
Chapter 4
Dealing with Missing Values

Abstract In this chapter the reader is introduced to the approaches used in the
literature to tackle the presence of Missing Values (MVs). In real-life data, informa-
tion is frequently lost in data mining, caused by the presence of missing values in
attributes. Several schemes have been studied to overcome the drawbacks produced
by missing values in data mining tasks; one of the most well known is based on
preprocessing, formally known as imputation. After the introduction in Sect. 4.1, the
chapter begins with the theoretical background which analyzes the underlying dis-
tribution of the missingness in Sect. 4.2. From this point on, the successive sections
go from the simplest approaches in Sect. 4.3, to the most advanced proposals, focus-
ing in the imputation of the MVs. The scope of such advanced methods includes the
classic maximum likelihood procedures, like Expectation-Maximization or Multiple-
Imputation (Sect. 4.4) and the latest Machine Learning based approaches which use
algorithms for classification or regression in order to accomplish the imputation
(Sect. 4.5). Finally a comparative experimental study will be carried out in Sect. 4.6.

4.1 Introduction

Many existing, industrial and research data sets contain MVs in their attribute values.
Intuitively a MV is just a value for attribute that was not introduced or was lost in
the recording process. There are various reasons for their existence, such as manual
data entry procedures, equipment errors and incorrect measurements. The presence
of such imperfections usually requires a preprocessing stage in which the data is
prepared and cleaned [71], in order to be useful to and sufficiently clear for the
knowledge extraction process. The simplest way of dealing with MVs is to discard
the examples that contain them. However, this method is practical only when the
data contains a relatively small number of examples with MVs and when analysis of
the complete examples will not lead to serious bias during the inference [54].

MVs make performing data analysis difficult. The presence of MVs can also pose
serious problems for researchers. In fact, inappropriate handling of the MVs in the
analysis may introduce bias and can result in misleading conclusions being drawn

© Springer International Publishing Switzerland 2015
S. García et al., Data Preprocessing in Data Mining,
Intelligent Systems Reference Library 72, DOI 10.1007/978-3-319-10247-4_4

59

60 4 Dealing with Missing Values

from a research study, and can also limit the generalizability of the research findings
[96]. Three types of problems are usually associated with MVs in DM [5]:

1. loss of efficiency;
2. complications in handling and analyzing the data; and
3. bias resulting from differences between missing and complete data.

Recently some authors have tried to estimate how many MVs are needed to noticeably
harm the prediction accuracy in classification [45].

Usually the treatment of MVs in DM can be handled in three different ways [27]:

• The first approach is to discard the examples with MVs in their attributes. Therefore
deleting attributes with elevated levels of MVs is included in this category too.

• Another approach is the use of maximum likelihood procedures, where the para-
meters of a model for the complete portion of the data are estimated, and later used
for imputation by means of sampling.

• Finally, the imputation of MVs is a class of procedures that aims to fill in the MVs
with estimated ones. In most cases, a data set’s attributes are not independent from
each other. Thus, through the identification of relationships among attributes, MVs
can be determined

We will focus our attention on the use of imputation methods. A fundamental advan-
tage of this approach is that the MV treatment is independent of the learning algorithm
used. For this reason, the user can select the most appropriate method for each situ-
ation faced. There is a broad family of imputation methods, from simple imputation
techniques like mean substitution, KNN, etc.; to those which analyze the relation-
ships between attributes such as: SVM-based, clustering-based, logistic regressions,
maximum likelihood procedures and multiple imputation [6, 26].

The use of imputation methods for MVs is a task with a well established back-
ground. It is possible to track the first formal studies to several decades ago. The
work of [54] laid the foundation of further work in this topic, specially in statis-
tics. From their work, imputation techniques based on sampling from estimated data
distributions followed, distinguishing between single imputation procedures (like
Expectation-Maximization (EM) procedures [81]) and multiple imputation ones [82],
the latter being more reliable and powerful but more difficult and restrictive to be
applied.

These imputation procedures became very popular for quantitative data, and there-
fore they were easily adopted in other fields of knowledge, like bioinformatics
[49, 62, 93], climatic science [85], medicine [94], etc. The imputation methods
proposed in each field are adapted to the common characteristics of the data ana-
lyzed in it. With the popularization of the DM field, many studies in the treatment of
MVs arose in this topic, particularly in the classification task. Some of the existent
imputation procedures of other fields are adapted to be used in classification, for
example adapting them to deal with qualitative data, while many specific approaches
are proposed.

4.2 Assumptions and Missing Data Mechanisms 61

4.2 Assumptions and Missing Data Mechanisms

It is important to categorize the mechanisms which lead to the introduction of
MVs [54]. The assumptions we make about the missingness mechanism and the
MVs pattern of MVs can affect which treatment method could be correctly applied,
if any.

When thinking about the missing data mechanism the probability distributions
that lie beneath the registration of rectangular data sets should be taken into account,
where the rows denote different registers, instances or cases, and the columns are the
features or variables. A common assumption is that the instances are all independent
and identically distributed (i.i.d.) draws of some multivariate probability distribution.
This assumption is also made by Schafer in [82] where the schematic representation
followed is depicted in Fig. 4.1.

X being the n × m rectangular matrix of data, we usually denote as xi the ith row
of X. If we consider the i.i.d. assumption, the probability function of the complete
data can be written as follows:

P(X|θ) =
n∏

i=1

f (xi|θ), (4.1)

Fig. 4.1 Data set with MVs denoted with a ‘?’

62 4 Dealing with Missing Values

where f is the probability function for a single case and θ represents the parameters
of the model that yield such a particular instance of data. The main problem is that
the particular parameters’ values θ for the given data are very rarely known. For this
reason authors usually overcome this problem by considering distributions that are
commonly found in nature and their properties are well known as well. The three
distributions that standout among these are:

1. the multivariate normal distribution in the case of only real valued parameters;
2. the multinomial model for cross-classified categorical data (including loglinear

models) when the data consists of nominal features; and
3. mixed models for combined normal and categorical features in the data [50, 55].

If we call Xobs the observed part of X and we denote the missing part as Xmis so
that X = (Xobs, Xmis), we can provide a first intuitive definition of what missing at
random (MAR) means. Informally talking, when the probability that an observation
is missing may depend on Xobs but not on Xmis we can state that the missing data is
missing at random.

In the case of MAR missing data mechanism, given a particular value or val-
ues for a set of features belonging to Xobs, the distribution of the rest of features
is the same among the observed cases as it is among the missing cases. Follow-
ing Schafer’s example based on [79], let suppose that we dispose an n × p matrix
called B of variables whose values are 1 or 0 when X elements are observed and
missing respectively. The distribution of B should be related to X and to some
unknown parameters ζ , so we dispose a probability model for B described by
P(B|X, ζ). Having a MAR assumption means that this distribution does not depend
on Xmis:

P(B|Xobs, Xmis, ζ) = P(B|Xobs, ζ). (4.2)

Please be aware of MAR does not suggest that the missing data values consti-
tute just another possible sample from the probability distribution. This condition is
known as missing completely at random (MCAR). Actually MCAR is a special case
of MAR in which the distribution of an example having a MV for an attribute does
not depend on either the observed or the unobserved data. Following the previous
notation, we can say that

P(B|Xobs, Xmis, ζ) = P(B|ζ). (4.3)

Although there will generally be some loss of information, comparable results can be
obtained with missing data by carrying out the same analysis that would have been
performed with no MVs. In practice this means that, under MCAR, the analysis of
only those units with complete data gives valid inferences.

Please note that MCAR is more restrictive than MAR. MAR requires only that
the MVs behave like a random sample of all values in some particular subclasses
defined by observed data. In such a way, MAR allows the probability of a missing
datum to depend on the datum itself, but only indirectly through the observed values.

4.2 Assumptions and Missing Data Mechanisms 63

Recently a software package has been published in which the MCAR condition can
be tested [43].

A third case arises when MAR does not apply as the MV depends on both the rest
of observed values and the proper value itself. That is

P(B|Xobs, Xmis, ζ) (4.4)

is the actual probability estimation. This model is usually called not missing at
random (NMAR) or missing not at random (MNAR) in the literature. This model of
missingness is a challenge for the user as the only way to obtain an unbiased estimate
is to model the missingness as well. This is a very complex task in which we should
create a model accounting for the missing data that should be later incorporated to
a more complex model used to estimate the MVs. However, even when we cannot
account for the missingness model, the introduced bias may be still small enough.
In [23] the reader can find an example of how to perform this.

4.3 Simple Approaches to Missing Data

In this section we introduce the most simplistic methods used to deal with MVs. As
they are very simple, they usually do not take into account the missingness mechanism
and they blindly perform the operation.

The most simple approach is to do not impute (DNI). As its name indicates,
all the MVs remain unreplaced, so the DM algorithm must use their default MVs
strategies if present. Often the objective is to verify whether imputation methods
allow the classification methods to perform better than when using the original data
sets. As a guideline, in [37] a previous study of imputation methods is presented. As
an alternative for these learning methods that cannot deal with explicit MVs notation
(as a special value for instance) another approach is to convert the MVs to a new
value (encode them into a new numerical value), but such a simplistic method has
been shown to lead to serious inference problems [82].

A very common approach in the specialized literature, even nowadays, is to apply
case deletion or ignore missing (IM). Using this method, all instances with at least
one MV are discarded from the data set. Although IM often results in a substantial
decrease in the sample size available for the analysis, it does have important advan-
tages. In particular, under the assumption that data is MCAR, it leads to unbiased
parameter estimates. Unfortunately, even when the data are MCAR there is a loss in
power using this approach, especially if we have to rule out a large number of sub-
jects. And when the data is not MCAR, it biases the results. For example when low
income individuals are less likely to report their income level, the resulting mean
is biased in favor of higher incomes. The alternative approaches discussed below
should be considered as a replacement for IM.

Often seen as a good choice, the substitution of the MVs for the global most
common attribute value for nominal attributes, and global average value for numerical

64 4 Dealing with Missing Values

attributes (MC) [36] is widely used, specially when many instances in the data set
contain MVs and to apply DNI would result in a very reduced and unrepresentative
pre-processed data set. This method is very simple: for nominal attributes, the MV
is replaced with the most common attribute value, and numerical values are replaced
with the average of all values of the corresponding attribute.

A variant of MC is the concept most common attribute value for nominal attributes,
and concept average value for numerical attributes (CMC) [36]. As stated in MC, the
MV is replaced by the most repeated one if nominal or is the mean value if numerical,
but considers only the instances with the same class as the reference instance.

Older and rarely used DM approaches may be put under this category. For example
Hot deck imputation goes back over 50 years and was used quite successfully by the
Census Bureau and others. It is referred from time to time [84] and thus it is interesting
to describe it here partly for historical reasons and partly because it represents an
approach of replacing data that is missing.

Hot deck has it origins in the surveys made in USA in the 40s and 50s, when
most people felt impelled to participate in survey filling. As a consequence little data
was missing and when any registers were effectively missing, a random complete
case from the same survey was used to substitute the MVs. This process can be
simulated nowadays by clustering over the complete data, and associating the instance
with a cluster. Any complete example from the cluster can be used to fill in the
MVs [6]. Cold deck is similar to hot deck, but the cases or instances used to fill in
the MVs came from a different source. Traditionally this meant that the case used
to fill the data was obtained from a different survey. Some authors have recently
assessed the limitations imposed to the donors (the instances used to substitute the
MVs) [44].

4.4 Maximum Likelihood Imputation Methods

At the same time Rubin et al. formalized the concept of missing data introduc-
tion mechanisms described in Sect. 4.2, they advised against use case deletion as a
methodology (IM) to deal with the MVs. However, using MC or CMC techniques are
not much better than replacing MVs with fixed values, as they completely ignore the
mechanisms that yield the data values. In an ideal and rare case where the parameters
of the data distribution θ were known, a sample from such a distribution conditioned
to the other attributes’ values or not depending of whether the MCAR, MAR or
NMAR applies, would be a suitable imputed value for the missing one. The problem
is that the parameters θ are rarely known and also very hard to estimate [38].

In a simple case such as flipping a coin, P(heads) = θ and P(tails) = 1 − θ .
Depending on the coin being rigged or not, the value of θ can vary and thus its value
is unknown. Our only choice is to flip the coin several times, say n, obtaining h heads
and n − h tails. An estimation of θ would be θ̂ = h/n.

More formally, the likelihood of θ is obtained from a binomial distribution P(θ) =(h
n

)
θh(1 − θ)n−h. Our θ̂ can be proven to be the maximum likelihood estimate of θ .

4.4 Maximum Likelihood Imputation Methods 65

So the next question arises: to solve a maximum likelihood type problem, can we
analytically maximize the likelihood function? We have shown it can work with one
dimensional Bernoulli problems like the coin toss, and that it also works with one
dimensional Gaussian by finding the μ and σ parameters. To illustrate the latter case
let us assume that we have the samples 1, 4, 7, 9 obtained from a normal distribution
and we want to estimate the population mean for the sake of simplicity, that is, in
this simplistic case θ = μ. The maximum likelihood problem here is to choose a
specific value of μ and compute p(1) · p(4) · p(7) · p(9). Intuitively one can say
that this probability would be very small if we fix μ = 10 and would be higher for
μ = 4 or μ = 5. The value of μ that produces the maximum product of combined
probabilities is what we call the maximum likelihood estimate of μ = θ . Again,
in our case the maximum likelihood estimate would constitute the sample mean
μ = 5.25 and adding the variance to the problem can be solved again using the
sample variance as the best estimator.

In real world data things are not that easy. We can have distribution that may
not be well behaved or have too many parameters making the actual solution com-
putationally too complex. Having a likelihood function made of a mixture of 100
100-dimensional Gaussians would yield 10,000 parameters and thus direct trial-error
maximization is not feasible. The way to deal with such complexity is to introduce
hidden variables in order to simplify the likelihood function and, in our case as well,
to account for MVs. The observed variables are those that can be directly measured
from the data, while hidden variables influence the data but are not trivial to measure.
An example of an observed variable would be if it is sunny today, whereas the hidden
variable can be P(sunny today|sunny yesterday).

Even simplifying with hidden variables does not allow us to reach the solution in
a single step. The most common approach in these cases would be to use an iterative
approach in which we obtain some parameter estimates, we use a regression technique
to impute the values and repeat. However as the imputed values will depend on the
estimated parameters θ , they will not add any useful information to the process
and can be ignored. There are several techniques to obtain maximum likelihood
estimators. The most well known and simplistic is the EM algorithm presented in
the next section.

4.4.1 Expectation-Maximization (EM)

In a nutshell the EM algorithm estimates the parameters of a probability distribution.
In our case this can be achieved from incomplete data. It iteratively maximizes
the likelihood of the complete data Xobs considered as a function dependent of the
parameters [20].

That is, we want to model dependent random variables as the observed variable a
and the hidden variable b that generates a. We stated that a set of unknown parameters
θ governs the probability distributions Pθ (a), Pθ (b). As an iterative process, the EM

66 4 Dealing with Missing Values

algorithm consists of two steps that are repeated until convergence: the expectation
(E-step) and the maximization (M-step) steps.

