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1.1 � Introduction

It is estimated that the chemical universe associated with small organic molecules is 
nearly 200 billion [1]. An older estimate, which includes larger organic molecules 
up to a molecular weight of 500 Da, suggests that this number may be around 1060 
[2] and constitutes what could be called the “small molecule universe.” Enumer-
ating and searching this set of compounds would be a daunting task. Recently, a 
new approach has been published that is based on the construction of what the 
authors claim is a “representative universal library” of drug-like compounds [3]. In 
any case, regardless of how the size of the chemical universe is assessed, there is 
no question that its size is immense. Because of the size of even “representative” 
subsets of that universe, computer-based methods are required to capture, manage, 
and search the massive amount of information, activities that fall under the rubric 
of chemical informatics.

While the chemical universe of molecules potentially relevant in food science 
is considerably smaller, it nonetheless is large enough to benefit from many of the 
chemical informatic concepts that have proved useful in medicinal chemistry and 
related fields of chemistry. Two of these concepts, molecular similarity and chemi-
cal space (CS), are dealt with in this chapter. Of the two, molecular similarity is 
more fundamental since it plays a crucial role in the definition of CS itself. Though 
important, activity or property landscapes, which provide the third leg of a triad 
of activities that play important roles in much of chemical informatics, will not 
be discussed here. Numerous recent publications describing the visual and statisti-
cal aspects of activity landscapes as well as the basic features of these landscapes 
should be consulted for details [4–8].

Similarity is a ubiquitous concept that touches nearly every aspect of our con-
scious lives and, no doubt, influences our subconscious thoughts as well. Although 
its earliest influence on scientific thinking can be traced to the Greek philosophers 
[9, 10], its impact in chemistry began in the nineteenth century, the most notable 
example being the development of the periodic table of elements by Mendeleev [11] 
and Meyer [12]. As noted by Rouvray (see Table 1.4 in [9]), the twentieth century 
saw a significant expansion in the number and variety of chemical applications of 
molecular similarity. However, it was not until late in that century that application 
of similarity flourished due in large measure to the greater availability of digital 
computers. This led to the development of a plethora of methods for computing mo-
lecular similarity, enabling medicinal chemists to address a growing need to search 
compound collections1 of rapidly increasing size for molecules with similar proper-
ties or biological activities.

Underlying this effort was the similarity-property principle (SPP) [13–15], which 
simply states that “Similar molecules tend to have similar properties.” Although 
perhaps intuitively obvious, it nonetheless provides an important rationale that has 
proved quite helpful as a basis for similarity searches of CSs.

1  The term database (DB) will generally be used to describe large collection of compounds whether 
or not material exists for screening the compounds.
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However, because similarity is a subjective concept (“Similarity like pornography 
is difficult to define, but you know it when you see it” [10]), an absolute standard 
to judge the effectiveness of similarity methods does not exist. As will be discussed 
in the sequel, this raises some significant issues that can seriously impact the ef-
fectiveness and reliability of similarity methods; chief among them is the fact that 
the similarity values depend on the method used to encode the relevant chemical 
or molecular information. Nevertheless, a large number of successful applications 
have shown that similarity methods, with all of their inherent flaws, can provide 
an effective means for carrying out a number of chemical informatic activities 
that facilitate the practice of medicinal chemistry and drug discovery ( vide infra). 
There are two main approaches to similarity in chemistry, what is typically called 
molecular or structural similarity, which is the focus of this work, and chemical 
similarity. The chemical similarity typically, but not exclusively, utilizes represen-
tations associated with macroscopic chemical properties such as solubility, heat 
of vaporization, molar refractivity, and logP, although occasionally properties of 
individual molecules such as pi-electron densities, highest-occupied and lowest-
unoccupied molecular orbital (HOMO and LUMO) energies, and dipole moments 
are also used.

Representations associated with molecular similarity are in general classified 
as one-dimensional (1-D), two-dimensional (2-D), or three-dimensional (3-D). 
1-D representations generally refer to macroscopic (e.g., solubility, logP, sublima-
tion energy, heat of formation, etc.) or microscopic (e.g., molecular orbital energy, 
atomic charges, spectra, etc.) scalar quantities (vide supra). 2-D features are derived 
from the 2-D structures typically used by chemists to represent molecules. Although 
such structures can encode stereochemical and conformational information, this is 
not generally the case in molecular similarity studies, which typically use what are 
called hydrogen-suppressed chemical graphs [16], where hydrogen atoms, except 
those on specific nitrogen and oxygen atoms, are not explicitly represented. Thus, 
chemical graphs primarily encode information on the types of atoms and the bonds 
between them—the latter is sometimes referred to as the bond topology of the mol-
ecule.

By contrast, 3-D features are generally derived from the overall 3-D geometric, 
and sometimes the electronic structure of molecules, which would seem to provide 
a more faithful representation of molecular information. Nevertheless, a number of 
substantive issues remain. This is especially true of molecules with multiple con-
formational states, since determining what conformational state or states have to be 
included in a given similarity analysis is not entirely straightforward. For example, 
in similarity studies aimed at identifying molecules with comparable biological ac-
tivities to known active molecules, does one use the minimum energy conformation 
or the biologically active one, which in many cases is not known. What about the 
case, when there are multiple conformations of comparable energy? All of these is-
sues can significantly complicate 3-D similarity studies.

Because of the greater simplicity of 2-D compared to 3-D representations, and 
because the corresponding functions used to evaluate similarities are generally eas-
ier to carry out as well, 2-D similarities tend to be much faster to compute than the 
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3-D similarities (see Sect. 1.2 for details). This raises the question of whether 2-D 
similarities perform equally or better than 3-D methods in tasks commonly carried 
out in chemical informatics. Conclusive results have not been achieved to date. 
Nevertheless, it appears that 2-D methods can in many cases perform equally well 
and in some cases outperform 3-D methods [17, 18] in a variety of tasks. These 
tasks include similarity-based searches designed to identify new, potentially active 
molecules based on previously determined actives and to identify molecules with 
potentially similar values for properties of interest in drug research such as logP—
both are examples of the SPP. In addition, these workers showed that of the 2-D 
methods considered “molecular ACCess system” (MACCS) structural-key-based 
fingerprints (FPs) (vide infra) consistently exhibited the best performance.

Because of this, most applications of molecular similarity over large sets of com-
pounds generally employ 2-D similarity methods. It should be emphasized, howev-
er, that procedures for comparing 2-D versus 3-D similarity methods are imperfect 
by their very nature since, as noted earlier, similarity is a subjective concept that 
does not admit to absolute comparisons of any type.

In simplistic terms, the concept of CS can be considered to be a multidimensional 
extension of the concept of a congeneric series. However, an important distinction 
between the two is that CS involves a pairwise relation that specifies the relation-
ship of the molecules to each other, generally in terms of a molecular similarity or 
CS-distance function. A set of objects and a pairwise relation among them are the 
basic ingredients of a mathematical space. In the present case, the objects are mol-
ecules and the pairwise relation characterizes the similarity or distance of separation 
of each pair of molecules in the CS. Similarity and distance are inversely related; 
the more similar a pair of molecules, the closer they are in CS, and vice versa.

Because CSs are generally of high dimension, faithfully depicting them in 2-D 
or 3-D is not possible, and some type of approximation is required. This, however, 
is not generally a problem because their visual depiction is only used qualitatively. 
More quantitative results can be obtained simply by carrying out the computations 
with respect to the full dimension of the CS in question.

Importantly, CS provides a conceptual framework for organizing the structural 
and property relationships of vast numbers of molecules within a common frame-
work. With the burgeoning amount of structural, chemical, and biological data cur-
rently being created and stored in publically accessible databases (DBs) such as 
ChEMBL [19], PubChem [20], ChemDB [21], and DrugBank [22], or in subscrip-
tion-based DBs such as WOMBAT [23] and MDDR [24], a conceptual framework, 
such as that provided by CS, is essential if we are to gain insights from information 
stored in these DBs. A summary of many public and private compound DBs is given 
in [25].

The remainder of this chapter covers set- and vector-based representations of 
structural and molecular data and how this information is converted into the vari-
ous similarity, dissimilarity, and distance measures that have found wide appli-
cation in chemical informatics. Examples of some of the types of structural and 
molecular descriptors are also presented, along with a discussion of their essential 
features. Significant emphasis is given to the concept of CS, a concept that plays 
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an absolutely essential role in almost all aspects of chemical informatics. Finally, 
examples of how similarity can be used to carry out many activities associated with 
CSs, such as comparing compound collections, acquiring new compounds to aug-
ment current collections, assessing the diversity of a collection, generating diverse 
subsets of compounds for high-throughput screening (HTS) campaigns, and ligand-
based virtual screening (LBVS). The latter activity has risen in importance over the 
past decade as an important strategy in drug discovery. The words “molecule” and 
“compound,” which are very similar and are quite prevalent throughout this work, 
are used essentially interchangeably.

Over the past decade, a number of books have provided a good overview of 
many aspects of the field of chemical informatics [26–30], and a number of re-
views and papers on molecular similarity [31–34] and CS [35–40] have also been 
published. These sources should be consulted for additional details on any of the 
subjects discussed in this work.

This chapter is not meant as a comprehensive review of molecular similarity 
and CSs. Rather it is intended to be somewhat pedagogical and to present, in some 
detail, a number of their key features and the interrelationships among them. In this 
way, it is hoped that readers will have a basic feel for the nature of the concepts and 
will be able to move on from there to tackle more complex aspects of these concepts 
and to apply them in a practical setting.

1.2 � Structural Similarity Measures

Structural similarity is a pairwise relation between molecules. Similarity values 
are determined by a similarity measure that has three key components: (1) a rep-
resentation of the relevant chemical or structural features of the molecules being 
compared, (2) an appropriate weighting of these features, and (3) a function that 
maps the feature information for pairs of molecules to a value that lies on the unit 
interval of the real line [0,1]. As noted in the previous section, representations can 
utilize macroscopic chemical features, electronic structural features of individual 
molecules, and/or geometric features associated with the structure or substructures 
of molecules

A number of procedures for computing 2-D and 3-D molecular similarities have 
been described in great detail [10, 41]. In the current work, the focus is on the class 
of 2-D similarity measures based on molecular FPs that encode the substructural 
information in molecules and on measures derived from vectors whose components 
represent macroscopic and microscopic physicochemical properties or indices de-
rived from the topological properties of their chemical graphs. These approaches 
are the most prevalent ones and have been applied in a wide range of applications 
cited in Sects. 1.1, 1.2.3, 1.3.1, 1.3.2.1, 1.3.5.2, and 1.3.5.3. Moreover, they provide 
clear examples of the general workings of the types of molecular similarity mea-
sures in wide use today.
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1.2.1 � Set-Based Similarity Measures

1.2.1.1 � Set-Based Representations: Binary Structural FPs

Consider the set of n molecules

� (1.1)

A binary molecular FP for molecule Mi can be specified by a set of p substructural 
features

� (1.2)

where the binary values of the indicator (characteristic) functions  m k k pi ( ), , , ,= 1 2…  
in Eq. (1.2) determine whether a specific substructural feature is present or absent 
in the molecule, i.e.,

�
(1.3)

Binary molecular FPs are sometimes called bit vectors or bit strings since their 
elements are “1s” and “0s”. In this work, the nomenclature binary molecular FP 
may also be given by structural FP, molecular FP, binary FP, or just FP. Multiple 
occurrences of structural features are not accounted for in binary FPs, although they 
can be as described later in this section.

Equation (1.4) depicts a hypothetical FP

�
(1.4)

characterized by a binary p-tuple. This is a reasonably standard notation for FPs. 
However, because of their sparseness (i.e., relatively few 1-bits), it is not how they 
are generally handled in computers, where index-based and run-length encod-
ing schemes are typically used [42]. The former scheme basically indexes all of 
the 1-bits of a given FP. By contrast, run-length encoding indexes the lengths of 
runs of 0-bits followed by a 1-bit. As an illustration, consider the following simple 
example of a binary structural FP ( , , , , , , , , , , , , , , )0 0 11 0 0 0 0 1 0 0 1 0 0 0 . Hence, its index-
based encoding is given by ( , , , )2 0 4 2 , while its corresponding run-length encoding 
is ( , , , )3 4 9 12 , an example that clearly shows that the encodings are not of fixed 
length. Except in a few instances where stereochemical information is represented, 
most molecular FPs are based on the 2-D structural features of the molecules they 
symbolize and, hence, the representations described in this work correspond to 2-D 
molecular FPs. The number of components or elements, p, in molecular FPs can be 
quite large and can be either fixed or variable. The former usually corresponds to 
molecule-independent FPs and the latter to molecule-dependent FPs.

M M M M M= … …{ }1 2, , , , , .i n

mi i i i im m m k m p= … …{ }( ), ( ), , ( ), , ( )1 2

1, if the th structural feature is present;( )
0, if the th structural feature is absent.

i
km k
k

= 


mi

p

= …( , , , , , , , )1 0 0 1 1 1 0
� ���� ����
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Molecule-Independent/Directory-Based FPs  The number of structural fea-
tures in molecule-independent FPs is fixed for all molecules, as exemplified by 
MACCS key FPs, which contain 166 structural features [43] and Barnard Chemi-
cal Information (BCI) FPs that contain more than 1000 features [44]. Figure 1.1 
provides a simple example, based on the anticholesterol drug Lipitor, of a mole-
cule-independent FP. Note that multiple occurrences of methyl groups, hydroxyl 
groups, and phenyl rings are not explicitly accounted for, nor is the elongated 
hydrocarbon chain that connects the nitrogen atom of the pyrrole ring with the 
terminal carboxylate fully accounted for, although a structural descriptor that 
represents a shorter hydrocarbon chain provides at least a partial account of the 
elongated chain.

Hence, structural information can be lost leading to similarity values of unity for 
pairs of molecules that are not structurally identical. Nevertheless, there is at least 
a partial correspondence between the descriptors in the directory and the binary 
molecular FP of a molecule, so that it may be possible in many instances to asso-
ciate particular substructural features with molecular properties and/or biological 
activities, a characteristic that is not generally shared by molecule-dependent FP 
representations ( vide infra). This can be partially ameliorated through the use of 
weighted molecular FPs that take account of the number of times a structural fea-
ture occurs in a molecule. However, since not all structural features that may be as-
sociated with a specific structure–property relationship (SPR) or structure–activity 
relationship (SAR) are necessarily accounted for in given FP, it may not be possible 
to infer SPR or SAR even when weighted FPs are employed.

Molecule-dependent FPs have variable numbers of elements that typically 
depend on the number of non-hydrogen atoms and functional complexity of mol-
ecules. Because of the rapid growth in the size and molecular complexity of modern 
compound DBs, molecule-dependent FPs have been growing in popularity since 

111 01 1 1 0 0 1 0 1

Fig. 1.1   An example based on the drug Lipitor of a simplified molecule-independent directory-
based binary structural FP with its corresponding set of descriptors. The symbol ‘X’ corresponds 
to any of the halogen atoms (F, Cl, Br, I)
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they can potentially handle a wider range of molecules than molecule-independent 
FPs. Two structural FPs that exemplify the types of molecule-dependent FPs in use 
today are the atom pair FPs (APFs) first developed by Carhart, Smith, and Ven-
kataraghaven nearly 30 years ago [45] and the more recent extended connectivity 
FPs (ECFPs) developed by Rogers and Hahn [46] that are in widespread use today. 
Simple examples of APFs and ECFPs are depicted in Figs. 1.2 and 1.3, respectively.

Both of these FPs are referred to as “2-D FPs,” since neither of them utilizes 3-D 
structural information. Although a number of FPs including AFPs and ECFPs can 
encode stereochemical information, they rarely do in common usage.

Atom-Pair Fingerprints
(APFs)

NX3 −(4)− CX 3 NX2 −(5)− NX3a b
o o o

Fig. 1.2   Examples of molecule-dependent atom pair fingerprints (APF) descriptors depicted with 
respect to the drug Lipitor. Regions highlighted in light green and light blue correspond to sub-
structures associated with two APFs; the labels below each figure correspond to respective desig-
nations given in reference [46] for these APFs

 

Fig. 1.3   Examples of molecule-dependent extended connectivity ECFP descriptors depicted with 
respect to the drug Lipitor. Atoms lying within the rings depicted in the figure correspond to near-
est ( colored in light blue) and next-nearest neighbors ( colored in light green) to the central atom 
( colored in light red) of a given ECFP4 descriptor.
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Atom Pair FPs  Pairs of atoms and the minimum number of bonds linking them 
constitute the substructural components of APFs. Generally, only APs separated by 
seven or fewer bonds are considered. As described by Carhardt et al. [45], the gen-
eral form of the substructure of an APF is given by Eq. (1.5):

� (1.5)

where “atom-i” and “atom-j” are descriptions that contain information on the atom 
type (e.g., C, N, O,…), the number of non-hydrogen atoms bound to it, and whether 
it possesses a bonding pi-electron. The “separation” between atoms is based on a 
count of all the atoms, including atom-i and atom-j, on the shortest through-bond 
path connecting the two terminal atoms of the chain. Consider, for example, the 
APF designation NX CX3 34i − −( )  depicted in Fig. 1.2a. In the NX3 i  term con-
tained within the leftmost brackets, “ N ” designates the leftmost atom in the chain 
highlighted in light green, 3“ X ”  indicates that three atoms are bonded to it, and the 
“ ”i  indicates the presence of bonding pi-electron on the nitrogen atom. Next, the 
“ 4” in the parentheses indicates the number of atoms in the chain including the 
terminal atoms. Last, in the CX3 term contained within the rightmost brackets, “ C ” 
designates the rightmost atom in the chain and 3“ X ” indicates that three atoms are 
bonded to it. A similar interpretation can be made for the designation corresponding 
to the APF highlighted in light blue in Fig. 1.2b.

Because of the way in which APFs are handled in a computer, it is not possible to 
associate substructural features with specific bits in an APF. An excellent discussion 
based on the closely related Daylight FPs [47] discusses this issue and many other 
of the technical details that must be addressed in order to effectively implement 
APFs.

Extended Connectivity FPs  By contrast, ECFPs sample the molecular environ-
ment surrounding each non-hydrogen atom. Thus, the local “circular” environ-
ments surrounding each non-hydrogen atom constitute the substructural features of 
a given molecule as depicted in Fig. 1.3. Although not always employed, ECFPs can 
also encode stereochemical information, which can be important in many aspects 
of drug discovery research since all stereoisomers of a given compound may not be 
equally active.

For example, consider the pyrrolic carbon atom in Fig. 1.3 highlighted in light 
red. As seen in the figure, two layers of atoms surround it, the first, whose atoms are 
highlighted in light blue, corresponds to nearest neighbors and the second, whose 
atoms are highlighted in light green, corresponds to next nearest neighbors. Each 
non-hydrogen atom and its layers of surrounding atoms constitute substructural 
features. The maximum number of layers considered is given by the diameter of 
the largest circular environment surrounding the central atom. This is based on the 
number of bonds needed to connect two diametrically opposed atoms in that layer. 
In the case shown here, four bonds are required. Such FPs are designated by ECFP4.

