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Abstract. Smart-M3 platform supports development of applications
consisting of autonomous knowledge processors that interact by shar-
ing information in a smart space. In this paper, we introduce a notifica-
tion model for ontology-based design and programming of interactions in
such applications. Our model is based on the two Smart-M3 fundamen-
tals: subscription operation and RDF representation. The applicability is
demonstrated on the case study of SmartScribo system for multi-blogging
and on simulation experiments for performance evaluation.
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1 Introduction

The smart spaces paradigm aims at development of ubiquitous computing en-
vironment that acquires and applies knowledge to adapt services to the inhabi-
tants [1]. Smart-M3 interoperability platform [2] provides means for creating and
deploying smart spaces. (M3 stands for Multidevice, Multidomain, and Multi-
vendor.) Examples of Smart-M3 applications are SmartScribo system [3] for per-
sonalized semantic multi-blogging and SmartRoom system [4] for collaborative
work in a spatially localized digital environment. In Smart-M3, a smart space
realizes a shared knowledge base for use by applications [2, 5]. Each application
consists of knowledge processors (KP) that interact in the smart space using
blackboard [6] and publish/subscribe [7] interaction models. The information
representation is RDF-based, employing Semantic Web technologies [8].

Application developers are faced with problems of design and programming
of interacting KPs. In addition to blackboard-based read/write primitives, ad-
vanced interaction is based on publish/subscribe: whenever one KP publishes
data in the smart space some other KPs are notified about the changes due to
subscription. When many KPs participate and much data are shared such inter-
action becomes complicated for implementation. In this paper we analyze this
design and programming problem. We introduce a notification model that sys-
tematizes the interaction part on the application level and provides properties
to implement on each individual KP. Notification model allows construction of
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information flows coupling a publisher KP with its subscriber KPs. Notification
model is ontology-based, enhancing the ontology of the whole application.

The rest of the paper is organized as follows. Section 2 states the problem
of design and programming of knowledge processors interaction in a Smart-M3
application. Section 3 describes the notification model and its design properties.
Section 4 analyses the applicability of the model using SmartScribo system as
a case study. Section 5 evaluates the performance using simulation experiments.
Section 6 concludes the paper.

2 Smart-M3 Application: Interaction in Smart Space

Each smart space provides a shared information store for its participants. Black-
board model [6] is used for data exchange: participants write/read data to/from
the shared information store. The model is extended with publish/subscribe [7]:
participants subscribe on specific content and receive updates made by others.

Smart-M3 platform [2] is open-source platform for implementing smart spaces.
The key architectural component of Smart-M3 is Semantic Information Broker
(SIB) that provides access to the shared content. Participants are knowledge
processors (KPs); they are software agents running on devices of the environ-
ment. Publish/subscribe operation supports advanced interaction of KPs when
subscriber KPs make persistent queries and react on asynchronously incoming
updates [9]. The idea of such interaction is shown in Fig. 1.

Shared content is represented using Resource Description Framework (RDF)
of the Semantic Web [8]. An RDF model consists of a set of RDF triples, each has
the form of “subject–predicate–object”. Such a representation forms a directed
graph with subjects and objects as nodes and predicates as links.

Every KP has its own description of content the KP shares participating in
the smart space. This content forms a partial RDF graph stored in the smart
space (maintained by SIB). An RDF model is machine-oriented and does not
provide human-oriented mechanisms to describe semantics of the content nor de-
termine problem-aware content representation structure. For this purpose, KP
developers apply ontologies at the design phase. Application ontology declara-
tively describes the application domain. Overlapping of individual KP ontologies

Fig. 1. Smart-M3 concept
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makes interaction between KPs possible: each KP tracks changes in shared con-
tent if the latter is described within the KP’s ontology.

Ontologies can be described with web ontology language (OWL). On one
hand, an OWL ontology is serializable to RDF triples. On the other hand it
allows describing application domain data and processes in terms of classes and
their properties, which provides a high abstraction level for Smart-M3 applica-
tion developers [10, 11].