The E-step tries to compute the expectation of logPθ (y, x):

Q(θ, θ ′) =
∑

y

Pθ ′(b|a)logPθ (b, a), (4.5)

where θ ′ are the new distribution parameters. Please note that we are using the log.
The reason for this is that we need to multiply the probabilities of each observed value
for an specific set of parameters. But multiplying several probabilities will soon yield
a very small number and thus produce a loss of precision in a computer due to limited
digital accuracy. A typical solution is then to use the log of these probabilities and to
look for the maximum log likelihood. As the logs will be negative, we are looking
for the set of parameters whose likelihood is as close to 0 as possible. In the M-step
we try to find the θ that maximizes Q.

How can we find the θ that maximizes Q? Let us review conditional expectation
where A and B are random variables drawn from distributions P(a) and P(b) to
resolve the M-step. The conditional distribution is given by P(b|a) = P(b,a)

P(a)
and

then E[B] = ∑
b P(b)b. For a function depending on B h(B) the expectation is

trivially obtained by E[h(B)] = ∑
b P(b)h(b). For a particular value A(A = a) the

expectation is E[h(B)|a] = ∑
b P(b|a)h(b).

Remember that we want to pick a θ that maximizes the log likelihood of the
observed (a) and the unobserved (b) variables given an observed variable a and the
previous parameters θ ′. The conditional expectation of logPθ (b, a) given a and θ ′ is

E[logP(b, a|θ)|a, θ ′] =
∑

y

P(b|a, θ ′)logP(b, a|θ) (4.6)

=
∑

y

Pθ ′(b|a)logPθ (b, a). (4.7)

The key is that if
∑

b Pθ ′(b|a)logPθ (b, a) >
∑

b Pθ ′(b|a)logPθ ′(b, a) then Pθ (a) >

Pθ ′(a). If we can improve the expectation of the log likelihood, EM is improving the
model of the observed variable a.

In any real world problem, we do not have a single point but a series of attributes
x1, . . . , xn. Assuming i.i.d. we can sum over all points to compute the expectation:

Q(θ, θ ′) =
n∑

i=1

∑

b

Pθ ′(b|xi)logPθ (b, xi) (4.8)

The EM algorithm is not perfect: it can be stuck in local maxima and also depends
on an initial θ value. The latter is usually resolved by using a bootstrap process in
order to choose a correct initial θ . Also the reader may have noticed that we have

4.4 Maximum Likelihood Imputation Methods 67

not talked about any imputation yet. The reason is EM is a meta algorithm that it is
adapted to a particular application.

To use EM for imputation first we need to choose a plausible set of parameters,
that is, we need to assume that the data follows a probability distribution, which is
usually seen as a drawback of these kind of methods. The EM algorithm works better
with probability distributions that are easy to maximize, as Gaussian mixture models.
In [85] an approach of EM using multivariate Gaussian is proposed as using multi-
variate Gaussian data can be parameterized by the mean and the covariance matrix.

In each iteration of the EM algorithm for imputation the estimates of the mean μ

and the covariance Σ are represented by a matrix and revised in three phases. These
parameters are used to apply a regression over the MVs by using the complete data.
In the first one in each instance with MVs the regression parameters B for the MVs
are calculated from the current estimates of the mean and covariance matrix and the
available complete data. Next the MVs are imputed with their conditional expectation
values from the available complete ones and the estimated regression coefficients

xmis = μmis + (xobs − μobs)B + e, (4.9)

where the instance x of n attributes is separated into the observed values xobs and
the missing ones xmis. The mean and covariance matrix are also separated in such a
way. The residual e ∈ R

1×nmis is assumed to be a random vector with mean zero and
unknown covariance matrix. These two phases would complete the E-step. Please
note that for the iteration of the algorithm the imputation is not strictly needed as
only the estimates of the mean and covariance matrix are, as well as the regression
parameters. But our ultimate goal is to have our data set filled, so we use the latest
regression parameters to create the best imputed values so far.

In the third phase the M-step is completed by re-estimating the mean a covari-
ance matrix. The mean is taken as the sample mean of the completed data set and
the covariance is the sample covariance matrix and the covariance matrices of the
imputation errors as shown in [54]. That is:

B̂ = Σ̂−1
obs,obsΣ̂obs,mis, and (4.10)

Ĉ = Σ̂mis,mis − Σ̂mis,obsΣ̂
−1
obs,obsΣ̂obs,mis (4.11)

The hat accent Â designates an estimate of a quantity A. After updating B and C the
mean and covariance matrix must be updated with

μ̂(t+1) = 1

n

n∑

i=1

Xi (4.12)

and

68 4 Dealing with Missing Values

Σ̂(t+1) = 1

ñ

n∑

i=1

[
Ŝ(t)

i − (μ̂(t+1))μ̂(t+1)
]
, (4.13)

where, for each instance x = Xi, the conditional expectation Ŝ(t)
i of the cross-products

is composed of three parts. The two parts that involve the available values in the
instance,

E(xT
obsxobs|xobs; μ̂(t), Σ̂(t)) = xT

obsxobs (4.14)

and

E(xT
misxmis|xobs; μ̂(t), Σ̂(t)) = x̂T

miŝxmis + Ĉ, (4.15)

is the sum of the cross-product of the imputed values and the residual covariance
matrix Ĉ = Cov(xmiss, xmis|xobs; μ̂(t), Σ̂(t)), the conditional covariance matrix of
the imputation error. The normalization constant ñ of the covariance matrix estimate
[Eq. (4.13)] is the number of degrees of freedom of the sample covariance matrix of
the completed data set.

The first estimation of the mean and covariance matrix needs to rely on a com-
pletely observed data set. One solution in [85] is to fill the data set with the initial
estimates of the mean and covariance matrices. The process ends when the estimates
of the mean and covariance matrix do not change over a predefined threshold. Please
note that this EM approach is only well suited for numeric data sets, constituting a
limitation for the application of EM, although an extension for mixed numerical and
nominal attributes can be found in [82].

The EM algorithm is still valid nowadays, but is usually part of a system in which
it helps to evolve some distributions like GTM neural networks in [95]. Still some
research is being carried out for EM algorithms in which its limitations are being
improved and also are applied to new fields like semi-supervised learning [97]. The
most well known version of the EM for real valued data sets is the one introduced
in [85] where the basic EM algorithm presented is extended with a regularization
parameter.

4.4.2 Multiple Imputation

One big problem of the maximum likelihood methods like EM is that they tend
to underestimate the inherent errors produced by the estimation process, formally
standard errors. The Multiple Imputation (MI) approach was designed to take this into
account to be a less biased imputation method, at the cost of being computationally
expensive. MI is a Monte Carlo approach described very well by [80] in which we
generate multiple imputed values from the observed data in a very similar way to
the EM algorithm: it fills the incomplete data by repeatedly solving the observed-

4.4 Maximum Likelihood Imputation Methods 69

data. But a significative difference between the two methods is attained: while EM
generates a single imputation in each step from the estimated parameters at each
step, MI performs several imputations that yield several complete data sets.

This repeated imputation can be done thanks to the use of Markov Chain Monte
Carlo methods, as the several imputations are obtained by introducing a random
component, usually from a standard normal distribution. In a more advanced fashion,
MI also considers that the parameters estimates are in fact sample estimates. Thus,
the parameters are not directly estimated from the available data but, as the process
continues, they are drawn from their Bayesian posterior distributions given the data at
hand. These assumptions means that only in the case of MCAR or MAR missingness
mechanisms hold MI should be applied.

As a result Eq. (4.9) can be applied with slight changes as the e term is now a
sample from a standard normal distribution and is applied more than once to obtain
several imputed values for a single MV. As indicated in the previous paragraph,
MI has a Bayesian nature that forces the user to specify a prior distribution for the
parameters θ of the model from which the e term is drawn. In practice [83] is stressed
out that the results depend more on the election of the distribution for the data than
the distribution for θ . Unlike the single imputation performed by EM where only one
imputed value for each MV is created (and thus only one value of e is drawn), MI will
create several versions of the data set, where the observed data Xobs is essentially the
same, but the imputed values for Xmis will be different in each data set created. This
process is usually known as data augmentation (DA) [91] as depicted in Fig. 4.2.

Surprisingly not many imputation steps are needed. Rubin claims in [80] that only
3–5 steps are usually needed. He states that the efficiency of the final estimation built
upon m imputations is approximately:

Fig. 4.2 Multiple imputation process by data augmentation. Every MV denoted by a ‘?’ is replaced
by several imputed and different values that will be used to continue the process later

70 4 Dealing with Missing Values

(
1 + γ

m

)−1
,

where γ is the fraction of missing data in the data set. With a 30 % of MVs in each
data set, which is a quite high amount, with 5 different final data sets a 94 % of
efficiency will be achieved. Increasing the number to m = 10 slightly raises the
efficiency to 97 %, which is a low gain paying the double computational effort.

To start we need an estimation of the mean and covariance matrices. A good
approach is to take them from a solution provided from an EM algorithm once
their values have stabilized at the end of its execution [83]. Then the DA process
starts by alternately filling the MVs and then making inferences about the unknown
parameters in a stochastic fashion. First DA creates an imputation using the available
values of the parameters of the MVs, and then draws new parameter values from the
Bayesian posterior distribution using the observed and missing data. Concatenating
this process of simulating the MVs and the parameters is what creates a Markov
chain that will converge at some point. The distribution of the parameters θ will
stabilize to the posterior distribution averaged over the MVs, and the distribution of
the MVs will stabilize to a predictive distribution: the proper distribution needed to
drawn values for the MIs.

Large rates of MVs in the data sets will cause the convergence to be slow. However,
the meaning of convergence is different to that used in EM. In EM the parameter
estimates have converged when they no longer change from one iteration to the
following over a threshold. In DA the distribution of the parameters do no change
across iterations but the random parameter values actually continue changing, which
makes the convergence of DA more difficult to assess than for EM. In [83] the authors
propose to reinterpret convergence in DA in terms of lack of serial dependence: DA
can be said to have converged by k cycles if the value of any parameter at iteration
t ∈ 1, 2, . . . is statistically independent of its value at iteration t + k. As the authors
show in [83] the DA algorithm usually converges under these terms in equal or less
cycles than EM.

The value k is interesting, because it establishes when we should stop performing
the Markov chain in order to have MI that are independent draws from the missing
data predictive distribution. A typical process is to perform m runs, each one of length
k. That is, for each imputation from 1 to m we perform the DA process during k cycles.
It is a good idea not to be too conservative with the k value, as after convergence the
process remains stationary, whereas with low k values the m imputed data sets will
not be truly independent. Remember that we do not need a high m value, so k acts
as the true computational effort measure.

Once the m MI data sets have been created, they can be analyzed by any standard
complete-data methods. For example, we can use a linear or logistic regression,
a classifier or any other technique applied to each one of the m data sets, and the
variability of the m results obtained will reflect the uncertainty of MVs. It is common
to combine the results following the rules provided by Rubin [80] that act as measures
of ordinary sample variation to obtain a single inferential statement of the parameters
of interest.

4.4 Maximum Likelihood Imputation Methods 71

Rubin’s rules to obtain an overall set of estimated coefficients and standard errors
proceed as follows. Let R̂ denote the estimation of interest and U its estimated
variance, R being either an estimated regression coefficient or a kernel parameter
of a SVM, whatever applies. Once the MIs have been obtained, we will have
R̂1, R̂2, . . . , R̂m estimates and their respective variances U1, U2, . . . , Um. The overall
estimate, occasionally called the MI estimate is given by

R = 1

m

m∑

i=1

R̂i. (4.16)

The variance for the estimate has two components: the variability within each
data set and across data sets. The within imputation variance is simply the average
of the estimated variances:

U = 1

m

m∑

i=1

Ui, (4.17)

whereas the between imputation variance is the sample variance of the proper esti-
mates:

B = 1

m − 1

m∑

i=1

(̂Ri − R)2. (4.18)

The total variance T is the corrected sum of these two components with a factor that
accounts for the simulation error in R̂,

T = Û +
(

1 + 1

m

)
B. (4.19)

The square root of T is the overall standard error associated to R. In the case of no
MVs being present in the original data set, all R̂1, R̂2, . . . , R̂m would be the same,
then B = 0 and T = U. The magnitude of B with respect to U indicates how much
information is contained in the missing portion of the data set relative to the observed
part.

In [83] the authors elaborate more on the confidence intervals extracted from R
and how to test the null hypothesis of R = 0 by comparing the ratio R√

T
with a

Student’s t-distribution with degrees of freedom

df = (m − 1)

(
1 + mU

(m + 1)B

)2

, (4.20)

in the case the readers would like to further their knowledge on how to use this
hypothesis to check whether the number of MI m was large enough.

72 4 Dealing with Missing Values

The MI algorithm has been widely used in many research fields. Focusing
on DM methods to increase the robustness of MI [19], alleviate the parameter
selection process [35] and improve Rubin’s rules to aggregate models have been
proposed [86]. New extensions to new problems like one-class [48] can be found,
as well as hybridizations with innovative techniques such as Gray System Theory
[92]. Implementing MI is not trivial and reputed implementations can be found in
statistical packages as R [9] (see Chap. 10) and Stata [78].

4.4.3 Bayesian Principal Component Analysis (BPCA)

The MV estimation method based on BPCA [62] consists of three elementary
processes. They are (1) principal component (PC) regression, (2) Bayesian esti-
mation, and (3) an EM-like repetitive algorithm. In the following we describe each
of these processes.

4.4.3.1 PC Regression

For the time being, we consider a situation where there is no MV. PCA represents the
variation of D-dimensional example vectors y as a linear combination of principal
axis vectors wl(1 ≤ l ≤ K) whose number is relatively small (K < D):

y =
K∑

l=1

xlwl + ε (4.21)

The linear coefficients xl(1 ≤ l ≤ K) are called factor scores. ε denotes the residual
error. Using a specifically determined number K , PCA obtains xl and wl such that
the sum of squared error ‖ ε ‖2 over the whole data set Y is minimized.

When there is no MV, xl and wl are calculated as follows. A covariance matrix S
for the example vectors yi(1 ≤ i ≤ N) is given by

S = 1

N

N∑

i=1

(yi − μ)(yi − μ)T , (4.22)

where μ is the mean vector of y: μ = (1/N)
∑N

i=1 yi. T denotes the transpose of
a vector or a matrix. For description convenience, Y is assumed to be row-wisely
normalized by a preprocess, so that μ = 0 holds. With this normalization, the result
by PCA is identical to that by SVD.

Let λ1 ≥ λ2 ≥ · · · ≥ λD and u1, u2, . . . , uD denote the eigenvalues and the
corresponding eigenvectors, respectively, of S. We also define the lth principal axis
vector by wl = √

λlul .With these notations, the lth factor score for an example vector

http://dx.doi.org/10.1007/978-3-319-10247-4_10

4.4 Maximum Likelihood Imputation Methods 73

y is given by xl = (wl/λl)
T y. Now we assume the existence of MVs. In PC regression,

the missing part ymiss in the expression vector y is estimated from the observed part
yobs by using the PCA result. Let wl

obs and wl
miss be parts of each principal axis wl,

corresponding to the observed and missing parts, respectively, in y. Similarly, let
W = (Wobs, Wmiss) where Wobs or Wmiss denotes a matrix whose column vectors are
w1

obs, . . . , wK
obs or w1

miss, . . . , wK
miss, respectively.

