
Brian Davis Kaarel Kaljurand
Tobias Kuhn (Eds.)

 123

LN
AI

 8
62

5

4th International Workshop, CNL 2014
Galway, Ireland, August 20–22, 2014
Proceedings

Controlled
Natural Language

Lecture Notes in Artificial Intelligence 8625

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Brian Davis Kaarel Kaljurand
Tobias Kuhn (Eds.)

Controlled
Natural Language

4th International Workshop, CNL 2014
Galway, Ireland, August 20-22, 2014
Proceedings

13

Volume Editors

Brian Davis
National University of Ireland
Galway, Ireland
E-mail: brian.davis@deri.org

Kaarel Kaljurand
University of Zurich, Switzerland
E-mail: kaljurand@gmail.com

Tobias Kuhn
ETH Zurich, Switzerland
E-mail: tokuhn@ethz.ch

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-10222-1 e-ISBN 978-3-319-10223-8
DOI 10.1007/978-3-319-10223-8
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014945825

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

CNL 2014 was the fourth workshop on controlled natural language, which has
been established within the last years as a series of biennial events bringing to-
gether a diverse and multi-disciplinary community. This year’s event was hosted
by Insight (formerly DERI) at the National University of Ireland in Galway.

We emphasize the workshop’s inclusive and broad scope embracing all ap-
proaches that are based on natural language but apply restrictions on vocabu-
lary, grammar, and/or semantics. We explicitly invited contributions from dif-
ferent branches and communities, including what has been called simplified
language, plain language, formalized language, processable language, fragments
of language, phraseologies, conceptual authoring, language generation, and guided
natural language interfaces.

We received 26 submissions, each of which was evaluated by at least two
reviewers — if both turned out to be positive — or at least three reviewers
otherwise. Submissions with a positive average score were accepted; those with
a negative one were rejected. For papers with both positive and negative reviews,
we made sure to only accept papers after they had received at least two positive
reviews and to only reject papers that had at least two negative reviews. This
procedure led to the acceptance of 17 submissions, i.e., the acceptance rate was
65%. In addition, these proceedings include an invited paper by Aarne Ranta on
“Embedded Controlled Languages.”

We would like to thank the authors for their submissions, the Program Com-
mittee members for their reviews and discussions, and the invited speakers for
agreeing to present their work at the workshop. We also thank our host and
sponsor Insight1 at the National University of Ireland, and our sponsors Digital
Grammars2 and Eurosentiment3.

June 2014 Brian Davis
Kaarel Kaljurand

Tobias Kuhn

1 http://insight-centre.org/
2 http://www.digitalgrammars.com/
3 http://eurosentiment.eu/

Organization

Program Committee

Krasimir Angelov Chalmers University, Sweden
Johan Bos University of Groningen, The Netherlands
Paul Buitelaar National University of Ireland
Olga Caprotti University of Helsinki, Sweden
Eugene Creswick Galois, USA
Danica Damljanovic University of Sheffield, UK
Brian Davis National University of Ireland
Ronald Denaux iSOCO, Spain
Vania Dimitrova University of Leeds, UK
Ramona Enache Charlmers University, Sweden
Esra Erdem Sabanci University, Turkey
Sébastien Ferré Université de Rennes 1, France
Norbert E. Fuchs University of Zurich, Switzerland
Normunds Gruzitis University of Latvia
Siegfried Handschuh National University of Ireland
Stefan Höfler University of Zurich, Switzerland
Kaarel Kaljurand University of Zurich, Switzerland
Peter Koepke University of Bonn, Germany
Tobias Kuhn ETH Zurich, Switzerland
Hans Leiß University of Munich, Germany
Reinhard Muskens Tilburg University, The Netherlands
Adegboyega Ojo National University of Ireland
Gordon Pace University of Malta
Richard Power Open University
Laurette Pretorius University of South Africa
Stephen Pulman Oxford University, UK
Allan Ramsay University of Manchester, UK
Aarne Ranta University of Gothenburg, Sweden
Mike Rosner University of Malta
Uta Schwertel IMC Information Multimedia Communication

AG
Rolf Schwitter Macquarie University, Australia
Silvie Spreeuwenberg LibRT, Netherlands
Geoff Sutcliffe University of Miami, USA
Irina Temnikova Qatar Computing Research Institute
Allan Third The Open University, UK
Camilo Thorne Free University of Bozen-Bolzano, Italy

VIII Organization

Jeroen Van Grondelle HU University of Applied Sciences Utrecht,
The Netherlands

Yorick Wilks University of Sheffield, UK
Adam Wyner University of Aberdeen, UK

Additional Reviewers

Abdelaal, Hazem
Arcan, Mihael Unger, Christina

Table of Contents

Embedded Controlled Languages . 1
Aarne Ranta

Controlled Natural Language Processing as Answer Set Programming:
An Experiment . 8

Rolf Schwitter

How Easy Is It to Learn a Controlled Natural Language for Building a
Knowledge Base? . 20

Sandra Williams, Richard Power, and Allan Third

Linguistic Analysis of Requirements of a Space Project and their
Conformity with the Recommendations Proposed by a Controlled
Natural Language . 33

Anne Condamines and Maxime Warnier

Evaluating the Fully Automatic Multi-language Translation of the
Swiss Avalanche Bulletin . 44

Kurt Winkler, Tobias Kuhn, and Martin Volk

Towards an Error Correction Memory to Enhance Technical Texts
Authoring in LELIE . 55

Juyeon Kang and Patrick Saint-Dizier

RuleCNL: A Controlled Natural Language for Business Rule
Specifications . 66

Paul Brillant Feuto Njonko, Sylviane Cardey, Peter Greenfield, and
Walid El Abed

Toward Verbalizing Ontologies in isiZulu . 78
C. Maria Keet and Langa Khumalo

FrameNet CNL: A Knowledge Representation and Information
Extraction Language . 90

Guntis Barzdins

INAUT, a Controlled Language for the French Coast Pilot Books
Instructions nautiques . 102

Yannis Haralambous, Julie Sauvage-Vincent, and John Puentes

Are Style Guides Controlled Languages? The Case of Koenig & Bauer
AG . 112

Karolina Suchowolec

Lexpresso: A Controlled Natural Language . 123
Adam Saulwick

X Table of Contents

A CNL for Contract-Oriented Diagrams . 135
John J. Camilleri, Gabriele Paganelli, and Gerardo Schneider

Handling Non-compositionality in Multilingual CNLs 147
Ramona Enache, Inari Listenmaa, and Prasanth Kolachina

Controlled Natural Language Generation from a Multilingual
FrameNet-Based Grammar . 155

Dana Dannélls and Normunds Gruzitis

Architecture of a Web-Based Predictive Editor for Controlled Natural
Language Processing . 167

Stephen Guy and Rolf Schwitter

Explaining Violation Traces with Finite State Natural Language
Generation Models . 179

Gordon J. Pace and Michael Rosner

A Brief State of the Art of CNLs for Ontology Authoring 190
Hazem Safwat and Brian Davis

Author Index . 201

Embedded Controlled Languages

Aarne Ranta

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract. Inspired by embedded programming languages, an embedded CNL
(controlled natural language) is a proper fragment of an entire natural language
(its host language), but it has a parser that recognizes the entire host language.
This makes it possible to process out-of-CNL input and give useful feedback to
users, instead of just reporting syntax errors. This extended abstract explains the
main concepts of embedded CNL implementation in GF (Grammatical Frame-
work), with examples from machine translation and some other ongoing work.

Keywords: controlled language, domain-specific language, embedded language,
Grammatical Framework, machine translation.

1 Introduction

A controlled natural language (CNL) is a strictly defined fragment of a natural language
[1]. As fragments of natural languages, CNLs are analogous to embedded domain-
specific languages, which are fragments of general purpose programming languages
[2]. Such languages have been introduced as an alternative to traditional domain-
specific languages (DSL), which have their own syntax and semantics, and require
therefore a specific learning effort. An embedded DSL is a part of a general-purpose
programming language, the host language, and is therefore readily usable by program-
mers who already know the host language. At its simplest, an embedded DSL is little
more than a library in the host language. Using the library helps programmers to write
compact, efficient, and correct code in the intended domain. But whenever the library
does not provide all functionalities wanted, the programmer can leave its straight-jacket
and use the host language directly, of course at her own risk.

Embedding a language fragment in the full language presupposes that a grammar
of the full language is available. In the case of natural languages, this is by no means
a trivial matter. On the contrary, it is widely acknowledged that “all grammars leak”,
which means that any formal grammar defining a natural language is bound to be either
incomplete or overgenerating. As a consequence, defining CNLs formally as subsets of
natural languages looks problematic.

However, if a grammar of the host language exists, then it is useful to define the
CNL as an embedded language. It enables us to build systems that provide, at the
same time, the rigour of controlled languages and the comfort of graceful degradation.
The user of the system can be guided to stay inside the controlled language, but she will
also be understood, at least to some extent, if she goes outside it.

In this extended abstract, we will outline some recent work on building controlled
languages in the embedded fashion. Our focus will be on multilingual systems,

B. Davis et al. (Eds.): CNL 2014, LNAI 8625, pp. 1–7, 2014.
c© Springer International Publishing Switzerland 2014

2 A. Ranta

where the CNL yields high-quality translation and the host language yields browsing
quality. But the same structure should be useful for other applications of CNLs as well,
such as query languages.

In Section 2, we will summarize how CNLs are traditionally defined by using GF,
Grammatical Framework. In Section 3, we will show how they can be converted to
embedded CNLs. In Section 4, we summarize some on-going work and suggest some
more applications.

2 Defining Controlled Languages in GF

GF [3] is a grammar formalism based on a distinction between abstract syntax and
concrete syntax. The abstract syntax is a system of trees. The concrete syntax is a re-
versible mapping from trees to strings and records, reminiscent of feature structures
in unification-based grammar formalisms. The separation between abstract and con-
crete syntax makes GF grammars multilingual, since one and the same abstract syntax
can be equipped with many concrete syntaxes. The abstract syntax is then usable as an
interlingua, which enables translation via parsing the source language string into a
tree followed by the linearization of the tree into the target language.

As an example, consider a predicate expressing the age of a person. The abstract
syntax rule is

fun aged : Person -> Numeral -> Fact

defining a function with the name aged, whose type is a function type of two argu-
ments, of types Person and Numeral, yielding a value of type Fact. A simple concrete
syntax rule for English is

lin aged p n = p ++ "is" ++ n ++ "years old"

stating that a function application (aged p n) is linearized to the string where the
linearization of p is concatenated (++) with the string "is", the linearization of n, and
the string "years old". The corresponding rule for French is

lin aged p n = p ++ "a" ++ n ++ "ans"

producing sentences literally equivalent to p has n years. Thus the concrete syntax
allows the production of different syntactic structures in different languages, while the
abstract syntax form (aged p n) remains the same, and stands in a compositional
relation to the linearizations.

GF is widely used for defining CNLs; [4,5,6,7,8] are some examples. Much of its
power comes from the resource grammar libraries (RGL), which are general purpose
grammars enabling GF grammar writers to delegate the “low-level” linguistic details
to generic library code [9,10]. If we dig deeper into the concrete syntax of the aged
predicate, we will find lots of such details to cope with: number agreement (one year
vs. five years), subject-verb agreement: (I am, you are, she is), word order (you are
in declaratives vs. are you in questions), etc; French generally poses harder problems

Embedded Controlled Languages 3

than English. The use of feature structures instead of plain strings does make it possi-
ble to express all this compositionally in GF. But these details can make the grammar
prohibitively difficult to write, especially since controlled language designers are not
always theoretical linguists but experts in the various domains of application of CNLs.
The RGL addresses this problem by providing general-purpose functions such as

mkCl : NP -> VP -> Cl

which builds a clause (Cl) from a noun phrase (NP) and a verb phrase (VP) and takes
care of all details of agreement and word order. The CNL linearization rules can be
written as combinations of such functions. The English rule, in full generality, comes
out as compact as

lin aged p n = mkCl p (mkVP (mkAP (mkNP n year_N) old_A))

and the French,

lin aged p n = mkCl p (mkVP avoir_V2 (mkNP n an_N))

If a function quest is added to turn facts into questions, the linearization is in both
languages just a simple RGL function call:

lin quest fact = mkQS fact

The API (application programmer’s interface) is the same for all languages in the RGL
(currently 29), but the low-level details that it hides are language-dependent.

3 Embedding a Controlled Language in the Host Language

The standard practice in GF is to define CNLs by using the RGL rather than low-level
hand-crafted linearization rules. In addition to saving effort, this practice guarantees
that the CNL is a valid fragment of a natural language. The reason is that the RGL is
designed only to allow grammatically correct constructions.

But what is missing in a CNL built in this way is the rest of the host language—
the part that is not covered by the RGL rule combinations actually used in the CNL.
In general, a random sentence has a probability close to zero to be recognized by the
parser. The standard solution is to guide the user by a predictive editor [11,4,12]. But
there are many situations in which this does not work so well: for instance, with speech
input, or when processing text in batch mode. Then it can be more appropriate to include
not only the CNL but also the host language in the system. The system as a whole will
then be similar to an embedded DSL with its general-purpose host language.

The easiest way to combine a CNL with a host language is to introduce a new start
category S with two productions: one using the CNL start category as its argument type,
the other using the host language start category:

fun UseCNL : S_CNL -> S
fun UseHost : S_Host -> S

4 A. Ranta

The CNL trees can be given priority by biasing the weights of these functions in prob-
abilistic GF parsing [13]. The CNL parse tree will then appear as the first alternative,
whenever it can be found. Since the system sees where the tree comes from, it can give
feedback to the user, for instance by using colours: green colour for CNL trees, yellow
for host language trees, and red for unanalysed input, as shown (in greyscale in the
printed version) in Figure 1.

Since the RGL is designed to guarantee grammaticality, and since all grammars leak,
the RGL does not cover any language entirely. But if the purpose is wide-coverage
parsing, we can relax this strictness. An easy way to do this is to extend the grammar
with chunking. A chunk can be built from almost any RGL category: sentences, noun
phrases, nouns, adjectives, etc:

fun ChunkS : S_Host -> Chunk
fun ChunkNP : NP -> Chunk
fun ChunkN : N -> Chunk

The top-level grammar has a production that recognizes lists of chunks ([Chunk]):

fun UseChunks : [Chunk] -> S

It is relatively easy to make the chunking grammar robust, in the sense that it re-
turns some analysis for any combination of words. If the input has out-of-dictionary
words, they can be dealt with by named entity recognition and morphological guessing.
Weights can be set in such a way that longer chunks are favoured. For instance, this old
city should be analyzed as one NP chunk rather than a determiner chunk followed by an
adjective chunk and a noun chunk. The user can be given feedback, not only by a red
colour indicating that chunks are used, but also by showing the chunk boundaries.

A further step of integration between CNL and the host language is obtained if CNL
sentences are treated as chunks:

fun ChunkCNL : S_CNL -> Chunk

In the resulting trees, one can use different colours for different chunks inside one and
the same sentence.

But since both the CNL and the host language are defined in terms of the same RGL
structures, one can take the integration much further, by intertwining the CNL and host
language rules. Consider again the CNL predicate

fun aged : Person -> Numeral -> Fact

where Person and Fact are CNL categories and Numeral is an RGL category. One
can generalize the use of this predicate and other ones by introducing coercions from
RGL categories to CNL categories used as arguments, and from CNL categories used
as values to RGL categories (making sure that no cycles are created):

fun np2person : NP -> Person
fun fact2cl : Fact -> Cl

Embedded Controlled Languages 5

The effect of this is seen when we analyse the English sentence

John does not believe that the queen is sixty-five years old

The resulting tree is

mkS negativePol (mkCl John believe_VS (fact2Cl
(aged (np2person (mkNP the_Det queen_N)) (mkNumeral "65"))))

where those parts that belong to the CNL are boldfaced. Thus the predicate aged is
from the CNL, but uses as argument the queen, which is not in the CNL. The resulting
Fact is used as a complement to the verb believe, which requires an RGL clause. The
resulting French translation is

John ne croit pas que la reine ait soixante-cinq ans

which correctly renders the aged idiom defined by the CNL, even though its subject
is not in the CNL, and even though the negated main verb puts it into the subjunctive
mood, which might never occur in the CNL itself.

Fig. 1. From left: CNL embedded in general purpose RGL embedded in a chunk grammar; the
corresponding levels in the Vauquois triangle; a mobile translation application showing the level
of confidence in colours (from top: semantic translation from CNL, syntactic translation from
RGL, chunk-based translation)

4 Work in Progress

The translation example with the aged predicate shows that embedded CNL func-
tions introduce semantic structures in translation. This has been exploited in the wide-
coverage GF-based translation system [14] 1 where three levels are distinguished by
colours: green for the CNL (the MOLTO phrasebook [6]), yellow for the RGL syn-
tax, and red for chunks (Figure 1). These levels correspond to levels in the Vauquois
triangle, where translation systems are divided on the basis of whether they use a se-
mantic interlingua, syntactic transfer, or word-to-word transfer [15]. The effect of the

1 "The Human Language Compiler",
http://grammaticalframework.org/demos/app.html

http://grammaticalframework.org/demos/app.html

6 A. Ranta

layered structure with an embedded CNL is that these levels coexist in one and the same
system. The system is currently implemented for 11 languages. Its architecture permits
easily changing the CNL to some other one and also including several CNLs in a single
system. At least two experiments are in progress: one with a mathematical grammar
library [5], another with the multilingual version of Attempto Controlled English [8].

In addition to translation, embedded CNLs could be used in query systems, where
“green” parse trees are semantically well-formed queries and other colours are inter-
preted as key phrases and key words. It can also be interesting to match out-of-CNL
trees with CNL trees and try to find the closest semantically complete interpretations.
Yet another application of embedded CNLs would be to implement languages of the
“Simplified English” type, which are not defined by formal grammars but by restric-
tions posed on the full language [1]. Such a language could be parsed by using the
host language grammar together with a procedure that checks on the tree level how the
restrictions are followed.

Acknowledgement. Thanks to Krasimir Angelov and Normunds Gruzitis for useful
comments. Swedish Research Council (Vetenskapsrådet) has supported this work under
grant nr. 2012-5746 (Reliable Multilingual Digital Communication).

References

1. Kuhn, T.: A Survey and Classification of Controlled Natural Languages. Computational
Linguistics 40, 121–170 (2014)

2. Hudak, P.: Building domain-specific embedded languages. ACM Computing Surveys
(CSUR) 28, 196 (1996)

3. Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars. CSLI
Publications, Stanford (2011)

4. Angelov, K., Ranta, A.: Implementing Controlled Languages in GF. In: Fuchs, N.E. (ed.)
CNL 2009. LNCS, vol. 5972, pp. 82–101. Springer, Heidelberg (2010)

5. Saludes, J., Xambo, S.: The GF mathematics library. In: THedu 2011 (2011)
6. Ranta, A., Enache, R., Détrez, G.: Controlled language for everyday use: the molto phrase-

book. In: Rosner, M., Fuchs, N.E. (eds.) CNL 2010. LNCS (LNAI), vol. 7175, pp. 115–136.
Springer, Heidelberg (2012)

7. Davis, B., Enache, R., van Grondelle, J., Pretorius, L.: Multilingual Verbalisation of Mod-
ular Ontologies using GF and lemon. In: Kuhn, T., Fuchs, N.E. (eds.) CNL 2012. LNCS,
vol. 7427, pp. 167–184. Springer, Heidelberg (2012)

8. Kaljurand, K., Kuhn, T.: A multilingual semantic wiki based on Attempto Controlled English
and Grammatical Framework. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph,
S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 427–441. Springer, Heidelberg (2013)

9. Ranta, A.: The GF Resource Grammar Library. Linguistics in Language Technology 2 (2009)
10. Ranta, A.: Grammars as Software Libraries. In: Bertot, Y., Huet, G., Lévy, J.J., Plotkin, G.

(eds.) From Semantics to Computer Science. Essays in Honour of Gilles Kahn, pp. 281–308.
Cambridge University Press (2009)

11. Khegai, J., Nordström, B., Ranta, A.: Multilingual Syntax Editing in GF. In: Gelbukh, A.
(ed.) CICLing 2003. LNCS, vol. 2588, pp. 453–464. Springer, Heidelberg (2003)

12. Kuhn, T.: Codeco: A Practical Notation for Controlled English Grammars in Predictive
Editors. In: Rosner, M., Fuchs, N.E. (eds.) CNL 2010. LNCS, vol. 7175, pp. 95–114.
Springer, Heidelberg (2012)

Embedded Controlled Languages 7

13. Angelov, K., Ljunglöf, P.: Fast statistical parsing with parallel multiple context-free
grammars. In: Proceedings of the 14th Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pp. 368–376. Association for Computational Linguistics,
Gothenburg (2014)

14. Angelov, K., Bringert, B., Ranta, A.: Speech-enabled hybrid multilingual translation for
mobile devices. In: Proceedings of the Demonstrations at the 14th Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics, pp. 41–44. Association for
Computational Linguistics, Gothenburg (2014)

15. Vauquois, B.: A survey of formal grammars and algorithms for recognition and transforma-
tion in mechanical translation. In: IFIP Congress (2), pp. 1114–1122 (1968)

Controlled Natural Language Processing

as Answer Set Programming: An Experiment

Rolf Schwitter

Department of Computing
Macquarie University

Sydney NSW 2109, Australia
Rolf.Schwitter@mq.edu.au

Abstract. Most controlled natural languages (CNLs) are processed
with the help of a pipeline architecture that relies on different software
components. We investigate in this paper in an experimental way how
well answer set programming (ASP) is suited as a unifying framework for
parsing a CNL, deriving a formal representation for the resulting syntax
trees, and for reasoning with that representation. We start from a list
of input tokens in ASP notation and show how this input can be trans-
formed into a syntax tree using an ASP grammar and then into reified
ASP rules in form of a set of facts. These facts are then processed by an
ASP meta-interpreter that allows us to infer new knowledge.

Keywords: Answer Set Programming, Controlled Natural Language
Processing, Meta-programming.

1 Introduction

Controlled natural languages (CNLs) are subsets of natural languages whose
grammars and vocabularies have been restricted in order to eliminate ambiguity
and complexity of natural languages for automated reasoning [11,17]. These
CNLs are engineered for a specific purpose and look seemingly informal like
natural languages, but they have by design the same properties as their formal
target languages. Typically, the writing process of a CNL is supported by an
authoring tool that guides the writing of a text or a question by a feedback
mechanism [4,10,14,16].

Most existing CNLs are processed with the help of a pipeline architecture that
relies on different software components for parsing and translating the CNL in-
put into a formal representation before this representation can be processed by
an automated reasoning service [2,5]. In this paper, we investigate in an experi-
mental way whether answer set programming (ASP) can be used as a unifying
framework for CNL processing, knowledge representation and automated rea-
soning. After a brief introduction to the ASP paradigm in Section 2, we show
in Section 3 how grammar rules for a CNL can be written in ASP and how
CNL sentences can be parsed into a syntax tree. In Section 4, we discuss how a
formal representation can be generated for these syntax trees. In Section 5, we

B. Davis et al. (Eds.): CNL 2014, LNAI 8625, pp. 8–19, 2014.
c© Springer International Publishing Switzerland 2014

CNL Processing as Answer Set Programming: An Experiment 9

illustrate how this representation can be used for reasoning in ASP with the help
of a meta-interpreter. In Section 6, we summarise our findings and conclude.

2 Answer Set Programming (ASP)

ASP is a form of declarative programming that has its roots in logic program-
ming, disjunctive databases and non-monotonic reasoning [1,13]. ASP provides
an expressive formal language for knowledge representation and automated rea-
soning and is based on the answer set semantics for logic programs [7,8]. In ASP,
problems are represented in terms of finite logic theories and these problems are
solved by reducing them to finding answer sets which declaratively describe the
solutions to these problems. An ASP program consists of a set of rules of the
form:

1. h1 ;...; hm :- b1,..., bn, not bn+1,..., not bo.

where hi and bi are classical literals (li). A classical literal l is either an atom
a or a negated atom -a. A literal of the form not l is a negation as failure literal.
The disjunction (;) is interpreted as epistemic disjunction [9]. The part on the
left of the implication (:-) is the head of the rule and the part on the right is
the body of the rule. If the body is empty (o=0), then we omit the symbol for
the implication and end up with a fact. If the head is empty (m=0), then we keep
the symbol for the implication and end up with an integrity constraint. Note that
ASP distinguishes between strong negation (-) and weak negation (not); these
two forms of negation build the prerequisites for non-monotonic reasoning [9].
For example, the ASP program in (2) consists of two rules, six facts and one
integrity constraint:

2. successful(X) :- student(X), work(X), not absent(X).

-work(X) :- student(X), not work(X).

student(john). work(john). student(sue). work(sue).

student(mary_ann). absent(mary_ann).

:- student(X), cheat(X), successful(X).

This program can be processed by an ASP tool such as clingo [6] that computes
the following answer set:

3. { student(john) work(john) student(sue) work(sue) student(mary_ann)

absent(mary_ann) successful(sue) successful(john) -work(mary_ann) }

We call an ASP program satisfiable, if it has at least one answer set. Through
inspection of the above answer set, we can immediately see that John and Sue
are successful and that Mary Ann does not work. Note that the second rule in
(2) specifies the closed world assumption [15] for the literal work/1. If we add
the following facts to our program:

4. student(ray). work(ray). cheat(ray).

then we end up with an unsatisfiable program since the situation in (4) is ex-
cluded by the constraint in (2).

10 R. Schwitter

3 Writing a CNL Grammar in ASP

The CNL that we will use in the following discussion is similar to Processable
English (PENG) [18] and to Attempto Controlled English (ACE) [5], but the lan-
guage is less expressive since ASP does not support full first-order logic (FOL).
However, ASP is still expressive enough to represent function-free FOL formulas
of the ∃∗∀∗ prefix class in form of a logic program [12]. The following text (5) is
written in CNL and expresses the same information as the ASP program in (2):

5. Every student who works and who is not provably absent is successful.
If a student does not provably work then the student does not work.
John is a student who works.
Sue is a student and works.
Mary Ann who is a student is absent.
Exclude that a student who cheats is successful.

In order to process this text in ASP, we split it into a sequence of sentences
and each sentence into a sequence of tokens. Each token is represented in ASP
as a fact (token/4) with four arguments: the first argument holds the string, the
second argument holds the sentence number, and the third and fourth argument
represent the start and the end position of the string, for example:

6. token("Every", 1, 1, 2). token("student", 1, 2, 3). ...

Each string is stored as a fact (lexicon/5) in the ASP lexicon that distin-
guishes between function words and content words. Function words (e.g., and,
every, who) define the structure of the CNL and content words (e.g., student,
works, successful) are used to express the domain knowledge. These lexical en-
tries contain information about the category, the string, the base form, as well
as syntactic and semantic constraints (n stands for nil):

7. lexicon(cnj, "and", n, n, n).

lexicon(det, "Every", n, sg, forall).

lexicon(rp, "who", n, n, n).

lexicon(noun, "student", student, sg, n).

lexicon(iv, "works", work, sg, n).

lexicon(adj, "successful", successful, n, n).

We can write the grammar for the CNL directly as a set of ASP rules that
generate a syntax tree bottom-up, starting from the tokens up to the root. Let
us have a look at the grammar rules that process the first sentence in (5). This
sentence is interesting, since it contains a coordinated relative clause that is em-
bedded in the main sentence. The first relative clause who works is positive, and
the second relative clause who is not provably absent contains a weak negation.
It is important to note that this form of negation can only occur in a univer-
sally quantified CNL sentence or in a CNL sentence that results in an integrity
constraint.

The grammar rule (rule/7) specifies in a declarative way that a sentence (s)
starts at position P1 and ends at position P4, if there is a noun phrase (np) that
starts at P1 and ends at P2, followed by a verb phrase (vp) that starts at P2 and
ends at P3, followed by a punctuation mark (pm) between position P3 and P4:

CNL Processing as Answer Set Programming: An Experiment 11

8. rule(s, s(T1, T2, T3), n, n, N, P1, P4) :-

rule(np, T1, Y, n, N, P1, P2),

rule(vp, T2, Y, n, N, P2, P3),

rule(pm, T3, n, n, N, P3, P4).

The second argument position of this rule is used to build up a syntax tree, the
third argument position is used for syntactic constraints, the fourth for semantic
constraints, and the fifth for the sentence number. The variable Y in (8) is used
to enforce number agreement between the np and the vp.

The following grammar rule in (9) further describes the noun phrase of our
example sentence. This noun phrase (np) consists of a determiner (det), followed
by a nominal expression (n1). The variable M holds a quantifier that controls –
as we will see later – the use of weak negation in our example sentence:

9. rule(np, np(T1, T2), Y, n, N, P1, P3) :-

rule(det, T1, Y, M, N, P1, P2),

rule(n1, T2, Y, M, N, P2, P3).

The nominal expression (n1) expands in our case into a noun (noun) and a
relative clause (rcl):

10. rule(n1, n1(T1, T2), Y, M, N, P1, P3) :-

rule(noun, T1, Y, n, N, P1, P2),

rule(rcl, T2, Y, M, N, P2, P3).

The noun (noun) is a preterminal category and processes the input token
(token/4) with the help of the lexical information (lexicon/5):

11. rule(noun, noun(S), Y, n, N, P1, P2) :-

token(S, N, P1, P2),

lexicon(noun, S, B, Y, n).

Note that the relative clause in our example sentence is coordinated and con-
sists of a positive and a negative part. The grammar rule in (12) for relative
clauses (rcl) deals with this coordinated structure. In contrast to the positive
part, we use the variable M in the negative part of the coordinated structure to
enforce that this form of negation occurs under universal quantification (addi-
tional grammar rules exist that deal with relative clauses where the order of the
positive and negative part is different):

12. rule(rcl, rcl(T1, T2, T3), Y, M, N, P1, P4) :-

rule(rcl, T1, Y, n, N, P1, P2),

rule(cnj, T2, n, n, N, P2, P3),

rule(rcl, T3, Y, M, N, P3, P4).

As the following two grammar rules in (13) illustrate, the relative clause ex-
pands in both cases into a relative pronoun (rp) followed by a verb phrase (vp):
the first vp occurs without a variable (n) at the fourth argument position and
the second vp occurs with a variable (M) that holds the quantifier:

13. rule(rcl, rcl(T1, T2), Y, n, N, P1, P3) :-

rule(rp, T1, n, n, N, P1, P2),

rule(vp, T2, Y, n, N, P2, P3).

12 R. Schwitter

rule(rcl, rcl(T1, T2), Y, M, N, P1, P3) :-

rule(rp, T1, n, n, N, P1, P2),

rule(vp, T2, Y, M, N, P2, P3).

The first verb phrase (vp) in (13) expands into an intransitive verb (iv):

14. rule(vp, vp(T1), Y, n, N, P1, P2) :-

rule(iv, T1, Y, n, N, P1, P2).

and the second verb phrase (vp) expands into a copula (cop), followed by a weak
negation (naf) and an adjective (adj):

15. rule(vp, vp(T1, T2, T3), Y, M, N, P1, P4) :-

rule(cop, T1, Y, n, N, P1, P2),

rule(naf, T2, n, M, N, P2, P3),

rule(adj, T3, n, n, N, P3, P4).

As we have seen, weak negation is expressed on the surface level of the CNL
with the help of the key phrase not provably. The rule (naf) in (16) processes
this key phrase if it occurs in the scope of a universal quantifier (forall):

16. rule(naf, naf(T1, adv("provably")), n, forall, N, P1, P3) :-

rule(neg, T1, n, n, N, P1, P2),

rule(adv, adv("provably"), n, n, N, P2, P3).

We still have to deal with the verb phrase (vp) on the sentence level that is
part of rule (8). This verb phrase expands into a copula (cop), followed by an
adjective (adj):

17. rule(vp, vp(T1, T2), Y, n, N, P1, P3) :-

rule(cop, T1, Y, n, N, P1, P2),

rule(adj, T2, n, n, N, P2, P3).

In ASP, these grammar rules are processed bottom-up and during this model
generation process the following syntax tree is produced for our example
sentence:

18. s(np(det("Every"),

n1(noun("student"),

rcl(rcl(rp("who"),

vp(iv("works"))),

cnj("and"),

rcl(rp("who"),

vp(cop("is"),

naf(neg("not"),

adv("provably")),

adj("absent")))))),

vp(cop("is"),

adj("successful")),

pm("."))

CNL Processing as Answer Set Programming: An Experiment 13

This syntax tree needs to be translated into a suitable ASP representation for
automated reasoning as we will see in Section 4.

Before we do this, please note that it is relatively straightforward to generate
look-ahead information that informs the author about the admissible input. To
generate look-ahead information, we add one or more dummy tokens that contain
a special string (lah) to the last input token, for example:

19. token("Every", 1, 1, 2).

token("student", 1, 2, 3).

token("lah", 1, 3, 4).

Additionally, we add for each category a lexical entry that contains this special
string, for example:

20. lexicon(iv, "lah", n, sg, n).

The following ASP rules in (21) are then used to collect those syntax tree
fragments that span the input string and contain look-ahead information. The
last rule in (21) is a constraint and makes sure that the entire input string is
considered:

21. lah(C, T, Y, M, N, 1, P2) :-

rule(C, T, Y, M, N, 1, P2),

end_pos(P2, N).

lah :-

lah(C, T, Y, M, N, 1, P2),

end_pos(P2, N).

-end_pos(P2, N1) :-

token("lah", N1, P1, P2),

token("lah", N2, P3, P4),

N1 <= N2, P2 < P4.

end_pos(P2, N) :-

token("lah", N, P1, P2),

not -end_pos(P2, N).

:- not lah.

In our example, the addition of the first token (token("lah", 1, 3, 4))
in (19) results in an unsatisfiable program. The addition of a further token
(token("lah", 1, 4, 5)) results in two tree fragments that span the input
string. From these trees, we can extract the relevant look-ahead information.

4 From Syntax Trees to Reified ASP Rules

We choose an indirect encoding for ASP rules where rules are reified as facts. This
kind of encoding is necessary since there exists no mechanism within ASP that
would allow us to assert new rules. The reified rules are then further processed

14 R. Schwitter

by an ASP meta-interpreter as we will see in Section 5. A reified rule consists
of up to four different fact types: a fact type (rule/1) for the identification of
the rule, a fact type (head/2) for the head of the rule, a fact type (pbl/2) for
positive body literals (if any), and a fact type (nbl/2) for negative body literals
(if any). For example, the translation of the syntax tree in (18) will result in the
following encoding:

22. rule(1).

head(1, lit(func(successful), arg(sk(1)))).

pbl(1, lit(func(work), arg(sk(1)))).

pbl(1, lit(func(student), arg(sk(1)))).

nbl(1, lit(func(absent), arg(sk(1)))).

The fact type (rule/1) stores the rule number (1). This rule number occurs
as first argument in the other fact types and specifies rule membership. The
actual literals that belong to a rule are encoded with the help of the term lit/2

where the first argument (e.g., func(successful)) is the functor name of the
literal and the second argument (arg(sk(1))) represents a Skolem constant1 that
replaces the variable in the literal. Note that all facts that have been derived
from rules need to be grounded and cannot contain any variables.

In the following, we will show in detail how the syntax tree in (18) is translated
into the proposed ASP notation for rules in (22). The syntax tree is first split
into three main parts: a part (to qnt/3) to be translated into a quantifier, a
part (to body/3) to be translated into a rule body, and a part (to head/3) to be
translated into a rule head. In our case, these parts correspond to the determiner
(det), the nominal expression (n1), and the verb phrase (vp) of the first sentence
in (5):

23. to_qnt(N, det("Every"), M) :-

rule(det, det("Every"), Y, M, N, P1, P2),

rule(n1, T2, Y, M, N, P2, P3),

rule(vp, T3, Y, n, N, P3, P4).

to_body(N, T2, M) :-

rule(det, det("Every"), Y, M, N, P1, P2),

rule(n1, T2, Y, M, N, P2, P3),

rule(vp, T3, Y, n, N, P3, P4).

to_head(N, T3, M) :-

rule(det, det("Every"), Y, M, N, P1, P2),

rule(n1, T2, Y, M, N, P2, P3),

rule(vp, T3, Y, n, N, P3, P4).

In the next step, the determiner ("Every") is processed and this results in a
new predicate (qnt/4) that stores a rule number (R), the universal quantifier (M),
the sentence number (N), and a Skolem constant (K) for the universal quantifier.
Note that the rule number and the number for the Skolem constant are generated
with the help of Lua2 and assigned (:=) to the variables (R) and (K):
1 The number i in sk(i), represents the ith Skolem constant.
2 Lua (http://www.lua.org) is available as integrated scripting language in clingo.

CNL Processing as Answer Set Programming: An Experiment 15

24. qnt(R, M, N, sk(K)) :-

to_qnt(N, det("Every"), M),

R := @rule_num(),

K := @sk_num().

Given the new predicate (qnt/4) for the universal quantifier, the syntax tree
fragments for constructing the head of a rule and the body of a rule can be
further split up:

25. to_head(R, adj(S2), K) :-

to_head(N, vp(cop(S1), adj(S2)), M),

qnt(R, forall, N, K).

to_body(R, noun(S), K) :-

to_body(N, n1(noun(S), RCL), M),

qnt(R, forall, N, K).

to_body(R, RCL, K) :-

to_body(N, n1(noun(S), RCL), M),

qnt(R, forall, N, K).

In the case of the head (to head/3), this process results in a preterminal cat-
egory (adj(S2)) that can be used to generate the head literal of the rule. In the
case of the body (to body/3), only the first rule generates a preterminal category
(noun(S)) that can directly be used to generate a positive body literal. The sec-
ond rule is used to split the relative clause (RCL) into its basic constituents in
order to extract the relevant preterminal categories:

26. to_body(R, RCL1, K) :-

to_body(R, rcl(RCL1, cnj(and), RCL2), K).

to_body(R, RCL2, K) :-

to_body(R, rcl(RCL1, cnj(and), RCL2), K).

to_body(R, iv(S2), K) :-

to_body(R, rcl(rp(S1), vp(iv(S2))), K).

to_body(R, naf(adj(S3)), K) :-

to_body(R, rcl(rp(S1), vp(cop(S2), naf(T1, T2), adj(S3))), K).

The preterminal categories for content words together with the Skolem con-
stant (K) and the rule number (R) are then used to generate the head literal, the
positive and negative body literals. During this process the string (S) of these
preterminal categories is replaced by the base form (B) via a lexicon lookup. The
rule identifier (rule/1) is generated with the help of the head literal (head/2):

27. rule(R) :- head(R, L).

head(R, lit(func(B), arg(K))) :-

to_head(R, adj(B), K),

lexicon(adj, S, B, _, _).

16 R. Schwitter

pbl(R, lit(func(B), arg(K))) :-

to_body(R, noun(S), K),

lexicon(noun, S, B, _, _).

pbl(R, lit(func(B), arg(K))) :-

to_body(R, iv(S), K),

lexicon(iv, S, B, _, _).

nbl(R, lit(func(B), arg(K))) :-

to_body(R, naf(adj(S)), K),

lexicon(adj, S, B, _, _).

Note that checking for anaphoric references can be done over the existing
model during the translation process of the syntax tree into rules. For example,
the second sentence of (5) contains a definite noun phrase (the student) that is
anaphorically linked to an indefinite noun phrase (a student). Depending on the
context in which an anaphoric expression occurs, we either check the body of
the current rule for an antecedent or the heads of all existing rules that don’t
have a body and give preference to the closest match in terms of rule numbers.

5 Reasoning with Reified ASP Rules

In order to process these reified ASP rules, we use a meta-interpreter that is
based on the work of Eiter et al. [3]. We substantially extended this meta-
interpreter so that it can deal with variables that occur as Skolem constants
in the reified notation. On the meta-level we represent answer sets with the help
of the predicate in AS/1 and use the following two rules to add literals to an
answer set:

28. in_AS(lit(F, A2)) :-

head(R, lit(F, A1)),

pos_body_true(R, A1, A2),

not neg_body_false(R, A1, A2).

in_AS(lit(F, A)) :-

head(R, lit(F, A)),

rule(R),

not pos_body_exists(R).

The first rule specifies that a literal (lit/2) is in an answer set (in AS/1),
if it occurs in the head (head/2) of a rule with number R whose positive body
(pos body true/3) is true and whose negative body (neg body false/3) is not false
and if the Skolem constant that occurs as argument (A1) of that literal can be
replaced by other constants that occur as argument (A2) of a corresponding
literal in the answer set. The second rule specifies that if no positive body literal
(pbl/3) for a rule exists, then we can directly process the head (head/2) of a rule.

The positive body (pos body true/3) of the first rule in (28) is true up to some
positive body literal with respect to a built-in order. If the positive body is true
up to the last positive body literal then the whole positive body is true. The first

CNL Processing as Answer Set Programming: An Experiment 17

rule in (29) deals with this case; the second rule takes care of the first positive
body literal, and the third rule makes sure that the positive body literals follow
the specified order:

29. pos_body_true(R, A1, A2) :-

pos_body_true_up_to(R, F, A1, A2),

not pbl_not_last(R, F).

pos_body_true_up_to(R, F, A1, A2) :-

pbl_in_AS(R, F, A1, A2),

not pbl_not_first(R, F).

pos_body_true_up_to(R, F1, A1, A2) :-

pbl_in_AS(R, F1, A1, A2),

F2 < F1,

not pbl_in_between(R, F2, F1),

pos_body_true_up_to(R, F2, A1, A2).