From the above, it is easy to see that the number of possible FP descriptors that 
can be obtained for compound collections is quite large. For example, Rogers and 

( )“atom- ” atom-separation “atom- ” ,i j− −
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Hahn [46] have shown that sets of ~ 50,000 compounds can give rise to ECFP de-
scriptors that number in the hundreds of thousands. For larger sets of compounds, 
the number of ECFP descriptors can potentially exceed 1 million. Hence, handling 
this amount of information efficiently presents some technical problems, the details 
of which are beyond the scope of this work. Interestingly, unlike AFPs whose sub-
structural information cannot be retrieved, this is not the case for ECFPs, although 
the procedure for doing so requires several steps. The paper by Rogers and Hahn 
[46] provides a detailed discussion of many of these issues. They also note that 
ECFPs were designed primarily to characterize the activities of compounds. Hence, 
ECFPs contain information on features that are present as well as those that are 
not present. ChemAxon provides a very clear description of many of the technical 
details associated with application of ECFPs [48]. In addition, they offer a useful, 
albeit brief, comparative discussion of AFPs and ECFPs, pointing out that the for-
mer performs best for substructure searches while the latter appears to be more suit-
able for similarity searches. Several other papers also provide useful assessments 
of ECFPs [49, 50].

Weighted Structural FPs  Weighting the features of structural FPs is not common 
practice in chemical informatics. Nevertheless, it has been shown in a number of 
studies to provide improved results in virtual screening experiments [51–53].

Although numerous schemes exist [54], weighting nowadays is typically accom-
plished by accounting in some fashion for the number of occurrences of each of 
the features in a molecule, as for example, the methyl, phenyl, hydroxyl groups 
depicted in Fig. 1.1 for the hypercholesterol drug Lipitor™.

Clearly, not accounting for multiple occurrences of features can lead to signifi-
cant degeneracies that arise when different compounds have identical FPs. Some-
times the degeneracies can be quite large as shown by the following analysis based 
on Lipitor™. Consider each of the multiple structural FP descriptors in Lipitor™: 
three phenyl, two methyl, and two hydroxyl groups. There are seven possible de-
scriptor patterns containing at least one phenyl group and three possible patterns 
containing at least one methyl group and three containing at least one hydroxyl 
group. Assuming that each of the three descriptor patterns is independent of each 
other, a quite reasonable assumption is that the total number of possible patterns is 
7 3 3 67× × = . Hence, there are 67 different, albeit related, compounds that would 
all have exactly the same structural FP as Lipitor™. While this may be a somewhat 
extreme example, there are nonetheless numerous examples of compounds with 
multiple occurrences of specific substructural patterns. Surprisingly, the results ob-
tained with unweighted FPs are quite good. And although both APFs and ECFPs 
can take account of multiple occurrences of substructural patterns, they are rarely if 
ever considered in actual applications.

In fact, most cheminformatic studies continue to use binary structural FPs.

1.2.1.2 � FP-Based Similarity Coefficients

The third component of a similarity measure is the function that maps the struc-
tural information contained in the molecular FPs of each pair of compounds 
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being compared to the unit interval of the real line [0,1]. Such functions are called 
by a number of names—similarity functions, similarity indices, or similarity 
coefficients—the latter nomenclature will be adhered to in this chapter [10]. Al-
though there are many types of similarity coefficients, only a limited number will 
be considered here. A summary of all types of similarity coefficients is given in a 
comprehensive review [31].

Based on his work in mathematical psychology, Tversky developed the most 
general form of similarity coefficient applicable to structural FPs [55]:

�
(1.6)

where the weighting parameters satisfy , 0α β ≥ , which ensures that the similarity 
values lie on the unit interval of the real line [0,1]. The various terms in Eq. (1.6) 
are described in Table 1.1.

As described in Table 1.1, the terms in parentheses in the denominator, N Ni i j− ,

and, N Nj i j− , , can be interpreted as the number of features unique to molecules Mi 
and M j, respectively, weighted by the corresponding values of α  and β .

It is clear from the form of Eq. (1.6) that the Tversky similarity coefficient is gen-
erally asymmetric with respect to the interchange of its arguments, i.e., M Mi j→  
and M Mi j← . This corresponds to interchanging the associated variables Ni

 and 
N j  in Eq. (1.6) so that ( )N N N Ni j i j→ ← and , i.e.,

� (1.7)

which is equal to the expression in Eq. (1.6) and is symmetric only in cases where 
α β= : Note that the variable Ni j,  is invariant to these interchanges. Such cases cor-
respond to well-known similarity coefficients, three of which are described below.

For example, the currently most popular similarity coefficient, S i jTan ( , ), is that 
due to Tanimoto and is obtained by setting 1α β= = ,

� (1.8)

( ) ,
Tve

, , ,

, , ,
( ) ( )

i j

i i j j i j i j

i j
N

S
N N N N N

α β
α β

=
− + − +

,
Tve

, , ,

( , , )
( ) ( )

i j

j i j i i j i j

N
S j i

N N N N N
α β

α β
=

− + − +

,
Tve Tan

, , ,

( , 1, 1) ( , ).
( ) ( )

i j

i i j j i j i j

N
S i j S i j

N N N N N
α β= = = =

− + − +

Table 1.1   Set-theoretic expressions useful in molecular similarity analysis
Symbol Set-theoretic expressiona Definition

Ni Card( )mi
Number of features in molecule Mi

Ni j, Card( )m mi j∩
Number of features common to molecules Mi 
and Mj

N Ni i j− , Card Card( ) ( )m m mi i j− ∩ Number of features unique to molecule Mi

a “Card” refers to the cardinality (i.e., number of elements) of the set in question
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The sum of the terms in the denominator is equal to the total number of features 
in common plus the number of unique features associated with molecules Mi  and 
M j , although the form of the expression differs from that usually used, namely, 
N N Ni j i j+ − , , where the ,“ ”i jN−  term corrects for double counting the features in 
both molecules. Thus, the Tanimoto similarity coefficient is the ratio of the number 
of features in common to both molecules over the total number of features (not the 
sum) in Mi  and M j .

Setting 1
2

α β= =  leads to the Dice similarity coefficient:

�
(1.9)

where the term in the denominator is the arithmetic mean of the number of features 
in Mi  and M j . Thus, the Dice similarity coefficient is the ratio of the number of 
features in common to Mi  and M j  over the arithmetic mean of the number of their 
features.

Although it cannot be obtained from Tve ( , , )S i j α β  simply by choosing appro-
priate values for  and α β , the well-known cosine similarity coefficient given by

� (1.10)

can be obtained from a related but more general similarity function [56]. Interestingly, 
the denominator is the geometric mean of the number of elements in Mi

 and M j , so 
that the cosine similarity coefficient is the ratio of the number of features in com-
mon to Mi

 and M j  over the geometric mean of the features.
Although not as general as the expression given in Eq. (1.6), a useful expression 

is obtained by setting 1β α= − , which gives

� (1.11)

so that 1α β+ = . Under such a constraint, it is not possible to transform Eq. (1.6) 
into the expression for Tanimoto similarity, Eq. (1.8), although the Dice coefficient 
given in Eq. (1.9) can still be obtained by setting 1/ 2α = . Any value of 1/ 2α ≠  
leads to asymmetric similarity coefficients. This asymmetry has been applied to 
enhance the effectiveness of similarity searches of large compound DBs [57, 58].

An interesting pair of asymmetric similarity coefficients is obtained at the limits 
when 1α =  or 0α = :

� (1.12)
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and

� (1.13)

Equation  (1.12) can be interpreted as the fraction of Mi
 similar to M j , while 

Eq.  (1.13) can be interpreted as the fraction of M j  similar to Mi
. By applying 

the “interchange rules” to Eq. (1.12), it is clear that the similarity coefficients are 
asymmetric, i.e.,

� (1.14)

A similar argument can be applied to Eq. (1.13).
Symmetric similarity coefficients corresponding to the asymmetric coeffi-

cients are given in Eqs. (1.15) and (1.16) and can be obtained simply by changing 
the denominators using the “min” and “max” functions, which are symmetric to 
interchanges of variables Ni

 and N j :

� (1.15)

and

� (1.16)

As was the case for the other similarity coefficients, SMax
 and SMin

 are again ratios 
equal to the number of features common to Mi

 and M jover the larger and smaller 
number of features of Mi

 and M j , respectively.
It can be shown that all of the similarity coefficients described above lie on the 

unit interval [0,1]. Because the terms in the denominators satisfy the following in-
equalities:

� (1.17)

and because their numerators are all identical and equal to Ni j, , the five symmetric 
similarity coefficients are ordered as:

� (1.18)
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1.2.1.3 � FP-Based Molecular Dissimilarity Coefficients

For FP-based representations, dissimilarity is the 1’s complement of similarity, i.e.,

� (1.19)

Thus, dissimilarity values also lie on the unit interval [0,1]. For example, in the case 
of the Tanimoto similarity coefficient the corresponding dissimilarity coefficient is 
given by

� (1.20)

which is symmetric because S i jTan ( , )  is symmetric. Substituting Eq.  (1.8) into 
Eq. (1.20) and simplifying terms yields

� (1.21)

Since the denominators, which normalize the similarity and dissimilarity values, 
in Eqs. (1.8) and (1.21), respectively, are the same for both coefficients, it is their 
numerators that provide the interpretation for these coefficients. In the case of 
Tanimoto similarity, the numerator, Ni j, , gives the number of features in common 
to both molecules, while the numerator for Tanimoto dissimilarity gives the num-
ber of features unique to Mi

, N Ni i j− , , and the number of features unique to M j, 
N Nj i j− , . This interpretation accords well with our qualitative notions of similarity 
and dissimilarity. Features that do not appear in either molecule are not accounted 
for in any of these coefficients.

It can also be shown that Tanimoto dissimilarity formally satisfies the three prop-
erties of an abstract distance [59]. In fact, the numerator is identical to the Hamming 
distance between two finite, classical sets [60] and the denominator ensures that the 
dissimilarity values satisfy 0 1≤ ≤DTan

, as required by Eq. (1.20).
Based on Eq.  (1.19), dissimilarity coefficients corresponding to the similarity 

coefficients given in Eqs. (1.9), (1.10), (1.15), and (1.16) can also be constructed. 
Interestingly, the terms in their denominators are unchanged from their correspond-
ing similarity coefficients. However, the terms in their numerators are the same as 
those in their denominators with the important difference that N N Ni i i j→ − ,  and 
N N Nj j i j→ − , . Thus, for example, the Dice dissimilarity coefficient becomes

	 D i j
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which is the ratio of the arithmetic mean of the number of unique features in Mi
 

and M j  to the arithmetic mean of the total number of features in Mi
 and M j . 

Recall that the term in square brackets is the Hamming distance so, as was the case 
for Tanimoto dissimilarity, Dice dissimilarity also satisfies the distance postulates.

Analogous expressions for dissimilarity can be derived for the remaining simi-
larity coefficients.

1.2.1.4 � Size Dependence of FP-Based Similarity and Dissimilarity 
Coefficients

It is both intuitive and well known that the number of 1-bits in a binary molecular 
FP depends on the size and complexity of the molecule it is representing. More 
than 25 years ago, Flower noted a bias towards low similarity values in Tanimoto 
similarity-based searches when the bit densities, that is the ratio of 1-bits to the 
total number of bits in a binary FP, of the molecules being compared differed sig-
nificantly [61]. Subsequently, a number of laboratories observed a bias in diversity 
analyses towards smaller compounds [31, 62–65]. A publication also in that period 
by Godden et al. [66] further elaborated the issue by showing that mean Tanimoto 
similarity values obtained from sets of compounds are inherently biased by statisti-
cally preferred similarity values.2

It is not difficult to see how molecular size may have a biasing effect on the 
Tanimoto coefficient given in Eqs.  (1.8). Consider two molecules, a query mol-
ecule, MQ , and a retrieved molecule, MR

, obtained from a similarity search. Now 
suppose that the query molecule is a small molecule such that the number of sub-
structural features (1-bits) in the FPs of both molecules satisfies N NQ R< . Since the 
number of substructural features common to both molecules, NQ,R , cannot be more 
than the number in the smaller of the two molecules,3 i.e.,

� (1.23)

In which case,

� (1.24)

The inequality obtains from Eq. (1.23) and the fact that the denominator of Eq. (1.24) 
satisfies

� (1.25)

2  Interestingly, since FP-based similarity coefficients are ratios of two integers, they represent a 
limited subset of rational numbers. Hence, they can by their very nature only yield restricted set of 
values on the unit interval of the real line.
3  In that case, the set of features in MQ are a subset of those in MR.

N N NQ,R Q,R Q≤ =max( ) .
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N

N N N

N

N N N

N
Tan

Q,R

Q Q,R R

Q,R
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max( )
=
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−  +
=
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Thus, for fixed values of N NQ R and , S Q RTan ( , )  reaches its maximum when the 
features of the query molecule are a subset of those of the retrieved molecule, that 
is, when N N NQ,R Q,R Q→ =max( ) . In this case, the smaller (or the closer in size) 
the retrieved molecule is to the query molecule, the larger the Tanimoto similarity 
value, and hence, the bias for small molecules in Tanimoto similarity searches when 
the query molecule is itself a small molecule. This type of bias should be called 
algebraic bias since it arises out of the form of the Tanimoto similarity coefficient 
and has no statistical component (cf. [67]).

If, on the other hand, the query is now a large molecule such that N NQ R> , then 
Eq. (1.26) can be obtained from Eq. (1.24) simply by interchanging the subscripts 
Q and R, i.e.,

� (1.26)

It is clear from the equation that since the query molecule is large and fixed, the only 
way to increase S Q RTan ( , )  is to increase the size of the retrieved molecule. Hence, 
in Tanimoto similarity searches where the query molecule is large, something that 
rarely occurs in practice, the algebraic bias will be towards larger retrieved mol-
ecules. Holliday et al. [67] have significantly extended this analysis, providing an 
extensive and detailed treatment of a large number of similarity coefficients that are 
documented in Table 1.1 of their paper.

The algebraic bias in similarity searches has led some researchers to consider 
other possible similarity functions that might overcome this problem. An interesting 
work in this regard is that of Chen and Brown [57], which was based on asymmetric 
similarity searching. A detailed discussion of asymmetric similarity searching and 
how it might overcome, to some extent at least, the algebraic size bias described 
above was recently presented [10, 41].

Although the algebraic size bias discussed above is relatively straight forward, 
this is not case when dealing with dissimilarity-based searching as it is applied, 
for example, in diversity analysis. In each step of a typical iterative dissimilarity-
based selection algorithm, the most dissimilar compound with respect to all of the 
previously selected compounds is chosen, a situation that differs significantly from 
that of similarity searching in a number of ways (see discussion in Sect. 1.3.5.3 for 
additional details). Moreover, the arguments presented above do not touch on some 
of the crucial issues that are statistical in nature. These were clearly described in a 
paper by Fligner et al. [65] and involved a statistical analysis of the discrete, hy-
percubical space in which binary structural FPs reside. Based on this analysis, they 
developed a modified version of the Tanimoto similarity coefficient that in addition 
to accounting for substructural features present in both molecules, also considered 
features that were absent. Basically, it is a weighted combination of Tanimoto simi-
larity coefficients, one corresponding to the usual form of the Tanimoto coefficient 
associated with 1-bits and the other of essentially similar form but associated in this 
case with the 0-bits.

S Q R
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N N N
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It was shown by both Fligner et al. [65] and Holliday et al. [67] that the modi-
fied Tanimoto coefficient did to a large extent ameliorate size bias associated with 
the Tanimoto similarity coefficient. More recently, Bajorath and his collaborators 
[58, 66] successfully introduced a related type of modified similarity measure that 
weights contributions associated with the presence and absence of substructural fea-
tures. In their case, however, a Tverksy-type similarity coefficient was used rather 
than the Tanimoto expression employed by Fligner et al. [65].

1.2.2 � Vector-Based Similarity Measures

Analogous expressions to the FP-based Tanimoto, Dice, and Cosine similarity coef-
ficients (see Eqs. (1.8), (1.9), and (1.10), respectively) also exist for vectors with 
continuous, real valued components as described in the following section.4 Since 
each of the vector components may be associated with properties that have different 
units, i.e., are not comparable, they can be standardized according to Eqs. (1.30) 
and (1.31), so that their values are mean centered and of unit variance. Also, sub-
scripts designating the similarity coefficient are given in bold face upper case 
type to distinguish them from the corresponding FP-based similarity coefficients. 
Terms typically found in vector-based similarity and dissimilarity coefficients are 
described in Table 1.2.

4  Strictly speaking, these vectors should be called geometric vectors since they do not, in all cases, 
satisfy the properties of algebraic vectors (e.g., algebraic vectors satisfy the axioms of a linear vec-
tor space, namely, the addition of two vectors or the multiplication of a vector by a scalar should 
result in another vector that also lies in the space). Nevertheless, the terminology “vector,” which 
is common in chemical informatics, will be used here to include both classes of vectors.

Table 1.2   Vector-based expressions useful in similarity analysis
Operation Vector expression Corresponding set 

theoretic entitiesa

row

row
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a See Table 1.1
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1.2.2.1 � Vector-Based Representations

Vector-based representations provide another means for encoding the molecular and 
chemical information associated with molecule Mi

 and are of the general form of 
p-dimensional row vectors also called p-tuples:

� (1.27)

Such vectors are in many instances given as column vectors. However, since the 
rows of data matrices generally correspond to points in a data space, the practice is 
continued here for consistency.

Each component of the vector represents the value of some macroscopic chemical 
property such as solubility, heat capacity, polarizability, pKa [68], some molecular 
property such as molecular weight, ionization potential, pi-electron distribution, 
number of hydrogen bonding donors or acceptors, and HOMO or LUMO energies 
[69], or some properties that characterize topological aspects of molecules, such 
as branching and shape indices [70]. Martin [71] has discussed the computation of 
many physicochemical property descriptors in the context of computational drug 
design. Todeschini and Consonni have compiled an extensive compendium of them 
[72]; Guha and Willighagen have recently surveyed a wide variety of quantitative 
descriptors useful for the calculation of chemical and biological properties [73]. 
Labute has also developed an internally consistent set of 32 descriptors based on 
the surface properties of molecules such as logP, molar refractivity, partial charges, 
and pKas [74, 75]. They were shown to be weakly correlated with each other, able 
to represent much of the information in many “traditional” molecular descriptors, 
and capable of providing an effective means for carrying out a range of quantitative 
structure–activity relationship (QSAR) and structure–property relationship (QSPR) 
calculations.

