

S. Balandin et al. (Eds.): NEW2AN/ruSMART 2014, LNCS 8638, pp. 62–69, 2014.
© Springer International Publishing Switzerland 2014

Geo-Coding and Smart Space Platforms Integration
Agent Performance Testing and Analysis

Kirill Yudenok

Saint-Petersburg State Electrotechnical University “LETI”,
Saint-Petersburg, Russia

kirill.yudenok@gmail.com

Abstract. Internet of Things, Smart Spaces and Geo-coding technologies are
fastest growing directions in modern mobile market and urban environments
[1, 2]. This is due to the advent of various services that using common
technologies, as well as to develop common requirements and architectures for
using geo-contextual services in semantic data processing. Location is a
mandatory requirement for the Internet of Things and Smart Spaces directions
products, because geo-context is a one of the factor to determine the location of
subjects in various environments. As a result, it was decided to integrate geo-
coding and smart spaces platforms, for the possibility of using geo-context in
the semantic space. As an implementation used two open source software
platforms – Geo2Tag and Smart-M3. The article discusses an integration agent
performance testing and its analysis, provided recommendations for integration
mechanisms optimization.

Keywords: Geo-coding, Smart Spaces, Internet of Things, Smart-M3, Geo2Tag,
LBS.

1 Introduction

Geo-coding1 and Smart Space [3] directions are gaining momentum every day. The
appearance of various services that adapt to constantly changing conditions, services,
that allowing to markup various objects of the world (virtual or real objects). This is
the actual day services, that enjoyed worldwide.

Geo-coding systems markup real or virtual objects by adding the geographical
coordinates and time. In turn, smart space provides access to distributed semantic
information and communication field for software services, which is being run on
various type of devices (personal, autonomous computers, robots etc.). These two
directions are mutually different from each other, but together complement each
other and adds a new features to the overall system such as, pro-activeness, context
awareness, machine-to-machine interactions, platforms possibilities [4]. By combining
these platforms will be reached the ability to define and discover objects in a described
semantic space. Geo-coding capabilities will not only markup the existing objects, but

1 Geo-coding – http://en.wikipedia.org/wiki/Geocoding

 Geo-Coding and Smart Space Platforms Integration Agent Performance Testing 63

also expand the space with new data, handle the situations with the new objects, as
well as track their location in space and time.

Geo-context is not replaceable component for the Internet of Things and Smart
Spaces directions. In our case, access to the geo-context is obtained by the Geo2Tag
[5] platform, this is a geographical context marked up on a virtual world map. Access
to the geo-context may also be obtained by using positioning technologies or special
sensors.

Geo-context use cases in the Internet of Things and Smart Spaces directions, for
example, assistance to find a parking space, monitoring energy in the city, assistance
in finding electric car charger stations, notification of bus arrival, assistance after a car
crash, notification of car traffic jam, location based dating, location based marketing
etc [2, 3].

In this article we will talk about testing and performance analysis of the basic
mechanisms for the geo-coding and smart space platforms integration agent. The
paper is structured as follows: Chapter 2 briefly discusses integration platforms and
their main features, in Chapter 3 describes the performance testing methodology of
the platforms integration agent, Chapter 4 discusses the performance testing details, in
Chapter 5 shows the performance testing results, its brief analysis and provides the
optimization recommendations for the basic integration mechanisms, Chapter 6
summarizes the work.

2 Integration Platforms – Geo2Tag and Smart-M3

To support the geo-coding possibilities in the smart space as a geo-coding platform
serves a Geo2Tag2 system, which implement the basic functionality for working with
geo-data. Its main features – users and data channels management, basic operations
with geo-data (load tags, write tags etc.), multiple geo-data filtering mechanisms
(spatial and temporal filtration). Geo2Tag platform includes a full server that handles
and stores all geo-data. Platform is implemented using REST API technology, all
logic is written on high-level programming language – C++/Qt, Java. Granted API
allow to develop services for a variety desktop and mobile platforms (Windows,
Linux, Android, J2ME, Web).

Interaction with the smart space provides Smart-M33 platform [6, 7, 8]. Its main
task is to provide the infrastructure for the exchange of semantic information between
different entities (software or hardware). The platform provides a distributed data
storage in a special semantic information broker (SIB) and it is processing by means
of developed agents – knowledge processors (KP). Programming interfaces allow to
develop KP in the following languages – C, C++/Qt, C#, Python, Java, PHP,
Javascript.

