
Chapter 6
Data Reduction

Abstract The most common tasks for data reduction carried out in Data Mining
consist of removing or grouping the data through the two main dimensions, examples
and attributes; and simplifying the domain of the data. A global overview to this
respect is given in Sect. 6.1. One of the well-known problems in Data Mining is
the “curse of dimensionality”, related with the usual high amount of attributes in
data. Section 6.2 deals with this problem. Data sampling and data simplification are
introduced in Sects. 6.3 and 6.4, respectively, providing the basic notions on these
topics for further analysis and explanation in subsequent chapters of the book.

6.1 Overview

Currently, it is not difficult to imagine the disposal of a data warehouse for an analysis
which contains millions of samples, thousands of attributes and complex domains.
Data sets will likely be huge, thus the data analysis and mining would take a long
time to give a respond, making such analysis infeasible and even impossible.

Data reduction techniques can be applied to achieve a reduced representation of
the data set,it is much smaller in volume and tries to keep most of the integrity of
the original data [11]. The goal is to provide the mining process with a mechanism
to produce the same (or almost the same) outcome when it is applied over reduced
data instead of the original data, at the same time as when mining becomes efficient.
In this section, we first present an overview of data reduction procedures. A closer
look at each individual technique will be provided throughout this chapter.

Basic data reduction techniques are usually categorized into three main families:
DR, sample numerosity reduction and cardinality reduction.

DR ensures the reduction of the number of attributes or random variables in
the data set. DR methods include FS and feature extraction/construction (Sect. 6.2
and Chap. 7 of this book), in which irrelevant dimensions are detected, removed or
combined. The transformation or projection of the original data onto a smaller space
can be done by PCA (Sect. 6.2.1), factor analysis (Sect. 6.2.2), MDS (Sect. 6.2.3) and
LLE (Sect. 6.2.4), being the most relevant techniques proposed in this field.

© Springer International Publishing Switzerland 2015
S. García et al., Data Preprocessing in Data Mining,
Intelligent Systems Reference Library 72, DOI 10.1007/978-3-319-10247-4_6

147

http://dx.doi.org/10.1007/978-3-319-10247-4_7

148 6 Data Reduction

Sample numerosity reduction methods replace the original data by an alterna-
tive smaller data representation. They can be either parametric or non-parametric
methods. The former requires a model estimation that fits the original data, using
parameters to represent the data instead of the actual data. They are closely-related
DM techniques (regression and log-linear models are common parametric data reduc-
tion techniques) and we consider their explanation to be out of the scope of this book.
However, non-parametric methods work directly with data itself and return other data
representations with similar structures. They include data sampling (Sect. 6.3), dif-
ferent forms of data grouping, such as data condensation, data squashing and data
clustering (Sects. 6.3.1, 6.3.2 and 6.3.3, respectively) and IS as a more intelligent
form of sample reduction (Chap. 8 of this book).

Cardinality reduction comprises the transformations applied to obtain a reduced
representation of the original data. As we have mention at the beginning of this book,
there may be a high level of overlapping between data reduction techniques and data
preparation techniques, this category being a representative example with respect to
data transformations. As data reduction, we include the binning process (Sect. 6.4)
and the more general discretization approaches (Chap. 9 of this book).

In the next sections, we will define the main aspects of each one of the aforemen-
tioned strategies.

6.2 The Curse of Dimensionality

A major problem in DM in large data sets with many potential predictor variables is
the the curse of dimensionality. Dimensionality becomes a serious obstacle for the
efficiency of most of the DM algorithms, because of their computational complex-
ity. This statement was coined by Richard Bellman [4] to describe a problem that
increases as more variables are added to a model.

High dimensionality of the input increases the size of the search space in an
exponential manner and also increases the chance to obtain invalid models. It is well
known that there is a linear relationship between the required number of training
samples with the dimensionality for obtaining high quality models in DM [8]. But
when considering non-parametric learners, such as those instance-based or decision
trees, the situation is even more severe. It has been estimated that as the number of
dimensions increase, the sample size needs to increase exponentially in order to have
an effective estimate of multivariate densities [13].

It is evident that the curse of dimensionality affects data differently depending
on the following DM task or algorithm. For example, techniques like decision trees
could fail to provide meaningful and understandable results when the number of
dimensions increase, although the speed in the learning stage is barely affected.
On the contrary, instance-based learning has high dependence on dimensionality
affecting its order of efficiency.