BCUT Descriptors  A particularly interesting set of descriptors is that developed by 
Pearlman and Smith [76–78]. Called BCUTS, they provide an internally consistent, 
balanced set of molecular descriptors that encode information on the electrostatic, 
hydrophobic, and hydrogen bonding features of molecules and are generated in a 
way that exploits information on through-bond or through-space interatomic dis-
tances and atomic properties related to intermolecular ligand–protein interactions. 
BCUT values are determined from matrices whose diagonal elements are associated 
with atomic properties and whose off-diagonal elements are associated with  connec-
tivity-related properties and a scale factor that balances both types of information. 
Different definitions of the off-diagonal elements differentiate the different classes of 
BCUTS from each other. For example, 3-D BCUTS use through space interatomic 
distances to determine off-diagonal elements, while 2-D BCUTS use Burden num-
bers [79], and 2-DT BCUTS use topological interatomic distances. The largest and 
smallest eigenvalue obtained from each matrix are retained as potential descriptors.

Since there are many ways to compute the diagonal and off-diagonal elements 
of BCUT matrices, the number of potential descriptors is quite large for any of the 
three BCUT classes. In order to deal with this issue, Pearlman and Smith developed 
an “auto-choose” algorithm based on a -squaredχ  statistic that selects an optimum 

xrow ( ) ( , , , , , ), , , ., , , ,i x x x x i ni i i k i p= … … = …1 2 1 2
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subset of BCUT descriptors for a given set of compounds such that their distribution 
is as close to a uniform distribution as possible. Thus, intercompound correlations 
are reduced so that the compounds are maximally dispersed throughout CS in the 
minimum number of dimensions. Importantly, this shows that BCUT descriptors 
and their associated CSs depend on the set of compounds used to determine them. 
Thus, there are many possible CSs, most typically of dimension five and six. BCUT 
descriptor values are not standardized to zero mean and unit variance (see Eqs. 1.30 
and 1.31) since their value ranges are all comparable.

BCUT descriptors have been shown to perform well in diversity-analysis-related 
tasks [80–82]. And although not originally intended for this purpose BCUT de-
scriptors have, nonetheless, shown surprisingly good performance in QSAR and 
QSPR studies [83–85] and in selecting compounds for follow-on screening in drug 
discovery [86].

In general, the vectors associated with a set of n molecules can be combined into 
an n p× −dimensional  data matrix

� (1.28)

where ith row is the same as that given by Eq. (1.27) and jth column is given by

� (1.29)

Because the units associated with each of the descriptors are, in general, likely to 
differ, they should be normalized so that they all have equivalent units. This can be 
accomplished by standardizing the set of values for each descriptor to zero mean 
and unit variance using the well-known “z-transformation,” i.e.

� (1.30)

where the sample mean and variance of the jth variable are given by, respectively,
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�
(1.31)

All of the variables are now unitless and, thus, on equal footing. Row vectors and 
data matrices corresponding to the new z-transformed variables are now given, 
respectively, by (cf. Eqs. 1.30 and 1.31)

� (1.32)

and

� (1.33)

1.2.2.2 � Vector-Based Similarity Coefficients

The vector-based Tanimoto similarity coefficient corresponding to the FP-based co-
efficient in Eq. (1.8) is given by

�
(1.34)

where the form of the continuous, real valued vectors is given in Eq. (1.27) and the 
nature of their components are described in the previous section. The vector-based 
similarity coefficient due to Hodgkin and Richards [87] is an analog of the FP-based 
Dice similarity coefficient given in Eq. (1.9):

� (1.35)
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The well-known cosine similarity coefficient, also called the Carbo similarity index 
[10], provides a measure of the cosine of the angle between two vectors

�

(1.36)

A variety of function and vector-based similarity coefficients have also been de-
scribed [10], and a detailed analysis of their interrelationships has been presented 
[56].5

1.2.2.3 � Vector-Based Dissimilarity Coefficients and Distances

Vector-based dissimilarity coefficients can also be defined in analogy to those given 
in general for FP-based dissimilarities in Eq.  (1.19). Tanimoto dissimilarities are 
given by

� (1.37)

Again, the terms are analogous to those for the FP-based dissimilarity given in 
Eq.  (1.21) and summarized in Tables 1.1 and 1.2. As was the case for FP-based 
dissimilarities, the value of the vector-based dissimilarity is complementary (see 
Eq. 1.20) to the corresponding similarity value and, hence, lies on the unit interval 

5  An interesting relationship between the FP- and vector-based similarity coefficients oc-
curs when both have binary component values, e.g. ml = ( , , , , , , , , , )1 0 0 0 11 0 1 0 1  and 
xrow ( ) ( , , , , , , , , , )l = 1 0 0 0 11 0 1 0 1 . In such cases, but only in such cases, the similarity coefficients 
based on binary FPs or binary vectors yield exactly the same similarity value for all of the similar-
ity coefficients described above. However, this limitation has not been consistently adhered to and 
similarity values computed using continuous vectors or weighted FPs based on Eqs. (1.27)–(1.29) 
yield values that may differ significantly from their corresponding FP-based similarity coefficients.
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[0,1]. Importantly, the numerator is just the square of the Euclidean distance (see 
also Table 1.2):

� (1.38)

Since the denominator is just a constant factor that scales the distance so that dis-
tance lies on the unit interval [0,1], it again follows that DTAN satisfies the distance 
axioms as was true in the corresponding FP-based case for Dtan

.
Similarly, it can be shown that Hodgkin–Richards dissimilarity,

� (1.39)

accords well with the FP-based case for D i jDice ( , ) . Note that the numerator is the 
squared Euclidean distance of the two molecular feature vectors, so dissimilarity 
again satisfies the distance axioms and is a normalized distance whose values lie 
on [0,1].

Thus, it is clear from the above discussion that there is an underlying consis-
tency to the FP- and vector-based similarity coefficients. Moreover, for the case of 
binary FPs and binary feature vectors, the two approaches yield identical results 
( vide supra). However, for integer-weighted FPs (see Sect. 1.2.1.1) such as arise 
in cases where the number of occurrences of substructural features is considered, 
methods for treating vectors with continuous, real-valued components are no longer 
appropriate and multiset procedures provide a better, more consistent approach for 
dealing with such FPs [10, 41].

1.2.3 � Fusing (“Aggregating”) Similarity Measures

Although molecular similarity studies have been carried out for more than two 
decades, it is generally recognized that no one similarity measure is capable of pro-
viding high-quality results for all classes of compounds. This has raised the possibil-
ity that aggregating or fusing multiple similarity measures may in some fashion lead 
to improved results [88]. Based on the pioneering works of Sheridan and his col-
leagues at Merck [89, 90] and Peter Willett and his colleagues in Sheffield, a num-
ber of procedures have been developed for combining similarity measures based on 
data fusion methods [91–93]. A recent review by Willett provides a comprehensive 
overall summary and analysis of similarity-based data fusion methods [94].
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Data fusion methods [95, 96] fall under the more general rubric of data aggrega-
tion methods that are widespread in many applications of multiparameter decision 
making [97]. The basic idea behind data fusion is that combining data from multiple 
sources will lead to improved results over data obtained from a single source. Data 
fusion can be implemented as an unsupervised or supervised procedure, the former 
being the most well studied of the two approaches, since the latter requires experi-
mental activity data in addition to computed similarities [94]. The focus in this work 
is on unsupervised procedures, and the previous reference should be consulted for 
details of supervised procedures. The description of similarity searching given in 
Sect. 1.3.3.3 is complementary to that presented here, where the emphasis is on is-
sues associated with data fusion procedures.

Although there are many possible unsupervised ways to combine multisource 
data, those typically applied in chemical informatics are relatively limited (see 
Fig. 1.2 of [94]). Table 1.3 provides a summary of the most effective data fusion 
rules associated with the different fusion procedures typically employed in chemi-
cal informatics applications ( vide infra). In certain applications, as seen in the table, 
data are best treated as similarity values or as rankings—specifics are described be-
low. Mathematical expressions corresponding to the different fusion rules given in 
Table 1.3 are relatively straightforward except for the reciprocal rank fusion (RRF) 
rule, which is directly related to the mean of the harmonic mean of the rank values 
[98].6 Because the RRF rule treats rank values reciprocally, compounds near the top 
of a ranked list will have lower values, and thus will be given more influence in the 
RRF rule than those further down the list. Recent studies in information retrieval 
[99] and chemical informatics [100] suggest that the RRF rule may be more gener-
ally applicable than heretofore had been suspected. Thus, it may be suitable as a 
replacement for the other fusion rules considered in Table 1.3 (i.e., MAX, MIN, and 
MEAN), which have enjoyed widespread use in the past [94]. Finally, it should be 
noted that fusions can also be effected using similarity values computed with any 
of the similarity measures although most studies have been confined to FP-based 
measures.

6  The RRF rule works best with rank values since similarities can in certain cases have zero values 
leading to undefined values for the reciprocals, a situation that can be overcome by the addition of 
a small positive constant to the denominator of each term.

Table 1.3   Examples of fusion rules
Fusion rule Applicable fusion methoda Mathematical expression
MAX Group fusion

max , , ,S S Si i i
qRef Ref Ref

1 2 …{ }
MIN Similarity fusion

min , , ,R R Ri i i
pSim Sim Sim

1 2 …{ }
MEAN Similarity fusion

( / )1
1

p Sik

p
kSim

=∑
RRF Similarity and group fusion

( / ) ( / )1 1
1 1

R Rik

p

il

q
k lSim Refor

= =∑ ∑
Only the most effective fusion rules are included in the table, where “Si” corresponds to a similarity 
value and “Ri” to a specific rank. See text for details
a See [94] for a detailed discussion of the performance of the different fusion rules
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1.2.3.1 � Similarity Fusion

The initial approach to data fusion, called similarity fusion, combines the results 
of searches using multiple similarity measures with respect to a single reference 
molecule. The data generated in this procedure can be envisioned in the form of a 
data table such as that depicted in Fig. 1.4a, where the columns correspond to the 
p different similarity measures, and the rows correspond to the n molecules in a 
DB—at this point the ordering of the molecules is arbitrary. Each of the similarity 
elements in the table, Si

kSim , is designated by the DB molecule with which it is as-
sociated, as indicated by the set of subscripts { , , , }1 2 … n . The corresponding simi-
larity measures used to calculate its value are indicated by the set of superscripts 
{ , , , }Sim Sim Sim1 2 … p . All of the similarity values are computed with respect to the 
same reference molecule.

The similarity values in each row can be aggregated in various ways to yield a 
fused similarity value Si

SF . For example, as shown in Table 1.3, the arithmetic mean 
values of the similarity values in each row can be computed and placed in the cor-
responding column “fused sim” of Fig. 1.4a. Once this process is complete the rows 
can be reordered, as depicted in Fig. 1.4b, such that the first row contains the most 
similar molecule to the reference molecule based on its fused similarity value, the 
second row contains the next most similar molecule, and the process continues until 
all of the molecules are reordered with respect to their fused similarity values. This 
procedure effectively permutes the order of the molecules given in the first column 
of Fig. 1.4a, which as noted earlier is arbitrary, to that shown in the first column of 

Fig. 1.4   Data tables illustrating similarity fusion of similarity and rank values: a and b depict the 
procedure for fusing similarity values. c, d, and e depict the corresponding procedure for fusing 
rank values
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Fig. 1.4b, which is based on the decreasing fused similarity values in the second 
column of Fig. 1.4b, i.e.,

� (1.40)

The subscript notation 1( )iπ −  in the mathematical expression given in Eq. (1.40) 
is based on the mathematical theory of permutations [101], where the permuta-
tion function value ( )iπ  gives the rank of the ith molecule and the unique inverse 

1( )jπ − designates the jth molecule in the overall ranking. A graphic example of how 
these functions operate is provided in Fig. 1.5. It is important to note that while the 
permutations determine the rank order of the compounds, it is the similarity values 
themselves that are combined using the MEAN fusion rule in similarity fusion.

Alternatively, data fusion procedures can also be directly applied to rankings 
themselves as seen in Fig. 1.4c. In this case, the computation of similarities is fol-
lowed by a determination of the rank of each of the compounds with respect to each 
of the similarity measures as illustrated in Fig. 1.4d, and an appropriate data fusion 
procedure, in this case the MIN rule given in Table 1.3 is applied. Lastly, the result-
ing MIN fused rankings are permuted, i.e., 1

SF SF

( )j i
R R iπ −→ = , in increasing order

� (1.41)

1 1 1
SF SF SF

(1) (2) ( )n
S S Sπ π π− − −≥ ≥ ≥�

1 1 1
SF SF SF

(1) (2) ( )n
R R Rπ π π− − −< < <�

Fig. 1.5   Graphical example of mappings produced by the permutation functions π and their 
inverses π−1 (see text for additional details)

 



G. M. Maggiora26

1.2.3.2 � Group Fusion

The development of group fusion [91, 92, 102] quickly followed that of similar-
ity fusion. In contrast to latter, a single similarity measure but multiple reference 
molecules are used. This is illustrated in Fig. 1.6a, b, which are quite similar to 
the previous figure except that the similarity measures in the top row of Fig. 1.4a 
are replaced by a set of q reference molecules { , , , }Ref Ref Ref1 2 … q  in Fig. 1.6a. 
Similarity values are computed for each DB compound with respect to each of the 
reference compounds using a single similarity measure, and the values in each row 
of the table are fused, yielding the similarity values in the last column of Fig. 1.6a. 
As was the case for similarity fusion, the next step is to reorder the fused similarity 
values from largest to smallest as indicated in Fig. 1.6b and Eq. (1.42):

� (1.42)

Numerous studies have shown that applying the MAX rule to similarity values pro-
vides excellent overall performance in similarity searches that are designed to as-
sess the efficacy of group similarity for retrieving known actives from compound 
DBs [91, 92, 94, 100]. Although, in general, the MAX rule works well, the RRF 
rule for combining rank values (see Table 1.3) appears to perform even better [100]. 
Figure 1.6c–e describes the rank-based group fusion process, which is similar to that 
given in Fig. 1.4c–e for the corresponding similarity fusion procedure. The fused 

1 1 1
GF GF GF

(1) (2) ( )n
S S Sπ π π− − −≥ ≥ ≥�

!!
)
Sπ(1)
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S −1(1)
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Fig. 1.6   Data tables illustrating group fusion of similarity and rank values: a and b depict the 
procedure for group fusion of similarity values. c, d, and e depict the corresponding procedure for 
fusing rank values
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values obtained by the RRF rule are given in the far right column of Fig. 1.6d, and 
the combined values are then permuted, i.e., 1

GF GF

( )j i
R R iπ −→ = , in increasing order

� (1.43)

to yield the final fusion-based ranking. Whichever rule is used, the superior per-
formance of group fusion makes it the preferred method for carrying out similarity 
searches [103].

Either the reordered similarity values or compound rankings can be used as a 
basis for subset selection. Furthermore, although group fusion provides improved 
results over both single similarity and similarity fusion approaches, it requires mul-
tiple reference compounds, which may not always be readily available. Even when 
such data are available, they usually are the result of early-phase HTS experiments 
and hence may, to a degree, be suspect. However, as discussed in the following 
section, a modification of group fusion called turbo similarity suggests that even 
somewhat erroneous data may not unduly affect the results obtained using group 
fusion.

1.2.3.3 � Turbo Similarity

As noted in the previous section, a variant of group fusion called turbo similar-
ity has also shown promise [104–106]. Turbo similarity provides a procedure for 
applying group fusion when only a single active is known and is based on the fol-
lowing procedures: (1) compute the similarity of the known (reference) active with 
respect to all of the molecules in a DB of unscreened compounds; (2) order the list 
with respect to decreasing similarity or increasing rank values; (3) choose a subset 
of the highest scoring or ranked compounds that, based on the SPP [13–15] (see 
Sect. 1.3.1 for details), are assumed to be active; and (4) use these putative active 
compounds as the set of reference compounds in a group-fusion-based similarity 
search as described in the previous section (see also Table 1.3 and Fig. 1.6). Note 
that either the MAX rule with respect to similarity or the RRF rule with respect to 
rank values can be applied with nearly comparable effectiveness ( vide supra). A 
recent study [52] has shown that frequency weighting the components of structural 
FPs leads to improved results obtained with turbo similarity searching.

Interestingly, turbo similarity is reminiscent of library search procedures, where 
a given query yields a set of hits, each of which is used in a subsequent query to 
broaden the search [107].

1.2.4 � Validating Similarity-Based Approaches

Although model validation is an important requirement in the development of com-
putational methods, there are cases where it can become problematic. One such 

1 1 1
GF GF GF

(1) (2) ( )n
R R Rπ π π− − −< < <�
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case is molecular similarity. Due to its subjective nature, well-defined values of 
molecular similarity do not exist. Hence, directly assessing the results of similarity 
calculations is not possible, and indirect methods must be used. These methods are 
typically based on the SPP noted in Sect. 1.3.1 (see also [13–15]) and assess the 
recovery rates (or some related measure) obtained from similarity searches of large 
compound DBs containing known actives [108, 109]. Two such measures are the 
recall and precision of compound retrievals given, respectively, by

� (1.44)

These measures, although relatively widespread, have a number of deficiencies, one 
of which is that they do not sufficiently account for “early enrichments” in sets of 
retrieved compounds. This issue can be dealt with using cumulative recall curves, 
which plot the fraction of actives against the number of compounds retrieved [108, 
109]. These curves are similar to receiver operating characteristic (ROC) curves. 
Truchon and Bayly [110] have provided a detailed analysis of their application to 
virtual screening methods.

Significant issues remain that can confound attempts to assess the validity of 
similarity measures: (1) Untested DB compounds are assumed to be inactive, an 
assumption that is problematic at best. (2) The presence of activity cliffs [111–113], 
which arise when small changes in structure are associated with large changes in 
biological activity, although rare, represent violations of the SPP giving rise to what 
Stahura and Bajorath call the “similarity paradox” [114]. (3) The surprising preva-
lence of similarity cliffs [7, 8], which in contrast to activity cliffs occur when small 
changes in activity are accompanied by large differences in similarity, suggests that 
active compounds tend to be scattered throughout CSs, although they are likely 
to be found in multiple clusters of actives, not as singletons, dispersed through-
out those spaces.7 (4) As noted earlier, similarity measures are not invariant to the 
representation and similarity coefficient used. This lack of invariance leads, either 
directly or indirectly, to the notion that combining the results obtained from mul-
tiple similarity measures, as discussed in Sect. 1.2.3, can yield improved results in 
molecular similarity analyses.

The prevalence of similarity cliffs noted above also provides a rationale, albeit a 
tentative one, as to why group fusion (Sect. 1.2.3.2) performs as well does. Numer-
ous analyses by Willett and his colleagues show that it appears to work best with 
diverse rather than highly similar reference sets [92, 94, 106]. Their conclusion 

7  It should be noted that similarity cliffs are more general than scaffold hops since all scaffold 
hops do not result in compounds that are highly dissimilar, as may be the case when the scaffolds 
associated with scaffold hops are approximate bioisosteres or compounds with dissimilar scaffold 
nonetheless have similar overall structures.
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is consistent with the unexpectedly high occurrence of similarity cliffs in pairs of 
active compounds. In fact, in more than 50 % of the cases where both compounds 
in a compound pair are active (i.e., K ~ 7)ip , the compounds are also dissimilar [7] 
(cf. [115]8).