The rule (pbl in AS/4) in (30) checks if a positive body literal (pbl/2) for a
rule (R) exists, looks in the current answer set (in AS/1) for a literal that has the
same functor name (F) as the body literal but shows a different argument (A2)
and returns that argument:

30. pbl_in_AS(R, F, A1, A2) :-

pbl(R, lit(F, A1)),

in_AS(lit(F, A2)),

A1 != A2.

There exist similar rules that deal with cases where the positive body literal
has more than one argument. The successor relation on positive body literals of
each rule is defined with the help of the following auxiliary rules:

31. pbl_in_between(R, F1, F3) :-

pbl(R, lit(F1, A1)),

pbl(R, lit(F2, A2)),

pbl(R, lit(F3, A3)),

F1 < F2, F2 < F3.

pbl_not_last(R, F1) :-

pbl(R, lit(F1, A1)),

pbl(R, lit(F2, A2)),

F1 < F2.

pbl_not_first(R, F1) :-

pbl(R, lit(F1, A1)),

pbl(R, lit(F2, A2)),

F2 < F1.

The negative part of the body (neg body false/3) in the first rule of (28) is
false, if it can be shown that one of its literals is in the answer set (in AS/1).
The rule in (32) checks this condition for literals with one argument (other rules
deal with literals that have more than one argument):

18 R. Schwitter

32. neg_body_false(R, A1, A2) :-

nbl(R, lit(F, A1)),

in_AS(lit(F, A2)).

Finally, the rule pos body exists/1 in (33) is used as part of the second rule
in (28) and simply checks if a positive body literal (pbl/2) exists:

33. pos_body_exists(R) :- pbl(R, L).

After parsing and translating the CNL text in (5) into reified rules represented
as a set of facts, the ASP meta-interpreter will generate the following answer set
as solution:

34. { in_AS(lit(func(student), arg(john)))

in_AS(lit(func(work), arg(john)))

in_AS(lit(func(student), arg(sue)))

in_AS(lit(func(work), arg(sue)))

in_AS(lit(func(student), arg(mary_ann)))

in_AS(lit(func(absent), arg(mary_ann)))

in_AS(lit(func(successful), arg(sue)))

in_AS(lit(func(successful), arg(john)))

in_AS(lit(func(neg(work)), arg(mary_ann))) }

This answer set contains the same information as the answer set in (3) and can
be used for question answering.

6 Conclusion

In this paper, we investigated in an experimental way if it is possible to process
a controlled natural language entirely in ASP and if ASP can serve as a uni-
fied framework for parsing, knowledge representation and automated reasoning.
ASP is a powerful declarative knowledge representation language that provides
support for non-monotonic reasoning and this makes the language particularly
attractive for controlled natural language processing. We showed in detail how a
grammar for a controlled natural language can be written as an ASP program.
This grammar is processed bottom-up and the syntax trees are constructed start-
ing from the leaves up to the root. The resulting syntax trees are translated into
reified rules that consist of a set of facts. These facts are then used by a meta-
interpreter written in ASP for automated reasoning. The translation into reified
rules is necessary because ASP does not provide a mechanism that would allow
us to generate and assert normal ASP rules in the same program. Alternatively,
we could take the resulting syntax trees and translate them outside of the ASP
program into normal ASP rules and then generate a new ASP program that
executes these rules. With the help of the presented ASP grammar it is possible
to generate look-ahead information to guide the writing process of the author.
It is also possible in ASP to perform anaphora resolution over the reified rules
during the translation process using the standard constraints on anaphoric ac-
cessibility. We believe that ASP is an interesting paradigm for controlled natural
language processing and plan to extend the presented approach or aspects of it
and integrate them into a controlled language authoring system.

CNL Processing as Answer Set Programming: An Experiment 19

References

1. Brewka, G., Eiter, T., Truszczyński, M.: Answer Set Programming at a Glance.
Communications of the ACM 54(12) (December 2011)

2. Clark, P., Harrison, P., Jenkins, T., Thompson, J., Wojcik, R.H.: Acquiring and
using world knowledge using a restricted subset of English. In: Proceedings of
FLAIRS 2005, pp. 506–511. AAAI Press (2005)

3. Eiter, T., Faber, W., Leone, N., Pfeifer, G.: Computing Preferred Answer Sets
by Meta-Interpretation in Answer Set Programming. INFSYS Research Report
1843-02-01, Technische Universität Wien (January 2002)

4. Franconi, E., Guagliardo, P., Trevisan, M., Tessaris, S.: Quelo: an ontology-driven
query interface. In: Proceedings of the 24th International Workshop on Description
Logics (DL 2011) (2011)

5. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for knowledge
representation. In: Baroglio, C., Bonatti, P.A., Ma�luszyński, J., Marchiori, M.,
Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 104–124.
Springer, Heidelberg (2008)

6. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T.,
Schneider, M.: Potassco: The Potsdam Answer Set Solving Collection. AI
Communications 24(2), 105–124 (2011)

7. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of ICLP 1988, pp. 1070–1080 (1988)

8. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9(3-4), 365–386 (1991)

9. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of
Intelligent Agents. Cambridge University Press (2014)

10. Kuhn, T.: Controlled English for Knowledge Representation. Doctoral thesis,
Faculty of Economics, Business Administration and Information Technology of
the University of Zurich (2010)

11. Kuhn, T.: A Survey and Classification of Controlled Natural Languages. Compu-
tational Linguistics 40(1), 121–170 (2014)

12. Lierler, Y., Lifschitz, V.: Logic Programs vs. First-Order Formulas in Textual In-
ference. In: Proceedings of the 10th International Conference on Computational
Semantics (IWCS 2013), Potsdam, Germany, pp. 340–346 (2013)

13. Lifschitz, V.: What is Answer Set Programming? In: Proceedings of AAAI 2008,
pp. 1594–1597 (2008)

14. Power, R.: OWL Simplified English: a finite-state language for ontology editing.
In: Kuhn, T., Fuchs, N.E. (eds.) CNL 2012. LNCS, vol. 7427, pp. 44–60. Springer,
Heidelberg (2012)

15. Reiter, R.: On closed world data bases. In: Gallaire, H., Minker, J.,, J. (eds.) Logic
and Data Bases, pp. 119–140. Plenum Publ. Co., New York (1978)

16. Schwitter, R., Ljungberg, A., Hood, D.: ECOLE – A Look-ahead Editor for a
Controlled Language. In: Proceedings of EAMT-CLAW 2003, Dublin City Univer-
sity, Ireland, May 15-17, pp. 141–150 (2003)

17. Schwitter, R.: Controlled Natural Languages for Knowledge Representation.
In: Proceedings of COLING 2010, Beijing, China, pp. 1113–1121 (2010)

18. White, C., Schwitter, R.: An Update on PENG Light. In: Pizzato, L., Schwitter,
R. (eds.) Proceedings of ALTA 2009, Sydney, Australia, pp. 80–88 (2009)

How Easy Is It to Learn a Controlled Natural Language
for Building a Knowledge Base?

Sandra Williams, Richard Power, and Allan Third

The Open University, Walton Hall, Milton Keynes, MK7 6AA, U.K.
sandra.williams@open.ac.uk

Abstract. Recent developments in controlled natural language editors for knowl-
edge engineering (KE) have given rise to expectations that they will make KE
tasks more accessible and perhaps even enable non-engineers to build knowledge
bases. This exploratory research focussed on novices and experts in knowledge
engineering during their attempts to learn a controlled natural language (CNL)
known as OWL Simplified English and use it to build a small knowledge base.
Participants’ behaviours during the task were observed through eye-tracking and
screen recordings.

This was an attempt at a more ambitious user study than in previous research
because we used a naturally occurring text as the source of domain knowledge,
and left them without guidance on which information to select, or how to encode
it. We have identified a number of skills (competencies) required for this difficult
task and key problems that authors face.

1 Introduction

Controlled Natural Language (CNL) has been proposed as a convenient and accessible
medium for building knowledge bases such as semantic web ontologies, e.g., ACE [3],
Sidney OWL syntax [1], OSE [15], CLOnE [4], Rabbit [2] or software requirements
specifications [20]. CNLs for these tasks are designed to be unambiguously interpreted,
usually by machine, into formal languages; consequently, they have been proposed as
an alternative to formal representation languages such as the Web Ontology Language
(OWL).1 It has been assumed that since a CNL closely resembles a natural language
(NL) it will be easy to learn, especially if the editor has a predictive interface [18],
and thus the task of constructing a knowledge base will be reduced to the task of con-
structing syntactically correct and semantically plausible CNL sentences. CNLs have
been proposed as particularly useful for non-experts in knowledge representation (KR)
languages, enabling them to encode their own domain knowledge into a formal repre-
sentation, perhaps without any help from a knowledge engineer.

However, these underlying assumptions have undergone little previous evaluation
(see section 2). Thus, the study described here investigated: (i) Is a CNL easy to learn?
and (ii) Would a CNL interface enable someone who is unfamiliar with KR or KR
languages to build a knowledge base without help?

1 www.w3.org/TR/owl-features/

B. Davis et al. (Eds.): CNL 2014, LNAI 8625, pp. 20–32, 2014.
c© Springer International Publishing Switzerland 2014

www.w3.org/TR/owl-features/

How Easy Is It to Learn a Controlled Natural Language 21

This paper presents empirical observations on a Controlled Natural Language (CNL)
authoring task for two OWL experts and four OWL novice participants who were learn-
ing the CNL known as OWL Simplified English, or OSE [15]. Participants were shown
three video tutorials on OSE, each followed by a 10-minute exercise during which they
used the SWAT Editing Tool2 to construct OSE sentences from domain knowledge in
the form of a paragraph of text taken from a Simple Wikipedia article. In a sense, they
were performing a translation exercise to convert natural language (English text) into
OSE and thus directly into OWL (through typing OSE into the editor interface).

This task was particularly difficult because the knowledge to be encoded in CNL was
not artificially prepared by the experimenters but a naturally-occurring text written by
wikipedia authors. It was thus a radical departure from the kinds of data supplied in
other evaluations (see section 2). Our motivation to use such data was that it more
closely represents the kind of knowledge that a domain expert might carry in his/her
head, i.e., a genuine example of domain data ‘from the wild’. Consequently, it presented
an additional burden on participants because some parts of the source text could not be
expressed in OWL (or OSE) and some parts were not in a convenient form, therefore
participants had to select and organise information as well as encoding it in CNL.

Knowledge engineering in CNL is a complex task requiring such a large number of
skills (or competencies) that it seems unlikely that someone who knows nothing of the
underlying formal semantics could be expected to perform well. We break down the
requisite skills into three areas (knowledge representation, sentence construction, and
identifier name construction). In observing participants’ actions from screen record-
ings with eye-tracking, our aim was to find out how exactly they modelled the domain
knowledge from the text, how they went about constructing ontology axioms and iden-
tifier names, and whether they encountered problems whilst doing so. From our analysis
of the screen recordings, we present some insights about their attempts to learn the CNL
and construct a knowledge base. From these, we make predictions about the difficul-
ties that novices, in particular, face and hence the feasibility of CNL as an interface for
novices and experts.

2 Related Studies

Our exploratory study differed radically from other evaluations of CNL knowledge ed-
itors in that the material it provided for participants as ‘knowledge to be encoded’ was
not artificial. We provided a naturally-occurring, human-authored text; other evaluations
provided participants with artificial ‘knowledge’, e.g., schematic diagrams [9–11], or
NL sentences contrived with different phrasing and wording from that of the CNL. For
example, Funk et al.’s evaluation of the CLOnE language for semantic web ontology
editing [4] gave participants sentences such as, ‘Create a subclass Journal of Periodi-
cal.’ Hallett, Power and Scott [6] gave their participants artificial texts for the task of
constructing SQL queries, e.g., ‘How many patients who received surgical treatment for
malignant neoplasm of the central portion of the breast had no curative radiotherapy?’
Garcı́a-Barriocanal et al. [5] provided what we assume was an artificially-contrived text
for the task of constructing a small ontology. An exception is the study of Laing et al.

2 http://mcs.open.ac.uk/nlg/SWAT/editor.html

http://mcs.open.ac.uk/nlg/SWAT/editor.html

22 S. Williams, R. Power, and A. Third

[12] which used short texts written by ontology engineers describing a few OWL state-
ments. The major differences between all of these texts and our text is that with the arti-
ficial texts and Laing et al.’s texts, participants were provided with convenient terms and,
more importantly, only with data that could be successfully encoded; whereas, some of
our naturally-occurring text could not be encoded, nor were identifier names provided
in a convenient form.

These are important differences because they made more realistic domain experts of
our participants, assuming that knowledge inside a domain expert’s head is not conve-
niently organised in a form that would lend itself to CNL encoding. Thus we forced our
participants to select and reorganise knowledge before encoding it. On the other hand,
the studies above were focussed on particular competencies (e.g., one aspect of Funk
et al.’s study tested whether users had learnt the CNL sentence pattern for expressing a
subclass relationship), whereas the purpose of our study was to explore which compe-
tencies are important for the task of encoding knowledge in CNL.

An exception was a study in which participants were encouraged to find encyclopedia
articles from which to encode geographical knowledge [8]. Because of the constraints
of the system used, several hundred domain vocabulary names had to be prepared in ad-
vance. Using the vocabulary provided, participants were able to choose to encode any
geographical information they wanted. Unsurprisingly, this produced differing contents
that were hard to compare. However, as in our study, participants used different mod-
elling styles to represent similar information according to their different views of the
world and had difficulties producing syntactically acceptable formulations.

Studies exist that compare new ontology editors to popular alternatives like Protégé,
e.g., [7]. This was not the aim of our study, which is concerned with the details of
learning a CNL for knowledge editing, not with the broader issue of which approach
is best.

3 Tools, Materials and Method

3.1 OWL Simplified English

OWL Simplified English (OSE), [15], is a relatively free-form language in which each
sentence expresses an OWL statement, and entity names (for individuals, classes and
properties) are recognised by their relationship to a handful of common English key-
words such as ‘the’, ‘is’, ‘has’, and ‘a’, with minimal classification of content words. It
is left to the writer to decide whether to create text that would be recognisable or un-
derstandable as natural English. For instance, in the sentence ‘A dog is an animal.’, text
between ‘A’ and ‘is’ is interpreted as a class name. Likewise, ‘animal’ is a class name
because it is delimited by ‘an and ‘.’. Thus ‘A because because is an of of of.’ would
also be a valid OSE sentence, meaning that the class ‘because because’ is a subclass of
the class ‘of of of’.3

OSE is relatively unconstrained when constrasted with other CNLs which require
predefined vocabularies. Because the grammar is finite-state, sentences can quickly be

3 A tutorial is available at
mcs.open.ac.uk/nlg/SWAT/EditingToolApril2012/tutorial.pdf

mcs.open.ac.uk/nlg/SWAT/EditingToolApril2012/tutorial.pdf

How Easy Is It to Learn a Controlled Natural Language 23

verified as correct, and interpreted in OWL. The language disallows sentence patterns
using connectives like ‘and’, ‘or’, ‘that’, which people would interpret as structurally
ambiguous.

3.2 SWAT Editing Tool

The editing tool4 used in this study was developed for the SWAT project5 as described
in Power [16]. It implements OSE [15], building OWL statements dynamically as the
user types OSE sentences. Its predictive interface provides sentence patterns (as full or
partial sentences) and feedback on the OWL statement being built. As it is typed, text is
parsed character-by-character and automatically coloured brown for class names, purple
for individuals, blue for properties, and green for literals. Figure 1 shows a screenshot
of the editor set up for the study with the source text inserted as a comment at the
top of the editing pane (which was larger than shown here), a context-sensitive list of
allowed sentence or continuation patterns (RHS), and a context-sensitive message area
for dynamic feedback.

Fig. 1. SWAT Editing Tool

In the editing area, a sentence, ‘A acid is a substance.’, containing an English gram-
matical error has been, nonetheless, accepted by the OSE finite-state parser. Another
sentence is being typed, ‘An acid tastes sour a . . . ’, the message area shows the partially-
constructed OWL statement in which ‘tastes sour’ is recognised as a property name
(possibly the author intended ‘sour’ as a literal, denoted by double quotes in OSE).

3.3 Materials

Instructional Videos. To ensure that all participants received identical tuition, we
recorded three 5- to 8-minute instructional videos with screen recordings and spoken
commentaries demonstrating how to construct OSE sentences and identifier names6.

4 Downloadable from http://mcs.open.ac.uk/nlg/SWAT/editor.html
5 Semantic Web Authoring Tool (SWAT) project funded by EPSRC grant G033579/1. Dr Third

was funded by VPH share (European Commission ICT-FP7-269978).
6 Videos may be viewed at http://mcs.open.ac.uk/nlg/SWAT/editor.html

http://mcs.open.ac.uk/nlg/SWAT/editor.html
http://mcs.open.ac.uk/nlg/SWAT/editor.html

24 S. Williams, R. Power, and A. Third

Additionally, participants were given ‘crib’ sheets summarising all sentence patterns
taught in the videos. In video 1, participants were taught to construct three types of
OSE sentences (class subsumption, class membership, and disjoint classes) using class
(concept) names and individual (class member) names. In video 2, participants were
taught to construct multi-word property and individual names, literals in quotes for
previously-taught sentences, and new sentence patterns for existential property restric-
tions. In video 3, participants were taught to construct sentence patterns for equivalent
classes, property restrictions ‘only’, ‘exactly, ‘at least’, ‘at most’, and property domains
and ranges.

Text to be ‘translated’. The source text containing the domain knowledge was from a
Simple Wikipedia7 article about acid:

An acid (from the Latin acidus/acēre meaning sour) is a substance which reacts with a base. Commonly, acids

can be identified as tasting sour, reacting with metals such as calcium, and bases like sodium carbonate. Aqueous

acids have a pH under 7, with acidity increasing the lower the pH. Chemicals or substances having the property

of an acid are said to be acidic.

Common examples of acids include acetic acid (in vinegar), sulfuric acid (used in car batteries), and tartaric

acid (used in baking). As these three examples show, acids can be solutions, liquids, or solids. Gases such as

hydrogen chloride can be acids as well. Strong acids and some concentrated weak acids are corrosive, but there

are exceptions such as carboranes and boric acid.

We chose this as an appropriate expository text because it presented the typical dif-
ficulties and ambiguities of naturally-occurring text while avoiding content requiring
past tense (e.g., events in history). To check the suitability of the source text, the au-
thors independently tried to recast its content in OSE, and produced three texts showing
somewhat different modelling styles (see also section 5).

Task Instructions. Participants were given written instructions as follows:

Your task is to enter information about classes and individuals from the text that you have been given using the

sentence patterns shown in the tutorial. Try to use only information that you find in the text but you may use

alternative phrases if you wish. There will be information in the text that you do not know how to express yet;

do not worry, just leave it out for now. You will be adding more after the next tutorial.

3.4 Method

Six participants, two OWL experts and four novices, completed the study individually
in a small room in the Open University human interaction laboratory supervised by the
first author who calibrated the eye-tracker, started the videos, controlled the timings of
each 10-minute CNL authoring session, and saved participants’ OSE text files.

7 Downloaded from http://simple.wikipedia.org/wiki/Acid
on 29th November 2012

http://simple.wikipedia.org/wiki/Acid

How Easy Is It to Learn a Controlled Natural Language 25

4 Results

OSE texts written and edited by participants range from 3 to 30 sentences.8 Overall, it is
surprising how much text they managed to write. Even though the resulting knowledge
modelling in OWL is sometimes not ideal,9 nevertheless, all participants except one
managed to construct a simple ontology about acids.

4.1 Learning OSE

Analysis of screen recordings of participants’ authoring sessions revealed that all quickly
learnt the patterns ‘A [class] is a [class].’ and ‘[Individual] is a [class].’ Experts seemed
to pick up the controlled language with remarkable ease.

Some novices attempted to write in natural English rather than OSE, e.g., ‘A is B,
so is C.’ and a conjunction in the subject NP ‘A and B are . . . ’. A novice had problems
with verb tenses (s/he tried to use the past tense form) and with plural nouns when the
singular is required. Further problems are noted in the following subsections.

4.2 Knowledge Modelling

Building Class Hierarchies. A major difference between experts and novices was that
experts had one more level of depth in their hierarchies. Experts identified more sub-
classes than novices who would typically fail to state, e.g., that strong, and concentrated
weak acids are types of acid. An expert would include these and also ‘base’ and ‘metal’
as subclasses of ‘substance’, and ‘aqueous acid’ as a subclass of ‘acid’.

Defining Class Members. Regarding class membership, everyone constructed ‘Acetic
acid is an acid’, ‘Tartaric acid is an acid’, and so on from the original sentence where
these are clearly stated: ‘Common examples of acids include acetic acid (in vinegar),
sulfuric acid (used in car batteries), and tartaric acid (used in baking).’

Explicit vs. Implicit Information. In general, where class subordination and class
membership information is explicit in the source text, all participants managed to model
it; however, where information is implicit, only experts modelled it.

Constructing Relationships (Properties) between Individuals. All participants man-
aged to construct at least one property; however, nearly everyone had problems con-
structing property names (see section 4.4). Some novices had problems attempting to
construct relationships in the text that are difficult, or impossible, to model in OWL,
e.g., the vague ‘can be’ in ‘Gases such as hydrogen chloride can be acids’.

Translating Source Text Information. There is evidence that everyone tried to trans-
late directly from the source text. All participants started constructing their ontologies
with some variation of the sentence ‘An acid is a substance.’ This corresponds with part
of the first sentence in the original text, ‘An acid (from the Latin acidus/acēre meaning

8 Available from
mcs.open.ac.uk/nlg/SWAT/WilliamsEtAl2014-ParticipantTexts.pdf

9 We chose not to view any particular modelling style as being ‘correct’.

mcs.open.ac.uk/nlg/SWAT/WilliamsEtAl2014-ParticipantTexts.pdf

26 S. Williams, R. Power, and A. Third

sour) is a substance which reacts with a base.’ One person even copied the sentence
from the original text, pasted it into the editor and deleted redundant parts of it. Often,
they wrote many OSE sentences for a single source text sentence; indeed, expert E7
wrote six for the first source text sentence, perhaps exploring the range within OSE.

Table 1. Modelling the sentence ‘Aqueous acids have a pH under 7, with acidity increasing the
lower the pH. Chemicals or substances having the property of an acid are said to be acidic.’

OSE Sentence N4 N5 N6 N2 E3 E7
Aqueous acids are under 7. �
Aqueous acids has ph under 7. �
An aqueous acid is defined as a liquid that has pH below 7. �
An acid has as pH “7 or less”. �
Acid has ph under 4. �
Acid is definied as a substance that has ph under 7. �
An acidic is defined as a subtance that has as property of an acid. �
Acidity is inverted proportion to a ph. �

Participants demonstrated surprising consensus in modelling the second source text
sentence (apart from class-individual differences). The screen recordings revealed that
most struggled to interpret the vague term ‘commonly’ in ‘commonly, acids can be
identified as tasting sour’, encoding the meaning as ‘all acids taste sour’.

Again, screen recordings revealed difficulties with constructing a property for ‘pH’
(all participants that attempted it had difficulties). See also table 1 for a comparison of
their attempts.

In modelling usages of acids and whether they are solids, liquids or gases, only
novice N2 and expert E7 attempted to model usages of common acids but N2 seem-
ingly misunderstood the universal restriction by writing ‘Tartaric acid is used only in
baking’. Expert E3 provided a plausible disjoint union for solution, liquid, solid, and
gas classes.

As a final example, consider how participants modelled the knowledge that acids
can be weak or strong, or corrosive or non-corrosive. E7 was inventive in writing ‘Boric
acid corrodes exactly 0 substances.’ N2 specified ‘non-corrosive’ and ‘corrosive’ classes
with the latter equivalent to ‘acid’. If, as indicated by their names, s/he had made ‘cor-
rosive’ and ‘non-corrosive’ disjoint, a non-corrosive acid could not logically exist.

4.3 Sentence Construction

Sentence Pattern Usage. Table 2 shows a breakdown of sentence pattern usage by par-
ticipant. It is clear that the OWL experts, E3 and E7, produced more sentences than
OWL novices (N4, N5, N6 and N2). The mean number is 26 for experts and 15 for
novices not including N4. Experts attempted a greater variety and more complex pat-
terns than novices. Eleven of the patterns taught in the videos were used, six were taught
but not used, and a further seven patterns were used that were not taught.

How Easy Is It to Learn a Controlled Natural Language 27

Table 2. Sentence pattern frequencies in participants’ final texts (*error in editor)

Pattern N4 N5 N6 N2 E3 E7 Total
[Individual] is a [class]. 1 7 6 10 7 9 40
A [class] is a [class]. 1 2 1 3 6 7 20
No [class] is a [class]. 3 3 1 7
A [class] [has-property] a [class]. 1 3 2 6
[Individual] [has-property] [Individual]. 1 1 2 4
[Individual] [has-property] a [class]. 3 1 4
[Individual] [has-data-property] [literal]. 2 1 3
A [class] [has-property] [Individual]. 3 3
*[Individual] is defined as a [class]. 3 3
A [class] is defined as a [class] that [has-property] a [class]. 1 1 1 3
[Individual] [has-property] a [class] that [has-data-property] [literal]. 1 1
[Individual] [has-property] only [class]. 1 1
[Individual] [has-property] exactly [integer] [class]. 1 1
A [class] is defined as a [class] that [has-data-property] [literal]. 1 1
A [class] is a [class] or a [class] or a [class] or a [class]. 1 1
A [class] [has-data-property] [literal]. 1 1
A [class] [has-property] at least [integer] [class]. 1 1
Anything that [has-property] something is a [class]. 1 1
Total Sentences 3 13 14 19 22 30 101
Total Unique patterns 3 4 6 6 7 12 18

Understanding That OSE Sentences Must Conform to Syntactic Rules and Ability
to Correct Errors. There is evidence in the screen recordings that participants noticed
when sentences were incorrect and tried to correct them. Eye tracks and gaze duration
circles over sentences being written before and after adding a full stop seem to indicate
sentence checking. Sometimes a sentence pattern was selected in what looked like an
attempt to correct a half-written sentence. On the other hand, there was often little
attempt to conform to English grammar rules (‘a acid’ was not corrected to ‘an acid’ by
three participants); indeed OSE does not recognise (or colour-code) them as errors.

Some participants failed to correct sentences with syntactic flaws that could not be
parsed by the finite state automaton in the editor. ‘An acid tastes Sour and reacts with
metals.’ was produced by N4 who had successfully declared ‘tastes’ and ‘reacts’ as
verbs but failed to remember that if it were a class, ‘metal’ should be singular with a
determiner, or if an individual, it should be capitalised. Consequently, the entire phrase
‘reacts with metals’ was treated as a property name by the editor so the sentence was
incomplete. Similar errors were produced by other novices.

Eye-Tracking during Sentence Construction. Table 3 shows the proportion of total
visit duration times, i.e., total times that the eye tracker recorded the participant looking
at the source text, editing area, patterns and continuations area and message area (see
figure 1). Data for E7 are missing; the eye tracker did not work for this participant. The
table shows times for the first exercise only, because most participants had written enough
material by the second exercise to start scrolling the editing pane and thus the source
text and editing area were no longer fixed inside the relevant areas marked for automatic
calculation of visit duration. From the videos, we observed that most participants spent a
long time re-reading text that they had already written (especially E3), perhaps checking
consistency or for missing information. This observation only accounts for part of the
total visit durations, however, since time was also spent composing and editing text. Some
people looked at messages and OWL statements in the message pane, but these did not
receive much attention overall (zero or 1% of total visit duration).

28 S. Williams, R. Power, and A. Third

Table 3. Total visit durations (1st exercise only)

Part of Editor N4 N5 N6 N2 E3
Source text 17% 25% 54% 45% 27%
Editing area 54% 47% 30% 48% 72%
Sentence Patterns 28% 28% 16% 6% 1%
Message Pane 1% 1% 0% 1% 1%

4.4 Identifier Name Construction

Table 4 shows a breakdown of identifier names in the final CNL texts by type (class
names, individual names, or property names) and participant. All participants success-
fully produced at least one of the three types, and all produced 19 to 25 different names
except N4. There was considerable variety in the identifiers constructed with 58 unique
names amongst 119 total, where type is treated as a difference (e.g., ‘acid’ the class
name is counted as different from ‘acid’ the named individual).

Modifications to Names from the Source Text. Table 4 shows frequencies of class,
individual and property names and a breakdown whether these are identical to, or mod-
ified from, the source text, or were not present in the source text. It is immediately
apparent that most identifier names were derived from words and phrases in the source
texts (94%). Surprisingly, although most identifiers were similar to terms in the source
text, only around half had exactly the same morphological forms. Creation of entirely
new terms, such as synonyms of source text terms (‘below’ from ‘under’) or antonyms
(’non-corrosive’ from ‘corrosive’) was rare, only 6% used other English phrases; this
could be because participants thought that using alternative words would change the
meaning, or because it requires greater mental effort.

With class names, almost all modifications to source text terms consisted of changing
plural nouns into singular nouns (32 of 33 modifications, or 97%), e.g., ‘gases’ to ‘gas’
and ‘car batteries’ to ‘car battery’. This evidence indicates that plural-to-singular noun
modification presented no difficulties. Other modifications were construction of a new
term, ‘non-corrosive’, not in the source, and conversion of the progressive verb ‘tasting’
into the noun ‘taste’. Fewer than half, or 24 of the total 59 class names, (41%) were
identical to strings in the source text.

Conversely, named individual identifiers are almost all identical to strings in the
source text (35 out of 39, 90%); this was expected since most were names of chemical
compounds. Of those that were not, one was a plural noun made singular, two were
separated adjectives and nouns, and the other, ‘s-acid’, did not exist in the source text.

As for property names, all except one were different from strings in the source text;
16 out of 21, 76%, were different. The majority of modifications were the insertion of
‘is’ or ‘has’ before a noun and optional preposition (83% of modifications), e.g., ‘is
used in’, ‘has common taste’ (14, including those containing nouns that were not in the
source text). This type of name is commonly used by ontology authors (Power, 2010;
Power and Third, 2012, Williams, 2013) and, indeed, it was taught in our tutorials.
Other modifications were varied, including changing the progressive verb ‘tasting’ to
the noun ‘taste’ or to the verb ‘tastes’ and the adjective ‘corrosive’ to the 3rd person
present singular verb ‘corrodes’, and the verb ‘reacts’ to the noun ‘reactant’.

How Easy Is It to Learn a Controlled Natural Language 29

Table 4. Frequencies and origins of identifier names by type

Type N4 N5 N6 N2 E3 E7 Total Identical to Modified Other
source text source text

Class 2 13 6 13 15 10 59 24 (41%) 33 (56%) 2 (3%)
Indiv 2 7 9 7 6 8 39 35 (90%) 3 (8%) 1 (2%)
Prop 1 2 4 3 4 7 21 5 (24%) 12 (57%) 4 (19%)
Total 5 22 19 23 25 25 119 64 (54%) 48 (40%) 7 (6%)

Difficulties. Three OWL novices had difficulty understanding the difference between
classes and individuals. They constructed ‘acid’ as both a class and an identifier (even
though the editor colours them differently and shows their different OWL expressions).

Constructing multi-word names and understanding how quotes are used was another
difficulty. OSE uses quotes for two different purposes: (i) class names containing key-
words such as ‘and’, and (ii) literals. Some participants had initial difficulties, however,
everyone except N4 managed to create multi-word names, e.g., Boric acid, Hydrogen
chloride. N4 seemed to have the idea that multi-word names could not be used, hence
his/her attempts to use quotes and camel case ‘reactsWith’.

A third difficulty was constructing property names; evidence from failed attempts
in the screen recordings showed that all participants experienced some difficulty. All
except N4 managed to use the OSE syntax for declaring a verb, e.g., ‘#verb react reacts’.

Participants’ Comments. Regarding the task itself, participants did not mention their
difficulties constructing syntactically correct sentences. One commented that it is hard
to build an ontology without a particular application in mind. Regarding OSE, some
participants were interested in how exactly each sentence is parsed. A participant who
is a computer programmer noted that the syntax of OSE seemed more complex than
a programming language. Other comments tended to be about the user interface: it
should give more help; provide better handling of placeholders in generic sentence pat-
terns; and display new verbs immediately in the options list. One expert Protégé user
requested a display of the complete OWL ontology and class hierarchy rather than just
the statement under construction.

5 General Discussion

Is a CNL Easy to Learn? Nearly everyone in the study was able to quickly learn to:
construct simple sentence patterns; make use of words and phrases (suitably modified)
from the source text to create identifier names; declare verbs for use in property names;
and correct at least some syntactic errors. All participants made strikingly similar mod-
ifications to source text phrases, converting plural nouns to singular for class names and
inserting ‘is’ or ‘has’ before nouns to form property names.

Compared with novices, OWL experts produced a larger number of well-formed
OSE sentences, utilising a wider range of patterns. We assume that this was not because
they were better at learning the syntax of the language, but because they were more
familiar with the KR task.

All participants had difficulty constructing sentences with properties. Some novices,
in particular, tended to avoid properties by introducing more classes, e.g., rather than
‘An acid corrodes a metal.’, they would write ‘An acid is a corrosive substance.’

30 S. Williams, R. Power, and A. Third

Participants spent a lot of time reading previously-written text. Perhaps they were
looking to see what worked before, in the same way that programmers search for code
examples. If so, it suggests that providing many examples of well-formed sentences
might benefit OSE learners.

Regarding differences in modelling, we are aware that styles differ; it is unclear
whether, for instance, ‘tartaric acid’ should be modelled as an instance or as a subclass
of ‘acid’. We therefore decided not to treat any particular model as ‘correct’. Likewise,
we choose a naturally occurring source text expecting that it would elicit different mod-
els (since we tried the exercise ourselves before the experiment). In an ideal world,
domain experts would collaborate with knowledge engineers to build ontologies; CNLs
such as OSE could provide a useful communication medium between the two.

Although our focus was on learning OSE, user interface issues emerged, particularly
lack of attention to the message pane suggesting that it should be re-positioned.

Would a CNL Enable Someone Unfamiliar with KR to Build a KB? All partic-
ipants largely agreed on class subsumption and membership explicitly present in the
source text, demonstrating that certain aspects of building a KB are accessible to every-
one. However, a marked difference between OWL experts and novices was the greater
organisation and depth of experts’ class hierarchies. Experience with knowledge engi-
neering enabled the experts to model knowledge that was not explicit in the source text
but implied. OWL novices did not model implict knowledge, perhaps indicating that
they did not realise that the implied subclass relationship between, say, strong acid and
acid, so obvious to a human reader, must be specified. See also Third [19].

OWL novice errors noted by Rector et al. [17] were: (i) failure to make ‘hidden
information’ in identifier names explicit, (ii) misunderstanding the universal restriction,
(iii) misuse of logical ‘and’ and ‘or’, (iv) ignorance of the open-world assumption (and
consequent failure to specify disjoint classes), and (v) incorrect placement of logical
‘not’. OWL novices in our study made errors (i) and (iv). Features in (ii), (iii), and (v)
were little used.

Novices in our study made the error of modelling the same thing as a class and
an individual; therefore, to Rector et al.’s list we would add (vi) confusion of general
concepts (classes) with specific instances of the classes (‘individuals’ in OWL).

6 Conclusion and Future Work

While OWL experts seemed to master OSE quickly and produced small ontologies
with ease. Clearly, novices experienced difficulties and require more guidance such as
examples of syntactically correct sentences.

Alternative interfaces such as WYSIWYM [14] have achieved some success with
novices at the expense of freedom to type text as in a conventional editor. Dialogue
systems currently under development, e.g., in the WhatIf! project [13], might provide
a way forward. If a system were to have the ability to respond with intelligent and
appropriate questions and remarks about possibly unintended entailments present in
knowledge entered, it might enable even novices to gain some insight into the formal
semantics and hence construct KBs that are logically consistent.

How Easy Is It to Learn a Controlled Natural Language 31

Acknowledgements. Dr Third was supported by VPH Share (European Commission
ICT-FP7-269978). Dr Williams and Dr Power were supported by The Open University
(OU). We are grateful to the anonymous reviewers and to members of the OU NLG
group for their help in preparing this paper.

References

1. Cregan, A., Schwitter, R., Meyer, T.: Sydney OWL Syntax - towards a Controlled Natural
Language Syntax for OWL 1.1. In: Golbreich, C., Kalyanpur, A., Parsia, B. (eds.) OWLED
Workshop on OWL: Experiences and Directions. CEUR Workshop, vol. 258 (2007)

2. Dolbear, C., Hart, G., Kovacs, K., Goodwin, J., Zhou, S.: The RABBIT language:
description, syntax and conversion to OWL. Tech. rep., Ordnance Survey Research (2007)

3. Fuchs, N.E., Kaljurand, K., Schneider, G.: Attempto Controlled English Meets the
Challenges of Knowledge Representation, Reasoning, Interoperability and User Interfaces.
In: Florida Artificial Intelligence Research Society (FLAIRS) Conference, pp. 664–669
(2006)

4. Funk, A., Tablan, V., Bontcheva, K., Cunningham, H., Davis, B., Handschuh, S.: CLOnE:
Controlled Language for Ontology Editing. In: Aberer, K., et al. (eds.) ASWC 2007 and
ISWC 2007. LNCS, vol. 4825, pp. 142–155. Springer, Heidelberg (2007)

5. Garcı́a-Barriocanal, E., Sicilia, M.A., Sánchez-Alonso, S.: Usability evaluation of ontology
editors. Knowledge Organization 32(1), 1–9 (2006)

6. Hallett, C., Scott, D., Power, R.: Composing Questions through Conceptual Authoring.
Computational Linguistics 33(1), 105–133 (2007)

7. Hermann, A., Ferré, S., Ducassé, M.: An interactive guidance process supporting consistent
updates of RDFS graphs. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H.,
d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS,
vol. 7603, pp. 185–199. Springer, Heidelberg (2012)

8. Kaljurand, K., Kuhn, T., Canedo, L.: Collaborative multilingual knowledge management
based on controlled natural language. Semantic Web Journal, 1–18 (under review)

9. Kuhn, T.: How to Evaluate Controlled Natural Languages. In: Fuchs, N.E. (ed.) Pre-
Proceedings of the Workshop on Controlled Natural Language (CNL 2009). vol. 448 (2009)

10. Kuhn, T.: Controlled English for Knowledge Representation. Ph.D. thesis, Faculty of
Economics, Business Administration and IT, University of Zurich (2010)

11. Kuhn, T.: The Understandability of OWL Statements in Controlled English. Semantic
Web 4(1), 101–115 (2013)

12. Liang, S.F., Stevens, R., Scott, D., Rector, A.: OntoVerbal: a Generic Tool and Practical
Application to SNOMED CT. International Journal of Advanced Computer Science and
Applications 4(6), 227–239 (2013)

13. Parvizi, A., Jay, C., Mellish, C., Pan, J., Ren, Y., Stevens, R., van Deemter, K.: A Pilot
Experiment in Knowledge Authoring as Dialogue. In: 10th International Conference on
Computational Semantics (IWCS), pp. 376–382. Association for Computational Linguistics
(2013)

14. Power, R., Scott, D., Evans, R.: What You See Is What You Meant: direct knowledge editing
with natural language feedback. In: ECAI 1998, pp. 677–681 (1998)

15. Power, R.: OWL Simplified English: a finite-state language for ontology editing. In: Kuhn,
T., Fuchs, N.E. (eds.) CNL 2012. LNCS, vol. 7427, pp. 44–60. Springer, Heidelberg (2012)

32 S. Williams, R. Power, and A. Third

16. Power, R.: SWAT Editing Tool: a tutorial. Tech. Rep. Unpublished, Department of Comput-
ing and Communication, The Open University (2013)

17. Rector, A.L., Drummond, N., Horridge, M., Rogers, J.D., Knublauch, H., Stevens, R., Wang,
H., Wroe, C.: OWL pizzas: Practical experience of teaching OWL-DL: Common errors &
common patterns. In: Motta, E., Shadbolt, N.R., Stutt, A., Gibbins, N. (eds.) EKAW 2004.
LNCS (LNAI), vol. 3257, pp. 63–81. Springer, Heidelberg (2004)

18. Schwitter, R.: Creating and Querying Formal Ontologies via Controlled Natural Language.
Applied Artificial Intelligence 24(1&2), 149–174 (2010)

19. Third, A.: Hidden semantics: what can we learn from the names in an ontology? In: 7th
International Natural Language Generation Conference (INLG), pp. 67–75 (2012)

20. Zapata, C., Losada, B.: Transforming Natural Language into Controlled Language for Re-
quirements Elicitation: A Knowledge Representation Approach, chap. 5, pp. 117–134 (2012)

B. Davis et al. (Eds.): CNL 2014, LNAI 8625, pp. 33–43, 2014.
© Springer International Publishing Switzerland 2014

Linguistic Analysis of Requirements of a Space Project
and Their Conformity with the Recommendations

Proposed by a Controlled Natural Language

Anne Condamines* and Maxime Warnier*

CLLE-ERSS, CNRS and Université Toulouse 2 – Le Mirail / CNES
{anne.condamines,maxime.warnier}@univ-tlse2.fr

Abstract. The long term aim of the project carried out by the French National
Space Agency (CNES) is to design a writing guide based on the real and regular
writing of requirements. As a first step in the project, this paper proposes a lin-
guistic analysis of requirements written in French by CNES engineers. The aim
is to determine to what extent they conform to two rules laid down in INCOSE,
a recent guide for writing requirements. Although CNES engineers are not ob-
liged to follow any Controlled Natural Language in their writing of require-
ments, we believe that language regularities are likely to emerge from this task,
mainly due to the writers’ experience. The issue is approached using natural
language processing tools to identify sentences that do not comply with
INCOSE rules. We further review these sentences to understand why the rec-
ommendations cannot (or should not) always be applied when specifying large-
scale projects.

