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Abstract. Inspired by embedded programming languages, an embedded CNL
(controlled natural language) is a proper fragment of an entire natural language
(its host language), but it has a parser that recognizes the entire host language.
This makes it possible to process out-of-CNL input and give useful feedback to
users, instead of just reporting syntax errors. This extended abstract explains the
main concepts of embedded CNL implementation in GF (Grammatical Frame-
work), with examples from machine translation and some other ongoing work.
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1 Introduction

A controlled natural language (CNL) is a strictly defined fragment of a natural language
[1]. As fragments of natural languages, CNLs are analogous to embedded domain-
specific languages, which are fragments of general purpose programming languages
[2]. Such languages have been introduced as an alternative to traditional domain-
specific languages (DSL), which have their own syntax and semantics, and require
therefore a specific learning effort. An embedded DSL is a part of a general-purpose
programming language, the host language, and is therefore readily usable by program-
mers who already know the host language. At its simplest, an embedded DSL is little
more than a library in the host language. Using the library helps programmers to write
compact, efficient, and correct code in the intended domain. But whenever the library
does not provide all functionalities wanted, the programmer can leave its straight-jacket
and use the host language directly, of course at her own risk.

Embedding a language fragment in the full language presupposes that a grammar
of the full language is available. In the case of natural languages, this is by no means
a trivial matter. On the contrary, it is widely acknowledged that “all grammars leak”,
which means that any formal grammar defining a natural language is bound to be either
incomplete or overgenerating. As a consequence, defining CNLs formally as subsets of
natural languages looks problematic.

However, if a grammar of the host language exists, then it is useful to define the
CNL as an embedded language. It enables us to build systems that provide, at the
same time, the rigour of controlled languages and the comfort of graceful degradation.
The user of the system can be guided to stay inside the controlled language, but she will
also be understood, at least to some extent, if she goes outside it.

In this extended abstract, we will outline some recent work on building controlled
languages in the embedded fashion. Our focus will be on multilingual systems,
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where the CNL yields high-quality translation and the host language yields browsing
quality. But the same structure should be useful for other applications of CNLs as well,
such as query languages.

In Section 2, we will summarize how CNLs are traditionally defined by using GF,
Grammatical Framework. In Section 3, we will show how they can be converted to
embedded CNLs. In Section 4, we summarize some on-going work and suggest some
more applications.

2 Defining Controlled Languages in GF

GF [3] is a grammar formalism based on a distinction between abstract syntax and
concrete syntax. The abstract syntax is a system of trees. The concrete syntax is a re-
versible mapping from trees to strings and records, reminiscent of feature structures
in unification-based grammar formalisms. The separation between abstract and con-
crete syntax makes GF grammars multilingual, since one and the same abstract syntax
can be equipped with many concrete syntaxes. The abstract syntax is then usable as an
interlingua, which enables translation via parsing the source language string into a
tree followed by the linearization of the tree into the target language.

As an example, consider a predicate expressing the age of a person. The abstract
syntax rule is

fun aged : Person -> Numeral -> Fact

defining a function with the name aged, whose type is a function type of two argu-
ments, of types Person and Numeral, yielding a value of type Fact. A simple concrete
syntax rule for English is

lin aged p n = p ++ "is" ++ n ++ "years old"

stating that a function application (aged p n) is linearized to the string where the
linearization of p is concatenated (++) with the string "is", the linearization of n, and
the string "years old". The corresponding rule for French is

lin aged p n = p ++ "a" ++ n ++ "ans"

producing sentences literally equivalent to p has n years. Thus the concrete syntax
allows the production of different syntactic structures in different languages, while the
abstract syntax form (aged p n) remains the same, and stands in a compositional
relation to the linearizations.

GF is widely used for defining CNLs; [4,5,6,7,8] are some examples. Much of its
power comes from the resource grammar libraries (RGL), which are general purpose
grammars enabling GF grammar writers to delegate the “low-level” linguistic details
to generic library code [9,10]. If we dig deeper into the concrete syntax of the aged
predicate, we will find lots of such details to cope with: number agreement (one year
vs. five years), subject-verb agreement: (I am, you are, she is), word order (you are
in declaratives vs. are you in questions), etc; French generally poses harder problems



Embedded Controlled Languages 3

than English. The use of feature structures instead of plain strings does make it possi-
ble to express all this compositionally in GF. But these details can make the grammar
prohibitively difficult to write, especially since controlled language designers are not
always theoretical linguists but experts in the various domains of application of CNLs.
The RGL addresses this problem by providing general-purpose functions such as

mkCl : NP -> VP -> Cl

which builds a clause (Cl) from a noun phrase (NP) and a verb phrase (VP) and takes
care of all details of agreement and word order. The CNL linearization rules can be
written as combinations of such functions. The English rule, in full generality, comes
out as compact as

lin aged p n = mkCl p (mkVP (mkAP (mkNP n year_N) old_A))

and the French,

lin aged p n = mkCl p (mkVP avoir_V2 (mkNP n an_N))

If a function quest is added to turn facts into questions, the linearization is in both
languages just a simple RGL function call:

lin quest fact = mkQS fact

The API (application programmer’s interface) is the same for all languages in the RGL
(currently 29), but the low-level details that it hides are language-dependent.

3 Embedding a Controlled Language in the Host Language

The standard practice in GF is to define CNLs by using the RGL rather than low-level
hand-crafted linearization rules. In addition to saving effort, this practice guarantees
that the CNL is a valid fragment of a natural language. The reason is that the RGL is
designed only to allow grammatically correct constructions.

