.11 Distorted versions of theHorsemodel, all associated with the same maximum root mean
square error (MRMS = 0:00105). From left to right, top to bottom: Original model; result after
watermarking from Wang et al. [95] (MSDM2D 0.14, FMPDD 0.01); result after watermarking
from Cho et al. [15] (MSDM2D 0.51, FMPDD 0.40), result after simplification [48] from 113K
vertices to 800 vertices (MSDM2D 0.62, FMPDD 1.00)

respectively, rely on geometry and texture deviations [84] and on texture and mesh
resolutions [67]. Their results underline the fact that the perceptual contribution
of image texture is, in general, more important than the model’s geometry, i.e. the
reduction of the texture resolution is perceived more degraded than the reduction of
model’s polygons (geometry resolution).

For dynamic meshes, the most used metric is the KG error [33]. Given M1 and
M2 the matrix representations (3v � f with v and f , respectively, the number of
vertices and frames, 3 stands for the number of coordinates—x,y,z) of two dynamic
meshes to compare, the KG error is defined as a normalized Frobenius norm
of the matrix difference kM1 � M2k. Like the RMS for static meshes, this error
metric does not correlate with the human vision. Váša and Skala have introduced
a perceptual metric [87] for dynamic meshes, the STED error (Spatio-Temporal
Edge Difference). The metric works on edges as basic primitives, and computes
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the relative change in length for each edge of the mesh in each frame of the
animation. This quality metric is able to capture both spatial and temporal artifacts
and correlates well with the human vision.

Guthe et al. [28] introduce a perceptual metric based on spatio-temporal CSF
dedicated to bidirectional texture functions (BTFs), commonly used to represent the
appearance of complex materials. This metric is used to measure the visual quality
of the various compressed representations of BTF data.

Ramanarayanan et al. [71] proposed the concept of visual equivalence in order
to create a metric that is more tolerant for non-disturbing artifacts. The authors
proposed that two images are considered visually equivalent if object’s shape and
material are judged to be the same in both images and in a side-by-side comparison,
an observer is unable to tell which image is closer to the reference. The authors
proposed an experimentalmethod and ametric (Visual Equivalence Predictor) based
on the machine learning techniques (SVM). The metric associates simple geometry
and material descriptors with the samples measured in the experiments. Then, a
trained classifier determines whether the distortions in illumination map lead to
visually equivalent results. The metric demonstrated an interesting concept, yet it
can be used only with a very limited range of illumination distortions. This work
is dedicated to the evaluation of illumination map distortion effect, and not to the
evaluation of the 3D model quality. However, it relies on geometry and material
information and thus can be classified as a model-based metric.

9.3.2 Image-Based Metrics

Apart from these quality metrics operating on the 3D geometry (that we call model-
based), a lot of researchers have used 2D image metrics to evaluate the visual
quality of 3D graphical models. Indeed, as pointed out in [49], the main benefit
of using image metrics to evaluate the visual quality of 3D objects is that the
complex interactions between the various properties involved in the appearance
(geometry, texture, normals) are naturally handled, avoiding the problem of how to
combine and weight them. Many image-based quality evaluation works have been
proposed in the context of simplification and level-of-detail (LoD) management for
rendering. Among existing 2D metrics, authors have considered the Sarnoff visual
discriminationmodel (VDM) [51], the visible difference predictor (VDP) fromDaly
[20] (both provide local distortion maps that predict local perceived differences), but
also the SSIM (Structural SIMilarity) index, introduced byWang and Bovik [97] and
the classical mean or root mean squared pixel difference.

Lindstrom and Turk [49] evaluate the impact of simplification using a fast image
quality metric (RMS error) computed on snapshots taken from 20 different camera
positions regularly sampled on a bounding sphere. Their approach is illustrated in
Fig. 9.12. In his Ph.D. thesis [47], Lindstrom also proposed to replace the RMS by
perceptual metrics including the Sarnoff VDM and surprisingly he found that the
RMS error yields to better results. He also found that his image-based approach
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Fig. 9.12 Illustration of the
image-based simplification
approach from Lindstrom and
Turk [49]. This algorithm
considers the quality of 2D
snapshots sampled around the
3D mesh as the main criterion
for decimation. Image
reprinted from [47]

provides better results than geometry-driven approaches, however he considered a
similar image-based evaluation. Qu and Meyer [70] consider the visual masking
properties of 2D texture maps to drive simplification and remeshing of textured
meshes, they evaluate the potential masking effect of the surface signals (mainly
the texture) using the 2D Sarnoff VDM [51]. The masking map is obtained by
comparing, using VDM, the original texture map with a Gaussian filtered version.
The final remeshing can be view-independent or view-dependent depending on
the visual effects considered. Zhu et al. [109] studied the relationship between the
viewing distance and the perceptibility of model details using 2D metrics (VDP and
SSIM) for the optimal design of discrete LOD for the visualization of complex 3D
building facades.

