
Explaining Violation Traces with Finite State Natural
Language Generation Models

Gordon J. Pace and Michael Rosner

University of Malta, Malta
{gordon.pace,mike.rosner}@um.edu.mt

Abstract. An essential element of any verification technique is that of identify-
ing and communicating to the user, system behaviour which leads to a deviation
from the expected behaviour. Such behaviours are typically made available as long
traces of system actions which would benefit from a natural language explanation
of the trace and especially in the context of business logic level specifications. In
this paper we present a natural language generation model which can be used to
explain such traces. A key idea is that the explanation language is a CNL that is,
formally speaking, regular language susceptible transformations that can be ex-
pressed with finite state machinery. At the same time it admits various forms of
abstraction and simplification which contribute to the naturalness of explanations
that are communicated to the user.

1 Introduction

The growth in size and complexity of computer systems has been accompanied by an
increase in importance given to the application of verification techniques, attempting to
avoid or at least mitigate problems arising due to errors in the system design and imple-
mentation. Given a specification of how the system should behave (or, dually, of what
the system should not do), techniques ranging from testing to runtime verification and
model checking attempt to answer the question of whether or not the system is correct.
One common issue with all these techniques, is that a negative answer is useless unless
accompanied by a trace showing how the system may perform leading to a violation of
the expected behaviour.

Consider, for example, the specification of a system which allows user to log in, as
shown in Figure 1, which states that “after three consecutive failed user authentications,
users should not be allowed to attempt another login”. A testing or runtime verification
tool may deduce that the system may perform a long sequence of events which lead to a
violation. Although techniques have been developed to shorten such counter-examples
[ZH02], such traces may be rather long, and using them to understand the circumstances
in which the system failed to work as expected may not always be straightforward.

In the case of implementation-level properties and traces, tools such as debuggers
and simulators may enable the processing of long traces by developers to understand
the nature of the bug, but in the case of higher-level specifications, giving business-
logic level properties, such traces may need to be processed by management personnel.
For example, a fraud expert may be developing fraud rules to try to match against the
behaviour of known black-listed users, and may want to understand why a trace showing

B. Davis et al. (Eds.): CNL 2014, LNAI 8625, pp. 179–189, 2014.
c© Springer International Publishing Switzerland 2014

180 G.J. Pace and M. Rosner

Logged out
(0 attempts)start

Logged out
(1 attempt)

Logged out
(2 attempts)

Authentication
(0 attempts)

Authentication
(1 attempt)

Authentication
(2 attempts)

User
Disabled ERROR

Logged in

request password

request password

request password

good password
bad password

good password

bad password

good password

bad password

read file

write file

logout

request password

Fig. 1. An automaton-based specification

the behaviour of such a user does to trigger a rule he may have just set up. In such cases,
a natural language explanation of such a trace would help the expert to understand better
what is going wrong and why.

In this paper, we present the use of finite state natural language generation (NLG)
models to explain violation traces. We assume that the basis of the controlled natural
language used to describe such behaviour is given by the person writing the specifica-
tion, by articulating how the actions can be described using a natural language, and how
they can be abstracted into more understandable explanations. We present a stepwise re-
finement of the process, explaining how a more natural feel to the generated controlled
natural language text can be given using finite state techniques.

Although the work we present is still exploratory, we believe that the approach can
be generalised to work on more complex systems, and it can give insight into how far
out the limits of finite state NLG techniques can be pushed.

2 The Roles of NLG and CNL

In this section we illustrate a solution to the problem of generating reasonably natu-
ral explanations from sequences of the above type in a computationally efficient way.
The two critical ingredients are (i) NLG, which, in a general sense, provides a set of
techniques for generating text flexibly given an abstract non-linguistic representation of
semantic content, and (ii) CNLs which, in a nutshell, are natural languages with a de-
signer element — natural in the sense that they can be understood by native speakers of
the “parent” language and designed to to be simpler than that language from some com-
putational perspective such as translation to logic or, as in this paper, NLG. An excellent
survey and classification scheme for CNLs appears in Kuhn [Kuh14]

Explaining Violation Traces with Finite State Natural Language Generation Models 181

The final output of NLG is clearly natural language of some kind. The nature of the
process that produces that output is somewhat less clear, in that there are still many ap-
proaches though most research in the area is consistent with the assumption that that it
includes at least the stages of content planning (deciding what to say), content packaging
(packaging the content into sentence-sized messages), and surface realisation (construct-
ing individual sentences). These three stages are linked together in a pipeline, according
to the architecture proposed by Reiter and Dale [RD00].