In order to alleviate this problem, a number of dimension reducers have been
developed over the years. As linear methods, we can refer to factor analysis [18] and

http://dx.doi.org/10.1007/978-3-319-10247-4_8
http://dx.doi.org/10.1007/978-3-319-10247-4_9

6.2 The Curse of Dimensionality 149

PCA [7]. Nonlinear models are LLE [25], ISOMAP [26] and derivatives. They are
concerned with the transformation of the original variables into a smaller number
of projections. The underlying assumptions are that the variables are numeric and
that the dimensions can be expressed as combinations of the actual variables, and
vice versa. Further analysis on this type of techniques will be given in this chapter,
especially for the two most popular techniques: PCA and LLE.

A set of methods are aimed at eliminating irrelevant and redundant features,
reducing the number of variables in the model. They belong to the FS family of
methods. They have the following immediate positive effects on the analysis and
mining:

• Speed up the processing of the DM algorithm.
• Improve data quality.
• Increase the performance of the DM algorithm.
• Make the results easier to understand.

Formally, the problem of FS can be defined as follows [14]: Let A be the original set
of features, with cardinality m. Let f represent the desired number of features in the
selected subset B, B ⊂ A. Let the FS criterion function for the set B be represented
by J (B). Without any loss of generality, a lower value of J is considered to be a
better feature subset, thus, J could represent the generalization error. The problem
of FS is to find an optimal subset B that solves the following optimization problem:

min J (Z)

s.t.

Z ⊂ A

|Z | = d

A brute force search would require examining all m!
d!·(m−d)! possible combinations

of the feature set A. A vast number of FS approaches, trends and applications have
been proposed over the years, and therefore FS deserves a complete chapter of this
book: Chap. 7.

Other forms of widely used DR also deserve to be described in this section. They
are slightly more complicated than that previously seen, but also very widely used
in conjunction with advanced DM approaches and real applications.

6.2.1 Principal Components Analysis

In this subsection, we introduction the Principal Components Analysis (PCA) as a
DR method [17]. A detailed theoretical explanation is out of the scope of this book,
hence we intend to give details on the basic idea, the method of operation and the
objectives this technique pursues. PCA is one of the oldest and most used methods
for reduction of multidimensional data.

http://dx.doi.org/10.1007/978-3-319-10247-4_7

150 6 Data Reduction

The basic idea is to find a set of linear transformations of the original variables
which could describe most of the variance using a relatively fewer number of vari-
ables. Hence, it searches for k n-dimensional orthogonal vectors that can best repre-
sent the data, where k ≤ n. The new set of attributes are derived in a decreasing order
of contribution, letting the first obtained variable, the one called principal component
contain the largest proportion of the variance of the original data set. Unlike FS, PCA
allows the combination of the essence of original attributes to form a new smaller
subset of attributes.

The usual procedure is to keep only the first few principal components that may
contain 95 % or more of the variance of the original data set. PCA is particularly useful
when there are too many independent variables and they show high correlation.

The basic procedure is as follows:

• To normalize the input data, equalizing the ranges among attributes.
• To compute k orthonormal vectors to provide a basis for the normalized input

data. These vectors point to a direction that is perpendicular to the others and
are called principal components. The original data is in linear combination of the
principal components. In order to calculate them, the eigenvalue-eigenvectors of
the covariance matrix from the sample data are needed.

• To sort the principal components according to their strength, given by their asso-
ciated eigenvalues. The principal components serve as a new set of axes for the
data, adjusted according the variance of the original data. In Fig. 6.1, we show an
illustrative example of the first two principal components for a given data set.

Fig. 6.1 PCA. X ′ and Y ′ are the first two principal components obtained

6.2 The Curse of Dimensionality 151

• To reduce the data by removing weaker components, with low variance. A reliable
reconstruction of the data could be possible by using only the strongest principal
components.

The final output of PCA is a new set of attributes representing the original data set.
The user would use only the first few of these new variables because they contain most
of the information represented in the original data. PCA can be applied to any type
of data. It is also used as a data visualization tool by reducing any multidimensional
data into two- or three-dimensional data.