For animated characters, Larkin and O’Sullivan [40] ran an experiment to
determine the influence of several types of artifacts (texture, silhouette, and lighting)
caused by simplification; they found that silhouette is the dominant artifact and then
devised a quality metric based on silhouette changes suited to drive simplification.
Their metric is as follows: they render local regions containing silhouette areas from
different viewpoints and compare the resulting images with a 2D quality metric
[103].

Several approaches do not rely directly on 2D metrics but rather on psychophys-
ical models of visual perception (mostly the CSF). One of the first study of this
kind was that of Reddy [73], which analyzed the frequency content in several pre-
rendered images to determine the best LOD to use in a real-time rendering system.
Luebke and Hallen [52] developed a perceptually based simplification algorithm
based on a simplified version of the CSF. They map the change resulting from a
local simplification operation to a worst-case contrast and a worst-case frequency
and then determine whether this operation will be imperceptible. Their method was
then extended byWilliams et al. [101] to integrate texture and lighting effects. These
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latter approaches are view-dependent. Menzel and Guthe [60] propose a perceptual
model of JND (Just-Noticeable-Difference) to drive their simplification algorithm;
it integrates CSF and masking effect. The strength of their algorithm is to be able to
perform almost all the calculation (i.e., contrast and frequency) directly on vertices
instead of rendered images. However, it still uses the rendered views to evaluate
the masking effect, thus it can be classified as an hybrid image-based/model-based
method.

9.4 Subjective Quality Assessment in Graphics

Quality assessment metrics presented in Sects. 9.2 and 9.3 aim at predicting
the visual quality and/or the local artifact visibility in graphics images and 3D
models. Both these local and global perceived qualities can also be directly and
quantitatively assessed by means of subjective quality assessment experiments. In
such experiments, human observers give their opinion about the perceived quality
or artifact visibility for a corpus of distorted images or 3D models.

Subjective experiments also provide a mean to test objective metrics. The
nonparametric correlation, such as Spearman’s or Kendall’s rank-order correlation
coefficients, computed between subjective scores and the objective scores provides
an indicator of the performance of these metrics and a way to evaluate them
quantitatively. We discuss some work in graphics on evaluation of objective metrics
in Sect. 9.4.4.

For global quality assessment, many protocols exist and have been used for
graphics data. Usually, absolute rating, double stimulus rating, ranking or pairwise
comparisons are considered. Mantiuk et al. [56] compared the sensitivity and
experiment duration for four experimental methods: single stimulus with a hidden
reference, double stimulus, pairwise comparisons, and similarity judgments. They
found that the pairwise comparison method results in the lowest variation between
observer’s scores. Surprisingly, the method also required the shortest time to
complete the experiments even for a large number of compared methods. This was
believed to be due to the simplicity of the task, in which a better of two images was
to be selected.

9.4.1 Scaling Methods

Once experimental data is collected, it needs to be scaled into a mean a quality
measure for a group of observers. Because different observers are likely to use
different scale when rating images, their results need to be unified. The easiest way
to make their data comparable is to apply a linear transform that makes the mean
and the standard deviation equal for all observers. The result of such a transform is
called z-score and is computed as
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zi;j;k;r D di;j;k;r � Ndi

�i

; (9.8)

where the mean score Ndi and standard deviation �i are computed across all stimuli
rated by an observer i . The indexes correspond to i -th observer, j -th condition
(algorithm), k-th stimuli (image, video, etc.), and r-th repetition.

Pairwise comparison experiments require different scaling procedures, usually
based on Thurstone Case IV or V assumptions [25]. These procedures attempt to
convert the results of pairwise comparisons into a scale of JNDs. When 75% of
observers select one condition over another, the quality difference between them
is assumed to be 1 JND. The scaling methods that tend to be the most robust are
based on the maximum likelihood estimation [3,81]. They maximize the probability
that the scaled JND values explain the collected experimental data under the
Thurstone Case V assumptions. The optimization procedure finds a quality value
for each stimulus that maximizes the probability, which is modeled by the binomial
distribution. Unlike standard scaling procedures, the probabilistic approach is robust
to unanimous answers, which are common when a large number of conditions are
compared. The detailed review of the scaling methods can be found in [25].

9.4.2 Specificity of Graphics Subjective Experiments

9.4.2.1 Global vs. Local

Artifacts coming from transmission or compression of natural images (i.e.,
blockiness, blurring, ringing) are mostly uniform. In contrast, artifacts from
graphics processing or rendering are more often nonuniform. Therefore, this domain
needs visual metrics able to distinguish local artifacts visibility rather than global
quality. Consequently, many experiments involving graphical content involve locally
marking noticeable and objectionable distortions [90] rather than judging an overall
quality. This marking task is more complicated than a quality rating, thus it involves
the creation of innovative protocols.

9.4.2.2 Large Number of Parameters

A subjective experiment usually involves a number of important parameters; for
instance, for evaluating the quality of images or videos, one has to decide the corpus
of data, the nature and amplitude of the distortions as well as the rating protocol
(i.e., single or multiple stimulus, continuous or category rating, etc). However, the
design of a subjective study involving 3D graphical content requires many additional
parameters (as raised in [13]):
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• Lighting. As raised in the experiment of Rogowitz and Rushmeier [74], the
position and type of light source(s) have a strong influence on the perception
of the artifacts.