Factor scores x = (x1, . . . , xK) for the example vector y are obtained by mini-
mization of the residual error

err =‖ yobs − Wobsx ‖2 .

This is a well-known regression problem, and the least square solution is given by

x = (WobsT Wobs)
−1WobsT yobs.

Using x, the missing part is estimated as

ymiss = Wmissx (4.23)

In the PC regression above, W should be known beforehand. Later, we will discuss
the way to determine the parameter.

4.4.3.2 Bayesian Estimation

A parametric probabilistic model, which is called probabilistic PCA (PPCA), has
been proposed recently. The probabilistic model is based on the assumption that the
residual error ε and the factor scores xl(1 ≤ l ≤ K) in Equation (reflinearcomb)
obey normal distributions:

p(x) = NK (x|0, IK),

p(ε) = ND(ε|0, (1/τ)ID),

where NK (x|μ,Σ) denotes a K-dimensional normal distribution for x, whose mean
and covariance are μ and Σ , respectively. IK is a (K × K) identity matrix and τ is a
scalar inverse variance of ε. In this PPCA model, a complete log-likelihood function
is written as:

ln p(y, x|θ) ≡ ln p(y, x|W , μ, τ)

= −τ

2
‖ y − Wx − τ ‖2 −1

2
‖ x ‖2 +D

2
ln τ − K + D

2
ln2
,

74 4 Dealing with Missing Values

where θ ≡ W , μ, τ is the parameter set. Since the maximum likelihood estimation of
the PPCA is identical to PCA, PPCA is a natural extension of PCA to a probabilistic
model.

We present here a Bayesian estimation method for PPCA from the authors.
Bayesian estimation obtains the posterior distribution of θ and X, according to the
Bayes’ theorem:

p(θ, X|Y) ∝ p(Y , X|θ)p(θ). (4.24)

p(θ) is called a prior distribution, which denotes a priori preference for parameter θ .
The prior distribution is a part of the model and must be defined before estimation.
We assume conjugate priors for τ and μ, and a hierarchical prior for W , namely, the
prior for W , p(W |τ, α), is parameterized by a hyperparameter α ∈ R

K .

p(θ |α) ≡ p(μ, W , τ |α) = p(μ|τ)p(τ)

K∏

j=1

p(wj|τ, αj),

p(μ|tau) = N (μ|μ0, (γ
τ
μ0

)−1Im),

p(wj|τ, αj) = N (wj|0, (αjτ)−1Im),

p(τ) = G(τ |τ 0, γτ0)

G(τ |τ , γτ) denotes a Gamma distribution with hyperparameters τ and γτ :

G(τ |τ , γτ) ≡ (γτ τ
−1)γτ

Γ (γτ)
exp

[
−γτ τ

−1τ + (γτ − 1)lnτ
]

where Γ (·) is a Gamma function.
The variables used in the above priors, γμ0, μ0, γτ0 and τ 0 are deterministic

hyperparameters that define the prior. Their actual values should be given before the
estimation. We set γμ0 = γτ0 = 10−10, μ0 = 0 and τ 0 = 1, which corresponds to
an almost non-informative prior.

Assuming the priors and given a whole data set Y = y, the type-II maximum
likelihood hyperparameter αML−II and the posterior distribution of the parameter,
q(θ) = p(θ |Y , αML−II), are obtained by Bayesian estimation.

The hierarchical prior p(W |α, τ), which is called an automatic relevance deter-
mination (ARD) prior, has an important role in BPCA. The jth principal axis
wj has a Gaussian prior, and its variance 1/(αjτ) is controlled by a hyperpara-
meter αj which is determined by type-II maximum likelihood estimation from
the data. When the Euclidian norm of the principal axis, ‖ wj ‖, is small rela-
tively to the noise variance 1/τ , the hyperparameter αj gets large and the principal
axis wj shrinks nearly to be 0. Thus, redundant principal axes are automatically
suppressed.

4.4 Maximum Likelihood Imputation Methods 75

4.4.3.3 EM-Like Repetitive Algorithm

If we know the true parameter θtrue, the posterior of the MVs is given by

q(Ymiss) = p(Ymiss|Yobs, θtrue),

which produces equivalent estimation to the PC regression. Here, p(Ymiss|Yobs, θtrue)

is obtained by marginalizing the likelihood (4.24) with respect to the observed vari-
ables Yobs. If we have the parameter posterior q(θ) instead of the true parameter, the
posterior of the MVs is given by

q(Ymiss) =
∫

dθq(θ)p(Ymiss|Yobs, θ),

which corresponds to the Bayesian PC regression. Since we do not know the true
parameter naturally, we conduct the BPCA. Although the parameter posterior q(θ)

can be easily obtained by the Bayesian estimation when a complete data set Y is
available, we assume that only a part of Y , Yobs, is observed and the rest Ymiss is
missing. In that situation, it is required to obtain q(θ) and q(Ymiss) simultaneously.

We use a variational Bayes (VB) algorithm, in order to execute Bayesian esti-
mation for both model parameter θ and MVs Ymiss. Although the VB algorithm
resembles the EM algorithm that obtains maximum likelihood estimators for θ and
Ymiss, it obtains the posterior distributions for θ and Ymiss, q(θ) and q(Ymiss), by a
repetitive algorithm.

The VB algorithm is implemented as follows: (a) the posterior distribution of
MVs, q(Ymiss), is initialized by imputing each of the MVs to instance-wise average;
(b) the posterior distribution of the parameter θ , q(θ), is estimated using the observed
data Yobs and the current posterior distribution of MVs, q(Ymiss); (c) the posterior
distribution of the MVs, q(Ymiss), is estimated using the current q(θ); (d) the hyperpa-
rameter α is updated using both of the current q(θ) and the current q(Ymiss); (e) repeat
(b)–(d) until convergence.

The VB algorithm has been proved to converge to a locally optimal solution.
Although the convergence to the global optimum is not guaranteed, the VB algorithm
for BPCA almost always converges to a single solution. This is probably because
the objective function of BPCA has a simple landscape. As a consequence of the VB
algorithm, therefore, q(θ) and q(Ymiss) are expected to approach the global optimal
posteriors.

Then, the MVs in the expression matrix are imputed to the expectation with respect
to the estimated posterior distribution:

Ŷmiss =
∫

ymissq(Ymiss)dYmiss. (4.25)

76 4 Dealing with Missing Values

4.5 Imputation of Missing Values. Machine Learning
Based Methods

The imputation methods presented in Sect. 4.4 originated from statistics application
and thus they model the relationship between the values by searching for the hidden
distribution probabilities. In Artificial Intelligence modeling the unknown relation-
ships between attributes and the inference of the implicit information contained in a
sample data set has been done using ML models. Immediately many authors noticed
that the same process that can be carried out to predict a continuous or a nominal
value from a previous learning process in regression or classification can be applied
to predict the MVs. The use of ML methods for imputation alleviates us from search-
ing for the estimated underlying distribution of the data, but they are still subject to
the MAR assumption in order to correctly apply them.

Batista [6] tested the classification accuracy of two popular classifiers (C4.5 and
CN2) considering the proposal of KNN as an imputation (KNNI) method and MC.
Both CN2 and C4.5 (like [37]) algorithms have their own MV estimation. From their
study, KNNI results in good accuracy, but only when the attributes are not highly
correlated to each other. Related to this work, [1] have investigated the effect of four
methods that deal with MVs. As in [6], they use KNNI and two other imputation
methods (MC and median imputation). They also use the KNN and Linear Discrimi-
nant Analysis classifiers. The results of their study show that no significantly harmful
effect in accuracy is obtained from the imputation procedure. In addition to this, they
state that the KNNI method is more robust with the increment of MVs in the data set
in respect to the other compared methods.

The idea of using ML or Soft Computing techniques as imputation methods
spread from this point on. Li et al. [53] uses a fuzzy clustering method: the Fuzzy
K-Means (FKMI). They compare the FKMI with Mean substitution and KMI
(K-Means imputation). Using a Root Mean Square Error error analysis, they state that
the basic KMI algorithm outperforms the MC method. Experiments also show that
the overall performance of the FKMI method is better than the basic KMI method,
particularly when the percentage of MVs is high. Feng et al. [29] uses an SVM
for filling in MVs (SVMI) but they do not compare this with any other imputation
methods. Furthermore, they state that we should select enough complete examples
without MVs as the training data set in this case.

In the following we proceed to describe the main details of the most used imputa-
tion methods based on ML techniques. We have tried to stay as close as possible to
the original notation used by the authors so the interested reader can easily continue
his or her exploration of details in the corresponding paper.

4.5.1 Imputation with K-Nearest Neighbor (KNNI)

Using this instance-based algorithm, every time an MV is found in a current instance,
KNNI computes the KNN and a value from them is imputed. For nominal values,

4.5 Imputation of Missing Values. Machine Learning Based Methods 77

the most common value among all neighbors is taken, and for numerical values the
average value is used. Therefore, a proximity measure between instances is needed
for it to be defined. The Euclidean distance (it is a case of a Lp norm distance) is the
most commonly used in the literature.

In order to estimate a MV yih in the ith example vector yi by KNNI [6], we first
select K examples whose attribute values are similar to yi. Next, the MV is estimated
as the average of the corresponding entries in the selected K expression vectors.
When there are other MVs in yi and/or yj, their treatment requires some heuristics.
The missing entry yih is estimated as average:

y î h =
∑

j∈IKih
yjh

|IKih| , (4.26)

where IKih is now the index set of KNN examples of the ith example, and if yjh
is missing the jth attribute is excluded from IKih. Note that KNNI has no theoret-
ical criteria for selecting the best K-value and the K-value has to be determined
empirically.

4.5.2 Weighted Imputation with K-Nearest Neighbour (WKNNI)

The Weighted KNN method [93] selects the instances with similar values (in terms
of distance) to incomplete instance, so it can impute as KNNI does. However, the
estimated value now takes into account the different distances to the neighbors, using
a weighted mean or the most repeated value according to a similarity measure. The
similarity measure si(yj) between two examples yi and yj is defined by the Euclidian
distance calculated over observed attributes in yi. Next we define the measure as
follows:

1/si =
∑

hi∈Oi
⋂

Oj

(yih − yjh)
2, (4.27)

where Oi = {h| the hth component ofyiis observed}.
The missing entry yih is estimated as average weighted by the similarity measure:

y î h =
∑

j∈IKih
si(yj)yjh∑

j∈IKih
si(yj)

, (4.28)

where IKih is the index set of KNN examples of the ith example, and if yjh is missing
the jth attribute is excluded from IKih. Note that KNNI has no theoretical criteria for
selecting the best K-value and the K-value has to be determined empirically.

78 4 Dealing with Missing Values

4.5.3 K-means Clustering Imputation (KMI)

In K-means clustering [53], the intra-cluster dissimilarity is measured by the summa-
tion of distances between the objects and the centroid of the cluster they are assigned
to. A cluster centroid represents the mean value of the objects in the cluster. Given a
set of objects, the overall objective of clustering is to divide the data set into groups
based on the similarity of objects, and to minimize the intra-cluster dissimilarity.
KMI measures the intra-cluster dissimilarity by the addition of distances among the
objects and the centroid of the cluster which they are assigned to. A cluster centroid
represents the mean value of the objects in the cluster. Once the clusters have con-
verged, the last process is to fill in all the non-reference attributes for each incomplete
object based on the cluster information. Data objects that belong to the same cluster
are taken to be nearest neighbors of each other, and KMI applies a nearest neighbor
algorithm to replace MVs, in a similar way to KNNI.

Given a set of N objects X = x1, x2, ldots, xN where each object has S attributes,
we use xij(1 ≤ i ≤ Nand1 ≤ j ≤ S) to denote the value of attribute j in object xi.
Object xi is called a complete object, if {xij
= φ|∀1 ≤ j ≤ S}, and an incomplete
object, if {xij = φ|∃1 ≤ j ≤ S}, and we say object xi has a MV on attribute j.
For any incomplete object xi, we use R = {j|xij
= φ, 1 ≤ j ≤ S} to denote the
set of attributes whose values are available, and these attributes are called reference
attributes. Our objective is to obtain the values of non-reference attributes for the
incomplete objects. By K-means clustering method, we divide data set X into K
clusters, and each cluster is represented by the centroid of the set of objects in the
cluster. Let V = v1, . . . , vk be the set of K clusters, where vk(1 ≤ k ≤ K) represents
the centroid of cluster k. Note that vk is also a vector in a S-dimensional space. We
use d(vk, xi) to denote the distance between centroid vk and object xi.

KMI can be divided into three processes. First, randomly select K complete data
objects as K centroids. Second, iteratively modify the partition to reduce the sum
of the distances for each object from the centroid of the cluster to which the object
belongs. The process terminates once the summation of distances is less than a user-
specified threshold ε = 100, or no change on the centroids were made in last iteration.
The last process is to fill in all the non-reference attributes for each incomplete object
based on the cluster information. Data objects that belong to the same cluster are
taken as nearest neighbors of each other, and we apply a nearest neighbor algorithm
to replace missing data. We use as a distance measure the Euclidean distance.

4.5.4 Imputation with Fuzzy K-means Clustering (FKMI)

In fuzzy clustering, each data object has a membership function which describes the
degree to which this data object belongs to a certain cluster. Now we want to extend
the original K-means clustering method to a fuzzy version to impute missing data
[1, 53]. The reason for applying the fuzzy approach is that fuzzy clustering provides

4.5 Imputation of Missing Values. Machine Learning Based Methods 79

a better description tool when the clusters are not well-separated, as is the case in
missing data imputation. Moreover, the original K-means clustering may be trapped
in a local minimum status if the initial points are not selected properly. However,
continuous membership values in fuzzy clustering make the resulting algorithms less
susceptible to get stuck in a local minimum situation.

In fuzzy clustering, each data object xi has a membership function which describes
the degree to which this data object belongs to certain cluster vk . The membership
function is defined in the next equation

U(vk, xi) = d(vk, xi)
−27(m−1)

∑K
j=1 d(vj, xi)−2/(m−1)

(4.29)

where m > 1 is the fuzzifier, and
∑K

j=1 U(vj, xi) = 1 for any data object
xi(1 ≤ i ≤ N). Now we can not simply compute the cluster centroids by the mean
values. Instead, we need to consider the membership degree of each data object.
Equation (4.30) provides the formula for cluster centroid computation:

vk =
∑N

i=1 U(vk, xi) × xi∑N
i=1 U(vk, xi)

(4.30)

Since there are unavailable data in incomplete objects, we use only reference
attributes to compute the cluster centroids.