The significant presence of similarity cliffs suggests that similarity search meth-
ods that rely on single active reference compounds, regardless of whether single 
or multiple similarity measures—as in similarity fusion—are used, will by their 
very nature miss a significant portion of potentially active compounds because only 
the top scoring or highest-ranked compounds obtained in similarity searches are 
typically chosen—compounds located further down the ordered list are routinely 
ignored.

Group fusion, on the other hand, employs multiple reference actives and, as not-
ed above, performs best when the reference compounds are as diverse as possible. 
Hence, the dispersion of active compounds is explicitly accounted for by the meth-
od, although the available reference set may not, in many cases, provide sufficient 
coverage of all of the regions of CS that contain active compounds with respect to 
the given assay, and some actives will undoubtedly be missed.

Because group fusion uses either the MAX rule for similarities or the RRF rule 
for rankings, compounds located close to the reference compounds are given prefer-
ence over more distant, less similar compounds, a situation that accords well with 
the SPP since compounds located close to known actives are more likely to also be 
active than are less similar compounds. Thus, the performance of group fusion can 
be rationalized by the significant presence of similarity cliffs in activity landscapes.

1.2.5 � Computational Versus Perceptual Aspects Molecular 
Similarity Measures

The computational methods described above provide algorithms for computing mo-
lecular similarities, albeit imperfect ones, due to the inherently subjective nature 
of similarity. This, however, begs the question as to how these similarity measures 
accord with the perceptions of chemists, an issue that has been discussed in more 
detail in several recent publications [10, 34]. An important question in this regard 
is whether similarity scales used intuitively by chemists agree with those obtained 
computationally. The answer, as we shall see, is that they do not.

Essentially, all computed similarity values lie on the unit interval [0,1] of the real 
line (more correctly the unit interval of the rational line). Highly similar molecules 
have values at the high end of this scale, while dissimilar molecules tend to lie at 
the lower end. Humans can, in general, assess the similarity of very similar objects, 
as chemists can assess the molecular similarity of molecules with similar structures. 
But what happens when molecules become less similar (more dissimilar)? There 

8  Even though the overall percentage of active compounds in large DBs is usually quite small, 
since most compounds are inactive in a given assay, the fraction of those actives where both com-
pounds of a compound pair are approximately of equal activity can be significant.
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is basically no issue with computational similarity measures, but humans, on the 
other hand, find it increasingly difficult to assess the degree of similarity of highly 
dissimilar objects. Beyond some point, all that can be said is that the objects are 
“not very similar,” but the degree of similarity becomes moot. This is also true for 
chemists’ assessments of highly dissimilar molecules.

Is this difference between computational and perceptual measures of similarity 
important? Since chemists are unable to perceive low degrees of similarity among 
molecules, low values of computed similarity do not have any explicit “structural 
meaning,” at least to chemists. Because of this, it is difficult for chemists to make 
meaningful structural inferences as would be required when, for example, assessing 
the diversity of or clustering a compound library, or evaluating compounds for acqui-
sition [116–118]. Computers, on the other hand, are not saddled with this perceptual 
limitation, and thus can handle similar and dissimilar molecules with equal ease.

Another matter bears on the issue of computation versus perception of struc-
tural similarity. In the former case, as described in previous sections, the similarity 
value obtained depends on the molecular representation used, the weighting of its 
components, and the similarity coefficient. Changing any or all of these can result 
in significant changes to the computed similarity values. By contrast, perception of 
molecular similarity depends on a chemist’s training, experience, and the field of 
chemistry in which they work. For example, a synthetic organic chemist might fo-
cus on likely sites of substitution, a medicinal chemist on the placement and nature 
of pharmacophoric groups, and a physical chemist on the electron distribution or the 
energy of a molecule’s highest-occupied and lowest-unoccupied orbitals.

1.3 � Chemical Spaces

The amount of chemical information is growing exponentially. Thus, a framework 
is needed for dealing effectively with the flood of information. The concept of CS 
provides such a framework. In analogy to mathematical spaces, CSs are specified 
by a set of molecules and a binary relation that characterizes the relationship of one 
molecule to another and is typically based on some type of similarity, dissimilarity, 
or distance measure. Importantly, the notion of CS provides a basis for the well-
known SPP that explicitly or implicitly underlies many applications of similarity in 
chemical informatics ( vide infra) and is discussed in the following section.

CSs come in three flavors: (1) coordinate based, (2) cell based, and (3) graph or 
network based. Multidimensional vectors with continuous, real-valued components 
define the positions of molecules in coordinate-based CSs. The value associated 
with each of the coordinates is obtained from one of a wide variety of property 
descriptors discussed in Sect. 1.2.2.1. A simple 3-D example is given in Fig. 1.7a, 
but since these spaces are generally greater than dimension three, their graphic por-
trayal requires some type of reduction in the dimensionality of the space. Details of 
how this can be accomplished will be described in Sect. 1.3.2.

By contrast, compounds in cell-based CSs reside in p-dimensional hypercubes 
called cells that partition the original p-dimensional coordinate-based CS. Cell-based 
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partitioning is a coarse-grained approach that lowers the resolution of the space but 
does not necessarily reduce its dimensionality. Nevertheless, it offers potential ad-
vantages for handling a number of procedures commonly carried out in chemical in-
formatics, some of which will be discussed in more detail in Sect. 1.3.3. Figure 1.7b 
depicts a cell-based CS associated with the coordinate-based space illustrated in 
Fig. 1.7a. Other types of partitioning methods such as recursive partitioning have 
also been applied to molecular systems [119–121]. However, it should be noted that 
recursive partitioning and other tree-based decision methods generally fall in the 
class of supervised machine learning methods, while cell-based and clustering meth-
ods generally, but not always, fall into the class of unsupervised methods.9

The third type of CS representation is illustrated by the mathematical graph de-
picted in Fig. 1.7c called a reflexive, labeled or simple, labeled graph. The term 

9  Supervised machine learning methods typically try to model the relationship of a set of predic-
tor (independent) variables to a set of known values (e.g., biological activities and/or solubilities) 
associated with one or more dependent variables. Unsupervised methods only require information 
associated with predictor (independent) variables (e.g., physicochemical descriptors).
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“reflexive” indicates that that each vertex possesses a graph loop, while the term 
“labeled” indicates that each vertex and edge may be labeled by a set of alphanu-
meric characters or numbers that describe the properties of these graph entities. 
In the present application, each vertex corresponds to a molecule and each pair of 
molecules may or may not be connected by an edge labeled by the value of a pair-
wise property associated with the two molecules. In contrast to the previous two CS 
representations, this is a relational model that provides a faithful, discrete repre-
sentation of CSs. More specifically, the edges represent binary relations associated 
with similarities, dissimilarities, or distances among compound pairs and the nodes 
are associated with individual compounds. Because CSs typically contain many 
compounds, the graphs representing them are quite large and generally fall under 
the rubric “networks.” Network research has experienced extremely rapid growth 
over the past decade in a number of fields from social science [122] to biology and 
medicine [123–126] as well as in the popular literature [127, 128]. In this regard, 
the book by Newman not only provides an excellent overview of many aspects of 
networks but also addresses a number of algorithmic issues associated with them 
that are critical to their effective application [129].

Although the network model of CS is not in extensive use today, it corresponds 
closely to the data model of a new graph-based DB technology [130], and thus may 
provide an additional incentive for adopting this model for future work in chemi-
cal informatics. Details of how networks can be applied to the study of CSs are 
provided in Sect. 1.3.4.

1.3.1 � Similarity-Property Principle

The SPP plays a major role in chemical informatics since it provides a crucial link 
between the similarity of molecules and their corresponding bioactivities or proper-
ties. Wilkins and Randic formally described this principle, which now seems in-
tuitively obvious, in a seminal paper published more than three decades ago [13]. 
Although “similarity” arguments had been advanced in chemistry before this time 
(cf. [9]), none directly addressed the structural similarity between molecules in a 
computationally amenable form. In the late 1980s and the early 1990s, the SPP 
was reiterated [14, 15] and since that time has played a substantive role, explicitly 
or implicitly, in numerous studies associated with similarity searching and virtual 
screening.

While the SPP obtains in most cases, there are some notable exceptions such as 
the presence of activity cliffs [111–113], which arise when pairs of similar com-
pounds exhibit significantly different activities leading to quasi-discontinuities10 in 
their corresponding CSs [131, 132]. Although statistically rare [7, 8], activity cliffs 
provide significant SAR information because they afford a means for identifying 

10  Since CSs are inherently discrete, the concept of discontinuity, which applies to continuous 
systems, is only approximate. Thus, “discontinuities” in these spaces, such as those arising from 
the presence of activity cliffs, are denoted as quasi-discontinuities.
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small structural changes, for example, the presence or absence of a functional group, 
that are associated with correspondingly large changes in activity.

Another quasi-discontinuous feature occurs in the case of similarity cliffs that, 
in contrast to activity cliffs ( vide supra), represent compound pairs where small 
changes in biological activity are associated with large changes in similarity ( vide 
supra Sect. 1.2.4). Thus, these cliffs are related to the notion of target promiscuity 
that stands in sharp contrast to the better-known notion of compound promiscuity 
associated with polypharmacologies [124, 133]. The fact that similarity cliffs are 
the most prevalent feature observed in activity landscapes for active compounds [7, 
8] implies that target promiscuity is also more prevalent than heretofore had been 
assumed. Taken together, both concepts reinforce the idea that compound specific-
ity may be a difficult goal to attain in many instances.

As noted earlier, since similarity measures are not invariant to the representation 
or similarity coefficient employed, small differences with respect to one measure 
may not be comparably small with respect to another measure. In such cases, ac-
tivity cliffs themselves will not be invariant to similarity measure [10, 34, 41], an 
uneasy state of affairs that raises the question of whether activity cliffs actually 
exist [134]. Alternative representations based on matched molecular pairs (MMPs) 
have sought to address this question using the 2-D structural representation favored 
by chemists, but entirely quantitative results have yet to be obtained [135, 136]. 
Because of its inherent subjectivity, it is unlikely that invariant values (absolute 
values) of molecular similarity can ever be obtained. Nevertheless, while it may be 
difficult to quantitate the magnitudes of activity cliffs, there is no doubt that they 
exist since many examples of “small” structural changes, as perceived by medicinal 
chemists, have resulted in relatively large activity differences [134].

Based on earlier work by Brown and Martin [17, 18], Martin et al. [137] have 
provided an updated assessment of the SPP in medicinal chemistry. They examined 
a large dataset containing the results from more than 100 different HTS assays and 
concluded that there is only about a 30 % chance that a compound with a Tanimoto 
similarity value ≥ 0 85.  (based on daylight FPs [138]) to a known active is also ac-
tive, significantly revising an earlier estimation of 80 % [139] (cf. [140]). However, 
a recent publication [34] has shown that such thresholds may not, in any case, be 
statistically significant.

Steffen et al. [141] have described a novel approach to the SPP that differs sig-
nificantly from typical FP methods. In their work, these authors employed a vec-
tor representation, where the vector components are categorical variables [41] and 
are based on the activities of compounds with respect to each one of a fixed set 
of assays. Hence, the vectors live in “biological activity space” not, as is usually 
the case, in some form of structure space. This enables the potential identifica-
tion of compounds with similar biological activity profiles that are structurally 
dissimilar—compound pairs that fall into this class are related to similarity cliffs 
( vide supra) [7, 8]. These authors also showed that representations that included 
physicochemical or pharmacophoric features were generally better able to retrieve 
dissimilar compound pairs with similar biological activity profiles. Importantly, this 
work opens up new possibilities in the study and application of the SPP.
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Given the caveats described above, it is important to remember that the SPP 
is applicable to any type of CS regardless of how it is represented ( vide infra). 
Today, the SPP is applied explicitly in many areas of chemistry, but particularly in 
medicinal chemistry. It might be said that the SPP, whether it is used explicitly or 
implicitly, is one of the foundations of medicinal chemistry.

1.3.2 � Coordinate-Based CSs

The most common representation of coordinate-based CSs is as a set of points, each 
representing an individual molecule, embedded in a multidimensional Euclidean 
space much like the stars and planets in our galaxy. In general, p-dimensional Eu-
clidean spaces have p orthogonal coordinate axes, and each of the n points occupy-
ing the space is described by a p-dimensional vector as that given in Eq. (1.27). The 
set of row vectors can then be combined into the n p× − dimensional  data matrix 
given in Eq. (1.28), which contains the molecular and/or chemical information as-
sociated with the entire set of compounds. The relationship between any compound 
pair can be assessed in several ways: (1) by any of the vector-based similarity coeffi-
cients described in Eqs. (1.34)–(1.36), (2) by any of the corresponding dissimilarity 
coefficients described in Eqs. (1.37) and (1.39), or (3) by the Euclidean distance in 
CS between two molecular feature vectors as described in Table 1.2 and Eq. (1.38).

Figure 1.7a provides an illustration of a simple model 3-D CS. The five color-
coded compounds are, respectively: Cpd-1, an active colored in red; Cpd-2, its 
nearest neighbor colored in green; and Cpd-3, Cpd-4, and Cpd-5, the three next 
nearest neighbors, colored in blue, are ordered with respect to decreasing similarity 
(or increasing dissimilarity or distance) with respect to Cpd-1. Thus, Cpd-3 is nearer 
to Cpd-1 than Cpd-4, which is closer than Cpd-5.

Figure 1.8a portrays a 3-D projection of a real, six-dimensional (6-D) 3-D BCUT 
CS; additional details on its construction are supplied in Sect. 1.3.3.2. The projec-
tion is with respect to the three most significant BCUT descriptors that are de-
rived from the electronic (“Elec”), hydrophobic (“HPhob”), and hydrogen-bonding 
(“HBond”) features of atoms (see Sect. 1.2.2.1 for a more detailed description of 
BCUT descriptors). A diverse set (“Diverse”) containing approximately 175,000 
compounds is depicted in yellow; a combinatorially generated set (“Combi”) con-
taining approximately 150,000 compounds constructed from a set of 40 different 
scaffolds, is depicted in red. It is clear from the figure that Combi, which is of nearly 
comparable size to Diverse, covers only a small fraction of the CS covered by the 
latter. Figure 1.8b shows a magnified version of the CS shared by both collections.

The fact that many data spaces including CSs possess more than three dimen-
sions has, over the years, generated a significant amount of effort in the devel-
opment of dimensionality reduction techniques. There are three main reasons for 
reducing dimensionality. The first and most obvious is that graphical depiction of 
the space is restricted to three or fewer dimensions. The second and more important 
reason is due to the “curse of dimensionality” [142] that occurs because the data 
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distribution becomes more sparse as the dimension of the space increases. Thus, in 
order to ensure balanced or comparable coverage of the resulting higher-dimension-
al space requires an increase in the amount of data, which becomes more difficult 
to achieve as the dimension increases. Higher-dimensional spaces can also exhibit 
idiosyncratic behaviors that are difficult to comprehend [143]. The third reason is 
that the intrinsic dimension of the data may be considerably lower than its apparent 
dimension and may in some cases be confined to a non-Euclidean subspace, which  
could also be nonlinear. As discussed in Sect.  1.3.2.3, distances between points 
in non-Euclidean subspaces are generally different than they are in the Euclidean 
space in which they are embedded.

1.3.2.1 � Coordinate-Based CSs Derived from Structural FPs

Constructing coordinate-based CSs from low-dimensional vector representations, 
which is relatively straightforward, is exemplified by BCUT descriptors described 
in Sect. 1.2.2.1. Figure 1.8 depicts an example of a 3-D BCUT chemical subspace 
projected from the original 6-D BCUT CS. Today, a common means for represent-
ing molecules is by their structural FPs. However, their direct use in the construction 
of coordinate-based CSs is beset by a number of problems that include: (1) they are 
generally of very high dimension, usually in the range of ~ 150–2000, and hence are 
plagued by the curse of dimensionality [142] and (2) their coordinates are generally 
binary or integer valued and thus are not compatible with the types of continuous, 
real-valued CS representations described above. Nevertheless, structural FPs can 

HPhob Elec

HB
on

d

P&U

a b

Fig. 1.8   a Example of a three-dimensional projection of a six-dimensional 3-D BCUT CS con-
taining ca. 175,000 molecules depicted in yellow, and a combinatorial library of ca. 150,000 
molecules depicted in red. b Magnified version of the region of CS shared by both sets of mol-
ecules (See Section 2.2.1 for description of BCUT descriptors). (Figure kindly provided by Veer 
Shanmugasundaram)
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be transformed into continuous, real-space coordinates in a number of ways usually 
through the computation of some pairwise measure that characterizes the relation-
ships among the molecules of the set. These relationships are typically associated 
with the similarity or dissimilarity coefficients described in Sect. 1.2 or with some 
type of CS distance such as the Hamming distance [60].

A distinct advantage of this approach is that any type of representation can be 
used that affords a means for computing a similarity, dissimilarity, or distance mea-
sure. For example, chemical graphs [16], which cannot be treated using a purely 
coordinate-based approach, can be handled in a straightforward, albeit somewhat 
computationally demanding, manner [41]. Recent work on graph-based Kernel 
methods provides a novel means for extending and generalizing methods for com-
puting similarity coefficients [144].

Given that a matrix of similarity, dissimilarity, or distance values can be com-
puted for each unique pair of molecules, the question now becomes, “How can this 
array of values be transformed into a set of coordinates that define the positions 
of molecules in a coordinate-based CS?” In this regard, most efforts in chemical 
informatics have generally focused on five main techniques: (1) principal com-
ponent analysis (PCA) [145], (2) principal coordinate analysis (PCoA) [145], (3) 
multidimensional scaling (MDS) [146], (4) nonlinear mapping (NLM) [147], and 
(5) factor analysis [148]. All five methods provide the means for constructing low-
dimensional representations of CSs. A recent review by Shanmugasundaram and 
Maggiora [41] provides additional details and references to these methods.

Although any of the five methods would suffice, PCA, a method used in many 
chemical informatics applications, will be employed here as an example of how CSs 
can be constructed from several varieties of structural FPs. Consider the similarity 
coefficient values of a set of n molecules computed with respect to some type of 
structural FP that generates an n n× − dimensional  symmetric matrix of similarity 
coefficients11

� (1.45)

where si j,  corresponds to any of the similarity coefficients described in Sect. 1.2. 
There is no need to scale these values since they are all on the same scale and lie on 
the unit interval [0,1] of the real line.

Although the matrix does not have the form of a typical data matrix, the simi-
larity values can, nevertheless, be thought of as descriptor values. Consider, for 

11  In mathematics these are generally called Gram matrices and in statistics are usually called as-
sociation matrices.
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example, the i, jth element of Sn n×
, which can be interpreted as the similarity of 

the ith molecule in the set of n molecules with respect to the jth “descriptor mol-
ecule”. In this case, the n “descriptor molecules” are taken from the same set of n 
molecules under study—a generalization of this approach was recently described 
[149]. As was suggested by Kruscal [150], square symmetric matrices such as Sn n×  
can be handled in exactly the same manner that general data matrices are treated 
using PCA:

� (1.46)

the eigenvalues

� (1.47)

which are ordered from largest to smallest, are related to the variances in the new, 
transformed coordinate system12

� (1.48)

such that the percent of the total variance corresponding to the ith eigenvalue is 
given by

� (1.49)

Thus, to graphically depict a CS in three dimensions, the transformed coordinates 
associated with the first three eigenvalues will suffice, i.e.,

� (1.50)

Note, however, that the entire mean-centered similarity matrix Sn n×  is required.
Although this procedure provides a reasonably straightforward approach to the 

construction of low-dimensional CSs, the number of compounds that can be handled 
is somewhat limited because determining the transformed coordinates requires di-
agonalization of the n n×  covariance matrix, which becomes difficult for n > 2500
, although there are ways that this limitation can be overcome, for example, by using 
real time PCA [151].