• Materials and Shading. Complex materials and shaders may enhance the artifacts
visibility, or on the contrary, act as a masker (in particular some texture
patterns [26]).

• Background. The background may affect the perceived quality of the 3D
model, in particular it influences the visibility of the silhouette, which strongly
influences the perception.

• Animation and interaction. There exist different ways to display the 3D models
to the observers, from the most simple (e.g., as a static image from one given
viewpoint, as in [100]) to the most complex (e.g., by allowing free rotation,
zoom, translation, as in [18]). Of course it is important for the observer to have
access to different viewpoints of the objects, however the problem of allowing
free interaction is the cognitive overload that may alter the results. A good
compromise may be the use of animations, as in [67], however the velocity
strongly influences the CSF [34], hence animations have to be reasonably slow.

9.4.2.3 Specifics of Tone-Mapping Evaluation

In this section we discuss the importance of selecting the right reference and an
evaluation method for subjective evaluation of tone-mapping operators. This section
serves as an example of the considerations that are relevant when considering quality
assessment in graphics applications. Similar text has been published before in [24].

Figure 9.13 illustrates a general tone-mapping scenario and a number of pos-
sible evaluation methods. To create an HDR image, the physical light intensities
(luminance and radiance) in a scene are captured with a camera or rendered using
computer graphics methods. In the general case, “RAW” camera formats can be
considered as HDR formats, as they do not alter captured light information given
a linear response of a CCD/CMOS sensor. In the case of professional content
production, the creator (director, artist) seldom wants to show what has been
captured in a physical scene. The camera-captured content is edited, color-graded,
and enhanced. This can be done manually by a color artist or automatically by
color processing software. It is important to distinguish this step from actual
tone-mapping, which, in our view, is meant to do “the least damage” to the
appearance of carefully edited content. In some applications, such as simulators or
realistic visualization, where faithful reproduction is crucial, the enhancement step
is omitted.

Tone-mapping can be targeted for a range of displays, which may differ sub-
stantially in their contrast and brightness levels. Even HDR displays require
tone-mapping as they are incapable of reproducing the luminance levels found
in the real world. An HDR display, however, can be considered as the best
possible reproduction available, or a “reference” display. Given such a tone-mapping
pipeline, we can distinguish the following evaluation methods:
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Fig. 9.13 Tone-mapping process and different methods of performing tone-mapping evaluation.
Note that content editing has been distinguished from tone-mapping. The evaluation methods
(subjective metrics) are shown as ovals

Fidelity with reality method, where a tone-mapped image is compared with a
physical scene. Such a study is challenging to execute, in particular for video because
it involves displaying both a tone-mapped image and the corresponding physical
scene in the same experimental setup. Furthermore, the task is very difficult for
observers as displayed scenes differ from real scenes not only in the dynamic range,
but they also lack stereo depth, focal cues, and have restricted field of view and color
gamut. These factors usually cannot be controlled or eliminated. Moreover, this task
does not capture the actual intent when the content needs enhancement. Despite the
above issues, the method directly tests one of the main objectives of tone-mapping
and was used in a number of studies [4, 91, 92, 106, 107].

Fidelity with HDR reproductionmethods, where content is matched against a ref-
erence shown on an HDR display. Although HDR displays offer a potentially large
dynamic range, some form of tone-mapping, such as absolute luminance adjustment
and clipping, is still required to reproduce the original content. This introduces
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imperfections in the displayed reference content. For example, an HDR display will
not evoke the same sensation of glare in the eye as the actual scene. However, the
approach has the advantage that the experiments can be run in a well-controlled
environment and, given the reference, the task is easier. Because of the limited
availability of HDR displays, only a few studies employed this method: [38, 46].

Non-reference methods, where observers are asked to evaluate operators without
being shown any reference. In many applications there is no need for fidelity with
“perfect” or “reference” reproduction. For example, the consumer photography is
focused on making images look possibly good on a device or print alone as most
consumers will rarely judge the images while comparing with real scenes. Although
the method is simple and targets many applications, it carries the risk of running
a “beauty contest” [59], where the criteria of evaluation are very subjective. In
the non-reference scenario, it is commonly assumed that tone-mapping is also
responsible for performing color editing and enhancement. But, since people differ a
lot in their preference for enhancement [107], such studies lead to very inconsistent
results. The best results are achieved if the algorithm is tweaked independently for
each scene, or essentially if a color artist is involved. In this way we are not testing
an automatic algorithm though, but a color editing tool and the skills of the artist.
However, if these issues are well controlled, the method provides a convenient way
to test TMO performance against user expectations and, therefore, it was employed
in most of the studies on tone-mapping: [1, 4, 21, 39, 68, 91, 107].