The algorithm for missing data imputation with fuzzy K-means clustering method
also has three processes. Note that in the initialization process, we pick K centroids
which are evenly distributed to avoid local minimum situation. In the second process,
we iteratively update membership functions and centroids until the overall distance
meets the user-specified distance threshold ε. In this process, we cannot assign the
data object to a concrete cluster represented by a cluster centroid (as did in the basic
K-mean clustering algorithm), because each data object belongs to all K clusters
with different membership degrees. Finally, we impute non-reference attributes for
each incomplete object. We replace non-reference attributes for each incomplete
data object xi based on the information about membership degrees and the values of
cluster centroids, as shown in next equation:

xi,j =
K∑

k=1

U(xi, vk) × vk,j, for any non-reference attribute j /∈ R (4.31)

4.5.5 Support Vector Machines Imputation (SVMI)

Support Vector Machines Imputation [29] is an SVM regression based algorithm
to fill in MVs, i.e. set the decision attributes (output or classes) as the condition

80 4 Dealing with Missing Values

attributes (input attributes) and the condition attributes as the decision attributes, so
SVM regression can be used to predict the missing condition attribute values. SVM
regression estimation seeks to estimate functions

f (x) = (wx) + b, w, x ∈ R
n, b ∈ R (4.32)

based on data

(x1, y1), . . . , (xl, yl) ∈ R × R (4.33)

by minimizing the regularized risk functional

‖ W ‖2 /2 + C • Rε
emp (4.34)

where C is a constant determining the trade-off between minimizing the training
error, or empirical risk

Rε
emp = 1

l

l∑

i=1

|yi − f (xi)|ε (4.35)

and the model complexity term ‖ W ‖2. Here, we use the so-called ε-insensitive loss
function

|y − f (x)|ε = max{0, |y − f (x)| − ε} (4.36)

The main insight of the statistical learning theory is that in order to obtain a small risk,
one needs to control both training error and model complexity, i.e. explain the data
with a simple model. The minimization of Eq. (4.36) is equivalent to the following
constrained optimization problem [17]: minimize

τ(w, ξ (∗)) = 1

2
‖ w ‖2 + C

1

l

l∑

i=1

(ξi + ξ∗
i) (4.37)

subject to the following constraints

((w • xi) + b) − yi ≤ ε + ξi (4.38)

yi − ((w • xi) + b) ≤ ε + ξ∗
i (4.39)

ξ
(∗)
i ≥ 0, ε ≥ 0 (4.40)

As mentioned above, at each point xi we allow an error of magnitude ε. Errors
above ε are captured by the slack variables ξ∗ (see constraints 4.38 and 4.39). They

4.5 Imputation of Missing Values. Machine Learning Based Methods 81

are penalized in the objective function via the regularization parameter C chosen a
priori.

In the ν-SVM the size of ε is not defined a priori but is itself a variable. Its value
is traded off against model complexity and slack variables via a constant ν ∈ (0, 1]
minimize

τ(W , ξ (∗), ε) = 1

2
‖ W ‖2 +C • (νε + 1

l

l∑

i=1

(ξi + ξ∗
i)) (4.41)

subject to the constraints 4.38–4.40. Using Lagrange multipliers techniques, one can
show [17] that the minimization of Eq. (4.37) under the constraints 4.38–4.40 results
in a convex optimization problem with a global minimum. The same is true for the
optimization problem 4.41 under the constraints 4.38–4.40. At the optimum, the
regression estimate can be shown to take the form

f (x) =
l∑

i=1

(α∗
i − αi)(xi • x) + b (4.42)

In most cases, only a subset of the coefficients (α∗
i − αi) will be nonzero. The

corresponding examples xi are termed support vectors (SVs). The coefficients and
the SVs, as well as the offset b; are computed by the ν-SVM algorithm. In order to
move from linear (as in Eq. 4.42) to nonlinear functions the following generalization
can be done: we map the input vectors xi into a high-dimensional feature space Z
through some chosen a priori nonlinear mapping Φ : Xi → Zi. We then solve the
optimization problem 4.41 in the feature space Z . In this case, the inner product
of the input vectors (xi • x) in Eq. (4.42) is replaced by the inner product of their
icons in feature space Z, (Φ(xi) • Φ(x)). The calculation of the inner product in
a high-dimensional space is computationally very expensive. Nevertheless, under
general conditions (see [17] and references therein) these expensive calculations can
be reduced significantly by using a suitable function k such that

(Φ(xi) • Φ(x)) = k(xi • x), (4.43)

leading to nonlinear regressions functions of the form:

f (x) =
l∑

i=1

(α∗
i − αi)k(xi, x) + b (4.44)

The nonlinear function k is called a kernel [17]. We mostly use a Gaussian kernel

k(x, y) � exp(− ‖ x − y ‖2 /(2σ 2
kernel)) (4.45)

82 4 Dealing with Missing Values

We can use SVM regression [29] to predict the missing condition attribute values.
In order to do that, first we select the examples in which there are no missing attribute
values. In the next step we set one of the condition attributes (input attribute), some of
those values are missing, as the decision attribute (output attribute), and the decision
attributes as the condition attributes by contraries. Finally, we use SVM regression
to predict the decision attribute values.

4.5.6 Event Covering (EC)

Based on the work of Wong et al. [99], a mixed-mode probability model is approx-
imated by a discrete one. First, we discretize the continuous components using a
minimum loss of information criterion. Treating a mixed-mode feature n-tuple as
a discrete-valued one, the authors propose a new statistical approach for synthe-
sis of knowledge based on cluster analysis: (1) detect from data patterns which
indicate statistical interdependency; (2) group the given data into clusters based on
detected interdependency; and (3) interpret the underlying patterns for each of the
clusters identified. The method of synthesis is based on author’s event–covering
approach. With the developed inference method, we are able to estimate the MVs in
the data.

The cluster initiation process involves the analysis of the nearest neighbour dis-
tance distribution on a subset of samples, the selection of which is based on a mean
probability criterion. Let X = (X1, X2, . . . , Xn) be a random n-tuple of related vari-
ables and x = (x1, x2, . . . , xn) be its realization. Then a sample can be represented
as x. Let S be an ensemble of observed samples represented as n-tuples. The nearest-
neighbour distance of a sample xi to a set of examples S is defined as:

D(xi, S) = minxj∈Sxi
=xj
d(xi, xj) (4.46)

where d(xi, xj) is a distance measure. Since we are using discrete values, we have
adopted the Hamming distance. Let C be a set of examples forming a simple cluster.
We define the maximum within-cluster nearest-neighbour distance as

D∗
c = maxxi∈CD(xi, C) (4.47)

D∗
c reflects an interesting characteristic of the cluster configuration: that is, the smaller

the D∗
c , the denser the cluster.

Using a mean probability criterion to select a similar subset of examples, the
isolated samples can be easily detected by observing the wide gaps in the nearest-
neighbour distance space. The probability distribution from which the criterion is
derived for the samples can be estimated using a second-order probability estimation.
An estimation of P(x) known as the dependence tree product approximation can be

4.5 Imputation of Missing Values. Machine Learning Based Methods 83

expressed as:

P̂(x) =
n∏

j=1

P(xmj|xmk(j)), 0 < k(j) < 1 (4.48)

where (1) the index set m1, m2, . . . , mn is a permutation of the integer set 1, 2, . . . , n,
(2) the ordered pairs xmj, xmk(j) are chosen so that they the set of branches of a spanning
tree defined on X with their summed MI maximized, and (3) P(xm1|xm0) = P(xm1).
The probability defined above is known to be the best second-order approximation of
the high-order probability distribution. Then corresponding to each x in the ensemble,
a probability P(x) can be estimated.

In general, it is more likely for samples of relatively high probability to form
clusters. By introducing the mean probability below, samples can be divided into
two subsets: those above the mean and those below. Samples above the mean will
be considered first for cluster initiation.

Let S = x. The mean probability is defined as

μs =
∑

x∈S

P(x)/|S| (4.49)

where |S| is the number of samples in S. For more details in the probability estimation
with dependence tree product approximation, please refer to [13].

When distance is considered for cluster initiation, we can use the following criteria
in assigning a sample x to a cluster.

1. If there exists more than one cluster, say Ck |k = 1, 2, . . ., such that D(x, Ck) ≤ D∗
for all k, then all these clusters can be merged together.

2. If exactly one cluster Ck exists, such that D(x, Ck) ≤ D∗, then x can be grouped
into Ck .

3. If D(x, CK) > D∗ for all clusters Ck , then x may not belong to any cluster.

To avoid including distance calculation of outliers, we use a simple method suggested
in [99] which assigns D∗ the maximum value of all nearest-neighbor distances in L
provided there is a sample in L having a nearest-neighbor distance value of D∗ − 1
(with the distance values rounded to the nearest integer value).

After finding the initial clusters along with their membership, the regrouping
process is thus essentially an inference process for estimating the cluster label of
a sample. Let C = ac1, ac2, . . . , acq be the set of labels for all possible clusters to
which x can be assigned. For Xk in X, we can form a contingency table between Xk
and C. Let aks and acj be possible outcomes of Xk and C respectively, and let obs(aks
and obsacj be the respectively marginal frequencies of their observed occurrences.
The expected relative frequency of (aks, acj) is expressed as:

exp(aks, acj) = obs(aks) × obs(acj)

|S| (4.50)

84 4 Dealing with Missing Values

Let obs(aks, acj) represent the actual observed frequency of (aks, acj) in S. The
expression

D =
q∑

j=1

(obsks − exp(aks, acj))
2

exp(aks, acj)
(4.51)

summing over the outcomes of C in the contingency table, possesses an asymptotic
chi-squared property with (q−1) degrees of freedom. D can then be used in a criterion
for testing the statistical dependency between aks, and C at a presumed significant
level as described below. For this purpose, we define a mapping

hc
k(aks, C) =

{
1, if D > χ2(q − 1);
0, otherwise.

(4.52)

where χ2(q − 1) is the tabulated chi-squared value. The subset of selected events
of Xk , which has statistical interdependency with C, is defined as

Ec
k = {

aks|hc
k(aks, C) = 1

}
(4.53)

We call Ec
k the covered event subset of Xk with respect to C. Likewise, the covered

event subset Ek
c of C with respect to Xk can be defined. After finding the covered

event subsets of Ek
c and Ec

k between a variable pair (C, Xk), information measures
can be used to detect the statistical pattern of these subsets. An interdependence
redundancy measure between Xc

k and Ck can be defined as

R(Xc
k , Ck) = I(Xc

k , Ck)

H(Xc
k , Ck)

(4.54)

where I(Xc
k , Ck) is the expected MI and H(Xc

k , Ck) is the Shannon’s entropy defined
respectively on Xc

k and Ck :

I(Xc
k , Ck) =

∑

acu∈Ek
c

∑

aks∈Ec
k

P(acu, aks) log
P(acu, aks)

P(acu)P(aks)
(4.55)

and

H(Xc
k , Ck) = −

∑

acu∈Ek
c

∑

aks∈Ec
k

P(acu, aks) log P(acu, aks). (4.56)

The interdependence redundancy measure has a chi-squared distribution:

I(Xc
k , Ck)

χ2
df

2|S|H(xc
k, Ck)

(4.57)

4.5 Imputation of Missing Values. Machine Learning Based Methods 85

where df is the corresponding degree of freedom having the value (|Ek
c |−1)(|Ec

k |−1).
A chi-squared test is then used to select interdependent variables in X at a presumed
significant level.

The cluster regrouping process uses an information measure to regroup data itera-
tively. Wong et al. have proposed an information measure called normalized surprisal
(NS) to indicate significance of joint information. Using this measure, the informa-
tion conditioned by an observed event xk is weighted according to R(Xc

k , CK), their
measure of interdependency with the cluster label variable. Therefore, the higher the
interdependency of a conditioning event, the more relevant the event is. NS measures
the joint information of a hypothesized value based on the selected set of significant
components. It is defined as

NS(acj|x′(acj)) = I(acj|x′(acj))

m
(∑m

k=1 R(Xc
k , Ck)

) (4.58)

where I(acj|x′(acj)) is the summation of the weighted conditional information defined
on the incomplete probability distribution scheme as

I(acj|x′(acj)) =
m∑

k=1

R(Xc
k , Ck)I(acj|xk))

=
m∑

k=1

R(Xc
k , Ck)

(
−log

P(acj|xk)∑
acu∈Ek

c
P(acu|xk)

)
(4.59)

In rendering a meaningful calculation in the incomplete probability scheme formu-
lation, xk is selected if

∑

acu∈Ek
c

P(acu|xk) > T (4.60)

where T ≥ 0 is a size threshold for meaningful estimation. NS can be used in a
decision rule in the regrouping process. Let C = {ac1, . . . , acq} be the set of possible
cluster labels. We assign acj to xe if

NS(acj|x′(acj)) = min
acu∈C

NS(acu|x′(acu)).

If no component is selected with respect to all hypothesized cluster labels, or if
there is more than one label associated with the same minimum NS, then the sample
is assigned a dummy label, indicating that the estimated cluster label is still uncertain.
Also, zero probability may be encountered in the probability estimation, an unbiased
probability based on Entropy minimax. In the regrouping algorithm, the cluster label
for each sample is estimated iteratively until a stable set of label assignments is
attained.

86 4 Dealing with Missing Values

Once the clusters are stable, we take the examples with MVs. Now we use the dis-
tance D(xi, S) = minxj∈Sxi
=xj

d(xi, xj) to find the nearest cluster Ci to such instance.

From this cluster we compute the centroid x′ such that

D(x′, Ci) < D(xi, Ci) (4.61)

for all instances xi of the cluster Ci. Once the centroid is obtained, the MV of the
example is imputed with the value of the proper attribute of xi.

4.5.7 Singular Value Decomposition Imputation (SVDI)

In this method, we employ singular value decomposition (4.62) to obtain a set of
mutually orthogonal expression patterns that can be linearly combined to approxi-
mate the values of all attributes in the data set [93]. These patterns, which in this
case are identical to the principle components of the data values’ matrix, are further
referred to as eigenvalues.

Am×m = Um×mΣm×nVT
n×n. (4.62)

Matrix VT now contains eigenvalues, whose contribution to the expression in the
eigenspace is quantified by corresponding eigenvalues on the diagonal of matrix Σ .
We then identify the most significant eigenvalues by sorting the eigenvalues based on
their corresponding eigenvalue. Although it has been shown that several significant
eigenvalues are sufficient to describe most of the expression data, the exact fraction
of eigenvalues best for estimation needs to be determined empirically.

Once k most significant eigenvalues from VT are selected, we estimate a MV j in
example i by first regressing this attribute value against the k eigenvalues and then
use the coefficients of the regression to reconstruct j from a linear combination of the
k eigenvalues. The jth value of example i and the jth values of the k eigenvalues are
not used in determining these regression coefficients. It should be noted that SVD
can only be performed on complete matrices; therefore we originally substitute row
average for all MVs in matrix A, obtaining A′. We then utilize an Regularized EM
method to arrive at the final estimate, as follows. Each MV in A′ is estimated using the
above algorithm, and then the procedure is repeated on the newly obtained matrix,
until the total change in the matrix falls below the empirically determined (by the
authors [93]) threshold of 0.01 (noted as stagnation tolerance in the EM algorithm).
The other parameters of the EM algorithm are the same for both algorithms.

4.5.8 Local Least Squares Imputation (LLSI)

In this method proposed in [49] a target instance that has MVs is represented as a
linear combination of similar instances. Rather than using all available instances in
the data, only similar instances based on a similarity measure are used, and for that

4.5 Imputation of Missing Values. Machine Learning Based Methods 87

reason the method has the “local” connotation. There are two steps in the LLSI. The
first step is to select k instances by the L2-norm. The second step is regression and
estimation, regardless of how the k instances are selected. A heuristic k parameter
selection method is used by the authors.

