
Chapter 5
Dealing with Noisy Data

Abstract This chapter focuses on the noise imperfections of the data. The presence
of noise in data is a common problem that produces several negative consequences
in classification problems. Noise is an unavoidable problem, which affects the data
collection and data preparation processes in Data Mining applications, where errors
commonly occur. The performance of the models built under such circumstances
will heavily depend on the quality of the training data, but also on the robustness
against the noise of the model learner itself. Hence, problems containing noise are
complex problems and accurate solutions are often difficult to achieve without using
specialized techniques—particularly if they are noise-sensitive. Identifying the noise
is a complex task that will be developed in Sect. 5.1. Once the noise has been identi-
fied, the different kinds of such an imperfection are described in Sect. 5.2. From this
point on, the two main approaches carried out in the literature are described. On the
first hand, modifying and cleaning the data is studied in Sect. 5.3, whereas design-
ing noise robust Machine Learning algorithms is tackled in Sect. 5.4. An empirical
comparison between the latest approaches in the specialized literature is made in
Sect. 5.5.

5.1 Identifying Noise

Real-world data is never perfect and often suffers from corruptions that may harm
interpretations of the data, models built and decisions made. In classification, noise
can negatively affect the system performance in terms of classification accuracy,
building time, size and interpretability of the classifier built [99, 100]. The presence
of noise in the data may affect the intrinsic characteristics of a classification prob-
lem. Noise may create small clusters of instances of a particular class in parts of the
instance space corresponding to another class, remove instances located in key areas
within a concrete class or disrupt the boundaries of the classes and increase over-
lapping among them. These alterations corrupt the knowledge that can be extracted
from the problem and spoil the classifiers built from that noisy data with respect
to the original classifiers built from the clean data that represent the most accurate
implicit knowledge of the problem [100].
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108 5 Dealing with Noisy Data

Noise is specially relevant in supervised problems, where it alters the relationship
between the informative features and the measure output. For this reason noise has
been specially studied in classification and regression where noise hinders the knowl-
edge extraction from the data and spoils the models obtained using that noisy data
when they are compared to the models learned from clean data from the same prob-
lem, which represent the real implicit knowledge of the problem [100]. In this sense,
robustness [39] is the capability of an algorithm to build models that are insensitive
to data corruptions and suffer less from the impact of noise; that is, the more robust
an algorithm is, the more similar the models built from clean and noisy data are.
Thus, a classification algorithm is said to be more robust than another if the former
builds classifiers which are less influenced by noise than the latter. Robustness is
considered more important than performance results when dealing with noisy data,
because it allows one to know a priori the expected behavior of a learning method
against noise in cases where the characteristics of noise are unknown.

Several approaches have been studied in the literature to deal with noisy data
and to obtain higher classification accuracies on test data. Among them, the most
important are:

• Robust learners [8, 75] These are techniques characterized by being less influenced
by noisy data. An example of a robust learner is the C4.5 algorithm [75]. C4.5 uses
pruning strategies to reduce the chances reduce the possibility that trees overfit to
noise in the training data [74]. However, if the noise level is relatively high, even
a robust learner may have a poor performance.
• Data polishing methods [84] Their aim is to correct noisy instances prior to training

a learner. This option is only viable when data sets are small because it is generally
time consuming. Several works [84, 100] claim that complete or partial noise
correction in training data, with test data still containing noise, improves test
performance results in comparison with no preprocessing.
• Noise filters [11, 48, 89] identify noisy instances which can be eliminated from

the training data. These are used with many learners that are sensitive to noisy data
and require data preprocessing to address the problem.

Noise is not the only problem that supervised ML techniques have to deal with.
Complex and nonlinear boundaries between classes are problems that may hinder the
performance of classifiers and it often is hard to distinguish between such overlapping
and the presence of noisy examples. This topic has attracted recent attention with the
appearance of works that have indicated relevant issues related to the degradation of
performance:

• Presence of small disjuncts [41, 43] (Fig. 5.1a) The minority class can be decom-
posed into many sub-clusters with very few examples in each one, being sur-
rounded by majority class examples. This is a source of difficulty for most learning
algorithms in detecting precisely enough those sub-concepts.
• Overlapping between classes [26, 27] (Fig. 5.1b) There are often some examples

from different classes with very similar characteristics, in particular if they are
located in the regions around decision boundaries between classes. These examples
refer to overlapping regions of classes.
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Fig. 5.1 Examples of the interaction between classes: a small disjuncts and b overlapping between
classes

Closely related to the overlapping between classes, in [67] another interesting
problem is pointed out: the higher or lower presence of examples located in the area
surrounding class boundaries, which are called borderline examples. Researchers
have found that misclassification often occurs near class boundaries where over-
lapping usually occurs as well and it is hard to find a feasible solution [25]. The
authors in [67] showed that classifier performance degradation was strongly affected
by the quantity of borderline examples and that the presence of other noisy examples
located farther outside the overlapping region was also very difficult for re-sampling
methods.

• Safe examples are placed in relatively homogeneous areas with respect to the class
label.
• Borderline examples are located in the area surrounding class boundaries, where

either the minority and majority classes overlap or these examples are very close to
the difficult shape of the boundary—in this case, these examples are also difficult
as a small amount of the attribute noise can move them to the wrong side of the
decision boundary [52].
• Noisy examples are individuals from one class occurring in the safe areas of the

other class. According to [52] they could be treated as examples affected by class
label noise. Notice that the term noisy examples will be further used in this book
in the wider sense of [100] where noisy examples are corrupted either in their
attribute values or the class label.

The examples belonging to the two last groups often do not contribute to correct
class prediction [46]. Therefore, one could ask a question whether removing them
(all or the most difficult misclassification part) should improve classification per-
formance. Thus, this book examines the usage of noise filters to achieve this goal,
because they are widely used obtaining good results in classification, and in the
application of techniques designed to deal with noisy examples.
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Fig. 5.2 The three types of examples considered in this book: safe examples (labeled as s), bor-
derline examples (labeled as b) and noisy examples (labeled as n). The continuous line shows the
decision boundary between the two classes

5.2 Types of Noise Data: Class Noise and Attribute Noise

A large number of components determine the quality of a data set [90]. Among them,
the class labels and the attribute values directly influence the quality of a classification
data set. The quality of the class labels refers to whether the class of each example is
correctly assigned; otherwise, the quality of the attributes refers to their capability of
properly characterizing the examples for classification purposes—obviously, if noise
affects attribute values, this capability of characterization and therefore, the quality
of the attributes, is reduced. Based on these two information sources, two types of
noise can be distinguished in a given data set [12, 96]:

1. Class noise (also referred as label noise) It occurs when an example is incorrectly
labeled. Class noise can be attributed to several causes, such as subjectivity during
the labeling process, data entry errors, or inadequacy of the information used to
label each example. Two types of class noise can be distinguished:

• Contradictory examples There are duplicate examples in the data set having
different class labels [31].
• Misclassifications Examples are labeled with class labels different from their

true label [102].

2. Attribute noise It refers to corruptions in the values of one or more attributes.
Examples of attribute noise are: erroneous attribute values, missing or unknown
attribute values, and incomplete attributes or “do not care” values.
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In this book, class noise refers to misclassifications, whereas attribute noise refers
to erroneous attribute values, because they are the most common in real-world data
[100]. Furthermore, erroneous attribute values, unlike other types of attribute noise,
such as MVs (which are easily detectable), have received less attention in the litera-
ture.

Treating class and attribute noise as corruptions of the class labels and attribute
values, respectively, has been also considered in other works in the literature [69,
100]. For instance, in [100], the authors reached a series of interesting conclusions,
showing that attribute noise is more harmful than class noise or that eliminating
or correcting examples in data sets with class and attribute noise, respectively, may
improve classifier performance. They also showed that attribute noise is more harmful
in those attributes highly correlated with the class labels. In [69], the authors checked
the robustness of methods from different paradigms, such as probabilistic classifiers,
decision trees, instance based learners or SVMs, studying the possible causes of their
behavior.

However, most of the works found in the literature are only focused on class
noise. In [9], the problem of multi-class classification in the presence of labeling
errors was studied. The authors proposed a generative multi-class classifier to learn
with labeling errors, which extends the multi-class quadratic normal discriminant
analysis by a model of the mislabeling process. They demonstrated the benefits
of this approach in terms of parameter recovery as well as improved classification
performance. In [32], the problems caused by labeling errors occurring far from
the decision boundaries in Multi-class Gaussian Process Classifiers were studied.
The authors proposed a Robust Multi-class Gaussian Process Classifier, introducing
binary latent variables that indicate when an example is mislabeled. Similarly, the
effect of mislabeled samples appearing in gene expression profiles was studied in
[98]. A detection method for these samples was proposed, which takes advantage of
the measuring effect of data perturbations based on the SVM regression model. They
also proposed three algorithms based on this index to detect mislabeled samples. An
important common characteristic of these works, also considered in this book, is that
the suitability of the proposals was evaluated on both real-world and synthetic or
noisy-modified real-world data sets, where the noise could be somehow quantified.

In order to model class and attribute noise, we consider four different synthetic
noise schemes found in the literature, so that we can simulate the behavior of the
classifiers in the presence of noise as presented in the next section.

5.2.1 Noise Introduction Mechanisms

Traditionally the label noise introduction mechanism has not attracted as much atten-
tion in its consequences as it has in the knowledge extracted from it. However, as
the noise treatment is being embedded in the classifier design, the nature of noise
becomes more and more important. Recently, the authors in Frenay and Verley-
sen [19] have adopted the statistical analysis for the MVs introduction described
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(a) (b) (c)

Fig. 5.3 Statistical taxonomy of label noise as described in [19]. a Noisy completely at random
(NCAR), b Noisy at random (NAR), and c Noisy not at random (NNAR). X is the array of input
attributes, Y is the true class label, Ŷ is the actual class label and E indicates whether a labeling
error occurred (Y �= Ŷ ). Arrows indicate statistical dependencies

in Sect. 4.2. That is, we will distinguish between three possible statistical models
for label noise as depicted in Fig. 5.3. In the three subfigures of Fig. 5.3 the dashed
arrow points out a the implicit relation between the input features and the output that
is desired to be modeled by the classifier. In the most simplistic case in which the
noise procedure is not dependent of either the true value of the class Y or the input
attribute values X , the label noise is called noise completely at random or NCAR as
shown in Fig. 5.3a. In [7] the observed label is different from the true class with a
probability pn = P(E = 1), that is also called the error rate or noise rate. In binary
classification problems, the labeling error in NCAR is applied symmetrically to both
class labels and when pn = 0.5 the labels will no longer provide useful information.
In multiclass problems when the error caused by noise (i.e. E = 1) appears the
class label is changed by any other different one available. In the case in which the
selection of the erroneous class label is made by a uniform probability distribution,
the noise model is known as uniform label/class noise.

