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Preface

With rapidly advancing computer and network technologies, various visual signals
(including image, video, graphics, animation, etc.) are produced, and visual quality
of experience (QoE) plays an important role in multimedia applications and ser-
vices. Visual QoE evaluation is essential not only on its own for testing, optimizing,
and inspecting related algorithms, systems and services, but also for shaping and
decision-making for virtually all multimedia signal processing and transmission
algorithms. It is not an exaggeration to say that how visual signal quality is evaluated
shapes the making of almost all multimedia processing algorithms and systems,
since the ultimate goal of processing is to achieve the highest possible perceived
quality.

During the past two decades, the research field of visual quality assessment
has experienced significant growth and great progress. With the rapid development
of the sensing and imaging devices, newly emerged visual signals are presented
to human viewers, such as stereoscopic/3D image/video, high dynamic range
(HDR) image/video, retargeted image/video, graphics, medical image, and so on.
Meanwhile, recent psychophysical and neurological findings enable us to more
clearly understand the human visual system. There is a considerable need for
books like this one, which attempts to provide a comprehensive reviewing of
recent progresses of visual signal quality assessment and shape the future research
directions.

The objective of this book is to firstly present the latest achievements in quality
assessment of visual signals. It reviews the current status, new trends, and challenges
of quality assessment for traditional visual signals. More attentions are devoted to
the newly emerged visual signals for better QoE. With the systematic and up-to-date
review of the quality assessment of emerged visual signals, new trends of developing
quality assessment methods for the specific visual signals are discussed and believed
to be helpful to the researchers and readers of this book.

This book provides readers a comprehensive coverage of the latest trends/advances
in visual signal quality assessment. The principal audience of this book will be
mainly researchers and engineers as well as graduate students working on various
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disciplines related to visual signals, such as imaging, displaying, processing,
storage, transmission, etc. The discussed contents in this book are expected to
not only inspire newly research trends and directions for QoE but also benefit the
development of multimedia products, applications, and services.

Chapter 1 introduces the current status, challenges, and new trends of visual
quality assessment. Entropy and rate-distortion-based quality assessment methods
are first reviewed, and then perception-oriented approaches are discussed, including
pixel, feature, and model-based ones, etc. Perception distortion measures for rate-
perceptual-distortion optimization (RpDO) in visual quality regulated services are
finally presented.

Chapter 2 presents a detailed review of subjective image quality assessment. The
previous research of subjective assessment targeted at measuring visual impairments
induced by limited spatial, temporal resolutions in displays, bandwidth and storage
constraints, etc. However, elements such as visual semantics, user personality,
preferences and intent, social and environmental context of media fruition also have
great impact on the perceived experience. In order to adapt the traditional visual
quality gauging metrics to QoE, a few models have been proposed throughout the
last decade, and a significant improvement has been achieved.

Chapter 3 provides a survey and tutorial on objective quality assessment. The
public image databases are first introduced, including those popular ones (e.g.,
TID2008, LIVE) and new quality databases (e.g., TID2013, LIVEMD, CID2013).
Most of the proposed objective metrics are tested on those image databases. As
for objective assessment, numerous approaches have been developed including
full-reference, reduced-reference, and no-reference ones. With the development of
multimedia technology, some emerging directions in quality assessment are also
in demand for specific applications, such as multiply distorted quality assessment,
mobile quality assessment, etc.

In particular, Chapter 4 addresses the issue of understanding and modeling
the perceptual mechanism of QoE of mobile videos. For quality perception of
mobile videos, compression and transmission artifacts, and the video scalability,
specifically the spatial, temporal, and quality scalability as the most effective
factors are discussed. Several quality metrics for mobile videos are introduced by
considering the general purposes, video scalability, and standardization. Finally,
the characteristics of the public mobile video quality databases are introduced and
summarized.

Chapter 5 focuses on the quality evaluation of HDR images. HDR is opposite
to low dynamic range (LDR). The major difference between them is that HDR has
much more bits than LDR to represent the dynamic range of visual signals in the
real world. On the other hand, the existing display devices are not available for
HDR contents. Tone mapping operators (TMOs) can efficiently solve the above-
mentioned issues, but also lead to the loss of visual details affecting the perceived
quality of HDR contents. A detailed discussion on the relationship between tone
mapping and image quality has been presented from perceptual visual quality, visual
attention, and naturalness aspects.

http://dx.doi.org/10.1007/978-3-319-10368-6_1
http://dx.doi.org/10.1007/978-3-319-10368-6_2
http://dx.doi.org/10.1007/978-3-319-10368-6_3
http://dx.doi.org/10.1007/978-3-319-10368-6_4
http://dx.doi.org/10.1007/978-3-319-10368-6_5


Preface vii

Chapter 6 reviews recent progresses of quality assessment for medical imaging
systems and medical images. The concepts and definitions of traditional medical
image quality metrics are introduced. A mutual information-based quality metric
for medical imaging systems is introduced. Two clinical applications related to
quality assessment for medical images are addressed. One application deals with the
improvement of image quality in mammography,while the second one addresses the
effect of radiation dose reduction on image quality in digital radiography.

Chapter 7 discusses visual quality assessment on stereoscopic images/videos,
including the challenges and difficulties, such as visual discomfort, binocular vision,
and extra dimensionality. Recently, quality metrics for stereoscopic images/videos
not only utilize the information from images/frames but also consider the obtained
depth or computed depth/disparity information. Evaluation of the 2D quality
metrics and the 3D quality metrics considering depth/disparity information on the
publicly available stereoscopic databases confirms the necessity of utilizing and
incorporating accessible 3D information.

Chapter 8 addresses the quality assessment of retargeted images from both
subjective and objective perspectives. Subjective evaluation process of retargeted
images is firstly introduced. Specifically, two publicly available image retargeting
quality databases are introduced. The representative objective quality assessment
algorithms are evaluated and compared on the two built subjective databases, which
provide helpful insights for image retargeting quality assessment. Future trends are
discussed to handle the challenges during the objective quality metric construction
for retargeted images.

Chapter 9 presents some introductions of computer graphics quality assessment
from subjective and objective aspects. Image rendering evaluation is one of the
important applications for graphics, and a few models have been proposed including
visual model-based ones, data-driven ones, etc. Apart from image rendering,
numerous assessment metrics have been developed for evaluating the quality of 3D
models.

Chapter 10 gives the conclusions and perspectives of each chapter. It outlines
the main contents from multiple aspects of quality assessment and reviews the
main contributions of those existing works. Then perspectives related to QoE are
presented to readers for further investigations.

This book collects related but distinctive works from 10 active research groups in
different part of the world, in addressingQoE challenges from different perspectives.
We hope that this gives a comprehensive overview in the area and inspires new
thinking and ideas as the next steps of research and development.

Beijing, China Chenwei Deng
Shatin, Hong Kong SAR Lin Ma
Singapore Weisi Lin
Shatin, Hong Kong SAR King Ngi Ngan

http://dx.doi.org/10.1007/978-3-319-10368-6_6
http://dx.doi.org/10.1007/978-3-319-10368-6_7
http://dx.doi.org/10.1007/978-3-319-10368-6_8
http://dx.doi.org/10.1007/978-3-319-10368-6_9
http://dx.doi.org/10.1007/978-3-319-10368-6_10
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Chapter 1
Introduction: State of the Play and Challenges
of Visual Quality Assessment

Hong Ren Wu

Visual communications, broadcasting and entertainment set out to overcome time,
distance or other barriers between people and/or places, which hinder face-to-face
contact with one another or between human subject(s) and the environment [25].
Quality of visual signals or pictures1 perceived by human observers as compared
with what they would experience should they be able to be present at the natural
scene has always been a critical issue, so has been the measurement of the
signal quality throughout a process chain of acquisition/reproduction, encoding,
transmission or storage, decoding, and visualisation/display associated with a
designated application or service regardless whether visual signals are in analogue
or digital form [29, 31, 100, 129]. Taking advantage of digital communications, the
first digital coding system for television (TV) signals using pulse code modulation
(PCM) [82] as reported in 1949 revealed, among other issues, that the digital
TV signal yielded approximately 1,250 times the bitrate of telephone signals,2

and using 5 (instead of 8) bits per sample achieved visual picture quality which
was comparable to that of the original analogue TV signal, achieving a 1.6
compression gain on the grounds of perceptual picture quality [24]. The sheer
volume of digital TV signal necessitated research and development in signal
compression theories [18, 27, 38, 63, 64, 81, 83, 118] and technology as well as in
high speed and bandwidth communication and storage technologies [26]. Digital

1Visual signals or pictures refer to images, video, image sequences or motion pictures [118].
2In [24], 10MHz sampling rate was used for PCM coding of a 5MHz analogue TV signal with 8
bits per sample, compared with 8 kHz sampling rate and 8 bits per sample for voice using telephone
at the time.
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2 H.R. Wu

visual signals compressed using various coding techniques [14, 39, 95] exhibited
coding distortions which differed from those known to be associated with analogue
visual signals and, therefore, required provision of both subjective and objective
distortion or quality measures which quantitatively assess and evaluate the visual
picture quality for the purposes of system or service evaluation and optimization
[4, 5, 34, 41, 46, 49, 55, 85, 118].

Digital visual signal compression theory, technology, and standardizations have
come of age. Visual communications, broadcasting, entertainment and recreation
video and photography have been completely transformed in the past 20 years from
analogue based devices, products, systems, and services to ever increasingly diverse
forms of digital counterparts, exemplified most noticeably via popular products
or events such as film based cameras replaced by digital cameras, tape based
analogue video camcorders by digital storage3 based digital video cameras, and
free-to-air analogue television (TV) broadcasting having been switched to digital-
only TV services in many countries.4 Heralding a transition from technology driven
services to user-centric (visual or perceived) quality assured services [118] comes
an increasing emphasis on visual quality of picture (QoP) assessments and measures
[7, 10, 44, 48, 59, 108, 119], and quality of experience (QoE)5 [35, 53] as compared
with quality of service (QoS)6 [36] in the aforementioned applications and services.
To understand the importance, imperative, and relevance of this transition, a number
of fundamental issues deserve clarification in order to put the current discussions
and activities into perspective and context, including relationship between picture
quality assessment and coding designs, how to measure effectiveness of visual signal
compression performance, different scales used for visual quality assessment and
their intended applications, picture distortion or quality ratings for rate-perceptual-
distortion (RpD) optimization [38].

1.1 Quality Assessments Based on Entropy
and Rate-Distortion Theories

Entropy and rate-distortion theories have been design principles for visual signal
coding and forged the inseparable nexus between visual signal coding design and

3Digital storage media commonly used by digital video cameras currently include memory stick,
memory card, and flash memory.
4For example, Australia switched to digital-only TV broadcasting on 10 December 2013 as per
Australian Government announcement via “Australia’s Ready for Digital TV.”
5QoE as defined by International Telecommunication Union Study Group (ITU SG) 12 is
application or service specific and influenced by user expectations and context [35], and there-
fore necessitates assessments of perceived service quality and/or utility (or usefulness) of the
service [76].
6QoS as defined by ITU SG 12 is the totality of characteristics of a telecommunications service
that bear on its ability to satisfy stated and implied needs of the user of the service [36], e.g., error
rates, bandwidth, throughput, transmission delay, availability, jitter, and so on [91].
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quality assessment. To further advance the theory and practice in visual signal
coding and transmission, three issues are examined in this section based on entropy
and rate-distortion theories to clarify the “effectiveness” criterion for picture coder
design, to raise questions regarding quality scales which are currently used in
subjective assessment to collect the “ground truth” quality or distortion data as
perceived by human viewers, and to place a focus on perception based principles
for visual signal coding and performance assessment.

1.1.1 Quality Assessment for Bitrate- and Quality-Driven
Coding Designs

It is widely known and acknowledged that visual signal coding/compression and
transmission have been developed based on three fundamental theories [118], i.e.,
Nyquist–Shannon sampling theory which governs the required sample rate for a
faithful digital representation of an underpinning analogue counterpart or another
digital waveform at a reduced rate [82], Shannon’s entropy theory which defines
the lower bound for information lossless compression [81], and Shannon’s rate-
distortion (R-D) theory for information lossy compression design optimization
[3, 81, 83]. With regard to entropy and R-D theories, two observations have been
made known since the very beginning of visual signal coding and compression
research and development [117]. First, when taking account of visual picture quality
as perceived by human visual system (HVS), significantly higher compression ratio
than what is achievable by information lossless (or entropy) coding is possible
where the compressed images are visually comparable to [24] or indistinguishable
from their originals [116, 118]. Second, constant bitrate and constant distortion
(or quality) coder designs can be formulated when coding distortion is either
inevitable or impractical due to various constraints [3,39,81,83]. These observations
underscore that both perceptually lossless and perceptually lossy coding and trans-
mission designs and evaluation have an inseparable nexus with human perception-
based quality assessment and measures, including both psychophysical/subjective
[15,33,37,75,120] and quantitative [4,5,7,10,34,41,44,46,48,49,55,59,85,108,119]
methods or approaches. Acknowledging this nexus will allow better understanding
of how to determine whether a coding system is effective or otherwise and how
coding performance evaluations ought to be conducted. Based on the R-D theory,
for a constant bitrate coder to lay a claim to its effectiveness in compression
performance, it has to hold a fixed bitrate and then to maximize picture quality,
whereas for a constant quality coder to be effective, it must, first and foremost, be
able to hold a given picture quality and, then, to do so at the lowest possible bitrate.

The research efforts and developments in quality performance assessment to date
have been mainly focused on and reasonably successfully addressed two significant
issues, i.e., why the time-honored distortion (or quality) measure such as mean
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squared error (MSE) (or peak signal-to-noise ratio, PSNR for short) does not
always qualify or suitable for picture coding visual quality performance assessments
[5, 23, 55, 100, 119], and formulation and development of human visual perception-
based quantitative distortion or quality measures [4,5,7,10,29,34,41,44,48,49,55,
59,85,108,119,123] which are able to grade picture quality consistently with respect
to subjective test data collected following the current standard practices [15,33,37].
These achievements notwithstanding, coding performance evaluations including
those where perception-based measures are considered have been confined, so it
appears, by a mindset based on bitrate-driven design approach. The winner was
usually declared if for the same given bitrate, it demonstrated a superior picture
quality measured by either the time honored measures such as the PSNR or the
MSE [63] or quantitative perceptual distortion/quality measures [4, 5, 7, 10, 34,
41, 44, 48, 49, 55, 59, 85, 108, 119] or subjective assessments [15, 33, 37]. When
the visual quality was considered, the focus was still on which coder achieved
significant bitrate savings at a comparable visual quality, instead of whether it was
able to deliver designated picture quality levels discernible to human viewers at
lower rates. In other words, performance evaluations based on the current mindset
are able to assess effectiveness of bitrate-driven coder design, nonetheless do not
address the key issue regarding effectiveness of (visual) quality-driven coder design,
i.e., the question whether the distortion (or quality) measure is able to predict
discernible levels by human visual perception in terms of, e.g., just-not-noticeable-
difference (JNND), just-noticeable-difference level 1 (JND1), JND level 2 (JND2),
etc., consistently [118].

Take the performance evaluation of H.265/HEVC (high efficiency video coding)
recently reported in [63] for example. The superior effectiveness of H.265/HEVC
over all its predecessors as a bitrate-driven coder and coding standard has been
amply demonstrated in terms of delivering a designated bitrate at a significantly
better quality using either the PSNR or visual quality. If, however, visual quality
assured service at a designated quality level is set as the performance criterion,
according to the performance shown in Fig. 1.1 [63], there is an up to 3 dB difference
by the HEVCMP (main profile) coder for two different test sequences (i.e.,Kimono1
and Park Scene) for a given bitrate of 2Mbps, even if the PSNR is accepted as
an appropriate fidelity measure. Alternatively, given a PSNR value, say in this
example at 37 dB, it is most likely representing different levels of visual picture
quality for these two videos which are coded at about 2Mbps (megabit per second)
and 512 kbps (kilobit per second), respectively. In any event, effectiveness of all
coders under this comparative R-D performance study as a quality-driven coder
has not been considered, demonstrated, or established. (It is noted that in Fig. 1.1,
YUV-PSNR is defined as PSNRY U V D .6 � PSNRY C PSNRU C PSNRV /=8,
where PSNRY , PSNRU , and PSNRV are each computed as PSNR D 10 �
log10..2

8 � 1/2=MSE/ in dB [63].)
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Fig. 1.1 Selected rate-distortion curves and bit-rate savings plots in coding performance compar-
ison for entertainment applications (©IEEE, 2012) [63]

In contrast, effectiveness of a perceptually lossless7 picture coder as a constant
visual quality coder has to be evaluated in terms of whether it is able to maintain
a designated visual picture quality at lower bitrate than its competitors. In [116],
a JPEG 2000 bit-stream compliant perceptually lossless image coder was compared
with a JPEG-LS (information) lossless coder and a JPEG-LS near-lossless coder
(with d D 2, i.e., the maximum pixel difference between the compressed and the
original images less than or equal to two) in double blind subjective evaluations.
While the perceptually lossless coder demonstrated its effectiveness to hold visual
distortions at or below JNND level, it achieved a compression gain of 1.48 times
on average compared with the JPEG-LS lossless coder for medical images. The
JPEG-LS near-lossless (d D 2) coder achieved a comparable bitrate compared
with the perceptually lossless coder, but failed to deliver perceptually lossless
coding results in the same double blind subjective evaluations [116]. An example
is given in [118] to show the effectiveness of perceptually lossless coding which
compresses Shannon image at 1.370 bpp (bit per pixel) using the aforementioned
JPEG 2000 bit-stream compliant perceptually lossless image coder, compared
with the abovementioned JPEG-LS lossless coder at 3.179 bpp, a JPEG 2000
lossless coder at 3.196 bpp, and the abovementioned JPEG-LS near-lossless coder
at 1.424 bpp for the same image. In this sense, the perception-based approaches are

7Perceptually lossless coded visual signals incur no discernable visual difference compared with
their originals while they may have undergone irreversible information loss [106, 118].
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most likely to provide the means to delivery of effective, efficient compression and
transmission strategies for visual signals in terms of perceptual entropy8 or RpD
criterion [38].

1.1.2 Scales for Subjective Perceptual Distortion
and Quality Measurement

Constant perceptual quality coder design and visual signal transmission services rely
on perceptual distortion or quality measures, which are designed to assess levels of
quality discernible to human viewers, for RpDO to uphold an agreed or a designated
visual quality acceptable to the users at the minimum bitrate. Goodness of these
perceptual measures is appraised and validated using subjective test data as the
ground truth [7, 9, 10, 34, 43, 45, 49, 84, 85, 125]. Absolute category rating (ACR)
has been widely used in subjective picture quality evaluations [15, 33, 37] whose
data have been often assumed as the ground truth and used to evaluate or validate
perceptual distortion or quality metrics [9, 10, 34, 43, 45, 49, 84, 85, 125]. However,
it is not entirely clear whether this ground truth so acquired and claimed using
the existing ACR or similar schemes is sufficiently adequate, accurate, or suitable
for design of constant quality or quality regulated picture coders and performance
evaluations. For example, there is no guarantee that a score of “excellent” in a five-
level [33] (or eleven-level [37, 63]) scale for rating overall picture quality, when
the actual scores marked by viewers do not (and they rarely do [63]) achieve the
full mark, corresponds to the JNND level which can be used to guide perceptually
lossless picture coding. Nor a score out of 100 necessarily commits itself to a
discernible level of quality or distortion comparable to that perceived by the HVS,
which is able to uphold a constant visual quality in perceptual picture coding based
on the RpDO.

Furthermore, human perception and judgment in a psychophysical measurement
task performusually better in comparison tasks than casting an absolute rating [120].
To address the issue regarding unreliability and fluctuations associated with sub-
jective test data using absolute rating schemes due to contextual effects [16] and
varying experience and expectations of observers,9 a distortion detection strategy is
considered compared with the ACR to ascertain JND levels [118] or VDUs (visual
distortion units) [75] or distinguishable utility levels pertaining to a designated
application [76] in correspondence to constant picture coding approach and design

8Perceptual entropy defines the theoretical lower bound of perceptually lossless visual signal
coding in a similar way that entropy does the lower bound of information lossless coding [81].
9Prior knowledge plays an important part in subjective rating exercise using ACR which forms a
benchmark experience or a point of reference in what constitutes the “best” or “excellent” picture
quality as they have seen or experienced, and is also exemplified by the entropy masking effect
which is imposed solely by an observer’s unfamiliarity with the masker [110].
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philosophy. As shown in [75], the relative threshold elevation for a VDU varies from
one VDU to the next as a function of spatial frequency and orientation which does
not appear to be linear.

1.1.3 QoE in Perceptual-Based Visual Signal Coding

QoP and QoE assessments are not just for their own sakes and they are linked
closely to visual signal compression and transmission where R-D theory is applied
for product, system, and service quality optimization [5,55,68]. The nexus between
QoP/QoE and coder design is clearly borne out in the previous section. From
R-D optimization perspective [3, 39, 83], it is widely understood that use of raw
mathematical distortion measures, such as the MSE, does not guarantee visual
superiority since the HVS does not compute the MSE [100, 118]. In RpDO [38]
where perceptual distortion or utility measure matters, the setting of rate constraint,
Rc, in Fig. 1.2 is redundant from the perceptual distortion controlled coding point
of view. For bitrate controlled coder design, the perceptual bitrate constraint,
Rpc, makes more sense which delivers a picture quality comparable to JND1.
In comparison, Rc is neither sufficient to guarantee a distortion level at JNND

nor necessary to achieve, e.g., JND1 in Fig. 1.2. By the same token, for constant
visual quality design, a constant distortion setting at Dc is not effective in holding
a designated visual quality appreciable to the HVS since it cannot guarantee JND2

nor is it necessary to deliver JND3. As the entropy defines the lower bound of
the bitrate required for information lossless picture coding [14, 81], the perceptual
entropy [38] sets the minimum bitrate required for perceptually lossless picture
coding [62, 89, 116]. Similarly, in UoP (perceptual utility of picture) regulated
picture coding in terms of a utility measure [76], utility entropy can be defined as
the minimum bitrate to reconstruct a picture as required to achieve complete feature
recognition equivalent to the perceptually lossless picture including the original as
illustrated in Fig. 1.2.

1.2 Perception-Based Approaches to Picture
Quality Assessment

There exist different approaches to visual distortion and quality metric designs
based on different HVS or visual weighting models whose parameters are optimized
using subjective test data which are collected based on standard ACR schemes
[61,85] in terms of the Spearman rank-order correlation or Kandell rank correlation
for prediction monotonicity, the Pearson correlation and the average absolute
error or the root mean square error for prediction accuracy, and outlier ratio
for prediction consistency [45, 104, 125, 130]. Visual modeling or weighting is
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Fig. 1.2 Rate-distortion optimization considering a perceptual distortion measure (PDM) [118] or
a utility score [76] for QoE regulated services compared with the MSE. In [76], RT (recognition
threshold) is defined as a perceived utility score threshold with a value of zero (0) below which
an image deems to be useless and REC (recognition equivalence class) defines a class of images
whose perceived utility score with a value of 100 [i.e., REC (100)] is statistically equivalent to that
of a perceptually lossless image with respective to and including the reference. Black solid line
corresponds to R-D curve which can be optimized towards black dash line. Thick blue dash line
represents RpD curve where a PDM is applied, while thick red dash-dotted line corresponds to
RpD curve where utility rating is used as the measure

usually devised for distortion or quality measures at local level (via windowing
or transform/decomposition or feature extraction/segmentation) and/or for overall
measure at global level (via pooling) in either pixel, transform or feature domains.
Performance advantages and limitations of these metrics may be better appreciated
by looking into the very models on which they are constructed in terms of
their designated applications, prediction accuracy, and computational complexity.
Readers may refer to [29] for further discussions on application scenarios of quality
metrics or estimators, and [6,45,85] for image quality metrics, and [10,49] for video
quality metrics (VQMs) performance comparisons.

1.2.1 MSE/PSNR with Visual Weighting

Applying visual weighting to the time-honored distortion measure, MSE, was
explored in early days of digital picture coding for perception-based quantizer design
[46] to address the discrepancy between the raw pixel value differences and what
transpired on a video monitor and was perceived by human observers [9]. Contrast
masking was considered for contrast weighted computation of the MSE in the DCT
domain for alternative PSNR computations [21, 73]. More sophisticated visually
weighted distortion or quality measures have been reported recently, e.g., deploying
a spatiotemporal JND model in a PSPNR (peak signal-to-perceptual-noise ratio)
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formulation for video quality assessment [11, 122], and considering both contrast
threshold detection model and global-precedence-preserving contrast model in
construction of a VSNR (visual signal-to-perceptual-noise ratio) based on the
discrete wavelet decomposition for image quality evaluations [9]. A method of
information content weighting (ICW) was reported in [103], in comparison with
distortion, saliency, and contrast weighting techniques, where various perceptual
weighting methods were applied to the PSNR showing noticeable improvement
in quality prediction performance. The mathematical construct of the MSE is
straightforward and simple by today’s standard, and so is the PSNR. TheMSE based
R-D optimization is mathematically tractable which is extremely attractive to picture
coder designers and implementers [3]. MSE with visual weighting leads to solutions
in familiar distortion/quality assessment or R-DO framework [46]. Computation
complexity of visually weighted MSE or PSNR increases with increase in the
complexity of the vision model used to devise the visual weighting strategies
[9, 11, 46, 103, 122]. The VSNR reported in [9] using a wavelet based visual model
of masking and summation claims to have low computation complexity and low
memory requirements.

1.2.2 Visual Feature-Driven Quality Metrics

Feature extraction based approach to picture quality metric design formulates a
linear or nonlinear cost function of various distortion measures using features
extracted from given reference and processed pictures, considering aspects of
HVS (e.g., contrast sensitivity function or CSF for short, luminance adaption and
spatiotemporal masking effects), and optimizes coefficients of the cost function to
maximize the correlation of picture quality or distortion estimate with the MOS
(mean opinion score) from subjective test data.

PQS (objective picture quality scale) was first introduced in [56] and further
refined in [58]. The design philosophy of PQS is summarized in [57] which leads
to a metric construct consisting of generation of visually adjusted and/or weighted
distortion and distortion feature maps (i.e., images), computation and normalization
of distortion indicators (i.e., measures), decorrelated principal perceptual indicators
by the principal decomposition analysis (PDA), and pooling principal distortion
indicators with weights determined by multiple regression analysis to fit subjective
test data (e.g., MOS) to form the quality estimator (i.e., PQS in this case). The PQS
considers a number of visual features, including luminance coding error weighted
by contrast sensitivity and brightness sensitivity described by the Weber–Fechner’s
law [99], perceptible difference normalized as perWeber’s law, perceptible blocking
artifacts, perceptible correlated errors, and localized errors of high contrast/intensity
transitions by visual masking. Use of the PDA in the PQS was intended to
decorrelate any overlapping between the distortion indicators generated from the
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feature maps which are more or less extracted empirically, and omitted in many
later distortion metric implementations only to be compensated by the regression
(or optimization) process in terms of the least mean square error, linear correlation,
or some other measures [125].

An example which followed and adopted this approach was an early repre-
sentative video quality assessment metric, ŝ (s-hat),10 by ITS11 [111], leading
to the standardized VQM in the ANSI12 and the ITU-T13 objective perceptual
video quality measurement standards [34, 72]. Six impairment indicators/measures
and one picture quality improvement indicator/measure14 are formulated based on
spatial and temporal features of luminance and chrominance channels in a linear
combination to form the VQM general model with parameters/coefficients of the
model optimized using the iterative nested least squares algorithm to fit against a set
of subjective training data. The impairment measures of the VQM were designed to
measure perceptual impact of blurring, block distortion, jerky and unnatural motion,
luminance and chrominance channel noise, and error blocks due to transmission
error or packet loss. The quality improvement measure of the VQM was designed
to assess the visual improvement resulted from edge sharpening or enhancement.
The VQM general model was reported in [72] to have performed statistically better
than or at least equivalent to others recommended in [34] in either the 525-line or
625-line video test.

Various picture distortion or quality metrics designed using this approach rely
on extraction of spatial and/or temporal features, notably edge features [32, 58, 72],
which deem to be visually significant to perception of picture distortion/quality,
and a pooling strategy for formulation of an overall distortion/quality measure with
parameters optimized by a regression process to fit subjective test data. Computation
complexity of visual feature based perceptual measures varies from low to medium
high depending on the number of features required and algorithms used for the
feature extraction.

10ŝ consists of three distortion measures, including blur-ringing and false edges, localized jerky
motion due to frame repetition, and temporal distortion due to periodic noise, uncorrected
block errors due to transmission errors or packet loss and maximum jerky motion of the time
history [111].
11Institute for Telecommunication Sciences, National Telecommunications & Information Admin-
istration (NTIA), USA.
12American National Standards Institute.
13International Telecommunication Union, Telecommunication Standardization Sector.
14In [34, 72], these seven indicators/measures or sub-metrics were referred to as parameters.
Weighting constants for the seven measures are referred to parameters or coefficients here which
are determined or optimized for the outputs of VQM to fit the subjective test data.
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1.2.3 Natural Scene Statistics Based Perceptual Metrics

Natural scene statistics (NSS) model-based approach to picture quality measurement
assumes that the HVS and natural scene modelings are dual problems and, therefore,
visual quality or distortion can be captured by NSS [4, 69]. Representatives in
this category include the structure similarity index (SSIM) [101] and its variants
[79, 103], visual information fidelity measure (VIF) [84], and texture similarity
measure [67, 130]. The SSIM and the VIF have been frequently referenced and
used in QoP performance benchmarking in recent years, and thanks to its low
computation complexity, the SSIM has been applied to perceptual picture coding
design using RpD optimization [118]. A number of weighting techniques have
been reported for pooling of local distortion or quality measures to form an overall
distortion or quality metric, including saliency, distortion, contrast and ICW. It is
noted that an ICW technique may lead to better estimation outcomes for existing
distortion and quality measures, including the MSE and the PSNR, as reported
in [103].

1.2.3.1 Structure Similarity

Formulation of the SSIM is based on the assumption that structure information
perception plays an important role in perceived QoP by the HVS and structural
distortions due to additive noise, low-pass filtering induced blurring and other
coding artifacts affect perceived picture quality more than non-structural distortions
such as a change in brightness and contrast, or spatial shift or rotation and Gamma
correction or change [100]. The SSIM replaces pixel-wise distortion or quality
measurements by patch-wise metrics using region statistics [79, 101]. The SSIM
adopted a two-step approach allowing human perception based formulations of
localized quality or distortion measurements [101] and visual or ICW in pooling
of the measurements [103]. To address the issues with non-stationary nature of
spatial (and temporal) picture and distortion signals as well as visual attention
of the HVS, the SSIM is applied locally, e.g., to a defined window, leading to
windowed SSIM. The localized SSIM quality metric is formulated as a product
of luminance, contrast, and structure similarity measures, which use, respectively,
the means of the reference and the processed images for the luminance similarity
measure (or comparison function) accommodating the luminance masking effects,
the standard deviations for contrast similarity measure considering the contrast
masking effects, and the cross correlation of the mean removed and normalized
images from the original and the processed image for structure similarity measure
(equivalent to and represented by the cross correlation of the original and the
processed image). The local SSIM is computed pixel-by-pixel over the entire image
with a moving window, which generates an SSIM map. To avoid the blocking
artifacts caused by an initial 8 � 8 window, an 11 � 11 window with weights defined
by circular-symmetric Gaussian function (of standard deviation being 1.5 samples)
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normalized to unity sum was used for computations of the mean, the standard
deviation and the cross correlation in [101]. The overall SSIM is then computed
as the average of relevant local SSIMs.

The SSIM first developed for monochrome images has been extended to multi-
scale representation of images, color images with channel weights being 0.8 for Y,
0.1 for CB and 0.1 for CR, respectively, [28, 102] and video [102, 104]. To address
a major issue of the SSIM which is its high sensitivity to picture translation,
rotation and scaling, the complex wavelet SSIM (CW-SSIM) was devised whose
picture similarity estimation performance was shown to be more robust to small
rotations and translations [79]. To further improve SSIM’s overall picture estimation
performance, various visual weighting schemes have been investigated, including
distortion, saliency, and contrast weighting, in pooling of localized SSIMs. ICW for
pooling of multi-scale SSIM (MS-SSIM) was reported to demonstrate consistent
picture quality estimation performance in terms of key prediction performance
indicators [103].

1.2.3.2 Visual Information Fidelity

Using source (natural scene picture statistics) model, distortion model and HVS
“visual distortion”15 model, VIF formulation takes an information theoretic
approach to QoP assessment where the picture quality measure is defined as the
ratio between the mutual information representing the perceivable information of the
processed picture and that representing the perceivable information of the reference.
As shown in Fig. 1.3, a Gaussian scale mixture (GSM) model, C , in the wavelet
decomposition domain16 is used to represent the reference picture. A random field
(RF), D , models the attenuation such as blur and contrast changes, and additive
noise of the channel and/or coding which represent equal perceptual-annoyance
by the distortion instead of modeling specific image artifacts. All HVS effects are
considered as uncertainty and treated as visual distortion which is modeled as a
stationary, zero-mean, additive white Gaussian noise model, N , corresponding to
the reference (orNd for the processed), in the wavelet domain.

To describe detailed mathematical formulation of the VIF in correspondence to
Fig. 1.3 for monochrome images, mathematical representations of a monochrome
image and its transform are prescribed as follows. A monochrome image, xŒn�,
with a height of N1 pixels and a width of N2 pixels where n D Œn1; n2�

for 0 � n1 � N1 � 1 and 0 � n2 � N2 � 1, has a transform or
decomposition, XŒb; k�, where k D Œk1; k2� defines the position row and
column indices of a coefficient in a block of a frequency band b in the

15In [84], it is referred to as “HVS distortion visual noise.”
16The GSM model in wavelet domain is an RF expressed as a product of two independent RFs and
is used to approximate key statistical features of natural pictures [98].
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Fig. 1.3 An information theoretic framework used by VIF measurement (after [84])

decomposition domain. For example, the subband b D Œs; �� for a three level
DWT decomposition, where s D 3 and � 2 ‚ D f�0jLL band; �1jLH band;

�2jHL band; �3jHH bandg.
For a selected subband b where b D Œs; �� with level s and orientation � , in the

wavelet transform domain, the VIF measure is defined as [84]

VIF D
P

b2BVIF
H.CN Œb�I FN Œb�; �N Œb�/

P
b2BVIF

H.CN Œb�I EN Œb�; �N Œb�/
(1.1)

where the mutual information between the reference image and the perceived
reference image in the same subband b is defined as H.CN Œb�I EN Œb�; �N Œb�/ with
�N Œb� being a realization of N elements in X for a given reference image, and
that between the processed image and the perceived processed image by the HVS
is H.CN Œb�I FN Œb�; �N Œb�/, and CN Œb� D ŒC1; C2; : : : ; CN � 2 C , C D fCkjk 2
K g D X ˇ U D f�kUkjk 2 K g is the GSM, a random field (RF), as the
NSS model in the wavelet domain, approximating the reference image, Ck and Uk

are M -dimensional vectors consisting of non-overlapping blocks of M coefficients
in a given subband, U D fUkjk 2 K and Uk1 is independent of Uk2 ; 8k1 ¤
k2; and k1; k2 2 K g a Gaussian vector RF with zero-mean and covariance
CU , �N Œb� D Œ�1; �2; : : : ; �N � 2 X , X D f�kjk 2 K g an RF of positive
scalars, symbol “ˇ” defines element-by-element product of two RFs [84], and
K is the set of location indices in the wavelet decomposition domain, DN Œb� D
ŒD1; D2; : : : ; DN � 2 D ,D D fDkjk 2 K g D G ˇC CV D fgk �Ck CVk jk 2 K g,
the RF representing the distorted image in the same subband, G D fgkjk 2 K g
a deterministic scalar field which is slow varying, V D fVkjk 2 K g a stationary
additive zero-mean Gaussian noise RF with variance CV D �2

V I which is white and
independent of X with identity matrix, I, and U , EN Œb� D ŒE1; E2; : : : ; EN � 2 E ,
FN Œb� D ŒF1; F2; : : : ; FN � 2 F , E D fEkjk 2 K g D C C N and F D
fFkjk 2 K g D D C Nd modeling HVS visual distortions to the reference C
and channel/coding distortion D , respectively, with RFs N and Nd being zero-
mean uncorrelated multivariate Gaussian of M -dimensions with their covariance
CN D CNd

D �2
N I and �2

N variance of the visual noise, and BVIF the select
subband critical to VIF computation.
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If M � N elements of CN Œb� contain all DWT coefficients of subband b for all
the subbands (i.e., 8b), the VIF calculated by (1.1) predicts the information fidelity
of the entire image perceivable by the HVS. If, however, CN Œb� only contains DWT
coefficients of a spatially localized region of subband b, a VIF map can be generated
using a sliding window to show picture quality variations of the image as measured
by the VIF.

When there is no distortion, VIF equals unity. When VIF is greater than unity,
the processed picture is perceptually superior to the reference picture as may be the
case in a visually enhanced picture.

Computation complexity of the VIF is much higher than other NSS based
metrics, e.g., SSIM and MS-SSIM, due to the wavelet decomposition and the dis-
tortion model parameterization process [84]. Detailed parameterization algorithms
for the source, the distortion and the HVS models can be found in [84, 87].

1.2.3.3 Texture Similarity

Structure texture similarity metric (STSIM) measures perceived texture similarity
between a reference picture and a processed counterpart to address an issue with the
SSIM which tends to give low similarity values to textures which are perceptually
similar [130]. The framework used by the STSIM consists of subband decom-
position, e.g., using steerable filterbanks [86], computation of a set of statistics
including the mean, the variance, horizontal and vertical autocorrelations and cross-
band correlation, statistic comparisons and pooling scores across statistics, subbands
and window positions. More detailed discussions and reviews of various texture
similarity metrics can be found in [67, 130].

A major issue with using STSIM and the like in perceptual video coding
is that regions covering the same spatial location in consecutive frames rated
by the STSIM as having the same structural texture or quality may result in
frame differences in the very regions greater than the JND leading to perceptible
temporal fluctuation artifacts or flickering [126] and may or may not achieve RpD
optimization performance gain in video coding applications [60].

1.2.4 HVS Model-Based Perceptual Distortion Metrics

HVS model-based approach to picture distortion or quality estimation employs
human visual perception model in metric design, which characterizes low-level
vision in terms of spatiotemporal response, color vision, and foveation [118].
Three types of HVS models have emerged, including JND models, multichannel
contrast gain control (CGC) models and suprathreshold models, which have been
successfully applied to picture quality assessment and perceptual picture coding
design using RpD optimization. The multichannel structure of the HVS decomposes
visual signal into several spatial, temporal, and orientation bands where masking
parameters will be determined based on human visual experiments [34, 125].



1 Introduction: State of the Play and Challenges of Visual Quality Assessment 15

1.2.4.1 JND Models

The HVS cannot perceive all changes in an image or a video sequence, nor does it
respond to varying changes in a uniform manner [80, 99]. In picture coding, JND
threshold detection based HVS models are extensively reported [10, 41, 44, 47–49,
108] and used in QoP assessment, perceptual quantization for picture coding and
perceptual distortion measures (PDMs) in RpD performance optimization for visual
signal processing and transmission services [118].

JND models reported currently in the literature consider (1) spatial/temporal
CSF which describes the sensitivity of the HVS to each frequency component, as
determined by psychophysical experiments; (2) background luminance adaptation
(LA) which refers to how the contrast sensitivity of the HVS changes as a function
of the background luminance; and (3) contrast masking (CM) which refers to the
masking effect of the HVS in the presence of two or more simultaneous frequency
components where all orientations for a given scale and adjacent scales for a
given orientation are usually considered in addition to components in the same
subband [19, 22, 52, 92, 93, 109, 113, 125, 130]. The JND model can be represented
in either spatiotemporal domain, or transform/decomposition domain, or both.
Examples of JND models are found with CSF, CM and LA modeling in the DCT
domain [1, 70, 77, 112], and CSF and CM modeling using sub-band decomposition
[12,30,50,78]; or in the pixel domain [43,122], where the key issue is to differentiate
edge from textured regions [51, 121].

The local luminance JND model in sub-band decomposition domain is generally
formulated by the base visibility threshold at the given location in the given
sub-band of the given frame determined by spatiotemporal CSF modulated by
different elevation factors due to intra-band masking, inter-band masking, temporal
masking, and luminance adaptation [49,118]. Global response of the HVS has been
accommodated by modulating the local JND model using a VA (visual attention) or
foveation model centered at the point of VA [118].

Two approaches have been reported to modeling of just noticeable color dif-
ference (JNCD), i.e., to model each color component channel independently in a
similar way by which the luminance JND model is formulated, and, alternatively,
to model JNCD by a base visibility threshold of distortion for all colors, JNCD00

at a given spatiotemporal pixel location which is modulated by masking effect
of non-uniform neighborhood (measured by the variance) and a scale function,
modeling the masking effect induced primarily by local changes of luminance
(measured by the gradient of the luminance component) [118]. It is noted that
the base color difference visibility threshold is determined using the point-by-point
color difference, �E00, as measured by a perceptually more uniform color metric
calculated in polar coordinates of the CIELAB space with luminance, chroma, and
hue components [13, 54]:

�E00 D
s

.
�L0

˛L � SL

/2 C .
�C 0

ab

˛C � SC

/2 C .
�H 0

ab

˛H � SH

/2 C RT .
�C 0

ab

˛C � SC

/ � .
�H 0

ab

˛H � SH

/

(1.2)
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where �L0, �C 0
ab , and �H 0

ab are the luminance, chroma, and hue components
of the color difference, respectively, ˛L, ˛C , and ˛H are parameters, SL, SC , and
SH are weighting functions, and RT is a parameter to adjust the orientation of the
discrimination ellipsoids in the blue region. Subscript “00” indicates the point-by-
point color difference formula defined in CIEDE00 in 2000 [54].

Perceptually lossless visual signal coding requires a PDM which controls the
distortion at no greater than JNND level or below JND level [89].

1.2.4.2 Multi-Channel Vision Model

Contrast gain control or CGC [22, 109] has been successfully used in various
implementations for JND detection [19, 52, 92], QoP assessment [93, 113, 125]
and perceptual picture coding in either standard alone [68] or embedded forms
[88,90,116,119]. The general CGC model consists of color space transform, visual
decomposition, spatiotemporal contrast sensitivity modeling, luminance adaptation,
contrast and texture masking, visible difference detection, and pooling of perceptual
differences over all channels (frequency and orientation bands). Usually, visually
uniform color space, e.g., CIELab or opponent color space [99, 127], is preferred
as result of the color space transformation. Various transforms have been used for
visual decomposition including over-complete transforms such as steerable pyramid
transform [86, 92] and the cortex transform [105], and complete transforms such as
the DCT [107] and the DWT [90]. The over-complete transforms are shift-invariant
and free from aliasing which is an inherent problem for complete transforms [86,88].
It is noted that the DWT as commonly adopted for visual signal decomposition [2]
is not able to represent directional features in diagonal and anti-diagonal directions
separately, which exacerbates visual impact of pattern aliasing effects as shown
in Fig. 1.4. Spatiotemporal contrast sensitivity is represented by contrast weights
which are reciprocally proportional to the base visibility threshold determined by
the CSF [88]. Excitatory and inhibitory nonlinearities are formulated by power-
law, which are then used as the inputs to a divisive gain control [92, 109]. The
divisive gain control implements the visual masking effects by normalizing the
excitatory channel by weighted sum of responses of adjacent frequencies and
orientations [88, 92].

Based on the original Sarnoff’s visual discrimination model-JNDmetrixTM

[96, 97], PQR (picture quality rating) is devised and extensively documented in ITU-
T J.144 recommendation and frequently used as a benchmark [34]. This model is
also used in a standalone implementation for RpD optimization for MPEG-2 video
encoding [68].

Another example of the multichannel CGC model in visual decomposition
domain is briefly described in [88] for embedding a PDM in RpD optimization
of a standard compliant coder, which consists of a frequency transform (with a 9/7
filter), CSF weighting, intra-band and inter-orientation contrast masking including
texture masking, detection, and pooling.
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Fig. 1.4 An example of pattern aliasing in images coded by a DWT based coder at three different
bitrates. The original Barbara image is shown on the top. Images on the bottom row from left to
right are the cropped section from the original Barbara image, the same section from coded images
by the DWT coder at reduced bitrates. Pattern aliasing distortions are highlighted by red elongated
circles (Courtesy of Dr. D.M. Tan)

1.2.4.3 Suprathreshold Vision Models

To be cost-effective, various visual signal processing and compression applications
operate in the so-called suprathreshold domain, where processing distortions or
compression artifacts are visible to human observers [99, 118]. It has been ques-
tioned whether extension of threshold vision models discussed in previous sections
by linear scaling or weighting for quality assessment of processed or coded visual
signals with suprathreshold distortions is theoretically plausible and practically
effective [75].

A suprathreshold wavelet coefficient quantization experiment has reported that
the first three visible differences (relative to the original image) are well predicted
by an exponential function of sub-band standard deviation, and regression lines
corresponding to JND2 and JND3 are parallel to that of JND1 [75]. Therefore, it
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was suggested that if a perceptual quantization strategy was formulated for coding
an image at JND1, it could be scaled to encode the image at JND2 and JND3, etc.
The quantization design strategy based on this suprathreshold model was reported
to contradict those which used visual weighting or scaling of threshold models for
perceptually lossy visual signal compression achieving improved picture quality as
perceivable to the HVS.

A composite model approach has been reported which integrates the threshold
detection model and the suprathreshold model in perception based visual signal
coding [8] and quality or distortion measurement design [9]. A more recent
example of this approach is the MAD (most apparent distortion) which measures
suprathreshold distortion using a detection model and appearancemodel in the form
of [45]

MAD D .Ddetection/˛.Dappearance/
˛�1 (1.3)

where Ddetection is the perceived distortion due to visual detection which is formu-
lated in a similar way to JND models and Dappearance a visual appearance based
distortion measure dependent on changes in log-Gabor statistics such as the standard
deviation, skewness and kurtosis of sub-band coefficients, and is weight adapted to
severity of the distortion as measured by Ddetection as follows:

˛ D 1

1 C ˇ1.Ddetection/ˇ2
; (1.4)

where ˇ1 D 0:467 and ˇ2 D 0:130.

1.2.5 Light-Weight Bit-Stream-Based Models [123, 124]

In real-time visual communications, broadcasting and entertainment services, QoE
assessment and monitoring tasks face various constraints such as availability of
full or partial information on reference pictures, computation power, and real-time
or on-line assessment. While no-reference picture quality metrics provide feasible
solutions [29, 124], it prompted investigations into light-weight QoE methods and
associated standardization activities. There are at least three identifiable models,
including parametric model, packet layer model, and bit-stream layer model. With
very limited information acquired or extracted from the transmission payload,
stringent transmission delay constraint, and limited computation resources, these
models share a common technique, i.e., optimization of perceptual quality or
distortion predictors via, e.g., regression or algorithms of similar trade using ground
truth subjective test data (e.g., the MOS or the DMOS) and optimization criteria
such as Pearson linear correlation, Spearman rank-order correlation, outlier ratio,
and the RMSE (root mean square error) [29, 125].
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Relying on KPI (key performance indicators) collected by network equipment
via statistical analysis, a crude prediction of perceived picture quality or distortion
is made by a parametric model using bitrate (R) and packet loss rate (PLR) along
with side information, e.g., codec type and video resolution, to assist with adaptation
of model parameters to differently coded visual signals. Since the bitrate does not
correlate well with the MOS data for pictures of varying contents and packet losses
which occur at different locations in a bit-stream may have significantly different
impacts on perceived picture quality [118], the quality estimation accuracy based
on this model is limited while computation required is usually trivial.

With more information available via packet header analysis to the packet layer
model, distortions at picture frame level can be better estimated with information on
coding parameters such as frame type and bitrate per frame, frame rate and position
of lost packets as well as the PLR. Temporal complexity of the video contents is
estimated using ratios between bitrates of different types of frames. The packet layer
model incorporates temporal pooling for better quality or distortion prediction with
moderate computational costs [123].

By accessing the media payload as well as packet layer information, the bit-
stream layer model allows picture quality estimation either with or without pixel
information [123,124]. It usually incurs the highest computational cost amongst the
light-weight picture quality or distortion models.

1.2.6 Perceptual Quality and Distortion Assessment
of Audiovisual Signals

Investigations on QoE assessment, which integrates audio and visual components
beyond the preliminary based on human perception and integrated human
audiovisual system modeling, have been very limited [17, 71, 115].

1.2.7 Perceptual Quality/Distortion Assessment
of 3-D/Multiview Visual Signals

Technological advances in visual communications, broadcasting and entertainment
continue to captivate the general public, offering a new height of viewing quality and
experience with three-dimensional (3-D) full HD digital video [42, 65, 94]. Many
theoretical and practical challenges remain in 3-D video acquisition, display, coding
and compression, and quality assessment and metrics [74, 114]. While various
visual distortions associated with 3-D visual signal coding have been identified and
investigated [20], perceptual quality/distortion measures based on the HVS have yet
been further developed as well as subjective quality assessment methods [114].
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1.3 PDMs for RpDO in Visual Quality Regulated Services

A fundamental principle for quality-driven picture coding design is RpD optimiza-
tion, where PDM plays a key role in aligning steps/units of distortions, hopefully,
consistently with discernible levels by human visual perception in terms of, e.g.,
JNND, JND1, JND2, and so on [116,118]. Using RpDO based approach to constant
quality picture coding design, the designated visual quality level is achieved by con-
trolling perceptual distortions estimated by the PDM at a corresponding (constant)
level as perceived and desired by the HVS while minimizing the required coding
bitrate. It then begs the question whether the existing PDMs can consistently predict
discernible levels by the HVS, while they have been reported to grade distortions
reasonably successfully in correspondence with HVS perception [10, 34, 49, 85].

A preliminary experimental investigation has been conducted to ascertain if
various perceptual image metrics under evaluation are able to consistently grade
different images at various JND levels. Images were generated using an open source
JPEG 2000 coder [66] at various (increasingly higher) compression ratios for a total
of eighty-one (81) variations for each of forty-one (41) well-known test images.
This provides a range of test pictures that capture the transition points between JND
levels. An image at JNDn is determined relative to the image at JND.n�1/, except
for JND1 which was relative to the reference such that JND2 is relative to JND1 and
JND3 to JND2, etc. Perceptual distortion or quality measures were computed for sets
of images at JND1, JND2, JND3, JND4, and JND5, respectively.

Small data samples with normal distribution was assumed as in the present case
(41 test images per a JND level) and, therefore, the 95% confidence interval (CI)
was used to identify the upper and lower bounds relative to the mean and standard
deviation of the data in which 95% of the responses resided [40]. If the variation is
such that most of the responses from a metric (i.e., >50%) do sit outside the 95%
CI range, then one may be inclined to conclude that the behavior of that metric is
inconsistent, i.e., the metric is ineffective.

In Table 1.1, preliminary data were collected for a well-known early perceptual
distortion metric based on the DCT decomposition, using DCTune 2.0 in error
calculation mode [107]. Images in JNND test set were encoded using a perceptually
lossless coder [89]. Two observations deserve immediate attention. First, for images
at the same JND level, the metric produced a range of values. Second, acceptance
rates were lower than 50%, indicating that the metric is ineffective as a measure
to predict discernible visual quality levels in terms of JNDs. Similar results
were obtained for a number of other perceptual distortion or quality measures
including the SSIM [101], the VIF [84], the PSNR-HVS [21], the PSNR-HVS-M
[73], the VSNR [9], the MAD [45], and the FSIM (feature similarity index) [128].

It is noted that when non-overlapping boundarieswere applied to JNND and JND
levels, the aforementioned metrics tested were able to achieve an acceptance rates
greater than 50% for JNND, while falling below 50% for the rest of JND levels. In
other words, reliable prediction of JNDn levels is still a challenge when n � 1.
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Fig. 1.5 Sample images representing the first three JND levels as well as a perceptually lossless
coding result. (a) original Paintedhouse image; (b) perceptually lossless coded Paintedhouse
image [104]; (c) processed Paintedhouse with JND1; (d) processed Paintedhouse with JND2;
(e) processed Paintedhouse with JND3; (f) the difference between (a) and (b) with an offset of 128;
(g) the difference between (a) and (c) with an offset of 128; (h) the difference between (a) and (d)
with an offset of 128; (i) the difference between (a) and (e) with an offset of 128; (j) the difference
between (a) and (c) with an offset of 128 and contrast enhancement which assist in visualization
using PDF format or photo quality printing

Figure 1.5 shows a representative test image, Paintedhouse, with its coded
versions at JNND, JND1, JND2 and JND3 levels, respectively. The difference images
with an offset of 128 between the reference and coded images at the first three JND
levels are also shown in Fig. 1.5 to appreciate where noticeable distortions between
each distortion levels are observed on a reference monitor (e.g., a Sony BVM-L231
23-inch trimaster LCD reference monitor was used in this case).

1.4 Summary and Remarks

The on-going research and development efforts on quality and distortion assessment
of visual signal coding and transmission are viewed from visual information
entropy and rate-distortion theoretic perspective to appreciate the inevitability
of the current transition from technology driven services governed by QoS to
user-centric (perceived) quality assured services measured and regulated by QoP
and QoE in visual communications, broadcasting, entertainment, and consumer
electronics applications and services. Availability of ever increasing transmission
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bandwidth and audiovisual systems of ever increasing spatiotemporal resolutions
and dimensions have relaxed the bitrate constraint while raised users’ expectations
of service quality and experience at a justifiable cost.

Making every bit count – A. Pica, 1999

or making every bit accountable is founded on the perceptual entropy and RpD
theories and spells out a philosophy for sustainable future development of visual
communications, broadcasting, entertainment and consumer electronics industries,
applications and services.

Visual signal quality and distortion assessment methods are reviewed based on
ways in which they incorporate the HVS’ characteristics and/or factors into their
quality or distortion metric designs and their theoretical or practical grounding.
Two obvious areas of research in perceptual quality/distortion assessment and mea-
surement for audiovisual signal coding and transmission/storage are highlighted,
including QoE measures based human audiovisual perception and integrated human
audiovisual system modeling, and QoE measures for 3-D and multiview visual
signals.

As obvious to some of readers and contentious to others as it may sound,
quality driven visual communication applications and services require perceptual
quality/distortion measures to estimate or predict consistently quality/distortion
levels discernible by human viewers for a wide range of picture contents. Using
a small sample pool of 41 well-known test images, a number of existing perceptual
image quality/distortionmeasures (some of which are more well-known than others)
were taken to the task of predicting quality/distortion of images coded at the first
five JND levels as well as by a perceptually lossless coder, where 95% confidence
interval was used to analyze statistical reliability and acceptance rate of the measures
as an image quality predictor for constant quality (or quality driven) image coder
designs. The initial findings seem to vindicate that a change of the mindset in quality
performance evaluation including subjective and objective assessments may not be
entirely unreasonable or unfounded.

Acknowledgements H.R. Wu thanks Dr D.M. Tan of HD2 Technologies for his inputs and
valuable discussions during compilation of Chapter 1 and all his past and present colleagues who
have contributed to the subject matters covered by Chapter 1.
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Chapter 2
How Passive Image Viewers Became Active
Multimedia Users

New Trends and Recent Advances in Subjective
Assessment of Quality of Experience

Judith A. Redi, Yi Zhu, Huib de Ridder, and Ingrid Heynderickx

2.1 Introduction

Billions of digital images and videos are produced, broadcasted, shared, and enjoyed
by users every day. Especially with the advent of Internet-based image and video
delivery, the amount of multimedia content consumed every day has dramatically
increased [24], and will continue to grow in the foreseeable future. This enormous
amount of information needs to be handled (i.e., captured, stored, transmitted,
retrieved, and delivered) in a way that meets the end-users’ expectations. However,
technology still shows limitations, such as limited spatial, temporal, and bit rate
resolution in displays, bandwidth and storage constraints introducing compression
related artifacts, or error-prone transmission channels resulting in network related
artifacts. As a result, multimedia material is often delivered affected by impairments
which disrupt the overall appearance of the visual content. Impairments provoke a
sense of dissatisfaction in the user [54, 129, 175], which, in turn, may decrease the
willingness to pay for/use the multimedia application, service, or device [161].
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That’s why, in the last three decades, a lot of effort has been devoted to the
development of technologies that can either prevent the appearance of impairments,
or repair for it when needed. Following initial attempts based on the quantification
of signal errors [53], it became soon clear that a better understanding of how
humans experience images and videos was necessary to properly optimize media
delivery. As a result, multimedia delivery optimization was researched from its
early days through collaboration between engineers and vision scientists. In fact,
this community can be considered a pioneer in user-centered multimedia design
and engineering (for an accurate historical overview, see [21]). Within this effort,
dedicated psychometric techniques were developed [3, 40, 81] and standardized
[73, 82, 137, 138] to support a reliable quantification of visual quality (i.e., the
perceived overall degree of excellence of the image, [40]) from a subjective
point of view. With these techniques a large body of psychophysical data was
collected to unveil the perceptual functions of the human visual system (HVS)
that regulate the sensitivity to impairments. The outcome of these experiments
served as inspiration for designing objective visual quality assessment metrics
[61,105], whose output would steer then impairment concealment (i.e., image/video
restoration) and technology tuning.

It is interesting to point out that the common, underlying assumption for those
studies is that having an understanding (possibly a model) of the perceptual
processes that regulate impairment sensitivity suffices to predict the impairments’
annoyance. In practice, being able to measure impairment sensitivity is considered
to be substantially equivalent to predicting the overall quality of the viewing
experience. This impairment-centric definition of visual quality (also referred to as
perceptual quality in the following) has yielded remarkable results [61, 105]. Still,
large room for improvement exists [114,144]. Furthermore, new imaging and media
technologies are challenging this impairment-centric notion of visual quality. Visual
media are nowadays consumed in more and more immersive contexts (e.g., 3DTV,
virtual and augmented reality) or in social, interactive, and customizable contexts
(e.g., social media, video on demand, mobile). The judge of the visual experience
cannot be regarded as a mere passive observer anymore, but rather as an active
user interacting with the systems on the basis of specific expectations from them.
In such a scenario, impairment sensitivity cannot be expected to be the sole factor
contributing to the final user satisfaction on viewing experience.

In fact, several models have been proposed during the last decade that attempted
at expanding the concept of visual quality to a more encompassing idea of quality
of the (viewing) experience (QoE) [51, 81, 99, 128, 133, 144, 149]. In general, QoE
is defined as a multidimensional quantity, depending on a number of attributes
or features (i.e., quantifiable properties of the viewing experience, such as block-
iness, aesthetic appeal, subject uniqueness), which are not necessarily mutually
independent. Of these features, only a subset addresses traditional impairment
sensitivity issues; others take into account rather cognitive and affective aspects of
the experience. Attributes of the experience can be in turn influenced by external
factors (i.e., factors independent of the media visualization) such as context of
usage, user background, personality or task. Indeed, it has been recently shown
that elements such as context of fruition [79] or user affective state [180] have
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an impact on visual quality appreciation, actually compensating in some cases for
visual impairments. For example, football fans were shown to be highly tolerant to
low frame-rates, as long as they were watching a football video [126].

Unfortunately, despite a working framework for QoE seems to be established,
neither agreement has been reached on a precise taxonomy of attributes and external
factors, nor much knowledge has been developed on how these quantities are inter-
related. As a result, more subjective studies are needed to unveil interdependencies
of QoE attributes and external factors, towards defining a precise model of how
these elements concur to the final QoE judgment. In addition, integration with
qualitative and quantitative user study techniques developed for other fields (e.g.,
human computer interaction) and including existing results from image psychology
[47] are needed to fully characterize visual experiences.

In the following, we review the steps that led, throughout the last few decades,
to the evolution of the concept of visual quality (typically, impairment-centric)
into that of quality of experience (QoE). We first summarize the research done
to quantify visual quality and impairment acceptability in the fields of display,
signal processing, and network optimization (Sect. 2.2). We then review in Sect. 2.3
the models that over the years have attempted at extending the impairment-centric
conception of visual quality, finally converging into an operative definition of QoE,
which takes into account also the influence of external factors on the final user
satisfaction. The existing knowledge on these factors and their impact on QoE is
summarized in Sect. 2.4. Finally, Sect. 2.5 outlines new trends in subjective assess-
ment of QoE, discussing in more detail QoE of immersive imaging technologies
(such as stereoscopic displays), unveiling the role of affective processes in QoE
judgments, and pointing out a methodological shift from lab-based to real-world-
and crowd-based subjective experiments.

2.2 Subjective Assessment of Visual Quality

Within the past decades, visual impairments produced by technological limitations
(e.g., lossy compression, sub-optimal pixel size, unreliable network transmissions)
have been for long considered the principal cause of user dissatisfaction with
multimedia systems; as a result, subjective assessment studies have mainly focused
on quantifying the annoyance of such impairments as a function of technology
variables.

A framework that supported this research was Engeldrum’s image quality circle
(IQC), depicted in Fig. 2.1 [40]. Such framework aimed at providing an effective
methodology for linking experienced visual quality to the setting of technological
variables of a multimedia system. In the case of displays, technological variables
of interest were, for example, pixel size, color filter thickness, driving voltages,
etc; when dealing with processing algorithms (e.g., compression or sharpness
enhancement), such variables could be identified as the relevant parameters in these
algorithms; in the field of network optimization for video streaming, bandwidth



34 J.A. Redi et al.

Fig. 2.1 Engeldrum’s image quality circle

allocation was a main technological constraint. By varying the setting of techno-
logical variables, the eventual quality of the media delivery is affected. As a result,
a holy grail for the multimedia community was (and still is) to infer relationships
that, given a change in technological variables, accurately predict the experienced
quality of the delivered media. In introducing the IQC, Engeldrum [40] argued
that this problem was ill-posed: it aimed at linking a multi-dimensional description
of a system (through its technological variables) to a one-dimensional overall
quality preference. This relationship is not unique to begin with, and unveiling
it requires an almost endless trial-and-error approach (i.e., a subjective test for
every single change in a technological variable, which is costly and ineffective).
Thus, rather than directly modeling the relationship between the technological
variables and overall quality preferences, the IQC proposes a divide-and-conquer
approach, involving three intermediate steps: (1) linking overall image quality to
the (often unconsciously weighted) combination of underlying perceived attributes
of the image, (2) linking each image attribute to the physical characteristics of the
system output, and (3) linking the physical description of the system output to the
system technological variables. By defining these three intermediate relationships,
simulation and more accurate prediction of the effect that variations in technological
variables have on the eventual perceived visual quality are allowed, limiting the need
for subjective testing during system development.

Initially designed for display optimization, it is possible to adapt the IQC frame-
work to the type of multimedia system under consideration (Fig. 2.2). Although
rarely applied in practice, the IQC building blocks can be easily translated from
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Fig. 2.2 Engeldrum’s image quality circle adapted to different problem domains: display
quality assessment (a), signal processing algorithm optimization (b) and network parameter
optimization (c)

a display context to a signal or network context. Indeed, also technological signal
variables can be related to physical characteristics of the light output of the
multimedia system, resulting in partly different (e.g., compression artifacts such
as blockiness and ringing) and partly similar (e.g., blur and noise) perceptual
attributes, yielding an overall quality preference. Similarly, in a network context,
physicalmedia characteristics can be identified from technological quality of service
(QoS) parameters (e.g., packet-loss ratio or number of stalling events), which
result in attributes (such as jerkiness or perceived waiting time for the video
to load/progress) that are weighted towards an overall quality preference. In the
following, we review the efforts done within the display, signal processing, and
networking communities to unveil relationships between technological variables,
physical output characteristics, related features or attributes and the eventual user
preference in terms of visual quality.

2.2.1 Visual Quality Preference in Displays

The impact of display related artifacts on the experience of viewers has commonly
been associated with the concept of image quality, being a well-recognized concept
to consumers [40], who considered it the key driver in selecting one device over
the competitor’s. The RaPID method first [9] and the IQC later constituted a solid
framework to improve display quality.When applied to displays, a few issues needed
to be addressed to make the IQC framework useful in practice: first of all, relevant
image quality attributes, i.e., specific perceptual characteristics of the image, needed
to be defined; then, a strategy to combine these attributes in a single overall quality
measure needed to be determined.

With respect to the first issue, the RaPID method, more than the IQC model,
contributed to determining unambiguous descriptions for the image perceptual
attributes. These descriptions arose from a two-step procedure. First, expert (trained)
viewers would discuss in team sessions which attributes characterized the image
quality for a given set of images, the meaning (appearance) of these attributes and a
meaningful way to quantify them. Naive viewers (a sample of standard customers)
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were then requested to score the image quality of the same set of stimuli. The relation
with image quality was then established by means of a multivariate analysis and
regression of the expert-defined attributes onto the overall quality scores. Applied to
spatial resolution scaling on LCD monitors, for example, this method revealed that
within this context image quality was a weighted sum of perceived blur, perceived
pixellation (i.e., the fact that blocks of pixels were visible on diagonal lines),
aliasing (geometrical deformations of spatially high frequency patterns), artifacts
in letters (i.e., missing parts in letters/text), and increased ringing visibility [171].
An alternative approach to establish the attributes, focusing particularly on naive
viewers, was described as the interpretation based quality (IBQ) method [134].
This approach combined qualitative (i.e., free image sorting and interviewing)
and quantitative (i.e., magnitude estimation) methodologies, and as such allowed
establishing the relationship between subjective preferences and the underlying
features/attributes. The method has especially added value in detecting content and
context dependency in high-quality images.

The second crucial issue is the combination of judgments of perceptual attributes
into a single image quality value. Historically, several attempts have been made at
creating a model of quality judgment based on assessment of image degradations
and impairments. Allnatt’s “Law of Subjective Addition” [3] was the first major
achievement in this sense. This “law” stated that impairment annoyance was
inversely proportional to image quality and that distinct impairments added up when
they occurred simultaneously, to then linearly map into image quality. Minkowski
metrics were later proved to be a better way of combining simultaneously occurring
impairments into one overall impairment score [29,30]. This relationship was shown
to hold also for extreme levels of impairment (i.e., such that the image content was
almost unrecognizable) [193], as in the case of overlapping blur due to low-pass
filtering using a 2D separable binomial filter [120] and noisiness due to normally
distributed spatial noise. Finally, in a refined version of the Minkowski metrics
accommodating an upper bound for impairment [30] it was shown that setting
the exponent to approximately 2 yielded a good description of both quality and
impairment judgments. In other words, it was concluded that the accumulation of
perceptually distinguishable impairments could be described by a vector-summodel.
As a result, the Minkowski metric provided a valuable tool for combining perceived
display quality attributes into overall image quality [41, 121].

de Ridder et al. [149] pointed out later that, although successfully combining
annoyance of different artifacts into an overall quality score, Minkowski metrics
assumed image quality preference to be context and application independent.
To verify whether this assumption was correct, they suggested to consider image
quality as an indicator of the degree to which an observer could exploit images, i.e.,
to regard images “: : : not as signals but instead as carriers of information : : :” [74].
This information-processing oriented definition assessed the degree of identifia-
bility (i.e., the naturalness constraint) and discriminability (i.e., usefulness con-
straint) of the elements in the image. Fulfillment of both requirements would
ensure high quality of the image; nevertheless, the degree to which constraints were
expected to be fulfilled was highly content and task dependent [75]. In a series of
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experiments aimed at establishing color rendering preference in images, Janssen
et al. manipulated the color characteristics of natural images, and then asked a pool
of observers to judge their image quality [31, 33, 75]. Interestingly, image quality
(Q) turned out to be a weighted sum of perceived naturalness (N) and colorfulness
(C), or

Q D w � N C .1 � w/ � C (2.1)

where w is a weighting factor between zero and one. Moreover, it was observed
that, when varying color contrast, participants showed a clear preference for
more colorful, yet slightly unnatural images. Similar observations were made in
a later study for the perceived quality of stereoscopic images where, under certain
conditions, the quality of depth was found to be a weighted sum of naturalness of
depth and perceived strength of depth [71, 72].