From the OWL point of view smart space content consists of linked objects,
called individuals. Any individual is an instance of particular ontological class of
the application ontology. From the RDF point of view, an individual is a set of
RDF triples with the same value of triple subject (i.e., an RDF subgraph). This
triple subject is called the identifier of individual. We shall use descriptions in
RDF as it allows to see what is actually stored in the smart space. (Note that SIB
always operates on the RDF level an RDF triple store is used on the bottom.)
Nevertheless we still exploit the term “individual” for simpler intuition.

One KP (or interaction of several KPs) constructs a service. There are KPs
involved into service provision and KPs acting as service consumers. An example
with two KPs—a client KP and a service KP—is shown in Fig. 2. Each user runs
her/his client KP, which changes some properties of different individuals. The
service KP has the constraint: to process modified individuals correctly the KP
needs to receive the whole updated individual, not just updated properties sepa-
rately. With subscription on separate properties of individuals, however, service
KP subscription would run several times (each time with one edited property). It
is not obvious how to estimate a moment when individual modification is finished
and it is ready for processing on the service KP. The situation becomes more
complicated when several individuals are modified and needed to be processed
at the same time. In this case it is more convenient when one KP notifies other
KPs about the need of processing specific individuals when they are already
modified in the smart space. Thus we prevent reading information that is not
ready for processing. It can be considered as some kind of access control mecha-
nism. Another approach of access control is presented in [12] where undesirable
changing of information is prohibited.

Let KP sender and KP receiver need to interact. The KP sender needs to
pass a portion of information to the KP receiver to attain a required action.

Fig. 2. Schematic example of subscription on several properties
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This information can be represented either text data or individuals from the
application ontology. The result of interaction is information transfer or service
delivery. We consider the following problems where interaction of KPs appears:
1) service provision, 2) service composition, 3) service information dissemination.

In service provision, one KP consumes a service from another KP, and the
former usually runs on a personal user device. Service composition implies that
a service provides input for another service, forming a new composed service.
Besides, services can disseminate some information between each other.

In general, several KPs are involved into interactive activity. To solve this
design problem of interacting KPs we introduce a notification model. It focuses
on implementation of basic pair-wise interaction between the involved KPs.

3 Notification Model

Given a Smart-M3 application, its notification model describes possible situa-
tions for KPs to interact with each other. We consider the following classes of
situations where one KP (receiver, denote KPrcv) or more ones are involved into
interaction by another KP (sender, denote KPsnd).

Request: KPrcv performs a given operation (service) based on data provided
by KPsnd.

Event: KPrcv reacts on a particular event (informational fact) that KPsnd is
disseminating.

These situations defines two functional viewpoints on KPrcv in a Smart-M3
application: a data processor or a reacting unit. The former is closer to procedure
call programming and the latter follows event-driven programming.

Consider the following pairwise interaction where asynchronous communica-
tion applies the publish/subscribe model

KPsnd ↔ KPrcv. (1)

The following properties are achieved for interacting KPs.

One-to-many: A single KPsnd can affect many KPrcv at once.
Decoupling: Sending and receiving do not block KPsnd and KPrcv.
Anonymity: KPsnd and KPrcv do not need to know each other.

We define a notification an abstract informational message to be sent by KPsnd

and to be received by KPrcv if these KPs need to attain required interaction
(performing operation, returning the result, informing on event). In our model,
a notification is represented as an RDF triple or a linked set of them. Note
that the basic subscription mechanism of Smart-M3 operates on the RDF level,
though OWL-aware extensions are available for application developers [9].

Notification process in interaction (1) is depicted in Fig. 3. The steps are
implemented in application logic of both KPsnd and KPrcv. Before the process,
the KPs subscribe for the notifications defined in the model.
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Fig. 3. Notification process for interacting KPsnd and KPrcv

1. KPsnd publishes the notification in the smart space to start the required
interaction with all appropriate KPrcv.

2. KPrcv recognizes the act of publishing due to the subscription and receives
the notification data.

3. KPrcv performs a corresponding operation based on the notification data.
4. KPrcv publishes a response notification with the operation result.
5. KPsnd receives a response notification due to subscription mechanism.

Steps 1–3 are mandatory for interaction (1) since they implement forward actions
in the interaction loop. Steps 4–5 implement feedback actions for the response
notification, which are omitted if not needed by the application logic.