Things get more complicated in the noise at random (NAR) model. Although
the noise is independent of the inputs X , the true value of the class make it more
or less prone to be noisy. This asymmetric labeling error can be produced by the
different cost of extracting the true class, as for example in medical case-control
studies, financial score assets and so on. Since the wrong class label is subject to a
particular true class label, the labeling probabilities can be defined as:

P(Ŷ = ŷ|Y = y) =
∑

e∈0,1

P(Ŷ = ŷ|E = e, Y = y)P(E = e|Y = y). (5.1)

Of course this probability definition span over all the class labels and the possibly
erroneous class that the could take. As shown in [70] this conforms a transition
matrix γ where each position γi j shows the probability of P(Ŷ = ci |Y = c j ) for
the possible class labels ci and c j . Some examples can be examined with detail in
[19]. The NCAR model is a special case of the NAR label noise model in which
the probability of each position γi j denotes the independency between Ŷ and Y :
γi j = P(Ŷi , Y = c j ).

http://dx.doi.org/10.1007/978-3-319-10247-4_4
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Apart from the uniform class noise, the NAR label noise has widely studied in
the literature. An example is the pairwise label noise, where two selected class labels
are chosen to be labeled with the other with certain probability. In this pairwise label
noise (or pairwise class noise) only two positions of the γ matrix are nonzero outside
of the diagonal. Another problem derived from the NAR noise model is that it is not
trivial to decide whether the class labels are useful or not.

The third and last noise model is the noisy not at random (NNAR), where the input
attributes somehow affect the probability of the class label being erroneous as shown
in Fig. 5.3c. An example of this illustrated by Klebanov [49] where evidence is given
that difficult samples are randomly labeled.It also occurs that those examples similar
to existing ones are labeled by experts in a biased way, having more probability of
being mislabeled the more similar they are. NNAR model is the more general case
of class noise [59] where the error E depends on both X and Y and it is the only
model able to characterize mislabelings in the class borders or due to poor sampling
density. As shown in [19] the probability of error is much more complex than in the
two previous cases as it has to take into account the density function of the input over
the input feature space X when continuous:

pn = P(E = 1) =
∑

ci∈C

×
∫

x∈X
P(X = x |Y = y)P(E = 1|X = x, Y = y)dx .

(5.2)

As a consequence the perfect identification and estimation of the NNAR noise is
almost impossible, relying in approximating it from the expert knowledge of the
problem and the domain.

In the case of attribute noise, the modelization described above can be extended
and adapted. In this case, we can distinguish three possibilities as well:

• When the noise appearance does not depend either on the rest of the input features’
values or the class label the NCAR noise model applies. This type of noise can
occur when distortions in the measures appear at random, for example in faulty
hand data insertion or network errors that do not depend in the data content itself.
• When the attribute noise depends on the true value xi but not on the rest of input

values x1, . . . , xi−1, xi+1, . . . , xn or the observed class label y the NAR model is
applicable. An illustrative example is when the different temperatures affect their
registration in climatic data in a different way depending on the proper temperature
value.
• In the last case the noise probability will depend on the value of the feature xi

but also on the rest of the input feature values x1, . . . , xi−1, xi+1, . . . , xn . This is
a very complex situation in which the value is altered when the rest of features
present a particular combination of values, as in medical diagnosis when some test
results are filled by an expert prediction without conducting the test due to high
costs.

For the sake of brevity we will not develop the probability error equations here as their
expressions would vary depending on the nature of the input feature, being different
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from real valued ones with respect to nominal attributes. However we must point out
that in attribute noise the probability dependencies are not the only important aspect
to be considered. The probability distribution of the noise is also fundamental.

For numerical data, the noisy datum x̂i may be a slight variation of the true value xi

or a completely random value. The density function of the noise values is very rarely
known. Simple examples of the first type of noise would be perturbations caused by a
normal distribution with the mean centered in the true value and with a fixed variance.
The second type of noise is usually estimated by assigning an uniform probability
to all the possible values of the input feature’s range. This procedure is also typical
with nominal data, where no preference of one value is taken. Again note that the
distribution of the noise is not the same as the probability of its appearance discussed
above: first the noise must be introduced with a certain probability (following the
NCAR, NAR or NNAR models) and then the noise value is stated or analyzed to
follow the aforementioned density functions.

5.2.2 Simulating the Noise of Real-World Data Sets

Checking the effect of noisy data on the performance of classifier learning algorithms
is necessary to improve their reliability and has motivated the study of how to generate
and introduce noise into the data. Noise generation can be characterized by three main
characteristics [100]:

1. The place where the noise is introduced Noise may affect the input attributes
or the output class, impairing the learning process and the resulting model.

2. The noise distribution The way in which the noise is present can be, for example,
uniform [84, 104] or Gaussian [100, 102].

3. The magnitude of generated noise values The extent to which the noise affects
the data set can be relative to each data value of each attribute, or relative to the
minimum, maximum and standard deviation for each attribute [100, 102, 104].

In contrast to other studies in the literature, this book aims to clearly explain
how noise is defined and generated, and also to properly justify the choice of the
noise introduction schemes. Furthermore, the noise generation software has been
incorporated into the KEEL tool (see Chap. 10) for its free usage. The two types of
noise considered in this work, class and attribute noise, have been modeled using
four different noise schemes; in such a way that, the presence of these types of noise
will allow one to simulate the behavior of the classifiers in these two scenarios:

1. Class noise usually occurs on the boundaries of the classes, where the examples
may have similar characteristics—although it can occur in any other area of
the domain. In this book, class noise is introduced using an uniform class noise
scheme [84] (randomly corrupting the class labels of the examples) and a pairwise
class noise scheme [100, 102] (labeling examples of the majority class with the
second majority class). Considering these two schemes, noise affecting any class
label and noise affecting only the two majority classes is simulated respectively.

http://dx.doi.org/10.1007/978-3-319-10247-4_10


5.2 Types of Noise Data: Class Noise and Attribute Noise 115

Whereas the former can be used to simulate a NCAR noise model, the latter is
useful to produce a particular NAR noise model.

2. Attribute noise can proceed from several sources, such as transmission con-
straints, faults in sensor devices, irregularities in sampling and transcription errors
[85]. The erroneous attribute values can be totally unpredictable, i.e., random,
or imply a low variation with respect to the correct value. We use the uniform
attribute noise scheme [100, 104] and the Gaussian attribute noise scheme in
order to simulate each one of the possibilities, respectively. We introduce attribute
noise in accordance with the hypothesis that interactions between attributes are
weak [100]; as a consequence, the noise introduced into each attribute has a low
correlation with the noise introduced into the rest.

Robustness is the capability of an algorithm to build models that are insensitive to
data corruptions and suffer less from the impact of noise [39]. Thus, a classification
algorithm is said to be more robust than another if the former builds classifiers which
are less influenced by noise than the latter, i.e., more robust. In order to analyze the
degree of robustness of the classifiers in the presence of noise, we will compare the
performance of the classifiers learned with the original (without induced noise) data
set with the performance of the classifiers learned using the noisy data set. Therefore,
those classifiers learned from noisy data sets being more similar (in terms of results)
to the noise free classifiers will be the most robust ones.

5.3 Noise Filtering at Data Level

Noise filters are preprocessing mechanisms to detect and eliminate noisy instances in
the training set. The result of noise elimination in preprocessing is a reduced training
set which is used as an input to a classification algorithm. The separation of noise
detection and learning has the advantage that noisy instances do not influence the
classifier building design [24].

Noise filters are generally oriented to detect and eliminate instances with class
noise from the training data. Elimination of such instances has been shown to be
advantageous [23]. However, the elimination of instances with attribute noise seems
counterproductive [74, 100] since instances with attribute noise still contain valuable
information in other attributes which can help to build the classifier. It is also hard
to distinguish between noisy examples and true exceptions, and henceforth many
techniques have been proposed to deal with noisy data sets with different degrees of
success.

We will consider three noise filters designed to deal with mislabeled instances
as they are the most common and the most recent: the Ensemble Filter [11], the
Cross-Validated Committees Filter [89] and the Iterative-Partitioning Filter [48]. It
should be noted that these three methods are ensemble-based and vote-based filters.
A motivation for using ensembles for filtering is pointed out in [11]: when it is
assumed that some instances in the data have been mislabeled and that the label errors
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are independent of the particular model being fitted to the data, collecting information
from different models will provide a better method for detecting mislabeled instances
than collecting information from a single model.

The implementations of these three noise filters can be found in KEEL (see
Chap. 10). Their descriptions can be found in the following subsections. In all descrip-
tions we use DT to refer to the training set, DN to refer to the noisy data identified
in the training set (initially, DN = ∅) and Γ is the number of folds in which the
training data is partitioned by the noise filter.

The three noise filters presented below use a voting scheme to determine which
instances to eliminate from the training set. There are two possible schemes to deter-
mine which instances to remove: consensus and majority schemes. The consensus
scheme removes an instance if it is misclassified by all the classifiers, while the
majority scheme removes an instance if it is misclassified by more than half of the
classifiers. Consensus filters are characterized by being conservative in rejecting
good data at the expense of retaining bad data. Majority filters are better at detecting
bad data at the expense of rejecting good data.