The implications of the findings above were that (1) image quality is typically
judged based on a comparison of the experienced quality to an internal “reference”
image, and that (2) this internal reference is not necessarily the most realistic
one (i.e., a high fidelity reproduction of reality) but is rather influenced by other
factors such as memory, content, and context of usage. These conclusions were later
integrated in the so-called FUN model [39,149]. In essence, this model assumes the
existence of three major constraints determining image quality: Fidelity (i.e., degree
of apparent match with an external reference, e.g., an original), Usefulness (i.e.,
degree of visibility of details), and Naturalness (i.e., degree of apparent match with
an internal reference, e.g., memory colors). Overall image quality is then modeled
as a weighted sum of the three constraints whereby the weighting depends on task,
context, image content, etc. In fact, different people, different types of images, and
different tasks may require different combinations of these weights, which implies
that there is no single standard criterion for image quality, nor absolute perceptual
preferences. It is interesting to note that this conclusion fits remarkably well with
the ideas behind the so-called interface theory of human perception [63, 88], which
states that perception is not about accurately reconstructing the physical world, but
about constructing the properties and categories of an organism’s perceptual world.
Hoffman [63] argues that these perceptual structures are not intended to accurately
match the physical world but, instead, are fast, intention-driven explorations of the
meaningless physical world in preparation of “optically guided potential behavior,”
thus striving for utility and efficiency, not veridicality.

2.2.2 Visual Quality Preference of Processed Signals

The signal processing community evolved in many aspects rather distinct from
the display community, and until recently its researchers largely focused on a
signal fidelity approach. The goal of this branch of subjective studies was to
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understand the impact on perceived quality of a specific type of processing
algorithm (e.g. compression, scaling, de-noising, and so on) towards identifying the
optimized setting of the algorithm’s parameters to produce the best visual quality.

In 1987, Watson [179] made an important distinction between perceptually
lossless and perceptually lossy image coding, thus acknowledging the relevance
of understanding and modeling the impact of coding artifacts on perceived image
quality. Research into image integrity [145] or artifactual quality [81] referring to
the relation between coding artifacts and quality preference became an important
focus of the image and video processing community (for a thorough overview,
see [21]). The approach consisted of incorporating models of low-level features
of the HVS into image quality metrics. Subjective studies were therefore aimed at
generating ground-truth data, and with that determining which HVS mechanisms
were triggered by the appearance of impairments, leading to the identification
and modeling of, e.g., contrast [8, 60, 160] and luminance masking mechanisms
[106,127], spatial pooling strategies [178], and image structure perception [48,177].
Temporal and movement effects on artifact visibility have also been studied
[122, 164]. Furthermore, initial attempts to understand the perceptual impact of
overlapping video signal impairments (i.e., co-presence of e.g., blur, blockiness and
noise) were carried out by Farias et al. [45], concluding Minkowski metrics were a
powerful modeling tool in this context, as already proven for displays [44].

The large body of work done on artifact visibility estimation was inspired by
the idea that the HVS remained constant over time [21], i.e., despite personal
preferences, our visual processing strategies have barely evolved over the course
of human history, thus it should be possible to model them in a meaningful and
objective way (that is, independent of individual subject differences) such that HVS-
based models could accurately predict and describe image quality. Interestingly, this
soon turned out to be not true, even at threshold level. In an experiment on visibility
of compression artifacts [182] it was shown that non-expert observers were less
sensitive to compression-related artifacts (i.e., blockiness, blur, and quantization
noise) than trained observers with detailed knowledge of the algorithm employed.
Even more interestingly, it was shown that subjects who actually developed the
algorithm were very sensitive to artifact visibility only in the images that were
used within the algorithm design and test phases. Apparently, the well-informed
experts knew exactly where to look for the impairments, a finding that cannot be
accommodated by most of the low-level HVS-based models.

An initial attempt at studying the role of higher-level HVS features in signal
impairment annoyance and related quality appreciation targeted visual attention
mechanisms [42, 143]. When observing a scene, the human eye optimizes the
information acquisition by focusing on specific, meaningful areas of the scene, and
neglecting poorly informative areas [35]. As a consequence, it was hypothesized
that signal impairments located in the visually attractive areas of an image were
more likely to be noticed during the visual experience, resulting in a more negative
judgment of visual quality (or higher annoyance). Evidence of this has been
provided for, e.g., blocking artifacts in images [2]. As a consequence, the interplay
between visual attention and visual quality assessment mechanisms was thoroughly
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studied. Research showed that the visual quality assessment task had a significant
impact on visual attention deployment [123], which was also found to be the case
for image aesthetic appeal assessment [145]. These findings stressed the importance
of having control, task-free eye-tracking recordings to fairly evaluate the impact of
signal impairment appearance on visual attention, and the impact of visual attention
on the eventual quality judgment. Several eye-tracking studies reported information
in this sense, yet without a clear consensus. In the work by Vuori and others [174] the
quality of the judged image was shown to have an impact on the saccades’ duration.
In [35] the authors showed that saliency maps of pristine images obtained from free-
looking eye-tracking data were poorly correlated to the maps derived from the image
quality scoring of slightly impaired versions of the same images. This correlation
was shown to increase with the amount of impairment visible in the images, and to
be independent on the type of signal impairment. Vu et al. [173] identified instead
an effect of the type of signal impairment (i.e., blur, compression, or noise) on the
location of the fixations while scoring, though without quantifying it. As far as
videos are concerned, Le Meur et al. [100] found that the quality evaluation task had
a more limited impact in the video domain than in the image domain. Later, though,
Mantel et al. [111] showed that the strength of signal impairments had an impact on
the dispersion of the fixations (i.e., increasing with decreasing video quality) and
was positively correlated with the duration of the fixations [111].

Despite the diversity of the abovementioned results, the study of visual attention
in relation to signal impairment annoyance enabled the design of a wide range of
image and video quality metrics, enhanced with either saliency or visual importance
data (for a complete overview, see [42]). The added value of incorporating such
information in quality metrics was clearly shown for images [107, 142], whereas it
was found to be less relevant for video [42]. Furthermore, this activity produced an
abundance of subjective data, most of which have been made publicly available for
further research [184]. These data may be precious in further understanding the role
of high-level HVS mechanisms in viewing experience appreciation.

2.2.3 Subjective Assessment of Network-Related Impairments

Nowadays quality of the (broadband) broadcasted or stored video content and of the
displays used for their rendering is in most circumstances of such a high level that
naive consumers hardly see improvements. The latter, however, is not yet true for
multimedia content distributed over (mobile) IP networks. Bandwidth limitations,
along with network unreliability (i.e., the possibility of losing parts of the streamed
signal/packets) can cause impairments during visualization of the image/video,
including frame freezes, deformations of the spatial and temporal structure of the
content, and long stalling times.

Rather than based on subjective assessment of visual quality, network parameters
have been for long optimized towards keeping an acceptable QoS, by taking
into account parameters such as packet loss ratio, delay, jitter and available
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bandwidth [153], as well as video QoS parameters, such as buffering time and
buffer ratio [5]. Lately, researchers have been aiming at correlating the QoS
parameters to QoE measurements (typically, identified once again with visual
quality subjective ratings [138]) by using fitting functions [49, 84, 158]. In general,
lowQoS performance leads to lowQoE [70]. For example, it has been shown that the
buffer ratio (i.e., the fraction of time spent in buffering over the total session time,
including playing plus buffering) consistently had a high impact on user QoE [37].
Reduced buffering times resulted in higher user satisfaction. Similar conclusions
were found for other QoS parameters, such as the join time in multicast video
delivery, the buffering duration, the rate of buffering events, the average bit-rate,
and the packet loss rate [70, 113].

In general, QoS metrics succeed in estimating QoE from a network efficiency
point of view, but they do not necessarily reflect the overall viewing experience.
In fact, QoS parameters fail in capturing all subjective aspects associated with the
viewing experience [34, 131]. Note that typically QoS parameters are computed
based on the encoded bit-stream, whereas no pixel information is analyzed; there-
fore, the impact of signal impairments such as blockiness and blur (see Sect. 2.2.2)
is not taken into account in these approaches. In the case of packet loss, for
example, it was found that the same packet loss ratio yielded more or less annoyance
depending on the video encoding and video content [162]. The loss of bit-stream
packets indeed can result in specific, spatiotemporal visual impairments, due to the
poor concealment of the lost packet at the bit-stream decoder side. This type of
impairments is more or less noticeable depending on the amount of movement in
the video and can be annoying [140, 162] even more so when in combination with
strong compression artifacts [80]. Furthermore, when studied in conjunction with
visual attention, packet loss artifacts have been shown to be more annoying when
located in visually important regions of the image [43], and to have a high potential
for becoming salient, then altering the natural visual attention deployment [140].
Quite interestingly, the entity of this alteration has been shown to be negatively
correlated with the perceived visual quality of the video [140].

2.3 From Visual Quality to Quality of (Viewing) Experience

As pointed out in Sect. 2.2, subjective studies from different communities (displays,
signal processing, and networking) converged eventually towards a similar conclu-
sion: quantifying impairment sensitivity, even by means of accurate HVS models, is
necessary yet not sufficient to quantify the overall quality of the viewing experience.
In fact, a few models have been proposed throughout the last decade to extend
the impairment-centric notion of visual quality to a broader, more representative
concept of quality of the viewing experience.

Keelan [81] defined visual quality as a multidimensional quantity evolving along
a number of visual attributes, comparable to Engeldrum’s IQC attributes. Keelan
distinguished four different families of attributes: artifactual (e.g., blockiness and
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blurriness), preferential (e.g., brightness and contrast), aesthetic (e.g., symmetry or
harmony [46]), and personal (e.g., user emotional connection and engagement with
the visual content [90,180]). Of those, the first two were highly related to perceptual
quality, whereas the latter two would contribute to the visual quality assessment by
taking into account more implicit experiences of the viewer [110]. Because of this,
aesthetic and personal attributes were considered “too subjective” and “unlikely to
yield to an objective description” of an image, leading Keelan to the conclusion
that their quantification would be “too cumbersome and expensive to use for routine
image quality research” ([81], p. 6). As a result, Keelan privileged the investigation
of artifactual and preferential attributes, leaving unexplained the contribution of
personal and aesthetic attributes to the overall visual quality.

Ghinea and Thomas also attempted at reaching a more encompassing definition
of visual quality by proposing the concept of quality of perception (QoP) [51]. Their
reasoning started from the assumption that multimedia are primarily consumed
for infotainment; therefore, viewing experience has a twofold purpose: that of
transferring information to the user, and that of granting a sufficiently high level
of satisfaction in terms of entertainment. To properly optimize viewing experience,
then, both (1) the level of Information Assimilation (QoP-IA) and (2) the overall
user satisfaction with respect to the media presentation (QoP-S) should be taken
into account. QoP-IA represents the level of the user’s understanding of the media
content. It is typically measured as the performance (in terms of number of
correct responses) on a questionnaire about the (semantic) content of the viewed
media. QoP-S depends instead on two elements. The subjective level of quality
(QoP-LoQ) measures the perceptual impact of losses on visual quality (e.g., due
to the appearance of impairments), independent of the media content. The level
of enjoyment (QoP-LoE) measures instead the overall enjoyability of the media
presentation, taking into account also cognitive and affective aspects of the visual
experience, such as watchability, ease of understanding, and level of interest in the
subject matter. Throughout multiple studies [57, 58, 105] it was found that low
QoP-LoQ did not impact the level of information assimilation (i.e., despite the
presence of impairment, users could still fully understand the content of the media)
and had limited impact on the level of enjoyment (QoP-LoE), indicating that other
elements compensated for artifact appearance in viewing experience. Unfortunately,
up to date, there is little known and studied on these elements that compensate for
artifact visibility in overall viewing experience: it is not known yet which are these
elements and how they contribute to the eventual experience appreciation.

From a different perspective, Pereira [128] proposed a three-level model for
visual experience appreciation. In Pereira’s model, visual experience is first eval-
uated at the sensorial level, which responds to the purely physical properties of
the media (i.e., comparable to the IQC physical image characteristics and to some
extent to Keelan’s artifactual and preferential attributes). This level of evaluation
contributes therefore to the first perceptual quality impression (a concept similar
to QoP-LoQ [51]). Next, the viewing experience is evaluated at the “perceptual”
level. Here, the media content and the potential for creating knowledge out of it
are assessed (with similarities to QoP-IA in [51]). Note that the word “perceptual”
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here entails also cognitive processes such as content recognition and interpretation,
and is not to be confused with the classic notion of perceptual quality, which in
this framework is addressed at the sensorial level. Finally, the viewing experience is
assessed at the emotional level, where the way in which the media impacts the user’s
affective state is evaluated. Pereira suggests that viewing experience appreciation
results from a linear combination of a quantification of these three aspects;
however, he did not provide an empirical validation of this hypothesis. Pereira’s
model was further extended in [133] to assess augmented reality experiences. The
extended model accounted also for implicit experiences of the user (such as cultural
background), and the context and goal of the viewing experience. As a result, on top
of the three levels in the model of Pereira [128], the authors of [133] suggest to take
into account both usability of the multimedia system and ethnographical assessment
to obtain an accurate measure of the quality of the augmented reality experience.

The FUN model of de Ridder and Endrikhovski [149], already mentioned in
Sect. 2.2, can also be considered a milestone in the road that took visual quality
to evolve into QoE. The model is the first to introduce the concept of finality of
usage of media (and user motivation for having the viewing experience), and to
suggest that viewing experience cannot be quantified without taking this concept
into account. The quality of a viewing experience, indeed, should depend on the
degree to which the visual information can be successfully exploited by the user
towards his/her goal. This in turn is quantified in terms of the fulfillment of
the Fidelity, Usefulness, and Naturalness criteria already described in Sect. 2.2.2.
Whereas the Fidelity criterion can be to a large extent equated to the assessment of
impairment sensitivity, the Usefulness and Naturalness criteria introduce two rather
new concepts in QoE evaluation. The Usefulness constraint indicates the maximum
discriminability of perceived items in the image (or video); thus, the degree to
which this criterion should be fulfilled is highly application and task-dependent,
as, for example, the fulfillment threshold for Usefulness of a consumer display is
different from that of a microscope. The Naturalness constraint refers instead to
the fidelity of the media to what the authors call an “internal-reference,” or an
internal representation of how the media “should look like.” Here, previous (quality)
experiences and expectations come into play. Thus, the fulfillment threshold for
Naturalness is intrinsically user-dependent. The paradigm shift in this model lays
in the fact that constraints are not anymore assumed to be universal, but rather
application and user dependent. Hence, factors external to the viewing experience
(i.e., not directly related to vision) have an impact on its appreciation, and should be
studied in relation to it.

This idea has been recently picked up by the Qualinet consortium, which has
proposed a rather encompassing model for Quality of multimedia Experience [99].
Note that the experience here is not limited to vision, but is multisensory, thus
it is not necessarily related to imaging systems only. In fact, the Qualinet model
combines elements of all models described above: to begin with, QoE is described
as a multidimensional quality, that can be decomposed in a set of perceptual
attributes called features. QoE features are defined as “perceivable, recognized and
namable characteristics of the individual’s experience of a [multimedia] service
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which contributes to its quality” and can be classified into four categories: features
at the level of perception, at the level of interaction, at the level of usage, and
at the level of service. The features at the perceptual level entail experience
characteristics that can be evaluated from immediate perception (e.g., blockiness,
blurriness, brightness, and contrast). The features at the interaction level account for
human–technology interaction aspects of the experience (e.g., responsiveness and
communication efficiency between the user and the multimedia system). Features
at the level of usage assess the accessibility and the stability of the service during
usage. Finally, the long-term characteristics of the service beyond the single instance
of usage, such as ergonomics, usability, and ease of use, are accounted for by the
level of service, similarly to what was suggested in [133]. All these features are
assumed not to be independent. Features appreciation is in turn mediated by a set of
interrelated quantities called Influence Factors (IF). Influence Factors are defined as
“characteristics of a user, system, service, application, or context whose actual state
or setting may have influence on the QoE for the user.” As such, they pre-exist the
fruition of the media; nevertheless, they condition the final user satisfaction. IFs can
be grouped into three categories, depending on whether they represent properties
of the user, of the system (or application or service) or of the context of usage.
User IFs entail characteristics of the user such as demographics, personality or
emotional state, and can condition both the appreciation of technical quality (thus
modulating the features of the level of perception) and that of the overall experience,
also impacting on the interpretation and understanding of the media content. System
IFs are those properties of the multimedia system/service that are responsible for
the resulting technical quality: media encoding configuration, network parameters,
display functions, etc. Finally, context IFs encompass all situational properties of
the environment in which the experience takes place. Examples of context IFs are
location and space, time of the day, task and social context. For a detailed overview
of known influencing factors of QoE, see Sect. 2.4.

Similarly to the FUN model [149], the Qualinet model [99] also assumes the
existence of an internal “reference” experience to which the real one is compared.
All QoE features have an internal reference value that is modulated by IFs; the extent
to which the features of the current experience match the reference ones builds
the eventual user satisfaction. Although mapping the interactions of (reference
and current) QoE features and influence factors is still beyond reach, a simplified
representation of the model is attempted in Fig. 2.3. In this figure, the model
is visualized as a network of computing units that modulate the assessment of
the difference between the reference and current (i.e., “quality”) feature values.
Influencing factors not only determine the value of the “quality” (experienced)
features, but also modulate the importance that the difference between their value
and that of the internal reference has on the final quality judgment (fusion module).
To draw a parallel with the models reviewed so far, we can consider the level of
perception similar to the artifactual attributes in [81], the QoP-LoQ in [51], and the
Fidelity dimension in [149]; they all consider the impact of system IFs on perceptual
features (green unit in the figure). The emotional level of [128] could result from the
impact of Human and Context IFs on the level of perception and the level of service
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Fig. 2.3 Schematic representation of the Qualinet model for quality of experience [99, 144], fully
connected into a network for the final QoE prediction. The green computing unit covers the
influence of system factors (technology variables [81]) on the features of the level of perception;
most research in the QoE domain has been focusing so far on this specific facet of QoE

features. Finally, the Usefulness dimension in [149] could be intended as the result
of context IFs on the level of perception features. Some of these interactions are
further explored in Sect. 2.4, but we first want to clarify an operative definition of
QoE that we will adopt throughout the rest of this chapter.

2.3.1 Definition of QoE

The concept of QoE arose from the field of Telecommunication Engineering. In the
past decades, the effectiveness of communication services was linked to the notion
of QoS, which is defined as the “totality of characteristics of a telecommunication
service that bears on its ability to satisfy stated and implied needs of the user of
the service” [139]. QoS is mainly operationalized in terms of system and network
performance-related measures (e.g., packet loss ratio, jitter, or delay). However,
with the booming of online multimedia services, the notion of QoS has started
showing its limitations, and was found to be poorly correlated to user satisfaction.
As a result, the QoE concept emerged, and was initially defined by ITU [167] as
“the overall acceptability of an application or service, as perceived subjectively by
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an end-user.” This definition suggests that the scope of QoE has shifted from a
rather narrow perspective of telecommunication systems to a broader perspective
of multimedia services. Furthermore, this definition not only takes the complete
end-to-end system in consideration to define QoE, but also includes the user’s
expectations and his/her context. Recently, the Qualinet White Paper [99] proposed
a more explicit definition of QoE: “Quality of Experience (QoE) is the degree of
delight or annoyance of the user of an application or service. It results from the
fulfillment of his or her expectations with respect to the utility and/or enjoyment
of the application or service in the light of the user’s personality and current state.”
This second definition explicitly refers to the concepts of “personality,” entailing
long-term traits of the user such as feelings, thinking attitude, and behavior (as per
[130]), as well as user “current state”, i.e., the punctual set of feelings, thoughts and
behavior contextual to the viewing experience [99]. Note that the current state is
both an influencing factor of QoE and a consequence of the experience. Although
both definitions describe a similar phenomenon, the definition given by Qualinet
seems to be more complete than the one of ITU-T. In the ITU-T definition, QoE is
related to acceptability in terms of the “characteristic of a service describing how
readily a person will use the service.” The Qualinet definition, instead, emphasizes
that human factors, such as personality and current state, may significantly influence
QoE. Given the evidence of the importance of such factors in properly estimating
user satisfaction and QoE (which will be documented in Sect. 2.4 of this paper),
we adopt the Qualinet definition as operational definition of QoE in the remainder
of this chapter. Along with this operative definition, it is worth mentioning a few
other concepts that closely relate to QoE. The term engagement, for example,
often refers to positive aspects of user experience. Attfield [6] gives a definition
of engagement as “a quality of the user experience that emphasizes the positive
aspects of interaction—in particular the fact of being captivated by a resource.” In
prior research, engagement was described as the experience of a user who highly
focused on the video and was affectively involved with it [153]. Studies showed
that engagement played a crucial role in determining user satisfaction [37]. As a
result, in Sect. 2.4 we also refer to literature on engagementwith multimedia content
to complement the knowledge existing on factors influencing QoE. Finally, it is
interesting to relate QoE to the concept of endurability. The term endurability has
been used to describe the consequence of a satisfactory experience, and specifically
the likelihood of remembering it and the willingness to repeat it or recommend
it [124]. Read et al. [136] studied endurability in children’s satisfaction with tourist
attractions. They organized a group of 45 children going on a school trip to a themed
tourist attraction, where they could engage in nine activities. Children scored each
activity before and after performing it, and ticked “yes, maybe, no” in response to the
question “Would you like to do it again?” A week after the task, children were asked
to recall the separate activities that had made up the event. They were also asked to
name the activity that they had liked the best. The results showed that 81% of the
children recalled the activity that they had previously identified as worth repeating.
This suggests that high QoE leads to endurability [124]: people remember enjoyable,
useful, engaging experiences and want to repeat them.
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2.4 Influencing Factors of QoE

As introduced in Sect. 2.3, QoE is a multifaceted quality, resulting from the
interaction of multiple influencing factors. Besides factors that have been proven
to influence QoE in the context of video, we also review elements of the experience
found to be relevant in other research fields (e.g., psychology of gaming experience).
It is important to remark that most of these factors are not independent. They may
interact with each other, and as such, influence QoE in a complex way (see also
Fig. 2.3). Following the model proposed in [99], the factors are arranged into three
categories (shown in Table 2.1), namely System factors, User factors, and Contextual
factors. Each group of factors is described in more detail in the remainder of this
section.

2.4.1 System Factors

System factors are to a large extent comparable to Engeldrum’s technological
variables, and include all those characteristics of the system (or application or
service) that contribute to determine the “technically produced quality” [78] of
the eventual media presentation. As such, they also determine the presence of
impairments in it. In the most general formulation, system factors can address
characteristics of the device on which a video is viewed (e.g., a mobile phone, PC,
tablet or television), of the technological signal variables (i.e., the video format or
parameters in signal processing algorithms) and of the network configuration (i.e.,
the so-called QoS parameters). Each of these contributions to QoE is discussed here
in some detail (although not fully encompassing all the existing literature).

Table 2.1 Factors influencing QoE discussed in this chapter

Contextual factors
System factors (Sect. 2.4.1) User factors (Sect. 2.4.2) (Sect. 2.4.3)
Devices [85–87, 153] Interest

[67, 90, 104, 110, 124, 126, 159]
Physical environment [161, 183]

Signal and network
variables
[1, 56, 103, 175, 194]

Personality [26, 180] Economic conditions
[14, 83, 190]

Age/gender
[12, 13, 69, 117, 118, 185]

Social motivation
[10, 16, 18, 23, 25, 50, 64, 91, 101,
108, 115, 124, 125, 150, 151]

Affect/mood [124, 180]
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2.4.1.1 Devices

Nowadays, users watch videos through a diversity of devices. Studies showed that
user acceptability of video quality varied with the type of device used to watch
the video [85–87]. For example, See-To et al. [153] showed that user’s QoE of
the same video was significantly different on a desktop than on a mobile device.
User expectations for mobile device performance were lower than for desktop
performance, and as a consequence, a higher QoE for a video with the same amount
of introduced impairments was found on the mobile device than on the desktop. In
more general terms, the impact of display technology variables on image and video
quality was investigated thoroughly during the last decades, at least with respect to
artifactual quality [40, 81]. Pixel size and arrangement, static and dynamic contrast,
white point and color gamut, motion blur and other motion artifacts, response
characteristics and flicker, and finally viewing angle range are all elements known to
highly impact perceived image quality [19, 93, 165]. The extension from artifactual
quality to QoE is only limitedly addressed for device optimization. In 3D displays,
stereoscopic depth has been shown to increase the appreciation for the viewing
experience (see Sect. 2.5.1) but at the same time, disparity may generate visual
discomfort [94]. McCarthy et al. [112] reported that a decrease of display resolution
yielded user dissatisfaction.

2.4.1.2 Signal and Network Variables

Functional characteristics of video streaming (e.g., frame rate, resolution, and
encoding) directly influence users’ QoE [194], as also already discussed in
Sect. 2.2.3. Gulliver et al. [56] conducted a subjective experiment to investigate the
impact of different multimedia frame rates on the user’s (impairment-centric) visual
quality. Participants were asked to view video clips at different frame rates, and to
answer for each clip some questions evaluating whether the participants understood
the video content, and to give per clip an overall quality score and a score for the
level of enjoyment. The results showed that the assimilation of video information
was not significantly affected by frame rate, but the user’s perceived visual quality
and enjoyment were. In other words, higher frame rates improve overall user
enjoyment and quality perception. Similar aspects have been investigated within the
context of scalable video coding (SVC). The SVC specification of the H.264 coding
scheme [1] adapts the video stream along the temporal, spatial, and signal-to-noise
ratio (SNR) dimensions to obtain an optimal trade-off between frame-rate, spatial
resolution, and (spatial) impairment visibility. For a given spatial resolution, the
optimal trade-off between temporal and SNR quantization is known to depend,
among other factors, on motion [175]. For fast motion videos, a decrease in SNR
is preferred over a loss in smoothness resulting from low frame-rates. For static
videos, the opposite happens. The trade-off between spatial resolution and frame-
rate has instead been shown to depend on the video bitrate, with a preference for
large spatial resolution at low bitrates (<800kbps) [103].
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2.4.2 User Factors

A user factor is defined as “any variant and invariant characteristic of a human
user” that influences the viewing experience, such as demographic, personality, or
interest related characteristics [99]. User factors determine for a large part the user
“current state” mentioned in the QoE definition reported in Sect. 2.3. These factors
were largely overlooked for a long time, because they were judged too difficult to
quantify in both a subjective and objective way [81]. Nonetheless, lately researchers
have started investigating them more systematically, also thanks to the large amount
of personal data made available by the users themselves in Social Media. We review
in the following some of the main findings with respect to the influence of user
factors to QoE.

2.4.2.1 Interest

In psychology literature, interest has been considered as an emotion. Silvia [159]
suggested that interest comes from two appraisals: novelty and coping potential.
Novelty is the tendency to seek elements that are new, or unusual in one’s
environment, and evoke in the user a sense of curiosity. Huang et al. [67] showed that
incorporating novel elements into a website attracted curious users and brought out
enjoyable experiences. Coping potential is the ability to understand unfamiliar, com-
plex objects, and as such is strongly user-dependent [159]. In the field of aesthetic
appreciation of art, it has been shown, for example, that abstract, unfamiliar works of
art were poorly appreciated by the average user [104]; nevertheless, the stronger the
background art knowledge of the user, the higher the aesthetic appreciation would
get [110]. O’Brien [124] indicated that QoE was often triggered when something
resonated with a user’s interest. Kortum and Sullivan [90] employed a total of 100
participants and 180 movie clips encoded at nine compression levels from 550 kbps
up to DVD quality. After viewing the clips, participants were asked to rate the
(impairment-related) visual quality and desirability of the movie content. The results
showed a general increase in quality rating as the desire for content increased, at
a given bitrate. Thus, personal interest in the video significantly influenced user
judgments [90]. Palhais et al. [126] used videos of sport events, encoded in four
different bitrate/resolution combinations. Participants chose three sports that they
were more interested in and three sports that they liked less. Then they watched
all videos and rated the (impairment-related) visual quality at the end of each
video. The results demonstrated that the interest level had a strong influence on
the subjective assessment of the visual quality: users tended to value a video with
the same bitrate as higher in QoE when they were more interested in the content
of the video.
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2.4.2.2 Personality

Personality is “the particular combination of emotional, attitudinal, and behavioral
response patterns of an individual.” One of the effective ways to determine
personality is the five-factor model (FFM) [26] or “Big Five,” consisting of
the dimensions openness (i.e., degree of intellectual curiosity and creativity),
conscientiousness (i.e., tendency to show self-discipline), extraversion (i.e., the
level of orientation towards other people), agreeableness (i.e., the tendency to be
compassionate and cooperative), and neuroticism (i.e., the tendency to experience
unpleasant emotions easily). Wechsung et al. [180] conducted an experiment asking
33 participants to perform a series of tasks (such as play, pause, and stop) in front
of an IP-TV. The results showed that the personality of participants influenced their
performance. For example, neuroticismwas negatively correlatedwith performance,
while agreeableness enhanced it. In contrast, the results also indicated no correlation
of personality with impairment annoyance.

2.4.2.3 Age/Gender

Evidence exists that age influences QoE. Wolters et al. [185] found older adults
to be more critical than younger users, which may suggest that elderly people have
higher requirements for QoE. However, Naumann et al. [118] observed the opposite:
they found that older users tended to rate the (impairment-centric) visual quality
more positively than younger users. As far as gender is concerned, little has been
done to investigate its effect on QoE appreciation. Males and females are known
to react differently to emotional pictures [13] and to have different perception of
olfactory and visual media synchronization [117]. As a consequence, it is reasonable
to expect that optimal QoE settings may depend on gender too. An initial evidence
in this sense can be found in [69]: within the context of 3D audio telephony
and teleconferencing services, it was found that males and females have different
preferences, in terms of experienced QoE, with respect to the size of the room
where the teleconference is held. Closer to the field of image quality Campanella
Bracken [12] showed that women viewing a video clip on either an HDTV or a (at
that time) more standard resolution NTSC TV reported more perceived realism than
men, which may imply that women evaluate at least part of the television content as
more real than men.

2.4.2.4 Affect/Mood

During the interaction with online (video) services users may experience positive or
negative affective states (or moods). The interaction itself may induce such a state,
but it is also possible that people are already in a particular affective state, such that it
may impact the way they experience the interaction with the video service. Positive
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affective states relate to enjoyment, satisfaction, and fun. For example, a lack of fun
can act as a barrier to shop online or enjoyment during a webcast can draw the user
in [124]. Negative affective states, such as frustration, anxiety, and boredom, may
lead to low QoE. For example, participants that feel frustration towards a technology
report lower QoE ratings [180].

2.4.3 Contextual Factors

Contextual factors describe all aspects of the environment within which the user
consumes the media, e.g., physical location, economical aspects, or social context.
The following are considered prominent contextual factors for QoE evaluation.

2.4.3.1 Physical Environment

Many aspects of the physical environment may affect QoE; these aspects may range
from characteristics of the seating position (e.g., viewing distance and viewing
height) to disturbances that occur in the environment a viewer is in. Viewing distance
is a balancing act between two aspects: a shorter viewing distance increases the field
of view, and makes the viewer more involvedwith the content, but may make impair-
ment better visible as well [183]. Staelens et al. [161] investigated subjective quality
under viewing conditions, in which television is typically watched. The results
showed that the interruption of phone calls and SMS alerts could prevent a person
from getting engaged into a video, which would result in low QoE.

2.4.3.2 Economic Aspects

The economic aspects relate to key concepts of marketing, such as the product and
brand strategy, the pricing strategy, the positioning of the product in the market,
and the market segmentation and identification of target groups [14]. These aspects
are closely related to the notion of Quality of Customer Experience, introduced
by Kilkki [83, 123]. He indicated that the economic aspects of a product or service,
such as price and brand, can have a high impact on QoE, also due to customer loyalty
(think about, e.g., Apple). According to [190], there is a positive correlation between
the willingness to pay for a multimedia product/service and the (impairment-centric)
visual quality of the video offered to the user. The study clearly showed that users
were inclined to pay less if they were offered a video with a lower visual quality.
When users felt they were overpaying for their service with regard to the quality
they experienced, they reacted in different ways, all eventually leading to a decrease
in revenues for the operator of those services.
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2.4.3.3 Social Context

Social context refers to the fact that a user is affected by the interaction with
a group of other people [151], being family, friends, or even strangers. In the
past, many studies have reported the social impact of traditional TV watching
[50, 91, 101]. Co-located co-viewing is a rather common way of consuming the
more traditional media, such as TV programs [115], having great potential as a
social activity and conversational topic [108]. Co-viewing when enjoying each
other’s company can increase user’s overall satisfaction [115]. Recently, a concept
of social TV—as implemented in “Amigo TV”—has emerged: it provides multiple
viewers with a joint TV watching experience by adding communication features via
audio conferencing, graphic symbols, and avatars [23,25]. User studies of social TV
have confirmed the high acceptance of such technology, because it allows users to
communicate with friends even when they are not physically co-located [125, 150].
Far less is known about the impact on QoE of a newer concept of social context,
namely the one arising from recommendations and opinions (e.g., Facebook “likes”)
of friends and/or strangers. Watching online videos is not so often done by multiple
people sitting together, nonetheless, a sort of social influence (or pressure) may
manifest itself through the opinions of peers or friends gathered via, e.g., social
networks. Having input from peers or friends is indeed already very common on
shopping websites or in gaming communities. For example, O’Brien [124] noted
that in one of his studies an interviewed person mentioned reading book reviews
from “certain reviewers that I know I can trust that have similar taste to me” [124].
In other words, this interviewed person created his own social context to support
him in deciding which books to read. In the gaming industry, social interaction is
explicitly designed in the game. Lively virtual societies are built around multiplayer
online games (e.g., World of Warcraft), and these games are highly successful
[10, 16]. Several studies even claimed that digital games also can increase social
interaction in gamers’ real life (e.g., they talk to friends about the game strategy)
[18]. Either playing games together or watching others play a game can bring
enjoyment to gamers [64]. Although very little has been studied so far, all these
studies point towards the impression that social context may strongly impact QoE.

2.5 Beyond Visual Quality: New Trends in Subjective
QoE Assessment

Despite the body of work on influencing factors of QoE described in Sect. 2.4,
it is clear that unveiling a reliable model of user QoE preference is still beyond
reach. The profound transformation that media consumption underwent in the last
decade opens countless questions and applications in which influencing factors and
features of the viewing experience still have to be determined. In facing this major
challenge, subjective assessments represent the core instrument to learn more about



52 J.A. Redi et al.

the interplay between perceptual, cognitive, and affective mechanisms that underlie
the appreciation of viewing experience. Nevertheless, subjective QoE assessment
methodologies need now to be integrated with knowledge developed from tradition-
ally very different fields (e.g., human computer interaction, affective computing,
behavioral psychology, but also media production, computer graphics, and lighting
design) to overcome the traditional impairment sensitivity paradigm. We identify
three major directions in which the subjective QoE assessment community should
seek for the paradigm shift: the technological one, the psychological one, and the
methodological one.

2.5.1 Beyond the Traditional Screen Technology:
QoE of Immersive Viewing Experience

Imaging technologies are evolving quickly. In recent years, new display technolo-
gies have been developed that provide a more immersive viewing experience by
enhancing specific experience features. High dynamic range (HDR) displays, for
example, magnify perceived contrast by means of different backlight technologies
and the usage of a larger number of bits to represent luminance information [4,154].
Similarly, stereoscopic and autostereoscopic displays (3D) enhance perceived depth
[119, 137], and upcoming 4k and 8k devices display images at a ultra-high
resolution [17]. These features come with an undoubted added value for the viewing
experience. Nevertheless, to ensure the full enjoyment of the enhanced experience,
immersive technologies need optimization both at a display and at a signal level.
In the case of HDR imaging for example, problems such as optimal design of
the backlight dimming algorithm [89] as well as of tone mapping operators that
can display a HDR image on a regular display [191] are still under investigation.
Furthermore, to drive the optimization of such immersive technologies, it is essential
to (1) properly understand the impact of an enhanced dimension on the eventual
QoE and (2) assess whether such attribute enhancement modifies the impact of
other attributes on QoE. In the following, we attempt at exemplifying why these
two points are crucial for QoE optimization, by looking at that technology among
the aforementioned ones that was most thoroughly studied in the last decade, i.e.,
stereoscopic displays.

Although introduced halfway the twentieth century, 3D displays became acces-
sible to the general public within the last decade. Initially based on anaglyph
projectors in movie theaters, stereoscopic display technology underwent major
optimization efforts to finally enter consumers’ living rooms. Initially, optimization
was again driven by the concept of “image quality,” of which a large body of
knowledge was already available from 2D displays. Soon enough, it became clear
that this concept was insufficient to properly quantify user satisfaction with respect
to the overall experience provided by 3D displays.When asked to assess image/video
quality of a stereoscopic display, users limited their judgment to the annoyance of
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Fig. 2.4 Illustration of the effect of impairments (chroma multiplication) and stereoscopic depth
on image quality scores for chroma affected images [92]. The different lines indicate mean scores
for 2D content (solid line), and 3D content with a disparity of 1mm (3D1), 2mm (3D2), 3mm
(3D3), and 4mm (3D4), respectively

the impairments introduced by the technology, not valuing the experience created
by the stereoscopic depth [92, 95, 155, 163]. Seuntiens [155] showed, for example,
how image quality scores decreased due to visible impairments as a consequence
of compression similarly in 2D and 3D displays. A similar effect was found for
blur, even for different camera-base distances [95]. Kuijsters [92] also showed that
increasing stereoscopic depth in images of various levels of colorfulness didn’t affect
or slightly reduced the perceived image quality (as shown in Fig. 2.4).

At no point in the abovementioned results users judged instead the (added) value
of the increased depth on the experience. Hence, to allow manufacturers to optimize,
and where needed balance, the full experience of stereoscopic content, a higher
level concept was needed. The concepts of naturalness, already introduced in the
FUN model described in Sect. 2.3 [149], as well as that of “viewing experience”
[157] were investigated to cover the user’s perceptual and cognitive experience of
stereoscopic displays. Based on the series of experiments described above, a higher
level evaluation criterion EC was defined and modelled as a combination of image
quality IQ and perceived depth D, i.e.,:

EC D ˛ � IQ C ˇ � D (2.2)

When using naturalness as EC, it was found to incorporate depth information
for about 25% (while 75% of the judgment still depended on image quality),
assessment of viewing experience consisted instead for about 82% out of image
quality and for about 18% out of stereoscopic depth [95].

The importance of naturalness as an evaluation criterion for stereoscopic displays
is in line with results from applying the IBQ method to stereoscopic content
assessments. Häkkinen [59] showed that for many viewers stereoscopy changed
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the life-likeness of the content, although in some cases stereoscopy also introduced
artificiality or “unrealness,” depending on the specific content. Partly based on all
these findings, the ITU [137] defined a new recommendation for the subjective
evaluation of 3D-TV systems, prescribing that viewers should score three factors
separately, i.e., picture quality, perceived depth, and visual comfort.

Immersive viewing technologies are these days evolving even beyond the display.
Virtual and Augmented Reality technologies, for example, are currently used for a
multitude of applications, ranging from Mental Health Computing [168] to Google
Glasses [7], and an understanding of QoE with respect to those highly immersive
contexts has to be achieved. Immersive experiences are also evolving by incorpo-
rating other types of technologies, traditionally uncorrelated to multimedia delivery.
Starting with the Philips Ambilight TV for example, LED lights were incorporated
in the TV display to increase the field of view and to give therefore viewers a more
cinematic experience, also reducing the eye fatigue. As for stereoscopic displays,
image quality was found to relate only to visual impairment, neglecting the added
value of the light effect. The term viewing experience, on the contrary, was proven
to cover both image quality and the added value of Ambilight, also in combination
with increased depth (i.e., when mounted on stereoscopic displays) [156].

It is reasonable to expect that viewing experience will even further extend beyond
the display in the future. Solid state lighting (SSL) technology, for example, is
already being used to embed low-resolution “displays” in our whole environment.
Because of their fast-switching and spectrally tuneable characteristics, LEDs can
be spatially distributed and embedded in (semi)-transparent materials: this allows
designers to present information on walls, floors, and/or ceilings around us.
Although still used mainly towards functional purposes, we can foresee for the near
future that such technology will provide enhanced entertainment experiences, based
on the creation of (affective) atmospheres through the combination of visual content,
sound and lighting. Ideas to use atmospheric light in combination with video or
games (via scripting) or with music (e.g., by associating colors to terms from the
lyrics) are indeed emerging. Nevertheless, assessment of the full experience of
these systems will require—most probably—anew higher level concept, overarching
aspects of image quality, sound quality, and light experience [172].

2.5.2 Beyond Perception: The Role of Aesthetics
and Emotion in QoE Appreciation

A second important evolution in subjective QoE assessment is the inclusion of
affective evaluations within QoE measurements. As mentioned in Sects. 2.3 and 2.4,
the affective state of the user (i.e., his/her mood or specific emotional state) may
impact the way a viewing experience is appreciated [180]. In turn, the potential for
the viewing experience to impact on the affective state of the user (e.g., increase
the arousal of the emotion as well as improve its valence) should be considered
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in QoE assessment paradigms. Efforts in this direction are currently growing
(e.g., [135, 148, 181]), also reaching out to the affective computing community.
Nevertheless, major challenges are ahead. First, appropriate methodologies to
measure the affective impact of media in relation to QoE have yet to be determined.
Both self-reporting instruments such as the Self-Assessment Manikin [96] or the
Affect Button [15], and more “objective” tools such as physiological measurements
(e.g., EEG or skin conductance) are being evaluated at the moment. Existing results
are however scattered and more structured efforts are needed to identify a pool of
affective measurements that can complement existing standards [73, 82, 137, 138]
for subjective QoE measurement. A second important challenge lays in the need
to decouple, within the QoE judgment, the effect of affective states pre-existing
the visual experience from that of the emotional state induced by the viewing
experience itself. The ability of the media to induce emotion, creating an empathic
experience with the video content, may be positively taken into account in user
QoE judgments. A valuable tool to this end would be to use stimuli of which the
emotional impact on the user can be controlled (e.g., IAPS emotional slides, or
standardized excerpts from movies with the potential to induce specific mood states
[55,97]). They could be used to induce specific moods prior to the visual experience,
to investigate the impact of pre-existing mood on QoE judgments; also, they could
constitute test stimuli for the viewing experience, to allow an understanding of how
induced emotional states alter QoE. Nevertheless, mood induction practices have
to be carefully designed in order to carry out experiments that are still ethically
acceptable.

At the same time, it is interesting to research which properties of the image have
the potential to impact the affective state of the user, along with information on the
changes in arousal and valence of this affective shift. Color, for example, is well
known for having an impact on people’s mood, both from a psychological and a
physiological point of view [169,192]. Similarly, contrast or content arrangement of
an image may generate changes in the mood state. Understanding and quantifying
the relationship between physical properties of the image, their perception and their
impact on the user affective state is therefore a key challenge for upcoming QoE
research.

Some work in this sense has been carried out within the scope of understanding
the aesthetic appeal of media. Aesthetic appreciation is generally recognized to
be related to both perceptual and affective mechanisms, and it has been for long
studied independently from the concept of Quality of the Visual Experience.
Mastered for a long time by artists and then also addressed by psychologists [11],
lately it has started to attract the attention of the media engineering community.
Predicting the aesthetic appeal of images has become interesting especially towards
improving information retrieval, computer graphics, and automatic management
of image collections [77]. As a consequence, studies have been carried out first
to identify image and user attributes impacting on aesthetic appeal and then to
model them. Perceptual image features (as per [51], see Sect. 2.3) such as color
saturation, brightness, and amount of details (i.e., texture and visual crowding)
were found to contribute to the final aesthetic quality judgment [27, 76, 109].



56 J.A. Redi et al.

In particular, the deployment of visual attention has been shown to be related
to image clutter [20], in turn negatively correlated with image aesthetic appeal
scores [146]. The same study showed that visual importance [176] is to some
extent predictive of compliance of the image to photographical compositional rules,
which in turn has a beneficial effect on aesthetic appeal. Impairment generated by
specific media configuration (System Influence Factors, see Sect. 2.4.1) such as
blockiness [145] have been shown to negatively affect aesthetic appeal. Similarly,
user Influence Factors such as experience, cognitive bias, and personal opinions
and memories [132] have been found to strongly condition the appreciation of the
aesthetic experience. Correlation between aesthetic ratings and familiarity with the
image subject has been reported in [110], and content recognizability (i.e., the level
of abstraction of the content) has been shown to have an influence on aesthetic
appeal in works of art [98].

Interestingly, very little work has been carried out in trying to link the aesthetic
appeal of an image to the overall Quality of the visual Experience. Nevertheless,
initial evidence exists that the aesthetic appeal of an image does influence not only
QoE, but also the judgment in terms of annoyance of impairments presented in
the image itself [144]. In this study, Redi asked a pool of participants to judge
“integrity” (namely, the traditional, impairment-related concept of visual quality)
of a set of images, including (i) a group of pristine images and (ii) a group of
images derived by those in group (i) by applying JPEG compression to them. As
a result, the images in this second group presented the same content as those in
the first one, but affected by visible compression artifacts. The pristine images of
group (i) had already been evaluated in terms of aesthetic appeal in a separate
study [145]. Redi correlated then the integrity scores of both groups of images
with the aesthetic appeal scores of the pristine ones. It was found that the integrity
judgments of the pristine images (group i) were influenced by the level of aesthetic
appeal of the image, and that the two quantities were negatively correlated (see
Fig. 2.5a). Conversely, when impairments were present (group ii, Fig. 2.5b) integrity
judgments increased as the aesthetic appeal increased. It should be mentioned that,
in instructing the participants to score aesthetic appeal, the concept of integrity
was also explicitly mentioned, and distinguished from aesthetic appeal. This may
have primed participants in (unconsciously) taking into account integrity in their
aesthetic appeal judgments, partially explaining the results found in [144]. To check
this, we repeated the analysis performed in [144], but by using a different set of
aesthetic appeal scores, obtained from study [146]. There, participants were again
asked to score aesthetic appeal, but now without reference to image integrity. The
consistency in aesthetic appeal scores between experiments [145, 146] turned out
to be 0.68. Although still acceptable in terms of predictive power of one set of
scores for the other, this number is far from correlations typically found across
experiments for e.g. impairment annoyance scores (typically, �0:9). There are
several possible reasons for this discrepancy: (1) the highly personal component
of the aesthetic appeal judgment (since different participants were used in both
experiments), (2) the difference in experimental protocol, or (3) range effects (since
only a subset of the images of the first experiment were used in the second) [149].
Despite these possible deviations, also the results of the second experiment showed
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Fig. 2.5 Relationship between aesthetic appeal and image integrity [144–146]: dependency of
integrity scores of pristine images on the aesthetic appeal level as assigned in experiment [145]
(a) and in experiment [146] (c); dependency of integrity scores of impaired (JPEG-compressed)
images on the aesthetic appeal level as assigned in experiment [145] (b) and in experiment [146] (d)

that the aesthetic appeal level had an impact on integrity [144] for both the pristine
and impaired images. Pristine images that were highly aesthetically appealing were
scored significantly lower in integrity than the others (Fig. 2.5c), whereas impaired
images with a low aesthetic appeal were scored significantly lower than the others
(Fig. 2.5d), confirming the trend identified in Fig. 2.5b. This consistency points out
how aesthetic appeal plays a role in QoE and in tolerance to impairment; as a result,
including aesthetic appeal information in QoE metrics may help in improving their
accuracy and QoE optimization thereafter.
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2.5.3 Beyond Lab-Based Studies: Methodological Shifts
for Reliable QoE Quantification

Research on QoE has relied for long (and now more than ever) on determining user
preferences with respect to the sensitivity to visual impairment through subjective
studies. The main goal of subjective testing is to sort stimuli (i.e., media) according
to their perceived properties or attributes [40] on a given scale.

Multiple psychometric methodologies have been developed with this
purpose, and adapted for the measurement of QoE in standardized conditions
[73, 82, 137, 138], and choosing the most appropriate one for a test is far from
trivial. In discriminating among methodologies, Engeldrum [40] suggests to take
into account aspects such as the confusion level within the set of stimuli and
the effort required to the participant to complete his/her task. The confusion
level is determined by how closely the test stimuli are spaced in quality. The
narrower are the quality gaps among them, the higher is the probability of inducing
confusion (disagreement, possibly inversions) in across-participants judgments.
Methods able to accurately measure the quality of stimuli with high confusion
(e.g., paired comparison) are typically unable to measure large quality gaps. The
effort required to participants to complete their task depends on the number of
judgments needed per stimulus, and hence it is related to the number of stimuli
involved. Methods requiring a high number of judgments per stimulus are not
suitable for experiments involving large datasets, as they could be prone to fatigue
and learning errors. Other desirable properties of the methods, depending on the
goal of the experiments, may be the minimization of inter-participant variability
[62] or the robustness to range effects [32] (e.g., in case results of multiple, separate
experiments need to be merged into a single set of data [141]).

2.5.3.1 Psychometric Methods for QoE Measurement

The Paired Comparison (PC) method [28, 166] is a classic psychometric technique
that allows measuring distances among stimuli in terms of just noticeable differences
(JNDs) [40]. The experimental procedure consists of asking subjects to compare
each stimulus with all other stimuli in the set. As a result, even small differences
between the stimuli can be detected. On the other hand, the judgment effort grows
as the square of the number of stimuli, hence this numbermust be limited. Moreover,
in analyzing the results, complications may arise due to the “zero and one problem”
[116], or inconsistencies in the selected model [52]. Lately, the QoE has shown
growing interest around PC, [102, 186, 187], and methods have been developed
for establishing confidence intervals to the quality scores provided by the PC
tests [186]. The double stimulus impairment scaling (DSIS) methodology [138] is
also often chosen for the assessment of visual impairments. DSIS judgments are
expressed on an interval scale (typically, a five-point categorical scale, ACR), as
a (conscious) comparison of each impaired stimulus with its undistorted version.
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Being a double stimulus method (i.e., reference and test stimuli are both shown
during the judgment), the DSIS requires a moderate effort per judgment, but still
allows the assessment of large datasets. A possible drawback of the method may
be the categorical scale used for the assessment: the boundaries among categories
(e.g., “good” and “fair”) are blurred and depend on the participant; this may result in
low inter-participant agreement [40,81]. The ACR scale is however to date the most
used method for scaling stimuli, also in a Single Stimulus setting (i.e., without an
explicit reference to be presented to the participant) [141]. Both DSIS and Single
Stimulus scaling can be performed also with numerical scales, both discrete or
continuous [68, 138]. In all these cases, the results of the tests are reported in terms
of average score per stimulus (Mean Opinion Scores), expressed in the scale used for
the experiment. These scores reflect human preference, though do not have a precise
psychophysical meaning. Indeed, the obtained scores may vary with the definition
of the scale [40], as well as with the quality range spanned by the stimuli (range
effects [32]). This suggests that comparing results of different experiments may be
problematic, possibly inducing inconsistencies when merging these data in a single,
larger dataset.

Among classic scaling methodologies, The Quality Ruler (QR) method deserves
a mention, as a middle-ground alternative between the direct scaling methodologies
(DSIS, Single Stimulus) and PC. The QR method was first described by Keelan in
[81], and subsequently adopted as an international ISO standard for psychometric
experiments for image quality estimation [82]. The core idea of the QR method is to
provide the participant with a set of reference images, anchored along a calibrated
quality scale, to compare a test image with. The task of the participant is to find the
reference image closest in quality to the test image by visual matching. Reference
images (1) depict a single scene and vary in only one perceptual attribute (i.e., blur,
blockiness, color saturation); (2) are closely spaced in quality, but altogether span
a wide range of quality. They are presented in a way that easily allows detection of
the quality difference between them, and their close spacing in quality should allow
the participant to score with higher confidence, decreasing the risk of inversions
and range effects. In practice, participants perform several comparisons reference-
test stimuli to complete a single assessment, until they find the reference stimulus
that matches the quality of the test one. The advantage of this procedure is that, as
long as the referencer stimuli are kept the same, subjective scores obtained from a
quality ruler experiment always refer to the ruler scale, and not to the quality range
spanned by the test stimuli. This minimizes range effects. Furthermore, it has been
shown that the visual matching procedure reduces inter-participant variability [141].
Unfortunately, this method has been successfully implemented for images [82,141],
but it is of hard applicability for video QoE assessment.

2.5.3.2 Subjective Testing Outside the Lab

To obtain reliable results, psychometric experiments have usually been performed
in highly controlled, standardized environments [73, 82, 137, 138], typically within



60 J.A. Redi et al.

laboratory facilities. This allowed to control for lighting and viewing position,
minimizing the effect of environmental contextual factors (see Sect. 2.4.3) and
making visibility conditions homogeneous across participants.

The evolution of multimedia technology calls now for a shift in the traditional
lab-based study paradigm. Since the advent of mobile technology (smartphones and
tablets) and Internet-based video delivery, the visual experience is now consumed in
very different environments, and should be studied within realistic usage conditions
to be properly optimized [152, 161]. Furthermore, with the acceptance of the more
encompassing definition of QoE presented in Sect. 3.3.1, where personal differences
are taken into account and need to be understood, more attention should be given
to the demographic composition of the pool of participants used in the subjective
studies. This pool should be indeed as representative as possible of existing differ-
ences in terms of user Influencing Factors (Sect. 2.4.1). Recruiting such a diverse
pool of participants may prove difficult, and the eventual amount of individuals
to be involved in the study may explode, thus making a lab-based experiment
unfeasible in terms of time consumption and cost. In this scenario, interest in
using Crowdsourcing [66] for subjective tests of QoE has grown significantly [65].
Crowdsourcing was originally conceived to outsource small and repetitive tasks
(so-called microtasks) to a multitude of people (so-called microworkers) who,
online and for a small compensation, could perform these tasks in a time- and
cost-effective way. Platforms such as Microworkers, Amazon Mechanical Turk,
and CrowdFlower were created to facilitate the recruitment of microworkers, and
soon enough it became clear that Crowdsourcing had an enormous potential for
the performance of Human Intelligence Tasks (e.g., image labeling) in Multimedia
research [36]. As a result, it became of interest for subjective QoE assessment
as well. Compared to traditional subjective QoE assessment in a controlled lab
environment, which is time-consuming and high-cost, Crowdsourcing tasks can be
accomplished within a few minutes and do not require a long-term employment
of the participants. More importantly, Crowdsourcing gives the opportunity to
collect data from populations with very diverse demographics, enabling therefore
the investigation of User Influencing Factors in QoE judgments [65, 170].

Nevertheless, Crowdsourcing still has some challenges ahead. Besides the reli-
ability issues related to payment scheme, worker selection, and ease of sloppiness
in carrying out the experimental task, which are extensively discussed in [65], there
are a few other points that should be made. First, Crowdsourcing tasks should be
fairly short (up to 10min) to avoid boredom and unreliable behavior. Traditional
QoE tests typically involve tens or hundreds of stimuli, requiring participants to
score for much longer timespans (typically between 30min and 1 h). Thus, to collect
QoE scores for a large set of stimuli, experimenters usually have to decompose the
scoring task in a set of smaller tasks (i.e., campaigns), each one including a sub-
set of the stimuli. Although it is common practice to merge all QoE scores from
different campaigns as if they were expressed on the same QoE scale, this may be a
dangerous practice. Range as well as environmental effects [149] may occur, making
the merging meaningless. A possible solution to this is to select a number of stimuli
to be scored in all campaigns [147]. If carefully chosen (e.g., some with excellent
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quality, others with very low quality), these stimuli can function as anchors for the
scoring scale, limiting range effects; furthermore, they can be used for realignment
purposes.

It should also be considered that, by dividing the traditional design over many
people, we intrinsically generate mixed-subjects designs. So, it may be the case
that the measurements themselves lose in accuracy, because one cannot fully
exploit within-subjects variance. An interesting solution to that has been recently
proposed in [187, 188], which involves randomized paired comparison [38] to
accommodate incomplete and imbalanced data. Paired Comparison has been found
to be an effective methodology for measuring QoE via crowdsourcing, due to
the simplicity of the task [102] and the availability of tools for the analysis of
incomplete preference matrices. Furthermore, it has been shown to be a suitable
methodology for embedding worker reliability checks [22, 102, 189]. This property
is especially desirable for crowdsourcing, given that the trustworthiness of workers
is often doubtful and that, due to the lack of supervision, workers responses may
be inaccurate or erroneous (see also [65]). On the other hand, for scaling large sets
of stimuli (in the order of hundreds), the applicability of paired comparison is still
limited, as the number of pairs to be judged may be intractable also for such a far-
outreaching methodology. Finally, although this may be partially compensated by
the larger demographic spread, it should be considered that at the present stage
Crowdsourcing attracts only a subset of the population, leaving out, e.g., elderly
people (who, for the time being, cannot master the technology).

Conclusion
Although subjective assessment of QoE has been investigated for over 50
years, this field is in continuous expansion. In this chapter we documented
the evolution of the impairment-sensitivity centric understanding of QoE
to a more encompassing one, which takes into account both attributes
of the experience and external influencing factors that modulate the user
appreciation for a specific delivered media. In a world where media fruition
is tightly related to social networks and social media, as well as to immersive
but also mobile viewing systems, the user cannot be considered as a simple,
passive observer anymore. Users are active agents which interact with the
system, e.g., selecting the content and/or the modality with which they desire
the media to be delivered. As a result, and as we documented in this chapter,
elements such as visual semantics, user personality, preferences and intent,
social and environmental context of media fruition also concur to the final
experience assessment. While (theoretical) models of QoE appreciation exist
that take these elements into account, in practice little is known, still, on how
attributes of the experience combine into a final QoE judgment and how
external factors influence this combination. Similarly, light still needs to be

(continued)
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shed on the cognitive and affective processes that underlie viewing experience
appreciation. Subjective quality assessment is therefore now more than ever a
core element in pushing forward the research on QoE optimization. Empirical
studies are needed to unveil and thoroughly understand the mechanisms
underlying the interplay between attributes and influencing factors of viewing
experiences, and existing as well as new methodologies will have to be
deployed towards that goal. Methods designed for studying affect, human–
machine interaction, as well as human cognitive processing will have to be
adopted by the QoE community and integratedwith existing subjective quality
measurement tools to properly quantify viewing experiences in their context
of usage. Moreover, these methods will have to be adapted to be deployed in
large scale experiments that reach out to big amounts of users world-wide, by
means of web-based technologies such as crowdsourcing. A different type
of adaptation will also be necessary to perform subjective studies in less
controllable but more realistic contexts of usage. Data analysis techniques will
also have to be upgraded to allow the merging of heterogeneous data derived
from lab-, real world-, and web-based studies. Content metadata as well as
user/context information retrievable in Internet (e.g., social media profiles,
or textual comments to media material) will also provide useful information
to better understanding of user preferences. Finally, appropriate modeling
tools will have to be deployed to construct, based on the abovementioned
information, an accurate, encompassing model of Quality of Viewing Expe-
rience appreciation that could steer a better delivery of the richness of digital
multimedia content that is available nowadays.
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Göte Nyman. Content and quality: Interpretation-based estimation of image quality. ACM
Transactions on Applied Perception (TAP), 4(4):2, 2008.

135. Benjamin Rainer, Markus Waltl, Eva Cheng, Muawiyath Shujau, Christian Timmerer, Stephen
Davis, Ian Burnett, Christian Ritz, and Hermann Hellwagner. Investigating the impact
of sensory effects on the quality of experience and emotional response in web videos.
In Quality of Multimedia Experience (QoMEX), 2012 Fourth International Workshop on,
pages 278–283. IEEE, 2012.

136. JC Read, SJ MacFarlane, and Chris Casey. Endurability, engagement and expectations:
Measuring children’s fun. In Interaction design and children, volume 2, pages 1–23. Shaker
Publishing Eindhoven, 2002.

137. ITU-R BT Recommendation. 2021, subjective methods for the assessment stereoscopic 3dtv
systems. International Telecommunication Union, Geneva, Switzerland, 2012.

138. ITURBT Recommendation. 500-11, methodology for the subjective assessment of the quality
of television pictures. International Telecommunication Union, Geneva, Switzerland, 4:2,
2002.

139. ITUT Recommendation. E. 800: Terms and definitions related to quality of service and
network performance including dependability. ITU-T 2008, 2008.

140. Judith Redi, Ingrid Heynderickx, Bruno Macchiavello, and Mylene Farias. On the impact of
packet-loss impairments on visual attention mechanisms. In Circuits and Systems (ISCAS),
2013 IEEE International Symposium on, pages 1107–1110. IEEE, 2013.

141. Judith Redi, Hantao Liu, Hani Alers, Rodolfo Zunino, and Ingrid Heynderickx. Comparing
subjective image quality measurement methods for the creation of public databases. In
IS&T/SPIE Electronic Imaging, pages 752903–752903. International Society for Optics and
Photonics, 2010.

142. Judith Redi, Hantao Liu, Paolo Gastaldo, Rodolfo Zunino, and Ingrid Heynderickx. How to
apply spatial saliency into objective metrics for jpeg compressed images? In Image Processing
(ICIP), 2009 16th IEEE International Conference on, pages 961–964. IEEE, 2009.

143. Judith Redi, Hantao Liu, Rodolfo Zunino, and Ingrid Heynderickx. Interactions of visual
attention and quality perception. In IS&T/SPIE Electronic Imaging, pages 78650S–78650S.
International Society for Optics and Photonics, 2011.

144. Judith A Redi. Visual quality beyond artifact visibility. In IS&T/SPIE Electronic Imaging,
pages 86510N–86510N. International Society for Optics and Photonics, 2013.

145. Judith A Redi and Ingrid Heynderickx. Image integrity and aesthetics: towards a more encom-
passing definition of visual quality. In IS&T/SPIE Electronic Imaging, pages 829115–829115.
International Society for Optics and Photonics, 2012.

146. Judith A Redi and Isabel Povoa. The role of visual attention in the aesthetic appeal of
consumer images: A preliminary study. In Visual Communications and Image Processing
(VCIP), 2013, pages 1–6. IEEE, 2013.

147. Judith Alice Redi, Tobias Hoßfeld, Pavel Korshunov, Filippo Mazza, Isabel Povoa, and
Christian Keimel. Crowdsourcing-based multimedia subjective evaluations: a case study on
image recognizability and aesthetic appeal. In Proceedings of the 2nd ACM international
workshop on Crowdsourcing for multimedia, pages 29–34. ACM, 2013.



70 J.A. Redi et al.

148. Ulrich Reiter and Katrien DeMoor. Content categorization based on implicit and explicit user
feedback: combining self-reports with eeg emotional state analysis. In Quality of multimedia
experience (QoMEX), 2012 fourth international workshop on, pages 266–271. IEEE, 2012.

149. Huib Ridder and Serguei Endrikhovski. 33.1: Invited paper: image quality is fun: reflections
on fidelity, usefulness and naturalness. In SID Symposium Digest of Technical Papers,
volume 33, pages 986–989. Wiley Online Library, 2002.

150. Raimund Schatz, Siegfried Wagner, Sebastian Egger, and Norbert Jordan. Mobile tv becomes
social-integrating content with communications. In Information Technology Interfaces, 2007.
ITI 2007. 29th International Conference on, pages 263–270. IEEE, 2007.

151. Jose A Scheinkman. Social interactions. The New Palgrave Dictionary of Economics, 2,
2008.

152. Dimitri Schuurman, Katrien De Moor, Lieven De Marez, and Tom Evens. A living lab
research approach for mobile tv. Telematics and Informatics, 28(4):271–282, 2011.

153. Eric WK See-To, Savvas Papagiannidis, and Vincent Cho. User experience on mobile video
appreciation: How to engross users and to enhance their enjoyment in watching mobile video
clips. Technological Forecasting and Social Change, 79(8):1484–1494, 2012.

154. Helge Seetzen, Wolfgang Heidrich, Wolfgang Stuerzlinger, Greg Ward, Lorne Whitehead,
Matthew Trentacoste, Abhijeet Ghosh, and Andrejs Vorozcovs. High dynamic range display
systems. In ACM Transactions on Graphics (TOG), volume 23, pages 760–768. ACM, 2004.

155. Pieter Seuntiens, Lydia Meesters, and Wijnand Ijsselsteijn. Perceived quality of compressed
stereoscopic images: Effects of symmetric and asymmetric jpeg coding and camera separa-
tion. ACM Transactions on Applied Perception (TAP), 3(2):95–109, 2006.

156. Pieter Seuntiens, Ingrid Vogels, and Arnold van Keersop. Visual experience of 3d-tv with
pixelated ambilight. Proceedings of PRESENCE, 2007, 2007.
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movements be quantitatively applied to image quality studies? In Proceedings of the third
Nordic conference on Human-computer interaction, pages 335–338. ACM, 2004.

175. Demin Wang, Filippo Speranza, Andre Vincent, Taali Martin, and Phil Blanchfield. Toward
optimal rate control: a study of the impact of spatial resolution, frame rate, and quantization
on subjective video quality and bit rate. In Visual Communications and Image Processing
2003, pages 198–209. International Society for Optics and Photonics, 2003.

176. Junle Wang, Damon M Chandler, and Patrick Le Callet. Quantifying the relationship between
visual salience and visual importance. In IS&T/SPIE Electronic Imaging, pages 75270K–
75270K. International Society for Optics and Photonics, 2010.

177. Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality
assessment: from error visibility to structural similarity. Image Processing, IEEE Transactions
on, 13(4):600–612, 2004.

178. Zhou Wang and Xinli Shang. Spatial pooling strategies for perceptual image quality
assessment. In Image Processing, 2006 IEEE International Conference on, pages 2945–2948.
IEEE, 2006.

179. Andrew B Watson. Efficiency of a model human image code. JOSA A, 4(12):2401–2417,
1987.

180. Ina Wechsung, Matthias Schulz, Klaus-Peter Engelbrecht, Julia Niemann, and Sebastian
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and Robert Schleicher. Making it easier for older people to talk to smart homes: the effect of
early help prompts. Universal Access in the Information Society, 9(4):311–325, 2010.



72 J.A. Redi et al.

186. Chen-Chi Wu, Kuan-Ta Chen, Yu-Chun Chang, and Chin-Laung Lei. Crowdsourcing
multimedia qoe evaluation: A trusted framework. IEEE transactions on multimedia,
15(5):1121–1137, 2013.

187. Qianqian Xu, Qingming Huang, Tingting Jiang, Bowei Yan, Weisi Lin, and Yuan Yao.
Hodgerank on random graphs for subjective video quality assessment. Multimedia, IEEE
Transactions on, 14(3):844–857, 2012.

188. Qianqian Xu, Qingming Huang, and Yuan Yao. Online crowdsourcing subjective image
quality assessment. In Proceedings of the 20th ACM international conference on Multimedia,
pages 359–368. ACM, 2012.

189. Qianqian Xu, Jiechao Xiong, Qingming Huang, and Yuan Yao. Robust evaluation for quality
of experience in crowdsourcing. In Proceedings of the 21st ACM international conference on
Multimedia, pages 43–52. ACM, 2013.

190. Kyoko Yamori and Yoshiaki Tanaka. Relation between willingness to pay and guaranteed
minimum bandwidth in multiple-priority service. In Communications, 2004 and the 5th
International Symposium on Multi-Dimensional Mobile Communications Proceedings. The
2004 Joint Conference of the 10th Asia-Pacific Conference on, volume 1, pages 113–117.
IEEE, 2004.