Keywords: requirements, specifications, technical writing, corpus linguistics,
controlled natural language.

1 Introduction

The study presented in this paper was conducted with a view to improving the writing
of requirements at CNES (Centre National d’Études Spatiales).

The CNES and our laboratory have been collaborating for several years on ques-
tions concerning terminology, text management and the study of risks related to the
use of language [1]. As linguists, we propose methods and results based on a corpus
linguistics approach, assisted by tools such as parsers, statistical tools, terminology
extractors, concordancers or scripting languages. More recently, we were approached
on the specific problem of writing requirements.

The CNES is the French space agency and, as such, is responsible for designing
space systems. Therefore, it has to draft specifications (that must clearly and precisely
describe its needs) which are intended for companies that respond to the bids; and, in

* Study carried out as part of a PhD thesis granted by the CNES and the Regional Council

Midi-Pyrénées.

34 A. Condamines and M. Warnier

turn, it also responds to bids from other scientific, commercial or military partners.
The Quality Department of the CNES, however, is aware that these specifications are
not always clear, and that as a result there may be divergent interpretations, leading to
additional costs, delays or even litigation (since requirements are part of the contract
clauses).

In order to improve the quality of requirements, many projects have been devel-
oped by computational researchers to check the consistency of the requirements after
they were written (see [2–4], among others). Still, we believe that the writing itself
can be improved by proposing a guide closer to the actual way in which engineers
write requirements.

In the present study, two kinds of documents were used: the Guide for Writing Re-
quirements recommendations proposed by INCOSE (International Council on Sys-
tems Engineering) [5] (a controlled natural language, see below); and a subset of the
specifications of a project: Pleiades (see below).

We propose a linguistic diagnosis of the way requirements are written in the
project by comparing these requirements with the recommendations of the INCOSE
guide.

The point of view underlying our approach is that guides for writing specifications
are not fully adapted to the real writing process: they are sometimes too constraining,
and sometimes insufficiently so. They are not written by linguists but by domain ex-
perts with a prescriptive point of view based on their experience. This is the case for
example in the field of air-traffic control where the ICAO (International Civil Avia-
tion Organization) phraseology is written by controllers [6]. Even if these guides are
not always adapted to the reality of language use, we consider that they constitute a
good starting point because of the experience of the domain experts. Our other start-
ing point is constituted by specifications that are not written following the recommen-
dations of a guide: this is the case at CNES.

Indeed, CNES engineers do not use a controlled natural language in order to write
better specifications, only requirement management tools (such as IBM Rational
DOORS). Nevertheless, they are all experienced in this type of writing. Thus, even if
the writers do not consciously follow a controlled natural language, we assume the
existence of regularities in the way they write requirements. Writers are indeed influ-
enced both by existing specifications and by certain spontaneous regularities which
tend to occur in each recurrent writing situation, two characteristics attributed to
textual genres. According to Bhatia [7], a textual genre may be defined as “a recog-
nizable communicative event characterized by a set of communicative purpose(s)
identified and mutually understood by the members of the professional or academic
community in which it regularly occurs”.

It can be noted that the notion of textual genre is not always properly distinguished
from that of sublanguage. See for instance the definition given by Somers: “A sub-
language is an identifiable genre or text-type in a given subject field, with a relatively
or even absolutely closed set of syntactic structures and vocabulary” [8]. Other au-
thors such as Kurzon [9], Temnikova [10] or Kuhn [11] have highlighted this point.
Historically, the most important difference is that the notion of sublanguage was pro-
posed by Harris from a mathematical and distributional perspective [12], while that of

 Linguistic Analysis of Requirements of a Space Project 35

textual genre comes from a more sociolinguistic approach [7, 13] or even a corpus
linguistic one [14]. In both cases, one of the most important characteristics is that
linguistic regularities are associated with speakers of the same community. This fea-
ture of spontaneous linguistic regularities has been characterized as normaison
(“norming’) by the French Linguistic School of Rouen [15] as opposed to normalisa-
tion (“normalization”) that concerns the case where linguistic norms are imposed by
an organism. In short, we could say that our aim is to propose a normalisation based
on the identification of normaison, or, in other words, to improve the writing of speci-
fications without imposing a standard that is too far removed from the engineers’
natural practice.

The paper comprises two main parts. In the first one (see section 2), we present the
tool-assisted method used for making the diagnosis. In the second one (see section 3),
we describe and discuss our preliminary results.

2 Methodology

Several guides for writing requirements exist, and most of them were designed to
avoid undesirable properties of natural language (“unrestricted natural language
brings with it a host of well-known problems” [16]), such as ambiguity, polysemy,
vagueness, and so on [1, 17].

To ensure that these guidelines are close enough to actual practices, and thus really
usable, we decided to carry out a diagnosis of the way the specifications are drafted at
CNES and then to compare this process with the recommendations made by one of
those guides. The aim is to evaluate the conformity of the requirements to the recom-
mendations, and see if the latter can be brought closer to reality.

We will first briefly describe our corpus of requirements and the tools we used, and
then the linguistic phenomena selected for study in the controlled natural language
that we used as a reference.

2.1 Description of the Corpus

A subset of the specifications of an Earth observation satellite called Pleiades,
launched in 2011, was obtained from the CNES. From these specifications, we ex-
tracted the requirements, that is to say only those parts that play the role of contractual
obligations between the CNES and its subcontractors. Requirements should not con-
tain unnecessary information, such as examples or comments.

Requirements are intended to be autonomous; they are therefore supposed to have
no link with the textual segments which precede or follow them. In the specifications
we were given, the requirements were easily identifiable because they were framed by
specific tags.

The requirements were all written in natural language, but some also contained
tables or diagrams (which were removed, since they cannot be analyzed automatical-
ly). In theory, they should be fully understandable even without those figures – but in
practice, this is not always the case.

The resulting corpus is composed of 1,142 requirements (nearly 53,000 words) in
French.

36 A. Condamines and M. Warnier

2.2 Tools and Resources

We used several tools to perform the tasks described in section 3. The syntactic
analysis was done using Talismane [18], an open-source parser developed in our
laboratory, while the open-source corpus processor Unitex [19] was used for sentence
chunking. Short handmade Perl scripts were written for other needs (extraction of the
requirements, detection of long sentences, and so on).

We also compared our corpus to two other corpora (reduced to the exact same
size): (1) a handbook written by experts from the CNES about techniques and tech-
nologies used for building and operating spacecraft, intended for semi-experts, and (2)
some articles from the French national newspaper Le Monde.

2.3 INCOSE Recommendations

In order to compare the requirements corpus with a controlled natural language, we
used the Guide for Writing Requirements recommendations proposed by INCOSE.
The aim of this guide is presented as follows: “to draw together advice from a variety
of existing standards into a single, comprehensive set of rules and objectives” (p. 10).
It is quite general since it “is intended to cover the expression of requirements from
across disciplines” (p. 12). INCOSE is therefore intended for engineers who write or
review requirements. It can be clearly considered a “naturalist” controlled language
(as opposed to the “formalist” approach) [20], whose goal is to facilitate human-to-
human communication [21].

Like many other controlled natural languages (CNL) aimed at improving commu-
nication among humans, the main purpose of INCOSE is to ensure that the message
written in natural language has only one possible interpretation. It is worth noting that
this point of view about natural language is far from the one adopted by linguistics.1
It can be reasonably assumed, however, that by establishing guidelines in narrowly-
defined situations, it may be possible to limit (if not to remove completely) the inhe-
rent difficulties linked to natural language such as ambiguity.

INCOSE has the four characteristics of controlled natural languages proposed by
Kuhn [11], since it has one base language (English), it is a constructed language, it
sets constraints on the vocabulary, the syntax and the semantics, and the resulting
textual requirements are still understandable by English speakers.

It is not a mere style guide, because the recommendations are real rules, not hints –
even if the authors admit that “rules have to constantly be adapted to particular situa-
tions”. All of them are followed by objectives that explain why the rules are useful.

The main “objectives for writing requirement statements” are: singularity, com-
pleteness, necessity, comprehensibility, concision, precision and non-ambiguity.
These recommendations are translated into linguistic instructions. We selected several
of these instructions and analyzed our corpus to see how often they appear.

Because the phenomena we chose to observe are quite general (i.e. not highly lan-
guage-dependent), we assume that most of the conclusions we propose for French are

1 According to Jakobson, for example, the referential function, which is the closest to the one

consisting in transmitting information, is only one among the six functions of language [22].

 Linguistic Analysis of Requirements of a Space Project 37

valid for English as well. In fact, INCOSE, while written in English and mainly based
on older English guides, sometimes gives examples in French.

Since it was not possible to check the conformity of the requirements to all the rec-
ommendations proposed by INCOSE (partly because the study is still in its initial
stage, and partly because several of the recommendations cannot be verified in an
automated manner), we decided to focus on a selection, all related to what could be
called “comprehensibility”; that is, the fact that every (sentence composing a)
requirement should be easily understandable by the reader, and that it cannot be
misinterpreted, i.e. given a different meaning from the one originally intended by the
writer. This notion is closely connected to that of complexity: the more complex a
sentence is, the less easy it is to understand.

The first rule from INCOSE that we chose to examine is called “Singulari-
ty/Propositionals” and states that “combinators” must be avoided: “Combinators are
words that join clauses together, such as 'and', 'or', 'then', 'unless'. Their presence in
a requirement usually indicates that multiple requirements should be written.” Never-
theless, some of them are still present in the examples of “acceptable” specifications;
this paradox suggests that the “combinators” cannot always be avoided.

The second rule is called “Completeness/Pronouns” and states that it is better to
repeat nouns in full, rather than using pronouns to refer to nouns in other statements:
“Pronouns are words such as 'it', 'this', 'that', 'he', 'she', 'they', 'them'. When writing
stories, they are a useful device for avoiding the repetition of words; but when writing
requirements, pronouns should be avoided, and the proper nouns repeated where
necessary.” However, there is no indication about the conditions required for this
repetition to be “necessary”; we can merely infer that the aim is to avoid problems
due to anaphora resolution. Besides, in the only example given by INCOSE2, the am-
biguity lies in a determiner, not in a pronoun.

We can already point out that these two rules are very general and seem way too
restrictive, and that their justifications are evasive.

3 First Results

In subsection 3.1, we present our results concerning the frequency of conjunctions,
pronouns and long sentences in our corpus. In subsection 3.2, we propose a selection
of examples that break the two rules from INCOSE and try to classify them according
to their necessity (mandatory, useful or undesirable).

3.1 Quantitative Analysis

Thanks to the syntactic analysis, we were able to retrieve all the occurrences of the
so-called combinators (since no exhaustive list was given, we looked for all coordi-
nating and subordinating conjunctions) and all the pronouns in the corpus. As can be

2 “The controller shall send the driver's itinary (sic) for the day to the driver” must be pre-

ferred to “The controller shall send the driver his itinary (sic) for the day”.

38 A. Condamines and M. Warnier

seen from table 1, both are numerous, suggesting that they are common in unrestricted
natural language.

Still, they are much less frequent in requirements than in the other two corpora,
handbooks and newspapers. This is particularly clear in the case of pronouns, which
are nearly three times more frequent in newspapers (where repetition is seen as an
error of style in French) than in requirements (which are usually much shorter). We
believe that such a marked difference is an argument in favor of our initial hypothesis
that regularities spontaneously arise in daily practice, and that requirement writing
can be considered a textual genre, even when not taught as such.

Table 1. Number of conjunctions and pronouns in the three corpora

Conjunctions Pronouns

Coordinators Subordinators (total)
Requirements 882

(1.66%3)
365

(0.69%)
1247

(2.35%)
986

(1.86%)
Handbook 1455

(2.75%)
442

(0.83%)
1897

(3.58%)
1554

(2.93%)
Newspaper 1274

(2.40%)
579

(1.09%)
1853

(3.50%)
2710

(5.11%)

Finally, we also considered the length of the sentences composing the require-

ments. Although INCOSE simply recommends “concise” requirements, several
guides for technical writing (such as ASD Simplified Technical English [23]) impose
a word limit for each sentence4, because it is believed that longer sentences are harder
to process. The results of our measures are shown in table 2.

Table 2. Length of sentences in the three corpora

sentences

sentences with
> 25 words

Average sentence
length (# words)

Requirements 4859 350 (7.2%) 11
Handbook 3456 591 (17.1%) 15
Newspaper 2201 839 (38.1%) 24

Once again, significant differences exist between the three types of documents:

sentences tend to be shorter in requirements, and much longer in newspaper articles.
However, long sentences are not rare in the requirements corpus; there is even one
unusually long sentence containing over 70 words:

“Si la différence (en valeur absolue) entre les dates de fin de lecture de deux fi-
chiers, lus sur tranche de COME M - canal TMI i et sur tranche de COME N - canal
TMI j, est inférieure à OPS_DELAI_INTER_FIN_LEC secondes, alors il est interdit

3 Percentages indicate the number of occurrences in relation to the total number of words.
4 Usually around 20 words for English. We arbitrarily decided that long sentences (in French)

are composed of more than 25 words, and that a new sentence begins after each line break.

 Linguistic Analysis of Requirements of a Space Project 39

d'enchaîner (lecture enchaînée) par la lecture de la tranche de COME N sur le canal
i et de la tranche de COME M sur le canal j.”

3.2 Qualitative Analysis (Analysis of Examples)

As a first step in the diagnosis, we focus on the description of some examples of sen-
tences that do not follow the INCOSE recommendations and try to understand why.

Combinators
Some combinators are mandatory:

(1) “Le générateur de TCH vérifiera que la valeur du champ PHASE est comprise
entre 0 et FREQ_DIV -1.” [“The generator of TCH will check that the value of
the field PHASE is between 0 and FREQ_DIV-1”]

In example 1, the subordinating conjunction “que” cannot be avoided, since it in-
troduces the dependent clause5, and the coordinating conjunction “et” is necessary to
set the lower and higher limits of the interval.

Some combinators are not mandatory, but prevent repetitions and multiple sentences:
(2) “Les champs SM_ID et FM_ID seront extraits à partir de la BDS” [“Fields

SM_ID and FM_ID will be extracted from the BDS”]
If the use of “et” were not allowed in example 2, two distinct sentences would be

necessary (“Le champ SM_ID sera extrait à partir de la BDS.” and “Le champ FM_ID
sera extrait à partir de la BDS.”). This would lead to longer and probably more con-
fusing requirements: since the two sentences differ by only a single character, the
reader may not notice the difference and think it is a duplicated sentence.

However, longer sentences may become less readable:
(3) “Cette TC permet de passer contrôle thermique plate-forme en mode

REDUCED, c'est-à-dire de sélectionner des seuils de régulation "larges" pour
le contrôle thermique grossier (pour limiter la puissance consommée), et de
modifier la valeur d'écrêtage de la puissance injectée pour le contrôle ther-
mique fin.” [“This TC makes it possible to switch the heat control of the plat-
form to REDUCED mode, i.e. to select “broad” regulation thresholds for a
coarse heat control (to limit the power consumed), and to change the cut-off
value of the injected power for precise heat control.”]

In example 3, it would have been better to clearly distinguish the two actions per-
mitted by the TC – for example, with a bullet list.

Some combinators provide logical information that may help the reader to better
understand the requirements:

(4) “pour n=2 la loi de la taille est respectée de fait mais le test 'FIFO vide' reste
nécessaire” [“for n=2 the size rule is always respected, but the ‘empty FIFO’
test is still required”]

5 In French, the complementizer ‘que’ must always be used.

40 A. Condamines and M. Warnier

In example 4, the reader is certain that the test is necessary in all cases. Without the
first main clause and the logical connector “mais”, he could have doubted it.

Nonetheless, in several cases, the use of a coordinator does not seem justified; in
particular when two sentences are coordinated by “and”:

(5) “Le format des données de mesure angulaire et Doppler est conforme au
standard CCSDS décrit dans le document DA9 et le schéma XML respecte le
standard décrit dans DA11.” [“The data format of the angular and Doppler
measurement is in accordance with the CCSDS standard described in docu-
ment DA9 and the XML schema complies with the standard described in
DA11.”]

(6) “Les demandes sont saisies sur le FOS et le logiciel ARPE gère les conflits
entre les demandes Spot, Hélios et Pléïades.” [“The requests are to be entered
on the FOS and the ARPE software manages conflicts between the requests
from Spot, Hélios and Pléïades”]

In examples 5 and 6, there is no apparent reason why separate sentences should not
be used (parataxis).

In some cases, problems arise because of the (absence of proper) coordinators:
(7) “Pour cela, on utilisera les données BDS (LENGTH et LOCATION_UNIT) de

la table des OBCD (globaux) ou la description (LONGUEUR) des paramètres
diagnostic déjà crées.” [“For this, we will use the BDS data (LENGTH and
LOCATION_UNIT) from the (global) OBCD table or the description
(LONGUEUR) of the already created diagnostic parameters”]

In example 7 above, there are two possible solutions (alternative), but no explana-
tion is given to the reader to tell him in which case(s) one of them should be preferred
(or whether they are in fact identical).

(8) “Sur réception de cette TC, le LVC met à jour la table des surveillances stan-
dards de l'application destinataire et ré-initialise le compteur d'erreur (remise
à 0) associé à cette surveillance.” [“Upon reception of this TC, the LVC up-
dates the table of standard surveillances of the destination application and re-
sets the error counter associated to this surveillance”]

In example 8, we know that the LVC has to do two distinct operations, but it is not
clear whether they are supposed to be done at the same time or one after the other.

(9) “(eg : 2 et 10 ou 3 et 11)” [“e.g. : 2 and 10 or 3 and 11)”]
In example 9, the priorities of the logical operators “et” and “ou” are not clear.
(10) “Cet ordre est rejeté si : [“This order is rejected if:”]

- le mode NORM automatique est actif
- le satellite est en mode MAN
- le satellite n'est pas en mode convergé (GAP ou SUP)
- un ordre MAN/CAP est déjà en attente d'exécution”

In example 10, the absence of coordinators between the items in the list is the
source of uncertainty: is the order rejected if any of the following conditions is met
(“or”), or only if they are all met (“and”)? Lists of this kind are very common in our
corpus.

 Linguistic Analysis of Requirements of a Space Project 41

Pronouns
Some pronouns must be avoided, because otherwise the requirement is no longer
autonomous:

(11) “Il calculera aussi, a une fréquence paramétrable (ordre de grandeur 1 mois),
la moyenne de mise en œuvre et la comparera à la moyenne maximum afin
d'anticiper un problème éventuel.” [“It will also calculate, at a frequency that
can be parameterized (at monthly intervals), the average time for commission-
ing and will compare it to the maximum average in order to anticipate any
problems.”]

The requirement given in example 11 cannot be understood by itself, because the
pronoun “il” (“it”) refers to the subject defined in the previous requirement. (And in
another requirement, a reference is made to a “previously stated rule”, but there is no
indication as to which rule is meant.)

Some pronouns are mandatory:
(12) “Sur réception de cette TC, le LVC met à jour le paramètre qui donne la

taille maximum d'un paquet TM de type dump” [“Upon reception of this TC,
the LCV updates the parameter that gives the maximum size of a TM dump
packet”]

Without the relative pronoun “that”, it would not be possible to specify which pa-
rameter is referred to in example 12.

(13) “Il ne sera pas utile de vérifier ce paquet " vide "” [“It won’t be necessary to
check that "empty" packet”]

Impersonal pronouns like the one given in example 13 are widespread in our cor-
pus and can hardly be avoided. They do not refer to another noun.

Some pronouns are not mandatory, but prevent unnecessary repetitions of words:
(14) “La liste des TCD est définie en BDS. Elle est donnée ici à titre informatif:”

[“The list of TCD is defined in BDS. It is given here for information:”]
Compare example 14 with the same sentences without a pronoun: “La liste des

TCD est définie en BDS. La liste des TCD est donnée ici à titre informatif:”. [“The
list of TCD is defined in BDS. The list of TCD is given here for information:”]

(15) “Le paquet ne sera généré que s'il est activé par le LVC.” [“The packet will
be generated only if it is activated by the LVC”]

Example 15 seems even less natural if rewritten without a pronoun: “Le paquet ne
sera généré que si le paquet est activé par le LVC.” [“The packet will be generated
only if the packet is activated by the LVC”]

Moreover, French demonstrative pronouns make it possible to avoid ambiguity be-
tween the subject and the object of a sentence:

(16) “Le générateur de TC ne rejettera pas la création du PARAM_ID diagnostic
si celui-ci est déjà défini à bord.” [“The TC generator will not reject the crea-
tion of the PARAM_ID diagnostic if the latter is already defined on board”]

In example 16, “celui-ci” refers to the closest noun and is therefore unambiguous,
whereas “il” could have been ambiguous.

42 A. Condamines and M. Warnier

4 Conclusions and Future Work

We analyzed a corpus composed of genuine requirements that had been written and
used by engineers of the CNES to design a space system. We showed that, even if
they did not explicitly follow guidelines, their texts have some interesting particulari-
ties, such as shorter sentences than in other textual genres.

We also examined two rules (concerning conjunctions and pronouns) from
INCOSE, a guide for writing requirements. Using several examples from our corpus,
we considered cases where those rules were justified and others where they were in-
applicable (at least if literally applied) and should be refined. In fact, we believe that
INCOSE, like the guides it is based on, lacks proper linguistic foundations and is not
close enough to engineers’ real practices. For instance, the recommended absence of
pronouns from the requirements – which implies sometimes cumbersome repetitions
– seems hardly compatible with its ideal of “concision” (itself seen as “an aid to
Comprehensibility, and therefore subsumed by it”, p. 16).

In the future, we intend to conduct a deeper linguistic analysis of our results and to
focus on terminology so as to study the use and evolution of terms between compara-
ble corpora. We also want to test the rules of INCOSE on another corpus of require-
ments. More generally, our intention is to inventory all existing rules in French CNL
and to try to automatically test them with our corpora. The final step will be to pro-
pose a set of rules that is more consistent and closer to established practice in re-
quirements writing.

Acknowledgments. We would like to thank the CNES for their active cooperation as
well as for providing us with the requirements corpus. We are also grateful to the four
reviewers for their relevant suggestions and references.

References

1. Condamines, A.: Variations in Terminology. Application to the Management of Risks
Related to Language Use in the Workplace. Terminology 16, 30–50 (2010)

2. Nair, D.K., Somé, S.S.: A Formal Approach to Requirement Verification. In: SEDE,
pp. 148–153 (2006)

3. Barcellini, F., Albert, C., Grosse, C., Saint-Dizier, P.: Risk Analysis and Prevention:
LELIE, a Tool dedicated to Procedure and Requirement Authoring. In: LREC,
pp. 698–705 (2012)

4. Sateli, B., Angius, E., Rajivelu, S.S., Witte, R.: Can Text Mining Assistants Help to Im-
prove Requirements Specifications? In: Proceedings of the Mining Unstructured Data
(MUD 2012) (2012),
http://sailhome.cs.queensu.ca/mud/res/sateli-mud2012.pdf

5. International Council on Systems Engineering: Guide for Writing Requirements (2011)
6. Lopez, S., Condamines, A., Josselin-Leray, A., O’Donoghue, M., Salmon, R.: Linguistic

Analysis of English Phraseology and plain Language in Air-Ground Communication.
Journal of Air Transport Studies 4, 44–60 (2013)

7. Bhatia, V.K.: Analysing genre: Language use in professional settings. Longman, London
(1993)

 Linguistic Analysis of Requirements of a Space Project 43

8. Somers, H.: An Attempt to Use Weighted Cusums to Identify Sublanguages. In: Powers,
D.M.W. (ed.) NeMLaP3/CoNLL 1998: New Methods in Language Processing and
Computational Natural Language Learning, pp. 131–139. ACL (1998)

9. Kurzon, D.: “Legal Language”: Varieties, Genres, Registers, Discourses. International
Journal of Applied Linguistics 7, 119–139 (1997)

10. Temnikova, I.: Text Complexity and Text Simplification in the Crisis Management
domain, PhD thesis (2012)

11. Kuhn, T.: A Survey and Classification of Controlled Natural Languages. Computational
Linguistics 40, 121–170 (2014)

12. Kittredge, R., Lehrberger, J.: Sublanguage: Studies of Language in Restricted Semantic
Domains. Walter de Gruyter, Berlin (1982)

13. Swales, J.: Research Genres: Explorations and Applications. Cambridge University Press,
Cambridge (2004)

14. Biber, D.: Variation Across Speech and Writing. Cambridge University Press (1988)
15. Guespin, L.: Socioterminology Facing Problems in Standardization. In: Proceedings of

TLK 1990, pp. 642–647 (1990)
16. Pace, G.J., Rosner, M.: A Controlled Language for the Specification of Contracts. In:

Fuchs, N.E. (ed.) CNL 2009. LNCS, vol. 5972, pp. 226–245. Springer, Heidelberg (2010)
17. Condamines, A., Rebeyrolle, J.: Searching for and Identifying Conceptual Relationships

via a corpus-based approach to a Terminological Knowledge Base (CTKB): method and
results. In: Bourigault, D., L’Homme, M.-C., Jacquemin, C. (eds.) Recent Advances in
Computational Terminology, pp. 127–148. John Benjamins, Amsterdam/Philadelphia
(2001)

18. Urieli, A.: Robust French syntax analysis: reconciling statistical methods and linguistic
knowledge in the Talismane toolkit, PhD thesis (2013)

19. Paumier, S.: Unitex, http://www-igm.univ-mlv.fr/~unitex/
20. Clark, P., Murray, W.R., Harrison, P., Thompson, J.: Naturalness vs. Predictability: A Key

Debate in Controlled Languages. In: Fuchs, N.E. (ed.) CNL 2009 Workshop. LNCS,
vol. 5972, pp. 65–81. Springer, Heidelberg (2010)

21. Wyner, A., et al.: On Controlled Natural Languages: Properties and Prospects. In: Fuchs,
N.E. (ed.) CNL 2009. LNCS, vol. 5972, pp. 281–289. Springer, Heidelberg (2010)

22. Jakobson, R.: Linguistics and Poetics. In: Sebeok, T. (ed.) Style in Language, Cambridge,
pp. 350–353 (1960)

23. ASD: Simplified Technical English. International specification for the preparation of
maintenance documentation in a controlled language (Issue 4) (2007)

24. Bünzli, A., Höfler, S.: Controlling Ambiguities in Legislative Language. In: Rosner, M.,
Fuchs, N.E. (eds.) CNL 2010. LNCS, vol. 7175, pp. 21–42. Springer, Heidelberg (2012)

25. Fuchs, N., Schwitter, R.: Controlled English for Requirements Specifications. IEEE Com-
puter Special Issue on Interactive Natural Language Processing (1996),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.52.8814

26. Höfler, S.: Legislative Drafting Guidelines: How Different Are They from Controlled
Language Rules for Technical Writing? In: Kuhn, T., Fuchs, N.E. (eds.) CNL 2012.
LNCS, vol. 7427, pp. 138–151. Springer, Heidelberg (2012)

27. O’Brien, S.: Controlling Controlled English. An Analysis of Several Controlled Language
Rule Sets. In: Proceedings of EAMT-CLAW, pp. 105–114 (2003)

28. Vogel, C.: Law matters, syntax matters and semantics matters. Formal linguistics and Law,
Trends in Linguistics. Studies and Monographs. 212, 25–54 (2009)

B. Davis et al. (Eds.): CNL 2014, LNAI 8625, pp. 44–54, 2014.
© Springer International Publishing Switzerland 2014

Evaluating the Fully Automatic Multi-language
Translation of the Swiss Avalanche Bulletin

Kurt Winkler1, Tobias Kuhn2, and Martin Volk3

1 WSL Institute for Snow and Avalanche Research SLF, 7260 Davos Dorf, Switzerland
2 Department of Humanities, Social and Political Sciences, ETH Zurich, Switzerland

3 Universität Zürich, Institut für Computerlinguistik, Binzmühlestrasse 14, CH-8050 Zürich

Abstract. The Swiss avalanche bulletin is produced twice a day in four lan-
guages. Due to the lack of time available for manual translation, a fully auto-
mated translation system is employed, based on a catalogue of predefined
phrases and predetermined rules of how these phrases can be combined to pro-
duce sentences. The system is able to automatically translate such sentences
from German into the target languages French, Italian and English without sub-
sequent proofreading or correction. Our catalogue of phrases is limited to a
small sublanguage. The reduction of daily translation costs is expected to offset
the initial development costs within a few years. After being operational for two
winter seasons, we assess here the quality of the produced texts based on an
evaluation where participants rate real danger descriptions from both origins,
the catalogue of phrases versus the manually written and translated texts. With a
mean recognition rate of 55%, users can hardly distinguish between the two
types of texts, and give similar ratings with respect to their language quality.
Overall, the output from the catalogue system can be considered virtually
equivalent to a text written by avalanche forecasters and then manually trans-
lated by professional translators. Furthermore, forecasters declared that all rele-
vant situations were captured by the system with sufficient accuracy and within
the limited time available.

Keywords: machine translation, catalogue of phrases, controlled natural lan-
guage, text quality, avalanche warning.

1 Introduction

Apart from the requirements of being accurate and easy to understand, avalanche
bulletins are highly time-critical. The delivery of up-to-date information is particular-
ly challenging in the morning, when there is little time between incoming field obser-
vations and the deadline for publishing the bulletin – not enough time for manual
translations or manual post-editing. For that reason, the new Swiss avalanche bulletin
(Fig. 1) is generated by a fully automated translation system, which we have de-
scribed in a previous publication [17]. Here we present evaluation results of this sys-
tem after two winter seasons of operational use.

 Fully Automatic Multi-language Translation of the Swiss Avalanche Bulletin 45

Fig. 1. Swiss avalanche bulletin. The danger descriptions originate from the catalogue of
phrases (here in English). More examples and other languages are available at www.slf.ch
(in summertime only as .pdf in the archive: www.slf.ch/schneeinfo/Archiv).

Despite the large effort on machine translation approaches and despite their prom-
ising results, the quality of fully automatic translations is still poor when compared to
manual translations. For the publication of life-critical warnings when there is no time
for proofreading or manual corrections, the reliability of existing translation systems
is clearly insufficient.

For many years, the daily Swiss national avalanche bulletin was manually trans-
lated from German into French, Italian and English. A translation memory system,
containing the translations of the avalanche bulletins of the last 15 years, helped to
reduce the translation time. A comparison of this text corpus with the Canadian
TAUM-Météo translation model [8] showed that the sentences collected over all those
years cannot be expected to be comprehensive enough to directly extract a catalogue
of phrases, or to be used for statistical machine translation (let alone for a system that
does not require proofreading or manual corrections). For these reasons, a custom-
made and fully automated translation system was built, which implements an ap-
proach based on a catalogue of standard phrases and has been in productive use since
November 2012.

This kind of catalogue-based translation system has been used before, e.g. for se-
vere weather warnings [15], but to our knowledge only for simpler domains and less
complex sentence types. Our approach to create the catalogue was already described
in [17], from where we summarize some content at the beginning of section 3 to give

46 K. Winkler, T. Kuhn, and M. Volk

the relevant background and to show the peculiarities of our development. The end of
section 3 and sections 4 and 5, form the main contribution of this paper, presenting for
the first time systematic analyses of the system. These evaluations cover both, the
possibilities given to authors with regard to content as well as the quality of the auto-
matic translations, as compared to the old, manually written and translated danger
descriptions.

2 Background

The languages generated by our catalogue system can be considered Controlled Natu-
ral Languages (CNL) [7]. The first CNLs with the goal to improve translation
appeared around 1980, such as Multinational Customized English [14] and Perkins
Approved Clear English [11]. Further languages were developed in the 1990s, includ-
ing KANT Controlled English [9] and Caterpillar Technical English [5]. The goal was
always to improve the translation by either making the work of translators easier by
providing more uniform input texts or by producing automated translations of suffi-
cient quality to be transformed into the final documents after manual correction and
careful post-editing. Adherence to typical CNL rules has been shown to improve qual-
ity and productivity of computer-aided translation [1, 10]. For the Controlled Lan-
guage for Crisis Management, it has been shown that texts are easier to translate and
require less time for post-editing [16].

In contrast, the Grammatical Framework (GF) [12] is a general framework for
high-quality rule-based machine translation. It is usable in narrow domains without
the need for post-editing, such as the one presented in this paper. GF applies deep
linguistic knowledge about morphology and syntax and has been used in prototypes
such as AceWiki-GF [6] and a system enhanced by statistical machine translation to
translate patents [3], but it does not yet have applications in productive use that match
the complexity of texts of our problem domain of avalanche bulletins.

With PILLS [2], as a further comparable system, master documents containing
medical information can be automatically transformed into specific documents for
different user groups and translated into different languages. As the outcome of a one-
year research project, PILLS was a prototype and was – to our knowledge – never
applied operationally.

In terms of the PENS categorization scheme for CNLs [7], the languages presented
here fall into the category P=2, E=2, N=5, S=4: They have relatively low precision
and expressiveness (seen from a formal semantics point of view), but are maximally
natural and comparatively simple.

3 Catalogue-Based Translation System

In this section, we give a summary of the methods which we described in our previ-
ous paper [17]. In general, a catalogue-based translation system is a collection of
predefined phrases (or sentence templates) and therefore cannot be used to translate
arbitrary sentences. The phrases in our system were created in the source language

 Fully Automatic Multi-language Translation of the Swiss Avalanche Bulletin 47

German, translated manually into the target languages French, Italian and English,
and stored in a database. The editing tool for the creation of the phrases follows an
approach similar to conceptual authoring [4, 13]: sentences are created by first select-
ing a general sentence pattern from a list and then gradually specifying and expanding
the different sentence components. Once a phrase is chosen, it is immediately avail-
able in the target languages.

The individual sentences are not static but consist of a succession of up to ten seg-
ments. For each segment, the authors can select from a pull-down menu of predetermined
options. These options can likewise consist of a series of sub-segments with selectable
options, and, as part of the sub-segments, even sub-sub-segments are possible. Theoreti-
cally, the 110 predefined phrases could be used to generate several trillion different sen-
tences. Not all possible sentences are meaningful, but all those that make sense must have
correct translations in all languages. As no proofreading is possible in operational use, the
translations in the catalogue must be guaranteed to be of high quality.

3.1 Creating the Phrases in the Source Language

The sentences were created by an experienced avalanche forecaster whose native
language is German and who has a good knowledge of all the target languages. Nu-
merous avalanche bulletins from the past 15 years were consulted in order to cover as
many situations as possible. No phrases were taken directly: their content was always
generalized and the phrase structure was simplified wherever possible. The challenge
was to find sentences that were universal enough to describe all the possible danger
situations and simple enough to be translated. No explicit simplified grammar was
used in any language. As a sentence can only be used when it works in the source
language as well as in all target languages, the original German sentences had to obey
the following rules:

• In each individual language, adjectives can only be used when they refer to sub-
jects with the same gender and number in all the options.

• Articles depend on number and – in most of the languages used – gender and must
therefore usually be included in the same option as the noun.

• Prepositions often change with the noun and must therefore also be included in the
same option as the noun, e.g. ‘in’ Ticino (a region), but ‘on the’ Rigi (a mountain).

• As German has four grammatical cases, this sometimes necessitated splitting certain
phrases into additional segments and sub-segments. E.g. "Fresh snow drifts require
caution / are to be avoided" must be separated from "Fresh snow drifts represent the
main danger", because in German the case of "fresh snow drifts" turns "Frischen
Triebschnee beachten / umgehen" into "Frischer Triebschnee ist die Hauptgefahr".

• Demonstrative pronouns are only allowed to substitute one specific noun. Thus,
e.g. the German "diese" is listed twice in the same pulldown, once for "the ava-
lanches" (in Italian the feminine "queste ultime") and once for "the snow drifts" (in
Italian the masculine "questi ultimi"). As there is no difference in the source lan-
guage German, the substituted noun is indicated in the bulletin editor beside the
pronoun, which allows the avalanche forecasters to choose correctly.

48 K. Winkler, T. Kuhn, and M. Volk

3.2 Translation of the Catalogue

Translations take place on the segment level. Although German, French, Italian and
English are all Indo-European languages, the differences in word order, gender, dec-
lension and so on make segmented translation difficult. Thus, specific editing and
visualization software had to be developed by a translation agency to prepare the
phrase translations. The translations themselves were performed manually by profes-
sional translators familiar with the topic and applying our text corpus. In addition to
the omnipresent problem of inflection, ensuring the correct word order also proved
difficult. Other problems included:

• clitics, apostrophes and elisions to avoid hiatus, especially in French and Italian;
• the Italian impure ‘s’ ("i grandi accumuli" but "gli spessi accumuli");
• the split negation in French ("ne ... pas").

When translating the individual sentences and options, no logical functions, distinc-
tion of cases or post processing were used, except for a check to ensure the presence
of a space between the different segments and a capital letter at the beginning of each
sentence. In comparison with the source language, only two changes were allowed in
the target languages (Fig. 2): (1) the segment order could vary between the languages
(but is fixed for any given language and thus independent from the chosen options)
and (2) each segment could be split in two (into ...a, ...b, Fig. 2). The latter facility
was widely used, mainly to construct idiomatic word orders. This splitting is only
used in the target languages and limits the use of our system to translations from
German into the other languages but not backwards. Technically, the system could be
used from any language to any other in the language matrix, but when producing the
input it would be difficult for forecasters to find the correct sentences in a source lan-
guage with segment splits.

Apostrophes, elisions, clitics and the impure 's' were handled by using pulldown
splits or by taking all together into the same option. The latter required sometimes
splits across the constituent units. As splits are invisible, this did not detract the
output.

Fig. 2. Schema of a phrase in the source language German (above). {on_steep} mark a sub-
segment with several further options. In this example, [blank] is one of the options in the third
and fourth segment. In English, the order of the segments is different and segment 3 is split.

 Fully Automatic Multi-language Translation of the Swiss Avalanche Bulletin 49

3.3 Operational Use

Since going operational, nearly 2000 danger descriptions have been produced per
language. As before, the danger descriptions in German were proofread and discussed
by at least two avalanche forecasters. Once the content of the German text was found
to be correct, the translated texts were published without any further proofreading or
corrections.

In a systematic survey we performed, all forecasters rated their satisfaction with
the catalogue as "excellent". Six out of seven forecasters declared that at least "almost
always" the differences between what they wanted to write and what they could write
with the catalogues fell within the range of uncertainty regarding the current danger
situation. "Greater limitations" never occurred. In the case of missing sentences, the
system allows to add arbitrary text strings in all four languages and to use them im-
mediately. However, no such ‘joker phrases’ were actually used during the first two
winters of operational service.

4 Quality of the Texts

4.1 Method

To assess the language quality, we compared in a blind study texts from old, manually
written and translated descriptions with the new descriptions from the catalogue.

To get a comparable set, we chose one danger description from the evening edition
of the avalanche bulletin from every second calendar day, starting at the beginning of
December and finishing at the end of March. The descriptions from the catalogue
were taken from the 2012/13 winter season, the freely written descriptions from the
issues from winter 2011/12 back to 2007/08. To avoid evaluating texts that were too
short, we only used danger descriptions with more than 100 characters in German. On
days with more than one danger description, we randomly chose one of them.

Table 1. Questions concerning the language quality (correctness, comprehensibility, readability
and clarity)

1. Is the text correct?
("minor error" = typing mistake, incorrect punctuation or use of upper/lower case letters...)
Absolutely
correct

1 minor
error

several minor /
1 major error

several ma-
jor errors

Completely wrong

2. Is the language easy to understand? (Assuming familiarity with the key technical
terms)
Very easy to
understand

Easy to un-
derstand

Understandable Difficult to
understand

Incomprehensible

3. Is the text well formulated and pleasant to read?
Very well
crafted

Easy to read Clear Difficult to
read

Barely or not at all
readable

4. Is the situation described clearly?
Clearly and
precisely

Reasonably
clearly

Understandably Unclearly,
meaningless

Incomprehensibly,
contradictory

50 K. Winkler, T. Kuhn, and M. Volk

As 120 descriptions per language are too much for a survey, we divided them into
6 different sets, containing 10 descriptions from the old and new bulletin each. We
divided the descriptions into the different sets in such a way that different avalanche
situations were distributed as uniformly as possible. The order of the descriptions was
chosen randomly for each dataset, but identical across all languages.

For every description, we asked four questions about the language quality (Tab. 1)
and, additionally, in what manner the participant assumed the text was produced.

The survey was posted on www.slf.ch, on the website of the Swiss avalanche
warning service, from 18 February to 5 March 2014. Each participant randomly re-
ceived one out of the six data sets, in the same language as the website was visited.
After a quality check, we had usable data from 204 participants.

93% of the participants were native speakers, 81% were men. The mean age was
43 years. Reflecting the languages of the visitors of our website, we received the most
answers for German (76) and the least for English (18). With a median between "me-
dium" and "high", English participants rated their experience in evaluating avalanche
dangers slightly higher than the other participants with "medium". Other particulari-
ties when comparing the participants using the different languages were not found.

Table 2. Participants in the survey, divided into languages and allotted datasets

Language, n
per set (1/../6)

German, 76
14/11/13/10/16/12

English,18
3/2/3/5/4/1

French, 55
10/12/9/6/6/12

Italian, 55
9/9/7/12/8/10

4.2 Analysis

The age of the participants shows normal distribution permitting the use of the t-test.
To analyse the detection rate of the origin of a description within a language, the data
were cross-tabulated and the chi-square statistic was calculated. All differences be-
tween categorical variables were tested with the Mann-Whitney U-test for statistical
significance (using p = 0.05).