The complexity of NLG arises from fact that the input content severely underdeter-
mines the surface realisation and that there are few guiding principles available to narrow
the realisation choices. Consequently, the process is even more nondeterministic than the
inverse process of of natural language understanding where at least it is possible to ap-
peal to common sense when attempting to choose amongst competing interpretations.
With NLG, some dimensions of complexity must be sacrificed for the computation to
be feasible.

In this paper, the sacrifice comes down to a choice concerning two sets of languages:
(i) that which expresses the content, which we will call the C language, and (ii) a se-
quence of languages in which explanations are realised that we will call E1, E2, etc. C is
a form of semantic representation language, whilst E1, E2, . . . En are CNLs in Kuhn’s
sense.

In both cases, we assume that both C and Ei languages are regular languages in the
formal sense. This has a number of advantages: the computational properties of such
languages are well understood, and we know that algorithms for parsing and generation
of are of relatively low complexity. Additionally, we can express linguistic processes as
relations over such languages that can be computed by finite-state transducers. Elemen-
tary transductions can be composed together to carry out complex linguistic processing
tasks. Using techniques originally advocated for morphological analysis by Beesley and
Kattunen [BK03] we can envisage a complex NLG process as a series of finite state
transductions combined together under relational composition, thus opening up the pos-
sibility of describing the synthesis of an explanation to efficient, finite-state machinery.

Of course, the restriction to regular languages imposes certain limitations upon what
content can possibly be expressed in C, and may also impact the naturalness of the vi-
olation description expressed in E. However, these are empirical issues that will not be
tackled in this paper.

We are not the first to have used simplified languages in the attempt to reduce the
complexity of natural language processing. In the domain of NLG, Wilcock [Wil01]
proposed “the use of XML-based tools to implement existing well-known approaches
to NLG”. Power [Pow12] uses finite-state representations for expressing descriptions of
OWL-LITE sentences. It is of course in the area of computational morphology where
finite state methods are best known.

The main contribution of the paper is to substantiate and present the hypothesis that
according to the choice of C and E, it is possible to realise a family of efficient NLG
systems that are based on steadfastly finite-state technology.

182 G.J. Pace and M. Rosner

start

ERROR

l

l

l

g

b

g

b

g

b

r

w

x

l

NL explanation
b the user gave a bad password
g the user gave a good password
l the user requested to log in
x the user logged out
r the user read from a file
w the user wrote to a file

Fig. 2. The specification augmented with NL explanations

3 Languages

In what follows we first present the C language and then a sequence of E languages,
progressively adding features to attain a more natural explanation of the trace. As we
shall investigate in more detail in Section 4, at each stage we use further information to
obtain more natural generated text.

3.1 The C Language

We assume that the basic specification of the C language is given by the automaton
shown in Figure 2. The following trace is a sentence

lgrxlblgwwxlgrwxlgxlblblbl

Note that although the automaton itself is not necessary for the explanations that ensue,
it could in principle be used to check which trace prefix leads to an error state to allow
for an explanation when such a state is reached.

Next we turn to the series of E languages. Since these are all CNLs we will refer
to them as CNL0, CNL1, CNL2 and CNL3 respectively. All four languages are similar
insofar as they all talk about the same underlying, domain-specific world of states and
actions, and they all finite state. At the same time they are somewhat different linguisti-
cally.

3.2 CNL0

Sentences of the CNL0 language are very simple declarative sentences of the kind that
we typically associate with simple predicate-argument structures. In the example shown
in Figure 3 here, each sentence has a subject, a verb, and possibly a direct object.