5.3.1 Ensemble Filter

The Ensemble Filter (EF) [11] is a well-known filter in the literature. It attempts to
achieve an improvement in the quality of the training data as a preprocessing step
in classification, by detecting and eliminating mislabeled instances. It uses a set of
learning algorithms to create classifiers in several subsets of the training data that
serve as noise filters for the training set.

The identification of potentially noisy instances is carried out by performing an
Γ -FCV on the training data with µ classification algorithms, called filter algorithms.
In the developed experimentation for this book we have utilized the three filter algo-
rithms used by the authors in [11], which are C4.5, 1-NN and LDA [63]. The complete
process carried out by EF is described below:

• Split the training data set DT into Γ equal sized subsets.
• For each one of the μ filter algorithms:

– For each of these Γ parts, the filter algorithm is trained on the other Γ −1 parts.
This results in Γ different classifiers.

– These Γ resulting classifiers are then used to tag each instance in the excluded
part as either correct or mislabeled, by comparing the training label with that
assigned by the classifier.

• At the end of the above process, each instance in the training data has been tagged
by each filter algorithm.
• Add to DN the noisy instances identified in DT using a voting scheme, taking into

account the correctness of the labels obtained in the previous step by the μ filter
algorithms. We use a consensus vote scheme in this case.
• Remove the noisy instances from the training set: DT ← DT \DN .

http://dx.doi.org/10.1007/978-3-319-10247-4_10
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5.3.2 Cross-Validated Committees Filter

The Cross-Validated Committees Filter (CVCF) [89] uses ensemble methods in order
to preprocess the training set to identify and remove mislabeled instances in classi-
fication data sets. CVCF is mainly based on performing an Γ -FCV to split the full
training data and on building classifiers using decision trees in each training subset.
The authors of CVCF place special emphasis on using ensembles of decision trees
such as C4.5 because they think that this kind of algorithm works well as a filter for
noisy data.

The basic steps of CVCF are the following:

• Split the training data set DT into Γ equal sized subsets.
• For each of these Γ parts, a base learning algorithm is trained on the other Γ − 1

parts. This results in Γ different classifiers. We use C4.5 as base learning algorithm
in our experimentation as recommended by the authors.
• These Γ resulting classifiers are then used to tag each instance in the training

set DT as either correct or mislabeled, by comparing the training label with that
assigned by the classifier.
• Add to DN the noisy instances identified in DT using a voting scheme (the majority

scheme in our experimentation), taking into account the correctness of the labels
obtained in the previous step by the Γ classifier built.
• Remove the noisy instances from the training set: DT ← DT \DN .

5.3.3 Iterative-Partitioning Filter

The Iterative-Partitioning Filter (IPF) [48] is a preprocessing technique based on
the Partitioning Filter [102]. It is employed to identify and eliminate mislabeled
instances in large data sets. Most noise filters assume that data sets are relatively
small and capable of being learned after only one time, but this is not always true
and partitioning procedures may be necessary.

IPF removes noisy instances in multiple iterations until a stopping criterion is
reached. The iterative process stops if, for a number of consecutive iterations s,
the number of identified noisy instances in each of these iterations is less than a
percentage p of the size of the original training data set. Initially, we have a set of
noisy instances DN = ∅ and a set of good data DG = ∅. The basic steps of each
iteration are:

• Split the training data set DT into Γ equal sized subsets. Each of these is small
enough to be processed by an induction algorithm once.
• For each of these Γ parts, a base learning algorithm is trained on this part. This

results in Γ different classifiers. We use C4.5 as the base learning algorithm in our
experimentation as recommended by the authors.
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• These Γ resulting classifiers, are then used to tag each instance in the training
set DT as either correct or mislabeled, by comparing the training label with that
assigned by the classifier.
• Add to DN the noisy instances identified in DT using a voting scheme, taking

into account the correctness of the labels obtained in the previous step by the Γ

classifier built. For the IPF filter we use the majority vote scheme.
• Add to DG a percentage y of the good data in DT . This step is useful when we deal

with large data sets because it helps to reduce them faster. We do not eliminate
good data with the IPF method in our experimentation (we set y = 0, so DG is
always empty) and nor do we lose generality.
• Remove the noisy instances and the good data from the training set: DT ←

DT \{DN ∪ DG}.
At the end of the iterative process, the filtered data is formed by the remaining
instances of DT and the good data of DG ; that is, DT ∪ DG .

A particularity of the voting schemes in IPF is that a noisy instance should also be
misclassified by the model which was induced in the subset containing that instance
as an additional condition. Moreover, by varying the required number of filtering
iterations, the level of conservativeness of the filter can also be varied in both schemes,
consensus and majority.

5.3.4 More Filtering Methods

Apart from the three aforementioned filtering methods, we can find many more in
the specialized literature. We try to provide a helpful summary of the most recent
and well-known ones in the following Table 5.1. For the sake of brevity, we will
not carry out a deep description of these methods as done in the previous sections.
A recent categorization of the different filtering procedures made by Frenay and
Verleysen [19] will be followed as it matches our descriptions well.

5.4 Robust Learners Against Noise

Filtering the data has also one major drawback: some instances will be dropped from
the data sets, even if they are valuable. Instead of filtering the data set or modifying
the learning algorithm, we can use other approaches to diminish the effect of noise
in the learned model. In the case of labeled data, one powerful approach is to train
not a single classifier but several ones, taking advantage of their particular strengths.
In this section we provide a brief insight into classifiers that are known to be robust
to noise to a certain degree, even when the noise is not treated or cleansed. As
said in Sect. 5.1 C4.5 has been considered as a paradigmatic robust learner against
noise. However, it is also true that classical decision trees have been considered
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Table 5.1 Filtering approaches by category as of [19]

Detection based on thresholding of a measure Partition filtering for large data sets

Measure: classification confidence [82] For large and distributed data sets [102, 103]

Least complex correct hypothesis [24] Model influence

Classifier predictions based LOOPC [57]

Cost sensitive learning based [101] Single perceptron perturbation [33]

SVM based [86] Nearest neighbor based

ANN based [42] CNN [30]

Multi classifier system [65] BBNR [15]

C4.5 [44] IB3 [3]

Nearest instances to a candidate [78, 79] Tomek links [88]

Voting filtering PRISM [81]

Ensembles [10, 11] DROP [93]

Bagging [89] Graph connections based

ORBoost [45] Grabiel graphs [18]

Edge analysis [92] Neighborhood graphs [66]

sensitive to class noise as well [74]. This instability has make them very suitable for
ensemble methods. As a countermeasure for this lack of stability some strategies can
be used. The first one is to carefully select an appropriate splitting criteria measure.
In [2] several measures are compared to minimize the impact of label noise in the
constructed trees, empirically showing that the imprecise info-gain measure is able
to improve the accuracy and reduce the tree growing size produced by the noise.

Another approach typically described as useful to deal with noise in decision trees
is the use of pruning. Pruning tries to stop the overfitting caused by the overspecial-
ization over the isolated (and usually noisy) examples. The work of [1] eventually
shows that the usage of pruning helps to reduce the effect and impact of the noise in
the modeled trees. C4.5 is the most famous decision tree and it includes this pruning
strategy by default, and can be easily adapted to split under the desired criteria.

We have seen that the usage of ensembles is a good strategy to create accurate
and robust filters. Whether an ensemble of classifiers is robust or not against noise
can be also asked.

Many ensemble approaches exist and their noise robustness has been tested. An
ensemble is a system where the base learners are all of the same type built to be as
varied as possible. The two most classic approaches bagging and boosting were com-
pared in [16] showing that bagging obtains better performance than boosting when
label noise is present. The reason shown in [1] indicates that boosting (or the par-
ticular implementation made by AdaBoost) increase the weights of noisy instances
too much, making the model construction inefficient and imprecise, whereas mis-
labeled instances favour the variability of the base classifiers in bagging [19]. As
AdaBoost is not the only boosting algorithm, other implementations as LogitBoost
and BrownBoost have been checked as more robust to class noise [64]. When the base
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classifiers are different we talk of Multiple Classifier Systems (MCSs). They are thus
a generalization of the classic ensembles and they should offer better improvements
in noisy environments. They are tackled in Sect. 5.4.1.

We can separate the labeled instances in several “bags” or groups, each one con-
taining only those instances belonging to the same class. This type of decomposition
is well suited for those classifiers that can only work with binary classification prob-
lems, but has also been suggested that this decomposition can help to diminish the
effects of noise. This decomposition is expected to decrease the overlapping between
the classes and to limit the effect of noisy instances to their respective bags by sim-
plifying the problem and thus alleviating the effect of the noise if the whole data set
were considered.

5.4.1 Multiple Classifier Systems for Classification Tasks

Given a set of problems, finding the best overall classification algorithm is sometimes
difficult because some classifiers may excel in some cases and perform poorly in
others. Moreover, even though the optimal match between a learning method and
a problem is usually sought, this match is generally difficult to achieve and perfect
solutions are rarely found for complex problems [34, 36]. This is one reason for using
Multi-Classifier Systems [34, 36, 72], since it is not necessary to choose a specific
learning method. All of them might be used, taking advantage of the strengths of each
method, while avoiding its weaknesses. Furthermore, there are other motivations to
combine several classifiers [34]:

• To avoid the choice of some arbitrary but important initial conditions, e.g. those
involving the parameters of the learning method.
• To introduce some randomness to the training process in order to obtain different

alternatives that can be combined to improve the results obtained by the individual
classifiers.
• To use complementary classification methods to improve dynamic adaptation and

flexibility.

Several works have claimed that simultaneously using classifiers of different
types, complementing each other, improves classification performance on difficult
problems, such as satellite image classification [60], fingerprint recognition [68] and
foreign exchange market prediction [73]. Multiple Classifier Systems [34, 36, 72,
94] are presented as a powerful solution to these difficult classification problems,
because they build several classifiers from the same training data and therefore allow
the simultaneous usage of several feature descriptors and inference procedures. An
important issue when using MCSs is the way of creating diversity among the clas-
sifiers [54], which is necessary to create discrepancies among their decisions and
hence, to take advantage of their combination.