When comparing the language quality of old and new descriptions, we could only
find differences in isolated cases by using common parameters for ordinal data as
median or mode. As we did not wish to jump to the conclusion that there was no dif-
ference at all, we assumed the predefined responses to be equal in distance and allo-
cated numerical values to the different categories, starting with 5 for the best rating
and 1 for the worst. We only used these numerical values to calculate mean values in
order to show differences between different languages and between the old and the
new descriptions.

Not all of the 6 datasets of a particular language had the same number of usable an-
swers (Tab. 2). We therefore checked our data in every language for anomalies in
distribution between the different datasets. As we did not find any, we pooled all the
answers together.

To test significances between different languages, as well as to analyze the overall
rating over all the languages, we used a balanced dataset. This contained all the Eng-
lish answers and in each of the other languages randomly chosen ratings of 180 de-
scriptions from the old and the new bulletin each.

 Fully Automatic Multi-language Translation of the Swiss Avalanche Bulletin 51

4.3 Results

The evaluators detected the origin of a given text in 59% of the German descriptions
(Tab. 3). In the target languages, the rate of correct recognition was lower, with 55%
in French and 52% in Italian and English. The recognition rate was significantly bet-
ter than random only for German and French.

Table 4 shows answers to questions regarding the real origin of the danger descrip-
tions. Differences between old and new descriptions are small and vary from language
to language. Thus, with our balanced dataset we only get a significant decrease taking
all languages and all questions together (p = 0.02), but not for individual questions.

Table 3. Correct ratings of the origin of the descriptions. Significant values are highlighted.

 German English French Italian
n (equally balanced old/new) 1520 360 1100 1100
detection rate
p - value

0.59
p < 0.001

0.52
p = 0.40

0.55
p < 0.001

0.52
p = 0.13

Table 4. Rating for the new descriptions from the catalogue of phrases and difference between
new and old descriptions. Better ratings for the new descriptions are marked green, lower rat-
ings red. Significant differences are highlighted. *are calculated from the balanced dataset.

 correct comprehensible readable clear all
German
(n=1520)

mean 4.75 4.30 3.93 4.29 4.32
difference
(new-old)

0.03
(p=0.22)

0.13
(p=0.003)

0.05
(p=0.25)

0.16
(p=0.001)

0.09
(p<0.001)

English
(n=360)

mean 3.89 3.74 3.51 3.73 3.72
difference
(new-old)

-0.01
(p=0.61)

0.01
(p=0.90)

0.03
(p=0.95)

-0.05
(p=0.45)

-0.003
(p=0.54)

French
(n=1100)

mean 4.57 4.30 4.07 4.34 4.32
difference
(new-old)

-0.12
(p=0.001)

-0.04
(p=0.42)

-0.11
(p=0.01)

0.01
(p=0.47)

-0.07
(p=0.001)

Italian
(n=1100)

Mean 4.35 4.21 3.99 4.28 4.21
difference
(new-old)

-0.16
(p=0.001)

-0.09
(p=0.08)

-0.08
(p=0.12)

-0.12
(p=0.01)

-0.11
(p<0.001)

all lan-
guages

mean 4.39 4.14 3.87 4.16 4.14
difference
(new-old)

-0.06
(p=0.08)*

0.004
(p=0.21)*

-0.03
(p=0.10)*

0.001
(p=0.08)*

-0.02
(p=0.02)*

5 Discussion

According to the avalanche forecasters, the catalogue of phrases always allowed an
adequate description of the danger situation. The translations in the catalogue were
checked extensively by the developer, an experienced avalanche forecaster with
knowledge in all four languages. The catalogue proved to be even more exact with

52 K. Winkler, T. Kuhn, and M. Volk

regard to content, as the manual translation method used for old avalanche bulletins
lacked the necessary time to correct smaller inconsistencies.

The detection rate was statistically significant above the random value, but the
number of correctly recognized descriptions was small with 55% on average for all
languages. This corresponds to, for example, correctly recognizing 2 out of 20 de-
scriptions and then tossing a coin for the remaining 18 descriptions.

French and German speaking participants rated the language quality best with an
overall value of 4.32. Italian was nearly as good with a value of 4.21. English ratings
were significantly lower and this in both, the old and the new descriptions with a
mean of 3.75 and 3.72 respectively. Perhaps this is due to the fact that our translators
are British and by using the glossary of the European Avalanche Warning Services
(www.avalanches.org) which differs substantially from terminology used in North
America, where at least some of the participants of the survey live.

In addition, the large variance between different participants in assessing the same
dataset shows that the absolute value of the rating is not only a question of the sen-
tences, but also possibly affected by varying interpretations of the given texts or some
other habit of the individual participant. To understand this anomaly, further research
would be needed. In our survey, we are much more interested in the changes in lan-
guage quality due to the introduction of the catalogue of phrases than in the absolute
value of quality. Our purpose is hardly affected by these anomalies, thanks to a symme-
trical dataset with always contains the same number of descriptions from each origin.

Compared to the differences between the languages, the differences between old
and new descriptions are small. This is surprising because the introduction of the
catalogue of phrases was a fundamental change and the catalogue itself was mostly
translated by different translators.

Of all properties, the correctness reaches the best rating (Tab. 4), whereas the com-
prehensibility and the clarity of the formulations lie ex aequo in the middle of the
investigated parameters about the language quality. The catalogue of phrases leads to
a standardized language. As Swiss avalanche forecasters believe that this kind of sim-
ple and unambiguous language is well suited to communicate warnings, they wrote
the "old" danger descriptions in a similar way as well. In this context, it is not surpris-
ing that of all the quality criteria, the pleasure to read was assessed lowest.

In German the descriptions generated with the catalogue of phrases were rated
even better, for all four criteria (correctness, comprehensibility, readability and clari-
ty). Note that German is the source language of both, the manually written texts and
the catalogue of phrases. In Italian and French, descriptions from the catalogue of
phrases were rated lower, for all four criteria in Italian and for three criteria in French.
However, the differences are small and in many cases not significant (Tab. 4). In Eng-
lish, no noteworthy change was found.

Statistical significance is a question related to the number of trials, and with the
more than 5,500 assessments used in our balanced dataset we can test for even slight
differences. Consequently, the decrease of the language-weighted mean values over
all questions is statistically significant, even when numerical values for our ordinal
data shows, that the decrease was marginal with a value falling from 4.16 to 4.14.

Given the only marginal change in ratings from old to new, and the poor recogni-
tion rate, we conclude that in the majority of cases, users did not notice a decrease in

 Fully Automatic Multi-language Translation of the Swiss Avalanche Bulletin 53

the language quality with the introduction of the catalogue. Thus, the language quality
from the catalogue of phrases can be judged as virtually equivalent to the text written
from scratch and translated by topic-familiar professionals.

6 Conclusions

The catalogue-based system proved to be well-suited to generate the Swiss avalanche
bulletin. After two years of operational use, all forecasters declared that within the
limited time available to produce forecasts, it was possible to describe the different
avalanche situations with precision and efficiency.

The system also proved to be well-suited for fully automatic and instantaneous
translation of danger descriptions from German into the target languages French,
Italian and English. The translations do not need to be proofread or corrected, and
they turned out to be even better with respect to their content than the manual transla-
tions of the old avalanche bulletin.

The quality of the language was assessed in a blind study, comparing old, manually
translated danger descriptions with new, catalogue-based danger descriptions. Recog-
nizing the difference proved to be difficult; the mean detection rate was only 55%.
Based on four criteria the quality of danger description was rated good with some
differences between languages. With the introduction of the catalogue of phrases,
there were only marginal changes in the different quality ratings. Depending on the
language, they show a small improvement or a slight decrease in quality. Thus the
bulletins produced by the catalogue of phrases were virtually equivalent in language
quality to those produced using the old method of ad hoc translation.

As using a phrase catalogue requires experience, frequent operational use is neces-
sary. It is crucial that users find the phrases matching the given danger situation
quickly enough, which has shown to be the case for our system. The implemented
search engine was essential. Our experience has shown that the number of phrases
should be kept to a minimum by reusing individual phrases in multiple contexts, and
that the presented approach is particularly well-suited if the problem domain can be
described by a small sublanguage, as is the case for the highly specific topic of ava-
lanche forecasting.

With respect to financial aspects, the cost-benefit ratio of our system turned out to
be excellent. The savings from not needing manual translations are expected to ex-
ceed the initial development costs within a few years. Applying the database to other
multi-lingual countries or extending it to topics such as weather forecasting is con-
ceivable. An adaption to very different languages seems difficult due to differences in
grammar and language usage.

The construction of the catalogue and the translations had both been done in an
empirical way. We gladly place them at the disposal for further investigations.

Acknowledgments. We thank Martin Bächtold from www.ttn.ch and his translators
for the courage to translate the catalogue of phrases and for maintaining a high quality
standard. Furthermore, we thank Eva Knop, Nico Grubert, Frank Techel and Curtis
Gautschi for valuable input and the participants of the survey.

54 K. Winkler, T. Kuhn, and M. Volk

References

1. Aikawa, T., Schwartz, L., King, R., Corston-Oliver, M., Lozano, C.: Impact of controlled
language on translation quality and post-editing in a statistical machine translation envi-
ronment. In: Proceedings of the MT Summit XI, pp. 1–7. European Association for
Machine Translation (2007)

2. Bouayad-Agha, N., Power, R., Belz, A.: PILLS: Multilingual generation of medical infor-
mation documents with overlapping content. In: Proceedings of the Third International
Conference on Language Resources and Evaluation (LREC), pp. 2111–2114 (2002)

3. España-Bonet, C., Enache, R., Slaski, A., Ranta, A., Màrquez, L., Gonzàlez, M.: Patent
translation within the MOLTO project. In: Proceedings of the 4th Workshop on Patent
Translation, MT Summit (2011), http://www.molto-project.eu/sites/
default/files/patentsMOLTO4.pdf

4. Hallett, C., Scott, D., Power, R.: Composing questions through conceptual authoring.
Computational Linguistics 33(1), 105–133 (2007)

5. Hayes, P., Maxwell, S., Schmandt, L.: Controlled English advantages for translated and
original English documents. In: Proceedings of CLAW 1996, pp. 84–92 (1996)

6. Kaljurand, K., Kuhn, T.: A Multilingual Semantic Wiki Based on Attempto Controlled
English and Grammatical Framework. In: Cimiano, P., Corcho, O., Presutti, V., Hollink,
L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 427–441. Springer, Heidelberg
(2013)

7. Kuhn, T.: A Survey and Classification of Controlled Natural Languages. Computational
Linguistics 40(1) (2014)

8. Lepsus, T., Langlais, P., Lapalme, G.: A corpus-based Approach to Weather Report
Translation. Technical Report, University of Montréal, Canada (2004)

9. Mitamura, T., Nyberg, E.H.: Controlled English for knowledge-based MT: Experience
with the KANT system. In: Proceedings of TMI 1995, pp. 158–172 (1995)

10. O’Brien, S., Roturier, J.: How portable are controlled language rules? A comparison of
two empirical MT studies. In: Proceedings of MT Summit XI, pp. 345–352. European
Association for Machine Translation (2007)

11. Pym, P.J.: Pre-editing and the use of simplified writing for MT: an engineer’s experience
of operating an MT system. In: Translating and the Computer 10: The Translation
Environment 10 Years on, number 10, pp. 80–96. Aslib (1990)

12. Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars. CSLI
Publications, Stanford (2011)

13. Ruesch, M., Egloff, A., Gerber, M., Weiss, G., Winkler, K.: The software behind the inter-
active display of the Swiss avalanche bulletin. In: Proceedings ISSW 2013. International
Snow Science Workshop, Grenoble, France, pp. 406–412. ANENA, IRSTEA, Météo-
France (2013)

14. Ruffino, J.R.: Coping with machine translation. In: Lawson, V. (ed.) Practical Experience
of Machine Translation, pp. 57–60. North-Holland Publishing Company (1982)

15. Schug, J.: Personal communication, Meteomedia, Gais, Switzerland (May 14, 2010)
16. Temnikova, I.: Text Complexity and Text Simplification in the Crisis Management

Domain. Ph.D. thesis, University of Wolverhampton (2012)
17. Winkler, K., Bächtold, M., Gallorini, S., Niederer, U., Stucki, T., Pielmeier, C., Darms, G.,

Dürr, L., Techel, F., Zweifel, B.: Swiss avalanche bulletin: automated translation with a
catalogue of phrases. In: Proceedings ISSW 2013. International Snow Science Workshop,
Grenoble, France, pp. 437–441. ANENA, IRSTEA, Météo-France (2013)

Towards an Error Correction Memory to

Enhance Technical Texts Authoring in LELIE

Juyeon Kang1 and Patrick Saint-Dizier2

1 Prometil
Toulouse, France
2 IRIT - CNRS
Toulouse, France

stdizier@irit.fr, j.kang@prometil.com

Abstract. In this paper, we investigate and experiment the notion of
error correction memory applied to error correction in technical texts.
The main purpose is to induce relatively generic correction patterns as-
sociated with more contextual correction recommendations, based on
previously memorized and analyzed corrections. The notion of error cor-
rection memory is developed within the framework of the LELIE project
and illustrated on the case of fuzzy lexical items, which is a major prob-
lem in technical texts.

1 Introduction

Technical documents form a linguistic genre with specific linguistic constraints
in terms of lexical realizations, including business or domain dependent aspects,
grammar and style. These documents are designed to be easy to read and as
efficient and unambiguous as possible for their users and readers. For that pur-
pose, they tend to follow relatively strict controlled natural language principles
concerning both their form and contents. Guidelines for writing in controlled
languages have been elaborated in various sectors, they are summarized in e.g.
(Alred 2012), (Umwalla 2004), (O’Brian 2003), (Weiss 2000), and (Wyner et al.
2010). Besides guidelines, the boilerplate technique is also used for simple texts
or for requirement authoring.

Authoring principles and guidelines, in the everyday life of technical writers,
are often only partly observed, for several reasons including workload and the
large number of revisions made by several actors on a text. Table 1 below shows
some major errors found by the LELIE system over 300 pages of technical doc-
umentation for companies A, B and C (kept anonymous) in spite of the strict
guidelines they impose. These results show that there are still many errors of
various types and space for correction strategies.

In the LELIE project (Barcellini et al. 2012), we developed a system that
detects several types of errors in technical documents and produces alerts. The
LELIE system makes local parses of technical texts in order to detect writ-
ing errors. Parses ranges from finding fuzzy terms to complex structures that
must be revised (e.g. discourse structures, coordinations of NPs). In both cases,

B. Davis et al. (Eds.): CNL 2014, LNAI 8625, pp. 55–65, 2014.
c© Springer International Publishing Switzerland 2014

56 P. Saint-Dizier and J. Kang

it is necessary to develop some kind of ’local’ grammar to recognize ill-formed
constructions, but also to filter out others which are correct (e.g. fuzzy terms in
business terms are correct).

The alerts produced by the LELIE system have been found useful by most
technical writers that tested the system. However, to be really helpful to tech-
nical writers, it turns out that (1) false positives (about 30% of the alerts) must
be filtered out and (2) help must be provided to technical writers under the
form of correction patterns and recommendations whenever possible. Our on-
going research aims at specifying, developing and testing several facets of an
error correction memory system that would, after a period of observation of
technical writers making corrections from the LELIE alerts, (1) memorize errors
which are not or almost never corrected so that they are no longer displayed
in texts in the future and (2) memorize corrections realized by writers and pro-
pose typical correction recommendations. Our approach is aimed at being very
flexible w.r.t. the writer’s practices. It is more flexible than systems such as
RAT-RQA, Rubric, Attempto, Peng, or Rabbit which are based the recognition
of fixed erroneous structures.

Table 1. Errors found in technical texts for companies A, B and C

error type frequency / 1000 lines A B C

fuzzy lexical items 66 44 89 49

modals in instructions 5 0 12 1

pronouns with unclear reference 22 4 48 2

negation 52 8 109 9

complex discourse structures 43 12 65 50

complex coordinations 19 30 10 17

heavy N+N or noun complements 46 58 62 15

passives 34 16 72 4

sentences too complex 108 16 221 24

incorrect references 13 33 22 2

In this paper, we develop elements of a method that shows how to construct
(1) relatively generic correction patterns paired with (2) accurate contextual
correction recommendations, based on previously memorized and analyzed
corrections. The approach of a correction memory that helps technical writers
by providing them with error corrections validated and made homogeneous over
a whole team of technical writers, via discussion and mediation, seems to be new
to the best of our knowledge.

This notion of error correction memory originates from the notion of transla-
tion memory, it is however substantially different in its principles and implemen-
tation. An in-depth analysis of memory-based language processing is developed
(Daelemans et al. 2005) and implemented in the TiMBL software. This work
develops several forms of statistical means to produce generalizations in syntax,

Error Correction Memory to Enhance Technical Texts Authoring in LELIE 57

semantics and morphology. It also warns against excessive forms of general-
izations. (Buchholz, 2002) develops an insightful memory-based analysis on how
grammatical constructions can be induced from samples. Memory-based systems
are also used to resolve ambiguities, using notions such as analogies (Schriever et
al. 1989). Finally, memory-based techniques are used in programming languages
support systems to help programmers to resolve frequent errors.

2 The Case of Fuzzy Lexical Items

The LELIE system (features and performances are given in (Barcellini et al.
2012), (Saint-Dizier 2014)) detects several types of errors, lexical, syntactic and
related to style. It also allows to specify business constraints such as controls on
style and the use of business terms. The errors detected by LELIE are typical
errors of technical texts (e.g. Table 1), they would not be errors in ordinary lan-
guage. Error detection in LELIE depends on the discourse structure: for example
modals are the norm in requirements but not in instructions. Titles allow dever-
bals which are not frequently admitted in instructions or warnings. The output
of LELIE is the original text with annotations. LELIE is parameterized and of-
fers several levels of alerts depending on the a priori error severity. LELIE and
the experiments reported below are developed on the logic-based <TextCoop>
platform (Saint-Dizier 2012). Lelie is fully implemented and is freely available.

Let us now focus in this short article on the case of fuzzy lexical items which
is a major type of error, quite representative of what an error correction memory
could be. Roughly, a fuzzy lexical item denotes a concept whose meaning, inter-
pretation, or boundaries can vary considerably according to context, readers or
conditions, instead of being fixed once and for all. It is important to note that (1)
that it is difficult to precisely define and identify what a fuzzy lexical item is (to
be contrasted in our context with vague and underspecified expressions, which
involve different forms of corrections) and (2) that there are several categories of
fuzzy lexical items. These categories include adverbs (manner, temporal, loca-
tion, and modal adverbs), adjectives (adapted, appropriate) determiners (some,
a few), prepositions (near, around), a few verbs (minimize, increase) and nouns.
These categories are not homogeneous in terms of fuzziness, e.g. determiners
and prepositions are always fuzzy. The degree of fuzziness is also quite different
from one term to another in a category. Note that a verb such as damaged in the
mother card risks to be damaged is not fuzzy but vague because the importance
and the nature of the damage is unknown; heat the probe to reach 500 degrees is
not fuzzy but underspecified because the means to heat the probe are not given:
an adjunct is missing in this instruction.

The context in which a fuzzy lexical item is uttered may also have an in-
fluence on its severity level. For example ’progressively’ used in a short action
(progressively close the water pipe) or used in an action that has a substantial
length (progressively heat the probe till 300 degrees Celsius are reached) may
entail different severity levels because the application of ’progressively’ may be
more difficult to realize in the second case. This motivates the need to memorize
the context of the error to establish an accurate error diagnosis.

58 P. Saint-Dizier and J. Kang

In average, a fuzzy lexical item is found every 4 sentences in our corpus. In
our test corpus, from 420 manually annotated fuzzy lexical items, LELIE has
a detection precision of 88% with 11% of noise. Then, on a smaller experiment
with two technical writers from the ’B’ company, considering 120 different fuzzy
lexical items used in different contexts, 36 have been judged not to be errors
(30%): they are noise or minor problems. Among the other 84 errors, only 62
have been corrected. The remaining 22 have been judged problematic and very
difficult to correct. It took between 2 and 10 minutes to correct each of the 62
errors, with an average of about 6 minutes per error. Correcting fuzzy lexical
items indeed often requires domain documentation and expertise.

In our experimentation, the following questions, crucial to controlled natural
language systems, have been considered:

– What are the strategies deployed by technical writers when they see the
alerts? what do they think of the relevance of each alert? how do they feel
about making a correction? How much they interact with each other ?

– Over large documents, how is it possible to produce stable and homogeneous
corrections?

– How much of the sentence is modified, besides the fuzzy lexical item? Does
the modification affect the sentence content?

– How difficult is a modification and what resources does this requires (e.g.
external documentation, asking someone else)? How many corrections have
effectively been done? How many are left pending and why?

3 A Method for the Definition of an Error Correction
Memory

Our analysis is based on a corpus of technical texts coming from seven com-
panies, kept anonymous at their request. Our corpus contains about 120 pages
from 27 documents. The main features considered to validate our corpus are: (1)
texts corresponding to various professional activities: product design, mainte-
nance, production launch, specifications, regulations and requirements, (2) texts
following various kinds of business style and format guidelines imposed by com-
panies, (3) texts coming from various industrial areas: finance, telecommunica-
tions, transportation, energy, computer science, and chemistry.

The main principle is to observe technical writers when they make correc-
tions from LELIE’s alerts and to memorize any error with its final correction
together with its precise context of utterance. The absence of a correction is also
memorized. After a certain period of observation, there is sufficient material to
develop the error correction memory. In addition, correctly realized utterances
in the same context (i.e. without any alert) are also considered as a correction
guide.

The main features and advantages of an error correction memory in the con-
text of LELIE are:

– Corrections take into account the utterance context and the company’s au-
thoring practices,

Error Correction Memory to Enhance Technical Texts Authoring in LELIE 59

– Corrections which are proposed after observation result from a consensus
among technical writers in a group since an administrator (possibly via me-
diation) determines the best corrections to be kept given a context. These
corrections are then proposed in future correction tasks in similar situations.

– Corrections are directly accessible to technical writers: as a result, a lot of
time is saved; furthermore, corrections become homogeneous over the various
documents of the company,

– Corrections reflect a certain know-how of the authoring habits and guidelines
of a company, therefore they can be used to train novices.

This introduces a more dynamic and flexible view of implementing controlled
natural language principles as suggested e.g. in (Ganier et al. 2007) than in
standard authoring guidelines or boilerplates.

3.1 A Lexicon of Fuzzy Lexical Items

In the Lelie system, a lexicon has been implemented that contains the most
common fuzzy lexical items found in our corpus (about 450 terms). Since some
items are a priori more fuzzy than others, a mark, between 1 and 3 (3 being the
worse case) has been assigned a priori. This mark is however not fixed, it may
evolve depending on technical writers’ behavior. For illustrative purposes, Table
2 below gives figures about some types of entries of our lexicon for English.

Table 2. Main fuzzy lexical classes

category number of entries a priori severity level

manner adverbs 130 2 to 3

temporal and location adverbs 107 in general 2

determiners 24 3

prepositions 31 2 to 3

verbs and modals 73 1 to 2

adjectives 87 in general 1

3.2 Memorizing Technical Writers’ Behavior

An observation on how technical writers proceed was then carried out. The tests
we made do not include any temporal or planning consideration (how much
time it takes to make a correction, or how they organize the corrections) or any
consideration concerning the means and the strategies used by technical writers.
At this stage, we simply examine the correction results, which are stored in
a database. At the moment, since no specific interface has been designed, the
initial and the corrected texts are compared once all the corrections have been
made. The protocol to memorize corrections is the following:

– for a new fuzzy lexical item that originates an alert, create a new entry in
the database, include its category and a priori severity level,

60 P. Saint-Dizier and J. Kang

– for each alert concerning this item, include it in its database entry with its
context (see below) and the correction made by the technical writer. Indicate
who made the correction (several writers often work on similar texts). Tag
the term on which the alert is in the input text and tag the text portion that
has been changed in the resulting sentence.

– If the initial sentence has not been corrected then it is memorized and no
correction is entered.

The database is realized in Prolog as follows:

fuzzyitem([term], [category], [severity],

[[text fragment with alert, text after correction with tags,

ID of writer],]).

For example:

fuzzyitem([progressively], [adverb], [3],

[[[<fuzzy>, progressively, </fuzzy>, heat, the, probe],

[[heat, the, probe, <revised>, progressively,

in, 5, seconds, </revised>]], [John]]]

3.3 Error Correction Memory Scenarios

Considering technical writers corrections, error correction memory scenarios in-
clude the following main situations, which have been developed a priori and
intuitively before evaluating their operational adequacy:

1. A fuzzy lexical item that is not corrected over several similar cases, within
a certain word context or in general, no longer originates an alert. We are
evaluating at the moment a threshold (e.g. 5 not corrected alerts) before
this decision can be validated by technical writers. The corresponding fuzzy
lexical item in the LELIE lexicon becomes inactive for that context, e.g. in to
minimize fire alarms, ’minimize’ describes a general behavior, not something
very specific, it is therefore no longer displayed as an error. Same situation
for ’easy’ in a location that allows easy viewing during inspection.

2. (2a) A fuzzy lexical item that is replaced or complemented by a value,
a set of values or an interval, may originate, via generalizations, the
development of correction patterns that require e.g. values or intervals. For
example, from examples such as:
progressively close the pipe → progressively close the pipe in 30 seconds.
Progressively heat the probe → heat the probe progressively over a 2 to 4 mns
period.
The power must be reduced progressively to 65% to reach 180 knots → reduce
the power to 65% with a reduction of 10% every 30 seconds to reach 180
knots.
A correction pattern could be the association of progressively (to keep the
manner and its continuous character) with a time interval, possibly complex,
as in the third example:

Error Correction Memory to Enhance Technical Texts Authoring in LELIE 61

progressively → progressively [temporal indication, type: value, interval, ...].
This pattern is composed of two facets: a relatively generic correction pattern
that suggests a revised formulation (e.g. the adverb followed by an interval
of values) and a correction recommendation that proposes, in context
and when relevant, one or more typical precise values for the subfield ’value’.
The pairing of these two levels generic / instantiation seems to be a good
compromise between adequacy and efficiency of the correction.
(2b) In parallel with generalizing over corrections, the above item can be
complemented by the observation of correctly realized utterance with
the same context (but no fuzzy term: e.g. heat the probe in 2 to 4 mns) via
a direct search in related texts. The idea is that errors are not systematic
and that it may be possible to find correct realizations that may be used
consistently with the corrections that have been observed.

3. A fuzzy lexical item that is simply erased in a certain context (probably
because it is judged to be useless, of little relevance or redundant) originates
a correction recommendation that specifies that it may not be necessary in
that context. For example: any new special conditions → any new conditions;
proc. 690 used as a basic reference applicable to airborne → proc. 690 used
as a reference.... In these examples, ’special’ and ’basic’ are fuzzy, but they
have been judged not to convey a very heavy meaning, therefore they can
be erased.

4. A fuzzy lexical item may be replaced by another term or expression
in context that is not fuzzy, e.g. aircraft used in normal operation →
aircraft used with side winds below 35 kts and outside air temperature be-
low 50 Celsius, in that case the suggestion to revise ’normal’ in context is
memorized and then proposed in similar situations.

5. Finally a fuzzy lexical item may involve a complete rewriting of the sentence
in which it occurs. This is the worst case, it should be avoided whenever
possible because it often involves changes in the utterance meaning.

In a given domain, errors are very reccurent, they concern a small number of
fuzzy terms, but with a large diversity of contexts. A rough frequency indication
for each of these cases, based on 52 different fuzzy lexical items with 332 observed
situations can be summarized as follows:

Table 3. Correction situations distribution

case nb. number of cases rate (%)

1 60 18

2 154 46

3 44 13

4 46 14

5 28 9

62 P. Saint-Dizier and J. Kang

3.4 Error Contexts

Let us now define the parameters of these scenarios, namely: (1) definition of
contexts and (2) definition of generic patterns and specific correction recommen-
dations. In our first experiment, Contexts are words which appear either before
or after the fuzzy lexical item that characterize its context of utterance. In the
case of fuzzy lexical items, a context is composed of nouns or noun compounds
(frequent in technical texts) Ni, adjectives Ak and action verbs Vj . Our strategy
is to first explore the simple case of a fixed number of terms to unambiguously
characterize a context, independently of the fuzzy lexical item category and us-
age. In our expriment, the context is composed of (1) a main or head word which
is the word to which the fuzzy item applies (e.g. ’fire alarms’ in ’minimize fire
alarms’) and (2) additional words that appear either before or after the main
one. The closest words in terms of word distance are considered.

In the context definition, morphological variants are included and close words
(sisters) if an ontology exists. The approach has the advantage of not including
any syntactic consideration. To evaluate the number of additional words which
are needed in the context besides the head word, we constructed 42 contexts
from 3 different texts composed of 2, 3, 4 and 5 additional words. We then asked
technical writers to indicate from what number of additional words each context
was stable, i.e. adding a new words does not change what it means or refers to.
Over our small sample, results are the following:

Table 4. Size of context

number of additional words stability from previous set

3 85%

4 92%

5 94%

From these observations, a context of 4 additional words (if these can be found
in the utterance) and the main words is adopted.

3.5 Error Correction Patterns

Automatically defining correction patterns from the different sets of sam-
ples in the database via generalization(s) would be the most straightforward
approach. However, we first want to evaluate the form and contents of pat-
terns and recommendations that would be the most appropriate for efficiently
correcting errors. The cooperation between correction patterns and correction
recommendations needs to be investigated. By efficiently correcting errors, we
mean adequacy w.r.t. (1) the error analysis and type of alert and (2) correction
feasibility for the technical writer.

For this first experiment, correction patterns have been defined manually con-
sidering (1) the syntactic category of the fuzzy item and (2) the correction sam-
ples collected in the database. A pattern is viewed as a guide which requires the

Error Correction Memory to Enhance Technical Texts Authoring in LELIE 63

expertise of the technical writer. It is not imperative. Here are a few relevant
and illustrative types of patterns, given in a readable form:

– fuzzy determiners: specification of an upper or a lower boundary (N) or an
interval, e.g. pattern: [a few X] → [less than N X], [most X] → [more

than N X]. Besides patterns, which are generic, the context may induce a
correction recommendation for the value of X: depending on X and its usage
(context) a value for X can be suggested, e.g. ’12’ in take-off a few knots
above V1 → take-off less than 12 knots above V1, with Context = main
term: knots, additional: take-off, above V1.

– temporal adverbs, combined with an action verb, such as frequently, reg-
ularly: specification of a temporal value with an adequate quantifier, e.g.:
[regularly Action] → [every Time Action], where Time is a variable
that is instantiated on the basis of the context or the Action. An adverb
such as progressively is associated with a Time interval when it modifies
a durative verb: [progressively verb(durative)] → [progressively

verb(durative) in Time], e.g. progressively close the pipe in 10 seconds.
Time is suggested by the correction recommendation level.

– manner adverbs, such as carefully which do not have any direct measur-
able interpretation, the recommendation is (1) to produce a warning that
describes the reasons of the care if there is a risk, or (2) to explain how to
make the action in more detail, via a kind of ’zoom in’, or (3) to simply
skip the adverb in case it is not crucial. For example, [carefully Action]

→ [carefully Action Warning], e.g. carefully plug-in the mother card →
carefully plug-in the mother card otherwise you may damage the connectors.

– prepositions such as near, next to, around, about require the specifica-
tion of a value or an interval of values that depends on the context. A
pattern is for example: [near noun(location)] → [less than Distance

from noun(location)], where Distance depends on the context, e.g. park
near the gate → park less than 100 meters from the gate. The variable Dis-
tance is contextual and constitutes the correction recommendation, making
the pattern more precise.

– adjectives such as acceptable, convenient, specific as in a specific procedure,
a convenient programming language can only be corrected via a short para-
phrase of what the fuzzy adjective means. For example, convenient may be
paraphrased by that has debugging tools. Such paraphrases can be suggested
to technical writers from the corrections already observed and stored in the
database that implements the error correction memory.

At the moment, 27 non-overlapping patterns have been defined to correct
fuzzy lexical items. Some patterns refer to frequent errors, with stable correc-
tions: they can be induced and validated after about 80 pages of corrected text.
Others are less frequent and require much larger text volumes. Error correction
recommendations are more difficult to stabilize because contexts may be very
diverse. At the moment, (1) either a precise recommendation has emerged or
has been found in correct texts and has been validated and is proposed or (2)

64 P. Saint-Dizier and J. Kang

the system simply keeps track of all the corrections made and displays them by
decreasing frequency.

We are now defining a protocol to evaluate the adequacy of these patterns
w.r.t. the document contents and their usability by technical writers. Adequacy
is related to the linguistic and contents level: the principle is that the meaning
of the corrected utterances must not be affected or in a very minimal way by the
changes suggested by correction patterns. Usability means that the patterns and
the correction recommendations that make them more precise can be understood
and used by technical writers after a short training period and that they really
use them in the long range, over several types of documents.

4 Perspectives

In this paper, we have explored the notion of error correction memory, which,
paired with the LELIE system that detects specific errors of technical writing,
allows both the detection and the correction of errors. Correction scenarios are
based on an architecture that develops an error correction memory based on
(1) generic correction patterns and (2) correction recommendations for elements
in those patterns which are more contextual. Both levels are acquired from the
observation of already realized corrections and correct texts. This approach is
quite new, it needs an in-depth evaluation in terms of linguistic adequacy and
usability for technical writers.

In parallel with fuzzy items, we are exploring other facets of an error correc-
tion memory for other major types of errors such as negation or complex sen-
tences. For complex sentences there are situations which can be handled quite
straightforwardly because they reflect a stable writing practice. For example, il-
lustrations, exceptions, purposes or circumstances can be realized in one or more
additional sentences instead of being inserted into the main one. For example,
roughly, a pattern for purpose clause ’externalization’ can be for a requirement:
[X shall Y conj(purpose) Z] → [X shall Y. The goal is to Z]. We be-
lieve that a similar technique could be used for heavy sequences of N+N or noun
complements and heavy sequences of coordination or relatives.

References

1. Alred, G.J., Charles, T.B., Walter, E.O.: Handbook of Technical Writing. St
Martin’s Press, New York (2012)

2. Barcellini, F., Albert, C., Saint-Dizier, P.: Risk Analysis and Prevention: LELIE, a
Tool dedicated to Procedure and Requirement Authoring. LREC, Istanbul (2012)

3. Buchholz, S.: Memory-based grammatical relation finding, PhD, Tilburg (2002)
4. Daelemans, W., van Der Bosch, A.: Memory-Based Language Processing,

Cambridge (2005)
5. Ganier, F., Barcenilla, J.: Considering users and the way they use procedural texts:

some prerequisites for the design of appropriate documents. In: Alamargot, D.,
Terrier, P., Cellier, J.-M. (eds.) Improving the Production and Understanding of
Written Documents in the Workplace. Elsevier Publishers (2007)

Error Correction Memory to Enhance Technical Texts Authoring in LELIE 65

6. O’Brien, S.: Controlling Controlled English. An Analysis of Several Controlled
Language Rule Sets. Dublin City University report (2003)

7. Saint-Dizier, P.: Processing Natural Language Arguments with the <TextCoop>
Platform. Journal of Argumentation and Computation 3(2) (2012)

8. Saint-Dizier, P.: Challenges of Discourse Processing: the case of technical docu-
ments. Cambridge Scholars, UK (2014)

9. Schriver, K.A.: Evaluating text quality: The continuum from text-focused to
reader-focused methods. IEEE Transactions on Professional Communication 32,
238–255 (1989)

10. Unwalla, M.: AECMA Simplified English (2004),
http://www.techscribe.co.uk/ta/aecma-simplified-english.pdf

11. Weiss, E.H.: Writing remedies. Practical exercises for technical writing. Oryx Press
(2000)

12. Van der Linden, K.: Speaking of Actions: choosing Rhetorical Status and Gram-
matical Form in Instructional Text Generation. PhD, Univ. of Colorado, USA
(1993)

13. Wyner, A., et al.: On Controlled Natural Languages: Properties and Prospects
(2010)

http://www.techscribe.co.uk/ta/aecma-simplified-english.pdf

RuleCNL: A Controlled Natural Language

for Business Rule Specifications

Paul Brillant Feuto Njonko1, Sylviane Cardey1, Peter Greenfield1,
and Walid El Abed2

1 Centre Tesnière - Équipe d’Accueil 2283
Université de Franche-Comté - UFR SLHS

30, rue Mégevand, 25030 Besançon Cedex, France
{paul.feuto_njonko,sylviane.cardey,peter.greenfield}@univ-fcomte.fr

2 Global Data Excellence Ltd.
Geneva, Switzerland

walid.elabed@globaldataexcellence.com

Abstract. Business rules represent the primary means by which com-
panies define their business, perform their actions in order to reach their
objectives. Thus, they need to be expressed unambiguously to avoid in-
consistencies between business stakeholders and formally in order to be
machine-processed. A promising solution is the use of a controlled natu-
ral language (CNL) which is a good mediator between natural and formal
languages. This paper presents RuleCNL, which is a CNL for defining
business rules. Its core feature is the alignment of the business rule defi-
nition with the business vocabulary which ensures traceability and con-
sistency with the business domain. The RuleCNL tool provides editors
that assist end-users in the writing process and automatic mappings into
the Semantics of Business Vocabulary and Business Rules (SBVR) stan-
dard. SBVR is grounded in first order logic and includes constructs called
semantic formulations that structure the meaning of rules.

Keywords: Business Rule, Controlled Natural Language, Automatic
Mapping, Semantics of Business Vocabulary and Business Rules.

1 Introduction

Nowadays, companies are facing much pressure due to competition and growth,
which requires frequent adaptation of their business rules. However, for a couple
of decades, business rules have been hard-coded in automated business processes,
information systems and often inconsistently so. Thus, changing or modifying
business rules inevitably requires software engineers’ intervention because they
are inaccessible to business experts (e.g. healthcare experts, finance experts,
etc.) who understand the actual problem domain and are responsible for finding
solutions. As a result, companies cannot keep pace with the changing business
environment.

The business rule approach (BRA) has evolved over the years in order to solve
the deficiency described above [5] [1]. It claims that all business rules should be

B. Davis et al. (Eds.): CNL 2014, LNAI 8625, pp. 66–77, 2014.
c© Springer International Publishing Switzerland 2014

RuleCNL: A Controlled Natural Language for Business Rule Specifications 67

collected and explicitly represented in a centralized application called business
rule management system (BRMS). Many formal business rule languages have
been devised allowing companies to define their business rules explicitly and for-
mally. However, since such rules have to be created and/or verified by domain
experts who are mostly not familiar with formal notations, a promising solution
is the use of a controlled natural language (CNL) that can serve as a front-end in-
terface and provide automatic mappings into formal notations. Thus, this paper
presents RuleCNL for expressing business rules. Its core feature is the align-
ment of the business rule definition with the business vocabulary which ensures
traceability and consistency with the business domain. The underlying natural
language (NL) in this paper is English but RuleCNL also works with French.
The RuleCNL tool provides editors that assist end-users in the writing process
and provides automatic mappings into the Semantics of Business Vocabulary
and Business Rules (SBVR) standard. SBVR is grounded in first order logic and
includes constructs called semantic formulations that structure the meaning of
rules.

The rest of the paper is structured as follows: In Section 2, we introduce the
notion of business rules and CNLs. Section 3 presents some related work on
CNLs for business rules and in Section 4, we describe the RuleCNL in detail.
Section 5 presents the RuleCNL tool and Section 6 the conclusions and future
work.

2 Business Rules and Controlled Natural Languages

2.1 Business Rules

In the literature, we find numerous definitions of business rules. However the
most used definition is given by the Business Rule Group (BRG) [2] as follows:

”a business rule is a statement that defines or constrains some aspect of the
business. It is intended to assert business structure, or to control or influence
the behavior of the business.”

E.g. A loan must be approved if its value is less than 10,000 Euros.
One challenge with the BRA is to find the characteristics of a good business

rule. Some workers [3] [4] have proposed a set of characteristics for a business rule
statement to be deemed as good. Among them, we can cite that a business rule
should be atomic, declarative, business related, consistent, unambiguous, etc.

In the context of the BRA [1] [5], many formal languages have been pro-
posed by many vendors for business rules modeling. These languages have a
well-defined syntax, an unambiguous semantics and support automated reason-
ing over rules. [6] provides a state of the art on business rule languages and
concludes that most of them are hard to use for business people without train-
ing in formal methods, but are rather easy for software engineers. We contend
that business rules should be expressed declaratively in NL sentences for the
business audience. Thus, CNLs are good solutions for bridging the gap between
natural and formal languages [7].

68 P.B.F. Njonko et al.

2.2 Controlled Natural Languages

CNLs are engineered subsets of natural languages whose grammars and vocab-
ularies have been restricted in a systematic way in order to reduce both the
ambiguity and complexity of full NLs (e.g. English, French, etc.) [8].

In general, CNLs fall into two broad categories: human-oriented CNLs and
machine-oriented CNLs. Human-oriented CNLs are intended to improve the
communication among people for specific purposes and the readability and com-
prehensibility of technical documentations. They have no formal semantics and
are usually defined by informal guidelines [9]. Machine-oriented CNLs are de-
signed to improve the communication between humans and computers. They
are completely unambiguous and can be defined by formal grammars with a
direct mapping to formal logic [9].

Machine-oriented CNLs can be used in various domains and applications such
as CNL for knowledge representation (Attempto Controlled English [10], Pro-
cessable English [11], Computer Processable Language [12], etc.), CNL for on-
tologies [13], CNL for semantic web [14], CNL for machine translation [15], CNL
for business rules like RuleCNL as presented in this paper, etc.