In this paper, the mapping between the C language and CLN0 is given extensionally
by means of a lexicon that connects the individual transition names with a sentence with
a simple and fixed syntactic structure. The lexicon itself is expressed as a finite state

Explaining Violation Traces with Finite State Natural Language Generation Models 183

The user requested to log in. The user gave a good password. The user read
from a file. The user logged out. The user requested to log in. The user gave a
bad password. The user requested to log in. The user gave a correct password.
The user wrote to a file. The user wrote to a file. The user logged out. The user
requested to log in. The user gave a correct password. The user read from a
file. The user wrote to a file. The user logged out. The user requested to log in.
The user gave a good password. The user logged out. The user requested to log
in. The user gave a bad password. The user requested to log in. The user gave
a bad password. The user requested to log in. The user gave a bad password.
The user requested to log in, which should not have been allowed.

Fig. 3. A naïve explanation of the trace: CNL0

transducer, as described in Section 4.1. For more complex systems such an approach
might not be practical, and a solution could then be to derive the sentence associated
with each transition from more fundamental properties of the underlying machine.

CNL0 provides for a somewhat naïve explanation of traces using the explanations
provided by the domain expert directly.

3.3 CNL1

Next we turn to CNL1 which offers some improvements. The main feature of CNL1 is
that it is a sequence of paragraphs, where each paragraph is simply a sequence of CNL0
sentences, as shown in Figure 4.

1. The user requested to log in. The user gave a good password. The user
read from a file. The user logged out.

2. The user requested to log. The user gave a bad password.
3. The user attempted to log in. The user gave a good password. The user

wrote to a file. The user wrote to a file. The user logged out.
4. The user requested to log in. The user gave a good password. The user

read from a file. The user wrote to a file. The user logged out.
5. The user requested to log in. The user gave a good password. The user

logged out.
6. The user requested to log in. The user gave a bad password.
7. The user requested to log in. The user gave a bad password.
8. The user requested to log in. The user gave a bad password.
9. The user requested to log in, which should not have been allowed.

Fig. 4. A grouped explanation: CNL1

There are two consequences to this slightly richer structure. One is that it provides
the skeleton upon which to hang the numbered steps. This is a presentation issue that

184 G.J. Pace and M. Rosner

arguably increases the naturalness and improves comprehension. The other is that it
gives a structural identity to each paragraph that could be exploited in order to attribute
certain semantic properties to the associated sequence of actions. For example, we have
the notion of correctness which has the potential to figure in explanations. Nevertheless,
this property is not actually exploited in CNL1.

3.4 CNL2
The main novelty in CNL2, (see Figure 5) in contrast to CNL1, is the use of aggregation
to reduce each multi-sentence paragraph to a single, more complex sentence. This is
a technique which is used for removing redundancy (see Dalianis and Hovy [DH93]),
yielding texts that are more fluid, more acceptable and generally less prone to being
misunderstood by human readers than CNL1-style descriptions.

1. The user requested to log in, gave a correct password and after reading
from a file logged out.

2. The user requested to log in, and gave a bad password.
3. After a log in request the user gave a correct password and wrote twice to

a file before logging out.
4. The user requested to log in, gave a correct password, read from a file,

wrote to a file and then logged out.
5. After requesting a log in, the user gave a good password and logged out.
6. The user requested to log in, gave a bad password, requested again to log

in, gave another bad password and after requesting to log in, gave another
bad password.

7. Finally, the user made a request to log in, which should not have been
allowed.

Fig. 5. A better grouped explanation: CNL2

The linguistic renderings resulting from aggregation in CNL2 include:
1. Punctuation other than full stops
2. Temporal connectives (“after”, “then”, “finally”)
3. The use of contrastive conjunctions like “but"
4. Collective terms (“twice")

3.5 CNL3
Finally CNL3 (see Figure 6) is considerably more complex, because it not only contains
further aggregation but also summarisation.

In this example, there are only two sentences. The first sentence not only aggregates
the first six sentences, but it also omits some of the information (for example, the the
user read from a file, that the user logged out etc.). It also includes the use of certain
phrases whose correct interpretation, as mentioned earlier, requires consideration of the
context of occurrence as well as use of adverbs (“she unsuccessfully attempted") and the
use of more complex tenses (“should not have been allowed").