Throughout the section, we will use X ∈ R
m×n to denote a dataset with m attributes

and n instances. Since LLSI was proposed for microarrays, it is assumed that m � n.
In the data set X, a row xT

i ∈ R
1×n represents expressions of the ith instance in n

examples:

X =
⎛

⎜⎝
xT

1
...

xT
m

⎞

⎟⎠ ∈ R
m×n

A MV in the lth location of the ith instance is denoted as α, i.e.

X(i, l) = xi(l) = α

For simplicity we first assume assuming there is a MV in the first position of the
first instance, i.e.

X(1, 1) = x1(1) = α.

4.5.8.1 Selecting the Instances

To recover a MV α in the first location x1(1) of x1 in X ∈ R
m×n, the KNN instance

vectors for x1,

xT
Si

∈ R
1×n, 1 ≤ i ≤ k,

are found for LLSimpute based on the L2-norm (LLSimpute). In this process of
finding the similar instances, the first component of each instance is ignored due to
the fact that x1(1) is missing. The LLSimpute based on the Pearson’s correlation
coefficient to select the k instances can be consulted in [49].

4.5.8.2 Local Least Squares Imputation

As imputation can be performed regardless of how the k-instances are selected,
we present only the imputation based on L2-norm for simplicity. Based on these
k-neighboring instance vectors, the matrix A ∈ R

k×(n−1) and the two vectors b ∈
R

k×1 and w ∈ R
(n−1)×1 are formed. The k rows of the matrix A consist of the KNN

instances xT
Si

∈ R
1×n, 1 ≤ i ≤ k, with their first values deleted, the elements of the

vector b consists of the first components of the k vectors xT
Si

, and the elements of the

88 4 Dealing with Missing Values

vector w are the n − 1 elements of the instance vector x1 whose missing first item
is deleted. After the matrix A, and the vectors b and w are formed, the least squares
problem is formulated as

min
x

||AT z − w||2 (4.63)

Then, the MV α is estimated as a linear combination of first values of instances

α = bT z = bT (AT)†w, (4.64)

where (AT)† is the pseudoinverse of AT .
For example, assume that the target instance x1 has a MV in the first position

among a total of six examples. If the MV is to be estimated by the k similar instances,
the matrix A, and vectors b and w are constructed as

⎛

⎜⎝
xT

1
...

xT
m

⎞

⎟⎠ =
(

α wT

b A

)

=

⎛

⎜⎜⎜⎝

α w1 w2 w3 w4 w5
b1 A1,1 A1,2 A1,3 A1,4 A1,5
...

...
...

...
...

...

bk Ak,1 Ak,2 Ak,3 Ak,4 Ak,5

⎞

⎟⎟⎟⎠

where α is the MV and xT
S1

, . . . , xT
Sk

are instances similar to xT
1 . From the second

to the last components of the neighbor instances, aT
i , 1 ≤ i ≤ k, form the ith row

vector of the matrix A. The vector w of the known elements of target instance x1 can
be represented as a linear combination

w � z1a1 + z2a2 + · · · + zkak

where zi are the coefficients of the linear combination, found from the least squares
formulation (4.63). Accordingly, the MV α in x1 can be estimated by

α = bT x = b1z1 + b2z2 + · · · + bkzk

Now, we deal with the case in which there is more than one MV in a instance
vector. In this case, to recover the total of q MVs in any of the locations of the instance
x1, first, the KNN instance vectors for x1,

xT
Si

∈ R
1×n, 1 ≤ i ≤ k,

are found. In this process of finding the similar instances, the q components of
each instance at the q locations of MVs in x1 are ignored. Then, based on these

4.5 Imputation of Missing Values. Machine Learning Based Methods 89

k neighboring instance vectors, a matrix A ∈ R
k×(n−q) a matrix B ∈ R

k×q and a
vector w ∈ R

(n−q)×1 are formed. The ith row vector aT
i of the matrix A consists

of the ith nearest neighbor instances xT
Si

∈ R
1×n, 1 ≤ i ≤ k, with its elements at

the q missing locations of MVs of x1 excluded. Each column vector of the matrix B
consists of the values of the jth location of the MVs (1 ≤ j ≤ q) of the k vectors xT

Si
.

The elements of the vector w are the n − q elements of the instance vector x whose
missing items are deleted. After the matrices A and B and a vector w are formed, the
least squares problem is formulated as

min
x

||AT z − w||2 (4.65)

Then, the vector u = (α1, α2, . . . , αq)
T of q MVs can be estimated as

u =
⎛

⎜⎝
α1
...

αq

⎞

⎟⎠ = BT z = BT (AT)†w, (4.66)

where (AT)† is the pseudoinverse of AT .

Table 4.1 Recent and most well-known imputation methods involving ML techniques

Clustering Kernel methods

MLP hybrid [4] Mixture-kernel-based iterative estimator [105]

Rough fuzzy subspace clustering [89] Nearest neighbors

LLS based [47] ICkNNI [40]

Fuzzy c-means with SVR and Gas [3] Iterative KNNI [101]

Biclustering based [32] CGImpute [22]

KNN based [46] Boostrap for maximum likelihood [72]

Hierarchical Clustering [30] kDMI [75]

K2 clustering [39] Ensembles

Weighted K-means [65] Random Forest [42]

Gaussian mixture clustering [63] Decision forest [76]

ANNs Group Method of Data Handling (GMDH) [104]

RBFN based [90] Boostrap [56]

Wavelet ANNs [64] Similarity and correlation

Multi layer perceptron [88] FIMUS [77]

ANNs framework [34] Parameter estimation for regression imputation

Self-organizing maps [58] EAs for covariance matrix estimation [31]

Generative Topographic Mapping [95] Iterative mutual information imputation [102]

Bayesian networks CMVE [87]

Dynamic bayesian networks [11] DMI (EM + decision trees) [74]

Bayesian networks with weights [60] WLLSI [12]

90 4 Dealing with Missing Values

4.5.9 Recent Machine Learning Approaches to Missing Values
Imputation

Although we have tried to provide an extensive introduction to the most used and
basic imputation methods based on ML techniques, there is a great amount of journal
publications showing their application and particularization to real world problems.
We would like to give the reader a summarization of the latest and more important
imputation methods presented at the current date of publication, both extensions of
the introduced ones and completely novel ones in Table 4.1.

4.6 Experimental Comparative Analysis

In this section we aim to provide the reader with a general overview of the behavior
and properties of all the imputation methods presented above. However, this is not
an easy task. The main question is: what is a good imputation method?

As multiple imputation is a very resource consuming approach, we will focus on
the single imputation methods described in this chapter.

4.6.1 Effect of the Imputation Methods in the Attributes’
Relationships

From an unsupervised data point of view, those imputation methods able to generate
values close to the true but unknown MV should be the best. This idea has been
explored in the literature by means of using complete data sets and then artificially
introducing MVs. Please note that such a mechanism will act as a MCAR MV
generator mechanism, validating the use of imputation methods. Then, imputation
methods are applied to the data and an estimation of how far is the estimation to the
original (and known) value. Authors usually choose the mean square error (MSE)
or root mean square error (RMSE) to quantify and compare the imputation methods
over a set of data sets [6, 32, 41, 77].

On the other hand, other problems arise when we do not have the original values
or the problem is supervised. In classification, for example, it is more demanding
to impute values that will constitute an easier and more generalizable problem. As
a consequence in this paradigm a good imputation method will enable the classifier
to obtain better accuracy. This is harder to measure, as we are relating two different
values: the MV itself and the class label assigned to the example. Neither MSE or
RMSE can provide us with such kind of information.

One way to measure how good the imputation is for the supervised task is to
use Wilson’s Noise Ratio. This measure proposed by [98] observes the noise in the
data set. For each instance of interest, the method looks for the KNN (using the

4.6 Experimental Comparative Analysis 91

Euclidean distance), and uses the class labels of such neighbors in order to classify
the considered instance. If the instance is not correctly classified, then the variable
noise is increased by one unit. Therefore, the final noise ratio will be

Wilson’s Noise = noise

#instances in the data set

After imputing a data set with different imputation methods, we can measure how
disturbing the imputation method is for the classification task. Thus by using Wilson’s
noise ratio we can observe which imputation methods reduce the impact of the MVs
as a noise, and which methods produce noise when imputing.

Another approach is to use the MI (MI) which is considered to be a good indicator
of relevance between two random variables [18]. Recently, the use of the MI measure
in FS has become well-known and seen to be successful [51, 52, 66]. The use of
the MuI measure for continuous attributes has been tackled by [51], allowing us to
compute the Mui measure not only in nominal-valued data sets.

In our approach, we calculate the Mui between each input attribute and the class
attribute, obtaining a set of values, one for each input attribute. In the next step we
compute the ratio between each one of these values, considering the imputation of
the data set with one imputation method in respect to the not imputed data set. The
average of these ratios will show us if the imputation of the data set produces a gain
in information:

Avg. Mui Ratio =
∑

xi∈X
Muiα(xi)+1
Mui(xi)+1

|X|
where X is the set of input attributes, Muiα(i) represents the Mui value of the ith
attribute in the imputed data set and Mui(i) is the Mui value of the ith input attribute
in the not imputed data set. We have also applied the Laplace correction, summing
1 to both numerator and denominator, as an Mui value of zero is possible for some
input attributes.

The calculation of Mui(xi) depends on the type of attribute xi. If the attribute xi

is nominal, the Mui between xi and the class label Y is computed as follows:

Muinominal(xi) = I(xi; Y) =
∑

z∈xi

∑

y∈Y

p(z, y)log2
p(z, y)

p(z)p(y)
.

On the other hand, if the attribute xi is numeric, we have used the Parzen window
density estimate as shown in [51] considering a Gaussian window function:

Muinumeric(xi) = I(xi; Y) = H(Y) − H(C|X);

92 4 Dealing with Missing Values

where H(Y) is the entropy of the class label

H(Y) = −
∑

y∈Y

p(y)log2p(y);

and H(C|X) is the conditional entropy

H(Y |xi) = −
∑

z∈xi

∑

y∈Y

p(z, y)log2p(y|z).

Considering each sample has the same probability, applying the Bayesian rule and
approximating p(y|z) by the Parzen window we get:

Ĥ(Y |xi) = −
n∑

j=1

1

n

N∑

y=1

p̂(y|zj)log2p̂(y|zj)

where n is the number of instances in the data set, N is the total number of class
labels and p̂(c|x) is

p̂(y|z) =
∑

i∈Ic
exp

(
− (z−zi)Σ

−1(z−zi)

2h2

)

∑N
k=1

∑
i∈Ik

exp
(
− (z−zi)Σ

−1(z−zi)

2h2

) .

In this case, Ic is the set of indices of the training examples belonging to class c, and
Σ is the covariance of the random variable (z − zi).

Let us consider all the single imputation methods presented in this chapter. For the
sake of simplicity we will omit the Multiple Imputation approaches, as it will require
us to select a probability model for all the data sets, which would be infeasible. In
Table 4.2 we have summarized the Wilson’s noise ratio values for 21 data sets with
MVs from those presented in Sect. 2.1. We must point out that the results of Wilson’s
noise ratio and Mui are related to a given data set. Hence, the characteristics of the
proper data appear to determine the values of this measure.

Looking at the results from Table 4.2 we can observe which imputation methods
reduce the impact of the MVs as noise, and which methods produce noise when
imputing. In addition the MI ratio allows us to relate the attributes to the imputation
results. A value of the Mui ratio higher than 1 will indicate that the imputation is
capable of relating more of the attributes individually to the class labels. A value lower
than 1 will indicate that the imputation method is adversely affecting the relationship
between the individual attributes and the class label.

If we consider the average Mui ratio in Table 4.2 we can observe that the average
ratios are usually close to 1; that is, the use of imputation methods appears to harm
the relationship between the class label and the input attribute little or not at all, even
improving it in some cases. However, the MI considers only one attribute at a time and
therefore the relationships between the input attributes are ignored. The imputation

http://dx.doi.org/10.1007/978-3-319-10247-4_2

4.6 Experimental Comparative Analysis 93

Ta
bl

e
4.

2
W

ils
on

’s
no

is
e

ra
tio

va
lu

es
an

d
av

er
ag

e
M

I
va

lu
es

pe
r

da
ta

se
t

D
at

a
se

t
Im

p.
%

W
ils

on
’s

A
vg

.M
ui

D
at

a
se

t
Im

p.
%

W
ils

on
’s

A
vg

.M
ui

D
at

a
se

t
Im

p.
%

W
ils

on
’s

A
vg

.M
ui

M
et

ho
d

N
oi

se
ra

tio
M

et
ho

d
N

oi
se

ra
tio

M
et

ho
d

N
oi

se
ra

tio

C
L

E
M

C
50

.0
00

0
0.

99
81

95
H

O
V

M
C

7.
92

08
0.

96
18

34
H

E
P

M
C

17
.3

33
3

0.
96

37
65

C
M

C
50

.0
00

0
0.

99
85

85
C

M
C

5.
44

55
1.

10
57

78
C

M
C

16
.0

00
0

0.
99

06
94

K
N

N
I

50
.0

00
0

0.
99

87
55

K
N

N
I

7.
42

57
0.

96
50

69
K

N
N

I
20

.0
00

0
0.

97
85

64

W
K

N
N

I
50

.0
00

0
0.

99
87

95
W

K
N

N
I

7.
42

57
0.

96
50

69
W

K
N

N
I

20
.0

00
0

0.
97

83
43

K
M

I
50

.0
00

0
0.

99
87

98
K

M
I

7.
42

57
0.

96
15

25
K

M
I

20
.0

00
0

0.
98

00
94

FK
M

I
50

.0
00

0
0.

99
88

89
FK

M
I

7.
92

08
0.

96
18

34
FK

M
I

17
.3

33
3

0.
96

34
76

SV
M

I
50

.0
00

0
0.

99
83

65
SV

M
I

6.
93

07
0.

90
80

67
SV

M
I

17
.3

33
3

1.
00

68
19

E
M

66
.6

66
7

0.
99

81
52

E
M

11
.8

81
2

0.
89

16
68

E
M

22
.6

66
7

0.
97

44
33

SV
D

I
66

.6
66

7
0.

99
71

52
SV

D
I

8.
91

09
0.

85
03

61
SV

D
I

21
.3

33
3

0.
96

76
73

B
PC

A
50

.0
00

0
0.

99
87

01
B

PC
A

6.
93

07
1.

09
16

75
B

PC
A

21
.3

33
3

0.
99

44
20

L
L

SI
50

.0
00

0
0.

99
88

82
L

L
SI

4.
95

05
1.

12
29

04
L

L
SI

18
.6

66
7

0.
99

54
64

E
C

33
.3

33
3

1.
00

01
48

E
C

7.
42

57
1.

00
78

43
E

C
16

.0
00

0
1.

02
40

19

W
IS

M
C

18
.7

50
0

0.
99

90
04

W
A

T
M

C
31

.5
06

8
0.

95
94

88
M

U
S

M
C

0.
00

00
1.

01
83

82

C
M

C
12

.5
00

0
0.

99
98

61
C

M
C

21
.2

32
9

0.
96

79
67

C
M

C
0.

00
00

1.
01

83
82

K
N

N
I

12
.5

00
0

0.
99

92
05

K
N

N
I

27
.3

97
3

0.
96

16
01

K
N

N
I

0.
00

00
0.