191. Akiko Yoshida, Volker Blanz, Karol Myszkowski, and Hans-Peter Seidel. Perceptual
evaluation of tone mapping operators with real-world scenes. In Electronic Imaging 2005,
pages 192–203. International Society for Optics and Photonics, 2005.

192. Ai Yoto, Tetsuo Katsuura, Koichi Iwanaga, and Yoshihiro Shimomura. Effects of object
color stimuli on human brain activities in perception and attention referred to eeg alpha band
response. Journal of Physiological Anthropology, 26(3):373–379, 2007.

193. H van Zee and DW Kaandorp. Kwaliteit en degradatie. ipo rapport no. 853. Technical report,
Institute for Perception Research, Eindhoven, 1992.

194. Thomas Zinner, Oliver Hohlfeld, Osama Abboud, and Tobias Hoßfeld. Impact of frame rate
and resolution on objective qoe metrics. InQuality of Multimedia Experience (QoMEX), 2010
Second International Workshop on, pages 29–34. IEEE, 2010.



Chapter 3
Recent Advances in Image Quality Assessment

Guangtao Zhai

3.1 Subjective Quality Assessment

Approximately 900 billion digital images will be taken in 2014 and this number is
expected to keep increasing every year in the future. A natural problem follows is
that the visual quality of such a great amount of photographs is hard to guarantee,
possibly due to the limitations in camera device, lighting condition, and shooting
skills. Therefore the systems to monitor, control, and improve the visual quality of
digital photographs are highly desirable [1]. Image quality assessment (IQA), due to
its capability of rating image quality in a way that approximates human judgement,
is an ideal solution to this problem.

At the most general level, IQA can be classified into subjective assessment and
objective assessment [2]. Subjective IQA is widely accepted as the most accurate
quality gauge since human eyes are the final receiver of most, if not all, visual
communication systems. Moreover, subjective IQA is also of great importance for
direct optimization of coding and other algorithms used in visual communication
systems [3, 4].

The most significant contribution of subjective IQA over the last decades is prob-
ably the construction of the IQA databases, which are consisted of digital images
with various kinds of distortions and their subjective ratings. Those databases have
greatly facilitated the research of objective IQA metrics in recent years. Examples
include Laboratory for Image & Video Engineering (LIVE) database [5], Tampere
Image Database 2008 (TID2008) [6], and Categorical Subjective Image Quality
(CSIQ) database [7], as well as four recent ones, including Tampere Image Database
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2013 (TID2013) [8], LIVE multiply distorted image database (LIVEMD) [9],
contrast-changed image quality database (CID2013) [10], and high dynamic range
image quality database (HDR2014) [11].

3.1.1 Popular IQA Databases

The LIVE database [5] was developed at University of Texas at Austin. It is consisted
of five sub-sets of 982 subject-rated images, which include 779 distorted images
created from 29 pristine ones with five types of distortions at different distortion
levels. The distortion types are: (a) JPEG2000 compression; (b) JPEG compression;
(c) White noise contamination; (d) Gaussian blur; and (e) fast fading channel
distortion of JPEG2000 compressed bitstream. The subjective test was carried out
with each data set individually. A cross-comparison set that mixes images from all
distortion types is then used to help align the subject scores across data sets [13].
The subjective scores of the overall images are then adjusted accordingly. Those
realigned differential mean opinion score (DMOS) values, ranging from �3 to 112,
are used because they are more precise than the original scores.

The TID2008 database [6] was developed as a joint international effort between
Finland, Italy, and Ukraine. It includes 1,700 distorted images generated from 25
reference images with 17 distortion categories and 4 distortion levels. The types
of distortions include: (a) Additive Gaussian noise; (b) Additive noise in color
channels; (c) Spatially correlated noise; (d) Masked noise; (e) High frequency noise;
(f) Impulse noise; (g) Quantization noise; (h) Gaussian blur; (i) Image denoising;
(j) JPEG compression; (k) JPEG2000 compression; (l) JPEG transmission errors;
(m) JPEG2000 transmission errors; (n) Noneccentricity pattern noise; (o) Local
block-wise distortions of different intensity; (p) Mean shift (intensity shift); (q)
Contrast change. The mean opinion score (MOS) values of those images are from
0.2 to 7.3.

The categorical image quality (CSIQ) database [7] was developed at Oklahoma
State University and consists of 866 images which are derived from 30 original
versions. Six distortion types (with four to five levels) were used in CSIQ,
namely JPEG compression, JPEG2000 compression, additive Gaussian white noise,
additive Gaussian pink noise, Gaussian blurring, and global contrast decrements.
The DMOS of each image ranges from 0 to 1.

3.1.2 New Quality Database

Recently, the TID2013 database [8] was released as an extension of the TID2008
database. It contains total number of 3,000 images, which were generated by
corrupting 25 original images with 24 types of distortion at 5 different levels.
The distortions include the abovementioned 17 types [(a)–(q) in TID 2008] and
(r) Change of color saturation; (s) Multiplicative Gaussian noise; (t) Comfort noise;
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Fig. 3.1 The sample image “mountain chalet” in the TID2013 database: (a) original; (b) change
of color saturation; (c) Multiplicative Gaussian noise; (d) comfort noise; (e) lossy compression
of noisy images; (f) image color quantization with dither; (g) chromatic aberrations; (h) sparse
sampling and reconstruction

Fig. 3.2 The sample image “babygirl” in the LIVEMD database: (a) original; (b) blur & JPEG;
(c) blur & noise

(u) Lossy compression of noisy images; (v) Image color quantization with dither;
(w) Chromatic aberrations; (x) Sparse sampling and reconstruction. In Fig. 3.1, we
show an example image and its distorted versions with the latterly introduced seven
distortion types. The MOS values of the whole images were acquired via paired
comparison assessment and range from 0.2 to 7.3.

Those above introduced IQA databases covered many types of distortions.
However, in real-world image processing systems, different distortions tend to occur
together, e.g. noisy and blurry images. This multiple distortion problem causes
difficulty even for many IQA metrics that are very successful for single type of
distortion. To investigate this problem, a subjective study in [9] was conducted
to obtain human judgements on images corrupted by two distortion scenarios:
(1) image storage: where images are first blurred and then compressed by a JPEG
encoder; (2) camera image acquisition: where images are first blurred due to defocus
and then corrupted by white Gaussian noise. In each of the two scenarios, a group
of 225 images (135 multiply distorted images and 90 singly distorted images) were
generated from 15 original ones. Examples of multiply corrupted images are given
in Fig. 3.2.
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If we study the average performance of existing IQA metrics for each type of
those mentioned distortions, it can be found that one specific type of distortion,
namely contrast change, poses the most prominent challenge. TID2008 was the
first database to include contrast related image subsets (contrast change and mean
luminance shift) and the original images were taken from the Kodak database [12].
The CSIQ database also contains contrast-changed images created from 30 sources
spanning a wide range of contents and scenes. It is easy to imagine that for a
given original image, proper contrast enhancement can lead to improved perceptual
quality, which however conflicts with the increased distance between the original
and enhanced images. In other words, if it is assumed that the original image has the
best quality, then no contrast change can further enhance the quality. On the other
hand, most of those original images are not always of perfect contrast. Therefore,
IQA of contrast changed images proves to be difficult for most state-of-the-art
quality metrics. The contrast related image subsets in TID2008, CSIQ, and TID2013
are relatively small and this further restricts the study of the topic. Recently, a
dedicated and more comprehensive database for contrast changed images CID2013
[10] were introduced. CID2013 consists of 15 natural images taken from Kodak
database and 400 contrast-changed versions. Two types of distortions were used,
namely mean luminance shift and contrast change. In mean luminance shift, the
original image Io is added with a positive or negative value (C4I or �4I ). The
offset 4I has six levels of f20; 40; 60; 80; 100; 120g. In contrast change, images
undergo luminance mapping, using either concave arc, convex arc, cubic or logistic
function. The transfer curves and some example images are shown in Figs. 3.3
and 3.4.

High dynamic range (HDR) imaging has attracted a lot of attention and enthusi-
asm in the last decade. With quick advances of sensor technologies, even consumer
level digital cameras are capable of capturingHDR images. However, a vast majority
of nowadays displays still only support 8-bit color depth, and this leads to the widely
studied problem of showing HDR images on low dynamic range (LDR) devices
or tone mapping. On the other hand, the emergence of 10- or more bit display
devices brings the possibility of direct visualization of those HDR images. So a
natural question to ask is whether existing popular image quality metrics designed
for and validated on LDR (8-bit) images perform equally well for HDR (10-bit)
images. In [11] a new and dedicated HDR image quality database (HDR2014)

Fig. 3.3 Four kinds of transfer mappings in CID2013: (a) concave arcs; (b) convex arcs; (c) cubic
functions; (d) logistic functions
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Fig. 3.4 Representative images in the CID2013 database. (a) Mean-shifted images. (b) Concave
arcs transferred images. (c) Convex arcs transferred images in CID2013. (d) Cubic functions
transferred images. (e) Logistic functions transferred images

was proposed. That HDR2014 database consists of 192 images with four kinds
of distortions applied on six reference images. More specifically, eight distortion
levels for the artifacts of JPEG/JPEG2000 compression, white noise injection, and
Gaussian blurring were used. Twenty-five inexperienced viewers were involved in
the subjective viewing test. Images were displayed on a pair of carefully calibrated
8-bit LDR and 10-bit HDRmonitors and the subjective scores on both of which were
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Fig. 3.5 The six original HDR images from websites

recorded. Then some ubiquitous and state-of-the-art IQAmetrics were tested on that
database. Experimental results show that HDR monitor indeed improved perceptual
quality of the visual stimuli, as compared to LDR ones. And several existing IQA
metrics are still doing well on HDR images, yet performance of some metrics drops
significantly. In Fig. 3.5, six original HDR images are exhibited.

3.2 Objective Quality Assessment

Subjective IQA, despite being the most accurate, is often slow, expensive, and
laborious, and thus not suitable for the quantification and optimization of real-
world visual communication systems. Therefore, many researchers have devoted
to the exploration of objective IQA algorithms. Objective metrics can be further
divided into three types depending on the availability of the reference image to be
compared with during the tests, namely (1) full-reference, FR-IQA; (2) reduced-
reference, RR-IQA; (3) no-reference, NR-IQA. Some representative FR/RR/NR-
IQA algorithms will be briefly reviewed in this section.

3.2.1 Classic Quality Metrics

The mean-squared error (MSE) and peak signal-to-noise ratio (PSNR) are the most
widely known quality measures, and have been used ubiquitously as quality criterion
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in visual communication system up to date. The MSE essentially measures the
energy difference between a distorted visual signal d and the ideal one r, and PSNR
is a close relative of MSE,

MSE D 1

N
jjr � djj2 PSNR D 10 log10.

L2

MSE
/ (3.1)

where N is the pixel number in the image and L is the maximum dynamic range.
For standard 8-bit images/videos, L equals to 255.D 28 � 1/. It is easy to find
that MSE/PSNR is of very clear physical meanings and easy to compute, but
they completely ignore the substantially influence of the pixel location and image
contents on quality evaluation, which makes them poorly correlate with the human
judgement of image quality, or the MOS [2].

To address the weakness of MSE/PSNR, Wang et al. considered location
information during quality assessment, and introduced the universal quality index
(UQI) [14]. Later Wang et al. improved UQI and proposed a simple yet effective
IQA metric called structural similarity (SSIM) index [15]. SSIM was based on a
reasonable hypothesis that human visual perception is highly adapted for extracting
structural information from a scene. The SSIM metric compares the luminance,
contrast, and structural similarities as follows:

SSIM D 1

M

MX

iD1

SSIM–MAP.ri; di/

D 1

M

MX

iD1

l.ri ; di / � c.ri ; di / � s.ri ; di / (3.2)

where M is the number of local windows in the image and l , c, and s stands
for luminance, contrast, and structural similarity, respectively. SSIM was shown to
outperformMSE/PSNR with a seizable margin on the LIVE database [5].

3.2.2 FR-IQA

Despite the successfulness of SSIM on the LIVE database, its performance is
far from ideal, especially on those new IQA databases such as TID2008, CSIQ,
and TID2013. A large quantity of FR-IQA approaches, including many improved
SSIM-type of methods [16–39], have been proposed in the last decade and have
achieved remarkable improvement in terms of prediction accuracy.
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3.2.2.1 Scale Transform-Based FR-IQA

It is easy to imagine that the perceived quality of an image heavily depends
upon the viewing distance. So IQA will also benefit from multi-scale analysis,
which is an effective tool for various image processing tasks. Multi-scale SSIM
(MS-SSIM) [16] proposed to perform SSIM on different levels and fuse the results
with psychophysically determined weights. In [17], it was found that using different
scale transform coefficients for each component (luminance, contrast, and structure)
in SSIM achieves further performance gain. Also, it was noticed that the information
from contrast (variance) and structure (covariance) have greater importance than the
luminance term in determining the final quality. This can be explained by the fact
that human eyes adapt well to luminance changes [18].

Obviously, the ideal scale or level for IQA depends on both the viewing
distance and image resolution. A simply yet effective self-adaptive scale transform
(SAST) [19] was proposed to simulate the spatial filtering mechanism of the human
visual system (HVS). The basic idea is to estimate the suitable scaling parameter
from image resolution and viewing distance. Instead of operating in the spatial
domain, another recent work [20] relies on discarding part of image details by
adaptive high-frequency clipping (AHC) in the discrete wavelet transform (DWT)
domain.

3.2.2.2 Saliency-Based FR-IQA

Visual attention is a fundamental property of the HVS and therefore integration of
a saliency detection stage into IQA metrics usually leads to improved performance.
Early attempts used eye fixation or visual region-of-interest detection data during
the pooling stage. WSSIM [21] weights SSIM with saliency map for the LIVE
database. And recently the eye fixation maps for other popular image quality
databases were provided in [22].

It is apparent that distortion or artifacts also attract visual attention. So using the
original image alone for saliency detection is not enough. A newly proposed metric
SNW-SSIM [23] combined saliency features from both the original and distorted
images with a nonlinear model [24]. This combined saliency map also leads to
performance gain of IQA metrics.

Recently proposed statistical information-content weighted SSIM (IW-SSIM)
[25] achieved good performance and become currently the de facto benchmark for
pooling-type of IQA methods. The information content weighting map is computed
from the natural scene statistics (NSS) model [26]. A recent interesting finding is
that local similarity estimated using IQA metrics directly is also good for weighting
IQA metrics themselves [27]. For example, the structural similarity weighted SSIM
(SW-SSIM) [27] has outperformed SSIM substantially.
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3.2.2.3 Gradient Magnitude-Based FR-IQA

In recent years, many researchers have realized the significance of low-level features
in the IQA. For example, the feature similarity index (FSIM) [28] uses phase
congruency and gradient magnitude to characterize the local image quality. And the
gradient similarity index (GSIM) [29] measures the changes of gradient similarity
of images. Gradient magnitude similarity deviation (GMSD) was proposed in [30].
It was pointed out that the spatial distribution of distortion levels has impact on
perceptual quality, i.e. unevenly distributed of distortion degrades visual quality
more severely and a local-tuned-global model using gradient information was
proposed in [31]. The metric in [31] adopted the Scharr operator [32], which is
essentially convolution and the gradient magnitude (GM) is computed as

G D
q

G 2
h C G 2

v (3.3)

where Gh and Gv are the partial derivatives of the input image along horizontal
and vertical directions using the Scharr operator. A similarity measure that has
the merits of being symmetric, bounded and having unique maximum [15] is then
used to quantify the difference between GM maps of the original image r and its
contaminated version d

Gm.r; d/ D 2Gr � Gd C C1

G2
r C G2

d C C1

(3.4)

where Gr and Gd indicate the GM of the original and distorted images, and C1 is a
positive constant introduced for numerical stability. Simple global average pooling
can be used

Gg.r; d/ D ˚.Gm/ D 1

M

MX

iD1

Gm.ri ; di / (3.5)

where M is the total number of pixels in the image, and ˚ computes the mean
value. The local distortion-based pooling is then applied in a similar fashion, which
is defined by

Gl .r; d/ D ˚.Gs/ D 1

Ms

MsX

iD1

Gs.ri ; di / (3.6)

where Gs indicates the highest s% values in Gm, and Ms is the pixel numbers in Gs .
s was selected as 15 in [31]. For color images, before computing the GM, the simple
and widely used YIQ color space transform [33] can be adopted
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where Y conveys the luminance information, and I and Q contain the chrominance
information. Y is used to computeGl and Gg based on Eqs. (3.5)–(3.6), I and Q are
used to measure the distinction of chrominance between the original and distorted
images

Im.r; d/ D 2Ir � Id C C2

I 2
r C I 2

d C C2

Qm.r; d/ D 2Qr � Qd C C2

Q2
r C Q2

d C C2

(3.8)

where Ir and Id (and Qr and Qd) represent I (Q) chromatic channels of images
r and d, and C2 is similar to C1. Finally, the LTG model combines those
components as

LTG.r; d/ D ˚.G
�1
s /

˚.G
�2
m /

� ˚.I �3
m � Q�3

m / (3.9)

where �1, �2, and �3 are model parameters. Eq. (3.9) can be approximated as

LTG.r; d/ � ˚.G
�1
s /

˚.G
�1
m /

� ˚.G
�0

2
m / � ˚.I �3

m � Q�3
m / (3.10)

where �0
2 D �1 ��2 >0. The first term indicates that, for different images having the

same Gg value, more uneven distribution of distortions will result in worse quality.
The second term represents the global quality. And the last term is the measure of
difference in the chrominance information.

3.2.2.4 Other Model-Based FR-IQA

Visual information fidelity (VIF) [34] was defined as the ratio of the mutual
information between the original and distorted images to the information content
of the original image itself. In [35,36], IQA metrics GES and LGPS were proposed
in the Gabor transform domain. Most apparent distortion (MAD) [37] works with
the detection- and appearance-based strategies. The brain theory and neuroscience
were found to be effective in the IQA design, e.g. internal generative mechanism
(IGM) [38]. This model classifies an input image into the predictable and disorder
regions, before using psychophysical parameters [16] to pool the modified PSNR
and SSIM values of two regions above. Very recently, Zhang et al. proposed the
Image quality model based on phase and amplitude differences (IPAD) [39] through
the analysis of both amplitude and phase.
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3.2.3 RR-IQA

As a tradeoff between FR and NR IQA, RR IQA supposes that only partial
information of the original image is available. Friston et al. proposed the free energy
principle to explain and unify several brain theories in biological and physical
sciences about human action, perception, and learning [40, 41]. Similar to the
Bayesian brain hypothesis [42] that has been widely used in ensemble learning,
the free energy principle makes a basic assumption that the cognitive process is
controlled by an internal generative model in the human brain. With this generative
model, the human brain can predict those encountered scenes in a constructive
manner.

The internal generative model is essentially a probabilistic model that can be
separated into a likelihood term and a prior term. Visual perception is then to
invert this likelihood term, in order to infer the posterior possibilities of the given
scene. It is natural that there always exists a gap between the encountered scene
and brain’s prediction, because the internal generative model cannot be universal.
The gap between the external input and its generative-model-explainable part is
closely related to the visual quality of perceptions, and can be used in IQA. A free
energy based distortion metric (FEDM) that simulates the internal generative model
of human brain was proposed in [43].

It is assumed that the internal generative model G is parametric for visual
perception, and the perceived scenes can be explained by adjusting the vector �

of parameters. Given an input signal I , its “surprise” (determined by entropy) is
evaluated by integrating the joint distribution P.I; � jG / over the space of model
parameters �

� log P.I jG / D � log
Z

P.I; � jG /d�: (3.11)

We then introduce a dummy term Q.� jI / into both the denominator and numerator
in Eq. (3.11) to derive:

� log P.I jG / D � log
Z

Q.� jI /
P.I; � jG /

Q.� jI /
d�: (3.12)

Using the Jensen’s inequality, we can easily obtain the following relationship from
Eq. (3.12):

� log P.I / � �
Z

Q.� jI / log
P.I; �/

Q.� jI /
d�: (3.13)

The upper bound of the right-hand side in Eq. (3.13) is called “free energy”

F.�/ D �
Z

Q.� jI / log
P.I; �/

Q.� jI /
d�: (3.14)
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It is clear that the free energy is a discrepancy measure between the input image
and its best explanation inferred by the internal generative model, and it thereby
presents itself as a natural proxy for psychically quality of images. A perceptual
distance between the reference image r and its distorted counterpart d can be defined
as the absolute difference of the two images in free energy as

FEDM.r; d/ D ˇ
ˇF. O�r / � F. O�d /

ˇ
ˇ (3.15)

with

O�r D arg min
�r

F .� jG ; r/;

O�d D arg min
�d

F .� jG ; d/:

The G was chosen to be the linear AR model for its ability to approximate a wide
range of natural scenes by varying its parameters and for its simplicity. The AR
model is defined as

xn D 	k.xn/ � 
 C "n (3.16)

where xn is a pixel in question, 	k.xn/ is a vector consisting of k nearest neighbors
of xn, 
 D .
1; 
2; : : : ; 
k/T is a vector of AR coefficients, and "n is additive
Gaussian noise term with zero mean. So the free energy of the reference image r is
quantified by the entropy between itself and the predicted version

R.xn/ D 	k.xn/ � 
est (3.17)

where 
est is the optimal solution of AR coefficients for xn estimated with the least
square method. The free energy of the distorted image d can be computed in a
similar fashion.

RR entropic-difference indexes (RRED) [44] and Fourier transform based quality
measure (FTQM) [45] were proposed in DWT and discrete Fourier transform (DFT)
domains. There also exist some SSIM based methods, e.g. RR-SSIM [46] and
structural degradation model (SDM) [47]. The SDM was developed according to
an observation that, for most images with various types of distortions, their low-
pass filtered version will have different degrees of spatial frequency decrease.
This observation reveals one limitation of SSIM that it is not able to distinguish
different distortion types. The SDM solves this problem by measuring the similarity
between the structural degradation information of original and distorted images, and
thus achieves higher IQA performance. Following the definition of local statistics in
SSIM [15], �I and �I denote local mean and variance of d with a 2D circularly
symmetric Gaussian weighting function w D fw.k; l/jk D �K; : : : ; K; l D
�L; : : : ; Lg, which satisfies sum.w/ D 1 and var.w/ D 1:5 (sum.�/ and var.�/
compute sum and variance). N�d and N�d have the same definitions except that the
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impulse function was used instead of the Gaussian weighting function. Then, the
structural degradation information is given by

Sa.d/ D E.
�.�d N�d/ C C1

�.�d/�. N�d/ C C1

/ (3.18)

Sb.d/ D E.
�.�d N�d/ C C1

�.�d/�. N�d/ C C1

/ (3.19)

where E.�/ is a direct average pooling, �.�d N�d/ and �.�d N�d/ represent the local
covariance similar to the definition in SSIM [15], and C1 is a small constant to
avoid dividing by zero.

3.2.4 NR-IQA

Both FR and RR IQA rely on information of the original images, which would
be difficult, if not impossible to get at the user-end of the real world visual
communication systems. To address this problem, many NR or blind IQA metrics
were proposed during the last decade. Wang et al. designed a simple yet effective
JPEG quality estimator [48] by quantifying the blockiness and blur level through
checking the zero-crossing rate and the average absolute diversity between in-block
image samples. For the artifact of additive noise, these years have witnessed the
emergence of a number of blind noise estimation algorithms [49–51]. In [52],
a quality model was proposed with a pair of edge detectors for vertical and
horizontal directions. In [53], the authors computed the edge width in 8�8 blocks
to measure the just-noticeable blur (JNB) factor. Inspired by the successfulness of
JNB, the cumulative probability of detecting blur (CPDB) algorithm [54] predicts
image sharpness by calculating the probability of blurriness at each edge location.

NR perceptual sharpness metrics also exist. In [55], the authors combined spatial
and transform-based features to induce a hybrid approach, called spectral and
spatial sharpness (S3). Specifically, the slope of the local magnitude spectrum
and total variation is used to form a sharpness map, and then the scalar index of
(S3) is computed as the average of the 1% highest values in that sharpness map.
A transform-based fast image sharpness (FISH) method [56] was introduced based
on the evaluation of log-energies in high-frequency DWT subbands followed by a
weighted average. Recently, Feichtenhofer et al. developed a perceptual sharpness
index (PSI) [57] by analyzing the edge slopes before integrating an acutance
measure to model the influence of local contrast information on the perception to
image sharpness. In [58], Wang et al. analyzed the local phase coherence (LPC)
and pointed out that the phases of complex wavelet coefficients constitute a highly
predictable pattern in the scale space in the vicinity of sharp image features, and
furthermore, the LPC structure was found to be disrupted by image blur. Based on
this idea, Hassen et al. designed a valid LPC-based sharpness index (LPC-SI) [59].
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Note that those above reviewed blind IQA metrics are distortion-specific.
General-purpose NR IQA has also been intensively studied in recent years.
The general-purpose NR IQA can be mainly categorized into two types. The first
type extracts effective features from distorted images then adopts a regression
process. Examples include NSS based DIIVINE [60], BLIINDS-II [61], and
BRISQUE [62] which conducted IQA in DWT, DCT, and spatial domain,
respectively.

The NFSDMmetric was proposed with an alternative features extraction method
[63] that systematically integrates two effective RR FEDM [43] and SDM [47]
to eliminate the demand of reference images. Specifically, it will be shown that
there exists an approximate linear dependence between the structural degradation
information and the free energy feature of natural images. Thirty randomly selected
images from the Berkeley database [64] have been used to validate the linear
dependence [63]. The advantage of using Berkeley database is that the contents
are different from existing IQA databases [5–8] which will be used to testify the
IQA metrics. The scatter plot of structural degradation information OSs.r/ LSs.r/

(s D fa1; a3; a5; b1; b3; b5g) vs. the free energy featureF.r/ of those 30 test images
are shown in Fig. 3.6. The linear dependence between the free energy feature and the
structural degradation information provides an opportunity to characterize distorted
images without original image information. A linear regression model can be used

F.r/ D ˛s � OSs.r/ C ˇs (3.20)

F.r/ D �s � LSs.r/ C �s (3.21)

where ˛s , ˇs , �s , and �s can be estimated with least square method, and the results
are listed in Table 3.1.

Then we utilize cSSs D F.d/�.˛s � OSs.d/Cˇs/ and LSSs D F.d/�.�s � LSs.d/C�s/

to reduce the dependence of original references, due to the fact that both cSSs andLSSs values of high-quality images (with few distortions) are close to zero, whereas
they will be far from zero when distortions become larger. Consequently, we define
the first set of twelve features as follows:

(
f01�f06 W cSSs s D fa1; a3; a5; b1; b3; b5g
f07�f12 W LSSs s D fa1; a3; a5; b1; b3; b5g :

Additionally, the NFEQM correlates well with human ratings on noise and blur
images, so we use F.d/ as the last feature f13 for NR IQA.

The second class of general-purpose NR IQA metrics operates without human
ratings. For instance, natural image quality evaluator (NIQE) [65] was developed
to estimate the deviations from statistical regularities observed in natural images
without any prior knowledge of image contents or distortion types. And quality-
aware clustering (QAC) [66] works by learning a set of quality-aware centroids to
act as a codebook to compute the quality levels of image patches and infer the quality
score of the overall image.
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Fig. 3.6 Scatter plots of the structural degradation information OSs.r/ and LSs.r/ (s D
fa1; a3; a5; b1; b3; b5g) vs. the free energy feature F.r/ on 30 images in Berkeley database [64].
(a) OSa1.r/; (b) LSa1.r/; (c) OSa3.r/; (d) LSa3.r/; (e) OSa5.r/; (f) LSa5.r/; (g) OSb1.r/; (h) LSb1.r/; (i) OSb3.r/;
(j) LSb3.r/; (k) OSb5.r/; (l) LSb5.r/

Table 3.1 The estimates of
parameters ˛s , ˇs , �s and �s

for OSs and LSs

(s D fa1; a3; a5; b1; b3; b5g)
using the least square method

˛s ˇs �s �s

OSa1 �13.279 15.194 OSb1 �13.326 15.236
OSa3 �7.9861 8.2961 OSb3 �8.0013 8.3093
OSa5 �13.019 14.988 OSb5 �13.096 15.051
LSa1 �7.8427 8.3219 LSb1 �7.8451 8.3282
LSa3 �12.399 14.808 LSb3 �12.378 14.795
LSa5 �6.768 7 8.1662 LSb5 �6.8255 8.1973
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3.3 Emerging Direction in Quality Assessment

3.3.1 Comparative IQA

It is a straightforward task for human observers to judge the relative quality of two
visual signals of the same content, but subject to different type/level of distortions.
We call this process the comparative IQA (C-IQA). In existing study, the FR and
RR IQA methods both need the prior knowledge of the original images while the
NR algorithms usually work with a single input image. The CP-IQA approach is
inherently different from FR, RR, and NR methods in that it takes as input an
image pair and predicts their relative quality without using any knowledge about
the original image, as shown in Fig. 3.7.

This C-IQA problem remains a difficult challenge for the current IQA research.
To solve this problem, a free energy model based C-IQA approach was proposed
to predict the relative perceptual quality of a pair of images with different artifact
types/levels [67]. The C-IQAmodel is designed to emulate the process of comparing
the relative quality of two visual stimuli as performed by the HVS within the
framework of free energy minimization. The brain’s generative models initialized
on the inputs are used to explain the two images. And their relative quality can
then be determined through comparing the free energy level of this model-data
fitting process. As exemplified in Fig. 3.8, FIi !Ij represents the free energy that is
computed between the image Ii and the restored image using the generative model
derived from the image Ij for restoration. A computationally efficient solution to
the proposed C-IQA scheme based on a linear autoregressive image model was
also introduced and has shown to achieve about 98% accuracy in line with the

Fig. 3.7 An example to show the difference and connection between C-IQA and FR-/NR-IQA
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Fig. 3.8 Comparative image quality assessment of I1 and I2 via free energy comparison

subjective ratings when applied on over 300,000 image pairs sampled from the LIVE
database, outperforming FR PSNR, SSIM, and some of the most advanced NR IQA
algorithms, see [67] for more details.

3.3.2 Multiply Distorted Quality Assessment

As mentioned, though many successful quality metrics, such as SSIM, were
reportedly to achieve very high accuracy for various kinds of image distortions, in
practice, multiple image distortions tend to occur together and this leads difficulty
to previous works of IQA including SSIM and variations. This problem is even
more prominent for NR IQA. The LIVEMD database [9] was released with two
groups of multiply distorted images, blur followed by JPEG compression and blur
followed by noise contamination. In [68] a FIve-Step BLInd Metric (FISBLIM) for
quality assessment of multiply distorted images was proposed using several common
image processing blocks to simulate the image perceiving process of the human
eyes. As presented in Fig. 3.9, the building blocks include scale invariant based
noise estimator (SINE) [49] for noise estimation, block-matching and 3D filtering
(BM3D) [69] for image denoising, a blur metric [52], a JPEG quality evaluator [48],
and a HVS based fusion model. It is worth highlighting that the FISBLIM method
is not training based and the performance is robust and not database-dependent.

A linear fusion model of FISBLIM is used to combine the measures of noise,
blur, and JPEG:

FISBLIM D ˛ � QN C ˇ � 
 � QB C .1 � 
/ � QJ (3.22)
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Fig. 3.9 The illustration of primary flowchart of the FISBLIM algorithm

where ˛, ˇ, 
 are model parameters, and QN , QB , QJ are objective quality
predictions for noise, blur, JPEG.

It is assumed that the HVS has the ability to directly extract noise from an image
even under multiple distortions. In other words, the measure of noise is relatively
independent of the other two distortion categories. Therefore, SINE based noise
estimation is believed to be immune to the influence of blur and JPEG. As shown in
Fig. 3.10, all the images in [9] with the four various levels of noise are represented by
red, green, blue, and black scatter plots, showing that the noise estimation is largely
robust against blur and JPEG compression.

For blur and JPEG compression, the HVS can easily distinguish one from the
other but this task is still not easy for computer algorithms. Luckily it was found
that the ratio of Bh and AJ can validly separate the JPEG and JPEG plus blurring
images from other distortion types. More specifically, BJ is computed as the mean
of jdhj and jdvj values located in the edge of all the blocks, while AJ is computed
for the 6 � 6 interior part. It is not difficult to conjecture that BJ is nearly equal to
AJ for a clean image. On the other hand, BJ is larger than AJ for a JPEG or JPEG
plus blurring image. Figure 3.11 displays the relationship between BJ and AJ for
all the multiply distorted images in [9]. Among them, red, green, blue, and black
scatter plots indicate four different levels of JPEG compression.

Note that the blur metric in [52] can be easily influenced by blockiness, because
the basic idea is to measure the spread of the edges in an image. Considering the
fact that AJ and ZJ are proposed to measure blur, it is possible to only adopt QJ
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Fig. 3.10 Scatter plots of differential MOS (DMOS) vs. SINE on LIVE multiply distorted
database. Red, green, blue, and black scatter plots represent four various levels of noise

Fig. 3.11 Scatter plots of BJ vs. AJ on LIVE multiply distorted database. Red, green, blue, and
black scatter plots correspond to four different degrees of JPEG compression
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with updated newer values of {�1, �2, �1, �2, �3} to predict the qualities of JPEG and
JPEG plus blur images. The parameter 
 that manipulates the choice of using blur
metric or JPEG metric is given by


 D
�

0 if BJ =AJ � thr
1 otherwise

: (3.23)

where thr is set as an empirical value of 1.5. As shown in Fig. 3.9, JPEG metric
will be only applied if BJ =AJ � thr is satisfied, otherwise blur metric will be
employed.

3.3.3 Contrast-Changed IQA

It is widely known that, for most natural images, appropriate contrast enhancement
can usually lead to improved subjective quality. However, contrast change has largely
been overlooked in the current research of IQA. To fill this void, a dedicated
contrast-changed image database CID2013 was proposed in [10]. As mentioned
earlier, the CID2013 database is composed of 400 contrast-changed images of 15
original natural images and theMOSs were recorded from 22 inexperienced viewers.

A novel reduced-reference image quality metric for contrast change (RIQMC)
was proposed [10]. RIQMC used entropies and order statistics of the image
histograms and outperformed some mainstream IQA methods on existing contrast
change related IQA databases.The RIQMC algorithm works in two steps: the
computation of entropy and order statistics, and a linear combination. The entropy
of an image d is computed as

H.d/ D �
255X

iD0

pi .d/ � log pi .d/ (3.24)

where pi .d/ indicates the probability density of grayscale i in the image d. And
the entropy of original image r is denoted as H.r/ following the same definition.
Then, the first order statistic or the mean of an image d is defined using a Gaussian
kernel as

F1.d/ D a1 � expŒ�.
E.d/ � a2

a3

/2� (3.25)

where a1; a2; a3 are model parameters. Besides, as inspired by the concept of
expected contrast in OCTM [70], the second order statistic term was defined in
the RIQMC algorithm as

F2.d/ D �2. Qd/ D E. Qd2/ � E. Qd/2 (3.26)
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where Qd is the image histogram. According to the neural mechanism of surface
quality perception [71], the on-center and off-center cells and an accelerating
nonlinearity in the HVS compute the subband skewness to estimate the perceptual
quality of surface. So the third order statistic (skewness) in RIQMC is computed as

F3.d/ D skewness.d/ D EŒ.d � E.d//3�

�3.d/
: (3.27)

Finally, the last fourth order statistic (kurtosis) of the histogram used in the RIQMC
algorithm can be evaluated by

F4.d/ D kurtosis.d/ D EŒ.d � E.d//4�

�4.d/
� 3: (3.28)

In the second step, a linear combination was adopted to integrate the aforemen-
tioned entropies and order statistics as

RIQMC D
4X

iD1

fi � Fi C f5 � ŒH.d/ � H.r/� (3.29)

where f1 : : : f5 and a1 : : : a3 are parameters controlling the relative importance of
each component and can be optimized for each database.

Conclusion
This chapter reviewed some representative method in subjective and objective
IQA, with emphasis on recently proposed algorithms. Some classic and new
databases for IQA were introduced in the first section. Section two focused on
objective quality metrics in the categories of full reference, reduced reference,
and no reference. Section three discussed some emerging research topics
including comparative quality assessment and quality assessment for contrast
changed images.
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Chapter 4
Quality Assessment of Mobile Videos

Manri Cheon, Soo-Jin Kim, Chan-Byoung Chae, and Jong-Seok Lee

4.1 Introduction

Recently, video consumption using mobile devices has been very popular due to
the technological advances of mobile devices capable of producing and consuming
high quality videos and high speed wireless communication networks. Many mobile
devices are now able to capture and display high definition (HD) videos. Moreover,
high speed communication technologies such as long-term evolution (LTE) are
available in service. One of the most critical issues in mobile video delivery services
is how to maximize the quality of experience (QoE) of the users for the delivered
video contents. Traditionally, quality of service (QoS) has been primarily used for
designing video communication systems, which measures the performance of the
systems using technical parameters at the application and network levels, such as
delay, bit error rate, etc. However, when systems are optimized in the perspective
of human observers, it is more appropriate to consider perceptual aspects related
to QoE rather than QoS parameters, since there exists a gap between the perceived
quality and QoS [14].

In general, various factors are involved in determining QoE of mobile videos.
Above all, since video compression is usually performed prior to transmission in
order to reduce the data rate, compression artifacts including blockiness, blurring,
and ringing are included in the delivered videos, which may degrade the perceived
quality of the videos.
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Then, failure in smooth data transmission may cause visible artifacts at the
user side, which results in different types of artifacts according to the transmission
protocol.When a protocol that does not guarantee transmission reliability, e.g., real-
time transport protocol (RTP) with user datagram protocol (UDP), is used, loss
of a data packet is typically compensated for during decoding of the video at the
user terminal via error concealment. In most cases, perfect concealment is difficult,
and thus artifacts due to imperfect concealment may become visible at the spatio-
temporal location corresponding to the lost packet and its neighbor in the video. In
comparison with the compression artifacts appearing globally in the video, packet
loss artifacts tend to remain local; the range that the artifacts appear depends on the
predictive coding structure configured during encoding. On the other hand, when a
protocol ensuring transmission reliability, e.g., transmission control protocol (TCP),
is used, retransmission is requested for the erroneous packet until it is properly
transmitted, which may make the video buffer empty. As a result, artifacts in the
temporal domain such as freezing and jitter may occur.

For adaptive video transmission, video scalability may be employed, meaning
spatial, temporal, or quality resolution can be adaptively changed during transmis-
sion [43]. When the temporal resolution, i.e., frame rate, is reduced in order to
reduce the data rate (e.g., from 30 fps to 15 fps or even lower), jerkiness artifacts
may be experienced by the user.

The communication channel status tends to change over time, and the amount
of the aforementioned artifacts specific to mobile video communications also
tends to vary over time according to the channel status. Employment of adaptive
streaming (e.g., dynamic adaptive streaming over HTTP (DASH) [72]) may also
cause temporal changes of video quality, as it allows adaptive switching between
different versions of the same content according to the channel status. Such temporal
variations of the amount and type of quality degradation may also affect perceived
quality negatively.

In summary, the quality of mobile videos is influenced by diverse factors, which
have quite different characteristics and thus affect QoE in different ways. Moreover,
several factors may be involved in simultaneously, and thus their interplay also needs
to be considered during quality assessment of mobile videos.

In order to deal with this extremely complicated issue, there have been many
researches regarding subjective and objective quality assessment of mobile videos,
which are reviewed in this article. The results of the efforts toward understanding
perceptual effects of various quality factors are surveyed in Sect. 4.2. Then, objective
quality metrics estimating perceived quality based on the subjective quality assess-
ment results are introduced in Sect. 4.3. In Sect. 4.4, publicly available databases for
mobile video quality assessment are summarized. Finally, conclusion is made along
with future challenges in Sect. 4.5.
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4.2 Subjective Quality Assessment of Mobile Videos

4.2.1 Methodology and Environment

As human subjects usually act as end users of digital contents, subjective tests are
performed to measure the perceived quality in the context of multimedia services
and applications.

Subjective experiments have to be carried out with scientific rigor. They must be
conducted in controlled environments with a significantly large number of subjects
by following a methodology suitable for the test objective, in order to ensure
reproducibility and reliability of the results. Also, the test material needs to be
carefully selected, including diverse contents spanning all quality levels evenly,
if possible. International standards provide guidelines for subjective test activities
(e.g., International TelecommunicationUnion Radiocommunication Sector [ITU-R]
BT.500-13). Many existing researches for quality assessment of mobile videos
also followed these guidelines, using desktop screens in controlled laboratory
environments. However, the mobile environments are different in various aspects
in terms of the types of used devices, the degree of concentration of users, lighting
conditions, etc., which affect the quality perception. Recent researches have been
trying to consider these in subjective quality assessment.

In [33], user-oriented subjective quality evaluation for mobile videos in its
usage contexts and comparison with a laboratory experiment were performed. The
quality evaluation was conducted in terms of acceptability (acceptable or not) and
satisfaction of quality (11-grade scale) under three different tasks and environments
following selected typical mobile videos usage situations: waiting or killing time
at the railway station, relaxing in a cafe, and taking a local bus to the predefined
location including transitions by foot. Test video sequences were encoded using
H.264/AVC and corrupted by four different transmission error rates. It was shown
that the evaluations were more favorable and less discriminative in the mobile
contexts compared to the laboratory environment: In terms of acceptability, people
accepted higher transmission error rates in the real contexts; in terms of satisfaction,
there was no significant difference of overall satisfaction ratings between the two
studies, but the score differences between the packet loss rates were smaller in the
mobile contexts than in the laboratory experiment.

Thus, the importance of considering uncontrolled experimental environments has
been increased. In [58], subjective evaluation of mobile videos watched in a natural
environment was performed. In addition to subjective video quality evaluation, the
work focused on usage patterns in a natural research context, which includes the
behavioral factors of watching mobile videos. The participants were able to watch
the videos using mobile phones when they wanted and where they wanted. User
evaluations were gathered by means of questionnaires on the device, complemented
with traditional pen and paper diaries. It was shown that most videos were watched
at home and in the afternoon and evening. In terms of the acceptability of the video
quality, there were no significant differences according to the physical context of the
users.
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Effects of the device have been investigated in several studies. Khan et al. [35]
assessed the impact of devices on video quality assessment. Subjective tests were
carried out on two devices, PC and mobile phone, using QCIF video sequences.
Test sequences were generated with a combination of parameters associated with
the access network (block error rates and mean burst lengths), H.264/AVC codec
related parameters (sender bit rates), and content types. The results showed that
MOS values obtained from PC-based tests are relatively higher than those from
mobile phone based tests in nearly all test scenarios. In [48], quality perception
on a mobile phone and a laptop was compared. Test sequences were encoded with
the H.264 baseline profile, and streamed through an emulated network with packet
loss and packet delay variation. Unlike [35], the results did not reveal any strong
evidence to conclude that devices have any impact on user perception when the
spatial resolution is fixed. Two types of devices, mobile phone and tablet, were used
for subjective quality assessment in the study of Moorthy et al. [50]. They compared
the DMOS scores for the two devices. Statistical hypothesis tests indicated that
while the results for the two cases are correlated and statistically indistinguishable,
the degree of correlation is a function of the distortion category. Specifically, for
the frame-freeze case, the perception of visual quality varies significantly as a
function of the display resolution. However, for the other types of distortion such
as compression, rate adaptation, temporal dynamics, and wireless packet loss, the
perception varies insignificantly. In [46], it was observed that subjects had different
reactions to the videos depending on the type of video scalability and the type
of devices. For example, when the video has smaller spatial resolution by video
scalability, perceived scores are better for watching in mobile phones than in tablets.

There exist studies about the quality assessment methodology for mobile videos.
Tominaga et al. [73] compared eight popular subjective assessment methods,
namely, the double-stimulus continuous quality-scale (DSCQS), double-stimulus
impairment scale (DSIS), absolute category rating method with a 5-grade scale
(ACR5), ACR5 with hidden reference (ACR5-HR), ACR 11-grade scale (ACR11),
ACR11 with hidden reference (ACR11-HR), subjective assessment of multimedia
video quality (SAMVIQ), and SAMVIQ with hidden reference (SAMVIQ-HR),
under diverse mobile video scenarios. They evaluated the total assessment time
and difficulty/easiness, as well as the characteristics of different rating scales
and their statistical reliability. They concluded that ACR5 is the most suitable
method considering rating scale, time, and ease of evaluation for subjective quality
assessment of mobile video services. In [57], ACR and SAMVIQ subjective
methodologies were compared for different spatial resolutions. It was shown that
the correlation between their result scores is weaker when the spatial resolution
increases; since SAMVIQ allows multiple viewing unlike ACR, the former helps
subjects to examine test videos more thoroughly than the latter and, consequently,
the gap of quality perception between the two methodologies could become larger
for larger resolutions.
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4.2.2 Quality Perception of Mobile Videos

4.2.2.1 Quality of Compression and Transmission Artifacts

Generally, compression is an indispensable element for video services. Thus, there
exist many researches about subjective quality assessment of codecs or compression
techniques in mobile scenarios. For instance, in [16], subjective quality assessment
was conducted to compare the two latest codecs, H.264/AVC and HEVC, under two
cellular bit rate conditions. It was shown that better quality is obtained by using the
latest codec, i.e., HEVC, for mobile videos under the same bit rate conditions.

With compression artifacts, transmission artifacts, e.g., packet loss, delay,
buffering, etc., are important factors affecting the quality of mobile videos. Mobile
environments generally refer networked situations and transmission errors occurred
occasionally. Thus, many researches were performed to consider both compression
and transmission artifacts.

Minhas et al. [48] studied effects of packet loss and packet delay variation on
QoE. It was found that quality of videos encoded with the H.264/AVC baseline
profile is affected sensitively by both types of the network disturbance. The results
showed that for packet loss rates above 5%, the users rated the videos as “bad.” And,
delays above ˙8 ms were rated as “bad.” It was also shown that the sensitivity in
quality perception was higher for delay variation than packet loss. In [30], subjective
tests were performed in the case of broadcast digital television (DTV). It was shown
that there is no correlation between the percentage of packet loss and the subjective
ratings. Rather, the lost slice type (I, P, or B) has a significant impact on the
perceived quality degradation.

Interaction between compression and packet loss artifacts in quality perception
was investigated in [38], where subjective quality assessment of H.264/AVC video
streaming with packet loss was performed by using the paired comparison method-
ology. The results showed that, in general, both artifacts significantly degrade the
perceived quality unless the coding artifacts are already so severe that addition of
packet loss artifacts does not cause further quality degradation. Similar results were
obtained in [44]. The work examined the impact of error length, peak signal-to-
noise ratio (PSNR) drop (due to H.264/AVC encoding), and loss location on the
perceptual quality of the decoded video with a single transmission loss. It was
shown that an error is visible only if the error length or PSNR drop exceeds a
certain threshold. And, perceptual quality was approximately linear with respect
to the PSNR drop and error length. Additionally, it was also shown that, when a
video sequence contains multiple losses, the perceptual quality depends on the sum
of PSNR drops of individual transmission losses, as well as loss pattern. However,
unlike [38], it was not shown that which type of artifacts, compression or packet
loss, degrades the perceived quality more significantly.

There exist researches studying effects of temporal patterns of transmission
errors on perceived quality. In [3], the authors performed a series of subjective
video quality tests that evaluated the quality of H.264/AVC videos distorted by
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several packet loss patterns. The results showed that for a fixed loss rate, multiple
bursty losses are more damaging than a single contiguous long loss. The influence
of rebuffering interruptions on the user’s QoE was investigated by De Pessemier
et al. [59]. In this study, six scenarios combining three (low, medium, and high)
simulated bandwidths representing a universal mobile telecommunication system
(UMTS), high speed packet access (HSPA), and WiFi communication channel,
respectively, and two quality levels (high and low) were considered. Although video
interruptions due to rebufferings were experienced as disturbing, users accepted a
(limited) number of these rebufferings in a mobile context. The high quality video
sources that are sent over a low bandwidth connection and thereby require numerous
rebufferings during video playback were in general evaluated as “unacceptable.”
And subjective quality assessment results were highly correlated to the objectively
measured parameters of the video session, such as the number of rebufferings, the
rebuffer time, and the loading time of the video. Moreover, it was shown that the
users preferred a fluent playback of the video to a higher resolution, frame rate, and
bit rate.

Moorthy et al. [50] performed video quality assessment including subjective,
behavioral, and objective studies. Test video sequences had a HD resolution,
which is popular for mobile videos in these days, and included diverse distortion
types reflecting mobile scenarios, e.g., compression, wireless packet loss, and
dynamically varying distortions such as frame freezes and temporally varying
compression rates. These test sequences were displayed on two types of mobile
devices, mobile phone, and tablet. It was shown that time-varying quality has a
definite negative impact on human subjective judgments of quality, and this impact
is a function of the frequency of significant distortion changes and of the differences
in quality levels between segments.

4.2.2.2 Quality of Video Scalability

Scalability is useful to deal with the limit in the network capacity and user hetero-
geneity in terms of the network environment and terminal capability (e.g., decoding
and display capabilities). It allows the same content to be efficiently delivered in
different formats simultaneously to multiple users. Generally, scalability considers
three dimensions, spatial dimension, temporal dimension, and quality dimension.

It is challenging to understand and model human quality perception of video
scalability in a multidimensional space involving spatial, temporal, and quality
variations (and their corresponding artifacts) as well as application- and content-
dependent expectations of users. Moreover, expressing and comparing quality across
scalability dimensions on a unified scale is not straightforward. A thorough survey
of existing studies for quality perception of video scalability is given in [43].

Among the scalability dimensions, subjective assessment of temporal scalability
has been conducted the most extensively. As a general conclusion of the related
studies, the threshold of subjective acceptability seems to be around 15Hz, but its
exact value varies with content, application, viewers, and so on [8]. In [54], the
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subjective quality assessment was performed using a mobile phone considering
the impact of the three dimensions of scalability. It was found that the temporal
resolution affects the quality independently of spatial resolution and quantization
step size, while there is significant interaction between spatial resolution and
quantization step size. In [20], the scope of validity of PSNR as a video quality
metric was examined using subjective experimental data. The work showed that
PSNR is inaccurate in measuring video quality of a video content encoded at
different frame rates because it is not capable of assessing the perceptual trade-off
or interaction between the spatial and temporal qualities.

Regarding the relationship between the temporal and signal-to-noise ratio (SNR)
scalability dimensions, it is traditionally believed that a high frame rate is more
important than high frame quality for contents containing fast motion. Thus,
reduction of the frame rate decreases subjective quality only slightly for slow
motion contents [74]. However, other studies showed results contradicting this
belief. In [75], it was shown that the preference of frame rate against frame quality
varies according to the bit rate condition. The boundaries between the bit rate ranges
were higher for complex scenes. It implies that reaching a certain satisfiable level
of frame quality has priority over increasing the frame rate under a limited bit rate
budget. It should be noted that the conclusion in [74] was not based on analysis
for fixed bit rate conditions, which explains its inconsistency with that in [75].
The relative importance of spatial quality and frame rate on perceived quality was
examined in [39] via pairwise comparisons to find the preferred path from bad
quality to good quality, or vice versa. It was shown that there is a strong correlation
between temporal complexity of content and perceived importance of frame rate.

The trade-off relation between the spatial and temporal dimensions was inves-
tigated in [10]. Sequences with different combinations of spatial and temporal
resolutions were produced for each fixed bit rate condition, and their relative
subjective preferences were obtained. It was shown that for fast motion contents,
the frame rate is more important than the frame size.

The relation of the spatial resolution and frame quality was studied in [74].
It was shown that a small frame size with high frame quality is preferable to a
large size with low quality when the bit rate is not sufficiently high. In this work,
smaller spatial resolutions were not upscaled to the original size. Thus, it is not
straightforward to compare these results with those in other studies using spatial
upscaling. A similar study was also performed in [79], focusing on the effect of
the spatial resolution alone and the combined effect of the spatial resolution and
quantization artifacts. Videos having different spatial resolutions were displayed
at the full screen size of a mobile device. The results showed that the dropping
rate of the perceived quality due to reduction of the spatial resolution increases as
QP increases and the dropping rate of the perceived quality due to increase of QP
increases as the spatial resolution reduces.

Subjective quality assessment for all three scalability dimensions has been
considered recently [42, 54, 84]. In [84], an extensive subjective experiment was
conducted for low bit rate videos. The results showed that for a fixed bit rate, the
frame size should be kept low, while a low frame rate is preferable for fast motion



106 M. Cheon et al.

contents, which supports the aforementioned results of [75]. When the frame rate is
high (e.g., 30Hz) while the frame size is small for low bit rate conditions, improve-
ment in the SNR dimension is usually the most efficient to enhance perceived quality
rather than improvement in the spatial dimension. Similarly, when the frame size is
large (e.g., CIF) while the frame rate is low, perceived quality is enhanced more
efficiently by improving picture quality in the SNR dimension than by increasing
the frame rate. In [42], subjective quality assessment of scalable video coding was
performed via a paired comparison methodology, which investigates the influence
of the combination of scalability options on perceived quality for an adaptive
strategy that selects the optimal combination for a given bandwidth constraint. It was
shown that the priority between the spatial resolution and frame rate depends on the
bit rate condition and content type, which was considerably consistent in the used
two types of codecs, scalable extension of H.264/AVC and wavelet-based scalable
video coding. For low bit rate conditions, the spatial resolution was important for
perceived quality, whereas for higher bit rate conditions, a high frame rate was
preferable. The results of [54] show that the rate of quality degradation along the
temporal dimension is independent of spatial resolution and quantization step size,
and vice versa. The rate of quality degradation along the spatial dimension is a linear
function of quantization step size.

Although it is not easy to directly compare the aforementioned studies, their
results can be roughly summarized as follows. The trade-off is basically between
frame rate and frame quality, considering that low spatial resolutions are upscaled to
a maximum resolution. Thus, the frame quality is affected by both coding artifacts
and blurring due to upscaling. It seems that there is a bit rate threshold at which
the preference of scalability options is switched. Below the threshold, enhancing
the frame quality has the priority by improvement in either the SNR or spatial
dimension. Above the threshold, the frame quality reaches a certain satisfactory
level and, thus, the frame rate becomes more critical for perceived quality. Here, the
threshold is mainly dependent on the content characteristics. It is higher for contents
containing faster motion because more bits are needed to achieve an acceptable level
of quality for this kind of contents, but it is also affected by the encoder type, viewing
environment, user expectation, and so on.

4.3 Objective Quality Assessment of Mobile Videos

4.3.1 General Objective Metrics

Traditionally, signal-based metrics such as PSNR and mean square error (MSE) are
widely used for evaluating loss of image quality due to its simplicity and mathe-
matical convenience. However, it is also known that the correlation between these
metrics and human judgment of quality is limited [78]. There have been attempts
to consider the human visual system (HVS) for obtaining better correlation with
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human judgment. Examples include multi-scale structural similarity (MS-SSIM)
[76], video quality metric (VQM) [23], and motion-based video integrity evaluation
(MOVIE) [68]. The structural similarity (SSIM) image quality paradigm is based on
the assumption that the HVS is highly adapted for extracting structural information
from the scene, and therefore a measure of structural similarity can provide a
good approximation to perceived image quality. MS-SSIM supplies more flexibility
than the single-scale SSIM by incorporating the variations of viewing conditions.
The National Telecommunications and InformationAdministration implemented the
general VQM as a means for quantifying perceptual quality degradation in video
systems that utilize compression. This is standardized in ITU-T J.144 [23]. MOVIE
evaluates dynamic video fidelity that integrates both spatial and temporal aspects of
distortion assessment.

In [50], various general objective image and video quality metrics were compared
through an experiment using a tablet and a mobile phone. Five different distortion
types, namely compression, rate adaptation, temporal dynamics, wireless channel
packet loss, and all, were considered. When a mobile phone was used, visual
information fidelity (VIF) [70], which measures the mutual information between the
input and the output of the HVS channel for the test image in comparison with the
mutual information for the reference image, was the top performer in compression,
packet loss, and all, MOVIE showed the highest correlation with subjective quality
scores in the case of rate adaptation, and visual signal-to-noise ratio (VSNR) [7],
which estimates visual fidelity by computing contrast thresholds, showed the highest
correlation for temporal dynamics. In the tablet study, VIF recorded the highest
correlations in compression,MOVIEwas the best in rate adaptation, packet loss, and
all, and SNR showed the highest correlation in temporal dynamics. The hypothesis
testing and statistical analysis confirmed the correlation results.

Those perceptual quality metrics are developed for general image/video quality
assessment. On the other hand, there are objective quality metrics for the mobile
scenario. Since they consider mobile-specific factors such as network distortions,
they are expected to have better performance than general metrics.

4.3.2 Objective Metrics for Mobile Videos

Table 4.1 summarizes representative objective metrics for mobile videos. In general,
objective metrics can be classified according to the availability of the original
video besides the test video. Full-reference (FR) metric is used, when the original
video is accessible, reduced-reference (RR) metrics is used when description or
parameters of the original signal are available, and no-reference (NR) metrics is
used when the original signal is not available. FR can be used in offline scenarios
for designing and optimizing video processing algorithms as replacements of or
conjunction with subjective tests. On the other hand, RR and NR metrics are useful
for in-service quality monitoring to adapt transmission and coding strategies to
bandwidth fluctuations and packet losses.
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Table 4.1 Objective quality metrics for mobile videos

Ref. Method Parameters Type of information
[81] NR QP, bit rate, number of lost packets, display

duration
Bitstream-based

[80] NR Temporal complexity, frame type, bits per pixel,
number of lost packets

Packet-based

[65] NR QP, motion vectors, bit rate, packet loss Bitstream-based
[1] NR QP, motion vectors, bit rate, packet loss visibility,

error propagation
Bitstream and packet
(hybrid)

[5] FR Distorted frame ratio, frame loss rate Pixel-based
[45] FR Packet loss error length, severity, and location Pixel-based
[56] FR Spatial and temporal pooling, egomotion detec-

tion
Pixel-based

[18] NR Packet loss, rebuffering, bit rate Bitstream-based
[82] RR Packet loss, frame rate, bit rate Bitstream-based
[6] RR Temporal index Pixel-based
[64] NR Frame rate Bitstream-based

Objective quality metrics can also be categorized depending on the type of
information, such as operation parameter-based, packet-based, bitstream-based,
pixel-based, and hybrid approaches.

The most common approach for mobile quality assessment is to measure the
impacts of coding and packet losses at the same time [1, 5, 15, 45, 80, 81].

In [81], an NR metric using information extracted from the bitstream header was
developed. It measures the quality by subtracting the impact of packet loss from
initial quality determined by the compression error. The coded frame quality, Qn is
estimated from the QP value, the spatial complexity and the temporal complexity.
The transmission error, dn, is calculated with direct distortion due to the lost packets,
de;n, and distortion due to packet error propagation, dp;n.

dn D de;n C dp;n

de;n D
�

numA � numR

numA

�

� Qn �
��T;n

a

�b

(4.1)

dp;n D dr �
�

1 C
��T;n

c

�d
�

(4.2)

where �T;n is the temporal complexity of the nth frame. a, b, c, and d are model
parameters. numA is the total number of packets related to the nth frame and numR

is the number of packets valid for decoding the frame. dr is the quality degradation
of the reference (r th) frame, from which the distortion will propagate to the current
frame. The final quality is given by subtracting the transmission error to the initial
quality as follows.

QF;n D Qn � dn (4.3)
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A similar approach was used in [81] but, unlike the above bitstream-based model,
the one in [81] is a packet-layer model exploiting information available only at
the packet level. [80] investigated the relationship between the spatial quality and
the average number of bits for coding a frame and display duration of a frame. The
central part of the developed model, Qv;GOF , is the quality of a group of frames
(GOF), which is used as the basic unit of temporal pooling.

Qv;GOF D
P

n2GOF C.n/ � T .n/
P

n2GOF T .n/
(4.4)

where C.n/ is the contribution of the nth frame. The central part of the developed
model, � 0

T .n/, is the normalized temporal complexity, T .n/ is display duration of
the nth frame, and d1 to d3 are model parameters.

C.n/ D Qs.n/.d1 C d2�
0
T .n/ C d3�

0
T .n/ log.T .n/// (4.5)

In [65], the “T-V Model,” a parametric model for video quality estimation by
considering bit rate, packet loss, and video content characteristic is presented. The
model is expressed as follows:

Qv D Qmax � Qc � Qt (4.6)

Qc D a0 C a1M V � a1e�a2bCa3QP1 (4.7)

Qt D .b0 � Qc/
p

b1 C p
(4.8)

where Qv is the predicted quality, Qmax is the maximum achievable quality, Qc is
the quality degradation by coding, and Qt is the quality degradation by transmission
error. b is the bit rate, p is the percentage of packet loss, M V is the average of the
standard deviation of the horizontal components of the motion vectors, QP1 is the
averaged QP value over each I-frame, and a1 to a3 and b0 to b1 are coefficients
that need to be calculated for each codec and display size. The extended study [1]
presented a modification to the transmission quality, Qt , based on the evaluation of
the visibility of each lost packet:

Qt D a4de C d a5
e:p C a6 (4.9)

where de is the amount of noticeable distortion in the frame where the loss occurred,
and de:p is the amount of impaired pixels due to error propagation. a4 to a6 are
coefficients.

In [5], two FR metrics based on PSNR were proposed, namely PSNR-based
objective MOS (POMOS) and rates-based objective MOS (ROMOS). The former
only considers the average PSNR of frames (aPSNR), whereas distorted frame rate
(d ), averaged PSNR of distorted frames (dPSNR), and frame loss rate (`) are used
for the latter.
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POMOS D ˇ0 C ˇ1aPSNR (4.10)

ROMOS D ˇ0 C ˇ1

d

dPSNR
C ˇ2` (4.11)

ROMOS showed a higher correlation with subjective rating than POMOS.
In [45], another FR method based on PSNR was proposed. In order to consider

transmission errors, it includes network impairment factors such as packet loss,
packet loss pattern, duration of a loss-affected segment, severity of loss, and loss
location. The DMOS value is determined by summation of compression error (Qc),
and network impairment factors (Qt ):

Qv D Qc C Qt (4.12)

Qc D Qc;max

1 C es.PSNR�PSNRT /
(4.13)

Qt D CD
1

L

NX

iD1

W.Di /MPDSi (4.14)

where PSNRT is the transition value of the PSNR curve over time. Qc;max is
the maximum possible perceptual quality degradation due to coding artifacts and
s is the roll-off factor of sigmoid function. N is the number of losses, CD is the
length (in terms of frame) of video clip. W.Di / is the exponential decay function
that simulates the effect of multiple losses. MPDSi is the sum of PSNR drops in
the video segment affected by the packet loss in the i -th frame. It was shown to
outperform PSNR, VQM, and SSIM.

In [56], it was recognized that severe and highly annoying distortions that occur
locally in space or time heavily influence an observer’s judgment of quality. The
authors performed experiments using SSIM as an indicator of spatio-temporally
local quality of a distorted video and observed the distributions of these scores. The
SSIM scores are classified into two regions, lower quality region GL and higher
quality region GH . These two regions are classified by using different thresholds
that are determined using egomotion detection. As a result, a content adaptive spatial
and temporal pooling strategy was proposed. The overall quality is expressed below:

Qv D
P

f 2GL
sf C w �Pf 2GH

sf

jGLj C w � jGH j (4.15)

where jGLj and jGH j denote the cardinalities of GL and GH , respectively. The
weight w is the ratio between the scores in GL and GH and sf is the spatial quality
for frame f .

There exist approaches that take into account the limited computation power and
memory in mobile devices for estimating perceived quality by only using temporal
information of videos. The network artifacts such as delay, freezing, jerkiness,
blockiness, and blackout can be captured by measuring temporal information. In [6],
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an RR metric was developed where temporal information was determined as the
differences of the corresponding pixel values in the two neighboring frames in the
video. Video quality Qv is expressed as

Qv D ˇ0 C ˇ1It (4.16)

where It is the temporal information, ˇ0 and ˇ1 are model coefficients. Despite its
simplicity, it showed a high correlation with MOS values.

The metric developed in [64] is another example exploiting the impact of
temporal artifacts on video quality. It is given as a logistic function of the frame rate
of the received video stream in order to take into account the saturation of perceived
quality for received frame rates higher than a sufficient value, which can capture the
impact of jerkiness and jitter artifacts. In other words,

Qv D a1 C a2 � a1

1 C exp.a3 � f C a4/
(4.17)

where f is the actual frame rate of the received video and a1 to a4 are model
coefficients. It was shown that the model predicts subjective quality well when
jerkiness is the dominant video impairment factor.

In [18] the combined effects of packet loss and buffering are taken into account.
During the buffering time the image freezes, producing an annoying effect that
affects the perceived quality. The proposed model estimates the video quality
based on the MOS for the original video clip, the buffer size in the receiver, the
re-buffering time during reproduction and the packet loss in the network, and was
evaluated for MPEG-4 in QCIF display size with bit rates up to 256 kb/s. The model
is given as

Qv D 1 C .Qc � 1/Qt � Qb (4.18)

Qc D c0 � c1e
�
b (4.19)

Qt D k
pu � pm

pu � pl

(4.20)

Qb D C0 C C1InitP C C2BufP C C3BufF (4.21)

where b is the bit rate, pu and pl are the upper and lower packet loss rate limits,
respectively, pm is the average packet loss rate of the current logging window,
InitP is the initial buffer time, BufP is the re-buffering time, BufF is the number
of re-buffering events per minute and k; co; c1; 
; C0; C1; C2; and C3 are model
coefficients. Video content characteristics are not taken into account in this model.

In [82], Qt in the ITU-T G.1070 [22] model (see Sect. 4.3.4) was modified and
extended in order to take into account burst packet loss.

Qt D e
� p

BP`
DP` (4.22)

BP`
D 1 C ˛

DB

NBP

C ˇ
DBD

Loss
(4.23)
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where DB is the density of burst, D is the burst duration, and Loss is the total loss.
NBP is the number of burst periods. Coefficients ˛ and ˇ are dependent on codec,
distortion concealment, and other factors related to content. It was shown that the
model achieves better accuracy than the G.1070 [22] video model under burst loss
conditions.

4.3.3 Objective Metrics for Video Scalability

Table 4.2 summarizes state-of-the art objective metrics for video scalability. The
table shows the considered scalability dimensions, the used codec for model
development, the way incorporating content-dependence of perceived quality, and
the detailed formula for each metric. Detailed description follows below.

In [13], a quality metric accounting for quantization, frame rate, and motion
speed was developed for mobile video broadcasting applications. It is based on
the observation that the quality is dominated by PSNR if there is no motion in the
source sequence but the frame rate reduction and the motion speed are influencing
factors to the perceived quality. The metric was shown to have higher correlation
with subjective ratings than PSNR.

The metric proposed in [52] considers temporal and quality scalability dimen-
sions by formulating the perceived quality as a product of a PSNR-based spatial
quality factor and a temporal correction factor using the frame rate. It was compared
with the metrics proposed in [13, 64] that consider the temporal aspect in quality
estimation, and show slightly higher correlation. It was also demonstrated that the
model parameters can be estimated from content dependent spatial and temporal
features such as frame difference, motion direction, and Gabor texture features.

Inspired by Feghali et al. [13], the metric proposed in [37] for the three-
dimensional scalability is expressed as a weighted sum of three terms: PSNR, the
motion activity-modulated effect of the frame rate, and the effect of the frame size.
The third term, which is the major difference from the model in [13], accounts for the
observation that the perceived quality increases with the increasing spatial resolution
of stimuli.