MCSs have been traditionally associated with the capability of working accu-
rately with problems involving noisy data [36]. The main reason supporting this
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hypothesis could be the same as one of the main motivations for combining classi-
fiers: the improvement of the generalization capability (due to the complementarity
of each classifier), which is a key question in noisy environments, since it might
allow one to avoid the overfitting of the new characteristics introduced by the noisy
examples [84]. Most of the works studying MCSs and noisy data are focused on
techniques like bagging and boosting [16, 47, 56], which introduce diversity con-
sidering different samples of the set of training examples and use only one baseline
classifier. For example, in [16] the suitability of randomization, bagging and boosting
to improve the performance of C4.5 was studied. The authors reached the conclu-
sion that with a low noise level, boosting is usually more accurate than bagging and
randomization. However, bagging outperforms the other methods when the noise
level increases. Similar conclusions were obtained in the paper of Maclin and Opitz
[56]. Other works [47] compare the performance of boosting and bagging techniques
dealing with imbalanced and noisy data, reaching also the conclusion that bagging
methods generally outperforms boosting ones. Nevertheless, explicit studies about
the adequacy of MCSs (different from bagging and boosting, that is, those introduc-
ing diversity using different base classifiers) to deal with noisy data have not been
carried out yet. Furthermore, most of the existing works are focused on a concrete
type of noise and on a concrete combination rule. On the other hand, when data is
suffering from noise, a proper study on how the robustness of each single method
influences the robustness of the MCS is necessary, but this fact is usually overlooked
in the literature.

There are several strategies to use more than one classifier for a single classification
task [36]:

• Dynamic classifier selection This is based on the fact that one classifier may
outperform all others using a global performance measure but it may not be the
best in all parts of the domain. Therefore, these types of methods divide the input
domain into several parts and aim to select the classifier with the best performance
in that part.
• Multi-stage organization This builds the classifiers iteratively. At each iteration, a

group of classifiers operates in parallel and their decisions are then combined. A
dynamic selector decides which classifiers are to be activated at each stage based
on the classification performances of each classifier in previous stages.
• Sequential approach A classifier is used first and the other ones are used only if

the first does not yield a decision with sufficient confidence.
• Parallel approach All available classifiers are used for the same input example

in parallel. The outputs from each classifier are then combined to obtain the final
prediction.

Although the first three approaches have been explored to a certain extent, the
majority of classifier combination research focuses on the fourth approach, due to its
simplicity and the fact that it enables one to take advantage of the factors presented
in the previous section. For these reasons, this book focus on the fourth approach.
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5.4.1.1 Decisions Combination in Multiple Classifiers Systems

As has been previously mentioned, parallel approaches need a posterior phase of
combination after the evaluation of a given example by all the classifiers. Many deci-
sions combination proposals can be found in the literature, such as the intersection
of decision regions [29], voting methods [62], prediction by top choice combina-
tions [91], use of the Dempster–Shafer theory [58, 97] or ranking methods [36]. In
concrete, we will study the following four combination methods for the MCSs built
with heterogeneous classifiers:

1. Majority vote (MAJ) [62] This is a simple but powerful approach, where each
classifier gives a vote to the predicted class and the one with the most votes is
chosen as the output.

2. Weighted majority vote (W-MAJ) [80] Similarly to MAJ, each classifier gives
a vote for the predicted class, but in this case, the vote is weighted depending on
the competence (accuracy) of the classifier in the training phase.

3. Naïve Bayes [87] This method assumes that the base classifiers are mutually
independent. Hence, the predicted class is the one that obtains the highest posterior
probability. In order to compute these probabilities, the confusion matrix of each
classifier is considered.

4. Behavior-Knowledge Space (BKS) [38] This is a multinomial method that
indexes a cell in a look-up table for each possible combination of classifiers
outputs. A cell is labeled with the class to which the majority of the instances in
that cell belong to. A new instance is classified by the corresponding cell label;
in case the cell is not labeled or there is a tie, the output is given by MAJ.

We always use the same training data set to train all the base classifiers and
to compute the parameters of the aggregation methods, as is recommended in [53].
Using a separate set of examples to obtain such parameters can imply some important
training data to be ignored and this fact is generally translated into a loss of accuracy
of the final MCS built.

In MCSs built with heterogeneous classifiers, all of them may not return a con-
fidence value. Even though each classifier can be individually modified to return a
confidence value for its predictions, such confidences will come from different com-
putations depending on the classifier adapted and their combination could become
meaningless. Nevertheless, in MCSs built with the same type of classifier, this fact
does not occur and it is possible to combine their confidences since these are homo-
geneous among all the base classifiers [53]. Therefore, in the case of bagging, given
that the same classifier is used to train all the base classifiers, the confidence of the
prediction can be used to compute a weight and, in turn, these weights can be used
in a weighted voting combination scheme.
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5.4.2 Addressing Multi-class Classification Problems
by Decomposition

Usually, the more classes in a problem, the more complex it is. In multi-class learn-
ing, the generated classifier must be able to separate the data into more than a pair
of classes, which increases the chances of incorrect classifications (in a two-class
balanced problem, the probability of a correct random classification is 1/2, whereas
in a multi-class problem it is 1/M). Furthermore, in problems affected by noise, the
boundaries, the separability of the classes and therefore, the prediction capabilities
of the classifiers may be severely hindered.

When dealing with multi-class problems, several works [6, 50] have demonstrated
that decomposing the original problem into several binary subproblems is an easy,
yet accurate way to reduce their complexity. These techniques are referred to as
binary decomposition strategies [55]. The most studied schemes in the literature are:
One-vs-One (OVO) [50], which trains a classifier to distinguish between each pair of
classes, and One-vs-All (OVA) [6], which trains a classifier to distinguish each class
from all other classes. Both strategies can be encoded within the Error Correcting
Output Codes framework [5, 17]. However, none of these works provide any theoret-
ical nor empirical results supporting the common assumption that assumes a better
behavior against noise of decomposition techniques compared to not using decom-
position. Neither do they show what type of noise is better handled by decomposition
techniques.

Consequently, we can consider the usage of the OVO strategy, which generally
out-stands over OVA [21, 37, 76, 83], and check its suitability with noisy training
data. It should be mentioned that, in real situations, the existence of noise in the
data sets is usually unknown-therefore, neither the type nor the quantity of noise
in the data set can be known or supposed a priori. Hence, tools which are able
to manage the presence of noise in the data sets, despite its type or quantity (or
unexistence), are of great interest. If the OVO strategy (which is a simple yet effective
methodology when clean data sets are considered) is also able to properly (better than
the baseline non-OVO version) handle the noise, its usage could be recommended in
spite of the presence of noise and without taking into account its type. Furthermore,
this strategy can be used with any of the existing classifiers which are able to deal
with two-class problems. Therefore, the problems of algorithm level modifications
and preprocessing techniques could be avoided; and if desired, they could also be
combined.

5.4.2.1 Decomposition Strategies for Multi-class Problems

Several motivations for the usage of binary decomposition strategies in multi-class
classification problems can be found in the literature [20, 21, 37, 76]:

• The separation of the classes becomes easier (less complex), since less classes
are considered in each subproblem [20, 61]. For example, in [51], the classes in a
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digit recognition problem were shown to be linearly separable when considered in
pairs, becoming a simpler alternative than learning a unique non-linear classifier
over all classes simultaneously.
• Classification algorithms, whose extension to multi-class problems is not easy, can

address multi-class problems using decomposition techniques [20].
• In [71], the advantages of using decomposition were pointed out when the classi-

fication errors for different classes have distinct costs. The binarization allows the
binary classifiers generated to impose preferences for some of the classes.
• Decomposition allows one to easily parallelize the classifier learning, since the

binary subproblems are independent and can be solved with different processors.

Dividing a problem into several new subproblems, which are then independently
solved, implies the need of a second phase where the outputs of each problem need
to be aggregated. Therefore, decomposition includes two steps:

1. Problem division. The problem is decomposed into several binary subproblems
which are solved by independent binary classifiers, called base classifiers [20].
Different decomposition strategies can be found in the literature [55]. The most
common one is OVO [50].

2. Combination of the outputs. [21] The different outputs of the binary classifiers
must be aggregated in order to output the final class prediction. In [21], an exhaus-
tive study comparing different methods to combine the outputs of the base clas-
sifiers in the OVO and OVA strategies is developed. Among these combination
methods, the Weighted Voting [40] and the approaches in the framework of prob-
ability estimates [95] are highlighted.

This book focuses the OVO decomposition strategy due to the several advantages
shown in the literature with respect to OVA [20, 21, 37, 76]:

• OVO creates simpler borders between classes than OVA.
• OVO generally obtains a higher classification accuracy and a shorter training time

than OVA because the new subproblems are easier and smaller.
• OVA has more of a tendency to create imbalanced data sets which can be counter-

productive [22, 83].
• The application of the OVO strategy is widely extended and most of the software

tools considering binarization techniques use it as default [4, 13, 28].

5.4.2.2 One-vs-One Decomposition Scheme

The OVO decomposition strategy consists of dividing a classification problem with
M classes into M(M−1)/2 binary subproblems. A classifier is trained for each new
subproblem only considering the examples from the training data corresponding to
the pair of classes (λi , λ j ) with i < j considered.

When a new instance is going to be classified, it is presented to all the the binary
classifiers. This way, each classifier discriminating between classes λi and λ j pro-
vides a confidence degree ri j ∈ [0, 1] in favor of the former class (and hence, r ji is
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computed by 1− ri j ). These outputs are represented by a score matrix R:

R =

⎛

⎜⎜⎜⎝

− r12 · · · r1M

r21 − · · · r2M
...

...

rM1 rM2 · · · −

⎞

⎟⎟⎟⎠ (5.3)

The final output is derived from the score matrix by different aggregation models.
The most commonly used and simplest combination, also considered in the experi-
ments of this book, is the application of a voting strategy:

Class = arg maxi=1,...,M

∑

1≤ j �=i≤M

si j (5.4)

where si j is 1 if ri j > r ji and 0 otherwise. Therefore, the class with the largest number
of votes will be predicted. This strategy has proved to be competitive with different
classifiers obtaining similar results in comparison with more complex strategies [21].