Appearance matchmethods compare color appearance in both the original scene
and its reproduction [59]. For example, the brightness of square patches can be mea-
sured in a physical scene and on a display using the magnitude estimation methods.
Then, the best tone-mapping is the one that provides the best match between the
measured perceptual attributes. Even though this seems to be a very precise method,
it poses a number of problems. Firstly, measuring appearance for complex scenes is
challenging. While measuring brightness for uniform patches is a tractable task,
there is no easy method to measure the appearance of gloss, gradients, textures, and
complex materials. Secondly, the match of sparsely measured perceptual attributes
does not need to guarantee the overall match of image appearance.

None of the discussed evaluation methods is free of problems. The choice of a
method depends on the application that is relevant to the study. The diversity of the
methods shows the challenge of subjective quality assessment in tone-mapping, and
is one of the factors that contribute to volatility of the results.

9.4.2.4 Volatility of the Results

It is not uncommon to find quality studies in graphics, which arrive with contra-
dicting or inconclusive results. For example, two studies [8, 57] compared inverse
tone-mapping operators. Both studies asked to rate or rank the fidelity of the
processed image with the reference shown on an HDR display. The first study [8]
demonstrated that the performance of complex operators is superior to that of a
simple linear scaling. The second study [57] arrived with the opposite conclusion
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that the linear contrast scaling performs comparably or better than the complex
operators. Both studies compared the same operators, but images, parameter settings
for each algorithm, evaluation methods and experimental conditions were different.
This two conflicting results show the volatility of many subjective experiments
performed on images. The statistical testing employed in these studies can ensure
that the results are likely to be the same if the experiment is repeated for a different
group of observers, but with exactly the same images and in exactly the same
conditions. The statistical testing, however, cannot generalize the results to the entire
population of possible images, parameters, experimental conditions, and evaluation
procedures.

9.4.3 Subjective Quality Experiments

This subsection presents the subjective tests conducted by the scientific community
related to quality assessment of graphics data. The first and second parts detail,
respectively, experiments related to image and 3D model artifact evaluation.

9.4.3.1 Image and Video Quality Assessment

Evaluating computer graphicsmethods is inherently difficult, as the results can often
be only evaluated visually. This poses a challenge for the authors of new algorithms,
who are expected to compare their results with the state of the art. For that reason,
many recent papers in graphics include a short section with experimental validation.
Such a trend shows that subjective quality assessment becomes a standard practice
and a part of the research methodology in graphics. The need to validate methods
also motivates comparative studies, in which several state-of-the-art algorithms are
evaluated in a subjective experiment. Studies like this have been performed for
image aspect ratio retargeting [75], image deghosting [29], or inverse tone-mapping
[8, 57]. However, probably the most attention has attracted the problem of tone-
mapping, which is discussed below.

Currently (as of 2014) Google Scholar search reports over 7,000 papers with
the phrase “tone-mapping” in the title. Given this enormous choice of different
algorithms, which accomplish a very similar task, one would wish to know which
algorithm performs the best in a general case. In Sect. 9.2.5 we discussed a few
objective metrics for tone-mapping. However, because their accuracy still needs
to be validated, they are not commonly recognized method for comparing tone-
mapping operators. Instead, the operators have been compared in a large number
of subjective studies evaluating both tone-mapping for static images [1, 2, 4, 21,
22, 36, 38, 39, 46, 91, 92, 106, 107] and tone-mapping for video [10, 24, 68]. None
of these studies provided a definite ranking of the operators since such a ranking
strongly depends on the scene content and the parameters passed to a tone-
mapping operator. Interestingly, many complex tone-mapping methods seem to
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perform comparable or worse than even a simple method, provided that it is fine-
tuned manually [1, 38, 91]. This shows the importance of per-image parameter
tuning. Furthermore, the objective (intent) of tone-mapping can be very different
between operators. Some operators simulate the performance of the visual system
with all its limitation; other operators minimize color differences between the
HDR image and its reproduction; and some produce the most pleasing images
[24, 59]. Therefore, a single ranking and evaluation criteria do not seem to be
appropriate for evaluation of all types of tone-mapping. The studies have identified
the factors that affect overall quality of the results, such as naturalness and detail
[22], overall contrast and brightness reproduction [106, 107], color reproduction
and visible artifacts [91]. In case of video tone-mapping, the overall quality is also
affected by flickering, ghosting, noise, and consistency of colors across a video
sequence [10, 24]. Evaluating all these attributes provides the most insight into the
performance of the operators but it also requires the most effort and expertise and,
therefore, is often performed by expert observers [24]. Overall, the subjective studies
have not identified a single operator that would performwell a general case. But they
helped to identify common problems in tone-mapping, which will help in guiding
further research on this topic.

9.4.3.2 3D Model Quality Assessment

Several authors have made subjective tests involving 3D static or dynamic models
[17, 18, 41, 45, 67, 74, 76, 79, 80, 87, 88, 100]. Their experiments, detailed below,
had different purposes and used different methodologies. Bulbul et al. [13] recently
provided a good overview and comparison of their environments, methodologies,
and materials.