3 Related Work

The idea of verbalizing rules that already exist in a formal representation [16]
[17] has led the domain of business rules to become an interesting application
of CNLs. Because business rules need to be approved and followed by people
with no particular background in formal or logic representation, it is important
to have an intuitive representation that CNLs can offer. There are some CNLs
that have been defined for this particular problem area.

In the business context, the Object Management Group (OMG)1 has pub-
lished a standard called SBVR [20] which provides a means for describing the
structure of the meaning of rules expressed in the natural language that busi-
ness people use. However, SBVR is not itself a CNL so it is up to each SBVR-
implementing language or notation to specify its formal mechanisms [19]. SBVR
claims to be restricted to semantics leaving apart a key functionality of NLs,
which is syntax. Thus, for various reasons, the SBVR standard did not include a
normative specification of the language to be used by business people to express
their vocabulary and rules.

SBVR-Structured-English (SE) [20] and RuleSpeak [21] are both defined in
the SBVR specification as CNLs to express business rules in a restricted version
of English. However, these CNLs are not languages per se, but rather a set
of best practices for human speakers. They are defined informally by sets of
guidelines based on experiences of best practice in rule systems [9]. They are not
normative and have no formal grammar but can be mapped to the semantics
formulation of the SBVR meta-model. They are not supported by any tooling
and cannot be processed in a fully automatic way [18]. The syntax is achieved by

1 http://www.omg.org/

http://www.omg.org/

RuleCNL: A Controlled Natural Language for Business Rule Specifications 69

text formatting and coloring, which could be used to aid understanding by the
domain expert user. However, a CNL requires a formal definition of its syntax
(the language’s grammar), which can be used to support business users in the
process of entering syntactically correct inputs. This limitation is avoided by our
RuleCNL controlled natural language.

4 RuleCNL: A Controlled Natural Language for Business
Rules Specifications

4.1 Introduction

In this section, we present our RuleCNL for expressing business rules. As men-
tioned in the introduction, its methodology is based on the alignment of the
business rule definitions with the business vocabulary. Thus, business rules are
semantically connected to the business domain and readily understandable by
domain experts. The methodology is derived from the core idea of the BRA ad-
vocated by the BRG as follows: ”Rules build on facts, and facts build on concepts
as expressed by terms.”[3]. In order to overcome the limitations highlighted in
the previous section, we defined a formal grammar and therefore a parser that
can be used for the syntax analysis of rules. The writing process of a business
rule is fully supported by the consistency check imposed by the methodology.
Its semantics is defined by automatic mappings into the SBVR semantic for-
mulations. This enables a language-independent way of describing the semantic
structure of rule statements and is grounded on a sound theoretical foundation
of formal logic. Fig. 1 shows the general architecture of the RuleCNL.

Fig. 1. General architecture of the RuleCNL

For the sake of readability, the SBVR semantic formulations of the example
of the Fig. 1 is shown at the Fig. 2.

70 P.B.F. Njonko et al.

Fig. 2. SBVR semantic formulations of the rule shown in the Fig. 1

4.2 RuleCNL Vocabulary

The RuleCNL vocabulary represents the conceptual model of the business do-
main which defines a cohesive set of interconnected concepts (domain terms and
their relations) that a given company uses in its talking or writing in the course
of doing business. It is defined in a structured way by a business user and rep-
resents the knowledge that the company knows about itself. The RuleCNL is
domain-independent and the vocabulary consists of:

- Domain Term: designates a significant business entity that can be rep-
resented by a common noun or a noun phrase. (e.g. customer, gold customer,
bank account, etc.). A Domain Term is always represented in a singular form
and with no articles or determiners.

- Domain Name: designates a significant business entity that represents
only one thing. It is usually a proper name. (e.g. France, Euro, USA, etc.)

- Domain Verb: designates a relationship, situation, or action involving one
or two Domain Terms/Names. In order to keep the RuleCNL vocabulary simple
and readily manipulable by domain experts, we only consider unary and binary
Domain Verbs.

The binary Domain Verb defines a semantic relationship and has two place-
holders filled by Domain Terms/Names and its declaration syntax is Subject +
Domain Verb + Object. The Domain Verb per se is only a part of this declaration
syntax and has no meaning in isolation, but only within the relationship.

RuleCNL: A Controlled Natural Language for Business Rule Specifications 71

For instance: Let us consider the verb to run, it has different meanings within
the following relationships:

manager runs company; horse runs race; computer runs program

A Domain Verb can be written both in active or passive form. (e.g. customer
places order ; order is placed by customer). The Domain Verb can be a linguistic
verb (in this case, it is conjugated in the third-person singular) or a combination
of a verb with some functional words (preposition, etc.).

The unary Domain Verb defines a characteristic or a state of a Domain
Term/Name and its declaration syntax is Subject + Domain Verb. Its evalu-
ation leads to a Boolean value. (e.g. order shipped, customer smokes)

There are no additional words or functional words in the relationship. This
leads to a great flexibility and any constraints or restrictions will be added
when defining business rules. The RuleCNL vocabulary includes some built-in
relationships as comparison verbs (equality/inequality) that are not defined by
domain users. Domain users define or import their vocabulary with the help of
the vocabulary editor.

4.3 RuleCNL Grammar

RuleCNL grammar defines syntax rules and constrains for business rules. It as-
sumes the existence of RuleCNL vocabulary and makes reference to Domain
Terms/Names and Domain Verbs defined in the vocabulary. The general struc-
ture of a rule is: Modality + Statement. The Modality carries the sense of oper-
ational or structural rules. (e.g. It is obligatory that, It is necessary that, etc.).
The Statement is a declarative sentence that regulates the structure of the rule.
Its general pattern is a set of clauses which can go from a simple to a very com-
plex/compound (linked by connectives and conditionals) structure. Each clause
is always based on exactly one Domain Verb defined in the vocabulary. Subse-
quently, it combines many linguistic particles (function words, adverbs, etc.) in
order to form a grammatically correct sentence. The grammar supports the use of
complex noun phrases involving quantifications, instantiations and qualifications
ofDomain Terms. It also supports verb phrases involving verbs and prepositional
phrases and can be used to define simple, compound and conditional sentence
structures. The following examples show some statement structures. In these
examples, Domain Terms are underlined; Domain Verbs are in italic font and
other linguistic particles are in bold font.

Simple statement: It is based on only one clause.
E.g. each customer places at least one order

This statement follows the structure: Subject + BinaryVerb + Object and is
based on the clause (Domain Verb) customer places order
Subject and Object are noun phrases with determiners which in this case are
quantifiers (each, at least). In general, a determiner can also map to an article
(a, an, the) or nothing. Subject and Object make reference to Domain Terms
visible in the vocabulary. The BinaryVerb also makes reference to a Domain

72 P.B.F. Njonko et al.

Verb of the vocabulary. In this example, Subject, Object and Domain Verb are
unqualified, and then the rule will be applied to any instance of the related
Domain Terms. However, they can be qualified by other descriptive elements,
such as their existence in a particular state, in order to specify the applicability
of the rule with enough precision.

Compound/complex statement: this is recursively built from simpler
statements through coordinators (and, or) and subordinators (if, who, that,
which).

E.g. each order is shipped if the customer who places the order is adult
and holds an account that has a outstanding balance that is greater than 0
This statement is based on the following Domain Verbs :
order shipped ;
customer adult ;
customer places order;
customer holds account;
account has outstanding balance
defined in the vocabulary
and the built-in comparison verb quantity1 is greater than quantity2

4.4 Formalization of the Grammar

In order to build a parser for the RuleCNL, we have formalized our grammar rules
using Extended Backus-Naur Form (EBNF) which is a notation for specifying
context free grammars. The RuleCNL grammar consists of a set of rewriting
rules used to restrict the syntax of rule statements. An excerpt of the general
rule pattern is shown at Fig. 3. The vertical bar (|) is the disjunction and the
comma character (,) is the conjunction. The symbol ()+ means that at least
one occurrence of rule element enclosed in the bracket must appear at that point.

Fig. 3. General rule pattern

RuleCNL: A Controlled Natural Language for Business Rule Specifications 73

4.5 RuleCNL Semantics

The RuleCNL semantics is defined by automatic mappings from RuleCNL rules
to the SBVR semantic formulation (SF) description. SF is a part of the SBVR
specification [20] that provides a means for describing the structure of the mean-
ing of rules expressed in NL that business people use. SF is an abstract and
language independent syntax to represent the meaning of a rule in a set of logic
structures so that it can be machine processed. The full SBVR SF is not pre-
sented in this paper, but can be found in [20].

Fig. 4 shows the resulting SF in the XML form generated by the RuleCNL
tool from the example of Rule 1 below

Rule 1: It is obligatory that the customer ”John” places at least one order

Fig. 4. Mapping of a RuleCNL rule to SBVR semantic formulation

Domain Terms are mapped to Noun concepts, determiners are mapped to
quantifications, Domain Names are mapped to Individual concepts, Domain
Verbs are mapped to Fact types, coordinators are mapped to logical operators,
relative clauses are mapped to Projections, etc.

5 RuleCNL Tool

5.1 Implementation

An important feature of a reliable CNL is its tool support because one of the
biggest problems (if not the biggest problem) of CNLs is the usability of a new
CNL by end-users [9]. In reality, the limited expressiveness due to the restriction
on vocabulary and grammar of CNLs leads to the difficulty in writing state-
ments that comply with the imposed restriction. Writing syntactically correct
statements without tool support is much more complicated because the user

74 P.B.F. Njonko et al.

Fig. 5. Vocabulary editor

Fig. 6. Rule editor

RuleCNL: A Controlled Natural Language for Business Rule Specifications 75

needs to learn syntax restrictions, which are in many cases not trivial to explain.
Thus, we have developed editors that make the writing process and the usability
of the RuleCNL as effortless as possible. There are two editors: a vocabulary
editor (Fig. 5) and a rule editor (Fig. 6).

The vocabulary editor assists the users to specify their vocabulary. It has two
customized and dynamic views on the vocabulary in use: an outline view (tree-
like) and a graphical view (UML-like notation). The rule editor assists the users
to specify the business rule statements.

Both editors offer high level features such as auto-completion, error-handling,
automatic highlighting and validation.

5.2 Evaluation

An ideal CNL should be effortless to learn and expressive enough to describe
the domain problem. Thus, we have evaluated the RuleCNL with respect to
its expressivity and comprehensibility. For the experiment, we collected about
50 business rules from real-life case studies of two companies written in the
English and French languages. The first company operates in the domain of
banking and insurance whereas the second is a parastatal. The evaluation was
carried out by four end-users divided into two groups: group 1 is made up of
two business experts with no background in formal notations of business rules
and group 2 is made up of two business users with a background in information
system technology. Our objective was twofold and consisted in finding how many
business rules the RuleCNL could formalize in a natural way and how easy the
users could understand the formalization. Thus, the evaluation’s metrics are the
expressiveness and the users comprehension of the RuleCNL. One could have
also added the readability, but as RuleCNL is close to NL, statements written
in RuleCNL are read in the same way as in the underlying NL. Table 1 shows
the result of the experiment with the agreement of the two users of each group.
This result is the same both for English and French.

Table 1. Evaluation

Measures/Users Group 1 Group 2
Expressiveness 84% 84%
Comprehensibility 90% 100%

As we can see in the Table 1, the expressiveness is 84% for both groups. The
remaining 16% was because of syntactic and semantic ambiguities in some rules.
However, with more training, the users rephrased these rules so that the tool
was able to formalize. Regarding the comprehensibility, group 1 confirmed that it
understood 90% of the formalized rules in a natural way and group 2 understood
all the rules. This result is not surprising because group 1 users do not have a
background in formal notations. Thus, the 10% remaining consisted of complex
rules, which require much constrains imposed by the grammar.

76 P.B.F. Njonko et al.

6 Conclusions and Future Work

The ultimate goal to bridge the gap between natural and formal languages has
brought interesting research challenges in the area of CNL. In this paper, we
have presented the RuleCNL which is a CNL for business rule specifications.
The aim of RuleCNL is to help business experts formalize their business rules
in a business-friendly way that can be understood by computers. The RuleCNL
syntax is defined by a formal grammar and its semantics is defined by automatic
mappings of RuleCNL rules to SBVR semantic formulations. The RuleCNL tool
provides editors that assist end-users in the writing process. RuleCNL along with
its tool have been evaluated with satisfactory results from business experts.
We are currently improving the tool and extending evaluation to many other
companies. The future work will be to go from the SBVR SF to some production
rules for rule engines or software components.

References

1. Barbara, V.H.: Business Rules Applied: Building Better Systems Using the
Business Rules Approach. John Wiley & Sons, Inc., New York (2001)

2. Business Rule Group, http://www.businessrulesgroup.org/defnbrg.shtml

3. Business Rule Approach, http://www.businessrulesgroup.org/bra.shtml

4. Tony, M.: Business Rules and Information Systems: Aligning IT with Business
Goals. Addison-Wesley Professional (2002)

5. Ross, R.G.: Principles of the Business Rule Approach. Addison-Wesley
Professional, USA (2003)

6. Lucie, B., Sophie, R., Bertrand, G., Stefan, L., Michael, S.: Report on State of
the Art and Prospective Evolution of Formal Languages for Business Rules. Public
Research Centre Henri Tudor, Luxembourg (2006)

7. Lévy, F., Nazarenko, A.: Formalization of Natural Language Regulations through
SBVR Structured English (Tutorial). In: Morgenstern, L., Stefaneas, P., Lévy, F.,
Wyner, A., Paschke, A. (eds.) RuleML 2013. LNCS, vol. 8035, pp. 19–33. Springer,
Heidelberg (2013)

8. Rolf, S.: Controlled Natural Languages for Knowledge Representation. In:
COLING 2010 Proceedings of the 23rd International Conference on Computational
Linguistics, pp. 1113–1121 (2010)

9. Kuhn, T.: Controlled English for Knowledge Representation. Doctoral thesis,
Faculty of Economics, Business Administration and Information Technology of
the University of Zurich (2010)

10. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for Knowledge
Representation. In: Baroglio, C., Bonatti, P.A., Ma�luszyński, J., Marchiori, M.,
Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 104–124.
Springer, Heidelberg (2008)

11. White, C., Rolf, S.: An Update on PENG Light. In: Proceedings of ALTA 2009,
pp. 80–88 (2009)

12. Clark, P., Harrison, P., Jenkins, T., Thompson, J., Wojcik, R.: Acquiring and Using
World Knowledge using a Restricted Subset of English. In: The 18th International
FLAIRS Conference (FLAIRS 2005) (2005)

http://www.businessrulesgroup.org/defnbrg.shtml
http://www.businessrulesgroup.org/bra.shtml

RuleCNL: A Controlled Natural Language for Business Rule Specifications 77

13. Hart, G., Johnson, M., Dolbear, C.: Rabbit: Developing a Controlled Natural
Language for authoring ontologies. In: Bechhofer, S., Hauswirth, M., Hoffmann,
J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 348–360. Springer,
Heidelberg (2008)

14. Rolf, S.: Controlled Natural Language as Interface Language to the Semantic Web.
In: 2nd Indian International Conference on Artificial Intelligence (IICAI 2005),
Pune, India (2005)

15. Cardey, S.: Machine Translation of Controlled Languages for more Reliable
Human Communication in Safety Critical Applications. In: Proceedings of the 12th
International Symposium on Social Communication, Cuba, pp. 953–958 (2011)

16. Terry, H.: Business Rule Verbalization. In: Proceedings of the 3rd Interna-
tional Conference ISTA 2004, Germany. Lecture Notes in Informatics, vol. P-48,
pp. 39–52 (2004)

17. Sergey, L., Gerd, W.: Verbalization of the REWERSE I1 Rule Markup Language.
Deliverable I1-D6, REWERSE (September 2006)

18. Ruth, R.P.: An object-oriented approach to the translation between mof
metaschemas application to the translation between UML and SBVR. Doctoral
thesis, Polytechnic University of Catalonia, Barcelona (2009)

19. Anderson, K., Spreeuwenberg, S.: SBVR’s Approach to Controlled Natural
Language. In: Proceedings of the Workshop on Controlled Natural Language, Italy,
pp. 155–169 (2009)

20. Semantics of Business Vocabulary and Business Rules (SBVR), v1.0. Object
Management Group (2008), http://www.omg.org/spec/SBVR/1.0/

21. RuleSpeak, http://www.rulespeak.com/en/

http://www.omg.org/spec/SBVR/1.0/
http://www.rulespeak.com/en/

Toward Verbalizing Ontologies in isiZulu

C. Maria Keet1 and Langa Khumalo2

1 Department of Computer Science, University of Cape Town, South Africa
mkeet@cs.uct.ac.za

2 Linguistics Program, School of Arts, University of KwaZulu-Natal, South Africa
Khumalol@ukzn.ac.za

Abstract. IsiZulu is one of the eleven official languages of South Africa
and roughly half the population can speak it. It is the first (home) lan-
guage for over 10 million people in South Africa. Only a few compu-
tational resources exist for isiZulu and its related Nguni languages, yet
the imperative for tool development exists. We focus on natural lan-
guage generation, and the grammar options and preferences in partic-
ular, which will inform verbalization of knowledge representation lan-
guages and could contribute to machine translation. The verbalization
pattern specification shows that the grammar rules are elaborate and
there are several options of which one may have preference. We devised
verbalization patterns for subsumption, basic disjointness, existential and
universal quantification, and conjunction. This was evaluated in a sur-
vey among linguists and non-linguists. Some differences between linguists
and non-linguists can be observed, with the former much more in agree-
ment, and preferences depend on the overall structure of the sentence,
such as singular for subsumption and plural in other cases.

1 Introduction

While South Africa has been celebrated as having the most enabling constitution
in the protection and advancement of African languages and has had a stable
democracy for two decades, there is a glaring limitation in the investment in
computational linguistics and human language technologies (HLT). Although the
imperative in HLT exist, there has been a lack of coordination in the development
of HLT in African languages and a total lack of commitment from government
and related institutions to invest and advance HLTs. However, the need for
them is voiced; e.g., the “National Recordal System” project by the National
Indigenous Knowledge Systems Office (NIKSO) of the South African Department
of Science and Technology, and the University of KwaZulu-Natal, which recently
made a ground-breaking introduction of mandatory isiZulu module for all its
students, and is driving the development of scientific terminology in isiZulu.
Visible advances are those that have been made by large companies such as
Google and Microsoft, which have seen the localization of the user interfaces
of their software, and an error-full Google Translate English-isiZulu. These and
related endeavours require natural language generation and machine translation,

B. Davis et al. (Eds.): CNL 2014, LNAI 8625, pp. 78–89, 2014.
c© Springer International Publishing Switzerland 2014

Toward Verbalizing Ontologies in isiZulu 79

and multilingualism in knowledge representation (e.g., [7,1]) with end-user and
domain expert interfaces, which do not exist.

Multilingual systems are being developed elsewhere (among many, [2,10,6]),
and there are larger projects, such as Monnet (http://www.monnet-project.eu)
for foundational aspects and Organic.Lingua (http://www.organic-lingua.eu)
as applied project. As it appeared during our investigation, these advances are
not immediately applicable with Nguni languages. Starting from the base and
defining a grammar alike described in [12], is a rather daunting task, because
the still important reference for linguistic work for isiZulu and Southern Bantu
languages are old and outdated [4,5] and it will take many years to update. In
the meantime, it is prudent to commence with the basics of NLG in such a way
to serve linguists, computer scientists, and domain experts to show relevance. To
this end, we take common language constructs of a practical logic language, such
as the OWL 2 EL profile [14] that is also used for the SNOMED CT medical
terminology, as a starting point to focus on CNL and verbalizations of logical
theories. Concerning verbalizations for OWL ontologies, it is already known that
there are variations for verbalizations within English [15] and good English-
OWL systems exist, notably ACE [8] and SWAT [16]. The main results for
logic-based conceptual models have been obtained also for monolingual English
verbalizations [3], whereas limitations of the so-called template-based approach
have been investigated for the multilingual setting [9].

Overall, this raises several questions: 1) what are the verbalization patterns for
isiZulu for the basic constructs? 2) what does that entail for an implementation
of a verbalization? 3) are there theoretical options one can choose from, like
in other languages, and which ones are preferred among isiZulu speakers? We
devised the high-level patterns for verbalization of subsumption, disjointness,
existential and universal quantification, and conjunction. The grammar rules
for isiZulu are complex to the extent that a template-based approach is not
feasible for either of the constructs investigated. This is due to, mainly, the
semantics of the noun that affects several other components in a sentence, and the
highly agglutinative nature of isiZulu. This also means existing multilingual and
verbalization models and infrastructures cannot be transposed and translated to
the Nguni languages. There are verbalization options, and we have conducted a
survey to elicit both linguist and non-linguist preferences to inform algorithm
development for a NLG-focussed grammar engine.

The remainder of this paper is organised as follows. Section 2 describes some
basic aspects of isiZulu and Section 3 summarizes the results of the verbalization
patterns. The user evaluation is presented in Section 4. We discuss in Section 5
and conclude in Section 6.

2 Some Very Basic Aspects of isiZulu

IsiZulu is the most populous language in South Africa spoken as a first (home)
language by about 23% of the over 50 million population. It has been documented
for over a hundred and seventy years with the first booklet Incwadi Yokuqala

http://www.monnet-project.eu
http://www.organic-lingua.eu

80 C.M. Keet and L. Khumalo

Yabafundayo having been produced in 1837. It is a Bantu language that belongs
to the Nguni sub-group of languages comprising of isiXhosa, isiNdebele, siSwati
and isiZulu. Bantu languages have characteristically agglutinating morphology,
which makes them rich and complex in their structure and one of the salient
features of isiZulu is the system of noun classes. Each noun in isiZulu belongs
to a noun class. It is the noun class that controls the concordance of all words
in a sentence whose structure is typically subject verb object (SVO), although
variations are attested to exist. The isiZulu noun class prefixes, based on Mein-
hoff (1948), are mostly coupled in terms of singular/plural, and the classes are
listed in Table 1.

The noun comprises of two formatives, the prefix and the stem; its structure is
depicted in Fig. 1. Prefixes express number and indicate the class to which a par-
ticular noun belongs. A prefix can be characterized as full or incomplete. The full
prefix has the augment (pre-prefix) followed by a prefix proper and an incomplete
prefix only has the augment respectively illustrated as iaugment miprefix proper
fulastem (imifula = rivers) and oaugment gogostem (ogogo = grandmothers).
Because of the agglutinating nature of isiZulu, a number of prefixes are
phonologically conditioned and yet others are homographs. As stated earlier,
the morphology of the head noun in the subject position will then influence the
agreement pattern as shown in following the example.

Amantombazana amadala adlala ibhola elimhlophe
ama-ntombazana ama-dala a-dlal-a i-bhola e-li-mhlophe
6.-girls 6.big 6.SUBJ-play 5.-ball REL-5.-white
‘The big girls are playing with the white ball’

The abbreviations by convention refer, respectively, to SUBJ = subject, REL
= relative and 6./5. = noun class 6 and 5 respectively. The complex agreement
system presents interesting challenges in the development of computational tech-
nologies in isiZulu. The understanding of the basic morphological structure of
isiZulu is crucial in the formulation of the technologies.

Fig. 1. The structure of isiZulu Nouns

3 Summary of the Relevant Grammar Rules

Due to space limitations, we describe the patterns and important features, not
the analysis we have conducted and (elaborate) algorithms developed.

Toward Verbalizing Ontologies in isiZulu 81

Table 1. Zulu noun classes, with examples. The noun class prefix of classes 1 and
3 is conditioned by the morphology of the stem to which it attaches: -mu- before
monosyllabic stems and -m- for other stems. C: Noun class, AU: augment, PRE: prefix,
NEG SC: negative subject concord, PRON: pronomial.

C AU PRE Stem (ex-
ample)

NEG
SC

PRON Meaning Example

1 u- m(u)- -fana aka- yena humans and other umfana boy
2 a- ba- -fana aba- bona animates abafana boys

1a u- - -baba aka- yena kinship terms and ubaba father
2a o- - -baba aba- bona proper names obaba fathers

3a u- - -shizi aka- wona nonhuman ushizi cheese
(2a) o- - -shizi aba- bona oshizi cheeses

3 u- m(u)- -fula awu- wona trees, plants, non- umfula river
4 i- mi- -fula ayi- yona paired body parts imifula rivers

5 i- (li)- -gama ali- lona fruits, paired body igama name
6 a- ma- -gama awa- wona parts, natural phe-

nomena
amagama names

7 i- si- -hlalo asi- sona inanimates and isihlalo chair
8 i- zi- -hlalo azi- zona manner/style izihlalo chairs

9a i- - -rabha ayi- yona nonhuman irabha rubber
(6) a- ma- -rabha awa- wona amarabha rubbers

9 i(n)- - -ja ayi- yona animals inja dog
10 i- zi(n)- -ja azi- zona izinja dogs

11 u- (lu)- -thi alu- lona inanimates and uthi stick
(10) i- zi(n)- -thi azi- zona long thin objects izinthi sticks

14 u- bu- -hle abu- bona abstract nouns ubuhle beauty
15 u- ku- -cula aku- khona infinitives ukucula to sing

17 ku- locatives, remote/
general

locative

The essence of possible verbalizations of the quantifiers and the main con-
nectives are shown in Table 2. The enumerations in the isiZulu column indicate
that its use depends on the context, which may be the category or noun class it
applies to, or other aspects in the axiom before or after the symbol, and the ad-
ditional “/” within an item refers to the fact that one of them has to be chosen,
depending on the noun class or first letter of a term. The main variables that
affect verbalization in isiZulu for the cases we investigated are the noun class of
the name of the OWL class and category of the OWL class, whether the OWL
class is an atomic class or a class expression, the quantifier used in the axiom,
and the position of the OWL class in the axiom.

Subsumption. There are two different ways of carving up the nouns to deter-
mine which rules apply (Table 2), but for generating good verbalizations, the
main issue is to choose between singular or plural with or without the universal
quantification voiced, which are illustrated in (S1). One can construct a similar

82 C.M. Keet and L. Khumalo

Table 2. A few constructors, their typical verbalization in English, and the basic
options in isiZulu; see text for further details

DL sym-
bol

Sample verb.
English

Sample verbalization in isiZulu
(see text for additional rules)

� ... is a ... Depends on what is on the rhs of � and desideratum:
A) semantic distinction

i) yi/ongu/uyi/ngu (living thing)
ii) iyi (non-living thing)

B) syntactic distinction
iii) ng (nouns commencing with a, o, or u)
iv) y (nouns commencing with i)

≡ 1) ... is the same
as ...
2) ... is equiva-
lent to ...

I. Depends on what is on the rhs of ≡:
i) ufana no/ne (person)
ii) ifana/lifana/afana (not a person)

II. Depends on grammatical number on lhs of ≡:
ii) yinto efanayo (singular)
ii) zifana ne/no/nezi (plural)

� ... or ... 1) ... okanye ...
2) ... noma ...

� ... and ... Depends on the use of the �:
i) ... na/ne/no ... (list of things)
ii) 1) ... futhi ... (connective)

2) ... kanye ... (connective)

¬ not ... angi/akusiso/akusona/akubona/akulona/asibona/
akalona/akuyona

∃ 1) some ...
2) there exists ...
3) at least one ...

Depends on position in axiom:
I. quantified over class, depends on meaning of class:

i) kuno (living thing)
ii) kune (non-living thing)

II. includes relation (preposition issue omitted):
1) ... [concords]dwa
2) ... noma [copulative + concord]phi ...
3) thize

∀ 1) for all ...
2) each ...

Depends on what it is quantified over:
A) semantic distinction

i) wonke/bonke/sonke/zonke (living thing)
ii) onke/konke/lonke/yonke (non-living thing)

B) another semantic distinction
i) use noun class (see Table 1)

set of options for generic (S2) versus determinate that has an extra u- (S3), but
the generic is preferred for the neutral setting of verbalizations.
(S1) MedicinalHerb� Plant

ikhambi ngumuthi (‘medicinal herb is a plant’)
amakhambi yimithi (‘medicinal herbs are plants’)
wonke amakhambi ngumuthi (‘all medicinal herbs are a plant’)

Toward Verbalizing Ontologies in isiZulu 83

(S2) Giraffes � Animals

izindlulamithi yizilwane (‘giraffes are animals’; generic)
(S3) Cellphone � Phone

Umakhalekhukhwini uyifoni (‘cellphone is a phone’; determinate)

The possible patterns for subsumption can be, with N=noun taken from the
name of the OWL class, and NC=noun class:
a. N1 <copulative ng/y depending on first letter of N2>N2.
b. <plural of N1> <copulative ng/y depending on first letter of plural of

N2><plural of N2>.
c. <All-concord for NCx>onke<plural ofN1, being of NCx> <copulative ng/y

depending on first letter of N2>N2.
If the subsumption is followed by negation, then the copulative is omitted, and
also here there are options; e.g.:

(SN1) Cup � ¬Glass
indebe akuyona ingilazi (‘cup not a glass’)
zonke izindebe aziyona ingilazi (‘all cups not a glass’)

It combines the negative subject concord (NEG SC) of the noun class of the
first noun (aku-) with the pronomial (PRON) of the noun class of second noun
(-yona), where each noun class has its version (see Table 1). Thus, the pattern
for negation in subsumption can be:
a. <N1 of NCx> <NEG SC of NCx><PRON of NCy> <N2 of NCy>.
b. <All-concord for NCx>onke <plural N1, being of NCx> <NEG SC of

NCx><PRON of NCy> <N2 with NCy>.
We leave the more complicated cases where the inclusion axiom can be used,
like ∀R.C � ∃S.(D � E), for future work, as well as negation in other contexts.

Conjunction. The ‘and’ as enumeration uses na, which changes into (a + i =)
ne or (a + u =) no, depending on the first letter of the noun and is then prefixed
to the second noun that drops its first letter (always a vowel), illustrated in
(C1). Conjunction as connective of clauses has two options, being kanye or futhi,
illustrated in (C2).

(C1) Butter� Milk

Ibhotela nobisi (Ibhotela + na + Ubisi)
(C2) . . . ∃has filling.Cream� ∃has Icing.Lemon flavour . . .
...kune zigcwalisa ukhilimu kanye nezinye uqweqwe olunambitheka ulamula...
...kune zigcwalisa ukhilimu futhi nezinye uqweqwe olunambitheka ulamula...

While this distinction is a hassle in the algorithm, the pattern is straightforward.

Existential Quantification. Option I in Table 2 refers to cases like (E0), which
are not used in OWL ontologies, but that has axioms of type (E1) instead, which
include the object property (verb) and for which there are several verbalization
options.

84 C.M. Keet and L. Khumalo

(E0) Ezulwini kune zingilosi (‘in heaven there exist angels’)

(E1) Giraffe � ∃eats.Twig
izindlulamithi zindla izihlamvana (‘giraffes eat twigs’)

yonke indlulamithi idla ihlamvana elilodwa (‘each giraffe eats at least one twig’)

zonke izindlulamithi zidla ihlamvana elilodwa (‘all giraffes eat at least one twig’)

yonke indlulamithi idla noma yiliphi ihlamvana (‘each giraffe eats some twig’)

zonke izindlulamithi zidla noma yiliphi ihlamvana (‘all giraffes eat some twig’)

yonke indlulamithi idla ihlamvanathize (‘each giraffe eats some twig’)

Thus, we have a choice between ‘at least’ and ‘some’, and singular and plural.
The quantification (underlined text) is more important than verb conjugation
here. For the ‘at least one’, the relative concord (RC) is determined by the noun
class system and is attached to the quantitative concord (QC) and then suffixed
with the quantitative suffix -dwa; e.g.:

noun NC RC QC QSuffix copulative EP ESuffix

ihlamvana (‘twig’) class 5 eli- -lo- -dwa
isifundo (‘module’) class 7 esi- -so- -dwa
ushizi (‘cheese’) class 3a o- -ye- -dwa
ihlamvana (‘twig’) class 5 yi- -li- -phi
isifundo (‘module’) class 7 yi- -si- -phi
ushizi (‘cheese’) class 3a ngu- -mu- -phi

There are lookup tables for that, like for the NEG SC and PRON in Table 1. For
the ‘some’ option, it is constructed as copulative + enumerative prefix (EP) +
enumerative suffix -phi, as illustrated above, and the conjunction noma collocates
with the enumerative to complete the meaning ‘some among many’. Also for the
EP, there is a fixed concord for each noun class. Note that the -i, respectively
-u, are added to the copulative, because the copulative cannot be followed by a
consonant that the EP begins with. Finally, the clitic -thize, which has a variant
form -thile, is another expression of the complex morphology. The clitic -thize
attaches to the noun, which is often the object of the sentence, to express the
sense that it is some among many of those objects. In (E1) inhlamvanathize
would thus mean any one of the twigs. This is a bit borderline in meaning,
but it is the only candidate for being a template for that aspect. Overall, the
following three core patterns are obtained:
a. <All-concord for NCx>onke <pl. N1, is in NCx> <conjugated verb> <N2

of NCy> <RC for NCy><QC for NCy>dwa;
b. <All-concord for NCx>onke <pl. N1, is in NCx> <conjugated verb> noma

<copulative ng/y adjusted to first letter of N2><EP of NCy>phi <N2>.
c. <All-concord for NCx>onke <N1 in NCx> <conjugated verb> <N2>thize;
Verb conjugation is a separate matter, which is complicated to encode, but there
are no options to choose from in a verbalization. This is also the case for the
prepositions in an OWL object property name (like the ‘by’ in ‘taught by’).

Toward Verbalizing Ontologies in isiZulu 85

4 Experimental Evaluation of the Verbalisation Patterns

The aim of the experiment is to show how the understanding of the basic struc-
ture of isiZulu can illuminate the verbalization in isiZulu. While there are various
options to verbalize something in isiZulu and these options involve elaborate algo-
rithms, the experiment sought to find out possible preferences for the verbalization
of the subsumption, disjointness, and quantifiers in isiZulu from the participants.
The experiment also sought to find out if variations in verbalizations mattered to
different participants, in particular between linguists and non-linguists.

4.1 Survey Design

The set up of the experiment was as follows.
1) Devise a set of sentences that tests the patterns introduced in Section 3, include

a few cross-checks, add an ‘either’ and ‘neither’ option, and add auxiliary ques-
tion, being whether the participant is a linguist or not, optional comments and
optional contact email. The sentences will be generated throughmanual appli-
cation of the patterns. For instance, Question 1 asks the participant to choose
between:
a) Ikhambi ngumuthi; subsumption singular
b) Amakhambi yimithi; subsumption plural
c) Wonke amakhambi ngumuthi; with ‘for all’ quantifier, and plural
d) Yomithathu; either one of them
e) Awukho; neither
Question 2 asks the same thing as in Question 1, but then with the giraffes.
Question 3 offers the option for disjointness singular versus plural and the uni-
versal quantification verbalised. Question 4: also asks about disjointness:
a) Ihebhivoalilona ikhanivo; singular (disjointness of herbivore andcarnivore)
b) Amahebhivo awalona ikhanivo; plural
c) Yomibili; either one of the two
d) Awukho; neither
Questions 5 to 9 deal with existential quantification: -dwa versus noma ...-phi
(Question 5); Question 6 fixes noma ...-phi but varies by singular vs plural;
Question 7 does the same but then with -dwa:
a) Sonke isifundo sifundiswa nguSolwazi oyedwa; singular (each course is

taught by at least one professor)
b) Zonke izifundo zifundiswa nguSolwazi oyedwa; plural
c) for “either” and d) “neither”
Question 8 pits them against each other with singular -dwa vs singular noma
...-phi vs plural noma ...-phi, and Question 9 requires a choice on plural noma
...-phi versus -thize. Question 10 asks about kanye vs futhi. The complete list
of sentences is included in the supplementary file, and the survey is left open for
people to consider, accessible at http://limesurvey.cs.ukzn.ac.za/

index.php?sid=25965&lang=zu (click the button labelled ‘okulandelayo’ to pro-
ceed to the main set of questions).

http://limesurvey.cs.ukzn.ac.za/index.php?sid=25965&lang=zu
http://limesurvey.cs.ukzn.ac.za/index.php?sid=25965&lang=zu

86 C.M. Keet and L. Khumalo

2) Set up the survey in the locally installed Limesurvey
(http://www.limesurvey.org). This was chosen because we had localised
the relevant part of it to isiZulu in a previous research activity and no other
survey software has a localization to isiZulu. Thus, all questions, answer
options, autotext, and error messages are in isiZulu.

3) Invite people via email to participate.
4) Collect data after 2.5 days, and analyse it using MS Excel.

4.2 Results and Discussion

Twenty five people were invited to participate in the survey, among them students,
academics (linguists), and non-linguists, such as administrators. In the short time
frame, this resulted in 12 completed responses, 5 of whom self-identified as linguist
and 7 as non-linguist. The results are depicted in Table 3 and the (anonymised)
excel file is accessible at http://www.meteck.org/files/CNLsurvey.xls , which also
has a copy of the questions and the full answer options; here, question “1. isa” is
Question 1 as described above in the materials and methods, and “sing.” corre-
sponds to the first option Ikhambi ngumuthi, “pl.” to Amakhambi yimithi and so
on, and likewise for Question 4’s “sing.” being the Ihebhivo alilona ikhanivo option
listed above as answer option a).

The survey results show clear preferences from linguists. Question 1 option 1 is
an overwhelming choice and this is predictable because of its simple structure.Once
the nominal head takes the plural form there seems to be hesitation because of the
complex agreement system; e.g., the answers given toQuestion 2 illustrates this. In
the context of negation (Questions 3 and 4), the answersweremixed overall, though
there was a slight preference among non-linguists for simple singular over simple
plural (not present with the nominal head, Question 3). This agreement system
was unavoidable for the ‘forall-exists’ pattern, and there the plural is preferred over
singular (Questions 7 and 8). The -phi and -thize (Question 9) seem not to have any
preferences, while -dwa has overwhelming preference over -phi (Question 5).

It is an attested fact that there are dialects of isiZulu and some of the salient
differences in preferencesmay be based on dialect variation, which alsomay explain
the dislike for either kanye or futhi (Question 10). It is important that the survey
remains open to more participants andmaybe a clearer pattern of preferences may
emerge. A further option could be to ask them whether the generated sentence is
understandable (rather than preference), which may become more relevant when
larger axioms are going to be verbalised.

5 Discussion

For languages with isolating morphology such as English, verbalization templates
are known to be a good way to explore with developing a controlled natural lan-
guage, or may even suffice for a use case scenario, whereas this approach breaks
down for languages with richer (agglutinating) morphology [9]. So far, we have not
found a single case where a plain template without supporting encodings of the

http://www.limesurvey.org
http://www.meteck.org/files/CNLsurvey.xls

Toward Verbalizing Ontologies in isiZulu 87

Table 3. Survey results in percentage of votes (rounded) and disaggregated by linguist
(Ling.) and non-linguist (Non-Ling.); sing.: singular; pl.: plural; all: ∀ verbalised; exists:
with the ‘forall-exists’ construction; and: the connective-and

Question Respondent Question Respondent
Ling. Non-

Ling.
Total Ling. Non-

Ling.
Total

1. isa

sing. 80 0 33

6. exists

sing.+noma-
phi

0 29 17

pl. 0 43 25 pl.+noma-phi 0 0 0
all+pl. 0 0 0 either 20 0 8
either 20 57 42 neither 80 71 75
neither 0 0 0

2. isa

sing. 80 86 83

7. exists

sing.+-dwa 20 14 17
pl. 0 0 0 pl.+-dwa 20 57 42
all+pl. 0 0 0 either 40 0 17
either 0 14 8 neither 20 29 25
neither 20 0 8

3. disj.

sing. 40 29 33

8. exists

sing.+-dwa 0 14 8
all+pl. 0 14 8 sing.+noma-

phi
20 0 8

either 40 14 25 pl.+noma-phi 80 57 67
neither 20 43 33 either 0 0 0

neither 0 29 17

4. disj.

sing. 40 71 58

9. exists

pl.+noma-phi 40 14 25
pl. 0 0 0 pl.+-thize 0 29 17
either 20 0 8 either 40 43 42
neither 40 29 33 neither 20 14 16

5. exists

pl.+-dwa 100 57 75

10. and

kanye 0 0 0
pl.+noma-phi 0 14 8 futhi 0 14 8
either 0 0 0 either 20 0 8
neither 0 29 17 neither 80 86 83

grammar suffices.The survey revealed some general preferences, such as the -dwa
option cf -phi, anddislikes (futhi/kanye), and a fewnotable differences in preference
between linguists and non-linguists, such as the clear preference for the singular
for subsumption and the unanimous preference for -dwa among the linguists, and
overall the linguists agreedmore on their preference compared to the non-linguists.
The latter may have to do also with dialect and which region the isiZulu speaker is
from.

These results can already feed into the development of a verbalization tool, but it
requiresmore researchbefore committing to invest in something like theGrammat-
ical Framework (http://www.grammaticalframework.org/). This paper highlights
motivational use cases for further investigation that benefits both isiZulu linguis-
tics and ICT and we will continue to extend the algorithms, add more, and imple-
ment them so that domain experts can contribute and easily access, among others,

http://www.grammaticalframework.org/

88 C.M. Keet and L. Khumalo

the indigenous knowledge management knowledge base and scientific terminolo-
gies in isiZulu.