But what is missing in a CNL built in this way is the rest of the host language—
the part that is not covered by the RGL rule combinations actually used in the CNL.
In general, a random sentence has a probability close to zero to be recognized by the
parser. The standard solution is to guide the user by a predictive editor [11,4,12]. But
there are many situations in which this does not work so well: for instance, with speech
input, or when processing text in batch mode. Then it can be more appropriate to include
not only the CNL but also the host language in the system. The system as a whole will
then be similar to an embedded DSL with its general-purpose host language.

The easiest way to combine a CNL with a host language is to introduce a new start
category S with two productions: one using the CNL start category as its argument type,
the other using the host language start category:

fun UseCNL : S_CNL -> S
fun UseHost : S_Host -> S
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The CNL trees can be given priority by biasing the weights of these functions in prob-
abilistic GF parsing [13]. The CNL parse tree will then appear as the first alternative,
whenever it can be found. Since the system sees where the tree comes from, it can give
feedback to the user, for instance by using colours: green colour for CNL trees, yellow
for host language trees, and red for unanalysed input, as shown (in greyscale in the
printed version) in Figure 1.

Since the RGL is designed to guarantee grammaticality, and since all grammars leak,
the RGL does not cover any language entirely. But if the purpose is wide-coverage
parsing, we can relax this strictness. An easy way to do this is to extend the grammar
with chunking. A chunk can be built from almost any RGL category: sentences, noun
phrases, nouns, adjectives, etc:

fun ChunkS : S_Host -> Chunk
fun ChunkNP : NP -> Chunk
fun ChunkN : N -> Chunk

The top-level grammar has a production that recognizes lists of chunks ([Chunk]):

fun UseChunks : [Chunk] -> S

It is relatively easy to make the chunking grammar robust, in the sense that it re-
turns some analysis for any combination of words. If the input has out-of-dictionary
words, they can be dealt with by named entity recognition and morphological guessing.
Weights can be set in such a way that longer chunks are favoured. For instance, this old
city should be analyzed as one NP chunk rather than a determiner chunk followed by an
adjective chunk and a noun chunk. The user can be given feedback, not only by a red
colour indicating that chunks are used, but also by showing the chunk boundaries.

A further step of integration between CNL and the host language is obtained if CNL
sentences are treated as chunks:

fun ChunkCNL : S_CNL -> Chunk

In the resulting trees, one can use different colours for different chunks inside one and
the same sentence.

But since both the CNL and the host language are defined in terms of the same RGL
structures, one can take the integration much further, by intertwining the CNL and host
language rules. Consider again the CNL predicate

fun aged : Person -> Numeral -> Fact

where Person and Fact are CNL categories and Numeral is an RGL category. One
can generalize the use of this predicate and other ones by introducing coercions from
RGL categories to CNL categories used as arguments, and from CNL categories used
as values to RGL categories (making sure that no cycles are created):

fun np2person : NP -> Person
fun fact2cl : Fact -> Cl
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The effect of this is seen when we analyse the English sentence

John does not believe that the queen is sixty-five years old

The resulting tree is

mkS negativePol (mkCl John believe_VS (fact2Cl
(aged (np2person (mkNP the_Det queen_N)) (mkNumeral "65"))))

where those parts that belong to the CNL are boldfaced. Thus the predicate aged is
from the CNL, but uses as argument the queen, which is not in the CNL. The resulting
Fact is used as a complement to the verb believe, which requires an RGL clause. The
resulting French translation is

John ne croit pas que la reine ait soixante-cinq ans

which correctly renders the aged idiom defined by the CNL, even though its subject
is not in the CNL, and even though the negated main verb puts it into the subjunctive
mood, which might never occur in the CNL itself.

Fig. 1. From left: CNL embedded in general purpose RGL embedded in a chunk grammar; the
corresponding levels in the Vauquois triangle; a mobile translation application showing the level
of confidence in colours (from top: semantic translation from CNL, syntactic translation from
RGL, chunk-based translation)

4 Work in Progress

The translation example with the aged predicate shows that embedded CNL func-
tions introduce semantic structures in translation. This has been exploited in the wide-
coverage GF-based translation system [14] 1 where three levels are distinguished by
colours: green for the CNL (the MOLTO phrasebook [6]), yellow for the RGL syn-
tax, and red for chunks (Figure 1). These levels correspond to levels in the Vauquois
triangle, where translation systems are divided on the basis of whether they use a se-
mantic interlingua, syntactic transfer, or word-to-word transfer [15]. The effect of the

1 "The Human Language Compiler",
http://grammaticalframework.org/demos/app.html

http://grammaticalframework.org/demos/app.html
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layered structure with an embedded CNL is that these levels coexist in one and the same
system. The system is currently implemented for 11 languages. Its architecture permits
easily changing the CNL to some other one and also including several CNLs in a single
system. At least two experiments are in progress: one with a mathematical grammar
library [5], another with the multilingual version of Attempto Controlled English [8].

In addition to translation, embedded CNLs could be used in query systems, where
“green” parse trees are semantically well-formed queries and other colours are inter-
preted as key phrases and key words. It can also be interesting to match out-of-CNL
trees with CNL trees and try to find the closest semantically complete interpretations.
Yet another application of embedded CNLs would be to implement languages of the
“Simplified English” type, which are not defined by formal grammars but by restric-
tions posed on the full language [1]. Such a language could be parsed by using the
host language grammar together with a procedure that checks on the tree level how the
restrictions are followed.
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