We distinguish the following design properties of a notification: representa-
tion, activation, function, response, clearing, performance. The KP developer
implements these properties when programming the logic of a given KP.

Representation: A simple notification is represented with a single RDF triple.
The general form is

〈notification id〉, 〈notification name〉, 〈value〉

where 〈notification id〉 is the identifier of notification individual,
〈notification name〉 is the name of operation or event, 〈value〉 is the value of
parameter (string data or identifier of some individual from the application on-
tology). The parameter holds data needed to pass to the notification receiver.

A compound notification consists of several RDF triples. It allows passing
several parameters within the notification. The general form is

〈notification id〉, 〈notification name〉, 〈individual id〉
〈individual id〉, 〈parameter1〉, 〈value1〉
...
〈individual id〉, 〈parameterN〉, 〈valueN〉
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Fig. 4. Relation between a notification and the application ontology

where 〈notification id〉 is the identifier of notification individual,
〈notification name〉 is the name of operation or event, 〈individual id〉 is iden-
tifier of the additional notification individual which stores other notification
parameters, 〈parameterN〉 is the notification parameter name, 〈valueN〉 is the
notification parameter value.

For a given application, its notification model implements an extension to
the application ontology. Recall that every notification has parameter(s) and
the value is stored as an object of notification RDF triple(s). The value can be
either string data or ontology data. Ontology data are represented as a set of
individuals in the smart space. Therefore, a notification can be linked with indi-
viduals in the smart space as schematically shown in Fig. 4. Thereby, interaction
between KPs is performed due to changes in application ontology extension and
not ontology data themselves. Otherwise, passing information from one KP to
another requires to change individuals properties directly, which is not appropri-
ate for data transferring. Moreover notifications can act as information exchange
protocol between KPs operating on completely different ontologies.

Activation: Notifications are divided into two types depending on the reactive
and proactive styles of activation at the KP sender side.

Reactive notification is used when a particular command (e.g., user action)
directs KPsnd to call KPrcv to perform operation (service). In this case, KPsnd

typically awaits for a response notification with the operation result.
In proactive notification, KPsnd sends the notification with no explicit com-

mand from the user. Typically, KPsnd does not wait for response. The user
context forms implicit dependence on user activity: KPsnd analyzes the context
in the background (in parallel with primary user activity) and then activates
events for other KPs.

Consider an example of reactive notification. A user consumes a service from
her/his client KP. The service is constructed by another KP (service KP). When
the user makes a control action (e.g., pushing a button) then the client KP sends
reactive notification to the service KP and waits for the result. In this case, user
is aware that a specific operation is going to be executed and it starts after the
particular control command.
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An example of proactive notification uses two KPs: client KP and recom-
mender KP. The latter analyzes the data the user is working with and suggests
related data from available sources. On the client KP the user browses service
information and in parallel the KP sends a notification to the recommender KP
(no explicit user action). The recommender KP reacts and finds a list of rec-
ommendations. In this case, user can be unaware that something is happening
during her/his primary activity. A recommender KP can be even turned off: the
system continues with a reduced service set. Proactive notification are usually
used in the event-based interaction between KPs.

Function: A notification for interaction (1) can be a request notification or
event notification. Request notification is used for another KP to perform certain
operation. Event notification is used for informing another KP about an event.
The previous examples applied request notifications: the client KP requests the
service KP to perform some operations. Event notification is used to notify
service KPs about the current user activity, e.g., a notification is sent when
the user is reading. Then the service KP provides additional information (as a
recommender KP). Also, the fact of reading can be used to block the service KP
to deliver its service (e.g., reading is non-interrupted activity).

Response: Depending on the notification destination its KP sender is waiting or
not for a response notification (contains operation result). While each client KP
notifies a service KP to perform an operation, waiting for a response notification
can be needed to show user whether operation was succeed or not. On the con-
trary, a KP client sending notification about user reading event does not wait
for a response as it is possible that no KP will receive and process it. Request
interaction between KPs most likely includes response notification while event
interaction does not.