Subjective tests fromWatson et al. [100] and Rogowitz and Rushmeier [74] focus
on a mesh simplification scenario; their test databases were created by applying
different simplification algorithms at different ratios on several 3D models. They
considered a double stimulus rating scenario, i.e. observers had to rate the fidelity
of simplified models regarding the original ones. The purposes of their experiments
were, respectively, to compare image-based metrics and geometric ones to predict
the perceived degradation of simplified 3D models [100] and to study if 2D images
of a 3D model are really suited to evaluate its quality [74].

Rushmeier et al. [76] and Pan et al. [67] also considered a simplification scenario;
however, their 3D models were textured. These experiments provided useful insights
on how resolution of texture and resolution of mesh influence the visual appearance
of the object. Pan et al. [67] also provided a perceptual metric predicting this visual
quality and evaluated it quantitatively by studying the correlation with subjective
MOS from their experiment.

Lavoué [41] conducted an experiment involving 3D objects specifically chosen
because they contain significantly smooth and rough areas. The author applied noise
addition with different strengths either on smooth or rough areas. The specific
objective of this study was to evaluate the visual masking effect. It turns out that
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the noise is indeed far less visible on rough regions. Hence, the metrics should
follow this perceptualmechanism. The data resulting from this experiment (Masking
Database in Table 9.1) are publicly available.2

To the best of our knowledge, the only experiment involving dynamicmeshes was
the one performed by Váša and Skala [87] in their work proposing the STED metric.
They considered five dynamic meshes (chicken, dance, cloth, mocap, and jump)
and applied different kinds of both spatial and temporal distortion of varying types:
random noise, smooth sinusoidal dislocation of vertices, temporal shaking, and
results of various compression algorithms. All the versions (including the original)
were displayed at the same time to the observers, and they were asked to rate them
using a continuous scale from 0 to 10.

In all the studies presented above, the observers are asked to rate the fidelity of
a distorted model regarding a reference one, displayed at the same time (usually a
double stimulus scenario). However some experiments consider a single stimulus
absolute rating scenario. Corsini et al. [18] proposed two subjective experiments
focusing on a watermarking scenario; the material was composed of 3D models
processed by different watermarking algorithms introducing different kinds of
artifacts. On the contrary to the studies presented above, they consider an absolute
ratingwith hidden reference (i.e., the reference is displayed among the other stimuli).
The authors then used the mean-opinion-scores to evaluate the effectiveness of
several geometric metrics and proposed a new perceptual one (see Sect. 9.3.1)
to assess the quality of watermarked 3D models. Lavoué et al. [45] follow the
same protocol for their study; their material is composed of 88 models generated
from 4 reference objects (Armadillo, Dyno, Venus and RockerArm). Two types of
distortion (noise addition and smoothing) are applied with different strengths and
nonuniformly on the object surface. The resulting MOS were originally used to
evaluate the performance of the MSDM perceptual metric (see Sect. 9.3.1). The
corresponding database (General-Purpose Database in Table 9.1) and MOS data are
publicly available (see Footnote 2).

Rating experiments have the benefit of directly providing a mean-opinion-score
for each object from the corpus, however the task of assigning a quality score to
each stimulus is difficult for the observers and may lead to inaccurate results. That
is why many experiments now rely on the simpler task of Paired Comparison where
observers just have to provide a preference between a pair of stimuli (usually as a
binary forced choice). Silva et al. [79] proposed an experiment involving both rating
and preference tasks. Their corpus contains 30 models generated from 5 reference
objects. The reference models have been simplified using three different methods
and two levels. For the rating task, observers were asked to provide a score from
1 (very bad) to 5 (very good). Along with this rating, in another phase of the test,
the observers were asked about their preference among several simplified models
presented together. Figure 9.14 illustrates the evaluation interface for the rating
task, the stimulus to rate is presented with its reference stimulus. The data resulting

2http://liris.cnrs.fr/guillaume.lavoue/data/datasets.html.

http://liris.cnrs.fr/guillaume.lavoue/data/datasets.html
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Fig. 9.14 Evaluation interface for the subjective test of Silva et al. [80]. The observers were asked
to compare the target stimulus (right) with the referential stimuli (left) and assign it a category
rating from 1 (very bad) to 5 (very good). Reprinted from [80]

from these subjective experiments are publicly available3 (Simplification Database
in Table 9.1). The same authors did another subjective experiment using a larger
corpus of models [80] where they only collected preferences.