The method in [37] was further modified in [71]. The developed metric is
formulated as a weighted sum of normalized PSNR, the effect of the temporal
scalability, and the effect of the spatial scalability. Normalization of PSNR was
done to reflect the reduced influence of coding artifacts on the perceived quality for
contents having high spatial complexity and the saturation of perceived quality
for PSNR over 45 dB. In addition, the normalized PSNR was weighted by a spatial
complexity measure in order to account for the fact that the quality degradation
due to reduction of the spatial resolution is severe for contents having high spatial
complexity.

In [54], three separate experiments were carried out for evaluating the influence
of the spatial scalability to the perceived quality, the combinational effects of spatial
resolution and QP, and all the combinational impact of spatial/temporal resolutions
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and QP. Separate quality models reflecting the quality impact of spatial resolution,
temporal resolution, and SNR were derived, which are multiplied for the final
quality model.

A low-complexity NR algorithm, called quality impairment score, was proposed
to assess video quality under different spatial, temporal, and SNR combinations
in [83]. The metric is a weighted product of three factors, a blur metric, a blockiness
metric, and a jerkiness metric, each of which measures the quality in the spatial,
SNR, and temporal scalability dimensions, respectively.

It is noteworthy that the aforementioned two studies noted that temporal res-
olution has a huge impact on perceived quality, but if the temporal resolution is
reasonably high then the other two scalabilities have mild influences to perceived
quality.

4.3.4 Objective Metrics in Standardization

The study groups 9 (SG9) and 12 (SG12) in ITU-T have been at the forefront in
defining and validating subjective and objective quality assessment methods [9].
SG12 is to provide adequate QoE and QoS for new multimedia services and
applications such as IPTV. Especially, question 13 in SG12 has considered end-user
expectations, quality management and assurance, QoS/QoE monitoring methodolo-
gies, etc. Question 14 focuses on the development of parametric models and tools
for multimedia quality assessment. Table 4.3 summarizes major objective metrics in
ITU-T standardization.

An early method, J.144 [23], contains a three-layered (object, texture, and noise)
picture quality assessment model as seen by the human eyes. Generally, the human
eyes cannot watch a whole frame at a glance, but can watch only a local spot area in
a frame, which is around the gaze point, and recognize the texture and also quality of
the area depending on the degrees and characteristics of noise mixed in this texture.
Nine proponents of video quality metrics are introduced in J.144 [23].

The four models in BT.1683 [21] are based on the observation that the HVS is
sensitive to degradation around the edges. They are FR models that include their
own edge analysis methods used for computing video quality.

Recommendation ITU-T J.247 [24] also provides objective perceptual video
quality measurement methods when a full reference signal is available. It takes into
account distortion in the form of block distortion by calculating the ratio between
horizontal and vertical edges, temporal variance of partial spatial distortion, and
freeze length.

Recommendation ITU-T J.341 [25] describes an FR model for HD resolutions.
This recommendation focuses on audiovisual quality by considering time alignment
and spatial frame alignment between audio and video signals. Spatial quality
features are computed by using a local similarity and a local difference measure.
A jerkiness feature takes into account motion intensity as temporal quality. The
overall quality is represented as weighted combination of these quality features.
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Recommendation ITU-T J.342 [26] targets similar applications with J.341 [25]
(i.e., HDTV) but it provides an RR model. This model measures the visibility of
edges for extracting the blockiness feature and computes a jerkiness feature by
averaging the product of display time and motion intensity for temporal quality. The
features are transformed into a perceptual scale by using a parameterized function.

The latest methods such as G.1070 [22], P.1201 [27], and P.1202 [28] are
parametricmodels that analyze packet headers and bitstream information rather than
decoded pixel information.

The G.1070 model takes into account the packet loss, assuming a random loss
distribution. Video quality Qv is expressed as:

Qv D 1 C Qc exp

�

� P`

DP`

�

(4.24)

Qc D Qfopt exp

�
.ln.f / � ln.fopt //

2

2D2
F r

	

(4.25)

where Qc represents the video quality affected by the coding distortion and Qfopt

is the maximum video quality with an optimal frame rate, fopt . The packet loss
robustness factor DP`

expresses the degree of video quality robustness against
packet loss, P` represents the packet loss rate, p is the percentage of packet loss,
and f is the frame rate. DF r represents the degree of video quality robustness due
to frame rate.

Models in P.1201 [27] provide audio, video, and audiovisual quality estimates,
and they use only packet header information. In contrast, the models in ITU-T P.1202
[28] provide only video quality estimates using further payload information, thus
they can be more accurate in their quality predictions but more complex than those
in P.1201. The two standards include two different versions, i.e., lower resolution
models (ITU-T P.1201.1 and ITU-T P.1202.1), and higher resolution models (ITU-T
P.1201.2 or ITU-T P.1202.2). The model in P.1201.2 exploits bit rate, packet loss,
concealment type, etc. Video quality estimate Qv is given as:

Qv D 100 � Qc � Qt (4.26)

Here, Qc is the estimated video quality due to video compression artifacts, which is
given by

Qc D a1 � ea2�BitPerP ixel C a3 � ContentComplexity C a4 (4.27)

where a1 to a4 are model coefficients. Qt is the estimated video quality due to
transmission artifacts. In case of freezing due to skipping of erroneous frames, it is
given by:

Qt D b1 � log.b2 � BF r C 1/ (4.28)
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where BF r is the bit per pixel multiplied by the freezing ratio. b1 and b2 are model
coefficients. When the decoder tries to repair erroneous frames (e.g., motion copy
or frame copy), Qt is given by:

Qt D c1 � log.c2 � LossMagnitude

Qcn

C 1/ (4.29)

where c1 to c2 are model coefficients and Qt is represented as transmission artifacts
Qcn is weighted value of Qc . The model in P.1202.2 uses an additional parameter
upon the parameters used in P.1201.2 such as rebuffering. The video quality Qv is
expressed as a linear relationship:

Qv D ˛1 � compressionartifact value

C ˛2 � slicingartifact value

C ˛3 � f reezingartifact value

C ˛4 � rebufferingartifact value C ˛5 (4.30)

where ˛1 to ˛5 are model coefficients.
ITU-T study groups continuously search quality models for various applications

such as TCP-based multimedia streaming, UDP-based streaming, adaptive stream-
ing, etc. ITU-T also carries out studies supporting advanced capabilities such as
ultra high-definition (UHD) and 3D TV.

4.4 Databases for Mobile Quality Assessment

For researches about mobile video quality assessment, it is useful to refer to existing
relevant databases that are publicly available. Most databases for video quality
assessment offer a wide variety of test video sequences and the resulting subjective
test data. Based on the subjective quality data, additional researches reflecting
subjective quality, e.g., development and evaluation of objective quality models, can
be performed in practice.

Table 4.4 summarizes representative publicly available video databases that can
be used for researches about mobile video quality assessment. They cover a wide
variety of conditions, e.g., coding artifacts, spatial resolutions, temporal resolutions,
transmission errors, and so on. Generally, these databases can be classified into two
cases, one that considers network artifacts (packet loss) (e.g., [2,3,11,45,63,69,85])
and another one that considers scalability (e.g., [11, 42, 45, 51, 53–55, 60–62, 85]).
As can be seen in the table, the recent databases tend to deal with relatively higher
spatial and temporal resolutions.

A thorough survey of recent public databases for image and video quality
assessment can be found in [77], where the databases including those in Table 4.4
are analyzed in various aspects.
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Although there exist many databases for quality assessment of mobile videos,
there is a need to develop new databases considering more diverse and realistic
conditions for future researches. As mentioned above, currently available databases
tend to deal with network artifacts and scalability separately. However, databases
considering both network errors and three dimensional scalability conditions will
be required. In addition, databases containing subjective ratings collected in real
environments instead of controlled laboratory environments are needed for realistic
mobile video quality assessment researches. Furthermore, although the existing
databases usually consider simulated network environments for inducing transmis-
sion errors, databases obtained from real network environments will be valuable.

4.5 Conclusion and Future Challenges

In this chapter, recent advances in the research of subjective and objective quality
assessment of mobile videos were reviewed. To understand andmodel the perceptual
mechanism of QoE, various perceptual factors specific in mobile videos were
considered in the existing studies, including compression artifacts, packet loss
artifacts, delay and freeze artifacts, temporal quality variation, video scalability, etc.

Many subjective studies have been conducted using test methodologies devel-
oped for controlled laboratory environments. Further studies are needed to investi-
gate subjective test methodologies and environments appropriate for mobile videos
by considering characteristics of mobile devices and viewing behavior.

As shown in this chapter, many objective quality metrics for mobile videos
have been developed, but it is also important to evaluate their relative performance
via thorough benchmarking studies. One of the latest studies in [32] presents
a review of parametric models published by ten different groups of authors
[1, 18, 22, 31, 36, 40, 52, 64–66, 82], some of which were explained in Sect. 4.3.
The performance of each model is evaluated and contrasted to the other models,
using a common video clips set, in different coding and transmission scenarios. It
was shown that the model in [31] performs better than the others for the encoding
impairments estimation and the models in the Recommendation ITU-T G.1070
[22] performs better for transmission impairments estimation. This study shows the
performance comparison only between the parametric models. Therefore, extensive
benchmarking encompassing general objective models, standardized models, and
mobile-specific models is still desirable in the future.

Due to fast technological development, new types of media are being introduced
to consumers such as 3D videos, high dynamic range (HDR) videos, and UHD
videos. There will be a high demand to consume these types of media in the
mobile environment, for which perceptual quality assessment will also play an
important role.

As the 3D video technology becomes popular in the field of industry and
research, the mobile 3D technology has also received increasing attention.
Generally,3D videos require increased data rates than 2D videos, so understanding
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the perceptual quality of 3D videos will be more important for efficient mobile
video transmission. There exist many researches considering quality assessment
of 3D video in general environments (e.g., [17, 29, 41, 49]), but few researches
considering mobile 3D videos exist. The recent study in [34] investigated general
descriptive characteristics of experienced quality of 3D videos on mobile devices.
Experiments including subjective quality assessment were performed by varying
contents, levels of depth, compression and transmission parameters, and audio and
display factors for 3D. It was concluded that QoE of mobile 3D videos is constructed
from fourmain components: (1) visual quality in terms of depth, spatial, and motion,
(2) viewing experience, (3) content, and (4) quality of other modalities and their
interactions. For the scalable multiview 3D video coding, objective quality metrics
considering each layer were derived based on the subjective quality assessment
in [67]. Further researches beyond these will be required.

Although HDR imaging receives more and more attention, the researches dealing
with quality of mobile HDR videos are extremely rare. There exist only a few
researches about tone mapping operators (TMOs) for visualizing HDR videos on
conventional displays and, moreover, researches about HDR videos considering
mobile devices are even rarer (e.g., [4, 47]). In the future, it is expected that
researches in these direction will be performed actively, where perceptual quality
assessment will also play an important role.

As the display technology grows, high resolution displays can be adopted in
mobile devices. UHD is one of the future trends and challenges for the industry
and researches. It requires more pixels and consequently higher data rates, but
it is expected to give more vibrant experience to users. In the context of quality
assessment, researches considering UHD videos and their scalabilities can be found
recently (e.g., [12, 19]). However, studies considering perceptual quality of UHD
videos on mobile devices are extremely rare. However, mobile devices equipped
with UHD displays are expected to become available very soon and popular in the
near future, so the issue of perceptual quality assessment of UHD videos in such
devices, which may be quite different from that of SD or HD videos, will become
important accordingly.
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Chapter 5
High Dynamic Range Visual Quality
of Experience Measurement: Challenges
and Perspectives

Manish Narwaria, Matthieu Perreira Da Silva, and Patrick Le Callet

5.1 Introduction

Humans perceive the outside visual world through the interaction between light
energy (usually measured in candela per square meter cd/m2) and the eyes. Light
energy first passes through the cornea, a transparent membrane. Then it enters the
pupil, an aperture that is modified by the iris, a muscular diaphragm. Subsequently,
light is refracted by the lend and hits the photoreceptors in the retina. There are two
types of photoreceptors: cones and rods. The cones are located mostly in the fovea.
They are more sensitive at luminance levels between 10�2 and 108 cd/m2 (referred
to as the photopic or daylight vision) [7]. Further, color vision is due to three types
of cones: short, middle, and long wavelength cones. The rods, on the other hand, are
sensitive at luminance levels between 10�6 and 10 cd/m2 (scotopic or night vision).
The rods are more sensitive than cones but do not provide color vision. There is only
one type of rod photoreceptors and are located around the fovea. Since there are no
rods in the fovea, high frequency patterns cannot be distinguished at low lighting
conditions [7].

Pertaining to the luminance levels found in the real world, direct sunlight at
noon can be of the order in excess of 107 cd/m2 while a starlit night in the range
of 10�1 cd/m2. This corresponds to more than eight orders of magnitude. It is
therefore evident that there is a large range of luminance present in different real-
world scenes. The human eye also has the remarkable capability to perceive large
dynamic range (about 13 orders of magnitude) especially with sufficient adaptation
time [13]. An intuitive example of adaptation is when we arrive in a low lit room
on a sunny day. We cannot immediately perceive the visual data in the room and
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Fig. 5.1 Orders of magnitude of the dynamic range of the eye and displays

it takes a few minutes before one becomes accustomed (adapted) to new luminance
levels. However without adaptation, the instantaneous human vision range is smaller
and the eyes are capable of dynamically adjusting so that a person can see about
five orders of magnitude throughout the entire range. An example comparing the
approximate instantaneous orders of magnitude of the human eye, conventional
display and the HDR display is shown in Fig. 5.1. Observe how the traditional LDR
display covers only a small range (upto three orders of magnitude). On the other
hand, HDR displays can better match the instantaneous range of the eye.

As pointed out, the conventional display devices cover only upto three orders
of magnitude. Consequently, the scenes viewed on typical low dynamic range
(LDR) displays have lower contrast and smaller color gamut than what the eyes
can perceive. This leads to loss of visual details and in some cases can even lead
to misrepresentation of the scene information. To overcome such limitations, high
dynamic range (HDR) has recently gained popularity in both academia and industry.
By representing the scene in terms of physical luminance information, HDR can
achieve very high contrasts and a wider color gamut, in effect matching the human
instantaneous vision range. Due to allowing more scene information representation,
HDR helps to capture very fine details which are otherwise difficult to be retained
with traditional photography. A visual example to illustrate this is shown in Fig. 5.2.
The scene in question has very bright sunlight, shadows, and other details. With
single exposure photograph, we can either retain the information in darker areas
(longer exposure time) or the ones in brighter areas (shorter exposure time). In both
cases, we tend to lose out information either in dark or bright areas. As shown in
this figure, the first two are single exposure images with different exposure values
(EV). EV basically controls the amount of light allowed while capturing the scene.
The third image is of the same scene but HDR processed (tone mapped to 8-bit
precision). The reader will notice that this image preserves more details and has a
better overall contrast. In other words, HDR helps to retain visual information in
very bright and dark areas by minimizing over/under exposure. This leads to better
visual experience for the viewers and this is particularly relevant in the context of the
recent paradigm shift towards quality of experience (QoE) based multimedia signal
processing.
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Fig. 5.2 Advantage of HDR over traditional photography. (a) Single exposure (�6:89EV),
(b) Single exposure (�2:89EV), and (c) HDR processed image (8-bit precision)

Such QoE driven multimedia systems have increasingly come in focus in recent
years, both from research and industry perspectives. The aim to capture the end-
users’ aesthetic expectations rather than simply delivering content based on a
technology-centric approach. As discussed, given the specific characteristics of
HDR, it is one of the exciting fields towards providing the end users a more
immersive and realistic viewing experience and thus improving the QoE. The aim
of this chapter is therefore to provide the reader an overview of HDR from the
viewpoint of visual experience and in the process outline the challenges that exist.

5.2 The HDR Pipeline

Owing to the characteristics of the HDR signal, its processing right from generation
to transmission requires specific tools and different approaches than the traditional
LDR processing. A simplified block diagram of a typical HDR processing pipeline
is shown in Fig. 5.3. HDR content is first generated by a convenient method. It then
needs to be stored appropriately (e.g., after compression). The next step involves
suitable processing (e.g., pre-processing) to transmit it to the end user. The end
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Fig. 5.3 A simplified overview of an HDR processing pipeline

user can view the processed HDR content either directly on an HDR monitor or on
an LDR display. In the latter case, a further operation referred to as tone mapping
needs to be carried out to fit the dynamic range of the HDR signal to that of the
LDR display. An important distinction that should be made at this point is regarding
the usage of the terms “content” and “scene.” Throughout the chapter, we will use
them in a generic sense in that they can refer to both still images and videos. While
capturing HDR still images and videos follows similar approaches, video involves
the additional temporal dimension. This introduces more factors that need careful
considerations.

5.2.1 Capture

At present, there are several methods to generate HDR content [7]. We will briefly
discuss three of them in the following. The first among them employs a weighted
fusion of LDR images captured at different exposure levels. Most of the currently
available consumer cameras capture 8-bit images (or 14-bit in RAW format).
The limited bit-depth is not sufficient to represent the entire dynamic range of a
typical real-world scene. Therefore, the authors in [37] proposed the idea of multi-
exposure fusion of LDR photographs of the same scene. The underlying goal is
to incorporate details from each exposure (from brightest to darkest scene areas)
and thus obtain a more realistic appearance of the scene. A visual example is
illustrated in Fig. 5.4 from which the reader can notice that the processed HDR
images, (g) and (h), incorporate more details than single exposure photographs.
While such multi-exposure fusion based HDR capture is reasonably effective, it
is certainly not without its challenges. Specifically, there are two major issues that
need to be highlighted. First, it is cumbersome since one has to manually obtain
several photographs from the same scene by varying the shutter speeds. This is
further complicated by the fact that different scenes may require different shutter
speeds depending on the dynamic range of the scene in question. The second and
more serious issue is with regard to pixel alignment and motion. Thus, utmost care is
required while capturing (e.g., using a tripod stand) the LDR photograph. Since the
idea is to capture the same scene with varying exposures, motion or instantaneous
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Fig. 5.4 Multi-exposure images and the resulting HDR (one mapped) images, (a) �7:21EV,
(b) �5:47, (c) �3:89EV, (d) �0:19EV, (e) 0.76 EV (f) 1.44 EV, HDR image (with luminance
range from 10�1 cd/m2 to 104 cd/m2) formed by fusing (a)–(f). (g) and (h) Locally rendered tone
mapped images obtained by tone mapping the HDR using two different TMOs

change in the scene (e.g., a moving person) will severely hinder the effectiveness
of this method. This problem is obviously more pronounced in capturing an HDR
video and displaying it in real-time. For example, consider a typical scenario with
the rate to play back a video being 25 frames per second. In this case, creating
25 HDR frames per second should be the goal of HDR video. Assuming that an
HDR image can be created from fourexposures, a camera would need to capture 100
exposures per second [5]. In addition to this being a challenge for the image sensor
and its data interface, there is only one hundredth of a second left for exposing
each image. For this to be enough, a lens with a large aperture and possibly an
increased gain is required. As already mentioned, it is also likely that the camera or
the objects in the scene move while acquiring the sequence of exposures. Therefore,
in order to merge them together, the intermediate camera and scene motion must be
compensated, otherwise there would be motion blur or ghosting artifacts. Note that
motion compensation is a computationally costly step and can introduce significant
overhead in the HDR video capture system. Once the images/frames are aligned,
they can be merged together into an HDR frame. With regard to the processing
time constraints, producing 25 HDR frames per second implies that there are only
40 ms of processing time available for each frame. Capturing the LDR exposures,
aligning and merging them and then tone mapping the result for display thus
needs to be performed within 40 ms. Given these, it is evident that multi-exposure
fusion based HDR video capture is bound to be challenging. Some of these issues,
however, can be better handled by the second method for HDR capture through
the use of more specialized cameras. There a few commercially available cameras
(e.g., SpheronCam HDR by SpheronVR [4]) that have an in-built multi-exposure
capturing. Given the recent advances in hardware technologies, it is likely that
such cameras will become more common. The third method creates HDR content
from virtual environments using physically based renderers. This is more commonly
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employed in entertainment industries (e.g., digital cinema). At this point, the reader
is referred to [7] for further details on the methods for HDR content capture. Given
the focus of this chapter, it is assumed that we have a well-captured and realistic
HDR scene from either of the mentioned methods and the goal is to process this
further keeping in mind the visual appearance to the end user.

5.2.2 Storage

Once the HDR content is generated, it needs to be stored. As pointed out earlier,
an HDR pixel is represented using three single precision floating point numbers.
This implies that each pixel requires 12 bytes of memory. A simple computation
will reveal that this corresponds to approximately 24MB of data for high definition
(HD) resolution of (1,920 by 1,080 pixels). In contrast, an equivalent uncompressed
LDR representation (24 bits per pixel) of the same scene will require only a fourth
(about 6MB) of this memory. It is therefore clear that there is need for efficient
compression methods to allow for a more compact HDR storage given the high
memory demands.

One of the first solutions towards this was proposed in [14] by the introduction
of RGBE. This method stores a shared exponent between the three color channels
under the assumption that it does not vary much between them. Consequently,
RGBE leads to four bytes per pixel (one byte for each color channel plus one byte
for the shared exponent). This immediately reduces the memory requirement to
one-third of the uncompressed version (which needs 12 bytes per pixel). Another
HDR compression approach proposed in [16] is known as the LogLuv encoding.
As the name implies, this format stores the luminance in the logarithmic domain
and also assigns more bits to it than to the colors. The underlying principle for
LogLuv encoding is that human eyes are more sensitive to luminance information
than color (so more bits are devoted to the luminance component). In addition, it
has been found that the response of human eyes to the absolute luminance levels is
approximately logarithmic. Thus, LogLuv encodes logarithm of luminance (as an
additional advantage logarithm operation also help in dynamic range compression).
Another common HDR format is the half-floating point format, which is a part of
the specification of the OpenExr format [2].

Despite the existence of efficient formats for HDR storage (like RGBE,
OpenExr), there is a need for developing techniques for further HDR compression.
This is because even with the HDR formats there is a huge memory requirement.
Consequently, HDR content stored in a standard HDR format should be compressed
further to enable more practical deployment and real-time processing. So there is
need for research into effective HDR compression schemes and this therefore has
been an important research area. A crucial and related issue is that the existing
coding architectures have become widely adopted standards supported by almost
all software and hardware equipment dealing with digital imaging. As a result, it
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Fig. 5.5 Block diagram of a typical backward compatible HDR compression pipeline

will be of great interest to design HDR compression schemes that are compatible
with existing coding architectures. Not surprisingly, substantial research effort has
been put into designing HDR compression systems that are backward compatible
(for example [17, 30, 33]) with the standard image (e.g., JPEG and JPEG 2000) and
video coders (e.g., H.264/AVC). So the aim is to customize the existing codecs so
that they can cater to HDR images and videos. Towards that end, dynamic range
reduction (or tone mapping) is usually adopted as the first step towards backward
compatible HDR compression. In fact, the output of tone mapping is an LDR signal,
which requires much smaller memory for storage.

A block diagram showing the steps in a typical backwards compatible HDR
compression pipeline is shown in Fig. 5.5. In this figure, we can separate out three
main blocks. The first one is the tone mapping operator (TMO) based processing
module. Here, a TMO is often used to create an LDR version of the HDR image
or video frame. Based on the HDR image, the LDR image and/or the TMO
configuration, side information (for instance, a ratio image as in [17] or a non-
linear mapping function as in [30]) that will facilitate the decoder’s operation is
generated. The second block involves the compression of either the tone mapped
LDR content or a modified HDR via an existing compression scheme. The encoded
bit streams along with metadata are subsequently transmitted to the decoder. The
last block, i.e. the post-processing, performs the inverse tone mapping based upon
the side information delivered together with the LDR bit stream, re-converting
the decoded LDR image into its HDR format. The reader will notice that the
HDR compression pipeline shown in Fig. 5.5 is almost entirely compatible with
existing coding architectures. The main difference is the extra metadata that needs
to be transmitted for enabling the reconstruction of the HDR image. With such
architecture, the focus basically shifts to the first and third blocks, namely tone
mapping and post processing (or inverse tone mapping). Thus, the problem of HDR
compression becomes one of identifying the appropriate tone mapping and inverse
tone mapping algorithms. However, this is not straightforward given the fact that it is
not easy to convert an HDR image/video to LDR without losing perceivable visual
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information (related to the difficulty in designing a generic TMO that can retain
perceptually useful details). As a result, tone mapping is itself an on-going research
topic while inverse tone mapping is an even less investigated topic with few works
addressing it (e.g., [8]).

5.2.3 Visualization

Native HDR content visualization via a display is challenging because of physical
hardware limitations and not possible with current technologies. With regard to
the commercial displays currently available in the consumer market, the average
peak luminance (white point) is about 250 cd/m2 (for LED/LCD) and even lesser
(100 cd/m2) for Plasma displays. As a result, the range of luminance in HDR will
almost certainly exceed that of such displays. Additionally, the contrast ratio of
LDR displays is not good enough for displaying HDR content. For example, even
a good in-plane switching (IPS) LCD panel can achieve a contrast ratio of only
about 1000:1 while the required contrast ratio of typical HDR scenes can be more
than 106:1. More recently, displays with much higher contrast ratio and displayable
luminance range have appeared in the market. One such display is the SIM2 Solar47
HDR display [3]. The Solar 47 is a 47-inch, 1080p LCD TV with 2202 white
LEDs arrayed behind the imaging panel, and unlike other local-dimming sets, each
LED is individually addressable. The core technology in this HDR monitor follows
the one proposed in [18]. HDR monitors are typically based on two technologies:
(a) modulating a liquid crystal display (LCD) panel using a set of powerful light
emitting diodes (LEDs) as the backlight, (b) video projector based. Particularly, the
SIM2 HDR display [3] uses an LCD panel, replacing its common back light unit
(B.L.U.), typically based on a set of cold cathode fluorescent tube lamps (CCFL),
with an array of high-power white LEDs. The idea is to light each small zone of
the picture displayed on the LCD, with an LED driven by the specific luminous
intensity of that small area of the picture. That means if a scene has black details,
the LEDs under those details are turned off to achieve a true black, while where is a
high luminous intensity area, LEDs under it are turned on to maximum power. Gray
scale areas are then obtained by modulating to intermediate levels the intensity of
the LEDs using the HDR picture processing [3].

It should however be made clear that strictly speaking, displays like SIM2
Solar47 cannot be categorized as being entirely HDR since even they cannot display
luminance beyond the specified (e.g., in SIM2 the said limit is about 4,000 cd/m2)
limit. Therefore, some kind of range reduction operation (tone mapping) is almost
always needed in order to display HDR either on LDR or HDR display. Not
surprisingly, an important issue in HDRI is to reduce the dynamic range of the
HDR content towards its visualization. This problem has been commonly addressed
by employing TMOs and is an important aspect in HDR processing and display.
Additionally, tone mapping facilitates the development of backward compatible
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HDR compression whereby existing coding standards can be exploited for HDR
signal encoding. It is therefore crucial to analyze and understand the impact of
TMOs on the overall appearance of the HDR content. This is discussed in the next
section.

5.3 Tone Mapping and Its Impact on Visual Experience

Tone mapping is the operation that adapts the dynamic range of HDR content to
suit the lower dynamic range available on a given display. The idea is to process
the HDR content so that the discrepancy between the tone mapped content and
the HDR content is minimal from the viewpoint of two observers, one observing the
tone mapped content while the other viewing the actual HDR content. Thus, tone
mapping attempts to retain important characteristics of the original HDR content
such as local and global contrast, details, naturalness, etc.

5.3.1 Tone Mapping Operators

Several TMOs have been developed over the past years. Some are simple and based
on operations such as linear scaling and clipping while the more sophisticated
ones exploit several properties of the human visual system (HVS) with the aim
of preserving the details. But more often than not, TMOs lead to information
loss which can reduce the perceptual quality of the tone mapped contents. This is
expected since dynamic range compression invariably tends to destroy important
details and textures and can introduce additional artifacts related to changes in
contrast and brightness.

TMOs can be broadly classified into two categories, namely local operators and
global operators. As the name implies, local operators employ a spatially varying
mapping which depends on the local image content. As opposed to this, global
operators use the same mapping function for the whole image. Chiu et al. [22]
introduced one of the first local TMOs by employing a local intensity function based
on a low-pass filter to scale the local pixel values. The method proposed by Fattal
et al. [32] is based on compressing the magnitudes of large gradients and solves
the Poisson equation on the modified gradient field to obtain tone mapped images.
Durand et al. [11] presented a TMO based on the assumption that an HDR image can
be decomposed into a base image and a detail image. The contrast of the base layer
is reduced using an edge-preserving filter (known as the bilateral filter). The tone
mapped image is obtained as a result of multiplication of the contrast reduced
base layer with the detail image. Drago et al. [9] adopted logarithmic compression
of the luminance values for dynamic range reduction in HDR images. They use
adaptively varying logarithmic bases in order to preserve local details and contrast.
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The TMO proposed by Ashikimin [23] first estimates the local adaptation luminance
at each point which is then compressed using a simple mapping function. In the
second stage, the details lost in the first stage are re-introduced to obtain the final
tone mapped image. Reinhard et al. [6] applied the dodging and burning technique
(traditionally used in photography) for dynamic range compression. A TMO based
on a perceptual framework for contrast processing in HDR images was introduced
by Mantiuk et al. [35]. This operator involves the transformation of an image from
luminance to a pyramid of low-pass contrast images and then to the visual response
space. It was claimed that in this framework, dynamic range reduction can be
achieved by a simple scaling of the input. Another TMO known as iCAM06 [19] has
also been developed. It is based on the sophisticated image color appearance model
(iCAM) and incorporates the spatial processing models in the HVS for contrast
enhancement, photoreceptor light adaptation functions that enhance local details in
highlights and shadows. With regard to global TMOs, the simplest one is the linear
operation in which the maximum input luminance is mapped to the maximumoutput
value (the maximum luminance mapping) or the average luminance mapping (i.e.,
mapping average input luminance to the average output value). Another global TMO
is the one proposed by Ward [15] which focuses on the preservation of perceived
contrast. In this method, the scaling factor is derived from a psychophysical contrast
sensitivity model. Tumblin et al. [21] have reported a TMO based on the assumption
that a real-world observer should be the same as a display observer. These are some
of the existing TMOs and the list is by no means exhaustive. The interested reader
is also referred to survey papers on the topic (e.g., [25]) for a more complete and
detailed study of TMOs.

The reader may have noticed that local TMOs seem to have received more
attention than the global ones. This is partly due to the fact that as a result of their
design local TMOs performwell in preserving the local details (but are less effective
in reproducing the overall brightness and contrast). On the other hand, although
global TMOs preserve the overall contrast they usually lead to loss of local details.
But as an important advantage, global operators are generally computationally more
efficient than the local ones. So local and global TMOs have their own advantages
and disadvantages. Since tone mapping reduces the dynamic range, it will invariably
lead to loss of visual details and as a result affect the perceived appearance of the
HDR content. Given that tone mapping is often needed at different stages of HDR
pipeline (e.g., for compression and visualization), it is therefore necessary to analyze
how they affect the visual experience of the processed HDR content. It should
be mentioned that evaluating the overall HDR viewing experience is not an easy
task since it is a multi-dimensional phenomenon. Nonetheless, we identify three
important attributes that play a significant role in the viewing experience: perceptual
visual quality, visual attention, and naturalness. Therefore, we first analyze how
TMOs affect perceptual quality and then discuss their impact on visual attention.
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5.3.2 Tone Mapping and Visual Quality

There have been several studies related to how TMOs affect visual quality of the
tone mapped content. We first briefly describe some of the existing studies related
to subjective evaluation of TMOs.

The psychophysical experiments carried out by Drago et al. [10] aimed to
evaluate six TMOs with regard to similarity and preference. Three perceptual
attributes, namely apparent image contrast, apparent level of detail (visibility of
scene features), and apparent naturalness (the degree to which the image resembled
a realistic scene) were investigated. It was found that naturalness and details are
important attributes for perceptual evaluation of TMOs. The study by Kuang et al.
[20] performed a series of three experiments. The first one aimed to test the
performance of TMOs with regard to image preference. For this experiment, 12
HDR images were tone mapped using six different TMOs and evaluation was done
using the paired comparison methodology. The second experiment dealt with the
criteria (or attributes) observers used to scale image preference. The attributes
that were investigated included highlight details, shadow details, overall contrast,
sharpness, colorfulness, and the appearance of artifacts. The subsequent regression
analysis showed that the rating scale of a single image appearance attribute is often
capable of predicting the overall preference. The third experiment was designed to
evaluate HDR rendering algorithms for their perceptual accuracy of reproducing
the appearance of real-world scenes. To that end, a direct comparison between
three HDR real-world scenes and their corresponding rendered images displayed
on a low dynamic-range LCD monitor was employed. Yoshida et al. [1] conducted
psychophysical experiments which involved the comparison between two real-world
scenes and their corresponding tone mapped images (obtained by applying seven
different TMOs to the HDR images of those scenes).

Similar to other studies, this one was also aimed at assessing the differences
in how tone mapped images are perceived by human observers and was based on
four attributes: image naturalness, overall contrast, overall brightness, and detail
reproduction in dark and bright image regions. In the experiments conducted by
Ledda et al. [31], the subjects were presented three images at a time: the reference
HDR image displayed on an HDR display and two tone mapped images viewed on
LCD monitors. They had to choose the image closest to the reference. Because an
HDR display was used, factors such as controlling screen resolution, dimensions,
colorimetry, viewing distance, and ambient lighting could be controlled. This is
in contrast to using a real-world scene as a reference which might introduce
uncontrolled variables. The authors have also reported the statistical analysis of the
subjective data with respect to the overall quality and to the reproduction of features
and details. Different from the mentioned studies, Cadik et al. [25] adopted both
a direct rating (with reference) comparison of the tone mapped images to the real
scenes, and a subjective ranking of tone mapped images without a real reference.
They further derived an overall image quality estimate by defining a relationship
(based on multivariate linear regression) between the attributes: reproduction of
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Fig. 5.6 Different visual qualities of LDR images generated by tone mapping an HDR image by
different TMOs, (a) Ashikmin TMO, (b) Drago TMO, (c) Drand TMO, (d) icam06 TMO, (e) linear
TMO

brightness, color, contrast, detail and visibility of artifacts. The analysis further
revealed that contrast, color, and artifacts are the major contributing factors in
the overall judgment of the perceptual quality. However, it was also argued that
the effect of attributes such as brightness is indirectly incorporated through other
attributes. Another conclusion from this study was that there was agreement between
the ranking (of two tone mapped images) and rating (with respect to a real scene)
experiments. In contrast to this last observation, Ashikimin et al. [24] found that
there were significant differences in subjective opinions depending on whether a
real scene is used as a reference or not. A recent survey can be found in [12] that
evaluated TMOs for HDR video.

It should be emphasized that most of these studies either ranked the TMOs based
on the performance in the respective subjective experiments or outlined the factors
affecting visual quality of the tone mapped content. However, it might be misleading
to generalize the results from these studies since the number of HDR stimuli was
limited. Nevertheless, all of them establish beyond doubt that tone mapping (both in
still images and videos) tends to not only reduce the visual quality but also affects the
naturalness of the processed HDR content (in addition for video stimuli there could
be visible temporal artifacts). Because the underlying philosophy of TMOs concerns
with reducing they range, they inevitably saturate visual information leading to loss
of details. As a consequence, their use for HDR visualization calls for extreme care.
An example to show that TMOs can result in very different visual qualities for the
same HDR content is given in Fig. 5.6. Observe how some TMO preserve only
indoor details while some do so for outdoor information. Ashikmin and icam06 [19]
TMOs seem to provide a better trade-off in maintaining visual details in outdoor
and indoor simultaneously.

A related aspect in tone mapping is that of naturalness. While it is quite clear
that tone mapping reduces visual quality, how it affects naturalness remains an
unanswered question. In fact, all the user studies described previously implicitly
account for naturalness. This is because when human observers judge the visual
quality of tone mapped content, not only the presence or absence of visual
details affects their choice but is also affected implicitly by the naturalness of the
tone mapped content. Naturalness is a subjective quality which is difficult to be
quantified. In the light of this, it is not surprising that most of the TMOs only focus
on retaining details and/or maintaining local and global contrast but do not consider
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naturalness for processing the HDR content. For instance, an over enhanced tone
mapped image might have a very large number of details but can still have poor
visual appearance due to being unnatural.

Thus, we have provided a brief overview of the impact of one mapping on visual
quality of HDR content. We have also provided several useful references for the
reader to explore further. In summary, tone mapping in general, degrades visual
quality by destroying scene details, ad-hoc saturation of pixels as well as affecting
the natural appearance of the content. In the next section, we discuss the effect of
tone mapping on visual attention.

5.3.3 Tone Mapping and Visual Attention

As mentioned in the previous section, the current effort in subjective evaluation
has been mainly directed towards assessing the impact of TMOs from quality and
aesthetic appeal point of view. From these we may be able to study and analyze
people’s preference regarding visual appeal of the tone mapped content. However,
visual quality is just one of the several aspects that need to be considered to make
conclusions on how TMOs affect the overall QoE. One such issue is that of visual
attention (VA) which has been well recognized as a crucial aspect in perceptual
visual signal processing. It is well known that human eyes tend to focus more on
certain areas in an image/video than others. Stated differently, some regions attract
more eye attention and these are termed as salient regions. VA is therefore the ability
of the HVS to find and focus on relevant information quickly and efficiently [36].
This has several applications since the more important signal information can
be extracted and processed accordingly. For example in image/video coding, the
visually salient parts can be assigned more bits in order to achieve higher efficiency
and better visual quality. Further from an artistic viewpoint, TMOs could possibly
change the way a scene is perceived by human eyes. This may lead to changes in the
feelings and emotions conveyed by the image. Thus the intention of the artist/content
author may not be represented correctly to the viewer. For instance, intricate details
(like very fine texture) in some part of an image which attract viewer attention
might be lost due to tone mapping and the photographer’s intention of producing a
compelling picture is jeopardized. It is thus clear that VA plays an important role in
human perception and therefore the impact of TMOs should also be analyzed from
this viewpoint as well. In the context of VA, eye-tracking is the term commonly
used to denote the way of exploring what people look at in any given situation and
record their VA strategies with location and duration. The impact of TMOs on visual
attention is best explained through VA maps obtained from human observers. To
begin the analysis, we recall that TMOs tend to destroy visual details. Moreover,
given that some TMOs can preserve details better than others, the VA behavior can
change with TMO. To visually exemplify this, we have shown in Fig. 5.7, the tone
mapped versions of an HDR image processed by Ashikimin and Tumblin TMOs.
We can immediately make two observations from this figure. Firstly, the image
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Fig. 5.7 Illustration of the effect of global and local TMOs. (a) Image processed by Tumblin
TMO (global), (b) Image processed by Ashikimin TMO (local), (c) VA map for (a) and (d) VA
map for (b). The red boxes highlight two areas in the images where details are lost and preserved
by global and local TMOs, respectively

processed by Ashikimin TMO has more details preserved in the regions highlighted
by red boxes. As opposed to this, in the same regions of the image processed by
Tumblin TMO, the details are clearly missing. Secondly, the overall contrast of the
image in Fig. 5.7a is clearly better than the one in Fig. 5.7b. To visualize and relate
this to the impact of these TMOs on VA, we have shown the correspondingVAmaps
obtained from eye-tracking. The reader can notice that for the image processed by
Tumblin, the attention regions are mainly the books in the background while the
letter pad (in the foreground) is nearly unnoticed by the observers. We hypothesize
that this happens because with Tumblin being a global TMO the overall image
contrast is maintained and the details in the dark areas of the image (like the books
in background) are well retained. Further the owl below the lamp is also clearly
visible and is a salient region. However, as already mentioned, all this comes with
the price of losing finer details mainly in the bright areas (like the lamp and the
letter pad) as highlighted. As a result these letter pad is nearly non-salient since the
useful information (the text inside) has been washed away by the TMO. In contrast
to this, the VA map of the image processed by Ashikimin TMO shows that the
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written text on the letter pad is the most salient portion. Also, the darker background
(mainly the books) seems to have become less eye-catching since the contrast in that
part is reduced. Another example to illustrate that TMOs can modify the attention
regions is shown in Fig. 5.8. Here the images in the first and second rows are the tone
mapped versions of rend02_oC95 image processed by Drago and iCAM06 TMOs
and the corresponding human priority maps (VA maps), respectively. It can be seen
that the two red mats (highlighted by red boxes) are more clearly visible in the
image processed by iCAM06 since there is high contrast preserved in and around
that region.

Consequently, one can see from the corresponding VA map that these indeed are
salient regions for the human observers. On the other hand, in the image processed
by Drago [9] there is much lower contrast in the said regions. As a result of these
attract much lesser eye attention as seen in the corresponding VA map. A second
set of examples is shown in the third and fourth rows of Fig. 5.8. Here the third
row shows three tone mapped versions of Oxford_Church image (tone mapped
by Tumblin, iCAM06 and Linear TMOs) while the corresponding VA maps are
shown in the fourth row below each image. Again, one finds that the orange spot
(highlighted by red box) is a salient region only in case on linear TMO (see the VA
map in Fig. 5.8j) since this TMO destroys contrast on other regions which makes
the orange spot stand out and thus eye catching. As opposed to this, Tumblin and
iCAM06 TMOs provide much better contrast in other parts of the image as well. So
the orange spot is nearly non-salient in these two images as the observers attention
is attracted to other parts. Therefore, based on our experiments and analysis of the
VA maps obtained from eye-tracking experiments, we can say that contrast of the
resultant tone mapped image plays an important role in VA behavior. As exemplified
by visual examples in Figs. 5.7 and 5.8, the areas that attract eye-attention can vary
even within the same image depending on whether contrast is preserved or destroyed
by the TMO. This therefore suggests that contrast indeed is a vital dimension in HDR
content processing from VA viewpoint.

Tone mapping can also be viewed in terms of reduced signal contrast due to
tone mapping.With the reduced contrast, regions that may have attracted observers’
attention in the HDR content might be reduced. As a direct consequence, the
number of salient regions in tone mapped HDR content tend to decrease. To
visually exemplify this, consider Fig. 5.9, where image (a) is a tone mapped version
(using Reinhard TMO) of an HDR image. In this image, we can easily identify
the foreground (mainly comprising of the headlight and front wheel of the bike)
and the background (bicycles and the door). The image (b) shows the VA map of
image (a) while the corresponding HDR VA map is shown in (c). Observe how the
VA map in (b) indicates very few salient points in the background. As opposed to
this, the HDR VA map shows that background also had regions which attracted eye
attention. The reason is obvious: tone mapping in this case destroys details mainly
in the background but the foreground is fairly well preserved in terms of contrast.
As a result, the number of salient points in the background reduces drastically. The
last visual example is shown in Fig. 5.10. In this figure, the second row shows the
corresponding VA maps of the images shown in the first row. Since HDR image
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Fig. 5.8 Effect of TMOs on VA. (a) rend02_oC95 image processed by iCAM06 TMO,
(b) rend02_oC95 image processed by Drago TMO, (c) VA map for (a) and (d) VA map for (b),
(e)–(g) Oxford_Church image processed by Tumblin, iCAM06 and linear TMOs, respectively,
(h)–(j) VA maps for the images shown in (e)–(g), respectively. The red boxes highlight the area(s)
in the images which become salient or non-salient depending on the overall impact of TMO
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Fig. 5.9 Effect of TMOs on VA. (a) tone mapped version of “moto” (Reinhard TMO), (b) VA
map of image (a) obtained from eye-tracking, and (c) VA map of “moto” HDR image obtained
from eye-tracking

Fig. 5.10 Effect of TMOs on VA. (a) “dani_belgium” HDR image (for sake of better visualization
tone mapped image processed by icam06 TMO has been displayed), (b) tone mapped version of
“dani_belgium” (Ashikimin TMO), (c) tone mapped version of “dani_belgium” (Drago TMO),
(d) VA map of HDR image, (e)–(f) corresponding VA maps of the images shown above

does not display properly, we have shown image processed by icam06 (instead of
the original HDR image) for the sake of explanation. Also note that we have used
green box to highlight the area(s) that attracted maximum human attention and blue
box for area(s) with relatively lower attention.

Considering the HDR VA map in Fig. 5.10d, it shows that there are four main
regions which are salient according to human observers. These have been high-
lighted in image (a) shown just above the HDR VAmap and include the outside area
seen through the door (highlighted through the green box) and the paintings/board
(highlighted through blue boxes). Also, notice that the area highlighted in green
attracts more attention as compared to the other three identified regions. Now we
observe the effect of tone mapping on these four identified regions. We find that
the image processed by Ashikimin TMO (shown in Fig. 5.10b) shows that now there
are two regions (highlighted by green boxes) which attract the maximum attention
(see the corresponding VA map below this image). Thus, tone mapping modified
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the visual signal in such a manner that a region which was less salient in the
original HDR content has become more salient. Likewise, looking at the VA map in
Fig. 5.10b, we find that there is only one region now that attracts maximum attention
(this has again been marked in green in the image shown above this VA map) while
the attention for other regions reduced considerably. This once again drives home
the point: tone mapping can change attentional regions in addition to increasing
or decreasing the magnitude of attention. Therefore, as analyzed and explained we
note large differences for both intra (i.e., for each image content) and inter (i.e.,
between different image contents) cases. A theoretical explanation for this is the
manner in which TMOs operate. Most of them sacrifice one or the other type of
visual information in order to reduce the dynamic range. In the process, additional
artifacts (such as additional contours) might be introduced.

The eventual result is that a non-attentional region in the HDR image becomes
attentional one in the tone mapped version. The opposite case is that in which
structural information is destroyed due to tone mapping. In such cases, an attentional
region in the HDR image becomes less important (or less eye catching) in the tone
mapped image. For example, a contrast that was visible in the HDR image becomes
invisible in the processed image (loss of visible contrast). We have already provided
some visual examples to illustrate these points.

Video signals differ from images due to the addition of a temporal dimension in
addition to the spatial one. Given that, it will be interesting to analyze the changes in
VA behavior due to tone mapping of HDR video sequences. The analysis of the VA
maps from different video stimuli leads to similar conclusions as still images. That
is TMOs have a large impact on the VA behavior as compared to the HDR video.
We present an example in Fig. 5.11. This is from the video sequence1 “Tunnel1”
in which a car is shown to enter into a tunnel (with normal traffic). Inside the

Fig. 5.11 Change in VA behavior in videos, (a) video frame, (b) HDR VA map, (c) VA map of
frame tone mapped by Tumblin TMO, and (d) VA map of frame tone mapped by Durand TMO

1This video sequence was shot as part of the NEVEx project FUI11, related to HDR video chain
study.
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tunnel, there is relatively lower illumination and so as the car enters into it, there
is a large change in scene illumination. Figure 5.11a shows the car inside the tunnel
and another car just behind it which also enters the tunnel. Before this time, we
found that car was the main region of subject’s attention right from the start of the
video. However, when the other car enters the frame from behind, it attracts subjects’
attention. This is expected since the entry of the new car in the frame is a “new” or a
“rare” event (up to this point the subjects’ attention is focused on the first car only).
That directs the attention to the second car. This is what was observedwhen the HDR
video was viewed on an HDR screen. The corresponding HDR VA map is shown in
Fig. 5.11b where one can see that the “second” car is the main region of attention.
However, when tone mapped video was shown to the subjects we observed different
behavior. In this case, it was found that the “first” car still remains the main focus
of attention. This can be clearly observed in the VA map corresponding to Tumblin
TMO shown in Fig. 5.11c. That is, despite the occurrence of a new event (the entry
of the second car), attention behavior did not change.We can attribute this to the fact
that Tumblin TMO could not maintain proper contrast at the tunnel entrance where
there is a large change in the intensity (dark inside the tunnel and bright outside it).
Due to this, the subjects’ attention was not fully diverted towards the “second” car.
A different observation was however made for in case of Durand TMO. This TMO
could maintain relatively better contrast at the tunnel entrance. Due to this, we have
a situation where both the “first” and “second” cars became the regions of attention.
This can be seen from the VA map shown in Fig. 5.11d. Thus, depending on the
TMO we have different VA behavior for the same scene in the video. This suggests
that similar to the case of still images, tone mapping changes VA behavior over time.

Tone mapping is an important HDR processing that enables HDR visualization
on traditional display devices. This section was therefore devoted to the study
of its impact on the overall QoE. To facilitate discussion, we identified three
important dimensions of HDR that tone mapping can affect. These include visual
quality, naturalness, and visual attention. The discussion was focused on specifics
of how TMO affect these dimensions and several visual examples were provided
as illustrations. Regarding visual quality, tone mapping generally leads to loss of
contrast (both locally and globally) and result in loss details. This can also have an
adverse effect on the naturalness of the tone mapped HDR content. For instance,
saturation of color or over-enhancement of details can render the processed content
as being unnatural (despite preserving details). In other words, tone mapping can
reduce the overall coherency associated with natural signals. We also discussed how
tone mapping can impact visual attention behavior. This has the consequence of
altering the artistic intention. For example, a photographer might capture a scene
with the intention that viewers will pay attention to some areas/aspects of the
photograph. However, tone mapping can cause changes that can divert viewers’
attention to areas/aspects that are not the same as what the photographer intended.
Thus, tone mapping can interfere with the artistic intentions and that can ultimately
reduce the visual experience [26,29] of the processed HDR content. Such joint effect
of changes in visual quality, naturalness, and/or visual attention have the potential
of lowering the enjoyment level of the end-users with regard to HDR viewing.
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The reader will notice that the discussions pertaining to tone mapping have been
in the context of employing TMOs for HDR visualization. In the next section, we
discuss some aspects of quality measurement when viewing an HDR scene.

5.4 HDR QoE

HDR QoE is a rather wide term in that it can include several dimensions includ-
ing perceptual quality, naturalness, visual attention, aesthetic appeal, and so on.
Of course these are not necessarily independent because, for instance, perceptual
quality can implicitly account for naturalness. In the following, we first outline the
differences between HDR and LDR from the angle of viewing conditions and then
introduce the reader to the topic of subjective and objectiveHDR quality assessment.

5.4.1 Viewing Conditions in HDR

The most important distinction of HDR from LDR is with respect to luminance
range (which in turn leads to HDR). Traditional LDR defines a white point (255 for
the 8-bit representation). Thus, any intensity more than the defined white needs to
be saturated. Moreover, with LDR the pixel values are typically gamma encoded
and perceptually uniform. As a result, change in the pixel values can directly
be related to the change in visual perception. However, with HDR there is more
flexibility to represent the real-world scene luminance without too much saturation.
Consequently, there is no fixed white point in HDR that can correspond to the
maximum luminance (as it can vary from scene to scene). There is only brighter
(or darker) scene intensity. Therefore, HDR viewing involves much higher levels of
brightness. Since human vision is sensitive to luminance ratio (rather than absolute
luminance), changes in the luminance may not necessarily lead to the same change
in visual perception of HDR.

The effect of luminance level on the sensitivity of the HVS is often referred to as
luminance masking. Figure 5.12 shows the Campbell–Robson contrast sensitivity
chart for two different background luminance levels [38]. For the best viewing,
the figure should be viewed on an LCD display of about 200 cd/m2 and the
display function close to the sRGB non-linearity. The solid lines denote the contrast
sensitivity of the HVS, which is the contrast level at which the sinusoidal contrast
patterns become invisible. Even though the same scales were used for both left and
right plots, the CSF is shifted upwards (higher sensitivity) and right (towards higher
spatial frequencies) for the brighter pattern. This shows that we are more likely to
notice contrast changes, if the stimuli is brighter, as is the case of a brighter display.
A further validation of this was done in [38] through a subjective experiment. It was
found with statistical evidence that distortions of the same type and with the same
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Fig. 5.12 Contrast sensitivity function (CSF) of the human eye in dark (left) and bright (right)
viewing conditions. Arrows labeled as �Sens: and �F req: denote the amount of difference in
magnitude and frequency of the peak sensitivity between the dark and bright cases. The figure is
reproduced from [38]

magnitude are more annoying when the overall brightness of the image is higher.
Thus, with HDR, one needs to take into account the display luminance conditions
as it can have a significant impact on the perceived quality of the stimuli.

Another crucial factor with regard to HDR viewing condition is the ambient
lighting. Given the high levels of luminance, HDR will require a higher level of
ambient lighting as compared to LDR. Obviously with low ambient lighting, HDR
viewing can be uncomfortable for viewers. With regard to LDR, the International
Telecommunication Union Recommendation (ITU-R) BT500-11 recommendation
specifies the room (ambient) illumination to be about 15% of the perceived
screen brightness. It is not clear if this can be applied to HDR viewing. For
example, with SIM2 HDR display [3], the maximum luminance is 4,000cd/m2

and so the room illumination should be around 600 cd/m2 according to BT500-
11 recommendations. However, it is known that the response of the human eye to
luminance is approximately logarithmic and it is likely that a little lower ambient
lighting level might be suitable. In any case, it is clear that the current ambient
lighting specifications for LDR will not be entirely suitable for HDR viewing.

5.4.2 Subjective Assessment of HDR Quality

Human judgment of visual quality remains the gold standard as far the accuracy of
quality prediction is concerned. HDR is no exception. However, as outlined in the
previous section, subjective measurement of HDR quality calls for more careful
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considerations of viewing conditions. Otherwise the results may not reflect the
actual perceived quality. Another important factor in HDR subjective test design
is the use of TMOs. They will not be used for visualization but for HDR processing
(e.g., compression). A problem with TMOs is that they usually require one or
more parameters that are left for the user to tune. The issue of best parameter
selection is further complicated since it can be HDR content specific. That is, a
set of parameters which is suitable for one content may not be optimal for the
other (generally speaking the default parameter values might not yield reasonable
quality for every HDR content). Therefore, it requires care to find TMO parameters
when preparing HDR content for subjective evaluation. Concerning the sources of
distortions in HDR, the first is related to tone mapping. Another common distortion
is compression related artifacts. Another category of specific artifacts that occur
in HDR are those due to inverse tone mapping. Inverse tone mapping is the final
step in a typical backwards compatible HDR compression pipeline and can cause
saturation, excess or lack of contrast in the HDR scene. Thus, it can be highlighted
that HDR processing includes specific distortion sources (that are not typically
present in LDR regime) like tone mapping and inverse tone mapping in addition to
common artifacts (due to compression, transmission, post-processing etc.). It is also
interesting to note that distortions due to tone mapping and inverse tone mapping
are not necessarily additive. That is, inverse tone mapping can offset some artifacts
from tone mapping. Further, as explained in previous sections, visual attention can
be significantly modified due to tone mapping and this can degrade the overall
HDR viewing experience. Thus, HDR quality measurement is challenging in that
the processed HDR content can suffer from multiple distortions (which need not be
independent of each other). This coupled with the fact that the high luminance in
HDR can potentially amplify artifacts suggests that extra care needs to be taken for
accurate subjective measurement of HDR quality.

Very few research efforts have been reported for subjective HDR quality
assessment. The reasons for this are related to the requirement of specialized HDR
displays and the unavailability of real HDR content. Nevertheless, two recent studies
have employed an HDR display for QoE evaluation. The first one [27] investigated
into codec optimization criterion and perceptual quality issues in HDR. The second
study [28] analyzed the impact of TMOs in HDR compression. The conclusions
from these studies revealed that, indeed, the perceptual quality of the decompressed
HDR signal is dependent on the tone mapping method employed and statistical
evidences were also presented to support that. The reader will note that both
these works are in contrast to most of the existing studies (some of which have
been described in previous sections) which focused only on the quality loss in the
resultant LDR signal (obtained via tone mapping) and typically employed LDR
displays for subjective viewing experiments.

The final point for subjective HDR quality assessment is related to the need
of specialized displays. As we have already pointed out, such HDR displays are
still not common on a large scale (although this could change within a reasonable
time frame). In the light of such constraint, it is natural to ask if HDR quality
measurement can be tackled with existing LDR set up (LDR displays, specifications,
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Fig. 5.13 LDR approach to HDR quality assessment

etc.). Indeed, it is not absurd to think of tone mapping the HDR content and
estimate its quality subjectively on an LDR monitor. Specifically with regard to
quality measurement in a backwards compatible HDR compression system, there
can be two possible scenarios to convert HDR quality assessment to an LDR one.
These have been illustrated in Fig. 5.13. The first scenario (indicated as S1) is to
judge the subjective quality of the decompressed LDR content (before inverse tone
mapping) with respect to reference tone mapped LDR. A second possible scenario
(indicated as S2 in Fig. 5.13) is to tone map the decompressed HDR content. Then,
this can be compared with the tone mapped reference scene to determine its quality.
Unfortunately, both the scenarios have their own limitations. The first one is that by
viewing HDR on an LDR display, we ignore the distinct aspects of high luminance
associated with HDR viewing (explained in the previous section). Another limitation
of assessing HDR quality with scenario 1 (S1) is that it ignores the impact of inverse
tone mapping completely and takes into account only the compression artifacts.
Recall that inverse tone mapping can introduce visible artifacts such as saturation,
excess or lack of contrast, etc. Therefore, with this scenario (S1) formulating HDR
quality assessment as an LDR one is expected to be less accurate. With scenario
2 (S2) we can note that the tone mapping will operate on different HDR content
(pristine HDR and decompressed HDR). Consequently, they will be modified
differently and the resulting judgment of visual quality can be erroneous. So it can
be concluded that HDR quality can be better judged by simulating proper HDR
conditions (use of an HDR display, appropriate ambient lighting, etc.). However, it
is fair to reiterate that even HDR displays have their own limitations (in particular
due to the dual modulation process) and cannot fully represent HDR content. This
is however the best available solution at the time of writing.

5.4.3 Objective Assessment of HDR Quality

Objective quality measurement is the use of computational model to predict quality.
An objective method for quality prediction is a useful tool in cases where subjective
assessment is not feasible (such as real-time applications). Being a mathematical
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model, an objective method is more convenient to be deployed. However, objective
methods cannot be as accurate as the subjective ones. Thus, one line of thinking
in the research community has been towards developing more accurate objective
methods. While this is reasonable, it is important to understand that the HVS
represents a complex visual information processing system. Consequently, all the
objective methods (for LDR and HDR) are merely approximations and they cannot
be relied upon as a generic solution to quality prediction. Nonetheless, it is also
important to highlight that objective methods can achieve a reasonable prediction
accuracy in the limited context of an application scenario. For example, the
mean squared error (MSE) continues to be deployed extensively in visual data
compression. Pertaining to LDR, one finds that a lot of research effort has been
spent over the past decade. Most of it is devoted to the development of full-reference
methods that require both the reference and processed visual signal for quality
computations. In contrast, there exists very few methods for objective HDR quality
prediction. The reasons for this are already outlined and related to different viewing
conditions as compared to LDR. Thus, mathematical models of HVS’s functioning
(e.g., contrast sensitivity) used in LDRmethods can no longer be effective for HDR.
Another reason for slow progress of objective HDR quality measurement can be
attributed to the lack of standard databases.

The HDR-VDP-2 (high dynamic range visual difference predictor) [34] is a fairly
recent and comprehensive method for objective measurement of HDR quality. It is
an extension of the visible differences predictor (VDP) algorithm. The HDR-VDP-
2 uses an approximate model of the HVS derived from new contrast sensitivity
measurements. Specifically, a customized contrast sensitivity function (CSF) was
employed to cover large luminance range as compared to the conventional CSFs.
HDR-VDP-2 is essentially a visibility prediction metric. That is, it provides a 2D
map with probabilities of detection at each pixel point and this is obviously related
to the perceived quality because a higher detection probability implies a higher
distortion level at the specific point. Nevertheless, in many cases, it is crucial
to know an overall quality score (rather than just the local distortion visibility
probability). Pooling is a crucial aspect in converting local error distribution into
a single score that denotes the perceptual quality and the HVS can very easily do
that accurately. But it is much more difficult to realize that in an objective quality
prediction model given the underlying complexities and lack of knowledge of the
HVS’s pooling mechanisms. It is believed that multiple features jointly affect the
HVS’s perception of visual quality, and their relationship with the overall quality is
possibly nonlinear and difficult to be determined a priori. Therefore, the approach
that HDR-VDP-2 takes is that finding the pooling parameters via optimization of
correlation with subjective scores.

In its original implementation, the authors of HDR-VDP-2 tried over 20 different
combinations of aggregating (or pooling) functions. These included maximum
value, percentiles (50, 75, 95) and a range of power means (normalized Minkowski
summation) with the exponent ranging from 0.5 to 16. The aim was to maximize the
value of Spearman’s correlation coefficient in order to find the best pooling function
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and its parameters. While HDR-VDP-2 is a fairly comprehensive method for HDR
quality assessment, there is an issue with regard to pooling in HDR-VDP-2. This is
related to parameter optimization. That is, the parameters of the pooling function
in HDR-VDP-2 were found by maximizing (optimizing) correlation using existing
LDR image databases. Therefore, its effectiveness in predicting the visual quality
of HDR images is questionable given the different characteristics LDR and HDR
images especially in terms of distortion visibility and overall visual appeal [34].
The reader will notice that objective HDR quality assessment requires much more
efforts in terms of both research and implementation. This is more so in the light
of the fact that an LDR approach to HDR quality assessment is not as effective
and cannot be a substitute to account for the effects that distortions have on HDR
viewing.

5.5 Concluding Remarks and Perspectives

HDR imaging is an emerging area within the realm of visual signal processing.
It brings to that table two major advantages over the traditional imaging systems.
First, it can provide a more immersive and realistic viewing experience to the
users. Second, the higher bit-depth required in HDR will allow for more signal
manipulation (e.g., pre-processing towards efficient encoding) as compared to the
traditional content. However, to exploit HDR technology to its fullest potential,
several challenges remain and this chapter has focused on a few of them pertaining to
their impact the overall HDR QoE. With regard to HDR processing, tone mapping
is often required for HDR viewing on LDR displays, compression, and in many
other scenarios where backward compatibility is desired. The aim of this chapter
was to throw light on the impact of tone mapping on visual experience. Specifically,
we discussed its impact on perceptual quality, visual attention, and naturalness. It is
worth highlighting that these play an important role in the QoE in HDR viewing.We
reiterate that HDR viewing experience is more immersive than traditional content
due to that fact that HDR attempts to reproduce real-world scene information
without undue saturation of visual information. In other words, with HDR we
directly deal with physical luminance related information and this makes HDR
experience more wholesome and enjoyable.

From the objective viewpoint, measurement of HDR QoE remains a challenge
primarily due to a larger number of factors involved as compared to traditional
video quality. In particular, unlike QoE judgment of traditional visual content, the
impact of factors such as naturalness and visual attention modification can be more
profound in HDR. Therefore, single measures such as signal fidelity alone cannot
be expected to be a reasonable substitute for the overall QoE. On the operational
front, HDR poses difficulties because the information is stored in luminance-related
format, unlike perceptually scaled pixel values in LDR signals. Finally, native HDR
visualization is not possible even with the current HDR display technologies and
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there is saturation of signal contrast (this is of course due to inherent hardware
limitations such as the upper limit on power consumption, heating, etc). Addressing
some of the mentioned issues will ultimately be the key to large scale practical
deployment of HDR and further interesting applications.

References

1. Yoshida A., Blanz V., Myszkowski K., and Seidel H. Perceptual evaluation of tone mapping
operators with real-world scenes. In Proceedings of SPIE Human Vision & Electronic Imaging
X, pages 192–203, San Jose, CA, USA, 2005.

2. Industrial Light & Magic (2008) OpenEXR. Available at: http://www.openexr.com.
3. SIM2 MULTIMEDIA Available at: http://www.sim2.com/HDR/.
4. Spheron HDR VR. Available at: http://www.spheron.com/home.html.
5. Guthier B. Real-time algorithms for high dynamic range video. PhD. Thesis, 2012.
6. Reinhard E., Stark M., Shirley P., and Ferwerda J. Photographic tone reproduction for digital

images. ACM Transactions on Graphics (TOG), 21(3):267–276, July 2002.
7. Banterle F., Artusi A., Debattista K., and Chalmers A. Advanced High Dynamic Range

Imaging: Theory and Practice. AK Peters (CRC Press), Natrick, MA, USA, 2011.
8. Banterle F., Debattista K., Artusi A., Pattanaik S., Myszkowski K., Ledda P., and Chalmers A.

High dynamic range imaging and low dynamic range expansion for generating HDR content.
Computer Graphics Forum, 28(8):3243–2367, December 2009.

9. Drago F., Myszkowski K., Annen T., and Chiba N. Adaptive logarithmic mapping for
displaying high contrast scenes. Computer Graphics Forum, 22(3):419–426, September 2003.

10. Drago F., Martens W., Myszkowski K., and Seidel H. Perceptual evaluation of tone mapping
operators. In Procedings of ACM SIGGRAPH 2003 Sketches & Applications, pages 1–1. ACM
Press, 2003.

11. Durand F. and Dorsey J. Fast bilateral filtering for the display of high-dynamic-range images.
ACM Transactions on Graphics (TOG), 21(3):257–266, July 2002.

12. Eilertsen G., Wanat R., Mantiuk R., and Unger J. Evaluation of tone mapping operators for
HDR-video. Computer Graphics Forum, 32(7):275–284, October 2013.

13. Mather G. Foundations of Perception. Psychology Press, Hove, East Sussex, 2006.
14. Ward G. Real pixels. In Graphic Gems II, pages 80–83. Academic Press, 1991.
15. Ward G. A contrast-based scalefactor for luminance display. In Graphic Gems IV, pages

415–421. Academic Press, 1994.
16. Ward G. The LogLuv encoding for full gamut, high dynamic range images. Journal of Graphics

Tools, 3(1):15–31, March 1998.
17. Ward G. and SimmonsM. JPEG-HDR: A backwards-compatible high dynamic range extension

to jpeg. In ACM SIGGRAPH 2006 Courses, 2006.
18. Seetzen H., Heidrich W., Stuerzlinger W., Ward G., Whitehead L., Trentacoste M., Ghosh A.,

and Vorozcovs A. High dynamic range display systems. ACM Transactions on Graphics (TOG),
23(3):760–768, August 2004.

19. Kuang J., Johnson G., and Fairchild M. iCAM06: A refined image appearance model for hdr
image rendering. J. Visual Communication and Image Representation (JVCI), 18(5):406–414,
October 2007.

20. Kuang J., Yamaguchi H., Liu C., Johnson G., and Fairchild M. Evaluating hdr rendering
algorithms. ACM Transactions on Applied Perception (TAP), 4(2), Article No. 9,July 2007.

21. Tumblin J., Hodgins J., and Guenter B. Two methods for display of high contrast images. ACM
Transactions on Graphics (TOG), 18(1):56–94, January 1999.

http://www.openexr.com
http://www.sim2.com/HDR/
http://www.spheron.com/home.html


5 High Dynamic Range Visual Quality of Experience Measurement: : : 155

22. Chiu K., Herf M., Shirley P., Swamy S., Wang C., and Zimmerman K. Spatially nonuni-
form scaling functions for high contrast images. In Proceedings of Graphics Interface,
pages 245–253, 1993.

23. Ashikhmin M. A tone mapping algorithm for high contrast images. In Proceedings of the 13th

Eurographics workshop on Rendering (EGRW), pages 145–156, 2002.
24. Ashikhmin M. and Goyal J. A reality check for tone-mapping operators. ACM Transactions on

Applied Perception (TAP), 3(4):399–411, October 2006.
25. Cadik M., Wimmer M., Neumann L., and Artusi A. Evaluation of HDR tone mapping methods

using essential perceptual attributes. Computers & Graphics, 32(3):330–349, June 2008.
26. Narwaria M., Silva M., Callet P., and Pepion R. Effect of tone mapping operators on visual

attention deployment. In Proceedings of SPIE 8499, Applications of Digital Image Processing
XXXV, San Diego, California, USA, 2012.