6.2.2 Factor Analysis

Factor analysis is similar to PCA in the sense that it leads to the deduction of a
new, smaller set of variables that practically describe the behaviour given in the
original data. Nevertheless, factor analysis is different because it does not seek to
find transformations for the given attributes. Instead, its goal is to discover hidden
factors in the current variables [17]. Although factor analysis has an important role
as a process of data exploration, we limit its description to a data reduction method.

In factor analysis, it is assumed that there are a set of unobservable latent factors
z j , j = 1, . . . , k; which when acting together generate the original data. Here, the
objective is to characterize the dependency among the variables by means of a smaller
number of factors.

The basic idea behind factor analysis is to attempt to find a set of hidden factors
so that the current attributes can be recovered by performing a set of linear transfor-
mations over these factors. Given the set of attributes a1, a2, . . . , am , factor analysis
attempts to find the set of factors f1, f2, . . . , fk , so that

a1 − μ1 = l11 f1 + l12 f2 + · · · + l1k fk + ε1

a2 − μ2 = l21 f1 + l22 f2 + · · · + l2k fk + ε2

...

am − μm = lm1 f1 + lm2 f2 + · · · + lmk fk + εm

where μ1, μ2, . . . , μm are the means of the attributes a1, a2, . . . , am , and the terms
ε1, ε2, . . . , εm represent the unobservable part of the attributes, also called specific
factors. The terms li j , i = 1, . . . , m, j = 1, . . . , k are known as the loadings. The
factors f1, f2, . . . , fk are known as the common factors.

The previous equation can be written in matrix form as:

A − μ = LF + ε

Thus, the factor analysis problem can be stated as given the attributes A, along with
the mean μ, we endeavor to find the set of factors F and the associated loadings L,
and therefore the above equation is accurate.

152 6 Data Reduction

Fig. 6.2 Factors are independent unit normals that are scaled, rotated and translated to compose
the inputs

To find F and L, three common restrictions on their statistical properties are
adopted: (1) all the factors are independent, with zero mean and variance of unity,
(2) all the error terms are also independent, with zero mean and constant variance,
(3) the errors are independent of the factors.

There are two methods for solving the factor model equations for the matrix K
and the factors F: (1) the maximum likelihood method and (2) the principal com-
ponent method. The first assumes that original data is normally distributed and is
computationally expensive. The latter is very fast, easy to interpret and guarantees
to find a solution for all data sets.

1. Unlike PCA, factor analysis assumes and underlying structure that relates the
factors to the observed data.

2. PCA tries to rotate the axis of the original variables, using a set of linear trans-
formations. Factor analysis, instead, creates a new set of variables to explain the
covariances and correlations between the observed variables.

3. In factor analysis, a two-factor model is completely different from a three-factor
model, whereas in PCA, when we decide to use a third component, the two first
principal components remain the same.

4. PC is fast and straightforward. However, in factor analyses, there are various
alternatives to performing the calculations and some of them are complicated and
time consuming.

Figure 6.2 exemplifies the process of factor analysis. The differences between
PCA and factor analysis can be enumerated.

6.2.3 Multidimensional Scaling

Let us assume N points, and that we know the distances between the pairs of points,
di j , for all i, j = 1, . . . , N . Moreover, we do not know the precise coordinates of the

6.2 The Curse of Dimensionality 153

points, their dimensionality or the way the distances between them were computed.
Multidimensional scaling (MDS) is the method for situating these points in a low
space such that a classical distance measure (like Euclidean) between them is as close
as possible to each di j . There must be a projection from some unknown dimensional
space to another space whose number of dimensions is known.

One of the most typical examples of MDS is to draw an approximation of the map
that represents the travel distances between cities, knowing only the distance matrix.
Obviously, the outcome is distorted due to the differences between the distances
measured taking into account the geographical obstacles and the actual distance
in a straight line between the cities. It common for the map to be stretched out
to accommodate longer distances and that the map also is centered on the origin.
However, the solution is not unique, we can get any rotating view of it.

MDS is within the DR techniques because we can compute the distances in a
d-dimensional space of the actual data points and then to give as input this distance
matrix to MDS, which then projects it in to a lower-dimensional space so as to
preserve these distances.