98
12

61

W
K

N
N

I
12

.5
00

0
0.

99
92

05
W

K
N

N
I

27
.3

97
3

0.
96

15
74

W
K

N
N

I
0.

00
00

0.
98

12
61

K
M

I
12

.5
00

0
0.

99
93

22
K

M
I

27
.3

97
3

0.
96

13
61

K
M

I
0.

00
00

1.
01

83
82

FK
M

I
12

.5
00

0
0.

99
89

23
FK

M
I

31
.5

06
8

0.
96

15
90

FK
M

I
0.

00
00

1.
01

83
82

SV
M

I
12

.5
00

0
0.

99
94

12
SV

M
I

23
.9

72
6

0.
96

73
56

SV
M

I
0.

00
00

0.
98

12
61

E
M

12
.5

00
0

0.
99

00
30

E
M

46
.5

75
3

0.
93

38
46

E
M

0.
00

00
1.

14
21

77

SV
D

I
12

.5
00

0
0.

98
70

66
SV

D
I

49
.3

15
1

0.
93

30
40

SV
D

I
0.

00
00

1.
13

71
52

B
PC

A
12

.5
00

0
0.

99
89

51
B

PC
A

26
.0

27
4

0.
96

42
55

B
PC

A
0.

00
00

0.
98

74
72

(c
on

tin
ue

d)

94 4 Dealing with Missing Values

Ta
bl

e
4.

2
(c

on
tin

ue
d)

D
at

a
se

t
Im

p.
%

W
ils

on
’s

A
vg

.M
ui

D
at

a
se

t
Im

p.
%

W
ils

on
’s

A
vg

.M
ui

D
at

a
se

t
Im

p.
%

W
ils

on
’s

A
vg

.M
ui

M
et

ho
d

N
oi

se
ra

tio
M

et
ho

d
N

oi
se

ra
tio

M
et

ho
d

N
oi

se
ra

tio

L
L

SI
12

.5
00

0
0.

99
95

80
L

L
SI

25
.3

42
5

0.
96

40
63

L
L

SI
0.

00
00

0.
97

72
75

E
C

12
.5

00
0

1.
00

00
30

E
C

22
.6

02
7

1.
02

73
69

E
C

0.
00

00
1.

01
73

66

C
R

X
M

C
18

.9
18

9
1.

00
08

83
SP

O
M

C
27

.2
72

7
0.

99
76

75
PO

S
M

C
33

.3
33

3
1.

01
22

93

C
M

C
18

.9
18

9
1.

00
09

66
C

M
C

22
.7

27
3

1.
02

22
47

C
M

C
33

.3
33

3
1.

01
22

93

K
N

N
I

21
.6

21
6

0.
99

88
23

K
N

N
I

27
.2

72
7

0.
99

90
41

K
N

N
I

33
.3

33
3

1.
01

22
93

W
K

N
N

I
21

.6
21

6
0.

99
88

70
W

K
N

N
I

27
.2

72
7

0.
99

90
41

W
K

N
N

I
33

.3
33

3
1.

01
22

93

K
M

I
21

.6
21

6
1.

00
17

60
K

M
I

27
.2

72
7

0.
99

84
64

K
M

I
33

.3
33

3
1.

01
22

93

FK
M

I
18

.9
18

9
1.

00
06

37
FK

M
I

27
.2

72
7

0.
99

76
75

FK
M

I
33

.3
33

3
1.

01
22

93

SV
M

I
13

.5
13

5
0.

98
18

78
SV

M
I

27
.2

72
7

1.
01

58
35

SV
M

I
33

.3
33

3
1.

01
22

93

E
M

32
.4

32
4

0.
98

56
09

E
M

36
.3

63
6

0.
98

23
25

E
M

33
.3

33
3

1.
01

22
93

SV
D

I
27

.0
27

0
0.

97
63

98
SV

D
I

31
.8

18
2

0.
97

91
87

SV
D

I
33

.3
33

3
1.

01
46

98

B
PC

A
21

.6
21

6
0.

99
99

34
B

PC
A

27
.2

72
7

1.
00

62
36

B
PC

A
33

.3
33

3
1.

01
22

93

L
L

SI
18

.9
18

9
1.

00
15

94
L

L
SI

27
.2

72
7

1.
00

48
21

L
L

SI
33

.3
33

3
1.

01
80

07

E
C

13
.5

13
5

1.
00

87
18

E
C

27
.2

72
7

1.
01

86
20

E
C

33
.3

33
3

0.
99

70
34

B
R

E
M

C
55

.5
55

6
0.

99
87

09
B

A
N

M
C

25
.4

75
3

1.
01

29
22

E
C

H
M

C
40

.0
00

0
0.

98
16

73

C
M

C
55

.5
55

6
0.

99
87

09
C

M
C

24
.3

34
6

1.
07

08
57

C
M

C
40

.0
00

0
0.

99
58

86

K
N

N
I

55
.5

55
6

0.
99

21
84

K
N

N
I

23
.1

93
9

0.
94

03
69

K
N

N
I

46
.6

66
7

0.
99

79
12

W
K

N
N

I
55

.5
55

6
0.

99
21

84
W

K
N

N
I

22
.8

13
7

0.
94

04
69

W
K

N
N

I
44

.4
44

4
0.

99
81

34

K
M

I
55

.5
55

6
0.

99
87

09
K

M
I

25
.4

75
3

1.
01

61
01

K
M

I
46

.6
66

7
0.

96
71

69

FK
M

I
55

.5
55

6
0.

99
87

09
FK

M
I

24
.3

34
6

1.
02

09
89

FK
M

I
40

.0
00

0
0.

98
36

06

SV
M

I
55

.5
55

6
0.

99
87

09
SV

M
I

21
.2

92
8

1.
54

25
36

SV
M

I
44

.4
44

4
0.

98
76

78

E
M

44
.4

44
4

1.
01

37
58

E
M

26
.2

35
7

1.
35

03
15

E
M

51
.1

11
1

0.
96

78
61

SV
D

I
44

.4
44

4
0.

99
90

89
SV

D
I

22
.4

33
5

1.
36

55
72

SV
D

I
48

.8
88

9
0.

93
58

55

4.6 Experimental Comparative Analysis 95

Ta
bl

e
4.

2
(c

on
tin

ue
d)

D
at

a
se

t
Im

p.
%

W
ils

on
’s

A
vg

.M
ui

D
at

a
se

t
Im

p.
%

W
ils

on
’s

A
vg

.M
ui

D
at

a
se

t
Im

p.
%

W
ils

on
’s

A
vg

.M
ui

M
et

ho
d

N
oi

se
ra

tio
M

et
ho

d
N

oi
se

ra
tio

M
et

ho
d

N
oi

se
ra

tio

B
PC

A
66

.6
66

7
1.

00
02

01
B

PC
A

23
.9

54
4

1.
01

05
96

B
PC

A
44

.4
44

4
0.

97
23

27

L
L

SI
66

.6
66

7
1.

00
02

01
L

L
SI

24
.7

14
8

1.
01

50
33

L
L

SI
37

.7
77

8
0.

98
85

91

E
C

66
.6

66
7

1.
00

11
43

E
C

23
.5

74
1

1.
10

23
28

E
C

48
.8

88
9

0.
97

00
29

A
U

T
M

C
45

.6
52

2
0.

98
56

10
H

O
C

M
C

19
.3

90
6

0.
84

86
49

SO
Y

M
C

2.
43

90
1.

05
66

52

C
M

C
41

.3
04

3
0.

99
11

13
C

M
C

10
.2

49
3

2.
03

99
92

C
M

C
2.

43
90

1.
12

36
36

K
N

N
I

41
.3

04
3

0.
98

62
39

K
N

N
I

20
.2

21
6

0.
83

47
34

K
N

N
I

2.
43

90
1.

11
58

18

W
K

N
N

I
41

.3
04

3
0.

98
59

53
W

K
N

N
I

19
.1

13
6

0.
83

39
82

W
K

N
N

I
2.

43
90

1.
11

58
18

K
M

I
41

.3
04

3
0.

98
56

02
K

M
I

21
.8

83
7

0.
82

19
36

K
M

I
2.

43
90

1.
05

66
52

FK
M

I
45

.6
52

2
0.

98
46

94
FK

M
I

20
.4

98
6

0.
84

91
41

FK
M

I
2.

43
90

1.
05

66
52

SV
M

I
43

.4
78

3
0.

99
18

50
SV

M
I

20
.2

21
6

0.
84

34
56

SV
M

I
2.

43
90

1.
77

25
89

E
M

58
.6

95
7

0.
97

05
57

E
M

21
.0

52
6

0.
77

57
73

E
M

2.
43

90
1.

09
92

86

SV
D

I
52

.1
73

9
0.

96
89

38
SV

D
I

21
.0

52
6

0.
75

09
30

SV
D

I
7.

31
71

1.
06

58
65

B
PC

A
43

.4
78

3
0.

98
66

31
B

PC
A

19
.3

90
6

0.
96

45
87

B
PC

A
7.

31
71

1.
12

16
03

L
L

SI
45

.6
52

2
0.

98
53

62
L

L
SI

20
.4

98
6

0.
92

60
68

L
L

SI
2.

43
90

1.
15

96
10

E
C

30
.4

34
8

1.
00

76
52

E
C

20
.7

75
6

0.
91

15
43

E
C

2.
43

90
1.

22
26

31

PR
T

M
C

71
.0

14
5

0.
94

98
96

A
U

D
M

C
38

.7
38

7
0.

99
07

11
M

A
M

M
C

21
.3

74
0

0.
97

44
36

C
M

C
60

.8
69

6
1.

12
00

06
C

M
C

32
.8

82
9

1.
03

21
62

C
M

C
13

.7
40

5
1.

02
91

54

K
N

N
I

69
.5

65
2

0.
97

63
51

K
N

N
I

38
.7

38
7

0.
99

32
46

K
N

N
I

25
.9

54
2

0.
96

59
26

W
K

N
N

I
69

.5
65

2
0.

97
63

51
W

K
N

N
I

38
.7

38
7

0.
99

32
46

W
K

N
N

I
25

.9
54

2
0.

96
59

26

K
M

I
71

.0
14

5
0.

94
98

96
K

M
I

38
.7

38
7

1.
00

02
35

K
M

I
24

.4
27

5
0.

96
68

85

FK
M

I
71

.0
14

5
0.

94
98

96
FK

M
I

38
.7

38
7

0.
99

07
11

FK
M

I
20

.6
10

7
0.

97
42

28

SV
M

I
68

.1
15

9
1.

03
81

52
SV

M
I

37
.8

37
8

1.
00

79
58

SV
M

I
16

.7
93

9
1.

27
29

93

(c
on

tin
ue

d)

96 4 Dealing with Missing Values

Ta
bl

e
4.

2
(c

on
tin

ue
d)

D
at

a
se

t
Im

p.
%

W
ils

on
’s

A
vg

.M
ui

D
at

a
se

t
Im

p.
%

W
ils

on
’s

A
vg

.M
ui

D
at

a
se

t
Im

p.
%

W
ils

on
’s

A
vg

.M
ui

M
et

ho
d

N
oi

se
ra

tio
M

et
ho

d
N

oi
se

ra
tio

M
et

ho
d

N
oi

se
ra

tio

E
M

88
.4

05
8

0.
46

16
00

E
M

53
.6

03
6

1.
12

91
68

E
M

20
.6

10
7

0.
98

08
65

SV
D

I
91

.7
87

4
0.

48
56

82
SV

D
I

46
.3

96
4

1.
06

50
91

SV
D

I
27

.4
80

9
1.

05
27

90

B
PC

A
71

.4
97

6
0.

98
75

98
B

PC
A

40
.5

40
5

1.
15

66
76

B
PC

A
25

.1
90

8
0.

97
82

09

L
L

SI
69

.5
65

2
1.

01
62

30
L

L
SI

36
.9

36
9

1.
06

11
97

L
L

SI
26

.7
17

6
0.

99
43

49

E
C

66
.1

83
6

1.
05

31
85

E
C

37
.8

37
8

1.
20

96
08

E
C

18
.3

20
6

1.
26

95
05

D
E

R
M

C
0.

00
00

1.
00

05
81

L
U

N
M

C
80

.0
00

0
0.

99
61

76
O

Z
O

M
C

4.
80

35
0.

98
28

73

C
M

C
0.

00
00

1.
00

24
06

C
M

C
80

.0
00

0
1.

00
83

33
C

M
C

3.
63

90
0.

98
91

56

K
N

N
I

0.
00

00
0.

99
97

34
K

N
N

I
80

.0
00

0
0.

99
61

76
K

N
N

I
4.

36
68

0.
98

27
59

W
K

N
N

I
0.

00
00

0.
99

97
34

W
K

N
N

I
80

.0
00

0
0.

99
61

76
W

K
N

N
I

4.
51

24
0.

98
27

21

K
M

I
0.

00
00

1.
00

05
81

K
M

I
80

.0
00

0
0.

99
61

76
K

M
I

4.
94

91
0.

98
24

95

FK
M

I
0.

00
00

1.
00

05
81

FK
M

I
80

.0
00

0
0.

99
61

76
FK

M
I

4.
07

57
0.

98
29

51

SV
M

I
0.

00
00

1.
00

15
66

SV
M

I
80

.0
00

0
1.

00
60

28
SV

M
I

3.
78

46
0.

98
82

97

E
M

0.
00

00
1.

00
00

16
E

M
20

.0
00

0
1.

06
78

44
E

M
4.

80
35

0.
97

99
77

SV
D

I
0.

00
00

0.
99

96
91

SV
D

I
40

.0
00

0
1.

07
63

34
SV

D
I

4.
80

35
0.

97
99

58

B
PC

A
0.

00
00

0.
99

96
33

B
PC

A
80

.0
00

0
0.

99
64

47
B

PC
A

4.
36

68
0.

98
33

18

L
L

SI
0.

00
00

0.
99

91
70

L
L

SI
80

.0
00

0
1.

00
76

12
L

L
SI

4.
22

13
0.

98
35

08

E
C

0.
00

00
1.

00
05

39
E

C
80

.0
00

0
1.

00
23

85
E

C
4.

80
35

0.
94

47
47

4.6 Experimental Comparative Analysis 97

methods estimate the MVs using such relationships and can afford improvements in
the performance of the classifiers. Hence the highest values of average Mui ratios
could be related to those methods which can obtain better estimates for the MVs, and
maintaining the relationship degree between the class labels and the isolated input
attributes. It is interesting to note that when analyzing the Mui ratio, the values do
not appear to be as highly data dependant as Wilson’s noise ratio, as the values for
all the data sets are more or less close to each other.

If we count the methods with the lowest Wilson’s noise ratios in each data set
in Table 4.2, we find that the CMC method is first, with 12 times being the lowest
one, and the EC method is second with 9 times being the lowest one. If we count the
methods with the highest MI ratio in each data set, the EC method has the highest
ratio for 7 data sets and is therefore the first one. The CMC method has the highest
ratio for 5 data sets and is the second one in this case. Immediately the next question
arises: are these methods also the best for the performance of the learning methods
applied afterwards? We try to answer this question in the following.