27. Narwaria M., Silva M., Callet P., and Pepion R. Tone mapping-based high-dynamic-
range image compression: study of optimization criterion and perceptual quality. Optical
Engineering, 52(10):102008–102008, 2013.

28. Narwaria M., Silva M., Callet P., and Pepion R. Impact of tone mapping in high dynamic range
image compression. In Proceedings of Eighth International Workshop on Video Processing
and Quality Metrics for Consumer Electronics (VPQM), Chandler, Arizona, USA, 2014.

29. Narwaria M., Silva M., Callet P., and Pepion R. Tone mapping based hdr compression: Does it
affect visual experience? Signal Processing: Image Communication, 29(2):257–273, February
2014.

30. Sugiyama N., Kaida H., Xue X., Jinno T., Adami N., and Okuda M. HDR compression
using optimized tone mapping model. In Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 1001–1004, 2009.

31. Ledda P., Chalmers A., Troscianko T., and Seetzen H. Evaluation of tone mapping operators
using a high dynamic range display. ACM Transactions on Graphics (TOG), 24(3):640–648,
July 2005.

32. Fattal R., Lischinski D., and Werman M. Gradient domain high dynamic range compression.
ACM Transactions on Graphics (TOG), 21(3):249–256, July 2002.

33. Mantiuk R., Efremov A., Myszkowski K., and Seidel H. Backward compatible high dynamic
range MPEG video compression. ACM Transactions on Graphics (TOG), 25(3):713–723, July
2006.

34. Mantiuk R., Jim K., Rempel A., and Heidrich W. HDR-VDP-2: A calibrated visual metric for
visibility and quality predictions in all luminance conditions. ACM Transactions on Graphics
(TOG), 30(4), July 2011.

35. Mantiuk R., Myszkowski K., and Seidel H. A perceptual framework for contrast processing of
high dynamic range images. ACM Transactions on Applied Perception (TAP), 3(3):267–276,
July 2006.

36. Rensink R. Visual attention. In Encyclopedia of Cognitive Science. Nature Publishing Group,
London, 2003.

37. Mann S. and Picard R. Being ‘undigitial’ with digital cameras: Extending dynamic range
by combining differently exposed pictures. In Proceedings of IS&T 48th Annual Conference,
pages 422–428. Society for Imaging Science and Technology, 1995.

38. Aydin T., Mantiuk R., and Seidel H. Extending quality metrics to full luminance range images.
In Proceedings of SPIE Human Vision & Electronic Imaging XIII, pages 68060B–68060B–10,
San Jose, CA, USA, 2008.



Chapter 6
Recent Advances of Quality Assessment
for Medical Imaging Systems and Medical
Images

Du-Yih Tsai and Eri Matsuyama

6.1 Introduction

Medical image quality assessment plays an important role in the design and
manufacturing processes of image acquisition and processing systems, including
image detectors such as imaging plates or flat panels. It is also critical for comparing
and optimizing such as X-ray tube voltage and tube current. Because of this, a variety
of research groups have been endeavoring to establish image quality standards and
develop quality assessment methods.

In medical imaging, image quality is governed by a variety of factors such as
contrast, resolution (sharpness), noise, artifacts, and distortion. Of these factors,
resolution and noise are the most commonly used physical characteristics. The
resolution and noise properties of imaging systems are described by the modulation
transfer function (MTF) [1] and noise power spectrum (NPS) [2], respectively. The
MTF is a common metric quantifying the resolution of the reconstructed images.
It also describes the ability of an imaging system to reproduce the frequency
information contained in the incident X-ray signal. The NPS is a common metric
describing the frequency content of the noise of imaging systems. However, one
of the dilemmas in medical radiography is the extent to which these metrics affect
image quality. In comparison of two imaging systems or image detectors, for exam-
ple, an imaging system may only be superior in one metric while being inferior to
another in the other metric. To deal with this issue, the detective quantum efficiency
(DQE) [3] is used as a metric to describe the general quality of the imaging
system. The DQE which reflects system efficiency when forming an image using
a limited number of X-ray photons can be calculated if the MTF, NPS, and X-ray
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photon fluence are known. These metrics are dealt with in the spatial frequency
domain. Other than the abovementioned metrics, various quality measures such as
signal-to-noise ratio (SNR), mean square error (MSE), peak signal-to-noise ratio
(PSNR), contrast-to-noise ratio (CNR), and contrast improvement ratio (CIR) are
also commonly used for quality assessment.

Recently, Tsai et al. reported an image quality metric, mutual information
(MI) [4], based on Shannon’s information theory for assessing overall image quality
in medical imaging systems. They used MI to express the amount of information
that an output image contains about an input object. The basic idea is that when
the amount of the uncertainty associated with an object before and after imaging is
reduced, the difference of the uncertainty is equal to the value of MI. The more the
MI value provides, the better the image quality is. Therefore, the overall quality of
an image can be quantitatively assessed by measuring MI.

In this chapter, we mainly focus on describing recent advances of quality
assessment for medical imaging systems and medical images. Section 6.2 generally
reviews conventional medical image quality metrics, i.e., MTF, NPS, SNR, DQE,
PSNR, CNR, and CIR, followed by describing the recently proposed image quality
metrics, MI. Section 6.3 provides two clinical applications of image quality
assessment in mammogram enhancement and radiation dose reduction in digital
radiography. Section 6.4 ends with a conclusion.

6.2 Representative Quality Metrics for Medical Imaging
Systems and Medical Images

6.2.1 Conventional Image Quality Metrics

6.2.1.1 Modulation Transfer Function

TheMTF is widely recognized as the most relevantmetric of resolution performance
in radiographic imaging [1]. The MTF describes the imaging system such as an
imaging plate’s or an image detector’s ability to transfer the input signal modulation
of a given spatial frequency to its output. The MTF of a radiographic system has
been determined either by evaluating the response of the system to periodic patterns
or by measuring the line spread function (LSF) of the system using a narrow slit
from which the MTF is calculated by Fourier transformation [5, 6]. The use of a
slit requires very precise fabrication and alignment of the device in the radiation
beams. An alternative method for determining the MTF of a radiographic system
is to measure its edge spread function (ESF) using an opaque object with a straight
edge [6]. The edge technique is currently the most widespread approach to measure
the MTF [7].



6 Recent Advances of Quality Assessment for Medical Imaging Systems. . . 159

6.2.1.2 Noise Power Spectrum

The NPS is one of the most common metrics describing the noise properties of
imaging systems. The NPS is defined as the variance per frequency bin of a stochas-
tic signal in the spatial frequency domain [2]. In other words, the NPS provides
a convenient description of the noise amplitude and texture observed in images
obtained with a uniform field of radiation having a specific fluence and spectral
quality [8]. The NPS is most commonly computed directly from the squared Fourier
amplitude of two-dimensional uniform images. The measurement of the NPS is
conceptually straightforward but difficult to carry out experimentally, and there has
not been universal agreement on the best methods for these measurements. There are
two principal difficulties in determining the best method for NPS analysis. The first
difficulty is that only a limited amount of data is available for analysis. The second
difficulty in making accurate NPSmeasurements is that practical data contains some
static artifactual components in addition to the stochastic noise that one desires to
measure [2]. The NPS is often used as an input to the computation of DQE of an
imaging system.

6.2.1.3 Signal-to-Noise Ratio

SNR is a generalized, objective image quality metric for X-ray based medical
imaging systems. The spatial frequency-dependent SNR describes the ratio between
the signal and the noise detected in the X-ray image. Because X-ray follows Poisson
statistics, the noise of incoming X-ray at the image detector input (X-ray flux at the
entrance window) is described by the standard deviation of the average input quanta
per unit area and is equal to the square root of the average input quanta per unit area.
Since the signal is described by the average input quanta per unit area, the SNR at
the detector input is therefore equal to the square root of the average input quanta per
unit area. The input SNR increases with the increase of number of quanta, because
the SNR grows as the square root of the number of quanta.

6.2.1.4 Detective Quantum Efficiency

The DQE is a spatial frequency based measurement of the ability of the imaging
device to convert the spatial information contained in the incident X-ray fluence
into useful image information [3, 9, 10]. It is defined as

DQE.u/ D SNR2.u/out

SNR2.u/in

(6.1)

where SNR(u)out and SNR(u)in are the spatial frequency-dependent signal-to-noise
ratios of the imaging device at the output and input, respectively. The DQE can be
calculated using the following formula [10, 11].
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DQE.u/ D M TF 2.u/

q � NNPS.u/
(6.2)

where q is the X-ray photon fluence density (mm�2) used for the uniform exposure
image, and NNPS is the normalized NPS. Detailed elaboration of the Eq. (6.2) is
described in the literature [12]. For a perfect imaging detector, DQE can reach a
maximum value of 1.0.

6.2.1.5 Peak Signal-to-Noise Ratio

PSNR is one of the simplest and widely used metrics in medical image analysis. The
PSNR [13] in decibels is adopted for measuring the performance of denoising and
is given by

PSNR D 10log10

M � N � T 2

X

i

X

j



d .i; j / � d 0 .i; j /

�2 (6.3)

where M �N is the size of the image, T is the maximum possible value that can
be obtained by the image signal, d(i, j) and d0(i, j) are the pixel values of original
and processed images, respectively. The higher the PSNR value, the better the
performance of denoising is.

6.2.1.6 Contrast-to-Noise Ratio

The CNR [14, 15] is defined as

CNR D j�d � �uj
p

0:5 .�d
2 C �u

2/
(6.4)

where �d and ¢d are the mean and standard deviation computed in a desired region
of interest (ROI) in an image, respectively. �u and �u are the mean and the standard
deviation computed in an undesired ROI such as background, respectively. CNR
measurement is proportional to the medical image quality.

6.2.1.7 Contrast Improvement Ratio

The CIR [16] is a quantitative measurement of the contrast improvement and is
defined as
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CIR D
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(6.5)

where c(i, j) and c0(i, j) are the local contrast values of original and enhanced images,
respectively. The local contrast c(i, j) is defined by the difference of mean values in
two rectangular windows centered on a pixel at the coordinate (i, j). In detail the
c(i, j) is given by

c .i; j / D jp .i; j / � a .i; j /j
jp .i; j / C a .i; j /j (6.6)

where p and a are the average values of pixels within a 3� 3 region and a 7� 7
surrounding neighborhood, respectively. The greater the CIR value, the better the
enhancement result is.

6.2.2 A Mutual Information-Based Quality Metric
for Medical Imaging Systems

Mutual information (MI) is a concept from information theory. We briefly describe
the MI as follows.

Given events S1, : : : Sn occurring with probabilities p(S1), : : : p(Sn), then the
average uncertainty associated with each event is defined by the Shannon entropy as

H.S/ D �
nX

iD1

p
�
Si

�
� log2p .Si / (6.7)

Considering x and y as two random variables corresponding to an input variable
and an output variable, the entropy for the input and that for the output are denoted
as H(x) and H(y), respectively. For this case the joint entropy,H(x, y), is defined as

H .x; y/ D H.x/ C Hx.y/ D H.y/ C Hy.x/ (6.8)

whereHx(y) andHy(x) are conditional entropies. They are the entropies of the output
when the input is known and that of the input when the output is known, respectively.
In this situation, we can compute MI as:

MI .xI y/ D H.x/ � Hy.x/ D H.y/ � Hx.y/

D H.x/ C H.y/ � H .x; y/
(6.9)
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Fig. 6.1 Venn diagram
which represents the
relationship between input
entropy H(x) and
output entropy H(y),
conditional entropies Hx(y)
and Hy(x), joint entropy
H(x, y) and the mutual
information MI(x; y)

Hx(y)Hy(x) MI (x ; y)

H (x , y)

H (x) H (y)

Table 6.1 A data matrix of occurrence frequency for Y outputs to
X inputs

Input x
Output y x1 x2 : : : xi : : : X Frequency
y1 n11 n21 : : : ni1 : : : nX1 njD1

y2 n12 n22 : : : ni2 : : : nX2 njD2

y3 n13 n23 : : : ni3 : : : nX3 njD3

: : : : : : : : : : : : : : : : : : : : : : : :

yj n1j n2j : : : nij : : : nXj njDj

: : : : : : : : : : : : : : : : : : : : : : : :

Y n1Y n2Y : : : niY : : : nXY njDY

Frequency niD1 niD2 : : : niDi : : : niDX n

A useful way of visualizing the relationship between these entropies is provided
by a Venn diagram as shown in Fig. 6.1 [4].

Consider an experiment in which every input has a unique output belonging
to one of various output categories. In this study, for simplicity, the inputs may
be considered to be a set of subjects (e.g., phantoms in simplicity) varying in
composition,while the outputs may be their corresponding images varying in optical
density or gray level. An orderly system is employed in the present study to calculate
the entropies of input, output, and their joint entropies. With this orderly system, the
amount of MI is easily computed. The frequency with which each output is made to
each input is recorded in Table 6.1 [4]. The columns and rows of this table represent
various inputs and outputs. The various inputs, x1, x2, : : : xi, : : : X, are assumed to
take discrete values of input variables x. Likewise, the various outputs, y1, y2, : : :

yj, : : : Y are discrete values of output variables y. The uppercase X and Y stand for
the number of input and output categories, respectively. The subscript i refers to any
particular but unspecified input, whereas the subscript j refers to any particular but
unspecified output. The number of times input xi is presented will be symbolized
by ni, the frequency of output, yj, by nj, and the frequency, with which the input xi
corresponds to the output yj, is given by nij. The total of all frequencies is given by
n. It is apparent from Table 6.1 that



6 Recent Advances of Quality Assessment for Medical Imaging Systems. . . 163

X

j

nij D ni (6.10)

X

i

nij D nj (6.11)

X

ij

nij D
X

i

ni D
X

j

nj D n (6.12)

Referring to the definition of information entropy as shown in Eq. (6.7), three
informational quantities, namely H(x), H(y), and H(x, y), can be calculated from
Table 6.1.

H.x/ D
X

i

pi log2

1

pi

(6.13)

H.y/ D
X

j

pj log2

1

pj

(6.14)

H .x; y/ D
X

ij

pij log2

1

pij

(6.15)

where pi D ni/n, pj D nj/n, and pij D nij/n. For simplicity, we can rewrite the above
equations as follows:

H.x/ D log2n � 1

n

X

i

ni log2ni (6.16)

H.y/ D log2n � 1

n

X

j

nj log2nj (6.17)

H .x; y/ D log2n � 1

n

X

ij

nij log2nij (6.18)

Then, the MI,MI(x; y), can be obtained from Eq. (6.9) together with Eqs. (6.16)–
(6.18). The MI conveys the amount of information that “y” has about “x.”

Table 6.2 gives an example of how to calculate MI. Assume that a subject
(e.g., a step-wedge) having five steps with different thickness was used for the
experiment [4]. The five steps correspond to five inputs present equiprobably. The
gray-scale pixel values of 100 pixels in each step after imaging were measured
randomly. The distributions of the pixel values are considered as the corresponding
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Table 6.2 An example of
how to calculate the
transmitted information

Input x
Output y 1 2 3 4 5 Frequency
1 20 20

2 60 4 64

3 20 88 10 118

4 8 76 14 98

5 12 80 2 94

6 2 6 8 16

7 90 90

Frequency 100 100 100 100 100 500

The frequencies shown in the table are referred
to by means of the symbols given in Table 6.1,
for example, n23 D 88, njD2 D 64, niD1 D 100,
nD 500, and so on

outputs and their respective frequencies are given in the table. The frequencies will
be referred to by means of the symbols given in Table 6.1; for example: n12 D 60,
njD3 D 118, niD2 D 100, nD 500, and so on. Now, there are three information
quantities, namely H(x), H(y), and H(x, y), that can be calculated directly from
Table 6.2 by using Eqs. (6.16)–(6.18).

For the data given in Table 6.2,

H.x/ D log2n � 1

n

X

i

ni log2n D log25 D 2:323

(since inputs are equiprobable)

H.y/ D log 2500 � 1

500
.20log220 C 64log264 C 118log2118 � � �etc/ D 2:575

H .x; y/ D log2500 � 1

500
.20log220 C 60log260 C 4log24 � � � etc D 3:235

Applying Eq. (6.9) to the values calculated above, we have

MI .xI y/ D H.x/ C H.y/ � H .x; y/ D 2:323 C 2:575 � 3:235 D 1:663:

This is the estimate of the amount of information transmitted by the subject from
input to output: 1.633 bits, out of a possible of 2.323 bits.

If the output is identical to the input, then knowing the output provides complete
information about the input. In this case, MI is maximized and equal to the input
entropy, and the uncertainty of the input is reduced to 0. It means that knowing (or
viewing) the image of an object (subject) receives complete information about the
object (subject). Thus, the quality of the obtained image arrives at a maximum in
terms of the MI. If, on the other hand, the output and the input are independent,
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then knowing the output does not help making any conclusions about the input. In
this case, the MI value is zero, and therefore the uncertainty about the input remains
unchanged. This means that the obtained image has the lowest quality from the point
of view of the MI.

6.3 Applications of Medical Image Quality Assessment

6.3.1 Improvement of Image Quality in Mammography Using
a Wavelet Transform Based Approach

6.3.1.1 Background

Denoising and contrast enhancement operations are two of the most common and
important techniques for medical image quality improvement. Because of their
importance, there has been an enormous amount of research dedicated to the subject
of noise removal and image enhancement [17–20].

With regard to image denoising, some approaches using discrete wavelet trans-
form (DWT) have been proposed [21–23]. The DWT is very efficient from
a computational point of view, but it is shift variant. Therefore, its denoising
performance can change drastically if the starting position of the signal is shifted.
In order to achieve shift-invariance, researchers have proposed the undecimated
DWT (UDWT) [24–26]. Mencattini et al. reported a UDWT-based method for the
reduction of noise in mammographic images [27]. Zhao et al. proposed an image
denoising method based on Gaussian and non-Gaussian distribution assumptions
for wavelet coefficients [28]. Huang et al. reported on a denoising method which
involves directly selecting the thresholds for denoising by evaluating some statistical
properties of the noise [29]. Recently, Matsuyama et al. proposed a modified UDWT
approach for mammographic denoising [30]. The results demonstrated that the
method could further improve image quality and decrease image processing time.

As regard to the improvement of contrast enhancement, various image enhance-
ment techniques have been proposed [31–35]. These techniques can be divided into
several categories, including histogram equalization, region-based, fuzzy, genetic-
algorithm, and adaptive methodology.Wavelet-based approaches to enhancement of
digital images have been also reported [36–40]. Tsai et al. proposed a method which
employs an exponential-type mapping function to the wavelet coefficients of digital
chest images and then reconstructs an enhanced image with the mapped wavelet
coefficients [37, 38]. Lee et al. used a sigmoid-type mapping function for wavelet
coefficient weighting adjustment to improve the contrast of medical images [40].
The method was applied to chest radiographs, mammograms, and chest CT images.

In this study, we expanded upon the previously suggested modified UDWT
method [30] and combined it with the sigmoid-type mapping function [40]. By
combining the two methods together in sequence, an effective algorithm for both
image denoising and enhancement could be obtained. Original images were first
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Fig. 6.2 A flow chart summarizing the processing procedure for the proposed algorithm

denoised using the modified UDWT, followed by image enhancement using the
wavelet-coefficient mapping function. Finally, a denoised and contrast enhanced
image was reconstructed by the inverse wavelet transform.

6.3.1.2 Methods and Materials

Proposed Method

Figure 6.2 shows the flowchart of our proposedmethod. In the first phase, denoising
was applied to original images using our recently reported UDWT [30]. In the
second phase, image enhancement was performed using a sigmoid-type transfer
function for wavelet coefficient mapping [40].

The UDWT is a wavelet transform algorithm designed to overcome the lack
of translation-invariance of the DWT. Unlike the DWT, the UDWT does not
incorporate the down sampling operations. Thus, the approximation coefficients
(low-frequency coefficients) and detailed coefficients (high-frequency coefficients)
at each level are the same length as the original signal. The basic algorithm of the
conventional UDWT is that it applies the transform at each point of the image and
saves the detailed coefficients and uses the approximation coefficients for the next
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Table 6.3 Comparison of three image quality measurements of six different
wavelet basis functions for simulated images

Wavelet basis function
Image quality measurement dmey db2 sym7 coif1 coif5 bior6.8
MI (bit) 0:68 0:81 0:72 0:79 0:69 0:72

MSE 58:43 50:20 55:87 51:01 57:1 55:51

SNR (dB) 27:93 29:10 28:21 28:93 28:04 28:29

MI mutual information, MSE mean square error, SNR signal-to-noise ratio

level. The size of the coefficients array does not diminish from level to level. This
decomposition operation is further iterated up to a higher level. There are major
differences between the modified UDWT method [30] and the conventional UDWT
method. First, the conventional UDWT decomposes the original image (level 0)
into one low-frequency band and three high-frequency bands for each resolution
level with the same size as the original image. The decompositions are usually
conducted up to resolution level 4. In contrast, the modified UDWT method only
needs to perform the computation up to resolution level 2 and repeat the computation
only one time [30, 41]. Second, the conventional UDWT thresholded the detailed
coefficients at all four levels with the same thresholding value, while the modified
UDWT method utilizes the hierarchical correlation of the coefficients between level
1 and 2 of the three detailed coefficients for thresholding. In other words, the
thresholding values vary and are dependent on the nature of the noise.

The extended UDWT method adopted in the present study was based on the
modified UDWT [30].

We evaluated six comparatively popular wavelet basis functions, namely discrete
finite impulse response (FIR) approximation of Meyer wavelet (dmey), Daubechies
order 2 (db2), Symlets order 7 (sym7), Coiflets order 1 (coif1), Coiflets order
5 (coif5), and biorthogonal 6.8 (bior6.8), as candidates for selection as the most
suitable basis function for the UDWT. The evaluation results showed that wavelet-
processed images with db2 basis function provided the best results among the six
basis functions. Thus, we selected db2 basis function for the proposed method
[30, 40, 41]. Table 6.3 shows the results for simulated images processed by the six
wavelet basis functions. Quality metrics used for assessment were MI, MSE, and
SNR (dB).

A sigmoid-type transfer curve with a one-to-one mapping function was used for
enhancement of image contrast [40]. The mapping function was determined based
on the following considerations: (a) wavelet coefficients having high values are
heavily weighted because they carry more useful information; (b) the coefficients
at low levels are heavily weighted because they carry detailed information, such
as edge information; and (c) the approximation coefficients are not manipulated to
prevent image distortion [38, 40].
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Image Data

To evaluate and validate our proposed method, we used a standard mammogram
database. The database was from the Mammographic Image Analysis Society
(MIAS) [42]. Patient informed consent was not required.A total of 30mammograms
obtained from the database were used for investigation of the effectiveness of the
proposed method. The matrix size of each image was 1,024� 1,024 pixels with
8-bit gray-level resolution.

Quantitative and Perceptual Evaluations

In order to compare objectively the performance of the proposed algorithm against
two published algorithms [30, 40], in this study we adopted three image quality
metrics. The three metrics are contrast-to-noise ratio (CNR), contrast improvement
ratio (CIR), and peak signal-to-noise ratio (PSNR). A visual perceptual evaluation
was also designed for performance analysis. We used Scheffe’s method of paired
comparison to evaluate the preference of overall image quality [43, 44].

The visual perceptual evaluation was made by five experienced radiological
technologists (ranging from 20 to 25 years of experience). The obtained 30 mam-
mograms from the database were processed using the proposed method, a modified
UDWT method [30], and a sigmoid-type wavelet coefficient (STWC) mapping
method [40]. Thus, a total of 90 images were used for image quality evaluation.
All images were evaluated on a pair of widely used medical 3M monochrome
liquid-crystal display monitors. Each observer reviewed the images independently.
The reading time was limited to less than 20 s for each reading. The observers
independently evaluated one pair of images, which were shown on the monitors
one at a time, using a 5-point grading scale (�2 points to C2 points). If the image
shown on the left was much better than that shown on the right in terms of overall
image quality, the left image was given C2 points; the left image was given C1
point when it was slightly better than the right one; the left image was given 0
points, when both images were of the same image quality. Conversely, if the image
shown on the left was much poorer than that shown on the right in terms of overall
image quality, the left image was given �2 points; the left image was given �1 point
when it was slightly poorer than the right one. Comparisons were made by use of
three possible combinations, that is, modified UDWT/sigmoid mapping, modified
UDWT/proposed method, and sigmoid mapping/proposed method combinations.
Each pair of images was determined randomly. In addition, the two paired images
(left side vs. right side) were arranged on a random basis.
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Fig. 6.3 Image processing results for mammograms. (a) Image processed by the proposed method,
(b) image processed by the modified UDWT method, and (c) image processed by the sigmoid-type
wavelet coefficient mapping method

Table 6.4 Comparison of
image processing methods in
terms of three quantitative
quality metrics for
mammograms

Method CNR CIR PSNR
UDWT 8.18 0.28 38.35
Sigmoid 7.64 0.29 36.39
Proposed 8.24 0.67 37.98

6.3.1.3 Results and Discussion

Figure 6.3 illustrates an example of image processing results obtained from the
mammograms. Figure 6.3a–c are resulting images processed by using the pro-
posed method, the modified UDWT method, and the STWC mapping method,
respectively.

Table 6.4 summarizes the quantitative evaluation results for the proposed method
and two published methods in terms of CNR, CIR, and PSNR metrics. As described
earlier that the CNR measurement is proportional to the medical image quality. It
is obvious from the table that CNR value of the image processed by the proposed
method gave the best result as compared to those processed by other two methods.
The CIR is a metric used for evaluating the contrast improvement. It is noted
from the table that the proposed method shows the greatest value, followed by the
sigmoid mapping and modified UDWT. The reason why the proposed method is
superior to the sigmoid mapping method is due to the fact that the images processed
by the proposed method have been denoised prior to mapping operation. In the
case of PSNR measurement, the results listed in Table 6.4 show that the modified
UDWT method was slightly better than both the proposed method and sigmoid
mapping method from the point of view of denoising performance. The reason
might be because some residual (un-removed) noise has also enhanced during
enhancement operation. This results in the decrease of PSNR value. However, the
images processed by the proposed method showed the best overall image quality in
terms of both denoising and contrast enhancement when looking into the values of
the PSNR and CNR as shown in Table 6.4.
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Table 6.5 Results of mammogram scoring for the three combinations by
the five observers

Observer
Combination a b c d e Sum

Sigmoid UDWT �1.1 �0.87 0 �1.2 �1.2 �4.37
Sigmoid Proposed �1.57 �1.4 �1.67 �1.47 �1.6 �7.71
UDWT Proposed �1.33 �1.27 �1.47 �1.3 �1.5 �6.87

The results of scoring for the three combinations by the five observers are listed
in Table 6.5. As described earlier, if the left image of the paired images (two-image
combination) was poorer than the right image in terms of overall image quality,
it received a negative score. As indicated by the preference scores shown in the
rightmost column of the table, the images processed by the proposed method were
judged to have the best quality. The visual evaluation results showed that the images
processed by the proposed method were judged to have the best quality as compared
to the other two methods.

6.3.1.4 Summary

We proposed a method for improving image quality in mammography by using a
wavelet-based approach. The proposed method integrated two components: image
denoising and image enhancement. In the first component, a modified UDWT was
used to eliminate the noise. In the second component, a wavelet-coefficientmapping
function was applied to enhance the contrast of denoised images obtained from
the first component. We examined the performance of the proposed method by
comparing it with two previously reported methods. The results of quantitative
assessment showed that the proposed UDWT method outperformed over the other
two methods. The results of visual assessment also indicated that the images
processed by the proposedUDWTmethod showed statistically significantly superior
image quality over the other two methods. Our research results demonstrated the
superiority and effectiveness of the proposed method. This methodology can be
used not only as a means for improving visual quality of medical images but also as
a preprocessing module for computer-aided detection/diagnosis systems to improve
the performance of screening and detecting regions of interest in images.

6.3.2 The Effect of Radiation Dose Reduction on Image
Quality in Digital Radiography

6.3.2.1 Background

The issue of radiation dose exposure to patients from digital radiography is a major
public health concern. In particular, it is important to keep radiation dose exposure
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to a minimum in female patients during their reproductive period, who frequently
undergo repeated radiation exposure during the course of diagnostic imaging and
treatment follow-up.

It is known that a trade-off exists between noise level and radiation dose. On
the one hand, high-dose radiation will lower the noise level, but may expose the
patient to excessive radiation. On the other hand, low-dose radiation will lower
the SNR of the image and result in reducing the amount of image information.
The balancing of radiation dose and image quality should be performed precisely
to ensure that patient doses are kept at a reasonable minimum, while maintaining
clinically acceptable image quality. To address this issue, much research, including
the development of new detectors and image processing methods [45–47], has been
carried out. In recent years, several investigators have reported that wavelet-based
image processing techniques are effective in the reduction of radiation dose [48–55].

Conventional radiography is widely used for the pelvis and lumbar spine.
However, the radiation dose for pelvic and lumbar X-ray examinations using a
radiograph is relatively high in order to obtain acceptable image quality. An effort
to reduce the exposure dose can have a positive effect on a patient’s quality of life.

In this study, we propose an improved wavelet-transform-based method for
potentially reducing the radiation dose while maintaining clinically acceptable
image quality. The proposed method integrates the advantages of our previ-
ously proposed wavelet-coefficient-weighted method [38, 40, 54] and the existing
BayesShrink thresholding method [56]. The wavelet-coefficient-weighted method
has the advantage of effective edge enhancement accompanied by a slight sup-
pression of noise increase (however, the noise is also enhanced definitely). In
contrast, the BayesShrink thresholding method is used for denoising, while the edge
is preserved as much as possible (however, the edge also decreases definitely).
It is expected that our approach, integrating the two methods, can achieve edge
enhancement with almost no significant noise increasing and can be applied to
low-dose radiographs to improve image quality. To verify the proposed method’s
effectiveness in reducing radiation dose in digital radiography, a quantitative and
qualitative assessment was performed.

6.3.2.2 Methods and Materials

Proposed Method

The main steps of the proposed method include a previously reported wavelet
coefficient adjustment technique for contrast enhancement [38, 40, 54] and a wavelet
thresholding technique for noise reduction. Figure 6.4 shows a schematic diagram
of the proposed method. As shown in the figure, the proposed method for denoising
radiographic images starts by decomposition of the original image by use of the
DWT, which results in obtaining different detail wavelet coefficients (horizontal,
vertical, diagonal). The three detail coefficients are then processed by use of a
sigmoid-type transfer curve for adjustment of wavelet coefficient, followed by
BayesShrink thresholding.
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Fig. 6.4 Flow chart of the proposed method

A sigmoid-type transfer curve with a one-to-one mapping function is used for
enhancement of image contrast. The mapping function was determined based on the
following considerations: (a) in the case of detail components at a specific level,
high-value coefficients are weighted because they carry effective information; (b)
the coefficients at low levels are heavily weighted, because they carry detailed
information, such as edge information; and (c) the approximation coefficients are
not manipulated in order to prevent image distortion. A detailed explanation of the
sigmoid-type transfer curve for wavelet coefficient weighting adjustment is given in
the literature [57].

Wavelet denoising attempts to remove the noise present in an image while
preserving the image characteristics. Wavelet thresholding, first proposed by
Donoho [48], is a signal-estimation technique that exploits the capabilities of the
wavelet transform for signal and image denoising. It removes noise by eliminating
coefficients that are insignificant relative to some threshold. Therefore, the selection
of the threshold is the most important step in wavelet-based denoising techniques.

Various threshold selection methods have been proposed, such as VisuShrink
[58], SureShrink [59], and BayesShrink [56]. In the VisuShrink method, a universal
threshold that is a function of the noise variance and the number of samples
is developed based on the minimax error measure. The threshold value in the
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Fig. 6.5 Examples of
phantom images used for the
measurement of physical
characteristics. (a) Contrast
detail curve, (b) MTF, (c)
NPS, and (d) GLC using
acrylic disk on Burger
phantom

SureShrink method is optimal in terms of the Stein’s unbiased risk estimator.
The BayesShrink method determines the threshold value in a Bayesian framework,
through modeling of the distribution of the wavelet coefficients as Gaussian [60].
Several researchers have compared the three selection methods, and their results
have shown that BayesShrink outperforms the other two methods [60–62]. In this
study, we employed the BayesShrink method for denoising.

Data Acquisition

Images that were used for measurement of physical characteristics were acquired
with use of a multipurpose phantom [63]. Figure 6.5 shows an example of phantom
images. A computed radiography (CR) system and an imaging plate were used in
this study. A pixel size of 0.1 mm and a quantization level of 10 bits were employed
for data acquisition. The system parameter settings for the latitude and sensitivity
were fixed at 3 and 200, respectively. Images were taken with a radiation quality of
RQA-5 (HVLD 7.1 mm Al, 21 mm Al additional filtration) by using a tungsten
target X-ray tube (Hitachi, Tokyo, Japan). The focal spot size of the X-ray tube
was 0.6 mm. The source-to-image receptor distance was 190 cm. The amount of
exposure was 4.63� 10�7 C/kg (50 mAs). Twenty phantom images were obtained
and used for measuring the presampled MTF, NPS, and gray-level contrast (GLC).

Four different radiation levels were used for investigating the effect of the
physical characteristics on the radiation dose. The four radiation level ratios with
respect to the reference level, 4.63� 10�7 C/kg, were 50/100, 64/100, 80/100, and
100/100.A visual evaluation of wavelet-processed images of a human body phantom
was performed to confirm the effectiveness of the proposed method in reducing
radiation dose. An anterior–posterior (AP) projection of the hip joint and a lateral
view of the lumbar spine on the human body phantom were exposed to various
dose levels. These two images were also taken at four different radiation level ratios,
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50/100, 64/100, 80/100, and 100/100, instead of the reference level that is commonly
used in clinical radiology practice. In this study, the hip joint phantom was exposed
at 70 kVp and 32 mAs, and the lumbar phantom at 82 kV and 64 mAs.

Measurement of Quality Metrics

The presampled MTFs were measured with an angled-edge method [6]. The edge
device was made of a 1-mm-thick sharp-edged tungsten plate whose dimensions
were 10� 10 cm2. The direction of the edge was oriented with a small angle (2ı–3ı).
The ESF in the direction perpendicular to the edge was then obtained. To reduce the
noise in the edge profile, 20 representations of the sampled ESFs were generated
from the ROI. Then the ESFs were differentiated to obtain the LSFs, and the
presampled MTFs were deduced by applying Fourier transformation to the LSFs
[6, 8]. The resulting MTF was obtained by averaging the 20 MTFs.

NPS measurements were made by exposure of the imaging plate to a uniform
beam of radiation. For determination of the NPS, a two-dimensional second-
order polynomial was fitted and subtracted to remove background trends. For the
calculation, the central portion of each uniform image obtained was divided into
four non-overlapping regions, 256� 256 in size. A total of 80 regions were used.
The NPS was calculated by applying the fast Fourier transform to each of the ROIs
and then averaging the resulting spectrum estimates [3, 64].

A commercially available Burger phantom (Kyoto Kagaku, Kyoto, Japan) was
employed for measurement of GLC characteristics. In this study, the GLC was used
to describe the relative contrast of an image, defined by

GLC D
ˇ
ˇLacrylic � LBG

ˇ
ˇ

LD � 1
(6.19)

where Lacrylic, LBG, and LD represent the mean pixel value of an 8.0 mm diameter
circle of an acrylic disk 8.0mm in thickness, the mean pixel value of the background,
and the gray level of the CR, respectively. The GLC value ranged from 0 to 1.0.
Image contrasts with different gray levels could be compared because the GLC was
normalized by (LD � 1). Low GLC corresponded to low contrast, while high GLC
corresponded to high contrast. For clarifying the effect of the radiation dose on the
GLC, dose ratios ranging between 100/100 and 50/100, instead of the standard dose,
were measured.

Performance Comparison

In order to validate the superiority and effectiveness of the proposed method,
we compared the proposed method with three conventional methods, namely
the Wiener filter (WF) [65, 66], BayesShrink method [56], and sigmoid-type
method [40]. The proposed method and the above-described three methods were
applied to the original images for performance comparison.
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Visual Evaluation

A visual evaluation was conducted by five experienced radiological technologists.
The images were displayed on a liquid-crystal display (1,280� 1,024 matrix, LCD-
1980SXi, Nippon Electric Company, Tokyo, Japan). The parameters of window
level, window width, and display image size on the image display apparatus were
fixed. Each observer reviewed the images independently. The reading time was
not limited. The five radiological technologists independently evaluated the total
depiction of each phantom image for diagnostic acceptability by using a 5-point
grading scale [(1) no depiction; (2) faint; (3) acceptable; (4) good; (5) excellent].
Statistical analyses were performed with the Friedman test. When a statistically
significant difference was found (p< 0.01) in the five images (the original and
the four image-processed images) at each dose ratio, pairwise comparisons were
performed with Scheffe’s method. Comparisons were made by use of five pos-
sible combinations, namely WF-processed image, BayesShrink-processed image,
sigmoid-processed image, proposed filter-processed image, and the original image.

6.3.2.3 Results and Discussion

Figure 6.6a shows the MTF values for the original image and the four processed
images. The MTF value for the sigmoid image was the highest, followed by that for
the proposed image. Both MTFs were considerably superior to the original image
over the entire spatial frequency range. In contrast, the MTF values obtained from
the BayesShrink and the WF images were slightly lower than that of the original
image. Figure 6.6b shows the NPS values. The NPS values for the sigmoid image
were pronouncedly higher than those of the original image. The NPS values for the
proposed image were slightly higher or similar to those of the original image. In
contrast, the NPS values for the BayesShrink and WF images were lower than those
for the original image.

Figure 6.7a shows the GLC as a function of the radiation dose ratio. There were
no significant differences in any of the GLCs. Figure 6.7b, c, respectively, show
the NPS as a function of the dose ratio at spatial frequencies of 1 and 4 mm�1 for
the original image and the four processed images. Although the trend of the values
measured from the proposed-method-processed image is similar to that measured
from the original image in dose ratios ranging from 80/100 to 50/100, the NPS for
the proposed method showed improvement in noise level at the dose ratio of 50/100
at the spatial frequency of 4 mm�1.

Figure 6.8 illustrates the mean grades of visual evaluation for the hip joint and
the lumbar spine at the four radiation dose ratios. In all cases, significant differences
(p< 0.01) were found with the Friedman test at various radiation dose ratios. For
the hip joint, the mean grade of the proposed method reached three points and was
higher than those of the other methods tested at all radiation dose ratios. In the case
of the lumbar spine, except for the radiation dose ratio of 50/100, the mean grade
for the proposed method was higher than those of the other methods tested.
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Fig. 6.6 (a) Presampled
MTFs and (b) NPS for the
original image and the four
processed images

Figure 6.9 illustrates visual evaluation results for the hip joint (AP) and lumbar
spine (lateral) at various radiation dose ratios by use of Scheffe’s method of paired
comparisons. As shown in Fig. 6.9, original image (Org) at 100/100 radiation dose
ratio is located at the center (marked as zero) of the straight horizontal bar. The
quality of the processed image was superior to that of the Org, if it had a higher score
than the Org and there was a statistical significance. The quality of the processed
image was inferior to that of the Org, if it had a lower score than the Org and
there was a statistical significance. If the processed image had a similar score to
that of the Org, the quality was considered to be equivalent to that of the Org. In
terms of diagnostic acceptability, the proposed method provided significantly better
results than those of the original image up to a 64/100 radiation dose ratio in the hip
joint. When the radiation dose ratio was 50/100, no significant difference was found
between the image processed by the proposed method and the original image.

In the case of lumbar radiographs, the results obtained from the proposed method
were comparable to those of the original image up to a 64/100 radiation dose ratio.
However, the proposed method tended to show unsatisfactory results for a 50/100
radiation dose ratio.
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Fig. 6.7 (a) Gray-level contrasts as a function of the dose ratio for the original image and the four
processed images obtained using a Burger phantom. (b) NPSs as a function of the radiation dose
ratio, measured from the original image and the various images processed by the WF, BayesShrink,
sigmoid-type, and the proposed methods at spatial frequency of 1 mm�1. (c) The NPSs at spatial
frequency of 4 mm�1

Figure 6.10 illustrates original and processed images of the hip joint and lumbar
spine of the human body phantom, which were used for the visual evaluation.

The proposed method provides the benefits of improved resolution and noise
suppression. The experimental results demonstrated the method’s effectiveness in
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Fig. 6.8 Mean grades of visual evaluation of the original and the four processed images for the
hip joint and lumbar spine at the four radiation dose ratios, 100/100, 80/100, 64/100, and 50/100,
in comparison with the standard dose. (a) Hip joint (AP). (b) Lumbar spine (lateral)

dose reduction without degradation in image quality at a lower dose as compared
to the standard dose. In the MTF and NPS measurements, the physical properties
of the images processed by use of the sigmoid-function and BayesShrink methods
show distinct differences. The sigmoid function yields improved spatial resolution
characteristics with increasing noise. In contrast, the BayesShrink method pro-
vides improved noise properties, but deteriorating spatial resolution. The proposed
method incorporates the sigmoid method into the BayesShrink algorithm. As a
result, the proposed method shows better spatial resolution and noise properties
compared to the original image.

In the GLC measurements, there were almost no differences in any of the GLCs.
This implies that contrast was independent of X-ray dose and the proposed method
did not contribute to contrast enhancement in the GLC experiment. The NPS values
of our proposedmethod were near to those of the original image at all radiation dose
ratios except 100/100. The high NPS value of our method at the 100/100 radiation
dose ratio might be due to the fact that some noise enhanced by the sigmoid-function
method was not recognized as noise in the BayesShrink method, and thus did not
decrease efficiently.

As shown in Figs. 6.8 and 6.9, the results of our study indicate that the proposed
strategy significantly improves the quality of low-dose images such that CR images
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Fig. 6.9 Visual evaluation results using Scheffe’s method of paired comparisons of the original
image (Org) at the radiation dose ratio of 100/100 and various images processed by the WF,
BayesShrink (Bay), sigmoid (Sig), and the proposed (Pro) methods at radiation dose ratios of
100/100, 80/100, 64/100, and 50/100 in comparison with the standard dose. (a) Hip joint (AP). (b)
Lumbar spine (lateral). There was a significant difference (p< 0.01) between the original image
and the processed image at various dose ratios if the asterisk mark is shown

obtained at 50 and 64 % of the standard dose level provide clear depiction in AP
views of the hip joint and in lateral views of the lumbar spine, respectively, in terms
of visual evaluation. In Fig. 6.10, the visibility of the overall appearance of bones
seems to be improved by the proposed method. This may be due to the improvement
in resolution and the suppression of noise. Maintaining a well-balanced relationship
among contrast, spatial resolution, and noise is important. From this point of view,
the proposed method has a well-balanced filter for the AP view of the hip joint and
the lateral view of the lumbar spine at a lower dose.

6.3.2.4 Summary

We proposed an improved wavelet-transform-based method for potentially
reducing radiation dose while maintaining clinically acceptable image quality.
The effectiveness of the proposed method was demonstrated quantitatively and
qualitatively. The experimental results showed that the proposed method could
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Fig. 6.10 Original and processed phantom images obtained using WF, BayesShrink, sigmoid, and
the proposed methods. (a–e) Hip joint at the standard dose. (f–j) Lumbar spine at the standard dose

improve resolution while keeping noise level within acceptable limits. Furthermore,
the results validated the effectiveness of our proposed method in the reduction
of radiation dose. Our visual evaluation showed that an approximately 40–50 %
reduction in the exposure dose might be achieved with the proposed method in AP
views of hip joint radiographs and lateral views of lumbar spine radiographs. The
proposedmethod has the potential to improve visibility in radiographs when a lower
radiation dose is applied.

6.4 Conclusion

In this chapter, we described the importance of medical image quality assessment
and major factors used for characterizing physical properties of medical images.
We also described the recent trends in assessment of medical imaging systems
and medical images. We first briefly reviewed conventional medical image quality
metrics and then described a recently proposed image quality metric, mutual
information. We also provided two clinical applications, i.e., mammographic image
quality enhancement and effect of radiation dose reduction on image quality in
digital radiography, to address the importance of quality assessment for medical
images.
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Chapter 7
Visual Quality Assessment of Stereoscopic
Image and Video: Challenges, Advances,
and Future Trends

Che-Chun Su, Anush Krishna Moorthy, and Alan Conrad Bovik

7.1 Introduction

Along with other digital visual media [8, 10], the amount of stereoscopic/3D
content delivered by the cinema, television, and entertainment industries for human
consumption has been growing dramatically over the past few years. According to
the latest theatrical market statistics gathered by the Motion Picture Association of
America (MPAA) [73], the proportion of cinema screens that are 3D has reached
35% worldwide, and approximately half of all cinema-goers viewed at least one 3D
cinema in 2012. As Hollywood director James Cameron, who directed and produced
Avatar, one of the most successful 3D presentations of recent times, stated in an
interview with BBC news in August 2013 [3]: “All forms of entertainment will
eventually be 3D, because that’s how we see the world.”

In fact, the wave of 3D has not been limited to the entertainment industry.
With greatly improved acquisition and display technologies, stereoscopic/3D images
and videos provide natural and versatile visual representations in numerous appli-
cations, including robot navigation [2], remote education [115], medical body
exploration [114], therapeutic treatment [26], and so forth. As these huge volumes
of stereoscopic/3D data are making their way to the consumers, efficient com-
pression and transmission of such data, especially over already-stressed wireless
networks, becomes important. In every stage of capture, compression, storage
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and transmission, it is desirable to maximize the final visual experience, and
incorporating principles of human perception of stereoscopic/3D quality is of
importance [11, 84].

The ideal way to assess perceived visual quality is to run a subjective test to
gauge human opinion [43]. However, subjective quality assessment has two obvious
disadvantages, making it unsuitable for practical applications. First, the procedure
of subjective quality assessment is expensive, tedious, and time-consuming as it has
to be performed with great care in order to obtain meaningful results. Second, it is
impossible to integrate subjective quality assessment operations of any value into
real-time systems for processing actual data. Therefore, one develops automated
methods or algorithms that attempt to predict the perceptual quality of visual
stimuli. Automated evaluation of visual quality with the assistance of an algorithm
is referred to as objective quality assessment. In this chapter, we shall focus on
the objective quality assessment of stereoscopic/3D images and videos, unless
otherwise specified.

We shall first discuss the challenges and difficulties one may face while trying
to design and develop an effective objective quality assessment algorithm for
stereoscopic/3D content. Next, we shall examine and analyze different types of
objective stereoscopic/3D quality assessment algorithms, in terms of design and
performance on publicly available databases. Finally, we shall discuss possible
future trends in the field of algorithmic stereoscopic/3D quality assessment.

7.2 Challenges in Stereoscopic Quality Assessment

Humans perceive visual stimuli from natural environments via the two horizontally
located frontal eyes, and form a three-dimensional percept using the two corre-
sponding responses generated in the primary visual cortex of the brain. The ultimate
goal of a stereoscopic/3D content delivery system is to capture, store, transmit, and
display the stereoscopic/3D representation such that it recreates the same 3D percept
as experienced by a human in natural environments. Since the human visual system
undertakes a variety of signal manipulations and operations to convert the visual
stimuli to 3D perception, the problem of predicting perceptual quality is not an easy
one. This section summarizes some of the possible issues faced when displaying
and viewing stereoscopically captured content.

7.2.1 Visual Discomfort

Due to current limits on stereoscopic/3D capture, broadcast, and display technolo-
gies, the experience of watching 3D TV or movies is definitely quite different from
what humans naturally view in real life [103]. For example, when a stereoscopic
signal is presented, it is projected onto a plane that is at a fixed distance from the
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viewer. This implies that the human brain is forced to recreate the 3D world with
multiple depth planes on this fixed-distance plane of projection, resulting in visual
discomfort such as eye-strain and fatigue [54].

The major problem while viewing stereoscopic stimuli stems from the vergence-
accommodation conflict. Vergence refers to the simultaneous rotational movement
of the two eyes around a vertical axis such that the projection of the object falls
at the center of the retina. For example, to look at a nearer object, the two eyes
need to rotate or verge towards each other, while for an object farther away, they
rotate away from each other, i.e., diverge. Accommodation refers to the ability of
the eye to automatically change the optical power of the crystalline lens to keep
an object of interest focused as its distance varies. Natural stereoscopic viewing
requires a synchronization between vergence and accommodation of the two eyes,
since these processes work together to create an overall 3D percept, which is
often difficult when viewing stereoscopic/3D content on a flat display at a fixed
distance. Specifically, when viewing a 3D object projected on the display screen, the
accommodation distance remains constant; however, the 3D position of that object
may be located behind the screen, on the screen, or in front of the screen, making
the vergence distance vary correspondingly.As a result, a conflict between vergence
and accommodation is produced in the simulated stereoscopic/3D viewing scenario.
Due to capture calibrations and display specifications, there are other issues that lead
to visual discomfort and/or dissatisfaction in stereoscopic/3D viewing, including
the keystone distortion, puppet theater effect, crosstalk, cardboard effect, shear
distortion, and so forth [62].

Measuring the impact of visual discomfort on the perceptual quality of stereo-
scopic/3D images and videos is complicated, confounded by the fact that the
sensibility and tolerance level of people may differ widely from each other [20, 54,
71, 103]. While it may not be possible to reproduce a 3D percept using projections
on a 3D screen, appropriate strategies in capture and display may reduce the effects
of visual discomfort and fatigue to the minimal degree, so algorithmically predicting
the perceptual quality of stereoscopic/3D image and video is possible. Assuming an
approximately ideal display setting, our discussion shall focus on “quality” where
the stereoscopic/3D stimulus being perceived is afflicted with different types of
processing/transmission distortions such as compression, packet-loss, etc.

7.2.2 Binocular Vision

The way distortions of stereoscopic/3D images and videos are perceived by the
human visual system (HVS) differs significantly from the perception of distortions
on 2D content due to the delicate mechanisms in the binocular vision system that
handles similarities and dissimilarities between the two different retinal images [39].
The resulting binocular rivalry effect impacts the perceived quality of stereo-
scopic/3D stimuli [55]. Binocular rivalry is a perceptual effect that occurs when
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the two eyes view sufficiently different content at the same retinal locations,
which causes match failures; thus, preventing the HVS from flawlessly fusing the
left- and right-eye images, resulting in an unnatural 3D perception or a bistable
alternation between the two images. A special case of binocular rivalry is binocular
suppression [6]. When viewing mismatched stereoscopic/3D stimuli, the brain
chooses to not integrate these incompatible stimuli into one coherent percept, and
this results in the complete suppressions of one of the two stimuli, referred to as
binocular suppression [48]. A deeper understanding of these effects in binocular
vision is the key to the development of successful perceptual stereoscopic/3D quality
algorithms.

7.2.3 Extra Dimensionality

Modeling natural scene statistics (NSS) and understanding how the HVS processes
visual stimuli have been regarded as a dual problem [77,78,87,99]. Many successful
2D image and video quality assessment algorithms exploit robust and effective
NSS models derived from both pristine and distorted 2D image/video signals. In
particular, several NSS-based 2D no-reference quality assessment algorithms, e.g.,
[64, 69, 89, 104, 119], have been able to deliver competitive performance to full-
reference algorithms. However, using a similar approach in 3D quality assessment
has not been met with great success [37, 65]. This is because stereoscopic stimuli
from natural environments span up to four dimensions (as opposed to three in the
2D case)—two of space, one of depth and one of time—and joint modeling of all
of these four dimensions and the relationships between them become extremely
difficult. Later, we shall cover recent work that builds and utilizes preliminary
statistics related to image and depth/disparity information that could be used to
predict the perceptual quality of stereoscopic/3D stimuli.

7.2.4 Quality Assessment Databases

Another major problem that has existed since the beginning of stereoscopic/3D
quality assessment research is a dearth of publicly available and comprehensive
databases. By comparison to 2D image and video quality assessment, there is
no consensus on a database that could be used for fair and efficient evalua-
tion of different stereoscopic/3D quality algorithms’ performance. Several issues
are involved in creating valuable stereoscopic/3D quality assessment databases:
acquisition protocols, image/video formats, distortion types, visual discomfort
control, subjective study paradigm, etc. There is currently no commonly accepted
protocol for any of these dimensions when it comes to stereoscopic viewing.
Since consensual and comprehensive quality assessment databases play a critical
role in developing and evaluating different stereoscopic/3D quality metrics, in the
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recent past, efforts have been made to create useful, publicly available databases
with informative subjective studies conducted on them. We summarize existing
stereoscopic/3D quality assessment databases in the next section.

7.3 Advances in Stereoscopic Quality Assessment

In general, image and video quality assessment algorithms can be divided into
three categories based on the amount of information available to be utilized to
compute the quality score: (1) full-reference (FR), (2) reduced-reference (RR), and
(3) no-reference (NR) [109]. Full-reference (FR) algorithms require the original
reference signal to be able to predict the quality of the distorted signal. Reduced-
reference (RR) approaches perform quality assessment on the distorted signal
given some small fraction of information about the original reference signal. This
fractional information could range from a set of features or parameters extracted
from the original pristine signal to extra side-data, e.g., watermark, imposed on
the distorted content. However, there is no clear delineation between FR and
RR quality models since most FR models work well even when using a greatly
reduced amount of reference data, and moreover, there has not been much industry
adoption of exclusively RR models. Finally, no-reference (NR) algorithms, which
do form a clear separate class of quality assessment models, are able to gauge
the quality of the distorted signal without any additional information extracted
from the corresponding reference signal. Since the original, pristine versions of
visual signals are rarely available to be transmitted over networks, no-reference
image/video quality assessment algorithms find great use in practical applications.

In addition to the three categories, i.e., FR, RR, and NR, commonly used
to distinguish 2D image/video quality assessment algorithms, we further classify
stereoscopic/3D image/video quality assessment algorithmswithin each category by
utilizing computed or measured depth/disparity information from the stereoscopic
pairs.

The goal of objective stereoscopic quality assessment (QA) research is to design
algorithms that can automatically assess the quality of 3D images or videos in a
perceptually consistent manner. Such human opinions of visual quality are generally
obtained by conducting large-scale human studies, referred to as subjective quality
assessment, where human observers rate a large number of distorted (and possibly
reference) signals. When the individual opinions are averaged across the subjects, a
mean opinion score (MOS) or differential mean opinion score (DMOS) is obtained
for each of the visual signals in the study, where the MOS/DMOS is representative
of the perceptual quality of the visual signal [43]. The goal of an objective QA
algorithm is to predict quality scores for these signals such that the scores produced
by the algorithm correlate well with human opinions of signal quality. Practical
application of QA algorithms requires that these algorithms compute perceptual
quality efficiently.

In this section, we summarize recent advances in objective and subjective
stereoscopic/3D image and video quality assessment.
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7.3.1 Stereoscopic Image Quality Assessment

7.3.1.1 Stereoscopic IQAWithout Depth/Disparity Information

The most intuitive and direct way of performing quality assessment on stereoscopic
image pairs is applying off-the-shelf 2D image quality assessment algorithms to
both the left and right images, and aggregating these two quality scores to form a
final quality measure of the stereopair. Some of the early work on stereoscopic image
quality assessment were algorithms which avoided the computationally intensive
computation of disparity maps between the left and right images. Although such an
algorithm does not consider any 3D perceptual effects, this type of naive, yet simple
stereoscopic quality assessment algorithms can deliver fairly good performance
on symmetrically distorted stereopairs, i.e., when there is approximately the same
amount of distortion in the left and right images [36, 72, 118]. Amongst the
commonly used conventional 2D image quality assessment algorithms, PSNR [110],
SSIM [111], and MS-SSIM [112] are full-reference algorithms, RRED [100] is a
reduced-referencemodel, while DIIVINE [69], BLIINDS [89], and BRISQUE [64]
belong to the no-reference category.

Yasakethu et al. [118] apply different 2D image quality algorithms to the left and
right views independently to obtain corresponding quality scores, and then compute
the average of the two quality scores as the final stereoscopic quality measure. They
found that some 2D image quality metrics yield fairly good correlation with overall
image quality and perceived depth quality.

Gorley et al. [36] designed a full-reference stereoscopic image quality metric by
considering computational models of the HVS. In particular, their quality metric
accounts for HVS sensitivity to left–right luminance contrast differentials in regions
of high spatial frequency. First, they use SIFT [58] and RANSAC [32] algorithm
to extract edges, corners, and regions of high spatial frequency within both the left
and right images. Then, these feature points are matched between the left and right
views, and the average contrasts of the matched regions are calculated. The final
quality score is computed as the difference of the average contrast over all matched
regions between the pristine and the distorted stereopairs. Their experimental results
suggest that the proposed quality metric produces a more useful threshold than the
PSNR metric for practical stereoscopic image compression.

7.3.1.2 Stereoscopic IQA with Depth/Disparity Information

In the past few decades, there has been quite a bit of research conducted towards
understanding how human vision systems process and encode depth/disparity stim-
uli from natural environments [22, 29, 33]. Specifically, it has been discovered that
there exist neurons in primary visual cortex with specialized receptive fields tuned
to particular disparities, i.e., horizontal position shifts. Based on these perceptual
findings, several researchers have utilized relevant natural scene statistical models in
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stereoscopic vision and image processing problems, achieving superior performance
to previous solutions [56, 83, 101]. In addition, stereo image compression has also
been studied for two decades [9, 21], and recently has been standardized [1].

The use of simplistic stereoscopic image quality assessment algorithms such as
the ones summarized above yields insufficient performance except in special cases
(such as symmetric distortions). This is expected, since these algorithms do not use
any depth information. Modeling depth cues and incorporating binocular rivalry
and suppression is essential when developing a stereoscopic quality assessment
model. One would conjecture that just as in the case of other stereoscopic vision
problems, this approachwould lead to significant gains in the performance of quality
assessment algorithms as well. Recently researchers have developed stereoscopic
image quality assessment algorithms that utilize some form of depth/disparity
information to compute the overall stereoscopic quality score.

Benoit et al. [4] estimate the quality of stereoscopic image pairs using disparity
information computed by off-the-shelf stereo algorithms [31, 52]. They first utilize
two different 2D image quality metrics, SSIM [111] and C4 [12], to compute
quality scores between the left reference and left distorted image, and between
the right reference and distorted image. Next, they measure the disparity distortion
between the reference and distorted disparity maps computed from the reference and
distorted stereopairs, respectively. Finally, the overall quality is computed by fusing
the 2D image quality score and the disparity distortion measure. Before discussing
their findings, it would be prudent to briefly review the two commonly used 2D
image quality metrics, SSIM and C4.

SSIM assesses perceptual image quality by evaluating three factors between the
reference and distorted images: luminance, contrast, and structural constancy. It
assumes that human visual perception is highly adapted for extracting structural
information from a scene, and quality evaluation is hence based on the degradation
of this structural information in the distorted visual stimulus. C4 uses an elaborate
model of the human vision system to extract perceptual representations from the
reference and distorted images. It then compares the two perceptual representations
to compute the overall quality score.

From their simulation results, Benoit et al. [4] found that the performance
of SSIM with added disparity distortion information is enhanced compared to
using the simple average SSIM between the left and right reference-distorted
image pairs as the overall stereoscopic quality score. This observation suggests
that the quality criteria, i.e., luminance, contrast, and structural constancy, used
by SSIM are not sufficient to predict the perceptual quality of stereoscopic image
pairs, and the addition of disparity information enhances SSIM performance on
stereoscopic content. However, the added disparity information does not improve
the performance of C4.

In fact, the average of the C4 quality scores computed from the left and right
reference-distorted image pairs only correlates as efficiently as the enhanced SSIM
metric with the subjective opinion scores of distorted stereoscopic images. The
authors hypothesize that since C4 uses a detailed HVS model, depth information
does not impact the overall perceptual quality of stereoscopic/3D images [50].
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However, the subjective experiment performed in [4] considers only JPEG and
JPEG2000 compression distortions symmetrically applied to the left and right
images of the stereopair. As we have mentioned before, in this particular setting,
a simple average of 2D quality scores does well. There exist other studies which
demonstrate the importance of depth/disparity for perceptual quality evaluation of
stereo image pairs. For example, Zwicker et al. [121] used a blurring filter, whose
intensity depends on the depth of the region where it is applied to enhance the
viewing experience. The study by Okada et al. [76] validated this effect by showing
that blurring stereoscopic/3D images reduces the discrepancy between responses of
accommodation and convergence, resulting in an enhancement of viewers’ overall
3D quality of experience (QoE).

Even though depth/disparity information extracted from the both the pristine
and distorted left–right image pairs has a substantial effect on the perceptual
quality of stereoscopic images, the question of how to exploit this information
remains unanswered. Some recent work investigates the important role played by
depth/disparity information in stereoscopic quality assessment. You et al. [120]
experimented on the idea of quantifying the degradation of disparity information by
applying 2D image quality assessment algorithms to the disparity maps computed
from both the reference and distorted left–right image pairs [31]. Specifically, they
evaluated a large pool of full-reference 2D image quality assessment algorithms,
e.g., PSNR, SSIM, MS-SSIM, VSNR [13], VIF [96], UQI [108], etc., on reference-
distorted image pairs, as well as on reference-distorted disparity map pairs, and
computed an overall stereoscopic/3D quality score, QO using the equation:

QO D c1 � Q
c4

I C c2 � Q
c5

D C c3 � Q
c4

I � Q
c5

D (7.1)

where QI and QD represent the 2D quality scores of the reference-distorted image
and disparity map pairs, respectively, and c D fci ji D 1; � � � ; 5g is a set of
parameters learned by the Levenberg–Marquardt algorithm [60]. They concluded
that applying SSIM on the image pair and mean absolute difference (MAD) on
the disparity map pair yields fairly good performance in predicting the overall
perceptual quality of stereoscopic images. Some 2D image quality assessment
algorithms are capable of generating a quality map between the reference and
distorted images to depict the quality degradation at each pixel, e.g., PSNR, SSIM,
MS-SSIM, UQI, etc. This quality map can also be generated between the reference
and distorted disparity maps to capture an approximate distribution of disparity
degradation. Thus, a local combination of the 2D image quality score and the
disparity quality score can be achieved by first computing the corresponding quality
maps, then applying Eq. (7.1) to pool each image-disparity pixel pair, and finally
taking the mean over all pixels as the overall stereoscopic/3D quality score. From
the experimental results of this local approach, the combination of UQI on the
2D image pair and SSIM on the disparity map pair was found to give the highest
correlation with the subjective opinion scores. Although the experiments performed
by You et al. [120] only considered asymmetrically distorted stereopairs, where
only the right view is distorted and the left view is intact, their work substantiates
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the fact that depth/disparity information plays an important role in the design of
stereoscopic/3D quality assessment algorithms.

Disparity information can also be used indirectly to bolster a stereoscopic/3D
image quality assessment algorithm. Sazzad et al. [90] utilized disparity information
to design a no-reference image quality assessment algorithm for both symmetrically
and asymmetrically JPEG-coded stereo image pairs. Similar to 2D images, they
observed that the visibility of blocking and blurring distortions in JPEG-coded
stereoscopic images varies with the local texture. This visual effect is referred
to as texture/contrast masking [86, 111]. For example, blockiness is more visible
in uniform areas, i.e., non-textured surfaces, while blur is more visible in high-
textured regions. They first applied a block-based segmentation algorithm to obtain
uniform and non-uniform regions in both views, and then extracted features from
both regions in the reference and distorted stereo image pairs. The features include
a blockiness measure and range strength in images, as well as the average zero-
crossing rate at matched block pairs from the left and right views. In particular,
each matched block pair is formed by a block from the left image with the
corresponding block from the right image at the horizontally displaced location
defined by the disparity map. Finally, the overall quality score is computed as a non-
linear function of all features with weighting coefficients learned from subjective
test data. The performance of this no-reference stereoscopic/3D image quality
assessment algorithm is comparable with the full-reference algorithm proposed by
Benoit et al. [4] for JPEG stereo image pairs. The above utilization of disparity
information closely models a perceptually relevant model—the cyclopean image.
We discuss the cyclopean image model in the next section.

7.3.1.3 Binocular Vision

In addition to the two types of quality assessment algorithms discussed above: those
which do not use any disparity information, and those which adapt successful 2D
metrics and exploit additional depth/disparity information researchers have also
attempted to utilize different models of binocular vision for stereoscopic/3D image
quality assessment. For example, Bensalma et al. [5] proposed a full-reference
stereoscopic/3D image quality assessment algorithm based on the binocular fusion
process [33, 39]. In particular, they developed a model that computes the binocular
energy by reproducing the neural responses of simple and complex cells in primary
cortex [33, 74, 75]. The model tries to mimic the HVS by modelling the simple
cells responsible for local spatial frequency analysis and then the complex cells
responsible for the generation of the binocular energy. This energy is used as an
indicator of the quality. The quality score is computed as the difference of binocular
energy between the reference and distorted stereo image pairs. The authors found
that the binocular energy difference correlates well with the human opinion scores
for both symmetrically and asymmetrically JPEG-coded stereoscopic images.

Another full-reference stereoscopic/3D image quality assessment algorithm
based on binocular perception is the one by Ryu et al. [88]. The authors extended
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the three quality components of SSIM, i.e., luminance, contrast, and structural
similarities [111], using a nonlinear binocular perception model presented in [61].
First, the three similarity measures are computed between the left reference-
distorted image pair, as well as the right reference-distorted image pair. Then, for
each of these measures, the two monocular measures from the left and right pairs
are combined into a binocular measure using a weighted summation. Finally, the
quality score is computed as a nonlinear aggregate of the three binocular similarity
measures. This binocular version of SSIM performs better than the monocular
version (which is a simple average between the left and right view), on different
types of distorted stereoscopic images including JPEG, JPEG2000, and Gaussian
blur.

7.3.1.4 Cyclopean Image

The ultimate goal of a stereoscopic/3D image quality assessment algorithm is to
estimate the quality of the true cyclopean image [48] formed in an observer’s
mind when a left–right image pair is stereoscopically presented. Simulating the
true cyclopean image associated with a given stereoscopic image pair is a daunting
task, since it would require accounting for a variety of issues, including the display
geometry, fixation position, vergence, accommodation, etc. It is still unclear recently
how the human visual system forms a cyclopean image based on the two visual
stimuli received via the retinas of the two eyes, further complicating the task of
cyclopean image modelling. However, one can synthesize an intermediate image
that more-or-less agrees with the cyclopean perception of a human. The linear model
proposed by Levelt [55] models the formation of the perceived cyclopean image
when a stereoscopic stimulus is presented:

C D wL � SL C wR � SR (7.2)

where SL and SR represent the stimuli to the left and right eyes, respectively; wL

and wR represent the weighting coefficients of the corresponding stimuli such that
wL CwR D 1; and C is the perceived cyclopean image. Levelt hypothesized that the
duration of the dominance period of an eye depends on the stimulus strength in the
other eye, making the weighting coefficients positively correlated with the relative
stimulus strengths between the two eyes. Therefore, given a stereoscopic image pair
with a computed or measured disparity map, a synthesized cyclopean image can be
obtained by disparity-compensation and coordinate mapping the stereopair.

Assuming the disparity map is computed using the left image as the reference to
match the right image, one can generate the synthesized cyclopean image, IC , as:

IC .x; y/ D wL.x; y/ � IL.x; y/ C wR.x; y C D.x; y// � IR.x; y C D.x; y//

(7.3)
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where .x; y/ represents the pixel coordinate; IL and IR are the left and right images,
respectively; wL and wR represent the corresponding weighting map; and D is the
computed disparity map that matches pixels from IR to those in IL.

Several recent researchers have attempted to evaluate perceptual quality by the
use of this synthesized cyclopean image.