Formally, let us say we have a sample X = {xt }N
t=1 as usual, where xt ∈ R

d . For
the two points r and s, the squared Euclidean distance between them is

d2
rs = ||xr − xs ||2 =

d∑

j=1

(xr
j − xs

j)
2 =

d∑

j=1

(xr
j)

2 − 2
d∑

j=1

xr
j xs

j +
d∑

j=1

(xs
j)

2

= brr + bss − 2brd

where brs is defined as

brs =
d∑

j=1

xr
j xs

j

To constrain the solution, we center the data at the origin and assume

N∑

t=1

xt
j = 0, ∀ j = 1, . . . , d

Then, summing up the previous equation on r , s, and defining

T =
n∑

t=1

btt =
∑

t

∑

j

(xt
j)

2

we get

∑

r

d2
rs = T + Nbss

154 6 Data Reduction

∑

s

d2
rs = Nbrr + T

∑

r

∑

s

d2
rs = 2N T

When we define

d2·s = 1

N

∑

r

d2
rs, d2

r · = 1

N

∑

s

d2
rs, d2·· = 1

N 2

∑

r

∑

s

d2
rs

and using the first equation, we get

brs = 1

2
(d2

r · + d2·s − d2·· − d2
rs)

Having now calculated brs and knowing that B = XXT , we look for an approxi-
mation. We know from the spectral decomposition that X = CD1/2 can be used as an
approximation for X, where C is the matrix whose columns are the eigenvectors of B
and D1/2 is a diagonal matrix with square roots of the eigenvalues on the diagonals.
Looking at the eigenvalues of B we decide on a dimensionality k lower than that of
d. Let us say c j are the eigenvectors with λ j as the corresponding eigenvalues. Note
that c j is N -dimensional. Then we get the new dimension as

zt
j =

√
λ j ct

j , j = 1, . . . , k, t = 1, . . . , N

That is, the new coordinates of instance t are given by the t th elements of the
eigenvectors, c j , j = 1, . . . , k, after normalization.

In [5], it has been shown that the eigenvalues of XXT (N×N) are the same as those
of XT X (d × d) and the eigenvectors are related by a simple linear transformation.
This shows that PCA does the same work with MDS and does it more easily.

In the general case, we want to find a mapping z = g(x|θ), where z ∈ R
k ,

x ∈ R
d , and g(x|θ) is the mapping function from d to k dimensions defined up to a

set of parameters θ . Classical MDS we discussed previously corresponds to a linear
transformation

z = g(x|W) = WT x

but in a general case, nonlinear mapping can also be used: this is called Sammon map-
ping. the normalized error in mapping is called the Sammon stress and is defined as

E(θ |X) =
∑

r,s

(||zr − zs || − ||xr − xs ||)2

||xr − xs ||2

=
∑

r,s

(||g(xr |θ) − g(xs |θ)|| − ||xr − xs ||2)
||xr − xs ||2

6.2 The Curse of Dimensionality 155

In the case of classification, the class information can be included in the distance as

d ′
rs = (1 − α)drs + αcrs

where crs is the “distance” between the classes xr and xs belong to. This interclass
distance should be supplied subjectively and α could be optimized using CV.

6.2.4 Locally Linear Embedding

Locally Linear Embedding (LLE) recovers global nonlinear structure from locally
linear fits [25]. Its main idea is that each local patch of the manifold can be approxi-
mated linearly and given enough data, each point can be written as a linear, weighted
sum of its neighbors.

The LLE algorithm is based on simple geometric intuitions. Suppose the data
consists of N real-valued vectors Xi, each of dimensionality D, sampled from some
smooth underlying manifold. It is expected that each data point and its neighbors
to lie on or close to a locally linear patch of the manifold. The local geometry of
these patches can be characterized by linear coefficients that reconstruct each data
point from its neighbors. In the simplest formulation of LLE, the KNN are estimated
per data point, as measured by Euclidean distance. Reconstruction errors are then
measured by the cost function:

ε(W) =
∑

i

∣∣∣∣∣∣
Xi −

∑

j

Wi j Xj

∣∣∣∣∣∣

2

which adds up the squared distances between all the data points and their recon-
structions. The weights Wi j summarize the contribution of the j th data point to the
isth reconstruction. To compute the weights Wi j , it is necessary to minimize the cost
function subject to two constraints: first, that each data point Xi is reconstructed only
from its neighbors, enforcing Wi j = 0 if Xj does not belong to this set; second, that
the rows of the weight matrix sum to one:

∑
j Wi j = 1 s. The optimal weights Wi j

subject to these constraints are found by solving a least squares problem.
The constrained weights that minimize these reconstruction errors are invariant

to rotations, scaling, and translations of that data point and its neighbors. Suppose
the data lie on or near a smooth nonlinear manifold of dimensionality d � D.
To achieve a good approximation, then, there exists a linear mapping that maps the
high dimensional coordinates of each neighborhood to global internal coordinates on
the manifold. By design, the reconstruction weights Wi j reflect intrinsic geometric
properties of the data that are invariant to exactly such transformations. We therefore
expect their characterization of local geometry in the original data space to be equally
valid for local patches on the manifold. In particular, the same weights Wi j that

156 6 Data Reduction

reconstruct the i th data point in D dimensions should also reconstruct its embedded
manifold coordinates in d dimensions.

LLE constructs a neighborhood preserving mapping based on the above idea. In
the final step of the algorithm, each high dimensional observation Xi is mapped to a
low dimensional vector Yi representing global internal coordinates on the manifold.
This is done by choosing d-dimensional coordinates Yi to minimize the embedding
cost function:

Φ(Y) =
∑

i

∣∣∣∣∣∣
Yi −

∑

j

Wi j Yj

∣∣∣∣∣∣

2

This cost function, like the previous one, is based on locally linear reconstruction
errors, but here, the weights Wi j are fixed while optimizing the coordinates Yi.
Now, the embedding cost can be minimized by solving a sparse N × N eigenvector
problem, whose bottom d non-zero eigenvectors provide an ordered set of orthogonal
coordinates centered on the origin.

It is noteworthy that while the reconstruction weights for each data point are
computed from its local neighborhood, the embedding coordinates are computed by
an N × N eigensolver, a global operation that couples all data points in connected
components of the graph defined by the weight matrix. The different dimensions in
the embedding space can be computed successively; this is done simply by computing
the bottom eigenvectors from previous equation one at a time. But the computation is
always coupled across data points. This is how the algorithm leverages overlapping
local information to discover global structure. Implementation of the algorithm is
fairly straightforward, as the algorithm has only one free parameter: the number of
neighbors per data point, K .

6.3 Data Sampling

Sampling is used to ease the analysis and modeling of large data sets. In DM, data
sampling serves four purposes:

• To reduce the number of instances submitted to the DM algorithm. In many cases,
predictive learning can operate with 10–20 % of cases without a significant dete-
rioration of the performance. After that, the addition of more cases should have
expected outcomes. However, in descriptive analysis, it is better to have as many
cases as possible.

• To support the selection of only those cases in which the response is relatively
homogeneous. When you have data sets where different trends are clearly observ-
able or the examples can be easily separated, you can partition the data for different
types of modelling. For instance, imagine the learning of the approving decision
of bank loans depending on some economic characteristics of a set of customers.

6.3 Data Sampling 157

If data includes consumer loans and mortgages, it seems logical to partition both
types of loans because the parameters and quantities involved in each one are
completely different. Thus, it is a good idea to build separate models on each
partition.

• To assist regarding the balance of data and occurrence of rare events. Predictive
DM algorithms like ANNs or decision trees are very sensitive to imbalanced data
sets. An imbalanced data set is one in which one category of the target variable
is less represented compared to the other ones and, usually, this category has is
more important from the point of view of the learning task. Balancing the data
involves sampling the imbalanced categories more than average (over-sampling)
or sampling the common less often (under-sampling) [3].

• To divide a data set into three data sets to carry out the subsequent analysis of DM
algorithms. As we have described in Chap. 2, the original data set can be divided
into the training set and testing set. A third kind of division can be performed
within the training set, to aid the DM algorithm to avoid model over-fitting, which
is a very common strategy in ANNs and decision trees. This partition is usually
known as validation set, although, in various sources, it may be denoted as the
testing set interchangeably [22]. Whatever the nomenclature used, some learners
require an internal testing process and, in order to evaluate and compare a set
of algorithms, there must be an external testing set independent of training and
containing unseen cases.

Various forms of data sampling are known in data reduction. Suppose that a large
data set, T , contains N examples. The most common ways that we could sample T
for data reduction are [11, 24]:

• Simple random sample without replacement (SRSWOR) of size s: This is
created by drawing s of the N tuples from T (s < N), where the probability
of drawing any tuple in T is 1/N , that is, all examples have equal chance to be
sampled.