As an added benefit, these results may also inform translation algorithms and
tools. Take, e.g., Google Translate English-isiZulu machine translation online and
enter ‘all giraffes eat some twig’ is translated as yonke izindlulamithi udle igatsha
(translation obtained 27-3-2014): izindlulamithi is in noun class 10, so it should
be zonke instead of yonke, and it misses the quantifier. This can be correctly ver-
balised with the pattern described in Section 3. As an aside, and looking toward
additional verbalization patterns: its udle (2nd or 3rd person singular, imperative)
is also incorrect, because the verbhas to be conjugated for the noun class of the first
noun, which is 3rd person plural non-human (in casu, zidla). Another aspect to in-
vestigate in detail is the living/non-living thing distinction, which we avoided for
subsumption by using a syntax-based short-cut. This may, or may not, work for
other verbalization patterns.

Last, there are other issues to consider for verbalizing in isiZulu, such as multi-
lingual ontologies and, possibly modifying the Lemonmodel [13] to cater for anno-
tation with, at least, the noun class, and finding ways for semi-automated ontology
translations to/from isiZulu.

6 Conclusions

Verbalizing formally represented knowledge in isiZulu requires a grammar engine
even for the relatively basic language constructs,which are due to,mainly, the noun
classes, the agglutinative nature of isiZulu, and contextual knowledge about the po-
sition of the symbol in the axiom. The salient features peculiar to isiZulu that pose
a challenge are: i) the system of noun classes, ii) the system of complex agreement,
iii) phonological conditioned copulatives, and iv) verb conjugation. We developed
a set of possible verbalization patterns for simple subsumption, disjoint classes,
quantification, and conjunction. The survey on verbalization pattern preference
revealed a clear preference for the -dwa option, and more variation in preference
by the non-linguists.

Algorithms have been developed for the verbalizations [11], which will be ex-
tended further for other larger axioms and verb conjugation, and implemented. It
will also be useful to investigate comprehension of the generated sentences and the
effect of dialect on preferences.

Acknowledgements. We thank N. Hadebe, Y. Motloung, M. Ndaba, and
S. Nkosi for their initial exploration into the topic.

References

1. Alberts, R., Fogwill, T., Keet, C.M.: Several required OWL features for indigenous
knowledgemanagement systems. In:Klinov, P., Horridge,M. (eds.) 7thWorkshop on
OWL: Experiences and Directions (OWLED 2012), Heraklion, Crete, Greece, May
27-28. CEUR-WS, vol. 849, 12 p. (2012)

Toward Verbalizing Ontologies in isiZulu 89

2. Bosca, A., Dragoni, M., Francescomarino, C.D., Ghidini, C.: Collaborative manage-
ment of multilingual ontologies. In: Buitelaar, P., Cimiano, P. (eds.) Towards the
Multilingual Semantic Web. Springer (in press, 2014)

3. Curland, M., Halpin, T.: Model driven development with NORMA. In: Proceedings
of the 40th International Conference on System Sciences (HICSS-40), los Alamitos,
Hawaii, p. 286a. IEEE Computer Society (2007)

4. Doke, C.: Text Book of Zulu Grammar. Witwatersrand University Press (1927)
5. Doke, C.: Bantu Linguistic Terminology. Longman, Green and Co., London (1935)
6. Dongilli, P., Franconi, E.: An Intelligent Query Interface with Natural Language

Support. In: Proceedings of the Nineteenth International Florida Artificial Intelli-
gence Research Society Conference (FLAIRS 2006), Melbourne Beach, Florida, USA
(May 2006)

7. Fogwill, T., Viviers, I., Engelbrecht, L., Krause, C., Alberts, R.: A software architec-
ture for an indigenous knowledge management system. In: Indigenous Knowledge
Technology Conference 2011, Windhoek, Namibia, November 2-4 (2011)

8. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Discourse Representation Structures for ACE
6.6. Tech. Rep. ifi-2010.0010, Dept of Informatics, University of Zurich, Switzerland
(2010)

9. Jarrar, M., Keet, C.M., Dongilli, P.: Multilingual verbalization of ORM concep-
tual models and axiomatized ontologies. Starlab technical report, Vrije Universiteit
Brussel, Belgium (February 2006)

10. Kaljurand, K., Kuhn, T., Canedo, L.: Collaborative multilingual knowledge man-
agement based on controlled natural language. Semantic Web J. (2013) (submitted)

11. Keet, C., Khumalo, L.: Basics for a grammar engine to verbalize logical theories in
isiZulu. In: Proceedings of the 8th International Web Rule Symposium (RuleML
2014), Prague, Czech Republic, August 18-20. LNCS. Springer (accepted, 2014)

12. Kuhn, T.: A principled approach to grammars for controlled natural languages and
predictive editors. Journal of Logic, Language and Information 22(1), 33–70 (2013)

13. McCrae, J., de Cea, G.A., Buitelaar, P., Cimiano, P., Declerck, T., Gómez-Pérez, A.,
Gracia, J., Hollink, L., Montiel-Ponsoda, E., Spohr, D.,Wunner, T.: The lemon cook-
book. Technical report,Monnet Project (June 2012), http://www.lemon-model.net

14. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web
Ontology Language Profiles. W3C recommendation, W3C (October 27, 2009)

15. Schwitter, R., Kaljurand, K., Cregan, A., Dolbear, C., Hart, G.: A comparison of
three controlled natural languages for OWL 1.1. In: Proceedings of OWL: Experi-
ences andDirections (OWLED2008DC),Washington,DC,USAMetropolitan Area,
April 1-2 (2008)

16. Third, A., Williams, S., Power, R.: OWL to English: a tool for generating
organised easily-navigated hypertexts from ontologies. poster/demo paper. In: 10th
International Semantic Web Conference (ISWC 2011), Bonn, Germany, October
23-27 (2011)

http://www.lemon-model.net

B. Davis et al. (Eds.): CNL 2014, LNAI 8625, pp. 90–101, 2014.
© Springer International Publishing Switzerland 2014

FrameNet CNL: A Knowledge Representation
and Information Extraction Language

Guntis Barzdins

Institute of Mathematics and Computer Science, University of Latvia,
Rainis blvd. 29, Riga, LV-1459, Latvia
guntis.barzdins@lumii.lv

Abstract. The paper presents a FrameNet-based information extraction and
knowledge representation framework, called FrameNet-CNL. The framework is
used on natural language documents and represents the extracted knowledge in
a tailor-made Frame-ontology from which unambiguous FrameNet-CNL pa-
raphrase text can be generated automatically in multiple languages. This ap-
proach brings together the fields of information extraction and CNL, because a
source text can be considered belonging to FrameNet-CNL, if information ex-
traction parser produces the correct knowledge representation as a result. We
describe a state-of-the-art information extraction parser used by a national news
agency and speculate that FrameNet-CNL eventually could shape the natural
language subset used for writing the newswire articles.

Keywords: knowledge representation, information extraction, FrameNet.

1 Introduction

In the collaborative report on the properties and prospects of Controlled Natural Lan-
guages (CNL) [7] a CNL was defined as an engineered subset of natural language
such as English, which facilitates unambiguous human-human or human-machine
communication. Among other uses of CNL it was stated that “CNLs appear to
be particularly significant with respect to information extraction of and reasoning
with the content of documents”. As the ultimate goal of the CNL unambiguity and
computability the report quoted the Leibnitz’s ambition “… when there are disputes
among persons, we could simply say: Let us calculate, without further ado, to see who
is right”.

Although mainstream effort in CNL community over past years has been devoted
to defining restricted subsets of natural language, for which unambiguous translation
to underlying formal representation is possible (e.g. Attempto Controlled English [4]),
another research direction has focused on enhancing the CNL parsing and generation
techniques to/from some Abstract Knowledge Representation (AKR) format (e.g.
abstract grammar in Grammatical Framework [8]) to the point where the borderline
between the natural language and CNL becomes blurred. The blurring occurs, when
the information extraction parsers become capable of extracting the correct AKR not
only from CNL, but also (to substantial degree) from the natural language (NL)

 FrameNet CNL: A Knowledge Representation and Information Extraction Language 91

documents. Meanwhile, the Grammatical Framework based text generation systems
have reached the level of maturity where AKR (the result of information extraction)
can be verbalized in the grammatically correct target language such as English.

The above overview highlights the relationship between the CNL and information
extraction fields as illustrated in Fig. 1. In this respect the traditional formal and un-
ambiguous CNLs can be viewed as a subset of natural language for which informa-
tion extraction achieves 100% accuracy. The overlap between these two fields has
actually been present already over several years, because FrameNet [1] – the corner-
stone theory for the wide coverage information extraction from natural language
texts, has been well represented in the CNL community already [6, 9, 11].

The purpose of this paper is to further erode the borderline between the CNL and
information extraction approaches by defining a FrameNet CNL (FN-CNL) which
actually encompasses a powerful AKR paradigm (described in Section 3) along with
real-world information extraction system (described in Section 4). The application of
FN-CNL to the real-world information extraction has become possible only lately (for
Latvian, at least) due to the recent advances [15] in the automatic frame-semantic
parsing accuracy (described in Section 2.1).

Fig. 1. The relationship between FN-CNL text, abstract knowledge representation (AKR) and
information extraction from the natural language documents. This relationship is illustrated by
a concrete example later in Fig. 7.

This paper is based on a practical information extraction system recently imple-
mented for a national news agency in Latvia to extract and keep updated the biographi-
cal data profiles about publicly visible persons and organizations by automatically
extracting this information from the multi-million document national newswire article
archive. Although CNL was not the focus of the developed information extraction sys-
tem, it was inspired by PAO-CNL [6], as both are based on the idea of merging Frame-
Net with Named Entity Linking (NEL) system to form the underlying AKR paradigm.

2 FrameNet

FrameNet1 is a lexicographic database that describes word meanings based on the
principles of frame semantics [1]. The central idea of frame semantics is that word

1 http://framenet.icsi.berkeley.edu

FN-CNL
abstract

knowledge
representation

(AKR)

Source
documents
in NL

Text in
FN-CNL

information
extraction

FN-CNL text
generation

FN-CNL
parsing

92 G. Barzdins

meanings must be described in relation to semantic frames. Therefore, the frame and
the lexical unit are the key components of FrameNet. A lexical unit is the combina-
tion of a lemma with a meaning – every new meaning of a word represents a new
lexical unit. In FrameNet, each lexical unit is related to a semantic frame that it is said
to evoke. The frame descriptions are coarse-grained and generalize over lexical varia-
tion. Although FrameNet addresses all parts-of-speech as frame evoking lexical units,
its focus is on verbs for which the best coverage is provided.

The semantic frame describes a certain situation and the participants of that situa-
tion that are likely to be mentioned in the sentences where the evoking lexical unit
(referred to as frame target) appears as illustrated by the example in Fig. 2. The se-
mantic roles played by these participating entities are called frame elements (FE). All
FrameNet frame elements are local to individual frames. This avoids the commitment
to a small set of universal roles, whose specification has turned out to be controversial
in the past [5]; to account for actual similarities between some frame elements (com-
mon FE such as Time, Place) in different frames English FrameNet includes also a
rich set of frame to frame and FE to FE relations.

A [Durationone-year] STINT
Target [Positionas assistant lecturer]

[Employerat University College London] was followed by a
year of research in the United States.

Fig. 2. A sentence “A one-year stint as assistant lecturer at University College London was
followed by a year of research in the United States” annotated with the target and frame
elements of Being employed frame

Development of FrameNet resources for various languages is an ongoing activity
[5] and in this paper Latvian and English FrameNet will be used for illustration.

2.1 Frame-Semantic Parsing

The benchmark methodology for frame-semantic parsing of natural language texts
(sometimes regarded as automatic FrameNet Semantic Role Labelling to produce
annotation as illustrated in Fig. 2) was set at SemEval-2007 [2] and specifically – by
the best performing LTH system [3]. Further improvements to the methodology were
implemented in the state-of-the-art SEMAFOR system [14].

To achieve high frame-semantic parsing accuracy for Latvian FrameNet (for which
only a small training corpus is available) a new frame-semantic parser [15] based on
the exhaustive search method nicknamed “C6.0” was developed2. The evaluation
results for all mentioned frame-semantic parsers are shown in Table 1.

2 Available at http://c60.ailab.lv

 FrameNet CNL: A Knowledge Representation and Information Extraction Language 93

Table 1. Evaluation results for frame target and frame element identification

 Target identification FE identification
Preci-
sion

Recall F1 Precision Recall F1

LTH
(English dataset
SemEval’07)

66.2% 50.6% 57.3% 51.6% 35.4% 42.0%

SEMAFOR
(English dataset
SemEval’07)

69.7% 54.9% 61.4% 58.1% 38.8% 46.5%

C6.0 RuleSet
(English dataset
SemEval’07)

77.1% 53.7% 63.3% 47.3% 47.0% 47.1%

C6.0 RuleSet
(Latvian Fra-
meNet)

63.5% 62.7% 63.1% 65.9% 76.8% 70.9%

A distinct property of the C6.0 approach is that the frame-semantic parsing rules

are generated in the human readable and editable format illustrated in Fig. 3 which is
different from un-readable weight vectors of SVM or perceptron based machine
learning algorithms used by the LTH and SEMAFOR frame-semantic parsing sys-
tems. The idea behind the exhaustive search based C6.0 algorithm was pioneered by
the entropy based C4.5 and C5.0 decision-tree classification systems [16] which along
with confidence limits for binomial distribution introduced also Laplace ratio (n-
m+1)/(n+2) for rule accuracy estimation, where n is the total number of training ex-
emplars matched by the rule and m showing how many of them are false positives.

Fig. 3. C6.0 generated RuleSet (feature value patterns) for target word identification of frame
Revenge. The list of features appearing in the pattern are: LEMMA, POS, NER for the previous
word; LEMMA, HYPERNYM, POS, NER for the current word; LEMMA, POS, NER for the
next word.

The evaluation results in Table 1 show that C6.0 based English frame-semantic
parser outperforms other state-of-the-art English frame-semantic parsers, while the
C6.0 based Latvian frame-semantic parser performs on par with English parsers
despite smaller FrameNet annotated training corpus of 4079 sentences available

 Total False Laplace
 matches positives ratio
[_, _, _, _, {retaliation.n.1, punish.v.1, revengeful.s.1}, _, _, _, _, _] 193 9 95%
[_, _, _, {avenger, retaliated, retaliate, avenged}, _, _, _, _, _, _] 49 0 98%
[_, MD, _, get, _, _, _, _, RB, _] 23 3 84%
[_, JJ, _, sanction, _, _, _, _, _, _] 4 0 83%
[_, _, _, sanction, _, NNS, _, _, IN, _] 5 1 71%
[_, _, #NONE#, sanction, _, _, _, ',', _, _] 2 0 75%

94 G. Barzdins

for Latvian compared to 139439 sentences available for English (Latvian and English
comparison is only indicative due to differences in the annotation and evaluation
methodologies and the reduced number of frames in the Latvian FrameNet – see
Section 2.2).

Table 2. Target identification F1 scores for some FrameNet frames

Being born 100 Residence 67 Participation 40
Earnings and losses 89 Statement 67 Employment end 33
Death 80 Hiring 62 Product line 33

Education teaching 71 Membership 50 Lending 29
Being employed 70 Possession 48 Personal relationship 25
Change of leadership 67 People by vocation 46 Trial 18
Intentionally create 67 Win prize 45 People by origin 16

The further evaluation in Table 2 breaks down the target identification accuracy for

some FrameNet frames. These results illustrate that the target identification accuracy
varies widely between different frame types, meaning that the low-scoring frames
might convey a broader concept (which can be expressed in more ways) and thus
achieving high accuracy for these frames requires a larger training corpus. Meanwhile
the overall target identification accuracy above 50% still results in rather efficient
information extraction from the newswire archives, because the important information
tends to be duplicated multiple times in news articles (see Fig. 6) thus improving the
actually perceived recall rate.

2.2 “Latvian” FrameNet Subset

Latvian FrameNet was created for a practical information extraction system devel-
oped for a national news agency to automatically extract biographical data about pub-
licly visible persons and organizations mentioned in the newswire articles.

A design decision was to use a reduced number of frames – although our method-
ology is applicable to any number of frames, we have selected just 26 Frames out of
the 1019 frames in the English FrameNet version 1.5 (Being born, People by age,
Death, Personal relationship, Being named, Residence, Education teaching, People
by vocation, People by origin, Being employed, Hiring, Employment end, Member-
ship, Change of leadership, Giving, Intentionally create, Participation, Earnings and
losses, Public procurement, Possession, Lending, Trial, Attack, Win prize, Statement,
Product line) which were of interest to the national news agency; this use-case dic-
tated also adding or removal of some frame elements (arguments) – the resulting
frames are shown in Fig. 4.

Although we refer to this FrameNet subset as a “Latvian FrameNet”, the informa-
tion extraction approach described in this paper is equally applicable also to the Eng-
lish FrameNet subset of the same 26 frames.

 FrameNet CNL: A Knowledge Representation and Information Extraction Language 95

3 Knowledge Representation in FN-CNL

FrameNet itself does not define any AKR paradigm – it is merely a lexicographic
annotation framework. To define an AKR framework FrameNet needs to be com-
bined with an entity identification framework, often regarded as Named Entity Link-
ing (NEL) to create a usable AKR framework or ontology shown in Fig. 4 (this is
OWLGrEd3 visualization of the actual OWL ontology4 used for knowledge repre-
sentation in Latvian FN-CNL). Optionally, this AKR framework can further be em-
powered by adding an explicit time dimension as described at the end of this section.

The novelty behind the AKR framework in Fig. 4 is explicit separation of classes
denoting real-world entities (light boxes) and classes denoting temporal situations
captured by FrameNet frames (dark boxes). This allows AKR framework in Fig. 4 to
bridge the gap between the natural language and the traditional database schemas or
OWL ontologies used in information systems. From the traditional database or
OWL/RDF viewpoint our AKR ontology in Fig. 4 is “non-traditional”, because natu-
ral language predicates there are encoded as n-ary relations by the dark FrameNet
classes, rather than by binary object-properties typical for simplistic RDF subject-
predicate-object triples. As an example of n-ary predicate occurring in natural lan-
guage see in Fig. 2 predicate “stint” with three arguments: duration, position, and
employer.

A simplification made in the AKR framework in Fig. 4 is that only Persons and
Organizations have their own dedicated light-color classes – all other frame elements
are encoded by OWL data-properties of string type. This was done by purpose,
because the national news agency was interested only in profiles of persons and or-
ganizations, meaning that only individuals of these classes need to be mapped to the
real-world entities (which is a difficult task, discussed in Section 4). The rest of frame
element fillers remain identified by the text strings as they appear in the source text.

It shall be noted that the AKR framework in Fig. 4 does not define any constraints
(such as cardinality constraints – e.g., a person can have only one mother). This ob-
servation means that there is an additional conversion and constraint-checking step
necessary, if the data from the AKR framework in Fig. 4 needs to be used in a more
traditional database enforcing constraints on the valid data sets.

Although not yet implemented in a practical information extraction system for Lat-
vian FrameNet, there is a further refinement possible [6] for the above described AKR
framework – adding the time dimension (see Fig. 5). Note that Time is the dominant
frame element inherited in almost all frames (see Fig. 4). For most frames extracted
from the newswire texts the time of their occurrence is either explicitly specified in
the text and can be retrieved by frame-semantic parser as frame element Time or ap-
proximate time can be retrieved from the metadata of the newswire article publication
date.

3 http://owlgred.lumii.lv
4 http://www.ltn.lv/~guntis/FrameNetLV.owl

96 G. Barzdins

Fig. 4. OWLGrEd diagram of Latvian FrameNet frames (dark boxes) and Named Entity cate-
gories for frame element filler types (light boxes)

Having time associated with all extracted frames opens a possibility for avoiding
seemingly contradictory facts in AKR database (e.g. “F. Hollande is the president of
France” and “N. Sarkozy is the president of France”). Instead we can create a se-
quence of AKR database instances (e.g., one per every day of history) with each in-
stance containing only the facts which were true on that particular day and thus make
these AKR database instances internally non-contradictory (e.g. “N. Sarkozy is the
president of France” (in DB instances for 2010) and “F. Hollande is the president of
France” (in DB instances for 2013)). Inserting frames extracted from the text by the
frame-semantic parser into the proper AKR database instance (or sequence of in-
stances) is not an easy task [6, 10], as some frames describe an instantaneous event
(e.g. frame Attack) while other frames describe a state which is true over prolonged
period of time (e.g. frame Being employed). Nevertheless, resolving the time dimen-
sion (and for some sorts of tasks – also spatial movement dimension, see slides5
from [6]) would extend the FN-CNL AKR capability to cover more of newswire text
content.

5 Animation on Slide 22 at http://www.semti-kamols.lv/doc_upl/polysemy.pdf

Organization

People_by_age
Age:string

People_by_origin
Ethnicity:string
Origin:string

People_by_vocation
Vocation:string
Descriptor:stringProduct_line

Brand:string
Products:string

TimeFrames
Time:dateTime

Personal_relationship
Relationship:string

Lending
Theme:string
Collateral:string
Units:string

Earnings_and_losses
Earnings:string
Goods:string
Profit:string
Unit:string
Growth:string

Possession
Possession2:string
Share:string

Public_procurement
Theme:string
Expected_amount:string
Result:string

PersonOrOrganization
PrimaryName:string
Alias:string

Residence
Frquency:string

TimePlaceFrames
Place:string

Win_prize
Prize:string
Competition:string
Result:string
Rank:string

Participation
Event:string
Manner:string

Membership
Standing:string

Statement
Message:string

Person

Education_teaching
Subject:string
Qualification:string

Trial
Laiks:string
Person:string
Charges:string

Giving
Theme:string

Being_employed
Compensation:string
Employment_start:dateTime
Employment_end:dateTime
Position:string

Earner

Student

Institution

DonorBorrowerLender

Group

Participant_1

Person Person

Partner_1Partner_2PartnersOwner

Institution

InstitutionWinnerCandidates

Speaker

Medium

Defendant

Prosecutor

Competitor

Oponent

Organizer

Employee

Employer

Resident

Person

Member

Court

Recipient

Advokāts

 FrameNet CNL: A Knowledge Representation and Information Extraction Language 97

Fig. 5. Implementation of explicit time dimension as a sequence of AKR database copies repre-
senting the state of the world at the sequential time moments. The timeline example refers to
the story illustrated in Fig. 7.

Implementation of the time dimension in the AKR framework resolves the ontolo-
gy (database) versioning problem – a typical problem in simplistic ontologies or in-
formation systems loosing historic data when up-to-date information is entered (e.g.
entering “F. Hollande is the president of France” deletes historic data “N. Sarkozy is
the president of France”). Cross Document Coreference resolution systems (CDC,
discussed in Section 4) are a good example where such historic data is useful for dis-
ambiguating entities in the documents from different time periods.

4 Information Extraction with FN-CNL

The increasing accuracy of frame-semantic parsing (discussed in Section 2.1) enables
streamlining of information extraction task from natural language texts, such as
newswire articles. Essentially the goal of such information extraction is populating
the AKR ontology shown in Fig.4 with instance data retrieved from the source text.
To this goal, frame-semantic parser (producing instances for the blue boxes in Fig. 4)
has to be combined with Cross Document Coreference (CDC) techniques [13] to au-
tomatically determine which mentions in the text refer to the same real-world entity
(instances for the yellow boxes in Fig. 4).

We have implemented such integrated information extraction system and popu-
lated it with data from approximately 1 million newswire articles. From the practical
standpoint it turned out that the bottleneck of the approach is Named Entity discovery
and linking accuracy – even at estimated 80% CDC accuracy it too often merged
together different real-world entities with similar names or did not link together alter-
native spellings for the same entity, making the overall results unusable. To mitigate
the problem, we deflected to the use of a predefined list of manually disambiguated
well-known person and organization entities with their canonical names and common-

timeline
RD

F
N

am
ed

G
ra

ph
1

RD
F

N
am

ed
G

ra
ph

2

RD
F

N
am

ed
G

ra
ph

3

RD
F

N
am

ed
G

ra
ph

4

SPARQL/
PROLOG
update

So
ph

ie
 A

m
un

ds
en

w

as
 o

n
he

r w
ay

 h
om

e
fro

m
 s

ch
oo

l
Se

lf_
m

ot
io

n

Sh
e

ha
d

w
al

ke
d

th
e

fir
st

 p
ar

t o
f t

he
 w

ay

w
ith

 J
oa

nn
a.

Se
lf_

m
ot

io
n

Th
ey

 h
ad

 b
ee

n
di

sc
us

si
ng

 ro
bo

ts
.

D
is

cu
ss

io
n

SPARQL/
PROLOG
update

SPARQL/
PROLOG
update

98 G. Barzdins

ly used aliases, which can be identified in the text more robustly using Named Entity
Linking methods similar to DBpedia Spotlight [12], but instead of DBpedia rooted in
the frame instances already collected about this entity in the AKR database. Of
course, this workaround links only frame elements found in the predefined list (the
light class instances of ontology in Fig. 4), leaving other frame element fillers uniden-
tified. The unidentified frame element fillers (e.g. abstractly quantified nouns or plur-
als) are therefore stored in simple text strings as they appear in the original sentences
(technically they are stored in the same AKR database also for the light classes, only
tagged as “unidentified entities”).

Fig. 6. A fragment of the automatically generated person profile (FN-CNL verbalization of
Being employed frame). Linked Named Entities are underlined and the counts of found dupli-
cates [in brackets] indicate the confidence level.

This mixed approach allows for creating a convenient user interface, where in-
stance data from the AKR database in Fig. 4 is verbalized in FN-CNL using a light
version of [11] producing simple FN-CNL sentences as illustrated in Fig. 6 which
further can be arranged in the Curriculum Vitae like document.

5 FrameNet Controlled Natural Language (FN-CNL)

FN-CNL was inspired by PAO-CNL described in [6]. As illustrated in Fig. 1, FN-
CNL is a verbalization of the knowledge representation database content (all or par-
tial) by means of some FrameNet verbalization framework, such as [11].

We have implemented FN-CNL verbalization for AKR of 26 frames in Latvian
FrameNet and also tested that frame-semantic parsing on this FN-CNL output
achieves close to 100% accuracy (which can further be improved by hand-editing
human-editable C6.0 generated frame-semantic parsing rules illustrated in Fig. 3).
FN-CNL verbalization examples can potentially be used for learning unambiguous
FN-CNL by human writers.

In general FN-CNL is not restricted to 26 frames of Latvian FrameNet – FN-CNL
can be based on any set of frames of interest in the particular application domain thus
making it adaptable to cover other linguistic or semantic domains like those currently
addressed by ACE or other CNLs. Fig. 7 illustrates FN-CNL on the example of
first sentences from the J.Gaardner’s novel “Sophie’s World” which is often used in

Ieva Akuratere bija solista amatā [23] (Ieva Akuratere had a soloist position)
Ieva Akuratere bija Puķu burves amatā [8] (Ieva Akuratere had a Flower fairy position)
Ieva Akuratere bija mūziķes un aktrises amatā [5] (… had a musician and actress position)
Ieva Akuratere bija deputātes amatā Rīgas domē [(… had a member position in Riga city council)
Ieva Akuratere bija solista amatā Koncertuzvedumā [4] (… had a soloist position in a Concert)
Ieva Akuratere bija dziedātājas amatā [3] (… had a singer position)
Ieva Akuratere bija triju Zvaigžņu ordeņa virsnieka amatā Latvijā [3] (…had an Honor position in Latvia)

 FrameNet CNL: A Knowledge Representation and Information Extraction Language 99

multilingual NLP research6. On left is shown information extraction from the natural
language resulting into AKR in the columns labeled “Object” and “FN Events”. The
columns on the right illustrate multilingual FN-CNL verbalization of the AKR in
English and in Latvian (effectively a more formal paraphrase of the original natural
language text). The paraphrase highlights the time dimension present in this example,
which can be captured7 in the knowledge representation approach illustrated in
Fig. 5.

Fig. 7. A FN-CNL information extraction example on the left and FN-CNL verbalization ex-
amples in English and in Latvian on the right. The columns in the middle illustrate the abstract
knowledge representation.

6 Conclusions

We have illustrated the mutually enriching relationship between the information ex-
traction and CNL domains and described a complete natural language information
extraction framework based on FN-CNL and AKR. The framework is implemented in
a news agency in Latvia where it automatically extracts the profiles of public figures
and organizations from newswire articles archive. As for future research we are look-
ing into possibilities to go beyond the information extraction from the natural lan-

6 http://www.language-archives.org/item/oai:tekstlab.uio.no:N10394
7 See full example in http://attempto.ifi.uzh.ch/site/cnl2012/slides/
gruzitisetal_framenet.pdf

NL text Objects FN Events EN Paraphrase LV Paraphrase

Sophie
Amundsen was
on her way home
from school.

X1:Sophie
Amundsen;
X72:home;
X73:school;
X3:way;

E1:Self_motion(
self_mover:X1;
source:X73; goal:X72;
path:X3)

E1:Sophie
Amundsen moved
from school to
home.

E1:Sofija
Amundsena
pārvietojās no
skolas uz mājām

She had walked
the first part of
the way with
Joanna.

X4: the first
part of X3;
X5:Joanna;

E2: Self_motion(
self_mover:X1;
path:X4; co_theme:X5;
time:during E1)

E2:During E1 the
first part of the way
Sophie Amundsen
walked with Joanna.

E2: E1 laikā ceļa
pirmo pusi Sofija
Amundsena gāja
kopā ar Jūrunu.

They had been
discussing
robots.

X6: robots; E3: Discussion(
interlocutors: X1,X5;
topic:X6;
time:during E2)

E3:During E2 Sophie
Amundsen and
Joanna discussed
robots.

E3: E2 laikā Sofija
Amundsena un
Jūruna apsprieda
robotus.

Joanna thought E4:Opinion(cognizer:X5;
opinion:E5; time:during
E3)

E4:During E3 Joanna
stated E5.

E4: E3 laikā Jūruna
apgalvoja E5.

the human brain
was like an
advanced
computer.

X7:the human
brain; X8: an
advanced
computer;

E5: Similarity(
entity1:X7;
entity2:X8)

E5:The human brain
is similar to an
advanced computer.

E5: Cilvēka
smadzenes ir
līdzīgas sarežģītam
datoram.

100 G. Barzdins

guage texts and abstract knowledge representation (AKR) towards extracting the ab-
stract meaning representation (AMR) [17] of the entire natural language sentences.

It is interesting to note that when the information extraction frame-semantic parser
is used by the national news agency, it inevitably becomes a “national parser”, be-
cause the news agency uses it to evaluate the quality of articles – how high or low
information extraction scores the writing of the particular journalist achieves. This
stimulates editors to avoid highly ambiguous phrases in their writing and thus might
be one of the first cases where a CNL starts affecting the written natural language use
on the national scale.

Acknowledgement. This research was partially supported by the Project
Nr.2DP/2.1.1.1.0/13/APIA/VIAA/014 (ERAF) “Identification of relations in news-
wire texts and graph visualization of the extracted relation database” under contract
Nr. 1/5-2013, LU MII Nr. 3-27.3-5-2013.

References

1. Fillmore, C.J., Johnson, C.R., Petruck, M.R.L.: Background to FrameNet. International
Journal of Lexicography 16, 235–250 (2003)

2. Baker, C., Ellsworth, M., Erk, K.: SemEval-2007 task 19: Frame semantic structure
extraction. In: Proceedings of SemEval-2007: 4th International Workshop on Semantic
Evaluations, Prague, pp. 99–104 (2007)

3. Johansson, R., Nugues, P.: LTH: semantic structure extraction using nonprojective
dependency trees. In: Proceedings of SemEval-2007: 4th International Workshop on
Semantic Evaluations, Prague, pp. 227–230 (2007)

4. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for Knowledge
Representation. In: Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M., Polleres,
A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 104–124. Springer,
Heidelberg (2008)

5. Burchardt, A., et al.: Using FrameNet for the semantic analysis of German: Annotation,
representation, and automation. In: Boas, H.C. (ed.) Multilingual FrameNets in Computa-
tional Lexicography: Methods and Applications. Mouton de Gruyter, Berlin (2009)

6. Gruzitis, N., Barzdins, G.: Polysemy in Controlled Natural Language Texts. In: Fuchs,
N.E. (ed.) CNL 2009 Workshop. LNCS (LNAI), vol. 5972, pp. 102–120. Springer,
Heidelberg (2010)

7. Wyner, A., et al.: On Controlled Natural Languages: Properties and Prospects. In: Fuchs,
N.E. (ed.) CNL 2009 Workshop. LNCS (LNAI), vol. 5972, pp. 281–289. Springer,
Heidelberg (2010)

8. Angelov, K., Ranta, A.: Implementing controlled languages in GF. In: Fuchs, N.E. (ed.)
CNL 2009 Workshop. LNCS (LNAI), vol. 5972, pp. 82–101. Springer, Heidelberg (2010)

9. Dannells, D.: Applying semantic frame theory to automate natural language template gen-
eration from ontology statements. In: Proceedings of the 6th International Natural
Language Generation Conference, pp. 179–183. ACM (2010)

10. Murray, W., Singliar, T.: Spatiotemporal Extensions to a Controlled Natural Language. In:
Kuhn, T., Fuchs, N.E. (eds.) CNL 2012 Workshop. LNCS (LNAI), vol. 7427, pp. 61–78.
Springer, Heidelberg (2012)

 FrameNet CNL: A Knowledge Representation and Information Extraction Language 101

11. Gruzitis, N., Paikens, P., Barzdins, G.: FrameNet Resource Grammar Library for GF.
In: Kuhn, T., Fuchs, N.E. (eds.) CNL 2012 Workshop. LNCS (LNAI), vol. 7427,
pp. 121–137. Springer, Heidelberg (2012)

12. Daiber, J., Jakob, M., Hokamp, C., Mendes, P.N.: Improving efficiency and accuracy in
multilingual entity extraction. In: Proceedings of the 9th International Conference on
Semantic Systems, pp. 121–124. ACM (2013)

13. Wick, M., Singh, S., Pandya, H., McCallum, A.: A Joint Model for Discovering and Link-
ing Entities. In: Proceedings of the 2013 Workshop on Automated Knowledge Base Con-
struction, pp. 67–72. ACM (2013)

14. Das, D., Chen, D., Martins, A.F.T., Schneider, N., Smith, N.A.: Frame-Semantic Parsing.
Computational Linguistics 40(1), 9–56 (2014)

15. Barzdins, G., Gosko, D., Rituma, L., Paikens, P.: Using C5.0 and Exhaustive Search for
Boosting Frame-Semantic Parsing Accuracy. In: Proceedings of the 9th Language
Resources and Evaluation Conference (LREC), Reykjavik, pp. 4476–4482 (2014)

16. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
(1993)

17. Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K.,
Koehn, P., Palmer, M., Schneider, N.: Abstract Meaning Representation for Sembanking.
In: Proc. Linguistic Annotation Workshop (2013)

INAUT, a Controlled Language for the French

Coast Pilot Books Instructions nautiques

Yannis Haralambous, Julie Sauvage-Vincent, and John Puentes

Institut Mines-Télécom, Télécom Bretagne & UMR CNRS 6285 Lab-STICC
Technopôle Brest Iroise CS 83818, 29238 Brest Cedex 3, France

Abstract. We describe INAUT, a controlled natural language dedicated
to collaborative update of a knowledge base on maritime navigation and
to automatic generation of coast pilot books (Instructions nautiques) of
the French National Hydrographic and Oceanographic Service SHOM.
INAUT is based on French language and abundantly uses georeferenced
entities. After describing the structure of the overall system, giving de-
tails on the language and on its generation, and discussing the three
major applications of INAUT (document production, interaction with
ENCs and collaborative updates of the knowledge base), we conclude
with future extensions and open problems.

Introduction

Instructions nautiques is the name of a nautical book series [5] published by
the French Marine Hydrographic and Oceanographic Service (SHOM). They
are the French counterpart of the United States Coast Pilot [3], published by
the United States National Oceanic and Atmospheric Administration’s Office of
Coast Survey, and of the British Admiralty Sailing Directions [7] published by
the United Kingdom Hydrographic Office.

These publications aim to supplement charts (both paper ones and ENCs =
Electronic Nautical Charts), in the sense that they provide the mariner with
supplemental information not in the chart.

Information for the Instructions nautiques is provided by survey vessels, port
officers, maritime officers and mariners in general. In some cases, it may require
immediate update, for example to notify a shipwreck or some important change
of the navigation conditions.

The SHOM is building a knowledge base that will cover both ENCs and nau-
tical instructions. This knowledge base will communicate with ENCs and navi-
gation equipment and, since updates can be frequent, the Instructions nautiques
will have to be generated on-the-fly by the knowledge base.

To summarize, we have two constraints:

1. the information contained in the knowledge base, has to be easily updatable
by people not necessarily proficient in the ontology formalism;

2. the Instructions nautiques, or at least part of them, have to be automatically
generated out of the knowledge base.

B. Davis et al. (Eds.): CNL 2014, LNAI 8625, pp. 102–111, 2014.
c© Springer International Publishing Switzerland 2014

INAUT, a Controlled Language for the French Coast Pilot Books 103

To fulfill constraint 1, we have built INAUT, a controlled language based on
French natural language, and dedicated to the population and update of the
SHOM knowledge base. Contraint 2 is fulfilled by generation of texts in INAUT
out of the knowledge base. In fact, the texts generated will be in a more “literary”
and concise version of the language, called LitINAUT (= Literary INAUT, §4)
that will bring them closer to legacy human author production.

To our knowledge, INAUT is the first maritime CNL1.
In the following, we present our model of the Instructions nautiques (§1), the

SHOM knowledge base (§2), the controlled language (§3) and its generation (§4),
the main operations (interaction with ENCs (§5) and collaborative updates of
the knowledge base (§6)) as well as future extensions and open problems (§7).

1 Modelling the Instructions nautiques

We model the Instructions nautiques as a set of three graphs �S,G,K�: the
hierarchical structure of the document S, the geographic areas graph G and the
SHOM knowledge base K (see §2). Between these graphs we have two functions:
g which maps some nodes of S and of K (those that are goereferenced) to nodes
of G, and κ that maps leaf nodes of S to subgraphs of K. Furthermore, we have
a set T of titles of hierarchical subdivisions, a set A of geopolygons, and functions
τ and α mapping nodes of S (resp. G) to T (resp. A). Finally, there is a set M
of functions �μ� defined both as T � T and as A � A, called modifiers. Here
are the details:

– graph S represents the hierarchical structure of a given volume. S is rooted,
oriented and ordered. Let V �S� be the vertices and E�S� the edges of S;

– the five first levels of V �S� represent hierarchical subdivisions. Let us denote
� the level function. The root n0 represents the entire document;

– function τ : V �S� � T maps every node n to a title τ�n�,
– V �S� can be written as2 V �S� � VG�V�G (VG are the georeferenced nodes)

where we have a function g : VG � G that maps every georeferenced node
to a node in G, which again is mapped to a geopolygon in A by α;

– when generating a volume of the Instruction nautiques, the leafs of S are
mapped to subgraphs of K through function κ. These subgraphs are then
converted to text paragraphs in LitINAUT language;

– edges E�G� of G represent partial inclusion �� in A, in the sense that we
have G�G 	 E�G� (or a�G�� ��a�G�) if and only if Area�a�G��
 a�G�� �
0.8Area�a�G���;

– the barycenters of Imα � g when restricted to VG ��1�i� for i 	 �1, 2, 3�
follow a path on the map, which corresponds to an itinerary along the coasts

1 With the exception of Seaspeak [6], a CNL defined in 1985 by the International
Maritime Lecturers Association. In 2001 it evolved into SMCP (Standard Marine
Communication Phrases [2]) which is still used today. These CNLs, dedicated to
oral communication between ships, are “human-only”.

2 We denote by � the disjoint union: C � A�B �� �C � A�B� � �A	B �
�.

104 Y. Haralambous, J. Sauvage-Vincent, and J. Puentes

of France. The extremities of this itinerary for a given volume are given in
t�n0� where n0 is the root of S. We call this path, the guiding path of the
volume.

– modifiers μ serve to describe locations relatively to other locations. For exam-
ple, the modifier “au nord de X” (= to the North of X), applied to location
“[cap Cerbère]” will produce “au nord de [cap Cerbère]” which is a new
geographic entity, the polygon of which is calculated automatically out of
α�g�[cap Cerbère]��. Some modifiers are shown in Fig. 1.

au Nord de X aux abords de X aux abords N de X au fond de X à l’entrée de X

Fig. 1. The main modifiers: solid polygon represents the original area A, dashed poly-
gon the modified one μ�A�

IN Volume D2.1 France (Côte Sud)
De la frontière espagnole au Cap de l’Aigle

Chap. 0
Introduction

§2.1
Généralités

Chap. 2
De la frontière espagnole

au Cap Leucate

§2.2
De la frontière espagnole

à Argelès-sur-Mer

§2.2.5
Du port de Banyuls-sur-Mer

au port de Port-Vendres

§2.2.4
Port de Banyuls-sur-Mer

§2.2.3
Du port de Cerbère

au port de Banyuls-sur-Mer

§2.2.2
Port de Cerbère

§2.2.1
Cap Cerbère

Atterissage MouillagesGénéralités

Chap. 1
Rens. généraux

La [baie de Banyuls]
est limitée au NW par le [cap d’Osne]
et à l’Est par l’[île Grosse]
rattachée à la côte par un terre-plein. Elle est divisée en deux parties par l’[île Petite]

qui abrite le port.

DOCUMENT STRUCTURE TREE GEOGRAPHICAL AREA GRAPH

Fig. 2. Document structure tree and geographic area graph for an example taken from
Vol. D2.1 of the Instructions nautiques

INAUT, a Controlled Language for the French Coast Pilot Books 105

On Fig. 2 the reader can see an example of Instructions nautiques data in our
model: on the left, the document structure tree, on the right, the geographical
area graph. The gray box contains the LitINAUT text generated from section
Généralités of §2.2.4. In the text, geographical entities are marked up by brack-
ets. Dashed arrows between the two graphs represent function g.