Maalouf et al. [59] proposed a reduced-reference quality metric by comparing
the sensitivity coefficients [24] extracted from the two cyclopean images formed
by the reference and distorted stereopairs. The cyclopean image is computed using
Eq. (7.3) with the weighting map defined as the average of the local disparity-
compensated values from the left and right images.

Chen et al. [18] proposed a full-reference quality assessment algorithm exploiting
a perceptually synthesized cyclopean image to account for binocular rivalry. First,
the authors use a Gabor filter bank to perform a perceptual multi-scale, multi-
orientation decomposition on both the reference and distorted stereopairs. Next,
they use the energy of the Gabor filter responses to model the stimulus strength,
i.e., the weighting map of the left and right images to form the perceptually
synthesized cyclopean image using Eq. (7.3). Finally, the task of stereoscopic/3D
quality assessment is performed by applying a full-reference 2D image quality
assessment algorithm, e.g., PSNR, SSIM, MS-SSIM, VIF, etc., on the reference and
distorted synthesized cyclopean images. The performances of the full-reference 2D
image quality metrics computed on the reference-distorted synthesized cyclopean
image pairs are significantly improved as compared to those computed on the
non-cyclopean image pairs, especially for asymmetrical distortions. The authors
found that MS-SSIM [112] delivers the best performance, surpassing existing
stereoscopic/3D image quality metrics. In [15], the authors extended this full-
reference stereoscopic/3D image quality assessment framework to a no-reference
version using 2D and 3D NSS features extracted from stereoscopic image pairs.
For the 2D NSS features, the authors sought inspiration from a highly competitive
no-reference 2D image quality assessment algorithm, BRISQUE [64]. They syn-
thesized the cyclopean image as in the FR case, and modelled the histogram of
the coefficients so obtained using the generalized Gaussian distribution (GGD). For
the 3D NSS features, since the only accessible 3D information in a no-reference
algorithm is the estimated disparity from a stereo matching algorithm, the authors
first extracted the same features from the estimated disparity map as those from
the synthesized cyclopean image. They modelled the distribution of the uncertainty
map produced using an SSIM-based block-matching stereo algorithm using a log-
normal distribution. Finally, both the 2D and 3D NSS features were used to train
a two-stage support vector machine (SVM) model [69] to predict the perceptual
quality of a distorted stereoscopic image pair. The authors demonstrated that when
there is only symmetric distortion in a stereoscopic image pair, this cyclopean-
image-based no-reference quality metric performs as well as the state-of-the-art 2D
no-reference image quality metrics. When a stereopair is asymmetrically distorted,
it significantly outperforms both 2D and other 3D no-reference image quality
assessment algorithms, and delivers competitive performance relative to effective
3D full-reference image quality assessment algorithms.
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Similar to most existing no-reference image quality assessment models, [15] is
based on training on recorded human subject scores. However, recent developments
in “completely blind” 2D image quality models [66], which require no training on
distorted images or on human judgments, suggest that such models might also be
developed for the stereoscopic/3D image quality assessment problem.

7.3.2 Stereoscopic Video Quality Assessment

As in the case of stereoscopic images, quality assessment of stereoscopic video
faces several challenges owing to the processing chain: acquisition, compression,
transmission, decompression, and display [41]. The problem is further exacerbated
in stereoscopic video due to the presence of the additional dimension of time. Due
to the wide variety of coding techniques and content representations, there may be
several format conversions (technically, re-compressions) involved in the processing
chain. For example, there are two possible representations for stereoscopic/3D video
compression and transmission, left-and-right and 2D-plus-depth formats, where
depth-image-based rendering (DIBR) approaches are often used to generate the
synthesized views based on the depth map. In addition, due to the huge amount
of stereoscopic/3D video data, efficient video coding algorithms are necessary for
content transmission and delivery. Since state-of-the-art video coding standards
such as H.264/AVC [47] and HEVC [46] employ block-based architectures, it
is inevitable that artifacts caused by block-based compression contaminates the
stereoscopic/3D video sequences. As a result, different types of distortions can
be introduced at different steps in the processing chain, and an open question
remains on how these different degradations interact with each other and affect
the overall perceptual quality of stereoscopic/3D video. We limit our discussion
on algorithms and models developed for objectively assessing the overall perceptual
quality of stereoscopic/3D video consisting of left and right 2D video sequences
stereoscopically presented to viewers after all processing steps and possible format
conversions.

7.3.2.1 Stereoscopic VQAWithout Depth/Disparity Information

Similar to stereoscopic/3D image quality assessment, a straightforward strategy of
performing stereoscopic/3D video quality assessment is to apply off-the-shelf 2D
image/video quality metrics (VQMs) and aggregate the scores from the left and
right views to compute an overall perceptual quality prediction. An early effort
using this methodology was that by Yasakethu et al. [118]. The authors investigated
the relationship between subjective quality measures and several objective quality
metrics, e.g., PSNR, SSIM, and VQM [81], for stereoscopic/3D video sequences
coded in both left-and-right and 2D-plus-depth formats. VQM was developed
by the Institute of Telecommunication Sciences (ITS) to provide an objective
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measurement for perceived 2D video quality. VQM measures the perceptual effects
of video impairments including blurring, jerky/unnatural motion, global noise,
block distortion and color distortion, and combines them in to one single metric
score. Due to its contemporaneous excellent performance in the Video Quality
Experts Group (VQEG) validation tests, VQM was adopted by the American
National Standards Institute (ANSI) and International Telecommunication Union
(ITU) standardization bodies as a measure for 2D video quality assessment.

In [118], the authors conducted two subjective studies to record human opinion
scores on both left-and-right and 2D-plus-depth stereoscopic/3Dvideos with packet-
loss distortion. The stereoscopic/3D video sequences were encoded using the joint
scalable video model (JSVM) software, which is the reference software of the
scalable video coding (SVC) standard, i.e., Annex G extension of the H.264/AVC,
developed by Joint Video Team (JVT) [47]. When encoding left-and-right videos,
the base layer of the SVC stream is used to encode the left-view sequence while the
right-view sequence is encoded in the enhancement layer. For 2D-plus-depth videos,
the base layer is used to encode the 2D video sequence, and the enhancement layer is
used to encode the depth map sequence. All stereoscopic/3D video sequences were
asymmetrically encoded and corrupted with different packet-loss rates. Experimen-
tal results showed that the average VQM score of the decoded left- and right-view
video sequences was able to effectively predict the overall perceptual quality of
asymmetrically compressed stereoscopic/3D video under packet-loss scenarios.

7.3.2.2 Stereoscopic VQA with Depth/Disparity Information

The HVS utilizes a variety of depth cues available in natural scenes to build a unified
perception of depth [40]. Depth cues can be classified into two types: binocular cues
and monocular cues. Binocular cues require cooperation from both eyes, e.g., retinal
disparity and convergence, while monocular cues can be perceived with a single
eye, e.g., object size, occlusion, perspective, motion parallax, etc. In the design
of stereoscopic/3D video quality assessment algorithms, one would conjecture that
appropriate use of such depth cues would improve performance.

Boev et al. [7] proposed a full-reference quality assessment algorithm for
stereoscopic/3D video using both monoscopic and stereoscopic quality measures.
The monoscopic quality component measured trivial monoscopic artifacts in 2D
images, e.g., blur, noise, blockiness, etc., and the stereoscopic quality component
assessed the perceived degradation from binocular depth cues. The authors first
apply a Gaussian pyramid to both the left and right views in the reference and
distorted video sequences, and compute the corresponding disparity map along
with a similarity map generated using SSIM as the perceptual similarity measure
at each scale. Next, a monoscopic quality map is constructed by applying SSIM to
the reference and distorted cyclopean images formed using the disparity maps, and a
stereoscopic quality map is obtained by combining the two absolute differencemaps
between the reference-distorted disparity and similarity maps. Finally, a monoscopic
and a stereoscopic quality measure are computed by aggregating the monoscopic
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and stereoscopic quality maps across all scales. The authors show that a combination
of monoscopic and stereoscopic quality measures correlates well with subjective
opinions thereby beating PSNR performance.

Jin et al. [45] proposed a full-reference stereoscopic/3D VQM using 3D-DCT
and features from contrast masking. The 3D-DCT is a decorrelating transform that
achieves highly sparse representations of 3D visual stimuli [23]. First, the disparity
maps of the reference and distorted stereoscopic/3D video sequences are computed.
Next, the authors exploit a model of saccades, i.e., the pseudo-random movements
the eyes perform while processing spatial information [105], by stacking into a
3D array the current block, its most similar block from the same view, and the
two most similar blocks from the other view within a search range based on the
disparity. A 3D-DCT transform is applied to the stacked 3D arrays formed by the
left and right image pairs from both the reference and distorted stereoscopic/3D
video sequences. Finally, the quality score is computed as the mean squared error
(MSE) between the reference and distorted frequency-domain coefficients weighted
by a perceptual mask which models the human contrast sensitivity function (CSF)
[30, 82]. Experimental results show that the proposed measure outperforms other
popular full-reference 2D quality metrics, e.g., PSNR, SSIM, MS-SSIM, and UQI,
on compressed stereoscopic/3D video sequences using the database from [49].

7.3.2.3 Binocular Vision

The HVS derives correspondences between stereoscopic views predominantly from
coarser spatial structures, and then fine-tunes them from finer spatial details
[63, 85]. In practice, stereoscopic/3D videos are not compressed to a level so
that the global structure of an image is disturbed. In other words, compression
artifacts do not affect the global correspondence, resulting in negligible effects
in depth perception [95]. Therefore, compression artifacts are perceived as local
distortions, mainly affecting the 2D image quality of stereoscopic/3D videos. In
[27], Silva et al. conducted a subjective experiment to compare the impact of
asymmetrically distorted stereoscopic videos with blurring and blocking artifacts.
The results suggest that perceptual quality is dominated conversely by the higher
quality view when the lower quality view is degraded by blur. It is the lower quality
view that determines the overall quality when blocking artifacts appear.

Based on these findings, Silva et al. [28] proposed an FR quality metric for
stereoscopic/3D videos that consists of three types of measurements: structural dis-
tortions, blurring artifacts, and content complexity. Specifically, structural distortion
is measured by utilizing the correlation coefficient between the reference and com-
pressed views [44], blur artifacts are defined as a loss of edge magnitude in visually
significant areas in the compressed view, and content complexity is computed as a
combination of the spatial and temporal perceptual information measures defined
in [42] from the reference view. Finally, these three measures are non-linearly
aggregated to yield the overall perceptual quality score. The authors also conducted
two subjective experiments to uncover different patterns of subjective scoring
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for symmetrically and asymmetrically compressed stereoscopic/3D videos. These
subjective results were utilized to train and validate the proposed stereoscopic/3D
VQM, which provides good accuracy and consistency in predicting asymmetrically
compressed stereoscopic/3D videos.

7.3.3 Databases

Since the human is the ultimate receiver of the visual signal, the performance of
any image and video quality assessment algorithm is gauged by its correlation with
human subjective judgements of quality.

Hence, the goal of an objective stereoscopic/3D image/video quality assess-
ment algorithm is to take these stimuli as input, and generate the corresponding
quality scores that follow human opinion scores, i.e., MOS/DMOS, as close as
possible. Practical applications of quality assessment algorithms requires that these
algorithms compute perceptual quality scores efficiently and robustly. In this
section, we summarize available stereoscopic/3D image and video databases that
can serve to help design and validate practical quality assessment algorithms.

As with databases that are widely used to compare 2D IQA and VQA models
[67, 93, 94, 97, 98], databases of pristine and distorted 3D content annotated by
human subject scores are of great value for evaluating 3D quality models and
algorithms.

7.3.3.1 Stereoscopic/3D Image Databases

1. IRCCyN/IVC 3D Images Database [4]: One of the first publicly available
databases on stereoscopic/3D image quality assessment, the IRCCyN/IVC 3D
Images Database developed at the Institut de Recherche en Communications
et Cybernétique de Nantes (IRCCyN), France, contains 6 references and 90
distorted stereoscopic images, 15 from each reference pair, at an image resolution
of 512�512 pixels. Three different types of distortions are applied symmetrically
to the stereoscopic image pairs: JPEG compression, JPEG2000 compression, and
Gaussian blur. Human judgments were collected from 19 subjects.

2. Toyoma/MICT [91]: This database consists of 490 symmetrically and asymmet-
rically JPEG-coded stereoscopic image pairs created from 10 reference stereo
pairs. The images are at a resolution of 640�480, and the JPEG compression con-
tains seven different quality scales, including the reference. Human judgments
were collected from 24 non-expert subjects.

3. Ningbo Stereoscopic Image Quality Assessment Database (SIQAD) [107]:
The Ningbo SIQAD database consists of ten reference stereoscopic image
pairs from the Middlebury Stereo Datasets [92] and a total of 400 asymmet-
rically distorted pairs at a variety of image resolutions, including 1,390�1,110,
1,342�1,110, 1,330�1,110, 1,276�1,110, and 1,252�1,110. Four different types
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of distortions are used in this database: JPEG compression, JPEG2000 compres-
sion, Gaussian blur, and white noise. Twenty non-expert subjects were recruited
to participate in the subjective study.

4. MMSPG 3D Image Quality Assessment Database [34]: This database was
developed by researchers at EPFL, Switzerland, to study the impact of acquisition
distortions on the quality of stereoscopic images. A subjective study was
conduction on (high quality) JPEG-compressed stereoscopic image pairs with
six different settings of inter-camera distances. The database contains ten scenes
at an image resolution of 1,920�1,080. One scene was used for training, and the
other nine scenes were used in the test sessions, resulting in a total of 54 distorted
stimuli. Human judgments were collected from 17 subjects.

5. LIVE 3D Image Quality Database [68]: Developed at the University of Texas
at Austin, USA, the LIVE database is the first publicly available stereoscopic/3D
image quality assessment database that provides researchers access to ground-
truth depth information. It was constructed in two phases. Phase I [72] contains
20 pristine and 365 distorted stereoscopic image pairs with symmetrical dis-
tortions, while phase II [18] contains 8 pristine and 360 distorted stereoscopic
image pairs with both symmetrical and asymmetrical distortions. All images
are at a resolution of 1,280�720. Both phases include five different types of
distortions: JPEG compression, JPEG2000 compression, additive white Gaussian
noise, Gaussian blur, and a Rayleigh fast-fading channel distortion. For the
subjective studies conducted in both phases, each subject reported normal or
corrected normal vision and no acuity or color test was deemed necessary. Stereo
Randot Test [113] was used to pre-screen participants for normal stereo vision in
phase II. Phase I utilized 32 participators with a male-majority population. In
phase II, 6 females and 27 males participated in the experiment, aged between
22 and 42 years. A single stimulus continuous quality evaluation (SSCQE) [43]
experiment with hidden reference was conducted in both phases. The two phases
together comprise the largest and most comprehensive stereo quality database
currently available.

6. IEEE Standards Association Stereo Image Database [80]: This database was
built by researchers at Yonsei University, Korea, to study the impact of depth
distribution and scene content, e.g., outdoor and indoor, on the degree of visual
discomfort that is experienced when viewing stereoscopic images. It contains a
total of 800 stereo image pairs created from 160 reference scenes using 5 evenly
separated convergence points. All images in the database have high resolution
1,920�1,080. A subjective discomfort study was conducted, and human opinion
scores were collected from 24 non-expert participants.

7.3.3.2 Stereoscopic/3D Video Databases

1. MMSPG 3D Video Quality Assessment Database [35]: Developed by
researchers at EPFL, Switzerland, the MMSPG 3D VQA database is one
of the first publicly available databases for stereoscopic/3D video quality
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assessment. This database was built for a subjective study on the impact of
acquisition distortions on the quality of stereoscopic videos. It contains a
total of 30 stereoscopic video sequences at a resolution of 1,920�1,080 and
a frame rate of 25 fps, captured from six scenes with five different inter-camera
distances. All stereoscopic video sequences are encoded and stored in (high
quality) H.264/AVC standard format at a bit-rate of 24Mbps. A single stimulus
continuous quality evaluation (SSCQE) [43] method was adopted for collecting
human opinion scores from 17 non-expert subjects.

2. IRCCyN/IVC NAMA3DS1-COSPAD1 3D Video Quality Database [106]:
The IRCCyN/IVC 3D video quality database consists of 110 stereoscopic video
sequences created from ten reference videos. Each reference video was degraded
with ten different types of distortions, including H.264/AVC video encoding and
JPEG2000 image compression, as well as common image processing operations
such as downsampling and sharpening. All video sequences were stored at a
resolution of 1,920�1,080 and a frame rate of 25 fps, and rated by 29 subjects
using the absolute category rating with hidden reference (ACR-HR) [43] scale.

3. Surrey [28]: This database contains 116 stereoscopic video sequences created
from 14 reference videos at a resolution of 1,920�1,080 and a frame rate of
25 fps. Two video encoding standards, H.264/AVC and HEVC, were adopted to
asymmetrically compress the reference video sequences with a wide range of
quantization parameter combinations. Human judgementswere collected from 16
non-expert subjects using a double stimulus continuous quality scale (DSCQS)
[43] method.

A comparison of many of the databases mentioned here, as well as those that
are not using a variety of measures (some of which are of questionable relevance or
value), appears in [117]. The author of [117] also maintains a comprehensive list of
image and video quality assessment databases in [116].

7.3.4 Performance Evaluation

We evaluate and compare the performance of some of the stereoscopic/3D quality
metrics we have discussed in this chapter on the LIVE 3D Image Quality Database
Phase II, which consists of both symmetrically and asymmetrically distorted
stereoscopic image pairs. There are five different types of distortions in the LIVE
3D Image Quality Database Phase II: JPEG and JPEG2000 (JP2K) compression,
additive white Gaussian noise (WN), Gaussian blur (Blur), and a Rayleigh fast-
fading channel distortion (FF). The degradation of stimuli varies with controlled
parameters for each type of distortion, where the ranges of these parameters are
decided beforehand to ensure that all types of distortions vary from almost invisible
to severely distorted with a good overall perceptual separation between distortion
levels throughout. For full-reference algorithms, we use all reference and distorted
stereopairs, while for no-reference algorithms, we divide the entire database into
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80% training and 20% testing such that no overlap occurs between training and
testing image content. This train-test procedure is repeated 1,000 times to ensure
that there was no bias due to the image content used for training. We report the
median performance across all iterations.

We compute both Spearman’s rank-order correlation coefficient (SROCC) and
Pearson’s linear correlation coefficient (LCC) of the quality scores generated
by different quality assessment algorithms against the subjective opinion scores
(DMOS) to evaluate their performance. SROCC and LCCmeasure the monotonicity
and accuracy, respectively, of the predicted quality score by a quality assessment
algorithm against DMOS, where a value of 1 indicates perfect correlation. Since
LCC is a linear correlation measure, all algorithm scores are passed through a
logistic non-linear function for mapping to the DMOS space before computing
LCC. This is a standard procedure used to align the performances of both image
and video quality assessment algorithms [97]. The SROCC and LCC scores of
the image quality assessment algorithms evaluated on the LIVE 3D Image Quality
Database Phase II are summarized and tabulated in Table 7.1. To further analyze
the effectiveness of these algorithms, we also report their performance on different
types of distorted stereoscopic image pairs, as well as symmetrical and asymmetrical
distortions, in Tables 7.2 and 7.3, respectively. Note that no-reference algorithms are
italicized in all three tables.

It can be seen from Table 7.1 that the best-performing “simple” algorithm that
applies 2D image quality assessment algorithms to stereoscopic/3D image pairs
achieves a correlation of 0.8 against subjective opinion scores. On the other hand, the
best image quality assessment algorithm utilizing 3D information is able to deliver
3D quality prediction performance that achieves 0.9 correlation against human
judgments. In particular, the synthesized cyclopean image boosts the performance
of 2D image quality assessment algorithms, e.g., MS-SSIM, by more than 10% of
correlation, which is quite significant.

Moreover, with the aid of synthesized cyclopean image and effective 3D NSS
models, the no-reference stereoscopic/3D image quality assessment algorithm
proposed by Chen et al. is able to deliver comparable correlation performance
comparable to the best full-reference algorithm.

Table 7.1 Comparison of
different 2D and 3D image
quality assessment algorithms
on LIVE 3D Image Quality
Database Phase II

Algorithm LCC SROCC

2D PSNR 0.680 0.665
SSIM [111] 0.802 0.792
MS-SSIM [112] 0.783 0.777
BRISQUE [64] 0.782 0.770

3D Benoit [4] 0.748 0.728
You [120] 0.800 0.786
Hewage [38] 0.558 0.501
Cyclopean MS-SSIM [18] 0.900 0.889
Sazzad [90] 0.568 0.543
Chen [15] 0.895 0.880
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Table 7.2 Comparison (SROCC) of different 2D and 3D image quality assessment
algorithms on different distortion types in LIVE 3D Image Quality Database Phase II

Algorithm WN JP2K JPEG Blur FF Overall
2D PSNR 0.919 0.597 0.491 0.690 0.730 0.665

SSIM [111] 0.922 0.704 0.678 0.838 0.834 0.792
MS-SSIM [112] 0.946 0.798 0.847 0.801 0.833 0.777
BRISQUE [64] 0.846 0.593 0.769 0.862 0.935 0.770

3D Benoit [4] 0.923 0.751 0.867 0.455 0.773 0.728
You [120] 0.909 0.894 0.795 0.813 0.891 0.786
Hewage [38] 0.880 0.598 0.736 0.028 0.684 0.501
Cyclopean MS-SSIM [18] 0.940 0.814 0.843 0.908 0.884 0.889
Sazzad [90] 0.714 0.724 0.649 0.682 0.559 0.543
Chen [15] 0.950 0.867 0.867 0.900 0.933 0.880

Table 7.3 Comparison (SROCC) of different 2D and 3D image quality assessment
algorithms on symmetrically and asymmetrically distorted stimuli in LIVE 3D Image
Quality Database Phase II

Algorithm Symmetric Asymmetric Overall

2D PSNR 0.776 0.587 0.665
SSIM [111] 0.828 0.733 0.792
MS-SSIM [112] 0.912 0.684 0.777
BRISQUE [64] 0.849 0.667 0.770

3D Benoit [4] 0.860 0.671 0.728
You [120] 0.914 0.701 0.786
Hewage [38] 0.656 0.496 0.501
Cyclopean MS-SSIM [18] 0.923 0.842 0.889
Sazzad [90] 0.420 0.517 0.543
Chen [15] 0.918 0.834 0.880

Table 7.2 details the performance of each quality assessment algorithm on
different types of distorted stereoscopic/3D image pairs. We can see that almost
all 2D and 3D algorithms are able to predict quality scores correlating well with
human opinions of stereoscopic image pairs affected by theWN distortion. However,
several quality metrics perform poorly when predicting the perceptual quality of
stereopairs with JPEG, JP2K, and Blur distortions. These poor performances can
be caused by the facilitation effect [14] of distorted stereoscopic/3D image pairs:
distortions co-located with high depth variations are more easily found by human
subjects, a phenomenon which is not yet well understood or modeled.

Finally, Table 7.3 demonstrates the effectiveness of different quality algorithms
on symmetrically and asymmetrically distorted stereoscopic/3D image pairs. It can
be clearly seen that the stereopairs contaminated with unequal amount of distortions
in the left and right images challenge most of the examined quality assessment
algorithms.
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In summary, these evaluation results of different 2D and 3D quality assessment
algorithms confirm the necessity of utilizing and incorporating accessible 3D
information, e.g., measured/estimated depth/disparity maps, when predicting the
perceptual quality of stereoscopic/3D image pairs.

7.4 Future Trends

As we have discussed, there has been a considerable amount of work and research
conducted in the field of stereoscopic/3D image and video quality assessment.
In this section, we discuss the broader topic of predicting the overall QoE when
viewing stereoscopic stimuli and speculate on possible research directions for future
research in the field of stereoscopic image and video quality assessment.

7.4.1 Quality of Experience

Current research on stereoscopic/3D quality assessment has mainly focused on the
discrepancy of image quality between the reference and distorted stereo stimuli
utilizing the estimated or measured depth/disparity information. However, due to
the extra dimensionality of the stimuli and the wide variety of display technologies,
“quality of experience” would be a more appropriate term to define the overall
palatability of stereoscopic/3D presentations. Specifically, the additional dimension
of depth, along with unwanted side effects induced by imperfect geometry or poor
stereography, leading to visual discomfort or fatigue, can affect the experience
of viewing stereoscopic/3D stimuli in both positive and negative ways. Hence, a
variety of factors need to be considered when creating stereoscopic/3D content,
in order to be able to deliver a pleasant stereoscopic/3D viewing experience [25].
Lambooij et al. [53] expressed the stereoscopic/3D QoE as the weighted sum of
perceived image quality and depth.More recently, Chen et al. [19] proved that visual
comfort becomes the dominant factor (over transmission/compression distortions) in
determining stereoscopic/3D viewing experiences when visual discomfort or fatigue
occurs. In [20], the authors further proposed to measure the overall visual QoE
when viewing stereoscopic/3D stimuli as the weighted sum of image quality, depth
quantity, and visual comfort.

In the case of stereoscopic/3D videos, the study conducted by Chen et al. [16,17]
showed that when viewing stereoscopic/3D videos, subjects tend to agree on
perceived image quality, but have more diverse opinions on sensation of depth.
Sincemotion parallax, i.e., relative movement between objects, is a strong depth cue,
motion serves as an important factor affecting stereoscopic/3D viewing experiences
wherein it is able to give rich depth satisfaction, but it also contributes to visual
discomfort. López et al. [57] conducted subjective studies to quantify the effects
of motion parallax and temporal evolution of depth histograms while viewing
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stereoscopic/3D videos. They proposed to calculate the overall QoE as a linear
combination of the probabilities of detecting window violations, of finding abrupt
scene transitions, and of observing excessive negative motion parallax.

These preliminary forays into visual discomfort hint at possible directions for
the development of accurate and robust algorithms for overall stereoscopic/3D
QoE [79]. For example, Kim et al. [51] proposed a visual fatigue predictor that
measures excessive horizontal and vertical disparities using features extracted from
estimated disparity maps. In addition to disparity statistics, Park et al. [79] utilized
features based on principles of physiological optics and foveation to develop a visual
discomfort predictor that accounts for accommodation-vergence mismatches when
viewing stereoscopic images.

7.4.2 Content Diversity

So far, all of the discussion in this chapter has ignored the role of the diversity of
content. Quality assessment algorithms are almost always content-blind, and only
look at low-level image or depth features such as texture and discontinuity to predict
the perceptual quality. However, humans judge the overall viewing experience at a
much higher-level. For example, when a baby appears in a stereoscopic/3D image or
video, subjects may give higher ratings of quality even if the distortion is unaccept-
able. While current stereoscopic/3D quality assessment databases, similar to the
2D case, attempt to remove this bias by selecting content with no strong feelings
of like or dislike, future database creation efforts should include consideration
of a diverse range of stereoscopic/3D image and video content. Moreover, even
under similar geometric settings, different content may induce different sensation of
perceived depth, affecting the overall viewing experience. Therefore, as automatic
visual quality assessment aims to replace the human observer, the area of content
diversity and bias needs to be explored [70].

7.4.3 Natural Scene Statistical Modeling

Effective and robust NSS models have proved to be an essential ingredient in the
development of more successful 2D image/video quality assessment algorithms.
Due to high dimensionality of stereoscopic/3D stimuli and an incomplete under-
standing of human depth perception, stereoscopic/3D quality metrics have not
benefited much by statistical modeling. Some early work, however, did attempt to
exploit the basic statistics and relationships between image and depth/disparity infor-
mation in predicting stereoscopic/3D perceptual quality. Ha et al. [37] conducted
subjective tests to examine different factors that may affect depth perception and
visual comfort while viewing stereoscopic videos. They proposed a no-reference
stereoscopic VQM by training a linear regression model with features extracted from
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motion vector magnitude, intra- and inter-frame disparity variation, and disparity
distribution at boundary areas. In [65], Mittal et al. proposed a no-reference model
to evaluate the perceptual quality of stereoscopic/3D image and video using sample
statistics computed from both the left and right images, the estimated disparity map,
and the motion-compensated disparity difference. A simple linear regression model
was adopted to map the extracted features to subjective scores.

To explore more advanced and effective statistics embedded in natural image and
depth data, Su et al. [102] studied both the joint and conditional distributions of
spatially adjacent luminance/chrominance and depth wavelet coefficients in natural
scenes, and modeled them using the relevant, versatile, and flexible bivariate GGD.
They found that there exist both scale and orientation dependencies in the joint
distributions, and both spatially adjacent luminance and chrominance coefficients
maintain constant correlation when conditioned on depth wavelet coefficients.
When stereoscopic/3D stimuli suffer from different types of distortions, these
dependencies and bivariate models are able to provide useful information predictive
of perceptual quality. In addition to these early algorithmic and statistical efforts,
future development of stereoscopic/3D quality metrics should include a focus on
advanced modeling of disparity and motion masking effects, both of which remain
poorly understood.

Conclusion
In this chapter, we summarized recent advances in visual quality assessment of
stereoscopic/3D image and video. We first outlined practical challenges one
may face when attempting to design effective stereoscopic quality metrics.
In particular, exploring the high-dimensionality statistics of stereoscopic/3D
stimuli and incorporating complicated models of binocular vision are both
critical. Our summary demonstrated that while measuring the perceptual
quality of stereoscopic/3D content by simply combining off-the-shelf or
extending 2D quality assessment algorithms can provide a basic level of
performance, the use of depth/disparity statistics, binocular vision models,
and so forth result in much more efficient and accurate quality prediction
algorithms.

We also discussed possible future directions towards developing successful
stereoscopic/3D quality metrics, and described the concept of “quality of
experience” which includes not only image quality but also depth sensation
and visual comfort.

The field of stereoscopic/3D quality assessment is certainly growing, but
is far from mature. There is tremendous scope for research in this area
owing to its complex and multidisciplinary nature. We postulate that there
remain large gaps between our understanding of human stereo perception and
statistical modeling of natural image and depth information. Accurate and

(continued)
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robust prediction of stereoscopic/3D perceptual quality will hopefully emerge
by combining research findings in both vision science and image/video
engineering.
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Chapter 8
Retargeted Image Quality Assessment: Current
Progresses and Future Trends

Lin Ma, Chenwei Deng, Weisi Lin, King Ngi Ngan, and Long Xu

8.1 Introduction

Nowadays, the diversity and versatility of the display devices have imposed new
demands on digital image processing. The same image needs to be displayed
with different resolutions on various devices. The image retargeting approaches
[1–15] have been proposed to adapt the source images into arbitrary sizes and
simultaneously keep the salient content of the source images. These developed
retargeting methods, such as warp [2], seam carving [4–6], and multi-operator [7],
try to preserve the salient shape and content information of the source image, and
shrink (or expend) the unimportant regions of the image into the given resolution.
With such approaches, the images can be displayed on different screens of different
resolutions, which will provide better visual experiences for human viewers.
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However, for most of these methods, a simple visual comparison was conducted
for the results (comparing the results of different retargeting methods based on a
small set of images) to demonstrate the effectiveness of the retargeting methods,
which is not suitable for online processing. In order to obtain a retargeted image
of good quality, quality assessment of retargeted images is needed for maximize
the perceptual quality to guide the retargeting process. Therefore, a new challenge
of objectively evaluating the retargeted image perceptual quality is issued, where
variant resolutionsmay be presented, the objective shapemay be distorted, and some
content information may be discarded.

As human eyes are the final receivers of the retargeted images, the human
subjective opinion is the most reliable value to indicate the image perceptual
quality. The subjective opinions are obtained through the subjective testing, where
a large number of viewers participate in the subjective test and provide their
personal opinions of the image quality on some pre-defined scale. By processing
the obtained subjective scores, each image will be assigned a score indicating its
perceptual quality. The subjective testing method is time-consuming and expensive,
which makes it impractical for most image applications. However, the subjective
rating obtained can be recognized as the ground truth of the image perceptual
quality. Therefore, the subjective rating scores can be employed to validate the
objective quality metrics. Subjective studies can also enable the improvement in the
performance of the quality metric towards attaining the ultimate goal of matching
human perception. Then the developed quality metric can be utilized to guide the
corresponding application. Furthermore, the subjective studies can also benefit the
image applications for better perceptual quality experience, specifically improving
the perceptual quality of the retargeted image. Consequently there is a great demand
of image retargeting database for both subjective rating score acquisition and
objective quality metric validation.

Objective quality assessment is demanded for not only automatically evaluate
the perceptual quality of retargeted images/videos but also can help guiding the
retargeting process to make it more efficiently and visually plausible. However,
the retargeted image quality assessment is of great challenge, where the source
and retargeted images cannot be well matched or aligned for the quality analysis.
Specifically, the content information discarding and shape distortion cannot ensure
a good pixel matching between the retargeted and source images. Therefore, the
perceptual quality analysis requires a high-level understanding of the retargeted
image. Evaluating the retargeted image quality makes it more difficult, as the
subjective opinions may not be able to characterize the perceptual quality of the
images. During the subjective evaluation process [16, 17], it is demonstrated that
the participants have difficulties to achieve an agreement. Clearly, the participants
present different appreciations of perceptual qualities of the retargeted images.
In spite of these difficulties, many research works have been done to develop
an automatic quality metric to evaluate retargeted image quality. In this chapter,
the authors will briefly review recent progresses of the image retargeting quality
assessment, in terms of both subjective and objective measurements. The chapter
is organized in the following. Section 8.2 will briefly introduce the retargeting
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methods for visual signals. And the subjective approaches for evaluating retargeted
image are detailed in Sect. 8.3, specifically the CUHK [16] and RetargetMe [17]
retargeting databases. Section 8.4 will review recent works on objective retargeting
quality metrics. Finally, future trends will be discussed in Sect. 8.5 followed by the
conclusions.

8.2 Retargeting Methodologies for Visual Signals

Nowadays, many approaches for retargeting visual signals have been developed
[1–15]. The media is retargeted to adapt the displaying resolutions covering images,
videos, stereo images, and so on. These methods are employed to generate the
corresponding retargeted images/videos for subjective testing, which constitute the
subjective quality databases in Sect. 8.3. The algorithms are briefly introduced in
the following.

• Cropping: manually cropping the source image to the target size for the best
salient information preservation.

• Scaling: simple scaling the source image into the target size.
• Seam carving [4–6]: removing the contiguous chains of pixels that lie in the

regions of the smallest gradient magnitude values in the source image. The seams
removed are optimized by a dynamic programming approach.

• Optimized seam carving and scale [15]: a measurement named as “seam carving
distance” is proposed to measure the similarity of retargeted image and the source
one. The method employed the measurement to optimally combine the scaling
and seam carving methods.

• Non-homogeneous retargeting [2]: a warping function is optimized to find the
optimal squeezed image by reducing the image width. In order to prevent the
salient content of the image from shape degradation, the gradient magnitude and
face detection results are employed to determine the saliency region.

• Scale and stretch [8]: an objective function is optimized by uniformly scaling the
salient regions to preserve the shape information. The saliency map is detected
by combining the gradient magnitude and the saliency map detected by Itti
et al. [13].

• Shift-map editing [9]: graph cut is used to remove an entire object at a time rather
than a seam. The color difference and gradient information is employed to ensure
the smoothness.

• Multi-operator process [7]: seam carving, scaling, and cropping are combined
together to generate the retargeted image. And a bi-directional warping measure-
ment determines how to combine these operators.

• Energy-based deformation [14]: similar as the scale and stretch method, warping
is also used to produce the retargeting image.
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• Streaming video [3]: the warping method is also used. The saliency map
is generated by combining the visual attention map, the line detection, and
important objects.

• Shift-map stereo image retargeting [10]: in the context of 3D image retargeting,
the novel viewpoint advocated is that the geometric consistency in the form of
preserving disparity values should not be an overpowering objective formulated
as hard constraints. Instead, for maximizing viewing experience and comfort,
it is desirable to simultaneously retarget the images as well as adjust the
disparity values. The method is developed based on the methods of shift-map
and importance filtering.

• Stereo image retargeting [11, 12]: the visual distortion in each of the images is
minimized as well as the depth distortion. A key property is to take into account
the visibility relations between pixels in the image pair (occluded and occluding
pixels). As a result, the retargeted pair is geometrically consistent with a feasible
3D scene, similar to the original one.

Referring to these retargeting methods, it can be observed that the cropping,
scaling, seam carving, and warping are the basic tools for image retargeting. Many
research works are proposed to combine these tools together by optimizing a
defined objective measurement, such as [7]. As the foreground objects, including the
faces and people, represent the most salient information to the human viewers, the
retargeting methods need to prevent the objects from shape distortion by referring
to the saliency map.

8.3 Subjective Approaches for Retargeted Image
Quality Assessment

Until now, there are two public subjective databases focusing on the quality
evaluation of image retargeting, specifically the RetargetMe [17] built by Rubinstein
M. et al. and CUHK retargeting database [16] built byMa L. et al. The two databases
are built for different purposes. RetargetMe database concentrates on a comparative
study of existing retargeting methods. The authors compared which retargeting
method generates the retargeted image with the highest perceptual quality. The
subjective test is performed in a pair comparison way, where the participants are
shown two retargeted images at a time, side by side, and are asked to simply choose
the one is of better quality. The RetargetMe database consists of the retargeted
image and its number of times that the retargeted image is favored over another one.
CUHK retargeting database targets at perceptual quality evaluation of the retargeted
images. Therefore, each retargeted image is presented to the participants against its
original form.With the source image as the reference, the perceptual quality of each
retargeted image has been subjectively rated on a pre-defined scale. After processing
the subjective ratings, the mean opinion score (MOS) value and the corresponding
standard deviation are generated for each retargeted image.
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For the RetargetMe database [17], the Kendall � distance [19] is employed
to validate different quality metrics by measuring the correlation between two
rankings. CUHK retargeting database mainly focuses on evaluating perceptual
quality of the retargeted images other than pair-wise comparing the retargeting
methods [17]. Therefore, based on CUHK retargeting database, the objective
quality metrics can be evaluated in the standardized way [23]. Same as traditional
image/video quality assessments, multiple retargeting databases are needed. When
constructing different databases, different subjects participated in the subjective
testing with different rating scales. Meanwhile, the source image content and image
distortions introduced by retargeting methods are quite different. In these respects,
the subjective quality databases can be ensured to be of great diversity, which can
be employed to evaluate the effectiveness and robustness of the developed objective
quality metric. Therefore, CUHK retargeting [16] and RetargetMe [17] databases
can be further viewed as complementary to each other.

8.3.1 RetargetMe Database

8.3.1.1 RetargetMe Database Construction

Source Image

Content-aware retargeting methods work best on images where some content can
be disposed of. These insensitive contents include either smooth or irregularly
textured areas such as sky, water, grass, or trees. As human eyes are insensitive
to these contents, most retargeting methods work pretty well. Challenge is posed in
images containing either dense information or global and local structures that may
be distorted during resizing. To create the RetargetMe database, images generated
from various retargeting methods are collected. A set of image attributes are
selected by referring to the three major retargeting objectives (preserving content,
preserving structure, and preventing artifacts). These attributes are: people and
faces, lines and/or clear edges, evident foreground objects, texture elements or
repeating patterns, specific geometric structures, and symmetry. The source images
for building RetargetMe database are made up of 80 image, each of which has one
or more of these attributes. Some of source images are illustrated in Fig. 8.1.

Fig. 8.1 Samples of the images used in RetargetMe database
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The resolution change is only restricted to one dimension, either the width or the
height of the image. Furthermore, reduction in image size is mostly concentrated
during the database construction. In consequence, the authors chose to use consid-
erable resizing (25% or 50%). Each method retargets the images into 50% and
75% of its original resolution.

Subjective Testing

RetargetMe [17] database focuses on comparing the performances of different retar-
geting methods. Therefore, during the subjective testing phrase, a pair comparison
manner is employed (with and without the source image), where the participants
are shown two retargeted images at a time, with the present of the source image,
and determine which one they like better. The subjective testing is performed via
Internet.1 By referring to the source image, the participants are asked to choose
which one of the two retargeted images are of better quality. Detailed information
can be found in [17].

8.3.1.2 Subjective Analysis

For RetargetMe database, a total of 210 participants took part in the test, generating
a total of 9,324 pair-wise votes. Half of the participants were volunteers and half
workers from Amazon Mechanical Turk. About 40% were females and 60% males,
average age was around 30, and they had varying degrees of computer graphics
knowledge, being naive as to the design and goals of the experiment. To investigate
whether the presence of the source image affects the preferred resized result, the
authors also conducted a blind version of the exact same test (with 210 new
participants), where the source image was not present.

The similarity of choices between participants is studied. A complete agreement
means that all the participants voted in the same way. High disagreement, on the
other hand, reflects difficulty in making choices, suggesting that the subjective
views have different opinions on the perceptual quality of the image. For this pur-
pose, Kendall and Babington–Smith introduced the coefficient of agreement [18].
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where aij is the number of times that method i was chosen over method j , m is the
number of participants, and t D 8 is the number of retargeting methods tested. If
complete agreement is achieved, then � D 1; the minimum value of � is attained

1http://people.csail.mit.edu/mrub/retargetme/survey/index.php?mode=0.

http://people.csail.mit.edu/mrub/retargetme/survey/index.php?mode=0
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by an even distribution of answers and is given by � D �1=m. The coefficient
over all images is � D 0:095, a relatively low value suggesting that the participants
in general had difficulty judging the perceptual quality of retargeted image. More
detailed information can be found in [17].

8.3.2 CUHK Retargeting Database

8.3.2.1 CUHK Retargeting Database Construction

Source Image

The source image composing the CUHK retargeting database contains the fre-
quently encountered attributes, such as the face and people, clear foreground object,
natural scenery (containing smooth or texture region), and geometric structure
(evident lines or edges). The detailed information of the attributes can be referred
to [16]. There are total 57 source images for retargeting by different methods as
introduced in Sect. 8.2. The corresponding resolutions of source images are variant,
in order to alleviate the influence of the image resolution on the subjective testing.
Figure 8.2 illustrates some samples of the source images. The source images are
roughly categorized into four classes according to the aforementioned attributes.
The attribute information of each source image can be found in [16]. The content-
aware retargeting methods make that the perceptual qualities of retargeted results

Fig. 8.2 Samples of the source images utilized in the subjective testing for CUHK retargeting
database construction. The images in the top row mostly contain the attribute of face and people;
the images in the second row mostly contain the attribute of clear foreground object; the images in
the third row mostly contain the attribute of natural scenery; the images in the bottom row mostly
contain the attribute of geometric structure
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from different source images are different. The attributes of the images are critical
to the perceptual quality of the final retargeted images. Human eyes are very
sensitive to the distortion of the faces and geometric structures. However, they can
tolerate more distortions on the natural scenery, especially for the texture regions.
By including the images with different attributes, we can further analyze how the
image content affect the perceptual quality of the retargeted images.

The resolution changes are restricted in only one dimension. The retargeting
methods change the resolution of the source images in either the width or height
dimension. CUHK retargeting database retargets images in two ratios, shrinking
the image to 75% and 50%. Three retargeted results of each source image are
included. These three retargeted images may be produced by different retargeting
methods in different scales. During the subjective testing, the retargeted images
with different scales are mixed together to examine its perceptual quality through
subjective testing.

Subjective Testing

Both the shape distortion and content information loss of the source image affect
the perceptual quality of the retargeted image. Therefore, in order to provide more
convincing results, the source image needs to be presented to the subjective viewers
as the reference simultaneously during the subjective testing process of CUHK
retargeting database. Without the source image as the reference, the viewers are
not able to detect the discarded information, which may be the most important part
of the source image. Therefore, the simultaneous double stimulus for continuous
evaluation (SDSCE) is employed [26, 29] for subjective evaluation.

Two images are juxtaposed on the screen for the human subject. One is the
source image for reference and the other is the retargeted image to be evaluated.
The participants are aware of which one is the reference image and which one is the
retargeted image. The participants are asked to compare the difference between the
two images and judge the perceptual quality of the retargeted one. After that,
the perceptual quality index of the retargeted image is ranked by the participant.
The only difference of the subjective testing in this work was the use of the ITU-R
absolute category rating (ACR) scale rather than a continuous scale. The ACR scale
employs a five-category discrete quality judgment, as described in [28–30].

The user interface for the subjective testing is designed as shown in Fig. 8.3. The
two images, including the source and the retargeted one, are loaded into the memory
before displaying. In order to avoid strong visual contrast, the remaining regions of
the display area are gray (the pixel values are set equal to 128). The quality scales
are labeled to help the human subjects to rate the image quality. The quality scales
are labeled as “Bad,” “Poor,” “Fair,” “Good,” and “Excellent,” which range from the
lowest to the highest perceptual quality index. During the subjective evaluation, the
subjective values are recorded in numerical values. As shown in Fig. 8.3, the “Bad”
corresponds to 1 and the “Excellent” corresponds to 5. Therefore, for the obtained
subjective ratings, larger values indicate better perceptual qualities of the retargeted
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Fig. 8.3 Screenshot of the subjective study interface displaying the images to the human subject

images. The participants select the appropriate quality index based on their own
judgement. After choosing the quality of one image, the participant can proceed to
the next image.

In order to reduce the effect of the viewer fatigue, the 171 retargeted images
are divided into two sessions. The first session contains 69 images, while the
second one contains 102 images. For each session, it will take the viewer about
10–20min to accomplish the subjective testing. The order of the image pairs (the
source image and the retargeted image) is randomly arranged, which varies for each
participant. Furthermore, in order to avoid the contextual and memory effects on
the participants’ judgment of the quality, the retargeted images which are generated
from the same source image will not be presented consecutively. In order to prevent
the scaling effect, which is critical to the image retargeting results, the source image
and the retargeted image must be displayed in their native resolution.

All the subjects participating in the subjective testing are the students have
normal vision (with or without corrective glasses) and have passed the color
blindness test. For the first session, viewers participate in the subjective testing
process, with 15 viewers are experts in image processing. And each image in the
second session was rated by 34 participants, with 18 viewers are experts in image
processing.

8.3.2.2 Processing of Subjective Ratings

Subjective Agreement

For CUHK retargeting database, the quartiles of the subjective scores for each
image is employed to analyze the subject agreement, which is illustrated in Fig. 8.4.
The lower and higher bound of the red error bar denotes the 25th and 75th
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Fig. 8.4 The subjective scores for each image (the horizontal axes correspond to the image
number, and the vertical axes correspond to the subjective scores of the viewers. The blue
asterisk indicates the median value among all the viewers. And the red error bar indicates the
corresponding 25th and 75th percentiles of the subjective scores)

percentiles of subjective ratings obtained for each image. After sorting the subjective
scores, the central 50% of subject ratings lie within the range. The blue asterisk
indicates the median value of the subjective scores. The detailed information of
the image number and the corresponding retargeted image name can be found in
the [31, 32]. An outlier coefficient (OC) is introduced to evaluate the subjective
agreement:

OC D Noutlier
Ntotal

(8.2)

where Ntotal indicates the total number of the retargeted images in the database, and
Noutlier denotes the number of the images, which are regarded as the outlier. If the
interval between the higher bound and lower bound error bar in Fig. 8.4 is larger
than 1, the image is recognized as outlier. The reason is that viewers may have
different opinions on the image quality, but they should at least have the similar
judgments. For one image, different viewers may rate “Good” or “Excellent,” which
are neighboring values. In most cases, the same image will not be scored with greatly
differences, such as “Poor” or “Good.” Therefore, if the central 50% subjective
ratings are constrained within the interval of 1, the participants have arrived at an
agreement of the retargeted image quality. For the constructed database, 15 out of
171 are recognized as the outlier images, which implies OC D 8:77 %. Therefore,
91.2% of the images in the database have shown the agreement among participants.
Therefore, the images in the database will be rated similarly if subjectively tested
by the other viewers. Consequently, these images can be included to construct the
database and further employed for validation of the quality metrics.
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Screening of the Observers

In the previous section, the subjective ratings of the images have demonstrated
high subject agreements. However, in order to obtain the final MOS and standard
deviation value for each image, the subject rejection process is suggested by [29].
Let Sijk denote the subjective rating by the subject i to the retargeted image j in
session k D 1; 2. The Sijk values are firstly converted to Z-scores per session [27]:

�ik D 1

Nik

NikX

j D1

Sijk

�ik D
q

1
Nik�1

PNik

j D1

�
Sijk � �ik

�2 (8.3)

zijk D Sijk � �ik

�ik

where Nik is the number of the test images evaluated by the subject i in session k.
It is noted that Z-scores are obtained per session, which account for any differences
in subject preferences for the reference images, and different participants between
sessions.

After converting the obtained subjective ratings into Z-scores, the subject
rejection procedure specified in the ITU-R BT 500.11 [29] is then used to reject
the unreliable viewers. The converting process and subject rejection procedure
used should be superior to the VQEG studies [20–22]. The mean value �jk and
the variance value �jk are firstly computed for each image by accounting for the
differences of the subjective viewers. Then the kurtosis ˇj of the assigned scores is
computed to determine whether the scores are normally distributed:

�jk D 1

Njk

NjkX

iD1

Sijk

�jk D
q

1
Njk�1

PNjk

j D1

�
Sijk � �jk

�2 (8.4)

ˇj D m4

.m2/2
with m� D

PNik

j D1

�
Sijk � �jk

��

Njk

If the kurtosis value ˇj falls between 2 and 4, the scores are regarded as normally
distribution. The subject rejection procedure is detailed in Fig. 8.5. By performing
the procedure, 1 out of 30 participants and 3 out of 34 participants are rejected in
subjective session 1 and 2, respectively.
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Fig. 8.5 Detailed algorithm
of the subject rejection
process

After subject rejection, Z-scores are then linearly rescaled to lie in the range
of Œ0; 100�. Assuming that the Z-scores assigned by a subject are distributed as
a standard Gaussian [24, 25], 99% of the scores will lie in the range Œ�3; C3�.
Re-scaling is accomplished by linearly mapping the range Œ�3; C3� to Œ0; 100� by:

QZijk D 100.zijkC3/

6
(8.5)

Finally, the MOS value of each retargeted image is computed as the mean of the
rescaled Z-scores, together with the standard deviation:

MOSjk D 1
Mk

PMk

iD1
QZijk (8.6)

stdjk D
v
u
u
t 1

Mk � 1

MkX

iD1

� QZijk � MOSjk

�2

where Mk is the number of remaining subjects of session k after the subject
rejection. The MOS value together with the standard deviation is recorded for each
retargeted image as the ground truth indicating the retargeted image perceptual
quality. They can be further analyzed and used for evaluating the performances of
the quality metrics. The final subjective scores after conversion, with the standard
deviation indicating the error bar, are illustrated in Fig. 8.6.

As aforementioned, the perceptual qualities of the retargeted images in the
database should span the entire range of visual quality and exhibit good perceptual
quality separation [25]. The histogram of the MOS values is shown in Fig. 8.7. It can
be observed that the image perceptual qualities range from low to high values. Also
it demonstrates that the subjective study samples a range of perceptual quality in an
approximately uniform fashion, which results in a good separation.
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Fig. 8.6 The obtained MOS value of each retargeted image after processing (the horizontal axes
correspond to the image number, and the vertical axes correspond to the MOS value. The blue
asterisk indicates the obtained MOS value. And the red error bar indicates the standard deviation
of the subjective scores)

Fig. 8.7 Histogram of the MOS values in 15 equally spaced bins between the minimum and
maximum MOS values of the image retargeting database
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8.4 Objective Approaches for Retargeted Image Quality
Assessment

8.4.1 Objective Quality Metrics

Image retargeting quality metric has been recently developed [33–39], in order to
not only evaluate the retargeted image quality automatically and reliably in lieu of
the subjective testing but also help to improve the performance of the retargeting
methods. Nowadays, there are many quality metrics, which have been developed,
such as the bidirectional warping (BDW) in [7], the quality metric scale space
matching (SSM) in [38], the MPEG-7 descriptors in [39], the earth mover’s distance
(EMD) [33, 34], the bidirectional similarity (BDS) [35, 36], SIFTflow [37], and
reduced-reference retarget metric [44]. The information about the metrics is detailed
in the following.

8.4.1.1 Scale Space Matching

SSM is designed to facilitate extraction of global geometric structures from retar-
geted images. The proposedmethod is based on the scale invariant feature transform
(SIFT) [45]. Given an original image Iori and a retargeted image Iret , two scale
spaces SP.Iori / D fI 0

ori ; I 1
ori ; : : : ; I n

ori g, SP.Iret / D fI 0
ret ; I 1

ret ; : : : ; I n
ret g of Iori

and Iret are constructed, respectively, with the same Gaussian convolution kernel.
Then distinctive invariant feature points (DIFPs) are detected in both SP.Iori / and
SP.Iret / using the local extrema detection method in [45]. The attributes of each
DIFP include location, scale, and orientation.

Assume that a correspondence from pixels of DiC1
ori to pixels of DiC1

ret has
been established. The correspondence at scale i is established in both intra- and
inter-scale manners. First, if DIFPs exist in both Di

ori and Di
ret , each DIFP pair

.pDIFP ; qDIFP /, pDIFP 2 Di
ori and qDIFP 2 Di

ret , is matched and evaluated
using the local image descriptor (LID) [45]. This offers the intra-scale constraints.
The inter-scale constraints are achieved by propagating pixel pair matching from
coarse scale .DiC1

ori ; DiC1
ret / to fine scale .Di

ori ; Di
ret / in [38]. At the end of the

hierarchical constraint-matching propagation process, a many-to-many mapping
between pixels in I 0

ori and I 0
ret is established at the finest scale 0. This mapping can

again be interpreted as a bipartite graph Ggeost ruct that serves as the correspondence
of two geometric structures in I 0

ori and I 0
ret . The similarity of two images I 0

ori

and I 0
ret is defined as the similarity of two geometric structures measured as

a weighted summation of edge-matching costs in Ggeost ruct . A simplified, non-
weighted similarity metric is given by:

Sim.I 0
ori ; I 0

ret / D #ver

pn.I 0
ori /Cpn.I 0

ret /
� 1

#edge
�P#edge

iD1 SSIM.v0.ei /; v1.ei // (8.7)
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where pn.I / is the number of pixels in image I , ei 2 Ggeost ruct , #ver and #edge

is the number of vertices and edges in Ggeost ruct , respectively, v0.ei /, v1.ei / are
two vertices of ei , and SSIM.�/ is the structural similarity (SSIM) metric in [46]
using a local 8�8 square window. The more similar I 0

ori and I 0
ret are, the more

correspondences between pixels of I 0
ori and I 0

ret and the weight #ver

pn.I 0
ori /Cpn.I 0

ret /
is

closer to 1. The value of Sim.�/ ranges between Œ0; 1�. Given two identical images,
their similarity is maximized to be 1.

By considering that human visual system seems to selectively focus on salient
regions, the distortions within salient regions should be more dominant. For each
pixel in salient regions, if there is no corresponding pixels in the other image, it is
linked to a dummy vertex dv of that image in Ggeost ruct and set SSIM.�; dv/ D 0.
This gives rise to a modified, saliency-based graph SGgeost ruct . For each edge in
SGgeost ruct , if one of its vertices is in a salient map, its weight is set to be:

ws D pn.I 0
ori /Cpn.I 0

ret /CC

pn.I salience
ori /Cpn.I salience

ret /CC
(8.8)

where pn.I salience
ori / and pn.I salience

ret / are the salient regions in I 0
ori and I 0

ret ,
respectively, and C is a small constant that prevents denominator very close to
zero. The image size is in the magnitude of 105, and the scale 10�4 of the image
size is used, i.e., C D 10. If the area of salience regions is small, the weight ws

is large. If all pixels in images are salient, the weight is minimized to be one. For
the remaining edges in SGgeost ruct , the weight is set to be one. The saliency-based
similarity metric is given by:

SalSim.I 0
ori ; I 0

ret / D #ver

pn.I 0
ori /Cpn.I 0

ret /
� 1
P#edge

iD1 wi

�P#edge

iD1 wi � SSIM.v0.ei /; v1.ei //

(8.9)

where wi is the weight of edges is SGgeost ruct .

8.4.1.2 MPEG-7 Descriptors

MPEG-7 [39] considered many descriptors from the color and texture perspectives,
such as scalable color (SC) descriptor, color layout (CL) descriptor, color structure
(CS) descriptor, homogeneous texture (HT) descriptor, and edge histogram (EH)
descriptor. Detailed information is introduced in the following.

• CL [41] specifies the spatial distribution of colors. The extraction for the descrip-
tor consists of four stages; image partitioning, dominant color selection, DCT
transform, and non-linear quantization of the zigzag-scanned DCT coefficients.
In the first stage, an input picture is partitioned into 64 blocks. The size of the
each block is W=8 � H=8, where W and H denote the width and height of
an input picture, respectively. In the second stage, a single dominant color is
selected in each block to build a tiny image whose size is 8 � 8. Any method for
dominant color selection can be applied. Simple average colors is calculated as
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the dominant colors. In the third stage, each of the three components .Y; Cb; C r/

is transformed by 8�8 DCT, and we obtain three sets of DCT coefficients. A few
low frequency coefficients are extracted using zigzag scanning and quantized to
form the CL for a still picture. Image-to-image or sketch-to-image search can be
implemented by calculating a distance of the descriptors. The distance between
two CL descriptors is calculated as follows:

D D
qP

i2Y w1
i .Yi � KYi /2 C

qP
i2Cb w

2
i .Cbi � KCbi /2 C

qP
i2C r w

3
i .C ri � KC ri /2

(8.10)

Here, Yi , Cbi , and C ri denote the i -th coefficients of Y , Cb, C r color
component and wl

i , w
2
i , and w3

i do the weighting values for the i -th coefficient,
respectively. The weighting values should be decreased according to the zigzag-
scan order.

• SC is defined in the hue-saturation-value (HSV) color space with fixed color
space quantization, and uses a novel Haar transform encoding. The Haar trans-
form based encoding facilitates a scalable representation of the description, as
well as complexity scalability for feature extraction and matching procedures.

• CS expresses local color structure in an image using an 8�8-structuring element.
It counts the number of times a particular color is containedwithin the structuring
element as the structuring element scans the image. Suppose c0; c1; c2; : : : ; cM�1

denote the M quantized colors. A color structure histogram can then be denoted
by h.m/; m D 0; 1; : : : ; M �1, where the value in each bin represents the number
of structuring elements in the image containing one or more pixels with color cm.
The hue-min-max-difference (HMMD) color is used for CS extraction.

• HT is computed by first filtering the image with a bank of orientation and scale
sensitive filters, and computing the mean and standard deviation of the filtered
outputs in the frequency domain. Specifically, the frequency space is partitioned
into 30 channels with equal divisions in the angular direction and octave division
in the radial direction. The individual feature channel is modeled using 2-D
Gabor function. Then the image texture in each filtered channel is computed.
The HT is extracted by concatenating mean intensity, the standard deviation of
the image texture, the energy, and energy deviation.

• EH captures the edge distribution in spatial domain. For local edge distribution
description, the image is divided into 4�4 sub-images, each of which is examined
by five different orientations: vertical, horizontal, two diagonals, and isotropic
(non-directional). For each sub-image, a 5-bin histogram is built by classifying
edges to these five categories. Histogram concatenation generates the feature,
which results in 4�4�5 D 80 length description. Only the intensity component is
employed for edge detection. And the L1-norm distance is employed to measure
the feature distance between two images, which is defined as EH.S; T / D
k EHF.S/ � EHF.T / k1, where EHF is the edge histogram feature.
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8.4.1.3 Earth Mover’s Distance

EMD is based on the minimal cost that must be paid to transform one distribution
into the other. The signature fSj D .mj ;wj /g, which represents a set of feature
clusters, is viewed as the histogram distribution. The point mj is the central value
in bin j of the histogram, and wj is to indicate the corresponding proportion.
The definition of cluster is open. The color, position, and texture information can
be employed to obtain the feature clusters. Only the size of the clusters in the feature
space needs to be limited. Let P D f.p1;wp1 /; � � � ; .pm;wpm/g be the first signature
with m clusters; Q D f.q1;wq1 /; � � � ; .qn;wqn/g is the second signature with n

clusters. And D D Œdij � is the ground distance matrix, where dij is the ground
distance between clusters pi and qj . dij can be any distance and will be chosen
according to the problem at hand. The purpose is to find a flow F D Œfij �, with fij

as the flow between pi and qj , that minimizes the overall cost:

work.P; Q; F / D Pm
i

Pn
j dij fij (8.11)

After obtaining the optimal flow F , EMD is defined as the work normalized by the
total flow:

EMD.P; Q/ D
Pm

i

Pn
j dij fij

Pm
i

Pn
j fij

(8.12)

8.4.1.4 Bidirectional Similarity

Two signals S (original image) and T (retargeted image) are considered to be
“visually similar” if as many as possible patches of S (at multiple scales) are
contained in T , and vice versa. The dissimilarity can be formulated as:

.S; T / D 1

NS

X

P �S

minQ�T D.P; Q/

„ ƒ‚ …
dcomplete.S;T /

C 1

NT

X

Q�T

minP �S D.Q; P /

„ ƒ‚ …
dcohere .S;T /

(8.13)

P and Q denote patches in S and T , respectively. And let NS and NT denote the
number of patches in S and T . For each patch Q 	 T we search for the most similar
patch P 	 S , and measure their distance D.P; Q/, and vice-versa. The patches are
taken around every pixel at multiple scales, resulting in significant patch overlap.
D.P; Q/ can be any distance measurements between two patches, such as sum
squared distances (SSD) or SSIM [46]. The two terms have important commentary
roles. The first term, dcomplete.S; T / measures the deviation of the target T from
“completeness” w.r.t. S . Namely, it measures if all patches of S have been preserved
in T . The second term dcohere.S; T / measures if there are any “newborn” patches in
T which have not originated from S . Therefore, the dcomplete.S; T / tries to represent
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the input image well (be complete), and the dcohere.S; T / makes sure the retargeted
image is visually pleasing (coherent). The dissimilarity measurement is minimized
in order to generate a retargeted image [35, 36].

8.4.1.5 SIFTflow

The SIFTflow descriptor characterizes view-invariant and brightness-independent
image structures. Matching SIFT descriptors [42] allows establishing meaningful
correspondences across image with significantly different image content. Further-
more, the pixel displacement (indicating by the SIFT correspondence matching)
should be spatial coherent, which means that close-by pixels should have similar
displacement. The cost function is defined as:

E.w/ D P
p k s1.p/ � s2.p C w/ k1 C 1

�2

P
p.�2.p/ C �2.p//C (8.14)

X

.p;q/2�

�
min.˛j�.p/ � �.q/j; d / C min

�
˛j�.p/ � �.q/j; d /

�

wherew.p/ D �
�.p/; �.p/

�
is the displacement vector at pixel location p D .x; y/,

si .p/ is the SIFT descriptor extracted at location p in image i , and � is the spatial
neighborhood of a pixel. SIFTflow employs the SIFT for feature matching. And the
local smoothness is preserved by the vector difference constraint.

8.4.1.6 Pyramid Histogram of Visual Words (PHOW)

First, SIFT [42] are computed at points on a regular grid with spacing M pixels. At
each grid point the descriptors are computed over four circular support patches with
different radii. Consequently, each point is represented by four SIFT descriptors.
Multiple descriptors are computed to allow for scale variation between images. The
dense features are vector quantized into N visual words using k-means clustering.
Based on the SIFT descriptor and image spatial layout, we can obtain the pyramid
histogram of visual words (PHOW) representation. In forming the pyramid the grid
at level l has 2l cells along each dimension. Consequently, level 0 is represented by
N -vector corresponding to the N bins of the histogram, level 1 by a 4N -vector, etc.
PHOW is a vector with the dimensionality of N

PL
lD0 4l .

8.4.1.7 GIST

GIST descriptor is extracted based on a very low dimensional representation of
the scene, which is termed as the Spatial Envelope in [43]. A set of perceptual
dimensions, such as naturalness, openness, roughness, expansion, ruggedness, is
employed to represent the dominant spatial structure of a scene. For naturalness, the
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structure of a scene strongly differs between man-made and natural environments.
Straight horizontal and vertical lines dominate man-made structures whereas most
natural landscapes have textured zones and undulating contours. Therefore, scenes
with edges biased toward vertical and horizontal orientation would have a low
degree of naturalness. For openness, a scene can have a closed spatial envelop full
of visual references or it can be vast and open to infinity. The existence of a horizon
line and the lack of visual reference confer to the scene a high degree of openness.
For roughness, it depends on the size of elements at each spatial scale. Roughness
is correlated with the fractal dimension of the scene and thus, its complexity. For
expansion, the convergence of parallel lines gives the perception of depth gradient
of the space. A flat view of a building would have a low degree of expansion. On the
contrary, a street with long vanishing lines would have a high degree of expansion.
For ruggedness, it refers to the deviation of the groundwith respect to the horizon. A
rugged environment produces oblique contours in the picture and hides the horizon
line. Therefore, rugged environments are mostly natural.

8.4.2 Performances on RetargetMe Database

For RetargeMe database, the authors tried to estimate how well the objective metrics
agree with the users’ subjective preferences. The agreement can be evaluated by the
correlation between the rankings induced by the subjective and objective measures.
For every image I , the subjective similarity vector s D< si ; � � � ; sn > for n D 8

objective quality methods can be obtained, where si is the number of times the
retargeting result Ti using method i was favored over another result. We also define
o D< o1; � � � ; on > as the respective objective distance vector for the same image I

calculated by one of the objective measures. For a given objective measure D, the
entry oi D D.I I Ti / is the distance between I and Ti with respect to measure D (in
this case, the lower oi the better the method i is). The analysis results for all images
and measures can be found in [17].

8.4.2.1 Correlation

To compare between s and o, the authors first sort them and then rank the
retargeting measures according to the sorted order. The subjective vector s is sorted
in descending order, while the objective vector o is sorted in ascending order. We
only need to compare s and o to statistically determine the correlation between two
rankings, rankdesc .s/ and rankasc.o/ induced by these vectors. Kendall distance
[19] is employed to measure the degree of correlation between the two rankings:

� D nc�nd
1
2 n.n�1/ (8.15)
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where n is the length of the rankings, nc is the number of concordant pairs, and nd

is the number of discordant pairs over all pairs of entries in the ranking. It is easy to
see that �1 � � � 1 with increasing value indicates increasing rate of agreement.
Note that � D 1 in case of perfect agreement (equal rankings), and � D �1 is case
of perfect disagreement. In case � D 0, the rankings are considered independent.

8.4.2.2 Significance Test

To measure the significance of a correlation estimate, we need to consider the
distribution of the � coefficient. It turns out that the distribution of � tends to
normality for large n [19]. For RetargetMe database, we can easily estimate the
distribution of � for n D 8 by considering the rank correlation of all possible
permutations of 8 elements with regard to an objective order 1; 2; � � � ; 8. The
distribution has normal characteristics, with zero-mean and � D 0:2887. For a given
set of observed � coefficients, 	2 test against the null hypothesis that the observed
� coefficients are randomly sampled from the � distribution is employed.

8.4.2.3 Analysis

The distribution of � scores over all images is gathered for each measure. The mean
and variance of this distribution is calculated to represent the score of the metric
in this experiment. Table 8.1 presents these scores, with breakdown according to
image attribute, and the total score over the entire database. The results are shown
for the full rank-vectors, and also with respect to the k D 3 results ranked highest
by each measure. For the latter, Eq. (8.15) is modified such that only pairs .i; j / for
which .rank1.i/ � k _ rank1.j / � k/ ^ .rank2.i/ � k _ rank2.j / � k/ are
considered, and the denominator is modified to be the total number of such pairs.
For reference, the results for a random metric is added in Table 8.1. For a given pair
of images, the measurement simply returns a uniformly random number in .0; 1/.