Common requirements, integration agent architecture and its detailed description
has been presented in [9]. The main functional requirements are mechanisms for

2 Geo2Tag – http://geo2tag.org
3 Smart-M3 – http://en.wikipedia.org/wiki/Smart-M3

64 K. Yudenok

converting data from one platform format to another, spatial and temporal filtration.
The main non-functional requirements are high-performance solution for handling
large amounts of data (cloud based massive offline processing and local context
indexing/caching) and compatibility with Geo2Tag and Smart-M3 platforms interfaces
(i.e SSAP or REST).

As a result of the platforms integration have been developed a special agent which
main tasks are:

1. providing an interface to the semantic and geo-data;
2. distributed storage for semantic and geographical information;
3. interface for the association of semantic objects with geo-data;
4. spatial and temporal filtration (Smart-M3 and Geo2Tag).

Geo-space conceptual model with additional knowledge processors (Cloud-
backend, Big Data, context management, sensors) is shown at Fig. 1.

Fig. 1. Geo-space conceptual model

3 Performance Testing Methodology of the Platforms
Integration Agent

Geo2Tag and Smart-M3 platforms integration agent was tested on a dedicated virtual
machine with installed Smart-M3 platform and below listed characteristics, access to
the Geo2Tag platform is performed over the Internet using a HTTP/REST protocol:

– CPU – Intel i7, 3.4 Mhz, 4 cores;
– RAM – 8 Gb;
– OS – Ubuntu 14.04 LTS;
– Geo2Tag – 0.31 version (Qt API 4.8);
– Smart-M3 – 0.9.01 (redland-1.0.16-unibo (Virtuoso4), redsibd-0.9.01_time,

 sib-tcp 0.81, Libwhiteboard Qt API5).

4 Virtuoso – http://virtuoso.openlinksw.com/
5 Libwhiteboard Qt API – http://sourceforge.net/projects/smart-m3/
files/Smart-M3_v0.9.5-beta/

 Geo-Coding and Smart Space Platforms Integration Agent Performance Testing 65

The testing object is a geo-coding and smart space platforms integration agent and
its basic data processing mechanisms. Testing was conducted of two types –
functional testing of an integration agent mechanisms and integration agent load and
stress performance testing.

For functional testing were developed unit tests that verify the basic mechanisms of
the platforms integration such as platforms data conversion mechanisms, data filtering
techniques and the basic mechanisms of the geo-coding and smart space platforms,
such as login and load data from the Geo2Tag system, query data from the Smart-M3
platform and others.

For performance testing have been prepared tests (scripts) that test system under a
certain load. As a system load acts the different scenarios of the system, as a
permanent data conversion from one format to another and vice versa, repetitive data
filtering methods, query or insert triples. Stress testing was performed for the main
agent repetitive mechanisms - conversion, filtering and data querying.

The main integration agent performance metrics are:

1. query (operation) execution time;
2. the number of operations performed in 1 second;
3. the amount of consumed CPU and memory.

4 Platforms Integration Agent Performance Testing

Performance testing was carried out using a specially designed tool for the Geo2Tag
platform called Profiler [10], whose tasks are:

1. definition and implementation of load tests for any program operation;
2. creation a separate thread for each test with the counting system performance

metrics:

◦ query (operation) execution time;
◦ the number of operations performed in one second.

Listing 1 shows a performance test script example of the filtration tags throw the
Smart-M3 platform interface:

#!/bin/bash
result_dir="./results_r_`date +'%d_%m_%Y_%H_%M_%S'`/";
if [["$#" == "2"]]
then
 steps_count=$1;
 read_requests_count=$2;
else
 steps_count=100; # number of iterations
 read_requests_count=500; # number of queries (for Geo2Tag operations)
fi
mkdir "$result_dir" # results directory

66 K. Yudenok

for ((i=0; i<=steps_count; i++)) ;
do
 echo "$i iteration"
 cool_num=`printf "%08d" $i`;
 ./profiler $read_requests_count g2tFilter 2>"$result_dir/$cool_num"
done

As a result for each integration mechanism was create a separate test, test selection

is performed by a passing name of the operation as a Profiler testing tool parameter.
For each test was created a separate script that deals with an environment setup and
required parameters for the testing tool.