5.5 Empirical Analysis of Noise Filters and Robust Strategies

In this section we want to illustrate the advantages of the noise approaches described
above.

5.5.1 Noise Introduction

In the data sets we are going to use (taken from Chap. 2), as in most of the real-world
data sets, the initial amount and type of noise present is unknown. Therefore, no
assumptions about the base noise type and level can be made. For this reason, these
data sets are considered to be noise free, in the sense that no recognizable noise has
been introduced. In order to control the amount of noise in each data set and check
how it affects the classifiers, noise is introduced into each data set in a supervised
manner. Four different noise schemes proposed in the literature, as explained in
Sect. 5.2, are used in order to introduce a noise level x% into each data set:

1. Introduction of class noise.

• Uniform class noise [84] x% of the examples are corrupted. The class labels
of these examples are randomly replaced by another one from the M classes.
• Pairwise class noise [100, 102] Let X be the majority class and Y the second

majority class, an example with the label X has a probability of x/100 of
being incorrectly labeled as Y .

http://dx.doi.org/10.1007/978-3-319-10247-4_2
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2. Introduction of attribute noise

• Uniform attribute noise [100, 104] x% of the values of each attribute in the
data set are corrupted. To corrupt each attribute Ai , x% of the examples in
the data set are chosen, and their Ai value is assigned a random value from
the domain Di of the attribute Ai . An uniform distribution is used either for
numerical or nominal attributes.
• Gaussian attribute noise This scheme is similar to the uniform attribute noise,

but in this case, the Ai values are corrupted, adding a random value to them
following Gaussian distribution of mean = 0 and standard deviation = (max-
min)/5, being max and min the limits of the attribute domain (Di ). Nominal
attributes are treated as in the case of the uniform attribute noise.

In order to create a noisy data set from the original, the noise is introduced into
the training partitions as follows:

1. A level of noise x%, of either class noise (uniform or pairwise) or attribute noise
(uniform or Gaussian), is introduced into a copy of the full original data set.

2. Both data sets, the original and the noisy copy, are partitioned into 5 equal folds,
that is, with the same examples in each one.

3. The training partitions are built from the noisy copy, whereas the test partitions
are formed from examples from the base data set, that is, the noise free data set.

We introduce noise, either class or attribute noise, only into the training sets
since we want to focus on the effects of noise on the training process. This will be
carried out observing how the classifiers built from different noisy training data for a
particular data set behave, considering the accuracy of those classifiers, with the same
clean test data. Thus, the accuracy of the classifier built over the original training
set without additional noise acts as a reference value that can be directly compared
with the accuracy of each classifier obtained with the different noisy training data.
Corrupting the test sets also affects the accuracy obtained by the classifiers and
therefore, our conclusions will not only be limited to the effects of noise on the
training process.

The accuracy estimation of the classifiers in a data set is obtained by means of 5
runs of a stratified 5-FCV. Hence, a total of 25 runs per data set, noise type and level
are averaged. 5 partitions are used because, if each partition has a large number of
examples, the noise effects will be more notable, facilitating their analysis.

The robustness of each method is estimated with the relative loss of accuracy
(RLA) (Eq. 5.5), which is used to measure the percentage of variation of the accuracy
of the classifiers at a concrete noise level with respect to the original case with no
additional noise:

RL Ax% = Acc0 % − Accx%

Acc0 %
, (5.5)

where RL Ax% is the relative loss of accuracy at a noise level x%, Acc0 % is the
test accuracy in the original case, that is, with 0 % of induced noise, and Accx% is
the test accuracy with a noise level x%.
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5.5.2 Noise Filters for Class Noise

The usage of filtering is claimed to be useful in the presence of noise. This section
tries to show whether this claim is true or not and to what extent. As a simple but
representative case of study, we show the results of applying noise filters based on
detecting and eliminating mislabeled training instances. We want to illustrate how
applying filters is a good strategy to obtain better results in the presence of even low
amounts of noise. As filters are mainly designed for class noise, we will focus on the
two types of class noise described in this chapter: the uniform class noise and the
pairwise class noise.

Three popular classifiers will be used to obtain the accuracy values that are C4.5,
Ripper and a SVM. Their selection is not made at random: SVMs are known to be
very accurate but also sensitive to noise. Ripper is a rule learning algorithm able to
perform averagely well, but as we saw in Sect. 5.4 rule learners are also sensitive to
noise when they are not designed to cope with it. The third classifier is C4.5 using
the pruning strategy, that it is known for diminishing the effects of noise in the final
tree. Table 5.2 shows the average results for the three noise filters for each kind of
class noise studied. The amount of noise ranges from 5 to 20 %, enough to show the
differences between no filtering (labeled as “None”) and the noise filters. The results
shown are the average over all the data sets considered in order to ease the reading.

The evolution of the results and their tendencies can be better depicted by using a
graphical representation. Figure 5.4a shows the performance of SVM from an amount
of 0 % of controlled pairwise noise to the final 20 % introduced. The accuracy can be
seen to drop from an initial amount of 90–85 % by only corrupting 20 % of the class
labels. The degradation is even worse in the case of uniform class noise depicted
in Fig. 5.4b, as all the class labels can be affected. The evolution of not using any

Table 5.2 Filtering of class noise over three classic classifiers

Pairwise class noise Uniform random class noise

0% 5% 10% 15% 20% 0% 5% 10% 15% 20%

None 90.02 88.51 86.97 86.14 84.86 90.02 87.82 86.43 85.18 83.20

SVM EF 90.49 89.96 89.07 88.33 87.40 90.49 89.66 88.78 87.78 86.77

CVCF 90.56 89.86 88.94 88.28 87.76 90.48 89.56 88.72 87.92 86.54

IPF 90.70 90.13 89.37 88.85 88.27 90.58 89.79 88.97 88.48 87.37

None 82.46 81.15 80.35 79.39 78.49 82.46 79.81 78.55 76.98 75.68

Ripper EF 83.36 82.87 82.72 82.43 81.53 83.46 83.03 82.87 82.30 81.66

CVCF 83.17 82.93 82.64 82.03 81.68 83.17 82.59 82.19 81.69 80.45

IPF 83.74 83.59 83.33 82.72 82.44 83.74 83.61 82.94 82.94 82.48

None 83.93 83.66 82.81 82.25 81.41 83.93 82.97 82.38 81.69 80.28

C4.5 EF 84.18 84.07 83.70 83.20 82.36 84.16 83.96 83.53 83.38 82.66

CVCF 84.15 83.92 83.24 82.54 82.13 84.15 83.61 83.00 82.84 81.61

IPF 84.44 84.33 83.92 83.38 82.53 84.44 83.89 83.84 83.50 82.72
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SVM with pairwise noise SVM with uniform noise

Ripper with pairwise noise Ripper with uniform noise

C4.5 with pairwise noise C4.5 with uniform noise

(a) (b)

(c) (d)

(e) (f)

Fig. 5.4 Accuracy over different amounts and types of noise. The different filters used are named
by their acronyms. “None” denotes the absence of any filtering. a SVM with pairwise noise b SVM
with uniform noise c Ripper with pairwise noise d Ripper with uniform noise e C4.5 with pairwise
noise f C4.5 with uniform noise

noise filter denoted by “None” is remarkably different from the lines that illustrate
the usage of any noise filter. The IPF filter is slightly better than the other due
to its greater sophistication, but in overall the use of filters is highly recommended.
Even in the case of 0 % of controlled noise, the noise already present is also cleansed,
allowing the filtering to improve even in this base case. Please note that the divergence
appears even in the 5 % case, showing that noise filtering is worth trying in low noise
frameworks.

Ripper obtains a lower overall accuracy than SVM, but the conclusions are akin:
the usage of noise filters is highly recommended as can be seen in Fig. 5.4c, d. It is
remarkable that not applying filtering for Ripper causes a fast drop in performance,
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indicating that the rule base modeled is being largely affected by the noise. Thanks
to the use of the noise filter the inclusion of misleading rules is controlled, resulting
in a smoother drop in performance, even slower than that for SVM.

The last case is also very interesting. Being that C4.5 is more robust against
noise than SVM and Ripper, the accuracy drop over the increment of noise is lower.
However the use of noise filters is still recommended as they improve both the initial
case 0 % and the rest of levels. The greater differences between not filtering and
the use of any filter are found in uniform class noise (Fig. 5.4f). As we indicated
when describing the SVM case, uniform class noise is more disruptive but the use
of filtering for C4.5 make its performance comparable to the case of pairwise noise
(Fig. 5.4e).

Although not depicted here, the size of C4.5 trees, Ripper rule base size and the
number of support vectors of SVM is lower with the usage of noise filters when
the noise amount increases, resulting in a shorter time when evaluating examples for
classification. This is specially critical for SVM, whose evaluation times dramatically
increase with the increment of selected support vectors.

5.5.3 Noise Filtering Efficacy Prediction by Data Complexity
Measures

In the previous Sect. 5.5.2 we have seen that the application of noise filters are
beneficial in most cases, especially when higher amounts of noise are present in
the data. However, applying a filter is not “free” in terms of computing time and
information loss. Indiscriminate application of noise filtering may be interpreted as
the outcome of the aforementioned example study, but it would be interesting to
study the noise filters’ behavior further and to obtain hints about whether filtering is
useful or not depending on the data case.

In an ideal case, only the examples that are completely wrong would be erased
from the data set. The truth is both correct examples and examples containing valu-
able information may be removed, as the filters are ML techniques with their inher-
ent limitations. This fact implies that these techniques do not always provide an
improvement in performance. The success of these methods depends on several
circumstances, such as the kind and nature of the data errors, the quantity of noise
removed or the capabilities of the classifier to deal with the loss of useful information
related to the filtering. Therefore, the efficacy of noise filters, i.e., whether their use
causes an improvement in classifier performance, depends on the noise-robustness
and the generalization capabilities of the classifier used, but it also strongly depends
on the characteristics of the data.