Figure  1.9 shows examples of CSs constructed with respect to four different 
binary FP representations using the similarity-based PCA procedure described in 
the previous section. The first two examples are based on atom pair and MACCS 
key FPs that were discussed in some detail in Sect. 1.2.1.1. Of the latter two, both 

12  Note that the coefficient (n − 1)−1 would, if ignored, merely scale the eigenvalues by n − 1; the 
eigenvectors are unaffected.
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of which are available in molecular operating environment (MOE) [152], TGD FPs 
are similar to those in atom pairs, while the piDAPH4 are related to FPs whose 
components are 3-D pharmacophores [153]. Hence, in contrast to the first three, 
piDAPH4 FPs contain some 3-D structural and stereochemical information. The 
Tanimoto similarity coefficient given in Eq. (1.8) was used to compute the similar-
ity value in all four cases.

A total of 2250 molecules comprising nine classes of 250 molecules each were 
considered. The molecules in each class are color coded as follows: approved drugs 
(cyan), natural products (light green), a general screening collection from two ven-
dors (magenta), compounds targeted to adenosine receptors (blue), and five in-
house combinatorial libraries from the Torrey Pines Institute for Molecular Studies 
(depicted red, yellow, green, black, and light blue). The first three PCs account for 
80.8, 85.9, 90.3, and 73.0 % of the total variance in the data associated with the atom 
pair, MACCS key, TGD, and piDAPH4 FPs, respectively.

Although some of the variance in the data is not accounted for in the 3-D plots, 
a significant portion of it is. Hence, it is possible to draw some conclusions, albeit 
qualitative ones, from the distribution of compounds associated with the four differ-
ent FP representations. It is quite obvious from the figure that the four different FP 
representations lead to dramatically different graphical portrayals of the CS distribu-
tions of the same set of compounds, a not unexpected but visually dramatic example 
of the non-invariance of similarity measures and its consequences. Interestingly, in 

Fig. 1.9   Depictions of CSs generated from Tanimoto similarity coefficients computed with respect 
to binary FPs associated with four different types of descriptors—APF, MACCS key, TGD, and 
piDAPH4. (Adapted from Medina-Franco & Maggiora, Molecular Similarity Analysis [10])
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some cases, substantial differences arise even within individual compound classes, 
as shown, for example, by the class of approved drugs colored in cyan. Of even 
greater interest is the graphical depiction in Fig. 1.10 of the distribution of the same 
set of compounds with respect to similarity fusion based on the mean of the simi-
larity values (see Table 1.3). The results depicted in Fig. 1.10 differ significantly 
from any of those depicted in Fig. 1.9, which are based on the values of individual, 
“unfused” similarity measures obtained with respect to four different binary FPs.

It is important to note that graphical depictions described in this section are 
meant primarily as a means for enhancing intuition about the relationships among 
molecules in CSs. If quantitative analyses are required, detailed computations can 
be carried out using the full, multidimensional representation of the molecules in a 
dataset, as noted earlier.

1.3.2.2 � Non-Euclidean Coordinate-Based CSs

The fact that CSs must have fewer than four dimensions for their graphical depiction 
is obvious. A less-well-known and much more subtle point is that high-dimensional 
data, in general, and CSs, in particular, may lie on lower-dimensional curved (i.e., 

Fig. 1.10   Depiction of a CS generated from mean fusion of similarity values obtained from Tani-
moto similarity coefficients computed with respect to binary FPs associated with APF, MACCS 
key, TGD, piDAPH4 descriptors. (Adapted from Medina-Franco & Maggiora, Molecular Similar-
ity Analysis [10])
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non-Euclidean) manifolds that are embedded in higher-dimension Euclidean spaces 
( vide supra). A simple example is given in Fig. 1.11, which depicts a 2-D hyper-
bolic manifold embedded in a 3-D Euclidean space. The important point is that 
the distance between points A and B depends on the space in which the distance is 
being evaluated. In the example, the Euclidean (“straight line”) distance is clearly 
less than the geodesic distance measured along curved surface of the 2-D manifold. 
Thus, molecules A and B are judged more similar if considered in Euclidean CS 
than if their similarity was assessed on the 2-D manifold defined by the hyperbolic 
surface depicted in Fig. 1.11 that more accurately represents the data (in this toy 
example).

Figure 1.12 provides a more “down to Earth” example that clearly illustrates the 
difference between the two distance measures. In this case, the Euclidean distance is 
given approximately by the air miles between the American cities of Seattle, Wash-
ington and Miami, Florida which is about 2730 miles. By contrast, the geodesic 
distance between these two cities, measured along the US highway system is about 
3300 miles, which represents about a 20 % increase in miles by car.

The paper by Agrafiotis and Xu provides a number of examples illustrating geo-
desic distances [154]. Although these authors published two more papers on this 
subject [155, 156] very little else has been published in the chemical information 
literature. This is obviously an important area of future research since it is one of 
several factors that can significantly influence the computed values of CS distances 
and, hence, the inferences that can be made about the compounds in a CS.

Lastly, it is well to point out that similarity values that lie on the unit inter-
val [0,1] of the real line can be obtained by transforming Euclidean distances, d, 
or non-Euclidean geodesic distances, �d , using any one of a number of different 
mathematical expressions, one possibility being

� (1.51)�
, ,1 / [1 · ],i j i js dη= +

Fig. 1.11   Example of a 
Euclidean distance and the 
corresponding geodesic 
distance of two compounds in 
a model CS. The surface ren-
dition is by Sam Derbyshire, 
http://creativecommons.org/
licenses/by-sa/3.0
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where the parameter 0η >  controls the rate at which the similarity value changes 
as a function of distance.

1.3.3 � Cell-Based CSs

Cell-based partitionings of CSs [76, 157] are identical to partitions of mathematical 
spaces into families of nonintersecting subsets that cover the spaces. Thus, the set 
of Ncells

 cells that constitutes a cell-based CS is given by:

� (1.52)

and satisfies

� (1.53)
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Fig. 1.12   Car ( blue-grey) vs. air ( red) routes from Seattle, Washington to Miami, Florida. 
(Adapted from Google Maps)
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Each cell corresponds to an equivalence class, and the molecules within it are 
hence, in some fashion at least, equivalent. The many-to-one set-valued mapping13 
depicted in Fig. 1.13 takes molecules in a p-dimension coordinate-based CS to one 
of the cells of the corresponding cell-based space, i.e.,

� (1.54)

Thus, the location of compounds in cell-based CSs is given in two ways, namely, 
by their coordinates in the underlying coordinate-based CS, and by the address of 
the cell in which they reside. Figure 1.13 also shows that some cells in cell-based 
spaces are empty since only 15–20 % of the cells in cell-based CSs are typically 
occupied. It is also interesting to note that cell-based CSs are very similar to the 
multi-way contingency tables used in many statistical applications [158], except for 
the fact that contingency tables rarely have cells with zero values.14

The procedure for constructing virtually all cell-based CSs is basically a two-
step process:

•	 Generation of an appropriate low-dimensional coordinate-based CS
•	 Binning each of the axes of that space in such a way that the occupancy of the 

bins optimally covers the CS

The first and perhaps most important step in the process is the selection of suitable 
sets of reference compounds and descriptors, since they both play major roles in 

13  In function notation, the mapping in Eq. (1.54) is given by 
Φ( ) , , , , ; , , ,xi k i n k N= = … = …C cells1 2 1 2 .
14  Note that there are a number of “correction factors,” such as the well-known Laplace correction, 
that can be applied to the cells of a contingency table to correct for empty cells.
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Fig. 1.13   Schematic 
depiction of a many-to-one 
set-valued mapping. Note 
that most cells are not gener-
ally occupied in cell-based 
CSs (see text for additional 
details)

 



1  Introduction to Molecular Similarity and Chemical Space 43

determining the nature of the CSs ultimately generated. While it is well appreci-
ated that descriptor selection is important, the role played by the reference set of 
compounds is perhaps less well appreciated but is nonetheless crucial to the final 
form of the CS generated. Potential compound sets include corporate compound 
collections, publically available collections [25] such as ChEMBL [19], PubChem 
[20], ChemDB [21], and DrugBank [22], or sets of compounds suited to some spe-
cific tasks. In the latter case, for example, if the goal is to compare two large sets of 
compounds, it is desirable to combine the sets since the resulting CS will be more 
“balanced” and, hence, will take better account of the influence that molecular fea-
tures missing in one of the two collections may have on the overall representation 
of the resulting CS. Alternatively, if the goal is to generate diverse subsets for an 
HTS campaign, the corporate compound collection from which the sample will be 
drawn, may be the best choice. These are just two of the many possibilities that can 
be considered, some of which will be presented in the sequel.

The second step in the process involves binning each axis of the coordinate-
based CS yielding a total number of cells given by

� (1.55)

As an example, consider a typical 6-D coordinate-based CS with seven bins per 
axes, which will generate a cell-based CS containing 117,649 cells. Although bins 
generally are of equal size on each axis, this is not required as discussed by Bayley 
and Willett [159]. Choosing an appropriate number of bins per axis is also impor-
tant: If the number is too large, numerous cells will be unoccupied—normally a 
number of “occupied” cells around 15–20 % appears to be reasonable. In this re-
gard, it is important to note that in many types of cell-based analyses, including the 
above, the specific number of compounds in a given cell is not enumerated, only if 
the cell is occupied by at least some number of compounds (usually one) called the 
cell occupancy threshold value.15

Lastly, while cell-based CSs used in cheminformatic studies are generally parti-
tioned into hypercubes, other possibilities exist that may offer more effective ways 
to partition these spaces. Rush [160] has mathematically explored some of the pos-
sibilities, but practical applications in chemical informatics have not to my knowl-
edge been carried out to date.

Figure 1.7b portrays a model cell-based CS for the same set of compounds de-
picted in Fig. 1.7a. Although this example is oversimplified, cell-based CSs, nev-
ertheless, are typically around 3-D to 6-D. Cpd-1, the active compound indicated 
by the red dot, its nearest-neighbor Cpd-2 indicated by the green dot, and two of 
its next nearest neighbors, Cpd-4, and Cpd-5 indicated by the blue dots, all reside 
within the same cell. Hence, from a cell-based perspective, all four compounds are 
considered to be roughly equivalent. On the other hand, Cpd-3, which is nearer to 
Cpd-1 than either Cpd-4 or Cpd-5, resides in a neighboring cell, and thus, from a 

15  A similar situation exists in the case of threshold graphs obtained from labeled graphs when the 
edge values exceed some threshold value. Details of this are described in Sect. 1.3.7 on graph-
based CSs.

N N N N
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cell-based perspective, is not considered to be equivalent to any of the compounds 
in the neighboring cell. This illustrates one of the limitations of the cell-based ap-
proach, which does not explicitly employ the concept of nearest neighbor cells, 
although the position of compounds in the underlying coordinate-based CS does 
afford the possibility for identifying nearest neighbors.

Clustering provides an additional way to partition CSs into a set of nonintersect-
ing subsets that cover the space [161]. Although clustering methods have some ad-
vantages over cell-based partitioning, they are difficult to apply to datasets as large 
as those that can be handled relatively easily using a cell-based approach. For exam-
ple, the addition of large numbers of new molecules can significantly alter cluster-
ings. This is not a problem in the cell-based case since the CS partitioning scheme 
is effectively compound independent—adding new compounds does not change the 
partitioning scheme. Moreover, many methods such as k-means clustering require 
specification of the number of clusters and hierarchical methods produce similarity 
(or distance)-dependent clusterings [161]. Lastly, because the clustering methods 
are a vast subject, even when only considered with respect to cheminformatics ap-
plications, no further discussion on this topic is provided in this work.

1.3.3.1 � Representations of Cell-Based CSs

The BCUT descriptors described in Sect. 1.2.2.1 have proved to be a popular choice 
for directly constructing low-dimensional CSs. There are, of course, many other 
types of suitable descriptors that, in many cases, cannot be used directly since they 
lead to spaces whose dimension are too high. This can be ameliorated, as discussed 
by Xue, Stahura, and Bajorath [157], using a dimensionality reduction technique 
such as PCA.

The power of the cell-based description lies in its ability to simplify the repre-
sentation of CS, and thus to enhance the speed at which a number of the tasks, such 
as compound acquisition [162], diversity analysis [163], comparison of compound 
collections [77], and LBVS [164] can be performed. But the enhanced speed comes 
at a cost, which may or may not, significantly impact the results obtained. As dis-
cussed above, the cell-based partitioning leads to a coarse-grained representation 
of CS and, importantly, can introduce significant effects at cell boundaries. For 
example, molecules located near a common boundary in adjacent cells are gener-
ally more similar to each other than to many other molecules in their own cells (cf. 
Figs. 1.7 and 1.13). Obviously, this can lead to significant bias depending on the 
actual (not cell based) distribution of compounds in the CS, a problem that is also 
encountered in a number of clustering methods.

1.3.3.2 � Example of Cell-Based CSs

The CS was constructed by combining the four compound collections given in 
Table 1.4 into a single, large collection. Determining the optimal set of 3-D BCUT 
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descriptors for that augmented collection yielded a 6-D CS upon which all subse-
quent analysis is based. Each axis was then partitioned into seven bins, giving a 
total of 117,649 cells in the 6-D space.

The difference between the Diverse and Combi collections depicted graphically 
in Fig. 1.8 is verified. Several key features in the table supporting this conclusion 
are the comparative number of occupied cells (18,731 and 2434, respectively) and 
the average cell occupancies (9.4 and 61.5, respectively), all of which clearly point 
to the more restricted and dense distribution of compounds in Combi compared to 
that in Diverse. The MDDR collection exhibits similar behavior to that of Diverse, 
although the absolute values of the cell-based parameters are somewhat lower than 
those of Diverse, which is not surprising given that Diverse is nearly twice as large 
as MDDR. Micros is a small, diverse collection of known drugs and related sub-
stances. Given its size, it nonetheless is relatively diverse since only slightly more 
than one compound on an average occupies each of the 516 occupied cells. On the 
other hand, its 516 cells occupied cells are almost insignificant when compared 
to the 18,371 occupied cells in Diverse. Moreover, each occupied cell in Micros 
contains on an average only 1.3 compounds, which again pales in comparison to 
Diverse’s average cell occupancy of 15.6.

These data illustrate two important points about diversity. First, small compound 
collections, which may be relatively diverse with respect to their own set of com-
pounds, may not in an absolute sense contain anywhere near the diversity that can 
potentially be obtained from much larger compound collections. Second, while diver-
sity may confer some advantage in identifying active compounds in HTS campaigns, 
if the diversity is sparsely distributed the chance of identifying actives is significantly 
diminished even if the diversity is widespread in a large compound collection. This 
follows from the fact that in a given assay the percentage of actives within “active 
regions” of CS is still surprisingly small, generally around 10–15 % or less.

The cell-based CS data summarized in Table 1.4, while helpful, are not suffi-
ciently detailed to address more specific questions regarding the similarity or dif-
ference between different compound collections. This is remedied in Sect. 1.3.5.1 
where details for comparing compound collections are described.

Table 1.4   Summary of compound collections in six-dimensional 3-D BCUT chemical space with 
seven bins per axis (total cell count = 117,649)
Compound 
collection

Number of 
compounds

Number of 
occupied cells

Percent 
occupied cells

Average cell 
occupancy

Largest cell 
population

Diversea 173,375 18,371 15.6 9.4 738
Combib 154,474 2434 2.1 61.5 5694
MDDRc 97,409 10,203 8.7 8.5 349
Microsd 799 516 0.4 1.3 7

a Subset of diverse compound collection (see text)
b Combinatorial chemistry library (see text)
c Subset of MDDR collection—Molecular Drug Data Report (MDDR), Version 2005.2; Symyx 
Software: San Ramon, CA, 2005
d Small discovery oriented library—MicroSource Discovery Systems, Inc., Gaylordsville, CT 
06755
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1.3.4 � Chemical Space Networks

In addition to the coordinate and cell-based representations just described, CSs can 
also be represented by mathematical graphs. Such graphs provide information that 
is comparable to that provided by similarity, dissimilarity, or distance matrices and, 
as will be seen in the sequel, afford an intuitive as well as solid conceptual basis for 
analyzing many relationships among the compounds populating CSs. Since com-
pound collections can be quite large, their corresponding graphs are also quite large 
and generally fall under the rubric of “Networks.” The development and application 
of network theory, which has burgeoned over the two decades, has been applied in 
numerous fields, including social science, physics, computing, biology, and medi-
cine. A number of “chemically oriented” examples have been reported (see e.g., 
[123–126, 165–167]), and five papers describing the application of networks to the 
analysis of compound collections have been published [168–172]. An investigation 
that examines power laws in chemical systems, as do several of the just cited publi-
cations, has also been published. However, it does not directly address issues related 
to similarity-based networks that describe compound collections [173].

The present section provides a number of examples that elucidate the underlying 
features of networks such as their patterns of vertex connectivity. An understanding 
of these feature patterns is required in order to comprehend the nature of the large, 
complex networks such as those needed to represent CSs; because these networks 
are large, their feature patterns are usually analyzed in statistical terms. An impor-
tant aspect of the network representation of CSs is that it facilitates navigation of 
those spaces since there are powerful graph-based network algorithms for determin-
ing paths between vertices [129] in contrast to the situation in more traditionally 
represented CSs [174].

In order to facilitate understanding of networks, a number of simple examples 
based on the graphs depicted in Figs. 1.7c and 1.14 are presented in the following 
sections. These examples, though simple, illustrate a number of the most important 
network features needed to interpret the statistical data and to understand the nature 
of the CSs being analyzed.

1.3.4.1 � Simple Example of a CS Network

As an illustration of the basic features of graphs, consider the reflexive, labeled 
graph 

�
G  depicted in Fig. 1.7c that represents the similarity relations among “hypo-

thetical” compounds 1–5 depicted in Fig. 1.7a, b. A compound identifier, which is 
a number in the present case, labels each vertex and a similarity value labels each 
edge of �G . Since the vertices represent distinct molecules they are distinguishable, 
a feature that influences the statistical mechanical features of networks ( vide infra) 
[175]. As noted earlier, the graph is reflexive because each vertex has an associ-
ated graph loop labeled by the value of the self-similarity16 of the molecule that 

16  Self-similarity is the similarity of the molecule with itself, and thus, its value is always unity. 
Graphs without self-loops and multiple edges between vertices are also called simple graphs.