2 The SHOM Knowledge Base

Let us define (extending Cimiano [1]) a knowledge base K as being a 16-tuple

�C,�C ,A,RS,RC ,T, I,V, LC, LA, LRS , LRC , LI, σ, ι, λ�

where C,A,RS,RC ,T, I,V are sets of concepts, attributes, simple relations, com-
plex relations, types, instances and values, �C is a hierarchy of concepts,
LC, LA, LRS , LRC , LI are sets of names of concepts, attributes, simple relations,
relations and instances, and σ, ι, λ denote signature, instantiation, lexicaliza-
tion, as follows:

1. ι : C� 2I;
2. the signature of an attribute is σ : A� C�T and its instances ι : A� 2I�V;
3. simple relations are relations between exactly two instances, without relation

attributes. Hence we have σ : RS � C� C and ι : RS � 2I�I;
4. complex relations are relations between n instances (n � 2) which can also

have relation attributes. Hence we have: σ : RC �
�n

C �
�m

T (where
�n denotes n-fold product) and ι : R� 2

�n I�
�m V, with n � 2, m � 0;

5. an noteworthy difference between complex relations and simple relations,
is lexicalization. Indeed, we have: λ : C � LC, λ : I � LI, λ : A � LA,
λ : RS � LRS as expected, but λ : RC � LRC �

�n
LRS �

�m
LA, i.e., a

relation has its own name, but requires also names for all instances involved
in the relation as well as all relation attributes.

The concepts C of the SHOM knowledge base K, belong to the domain of
maritime navigation: ports, capes, sea currents, ships, etc.

As for S nodes, instances I are of two types I � IG � I�G: IG are georefer-
enced entities: “[baie de Banyuls]”, “[cap d’Osne]”, etc., in the sense that there
is a map g between I and the graph G; I�G are non-georeferenced instances,
such as “agglomération”, “port,” etc. They don’t need to be located on the map,
and their purpose is purely descriptive of the environment.

Notice that the names of IG instances often contain a hint to the predominant
concept to which they belong (“baie”, “cap”, “port”, etc.), while in the case of
I�G instances, their names are often names of predominant concepts per se.

Simple relations RS represent verbs in passive or active voice “est abrité par”,
“est possible”, etc. Notice that most relations representing a passive verb have
a symmetric relation representing the corresponding active verb: “A est abrité
par B” has the symmetric relation “B abrite A”;

106 Y. Haralambous, J. Sauvage-Vincent, and J. Puentes

[baie de Banyuls] [cap d’Osne]

[île Grosse]

[anse de la Ville] [île Petite] [anse de Fontaulé]

port

est limité par
limite

est divisé par
divise

est dom
iné par

dom
ine

abrite

est abrité par

plage
@ind=true

terre-plein
@ind=true

côte

agglomération

borde

est bordé par

diviseur 1

 diviseur2

à

sé
p.

LitINAUT:
La [baie de Banyuls] est limitée au NW par le [cap d’Osne] et à l’Est par l’[île Grosse] rattachée à la côte par un

INAUT:
La [baie de Banyuls] est limitée au NW par le [cap d’Osne]. La [baie de Banyuls] est limitée à l’Est par l’[île
Grosse]. L’[île Grosse] est rattachée à la côte par un terre-plein. La [baie de Banyuls] est divisée en deux parties par

terre-plein. L’[anse de la Ville] est bordée par une plage. La plage est dominée par l’agglomération. L’[anse de
Fontaulé] abrite le port.

limité

NW

E

limitant

est rattaché par
rattache

est limité parlimite
à

limité

limitant

rattachant

rattaché

à

terre-plein
@ind=true

rivage

est relié par
relie

reliant

relié

à

divisé

à1 à2

W E

Fig. 3. A paragraph in INAUT, LitINAUT, and represented in the knowledge base

Complex relations are n-ary (n � 2) and can have attributes: for example “est
limité par” has attribute “direction.” In this case, lexicalization requires names
for all instances or attributes participating in the relation. In the case of “est
limité par” the members of the relation are instances “limitant”, “limité” and
attribute “à.”

As an example, the reader can see on Fig. 3 the sentence of Fig. 2, represented
in LitINAUT, INAUT and as a subgraph of K. Instances “[baie de Banyuls]”,
“[cap d’Osne]”, etc. belong to IG. Instances “côte”, “plage”, “port”, “rivage”,
belong to I�G. Complex relations are reified as nodes. Attributes of instances
have been included underneath, marked by character @.

3 The Controlled Languages INAUT and LitINAUT

INAUT is a controlled language with a rather large vocabulary (based on the
existing Instructions nautiques corpus) but with a simple syntax, given by the
following grammar:

S � NP VP
NP � modif det NN � det NN � NN
NN � adj NN � NN adj noun
VP � verb NP � verb NP PP
PP � prep det NN � prep NN

where symbols in small caps are terminal, all nouns belong to LI (the set of
lexical references for instances of K) and to V (the set of values of attributes of
K), all verbs belong to LRS LRC , all adjectives belong to V, and modifiers,
determinants and prepositions belong to a closed list.

INAUT, a Controlled Language for the French Coast Pilot Books 107

The verb, always in 3rd person or in the infinitive, can be active or passive.
In most cases it is possible to change the voice of the verb, which implies a
permutation of the NPs in subject and object position, leaving the PPs intact:

La [baie de Banyuls] est limitée par le [cap d’Osne] au NW.
Le [cap d’Osne] limite la [baie de Banyuls] au NW.

Definite articles are used for all instances in G the names of which start with
the name of a concept to which belongs the instance: for example, the name
“baie de Banyuls” starts with “baie” (= bay) which is the name of a concept
in C, hence in INAUT the definite article is used: “la [baie de Banyuls]”.

Otherwise, no article is used:

[Notre-Dame de la Salette] est un amer remarquable à l’WSW du port.

Instances in I�G are, by default, used with definite articles. When an indefinite
article is required, the information is stored in a dedicated attribute. Indefinite
articles are used in object position only:

L’[anse de la Ville] est bordée par une plage. La plage est dominée par
l’agglomération.

Modifiers are represented by (a closed set of) expressions outside the brackets
of the geographic entity: in “au fond de l’[anse de la Ville]”, we have modifier
“au fond de” and entity “[anse de la Ville].” In K there is a modifier relation
whenever a modifier is used. This relation does not produce INAUT text but
serves to connect subgraphs in K during content determination (§4).

In the following sections we will discuss the three main operations of controlled
languages INAUT and LitINAUT: generation (§ 4), interaction with ENCs (§ 5),
collaborative updates of the knowledge base (§ 6).

4 Controlled Language Generation

One of the design goals of our system is to be able to produce automatically a
large part of the Instructions nautiques, so that after collaborative updates new
versions of the entire document can automatically be produced.

We have divided the task into two stages: (1) produce INAUT text correspond-
ing to a given leaf node of S; (2) convert INAUT language into LitINAUT.

Suppose given a leaf node S of S. Producing the corresponding INAUT text
is typically a Natural Language Generation problem.

Reiter & Dale [4, § 3.3] divide the language generation task into seven sub-
tasks: content determination, document structuring, lexicalisation, aggregation,
referring expression generation, linguistic realisation and structure realisation.

Content determination. Using Algorithm 1, we find the subgraph K of K which
is geographically the most relevant to S. We apply tags to its connected compo-
nents using a rule-based decision system: for example, when a connected com-
ponent contains the instance “mouillage” then it is tagged as belonging to a leaf
node of type “Mouillages.” If after applying the rules no tag has been affected,
then the component belongs to a leaf node of default type “Généralités.”

108 Y. Haralambous, J. Sauvage-Vincent, and J. Puentes

Input: S,G,K and a leaf node S � S
Result: The subgraph K � K which represents the text corresponding to S
GS � g�S�;
K ��;
for G � G do

if G ��GS and g�1�G� � IG then
K � K � g�1�G�;

end
end
for k � K do

if �k� such that kk� � Undirected�K� and kk� 	 K then
if k� � I�G or k� � V or �k� � IG and g�k�� ��GS� then

K � K � kk�;
end
if k� � RC and �k� member of k� such that g�k�� ��GS then

K � K � kk�;
for m member of k� do

K � K � k�m;
end

end
end

end

Algorithm 1. Content determination algorithm

Document structuring. This is the most difficult phase since it deals with the or-
der in which sentences are written. Let K bet the subgraph of K to be converted
into INAUT.

We subdivide the task in four subtasks:

1. sort connected components Ki of K;
2. for each component find a starting node s;
3. find the order in which the relations of each component will be converted

into INAUT, starting from s;
4. convert relations into INAUT in the order given by 1 and 3.

For subtask 1, we will sort components. The sorting criteria are: (a) if there is
a significant difference in size between the cumulated geographic areas of two
components, the larger one will precede the smaller one, (b) otherwise, calculate
the barycenters of cumulated geographic areas of components; the path defined
by their barycenters should be roughly parallel to the guiding path of the volume.
For example, on Fig. 2 the areas of nodes §2.2.1–§2.2.5 follow a SE to NW
direction, this direction can be chosen for the order of connected components.

To accomplish steps 2 and 3 we define weights w on nodes and relations.
Calculation of these weights is based on criteria we will describe below, as well
as on training using machine learning algorithms on the existing Instructions
nautiques corpus.

Notice that we use undirected graphs since every edge can be inverted by
changing voice.

The first and most obvious criterion is the relation between nodes in Ki and
the parent of the leaf node of S that established the connection with K (i.e.,
κ�1�K�). If among the nodes there is one whose geographic area and/or name

INAUT, a Controlled Language for the French Coast Pilot Books 109

matches as closely as possible the one of the parent of the leaf node, it is a good
choice. For example, in our case, node §2.2.4 of S is “Port de Banyuls-sur-Mer”
which is much closer to “baie de Banyuls” than to “cap d’Osne”, both in terms
of geographic area than simply of string comparison of names.

The second criterion for choosing the starting node is its position in the G
lattice. Let km � g�1�maxG g�Ki��. If km 	 Ki then it is an obvious choice.
Otherwise we take local maxima in G and proceed with weighting.

Finally, another criterion is of semantic nature, the one of “interest” for the
navigator: an order can be established between concepts to which instances of
Ki belong, for example a port instance will be more interesting than a beach
instance. This weight is inherited by neighboring nodes: for instance, a bay con-
taining a port is more interesting than a bay containing a beach, etc.

The “semantic weight” of instances can be calculated by machine learning.
Once the starting point has been established, we proceed to subtask 3. We

will use a variant of DFS (depth-first search) to search Ki.
Subtask 4 is the simplest one: from relations in K we build INAUT sentences,

by applying rules, for example choosing the verb’s voice according to the direc-
tion of the search in Ki, adding articles matching nouns, etc. There still remains
a difficulty: finding the right order of prepositional phrases, as in:

La [baie de Banyuls] est limitée par le [cap d’Osne] au NW.
La [baie de Banyuls] est limitée au NW par le [cap d’Osne].

When the difference may be purely stylistic (as above), the order can be obtained
by machine learning. In other cases, such as in “est divisé par” of Fig. 2, it is
mandatory to group some relations: the text representing “ài” must immediately
follow the one representing “diviseuri” since indices disappear in the textual
realization and only proximity allows to distinguish the divisors of the entity.

Another important phenomenon is text added by default: for example, to
realize relation “est divisé par” we need to add the number of divisors, this is
done by counting the members of the relation of type “diviseur” and generate
“en deux parties” (= in two parts).

Aggregation and referring expressions generation: LitINAUT language. At this
stage, generation of INAUT has been completed. The result, as it can be seen in
Fig. 3, is not very eloquent, but remains closely related to the structure of K, so
that it is easier for contributors to supply modifications and additions written in
INAUT. To produce a human readable text as part of automatically generated
Instructions nautiques document, we need two extra steps: aggregation of several
sentences into a single one, and generation or referring expressions. The result
of these two operations is called LitINAUT language.

By the fact of using DFS to search Ki, often the object of a sentence is the
subject of the following one. Aggregation merges them into a single sentence:

L’[anse de la Ville] est bordée par une plage.
La plage est dominée par l’agglomération.
� L’[anse de la Ville] est bordée par une plage, dominée par l’agglomération.

110 Y. Haralambous, J. Sauvage-Vincent, and J. Puentes

In other cases, consecutive sentences have the same object and the same verb;
in that case we use conjunction:

La [baie de Banyuls] est limitée au NW par le [cap d’Osne].
La [baie de Banyuls] est limitée à l’Est par l’[̂ıle Grosse].
� La [baie de Banyuls] est limitée au NW par le [cap d’Osne] et à l’Est par
l’[̂ıle Grosse].

When we have object identity but with different verbs, referring expressions are
generated:

La [baie de Banyuls] est divisée en deux parties par. . .� Elle est divisée en
deux parties par. . .

In some cases, text is omitted from the realization because it is obtained from the
context: for example, in realizing the text corresponding to a subdivision of type
“Mouillages” (= mooring), we will systematically omit the part “Le mouillage
est autorisé à” since it is implied by the subdivision title.

These are just some examples of mechanisms used to convert INAUT into
LitINAUT. Work is in progress to enhance the result and bring it closer to
legacy (human authored) text.

5 Interaction with ENCs

As said in the introduction, Instructions nautiques are defined as a complement
to charts, and, in particular, to ENCs. Therefore it is important to define inter-
actions between K and ENCs, via INAUT. By specifying, for example, an area
of interest on an ENC (for example, by drawing a zone on a touchscreen) the
user may receive LitINAUT text in return. Generating this text automatically
has the advantage of being (a) limited to the zone of interest given by the user;
(b) conform to local conditions, for example time of the day (some relations or
attributes in K may be time-dependent) or meteorological conditions, or param-
eters of the user’s vessel (size, tonnage, etc.); (c) up-to-date, since other users
may constantly provide new information.

To provide adaptive LitINAUT text, we first position the area U given by
the user in A, and hence in G. Knowing the subgraph of G that matches as
closely as possible U in A, we find the relevant nodes in K by going through
g�1. These nodes form a subgraph of K and we apply the techniques described
in 4 to generate the corresponding text in LitINAUT.

Additional structure can be added to the text sent to the ENC device, so that
the user can filter the text and display only specific types of information, as for
example information on mooring, landing, etc.

6 Collaborative Updates of the Knowledge Base

It is important for the SHOM knowledge base to be kept constantly up-to-date.
To achieve this goal, INAUT will be used as a tool for collaborative update.

INAUT, a Controlled Language for the French Coast Pilot Books 111

Indeed, INAUT has been designed as the optimal compromise between easiness
of use (since contributors have a priori no KM proficiency) and formality (as the
knowledge base will be fed directly by the incoming data).

To make the system more robust, we validate on two levels. First, the lexical
and syntactic level: a Web interface analyzes segments written in INAUT and
validates them. In case of errors it provides correction hints. Second, the semantic
level: a human controller monitors incoming INAUT data which, depending on
the contributors trust level are automatically fed into the knowledge base (with
the possibility of making the modification retroactive) or are stored in a waiting
list until manual validation.

7 Conclusion and Future Work

We have described the controlled natural language INAUT (and its variant
LitINAUT) which is used for the update of the SHOM maritime knowledge
base, for automatic generation of Instructions nautiques documents and for in-
teraction with ENCs.

Among our plans is the extension of INAUT into a QA system. This requires
extension of INAUT to interrogative sentences and increased use of the concept
hierarchy. Another extension deals with the issue of dangerosity. Indeed, one
of goals of Instructions nautiques is to alert the navigator on possible dangers.
Ideally, the ENC should automatically send queries about dangerosity to the
knowledge base involving the current position of the vessel and various external
conditions, and in case of a positive answer, alert the navigator by all means
possible. Special NLG techniques can then be used, since the communicative
goal will not be simply to inform, but to alert.

References

1. Cimiano, P.: Ontology Learning and Population from Text. Algorithms, Evaluation
and Applications. Springer (2008)

2. IMO: IMO Standard Marine Communication Phrases, with pronunciation. Inter-
national Maritime Organization (2005)

3. NOAA: United States Coast pilot,
http://www.nauticalcharts.noaa.gov/nsd/cpdownload.htm

4. Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge
University Press (2000)

5. SHOM: Instructions nautiques,
http://www.shom.fr/les-produits/produits-nautiques/ouvrages-nautiques/

instructions-nautiques/

6. Strevens, P., Johnson, E.: SEASPEAK: a project in applied linguistics, language
engineering, and eventually ESP for sailors. The ESP Journal 2(2), 123–129 (1983),
http://www.sciencedirect.com/science/article/pii/027223809390002O

7. UKHO: Admiralty sailing directions,
https://www.ukho.gov.uk/PRODUCTSANDSERVICES/PAPERPUBLICATIONS/Pages/

NauticalPubs.aspx

http://www.nauticalcharts.noaa.gov/nsd/cpdownload.htm
http://www.shom.fr/les-produits/produits-nautiques/ouvrages-nautiques/instructions-nautiques/
http://www.shom.fr/les-produits/produits-nautiques/ouvrages-nautiques/instructions-nautiques/
http://www.sciencedirect.com/science/article/pii/027223809390002O
https://www.ukho.gov.uk/PRODUCTSANDSERVICES/PAPERPUBLICATIONS/Pages/NauticalPubs.aspx
https://www.ukho.gov.uk/PRODUCTSANDSERVICES/PAPERPUBLICATIONS/Pages/NauticalPubs.aspx

Are Style Guides Controlled Languages?
The Case of Koenig & Bauer AG

Karolina Suchowolec�

University of Hildesheim, Germany
karolina.suchowolec@uni-hildesheim.de

Abstract. Controlled languages for industrial application are often re-
garded as a response to the challenges of translation and multilingual
communication [3, pp. 52–53], [5, p. 212], [2, pp. i–iii]. This paper presents
a quite different approach taken by Koenig & Bauer AG, where the main
goal was the improvement of the authoring process for technical docu-
mentation. Most importantly, this paper explores the notion of a con-
trolled language and demonstrates how style guides can emerge from non-
linguistic considerations. Moreover, it shows the transition from loose
language recommendations into precise and prescriptive rules and inves-
tigates whether such rules can be regarded as a full-fledged controlled
language.

1 Introduction

A considerable amount of research on controlled languages deals with English. In
this paper, I examine an approach for an industrial application of a controlled
language in German at the printing press manufacturer Koenig & Bauer AG
(KBA).1 In comparison to well-known industrial examples such as CFE/CTE
or ASD-STE100 [2], [13], [cf. 3], KBA did not create an independent project
on a controlled language. Instead, the company’s main goal was to redefine the
authoring process for technical documentation. Language standardization was
needed to support this goal. I will explain this background in the first section.
The following section will give a closer look at the results of different projects that
originated different language rules. These rules and style guides will illustrate
how KBA unintentionally laid the foundations for a de facto controlled language.
After showing some future directions for the project, I will discuss its results
within the current theoretical frameworks.

Although this paper derives from a case study, its main goal is to explore
the notion of a controlled language and to demonstrate how style guides can
� I would like to thank Koenig & Bauer AG for the permission to publish this paper, in

particular Elmar Tober, who has been supervising the projects, and Sabine Lobach
for providing up-to-date data. In addition, I would like to thank Klaus Schubert,
Wolfgang Ziegler, and the anonymous reviewers for their critical comments.

1 The author was employed at the company and implemented the terminology man-
agement as well as advised other projects on linguistic matters.

B. Davis et al. (Eds.): CNL 2014, LNAI 8625, pp. 112–122, 2014.
c© Springer International Publishing Switzerland 2014

Are Style Guides Controlled Languages? 113

emerge from non-linguistic considerations. Moreover, this paper shows the tran-
sition from loose language recommendations to precise and prescriptive rules. It
also investigates whether such rules can be regarded as a full-fledged controlled
language.

2 Background

Koenig & Bauer AG is one of the leading printing press manufacturers, operat-
ing from Würzburg, Germany, employing around 6,200 (2012) people worldwide.
The variety of products covers a. o. web offset, sheetfed offset, and security print-
ing. The annual reports2 indicate that over 80 % of the products are exported,
which makes translation of documentation and localization of the press soft-
ware an important step in the production process. Further, the web printing
presses are unique custom-made production plants rather than standard mod-
els. In consequence, every operating manual is a unique document, describing
specific features and the configuration of the press for a given customer. Such
a document can be up to 800 pages long. It is translated into one language
(national or regional language of the customer) and some customers require an
additional English translation. In short it means: one press – one manual in
the source language (German) – one manual in the target language. There are
certainly some core parts of the press and some partial configurations recur-
ring for many customers. In order to make the authoring process for technical
documentation more efficient, it was, therefore, important to facilitate identify-
ing, indexing, storing, retrieving, and combining the recurring information units.
This task had to be accomplished before addressing any issues of translation. In
other words: the company was mainly interested in increasing the reuse of the
content.

In order to redefine standard procedures for technical documentation, the
company launched six projects in 2007. These projects contribute to the overar-
ching goal of improving the reuse as follows [14], [21]:

1. CMS: Project aiming at the implementation of a content management system
for editing, storing, retrieving and managing modularized content.
TIM-RS R© by Fischer Computertechnik3 was chosen as the CMS with the
PI-Mod4 as a data model for authoring. PI-Mod allows semantic as well as
topic-based XML markup for text chunks and modular reusable information.
This project provides the technology foundation for the reuse.

2. Writers’ manual: In this project, meta documentation of the CMS project
was developed. The manual describes allowed XML elements: their content,
dependencies, and, where necessary, their linguistic form. Moreover, it pro-
vides general recommendations on orthography and style for the technical
documentation.

2 http://www.kba.com/investor-relations/berichte
3 http://www.fct.de/de/loesungen/technische-dokumentation.html
4 http://www.pi-mod.de

http://www.kba.com/investor-relations/berichte
http://www.fct.de/de/loesungen/technische-dokumentation.html
http://www.pi-mod.de

114 K. Suchowolec

3. Terminology management: A project on standardization of the specialized
vocabulary. The goals were here to define standard procedures for the termi-
nology management, to model the terminology database in SDL MultiTerm,5
and to develop linguistic rules for evaluation and selection of preferred terms.

4. Translation: Most documents at KBA are written in German and the com-
pany does not have in-house translators; therefore the project defines general
conditions for the translation services. In the context of this paper, the most
important decisions are the prescribed use of Translation Memories, develop-
ment of and adherence to the foreign-language equivalents to the provided
German terminology as well as development of and adherence to general
style guides for each foreign language as needed.

5. Graphics: Due to the variability of the products, a full reuse of graphics
in operating manuals is impossible. This project should nonetheless define
common standards regarding the exporting of graphics from CAD systems,
further processing and managing in the CMS environment.

6. Parts catalog: In contrast to the above, this project focuses not on reuse,
but on making the editing and publishing of the parts catalog more simple
and transparent.

As we see, there was no particular project for developing a controlled language as
such. Yet, relevant issues and requirements concerning language use are scattered
across all projects.

3 Language Constraints at KBA

KBA chose a modular approach towards development of technical documenta-
tion, which means that the documents are built up by combining different text
modules and chunks. These chunks can already be stored in a database; however,
they could be written by different writers at a different time and for different
products. The reuse principle requires not only homogeneous layout and typog-
raphy, but also explicit linguistic rules for all writers involved in order to keep or
achieve consistent language. Not only does consistent language make the manu-
als more readable for the target (human) audience, but at the same time it also
supports the implementation of the reuse technology; for instance: the vocab-
ulary is used to index modules and chunks. Therefore, consistent terminology
improves the (machine-aided) retrieval.

In conclusion, it was the variability of the products as well as the desire to
make the process of the technical writing more efficient that led to the develop-
ment of the style/syntax and lexical rules. In addition, improving the readability
and translatability was an important aspect of standardizing the vocabulary.

In the following section, I will elaborate on the linguistic results of the
projects 1–4 described above dividing them into issues concerning lexicon and
syntax/style. By giving some examples of the rules and by describing the rule-
formation process, I would like to draw attention to some aspects that will be
5 http://www.sdl.com/products/sdl-multiterm/desktop.html

http://www.sdl.com/products/sdl-multiterm/desktop.html

Are Style Guides Controlled Languages? 115

subsequently crucial to the understanding of a controlled language. First, KBA
went beyond the regular terminology management by developing a rule-based
selection of preferred terms. Second, some imprecise style guides emerged from
non-linguistic considerations. Thanks to human and later machine-aided editing,
the rules have become more explicit and prescriptive. The following sections will
illustrate this transition.

3.1 Lexical Level

KBA imposed two constraints to the standardization of the specialized vocab-
ulary.6 The first constraint limited the in-house standardization to the German
terms only. The second one restricted the scope of standardization to the specific
printing vocabulary, leaving out the more general technical terms or terms used
in other domains such as economics. Importantly, KBA required the selection
of preferred terms to be reproducible and transparent to the writers. Therefore,
linguistic criteria were developed for evaluating existing terms, which can be
applied for coining new terms as well. Using a corpus of company’s vocabulary,
semantic and morphological aspects of the word formation patterns were iden-
tified and evaluated. An essential part was to identify the patterns leading to
ambiguity and synonymy, for instance:

– Ambiguity: Nominalization using the suffix -ung can both indicate a process
or a device performing the process: wenden (to turn a sheet for perfecting)
→ Wendung (the process of perfecting or a perfecting unit).

– Synonymy:
• A process can be expressed through nominalization with suffix -ung (see

above) or conversion of the infinite verb form: wenden → Wendung vs.
Wenden.

• Different features of a concept can be stressed in synonymous terms:
Chromwalze (chrome roller, focus on material) vs. Feuchtreibwalze
(dampener distributor roller, focus on function).

• The hypernymy can be explicitly stated using the hypernym in com-
pound nouns, or this relation can be stated implicitly: Farbreibwalze
(oscillating ink roller) vs. Farbreiber (*ink oscillator).

One of the goals in developing the linguistic criteria/rules was to achieve a
one-to-one relation between the word formation pattern and the semantic class
of the objects. In other words, the signifiant should indicate the class of the
signifié, as illustrated by the following rules:

– Use conversion to indicate the process: Wenden.
– Use the nominalization with -ung or -or/-er to indicate a (complex) device:

Wendung, Längsschneider (slitter).7

6 This section is based on [21].
7 The corpus indicates a complementary distribution of both patterns with only few

exceptions.

116 K. Suchowolec

– Use hypernym for composition of (less complex) parts: Farbreibwalze,
Schneidmesser (cutting knife).

– Use the following ranking of features to be included in the term: 1) function
2) object 3) working principle 4) shape 5) material 6) temporal, graduate,
internal features [cf. 18, p. 14].

– Do not use more than 4 lexical morphemes in a compound noun, 3 mor-
phemes are preferred.

These criteria are intended to be an assistance rather than absolute rules for
selecting the preferred terms. In case they lead to the selection of extremely
unusual forms, established terms are preferred.

These rules, steps and roles in the terminology management process as well
as the definition of the data structure for the terminology database were fixed in
a terminology manual. Only after this definition task was completed, the actual
standardization of the lexicon began. Contrary to the manual, which recom-
mended management similar to model B of ISO 15188 [10], the initial standard-
ization followed rather model D. The first terminology draft was proposed by
the terminologist and consulted with the technical writers. The final form was
released only after consulting with the constructing engineers, who gave their
feedback on every term in the draft.

Applying the theoretical principles of terminology management by Wüster
[22], [cf. 1], the standardization process was concept-driven. Manually extracted
terms were first arranged into concept systems (multiple arrangement of one term
was allowed) and then given a definition. Only after both the concept systems
and the definition were specified, the preferred term was chosen according to the
rules described above.

SDL MultiTerm was used from the very beginning. In addition, the initial
management employed MS PowerPoint (concept systems) and MS Excel (def-
initions and synonyms), in order to facilitate the feedback by the engineers.
Moreover, the workflow software quickTerm by Kaleidoscope8 is now being im-
plemented, which will help to shift back to the originally intended management
as in the model B.

Currently, the database contains 614 concepts (1689 terms), covering almost
entirely the printing specific vocabulary for the operating manuals. Roughly
30 % of the German terms have an approved foreign-language equivalent in one
or more of the following languages: English, French, Dutch, Russian, Swedish,
and Spanish. The equivalents are provided by the translation services based on
the given German terminology and are not double-checked by KBA before final
release. However, quickTerm allows users to send their feedback on all languages.

3.2 Syntactic and Stylistic Level

Unlike the lexical level, where an effort was put in the linguistic evaluation
of the corpus data and development of systematic rules for word formation,
8 http://www.kaleidoscope.at/Deutsch/Software/QuickTerm/quickterm.php

http://www.kaleidoscope.at/Deutsch/Software/QuickTerm/quickterm.php

Are Style Guides Controlled Languages? 117

the development of the stylistic and syntactic rules was a byproduct of the
implementation of PI-Mod.

PI-Mod uses XML elements to mark up information in a text according to its
semantics, for instance as <step>, <descriptive>, <precondition>, <cause>, or
<solution>. After agreeing on the elements needed for operating manuals, the
standardization of syntax and style for some elements began. This standardiza-
tion was necessary for a similar reason as the lexical one: competing syntactic
patterns were in use, for instance, imperative verb form vs. infinite verb form
used as imperative in <step> (in <action>), full sentence vs. ellipsis in <cause>
etc.

There is no record of the decision-making process for these rules, as the fo-
cus of the CMS project was on the technical rather than linguistic specification
[14]. However, the original writers’ manual and personal communication indi-
cate that the prescribed style patterns were a combination of so-called good
practice for technical documentation, implicit or explicit but merely oral arrange-
ments among the writers, and the standard examples used in the general PI-Mod
specification.

The rules can be divided into general and element specific rules. Here are some
examples of the original recommendations developed during the CMS project:

– Avoid Passive Voice.
– Structure information logically, for instance if – then, or condition – step.
– Element <step> (as child element of <action>):

Use the formal imperative verb form (‘Sie’).
– Element <symptom>:

Write from user’s perspective, do not use questions.
Example: Mastarm fährt nicht richtig hoch. [sentence with a finite verb]9

– Element <cause> (as child element of <safetyadvice>):
Name the cause of the hazard with one word or in a short and expressive
sentence. Use an exclamation point.
Example 1: Verbrühungsgefahr durch herausspritzendes Öl! [ellipsis, no finite
verb]
Example 2: Öldruck in Arbeitshydraulik kann Manometer zerstören! [sen-
tence with a finite verb]

– Element <cause> (as child element of <errordescription>):
Describe the cause of an error in one word or in a short and expressive
sentence.
Example 1: Kein Kraftstoff im Tank. [ellipsis, no finite verb]
Example 2: Pumpe hat zu wenig Leistung. [sentence with a finite verb]

Initially, the syntactic and stylistic rules were enforced by human editing
within the department. Already at that point it became clear that some rules
remained ambiguous. As demonstrated in the examples above, some rules were
linguistically imprecise, some lacked an explicit form, some depended on (some-
times contradicting) examples and did not indicate whether they were recom-
mendations or prescriptions. The room for interpretation lowered the consistency
9 Information in brackets was not indicated in the manual.

118 K. Suchowolec

of the texts and in consequence – the reuse. Therefore, the rules and examples
in the writers’ manual have been gradually replaced by more precise ones, for
instance:
– Element <cause> (as child element of <safetyadvice>):

Use ellipsis (construction with no finite verb). Do not use full sentences with
verbs. Name the cause of the hazard with one word (Verbrührungsgefahr,
Verbrennungsgefahr). Use an exclamation point.
Positive example: Maschinenschaden durch liegengebliebenes Werkzeug!
Negative example: Liegengebliebenes Werkzeug führt zu Maschinenschaden.

– Element <cause> (as child element of <errordescription>):
Use a full sentence with a verb. Do not use ellipsis. Use a period at the end
of the sentence.
Positive example: Kein Kraftstoff ist im Tank.
Negative example: Kein Kraftstoff im Tank.

Further specification of the rules has been reinforced by the implementation
of a controlled language checker (CLC, Acrolinx10), since the rules had to be
easily transformed into a machine-readable form. Hence, the syntactic/stylistic
level is being further consolidated.

Although not used from the beginning, a CLC was considered a medium-term
goal. At this time, the system is being implemented to fit into the already existing
linguistic environment. With respect to style and syntax, KBA rules are being
mapped to the standard Acrolinx set of rules and the system is being checked
in a test environment. Practical application is expected not earlier than in the
summer 2014. Despite offering solutions for terminology management, Acrolinx
will solely be used for proofreading. SDL MultiTerm will remain the primary
source for the lexical level of the language.

4 Prospects

The four crucial projects resulting in the linguistic rules – CMS, terminology,
writers’ manual and translation – are completed. Yet, the maintenance and fur-
ther development of the rules is an on-going process. Other tasks like the pro-
ductive use of a CLC are still to be accomplished. More importantly, described
development is normative only to the department of technical documentation;
however other departments can obviously benefit from the use of language re-
strictions as well. Some applications might regard CAD models, ERM (mainly
terminology), and press software (both terminology and syntax/style). Although
some ways of implementing a controlled language to these applications have al-
ready been explored, they still remain a challenge for the future.

Overall the main goal of modular approach and reuse still has to be evaluated.
KBA is going to track the reuse applying the REx method [16]. Resulting data
could then be used for further interpretation of the linguistic contribution to the
(improved) reuse.11

10 http://www.acrolinx.com
11 Wolfgang Ziegler, email communication (February 20, 2014).

http://www.acrolinx.com

Are Style Guides Controlled Languages? 119

5 Discussion

Before any specific issues concerning language at KBA can be discussed, it needs
to be determined whether the rules and developments described above constitute
a controlled language.

The term controlled language is not used in any internal documents to de-
scribe the lexical or syntactic rules for technical documentation. Rather, there
is an issue of terminology and writing rules (Schreibregeln) – both being treated
separately. The constraints on the language are put into an overarching context
of standardization, just like XML markup, modular editing or data indexing in
the CMS. This might be the result of the distribution of the linguistic decisions
over the four projects. In consequence, an explicit notion of a controlled language
has not yet emerged.

From the theoretical point of view, however, the linguistic constraints at KBA
satisfy all of the criteria by Kuhn [12, p. 123]: They are based on just one lan-
guage and restrict its system on the orthographic, morphological, lexical, syn-
tactic and textual level, combining both prescriptive and proscriptive rules [5, p.
228]. Although no empirical studies are available, we can assume that the output
is easily recognizable as German to an expert familiar with the sublanguage of
printing. And finally, although the already established forms that had developed
in an unsystematic way were preferred, the codification of the forms in manuals
was a deliberate and, to a certain extent, systematic process. Therefore, we can
regard these linguistic constraints as a controlled language.

Having clarified the status of the linguistic constraints at KBA as controlled
language, we can try to determine its type.

We can apply to it the categories human-oriented and machine-oriented as
proposed by Huijsen [9]. The development of the controlled language at KBA
indicates an expansion of originally predominant human-oriented language to a
language that comprises both human- and machine-relevant features, but a clear
determination is difficult. Both categories seem to be tendencies rather than a di-
chotomy, which supports the main view in the literature [9, p. 2], [cf. 12, p. 125].

Moreover, we can examine further motives for this controlled language. There
are three main groups of motives discussed in the literature: 1) to improve the
communication among humans, 2) to improve the translation, and 3) to represent
formal notations [12, p. 125], [cf. 9, p. 1], [cf. 19, p. 225], [cf. 20, p. 134], leading
Kuhn to postulate three main types of controlled languages [12, p. 125]. As
demonstrated above, these motives were not of primary concern for the style
rules at KBA, where the increase of reuse was the main goal. The reuse issue of
a controlled language is not a new topic in the literature. It has been discussed
in several case studies (CTE: [6, p. 422], [13, p. 194]). It is also mentioned in
some general overviews on controlled languages, but it rarely seems to be the
major aspect discussed (in detail: [5, pp. 206–207], briefly: [8, p. 11], [15, p. 248],
[17, p. 62], left out: [2, pp. i–iii], [3]). Clearly, the reuse motive is missing in
the classification by Kuhn. This might suggest the fourth type of a controlled
language – to improve (the efficiency of) the authoring process for technical
documentation – an issue which seems to be underrepresented in the literature.

120 K. Suchowolec

Certainly, a legitimate question may arise whether a controlled language for
the content reuse serves solely the purpose of ensuring the readability of the text
for the target audience. As such, it could be subsumed under the first type of
controlled languages. As we saw, controlled language at KBA, in particular the
vocabulary, ensures not only the consistency of a text, but also the retrieval of
modules, and, hence, contributes to the reuse in various ways. It is not to say that
KBA was unaware that the improved clarity and precision of a controlled lan-
guage have impact on the readability for the target audience, as well as improve
(human and machine-aided) translatability and help control company’s liability
in case of damage to persons or facilities [14], [21], [cf. 11, p. 443], [cf. 19, pp.
225–230]. These secondary motives were certainly important for the support of
the projects at different management levels in the company [cf. 4, Modul 1]. Yet
these general considerations only became tangible once the modular editing for
improving the reuse started to be implemented, since, in an obvious way, the
modular approach jeopardizes the consistency with all the consequences.

What is more, the aspect of human understanding can also be found in con-
trolled languages for translation – a controlled language ensures a. o. a cor-
rect and readable output of (human, machine-aided or machine) translation.
Nonetheless, controlled languages for translation constitute their own type. Alto-
gether, taken the classification by Kuhn as a starting point, it seems, by analogy
to the controlled languages for translation, reasonable to add the fourth type of
controlled languages mentioned above to the classification.

Another matter to discuss is the use of CLC and a general acceptance of a con-
trolled language. Based on observation, the need for the application of language
rules is generally understood and accepted by the technical writers. First tests
of CLC seem to conform this. However, ambiguous terms lower the precision of
the CLC, which is consistent with the difficulties mentioned in the literature [9,
p. 8], [15, p. 252]. Splitting the vocabulary into domains, as suggested by the
software provider and by some authors [15, p. 276] seems to lack of a good split-
ting criterion that would not cause too much term overlap between the domains,
requiring some essential changes in the database definition and a reconsideration
of the concept-driven terminology management. Currently, different models for
software feedback and score in case of ambiguity are being tested. Overall, the
problem remains unsolved. The main question concerning this type of feedback
is whether it will have an impact on the effectiveness and on general acceptance
of a CLC by the writers.

Looking from a broader perspective, the case of KBA sheds some light on
the more general issue of the acceptance of a controlled language by the writers.
Godden reports on the difficulties with the editor-centered model for CASL
at General Motors, where the writers not previously trained in the rules were
reluctant to accepting the changes proposed by the editor. Some better results
were achieved by a hybrid model, requiring prior training of the writers [7], [cf.
5, pp. 215–216], [cf. 8, pp. 107–112]. We do not have similar data concerning
machine editing at KBA yet, but the experience with the human editing shows
a promising degree of acceptance of the language rules and proposed changes

Are Style Guides Controlled Languages? 121

in case of a clear violation of the rules. I presume that there is a link between
cooperative approach to the definition of the rules, resulting on the one hand
in a ‘sense of community’ and on the other in a better comprehension of the
rules, leading altogether to an increase of acceptance. There has already been
an awareness of this phenomenon, particularly in the literature on terminology
management [5, p. 166], [cf. 17, p. 63] but empirical studies are still needed.

6 Concluding Remarks

The case of KBA shows that the notion of a controlled language needs to be
reexamined. It can emerge as a result of deliberate decisions that are not neces-
sarily labeled and conceived as a design of a controlled language. The distinction
between controlled languages and style guides is indeed vague [12, p. 124] and
needs to be examined on a case by case basis, and perhaps only at a given
point in time. This also suggests that there might be more companies having
language regulations that do not see themselves as being concerned by the dis-
course of controlled languages. Furthermore, a new type of a controlled language
– to improve the authoring process for technical documentation – needs to be
considered.

From the practical point of view, the case of KBA shows that the develop-
ment in technology has made a controlled language more attainable. There is
no longer a need for custom-built software solutions to implement the specifica-
tions of a controlled language. There is an array of standard software that can
be customized to fit specific needs, which makes a controlled language easier
and more affordable to develop and implement, opening the field to medium-size
companies.