4.6.2 Best Imputation Methods for Classification Methods

Our aim is to use the same imputation results as data sets used in the previous
Sect. 4.6.1 as the input for a series of well known classifiers in order to shed light on
the question “which is the best imputation method?”. Let us consider a wide range
of classifiers grouped by their nature, as that will help us to limit the comparisons
needed to be made. We have grouped them in three sub-categories. In Table 4.3
we summarize the classification methods we have used, organized in these three
categories. The description of the former categories is as follows:

• The first group is the Rule Induction Learning category. This group refers to
algorithms which infer rules using different strategies.

• The second group represents the Black Box Methods. It includes ANNs, SVMs
and statistical learning.

• The third and last group corresponds to the Lazy Learning (LL) category. This
group incorporates methods which do not create any model, but use the training
data to perform the classification directly.

Some methods do not work with numerical attributes (CN2, AQ and Naïve-Bayes).
In order to discretize the numerical values, we have used the well-known discretizer
proposed by [28]. For the SVM methods (C-SVM, ν-SVM and SMO), we have
applied the usual preprocessing in the literature to these methods [25]. This pre-
processing consists of normalizing the numerical attributes to the [0, 1] range, and
binarizing the nominal attributes. Some of the presented classification methods in the
previous section have their own MVs treatment that will trigger when no imputation
is made (DNI): C4.5 uses a probabilistic approach to handling MVs and CN2 applies
the MC method by default in these cases. For ANNs [24] proposed to replace MVs
with zero so as not to trigger the corresponding neuron which the MV is applied to.

98 4 Dealing with Missing Values

Table 4.3 Classifiers used by categories

Method Acronym References

Rule Induction Learning

C4.5 C4.5 [73]

Ripper Ripper [16]

CN2 CN2 [14]

AQ-15 AQ [59]

PART PART [33]

Slipper Slipper [15]

Scalable Rule Induction Induction SRI [68]

Rule Induction Two In One Ritio [100]

Rule Extraction System version 6 Rule-6 [67]

Black Box Methods

Multi-Layer Perceptron MLP [61]

C-SVM C-SVM [25]

ν-SVM ν-SVM [25]

Sequential Minimal Optimization SMO [70]

Radial Basis Function Network RBFN [8]

RBFN Decremental RBFND [8]

RBFN Incremental RBFNI [69]

Logistic LOG [10]

Naïve-Bayes NB [21]

Learning Vector Quantization LVQ [7]

Lazy Learning

1-NN 1-NN [57]

3-NN 3-NN [57]

Locally Weighted Learning LWL [2]

Lazy Learning of Bayesian Rules LBR [103]

As shown here all the detailed accuracy values for each fold, data set, imputation
method and classifier would be too long, we have used Wilcoxon’s Signed Rank test
to summarize them. For each classifier, we have compared every imputation method
along with the rest in pairs. Every time the classifier obtains a better accuracy value for
an imputation method than another one and the statistical test yield a p−value < 0.1
we count it as a win for the former imputation method. In another case it is a tie when
p − value > 0.1.

In the case of rule induction learning in Table 4.4 we show the average ranking
or each imputation method for every classifier belonging to this group. We can
observe that, for the rule induction learning classifiers, the imputation methods FKMI,
SVMI and EC perform best. The differences between these three methods in average
rankings are low. Thus we can consider that these three imputation methods are
the most suitable for this kind of classifier. They are well separated from the other

4.6 Experimental Comparative Analysis 99

Table 4.4 Average ranks for the Rule Induction Learning methods

C45 Ripper PART Slipper AQ CN2 SRI Ritio Rules-6 Avg. Ranks

IM 5 8.5 1 4 6.5 10 6.5 6 5 5.83 4

EC 2.5 8.5 6.5 1 6.5 5.5 6.5 6 1 4.89 3

KNNI 9 2.5 6.5 11 11 5.5 11.5 11 11 8.78 11

WKNNI 11 2.5 6.5 7 6.5 1 11.5 6 11 7.00 8

KMI 5 2.5 6.5 3 6.5 5.5 9.5 12 7.5 6.44 6

FKMI 7.5 2.5 6.5 10 2 5.5 1 2 3 4.44 1

SVMI 1 5.5 6.5 7 1 5.5 6.5 6 2 4.56 2

EM 13 12 6.5 7 12 13 3 6 4 8.50 10

SVDI 11 11 6.5 12 10 12 9.5 10 11 10.33 12

BPCA 14 13 13 7 13 14 13 13 13 12.56 14

LLSI 11 5.5 6.5 7 6.5 11 3 6 7.5 7.11 9

MC 7.5 8.5 6.5 2 6.5 5.5 3 6 7.5 5.89 5

CMC 5 8.5 12 13 3 5.5 6.5 1 7.5 6.89 7

DNI 2.5 14 14 14 14 5.5 14 14 14 11.78 13

Table 4.5 Average ranks for the Black Box methods

RBFN RBFND RBFNI LOG LVQ MLP NB ν-SVM C-SVM SMO Avg. Ranks

IM 9 6.5 4.5 6 3.5 13 12 10 5.5 5.5 7.55 10

EC 1 1 1 3 7 8.5 10 13 1 2 4.75 1

KNNI 5 6.5 10.5 9 7 11 6.5 8 5.5 5.5 7.45 9

WKNNI 13 6.5 4.5 10 10 4.5 6.5 4.5 5.5 5.5 7.05 6

KMI 3.5 2 7 3 11 3 4.5 8 5.5 9 5.65 2

FKMI 12 6.5 10.5 3 1.5 4.5 11 4.5 5.5 3 6.20 3

SVMI 2 11.5 2.5 7.5 3.5 1.5 13 8 11 9 6.95 5

EM 3.5 6.5 13 12 12.5 10 4.5 4.5 10 11.5 8.80 11

SVDI 9 6.5 7 11 12.5 8.5 3 11.5 12 11.5 9.25 12

BPCA 14 14 14 13 7 14 2 2 13 13 10.60 14

LLSI 6 6.5 10.5 7.5 7 6.5 9 4.5 5.5 9 7.20 7

MC 9 6.5 10.5 3 7 6.5 8 11.5 5.5 5.5 7.30 8

CMC 9 13 2.5 3 1.5 1.5 14 14 5.5 1 6.50 4

DNI 9 11.5 7 14 14 12 1 1 14 14 9.75 13

imputation methods and we cannot choose the best method from among these three.
On the other hand, BPCA and DNI are the worst methods.

In Table 4.5 we can observe the rankings associated with the methods belonging to
the black-boxes modeling category. As can be appreciated, for black-boxes modelling
the differences between imputation methods are even more evident. We can select
the EC method as the best solution, as it has a difference of ranking of almost 1 with
KMI, which stands as the second best. This difference increases when considering

100 4 Dealing with Missing Values

Table 4.6 Average ranks for the Lazy Learning methods

1-NN 3-NN LBR LWL Avg. Ranks

IM 5 11 5 8 7.25 7

EC 9.5 13 9 8 9.88 12

KNNI 2.5 5.5 9 8 6.25 4

WKNNI 4 5.5 9 8 6.63 5

KMI 12 5.5 9 2.5 7.25 8

FKMI 6 1.5 9 2.5 4.75 3

SVMI 9.5 9 3 8 7.38 9

EM 11 5.5 9 2.5 7.00 6

SVDI 13 12 1 12 9.50 11

BPCA 14 14 13 13 13.50 14

LLSI 7.5 5.5 9 8 7.50 10

MC 7.5 1.5 3 2.5 3.63 1

CMC 1 5.5 3 8 4.38 2

DNI 2.5 10 14 14 10.13 13

the third best, FKMI. No other family of classifiers present this gap in the rankings.
Therefore, in this family of classification methods we could, with some confidence,
establish the EC method as the best choice. The DNI and IM methods are among
the worst. This means that for the black-boxes modelling methods the use of some
kind of MV treatment is mandatory, whereas the EC method is the most suitable one.
As with the RIL methods, the BPCA method is the worst choice, with the highest
ranking.

Finally the results for the last LL group are presented in Table 4.6. For the LL
models, the MC method is the best with the lowest average ranking. The CMC
method, which is relatively similar to MC, also obtains a low rank very close to
MC’s. Only the FKMI method obtains a low enough rank to be compared with
the MC and CMC methods. The rest of the imputation methods are far from these
lowest ranks with almost two points of difference in the ranking. Again, the DNI and
IM methods obtain high rankings. The DNI method is one of the worst, with only
the BPCA method performing worse. As with the black-boxes modelling models,
the imputation methods produce a significant improvement in the accuracy of these
classification methods.

4.6.3 Interesting Comments

In this last Section we have carried out an experimental comparison among the impu-
tation methods presented in this chapter. We have tried to obtain the best imputation
choice by means of non-parametric statistical testing. The results obtained concur
with previous studies:

4.6 Experimental Comparative Analysis 101

• The imputation methods which fill in the MVs outperform the case deletion (IM
method) and the lack of imputation (DNI method).

• There is no universal imputation method which performs best for all classifiers.

In Sect. 4.6.1 we have analyzed the influence of the imputation methods in the data
in respect to two measures. These two measures are the Wilson’s noise ratio and the
average MI difference. The first one quantifies the noise induced by the imputation
method in the instances which contain MVs. The second one examines the increment
or decrement in the relationship of the isolated input attributes with respect to the
class label. We have observed that the CMC and EC methods are the ones which
introduce less noise and maintain the MI better.

According to the results in Sect. 4.6.2, the particular analysis of the MVs treat-
ment methods conditioned to the classification methods’ groups seems necessary.
Thus, we can stress the recommended imputation algorithms to be used based on
the classification method’s type, as in the case of the FKMI imputation method for
the Rule Induction Learning group, the EC method for the black-boxes modelling
Models and the MC method for the Lazy Learning models. We can confirm the pos-
itive effect of the imputation methods and the classifiers’ behavior, and the presence
of more suitable imputation methods for some particular classifier categories than
others.

References

1. Acuna, E., Rodriguez, C.: Classification, Clustering and Data Mining Applications. Springer,
Berlin (2004)

2. Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted learning. Artif. Intell. Rev. 11,
11–73 (1997)

3. Aydilek, I.B., Arslan, A.: A hybrid method for imputation of missing values using optimized
fuzzy c-means with support vector regression and a genetic algorithm. Inf. Sci. 233, 25–35
(2013)

4. Azim, S., Aggarwal, S.: Hybrid model for data imputation: using fuzzy c-means and multi
layer perceptron. In: Advance Computing Conference (IACC), 2014 IEEE International,
pp. 1281–1285 (2014)

5. Barnard, J., Meng, X.: Applications of multiple imputation in medical studies: from aids to
nhanes. Stat. Methods Med. Res. 8(1), 17–36 (1999)

6. Batista, G., Monard, M.: An analysis of four missing data treatment methods for supervised
learning. Appl. Artif. Intell. 17(5), 519–533 (2003)

7. Bezdek, J., Kuncheva, L.: Nearest prototype classifier designs: an experimental study. Int. J.
Intell. Syst. 16(12), 1445–1473 (2001)

8. Broomhead, D., Lowe, D.: Multivariable functional interpolation and adaptive networks.
Complex Systems 11, 321–355 (1988)

9. van Buuren, S., Groothuis-Oudshoorn, K.: MICE: multivariate imputation by chained equa-
tions in r. J. Stat. Softw. 45(3), 1–67 (2011)

10. le Cessie, S., van Houwelingen, J.: Ridge estimators in logistic regression. Appl. Stat. 41(1),
191–201 (1992)

11. Chai, L., Mohamad, M., Deris, S., Chong, C., Choon, Y., Ibrahim, Z., Omatu, S.: Inferring
gene regulatory networks from gene expression data by a dynamic bayesian network-based
model. In: Omatu, S., De Paz Santana, J.F., González, S.R., Molina, J.M., Bernardos, A.M.,

102 4 Dealing with Missing Values

Rodríguez, J.M.C. (eds.) Distributed Computing and Artificial Intelligence, Advances in Intel-
ligent and Soft Computing, pp. 379–386. Springer, Berlin (2012)

12. Ching, W.K., Li, L., Tsing, N.K., Tai, C.W., Ng, T.W., Wong, A.S., Cheng, K.W.: A weighted
local least squares imputation method for missing value estimation in microarray gene expres-
sion data. Int. J. Data Min. Bioinform. 4(3), 331–347 (2010)

13. Chow, C., Liu, C.: Approximating discrete probability distributions with dependence trees.
IEEE Trans. Inf. Theor. 14(3), 462–467 (1968)

14. Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning 3(4), 261–283 (1989)
15. Cohen, W., Singer, Y.: A simple and fast and effective rule learner. In: Proceedings of the

Sixteenth National Conference on Artificial Intelligence, pp. 335–342 (1999)
16. Cohen, W.W.: Fast effective rule induction. In: Proceedings of the Twelfth International Con-

ference on Machine Learning (ICML), pp. 115–123 (1995).
17. Cortes, C., Vapnik, V.: Support vector networks. Machine Learning 20, 273–297 (1995)
18. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2 edn. Wiley, New York (1991)
19. Daniel, R.M., Kenward, M.G.: A method for increasing the robustness of multiple imputation.