Describing the characteristics of the data is not an easy task, as specifying what
“difficult” means is usually not straightforward or it simply does not depend on a sin-
gle factor. Data complexity measures are a recent proposal to represent characteristics
of the data that are considered difficult in classification tasks, e.g. the overlapping
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Fig. 5.5 Using C4.5 to build a rule set to predict noise filtering efficacy

among classes, their separability or the linearity of the decision boundaries. The
most commonly used data complexity set of measures are those gathered together
by Ho and Basu [35]. They consist of 12 metrics designed for binary classification
problems that numerically estimate the difficulty of 12 different aspects of the data.
For some measures lower/higher values mean a more difficult problem regarding to
such a characteristic. Having a numeric description of the difficult aspects of the data
opens a new question: can we predict which characteristics are related with noise
and will they be successfully corrected by noise filters?

This prediction can help, for example, to determine an appropriate noise filter
for a concrete noisy data set such a filter providing a signicant advantage in terms
of the results or to design new noise filters which select more or less aggressive
filtering strategies considering the characteristics of the data. Choosing a noise-
sensitive learner facilitates the checking of when a filter removes the appropriate
noisy examples in contrast to a robust learner-the performance of classiers built by
the former is more sensitive to noisy examples retained in the data set after the ltering
process.

A way to formulate rules that describe when it is appropriate to filter the data
follows the scheme depicted in Fig. 5.5. From an initial set of 34 data sets from
those described in Chap. 2, a large amount of two-class data sets are obtained by

http://dx.doi.org/10.1007/978-3-319-10247-4_2
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binarization along their data complexity measures. Thus the filtering efficacy is
compared by using 1-NN as a classifier to obtain the accuracy of filtering versus
not filtering. This comparison is achieved by using a Wilcoxon Signed Rank test. If
the statistical test yields differences favouring the filtering, the two-class data set is
labeled as appropriate for filtering, and not favorable in other case. As a result for
each binary data set we will have 12 data complexity measures and a label describing
whether the data set is eligible for filtering or not. A simple way to summarize this
information into a rule set is to use a decision tree (C4.5) using the 12 data complexity
values as the input features, and the appropriateness label as the class.

An important appreciation about the scheme presented in Fig. 5.5 is that for every
label noise filter we want to consider, we will obtain a different set of rules. For
the sake of simplicity we will limit this illustrative study to our selected filters—EF,
CVCF and IPF—in Sect. 5.3.

How accurate is the set of rules when predicting the suitability of label noise
filters? Using a 10-FCV over the data set obtained in the fourth step in Fig. 5.5, the
training and test accuracy of C4.5 for each filter is summarized in Table 5.3.

The test accuracy above 80 % in all cases indicates that the description obtained
by C4.5 is precise enough.

Using a decision tree is also interesting not only due to the generated rule set,
but also because we can check which data complexity measures (that is, the input
attributes) are selected first, and thus are considered as more important and discrim-
inant by C4.5. Averaging the rank of selection of each data complexity measure
over the 10 folds, Table 5.4 shows which complexity measures are the most dis-

Table 5.3 C4.5 accuracy in
training and test for the
ruleset describing the
adequacy of label noise filters

Noise filter % Acc. training % Acc. Test

EF 0.9948 0.8176

CVCF 0.9966 0.8353

IPF 0.9973 0.8670

Table 5.4 Average rank of
each data complexity measure
selected by C4.5 (the lower
the better)

Metric EF CVCF IPF Mean

F1 5.90 4.80 4.50 5.07

F2 1.00 1.00 1.00 1.00

F3 10.10 3.40 3.30 5.60

N1 9.10 9.90 7.10 8.70

N2 3.30 2.00 3.00 2.77

N3 7.80 8.50 9.50 8.60

N4 9.90 9.70 10.50 10.03

L1 7.90 10.00 6.00 7.97

L2 9.30 6.80 10.00 8.70

L3 4.60 8.70 5.90 6.40

T1 5.20 6.80 11.00 7.67
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criminating, and thus more interesting, for C4.5 to discern when a noise filter will
behave well or badly. Based on these rankings it is easy to observe that F2, N2, F1
and F3 are the predominant measures in the order of choice. Please remember that
behind these acronyms, the data complexity measures aim to describe one particu-
lar source of difficulty for any classification problem. Following the order from the
most important of these four outstanding measures to the least, the volume of overlap
region (F2) is key to describe the effectiveness of a class noise filter. The less any
attribute is overlapped, the better the filter is able to decide if the instance is noisy.
It is complemented with the ratio of average intra/inter class distance as defined by
the nearest neighbor rule. When the examples sharing the same class are closer than
the examples of other classes the filtering is effective for 1-NN. This measure is
expected to change if another classifier is chosen to build the classification problem.
F1 and F3 are also measures of individual attribute overlapping as F2, but they are
less important in general.

If the discriminant abilities of these complexity measures are as good as their ranks
indicate, using only these few measures we can expect to obtain a better and more
concise description of what a easy-to-filter problem is. In order to avoid the study
of all the existing combinations of the five metrics, the following experimentation
is mainly focused on the measures F2, N2 and F3, the most discriminative ones
since the order results can be considered more important than the percentage results.
The incorporation of F1 into this set is also studied. The prediction capability of
the measure F2 alone, since is the most discriminative one, is also shown. All these
results are presented in Table 5.5.

The use of the measure F2 alone to predict the noise filtering efficacy with good
performance can be discarded, since its results are not good enough compared with
the cases where more than one measure is considered. This fact reflects that the use
of single measures does not provide enough information to achieve a good filtering
efficacy prediction result. Therefore, it is necessary to combine several measures
which examine different aspects of the data. Adding the rest of selected measures
provides comparable results to those shown in Table 5.3 yet limits the complexity of
the rule set obtained.

The work carried out in this section is studied further in [77], showing how a
rule set obtained for one filter can be applied to other filters, how these rule sets are
validated with unseen data sets and even increasing the number of filters involved.

Table 5.5 Performance results of C4.5 predicting the noise filtering efficacy (measures used: F2,
N2, F3, and F1)

F2 F2-N2-F3-F1 F2-N2-F3

Noise Filter Training Test Training Test Training Test

CVCF 1.0000 0.5198 0.9983 0.7943 0.9977 0.8152

EF 1.0000 0.7579 0.9991 0.8101 0.9997 0.8421

IPF 1.0000 0.7393 0.9989 0.8119 0.9985 0.7725

Mean 1.0000 0.6723 0.9988 0.8054 0.9986 0.8099



5.5 Empirical Analysis of Noise Filters and Robust Strategies 133

5.5.4 Multiple Classifier Systems with Noise

We will dispose of three well-known classifiers to build the MCS used in this illus-
trative section. SVM [14], C4.5 [75] and KNN [63] are chosen based on their good
performance in a large number of real-world problems. Moreover, they were selected
because these methods have a highly differentiated and well known noise-robustness,
which is important in order to properly evaluate the performance of MCSs in the pres-
ence of noise. Considering thec previous classifiers (SVM, C4.5 and KNN), a MCS
composed by 3 individual classifiers (SVM, C4.5 and 1-NN) is built. Therefore,
the MCSs built with heterogeneous classifiers (MCS3-1) will contain a noise-robust
algorithm (C4.5), a noise-sensitive method (SVM) and a local distance dependent
method with a low tolerance to noise (1-NN).

5.5.4.1 First Scenario: Data Sets with Class Noise

Table 5.6 shows the performance (top part of the table) and robustness (bottom part
of table) results of each classification algorithm at each noise level on data sets with
class noise. Each one of these parts in the table (performance and robustness parts)
is divided into another two parts: one with the results of the uniform class noise

Table 5.6 Performance and robustness results on data sets with class noise

Results p-values MCS3-1 vs.

x% SVM C4.5 1-NN MCS3-1 SVM C4.5 1-NN

Pe
rf

or
m

an
ce U

ni
fo

rm

0% 83.25 82.96 81.42 85.42 5.20E-03 1.80E-03 7.10E-04
10% 79.58 82.08 76.28 83 1.10E-04 3.90E-01 1.30E-07
20% 76.55 79.97 71.22 80.09 5.80E-05 9.5E-01* 1.00E-07
30% 73.82 77.9 65.88 77.1 2.80E-04 3.5E-01* 6.10E-08
40% 70.69 74.51 61 73.2 7.20E-03 2.0E-01* 7.00E-08
50% 67.07 69.22 55.55 67.64 5.40E-01 1.4E-01* 1.10E-07

Pa
ir

w
is

e

0% 83.25 82.96 81.42 85.42 5.20E-03 1.80E-03 7.10E-04
10% 80.74 82.17 77.73 83.95 1.20E-04 5.80E-02 1.20E-07
20% 79.11 80.87 74.25 82.21 2.00E-04 3.50E-01 8.20E-08
30% 76.64 78.81 70.46 79.52 2.10E-03 8.20E-01 5.60E-08
40% 73.13 74.83 66.58 75.25 3.80E-02 8.0E-01* 4.50E-08
50% 65.92 60.29 63.06 64.46 2.6E-02* 2.60E-05 1.10E-01

R
L

A
U

ni
fo

rm

10% 4.44 1.1 6.16 2.91 7.20E-03 1.5E-06* 1.00E-07
20% 8.16 3.78 12.1 6.4 1.50E-02 3.1E-05* 1.20E-06
30% 11.38 6.36 18.71 9.95 8.80E-02 4.6E-05* 1.80E-07
40% 15.08 10.54 24.15 14.54 6.60E-01 8.2E-05* 1.50E-06
50% 19.47 17 30.58 21.08 1.9E-01* 1.3E-04* 1.30E-05

Pa
ir

w
is

e 10% 2.97 1 4.2 1.73 6.60E-03 2.0E-04* 6.70E-06
20% 4.86 2.66 8.21 3.86 7.20E-02 1.7E-03* 1.00E-05
30% 7.81 5.33 12.75 7.11 3.80E-01 2.7E-03* 6.30E-06
40% 12.01 10.19 17.2 12.08 5.50E-01 7.8E-03* 4.40E-05
50% 20.3 26.7 21.18 24.13 1.4E-04* 2.60E-03 1.1E-01*
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and another with the results of the pairwise class noise. A star ‘∗’ next to a p-value
indicates that the corresponding single algorithm obtains more ranks than the MCS
in Wilcoxon’s test comparing the individual classifier and the MCS. Note that the
robustness can only be measured if the noise level is higher than 0 %, so the robustness
results are presented from a noise level of 5 % and higher.