1  Introduction to Molecular Similarity and Chemical Space 47

corresponds to that vertex. In most practical implementations, edges corresponding 
to self-similarities are omitted for clarity ( vide infra). Since similarity coefficients 
are generally symmetric, i.e., S i j S j i( , ) ( , )= , the edges of the corresponding graph 
do not have directionality. Hence, the networks typically employed can be classified 
as undirected, unlabeled, and simple networks.

There are, however, cases when the use of directed graphs may be desirable as 
in the representation of activity cliffs [112] or where asymmetric similarity coef-
ficients such as those given in Eqs. (1.6) and (1.11)–(1.13) are employed. Graphs 
where each vertex is connected to every other vertex connected are called complete. 
Thus, a complete graph with n vertices has n n( ) /−1 2  edges, and each vertex has 
n −1  edges called its vertex degree.

The similarity matrix given in Eq. (1.56) contains the same information as �G  in 
Fig. 1.7c:

� (1.56)

1.00 0.95 0.90 0.86 0.70

0.95 1.00 0.88 0.91 0.63

0.90 0.88 1.00 0.92 0.69

0.86 0.91 0.92 1.00 0.58

0.70 0.63 0.69 0.58 1.00

 
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Fig. 1.14   Other CSNs related to that depicted in Fig. 1.7c: a simple, complete CSN, b threshold 
CSN ( St > 0.85); the CSN linking compounds 1–4 is a complete subgraph/network called a clique, 
and c threshold CSN ( St > 0.90); while compounds 1–4 are still linked they no longer form a clique
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Hence, the similarity matrix provides a means for treating graphs algebraically 
[176]. For example, the eigenvalues associated with the matrix representations 
characterize a variety of graph invariants that have seen many useful applications 
in chemical graph theory [16], and although they have not yet been applied exten-
sively in the study of CSs, they, nonetheless, have the potential to provide new and 
interesting insights in graph-based CSs.

The example in Fig.  1.7c is, of course, a great simplification of “real” CSs 
that may contain millions of vertices each corresponding to a specific molecule 
and billions of edges linking the pairs of vertices each labeled by an appropriate 
similarity, dissimilarity, or distance value. In this work, the networks are called 
“CS networks” (CSNs) to emphasize their relationship to CSs. Hence, the graph 
in Fig. 1.7c can be described as a complete-reflexive-labeled CSN. The reflexive 
character of the graph is captured by the values of diagonal elements of similar-
ity matrix, S i i i n( , ) , , , ,= = …1 1 2 . Since the self-similarities do not add any new 
information since they are all the same and of value 1.00, graph loops are routinely 
omitted yielding the simple graph 

�
G , as illustrated in Fig. 1.14a. Such networks will 

be called complete CSNs since each vertex is connected to every other vertex except 
itself as the graph loops have been removed.

Because CSs are so large, their graphical display as CSNs can become visually 
“noisy” and difficult to comprehend for all but the smallest sets of compounds. 
Nevertheless, as in the case of the coordinate-based portrayal of CSs, the graphical 
depictions are only meant to provide an intuitive feel for the underlying relation-
ships associated with the CSN of a large compound collection. Alternative ways 
exist, however, for characterizing and handling the information contained in CSNs. 
Because matrices can provide faithful representations of graphs and networks, this 
affords the possibility that many powerful algebraic techniques can be applied to 
their analysis [177]. Algorithmic techniques, some but not all of which are based on 
the properties of graph matrices, have provided numerous other ways for analyzing 
the properties of graphs and networks. However, because of their size and com-
plexity, information on the characteristic features of networks obtained using these 
methods is commonly reported in terms of the statistical properties of the features, 
as will be described in Sect. 1.3.5.1 [129, 178].

All of the existing publications that describe applications of networks to CS anal-
ysis [168–172] do not use labeled graphs or networks, but rather rely on simpler 
entities called threshold graphs, which are generated by keeping only those labeled 
edges whose values satisfy some threshold as illustrated in Fig. 1.14b, c. In the first 
case, shown in Fig. 1.14b, a similarity threshold value of St > 0 85.  is used. Vertex 5 
is now isolated from the vertices 1–4, which remain fully connected, and thus form 
a complete subgraph of the original graph called a clique. Figure 1.14c provides 
another example based on a higher threshold value of St > 0 90. . Not surprisingly, 
fewer edges remain, and although vertices 1–4 are still connected, they no longer 
form a clique.

An important type of matrix that plays a role in many procedures designed to de-
termine graph/network properties is the adjacency matrix of mathematical graphs and 
networks. The adjacency matrix corresponding to the CSN in Fig. 1.14b is given by
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� (1.57)

Where

� (1.58)

As noted above, the subset of compounds Cpd-1,Cpd- ,Cpd-3,Cpd-42{ }  forms a 
complete subgraph of the threshold graph called a clique, i.e.,H G0 85 0 85. .⊂ . Thus, 
the four compounds are all linked in the threshold CSN, while Cpd-5 is an iso-
lated vertex as reflected by the block diagonal structure of the adjacency matrix 
in Eq. (1.57). Because of the block diagonal structure, each block can be treated 
independently of the others, a form of dimensionality reduction.

If the threshold is raised, to say St > 0 90. , the subset of compounds remains 
linked, but the subgraph induced by the higher threshold H0 90.  no longer forms a 
clique and H H0 90 0 85. .⊂ . Cpd-5, of course, remains an isolated node. In this case, 
the adjacency matrix simplifies to

� (1.59)

Although the block diagonal structure remains, the main 4 4×  block is simpler 
(i.e., has fewer nonzero elements) than that in Eq. (1.57). In any case, whether a 
graph-based or matrix-based representation is used, threshold CSNs provide a com-
prehensive representation of the global “pathways” that connect compounds with 
respect to a given threshold similarity value. As an example, it is possible to deter-
mine the minimum number of edges that must be traversed to go from any given 
compound to another compound given that the similarities of compounds along the 
pathway exceeds the similarity threshold value, a feature that can be useful in large 
screening campaigns but is difficult to carry out in coordinate or cell-based CSs.

As will be seen in the sequel, statistical analyses also play a major role in assess-
ing the characteristic features of networks [129, 177, 178]. In addition, algorithms 
for treating very large systems such as the Internet as networks has given rise to the 
development of many powerful methods for handling mega-networks [179]. Thus, 
representing CSs as CSNs has some distinct advantages as is seen below.
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1.3.4.2 � Statistical Aspects of CSNs

Vertex Degrees and Degree Distributions  Because of their extremely large sizes 
and complexities, networks are typically characterized in terms of the statistical 
properties of their vertices and the relationships among subsets of them. One of 
the most important features of networks illustrated by the simple examples below 
is vertex degree—the number of edges incident on a vertex. 17 The distribution of 
vertex degrees for large random networks follows a Poisson distribution [129] that 
for networks with very large numbers of vertices becomes

� (1.60)

where k  is the degree of a randomly chosen vertex and k  is the mean vertex degree 
of a large random network. Although it remains finite, for large values of k  Pr( )k  
approaches a normal distribution.

It will be seen in the sequel that such networks do not describe typical CSNs. As 
illustrated in Fig. 1.14a, b, the degree of each vertex in a complete graph is given by 
k n i ni = − = …1 1 2, , , , , where n is the number of vertices in the complete graph; 
n = 5  in the current example. In Fig. 1.14a, ki = − =5 1 4 , while for the complete 
subgraph H0 85.  in Fig.  1.14b, k ii = − = = …4 1 3 1 4, , , , while the vertex degree 
of the isolated vertex is, of course, zero. In larger, more complex networks, vertex 
degrees are typically given by statistical distributions as illustrated by the simple 
example in Fig. 1.14c, where

� (1.61)

The degree distribution is the probability a given vertex has k incident edges, i.e.,

�
(1.62)

where the term in the numerator is a sum over all vertices of equal degree, and the 
values corresponding to the example in Fig. 1.14c are

� (1.63)

17  Although it is not addressed here, the vertex degree of directed graphs/networks can be handled 
by assessing the “in-degree” and “out-degree” of a vertex that corresponds, respectively, to the 
number of edges directed towards the vertex and the number directed away from the vertex.
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Degree Correlations: Assortativity Coefficients  Degree correlations, also called 
assortativity coefficients, provide a measure of the correlation of vertex degrees 
between pairs of directly connected vertices. It is obvious from Fig. 1.14a, b that degree 
correlations for vertices in complete graphs or subgraphs are unity since all vertices in 
these graphs have identical vertex degrees and hence are maximally correlated. How-
ever, the situation in Fig. 1.14c is more complex. The average vertex degree based 
on the values in Eq. (1.61) is k = + + + + =1

5 0 1 1 2 2 1 2( ) .  and the assortativity coef-
ficients are given by a modified version of the Pearson correlation coefficient [180]18:

�

(1.64)

where G0 90.
 is the threshold graph of G  with respect to a similarity threshold value 

of 0.90, and A0 90. ( , )i j  is the i, jth element of the adjacency matrix correspond-
ing to that threshold graph. Because of the block structure of the adjacency matrix 
in Eq.  (1.59) only, the vertices corresponding to Cpd-1 through Cpd-4 need be 
considered in Eq. (1.64).

Carrying out the computation yields a value for the degree correlation of

Transitivity: Mean Clustering Coefficient  Another coefficient of interest is the 
transitivity or mean clustering coefficient, C k( ) , of all vertices with k edges, which 
can be computed according to:

� (1.65)

where Nk
 is the number of vertices with k edges and C ki ( )  is the local clustering 

coefficient

� (1.66)

with 
iε  being the number of edges connecting the k neighbors of the ith vertex to 

each other and 1
2 1

2
k k

k
( )− =







 is the number of unique pairs of neighbors. Thus, 

the local clustering coefficient is the ratio of the number of edges connecting the k 
neighbors with each other divided by the total number of possible edges among the 
set of k neighbors.

It is clear from Fig. 1.14c that the transitivity in all cases is zero. By contrast, 
the transitivity of the complete graph in Fig. 1.14a is unity since each vertex has an 

18  Note that the summations are over all unique pairs of vertices (i.e., molecules) and that the coef-
ficient  cancels out of the numerator and denominator of Eq. (1.64).
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identical number of edges and the vertices connected to that vertex are fully con-
nected with each other, hence, [ ]1

2( ) 4·3 4(4 1) 1iC k = − = , which when substituted 
into Eq. (1.65) gives C( )4 1= .

Shortest (Geodesic) Path Lengths/Distances  In general, a path between vertices 
can be quite complex as it can include vertices or edges that have been traversed pre-
viously. Here, a special kind of path called a shortest path is considered. Such paths, 
also called geodesic paths, are the shortest distance between two vertices based on a 
count of the number of unlabeled edges in the path. They are not necessarily unique 
since several paths of equal length may exist in the same graph or network. Shortest 
path values are entirely equivalent to graph distances, di j, , and hence satisfy the 
well-known distance axioms [177]. A number of algorithms that exist for determin-
ing shortest paths have been clearly described in Newman’s book [129].

Mathematically, the mean geodesic distance between all unique pairs of vertices 
is given by

� (1.67)

As can be seen in Fig. 1.14b, the shortest (geodesic) path between two vertices of a 
complete, unlabeled graph is unity in all cases. This is not the case for the threshold 
graph in Fig. 1.14c. Computing shortest path lengths in this case is simple since a 
single path connects the four vertices. Hence, for example, the shortest path be-
tween vertex-1 and vertex-4 is of length two and that between vertex-1 and vertex-3 
is three. The corresponding mean shortest (geodesic) path length is, from Eq. (1.67),

� (1.68)

Another feature of shortest (geodesic) paths is of note, namely, they are self-avoid-
ing, as they do not cross themselves. If they did a loop would be formed that could 
be removed without interrupting the traversal of the path between the specified 
vertices. Determining shortest paths can be a challenge for large networks, but as 
noted above, robust path algorithms exist for mega-networks such as the Internet, so 
dealing with CSs while challenging is not out of the realm of possibility.

Small World Effect  The small world effect, namely, that the mean geodesic dis-
tance between the vertices in networks defined by Eq.  (1.69) is proportional to 
log n, and thus, is generally small for a number of real-world networks (see e.g., 
Table 8.1 in [129]). A common feature of many small-world and random networks 
is that their vertex degree distributions tend to be homogeneous with a peak at the 
mean value of the distribution and an exponential decay, Pr ( ) ~ exp ( )k k− , in its 
tail, giving rise to what are called exponential networks. Interestingly, there are a 
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number of types of small world networks including ones discussed below that also 
exhibit scale-free behavior ( vide infra) [181].

One consequence of the small world effect is the famous “six degrees of separa-
tion” hypothesis, namely, that everyone on Earth is separated by no more than five 
individuals (vertices) and hence six links (edges). That this is not an entirely unrea-
sonable hypothesis is based on the following overly simplistic argument. Suppose I 
have 100 friends each of which has 100 friends, each of which has 100 friends, etc. 
Thus, with only one degree of separation I can connect to 100 individuals, with two 
degrees I can connect to 100 100 10 000× = ,  individuals, and with only three de-
grees of separation I can connect to 100 100 100 1 000 000× × = , ,  individuals. If all 
six degrees of separation are considered, I could potentially connect to one trillion 
individuals, 50 times more than required to connect to everyone on Earth. Although, 
as pointed out by Watts [127] this argument has significant practical flaws, it none-
theless captures some essential features of small-world networks.

Networks exhibiting small-world behavior, hence, can facilitate many processes 
such as communication, the spread of disease, and the speed of inter-server access 
on the Internet. Not surprisingly, as will be discussed in Sect. 1.3.5.2, CSNs tend 
to exhibit small world behavior as well. This is not surprising given the nature of 
molecular and chemical similarity, which in general does not exhibit transitive be-
havior: i.e., if A is similar to B and B is similar to C, it does not in all cases follow 
that A is similar to C. This same phenomenon exists in social networks as well, i.e., 
if A knows B and B knows C it does not mean that A and C also know each other, 
although the likelihood that they do is higher than random chance. As discussed by 
Newman [129], transitivity is related to various forms of clustering coefficients.

Scale-Free Networks  The vertex degree distributions of scale-free networks dif-
fer from those of large random networks and many small world networks, which 
are Poisson distributed ( vide supra). By contrast, scale-free networks described by 
Barabási and Albert [182] are nonhomogeneously distributed and follow power 
laws, such that the probability that a random vertex has degree k 19 is inversely 
related to a power of vertex degree, i.e.,

� (1.69)

where κ  is a constant and the exponent 1α >  is a scaling coefficient, which usu-
ally lies in the range 2 3α≤ ≤  for many real-world networks (see e.g., Table 8.1 in 
[129]). Van Steen gives a clear description of why the power law given by Eq. (1.69) 
is scale-free [180]. In addition, the mean shortest path length of scale-free networks 
is proportional to log log n, a value that is much less than the log n behavior noted 
above for many small world networks.

Two important properties of scale-free distributions are that they do not have 
peaks and they decay at much slower rates than the corresponding Poisson and 

19  Note that this can also be interpreted as the fraction of vertices of degree k.

1
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normal distributions. The second property is especially important because it indi-
cates a higher probability that more extreme events may occur than can occur in the 
latter distributions. In this regard, an important example in the case of scale-free 
networks is the presence of vertices with exceptionally high vertex degrees, a situ-
ation that gives rise to highly connected “hubs” interconnected by relatively small 
numbers of edges, a rather extreme form of small world behavior to say the least.

Because of its form, depicting Eq. (1.69) as a log Pr( ) logk kversus  plot should 
result in a straight line if the distribution does follow a power law, at least asymptot-
ically. Proving that it does is not necessarily easy, since some values of k in the tail 
of the distribution may not satisfy the power law relationship. However, as pointed 
out by Newman among others [129], alternatives exist that provide a means for ac-
complishing this, although sometimes it requires removing some of vertex degrees 
that do not follow the power law.

1.3.4.3 � Topologies of CSN

As noted earlier, five papers have been published that address various aspects of 
similarity-based networks of CSs [168–172], all of which differ from the related 
work on power laws in CSs by Benz et al. [173] that predates these papers. Both 
of the latter reports have presented evidence of the small world behavior of CSNs 
and in some cases scale-free behavior as well. Because the edges of the CSNs are 
unlabeled, threshold graphs were generated for different similarity threshold values. 
Not surprisingly, statistical features related to vertex degree tend to decrease as the 
similarity threshold is raised as is nicely illustrated in Table 1.2 of reference [169].

Although this behavior seems intuitive, it can be rationalized as follows. Due 
to the central limit theorem [183], the set of similarity values associated with large 
compound DBs is normally distributed with a mean around, say for example, 0.50. 
Now arrange the set of similarity values in descending order and determine the 
corresponding cumulative probability distribution depicted in Fig. 1.15, where the 
abscissa corresponds to the threshold similarity value for a given CSN, and the or-
dinate corresponds to the fraction, fedge , of the n n( ) /−1 2  possible edges that can 
be drawn between the n compounds that constitute the vertices of the network. It is 
clear from the figure that for a threshold similarity value of 0.75 less than 10 % of 
the compounds will be connected directly. Even at a threshold similarity of 0.5 only 
about half the possible number of edges are present.20 In order to gain a sense of the 
magnitude of the problem, consider a DB of only n = 10 000,  compounds. In this 
case, the complete CSN would have ~ 50 million edges. However, even at a similar-
ity threshold value of 0.75 about 8 % of the total possible edges (~ 4,000,000 edges) 
will be formed. As this is more than 400 times the minimal number of edges needed 
to connect all of the vertices with one another (~ 10,000), it is certainly sufficient 
to introduce significant and interesting structure in the CSN. Hence, it easy to see 

20  This argument is, of course, oversimplified since it depends on the width (standard deviation) 
of the probability distribution.
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that expanding to a DB of say 200,000 compounds can prove to be a challenging 
enterprise.

The paper by Tanaka et al. [168] investigates small world phenomena in several 
libraries obtained directly from the ZINC DB [184] and from virtual libraries con-
structed from structurally diverse fragments. By contrast, the paper of Krein and 
Sukumar [169] undertakes a much more comprehensive analysis based on a number 
of different sets of CS descriptors applied not only to CSs but also to their subspaces 
associated with activity cliffs. A recent paper from Bajorath’s group [172] also ad-
dresses subnetworks associated with activity cliffs. Obviously, these analyses can 
be extended to other landscape features such as similarity cliffs (see Sect. 1.2.4).

The approximately scale-free nature of CSNs observed by Krein and Sukumar 
led them to infer the existence of hubs, highly interconnected regions of CSNs 
linked together by relatively sparse paths. Hubs represent regions of CS associated 
with different structural motifs. Hence, paths linking hubs may provide a means for 
addressing the problem of scaffold hopping, a process associated with the presence 
of similarity cliffs, which are more general since they include scaffold hops as a 
special case.