• Simple random sample with replacement (SRSWR) of size s: This is similar
to SRSWOR, except that each time a tuple is drawn from T , it is recorded and
replaced. In other words, after an example is drawn, it is placed back in T and it
may be drawn again.

• Balanced sample: The sample is designed according to a target variable and
is forced to have a certain composition according to a predefined criterion. For
example, 90 % of customers who are older tah or who are 21 years old, and 10 %
of customers who are younger than 21 years old. One of the most successful
application of this type of sampling has been shown in imbalanced learning, as we
have mentioned before.

• Cluster sample: If the tuples in T are grouped into G mutually disjointed groups
or clusters, then an SRS of s clusters can be obtained, where s < G. For example,
in spatial data sets, we may choose to define clusters geographically based on how
closely different areas are located.

• Stratified sample: If T is divided into mutually disjointed parts called strata,
a stratified sample of T is generated by obtaining an SRS at each stratum. This

http://dx.doi.org/10.1007/978-3-319-10247-4_2

158 6 Data Reduction

assists in ensuring a representative sample. It is frequently used in classification
tasks where the class imbalance is present. It is very closely related with balanced
sample, but the predefined composition of the final results depends on the natural
distribution of the target variable.

An important preference of sampling for data reduction is that the cost of obtaining
a sample is proportionate to the size of the sample s, instead of being proportionate
to N . So, the sampling complexity is sub-linear to the size of data and there is no
need to conduct a complete pass of T to make decisions in order to or not to include
a certain example into the sampled subset. Nevertheless, the inclusion of examples
are made by unfounded decisions, allowing redundant, irrelevant, noisy or harmful
examples to be included. A smart way to make decisions for sampling is known as
IS, a topic that we will extend in Chap. 8.

Advanced schemes of data sampling deserve to be described in this section. As
before, they are more difficult and allow better adjustments of data according to the
necessities and applications.

6.3.1 Data Condensation

The selection of a small representative subset from a very large data set is known as
data condensation. In some sources of DM, such as [22], this form of data reduction
is differentiated from others. In this book, data condensation is integrated as one of
the families of IS methods (see Chap. 8).

Data condensation emerges from the fact that naive sampling methods, such as
random sampling or stratified sampling, are not suitable for real-world problems
with noisy data since the performance of the algorithms may change unpredictably
and significantly. The data sampling approach practically ignores all the information
present in the samples which are not chosen in the reduced subset.

Most of the data condensation approaches are studied on classification-based
tasks, and in particular, for the KNN algorithm. These methods attempt to obtain a
minimal consistent set, i.e., a minimal set which correctly classifies all the original
examples. The very first method of this kind was the condensed nearest neighbor
rule (CNN) [12]. For a survey on data condensation methods for classification, we
again invite the reader to check the Chap. 8 of this book.

Regarding the data condensation methods which are not affiliated with classifica-
tion tasks, termed generic data condensation, condensation is performed by vector
quantization, such as the well-known self-organizing map [19] and different forms
of data clustering. Another group of generic data condensation methods are situated
on the density-based techniques which consider the density function of the data for
the aspiration of condensation instead of minimizing the quantization error. These
approaches do not concern any learning process and, hence, are deterministic, (i.e.,
for a concrete input data set, the output condensed set is established). Clear examples
of this kind of approaches are presented in [10, 21].

http://dx.doi.org/10.1007/978-3-319-10247-4_8
http://dx.doi.org/10.1007/978-3-319-10247-4_8
http://dx.doi.org/10.1007/978-3-319-10247-4_8

6.3 Data Sampling 159

6.3.2 Data Squashing

A data squashing method seeks to compress, or “squash”, the data in such a way that
a statistical analysis carried out on the compressed data obtains the same outcome
that the one obtained with the original data set; that is, the statistical information is
preserved.

The first approach of data squashing was proposed in [6] and termed DS, as a
solution of constructing a reduced data set. DS approach to squashing is model-free
and relies on moment-matching. The squashed data set consists of a set of artificial
data points chosen to replicate the moments of the original data within subsets of the
actual data. DS studies various approaches to partitioning and ordering the moments
and also provides a theoretical justification of their method by considering a Tay-
lor series expansion of an arbitrary likelihood function. Since this relies upon the
moments of the data, it should work well for any application in which the likelihood
is well-approximated by the first few terms of a Taylor series. In practice, it is only
proven with logistic regression.