Váša and Rus [88] conducted a subjective study focusing on evaluating com-
pression artifacts. Their corpus contains 65 models from 5 references. The applied
distortions are uniform and Gaussian noise, sine signal, geometric quantization,
affine transform, smoothing and results from three compression algorithms. The
observer’s task is a binary forced choice, in the presence of the reference; i.e. triplets
of meshes were presented, with one mesh being designated as original, and two
randomly chosen distorted versions. A scalar quality value for each object from the
corpus is then derived from the user choices. The data (Compression Database in
Table 9.1) are publicly available.4

3http://www.ieeta.pt/~sss/repository/.
4http://compression.kiv.zcu.cz/.

http://www.ieeta.pt/~sss/repository/
http://compression.kiv.zcu.cz/
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9.4.4 Performance of Quality Metrics

9.4.4.1 Image Quality Assessment for Rendering

VDP-like metrics are, which are dominant in graphics, often considered to be too
sensitive to small, barely noticeable, and often negligible differences. For example,
many computer graphics methods result in a bias, which makes the part of a
rendered scene brighter or darker than the physically accurate reference. Since such
a brightness change is local, smooth, and spatially consistent, most observers are
unlikely to notice it unless they scrupulously compare the image with a reference.
Yet, such a difference will be signalized as significant by most VDP-like metrics,
which will correctly predict that the difference is in fact visible when scrutinized. As
a result, the distortion maps produced by objective metrics often do not correspond
well with subjective judgment about visible artifacts.

Cadík et al. [90] investigated this problem by comparing the performance of
the state-of-the-art fidelity metrics in predicting rendering artifacts. The selected
metrics were based on perceptual models (HDR-VDP-2), texture statistics (SSIM,
MS-SSIM), color differences (sCIE-Lab), and simple arithmetic difference (MSE).
The performance was compared against experimental data, which was collected
by asking observers to label noticeable artifacts in images. Two examples of such
manually labeled distortion maps are shown in Fig. 9.2.

The same group of observers completed the experiment for two different tasks.
The first task involved marking artifacts without revealing the reference (artifact
free) image. It relied on the observers being able to spot objectionable distortions.
In the second task the reference image was shown next to the distorted and the
observers were asked to find all visible differences. The results for both tasks were
mostly consistent across observers resulting in similar distortion maps for each
individual.

When subjective distortion maps were compared against the metric predictions,
they revealed weaknesses of both simple (PSNR, sCIE-Lab [108]) and advanced
(SSIM, MS-SSIM [97], HDR-VDP-2) quality metrics. The results for the two
separate data sets (NORM [30] and LOCCG[90]) and two experimental conditions
(with-reference and no-reference) are shown in Fig. 9.15. The results show that
the metrics that performed the best for one data set (HDR-VDP and SSIM for
NORM) ended up in the middle or the end of the ranking for the other data set
(LOCCG). This is another example of the volatility of the comparison experiments,
discussed in Sect. 9.4.2.4. Because of the large differences in metric performance
between images, no metric could be said to be statistically significantly better (in
terms of AUC) than any other metric in a general case. More helpful was the
detailed analysis of the results for particular images, which revealed the issues that
reduced the performance of the advanced metrics. One of those issues was excessive
sensitivity to brightness and contrast changes, which are common in graphics due
to the bias of rendering methods (refer to Fig. 9.16). The simple metrics failed to
distinguish between imperceptible and well visible noise levels in complex scenes
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Fig. 9.15 The performance of quality metrics according to the area-under-curve (AUC) (the
higher the AUC, the better the classification into distorted and undistorted regions). The top
row shows the results for the NoRM data set [30] and bottom row the LOCCG data [90]. The
columns correspond to the experiments in which the reference non-distorted image was shown
(left column) or hidden (right column). The percentages indicate how frequently the metric on the
right results in higher AUC when the image set is randomized using a bootstrapping procedure.
The metrics: AD—absolute difference (equivalent to PSNR); SSIM—Structural Similarity Index;
MS-SSIM—multi-scale SSIM; HDR-VDP-2—refer to Sect. 9.2.4; sCIE-Lab—spatial CIELab;
sCorrel—per-block Spearman’s nonparametric correlation

(refer to Fig. 9.17). The multi-scale metrics revealed problems in localizing small-
area and high-contrast distortions (refer to Fig. 9.18). But the most challenging are
the distortions that appeared as a plausible part of the scene, such as darkening in
corners, which appeared as soft shadows (refer to Fig. 9.19).

Overall, the results revealed that the metrics are not as universal as they are
believed to be. Complex metrics employing multi-scale decompositions can better
predict visibility of low contrast distortions but they are less successful with super-
threshold distortions. Simple metrics, such as PSNR, can localize distortions well,
but they fail to account for masking effects.

9.4.4.2 3D Model Quality Assessment

For model-based metrics (i.e., relying on the geometry), recent studies [19, 44]
have provided extensive quantitative comparisons of existing metrics by computing
correlations with MOS from several databases. Studies generally consider two cor-
relation coefficients: the SROC which measures the monotonic association between
the MOS and the metric values and the Pearson linear correlation coefficient (LCC),
which measures the prediction accuracy. The Pearson correlation is computed after
performing a non-linear regression on the metric values as suggested by the video
quality experts group (VQEG) [93], usually using a cumulative Gaussian function.
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Fig. 9.16 Scene sala (top),
distortion maps for selected
metrics (second and third
rows), ROC and correlation
plots (bottom). Most metrics
are sensitive to brightness
changes, which often remain
unnoticed by observers.
sCorrel (block-wise Spearson
correlation) is the only metric
robust to these artifacts. Refer
to the legend in Fig. 9.15 to
check which lines correspond
to which metrics in the plots

Table 9.1 summarizes these correlation results; best metrics are highlighted for each
database. Note that many metrics cannot be applied to evaluating simplification
distortions because they need the compared objects to share the same connectivity—
[32, 43, 45, 83, 88]—or the same level of details—[18].