Another application of threshold CSNs is exemplified by the work of Bajorath’s 
group on network-like similarity graphs (NSGs). NSGs are threshold graphs they 
developed as a means for analyzing the SARs of large, diverse sets of compounds. 
Figure 1.16 provides an example of an NSG that characterizes the activities of a set 
of lipoxygenase inhibitors taken from the paper by Wawer et al. [170]. Compound 
potencies are color coded from red for the most active (1  nM) to green for the 
least active (100 µM). Links are drawn between compound pairs if their MACCS 
Tanimoto similarity exceeds 0.65. Additional annotation corresponds to SAR in-
dex scores (decimal values) associated with compound clusters. The index ranges 
from 0.00 to 1.00, the larger the value the more “discontinuous” a given compound 
cluster—activity cliffs correspond to high levels of discontinuity.

Fig. 1.15   Cumulative 
distribution curve show-
ing the fraction of possible 
edges formed as a function 
of similarity threshold value. 
The light grey dashed line 
corresponds to a threshold 
similarity value of 0.75
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1.3.5 � Exploring CSs

The concepts of structural similarity and CS, which are ubiquitous in medicinal 
chemistry, are finding a place in other chemically related sciences such as materials 
science and engineering [185]. A question that now arises is how can we develop 
procedures and algorithms that exploit these concepts to facilitate the discovery of 
new drugs and bioactive agents? Or, more appropriate to the book in which this 
chapter resides, how can these concepts be applied in food science and in aroma and 
flavor chemistry? Although the examples presented in this section do not represent 
a comprehensive set of the many possible methods that are available, they will at 
least provide a sample that should afford sufficient information to help answer this 
question.

1.3.5.1 � Comparing Compound DBs

It is obvious from previous discussion in this chapter that compound DBs play 
an extremely important role in many aspects of chemical informatics. Thus, it is 
important that methods exist for assessing their similarities and differences. As has 

Fig. 1.16   Network-like similarity graph (NSG) depicting the CS and activity relationships of a 
set of lipoxygenase inhibitors taken from the work of Wawer et al. [170]. Compound potencies are 
color coded as shown by the colored bar on the upper left hand side of the figure, red being the 
most active and green being the least active. Compounds are connected by an edge if the MACCS 
Tanimoto similarity value of a given compound pair exceeds 0.65. The decimal numbers associ-
ated with clusters of compounds correspond to SAR Index scores (See text for additional details)
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been noted by a number of investigators cell-based methods are particularly suited 
to this task.

For example, consider the compound DBs listed in Table 1.4 and discussed in 
Sect. 1.3.3.2. While the numerical values in the table provide a reasonable summary 
of the cell-based characteristics of each collection, they are not specific enough to 
afford a detailed comparative assessment, as they do not account for relationships 
between the cells in collections being compared. Pearlman and Smith [76] devel-
oped an approach that is able to address this deficiency, albeit only partially.

The procedure is as follows. First, a cell occupancy threshold is chosen; in the 
example discussed here, an occupancy value ≥ 1  is used, i.e., each occupied cell 
contains at least one compound. Obviously this is a potential source of error since 
an occupied cell in one collection could contain a single compound, while the cor-
responding cell in another collection could be occupied by, say, more than a 100 
compounds. Hence, the Pearlman–Smith (P–S) procedure only compares patterns 
of occupancy, but this may be sufficient when very large compound collections 
of comparable size are being compared, or if only a coarse-grained estimate is 
required. Carrying out the analysis for a sequence of occupancy thresholds, e.g., 
tocc ≥ ≥ ≥ …1 2 3, , , , would provide a measure of the sensitivity of the results to the 
chosen occupancy threshold, but such an approach to my knowledge has not been 
carried out.

The P–S procedure can be viewed in a manner that is entirely equivalent to 
that described earlier for binary FPs since the set of cells in a cell-based CS can be 
thought of as one long FP. How the cell-based CS is unfolded into the linear array 
of cells is unimportant; what is important is that all equivalent cell-based CSs that 
are compared be unfolded in exactly the same way. Occupied cells are labeled with 
a “1” if they are occupied by at least one compound and by a “0” if they are unoc-
cupied. Hence, any of the FP-based similarity coefficients can now be used to assess 
the similarity of any pair of compound collections or libraries described by the same 
cell-based CS. These “DB FPs” are on the order of 100,000 or more cells, and hence, 
many times larger than typical binary structural FPs that usually have less than 2000 
elements. And, as seen in Table 1.4, only a small fraction of the cells are occupied 
so that these FPs are very sparse. The discussion in Sect. 1.2.1.1 shows that they can 
be handled using run-length encoding, or a similar procedure. Additional compres-
sion, such as is the case for some large molecular FPs, is not necessary in this case 
since the number of DBs being compared is many times smaller than the number of 
molecular FPs typically dealt with in similarity search-based activities.

The P–S procedure defines two measures for assessing the similarity of two 
compound DBs, nominally A and B, residing in the same CS:

� (1.70)

These definitions are completely equivalent to the asymmetric Tversky measures 
given in Eqs. (1.12) and (1.13), respectively, and can be interpreted in a like manner, 
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but any of the similarity coefficients described in this work that are based on binary 
structural FPs can be used. Note that the two expressions given in Eq. (1.70) can 
also be interpreted probabilistically.

Since the set of cells in a cell-based CS are analogous to binary structural FPs, 
other similarity measures such as those based on the Tanimoto or Dice similarity 
coefficients given in Eqs. (1.8) and (1.9) can be used. Alternatively, the correspond-
ing dissimilarity coefficients given in Eqs. (1.21) and (1.22) also can be used. As 
noted in Sect. 1.2.1.3, the numerator of the Tanimoto dissimilarity coefficient is just 
the Hamming distance, which is a measure of the number of differences between 
the two DB FPs.

Table 1.5 provides an example of how the similarity measures given in Eq. (1.70) 
can be applied to a more detailed assessment of the similarity of pairs compound 
collections. For example, 0.885 of the occupied cells in the Combi collection are 
also occupied in the Diverse collection. Conversely, only 0.117 of the occupied cells 
in the Diverse collection are also occupied in the Combi collection, a clear example 
of the much greater diversity inherent in the Diverse collection. In contrast, 0.985 
of the occupied cells in the Micros collection are also occupied by the Diverse col-
lection, while only 0.028 of the occupied cells in the Diverse collection are also 
occupied in the Micros collection—not a surprising result given that only 516 cells 
are occupied by the entire Micros collection. Thus, although in relative terms the 
Micros collection is diverse, in absolute terms it does not compare with that of the 
Diverse collection.

1.3.5.2 � Subset Selection and Compound Acquisition

Subset Selection  Subset selection is used primarily for assembling diverse 
subsets of compounds for HTS campaigns. Another form of subset selection called 
similarity searching or LBVS also requires activity data, albeit on a small subset of 
compounds, as will be discussed in Sect. 1.3.5.4. Hence, subset selection usually 
takes places in early screening while similarity searching or LBVS is typically used 
in subsequent follow-on screening activities. Because in the former case activity 
data are generally unavailable, constructing appropriate subsets of compounds for 
the initial phases of an HTS campaign can be challenging [186–189].

While there are many variations, the underlying strategy for generating initial 
screening sets almost always relies on maximizing their diversity by minimizing 

Table 1.5   Comparison of percent occupancies of compound collections in six-dimensional 3-D 
BCUT chemical space based on the P–S procedure
A\B Diverse Combi MDDR Micros
Diverse 11.7 43.8 2.8
Combi 88.5 85.2 6.0
MDDR 78.9 20.3 44.0
Micros 98.5 28.3 86.6

See Table 1.4 for details of compound collections. Cell occupancies ≥ 1
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the similarity (or maximizing the dissimilarity) of the compounds in the putative 
screening set. It is important to note that unlike similarity or dissimilarity, which 
are pairwise measures, diversity is a population-based measure associated with the 
dissimilarity of the entire subset of compounds [10, 41]. In this regard, a number 
of authors have addressed the issue of how to estimate the diversity of a large col-
lection of compounds [190–192]. Willett [193, 194] and Agrafiotis [191] have pre-
sented descriptions of many aspects of diversity-related methods and procedures. 
An interesting discussion of the early history of the concept of molecular diversity 
was published in 2001 [195].

Although the field of molecular diversity is vast, the focus in this work is on two 
approaches: on cell-based sampling of CS [76] and on a maximum dissimilarity/
distance algorithm called “Dfragall” [63]. Here the terminology MaxD will be used 
in place of Dfragall to indicate the generality of the procedure. Both approaches 
generally use 2-D structural information, although the use of 3-D BCUTS does 
account, albeit in a somewhat limited fashion, for 3-D information. Matter has pre-
sented a more detailed comparison of the role of 2-D and 3-D descriptors in select-
ing diverse subsets of compounds [196]. As will be seen in the following subsection 
on compound acquisition, the cell-based approach is clearly superior in its ability 
to identify and fill so-called “diversity voids,” which can be important in a number 
of instances.

A variety of cell-based sampling schemes can be employed in order to obtain 
a subset of the desired size and diversity [76, 78]. These schemes include simple 
sampling, where a single compound is obtained from each occupied cell, threshold-
based sampling, where the number of compounds selected from each cell is less 
than (if the cell has fewer compounds than the threshold value) or equal to the 
threshold value, proportional sampling, where the size of the sample is propor-
tional to the number of compounds in the cell, or property-based sampling, where 
compounds are selected based on a range of values for one or more properties such 
as molecular weight or logP. Property-based sampling can, of course, be applied 
simultaneously with any of the other sampling procedures. If the size of the desired 
sample is less than the number of compounds obtained by a given sampling proce-
dure, either fewer cells can be sampled or the number of compounds per cell can 
be reduced. In the former case, since neighborhood relations among cells are not 
considered in cell-based CSs, a random selection of sampled cells could be con-
sidered. By contrast, the subset selection procedure based on MaxD is much more 
computationally demanding and does not explicitly fill diversity voids, although 
it may inadvertently do so to some degree. In the MaxD case, a typical selection 
procedure is shown in Table 1.6.

An example that illustrates, but of course does not generally prove, the superior 
performance of cell-based compared to dissimilarity-based subset selection is de-
picted in Fig. 1.17. The computations were carried out in 3-D BCUT CS based on 
the Diverse DB (see Table 1.4) described earlier. The cyan dots in the 2-D projec-
tion of the CS depicted in Fig. 1.17a, b represent the compounds in the DB, while 
the yellow dots represent the compounds obtained in each of the sampling proce-
dures. In the MaxD subset selection depicted in Fig. 1.17a, only about 36 % of the 
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original 18,371 occupied cells in the associated cell-based CS are occupied by at 
least one sampled compound. By contrast, 100 % of the available cells are occupied 
in the cell-based procedure by a similar number of compounds to that obtained by 
the MaxD algorithm, which is not surprising since the cell-based procedure is based 
on sampling each cell of the CS. This affirms, but certainly does not prove, what is 
intuitively expected, namely, that the cell-based procedure results in broader sam-
pling than the corresponding MaxD procedure.

Compound Acquisition  There are two general goals associated with compound 
acquisition—enhancing the diversity of an existing collection and maintaining its 
integrity. While the focus is generally on the former, the latter is also important 
due to the rate at which compounds can be used up in assays and related activities 
or can decompose over time. Enhancing diversity usually involves filling unoc-
cupied or partially occupied regions of CS. Maintaining DB integrity, on the other 

Dissimilarity-Based Cell-Based
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Fig. 1.17   Comparison of subset selection procedures based on compounds in the Diverse collec-
tion depicted in cyan (see Table 1.4 and Sect. 3.6.1 for details). Yellow dots represent compounds 
obtained by the subset selection procedures: a dissimilarity-based selection. b Cell-based subset 
selection. (Figure kindly provided by Veer Shanmugasundaram)

 

Table 1.6   MaxD subset selection procedure
Step Procedure
1 Choose a compound, x1, at random from the compound collection of interest
2 Determine x2, the compound most dissimilar to or most distant from x1

3 Determine x3, most dissimilar to or distant from compounds x1 and x2

4 Repeat the process until the desired number of compounds is obtained or the chosen 
dissimilarity or distance value falls below the chosen threshold value or reaches a plateau
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hand, involves replenishing DB compounds that have become depleted or, if exact 
replacements are unavailable providing compounds that are, at least to some degree, 
similar to the original ones. A number of papers addressing compound acquisition 
have been published over the years, a sampling of which is given by the following 
references [162, 197–199].

The following is a brief description of the acquisition process based on the work 
reported in [162]. It illustrates a number of the general issues that must be dealt 
with, but since there are many ways to do so, what is given here should only be 
considered a rough outline of an acquisition process. The papers just cited should be 
consulted for additional examples. Table 1.7 provides a summary of the compound 
acquisition procedure.

A number of issues arise in step-1, especially when the purchase of large sets 
of compounds is desired. Some of which include the presence of compounds with 
undesirable features (e.g., nitro groups) in a vendor’s collection and whether the 
compounds are “Lipinski compliant,” i.e., obey the rule of five [200]. Although the 
rule of five was intended primarily to address potential drug delivery and bioavail-
ability issues, it has become a surrogate for drug likeness, and its application has far 
exceeded the developers’ initial intentions as to its domain of applicability. A recent 
procedure suggests a modification of the rule of five that increases its robustness to 
small differences in the parameter values, although it does not extend its domain of 
applicability [201]. In a related study, Bickerton et al. [202] developed a similar, but 
more comprehensive procedure that takes account of additional features, namely, 
molecular polar surface area, number of rotatable bonds, number of aromatic rings, 
and number of structural alerts, typically associated with drug likeness. In addition, 
diversity and structural novelty of a collection, timely availability of compounds, 
and compound purity are other desirable characteristics of vendor compound col-
lections.

In step-2, there are several choices of methods to carry out the initial selection of 
compounds. The cell-based approach is employed here because of its computational 
speed and ease of application. Figure 1.18 depicts a model of a cell-based sampling 
scheme similar, but not algorithmically identical, to that implemented in Diverse 
Solutions™ [78] (cf. [63]) and presented in a way that is designed to clarify the 

Table 1.7   Compound acquisition procedure
Step Procedure
1 Identify vendor collections from which to purchase compounds and preprocess them to 

remove “undesirable” compounds
2 Generate a cell-based chemical space containing the combined original compound DB 

and appropriate vendor DBs
3 Select the initial set of vendor compounds by filling diversity voids
4 Additional diversity assessment of the initially selected set of vendor compounds using  

a modified MaxD algorithm (see Table 1.8)
5 Apply compound filters that were developed based on the knowledge of experienced 

medicinal chemists
6 Direct review by medicinal chemists
7 Submit compounds for purchase
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compound selection process. A two-dimensional BCUT CS is generated by combin-
ing (using set-theoretic union) the set of compounds in the original compound DB, 
ODB , and the compounds in the set of vendor DBs V V ,V ,V  DB DB DB DB= …{ }1 2 3 , , 
where VDB

i
 is the set of compounds in the ith preprocessed vendor DB:

� (1.71)

�M is then used as a basis for constructing a CS that includes all of the original 
and preprocessed vendor compounds, which can be written symbolically as 
� �M CS(M)⇒ .

Figure 1.18a shows the distribution of the original set of compounds in the newly 
constructed CS. Likewise, Fig.  1.18b shows the distribution of the vendor com-
pounds in the same CS. In the cell-based approach, empty cells as well as those with 
very few compounds, say less than two or three, can be considered to be diversity 
voids. Such cells are suitable candidates for compound acquisition. In the exam-
ple in Fig. 1.18a, there are four empty cells and three cells containing single com-
pounds, all shaded in light grey, which can be classified as diversity voids in this 
model DB. Now compounds from the combined vendor DB depicted in Fig. 1.18b 
are used to fill the diversity voids in in Fig. 1.18a until the cell occupancy of all cells 
in the DB is at least two. This is illustrated in Fig. 1.18c, where the cells shaded in 
light gray indicate diversity voids that remain after compound acquisition. As seen 
in the figure, some of the empty cells are now populated with vendor’s compounds 
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Fig. 1.18   Schematic depiction of a model 2-D cell-based selection process for compound acquisi-
tion (Cf. [162]). In a unfilled circles represent compounds in the original compound DB; in b filled 
circles represent compounds in the combined, pre-processed vendor DB; c depicts the augmented 
compound DB after the initial selection process has been completed. Cells shaded in light grey rep-
resent diversity voids for cells containing fewer than two compounds. (See text for addition details)
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and some remain unoccupied, as no vendor compounds existed for those cells. The 
third cell from the left in the bottom row of Fig. 1.18c, which was unoccupied origi-
nally, is now occupied by a single vendor compound since only one such compound 
was available to fill that cell as seen in Fig. 1.18b.

The basic idea here is to populate unpopulated cells and those of low occupancy 
with commercially acquired compounds. As was the case in subset selection, there 
are a number of ways in which cells can be populated with new compounds, the 
simplest being to populate all unpopulated cells with at least one compound. While 
such an approach is straightforward, it is not, in general, a practical strategy. An ex-
amination of Table 1.4 clearly shows why this is the case. In that example, the 6-D 
CS contains 117,649 cells, 18,371 of which are occupied by at least one compound. 
This leaves 99,278 empty cells. Even if a set of sufficiently diverse compounds 
were available for purchase the cost would be significant—at an average price of 
$ 25 per sample, this would amount to nearly $ 2.5 million, an amount that would 
test the budget of all but the largest pharmaceutical companies. Thus, additional 
strategies need to be implemented to address compound acquisition in a way that 
ensures an optimal, albeit incomplete, selection is made [162].

Although the number of cells in cell-based CS is large, the hyper-dimensional 
volume of each of the cells is also large. Hence, compounds within a given cell may 
be quite dissimilar. In contrast, compounds located near a common boundary be-
tween two cells may be quite similar even though they reside in different cells ( vide 
supra). Because of this type of “idiosyncratic” behavior associated with cell-based 
CSs, and additional level of similarity analysis may be warranted to ensure that the 
selected compounds are as dissimilar to each other as possible. This can be accom-
plished in step-4 using a modified form of the MaxD (“Dfragall”) algorithm [63] 
based on Euclidean distance computed with respect to the BCUT coordinates or, as 
is traditionally done in the algorithm, using some form of similarity/dissimilarity 
measure, a procedure that further reduces the number of compounds.

An alternative approach to that described above has been described by Lajiness 
[63]. It is a variant of the MaxD (“Dfragall”) algorithm presented earlier and is sum-
marized in Table 1.8. One clear deficiency of this algorithm is that it is difficult to 
fill specific diversity voids.

In step-5 of Table 1.7, a set of compound filters based on the knowledge of expe-
rienced medicinal chemists is applied further reducing the size of the set of potential 
compounds for acquisition. Examples of these filters include a number of com-
pound characteristics such as number of rings (2–4), molecular weight (200–400), 

Table 1.8   Diversity assessment using a modified MaxD subset selection procedure
Step Procedure
1 Determine vendor compound, x1, that is most dissimilar to all of the compounds in the 

original compound database (C-DB) and add it C-DB giving C-DB + x1

2 Determine the vendor compound, x2, that is most dissimilar to C-DB + x1 and add it 
yielding C-DB + x1 + x2

3 Repeat steps 1 and 2 until the desired number of compounds is obtained or until the 
dissimilarity value falls below a specified threshold
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number of rotatable bonds (0–5), logP (− 1 to 2). Finally, in step-6, medicinal chem-
ists directly evaluate the remaining molecules [116], and those that survive this final 
review are submitted for purchase.