Explaining Violation Traces with Finite State Natural Language Generation Models 185

The user logged in a number of times, interspersed by sequences of one or two
bad logins, after which she unsuccessfully attempted to log in 3 times. The user
then made another request to log in, which should not have been allowed.

Fig. 6. A natural explanation: CNL3

4 Finite State Generation

In this section we will look into using finite state CNLs for NLG. This is based on finite
state techniques as embodied in xfst (Beesley and Karttunen [BK03]) that has already
been used extensively in several other areas of language processing such as computa-
tional morphology and light parsing. xfst provides a language for the description of
complex transducers together with a compiler and a user interface for running and test-
ing transducers. Our aim is to better understand the tradeoffs involvedbetween producing
reasonably natural explanations from traces and the use of the efficient computational
machinery described here.

4.1 Naïve Generation: CNL0

Just as in Figure 2, our starting point is a regular input language C defined as follows

define SIGMA b|l|g|x|r|w;
define C SIGMA*;

SIGMA is the alphabet of the original FSA and the entire generation mechanism ac-
cepts inputs that are arbitrary strings over this alphabet. Strings containing illegal char-
acters yield the empty string and hence, no output.

CNL0 can be obtained more or less directly via a dictionary which links symbols in
SIGMA to simple declarative sentences, as follows1:

define SP " ";
define USR {the SP user};
define DICT b-> [{user} SP {gives} SP {bad} SP {password}],

l-> [{user} SP {requests} SP {login}],
g-> [{user} SP {gives} SP {good} SP {password}],
x-> [{user} SP {logs} SP {out}],
r-> [{user} SP {reads} SP {from} SP {a} SP {file}],
w-> [{user} SP {writes} SP {to} SP {a} SP {file}];

define CNL0 C .o. DICT;

1 Some of the syntactically more obscure aspects of this definition have been omitted for the sake
of clarity.

186 G.J. Pace and M. Rosner

The first line defines the space character, and the second the symbol USR. The third
defines the dictionary DICT which is implemented as finite state transducer that maps
from the individual action symbols to primitive sentences, all of which have the same
basic structure. The input sequence is represented as a string

define input {lgrxlblgwwxlgrwxlgxlblblbl};

To get the output we compose CNL0 with input using the expression ([input .o.
CNL0]), extract the lower side of the relation with the l operator ([input .o. CNL0].l).
The problem with the generated output is that there are no separators between the sen-
tences. The solution is to compose the input with a transducer sentencesep that inserts
a separator.

input .o. sentencesep .o. CNL0

This turns the input into the following string:

l.g.r.x.l.b.l.g.w.w.x.l.g.r.w.x.l.g.x.l.b.l.b.l.b.l.

Such a string can be made to yield exactly the sentences of CNL0 by arranging for the
mappingof the fullstops to insert a space. This is just another transducer that is composed
into the pipeline. The result of this process is exactly the text shown in Figure 3.

4.2 Adding Structural Information: CNL1

At a simplest level, we can specify how the explanation may be split into an enumerated
sequence of paragraphs, aiding the comprehension of the trace explanation. Consider
being given the following list of subtrace specifications using regular explanations:

Correct login session: lg(r + w)∗x.
Sequence of incorrect login requests: (lb)∗.

In CNL1, the main feature is that we will use this information to group text. We will
assume that the following paragraph definitions are supplied:

define correct l g [r | w]* x;
define incorrect [l b];
define group1 correct @-> ... %|, incorrect @-> ... %|;

The group1 definition includes a piece of xfst notation that causes a vertical bar to be
inserted just after whatever matched the left hand side of the rule, yielding

lgrx|lb|lgwwx|lgrwx|lgx|lb|lb|lb|l

As shown earlier, we can when applied to the input, where the vertical bar is used to
delimit paragraphs.

l.g.r.x.|l.b.|l.g.w.w.x.|l.g.r.w.x.|l.g.x.|l.b.|l.b.|l.b.|l.