We can observe that classical geometric distances, like Hausdorff and RMS,
provide a very poor correlation with human judgment, while most recent ones
[42, 43, 85, 88, 96] provide much better performance. Unfortunately, image-based
metrics have not been quantitatively tested on these public databases, hence a
legitimate question remains: which is the best to predict 3D mesh visual fidelity,
image-based or model-based metrics? Rogowitz and Rushmeier [74] argue for
model-based metrics since they show that 2D judgments do not provide a good
predictor of 3D object quality, implying that the quality of 3D objects cannot be
correctly predicted by the quality of static 2D projections. To demonstrate that,
the authors have conducted two subjective rating experiments; in the first one, the
observers rated the quality of 2D static images of simplified 3D objects, while in
the second one they rated an animated sequence of these images, showing a rotation
of the 3D objects. Results show that (1) the lighting conditions strongly influence
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Fig. 9.17 Scene disney:
simple metrics, such as
sCorrel and AD, fail to
distinguish between visible
and invisible amount of noise
resulting in worse
performance

the perceived quality and (2) the observers perceive differently the quality of the
3D objects if they observe still images or animations. Watson et al. [100] also
compared the performance of several image-based (Bolin-Meyer [12] and Mean
Squared Error) and model-based (mean, max, and RMS) metrics. They conducted
several subjective experiments to study the visual fidelity of simplified 3D objects,
including perceived quality rating. Their results showed a good performance of 2D
metrics (Bolin-Meyer [12] and MSE) as well as the mean 3D geometric distance
as predictor of the perceived quality. The main limitation of this study is that the
authors only consider one single view of the 3D models. More recently, Cleju and
Saupe [17] designed another subjective experiment for evaluating the perceived
visual quality of simplified 3Dmodels and found that generally image-based metrics
perform better than model-based metrics. In particular, they found that 2D mean
squared error and SSIM provide good results, whereas SSIM’s performance being
more sensitive to the 3D model type. For model-based metric, like Watson et al.
[100], they showed that the mean geometric distance performs better than RMS
which is better than Hausdorff (i.e., maximum distance). The main limitation of
these studies (mostly from 10 years ago) is that they consider one single type



278 G. Lavoué and R. Mantiuk

Fig. 9.18 Dragons scene
contains artifacts on the
dragon figures but not in the
black background.
Multi-scale IQMs, such as
MS-SSIM and HDR-VDP-2,
mark much larger regions due
to the differences detected at
lower spatial frequencies.
Pixel-based AD (absolute
differences) can better
localize distortions in this
case

Fig. 9.19 Photon leaking and
VPL clamping artifacts in
scenes sponza and sibenik
result in either brightening or
darkening of corners.
Darkening is subjectively
acceptable, whereas
brightening leads to
objectionable artifacts

of distortion (only simplification) and very simple image-based and model-based
metrics.

For dynamic meshes, a study presented by Váša and Skala [87] demonstrates
an excellent prediction performance of the STED metric, while others (e.g., the
KG error [33]) provide very poor results. Another open question concerns the
quantitative evaluation of quality metrics for colored or textured meshes; indeed per-
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vertex colors or texture play a very important role in the appearance of a 3D model,
however very few metrics still exist and no comparison study is still available.

9.5 Emerging Trends

9.5.1 Machine Learning

The objective of a quality assessment metric is to predict the visual quality of a
signal, hence it basically needs to mimic the psychophysical process of the HSV, or
at least relies on some features related to perceptualmechanisms. However modeling
these complex principles and/or choosing appropriate characteristics may be hard.
Hence it may appear convenient to treat the HVS as a black box which we wish
to learn the input–output relationship. Such learning approaches were proposed
recently [30, 43, 89]; they compute a large number of features and train classifiers
on subjective ground-truth data. Such kinds of metrics are usually very efficient,
however their ability to generalize depends on the richness of the ground-truth data.
A very interesting point is that crowd-sourcing is developing as an excellent way
to gather quickly a huge set of human opinions, that can then feed a classifier. As
stated in the introduction, the future of quality metrics could lie in a combination of
machine learning techniques with accurate psychophysical models.