1.3.5.3 � Similarity Searching and LBVS

Basically, there are three in silico approaches used to the identify compounds with 
potential biological activity all of which fall under the rubric of virtual screening 
methods:

•	 Ligand–protein docking
•	 Similarity searching based on 2-D molecular descriptors (2-D LBVS)
•	 Similarity searching based on 3-D molecular descriptors (3-D LBVS)

A number of edited volumes [164, 203–205] and reviews [104, 206–215] have ad-
dressed many aspects of virtual screening; and Parker and Bajorath have discussed 
an important but rarely touched upon issue concerning the effect of errors on both 
HTS and LBVS [216].

Ligand–Protein Docking21  Docking involves two basic steps, finding an optimal 
structure of the ligand–protein complex and scoring, in some fashion, the fitness 
of that complex. An advantage of this approach is that it does not require any prior 
knowledge of biological activity. On the other hand, it does require knowledge of 
the 3-D structure of the target protein, or of some closely related protein that can 
serve as a model of the desired target protein, to which the ligand can be docked. 
However, this is just the tip of the iceberg, as there are many complex issues that 
must be dealt with in ligand–protein docking including protein flexibility, ligand 
sampling, and effective scoring functions. In addition, if biological activity requires 
specific changes in protein structure induced by ligand binding and/or if the solution 
environment plays a crucial role in the functioning of the protein, then these added 
complications must also be addressed. And there are other factors some known and 
some unknown that can further complicate the docking process [217–219].

Similarity Searching  There are two types of similarity searching procedures—
also called LBVS—that are classified according to the dimensionality of their fea-
ture descriptors. 2-D methods employ structural FPs or vector-based descriptors as 
described in Sects. 1.2.1 and 1.2.2, while the corresponding 3-D methods involve 
matching pharmacophores [153, 220–223] or molecular shapes [224–226]. Since 
3-D methods appear to contain more structural information such as stereochem-
istry, which in many cases is important for activity, it is surprising that 2-D meth-
ods tend to outperform or at least perform comparably to 3-D methods. There are 

21  There are, of course, other docking processes that are of importance in biology including pro-
tein–protein, ligand–nucleic acid, nucleic acid–nucleic acid docking to name a few. Ligand–pro-
tein docking is highlighted in this work because of its importance in drug discovery and its wide-
spread application in that field.



1  Introduction to Molecular Similarity and Chemical Space 65

many possible reasons for this observation including the fact that the topological 
structure encoded in 2-D representations may more than compensate for missing 
3-D information [10, 18, 88, 227, 228]. In addition, determining the ensemble of 
biological active conformations can be a difficult and uncertain task [229], and the 
many approximations made to increase computational efficiency and reduce com-
puting time, also contribute to the somewhat problematic performance of 3-D-based 
approaches. Hence, in keeping with the discussion in the rest of this chapter, the 
focus here is on the simpler and faster 2-D LBVS methods.

2�-D LBVS22  Although Stanton et al. [230] were, perhaps, the first group to explore 
the application of similarity-based techniques in HTS, many examples of LBVS 
have been published since then, especially in the first decade of the twenty-first 
century as can be seen from the following references [32, 33, 86, 104, 231–233] 
and those cited at the beginning of Sect. 1.3.5.3.

As depicted in Fig. 1.19, LBVS is typically an iterative process. In step-1, an 
active reference set of compounds is identified in some manner, usually in an HTS 
campaign. In step-2, the similarity values with respect to each of the actives in R* 
are computed. Several cases arise in this regard. First, consider the simplest case of 
a single active reference compound, which may obtain in many instances, at least 

22  See Sect. 1.2.3 for related discussion.

Fig. 1.19   Ligand-base virtual 
screening procedure
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in the initial iteration of the LBVS process. The compounds are then arranged in 
decreasing order of their similarity values, or in ascending order by their ranks, one 
being the highest rank. If, on the other hand, a distance-based measure of similarity 
is used, the list of compounds will be ordered from smallest distance to the largest 
distance value. The rank ordering will remain the same, one again being the highest 
rank. A subset of the top-“scoring” compounds (i.e., compounds with the largest 
similarity or smallest rank values) is selected. This can be accomplished in two 
ways, number based or value based. In the former case, a number of compounds, 
say the top 100, are selected for follow-on screening regardless of their similarity 
values or rankings, whereas in the latter, a subset of compounds all of whose simi-
larity values or rankings with respect to R* are less than or greater than, their respec-
tive threshold similarity or ranking values. Regardless of how the compounds are 
selected, they are screened yielding a new set of actives, and the process is repeated.

This, however, raises a new issue, namely, how are multiple active reference 
compounds handled in the LBVS process? There are several approaches to this 
problem. One way is through the use of group fusion described in Sect. 1.2.3.2, 
which is ideally suited to deal with this problem since multiple active reference 
compounds are an inherent feature of the method. And, as discussed in Sects. 1.2.3.2 
and 1.2.4, group fusion exhibits excellent performance as a means for identifying 
new actives. Interestingly, group fusion based on the fusion maximum similarity or 
minimum distance values is essentially identical to an approach called list-based 
searching [76, 78, 86].

This completes step-3 regardless of whether singleton or multiple active refer-
ence compounds were dealt with in that step. Obtaining a subset of the compounds 
from the resultant ordered list using either number- or value-based selection then 
completes step-4. In step-5, the resulting set of compounds is then screened. At this 
point, a choice must be made. If, after screening is completed, it is determined that a 
sufficient number active compounds of appropriate quality have been obtained, the 
process may then move to step-6 where the hit-to-lead phase of the drug discovery 
process can commence, otherwise the process moves back to step-1 and the process 
is repeated. It is well to note that identifying active reference sets may also include 
additional assays designed to more firmly establish the biological or pharmaco-
logical characteristics of the compounds, and thus to help in determining whether 
compounds active in HTS should be considered further.

Aggregating the Results of Individual Similarity Searches  As discussed in 
Sect. 1.2.3, combining (“fusing”) similarity values, which falls within the class of 
data aggregation methods [97], has been shown to yield improved results in simi-
larity searches. Generally, fusion methods combine similarity (distance) values or 
rankings to yield new fused values prior to any similarity search. An alternative 
approach is to carry out multiple similarity searches on the same set of active refer-
ence compounds using different similarity or distance measures and then combine 
the sets of compounds obtained in this way [86], employing what can be called post-
search aggregation (PSA). Although related, this differs from similarity fusion that, 
as discussed in Sect. 1.2.5.1, combines the similarity values and then carries out a 
similarity search using the fused values.
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A difficulty with PSA methods is that the subset of compounds retrieved in each 
of the similarity- or distance-based searches may differ significantly. As an example, 
consider the family of three subsets of compounds retrieved by three corresponding 
similarity or distance-based searches of a compound DB, i.e.,

� (1.72)

where the size of each of the subsets may be taken to be the same and can be de-
termined by a number- or value-based procedure, or the sizes can, if desired, all be 
different. It is possible and, in fact, occurs frequently that some compounds may 
be found in more than one of the subsets. The Venn diagram depicted in Fig. 1.20 
indicates this. As will be seen in Eq. (1.73), the smaller the “overlap” among the 
subsets, as measured by set intersection, the broader the sampling of the CS repre-
sented in a compound DB.

The basic assumption underlying this approach is that multiple searches using 
different similarity or distance measures will give rise to higher enrichment factors 
in a common assay than would be obtained using a single search method. To see 
this, consider the background enrichment factor for a given assay, EBackground, which 
is basically the estimated fraction of active compounds in a DB, an estimate usually 
arrived at by the assay of compounds randomly selected from the DB.

When considering all three subsets, the breadth or diversity of the search can be 
defined as

� (1.73)

which satisfies 0 1≤ ≤∆ , where “Card” refers to the cardinality (i.e. number of 
elements) in a given set (see also footnote a in Table 1.1). The union of the three 
subsets is the set of compounds unique to all three subsets. Similar expressions 
can be constructed for the pairwise case by removing the extraneous subset(s).  
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Fig. 1.20   Venn diagram rep-
resenting the possible joint 
subsets obtained from three 
sets of compounds T1, T2, and 
T3 retrieved by three different 
similarity or distance-based 
search methods of a com-
pound DB
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The singleton case is trivial since ∆ = 1 . As can be seen from Eq.  (1.73), as the 
breadth approaches unity, i.e., as ∆ → 1 , the sampling of CS increases reaching 
a maximum at unity. However, this procedure is of real value only if it leads to 
enhanced enrichment factors. The enrichment factor for the three sets of retrieved 
compounds can be obtained as follows:

The fraction of actives obtained from the three samples is given by

� (1.74)

where the asterisks in the numerator denote subsets of actives, such that 
T T for  i i i* , ,⊆ = 1 2 3   and ‘Card’ refers to the cardinality, that is the number of 
elements in the sets. The enrichment factor is then given by

� (1.75)

where fbackground  is the fraction of actives obtained from a random sampling of the 
compound collection of interest.

Interestingly, the procedure appears to be a combination of group fusion (i.e., 
list-based searching) and similarity fusion. The reasons, the first two of which are 
associated with group and similarity fusion, are as follows: (1) multiple active refer-
ence compounds are used, (2) the most similar (closest) compounds to each active 
reference compound are retained, and (3) multiple similarity measures are applied.

This approach was described in Shanmugasundaram et  al. [86], who investi-
gated its application to a number of targets including those associated with anxiety, 
Alzheimer’s disease, and pathogenic bacteria. The data provided below are based 
on a bacterial enzyme target and a set of 12 well-characterized active reference 
compounds. A distance measure based on three different sets of BCUT descrip-
tors and a structural FP procedure based on the Tanimoto similarity coefficient 
were all employed in the analysis, yielding a breadth value of ∆ = =132 159 0 83/ . .  
This shows that the approach covered a wider region of CS than could have been 
achieved using a single similarity (distance) measure. Moreover, the ratio of the frac-
tion of actives in the three samples, fsample /= =23 132 0 174. , to the fraction of actives 
obtained from a random sample of the database, fbackground ≈ 0 04.  yields an enrichment 
of EF ≈ =0 174 0 04 4 4. . . ./  Thus, nearly four and a half times as many actives were 
obtained than would be expected by randomly sampling and screening compounds 
in the DB—more details can be obtained in the paper.

While this enhancement may not seem like a significant improvement over back-
ground, it is if a Las Vegas model of drug discovery is considered. As is true for 
many of the gambling activities in Las Vegas such as roulette and craps, the odds of 
winning are “shaved” slightly in the House’s favor. Given that enough people place 
bets, statistically the House will almost certainly win over time. This has a close 
parallel to the HTS in drug discovery. If the odds of finding actives are even slightly 

fsample
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better than those for random screening, and if enough compounds are screened, 
active compounds will almost certainly be found given that the compound DB is 
not highly biased, that is filled with biologically unsuitable compounds. Even an 
enhanced enrichment factor of two can still yield actives, but the smaller the factor 
the more compounds that need to be screened.

Target (Activity) Class-Specific Similarity Searching  The basic idea behind tar-
get (activity) class-specific23 similarity searching is that particular feature descrip-
tors may exhibit some bias for specific classes of bioactivity such as, for example, 
HMG Co-A Reductase inhibitors, COX2 inhibitors, and 5HT (serotonin) receptor 
ligands. Since work in this area is based primarily on molecule-independent struc-
tural FPs, their bit positions can be unequivocally associated with specific structural 
features. The probability that a given feature is associated with a specific activ-
ity is estimated essentially by computing its relative frequency of occurrence in 
the set of molecules associated with that target class. Bits associated with features 
having high probabilities of occurrence, which may be called characteristic bits, 
are generally, but not always, weighted in some fashion to further emphasize their 
importance in subsequent similarity analyses; weighting can be accomplished in a 
number of ways ( vide infra).

This approach to target class-specific similarity searching, called reverse finger-
printing by Williams [234], has also been carried out in a number of other labora-
tories [235–242]. The application of methods utilizing “nontraditional” structural 
fragments [234, 237, 239] have shown promise, but none of the earlier methods 
including these have addressed the issue of interdependencies among structural de-
scriptors. Two papers from the Bajorath group [240, 241] that show promise have 
taken steps in this direction.

Based on a growing amount of data that show that compound and target promis-
cuity is more ubiquitous than had earlier been suspected may present significant 
challenges to the development of robust target class-specific similarity searching 
that is difficult to overcome (See Sect. 1.3.1 for further discussion).

1.4 � Summary and Conclusions

Over the past two decades, computational methods have been playing an ever-in-
creasing role in drug discovery research due especially to the burgeoning amount 
of data being generated by ever faster and more powerful experimental techniques. 
Three concepts, molecular similarity, CS, and activity/property landscapes, in some 
fashion underlie all of these methods—the current work addresses molecular/struc-
tural similarity and CS, two important pillars supporting the edifice of chemical 
informatics.

23  In order to simplify discussion, the terminology “target class specific” will be used in the 
remainder of this section.
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Similarity is probably one of the most ubiquitous concepts in many human en-
deavors. Hence, it is no surprise that it also plays a significant role in many aspects 
of chemical informatics. And, as is essentially true in all conscious and subcon-
scious applications of the concept, however, what precisely it is remains somewhat 
a mystery since “similarity like pornography is difficult to define but you know 
it when you see it” [10]. The inherent subjectivity of similarity poses significant 
problems in chemical informatics since its application in this field is, in many cases, 
carried out computationally. Two key issues that then must be addressed are how 
to represent the relevant chemical or molecular information and how to compute 
an effective measure of similarity from that information. This has been covered ex-
tensively for a variety of 2-D similarity measures in Sect. 1.2 that, due primarily to 
their generally higher computational speeds, are by far the most popular similarity 
measures in use today. Surprisingly, perhaps, 2-D similarity measures perform com-
parably or better than many 3-D measures in a variety of cheminformatics tasks, 
one reason along with their higher computational speeds that accounts for their 
popularity.

An interesting extension of similarity-based methods that shows promise in-
volves combining similarity values using data fusion techniques that have been 
applied in many engineering applications. In some cases, fused similarity values 
have been shown to yield significantly improved results. This is especially true 
of an approach called group fusion, which is based on computing the similarity of 
compounds in a large DB with respect to a number of reference compounds using a 
single similarity measure. The similarity or rank values for each DB compound are 
then fused to yield a single similarity score or ranking. The resulting list provides 
a set of compounds such that those of higher rank can be selected, for example, for 
follow-on screening.

A discussion presented in Sect. 1.2.4 suggests a rationale, based on the surprising 
prevalence of similarity cliffs, as to why group fusion appears to perform better in 
similarity searches than the use of a single similarity measure or the fusion of mul-
tiple similarity measures, both carried out with respect to a single reference com-
pound. This is understandable since the relatively common occurrence of similarity 
cliffs, which arise when two structurally dissimilar compounds have similar activi-
ties in a given assay, suggests that active compounds may in many cases be more 
widely dispersed through CSs than heretofore had been suspected. Moreover, the 
fact that the more dissimilar the set of reference compounds the better the results of 
group fusion similarity searches supports this contention. An unresolved issue with 
this approach to similarity searching is the need for multiple active reference com-
pounds, a situation that may not be realized in the initial phase of an HTS campaign.

Aside from its computational uses in chemical informatics, similarity also plays 
a significant perceptual role in many aspects of chemistry. This clearly is the case 
in medicinal chemistry where chemists address the question of “what to make next” 
by inferring new structures for synthesis based on the structures of active and inac-
tive compounds considered earlier. There are, of course, many other such examples 
one can think of, all of which raise the issue as to whether computed similarities are 
comparable to those perceived by chemists.

As discussed in Sect. 1.2.5, the similarity scale, which generally is taken to lie on 
the unit interval [0,1] of the real line, is not uniform in terms of human perception. 
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Humans excel at comparing very similar objects, just as chemists excel at recogniz-
ing very similar molecules. However, at some point, as objects become less and 
less similar, humans can no longer discern how dissimilar they are to one another, 
only that they are very dissimilar. This is not entirely the case computationally since 
computers make no value judgments; they implement specific algorithms, although 
a caveat discussed in Sect. 1.2.1.4 shows that computational algorithms can also 
exhibit idiosyncratic behaviors such as the size-dependent behavior of FP-based 
similarity coefficients.

A possible reason for this disparity between chemists’ perceived similarity val-
ues and those obtained computationally is seen in the expressions for Tanimoto 
similarity and dissimilarity given in Eqs. (1.8) and (1.21), respectively. Since the 
denominators in both equations are identical, it is their respective numerators that 
determined the difference in these two coefficients. In the case of similarity, the nu-
merator is based on the number of features in common in the two molecules, while 
in the case of dissimilarity, the numerator is based on the number of features unique 
to each molecule. Unique features, that is, features in one molecule but not in the 
other, are more difficult for humans to perceive than features common to both mol-
ecules. Thus, cases of low similarity (few features in common) or high dissimilarity 
(more unique features) are difficult for humans to perceive. Clearly, the perceptual 
issue goes beyond the mathematical complementarity exhibited by Eq. (1.19). Im-
portantly, these arguments provide a mechanism that may account for the limited 
correspondence between computed and perceived similarities and dissimilarities.

The notion of CS is closely related to that of similarity. Section 1.3 provides 
a discussion of three possible representations of CSs, namely, coordinate based 
(Sect. 1.3.2), cell based (Sect. 1.3.3), and graph or network based (Sect. 1.3.4). The 
first two are well known in the chemical informatics field. The last is not, although 
networks are being employed to describe a growing number of chemically related 
systems such as those, for example, describing protein–protein interactions, drug–
target relationships, and pharmacological space. The network-based approach, 
which opens up new ways to investigate the nature of CSs, has two distinct advan-
tages, namely, it is inherently discrete and it provides an intuitive representation of 
these spaces. Unfortunately, very few papers describing network-based representa-
tions of CSs have been published, but the power of this approach would seem to 
auger well for its future application in chemical informatics. In this regard, a new 
graph-based DB scheme that may provide a powerful approach for treating CSs, is 
gaining recognition in the computer field.

Each of the three CS representations has its strengths and weaknesses with re-
gard to the types of applications for which they are best suited. A number of ex-
amples such as:

•	 Comparing compound DBs
•	 Selecting chemically diverse subsets
•	 Augmenting DBs through compound acquisition
•	 Similarity searching—2-D LBVS

are presented in Sect. 1.3.5 to illustrate this point.
The need for computational methods that can characterize relationships among 

sets of molecules is clearly manifest, especially in this age of massive and rap-
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idly growing compound DBs. And although imperfect almost by their very nature, 
similarity-based methods provide the means for addressing this critical need. These 
methods also provide the means for constructing CSs that help to unify the chemical 
universe in an intuitive and computationally powerful way. Both notions are now 
beginning to be applied in fields outside of chemical informatics such as materials 
science and engineering laying the groundwork for future applications in food sci-
ence and related fields.
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