It can be observed that, low-level metrics show smaller agreements with the
users, although EH achieves higher scores for images containing apparent geometric
structures or symmetries. However, both BDS and BDW show low agreements with
the user data as well. The near-zero correlation for nearly all image classes suggests
they cannot well match the viewers’ preferences for retargeted images. Their
unsatisfying performance is attribute to both the way they construct correspondence
between the images, and with the image features they use for measuring the distance.

The measurements employed the patch differences to indicate the image dissim-
ilarity. Those are strict measures which assign high penalties to patch variations
caused by small local deformations (e.g., small scale or rotation). However, such
deformations might be acceptable by human viewers, and so may be reasonable
to use for retargeting purposes. As for the correspondence, since BDS uses global
patch comparison, a deformed region in the result might be matched to a different
part of the original image that has similar appearance. Thus, record of specific
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changes in content might not be reflected in the distance. BDW does constrain the
correspondence such that regions in the result will be matched to approximately
the same regions in the original image. However, due to information insufficiency
(it is of one-dimensional), it has difficulty in dealing with the results produced by
some operations. SIFTflow and EMD on the other hand, use a dense SIFT descriptor
which can robustly capture structural properties of an image. EMD even uses a state-
of-art color descriptor.

The results using these measures show good evidence in Tables 8.1 and 8.2. It
is evident that EMD and SIFTflow produce rankings which better agree with the
user labels compared with the other objective measures. EMD shows somewhat
better results for the full ranking, while the two are on par with respect to the top-
ranked results. In general, the measures have stronger correlation with the subjective
results on images with faces or people, and evident foreground objects. Tables 8.1
and 8.2 also show the calculated �-values for this analysis. BDS, SIFTflow, and
EMD show significant results for � < 0:01, and so we can claim the fact that EMD
and SIFTflow have better correlation with the users with high statistics confidence.
For k D 3, the calculated correlations for all metrics are significant at ˛ D 0:01

confidence level.
Image descriptors such as SIFT are demonstrated to be more suitable than

patch-based distances to describe local permissible content changes. Moreover, the
constrained alignment produced by these methods also appears to better model
the deformations introduced by retargeting operators, and thereby provides more
reliable content matching for retargeting measures.

8.4.3 Performances on CUHK Retargeting Database

For the MPEG-7 descriptors, the public MPEG-7 low level feature extraction tools2

are employed to extract the corresponding descriptors, such as SC, CS, CL, HT, and
EH. According to the default settings, the lengths of the MPEG-7 descriptors are
different. The lengths of SC, CS, CL, HT, and EH are 128, 64, 120, 62, and 80,
respectively. For the EMD, the code3 is employed to depict the perceptual quality
of the retargeted image. For PHOW, SIFT descriptors are first computed at points
on a regular grid with spacing M pixels, here M D 10. At each grid point the
descriptors are computed over circular support patches with radii r D 4; 8; 12,
and 16 pixels. The patches with radii 4 do not overlap and the other radii do. As
all the images are color, this process will provide a 128 � 3 D-SIFT descriptor
for each point. These descriptors are rotation invariant. The k-means clustering is
performed over 2;000 training images. Finally the vocabulary consisting of 2;000

visual words is used here. Then the vocabulary is used to extract PHOW features,

2http://www.cs.bilkent.edu.tr/~bilmdg/bilvideo-7/Software.html.
3http://www.seas.upenn.edu/~ofirpele/FastEMD/.

http://www.cs.bilkent.edu.tr/~bilmdg/bilvideo-7/Software.html
http://www.seas.upenn.edu/~ofirpele/FastEMD/
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Table 8.3 Performances of different shape descriptors on CUHK
retargeting database

LCC SROCC RMSE OR
SC 0.1508 0.1792 13.347 0.2164
CS 0.1520 0.1688 32.731 0.5322
CL 0.1033 0.0850 13.429 0.2398
HT 0.0829 0.0890 35.151 0.5673
EH 0.3031 0.2729 12.866 0.2047
EMD 0.2760 0.2904 12.977 0.1696
PHOW 0.3706 0.2308 12.540 0.2222
BDS 0.2896 0.2887 12.922 0.2161
SIFTflow 0.3141 0.2899 12.817 0.1462
GIST 0.5443 0.5114 11.326 0.1579
PHOW+GIST 0.5440 0.5090 11.329 0.1579
MPEG-7 0.1164 0.1502 24.357 0.4094
MPEG-7+PHOW+GIST 0.1168 0.1504 24.257 0.4094
Combination 0.5999 0.5609 10.801 0.1228

which generates a vector with the dimensionality as 2;000. The authors employed
VLFeat [40] to extract the PHOW descriptors. For GIST, the code provided by the
authors4 is employed. As a result, the dimension of the GIST feature is 960.

The performances of different metrics are illustrated in Table 8.3. The linear
correlation coefficient (LCC) measures the prediction accuracy. The Spearman
rank-order correlation coefficient (SROCC) provides an evaluation of the prediction
monotonicity. The root mean square error (RMSE) is introduced for evaluating the
error during the fitting process. The outlier ratio (OR) evaluates the consistency
attributes of the objective metric, which represents the ratio of “outlier-points” to
the total points. Firstly, we compared the performances of each shape descriptors. It
can be observed the GIST can achieve the best performances, which significantly
outperforms the other shape descriptors. The reason is that GIST considers the
image shape from several perspectives, such as naturalness, openness, roughness,
expansion, and ruggedness. By considering the shape information from these
perceptual dimensions, the object shape can be accurately depicted. Therefore,
as some retargeting methods significantly degrade the shape information, such
as seam-carving [4], the distortions introduced can be more precisely captured.
Moreover, GIST is regarded as a global descriptor, which is believed to be able
to capture more shape information from the global viewpoint compared with other
shape descriptors. For EMD, the composed histogram only represents the edge
distribution of the image, which cannot accurately represent the object shape and
the content information of the image. BDS tries to capture how much information
one image conveys of the other image in a bidirectional way. However, although it

4http://people.csail.mit.edu/torralba/code/spatialenvelope/.

http://people.csail.mit.edu/torralba/code/spatialenvelope/
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is claimed that the spatial geometric relationship is considered by a multiple scale
approach, the order-relationship can still not be preserved, such as the local-order of
each pixel or patch. Therefore, the dissimilarity metric of BDS does not accurately
depict the object shape distortion either. SIFTflow employs the SIFT descriptor
to detect the correspondence between two images. It is claimed that the order-
relationship of the pixels or patches is captured. However, the content information
loss during the retargeting process is not considered. PHOW can somewhat extract
some shape information. However, a visual vocabulary is introduced to compose the
corresponding histogram at each pyramid scale. Therefore, the shape information
is mostly extracted from the local perspective, although a pyramid structure is
employed for PHOW. The global shape information cannot be accurately described.
For the descriptors of MPEG-7, EH performs the best. The reason is that the local
shape information is depicted by the edge histogram in local region. The global
shape information is somewhat captured by concatenating the local edge histogram.
For the other shape descriptors, CS, SC, and CL mostly focus color part. Although
color can somewhat represent the shape information, the accuracy cannot be ensured
by the color features. HT concatenates the energy of each frequency channel, which
does not pay much attention on the shape description. These are the main reasons
why the other shape descriptors cannot depict the perceptual quality of the retargeted
image, compared with GIST.

Secondly, we test the performance by combining these shape descriptors together.
MPEG-7 combines CS, SC, CL, EH, and HT together. PHOWCGIST concatenates
PHOW and GIST together to generate a vector feature with the dimensionality as
2,960. MPEG-7CGISTCPHOW combines the shape features (MPEG-7 features,
GIST, PHOW) together. From the experimental results in Table 8.3, the perfor-
mances of these combinations cannot outperform its best component. Therefore,
we cannot expect better performance by simply combining as many as shape
descriptors. The shape descriptors may conflict with each other for evaluating the
retargeted image perceptual quality.

Finally, as discussed in [31], the distortion introduced in retargeting process
can be categorized into shape distortion and content information loss. And the
measurements for these two distortions are complementary for each other. By
combining these measurements together, a better performance is expected. We
combine shape descriptors (GIST, and EMD) together with content information
loss measurements (BDS and SIFTflow). The combination process is a simple
summation process. The quality score is obtained by:

Q D ˛ � log2.GIST/ C log2.EM / C log2.BDS/ C log2.SIF Tf low/ (8.16)

where ˛ is simply set as 10. With the evaluation on the database, the best
performance is observed, which greatly outperforms GIST.
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8.5 Future Trends

As demonstrated in previous subsections, the performances of the objective quality
metrics for retargeted images are still not good enough. The statistical correlations
between the subjective MOS values and the metric outputs are not close. Even
fused together, the LCC and SROCC values are smaller than 0.6, indicating that
performanceof objectivemetrics are bad. Here we discuss how to design an effective
objective quality metric for evaluating the perceptual quality of the retargeted
image for which, we consider the source image content, retargeting scale, the
shape distortion and content information loss measurement, the HVS properties,
and so on.

• Shape distortion description. Shape distortion is a closely related factor. There-
fore, the recently developed metrics, such as EH, EMD, SIFTflow, GIST, and
PHOW are designed to capture the object shape of the image and measure the
corresponding differences between the source and retargeted image. However, its
performance is not good enough, and we can find in Table 8.3 that the LCC and
SROCC values are around 0.35. Therefore, shape distortions introduced during
retargeting need to be more accurately captured. Recently, D’Angelo A. [47, 48]
proposed a full-reference quality metric to evaluate the geometrical distortions of
the images. Their approach is based on the assumption that the HVS is sensitive to
the image structures, such as edges and bars, calculated from the results of Gabor
filter. By considering this descriptor for evaluating the geometrical distortion, the
shape distortion introduced during the retargeting process is believed to be more
accurately described. Therefore, it can help to improve the performance of the
objective quality metric.

• Fusion of the shape distortion and content information loss. As illustrated in
Table 8.3, the content information loss alone does not much influence the final
perceptual quality of the retargeted image. But combined with the shape distor-
tion and content information loss we can improve the performance, as illustrated
in Table 8.3. The combinations of the four objective quality metrics can beat
the other metrics. Therefore, if we develop accurate metrics to capture the shape
distortion and content information loss, how to fuse them together needs to be
further considered. The fusion strategy should consider the contribution of the
two factors to the final retargeted image quality.

• Source image quality and retargeting scale. The source images that we employed
to build our database are of different resolutions and different qualities. This may
affect the subjective viewers’ judgment of the retargeted image perceptual quality.
Moreover, the retargeting scale will also affect the retargeted image quality. Given
one source image, the larger the retargeting ratio, the better the perceptual quality
of the retargeted image is. Therefore, the final perceptual quality index of the
retargeted image needs to account for the quality of the source image as well as
the retargeting scale.

• Image content. The image content relates closely to the crop margin of the source
image (the maximum region that can be cropped without losing an object of
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interest). If the source image contains the “clear foreground object” or “natural
scenery” attribute, the crop margin will be very large. Therefore, retargeting
the source image into 75% and 50% ratios will not significantly affect the
perceptual quality. Otherwise, if the source image contains the “face and people”
or “geometric structure” attribute, the crop margin will be very small. In this
case, no existing retargetingmethods can preserve good perceptual quality during
retargeting. In this respect, the image content and the crop margin of each source
image need to be included to depict the perceptual quality of the retargeted image.

• HVS saliency. Additionally, the HVS demonstrates different conspicuities over
different regions of image, indicating that the shape distortions and content
information loss in the salient regions are more sensitively perceived by the
viewers than those in the non-salient regions. That is also the reason why
several retargeting methods consider the saliency or visual attention map during
the retargeting process [2, 3, 8]. The viewers’ assessment on the quality of the
retargeted image is prejudiced during the subjective testing process. Therefore,
the effect of the HVS saliency needs to be considered to model the subjective
viewer’s behavior, whichwill lead to a more effective quality metric for retargeted
images. The simplest way of incorporating the HVS saliency is to weight the
corresponding shape distortion and content information loss by the saliency map
detected from the source image, which has been demonstrated to be effective in
evaluating the perceptual quality of the traditional distorted image.

Moreover it should be noted that more shape descriptors are not able to ensure a
better performance. Some shape descriptors, such as HT and CL, cannot effectively
evaluate the retargeted image quality. Therefore, shape descriptors should be
carefully selected for metric design which needs to represent the shape distortions
introduced by retargeting. Secondly, some shape descriptors, such CL, HT, CS,
and SC, focus on color/energy distribution or layout. Although they can somewhat
capture the shape information, the structure of the retargeted image is preferred
to be beneficial for retargeted image quality measurement. GIST is a global
shape descriptor, which significantly outperforms the other descriptors. The other
descriptors, such as PHOW and EH, tried to depict the global information in
a bottom-up manner, where the local information are grouped or concatenated
together to represent global information. The experimental results demonstrate
that the quality evaluation of retargeted image should concentrate on the global
information. It truly matches the HVS property. During the subjective test, the
viewer’s preference is highly affected by the global shape information. If the shape
information appears to be very annoying globally, the subjective score will be
absolutely very low, no matter how well the local shape information is preserved.
While the global shape information is well preserved, the viewer will then clearly
check the local shape information. Therefore, during the quality metric design,
global shape information should be of the highest priority. In the following, the
local shape information should be considered to be complementary.
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Conclusion
This chapter reviews current progresses of the retargeted image quality assess-
ment from both subjective and objective assessment perspective. Nowadays,
there are two retargeted quality image databases for public use, which are
built through the subjective testing process. Based on these two databases,
many quality metrics are compared, such as GIST, PHOW, SIFTflow, EH, and
so on. However, new challenges have been issued for better quality metrics
to evaluate retargeted images, which need to consider the shape distortion
descriptor, the loss information descriptor, the HVS property, and so on.
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Chapter 9
Quality Assessment in Computer Graphics

Guillaume Lavoué and Rafał Mantiuk

9.1 Introduction

The realm of computer graphics is an intensive producer of visual content.
Depending on the concerned sub-areas (e.g., geometric modeling, animation,
rendering, simulation, high dynamic range (HDR) imaging, and so on) it generates
and manipulates images, videos, or 3D data. There is an obvious need to control and
evaluate the quality of these graphical data regardless of the application. The term
quality means here the visual impact of the artifacts introduced by the computer
graphics techniques. For instance, in the context of rendering, one needs to evaluate
the level of annoyance due to the noise introduced by an approximate illumination
algorithm. As another example, for level of details creation, one needs to measure
the visual impact of the simplification on the appearance of a 3D shape. Figure 9.1
illustrates these two examples of artifacts encountered in computer graphics. The
paragraphs below introduce several useful terms that also point out the main
differences between existing approaches for quality assessment in graphics.

Artifact Visibility vs. Global Quality For a given signal to evaluate (e.g., an
image), the term quality often refers to a single score (mean-opinion-score, MOS)
that aims at reflecting a kind of global level of annoyance caused by all artifacts and
distortions in an image. Such global quality index is relevant for many computer
graphics applications, e.g. to reduce/augment the sampling density in ray-tracing
rendering. However, beside this global information, it is also important in many
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Fig. 9.1 Illustration of a typical computer graphics work-flow and its different sources of
artifacts. Top row, from left to right: An original scanned 3D model (338K vertices); result
after simplification (50K vertices) which introduces a rather uniform high frequency noise;
result after watermarking [95] which creates some local bumps on the surface. Bottom row:
Result after rendering (radiance caching) which introduces a nonuniform structured noise

cases to obtain an information about the local visibility of the artifacts (i.e.,
predicting their spatial localization in the image). Such local information may allow,
for instance, an automatic local corrections of the detected artifacts, like in [30].

Objective vs. Subjective Quality Assessment The quality evaluation of a given
stimulus can be done directly by gathering the opinion of some observers by
means of a subjective experiment. However, this kind of study is obviously time-
consuming, expensive and cannot be integrated into automatic processes. Hence
researchers have focused on objective and automatic metrics that aim to predict this
subjective visibility and/or quality. Both approaches are presented in this chapter.

Reference vs. No Reference Objective quality metrics can be classified according
to the availability of the reference image (resp. video or 3D models): full-reference
(FR), reduced reference (RR), and no-reference (NR). FR and RR metrics require
at the quality evaluation stage that full or partial information on both images is
present, the reference and the distorted one. NR metrics are much more challenging
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because they only have access to the distorted data; however, they are particularly
relevant in computer graphics of which many techniques do not onlymodify but also
create visual content from abstract data. For instance, a rendering process generates
a synthetic image from a 3D scene, hence to evaluate the rendering artifacts the
metric will have access only to the test image since a perfect reference image without
artifact is often unavailable.

Image Artifacts vs. Model Artifacts Computer graphics involves coarsely two
main types of data: 3D data, i.e. surface and volume meshes issued from geometric
modeling or scanning processes and 2D images and videos created/modified
by graphical processes like rendering, tone-mapping, and so on. Usually, in a
computer graphicswork-flow (e.g., see Fig. 9.1), 3D data are first created (geometric
modelling), processed (e.g., filtering, simplification), and then images/videos are
generated from this 3D content (by rendering) and finally they can be post-
processed (tone-mapped, for instance). In such scenario, the visual defects at the
very end of the processing chain may be due to artifacts introduced both on the
3D geometry (what we call model artifacts) and on the 2D image/video (what
we called image artifacts). Since these two types of artifacts are introduced in very
distinct processes and evaluated using very distinct metrics, each part of this chapter
is divided according to this classification (except Sects. 9.2 and 9.3, respectively,
dedicated to each of them).

Black-Box Metrics vs. White-Box Metrics There are two main approaches to
modeling quality and fidelity: a black-box approach,which usually involvesmachine
learning techniques; and a white-box approach, which attempts to model processes
that are believed to exist in the human visual system. The visual difference predictors
(VDPs), such as VDP [20], are an example of a white-box approach, while the data-
driven metrics for non-reference quality prediction [30] or color palette selection
[65] are the examples of the black-box approach. Both approaches have their
shortcomings. The black-box methods are good at fitting complex functions, but
are prone to over-fitting. It is difficult to determine the right size of the training and
testing data sets. Unless very large data sets are used, nonparametric models used
in machine learning techniques cannot distinguish between major effects, which
govern our perception of quality, and minor effects, which are unimportant. They
are not suitable for finding a general patterns in the data and extracting a higher level
understanding of the processes. Finally, the success of the machine learningmethods
depends on the choice of feature vectors, which need to be selected manually, relying
in equal amounts on the expertise and a lucky guess.

White-box methods rely on the vast body of research devoted to modeling visual
perception. They are less prone to over-fitting as they model only the effects that
they are meant to predict. However, the choice of the right models is difficult. But
even if the right set of models and right complexity is selected, combining and
then calibrating them all together is a major challenge. Moreover, such white-box
approaches are not very effective at accounting for higher level effects, such as
aesthetics and naturalness, for which no models exist.
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It is yet to be seen which approach will dominate and lead to the most successful
quality metrics. It is also foreseeable that the metrics that combine both approaches
will be able to benefit from their individual strengths and mitigate their weaknesses.

This chapter is organized as follows: Sects. 9.2 and 9.3, respectively, present
objective quality assessment regarding image artifacts and model artifacts. Then
Sect. 9.4 details the subjective quality experiments that have been conducted by the
computer graphics community as well as quantitative evaluations of the objective
metrics presented in Sects. 9.2 and 9.3. Finally Sect. 9.5 is dedicated to the emerging
trends and future research directions on the subject of quality assessment in
graphics.

9.2 Image Quality Metrics in Graphics

9.2.1 Metrics for Rendering Based on Visual Models

Computer graphics rendering methods often rely on physical simulation of light
propagation in a scene. Due to complex interaction of light with the environment
and massive amount of light particles in a scene, these simulations require huge
amount of computation. However, it has been long recognized that most applications
of computer rendering methods require perceptually plausible solution rather than
physically accurate results [71]. Knowing the limitations of the visual system,
it should be possible to simplify the simulation and reduce the computational
burden [66].

When rendering a scene, two important problems need to be addressed: (a) how
to allocate samples (computation) over the image to improve perceptual quality;
and (b) when to stop collecting samples as further computation does not result
in perceivable improvement. Both problems were considered in a series of papers
on perceptually based rendering, intended for both an accurate off-line techniques
[11, 12, 26, 30, 62–64, 72, 104] and interactive rendering [23, 53]. Although the
perceptual metrics used in these techniques operate in the image space, they are
different from the typical fidelity metrics, which compute the difference between
reference and test images. Since the reference image is usually not available when
rendering, these metrics aim at estimating error bounds based on approximation
of the final image. This approximation can be computed using fast GPU methods
[104], by simulating only direct light (ray-casting) [72], approximating an image in
the frequency domain [11, 12], using textures [94], intermediate rendering results
[62], or consecutive animation frames [63]. Such approximated images may not
contain all the illumination and shading details, especially those that are influenced
by indirect lighting. However, the approximation is good enough to estimate the
influence of both contrast and luminance masking in each part of the scene.
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The visual metrics used in the rendering methods are predominantly based
on VDPs [20, 51], often extended to incorporate spatio-temporal contrast sensi-
tivity function (CSF) [34, 63, 64], opponent color processing and chromatic CSF
[61], and saliency models [14, 31]. Threshold versus elevation function [23, 72],
photoreceptor non-linearity [62], or luminance-dependent CSF is used to model
luminance masking, which accounts for the reduced sensitivity of the visual system
at low luminance levels. Then, the image is decomposed into spatial-frequency
and orientation selective bands using the Cortex transform [62, 99], wavelets [12],
the DCT transform [94], or differences-of-Gaussians (DOGs) [26]. The spatial-
sensitivity is incorporated either by pre-filtering the image with a CSF [62] or
weighting each frequency band according to the CSF sensitivity value for its peak
frequency [26, 72]. The multi-band decomposition is necessary to model contrast
masking, which is realized either using a contrast transducer function [26, 102]
or threshold elevation function [62, 72]. The VDPs can be further weighted by a
saliency map, which accounts for low-level attention [31, 72] and/or task-driven
high-level attention [14].

Overall, the work on perceptual rendering influenced the way in which the
perception is incorporated in graphics. Most methods in graphics rely on the near-
threshold visual models and the notion of the just-noticeable-difference (JND). Such
near-threshold models offer high accuracy and good rigor since the near-threshold
models are well studied in the human vision research. But they also tend to result
in over-conservative predictions and are not flexible enough to allow for visible but
not disturbing distortions.

9.2.2 Open Source Metrics

The algorithms discussed for far incorporated visual metrics into rendering
algorithms, making them difficult to test, compare, or use as a fidelity metric
on a pair of test and reference images. These metrics are also complex and hence
challenging to reimplement with no source code publicly available. However, the
graphics community have several alternative metrics to choose from if they wish
to evaluate results without a need to reimplement visual models. pdiff [103] is a
simple perceptual difference metrics, which utilizes the CIE L�a�b� color space
for differences in color, CSF, and model of visual masking from Daly’s VDP [20],
and some speed improvements from [72]. The C source code is publicly available at
http://pdiff.sourceforge.net/. A more complex visual model is offered by the series
of HDR-VDP metrics [54, 55], which we discuss in more detail in Sect. 9.2.4. The
older version of this metric (HDR-VDP-1.7.1) is available as a C/C++ code, while
the latest version is provided as matlab sources (HDR-VDP-2.x). Both versions can
be downloaded from http://hdrvdp.sf.net/.

http://pdiff.sourceforge.net/
http://hdrvdp.sf.net/
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9.2.3 Data-Driven Metrics for Rendering

The majority of image metrics used in graphics rely on the models of the low-level
visual perception. These metrics are often constructed by combining components
from different visual models, such as saliency models, CSFs, threshold elevation
functions, and contrast transducers. While all these partial models well predict the
individual effects, there is no guarantee that the combination of them will actually
improve predictions. As shown in Sect. 9.4.4.1, complex metrics may actually
perform worse in some tasks than a simple arithmetic difference. An alternative to
such a white-box approach is the black-box approach, in which the metric is trained
to predict differences based on a large data set. In this section we discuss two such
metrics, one no-reference and one full-reference metric.

Both metrics rely on the data collected in an experiment, in which observers
were asked to label visible artifacts in computer graphics renderings, both when
the reference image is shown and when it was hidden. The data set was the same
as the one used to metric comparison, discussed in Sect. 9.4.4.1, though the non-
reference metric was trained with only ten images from that data set. Example of
such manually marked images are shown in the left-most column in Fig. 9.2. As
compared to typical image quality databases, such as TID2008 [69], the maps of
localized distortions provide much more data for the data-driven training. Instead of
assigning a single MOS to each image, the localized distortion maps provide up to
a million of such numbers per image, as the labeling is associated with every image
pixel. In practice a subsampled version of such a map is used because of limited
accuracy of manual labeling. The limitation of localized distortion maps is that they
do not provide the estimate of the perceived magnitude of distortion. Instead, the
maps contain the probability of detecting an artifact by an average observer.

Since a reference image is usually not available when rendering 3D scenes,
Herzog et al. [30] proposed a no-reference image quality metric (NoRM) for three
types of rendering distortions: VPL clamping, glossy VPL noise, and shadow map
aliasing. In contrast to other non-reference metrics, which can rely solely on a
single color image, computer graphics method can provide additional information,

Fig. 9.2 Manually marked distortions in computer graphics rendering (left) and the predictions of
image quality metrics: SSIM, HDR-VDP-2, sCorrel. Trained multi-metric uses the predictions of
the existing metrics as a features for a decision forest classifier. It is trained to predict the subjective
data
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such as a depth-buffer, or a diffuse material buffer. Such additional information
was used alongside the color buffer to solve a rather challenging problem: predict
visibility of artifacts given no reference image to compare with. The authors trained
a support-vector-machine (SVM) based classifier on ten images with manually
labeled artifacts. The features used for trainingwere an irradiancemap with removed
textures, screen-space ambient occlusion factor, unfolded textures described by the
histogram of oriented gradients, a high-pass image with edges eliminated using
the joint-bilateral filter and local statistics (mean, variance, skewness, kurtosis).
Despite a rather small training set of ten images, the metric was shown to provide
comparable or better prediction performance than the state-of-the-art full-reference
metrics for the three types of targeted distortions. The authors describe also an
application of this metric, in which detected artifacts are automatically corrected
by inpainting. The regions with detected artifacts are looked up in a dictionary
of artifact-free regions and replaced with a suitable substitute. The operation is
illustrated in Fig. 9.3.

The non-reference metrics are specialized in predicting only a certain kind of
artifacts as they solve heavily under-constraint problem. Their predictive strength
comes from learning the characteristic of a given artifacts and differentiating it from
a regular image content. If a metric is to be used for a general purpose and with
a wide variety of distortions, it needs to be supplied with both test and reference
images.

Čadík et al. [89] explored a possibility of building a more reliable full-reference
metric for rendering images using a data-driven approach. The motivation for this
work was a previous study, showing mixed performance of existing metrics in
this task (discussed in Sect. 9.4.4.1). They identified 32 image difference features,
some described by a single number, some by up to 62 dimensions. Features ranged

Fig. 9.3 Reduction of artifacts in rendered images by a metric-assisted inpainting [30]. Once
the artifacts are detected in an image by a non-reference quality metric, the affected patches are
replaced with similar non-distorted patches from the database. The operation is performed in an
unfolded 2D texture space. The image courtesy of the authors
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from a simple absolute difference to visual attention (measured with an eye-tracker)
and included predictions of several major fidelity metrics (SSIM, HDR-VDP-2)
and common computer vision descriptors (HOG, Harris corners, etc.). The metric
was trained using 37 images with the manually labeled distortion maps. The best
performancewas achieved with ensembles of bagged decision trees (decision forest)
used for classification. The classification was shown to perform significantly better
than the best performing general purpose metric (sCorrel) as measured using the
leave-one-out cross-validation procedure. Two examples of automatically generated
distortion maps are shown in the right-most column of Fig. 9.2 and compared with
the predictions of other metrics.

Another example of a data-driven approach to metric design is the no-reference
metric for evaluating the quality of motion deblurring, proposed by Liu et al. [50].
Motion deblurring algorithms aim at removing from photographs the motion blur
due to camera shake. This is a blind deconvolution problem, in which the blur kernel
is unknown. Since usually only blurry image is unavailable, it is essential to provide
a mean to measure quality without the need for a sharp reference image. The data
for training the metric was collected in a large scale crowd-sourcing experiment,
in which over one thousand users ranked in a pairwise comparison experiments
40 scenes, each processed with five different deblurring algorithms. The metric
was trained as a logistic regression explaining the relation between a number of
features and the scaled subjective scores. The features included several no-reference
measures of noise, sharpness, ringing, and sharpness. In a dedicated validation
experiment, the trained no-referencemetric performed comparably or better than the
state-of-the-art full-reference metrics. The authors suggested several applications
of the new metric, such as automatic selection of the deblurring algorithm which
performs the best for a given image, or, on a local level, fusing high quality image
by picking different image fragments from the result of each deblurring algorithm.

9.2.4 HDR Metrics for Rendering

The majority of image quality metrics consider quality assessment for one particular
medium, such as an LCD display or a print. However, the results of physically
accurate computer graphics methods are not tied to any concrete device. They
produce images in which pixels contain linear radiometric values, as opposed to
the gamma-corrected RGB values of a display device. Furthermore, the radiance
values corresponding to real-world scenes can span a very large dynamic range,
which exceeds the contrast range of a typical display device. Hence the problem
arises of how to compare the quality of such images, which represent actual scenes,
rather than their tone-mapped reproductions.

Aydin et al. [6] proposed a simple luminance encoding that makes it possible
to use PSNR and SSIM [97] metrics with HDR images. The encoding trans-
forms physical luminance values (represented in cd=m2) into an approximately
perceptually uniform representation (refer to Fig. 9.4). The transformation is derived
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Fig. 9.4 Perceptually uniform (PU) encoding for evaluating quality of HDR images. The absolute
luminance values are converted into luma values before they are used with standard image quality
metrics, such as MSE, PSNR, or SSIM. Note that the PU encoding is designed to give a good fit
to the sRGB non-linearity within the range 0.1–80 cd=m2 so that the results for low dynamic range
images are consistent with those performed in the sRGB color space

from luminance detection data using the threshold-integration method, similar to
the one used for contrast transducer functions [102]. The transformation is further
constrained so that the luminance values produced by a typical CRT display
(in the range 0.1–80 cd=m2) are mapped to 0–255 range to mimic the sRGB non-
linearity. This way, the quality predictions for typical low-dynamic range images
are comparable to those calculated using pixel values. However, the metric can also
operate in a much greater range of luminance.

The pixel encoding of Aydin et al. accounts for luminance masking, but it does
not account for other luminance-dependent effects, such as inter-ocular light scatter
or the frequency shift of the CSF peak with luminance. Those effects were modeled
in the visual difference predictor for high dynamic range images (HDR-VDP) [54].
The HDR-VDP extends Daly’s VDP [20] to predict differences in HDR images. In
2011 the metric was superseded with a completely redesigned metric HDR-VDP-2
[55], which is discussed below.

HDR-VDP-2 is the visibility (discrimination) and quality metric capable of
detecting differences in achromatic images spanning a wide range of absolute
luminance values [55]. Although the metric originates from the classical VDP [20],
and its extension—HDR-VDP [54], the visual models are very different from those
used in those earlier metrics. The metric is also an effort to design a comprehensive
model of the contrast visibility for a very wide range of illumination conditions.

As shown in Fig. 9.5, the metric takes two HDR luminance or radiance maps
as input and predicts the probability of detecting a difference between the pair of
images (Pmap and Pdet ) as well as the quality (Q and QMOS ), which is defined as
the perceived level of distortion.
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Fig. 9.5 The processing stages of the HDR-VDP-2 metric. Test and reference images undergo
similar stages of visual modeling before they are compared at the level of individual spatial-
and-orientation selective bands (BT and BR). The difference is used to predict both visibility
(probability of detection) and quality (the perceived magnitude of distortion)

One of the major factors limiting the contrast perception in high contrast (HDR)
scenes is the scattering of the light in the optics of the eye and on the retina
[58]. The HDR-VDP-2 models it as a frequency-space filter, which was fitted to
an appropriate data set (inter-ocular light scatter block in Fig. 9.5). The contrast
perception deteriorates at lower luminance levels, where the vision is mediated
mostly by night-vision photoreceptors—rods. This is especially manifested for small
contrasts, which are close to the detection threshold. This effect is modeled as
a hypothetical response of the photoreceptor (in steady state) to light (luminance
masking block in Fig. 9.5). Such response reduces the magnitude of image difference
for low luminance according to the contrast detection measurements. The masking
model (neural noise block in Fig. 9.5) operates on the image decomposed into
multiple orientation-and-frequency-selective bands to predict the threshold eleva-
tion due to contrast masking. Such masking is induced both by the contrast within
the same band (intra-channel masking) and within neighboring bands (inter-channel
masking). The same masking model incorporates also the effect of neural CSF,
which is the contrast sensitivity function without the sensitivity reduction due to
inter-ocular light scatter. Combining neural CSF with masking model is necessary
to account for contrast constancy, which results in “flattening” of the CSF at the
super-threshold contrast levels [27].

Figure 9.6 demonstrates the metric prediction for blur and noise. The model
has been shown to predict numerous discrimination data sets, such as ModelFest
[98], historical Blackwell’s t.v.i. measurements [9], and newly measured CSF [35].
The source code of the metric is freely available for download from http://hdrvdp.
sourceforge.net. It is also possible to run the metric using an on-line web service at
http://driiqm.mpi-inf.mpg.de/.

http://hdrvdp.sourceforge.net
http://hdrvdp.sourceforge.net
http://driiqm.mpi-inf.mpg.de/
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Fig. 9.6 Predicted visibility differences between the test and reference images. The test image
contains interleaved vertical stripes of blur and white noise. The images are tone-mapped versions
of an HDR input. The two color-coded maps on the right represent the probability that an average
observer will notice a difference between the image pair. Both maps represent the same values,
but use different color maps, optimized either for screen viewing or for grayscale/color printing.
The probability of detection drops with lower luminance (luminance sensitivity) and higher texture
activity (contrast masking). Image courtesy of HDR-VFX, LLC 2008

9.2.5 Tone-Mapping Metrics

Tone-mapping is the process of transforming an image represented in approximately
physically accurate units, such as radiance and luminance, into pixel values that can
be displayed on a screen of a limited dynamic range. Tone-mapping is a part of
an image processing stack of any digital camera. A “raw” images captured by a
digital sensor would produce unacceptable results if they were mapped directly to
pixel values without any tone-mapping. But similar process is also necessary for
all computer graphics methods that produce images represented in physical units.
Therefore, the problem of tone-mapping and the quality assessment of tone-mapping
results have been extensively studied in graphics.

Tone-mapping inherently produces images that are different from the original
HDR reference. In order to fit the resulting image within available color gamut
and dynamic range of a display, tone-mapping often needs to compress contrast
and adjust brightness. Tone-mapped image may lose some quality as compared to
the original seen on a HDR display, yet the images look often very similar and
the degradation of quality is poorly predicted by most quality metrics. Smith et al.
[82] proposed the first metric intended for predicting loss of quality due to local
and global contrast distortion introduced by tone-mapping. However, the metric
was only used in the context of controlling countershading algorithm and was not
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Fig. 9.7 The dynamic range independent metric [5] distinguished between the change of contrast
that does and does not result in structural change. Blue continuous line shows a reference signal
(from a band-pass pyramid) and magenta dashed line the test signal. When contrast remains visible
or invisible after tone-mapping, no distortion is signalized (top and middle right). However, when
the change of contrast alters the visibility of details, making visible details becoming invisible
(top-left), it is signalized as a distortion

validated against experimental data. Aydin et al. [5] proposed a metric for comparing
HDR and tone-mapped images that is robust to contrast changes. The metric was
later extended to video [7]. Both metrics are invariant to the change of contrast
magnitude as long as that change does not distort contrast (inverse its polarity) or
affect its visibility. The metric classifies distortions into three types: loss of visible
contrast, amplification of invisible contrast, and contrast reversal. All three cases
are illustrated in Fig. 9.7 on an example of a simple 2D Gabor patch. These three
cases are believed to affect the quality of tone-mapped images. Figure 9.8 shows
the metric predictions for three tone-mapped images. The main weakness of this
metric is that produced distortion maps are suitable mostly for visual inspection and
qualitative evaluation. The metric does not produce a single-valued quality estimate
and its correlation with subjective quality assessment has not been verified.

Yeganeh and Wang [105] proposed a metric for tone-mapping, which was
designed to predict on overall quality of a tone-mapped image with respect to an
HDR reference. The first component of the metric is the modification of the SSIM
[97], which includes the contrast and structure components, but does not include
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the luminance component. The contrast component is further modified to detect
only the cases in which invisible contrast becomes visible and visible contrast
becomes invisible, in a similar spirit as in the dynamic range independent metric
[5], described above. This is achieved by mapping local standard deviation values
used in the contrast component into detection probabilities using a visual model,
which consists of a psychometric function and a CSF. The second component of
the metric describes “naturalness.” The naturalness is captured by the measure
of similarity between the histogram of a tone-mapped image and the distribution of
histograms from the database of 3,000 low-dynamic range images. The histogram is
approximated by the Gaussian distribution. Then, its mean and standard deviation
is compared against the database of histograms. When both values are likely
to be found in the database, the image is considered natural and is assigned a
higher quality. The metric was tested and cross-validated using three databases,
including one from [91] and authors’ own measurements. The Spearman rank-order
correlation coefficient (SROC) between the metric predictions and the subjective
data was reported to be approximately 0.8. Such value is close to the performance
of a random observer, which is estimated as the correlation between the mean and
random observer’s quality assessment.

Some visible distortions are desirable as long as they are not objectionable.
An example of that is contrast enhancement through unsharp masking (high spatial
frequencies) or countershading (low spatial frequencies) [37], commonly used in
tone-mapping. In both cases, smooth gradients are introduced at both sides of
an edge in order to enhance the contrast of that edge. This is demonstrated in
Fig. 9.9 where the base contrast shown in the bottom row is enhanced by adding
countershading profiles. Note that the brightness of the central part of each patch

Fig. 9.8 Prediction of the dynamic range independent metric [5] (top) for tone-mapped images
(bottom). The green color denotes the loss of visible contrast, the blue color the amplification of
invisible contrast and the red color is contrast, reversal (refer to Fig. 9.7)
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Fig. 9.9 Contrast enhancement by countershading. The figure shows the square-wave pattern
with a reduced amplitude of the fundamental frequency, resulting in countershading profiles. The
regions of indistinguishable (from a step edge) and objectionable countershading are marked with
dotted and dashed lines of different color. The higher magnitude of countershading produces higher
contrast edges. But if it is too high, the result appears objectionable. The marked regions are
approximate and for illustration and actual regions will depend on the angular resolution of the
figure

remains the same across all rows. The region marked with the blue dashed line
denotes the range of the Cornsweet illusion, where the gradient remains invisible
while the edge is still enhanced. Above that line the Cornsweet illusion breaks
and the gradients become visible. In practice, when countershading is added to
tone-mapped images, it is actually desirable to introduce such visible gradients.
Otherwise, the contrast enhancement is too small and does not improve image
quality. But too strong gradient results in visible contrast reversal, also known
as “halo” artifact, which is disturbing and objectionable. Trentacoste et al. [86]
measured the threshold when countershading profiles become objectionable in
complex images. They found that the permissible strength of the countershading
depends on the width of the gradient profile, which in turn depends on the size
of an image. They proposed a metric predicting the maximum strength of the
enhancement and demonstrated its application to tone-mapping. The metric is an
example of a problemwhere it is more important to predict when an artifact becomes
objectionable rather than just visible.
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9.2.6 Aesthetics and Naturalness

Many quality assessment problems in graphics cannot be easily addressed by
objective image and video metrics because they involve high-level concepts, such
as aesthetics or naturalness. For example, there is no computational algorithm that
could tell whether an animation of a human character looks natural, or whether a
scene composition looks pleasing to the eye. Yet, such tasks are often the goals of
graphics methods. The common approach to such problems is to find a suitable
set of numerical features that could correlate with subjective assessment, collect
a large data set of subjective responses and then use machine learning techniques
to train a predictor. Such methods proved to be effective for selecting the best
viewpoint of a mesh [78], or selecting color palettes for graphic designs [65]. Yet,
it is hard to expect that a suitable metric will be found for each individual problem.
Therefore, graphics more often needs to rely on efficient subjective methods, which
are discussed in Sect. 9.4.

9.3 Quality Metrics for 3D Models

The previous section focused on the quality evaluation of 2D images coming
from computer graphics methods, mostly from rendering, HDR imaging, or tone-
mapping.Hencemost of the involvedmetrics aimed to detect specific image artifacts
like aliasing, structured noise due to global illumination or halo artifacts from tone-
mapping. However, in computer graphics, visual artifacts do not come only from the
final image creation process but they can occur on the 3D data themselves before
the rendering. Indeed, 3D meshes are now subject to a wide range of processes
which include transmission, compression, simplification, filtering, watermarking,
and so on. These processes inevitably introduce distortions which alter the geometry
or texture of these 3D data and thus their final rendered appearance. Hence quality
metrics have been introduced to detect these specific 3D artifacts, i.e. geometric
quantization noise, smooth deformations due to watermarking, simplification arti-
facts, and so on. A comprehensive review has been recently published about 3D
mesh quality assessment [19]. Two kinds of approaches exist for this task: model-
based and image-based approaches. Model-based approaches operate directly on
the geometry and/or texture of the meshes being compared while image-based
approaches consider rendered images of the 3D models (i.e., snapshots from
different viewpoints) to evaluate their visual quality. Note that some image-based
quality assessment algorithms consider only some specific viewpoints and thus are
view-dependent.
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9.3.1 Model-Based Metrics

In the fields of computer graphics, the first attempts to evaluate the visual fidelity
of 3D objects were simple geometric distances, mainly used for driving mesh
simplification [77]. A widely used metric is the Hausdorff distance, defined as
follows:

Ha.M1; M2/ D max
p2M1

e.p; M2/ (9.1)

with M1 and M2, the two 3D objects to compare and e.p; M / the Euclidean distance
from a point p in the 3D space to the surface M . This value is asymmetric; a
symmetrical Hausdorff distance is defined as follows:

H.M1; M2/ D max fHa.M1; M2/; Ha.M2; M1/g (9.2)

We can also define an asymmetric mean square error:

MSEa.M1; M2/ D 1

jM1j
Z

M1

e.p; M2/
2 ds (9.3)

The most widespread measurement is the Maximum Root Mean Square Error
(MRMS):

MRMS.M1; M2/ D max
np

MSEa.M1; M2/;
p

MSEa.M2; M1/
o

(9.4)

Cignoni et al. [16] provided the Metro software1 with an implementation of
Hausdorff and MRMS geometric distances between 3D models.

However these simple geometric measures are very poor predictor of the visual
fidelity, like demonstrated in several studies [44, 88]. Hence, researchers have
introduced perceptually motivated metrics. These full-reference metrics compare
the distorted and original 3D models to compute a score which reflects the visual
fidelity.

Karni and Gotsman [32], in order to evaluate properly their compression
algorithm, consider the mean geometric distance between corresponding vertices
and the mean distance of their geometric Laplacian values (which reflect a degree
of smoothness of the surface) (this metric is abbreviated as GL1 in Table 9.1).
Subsequently, Sorkine et al. [83] proposed a different version of this metric (GL2),
which assumes slightly different values of the parameters involved. The performance
of these metrics in terms of visual quality prediction remains low.

Several authors use the curvature information to derive perceptual quality met-
rics. Lavoué et al. [45] introduce the mesh structural distortion measure (MSDM)

1http://vcg.isti.cnr.it/activities/surfacegrevis/simplification/metro.html.

http://vcg.isti.cnr.it/activities/surfacegrevis/simplification/metro.html
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which follows the concept of structural similarity introduced for 2D image quality
assessment byWang et al. [97] (SSIM index). The localLMSDM distance between
two mesh local windows a and b is defined as follows:

LMSDM.a; b/ D .˛L.a; b/3 C ˇC.a; b/3 C �S.a; b/3/
1
3 (9.5)

L, C , and S represent, respectively, curvature, contrast, and structure comparison
functions:

L.a; b/ D k�a � �bk
max.�a; �b/

C.a; b/ D k�a � �bk
max.�a; �b/

(9.6)

S.a; b/ D k�a�b � �abk
�a�b

with �a, �a, and �ab are, respectively, the mean, standard deviation, and covariance
of the curvature over the local windows a and b. A local window is defined as
a connected set of vertices belonging to a sphere with a given radius. The global
MSDM measure between two meshes is then defined by a Minkowski sum of the
local distances associated with all local windows; it is a visual distortion index
ranging from 0 (objects are identical) to 1 (theoretical limit when objects are
completely different). A multi-resolution improved version, named MSDM 2, has
recently been proposed in [42]. It provides better performance and allows one to
compare meshes with arbitrary connectivities. Torkhani et al. [85] introduced a
similar metric called TPDM (Tensor-based Perceptual Distance Measure) which
takes into account not only the mesh curvature amplitude but also the principal
curvature directions. Their motivation is that these directions represent structural
features of the surface and thus should be visually important. These metrics own the
benefit of providing also a distortion map that predicts the perceived local artifacts
visibility, like illustrated in Fig. 9.10.

Váša and Rus [88] consider the per-edge variations of oriented dihedral angles
for visual quality assessment. The angle orientation allows to distinguish between
convex and concave angles. Their metric (DAME for Dihedral Angle Mesh Error)
is obtained by summing up the dihedral angle variations for all edges of the mesh
being compared, as follows:

DAME D 1

ne

X

ne

k˛i � N̨i k :mi :wi (9.7)

with ne the number of edges of the meshes being compared, ˛i and N̨i the respective
dihedral angles of the i th edge of the original and distorted mesh. mi is a weighting
term relative to the masking effect (enhancing the distortion on smooth surfaces
where they are the most visible). wi sis a weighting term relative to the surface
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Fig. 9.10 From left to right: The Lion model; a distorted version after random noise addition;
Hausdorff distortion map; MSDM2 distortion map. Warmer colors represent higher values

visibility; indeed, a region almost always invisible should not contribute to the global
distortion. This metric has the advantage of being very fast to compute but only
works for comparing meshes of shared connectivity.

The metrics presented above consider local variations of attribute values at vertex
or edge level, which are then pooled into a global score. In contrast, Corsini et al.
[18] and Wang et al. [96] compute one global roughness value per 3D model
and then derive a simple global roughness difference to derive a visual fidelity
value between two 3D models. Corsini et al. [18] propose two ways of measuring
the global model roughness. The first one is based on statistical considerations
(at multiple scales) about the dihedral angles and the second one computes the
variance of the geometric differences between a smoothed version of the model and
its original version. These metrics are abbreviated as 3DWPM1 and 3DWPM 2

in Table 9.1. Wang et al. [96] define the global roughness of a 3D model as a
normalized surface integral of the local roughness, defined as the Laplacian of the
discrete Gaussian curvature. The local roughness is modulated to take into account
the masking effect. Their metric (FMPD for Fast Mesh Perceptual Distance)
provides good results and is fast to compute. Moreover a local distortion map
can be obtained by differencing the local roughness values. Figure 9.11 illustrates
some distorted versions of the Horse 3D model, with their corresponding MRMS ,
MSDM 2, and FMPD values.

Given the fact that all metrics above rely on different features, e.g. curvature
computations [42, 45, 85], dihedral angles [18, 88], Geometric Laplacian [32, 83],
and Laplacian of Gaussian curvature [96]. Lavoué et al. [43] have hypothesized
that a combination of these attributes could deliver better results that using them
separately. They propose a quality metric based on an optimal linear combination of
these attributes determined through machine learning. They obtained a very simple
model which still provides good performance.

Some authors also proposed quality assessment metrics for textured 3D mesh
[67,84] dedicated to optimizing their compression and transmission. These metrics,
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Fig. 9.11 Distorted versions of theHorsemodel, all associated with the same maximum root mean
square error (MRMS = 0:00105). From left to right, top to bottom: Original model; result after
watermarking from Wang et al. [95] (MSDM2D 0.14, FMPDD 0.01); result after watermarking
from Cho et al. [15] (MSDM2D 0.51, FMPDD 0.40), result after simplification [48] from 113K
vertices to 800 vertices (MSDM2D 0.62, FMPDD 1.00)

respectively, rely on geometry and texture deviations [84] and on texture and mesh
resolutions [67]. Their results underline the fact that the perceptual contribution
of image texture is, in general, more important than the model’s geometry, i.e. the
reduction of the texture resolution is perceived more degraded than the reduction of
model’s polygons (geometry resolution).

For dynamic meshes, the most used metric is the KG error [33]. Given M1 and
M2 the matrix representations (3v � f with v and f , respectively, the number of
vertices and frames, 3 stands for the number of coordinates—x,y,z) of two dynamic
meshes to compare, the KG error is defined as a normalized Frobenius norm
of the matrix difference kM1 � M2k. Like the RMS for static meshes, this error
metric does not correlate with the human vision. Váša and Skala have introduced
a perceptual metric [87] for dynamic meshes, the STED error (Spatio-Temporal
Edge Difference). The metric works on edges as basic primitives, and computes
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the relative change in length for each edge of the mesh in each frame of the
animation. This quality metric is able to capture both spatial and temporal artifacts
and correlates well with the human vision.

Guthe et al. [28] introduce a perceptual metric based on spatio-temporal CSF
dedicated to bidirectional texture functions (BTFs), commonly used to represent the
appearance of complex materials. This metric is used to measure the visual quality
of the various compressed representations of BTF data.

Ramanarayanan et al. [71] proposed the concept of visual equivalence in order
to create a metric that is more tolerant for non-disturbing artifacts. The authors
proposed that two images are considered visually equivalent if object’s shape and
material are judged to be the same in both images and in a side-by-side comparison,
an observer is unable to tell which image is closer to the reference. The authors
proposed an experimentalmethod and ametric (Visual Equivalence Predictor) based
on the machine learning techniques (SVM). The metric associates simple geometry
and material descriptors with the samples measured in the experiments. Then, a
trained classifier determines whether the distortions in illumination map lead to
visually equivalent results. The metric demonstrated an interesting concept, yet it
can be used only with a very limited range of illumination distortions. This work
is dedicated to the evaluation of illumination map distortion effect, and not to the
evaluation of the 3D model quality. However, it relies on geometry and material
information and thus can be classified as a model-based metric.

9.3.2 Image-Based Metrics

Apart from these quality metrics operating on the 3D geometry (that we call model-
based), a lot of researchers have used 2D image metrics to evaluate the visual
quality of 3D graphical models. Indeed, as pointed out in [49], the main benefit
of using image metrics to evaluate the visual quality of 3D objects is that the
complex interactions between the various properties involved in the appearance
(geometry, texture, normals) are naturally handled, avoiding the problem of how to
combine and weight them. Many image-based quality evaluation works have been
proposed in the context of simplification and level-of-detail (LoD) management for
rendering. Among existing 2D metrics, authors have considered the Sarnoff visual
discriminationmodel (VDM) [51], the visible difference predictor (VDP) fromDaly
[20] (both provide local distortion maps that predict local perceived differences), but
also the SSIM (Structural SIMilarity) index, introduced byWang and Bovik [97] and
the classical mean or root mean squared pixel difference.

Lindstrom and Turk [49] evaluate the impact of simplification using a fast image
quality metric (RMS error) computed on snapshots taken from 20 different camera
positions regularly sampled on a bounding sphere. Their approach is illustrated in
Fig. 9.12. In his Ph.D. thesis [47], Lindstrom also proposed to replace the RMS by
perceptual metrics including the Sarnoff VDM and surprisingly he found that the
RMS error yields to better results. He also found that his image-based approach
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Fig. 9.12 Illustration of the
image-based simplification
approach from Lindstrom and
Turk [49]. This algorithm
considers the quality of 2D
snapshots sampled around the
3D mesh as the main criterion
for decimation. Image
reprinted from [47]

provides better results than geometry-driven approaches, however he considered a
similar image-based evaluation. Qu and Meyer [70] consider the visual masking
properties of 2D texture maps to drive simplification and remeshing of textured
meshes, they evaluate the potential masking effect of the surface signals (mainly
the texture) using the 2D Sarnoff VDM [51]. The masking map is obtained by
comparing, using VDM, the original texture map with a Gaussian filtered version.
The final remeshing can be view-independent or view-dependent depending on
the visual effects considered. Zhu et al. [109] studied the relationship between the
viewing distance and the perceptibility of model details using 2D metrics (VDP and
SSIM) for the optimal design of discrete LOD for the visualization of complex 3D
building facades.

For animated characters, Larkin and O’Sullivan [40] ran an experiment to
determine the influence of several types of artifacts (texture, silhouette, and lighting)
caused by simplification; they found that silhouette is the dominant artifact and then
devised a quality metric based on silhouette changes suited to drive simplification.
Their metric is as follows: they render local regions containing silhouette areas from
different viewpoints and compare the resulting images with a 2D quality metric
[103].

Several approaches do not rely directly on 2D metrics but rather on psychophys-
ical models of visual perception (mostly the CSF). One of the first study of this
kind was that of Reddy [73], which analyzed the frequency content in several pre-
rendered images to determine the best LOD to use in a real-time rendering system.
Luebke and Hallen [52] developed a perceptually based simplification algorithm
based on a simplified version of the CSF. They map the change resulting from a
local simplification operation to a worst-case contrast and a worst-case frequency
and then determine whether this operation will be imperceptible. Their method was
then extended byWilliams et al. [101] to integrate texture and lighting effects. These
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latter approaches are view-dependent. Menzel and Guthe [60] propose a perceptual
model of JND (Just-Noticeable-Difference) to drive their simplification algorithm;
it integrates CSF and masking effect. The strength of their algorithm is to be able to
perform almost all the calculation (i.e., contrast and frequency) directly on vertices
instead of rendered images. However, it still uses the rendered views to evaluate
the masking effect, thus it can be classified as an hybrid image-based/model-based
method.

9.4 Subjective Quality Assessment in Graphics

Quality assessment metrics presented in Sects. 9.2 and 9.3 aim at predicting
the visual quality and/or the local artifact visibility in graphics images and 3D
models. Both these local and global perceived qualities can also be directly and
quantitatively assessed by means of subjective quality assessment experiments. In
such experiments, human observers give their opinion about the perceived quality
or artifact visibility for a corpus of distorted images or 3D models.

Subjective experiments also provide a mean to test objective metrics. The
nonparametric correlation, such as Spearman’s or Kendall’s rank-order correlation
coefficients, computed between subjective scores and the objective scores provides
an indicator of the performance of these metrics and a way to evaluate them
quantitatively. We discuss some work in graphics on evaluation of objective metrics
in Sect. 9.4.4.

For global quality assessment, many protocols exist and have been used for
graphics data. Usually, absolute rating, double stimulus rating, ranking or pairwise
comparisons are considered. Mantiuk et al. [56] compared the sensitivity and
experiment duration for four experimental methods: single stimulus with a hidden
reference, double stimulus, pairwise comparisons, and similarity judgments. They
found that the pairwise comparison method results in the lowest variation between
observer’s scores. Surprisingly, the method also required the shortest time to
complete the experiments even for a large number of compared methods. This was
believed to be due to the simplicity of the task, in which a better of two images was
to be selected.

9.4.1 Scaling Methods

Once experimental data is collected, it needs to be scaled into a mean a quality
measure for a group of observers. Because different observers are likely to use
different scale when rating images, their results need to be unified. The easiest way
to make their data comparable is to apply a linear transform that makes the mean
and the standard deviation equal for all observers. The result of such a transform is
called z-score and is computed as
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zi;j;k;r D di;j;k;r � Ndi

�i

; (9.8)

where the mean score Ndi and standard deviation �i are computed across all stimuli
rated by an observer i . The indexes correspond to i -th observer, j -th condition
(algorithm), k-th stimuli (image, video, etc.), and r-th repetition.

Pairwise comparison experiments require different scaling procedures, usually
based on Thurstone Case IV or V assumptions [25]. These procedures attempt to
convert the results of pairwise comparisons into a scale of JNDs. When 75% of
observers select one condition over another, the quality difference between them
is assumed to be 1 JND. The scaling methods that tend to be the most robust are
based on the maximum likelihood estimation [3,81]. They maximize the probability
that the scaled JND values explain the collected experimental data under the
Thurstone Case V assumptions. The optimization procedure finds a quality value
for each stimulus that maximizes the probability, which is modeled by the binomial
distribution. Unlike standard scaling procedures, the probabilistic approach is robust
to unanimous answers, which are common when a large number of conditions are
compared. The detailed review of the scaling methods can be found in [25].

9.4.2 Specificity of Graphics Subjective Experiments

9.4.2.1 Global vs. Local

Artifacts coming from transmission or compression of natural images (i.e.,
blockiness, blurring, ringing) are mostly uniform. In contrast, artifacts from
graphics processing or rendering are more often nonuniform. Therefore, this domain
needs visual metrics able to distinguish local artifacts visibility rather than global
quality. Consequently, many experiments involving graphical content involve locally
marking noticeable and objectionable distortions [90] rather than judging an overall
quality. This marking task is more complicated than a quality rating, thus it involves
the creation of innovative protocols.

9.4.2.2 Large Number of Parameters

A subjective experiment usually involves a number of important parameters; for
instance, for evaluating the quality of images or videos, one has to decide the corpus
of data, the nature and amplitude of the distortions as well as the rating protocol
(i.e., single or multiple stimulus, continuous or category rating, etc). However, the
design of a subjective study involving 3D graphical content requires many additional
parameters (as raised in [13]):
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• Lighting. As raised in the experiment of Rogowitz and Rushmeier [74], the
position and type of light source(s) have a strong influence on the perception
of the artifacts.

• Materials and Shading. Complex materials and shaders may enhance the artifacts
visibility, or on the contrary, act as a masker (in particular some texture
patterns [26]).

• Background. The background may affect the perceived quality of the 3D
model, in particular it influences the visibility of the silhouette, which strongly
influences the perception.

• Animation and interaction. There exist different ways to display the 3D models
to the observers, from the most simple (e.g., as a static image from one given
viewpoint, as in [100]) to the most complex (e.g., by allowing free rotation,
zoom, translation, as in [18]). Of course it is important for the observer to have
access to different viewpoints of the objects, however the problem of allowing
free interaction is the cognitive overload that may alter the results. A good
compromise may be the use of animations, as in [67], however the velocity
strongly influences the CSF [34], hence animations have to be reasonably slow.

9.4.2.3 Specifics of Tone-Mapping Evaluation

In this section we discuss the importance of selecting the right reference and an
evaluation method for subjective evaluation of tone-mapping operators. This section
serves as an example of the considerations that are relevant when considering quality
assessment in graphics applications. Similar text has been published before in [24].

Figure 9.13 illustrates a general tone-mapping scenario and a number of pos-
sible evaluation methods. To create an HDR image, the physical light intensities
(luminance and radiance) in a scene are captured with a camera or rendered using
computer graphics methods. In the general case, “RAW” camera formats can be
considered as HDR formats, as they do not alter captured light information given
a linear response of a CCD/CMOS sensor. In the case of professional content
production, the creator (director, artist) seldom wants to show what has been
captured in a physical scene. The camera-captured content is edited, color-graded,
and enhanced. This can be done manually by a color artist or automatically by
color processing software. It is important to distinguish this step from actual
tone-mapping, which, in our view, is meant to do “the least damage” to the
appearance of carefully edited content. In some applications, such as simulators or
realistic visualization, where faithful reproduction is crucial, the enhancement step
is omitted.

Tone-mapping can be targeted for a range of displays, which may differ sub-
stantially in their contrast and brightness levels. Even HDR displays require
tone-mapping as they are incapable of reproducing the luminance levels found
in the real world. An HDR display, however, can be considered as the best
possible reproduction available, or a “reference” display. Given such a tone-mapping
pipeline, we can distinguish the following evaluation methods:
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Fig. 9.13 Tone-mapping process and different methods of performing tone-mapping evaluation.
Note that content editing has been distinguished from tone-mapping. The evaluation methods
(subjective metrics) are shown as ovals

Fidelity with reality method, where a tone-mapped image is compared with a
physical scene. Such a study is challenging to execute, in particular for video because
it involves displaying both a tone-mapped image and the corresponding physical
scene in the same experimental setup. Furthermore, the task is very difficult for
observers as displayed scenes differ from real scenes not only in the dynamic range,
but they also lack stereo depth, focal cues, and have restricted field of view and color
gamut. These factors usually cannot be controlled or eliminated. Moreover, this task
does not capture the actual intent when the content needs enhancement. Despite the
above issues, the method directly tests one of the main objectives of tone-mapping
and was used in a number of studies [4, 91, 92, 106, 107].

Fidelity with HDR reproductionmethods, where content is matched against a ref-
erence shown on an HDR display. Although HDR displays offer a potentially large
dynamic range, some form of tone-mapping, such as absolute luminance adjustment
and clipping, is still required to reproduce the original content. This introduces
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imperfections in the displayed reference content. For example, an HDR display will
not evoke the same sensation of glare in the eye as the actual scene. However, the
approach has the advantage that the experiments can be run in a well-controlled
environment and, given the reference, the task is easier. Because of the limited
availability of HDR displays, only a few studies employed this method: [38, 46].

Non-reference methods, where observers are asked to evaluate operators without
being shown any reference. In many applications there is no need for fidelity with
“perfect” or “reference” reproduction. For example, the consumer photography is
focused on making images look possibly good on a device or print alone as most
consumers will rarely judge the images while comparing with real scenes. Although
the method is simple and targets many applications, it carries the risk of running
a “beauty contest” [59], where the criteria of evaluation are very subjective. In
the non-reference scenario, it is commonly assumed that tone-mapping is also
responsible for performing color editing and enhancement. But, since people differ a
lot in their preference for enhancement [107], such studies lead to very inconsistent
results. The best results are achieved if the algorithm is tweaked independently for
each scene, or essentially if a color artist is involved. In this way we are not testing
an automatic algorithm though, but a color editing tool and the skills of the artist.
However, if these issues are well controlled, the method provides a convenient way
to test TMO performance against user expectations and, therefore, it was employed
in most of the studies on tone-mapping: [1, 4, 21, 39, 68, 91, 107].

Appearance matchmethods compare color appearance in both the original scene
and its reproduction [59]. For example, the brightness of square patches can be mea-
sured in a physical scene and on a display using the magnitude estimation methods.
Then, the best tone-mapping is the one that provides the best match between the
measured perceptual attributes. Even though this seems to be a very precise method,
it poses a number of problems. Firstly, measuring appearance for complex scenes is
challenging. While measuring brightness for uniform patches is a tractable task,
there is no easy method to measure the appearance of gloss, gradients, textures, and
complex materials. Secondly, the match of sparsely measured perceptual attributes
does not need to guarantee the overall match of image appearance.

None of the discussed evaluation methods is free of problems. The choice of a
method depends on the application that is relevant to the study. The diversity of the
methods shows the challenge of subjective quality assessment in tone-mapping, and
is one of the factors that contribute to volatility of the results.

9.4.2.4 Volatility of the Results

It is not uncommon to find quality studies in graphics, which arrive with contra-
dicting or inconclusive results. For example, two studies [8, 57] compared inverse
tone-mapping operators. Both studies asked to rate or rank the fidelity of the
processed image with the reference shown on an HDR display. The first study [8]
demonstrated that the performance of complex operators is superior to that of a
simple linear scaling. The second study [57] arrived with the opposite conclusion
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that the linear contrast scaling performs comparably or better than the complex
operators. Both studies compared the same operators, but images, parameter settings
for each algorithm, evaluation methods and experimental conditions were different.
This two conflicting results show the volatility of many subjective experiments
performed on images. The statistical testing employed in these studies can ensure
that the results are likely to be the same if the experiment is repeated for a different
group of observers, but with exactly the same images and in exactly the same
conditions. The statistical testing, however, cannot generalize the results to the entire
population of possible images, parameters, experimental conditions, and evaluation
procedures.

9.4.3 Subjective Quality Experiments

This subsection presents the subjective tests conducted by the scientific community
related to quality assessment of graphics data. The first and second parts detail,
respectively, experiments related to image and 3D model artifact evaluation.

9.4.3.1 Image and Video Quality Assessment

Evaluating computer graphicsmethods is inherently difficult, as the results can often
be only evaluated visually. This poses a challenge for the authors of new algorithms,
who are expected to compare their results with the state of the art. For that reason,
many recent papers in graphics include a short section with experimental validation.
Such a trend shows that subjective quality assessment becomes a standard practice
and a part of the research methodology in graphics. The need to validate methods
also motivates comparative studies, in which several state-of-the-art algorithms are
evaluated in a subjective experiment. Studies like this have been performed for
image aspect ratio retargeting [75], image deghosting [29], or inverse tone-mapping
[8, 57]. However, probably the most attention has attracted the problem of tone-
mapping, which is discussed below.

Currently (as of 2014) Google Scholar search reports over 7,000 papers with
the phrase “tone-mapping” in the title. Given this enormous choice of different
algorithms, which accomplish a very similar task, one would wish to know which
algorithm performs the best in a general case. In Sect. 9.2.5 we discussed a few
objective metrics for tone-mapping. However, because their accuracy still needs
to be validated, they are not commonly recognized method for comparing tone-
mapping operators. Instead, the operators have been compared in a large number
of subjective studies evaluating both tone-mapping for static images [1, 2, 4, 21,
22, 36, 38, 39, 46, 91, 92, 106, 107] and tone-mapping for video [10, 24, 68]. None
of these studies provided a definite ranking of the operators since such a ranking
strongly depends on the scene content and the parameters passed to a tone-
mapping operator. Interestingly, many complex tone-mapping methods seem to
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perform comparable or worse than even a simple method, provided that it is fine-
tuned manually [1, 38, 91]. This shows the importance of per-image parameter
tuning. Furthermore, the objective (intent) of tone-mapping can be very different
between operators. Some operators simulate the performance of the visual system
with all its limitation; other operators minimize color differences between the
HDR image and its reproduction; and some produce the most pleasing images
[24, 59]. Therefore, a single ranking and evaluation criteria do not seem to be
appropriate for evaluation of all types of tone-mapping. The studies have identified
the factors that affect overall quality of the results, such as naturalness and detail
[22], overall contrast and brightness reproduction [106, 107], color reproduction
and visible artifacts [91]. In case of video tone-mapping, the overall quality is also
affected by flickering, ghosting, noise, and consistency of colors across a video
sequence [10, 24]. Evaluating all these attributes provides the most insight into the
performance of the operators but it also requires the most effort and expertise and,
therefore, is often performed by expert observers [24]. Overall, the subjective studies
have not identified a single operator that would performwell a general case. But they
helped to identify common problems in tone-mapping, which will help in guiding
further research on this topic.

9.4.3.2 3D Model Quality Assessment

Several authors have made subjective tests involving 3D static or dynamic models
[17, 18, 41, 45, 67, 74, 76, 79, 80, 87, 88, 100]. Their experiments, detailed below,
had different purposes and used different methodologies. Bulbul et al. [13] recently
provided a good overview and comparison of their environments, methodologies,
and materials.

Subjective tests fromWatson et al. [100] and Rogowitz and Rushmeier [74] focus
on a mesh simplification scenario; their test databases were created by applying
different simplification algorithms at different ratios on several 3D models. They
considered a double stimulus rating scenario, i.e. observers had to rate the fidelity
of simplified models regarding the original ones. The purposes of their experiments
were, respectively, to compare image-based metrics and geometric ones to predict
the perceived degradation of simplified 3D models [100] and to study if 2D images
of a 3D model are really suited to evaluate its quality [74].

Rushmeier et al. [76] and Pan et al. [67] also considered a simplification scenario;
however, their 3D models were textured. These experiments provided useful insights
on how resolution of texture and resolution of mesh influence the visual appearance
of the object. Pan et al. [67] also provided a perceptual metric predicting this visual
quality and evaluated it quantitatively by studying the correlation with subjective
MOS from their experiment.