9.5.2 3D Animation

There still exist very few works about quality assessment for dynamic meshes (i.e.,
sequence of meshes) and articulated meshes (i.e., one single mesh + animated
skeleton) while these types of data are present in a wide range of computer graphics
applications. The perceived visual quality of such 3D animation depends not only
on the geometry, texture, and other visual attributes but also, to a large extent, on the
nature of the movement and its velocity. This temporal dimension carries a whole
range of additional cognitive phenomena. The CSF, for instance, is completely
modified in a dynamic setting [34]. This is easily understandable since a rapid
movement will be able to hide a geometrical artifact which would have been visible
in a static case. In the case of human or animal animations, the realism of the
animation is also a critical factor in the perception from the user. All these factors
should be taken into account to devise efficient quality metrics, many progresses
still remain to be achieved in this field.
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9.5.3 Material and Lighting

The need of photorealistic rendering of 3D content has led to embed complex
material and lighting information together with the geometric information. For
instance, the bi-directional reflectance distribution function (BRDF) describes how
much light is reflected when light makes contact with a certain material. More
complex nonuniform materials can be represented by more complex reflectance
functions acquired through sophisticated photometric systems, including surface
light field (SLF) which represents the color of a point depending on the viewing
direction (hence assuming a fixed lighting direction), BTF that extends the SLF
for any incident lighting direction, and finally bidirectional subsurface scattering
reflectance distribution function (BSSRDF) which is basically a BTF plus a model
of the surface scattering. There still exist no metric to assess the quality of these
complex attributes (mapped or not onto the surface). In particular, it could be very
useful to integrate them into existing model-based metrics (e.g., MSDM2) which
are currently too much independent of the rendering conditions.

9.5.4 Toward Merging Image and Model Artifacts

We have seen all along this chapter that visual defects may appear at several stages of
a computer graphics work-flow (as illustrated in Fig. 9.1) and may concern different
types of data: either the 3D models, or the final rendered or tone-mapped images.
We have seen that there exist specific metrics dedicated to the detection of these
model or image artifacts. Their use depends on the application, e.g. a 3D mesh
compression approach has to be driven by a metric operating on the geometry, while
a global illumination algorithm will be tuned using an image quality metric. What
has been ignored until now is that these visual defects introduced either onto the
geometry or onto the final images do have a visual interplay. For instance, the nature
of the rendering algorithm obviously influences the perceptibility of a geometric
artifact; similarly, some types of rendering artifact could be avoided by a proper
modelling or a specific geometry processing algorithm. Hence it appears obvious
that these two types of quality assessment (i.e., respectively, applied on models
and images) should be connected. Integrating lighting and material information into
model-based metrics (like mentioned in the above paragraph) could be a way to take
into account these both processes (modeling and rendering). Considering the 3D
scene for detecting image-based artifacts could be another way to model efficiently
this interplay.
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7. Aydın, T.O., Čadík, M., Myszkowski, K., Seidel, H.P.: Video quality assessment for computer
graphics applications. ACM Transactions on Graphics 29(6), 1 (2010). DOI 10.1145/
1882261.1866187

8. Banterle, F., Ledda, P., Debattista, K., Bloj, M., Artusi, A., Chalmers, A.: A Psychophysical
Evaluation of Inverse Tone Mapping Techniques. Computer Graphics Forum 28(1), 13–25
(2009). DOI 10.1111/j.1467-8659.2008.01176.x

9. Blackwell, H.: Contrast thresholds of the human eye. Journal of the Optical Society of
America 36(11), 624–632 (1946)

10. Boitard, R., Cozot, R., Thoreau, D., Bouatouch, K.: Temporal coherency in video tone
mapping, a survey. In: HDRi2013 - First International Conference and SME Workshop on
HDR imaging, Xx, p. no. 1 (2013)

11. Bolin, M.R., Meyer, G.W.: A frequency based ray tracer. In: Proc. of SIGGRAPH ’95,
pp. 409–418 (1995)

12. Bolin, M.R.,Meyer, G.W.: A perceptually based adaptive sampling algorithm. In: Proceedings
of the 25th annual conference on Computer graphics and interactive techniques - SIGGRAPH
’98, pp. 299–309. ACM Press, New York, New York, USA (1998). DOI 10.1145/280814.
280924

13. Bulbul, A., Capin, T., Lavoue, G., Preda, M.: Measuring Visual Quality of 3D Polygonal
Models. IEEE Signal Processing Magazine 28(6), 80–90 (2011)

14. Cater, K., Chalmers, A., Ward, G.: Detail to Attention: Exploiting Visual Tasks for Selective
Rendering. Proc. of Eurographics workshop on Rendering pp. 270–280 (2003)

15. Cho, J., Prost, R., Jung, H.: An oblivious watermarking for 3-D polygonal meshes using
distribution of vertex norms. IEEE Transactions on Signal Processing 55(1), 142–155 (2007)

16. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: Measuring Error on Simplified Surfaces.
Computer Graphics Forum 17(2), 167–174 (1998). DOI 10.1111/1467-8659.00236

17. Cleju, I., Saupe, D.: Evaluation of supra-threshold perceptual metrics for 3D models. In:
Symposium on Applied Perception in Graphics and Visualization. ACM Press (2006).
DOI 10.1145/1140491.1140499

18. Corsini, M., Gelasca, E.D., Ebrahimi, T., Barni, M.: Watermarked 3-D Mesh Quality
Assessment. IEEE Transactions on Multimedia 9(2), 247–256 (2007)
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