Clearing: A request notification is removed by its receiver after completion of
required operation. An event notification is removed by its sender, which deter-
mines itself the time the notification is kept published.

Performance: Subscription is resource-consuming, thus every KP needs to min-
imize the number of subscriptions. Notification processing can be implemented
within one subscription using RDF triple template with a fixed subject:

〈notification id〉, ∗, ∗ (2)

where ∗-mask represents any value. Each KP has its own unique 〈notification id〉.
In summary, our notification model is a universal solution to make interaction

implementation between KPs easier. Note that 100% delivery of subscription
updates to subscribers is not guaranteed. For instance, some packets are lost in
the communication network. Each KP may assume the best-effort delivery only.
Additional resilience mechanisms should be built into application KP logic.
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4 Case Study: SmartScribo System

Let us consider a particular Smart-M3 application to show how our notifica-
tion model can be applied. SmartScribo system [3] aims at semantic mobile
multi-blogging: mobile users interact with multiple blogs at many blog services
simultaneously. The smart space stores data related to user blogs and personal
information. The architecture is shown in Fig. 5. There are three types of KPs:
KP client, KP blog processor, and KP mediator. Each KP client is installed
on a personal mobile device. KP blog processor implements interaction with a
particular blog service. For each blog service the system has a separate KP blog
processor. KP mediator is responsible for additional processing of smart space
content (e.g., personalized blog recommendation).

The user workflow is organized as follows. On the KP client its user specifies
information about her/his blogs. The KP blog processors receive information
about posts from that blogs. Then the user can read/edit existing posts or cre-
ate new ones. When a new post is created or existed one is updated the blog
processors reflect these changes at the blog service.

The smart space can keep a lot of blogs and posts of many users. For a
blog processor it becomes difficult to detect which posts were updated using
subscription on selected properties of individuals. For example, a post individual
has such properties as title, text, tags. Blog processor can subscribe on triples:
〈post id〉–title–∗ and similarly for other properties. It can even subscribe on
triple 〈post id〉–∗–∗. Both cases have the problem: the KP receives subscription
updates separately on each property.

When can updated post individual be transferred to blog service? Moreover,
posts are created and deleted dynamically in the smart space, and it is not
easy to set/unset subscription on each individual every time. Although a blog

Fig. 5. SmartScribo system architecture, from [3]
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Table 1. The set of notifications in SmartScribo system

Notification Parameters Description

refreshAccount account individual identifier receive blog account information

refreshPosts account individual identifier receive posts for given account

sendPost account individual identifier,
post individual identifier

send post to account

editPost old post individual identifier,
new post individual identifier

update old post to a new one

delPost account individual identifier,
post individual identifier

delete post

refreshComments account individual identifier receive comments for all posts of
given account

sendComment account individual identifier,
comment individual identifier,
parent individual identifier

send comment to parent message
(post or comment) of given account

delComment account individual identifier,
comment individual identifier,
parent individual identifier

delete comment for given parent
message

processor can subscribe only on properties related to a post individual, i.e. ∗–
title–∗. However it does not solve the problem: subscription will inform about
property changes separately and such updates will be mixed among several posts.
Therefore a solution is to inform a blog processor about the need of performing
particular action with a particular post.

SmartScribo applies the notification model in interaction between KP client
and KP blog processor. The list of all notifications is presented in Table 1. The
notifications are request and reactive as they are sent after user actions and
require blog processor to perform operations. Every notification requires a re-
sponse notification which informs the user about operation result. As parameters
every notification has individual identifier, i.e., subject of triple to represent a
particular account, post, or comment.

Notification “refreshPosts” has the form

Notification-〈service〉, refreshPosts, 〈account id〉
where 〈service〉 is a blog service type (e.g., “LJ” for LiveJournal), and 〈account id〉
is an account individual identifier. Different service identifiers are used to distin-
guish notification for different blog processors. According to (2) each blog proces-
sor subscribes on a triple template where the subject is the service identifier while
predicate and object are of any value. For LiveJornal blog processor the template
is Notification-LJ–∗–∗.