Each test evaluates two system performance metrics – the execution time of the
operation (query) and the number of operations performed in one second. Operation
execution time metric measures the operation runtime since the beginning of the
function execution using the Qt API msecsTo() function, the number of operations
performed in one second metric counts the number of operations performed during
one second of time, based on its runtime according to the formula:

number_of_operations_in_1_second = 1000 / operation_time_in_milliseconds (1)

Each test can be performed a number of times, depending on the steps_count
parameter of the script passed to the test main loop. In our case, tests are performed
hundred times to collect the necessary statistics. After the test, all characteristics
recorded to a file with the number of iteration.

As a result of testing were obtained the necessary statistical data that allowing to
say how much time was spent on the operation and the approximate number of
operations performed in a one second. In order to ensure that the statistics is true, for
each operation statistical data calculated the necessary characteristics – the
mathematical expectation, variance and standard deviation, which allow to understand
the spread of statistical data and their deviation. Also, all the statistical data verified
by the "three sigma"6 rule, confirming that all the random variables are normally
distributed.

5 Platforms Integration Agent Performance Testing Analysis

The main platforms integration agent performance tests are:

1. loading geo-data from the Geo2Tag platform (basic filter by radius);
2. triples filtering through the Geo2Tag platform;
3. geo-data filtering through the Smart-M3 platform;
4. convertion tags to triples and vice versa;
5. insert data to the Smart-M3 platform;
6. query data from the Smart-M3 platform.

6 Three sigma rule – http://en.wikipedia.org/wiki/Standard_deviation

 Geo-Coding and Smart Space Platforms Integration Agent Performance Testing 67

Table 1. Integration agent performance testing summary results

Test case Mean value (ms) Standard deviation (ms)

Load tags from the Geo2Tag platform by radius 538 79.59

Triples filtering through the Geo2Tag platform 133 31.17

Geo-data filtering through the Smart-M3 platform 1621 424.97

Conversion 1000 triples to the tags 31.01 32.72

Conversion 1000 tags to the triples 27.24 15.73

Insert triples to the Smart-M3 platform 3015.4 173.16

Query triples from the Smart-M3 platform 1302.19 90.16

Summary results of the obtained agent integration performance testing

characteristics are presented in Table 1.
From the the summary table of obtained characteristics seen that some integration

mechanisms takes a long processing time intervals, among them:

1. geo-data filtering through the Smart-M3 platform – 1-2 seconds;
2. insert triples to the Smart-M3 platform – 3-4 seconds;
3. query triples from the Smart-M3 platform – 1-1.5 seconds.

As a result, we analyzed the execution time of the main data integration
mechanisms. As an function calls analysis used tool – callgrind7, which is part of the
profiler – valgrind8 tool and kcachegrind9 tool.

As a result, it was revealed two types of major problems:

1. Multithreaded data processing in the Smart-M3 platform components.
2. Processing and parsing of obtained results for the basic Smart-M3 operations

– insert, update, query (Libwhiteboard Qt API).

In the first case the profiling showed that the Smart-M3 insert and query tests
incorrectly handle threads. As a result, the platform integration agent and Smart-M3
platform were subjected to analysis using the Intel Threads Profile, which is a part of
Intel Inspector XE 201310 tool. Where it was found that the redsib daemon and sib-tcp
Smart-M3 platform components have errors while working in multi-threaded mode
when performing basic operations. Smart-M3 whiteboard daemon component and
platforms integration agent (GCSS) are single-threaded.

The second type of the problem associated with the processing of the basic Smart-
M3 operations using libwhiteboard Qt API. At first, each Smart-M3 operation (insert,
update, query) generates string results output which is converted into XML-tree

 7 Callgrind – http://valgrind.org/docs/manual/cl-manual.html
 8 Valgrind – http://valgrind.org/
 9 Kcachegrind – http://kcachegrind.sourceforge.net
10 Intel Inspector XE 2013 toolset – https://software.intel.com/en-us/

intel-inspector-xe

68 K. Yudenok

results of the operation. Thus, the XML-tree composition for a large number of triples
and their periodical query lead to loss of performance while performing basic
operations. The solution to this problem is to use special data structures or switch to a
binary data transfer protocol, such as KSP [11].

Also have been fixed error in the tags–triples conversion mechanism while
removing duplicates triples, operation time reached ~ 50 ms. It should be noted that
the usage of the Smart-M3 platform together with Virtuoso significantly increase
performance in the basic triples processing operations. Performance boost when
performing basic operations reached approximately 50%, but the libwhiteboard Qt
API insert and query operations are fairly slower than in Python API.