From the raw results we can extract some interesting conclusions. If we consider
the performance results with uniform class noise we can observe that MCS3-k is
statistically better than SVM, but in the case of C4.5 statistical differences are only
found at the lowest noise level. For the rest of the noise levels, MCS3-1 is statistically
equivalent to C4.5. Statistical differences are found between MCS3-1 and 1-NN for
all the noise levels, indicating that MCS are specially suitable when taking noise
sensitive classifiers into account.

In the case of pairwise class noise the conclusions are very similar. MCS3-1
statistically outperforms its individual components when the noise level is below
45 %, whereas it only performs statistically worse than SVM when the noise level
reaches 50 % (regardless of the value of 1). MCS3-1 obtains more ranks than C4.5 in
most of the cases; moreover, it is statistically better than C4.5 when the noise level
is below 15 %. Again MCS3-1 statistically outperforms 1-NN regardless of the level
of noise.

In uniform class noise MCS3-1 is significantly more robust than SVM up to a
noise level of 30 %. Both are equivalent from 35 % onwards—even though MCS3-1
obtains more ranks at 35–40 % and SVM at 45–50 %. The robustness of C4.5 excels
with respect to MCS3-1, observing the differences found. MCS3-1 is statistically
better than 1-NN. The Robustness results with pairwise class noise present some
differences with respect to uniform class noise. MCS3-1 statistically overcomes SVM
up to a 20 % noise level, they are equivalent up to 45 % and MCS3-1 is outperformed
by SVM at 50 %. C4.5 is statistically more robust than MCS3-1 (except in highly
affected data sets, 45–50 %) and The superiority of MCS3-1 against 1-NN is notable,
as it is statistically better at all noise levels.

It is remarkable that the uniform scheme is the most disruptive class noise for
the majority of the classifiers. The higher disruptiveness of the uniform class noise
in MCSs built with heterogeneous classifiers can be attributed to two main reasons:
(i) this type of noise affects all the output domain, that is, all the classes, to the
same extent, whereas the pairwise scheme only affects the two majority classes; (ii)
a noise level x% with the uniform scheme implies that exactly x% of the examples in
the data sets contain noise, whereas with the pairwise scheme, the number of noisy
examples for the same noise level x% depends on the number of examples of the
majority class Nmaj ; as a consequence, the global noise level in the whole data set
is usually lower—more specifically, the number of noisy examples can be computed
as (x · Nmaj )/100.

With the performance results in uniform class noise MCS3-1 generally outper-
forms its single classifier components. MCS3-1 is better than SVM and 1-NN,
whereas it only performs statistically better than C4.5 at the lowest noise levels.
In pairwise class noise MCS3-1 improves SVM up to a 40 % noise level, it is better
than C4.5 at the lowest noise levels—these noise levels are lower than those of the
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uniform class noise—and also outperforms 1-NN. Therefore, the behavior of MCS3-
1 with respect to their individual components is better in the uniform scheme than
in the pairwise one.

5.5.4.2 Second Scenario: Data Sets with Attribute Noise

Table 5.7 shows the performance and robustness results of each classification algo-
rithm at each noise level on data sets with attribute noise.

At first glance we can appreciate that the results on data sets with uniform attribute
noise are much worse than those on data sets with Gaussian noise for all the classifiers,
including MCSs. Hence, the most disruptive attribute noise is the uniform scheme. As
the uniform attribute noise is the most disruptive noise scheme, MCS3-1 outperforms
SVM and 1-NN. However, with respect to C4.5, MCS3-1 is significantly better only
at the lowest noise levels (up to 10–15 %), and is equivalent at the rest of the noise
levels. With gaussian attribute noise MCS3-1 is only better than 1-NN and SVM,
and better than C4.5 at the lowest noise levels (up to 25 %).

The robustness of the MCS3-1 with uniform attribute noise does not outperform
that of its individual classifiers, as it is statistically equivalent to SVM and some-
times worse than C4.5. Regarding 1-NN, MCS3-1 performs better than 1-NN. When

Table 5.7 Performance and robustness results on data sets with attribute noise

Results p-values MCS3-1 vs.

x% SVM C4.5 1-NN MCS3-1 SVM C4.5 1-NN

Pe
rf

or
m

an
ce U

ni
fo

rm

0% 83.25 82.96 81.42 85.42 5.20E-03 1.80E-03 7.10E-04
10% 81.78 81.58 78.52 83.33 3.90E-03 8.30E-02 8.10E-06
20% 78.75 79.98 75.73 80.64 4.40E-03 0.62 5.20E-06
30% 76.09 77.64 72.58 77.97 2.10E-03 9.4E-01* 1.00E-05
40% 72.75 75.19 69.58 74.84 9.90E-03 7.6E-01* 1.30E-06
50% 69.46 72.12 66.59 71.36 1.20E-02 3.1E-01* 2.70E-05

G
au

ss
ia

n

0% 83.25 82.96 81.42 85.42 5.20E-03 1.80E-03 7.10E-04
10% 82.83 82.15 80.08 84.49 3.40E-03 4.80E-03 4.00E-05
20% 81.62 81.16 78.52 83.33 4.40E-03 2.10E-02 1.00E-05
30% 80.48 80.25 76.74 81.85 1.10E-02 2.00E-01 1.00E-05
40% 78.88 78.84 74.82 80.34 1.60E-02 0.4 1.00E-05
50% 77.26 77.01 73.31 78.49 0.022 3.40E-01 3.00E-05

R
L

A
U

ni
fo

rm

10% 1.38 1.68 3.63 2.4 6.7E-01* 6.6E-02* 1.30E-02
20% 5.06 3.6 6.78 5.54 6.10E-01 5.2E-03* 1.30E-02
30% 8.35 6.62 10.73 8.85 7.80E-01 2.6E-03* 1.20E-02
40% 12.13 9.6 14.29 12.44 7.8E-01* 1.1E-02* 2.00E-03
50% 16.28 13.46 17.7 16.68 8.5E-01* 3.4E-03* 2.00E-02

G
au

ss
ia

n 10% 0.25 0.94 1.6 1.03 1.70E-01 2.4E-01* 2.60E-01
20% 1.74 2.1 3.36 2.36 3.30E-01 1.2E-01* 1.00E-01
30% 3.14 3.25 5.64 4.14 7.3E-01* 1.3E-02* 7.20E-02
40% 5.23 5.02 7.91 5.93 9.40E-01 1.5E-02* 2.60E-03
50% 7.28 7.29 9.51 8.14 0.98 6.0E-02* 0.051
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focusing in gaussian noise the robustness results are better than those of the uniform
noise. The main difference in this case is that MCS3-1 and MCS5 are not statistically
worse than C4.5.

5.5.4.3 Conclusions

The results obtained have shown that the MCSs studied do not always significantly
improve the performance of their single classification algorithms when dealing with
noisy data, although they do in the majority of cases (if the individual components
are not heavily affected by noise). The improvement depends on many factors, such
as the type and level of noise. Moreover, the performance of the MCSs built with
heterogeneous classifiers depends on the performance of their single classifiers, so
it is recommended that one studies the behavior of each single classifier before
building the MCS. Generally, the MCSs studied are more suitable for class noise
than for attribute noise. Particularly, they perform better with the most disruptive
class noise scheme (the uniform one) and with the least disruptive attribute noise
scheme (the gaussian one).

The robustness results show that the studied MCS built with heterogeneous clas-
sifiers will not be more robust than the most robust among their single classification
algorithms. In fact, the robustness can always be shown as an average of the robust-
ness of the individual methods. The higher the robustness of the individual classifiers
are, the higher the robustness of the MCS is.

5.5.5 Analysis of the OVO Decomposition with Noise

In this section, the performance and robustness of the classification algorithms using
the OVO decomposition with respect to its baseline results when dealing with data
suffering from noise are analyzed. In order to investigate whether the decomposi-
tion is able to reduce the effect of noise or not, a large number of data sets are
created introducing different levels and types of noise, as suggested in the litera-
ture. Several well-known classification algorithms, with or without decomposition,
are trained with them in order to check when decomposition is advantageous. The
results obtained show that methods using the One-vs-One strategy lead to better per-
formances and more robust classifiers when dealing with noisy data, especially with
the most disruptive noise schemes. Section 5.5.5.1 is devoted to the study of the class
noise scheme, whereas Sect. 5.5.5.2 analyzes the attribute noise case.