In [20], the authors proposed the “likelihood-based data squashing” (LDS). LDS
is similar to DS because it first partitions the data set and then chooses artificial data
points corresponding to each subset of the partition. Nevertheless, the algorithms
differ in how they build the partition and how they build the artificial data points. The
DS algorithm partitions the data along certain marginal quartiles, and then matches
moments. The LDS algorithm partitions the data using a likelihood-based clustering
and then selects artificial data points so as to mimic the target sampling or posterior
distribution. Both algorithms yield artificial data points with associated weights. The
usage of squashed data requires algorithms that can use these weights conveniently.
LDS is slightly more general than DS because it is also prepared for ANN-based
learning.

A subsequent approach described in [23] presents a form of data squashing based
on empirical likelihood. This method re-weights a random sample of data to match
certain expected values to the population. The benefits of this method are the reduc-
tion of optimization cost in terms of computational complexity and the interest in
enhancing the performance of boosted random trees.

6.3.3 Data Clustering

Clustering algorithms partition the data examples into groups, or clusters, so that data
samples within a cluster are “similar” to one another and different to data examples
that belong to other clusters. The similarity is usually defined by means of how near
the examples are in space, according to a distance function. The quality of a cluster
could be measured as a function of the length of its diameter, which is the maximum
distance between any two samples belonging to the cluster. The average distance
of each object within the cluster to the centroid is an alternative measure of cluster

160 6 Data Reduction

Fig. 6.3 Three clusters derived from a set of two-dimensional data

quality. An illustration of a three cluster derivation from a set of 2-D data points is
depicted in Fig. 6.3.

In terms of data reduction, the cluster representations of the data are used instead
of the actual data. In many applications, such as those in which data can be organized
into distinct groups, this technique is higly effective.

There is a vast number of clustering techniques for defining clusters and for
measuring their quality. In fact, clustering is surely the most popular and common
form of unsupervised learning in DM, as we have mentioned in Chap. 1 of this
book. For this reason, we have included it here due to the clear overlapping that
clustering has with data reduction. Unfortunately, this book is not specifically devoted
to learning and a deep study on clustering is beyond the scope of this book. However,
the reader may consult the following references to an in-depth study: [1, 2, 9, 11,
15, 16, 27].

http://dx.doi.org/10.1007/978-3-319-10247-4_1

6.4 Binning and Reduction of Cardinality 161

6.4 Binning and Reduction of Cardinality

Binning is the process of converting a continuous variable into a set of ranges. Then,
each range can be treated as categories, with the choice of imposing order on them.
This last choice is optional and depends on the further analysis to be made on the data.
For example, we can bin the variable representing the annual income of a customer
into ranges of 5,000 dollars (0–5,000; 5,001–10,000; 10,001–15,000, . . . , etc.). Such
a binning could allow the analysis in a business problem may reveal that customers
in the first range have less possibility to get a loan than customers in the last range,
grouping them within an interval that bounds a numerical variable. Therefore, it
demonstrates that keeping the strict order of bins is not always necessary.

Cardinality reduction of nominal and ordinal variables is the process of combining
two or more categories into one new category. It is well known that nominal variables
with a high number of categories are very problematic to handle. If we perform a
transformation of these large cardinality variables onto indicator variables, that is,
binary variables that indicate whether or not a category is set for each example; we
will produce a large number of new variables, almost all equal to zero. On the other
hand, if we do not perform this conversion and use them just as they are in with the
algorithm that can tolerate them, such as decision trees, we run into the problem of
over-fitting the model. It is realistic to consider reducing the number of categories in
such variables.

Both processes are two common transformations used to achieve two objectives:

• Reduce the complexity of independent and possible dependent variables.
• Improve the predictive power of the variable, by carefully binning or grouping

the categories in such a way that we model the dependencies regarding the target
variable in both estimation and classification problems.

Binning and cardinality reduction are very similar procedures, differing only in
the type of variable that we want to process. In fact, both processes are distinctively
grouped within the term discretization, which constitutes the most popular nota-
tion in the literature. It is also very common to distinguish between binning and
discretization depending on the ease of the process performed. Binning is usually
associated with a quick and easy discretization of a variable. In [11], the authors dis-
tinguish among three types of discretization: binning, histogram analysis-based and
advanced discretization. The first corresponds to a splitting technique based on the
specification of the number of bins. The second family is related with unsupervised
discretization and finally, a brief inspection of the rest of the methods is drawn.