According to the above analysis we may suggest the following recommendations
for the optimization integration mechanisms:

1. multithreading errors correction for the Smart-M3 platform components –
redsibd, sib-tcp;

2. replacing the current Smart-M3 platform SSAP protocol to the binary protocol,
for example, KSP;

3. use Smart-M3 platform with Virtuoso (increase productivity of Smart-M3
platform operations ~ 50%);

4. use Smart-M3 Python API or optimization of the basic platform operations
(insert, update, query) for the Libwhiteboard Qt API;

5. use SparQL11 queries instead of the usual query (Libwhiteboard Qt API does not
support SparQL queries);

6 Conclusion

This article presented the performance testing results and its analysis of the basic geo-
coding and smart spaces platforms integration mechanisms. The testing revealed that
some of the agent integration mechanisms are need to be improved, and some one
depends on the platform, protocol and API. Profiling showed that the integration agent
has the following problems – Smart-M3 platform miltithreading problem, unsuitable
protocol for data exchange, outdated Qt API. The first two problems are mandatory,
because they determine the overall platform performance. Recommendations for the
mechanisms optimization will help to increase the agent performance.

Still open questions for further development – performance of the whole system
(multithreading errors correction, binary data exchange protocol for the Smart-M3
platform, optimization of basic operations in Qt API), cloud computing.

References

[1] Vermesan, O., Friess, P.: Internet of Things: Converging Technologies for Smart
Environments and Integrated Ecosystems, Aalborg. River publishers series in
communications (2013) ISBN: 978-87-92982-73-5

11 SparQL – http://en.wikipedia.org/wiki/SPARQL

 Geo-Coding and Smart Space Platforms Integration Agent Performance Testing 69

[2] van der Zee, E., Scholten, H.: Application of geographical concepts and spatial
technology to the Internet of Things. Vrije University, Faculty of Economics and
Business Administration, Amsterdam, Research Memorandum 33 (2013)

[3] D2.2 Requirements, Specifications and Localization and Context-acquisition for IoT
Context-Aware Networks. uBiquitous, secUre inTernet-of-things with Location and
contExt-awaReness (BUTLER), Jacobs University Bremen gGmbH (JUB), Project
number 287901 (October 2012)

[4] Balandin, S., Waris, H.: Key properties in the development of smart spaces. In:
Stephanidis, C. (ed.) Universal Access in HCI 2009, Part II. LNCS, vol. 5615, pp. 3–12.
Springer, Heidelberg (2009)

[5] Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context Aware Computing
for The Internet of Things: A Survey. IEEE Communications Surveys and
Tutorials PP(99), 1–44 (2013)

[6] Bezyazychnyy, I., Krinkin, K., Zaslavskiy, M., Balandin, S., Koucheravy, Y.: Geo2Tag
Implementation for MAEMO. In: 7th Conference of Open Innovations Framework
Program FRUCT, Saint-Petersburg, Russia (2010)

[7] Honkola, J., Laine, H., Brown, R., Tyrkkö, O.: Smart-M3 Information Sharing Platform.
In: 1st Workshop on Semantic Interoperability in Smart Spaces (2010)

[8] Honkola, J., Laine, H., Brown, R., Oliver, I.: Cross-Domain Interoperability: A Case
Study. Nokia Research Center, Helsinki (2009)

[9] Korzun, D., Balandin, S., Luukkala, V., Liuha, P., Gurtov, A.: Overview of Smart-M3
Principles for Application Development, AIS (2011)

[10] Krinkin, K., Yudenok, K.: Geo-coding in Smart Environments: Integration Principles of
Smart-M3 and Geo2Tag. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.)
NEW2AN 2013 and ruSMART 2013. LNCS, vol. 8121, pp. 107–116. Springer,
Heidelberg (2013)

[11] Zaslavsky, M., Krinkin, K.: Geo2tag Performance Evaluation. In: Proceedings of the
12th Conference of Open Innovations Association FRUCT and Seminar on e-Travel,
Oulu, Finland (2012)

[12] Kiljander, J., Morandi, F., Soinen, J.-P.: Knowledge Sharing Protocol for Smart Spaces.
International Journal of Advanced Computer Science and Applications 3(9) (2012)

	Geo-Coding and Smart Space Platforms Integration Agent Performance Testing and Analysis
	1 Introduction
	2 Integration Platforms – Geo2Tag and Smart-M3
	3 Performance Testing Methodology of the Platforms Integration Agent
	4 Platforms Integration Agent Performance Testing
	5 Platforms Integration Agent Performance Testing Analysis
	6 Conclusion
	References