Comput. Stat. Data Anal. 56(6), 1624–1643 (2012)
20. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood estimation from incomplete data

via the EM algorithm (with discussion). J. Roy. Statist. Soc. Ser. B 39, 1–38 (1977)
21. Domingos, P., Pazzani, M.: On the optimality of the simple bayesian classifier under zero-one

loss. Machine Learning 29, 103–137 (1997)
22. Dorri, F., Azmi, P., Dorri, F.: Missing value imputation in dna microarrays based on conjugate

gradient method. Comp. Bio. Med. 42(2), 222–227 (2012)
23. Dunning, T., Freedman, D.: Modeling section effects, Sage, pp. 225–231 (2008)
24. Ennett, C.M., Frize, M., Walker, C.R.: Influence of missing values on artificial neural network

performance. Stud. Health Technol. Inform. 84, 449–453 (2001)
25. Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using second order information for

training support vector machines. J. Machine Learning Res. 6, 1889–1918 (2005)
26. Farhangfar, A., Kurgan, L., Dy, J.: Impact of imputation of missing values on classification

error for discrete data. Pattern Recognit. 41(12), 3692–3705 (2008). http://dx.doi.org/10.
1016/j.patcog.2008.05.019

27. Farhangfar, A., Kurgan, L.A., Pedrycz, W.: A novel framework for imputation of missing
values in databases. IEEE Trans. Syst. Man Cybern. Part A 37(5), 692–709 (2007)

28. Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes for classi-
fication learning. In: 13th International Joint Conference on Uncertainly in Artificial Intelli-
gence(IJCAI93), pp. 1022–1029 (1993)

29. Feng, H., Guoshun, C., Cheng, Y., Yang, B., Chen, Y.: A SVM regression based approach
to filling in missing values. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES (3), Lecture
Notes in Computer Science, vol. 3683, pp. 581–587. Springer, Berlin (2005)

30. Feng, X., Wu, S., Liu, Y.: Imputing missing values for mixed numeric and categorical attributes
based on incomplete data hierarchical clustering. In: Proceedings of the 5th International
Conference on Knowledge Science, Engineering and Management, KSEM’11, pp. 414–424
(2011)

31. Figueroa García, J.C., Kalenatic, D., Lopez Bello, C.A.: Missing data imputation in multi-
variate data by evolutionary algorithms. Comput. Hum. Behav. 27(5), 1468–1474 (2011)

32. de França, F.O., Coelho, G.P., Zuben, F.J.V.: Predicting missing values with biclustering: a
coherence-based approach. Pattern Recognit. 46(5), 1255–1266 (2013)

33. Frank, E., Witten, I.: Generating accurate rule sets without global optimization. In: Proceed-
ings of the 15th International Conference on Machine Learning, pp. 144–151 (1998)

34. Gheyas, I.A., Smith, L.S.: A neural network-based framework for the reconstruction of incom-
plete data sets. Neurocomputing 73(16–18), 3039–3065 (2010)

35. Gibert, K.: Mixed intelligent-multivariate missing imputation. Int. J. Comput. Math. 91(1),
85–96 (2014)

36. Grzymala-Busse, J., Goodwin, L., Grzymala-Busse, W., Zheng, X.: Handling missing attribute
values in preterm birth data sets. In: 10th International Conference of Rough Sets and Fuzzy
Sets and Data Mining and Granular Computing(RSFDGrC05), pp. 342–351 (2005)

http://dx.doi.org/10.1016/j.patcog.2008.05.019
http://dx.doi.org/10.1016/j.patcog.2008.05.019

References 103

37. Grzymala-Busse, J.W., Hu, M.: A comparison of several approaches to missing attribute values
in data mining. In: Ziarko, W., Yao, Y.Y. (eds.) Rough Sets and Current Trends in Computing,
Lecture Notes in Computer Science, vol. 2005, pp. 378–385. Springer, Berlin (2000)

38. Howell, D.: The analysis of missing data. SAGE Publications Ltd, London (2007)
39. Hruschka Jr, E.R., Ebecken, N.F.F.: Missing values prediction with k2. Intell. Data Anal. 6(6),

557–566 (2002)
40. Hulse, J.V., Khoshgoftaar, T.M.: Incomplete-case nearest neighbor imputation in software

measurement data. Inf. Sci. 259, 596–610 (2014)
41. Ingsrisawang, L., Potawee, D.: Multiple imputation for missing data in repeated measurements

using MCMC and copulas, pp. 1606–1610 (2012)
42. Ishioka, T.: Imputation of missing values for unsupervised data using the proximity in random

forests. In: eLmL 2013, The 5th International Conference on Mobile, Hybrid, and On-line
Learning, pp. 30–36 (2013)

43. Jamshidian, M., Jalal, S., Jansen, C.: Missmech: an R package for testing homoscedasticity,
multivariate normality, and missing completely at random (mcar). J. Stat. Softw. 56(6), 1–31
(2014)

44. Joenssen, D.W., Bankhofer, U.: Hot deck methods for imputing missing data: the effects
of limiting donor usage. In: Proceedings of the 8th International Conference on Machine
Learning and Data Mining in Pattern Recognition, MLDM’12, pp. 63–75 (2012)

45. Juhola, M., Laurikkala, J.: Missing values: how many can they be to preserve classification
reliability? Artif. Intell. Rev. 40(3), 231–245 (2013)

46. Keerin, P., Kurutach, W., Boongoen, T.: Cluster-based knn missing value imputation for
dna microarray data. In: Systems, Man, and Cybernetics (SMC), 2012 IEEE International
Conference on, pp. 445–450. IEEE (2012)

47. Keerin, P., Kurutach, W., Boongoen, T.: An improvement of missing value imputation in
dna microarray data using cluster-based lls method. In: Communications and Information
Technologies (ISCIT), 2013 13th International Symposium on, pp. 559–564 (2013)

48. Khan, S.S., Hoey, J., Lizotte, D.J.: Bayesian multiple imputation approaches for one-class
classification. In: Kosseim, L., Inkpen, D. (eds.) Advances in Artificial Intelligence - 25th
Canadian Conference on Artificial Intelligence, Canadian AI 2012, Toronto, ON, Canada,
Proceedings, pp. 331–336. 28–30 May 2012

49. Kim, H., Golub, G.H., Park, H.: Missing value estimation for dna microarray gene expression
data: local least squares imputation. Bioinform. 21(2), 187–198 (2005)

50. Krzanowski, W.: Multiple discriminant analysis in the presence of mixed continuous and
categorical data. Comput. Math. Appl. 12(2, Part A), 179–185 (1986)

51. Kwak, N., Choi, C.H.: Input feature selection by mutual information based on parzen window.
IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1667–1671 (2002)

52. Kwak, N., Choi, C.H.: Input feature selection for classification problems. IEEE Trans. Neural
Networks 13(1), 143–159 (2002)

53. Li, D., Deogun, J., Spaulding, W., Shuart, B.: Towards missing data imputation: a study of
fuzzy k-means clustering method. In: 4th International Conference of Rough Sets and Current
Trends in Computing (RSCTC04), pp. 573–579 (2004)

54. Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data, 1st edn. Wiley Series in
Probability and Statistics, New York (1987)

55. Little, R.J.A., Schluchter, M.D.: Maximum likelihood estimation for mixed continuous and
categorical data with missing values. Biometrika 72, 497–512 (1985)

56. Lu, X., Si, J., Pan, L., Zhao, Y.: Imputation of missing data using ensemble algorithms. In:
Fuzzy Systems and Knowledge Discovery (FSKD), 2011 8th International Conference on,
vol. 2, pp. 1312–1315 (2011)

57. McLachlan, G.: Discriminant Analysis and Statistical Pattern Recognition. Wiley, New
York(2004)

58. Merlin, P., Sorjamaa, A., Maillet, B., Lendasse, A.: X-SOM and L-SOM: a double classifica-
tion approach for missing value imputation. Neurocomputing 73(7–9), 1103–1108 (2010)

104 4 Dealing with Missing Values

59. Michalksi, R., Mozetic, I., Lavrac, N.: The multipurpose incremental learning system AQ15
and its testing application to three medical domains. In: 5th INational Conference on Artificial
Intelligence (AAAI86), pp. 1041–1045 (1986)

60. Miyakoshi, Y., Kato, S.: Missing value imputation method by using Bayesian network with
weighted learning. IEEJ Trans. Electron. Inf. Syst. 132, 299–305 (2012)

61. Moller, F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Net-
works 6, 525–533 (1990)

62. Oba, S., aki Sato, M., Takemasa, I., Monden, M., ichi Matsubara, K., Ishii, S.: A bayesian
missing value estimation method for gene expression profile data. Bioinform. 19(16), 2088–
2096 (2003)

63. Ouyang, M., Welsh, W.J., Georgopoulos, P.: Gaussian mixture clustering and imputation of
microarray data. Bioinform. 20(6), 917–923 (2004)

64. Panigrahi, L., Ranjan, R., Das, K., Mishra, D.: Removal and interpolation of missing values
using wavelet neural network for heterogeneous data sets. In: Proceedings of the International
Conference on Advances in Computing, Communications and Informatics, ICACCI ’12, pp.
1004–1009 (2012)

65. Patil, B., Joshi, R., Toshniwal, D.: Missing value imputation based on k-mean clustering with
weighted distance. In: Ranka, S., Banerjee, A., Biswas, K., Dua, S., Mishra, P., Moona, R.,
Poon, S.H., Wang, C.L. (eds.) Contemporary Computing, Communications in Computer and
Information Science, vol. 94, pp. 600–609. Springer, Berlin (2010)

66. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: Criteria of max-
dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell.
27(8), pp. 1226–1238 (2005)

67. Pham, D.T., Afify, A.A.: Rules-6: a simple rule induction algorithm for supporting decision
making. In: Industrial Electronics Society, 2005. IECON 2005. 31st Annual Conference of
IEEE, pp. 2184–2189 (2005)

68. Pham, D.T., Afify, A.A.: SRI: a scalable rule induction algorithm. Proc. Inst. Mech. Eng. [C]:
J. Mech. Eng. Sci. 220, 537–552 (2006)

69. Plat, J.: A resource allocating network for function interpolation. Neural Comput. 3(2), 213–
225 (1991)

70. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In:
Advances in Kernel Methods: Support Vector Learning, pp. 185–208. MIT Press, Cambridge
(1999)

71. Pyle, D.: Data Preparation for Data Mining. Morgan Kaufmann Publishers Inc., San Francisco
(1999)

72. Qin, Y., Zhang, S., Zhang, C.: Combining knn imputation and bootstrap calibrated empirical
likelihood for incomplete data analysis. Int. J. Data Warehouse. Min. 6(4), 61–73 (2010)

73. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San
Francisco (1993)

74. Rahman, G., Islam, Z.: A decision tree-based missing value imputation technique for data
pre-processing. In: Proceedings of the 9th Australasian Data Mining Conference - Volume
121, AusDM ’11, pp. 41–50 (2011)

75. Rahman, M., Islam, M.: KDMI: a novel method for missing values imputation using two
levels of horizontal partitioning in a data set. In: Motoda, H., Wu, Z., Cao, L., Zaiane, O.,
Yao, M., Wang, W. (eds.) Advanced Data Mining and Applications. Lecture Notes in Computer
Science, vol. 8347, pp. 250–263. Springer, Berlin (2013)

76. Rahman, M.G., Islam, M.Z.: Missing value imputation using decision trees and decision
forests by splitting and merging records: two novel techniques. Know.-Based Syst. 53, 51–65
(2013)

77. Rahman, M.G., Islam, M.Z.: Fimus: a framework for imputing missing values using co-
appearance, correlation and similarity analysis. Know.-Based Syst. 56, 311–327 (2014)

78. Royston, P., White, I.R.: Multiple imputation by chained equations (MICE): implementation
in STATA. J. Stat. Softw. 45(4), 1–20 (2011)

79. Rubin, D.B.: Inference and missing data. Biometrika 63(3), 581–592 (1976)

References 105

80. Rubin, D.B.: Multiple Imputation for Nonresponse in Surveys. Wiley, New York (1987)
81. Safarinejadian, B., Menhaj, M., Karrari, M.: A distributed EM algorithm to estimate the

parameters of a finite mixture of components. Knowl. Inf. Syst. 23(3), 267–292 (2010)
82. Schafer, J.L.: Analysis of Incomplete Multivariate Data. Chapman & Hall, London (1997)
83. Schafer, J.L., Olsen, M.K.: Multiple imputation for multivariate missing-data problems: a

data analyst’s perspective. Multivar. Behav. Res. 33(4), 545–571 (1998)
84. Scheuren, F.: Multiple imputation: how it began and continues. Am. Stat. 59, 315–319 (2005)
85. Schneider, T.: Analysis of incomplete climate data: estimation of mean values and covariance

matrices and imputation of missing values. J. Clim. 14, 853–871 (2001)
86. Schomaker, M., Heumann, C.: Model selection and model averaging after multiple imputation.

Comput. Stat. Data Anal. 71, 758–770 (2014)
87. Sehgal, M.S.B., Gondal, I., Dooley, L.: Collateral missing value imputation: a new robust

missing value estimation algorithm for microarray data. Bioinform. 21(10), 2417–2423 (2005)
88. Silva-Ramírez, E.L., Pino-Mejías, R., López-Coello, M., Cubiles-de-la Vega, M.D.: Missing

value imputation on missing completely at random data using multilayer perceptrons. Neural
Networks 24(1), 121–129 (2011)

89. Simński, K.: Rough fuzzy subspace clustering for data with missing values. Comput. Inform.
33(1), 131–153 (2014)

90. Somasundaram, R., Nedunchezhian, R.: Radial basis function network dependent exclusive
mutual interpolation for missing value imputation. J. Comput. Sci. 9(3), 327–334 (2013)

91. Tanner, M.A., Wong, W.: The calculation of posterior distributions by data augmentation. J.
Am. Stat. Assoc. 82, 528–540 (1987)

92. Ting, J., Yu, B., Yu, D., Ma, S.: Missing data analyses: a hybrid multiple imputation algorithm
using gray system theory and entropy based on clustering. Appl. Intell. 40(2), 376–388 (2014)

93. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein,
D., Altman, R.B.: Missing value estimation methods for dna microarrays. Bioinform. 17(6),
520–525 (2001)

94. Unnebrink, K., Windeler, J.: Intention-to-treat: methods for dealing with missing values in
clinical trials of progressively deteriorating diseases. Stat. Med. 20(24), 3931–3946 (2001)

95. Vellido, A.: Missing data imputation through GTM as a mixture of t-distributions. Neural
Networks 19(10), 1624–1635 (2006)

96. Wang, H., Wang, S.: Mining incomplete survey data through classification. Knowl. Inf. Syst.
24(2), 221–233 (2010)

97. Williams, D., Liao, X., Xue, Y., Carin, L., Krishnapuram, B.: On classification with incomplete
data. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 427–436 (2007)

98. Wilson, D.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans.
Syst. Man Cybern. 2(3), 408–421 (1972)

99. Wong, A.K.C., Chiu, D.K.Y.: Synthesizing statistical knowledge from incomplete mixed-
mode data. IEEE Trans. Pattern Anal. Mach. Intell. 9(6), 796–805 (1987)

100. Wu, X., Urpani, D.: Induction by attribute elimination. IEEE Trans. Knowl. Data Eng. 11(5),
805–812 (1999)

101. Zhang, S.: Nearest neighbor selection for iteratively knn imputation. J. Syst. Softw. 85(11),
2541–2552 (2012)

102. Zhang, S., Wu, X., Zhu, M.: Efficient missing data imputation for supervised learning. In:
Cognitive Informatics (ICCI), 2010 9th IEEE International Conference on, pp. 672–679 (2010)

103. Zheng, Z., Webb, G.I.: Lazy learning of bayesian rules. Machine Learning 41(1), 53–84 (2000)
104. Zhu, B., He, C., Liatsis, P.: A robust missing value imputation method for noisy data. Appl.

Intell. 36(1), 61–74 (2012)
105. Zhu, X., Zhang, S., Jin, Z., Zhang, Z., Xu, Z.: Missing value estimation for mixed-attribute

data sets. IEEE Transactions on Knowl. Data Eng. 23(1), 110–121 (2011)

	4 Dealing with Missing Values
	4.1 Introduction
	4.2 Assumptions and Missing Data Mechanisms
	4.3 Simple Approaches to Missing Data
	4.4 Maximum Likelihood Imputation Methods
	4.4.1 Expectation-Maximization (EM)
	4.4.2 Multiple Imputation
	4.4.3 Bayesian Principal Component Analysis (BPCA)

	4.5 Imputation of Missing Values. Machine Learning Based Methods
	4.5.1 Imputation with K-Nearest Neighbor (KNNI)
	4.5.2 Weighted Imputation with K-Nearest Neighbour (WKNNI)
	4.5.3 K-means Clustering Imputation (KMI)
	4.5.4 Imputation with Fuzzy K-means Clustering (FKMI)
	4.5.5 Support Vector Machines Imputation (SVMI)
	4.5.6 Event Covering (EC)
	4.5.7 Singular Value Decomposition Imputation (SVDI)
	4.5.8 Local Least Squares Imputation (LLSI)
	4.5.9 Recent Machine Learning Approaches to Missing Values Imputation

	4.6 Experimental Comparative Analysis
	4.6.1 Effect of the Imputation Methods in the Attributes' Relationships
	4.6.2 Best Imputation Methods for Classification Methods
	4.6.3 Interesting Comments

	References