Fig. 7. CNL1 representation just prior to lexicalisation

Explaining Violation Traces with Finite State Natural Language Generation Models 187

Composing this with an augmented version of CNL0 that also handles the paragraph
breaks yields exactly the paragraph structure of the CNL1 rendering shown in Figure 4.
An inherent limitation of this approach is that it is impossible to produce a finite-state
transducer that will output a numbering scheme for arbitrary numbers of paragraphs.
Our solution is to postprocess the output, and generate, for instance HTML or LATEX
output which will handle the enumeration as required..

4.3 Adding Aggregation: CNL2

We can now move on to CNL2. This involves several intermediate stages which are
diagrammed below:

A: l.g.r.x.|l.b.|l.g.w.w.x.|l.g.r.w.x.|l.g.x.|l.b.|l.b.|l.b.|l.
B: l,g,r,x.|l,b.|l,g,w,w,x.|l,g,r,w,x.|l,g,x.|l,b.|l,b.|l,b.|l.|
C: aggregation1
D: aggregation2

A is as shown in Figure 7. We must now prepare for aggregation by first replacing
all but the paragraph-final fullstops with commas. Because the transducer that achieves
this uses the paragraph marker to identify the final fullstop, we must first insert that
final paragraph marker as as shown in B. The next two phases of aggregation are best
explained with the following example: we wish to transform “the user requested to lo-
gin. the user gave a good password. the user logged out.” to the more natural “the user
requested login, gave a good password, and logged out”. The first phase removes the
subject (i.e. the phrase “ the user”) of all sentences but reinstates the same subject at
the beginning of the paragraph. The second inserts an “and" just before the final verb
phrase of each aggregated sentence. In this way we are able to achieve paragraph 2 of the
CNL2 example as shown in Figure Similar, surface-oriented techniques can be used to
obtain the other paragraphs in Figure 5. Specifically, we have composed rules for insert-
ing the words “after", “then", “twice", “another", “finally" and “and". However, space
limitations prevent us from describing these in full.

4.4 Adding Abstraction: CNL3

We note that certain sequences of actions can be combined into a simpler explanation,
abstracting away (possibly) irrelevant detail, thus aiding comprehension. For instance,
consider the following rules, consisting of (i) a regular expression matching a collection
of subtraces which may be explained more concisely; and (ii) a natural language expla-
nation which may replace the detailed text one would obtain from the whole subtrace:

Consecutive correct login sessions: (lg(r + w)∗x)n explained as “The user success-
fully logged in n times”.

Consecutive correct failed login attempts: (lb)n explained as “The user unsuccess-
fully attempted to log in n times”.

Correct login sessions interspersed with occasional incorrect one: ((lg(r+w)∗x)∗
lb(lg(r+w)∗x)+)∗ explained as “The user successfully logged in a number of times,
with one off bad logins in between”.

188 G.J. Pace and M. Rosner

Correct login sessions interspersed with occasional incorrect one or two: ((lg(r +
w)∗x) ∗ (lb+ lblb)(lg(r+ w)∗x))∗ explained as “The user logged in a number of
times, interspersed by sequences of one or two bad logins”.

Note that xfst allows regular expressions that are parametrised for the number of
times a repeated expression matches. For example, the statement

define success3 [l g [r | w]* x]^3;

achieves the first definition above and associates it with the multicharacter symbol
success3. This can be added to the dictionary DICT and associated with the string
in much the same way as the strings associated with transitions, as shown above.

We will assume that these rules will be applied using a maximal length strategy — we
prefer a longer match, and in case of a tie, the first rule specified is applied. xfst allows
the user to choose between longest and shortest match strategies. Using appropriatexfst
rules would result in the description given in Figure 6.

4.5 Adding Contextuality: CNL4

To further enrich the generation explanations, we can extend the approach used in the
previous section for CNL3, to allow for actions to be described using different terms
in different contexts. For example, a logout action when logged in may be described as
‘the user logged out’, while a logout occuring while the user is already logged out would
better be described as ‘the user attempted to log out’. We can use techniques similar to
the ones presented in the previous section, using regular expressions to specify contexts
in which an action will be described in a particular manner.