A SmartScribo user specifies her/his blog account credentials using KP client
and presses button to refresh posts list on that account. KP client publishes
the account individual with all necessary properties for accessing it on the blog
service and publishes “refreshPosts” notification. A KP blog processor receives
notification with subscription, extracts account properties from the smart space,
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receives a posts list from the blog service and removes the notification. Then the
blog processor publishes the posts list in the smart space and sends a response
notification to KP client to inform about the operation result.

Notification “sendPost” has the form

Notification-〈service〉, sendPost, 〈notif ind〉
〈notif ind〉, postAcc, 〈account id〉
〈notif ind〉, postId, 〈post id〉

where 〈service〉 represents a blog service type, 〈notif ind〉 is an identifier of ad-
ditional notification individual storing all notification parameters, 〈account id〉
is an account individual identifier and 〈post id〉 — post individual identifier.
A user (from KP client) creates a new post and then publishes this post and
its notification to the smart space. A KP blog processor receives notification
with subscription, and extracts account and post identifiers from the individual.
Then KP extracts post properties using post identifier and sends this post to
the blog service. Then the blog processor removes the processed notification and
publishes a response notification for the KP client.

5 Performance Evaluation

Let t(n) be the time elapsed since sending a notification from KPsnd until re-
ceiving the result at KPrcv. We consider two types of experiments: 1) all n
parameters are retrieving in one subscription query based on (2), 2) each pa-
rameter i = 1, 2, . . . , n is received with a separate query (n iterations query)
with the triple template

〈individual id〉, 〈parameteri〉, ∗

The first type represents the best way for KP to subscribe to n-parameter
notification. The second type shows the worst case: KPrcv executes a loop to
query value of each of n parameters. These two types represent lower and up-
per bounds on the performance. Let tbst(n) and twst(n) be the time metrics to
estimate experimentally.

The experimental setup includes SIB running on a server machine. Another
computer hosts KPsnd and KPrcv. Both KPs are implemented in Python. The
use of the same host computer for the KPs simplifies the time measurement since
no synchronization is needed between different computers. The server machine
and KP computer are located in different LANs with RTT = 3 ms on average.

Measurement cycle consist of 1) KPsnd sends an n-parameter notification to
SIB, 2) KPrcv receives the notification from SIB, retrieves values of all n param-
eters, and removes the notification. There are 100 samples for each n.

The plot in Fig. 6 (a) shows the average values for tbst(n) and twst(n). The
values fit well to linear regression, which is constructed for n up to 100. The
shown plot is a truncated version for n ≤ 50, since twst(n) for n > 50 behaves
similarly and the growing difference twst(n)− tbst(n) hides the details of tbst(n).
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(a) (b)

Fig. 6. Experimental behavior of twst(n) and tbst(n)

The linear grows twst(n) is essentially faster compared to tbst(n). It is a clear
consequence of n iterations query implemented in a loop. Notably that it also
leads to higher variability (for each average value its standard deviation is shown
as a vertical bar). The observed linear grows of tbst(n), although low, is due to
more processing at the SIB side and more data to transfer when n increases.
Therefore, we conclude that our notification model preserves reasonable perfor-
mance even for large n.

In Smart-M3 applications, the typical case is relatively small n, see Section 4.
The plot in Fig. 6 (b) shows the finer-grained measurements for n = 1, 2, . . . , 10.
The behavior is again linear, though with less slopes in linear regression. We
conclude that tbst(n) is low and almost constant for this typical case.

The observed grows of slopes of linear regression indicates that there is some
non-linear effect in the performance when n increases. We expect that the effect
is due to 1) search algorithm complexity at the SIB side and 2) data transfer
resources the network provides to KP.

6 Conclusion

The paper presented our notification model for use in Smart-M3 applications.
The model supports coordination of interacting KPs, which are autonomous
distributed entities communicating via information sharing in the smart space.
The RDF nature of the model makes it applicable for almost any Smart-M3
application. The model extends the application ontology with possible requests
and events that KPs use in interaction. We classified the key design properties
of notification, and a KP developer can consider them as programming pat-
terns in interaction logic of KPs. Our case study—SmartScribo system—shows
the feasibility of the model. Further steps of this research are development of
resilience and performance optimization mechanisms related to the underlying
subscription operation of Smart-M3.
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