Lavoué [41] conducted an experiment involving 3D objects specifically chosen
because they contain significantly smooth and rough areas. The author applied noise
addition with different strengths either on smooth or rough areas. The specific
objective of this study was to evaluate the visual masking effect. It turns out that
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the noise is indeed far less visible on rough regions. Hence, the metrics should
follow this perceptualmechanism. The data resulting from this experiment (Masking
Database in Table 9.1) are publicly available.2

To the best of our knowledge, the only experiment involving dynamicmeshes was
the one performed by Váša and Skala [87] in their work proposing the STED metric.
They considered five dynamic meshes (chicken, dance, cloth, mocap, and jump)
and applied different kinds of both spatial and temporal distortion of varying types:
random noise, smooth sinusoidal dislocation of vertices, temporal shaking, and
results of various compression algorithms. All the versions (including the original)
were displayed at the same time to the observers, and they were asked to rate them
using a continuous scale from 0 to 10.

In all the studies presented above, the observers are asked to rate the fidelity of
a distorted model regarding a reference one, displayed at the same time (usually a
double stimulus scenario). However some experiments consider a single stimulus
absolute rating scenario. Corsini et al. [18] proposed two subjective experiments
focusing on a watermarking scenario; the material was composed of 3D models
processed by different watermarking algorithms introducing different kinds of
artifacts. On the contrary to the studies presented above, they consider an absolute
ratingwith hidden reference (i.e., the reference is displayed among the other stimuli).
The authors then used the mean-opinion-scores to evaluate the effectiveness of
several geometric metrics and proposed a new perceptual one (see Sect. 9.3.1)
to assess the quality of watermarked 3D models. Lavoué et al. [45] follow the
same protocol for their study; their material is composed of 88 models generated
from 4 reference objects (Armadillo, Dyno, Venus and RockerArm). Two types of
distortion (noise addition and smoothing) are applied with different strengths and
nonuniformly on the object surface. The resulting MOS were originally used to
evaluate the performance of the MSDM perceptual metric (see Sect. 9.3.1). The
corresponding database (General-Purpose Database in Table 9.1) and MOS data are
publicly available (see Footnote 2).

Rating experiments have the benefit of directly providing a mean-opinion-score
for each object from the corpus, however the task of assigning a quality score to
each stimulus is difficult for the observers and may lead to inaccurate results. That
is why many experiments now rely on the simpler task of Paired Comparison where
observers just have to provide a preference between a pair of stimuli (usually as a
binary forced choice). Silva et al. [79] proposed an experiment involving both rating
and preference tasks. Their corpus contains 30 models generated from 5 reference
objects. The reference models have been simplified using three different methods
and two levels. For the rating task, observers were asked to provide a score from
1 (very bad) to 5 (very good). Along with this rating, in another phase of the test,
the observers were asked about their preference among several simplified models
presented together. Figure 9.14 illustrates the evaluation interface for the rating
task, the stimulus to rate is presented with its reference stimulus. The data resulting

2http://liris.cnrs.fr/guillaume.lavoue/data/datasets.html.

http://liris.cnrs.fr/guillaume.lavoue/data/datasets.html
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Fig. 9.14 Evaluation interface for the subjective test of Silva et al. [80]. The observers were asked
to compare the target stimulus (right) with the referential stimuli (left) and assign it a category
rating from 1 (very bad) to 5 (very good). Reprinted from [80]

from these subjective experiments are publicly available3 (Simplification Database
in Table 9.1). The same authors did another subjective experiment using a larger
corpus of models [80] where they only collected preferences.

Váša and Rus [88] conducted a subjective study focusing on evaluating com-
pression artifacts. Their corpus contains 65 models from 5 references. The applied
distortions are uniform and Gaussian noise, sine signal, geometric quantization,
affine transform, smoothing and results from three compression algorithms. The
observer’s task is a binary forced choice, in the presence of the reference; i.e. triplets
of meshes were presented, with one mesh being designated as original, and two
randomly chosen distorted versions. A scalar quality value for each object from the
corpus is then derived from the user choices. The data (Compression Database in
Table 9.1) are publicly available.4

3http://www.ieeta.pt/~sss/repository/.
4http://compression.kiv.zcu.cz/.

http://www.ieeta.pt/~sss/repository/
http://compression.kiv.zcu.cz/
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9.4.4 Performance of Quality Metrics

9.4.4.1 Image Quality Assessment for Rendering

VDP-like metrics are, which are dominant in graphics, often considered to be too
sensitive to small, barely noticeable, and often negligible differences. For example,
many computer graphics methods result in a bias, which makes the part of a
rendered scene brighter or darker than the physically accurate reference. Since such
a brightness change is local, smooth, and spatially consistent, most observers are
unlikely to notice it unless they scrupulously compare the image with a reference.
Yet, such a difference will be signalized as significant by most VDP-like metrics,
which will correctly predict that the difference is in fact visible when scrutinized. As
a result, the distortion maps produced by objective metrics often do not correspond
well with subjective judgment about visible artifacts.

Cadík et al. [90] investigated this problem by comparing the performance of
the state-of-the-art fidelity metrics in predicting rendering artifacts. The selected
metrics were based on perceptual models (HDR-VDP-2), texture statistics (SSIM,
MS-SSIM), color differences (sCIE-Lab), and simple arithmetic difference (MSE).
The performance was compared against experimental data, which was collected
by asking observers to label noticeable artifacts in images. Two examples of such
manually labeled distortion maps are shown in Fig. 9.2.

The same group of observers completed the experiment for two different tasks.
The first task involved marking artifacts without revealing the reference (artifact
free) image. It relied on the observers being able to spot objectionable distortions.
In the second task the reference image was shown next to the distorted and the
observers were asked to find all visible differences. The results for both tasks were
mostly consistent across observers resulting in similar distortion maps for each
individual.

When subjective distortion maps were compared against the metric predictions,
they revealed weaknesses of both simple (PSNR, sCIE-Lab [108]) and advanced
(SSIM, MS-SSIM [97], HDR-VDP-2) quality metrics. The results for the two
separate data sets (NORM [30] and LOCCG[90]) and two experimental conditions
(with-reference and no-reference) are shown in Fig. 9.15. The results show that
the metrics that performed the best for one data set (HDR-VDP and SSIM for
NORM) ended up in the middle or the end of the ranking for the other data set
(LOCCG). This is another example of the volatility of the comparison experiments,
discussed in Sect. 9.4.2.4. Because of the large differences in metric performance
between images, no metric could be said to be statistically significantly better (in
terms of AUC) than any other metric in a general case. More helpful was the
detailed analysis of the results for particular images, which revealed the issues that
reduced the performance of the advanced metrics. One of those issues was excessive
sensitivity to brightness and contrast changes, which are common in graphics due
to the bias of rendering methods (refer to Fig. 9.16). The simple metrics failed to
distinguish between imperceptible and well visible noise levels in complex scenes
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Fig. 9.15 The performance of quality metrics according to the area-under-curve (AUC) (the
higher the AUC, the better the classification into distorted and undistorted regions). The top
row shows the results for the NoRM data set [30] and bottom row the LOCCG data [90]. The
columns correspond to the experiments in which the reference non-distorted image was shown
(left column) or hidden (right column). The percentages indicate how frequently the metric on the
right results in higher AUC when the image set is randomized using a bootstrapping procedure.
The metrics: AD—absolute difference (equivalent to PSNR); SSIM—Structural Similarity Index;
MS-SSIM—multi-scale SSIM; HDR-VDP-2—refer to Sect. 9.2.4; sCIE-Lab—spatial CIELab;
sCorrel—per-block Spearman’s nonparametric correlation

(refer to Fig. 9.17). The multi-scale metrics revealed problems in localizing small-
area and high-contrast distortions (refer to Fig. 9.18). But the most challenging are
the distortions that appeared as a plausible part of the scene, such as darkening in
corners, which appeared as soft shadows (refer to Fig. 9.19).

Overall, the results revealed that the metrics are not as universal as they are
believed to be. Complex metrics employing multi-scale decompositions can better
predict visibility of low contrast distortions but they are less successful with super-
threshold distortions. Simple metrics, such as PSNR, can localize distortions well,
but they fail to account for masking effects.

9.4.4.2 3D Model Quality Assessment

For model-based metrics (i.e., relying on the geometry), recent studies [19, 44]
have provided extensive quantitative comparisons of existing metrics by computing
correlations with MOS from several databases. Studies generally consider two cor-
relation coefficients: the SROC which measures the monotonic association between
the MOS and the metric values and the Pearson linear correlation coefficient (LCC),
which measures the prediction accuracy. The Pearson correlation is computed after
performing a non-linear regression on the metric values as suggested by the video
quality experts group (VQEG) [93], usually using a cumulative Gaussian function.
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Fig. 9.16 Scene sala (top),
distortion maps for selected
metrics (second and third
rows), ROC and correlation
plots (bottom). Most metrics
are sensitive to brightness
changes, which often remain
unnoticed by observers.
sCorrel (block-wise Spearson
correlation) is the only metric
robust to these artifacts. Refer
to the legend in Fig. 9.15 to
check which lines correspond
to which metrics in the plots

Table 9.1 summarizes these correlation results; best metrics are highlighted for each
database. Note that many metrics cannot be applied to evaluating simplification
distortions because they need the compared objects to share the same connectivity—
[32, 43, 45, 83, 88]—or the same level of details—[18].

We can observe that classical geometric distances, like Hausdorff and RMS,
provide a very poor correlation with human judgment, while most recent ones
[42, 43, 85, 88, 96] provide much better performance. Unfortunately, image-based
metrics have not been quantitatively tested on these public databases, hence a
legitimate question remains: which is the best to predict 3D mesh visual fidelity,
image-based or model-based metrics? Rogowitz and Rushmeier [74] argue for
model-based metrics since they show that 2D judgments do not provide a good
predictor of 3D object quality, implying that the quality of 3D objects cannot be
correctly predicted by the quality of static 2D projections. To demonstrate that,
the authors have conducted two subjective rating experiments; in the first one, the
observers rated the quality of 2D static images of simplified 3D objects, while in
the second one they rated an animated sequence of these images, showing a rotation
of the 3D objects. Results show that (1) the lighting conditions strongly influence
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Fig. 9.17 Scene disney:
simple metrics, such as
sCorrel and AD, fail to
distinguish between visible
and invisible amount of noise
resulting in worse
performance

the perceived quality and (2) the observers perceive differently the quality of the
3D objects if they observe still images or animations. Watson et al. [100] also
compared the performance of several image-based (Bolin-Meyer [12] and Mean
Squared Error) and model-based (mean, max, and RMS) metrics. They conducted
several subjective experiments to study the visual fidelity of simplified 3D objects,
including perceived quality rating. Their results showed a good performance of 2D
metrics (Bolin-Meyer [12] and MSE) as well as the mean 3D geometric distance
as predictor of the perceived quality. The main limitation of this study is that the
authors only consider one single view of the 3D models. More recently, Cleju and
Saupe [17] designed another subjective experiment for evaluating the perceived
visual quality of simplified 3Dmodels and found that generally image-based metrics
perform better than model-based metrics. In particular, they found that 2D mean
squared error and SSIM provide good results, whereas SSIM’s performance being
more sensitive to the 3D model type. For model-based metric, like Watson et al.
[100], they showed that the mean geometric distance performs better than RMS
which is better than Hausdorff (i.e., maximum distance). The main limitation of
these studies (mostly from 10 years ago) is that they consider one single type
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Fig. 9.18 Dragons scene
contains artifacts on the
dragon figures but not in the
black background.
Multi-scale IQMs, such as
MS-SSIM and HDR-VDP-2,
mark much larger regions due
to the differences detected at
lower spatial frequencies.
Pixel-based AD (absolute
differences) can better
localize distortions in this
case

Fig. 9.19 Photon leaking and
VPL clamping artifacts in
scenes sponza and sibenik
result in either brightening or
darkening of corners.
Darkening is subjectively
acceptable, whereas
brightening leads to
objectionable artifacts

of distortion (only simplification) and very simple image-based and model-based
metrics.

For dynamic meshes, a study presented by Váša and Skala [87] demonstrates
an excellent prediction performance of the STED metric, while others (e.g., the
KG error [33]) provide very poor results. Another open question concerns the
quantitative evaluation of quality metrics for colored or textured meshes; indeed per-
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vertex colors or texture play a very important role in the appearance of a 3D model,
however very few metrics still exist and no comparison study is still available.

9.5 Emerging Trends

9.5.1 Machine Learning

The objective of a quality assessment metric is to predict the visual quality of a
signal, hence it basically needs to mimic the psychophysical process of the HSV, or
at least relies on some features related to perceptualmechanisms. However modeling
these complex principles and/or choosing appropriate characteristics may be hard.
Hence it may appear convenient to treat the HVS as a black box which we wish
to learn the input–output relationship. Such learning approaches were proposed
recently [30, 43, 89]; they compute a large number of features and train classifiers
on subjective ground-truth data. Such kinds of metrics are usually very efficient,
however their ability to generalize depends on the richness of the ground-truth data.
A very interesting point is that crowd-sourcing is developing as an excellent way
to gather quickly a huge set of human opinions, that can then feed a classifier. As
stated in the introduction, the future of quality metrics could lie in a combination of
machine learning techniques with accurate psychophysical models.

9.5.2 3D Animation

There still exist very few works about quality assessment for dynamic meshes (i.e.,
sequence of meshes) and articulated meshes (i.e., one single mesh + animated
skeleton) while these types of data are present in a wide range of computer graphics
applications. The perceived visual quality of such 3D animation depends not only
on the geometry, texture, and other visual attributes but also, to a large extent, on the
nature of the movement and its velocity. This temporal dimension carries a whole
range of additional cognitive phenomena. The CSF, for instance, is completely
modified in a dynamic setting [34]. This is easily understandable since a rapid
movement will be able to hide a geometrical artifact which would have been visible
in a static case. In the case of human or animal animations, the realism of the
animation is also a critical factor in the perception from the user. All these factors
should be taken into account to devise efficient quality metrics, many progresses
still remain to be achieved in this field.
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9.5.3 Material and Lighting

The need of photorealistic rendering of 3D content has led to embed complex
material and lighting information together with the geometric information. For
instance, the bi-directional reflectance distribution function (BRDF) describes how
much light is reflected when light makes contact with a certain material. More
complex nonuniform materials can be represented by more complex reflectance
functions acquired through sophisticated photometric systems, including surface
light field (SLF) which represents the color of a point depending on the viewing
direction (hence assuming a fixed lighting direction), BTF that extends the SLF
for any incident lighting direction, and finally bidirectional subsurface scattering
reflectance distribution function (BSSRDF) which is basically a BTF plus a model
of the surface scattering. There still exist no metric to assess the quality of these
complex attributes (mapped or not onto the surface). In particular, it could be very
useful to integrate them into existing model-based metrics (e.g., MSDM2) which
are currently too much independent of the rendering conditions.

9.5.4 Toward Merging Image and Model Artifacts

We have seen all along this chapter that visual defects may appear at several stages of
a computer graphics work-flow (as illustrated in Fig. 9.1) and may concern different
types of data: either the 3D models, or the final rendered or tone-mapped images.
We have seen that there exist specific metrics dedicated to the detection of these
model or image artifacts. Their use depends on the application, e.g. a 3D mesh
compression approach has to be driven by a metric operating on the geometry, while
a global illumination algorithm will be tuned using an image quality metric. What
has been ignored until now is that these visual defects introduced either onto the
geometry or onto the final images do have a visual interplay. For instance, the nature
of the rendering algorithm obviously influences the perceptibility of a geometric
artifact; similarly, some types of rendering artifact could be avoided by a proper
modelling or a specific geometry processing algorithm. Hence it appears obvious
that these two types of quality assessment (i.e., respectively, applied on models
and images) should be connected. Integrating lighting and material information into
model-based metrics (like mentioned in the above paragraph) could be a way to take
into account these both processes (modeling and rendering). Considering the 3D
scene for detecting image-based artifacts could be another way to model efficiently
this interplay.
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88. Váša, L., Rus, J.: Dihedral Angle Mesh Error: a fast perception correlated distortion measure
for fixed connectivity triangle meshes. Computer Graphics Forum 31(5) (2012)
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90. Čadík, M., Herzog, R., Mantiuk, R.K., Myszkowski, K., Seidel, H.P., Čadík, M.: New
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Chapter 10
Conclusions and Perspectives

Chenwei Deng, Shuigen Wang, and Lin Ma

10.1 Summary

The main contribution of this book is offering an overview of current status,
challenges, and new trends of visual quality assessment, from subjective assessment
models to objective metrics, covering full-reference (FR), reduced-reference (RR),
and no-reference (NR), multiply distorted images, contrast-changed images, mobile
media, high dynamic range (HDR) images and videos, medical images, stereo-
scopic/3D videos, retargeted images and videos, computer graphics and animation
quality assessment. Figure 10.1 diagrams the content presented in this book.

With the rapid development of digital technologies in the past decades, visual
communications, broadcasting, entertainment, and recreation of video and photog-
raphy have been completely transformed from analogue based devices, products,
systems, and services to increasing diverse forms of digital counterparts, such as
digital cameras, digital video cameras, and digital TV services. The development
of visual quality assessment has also changed from quality of service (QoS) to
quality of experience (QoE), to adapt to various applications. Numerous subjective
and objective quality guaging approaches have been proposed, including entropy
and rate-distortion based methods for pixel-based evaluation, e.g., mean-square-
error (MSE) and peak signal-to-noise ratio (PSNR), feature-driven algorithms, e.g.,
structural similarity (SSIM) and its variants, natural scene statistics (NSS) based
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Fig. 10.1 The content of this book

models, just-noticeable-difference (JND) models, and multi-channel contrast gain
control (CGC) metrics, etc. With these efforts, tremendous advances have been
achieved for perceptual visual signal quality assessment.

Subjective assessment of QoE is defined as “the overall acceptability of an
application or service, as perceived subjectively by an end-user,” and it is the
most reliable way for visual quality assessment. The direct results of subjective
tests are the IQA databases. The popular IQA databases include Laboratory for
Image & Video Engineering (LIVE) database, Tampere Image Database 2008
(TID2008), and Categorical Subjective Image Quality (CSIQ) database, etc. These
three databases cover almost all (if not all) the distortion types, such as JPEG2000
compression distortion, JPEG compression distortion, White noise, Gaussian blur,
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and contrast change, etc. Recently, several new image databases have been built for
publicly use. The TID2008 database was extended to the TID2013 database which
contains total number of 3,000 images and is generated by corrupting 25 original
images with 24 types of distortion (17 types for TID2008) at five different levels
(four for TID2008). Apart from the aforementioned single distortion databases,
multiple distortions image database, i.e., LIVE multiply distorted image database
(LIVEMD), was built with each image corrupted by two distortion types. In order
to address the problems in contrast change evaluation, a dedicated and more
comprehensive contrast-changed image quality database (CID2013) was established
for contrast change assessment with 15 natural images taken from Kodak database
and 400 contrast-changed versions of mean luminance shift and contrast change.
Furthermore,HDR imaging has attracted a lot of attention and enthusiasm in the last
decade. A new and dedicated HDR image quality database (HDR2014) was also
proposed for HDR IQA studies.

Recently, numerous relevant researches have been carried out varying from
traditional impairment-centric methods to QoE. For a long period of time, the
research of subjective assessment was targeted at determining user sensitivity
to impairments induced in the media by suboptimal delivering, and the media
recipient was considered as a passive observer, whose appreciation of the video
material was determined primarily by the degree of annoyance due to the visual
impairments. Visual impairments are often produced by limited spatial, temporal,
and bit rate resolutions in displays, bandwidth and storage constraints, or error-
prone transmission channels. As a result, multimedia material is often delivered
along with impairments disrupting the overall appearance of the visual contents,
and provoking a sense of dissatisfaction in the users [1–3]. Great efforts [4–12]
have been devoted to the development of technologies that can either prevent the
appearance of impairments, or repair it when needed.

One representative work, Engeldrum’s image quality circle (IQC) framework
[8], aims at providing an effective methodology for linking experienced visual
quality to the settings of technological variables of a multimedia system. The IQC
proposes a divide-and-conquer approach, involving three intermediate steps: (1)
linking overall image quality to the combination of underlying perceived attributes
of the image; (2) linking each image attribute to the physical characteristics of
the system output; (3) linking the physical description of the system output to the
system technological variables. It can adapt to different problem domains, including
display quality assessment, signal processing algorithm optimization, and network
parameter optimization.

As for displays, the RaPID method [13] and the IQC constituted a solid
framework to improve display quality. With regard to the visual quality preference
of processed signals, the signal processing community evolved in rather distinct
aspects, and its researchers largely focused on a signal fidelity approach. The goal is
to understand the impacts on perceived quality of a specific type (e.g., compression,
scaling, denoising) of processing algorithm, by identifying the optimized parameters
of the algorithm to produce the best visual quality. A large number of works
utilizing low-level features of the human visual system (HVS), like [7, 10, 14, 15],
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have been proposed to figure out the relations between coding artifacts and quality
preference. After that, subjective studies aimed at generating ground-truth data,
and the modeling of contrast [16–18], luminance masking [19, 20], spatial pooling
strategies [21], and image structure perception [22, 23] have been conducted. How-
ever, it was interestingly found that HVS-based models cannot predict and describe
image quality accurately even at threshold level, since non-expert observers are less
sensitive to compression-related artifacts while the well-informed experts are very
sensitive to artifact visibility in the images. Therefore, some attempts were raised to
explore the role of higher-level HVS features in signal impairment annoyance and
quality appreciation targeted visual attention mechanisms [24–27].

As for the network-related impairments, e.g., bandwidth limitations, along with
network unreliability (i.e., the possibility of packets loss), can cause frame freezes,
deformations of the spatial and temporal structure of the content, and long stalling
times. And researchers have been working towards correlating the QoS parameters
(e.g., packet loss ratio, delay, jitter, and available bandwidth) to QoE measurements
by using fitting functions [28–30]. Generally, QoS metrics work well in estimating
QoE from a network efficiency point of view, but they do not accurately reflect the
overall viewing experience. The impacts of signal impairments such as blockiness
and blur are not taken into account in these approaches.

However, all the impairment-centric models mentioned above cannot meet the
requirements and developments of multimedia applications. The media recipient
becomes an active user instead of a passive one, who creates content, interacts
with the system, and selects the media he/she wants to be delivered. Elements
such as visual semantics, user personality, preferences and intent, social and
environmental context of media fruition also play important roles in the final
experience assessment, which is illustrated in Fig. 10.2. In order to adapt the
traditional visual quality gauging metrics to QoE, a few models [7, 31–35] have
been proposed throughout the last decade, and significant improvements have been
achieved, though there still exists a long way to go. Keelan [7] defined visual
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Fig. 10.2 The development of subjective quality assessment models from impairment-centric
approaches to user-centric ones
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quality as a multidimensional quantity and distinguished four different families of
attributes: artifactual, preferential, aesthetic, and personal ones. Ghinea and Thomas
attempted to present a more encompassing definition of visual quality, by proposing
the concept of quality of perception (QoP) [31]. The FUN model of de Ridder and
Endrikhovski [32] can also be considered as a milestone in the road that took visual
quality to be evolved into QoE.

With respect to objective quality assessment, using the aforementioned publicly
available IQA databases, numerous metrics have been developed for image quality
evaluation in the past decades. Depending on the availability of the reference image,
objective IQA can be categorized into three groups: (1) full-reference (FR); (2)
reduced-reference (RR); and (3) no-reference (NR).

Besides the two classic metrics, i.e., MSE and PSNR, a large variety of FR-IQA
approaches have been proposed and achieved remarkable performances. These FR-
IQA metrics include scale transform-based ones (e.g., MS-SSIM), saliency-based
ones (e.g., IW-SSIM), gradient magnitude-based ones (e.g., FSIM, GSIM), and
others (e.g., VIF, IGM).

As for the RR-IQA, only partial information of the original image is available.
A free energy based distortion metric (FEDM), RR entropic-difference indexes
(RRED), Fourier transform based quality measure (FTQM), RR-SSIM, and struc-
tural degradation model (SDM) have been developed based on different theories.

However, in real-world applications, information of the original images is not
always available. In these cases, NR-IQA metrics are required for measuring image
quality. In the last decade, some NR methods were proposed for specific distortion
types, such as CPDB for blur distortion, FISH for sharpness evaluation. In recent
years, general-purposeNR-IQA has been intensively studied and can be categorized
into two types: (1) extracting effective features followed by a regression process
(e.g., NSS based DIIVINE, BLIINDS-II, BRISQUE); (2) operating without human
ratings (e.g., NIQE, QAC).

Regarding the emerging fields in objective quality assessment, the free energy
model based comparative IQA (C-IQA) approach was developed, which is inher-
ently different from FR, RR, and NR methods. The C-IQA takes an image pair
as input and predicts their relative quality without using any knowledge about
the original image. For the multiply distorted IQA, a FIve-Step BLInd Metric
(FISBLIM) was proposed using several common image processing blocks to
simulate the image perceiving process of the human eyes. A novel reduced-reference
image quality metric (RIQMC) was proposed for contrast change evaluation using
entropies and order statistics of the image histograms.

Apart from the study of general-purpose IQA, mobile video quality evaluation is
becoming an important research area these days, due to the technological advances
of high speed wireless communication networks, and mobile devices being capable
of producing and consuming high quality videos. Chapter 4 presented a review of
recent researches of subjective and objective mobile videos quality assessment, for
maximizing the QoE of the delivered video contents. Various factors affect the
quality of mobile videos, including blockiness, blurring, ringing, packet losses,
spatial, temporal and quality resolution changes, etc. To address these issues, many
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researches have been carried out on subjective and objective quality assessment
for mobile videos. Since the mobile environments are different in various aspects,
in terms of the types of used devices, the degree of concentration of users,
lighting conditions, etc., mobile video based subjective VQA has to consider both
these factors and the International standard ITU-R BT.500-13 from International
Telecommunication Union Radiocommunication Sector. With the subjective tests
for video scalability, it was found that there is a bit rate threshold at which the
preference of scalability options is switched. Below the threshold, enhancing the
frame quality has the priority with improvements in either the SNR or spatial
dimension. Above the threshold, the frame quality reaches a certain satisfactory
level, and thus, the frame rate becomes more critical for perceived quality. Note
that the threshold mainly depends on the content characteristics.

As for the objective quality evaluation of mobile scenarios, the existing general
objective metrics, e.g., PSNR, MSE, SSIM, VQM, andmotion-based video integrity
evaluation (MOVIE), cannot achieve high correlation between measured quality and
subjective scores. Mobile quality gauging has to consider its unique properties, such
as network and displays. Specially, due to the limitations of network capacity, scal-
ability for mobile videos is useful to handle the network terminal capability issue.
Several objective metrics for mobile video scalability have been developed from
spatial, temporal, and quality dimensions, and experimental results demonstrated
that their performances are even better than those of PSNR and SSIM. Nevertheless,
it is also important to evaluate their relative performancevia thorough benchmarking
studies. And there still exists a huge space for mobile video quality assessment, such
as 3D videos, HDR videos.

One newly developing multimedia technology is HDR display. HDR is opposite
to low dynamic range (LDR) which suffers the drawbacks that real physical
luminance cannot be captured in a natural scene. However, HDR is able to capture or
reproduce higher contrast and luminance ranges, and represents the dynamic range
of the visual stimuli presented in practical applications. The popularization of HDR
largely improves the visual QoE of the end users.

However, on the other hand, HDR also faces some challenges in generation,
storage, processing, and display, etc. One can obtain HDR content in three ways: (1)
fusing multi-exposure LDR images/frames [36]; (2) using specialized cameras [37];
(3) using renderers from virtual environments. In general, each pixel of the generated
HDR content requires 12 bytes for storage. For one 512�512HDR image, it requires
3,145,728 bytes memory for storage, which is too expensive to sustain. Therefore,
a number of compression methods [38–44] have been proposed for HDR content.
The proposed method in [38] only needs 4 bytes per pixel by storing a shared
exponent among three color channels. The compression approach in [39] is called
as LogLUV encoding. The authors in [40] defined the format of HDR as a half-
floating point format. An interesting and novel algorithm in [44] converts the HDR
content into LDR by tone mapping operators (TMOs). The resultant LDR image
is thus compressed through encoder and decoder. Finally, the decoded LDR image
is re-converted into its HDR format. The HDR data is efficiently compressed in
this way, even though it is difficult to convert an HDR image/video to LDR without



10 Conclusions and Perspectives 293

losing perceivable visual information. With TMOs technique, HDR contents can be
displayed using common LDR devices, such as CRT, LCD monitors, and printers.
Since tone mapping reduces the dynamic range, it will inevitably lead to the loss
of visual details and further affect the perceived appearance of the HDR content.
It is therefore necessary to analyze how they affect the visual experience of the
processed HDR content. A detailed discussion about the relationship between tone
mapping and image quality has been presented from perceptual visual quality, visual
attention, and naturalness aspects. It was found that tone mapping not only degrades
visual quality by destroying scene details but also affects the natural appearance
of the content. Nevertheless, how it affects naturalness remains as an open problem.
Experimental results have demonstrated that apart from the increasing or decreasing
of attention magnitude [45–51], the tone mapping changes attentional regions, since
most of TMOs sacrifice visual information by reducing the dynamic range. As a
consequence, a non-attentional (attentional) region in the HDR image becomes an
attentional (non-attentional) one in the tone mapped version. In addition, there exist
similar conclusions for video signals in terms of visual attention maps. Since HDR
content may suffer from multiple distortions (tone mapping, compression artifacts,
inverse tonemapping artifacts), the quality measurement for HDR is challenging and
few researches have been conducted for both subjective and objective ones [52–54].

Medical IQA is another IQA research topic for real applications. The IQA
for medical image is rather important and has great practical significance, such
as improving the image quality in mammography, optimizing X-ray tube voltage
and tube current, etc. In medical imaging, image quality is governed by a variety
of factors such as contrast, resolution (sharpness), noise, artifacts, and distortion.
A number of studies have been conducted to establish image quality standards
and develop quality assessment methods, including conventional medical image
quality metrics, e.g., PSNR, contrast-to-noise ratio (CNR), contrast improvement
ratio (CIR), detective quantum efficiency (DQE), modulation transfer function
(MTF) and noise power spectrum (NPS), and recently proposed metrics, like
mutual information (MI) [55]. Each metric has its corresponding application for
medical images. The MTF is widely recognized as the most relevant metric of
resolution performance in radiographic imaging [56]. The NPS is one of the most
common metric describing the noise properties of imaging systems. The DQE
is a spatial frequency based measurement, to evaluate the ability of the imaging
devices converting the spatial information contained in the incident X-ray fluence
into useful image information [57–59]. In addition, medical IQA has been utilized
to improve the quality of mammography image with wavelet-based approaches
for image denoising and enhancing, and to evaluate the effects of radiation dose
reduction on image quality in digital radiography. The issue of radiation dose
exposure to patients from digital radiography is a major public health concern. In
particular, it is important to keep radiation dose exposure to a minimum in female
patients during their reproductive period, who frequently undergo repeated radiation
exposure during the course of diagnostic imaging and treatment follow-up.



294 C. Deng et al.

With the rapid growth in the quantity of stereoscopic/3D content created by
cinema, television, and entertainment industry, visual quality assessment of stereo-
scopic/3D image and video has become an increasingly important and active field of
research. However, due to the diversity of stereoscopic display technologies and the
profundity of how human perceives and processes 3D information, understanding
the QoE of stereoscopic image and video is a complex and multidisciplinary
problem. Most existing objective stereoscopic quality assessment algorithms can
be regarded as the extended versions of 2D QA algorithms, while few of them
consider some aspects of depth perception and utilize either computed or measured
depth/disparity information from the stereo pairs. Studies have shown that NSS can
efficiently distinguish original images from images distorted by different distortions.
And therefore, the properties of HVS are important for evaluating the QoE. Some
works have been conducted based on NSS and HVS, for stereoscopic image and
video quality assessment, which achieve better performance than those based on 2D
algorithms. Furthermore, visual discomfort and fatigue when viewing stereoscopic
images and videos should also be considered for better QoE evaluation.

To adjust the abovementioned visual signals into arbitrary sizes and resolutions
displayed in various devices, signals are then needed to be transformed into
related versions by some retargeting techniques, e.g., cropping (CROP), scaling
(SCAL), seam carving (SEAM), Optimized seam carving and scale (SCSC), Non-
homogeneous retargeting (WARP), and Scale and stretch (SCST), etc. Since the
resolutions of retargeted images are changed, the objective shapes may be distorted,
and some content information may be discarded. All these changes will have
remarkable influences on the image quality. Most of the existing full-reference
(FR) assessment methods require the same image sizes for both reference and
distorted images, but this is not always available for retargeted images. In Chap. 8,
the newly developed subjective quality assessment metrics for retargeted images
were reviewed as well as the objective ones. Two public subjective databases,
i.e., RetargetMe and CUHK retargeting database have been built for retargeted
image quality assessment. To automatically and reliably evaluate the retargeted
image quality, bidirectional warping (BDW), quality metric scale space matching
(SSM), color layout (CL), earth mover’s distance (EMD), bidirectional similarity
(BDS), edge histogram (E-H), and SIFTflow have been proposed but achieved poor
performances on both RetargetMe and CUHK retargeting databases. Almost all
these methods are not applicable in some specific distortions or induce information
loss. Moreover, it was found that in most cases, the human subjects tend to sacrifice
the information loss rather than the shape distortion for recognizing a good quality
image. If the information loss and shape distortion can be combined together, better
performance would be achieved for retargeted image quality assessment.

Many aforementioned images and videos, such as HDR contents, and
stereoscopic/3D visual signals, are generated by computer graphics techniques,
as demonstrated in Fig. 10.3. Therefore, the quality assessment of computer
graphics covers a broad area for the evaluation of artifacts visual impacts induced
by various computer graphic techniques, e.g., geometry processing, rendering,
tone mapping, and animation, etc. Chapter 9 presents a review of subjective and
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Fig. 10.3 The broad research area of computer graphics

objective evaluation methods for graphics and animations. The existing works can
be classified into image-based (i.e., evaluating artifacts in 2D rendered images
and videos) and model-based approaches (i.e., artifacts in the 3D models), since
computer graphics involves two main types of data: 3D data, i.e. surface and volume
meshes issued from geometric modeling or scanning processes, and 2D images and
videos created/modified by graphical processes like rendering and tone mapping.
In Chap. 9, different image quality metrics have been reviewed, including visual
models based metrics, open source metrics, data-driven metrics, HDR metrics
for rendering, and the metrics for aesthetics and naturalness evaluation. In terms
of rendering, two important problems need to be addressed: (1) how to allocate
samples, and (2) when to stop collecting samples. As for HDR content, luminance-
dependent effects are modeled in the visual difference predictor for HDR images
(i.e., HDR-VDP). Aydin et al. [60, 61] classified the distortions of tone mapping
into the loss of visible contrast, amplification of invisible contrast and contrast
reversal. Both color and binocular disparity are important factors that have strong
influences on the depth perception of 3D scenes, and geometry and/or texture of
the meshes are considered in model-based approaches for 3D models. Apart from
methods mentioned above, the detailed tips of subjective assessment including
scaling methods, parameter settings have also been discussed. Moreover, it also
points out the corresponding quality affecting factors for different types of graphics
contents.

In the above, we summarize high-level concepts, ideas, and algorithms of the
recent development of visual QoE, and we believe that a good understanding of all
the chapters of this book can help the readers make the right choice. In the following,
an overall perspective is given for each research topics described in this book.
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10.2 Perspectives

Despite the existing works of subjective QoE, unveiling a reliable model of user
QoE preference is still beyond reach. The profound transformation that media con-
sumption underwent in the last decade opens countless questions and applications,
in which affecting factors and features of the viewing experience still have to be
determined. Therefore, the existing knowledge developed in other fields, such as
human computer interaction, affective computing, behavioral psychology, media
production, computer graphics, and lighting design, should be incorporated into
subjective QoE assessment.

New display technologies, such as HDR displays, stereoscopic and autostereo-
scopic displays, can provide a more immersive viewing experience by enhancing
specific experience features. To ensure the full enjoyment of the enhanced experi-
ence, immersive technologies need optimization both at display and signal levels.
For example, in the case of HDR imaging, backlight dimming [62] and tone
mapping algorithms that can display an HDR image in a regular display [63] are still
under investigation. Furthermore, to drive the optimization of such immersive
technologies, it is essential to: (1) properly understand the impact of an enhanced
dimension on the eventual QoE; and (2) assess whether such attribute enhancement
modifies the impact of other attributes on QoE.

The second important evolution in subjective QoE assessment is the inclusion
of affective evaluations within QoE measurements. The affective state of the user
(i.e., his/her mood or specific emotional state) may have impacts on the way a
viewing experience is appreciated [64]. In turn, the emotion of human and aesthetics
should be considered in QoE assessment paradigms. However, two challenges need
to be overcome: (1) appropriate methodologies to measure the affective impact of
media in relation to QoE have yet to be determined; (2) the effects of affective
states pre-exists from that of the emotional state induced by the viewing experience
itself. Furthermore, understanding and quantifying the relationship among physical
properties of the image, their perception, and their impact on the user affective state
is therefore a key challenge for upcoming QoE research.

Another change for subjective QoE is the shifting of the approaches employed
for subjective tests conducting, from traditional lab-based psychometric ones to
Internet-based environments. Lately, more interests around paired comparison (PC)
[65–67] are growing for the QoE, and a few methods have been developed for
establishing confidence intervals to the quality scores provided by the PC tests. With
respect to the evolution of multimedia technology, new paradigms are in demand for
carrying subjective experiments in which crowdsourcing [68] has become more and
more eye-catching.

Apart from the remarkable existing works, both subjective and objective assess-
ments still have large space for improvements, especially the image quality evalua-
tion for emerging applications. More subjective tests are in need to discover more
potential principles and relations between image quality and human perception.
Furthermore, new image databases are required to be built for newly emerging
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applications. These new databases are further used for testing the objective IQA
metrics developed. Up to now, FR IQA approaches have already had high con-
sistency with subjective quality scores. However, without any reference image
information, it is extremely challenging for NR IQA. It is very important to figure
out the representations to accurately measure image quality. On the other hand,
with the development of multimedia technology, some new IQA approaches should
be proposed to deal with the new applications, such as multiply distorted images,
mobile based quality assessment, HDR images, and retargeted images, etc. In
addition, successful NR IQA metrics exploiting some knowledge of human brain
is also a new trend and needed to be well developed.

In the mobile signal quality evaluation, diverse distortion factors affect the quality
of mobile videos in different ways and have quite different characteristics. Although
many subjective and objective studies have been conducted and performed, further
studies are needed to investigate subjective testing methodologies and environments,
by considering characteristics of mobile devices and viewing behavior. And for
objective assessment, it is also important to evaluate their relative performance via
thorough benchmarking studies, which would be more desirable in the future. More-
over, HVS properties and video contents should be considered into the assessment.
Perceptual algorithms developed for mobile videos may be more consistent with
human viewing results. Due to fast technological development, new types of media
are being introduced to consumers such as 3D videos, HDR videos, and ultra high
definition (UHD) videos. There is or will be a high demand to consume these types
of media in the mobile environment, for which perceptual quality assessment will
also play an important role. Future research in these fields will be valuable.

HDR is a newly developing multimedia technique for producing high contrast
and luminance ranges. The major difference between HDR and the traditional LDR
is the much more bits for a luminance component representation in HDR images.
The resultant consequence is that it becomes more difficult for HDR content storage
and display. TMOs can efficiently reduce the storage memory for HDR content,
but also lose some visual information with distortion artifacts. Therefore, the first
open issue need to be tackled for HDR is trying to decrease information loss
while maintaining the high compression ratio. Improved TMOs and/or other new
compression algorithms can be considered in the future. The next open problem
is to develop new display techniques for HDR content. On the one hand, the
price of specialized monitors for HDR needs to be down. On the other hand, with
the development of electronics and material, perhaps no more specialized devices
are required. These two open issues are badly in need to be addressed, because
they deeply affect the visual QoE and quality measurement. Moreover, due to the
complicated relations of HDR quality and distortions, and the fact that mathematical
models for LDR are not suitable for HDR, very few methods for HDR quality
assessment have been proposed, and much more efforts are required in both theories
and implementations. Available standard databases are in urgent need as well.

With respect to medical IQA, most of the existing assessment metrics are pixel-
based ones without considering HVS properties, even the recently proposed mutual
information (MI) method. Therefore, one of the new trends for medical IQA could be
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developingHVS-based quality measurement algorithms. In addition, by considering
the real medical applications, such as image denoising, enhancement, and deblur,
more relevant studies should be conducted, and more practical assessment metrics
are needed to be proposed. Considering the newly developed HDR or mobile
applications, relevant researches can be conducted in the future.

When the 2D images and videos transfer to 3D, the properties of images
and videos have a significant change, especially that 3D contents have depth
information while not for 2D ones. However, how to use the depth information is
still under exploration. Therefore, novel 3D multimedia quality assessment methods
should be developed by considering both the basic structure information and the
additional depth information. In addition, more attention should be attracted for real
applications of 3D visual quality assessment.

As demonstrated in Chap. 8, the performances of the objective quality metrics
for retargeted images are still not good enough. The statistical correlations between
subjective MOS values and the objective metric outputs are inconsistent. It is in
badly need to figure out how to capture and use the source image content, the
retargeting scale, the shape distortion, the content information loss, and the HVS
properties. As for the shape distortion description, the recently developed metrics
tried to capture object shape of the image, but do not have good performances.
In order to accurately depict perceptual quality of the retargeted images, shape
distortions by retargeting processing need to be captured more precisely. Gabor
filter is believed to have the ability to well extract image structures, such as edges
and bars. Another important point is how to fuse the shape distortion and content
information loss together by considering their corresponding contributions to the
final image quality. Apart from the two aforementioned factors, source image quality
and retargeting scale also affect the image quality. In addition, image content and
HVS saliency should be considered to predict the retargeted image quality, which
is expected to develop a more effective quality metric for retargeted images, as
the image content correlates closely to the crop margin of the source image, and
the shape distortions and content information loss in the salient regions are more
sensitively perceived by the viewers than those in the non-salient regions.

Nowadays, there are several emerging trends of computer graphics quality
assessment: (1) using machine learning technique to predict the visual quality by
learning the input–output relationship; (2) paying more attention to 3D animation
quality evaluation. There still exist very few works about quality assessment for
dynamic meshes and articulated meshes; (3) material and lighting information
should be considered together with geometric information; (4) merging image and
model artifacts is also necessary, since visual defects may appear at several stages of
a computer graphics work-flow, and may contain different types of data: either the
3D models, or the final rendered or tone mapped images. Integrating the lighting
and material information, considering both image and model-based metrics, and
utilizing the machine learning approach could be another way for graphics quality
assessment.
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From all the discussions mentioned above, we can see that various quality
assessment researches have similar difficulties, e.g., how to capture good represen-
tations of objects, how to combine the HVS properties, etc. In the future, more
researches and studies are expected to handle these issues in a better way.

References

1. D. Wang, F. Speranza, A. Vincent, T. Martin, and P. Blanchfield, “Toward optimal rate control:
a study of the impact of spatial resolution, frame rate, and quantization on subjective video
quality and bit rate,” in Visual Communications and Image Processing. International Society
for Optics and Photonics, pp. 198–209, 2003.

2. P. Pérez, M. Jesús, J. R. Jaime, and G. Narciso, “Effect of packet loss in video quality of
experience,” Bell Labs Technical Journal. vol. 16, no. 1, pp. 91–104, 2011.

3. L. Goldmann, D. S. Francesca, D. Frederic, E. Touradj, T. Rudolf, and L. Mauro, “Impact of
video transcoding artifacts on the subjective quality,” In Quality of Multimedia Experience
(QoMEX), 2010 Second International Workshop on, pp. 52–57. IEEE, 2010.

4. B. Girod, “What’s wrong with mean-squared error?” In Digital Images and Human Vision,
pp. 207–220. MIT press, 1993.

5. D. M. Chandler, “Seven challenges in image quality assessment: past, present, and future
research” ISRN Signal Processing, 2013.

6. J. Allnatt, “Transmitted-picture assessment” Chichester, UK: Wiley, 1983.
7. B. Keelan, “Handbook of image quality: characterization and prediction,” CRC Press, 2002.
8. P. G. Engeldrum, “Psychometric scaling: a toolkit for imaging systems development,” Imcotek

Press, 2000.
9. “Methodology for the subjective assessment of the quality of television pictures,” ITU-R

Recommendation BT.500-11, Geneva, 2002.
10. “Subjective audiovisual quality assessment methods for multimedia applications,” ITU-T

Recommendation P.911, Geneva, 1998.
11. “Subjective methods for the assessment stereoscopic 3DTV systems,” International Telecom-

munication Union, Geneva, 2012.
12. B. Keelan, and H. Urabe, “ISO 20462, A psychophysical image quality measurement standard,”

Proc. SPIE 5294, pp. 181–189, 2004.
13. S. Bech, H. Roelof, N. Marco, T. Kees, L. D. J. Henny, H. Paul, and K. P. Sakti, “Rapid per-

ceptual image description (RaPID) method,” In Electronic Imaging: Science and Technology,
pp. 317–328. International Society for Optics and Photonics, 1996.

14. A. B. Watson, “Efficiency of a model human image code,” JOSA A, vol. 4, no. 12,
pp. 2401–2417, 1987.

15. J. A. Redi, and I. Heynderickx, “Image integrity and aesthetics: towards a more encompassing
definition of visual quality,” In Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, Vol. 8291, No. 5, p. 35, 2012.

16. J. A. Solomon, A. B. Watson, and A. Ahumada, “Visibility of DCT basis functions:
Effects of contrast masking,” In Data Compression Conference, DCC’94. Proceedings IEEE,
pp. 361–370, Mar, 1994.

17. A. M. Haun, and E. Peli, “Is image quality a function of contrast perception?” In IS&T/SPIE
Electronic Imaging. International Society for Optics and Photonics, pp. 86510C–86510C,
2013.

18. P. G. Barten, “Contrast sensitivity of the human eye and its effects on image quality,”
Washington: SPIE Optical Engineering Press, vol. 21, 1999.

19. T. N. Pappas, R. J. Safranek, and J. Chen, “Perceptual criteria for image quality evaluation,”
Handbook of image and video processing, pp. 669–684, 2000.



300 C. Deng et al.

20. H. Liu, and I. Heynderickx, “A perceptually relevant no-reference blockiness metric based on
local image characteristics,” EURASIP Journal on Advances in Signal Processing, 2009.

21. Z. Wang, and X. Shang, “Spatial pooling strategies for perceptual image quality assessment,”
In Image Processing, 2006 IEEE International Conference on, pp. 2945–2948, 2006.

22. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: From
error visibility to structural similarity,” Image Processing, IEEE Transactions on, vol. 13, no. 4,
pp. 600–612, 2004.

23. R. Ferzli, and L. J. Karam, “A no-reference objective image sharpness metric based on the
notion of just noticeable blur (JNB),” Image Processing, IEEE Transactions on, vol. 18, no. 4,
pp. 717–728, 2009.

24. U. Engelke, H. Kaprykowsky, H. J. Zepernick, and P. Ndjiki-Nya, “Visual attention in quality
assessment,” Signal Processing Magazine, IEEE, vol. 28, no. 6, pp. 50–59, 2011.

25. J. Redi, H. Liu, R. Zunino, ans I. Heynderickx, “Interactions of visual attention and quality
perception,” In IS&T/SPIE Electronic Imaging, International Society for Optics and Photonics,
pp. 78650S–78650S, Feb, 2011.

26. R. Desimone, and J. Duncan, “Neural mechanisms of selective visual attention,” Annual review
of neuroscience, vol. 18, no. 1, pp. 193–222, 1995.

27. H. Alers, J. Redi, H. Liu, I. Heynderickx, “Studying the effect of optimizing image quality
in salient regions at the expense of background content,” J. Electron. Imaging, vol. 22, no. 4,
pp. 043012–043012, 2013.

28. M. Fiedler, T. Hossfeld, and P. Tran-Gia, “A generic quantitative relationship between quality
of experience and quality of service,” Network, IEEE, vol. 24, no. 2, pp. 36–41, 2010.

29. H. J. Kim, D. H. Lee, J. M. Lee, K. H. Lee, W. Lyu, and S. G. Choi, “The QoE evaluation
method through the QoS-QoE correlation model,” In Networked Computing and Advanced
Information Management, 2008. NCM’08. Fourth International Conference on Network, IEEE,
vol. 2, pp. 719–725, 2008.

30. M. Siller, and J. Woods, “Improving quality of experience for multimedia services by QoS
arbitration on a QoE framework,” In Proc. of the 13th Packed Video Workshop, 2003.

31. G. Ghinea, and J. P. Thomas, “Quality of perception: user quality of service in multimedia
presentations,” Multimedia, IEEE Transactions on, vol. 7, no. 4, pp. 786–789, 2005.

32. H. Ridder, and S. Endrikhovski, “Image quality is FUN: reflections on fidelity, usefulness and
naturalness,” In SID Symposium Digest of Technical Papers, Blackwell Publishing Ltd, vol.
33, no. 1, pp. 986–989, May, 2002.

33. E. Fedorovskaya, C. Neustaedter, andW. Hao, “Image harmony for consumer images,” In Image
Processing, 15th IEEE International Conference on, 2008.

34. P. Kortum, and M. Sullivan, “The effect of content desirability on subjective video quality
ratings,” Human factors: the journal of the human factors and ergonomics society, vol. 52, no.
1, pp. 105–118, 2010.

35. W. A. Mansilla, A. Perkis, ans T. Ebrahimi, “Implicit experiences as a determinant of
perceptual quality and aesthetic appreciation,” In Proceedings of the 19th ACM international
conference on Multimedia, pp. 153–162, Nov, 2011.

36. S. Mann and R. Picard, “Being ’Undigitial’ with Digital Cameras: Extending Dynamic
Range by Combining Differently Exposed Pictures,” In: Proceedings of IS&T 48th Annual
Conference, Society for Imaging Science and Technology, pp. 422–428, 1995.

37. Spheron, “Spheron HDR VR,” 2008, Available at: http://www.spheron.com/home.html.
38. G. Ward, “Real Pixels,” Graphic Gems, pp. 15–31, 1991.
39. G. Ward, “LogLuv Encoding for Full-Gamut High Dynamic Range Images,” Journal of

Graphics Tools, vol. 3, no. 1, 1998.
40. “Industrial Light & Magic,” OpenEXR, 2008, Available at: http://www.openexr.com/.
41. G. Ward and M. Simmons, “JPEG-HDR: A Backwards-Compatible High Dynamic Range

Extension to JPEG,” In: Proceedings of ACM SIGGRAPH 2006 Courses, 2006.
42. N. Sugiyama, H. Kaida, X. Xue, T. Jinno, N. Adami, and M. Okuda, “HDR Compression Using

Optimized Tone Mapping Model,” In: Proceedings of International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1001–1004, 2009.

http://www.spheron.com/home.html


10 Conclusions and Perspectives 301

43. R. Mantiuk, A. Efremov, K. Myszkowski, and H. Seidel, “Backward Compatible High
Dynamic Range MPEG Video Compression,” ACM Transactions on Graphics, vol. 25, no.
3, pp. 713–723, 2006.

44. F. Banterle, K. Debattista, A. Artusi, S. Pattanaik, K. Myszkowski, P. Ledda, and A. Chalmers,
“High Dynamic Range Imaging and Low Dynamic Range Expansion for Generating HDR
Content,” Computer Graphics Forum, vol. 28, no. 8, 2009.

45. M. Cadik, M. Wimmer, L. Neumann, and A. Artusi, “Evaluation of HDR tone mapping
methods using essential perceptual attributes,” Computers & Graphics, vol. 32, pp. 330–349,
2008.

46. F. Drago, WL.Martens, K. Myszkowski, and H. Seidel, “Perceptual evaluation of tone mapping
operators,” In: Proceedings of the SIGGRAPH 2003 conference on sketches & applications,
New York, NY, USA: ACM Press, 2003.

47. J. Kuang, H. Yamaguchi, C. Liu, G. Johnson, and M. Fairchild, “Evaluating HDR rendering
algorithms,” ACM Transactions on Applied Perception, vol. 4, no. 9, 2007.

48. A. Yoshida, V. Blanz, K. Myszkowski, and H. Seidel, “Perceptual evaluation of tone mapping
operators with real-world scenes,” Human Vision & Electronic Imaging X, San Jose, CA, USA:
SPIE, pp. 192–203, 2005.

49. P. Ledda, A. Chalmers, T. Troscianko, and H. Seetzen, “Evaluation of tone mapping operators
using a high dynamic range display,” In: Proceedings of the 32nd annual conference on
computer graphics and interactive techniques, ACM Press, pp. 640–648, 2005.

50. M. Ashikhmin, J. Goyal, “A reality check for tone-mapping operators,” ACM Transactions on
Applied Perception, vol. 3, no. 4, pp. 399–411, 2006.

51. G. Eilertsen, R. Wanat, R. Mantiuk, and J. Unger, “Evaluation of tone mapping operators for
HDR-video,” In: Computer Graphics Forum Special Issue Proceedings of Pacific Graphics,
2013.

52. M. Narwaria, M. Silva, P. Callet, and R. Pepion, “Tone mapping Based High Dynamic
Range Image Compression: Study of Optimization Criterion and Perceptual Quality,” Optical
Engineering (Special Issue on High Dynamic Range Imaging), vol. 52, no. 10, 2013.

53. M. Narwaria, M. Silva, P. Callet, and R. Pepion, “Impact of Tone Mapping In High Dynamic
Range Image Compression,” In: Proc. Eighth International Workshop on Video Processing and
Quality Metrics for Consumer Electronics (VPQM), 2014.

54. R. Mantiuk, K. Jim, A. Rempel, and W. Heidrich, “HDR-VDP-2: a calibrated visual metric
for visibility and quality predictions in all luminance conditions,” in ACM Transactions on
Graphics (TOG), vol. 30, no. 4, 2011.

55. D. Tsai, Y. Lee, and E. Matsuyama, “Information entropy measure for evaluation of image
quality,” J Digit Imaging, vol. 21, pp. 338–347, 2008.

56. E. Samei, T. R. Nicole, T. D. James, and C. Ying, “Intercomparison of methods for image
quality characterization. I. Modulation transfer functiona,” Medical physics, vol. 33, no. 5,
pp. 1454–1465, 2006.

57. U. Neitzel, G.-K. Susanne, B. Giovanni, and S. Ehsan, “Determination of the detective quantum
efficiency of a digital x-ray detector: Comparison of three evaluations using a common image
data set,” Medical physics, vol. 31, no. 8, pp. 2205–2211, 2004.

58. M. Spahn, “Flat detectors and their clinical applications,” Eur Radiol, vol. 15, pp. 1934–1947,
2005.

59. K. Fettery, and N. Hangiandreou, “Effect of x-ray spectra on the DQE of a computed
radiography system,” Med Phys, vol. 28, pp. 241–249, 2001.

60. T. O. Aydin, R. Mantiuk, K. Myszkowski, and H. P. Seidel, “Dynamic range independent image
quality assessment,” ACM Transactions on Graphics (Proc. of SIGGRAPH), vol. 27, no. 3,
2008.

61. T. O. Aydin, M. Cadik, K. Myszkowski, and H. P. Seidel, “Video quality assessment for
computer graphics applications,” ACM Transactions on Graphics (Proc. of SIGGRAPH), vol.
29, no. 6, 2010.



302 C. Deng et al.

62. J. Korhonen, C. Mantel, N. Burini, and S. Forchhammer, “Searching for the preferred backlight
intensity in liquid crystal displays with local backlight dimming,” In Quality of Multimedia
Experience (QoMEX), 2013 Fifth IEEE International Workshop on, July, 2013.

63. A. Yoshida, V. Blanz, K. Myszkowski, and H. P. Seidel, “Perceptual evaluation of tone mapping
operators with real-world scenes,” In Electronic Imaging 2005 International Society for Optics
and Photonics, 2005.

64. I. Wechsung, M. Schulz, K. P. Engelbrecht, J. Niemann, ans S. Moller, “All users are
(not) equal-the influence of user characteristics on perceived quality, modality choice and
performance,” In Proceedings of the Paralinguistic Information and its Integration in Spoken
Dialogue Systems Workshop, Springer New York, Jan, 2011.

65. J-S Lee, F. D. Simone, and T. Ebrahimi, “Subjective quality evaluation via paired comparison:
application to scalable video coding,” IEEE Transactions on Multimedia, vol. 13, no. 5, pp:
882–893, 2011.

66. C-C Wu, K-T Chen, Y-C Chang, and C-L Lei, “Crowdsourcing multimedia qoe evaluation: A
trusted framework,” IEEE transactions on multimedia, vol. 15, no. 5, pp: 1121–1137, 2013.

67. Q. Xu, Q. Huang, T. Jiang, B. Yan, W. Lin, and Y. Yao, “Hodgerank on random graphs
for subjective video quality assessment,” IEEE Transactions on Multimedia, vol. 14, no. 3,
pp: 844–857, 2012.

68. J. Howe, “The rise of crowdsourcing,” Wired magazine, vol. 14, no. 6, pp: 1–4, 2006.


	Preface
	Editor Bios
	Contents
	1 Introduction: State of the Play and Challenges of Visual Quality Assessment
	1.1 Quality Assessments Based on Entropy and Rate-Distortion Theories
	1.1.1 Quality Assessment for Bitrate- and Quality-Driven Coding Designs
	1.1.2 Scales for Subjective Perceptual Distortion and Quality Measurement
	1.1.3 QoE in Perceptual-Based Visual Signal Coding

	1.2 Perception-Based Approaches to Picture Quality Assessment
	1.2.1 MSE/PSNR with Visual Weighting
	1.2.2 Visual Feature-Driven Quality Metrics
	1.2.3 Natural Scene Statistics Based Perceptual Metrics
	1.2.3.1 Structure Similarity
	1.2.3.2 Visual Information Fidelity
	1.2.3.3 Texture Similarity

	1.2.4 HVS Model-Based Perceptual Distortion Metrics
	1.2.4.1 JND Models
	1.2.4.2 Multi-Channel Vision Model
	1.2.4.3 Suprathreshold Vision Models

	1.2.5 Light-Weight Bit-Stream-Based Models YangWan-bqa12,YangWanXie-nrqa10
	1.2.6 Perceptual Quality and Distortion Assessment of Audiovisual Signals
	1.2.7 Perceptual Quality/Distortion Assessment of 3-D/Multiview Visual Signals

	1.3 PDMs for RpDO in Visual Quality Regulated Services
	1.4 Summary and Remarks
	References

	2 How Passive Image Viewers Became Active Multimedia Users
	2.1 Introduction
	2.2 Subjective Assessment of Visual Quality
	2.2.1 Visual Quality Preference in Displays
	2.2.2 Visual Quality Preference of Processed Signals
	2.2.3 Subjective Assessment of Network-Related Impairments

	2.3 From Visual Quality to Quality of (Viewing) Experience
	2.3.1 Definition of QoE

	2.4 Influencing Factors of QoE
	2.4.1 System Factors
	2.4.1.1 Devices
	2.4.1.2 Signal and Network Variables

	2.4.2 User Factors
	2.4.2.1 Interest
	2.4.2.2 Personality
	2.4.2.3 Age/Gender
	2.4.2.4 Affect/Mood

	2.4.3 Contextual Factors
	2.4.3.1 Physical Environment
	2.4.3.2 Economic Aspects
	2.4.3.3 Social Context


	2.5 Beyond Visual Quality: New Trends in Subjective QoE Assessment
	2.5.1 Beyond the Traditional Screen Technology: QoE of Immersive Viewing Experience
	2.5.2 Beyond Perception: The Role of Aesthetics and Emotion in QoE Appreciation
	2.5.3 Beyond Lab-Based Studies: Methodological Shifts for Reliable QoE Quantification
	2.5.3.1 Psychometric Methods for QoE Measurement
	2.5.3.2 Subjective Testing Outside the Lab


	References

	3 Recent Advances in Image Quality Assessment
	3.1 Subjective Quality Assessment
	3.1.1 Popular IQA Databases
	3.1.2 New Quality Database

	3.2 Objective Quality Assessment
	3.2.1 Classic Quality Metrics
	3.2.2 FR-IQA
	3.2.2.1 Scale Transform-Based FR-IQA
	3.2.2.2 Saliency-Based FR-IQA
	3.2.2.3 Gradient Magnitude-Based FR-IQA
	3.2.2.4 Other Model-Based FR-IQA

	3.2.3 RR-IQA
	3.2.4 NR-IQA

	3.3 Emerging Direction in Quality Assessment
	3.3.1 Comparative IQA
	3.3.2 Multiply Distorted Quality Assessment
	3.3.3 Contrast-Changed IQA

	References

	4 Quality Assessment of Mobile Videos
	4.1 Introduction
	4.2 Subjective Quality Assessment of Mobile Videos
	4.2.1 Methodology and Environment
	4.2.2 Quality Perception of Mobile Videos
	4.2.2.1 Quality of Compression and Transmission Artifacts
	4.2.2.2 Quality of Video Scalability


	4.3 Objective Quality Assessment of Mobile Videos
	4.3.1 General Objective Metrics
	4.3.2 Objective Metrics for Mobile Videos
	4.3.3 Objective Metrics for Video Scalability
	4.3.4 Objective Metrics in Standardization

	4.4 Databases for Mobile Quality Assessment
	4.5 Conclusion and Future Challenges
	References

	5 High Dynamic Range Visual Quality of Experience Measurement: Challenges and Perspectives
	5.1 Introduction
	5.2 The HDR Pipeline
	5.2.1 Capture
	5.2.2 Storage
	5.2.3 Visualization

	5.3 Tone Mapping and Its Impact on Visual Experience
	5.3.1 Tone Mapping Operators
	5.3.2 Tone Mapping and Visual Quality
	5.3.3 Tone Mapping and Visual Attention

	5.4 HDR QoE
	5.4.1 Viewing Conditions in HDR
	5.4.2 Subjective Assessment of HDR Quality
	5.4.3 Objective Assessment of HDR Quality

	5.5 Concluding Remarks and Perspectives
	References

	6 Recent Advances of Quality Assessment for Medical Imaging Systems and Medical Images
	6.1 Introduction
	6.2 Representative Quality Metrics for Medical Imaging Systems and Medical Images
	6.2.1 Conventional Image Quality Metrics
	6.2.1.1 Modulation Transfer Function
	6.2.1.2 Noise Power Spectrum
	6.2.1.3 Signal-to-Noise Ratio
	6.2.1.4 Detective Quantum Efficiency
	6.2.1.5 Peak Signal-to-Noise Ratio
	6.2.1.6 Contrast-to-Noise Ratio
	6.2.1.7 Contrast Improvement Ratio

	6.2.2 A Mutual Information-Based Quality Metric for Medical Imaging Systems

	6.3 Applications of Medical Image Quality Assessment
	6.3.1 Improvement of Image Quality in Mammography Using a Wavelet Transform Based Approach
	6.3.1.1 Background
	6.3.1.2 Methods and Materials
	6.3.1.3 Results and Discussion
	6.3.1.4 Summary

	6.3.2 The Effect of Radiation Dose Reduction on Image Quality in Digital Radiography
	6.3.2.1 Background
	6.3.2.2 Methods and Materials
	6.3.2.3 Results and Discussion
	6.3.2.4 Summary


	6.4 Conclusion
	References

	7 Visual Quality Assessment of Stereoscopic Image and Video: Challenges, Advances, and Future Trends
	7.1 Introduction
	7.2 Challenges in Stereoscopic Quality Assessment
	7.2.1 Visual Discomfort
	7.2.2 Binocular Vision
	7.2.3 Extra Dimensionality
	7.2.4 Quality Assessment Databases

	7.3 Advances in Stereoscopic Quality Assessment
	7.3.1 Stereoscopic Image Quality Assessment
	7.3.1.1 Stereoscopic IQA Without Depth/Disparity Information
	7.3.1.2 Stereoscopic IQA with Depth/Disparity Information
	7.3.1.3 Binocular Vision
	7.3.1.4 Cyclopean Image

	7.3.2 Stereoscopic Video Quality Assessment
	7.3.2.1 Stereoscopic VQA Without Depth/Disparity Information
	7.3.2.2 Stereoscopic VQA with Depth/Disparity Information
	7.3.2.3 Binocular Vision

	7.3.3 Databases
	7.3.3.1 Stereoscopic/3D Image Databases
	7.3.3.2 Stereoscopic/3D Video Databases

	7.3.4 Performance Evaluation

	7.4 Future Trends
	7.4.1 Quality of Experience
	7.4.2 Content Diversity
	7.4.3 Natural Scene Statistical Modeling

	References

	8 Retargeted Image Quality Assessment: Current Progresses and Future Trends
	8.1 Introduction
	8.2 Retargeting Methodologies for Visual Signals
	8.3 Subjective Approaches for Retargeted Image Quality Assessment
	8.3.1 RetargetMe Database
	8.3.1.1 RetargetMe Database Construction
	Source Image
	Subjective Testing
	8.3.1.2 Subjective Analysis

	8.3.2 CUHK Retargeting Database
	8.3.2.1 CUHK Retargeting Database Construction
	Source Image
	Subjective Testing
	8.3.2.2 Processing of Subjective Ratings
	Subjective Agreement
	Screening of the Observers


	8.4 Objective Approaches for Retargeted Image Quality Assessment
	8.4.1 Objective Quality Metrics
	8.4.1.1 Scale Space Matching
	8.4.1.2 MPEG-7 Descriptors
	8.4.1.3 Earth Mover's Distance
	8.4.1.4 Bidirectional Similarity
	8.4.1.5 SIFTflow
	8.4.1.6 Pyramid Histogram of Visual Words (PHOW)
	8.4.1.7 GIST

	8.4.2 Performances on RetargetMe Database
	8.4.2.1 Correlation
	8.4.2.2 Significance Test
	8.4.2.3 Analysis

	8.4.3 Performances on CUHK Retargeting Database

	8.5 Future Trends
	References

	9 Quality Assessment in Computer Graphics
	9.1 Introduction
	9.2 Image Quality Metrics in Graphics
	9.2.1 Metrics for Rendering Based on Visual Models
	9.2.2 Open Source Metrics
	9.2.3 Data-Driven Metrics for Rendering
	9.2.4 HDR Metrics for Rendering
	9.2.5 Tone-Mapping Metrics
	9.2.6 Aesthetics and Naturalness

	9.3 Quality Metrics for 3D Models
	9.3.1 Model-Based Metrics
	9.3.2 Image-Based Metrics

	9.4 Subjective Quality Assessment in Graphics
	9.4.1 Scaling Methods
	9.4.2 Specificity of Graphics Subjective Experiments
	9.4.2.1 Global vs. Local
	9.4.2.2 Large Number of Parameters
	9.4.2.3 Specifics of Tone-Mapping Evaluation
	9.4.2.4 Volatility of the Results

	9.4.3 Subjective Quality Experiments
	9.4.3.1 Image and Video Quality Assessment
	9.4.3.2 3D Model Quality Assessment

	9.4.4 Performance of Quality Metrics
	9.4.4.1 Image Quality Assessment for Rendering
	9.4.4.2 3D Model Quality Assessment


	9.5 Emerging Trends
	9.5.1 Machine Learning
	9.5.2 3D Animation
	9.5.3 Material and Lighting
	9.5.4 Toward Merging Image and Model Artifacts

	References

	10 Conclusions and Perspectives
	10.1 Summary
	10.2 Perspectives
	References