Consider the specification below, in which each action and natural language descrip-
tion pair is accompanied by two regular expressions which have to match with the part
of the trace immediately preceding and following the action for that description to be
used2:

Action Pre Post CNL rendering
x l x∗ – user logs out

otherwise user attempts to log out
l – b the user attempts to log in

otherwise the user logs in

This technique can be further extended and refined to deal with repetition of actions as
shown below with repeated logins:

Action Pre Post CNL rendering
l l b l

∗
b user attempts to log in again

– b user attempts to log in
l b l

∗ – user logs in again
otherwise user logs in

It is interesting to see how far this approach can be pushed and generalised to allow for
the generation of more natural sounding text from the input traces.

2 We use the notation a to signify any single symbol except for a.

Explaining Violation Traces with Finite State Natural Language Generation Models 189

5 Discussion and Conclusions

In this paper we have presented preliminary results illustrating how finite state
approaches can be used generate controlled natural language explanations of traces. Al-
though there is still much to be done, the results are promising and it is planned that we
use such an approach to allow for the specification of natural language explanations to
be used in the runtime verification tool Larva [CPS09].

Two problems underlying our task are: (i) the discovery of subsequences that are in-
teresting for the domain in question and (ii) how to turn an interesting subsequence into a
natural-soundingexplanation. In this paper we have provided somewhat ad hoc solutions
to both these problems. While one can use profiling techniques to discover interesting,
or frequently occurring subsequences, clearly there needs to be a strong human input
in identifying which of these sequences should be used to abstract and explain traces
more effectively. On the other hand, we see that many of the ad hoc solutions adopted to
make explanations more natural-sounding may be generalised to work on a wide-range
of situations. We envisage that the person building the specification may add hints as
to how to improve the explanation, such as the tables shown in Section 4.4 to improve
abstraction and the ones given in Section 4.5 to add contextuality.

Given that, essentially, we are using regular grammars to specify our natural lan-
guage generator, the generalisation process to reduce human input while generating more
natural-sounding text is bound to hit a limit. It is of interest to us, however, to investigate
how far these approaches can be taken without resorting to more sophisticated tech-
niques usually applied to language generation.

References

[BK03] Beesley, K.R., Karttunen, L.: Finite State Morphology. Number v. 1 in Studies in com-
putational linguistics. CSLI Publications (2003)

[CPS09] Colombo, C., Pace, G.J., Schneider, G.: Larva — safer monitoring of real-time java
programs (tool paper). In: Seventh IEEE International Conference on Software Engi-
neering and Formal Methods (SEFM), pp. 33–37. IEEE Computer Society (November
2009)

[DH93] Dalianis, H., Hovy, E.H.: Aggregation in natural language generation. In: Adorni, G.,
Zock, M. (eds.) EWNLG 1993. LNCS, vol. 1036, pp. 88–105. Springer, Heidelberg
(1996)

[Kuh14] Kuhn, T.: A survey and classification of controlled natural languages. Computational
Linguistics 40(1), 121–170 (2014)

[Pow12] Power, R.: Owl simplified english: A finite-state language for ontology editing. In: Kuhn,
T., Fuchs, N.E. (eds.) CNL 2012. LNCS, vol. 7427, pp. 44–60. Springer, Heidelberg
(2012)

[RD00] Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge
University Press, New York (2000)

[Wil01] Wilcock, G.: Pipelines, templates and transformations: Xml for natural language gener-
ation. In: Proceedings of the First NLP and XML Workshop, NLPXML 2001 EWNLG,
Tokyo. LNCS, pp. 1–8 (2001)

[ZH02] Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Softw. Eng. 28(2), 183–200 (2002)

	Explaining Violation Traces with Finite State Natural Language Generation Models
	1 Introduction
	2 The Roles of NLG and CNL
	3 Languages
	3.1 The C Language
	3.2 CNL0
	3.3 CNL1
	3.4 CNL2
	3.5 CNL3

	4 Finite State Generation
	4.1 Naïve Generation: CNL0
	4.2 Adding Structural Information: CNL1
	4.3 Adding Aggregation: CNL2
	4.4 Adding Abstraction: CNL3
	4.5 Adding Contextuality: CNL4

	5 Discussion and Conclusions
	References