5.5.5.1 First Scenario: Data Sets with Class Noise

Table 5.8 shows the test accuracy and RLA results for each classification algorithm
at each noise level along with the associated p-values between the OVO and the
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Table 5.8 Test accuracy, RLA results and p-values on data sets with class noise. Cases where the
baseline classifiers obtain more ranks than the OVO version in the Wilcoxon’s test are indicated
with a star (*)

Uniform random class noise Pairwise class noise

C4.5 Ripper 5-NN C4.5 Ripper 5-NN

Base OVO Base OVO Base OVO Base OVO Base OVO Base OVO

Te
st

ac
cu

ra
cy

R
es

ul
ts

0% 81.66 82.7 77.92 82.15 82.1 83.45 81.66 82.7 77.92 82.15 82.1 83.45

10% 80.5 81.71 71.3 79.86 81.01 82.56 80.94 81.86 75.94 80.71 81.42 82.82

20% 78.13 80.27 66.71 77.35 79.55 81.36 79.82 81.03 74.77 79.62 79.41 81.01

30% 75.22 78.87 62.91 74.98 77.21 79.82 78.49 79.26 73.38 78.05 75.29 76.81

40% 71.1 76.88 58.32 72.12 73.82 76.83 76.17 76.91 71.6 76.19 69.89 71.65

50% 64.18 73.71 53.79 67.56 68.04 72.73 63.63 63.52 67.11 65.78 64.02 65.52

p-
va

lu
es

0% - - - 0.007 0.0002 0.093

10% 0.0124 0.0001 0.0036 0.0033 0.0003 0.0137

20% 0.0028 0.0001 0.0017 0.0017 0.0002 0.0022

30% 0.0002 0.0001 0.0013 0.009 0.0001 0.01

40% 0.0002 0.0001 0.0111 0.0276 0.0003 0.004

50% 0.0001 0.0001 0.0008 0.5016(*) 0.0930(*) 0.0057

R
L

A
va

lu
e

R
es

ul
ts

0% - - - - - -

10% 1.56 1.28 9.35 2.79 1.46 1.12 0.91 1.01 2.38 1.72 0.89 0.82

20% 4.63 3.15 15.44 5.86 3.48 2.67 2.39 2.13 3.52 3.03 3.29 2.93

30% 8.36 4.9 20.74 8.82 6.4 4.53 4.16 4.49 5.13 4.84 8.05 7.81

40% 13.46 7.41 26.72 12.35 10.3 8.11 7.01 7.38 7.25 7.12 14.37 13.68

50% 21.87 11.29 32.74 18.1 17.47 13.12 21.03 22.28 12.22 18.75 21.06 20.67

p-
va

lu
es

0% - - - - - -

10% 0.5257 0.0001 0.1354 0.8721(*) 0.3317 0.3507

20% 0.0304 0.0001 0.0479 0.0859 0.4781 0.0674

30% 0.0006 0.0001 0.0124 0.6813 0.6542 0.3507

40% 0.0001 0.0001 0.0333 0.6274 0.6274(*) 0.0793

50% 0.0001 0.0001 0.0015 0.0400(*) 0.0001(*) 0.062

non-OVO version from the Wilcoxon’s test. The few exceptions where the baseline
classifiers obtain more ranks than the OVO version in the Wilcoxon’s test are indicated
with a star next to the p-value.

For random class noise the test accuracy of the methods using OVO is higher in
all the noise levels. Moreover, the low p-values show that this advantage in favor of
OVO is significant. The RLA values of the methods using OVO are lower than those
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of the baseline methods at all noise levels. These differences are also statistically
significant as reflected by the low p-values. Only at some very low noise levels—5 %
and 10 % for C4.5 and 5 % for 5-NN - the results between the OVO and the non-OVO
version are statistically equivalent, but notice that the OVO decomposition does not
hinder the results, simply the loss is not lower.

These results also show that OVO achieves more accurate predictions when deal-
ing with pairwise class noise, however, it is not so advantageous with C4.5 or
RIPPER as with 5-NN in terms of robustness when noise only affects one class.
For example, the behavior of RIPPER with this noise scheme can be related to the
hierarchical way in which the rules are learned: it starts learning rules of the class
with the lowest number of examples and continues learning those classes with more
examples. When introducing this type of noise, RIPPER might change its training
order, but the remaining part of the majority class can still be properly learned, since
it now has more priority. Moreover, the original second majority class, now with
noisy examples, will probably be the last one to be learned and it would depend on
how the rest of the classes have been learned. Decomposing the problem with OVO,
a considerable number of classifiers will have a notable quantity of noise—those of
the majority and the second majority classes—and hence, the tendency to predict the
original majority class decreases—when the noise level is high, it strongly affects
the accuracy, since the majority has more influence on it.

In contrast with the rest of noise schemes, with pairwise noise scheme, all the
data sets have different real percentages of noisy examples at the same noise level of
x%. This is because each data set has a different number of examples of the majority
class, and thus a noise level of x% does not affect all the data sets in the same way.
In this case, the percentage of noisy examples with a noise level of x% is computed
as (x · Nmaj )/100, where Nmaj is the percentage of examples of the majority class.

5.5.5.2 Second Scenario: Data Sets with Attribute Noise

In this section, the performance and robustness of the classification algorithms using
OVO in comparison to its non-OVO version when dealing with data with attribute
noise are analyzed. The test accuracy, RLA results and p-values of each classification
algorithm at each noise level are shown in Table 5.9.

In the case of uniform attribute noise it can be pointed out that the test accuracy
of the methods using OVO is always statistically better at all the noise levels. The
RLA values of the methods using OVO are lower than those of the baseline methods
at all noise levels—except in the case of C4.5 with a 5 % of noise level. Regarding
the p-values, a clear tendency is observed, the p-value decreases when the noise level
increases with all the algorithms. With all methods—C4.5, RIPPER and 5-NN—the
p-values of the RLA results at the lowest noise levels (up to 20–25 %) show that
the robustness of OVO and non-OVO methods is statistically equivalent. From that
point on, the OVO versions statistically outperform the non-OVO ones. Therefore,
the usage of OVO is clearly advantageous in terms of accuracy and robustness when
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Table 5.9 Test accuracy, RLA results and p-values on data sets with attribute noise. Cases where
the baseline classifiers obtain more ranks than the OVO version in the Wilcoxon’s test are indicated
with a star (*)

Uniform random attribute noise Gaussian attribute noise

C4.5 Ripper 5-NN C4.5 Ripper 5-NN

Base OVO Base OVO Base OVO Base OVO Base OVO Base OVO

Te
st

ac
cu

ra
cy

R
es

ul
ts

0% 81.66 82.7 77.92 82.15 82.1 83.45 81.66 82.7 77.92 82.15 82.1 83.45

10% 80.31 81.65 76.08 80.85 79.81 81.34 80.93 81.67 76.53 81.12 80.91 82.52

20% 78.71 80.27 73.95 79.15 77.63 79.38 79.77 81.11 75.35 80.06 80.16 81.74

30% 76.01 78.25 71.25 77.06 74.68 76.46 79.03 80.4 74.46 78.93 78.84 80.77

40% 73.58 76.19 68.66 74.56 71.29 73.65 77.36 79.51 72.94 78.1 77.53 79.11

50% 70.49 73.51 65.5 71.66 67.72 70.07 75.29 78.03 71.57 76.27 76.02 77.72

p-
va

lu
es

0% 0.007 0.0002 0.093 0.007 0.0002 0.093

10% 0.0169 0.0003 0.091 0.1262 0.0004 0.0064

20% 0.0057 0.0003 0.0015 0.0048 0.0002 0.0036

30% 0.0043 0.0001 0.0112 0.0051 0.0003 0.0025

40% 0.0032 0.0001 0.0006 0.0019 0.0003 0.1262

50% 0.0036 0.0007 0.0011 0.0004 0.0008 0.0251

R
L

A
va

lu
e

R
es

ul
ts

0% - - - - - -

10% 1.82 1.32 2.56 1.62 3.03 2.62 0.92 1.27 1.9 1.26 1.68 1.13

20% 3.88 3.11 5.46 3.77 5.72 5.03 2.4 1.99 3.49 2.59 2.51 2.09

30% 7.54 5.77 9.2 6.42 9.57 8.76 3.42 2.91 4.66 3.95 4.34 3.32

40% 10.64 8.25 12.81 9.64 13.73 12.08 5.67 4.03 6.74 4.96 6.03 5.38

50% 14.74 11.74 17.21 13.33 18.14 16.55 8.37 5.87 8.5 7.35 7.82 7.16

p-
va

lu
es

0% - - - - - -

10% 0.4781 0.5755 1.0000(*) 0.0766(*) 0.8519(*) 0.4115

20% 0.2471 0.1454 0.1354 0.8405 0.9108(*) 0.3905

30% 0.0304 0.0438 0.1672 0.6542 0.2627(*) 0.2627

40% 0.0569 0.0036 0.0111 0.1169 0.3905 0.9405

50% 0.0152 0.0064 0.0228 0.009 0.6542(*) 0.218

noise affects the attributes in a random and uniform way. This behavior is particularly
notable with the highest noise levels, where the effects of noise are expected to be
more detrimental.
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On the other hand, analyzing the gaussian attribute noise results in the test accuracy
of the methods using OVO being better at all the noise levels. The low p-values show
that this advantage, also in favor of OVO, is statistically significant. With respect to
the RLA results the p-values show a clear decreasing tendency when the noise level
increases in all the algorithms. In the case of C4.5, OVO is statistically better from a
35 % noise level onwards. RIPPER and 5-NN are statistically equivalent at all noise
levels—although 5-NN with OVO obtains higher Wilcoxon’s ranks.

Hence, the OVO approach is also suitable considering the accuracy achieved with
this type of attribute noise. The robustness results are similar between the OVO and
non-OVO versions with RIPPER and 5-NN. However, for C4.5 there are statistical
differences in favor of OVO at the highest noise levels. It is important to note that in
some cases, particularly in the comparisons involving RIPPER, some RLA results
show that OVO is better than the non-OVO version in average but the latter obtains
more ranks in the statistical test—even though these differences are not significant.
This is due to the extreme results of some individual data sets, such as led7digit
or flare, in which the RLA results of the non-OVO version are much worse than
those of the OVO version. Anyway, we should notice that average results themselves
are not meaningful and the corresponding non-parametric statistical analysis must
be carried out in order to extract meaningful conclusions, which reflects the real
differences between algorithms.

5.5.5.3 Conclusions

The results obtained have shown that the OVO decomposition improves the baseline
classifiers in terms of accuracy when data is corrupted by noise in all the noise
schemes shown in this chapter. The robustness results are particularly notable with
the more disruptive noise schemes—the uniform random class noise scheme and the
uniform random attribute noise scheme—where a larger amount of noisy examples
and with higher corruptions are available, which produce greater differences (with
statistical significance).

In conclusion, we must emphasize that one usually does not know the type and
level of noise present in the data of the problem that is going to be addressed.
Decomposing a problem suffering from noise with OVO has shown a better accuracy,
higher robustness and homogeneity in all the classification algorithms tested. For
this reason, the use of the OVO decomposition strategy in noisy environments can
be recommended as an easy-to-applicate, yet powerful tool to overcome the negative
effects of noise in multi-class problems.
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