Regardless of the above, and under the discretization nomenclature, we will dis-
cuss all related issues and techniques in Chap. 9 of this book.

http://dx.doi.org/10.1007/978-3-319-10247-4_9

162 6 Data Reduction

References

1. Aggarwal, C., Reddy, C.: Data clustering: recent advances and applications. Chapman and
Hall/CRC Data Mining and Knowledge Discovery Series. Taylor & Francis Group, Boca Raton
(2013)

2. Aggarwal, C.C., Reddy, C.K. (eds.): Data Clustering: Algorithms and Applications. CRC Press,
New York (2014)

3. Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for
balancing machine learning training data. SIGKDD Explor. Newsl. 6(1), 20–29 (2004)

4. Bellman, R.E.: Adaptive control processes—a guided tour. Princeton University Press, Prince-
ton (1961)

5. Chatfield, C., Collins, A.J.: Introduction to Multivariate Analysis. Chapman and Hall, London
(1980)

6. DuMouchel, W., Volinsky, C., Johnson, T., Cortes, C., Pregibon, D.: Squashing flat files flatter.
In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’99, pp. 6–15 (1999)

7. Dunteman, G.: Principal Components Analysis. SAGE Publications, Newbury Park (1989)
8. Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press Pro-

fessional, Inc., San Diego (1990)
9. Gan, G., Ma, C., Wu, J.: Data Clustering—Theory, Algorithms, and Applications. SIAM,

Philadelphia (2007)
10. Girolami, M., He, C.: Probability density estimation from optimally condensed data samples.

IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1253–1264 (2003)
11. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers

Inc., San Francisco (2011)
12. Hart, P.E.: The condensed nearest neighbor rule. IEEE Trans. Inf. Theory 14, 515–516 (1968)
13. Hwang, J., Lay, S., Lippman, A.: Nonparametric multivariate density estimation: a comparative

study. IEEE Trans. Signal Process. 42, 2795–2810 (1994)
14. Jain, A., Zongker, D.: Feature selection: evaluation, application, and small sample performance.

IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 153–158 (1997)
15. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Comput. Surv. 31(3),

264–323 (1999)
16. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666

(2010)
17. Johnson, R.A., Wichern, D.W.: Applied Multivariate Statistical Analysis. Prentice-Hall, Engle-

wood Cliffs (2001)
18. Kim, J.O., Mueller, C.W.: Factor Analysis: Statistical Methods and Practical Issues (Quantita-

tive Applications in the Social Sciences). Sage Publications, Inc, Beverly Hills (1978)
19. Kohonen, T.: The self organizing map. Proc. IEEE 78(9), 1464–1480 (1990)
20. Madigan, D., Raghavan, N., DuMouchel, W., Nason, M., Posse, C., Ridgeway, G.: Likelihood-

based data squashing: a modeling approach to instance construction. Data Min. Knowl. Disc.
6(2), 173–190 (2002)

21. Mitra, P., Murthy, C.A., Pal, S.K.: Density-based multiscale data condensation. IEEE Trans.
Pattern Anal. Mach. Intell. 24(6), 734–747 (2002)

22. Nisbet, R., Elder, J., Miner, G.: Handbook of Statistical Analysis and Data Mining Applications.
Academic Press, Boston (2009)

23. Owen, A.: Data squashing by empirical likelihood. Data Min. Knowl. Disc. 7, 101–113 (2003)
24. Refaat, M.: Data Preparation for Data Mining Using SAS. Morgan Kaufmann Publishers Inc.,

San Francisco (2007)
25. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science

290(5500), 2323–2326 (2000)
26. Tenenbaum, J.B., Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimen-

sionality reduction. Science 290(5500), 2319–2323 (2000)
27. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Networks 16(3),

645–678 (2005)

	6 Data Reduction
	6.1 Overview
	6.2 The Curse of Dimensionality
	6.2.1 Principal Components Analysis
	6.2.2 Factor Analysis
	6.2.3 Multidimensional Scaling
	6.2.4 Locally Linear Embedding

	6.3 Data Sampling
	6.3.1 Data Condensation
	6.3.2 Data Squashing
	6.3.3 Data Clustering

	6.4 Binning and Reduction of Cardinality
	References