References

1. Arntz, R., Picht, H., Schmitz, K.D.: Einführung in die Terminologiearbeit, 7th edn.
Olms, Hildesheim (2014)

2. ASD Industries Association of Europe: Simplified Technical English. Specification
ASD-STE100. International specification for preparation of maintenance documen-
tation in a controlled language (6) (January 2013)

3. Crabbe, S.: Controlled languages for technical writing and translation. In:
Conference Proceedings of the Ninth Portsmouth Translation Conference of the
Translator as Writer, Portsmouth, pp. 48–62 (2009)

4. Deutscher Terminologie-Tag e.V., Deutsches Institut für Terminologie e.V.:
Terminologiearbeit – Best Practices 2.0 (Ordner) (2014)

5. Drewer, P., Ziegler, W.: Technische Dokumentation. Übersetzungsgerechte
Texterstellung und Content-Management. Vogel Verlag, Würzburg (2011)

6. Gallup, S.: Caterpillar Technical English and automatic machine translation. In:
STC Proceedings, pp. 421–424 (1993)

7. Godden, K.: The evolution of CASL controlled authoring at General Motors. In:
Proceedings of the Third International Workshop on Controlled Language Appli-
cations, CLAW 2000, pp. 14–19 (2000)

122 K. Suchowolec

8. Hebling, U.: Controlled Language am Beispiel des Controlled English. Diplomar-
beit, Universität Heidelberg (2002)

9. Huijsen, W.O.: Controlled language – an introduction. In: Proceedings of the
Second International Workshop on Controlled Language Applications, CLAW
1998, pp. 1–15 (1998)

10. International Organization for Standardization: ISO 15188:2001(E): Project man-
agement guidelines for terminology standardization (2001)

11. Kittredge, R.I.: Sublanguages and controlled languages. In: Mitkov, R. (ed.) The
Oxford Handbook of Computational Linguistics, pp. 430–447. Oxford University
Press, Oxford (2003)

12. Kuhn, T.: A survey and classification of controlled natural languages. Computa-
tional Linguistics 40(1), 121–170 (2014),
http://www.mitpressjournals.org/doi/abs/10.1162/COLI_a_00168

13. Lockwood, R.: Machine translation and controlled authoring at Caterpillar. In:
Sprung, R.C. (ed.) Translating into Success. Cutting-edge Strategies for Go-
ing Multilingual in a Global Age. American Translators Association Scholarly
Monograph Series, vol. XI, pp. 187–202. John Benjamins Publishing Company,
Amsterdam/Philadelphia (2000)

14. Messaoudi, N.: Content Engineering zur Einführung eines Redaktionssystems
bei der Koenig & Bauer AG – Informationsmodellierung, Modularisierung und
automatisierte Publikation. Diplomarbeit, Hochschule Karlsruhe – Technik und
Wirtschaft (2009) (undisclosed)

15. Nyberg, E., Mitamura, T., Huijsen, W.O.: Controlled language for authoring and
translation. In: Somers, H. (ed.) Computers and Translation. A translator’s Guide,
Benjamins Translation Library, vol. 35, pp. 245–281. John Benjamins Publishing
Company, Amsterdam/Philadelphia (2003)

16. Oberle, C., Ziegler, W.: Content Intelligence für Redaktionssysteme. CMS-
Kennzahlen mit der REx-Methode. Technische Kommunikation (6), 48–54 (2012)

17. Ramírez Polo, L.: Use and evaluation of controlled languages in industrial environ-
ments and feasibility study for the implementation of machine translation. Ph.D.
thesis, Universidad de Valencia (2012)

18. Reinhardt, W., Köhler, C., Neubert, G.: Deutsche Fachsprache der Technik. Olms,
Hildesheim (1992)

19. Schubert, K.: Gestaltete Sprache. Plansprachen und die regulierten Sprachen der
internationalen Fachkommunikation. In: Schubert, K. (ed.) Planned Languages:
From Concept to Reality, pp. 223–257. Hogeschool voor Wetenschap & Kunst,
Brussel (2001)

20. Schubert, K.: Kommunikationsoptimierung. Vorüberlegungen zu einem fachkom-
munikativen Forschungsfeld. trans-kom 2(1), 109–150 (2009),
http://www.trans-kom.eu/bd02nr01/trans-kom_02_01_06_Schubert_
Kommunikationsoptimierung.20090721.pdf

21. Suchowolec, K.: Terminologiearbeit im Unternehmen. Einführung eines
Gesamtkonzeptes. Magisterarbeit, Technische Universität Dresden (2009)
(undisclosed)

22. Wüster, E.: Einführung in die allgemeine Terminologielehre und terminologische
Lexikographie. Romanistischer Verlag, Bonn (1991)

http://www.mitpressjournals.org/doi/abs/10.1162/COLI_a_00168
http://www.trans-kom.eu/bd02nr01/trans-kom_02_01_06_Schubert_Kommunikationsoptimierung.20090721.pdf
http://www.trans-kom.eu/bd02nr01/trans-kom_02_01_06_Schubert_Kommunikationsoptimierung.20090721.pdf

Lexpresso: A Controlled Natural Language

Adam Saulwick

Defence Science & Technology Organisation, Australia

Abstract. This paper presents an overview of ‘Lexpresso’, a Controlled
Natural Language developed at the Defence Science & Technology Or-
ganisation as a bidirectional natural language interface to a high-level
information fusion system. The paper describes Lexpresso’s main fea-
tures including lexical coverage, expressiveness and range of linguistic
syntactic and semantic structures. It also touches on its tight integration
with a formal semantic formalism and tentatively classifies it against the
PENS system.

Keywords: Controlled Natural Language, Formal Semantics, Linguistic
structures, Human–Computer Interaction, High-level Information Fusion.

1 Introduction

‘Lexpresso’ is a Controlled Natural Language (CNL) developed at the Defence
Science & Technology Organisation as a bidirectional natural language interface
to a high-level, agent-based, information fusion system called Consensus. This
paper is the first published description of Lexpresso’s broad features, including
lexical coverage, and range of syntactic and semantic structures. It also describes
the tight integration with DSTO’s bespoke formal semantic formalism, Mephisto,
initially conceived by Lambert & Nowak [1]. Lexpresso was first developed in
2008 and is under active development.1

The Consensus system performs high-level information fusion of heteroge-
neous data for Situation Awareness. In our current demonstration system, syn-
thesised input data types include maritime and aviation tracks2, natural English
texts, emails and spoken English statements. In general terms the Consensus
system is designed to demonstrate a working solution to problems of high-level
information fusion by the ‘semiautomation of [some of] the functionalities of

1 Some previous work in natural language interfaces at DSTO focussed on automated
speech-to-text recognition linked to template rules. From June 2007 to July 2008
a DSTO initiated collaborative research program into situation awareness was con-
ducted between DSTO and NICTA, see [2]. Among other things, this research in-
volved the development of a CNL which was based on, or inspired by, PENG [3, 4].
Subsequent to these activities Lexpresso was built from scratch by DSTO.

2 Synthesised tracks are currently processed at circa 100 per second and contain fields
for source, temporal offset, track ID, time, coordinates, direction, speed, class, type,
allegiance and nationality.

B. Davis et al. (Eds.): CNL 2014, LNAI 8625, pp. 123–134, 2014.
c© Springer International Publishing Switzerland 2014

124 A. Saulwick

sensation, perception, cognition, comprehension, and projection that [are] oth-
erwise performed by people for situation awareness’ [5]. Among other functions
Consensus does this by automatically transforming diverse information sources
into a canonical semantic machine-readable form called Mephisto which facil-
itates computational reasoning. A problem however is that Mephisto is only
interpretable by machines or by a few human experts (and then slowly) and so,
human interaction with Consensus would be very difficult, if not impossible, even
for specialists, without a natural interface. Lexpresso is that interface. It bridges
the natural-language/formal-language gulf and thus it permits relatively natu-
ral interaction with a formal semantic reasoning system via spoken and written
controlled natural English.3

Lexpresso’s bidirectionality means that it has both input and generation ca-
pabilities. Further, because Lexpresso is tightly coupled with Consensus’s formal
semantic knowledge representation and reasoning system whose primary func-
tion is automated inferencing over real-time track data and texts for enhanced
situation awareness, it provides human users with the enhanced ability to query
the nature of current and historical real-world and potentially far-flung events.
Answers are given in the form of situation reports. These reports may concern
the transit or spatiotemporal interaction of observed maritime, land &/or air-
based platforms and even the social relationships between people inferred from
certain text descriptions.

While these capability descriptions are accurate, they are not intended to obfus-
cate Lexpresso’s limitations. Its breadth and degree of coupling withMephisto are
the subject of ongoing research and development. Consensus is a prototype system
and, subject to space constraints, some limitations will be mentioned in Section 4.

The remainder of this paper is structured as follows. Section 2 describes the
system architecture and the main CNL modules. Sections 3 and 4 exemplify
the main syntactic and semantic structures respectively. Section 5 proposes a
classification of Lexpresso based on the PENS system. Section 6 concludes with
a summary.

2 System Architecture and Module Functions

Echoing the traditional transformational grammar distinction [6, 7], language
processing in Lexpresso is conceived on a spatial metaphor of depth in which
‘surface CNL’ refers to observed spoken or written forms of language and ‘deep
CNL’ refers to an underlying abstraction with certain linguistic features. Input
processing takes surface language and transforms it into deep linguistic struc-
tures. After further processing to remove ambiguities, these are converted into
our universal semantic representations called Mephisto structures. Reasoning
and inferencing is primarily performed on Mephisto structures. Output process-
ing takes Mephisto structures and uses the same core syntactic parser to validate
and generate surface CNL for consumption by users.

3 Consensus also utilises other interfaces such as a 3-dimensional geospatial display
and a virtual adviser avatar. These are not discussed here.

Lexpresso: A Controlled Natural Language 125

Lexpresso is designed as a modular system to facilitate integration of new
features as required. Depending on how one counts them, it consists of around 17
modules, see Figure 1. Due to space constraints not all components are described.

Sensor1
Error
handler

Alias
handler

Acronym
handler

Spatio-
temporal
handler

Syntax
parser

Aktionsart,
Capability,
Taxonomy

Sensor2 Users
Ambiguity
handler

Grapher Semantic
translator

Thematic
roles

Virtual
Adviser &
Geospatial
display

Acronym
& Alias
handler

Context
sensitive
Mephisto

Context
resolver

Text
CNL

Effector
CNL

Generator

Syntax
generator

Spatio-
temporal
handler

Context
free

assertions

Context
free

Mephisto

Epistemic
/ episodic
reasoners

User in the loop

Speech

&/or text

input

Lexicon

Linguistic

KB

Lexicon

Epistemic,
Episodic &
Sem. KB

Speech
&/or text
output

CNL Sensor: Surface Lexpresso

MephistoCNL Effector: Surface Lexpresso

Deep Lexpresso

Fig. 1. Lexpresso system architecture

CNL Sensor. This is the users’ primary input screen. It contains a text panel for
typing controlled natural English. Spoken English also appears in this panel via
the Automated Speech Recogniser. Sentences can be automatically or manually
inserted. Manual insertion is an interactive process and thus permits error cor-
rection prior to further processing. Once inserted the input appears in the CNL
Sensor log window accompanied by the name of the ‘teller’ and a status message.
Each line is also timestamped, displayed directly above it, see Figure 2.4

Error handler. During manual insertion, a pre-parser checker notifies the user
of unknown or undefined words or out-of-grammar expressions. This provides
dynamic feedback on lexical coverage and grammaticality of surface input to
inform the user of input status.

Alias handler. Thismodule converts particularmulti-word expressions into atomic
terms formanipulation at the deep linguistic level, e.g. ‘Becker’,‘Bender’,air,
force, base becomes becker bender AFB. It is also used to handle contractions,
e.g. ‘can’t’ becomes ‘cannot’. It is also used for mapping fixed idiomatic forms to
a single lexical correspondence. Although the functionality of the aliasing module
is currently used for simple surface level structures, it is also capable of handling
metonymy.

4 The ‘sensor’ & ‘effector’ terminology is adopted from the Attitude Too cognitive
model [8].

126 A. Saulwick

Acronym handler. This module expands acronyms and titles into multi-word
expressions. It also constrains their syntactic position (e.g. pre-/post-nominal)
based on their part-of-speech.

Fig. 2. CNL Sensor: showing sample text (with timestamps, proper names, person
title & anaphoric resolution), input panel (with possible query), colour-coded feedback
messages in log pane, microphone toggle button (on) for speech input & status message

Spatiotemporal handler. This module converts date and time information into
universal standard timestamps, accepting a broad range of natural language ex-
pressions such as time-formatted numerals (e.g. 13:59:59 or Zulu time, and a
variety of time points in natural language, e.g. 1 PM, one o’clock). Each time is
calculated against Coordinated Universal Time (UTC). Our system is designed
to allow the sensor, effector and cognition modules to be in different spatiotem-
poral locations, hence the generation of temporal phrases is calculated on an
off-set to UTC.

Temporal intervals are also handled. Surface level forms include the template
‘from time to time’, and a range of temporal words, including ‘today’, days of
the week, months of the year, decades, and centuries, etc. Where required by
natural English, these phrases can be further modified with prepositions, such as
‘from 12:00 to 13:00’, ‘in January’, ‘for a week’, and with temporal grounding to
specific times, such as ‘last week’, ‘yesterday’, ‘in one month’. Inferencing with
these temporal expressions as reference points is done in the cognition using
Allen interval algebra [9], not discussed further here.

Lexpresso pays careful attention to the subtleties of the English tense system.
For instance the relationship between the time of user interaction and the tense
of the assertion or query is captured and stored as temporal information relevant
to each entity. To achieve this, each input is internally labelled with utterance
type and time. The latter becomes the reference time for every CNL interaction.

Lexpresso: A Controlled Natural Language 127

For instance, in (1),5 via a tells predicate, the system registers that it has
perceived a CNL Sensor interaction at a certain time and from a certain teller;
here the author.

(1) Mon Jun 02 10:33:48 CST 2014 [SENSOR : INTERACTION]

perceive(cnl_sensor,tells(teller(@(skc1,invl

(timestamp(2014,6,2,1,3,48),timestamp(2014,6,2,1,3,48)),s_5),

Adam_Saulwick),...)),

Example (2) demonstrates how the system stores spatiotemporal information
about entities.6 Given the simple past tense of the surface input sentence in (2a),
the time of ‘standing’ is encoded at the deep Mephisto cognitive level (2b) to
have taken place before the time of the assertion registered in (1).

(2) a. I: The woman stood in the house.

b. C: animate(@(skc2,t_4,s_2)),female(@(skc2,t_4,s_2)),
before(t_4,invl(timestamp(2014,6,2,1,3,48),

timestamp(2014,6,2,1,3,48))),

location_in([stands(@(skc2,t_4,s_2))],@(skc3,t_4,s_3)),

woman(@(skc2,t_4,s_2),[animate,definite,singular,...]),

house(@(skc3,t_4,s_3),[definite,singular,prep(in)]),

stands[@(skc2,t_4,s_2)],[past,...])).

c. O:The woman stood in the house before Monday the 2nd of June
2014 at 10:33:48 AM.

For explicitness by default the time before which the event is asserted to have
occurred is rendered visible to the user in the CNL Effector window, as in (2c).7

The location of the ‘standing’ event in (2) is encoded via a location in

predicate which is formed on the fly from a combination of surface language and
automatically identified semantic roles (see Thematic roles below). (2b) shows
this binary predicate with manner and referenced arguments, each encoding

5 Our notation uses a ternary @-predicate—adopted from the Mephisto conceptuali-
sation with a perdurantist philosophy which ‘holds that an identity is formed from
different things at different times, that an identity is a process, an assembly of differ-
ent temporal parts’—representing @(label, time, space). (Space constraints prohibit
discussion of this, but see [1].) The first argument is the entity’s identifier (here a
Skolem constant), the second is a temporal point, interval or even a sum of temporal
intervals, and the third is the space it occupies. See [10] for further details.

6 Abbreviations to the examples indicate representations at Input (I), Cognition (C),
and Output (O) levels. Skolem constant numbers have been simplified for expository
purposes but numbers are automatically assigned at input. Further, information not
germane has been omitted and replaced by ellipses. Space limits a full description
of the contents of C here.

7 A number of the other underlying linguistic features of the surface input are
also sent to the cognition—namely animacy, gender, part-of-speech, number, and
definiteness—as exemplified for the intransitive simple past phrase in (2). These are
used for various internal purposes, such as anaphoric resolution, predicate argument
typing and grammatical agreement.

128 A. Saulwick

their skolem identifiers, space and time. As with all Mephisto structures, this
deep predicate can be utilised by Mephisto reasoners for logical inference. The
formation of a variety of other spatial predicates follows this principle.

Syntax parser. This module defines and selects hand-crafted grammatically valid
syntactic forms to ensure compliance with Lexpresso’s controlled English syntax.
Selected syntactic structures are described further in Section 3.

Lexicon. This module is used by the parser to instantiate leaf nodes. The lexicon
covers core and domain specific terminology. It includes all major parts of speech
containing over 20,000 unique word-forms comprised of a core of circa 12,130 high
frequency English tokens plus non-high frequency general and domain specific
terms. The class of nouns is comprised of circa 6,900 common nouns, circa 1,000
proper names and 62 forms of pronouns. Nouns are categorised according to
certain features: mass/count, number, gender, alienability, and possible syntactic
dependencies.

The class of verbs is comprised of main verbs, auxiliaries and modal auxiliaries.
There are circa 8,380 main verbs classified according to a number of features,
including semantic type, agreement, tense, aspect and mood inflection, syntactic
and semantic frames, e.g. [11, 12, 13].

The class of adjectives is comprised of circa 2,644 forms and categorised into
attributive, predicative, comparative and superlative types. Adjectives and other
modifiers are further categorised according to the following primarily seman-
tic types: age, amplifier, century, colour, compass, denominal, evaluative, girth,
height, noun, objective, ordinal, participle, provenance, religion, shape, size, sub-
jective, weak. This classification is used to stipulate the order adjectives in noun
phrases.

Other classes of words consist of articles, cardinal and ordinal numerals, prepo-
sitions and other forms such as conjunctions, wh-words and directionals. Finally,
there is a special sub-lexicon of domain specific expanded acronyms containing
over 41,000 entries.

The Lexicon and Parser draw on syntactic and semantic knowledge (includ-
ing Aktionsart [14], entity functional capability, and taxonomic relations) to
constrain possible interpretations and reduce over-generation of deep CNL struc-
tures.

At this point in the system architecture linguistic content moves from surface
to deep Lexpresso modules.

Grapher & Ambiguity handler. The Grapher transmutes parser outputs into
graph structures so associations and semantic structures can be more easily re-
viewed than with parser output. In cases of multiple interpretations, e.g. (3b),
a separate module identifies user defined interpretation preferences. This selects
top ranked interpretations in a given context. Where multiple interpretations
are equally ranked a separate graph structure is generated for each. The user
can compare and select the desired interpretation to ensure each semantic form

Lexpresso: A Controlled Natural Language 129

passed to the reasoner is unambiguous. Evaluation of this potentially burden-
some method is required.

Semantic translator & Thematic roles. The graph structure is then converted
into our universal semantic constructs for use by automated inferencing modules,
not discussed here. Thematic roles and other linguistic information are identified
by combining lexical and constructional semantics from the Syntax parser, Lex-
icon and Aktionsart modules with the Linguistic Knowledge Base. The results
of this process ensure deep structures contain the requisite richness of linguistic
semantic information for both inferencing and language generation. The The-
matic roles module associates possible semantic roles with generic entities at the
highest possible level in the Taxonomy. Subsumed entities will inherit the role
associated with their genus.

Context resolver. Lexical semantic features associated with nouns (such as gen-
der, animacy, cognitive or other capability) are identified via a relatively shallow
hierarchy and used to resolve anaphoric pronouns and wh-forms. Types of NP
anaphors include personal, reflexive, reciprocal and indefinite pronouns, as well
as demonstratives. The only current VP anaphor is forms of the generic verb ‘do’.
A number of rules (not discussed here) determine how anaphors are resolved.

Where possible the CNL Effector (see Figure 1) makes use of existing Lex-
presso modules as already described (such as the lexicon and parser and asso-
ciated semantic knowledge) to handle the generation of surface language from
deep Mephisto semantic constructs. Space constraints prohibit further explana-
tion here.

3 Syntactic Structures

This section exemplifies selected basic syntactic structures permitted by the
parser. Space constraints prohibit a comprehensive exposition of all of Lex-
presso’s syntax. The expository emphasis is on giving a sense of Lexpresso’s
expressiveness.

Sentence Types. These include declaratives, interrogatives, directives and in-
direct speech acts.

Declaratives. These sentence types include basic intransitives (3a), transitives
(3b) and ditransitives (3c) with and without adjuncts.

(3) a. The boy slept on Monday.

b. The woman in the car read the message on the sign.

c. The woman gave the man the document.

130 A. Saulwick

Interrogatives. These can query for a range of syntactic elements: the subject
(4a), object (4b) or predicate, such as generic ‘do’, (4c) of the basic sentences,
as well as temporal information (4d) and locational adjuncts (4e). Indefinite
pronouns can be used to query for any argument; (4f) demonstrates its use in a
yes/no query.

(4) a. Who gave the document to the boy?

b. What did the woman read?

c. What did the boy do?

d. When did she read it?

e. What region is she in?

f. Did anyone see the woman?

Directives. These are currently limited to commands to the system to generate
situation reports on specified tracks monitored by a track sensor module (not
discussed here), e.g. ‘Show merchant ship situation report on MR41 PAN-EAV’
and ‘Show commercial aircraft situation report on NAT57 FL310’. The range of
useful commands to the system will to a certain extent dictate development of
other directives. Directives are queries expressed in the imperative mood.

Indirect speech. These cover statements with embedded speech act verbs, such
as ‘say’ and ‘tell’, e.g. ‘Michael said that the woman read the document.’ and
‘Michael told Kerry that the woman read the document.’ Subclauses introduced
by ‘that’ are also permitted in other sentence types, not exemplified here.

Noun Phrases. These can be highly complex with multiple layers of embedding
and recursion. The tree structures in (5) cover two primary basic types of noun
phrase: (5a) specifies nouns with pre and post modifiers, whereas (5b) specifies
conjoined noun phrases. Note its recursion.

(5) a. NP

ENP

DET

the

NP2

PRE
MOD

old

N
{common,
proper}

man

POST
MOD

from Blueland

b. NP

NPC

ENP CONJ

and

NPC

ENP CONJ NPC

. . .

The modifier node is itself internally complex and permits modification by
complements and adjuncts, as in (6). Justifications are not given here.

Lexpresso: A Controlled Natural Language 131

(6) a. MOD

COMP

several

MOD

friendly

b. MOD

ADJUNCT

some ancient

MOD

old

Finally, the trees in (7) exemplify permitted noun phrases with genetive-s.
Again note the recursion in (7a).

(7) a. NP

GEN-DET

NP

the sick woman

GEN

’s

N

house

b. NP

GEN-DET

PROP-N

Dale

GEN

’s

N

car

4 Semantic Structures

Kuhn [15] identified some five expressiveness features of Controlled Natural Lan-
guages (see a–e in Fairly high expressiveness in Section 5 below). I briefly exem-
plify these with I and C forms for each semantic type.

Universal quantification over individuals. Instances of universally quantified en-
tities without an article (8a) are rendered with an all predicate (8b) referencing
its universally quantified Skolem constant together with the list of relevant lin-
guistic features. Numerals are converted into set operations and can quantify all
argument positions and predicates, e.g. ‘Three men read four documents twice’.

(8) a. I: Women stand.

b. C: all([skc2],woman(@(skc2,t_3,s_2),[female,plural,...])
=> stands(@(skc2,t_3,s_2),[general_habitual,...])).

Binary or higher relations. In principle Lexpresso does not place a restriction
on the arity of relations (reads(x,y) in (9b) exemplifies a binary predicate).
However, our ability to reason with higher arity relations is determined by the
reasoners used, not discussed here. Our reasoner does not restrict arity either
and indeed allows atomic propositions to occur as relation arguments.

General rule structures. Multiple universal quantification can target all argu-
ment positions of relations, as in (9).

(9) a. I: All women always read all documents.

b. C: all([skc81,skc82,t_81],((woman(@(skc81,t_81,s_81),[...])&
document(@(skc82,t_81,s_82),[...]))

=> reads(@(skc81,t_81,s_81),@(skc82,t_81,s_82),[...]))).

132 A. Saulwick

If–then conditionals are also expressible, currently with the form in (10). Note
that all argument positions of these conditionals can be universally quantified,
as in (10) with ‘all’.

(10) a. I: If all women did not see the car then all women did not see the
driver.

b. C: all([skc81],((woman(@(skc81,t 81,s 81),[...]) &

car(@(skc82,t 81,s 82),[...])) =>

¬ sees(@(skc81,t 81,s 81),@(skc82,t 81,s 82)))) =>

all([skc81], ((woman(@(skc81,t 81,s 81),[...]) &

driver(@(skc84,t 81,s 84),[...])) =>

¬ sees(@(skc81,t 81,s 81),@(skc84,t 81,s 84),[...]))).

Negation. Weak negation is expressed with a negation operator appended to the
front of the negated predicate, as in (11). This can be applied to any proposition.
Strong negation is expressed via lexical negators such as ‘dislike’, ‘distrust’, etc.

(11) a. I: The woman did not read the document.

b. C: woman(@(skc81,t 22,s 81),[definite,...]),

document(@(skc07,t 22,s 07),[definite,...]),

¬reads(@(skc81,t 22,s 81),@(skc07,t 22,s 07),[past,...]).

Second-order universal quantification. This was exemplified in (9) in which the
predicate ‘read’ is universally quantified by ‘always’ and rendered as an operator
over the time of the predicate.

Other features articulated by Kuhn as determinants of expressiveness were
existential quantification, as in (2), equality, as in (12), and types of speech acts
(not exemplified due to space constraints but mentioned in Section 3).

(12) a. I: Andrew White is the Prime Minister.

b. C: Andrew White(@(skc6,t 10,s 6),[...]),

prime minister(@(skc7,t 10,s 7),[...]),

identical[@(skc6,t 10,s 6),@(skc7,t 10,s 7)].

Discourse structures. The paragraph is taken as the basic unit of discourse. For
the purpose of anaphoric resolution, a new paragraph signifies a new discourse
context. A single sentence can constitute a paragraph. Anaphora occurs within
a discourse unit.

5 Classification of Lexpresso

Kuhn [15] presented a classification scheme for CNLs labelled with the acronym
PENS. This classifies a CNL according to a five-tier ranking (with 5 for maximal)
for each of four orthogonal categories of Precision, Expressiveness, Naturalness
and Simplicity. Based on my assessment of Lexpresso against Kuhn’s ‘PENS’
scheme, I tentatively classify it as P3−4 E4 N4−5 S3 as evidenced by the following
paragraphs.

Lexpresso: A Controlled Natural Language 133

Precision—reliably & semi-deterministically interpretable. P3−4 Although it is
not currently possible for any natural English language text to be determinis-
tically transformed by Lexpresso into a formal logic representation, the syntax
is heavily restricted enough to make automatic interpretation reliable. In cases
where the natural language syntax is ambiguous and not automatically disam-
biguated, multiple interpretations are presented. The user is then consulted to
select the desired interpretation. Once done, controlled natural language is de-
terministically translated into formal structures. There is also a well established,
conceptually broad, underlying formalism.

Fairly high expressiveness. E4 The range of propositions that Lexpresso can ex-
press includes all those articulated by Kuhn: (a) universal quantification over
individuals; (b) relations of arity greater than 1; (c) general rule structures (if-
then conditionals with multiple universal quantification that can target all argu-
ment positions of relations; (d) negation (strong negation or negation as failure);
(e) general second-order universal quantification over concepts and relations; (f)
existential quantification; (g) equality; and (h) types of speech acts including
declarative, interrogative, directive and indirect. See Section 3 for examples.

Fair degree of naturalness. N4−5 While large scale texts have not been written
in the language, small fairly natural texts and spoken interactions with internal
interdependencies are parsable.

Simplicity. S3 Lexpresso can be exactly, comprehensively defined with accepted
grammatical and logical notations but it is likely to require more than ten pages
to describe all its syntactic and semantic properties.8

6 Conclusion

This brief introduction to the Controlled Natural Language—Lexpresso—has
presented the system architecture, and exemplified its main syntactic and se-
mantic features. These features have been compared to Kuhn’s [15] PENS clas-
sification system. Against this comparison I have tentatively classified Lexpresso
as a P3−4 E4 N4−5 S3 CNL. According to this classification Lexpresso is a reli-
ably or perhaps deterministically interpretable language, with high expressive-
ness, considerable naturalness and would require a lengthy treatment to cover
its syntax and semantics. Given the page limit, this paper has not in any detail
discussed Lexpresso’s limitations nor the tight integration with the knowledge
representation and reasoning capabilities which constitutes a significant compo-
nent of our high-level information fusion system for which Lexpresso functions
as a natural language interface.

8 The description of Lexpresso’s features presented here is not considered comprehen-
sive and therefore does not qualify as an indicator of its simplicity score.

134 A. Saulwick

Acknowledgements. I thank Dale Lambert, Kerry Trentelman, Andrew
Zschorn and Takeshi Matsumoto for discussions on issues raised in this paper
and the first two named plus Nathalie Colineau and three anonymous reviewers
for valuable comments on an earlier version. Both Andrew Zschorn and Takeshi
Matsumoto have contributed to the development of Lexpresso.

References

1. Lambert, D., Nowak, C.: The mephisto conceptual framework. Technical Report
DSTO-TR-2162, Defence Science and Technology Organisation (2008)

2. Baader, F., et al.: A novel architecture for situation awareness systems. In: Giese,
M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 77–92. Springer,
Heidelberg (2009)

3. Schwitter, R., Tilbrook, M.: Dynamic semantics at work. In: Proceedings of the
International Workshop on Logic and Engineering of Natural Language Seman-
tics (in conjunction with the 18th Annual Conference of the Japanese Society for
Artificial Intelligence), Kanazawa, Japan, pp. 49–60 (2004)

4. Schwitter, R., Tilbrook, M.: Processable english (2007)
5. Lambert, D., Blasch, E., Bossé., E.: Introduction. In: Blasch, E., Bossé, E.,

Lambert, D. (eds.) High-Level Information Fusion Management and Systems
Design, pp. 173–190. Artech House (2012)

6. Chomsky, N.: Syntactic Structures. Mouton & Co., ’s-Gravenhage (1957)
7. Chomsky, N.: Aspects of the theory of syntax. MIT Press (1965)
8. Lambert, D., Lambert, A.: The legal agreement protocol. In: Blasch, E., Bossé,

E., Lambert, D. (eds.) High-Level Information Fusion Management and Systems
Design, pp. 173–190. Artech House (2012)

9. Allen, J.: Maintaining knowledge about temporal intervals. Commun. ACM 26,
832–843 (1983)

10. Saulwick, A.: Spatiotemporal reasoning over natural language. In: CoSLI-3 3rd
Workshop on Computational Models of Spatial Language Interpretation and
Generation (2013)

11. Fillmore, C.: Frame semantics and the nature of language. In: Annals of the New
York Academy of Sciences: Conference on the Origin and Development of Language
and Speech, vol. 280, pp. 20–32 (1976)

12. Ruppenhofer, J., Ellsworth, M., Petruck, M., Johnson, C., Scheffczyk, J.: FrameNet
II: Extended Theory and Practice. International Computer Science Institute,
Berkeley, California (2006) (Distributed with the FrameNet data)

13. Fillmore, C., Lee-Goldman, R., Rhomieux, R.: The framenet constructicon. In:
Boas, H., Sag, I. (eds.) Sign-Based Construction Grammar. CSLI Lecture Notes
(2012)

14. Vendler, Z.: Verbs and times. In: Linguistics in Philosophy. Cornell University
Press, Ithaca (1967)

15. Kuhn, T.: A survey and classification of controlled natural languages.
Computational Linguistics, 121–170 (2013)

A CNL for Contract-Oriented Diagrams

John J. Camilleri, Gabriele Paganelli, and Gerardo Schneider

Department of Computer Science and Engineering,
Chalmers University of Technology and the University of Gothenburg, Sweden

{john.j.camilleri,gerardo}@cse.gu.se, gabpag@chalmers.se

Abstract. We present a first step towards a framework for defining
and manipulating normative documents or contracts described as
Contract-Oriented (C-O) Diagrams. These diagrams provide a visual rep-
resentation for such texts, giving the possibility to express a signatory’s
obligations, permissions and prohibitions, with or without timing con-
straints, as well as the penalties resulting from the non-fulfilment of a
contract. This work presents a CNL for verbalising C-O Diagrams, a
web-based tool allowing editing in this CNL, and another for visualising
and manipulating the diagrams interactively. We then show how these
proof-of-concept tools can be used by applying them to a small example.

Keywords: normative texts, electronic contracts, c-o diagrams, con-
trolled natural language, grammatical framework.

1 Introduction and Background

Formally modelling normative texts such as legal contracts and regulations is
not new. But the separation between logical representations and the original
natural language texts is still great. CNLs can be particularly useful for specific
domains where the coverage of full language is not needed, or at least when it is
possible to abstract away from some irrelevant aspects.

In this work we take the C-O Diagram formalism for normative documents
[1], which specifies a visual representation and logical syntax for the formalism,
together with a translation into timed automata. This allows model checking to
be performed on the modelled contracts. Our concern here is how to ease the
process of writing and working with such models, which we do by defining a
CNL which can translate unambiguously into a C-O Diagram. Concretely, the
contributions of our paper are the following:
1. Syntactical extensions to C-O Diagrams concerning executed actions and

cross-references (section 2.3);
2. A CNL for C-O Diagrams implemented using the Grammatical Framework

(GF), precisely mapping to the formal grammar of the diagrams (section 3).
3. Tools for visualising and manipulating C-O Diagrams (section 2):

(a) A web-based visual editor for C-O Diagrams ;
(b) A web-based CNL editor with real-time validation;
(c) An XML format COML used as a storage and interchange format.

B. Davis et al. (Eds.): CNL 2014, LNAI 8625, pp. 135–146, 2014.
© Springer International Publishing Switzerland 2014

136 J.J. Camilleri, G. Paganelli, and G. Schneider

C := (agent, name, g, tr,O(C2), R)

| (agent, name, g, tr, P (C2), ε)

| (agent, name, g, tr, F (C2), R)

| (ε, name, g, tr,C1, ε)

C1 := C (And C)+ | C (Or C)+ | C (Seq C)+ | Rep(C)

C2 := a | C3 (And C3)
+ | C3 (Or C3)

+ | C3 (Seq C3)
+

C3 := (ε, name, ε, ε, C2, ε)

R := C | ε

Fig. 1. Formal syntax of C-O Diagrams [1]

We also present a small example to show our CNL in practice (section 4) and
an an initial evaluation of the CNL (section 5). In what follows we provide some
background for C-O Diagrams and GF.

1.1 C-O Diagrams

Introduced by Mart́ınez et al. [2], C-O Diagrams provide a means for visualising
normative texts containing the modalities of obligation, permission and prohi-
bition. They allow the representation of complex clauses describing these norms
for different signatories, as well as reparations describing what happens when
obligations and prohibitions are not fulfilled.

The basic element is the box (see Fig. 4), representing a basic contract clause.
A box has four components: i) guards specify the conditions for enacting the
clause; ii) time restrictions restrict the time frame during which the contract
clause must be satisfied; iii) the propositional content of a box specifies a modal-
ity applied over actions, and/or the actions themselves; iv) a reparation, if spec-
ified, is a reference to another contract that must be satisfied in case the main
norm is not. Each box also has an agent indicating the performer of the action,
and a unique name used for referencing purposes. Boxes can be expanded by
using three kinds of refinement: conjunction, choice, and sequencing.

The diagrams have a formal definition given by the syntax shown in Fig. 1.
For an example of a C-O Diagram, see Fig. 5 (this example will be explained in
more detail in section 4).

1.2 Grammatical Framework

GF [3] is both a language for multilingual grammar development and a type-
theoretical logical framework, which provides a mechanism for mapping abstract
logical expressions to a concrete language. With GF, the language-independent
structure of a domain can be encoded in the abstract syntax, while language-
specific features can be defined in potentially multiple concrete languages.

A CNL for C-O Diagrams 137

CNL editor

Spreadsheet

CO-Diagram
editor

COML Model checker

Front-end

Natural
Language
Contract

Back-end

Fig. 2. The contract processing framework. Dashed arrows represent manual interac-
tion, solid ones automated interaction.

Since GF provides both a parser and lineariser between concrete and abstract
languages, multi-lingual translation can be achieved using the abstract syntax
as an interlingua.

GF also comes with a standard library called the Resource Grammar Library
(RGL) [4]. Sharing a common abstract syntax, this library contains implemen-
tations of over 30 natural languages. Each resource grammar deals with low-
level language-specific details such as word order and agreement. The general
linguistic descriptions in the RGL can be accessed by using a common language-
independent API. This work uses the English resource grammar, simplifying
development and making it easier to port the system to other languages.

2 Implementation

2.1 Architecture

The contract processing framework presented in this work is depicted in Fig. 2.
There is a front-end concerned with the modelling of contracts in a formal rep-
resentation, and a back-end which uses formal methods to detect conflicts, verify
properties, and process queries about the modelled contract. The back-end of
our system is still under development, and involves the automatic translation
of contracts into timed automata which can be processed using the UPPAAL
tool [5].

The front-end, which is the focus of this paper, is a collection of web tools
that communicate using our XML format named COML.1 This format closely
resembles the C-O Diagram syntax (Fig. 1). The tools in our system allow a
contract to be expressed as a CNL text, spreadsheet, and C-O Diagram. Any
modification in the diagram is automatically verbalised in CNL and vice versa.
A properly formatted spreadsheet may be converted to a COML file readable by
the other editors. These tools use HTML5 [6] local storage for exchanging data.

1 An example of the format, together with an XSD schema defining the structure, is
available online at http://remu.grammaticalframework.org/contracts

http://remu.grammaticalframework.org/contracts

138 J.J. Camilleri, G. Paganelli, and G. Schneider

CNL
English

GF
AST

unpretty-print,
parse

linearise,
pretty-print

Haskell
source code

linearise

parse

Haskell
object

read

show

COML

pickle

unpickle

Fig. 3. Conversion process from CNL to COML and back

Translation Process. The host language for all our tools is Haskell, which
allows us to define a central data type precisely reflecting the formal C-O Dia-
gram grammar (Fig. 1). We also define an abstract syntax in GF which closely
matches this data type, and translate between CNL and Haskell source code via
two concrete syntaxes. As an additional processing step after linearisation with
GF, the generated output is passed through a pretty-printer, adding newlines
and indentations as necessary (section 3.2). The Haskell source code generated
by GF can be converted to and from actual objects by deriving the standard
Show and Read type classes. Conversion to the COML format is then handled
by the HXT library, which generates both a parser and generator from a single
pickler function. The entire process is summarised in Fig. 3.

2.2 Editing Tools

The visual editor allows users to visually construct and edit C-O Diagrams of the
type seen in section 4. It makes use of the mxGraph JavaScript library providing
the components of the visual language and several facilities such as converting
and sending the diagram to the CNL editor, validation of the diagram, conversion
to PDF and PNG format.

The editor for CNL texts uses the ACE JavaScript library to provide a text-
editing interface within the browser. The user can verify that their CNL input
is valid with respect to grammar, by calling the GF web service. Errors in the
CNL are highlighted to the user. A valid text can then be translated into COML
with the push of a button.

2.3 Syntactic Extensions to C-O Diagrams

This work also contributes two extensions to C-O Diagram formalism:
1. To the grammar of guards, we have add a new condition on whether an

action a has been performed (done(a));
2. We add also a new kind of box for cross-references. This enhances C-O

Diagrams with the possibility to have a more modular way to “jump” to
other clauses. This is useful for instance when referring to reparations, and
to allow more general cases of “repetition”.

A CNL for C-O Diagrams 139

Our tool framework also includes some additional features for facilitating the
manipulation of C-O Diagrams. The most relevant to the current work is the
automatic generation of clocks for each action. This is done by implicitly creating
a clock t_name for each box name. When the action or sub-contract name is
completed, the clock t_name is reset, allowing the user to refer to the time
elapsed since the completion of a particular box.

3 CNL

This section describes some of the notable design features of our CNL. Examples
of the CNL can be found in the example in section 4.

3.1 Grammar

The GF abstract syntax matches closely the Haskell data type designed for C-O
Diagrams, with changes only made to accommodate GF’s particular limitations.
Optional arguments such as guards are modelled with a category MaybeGuard

having two constructors noGuard and justGuard, where the latter is a function
taking a list of guards, [Guard]. The same solution applies to timing constraints.
Since GF does not have type polymorphism, it is not possible to have a gener-
alised Maybe type as in Haskell. To avoid ambiguity, lists themselves cannot be
empty; the base constructor is for a singleton list.

In addition to this core abstract syntax covering the C-O Diagram syntax,
the GF grammar also imports phrase-building functions from the RGL, as well
as the large-scale English dictionary DictEng containing over 64,000 entries.

3.2 Language Features

Contract Clauses. A simple contract verbalisation consists of an agent,
modality, and an action, corresponding to the standard subject, verb and
object of predication. The modalities of obligation, permission and prohibition
are respectively indicated by the keywords required, may (or allowed when
referring to complex actions) and mustn’t (or forbidden).

Agents are noun phrases (NP), while actions are formed from either an in-
transitive verb (V), or a transitive verb (V2) with an NP representing the ob-
ject. This means that every agent and action must be a grammatically-correct
NP/VP, built from lexical entries found in the dictionary and phrase-level func-
tions in the RGL. This allows us to correctly inflect the modal verb according
to the agent (subject) of the clause:

1 : Mary is required to pay

2 : Mary and John are required to pay

140 J.J. Camilleri, G. Paganelli, and G. Schneider

Constraints. The arithmetic in the C-O Diagram grammar covering guards
and timing restrictions is very general, allowing the usual comparison opera-
tors between variable or clock names and values, combined with operators for
negation and conjunction. Their linearisation can be seen in line 9 of Fig. 6.

Each contract clause in a C-O Diagram has an implicit timer associated with
it called t_name, which is reset when the contract it refers to is completed. These
can be referred to in any timing restriction, effectively achieving relative timing
constraints by referring to the time elapsed since the completion of another
contract.

Conjunction. Multiple contracts can be combined by conjunction, choice and
sequencing. GF abstract syntax supports lists, but linearising them into CNL
requires special attention. Lists of length greater than two must be bulleted and
indented, with the entire block prefixed with a corresponding keyword:

1 : all of

- 1a : Mary may eat a bagel

- 1b : John is required to pay

When unpretty-printed prior to parsing, this is converted to:

1 : all of { - 1a : Mary ... bagel - 1b : John ... pay }

For a combination of exactly two contracts, the user has the choice to use the
bulleted syntax above, or inline the clauses directly using the appropriate com-
binator, e.g. or for choice. This applies to combination of contracts, actions and
even guards and timing restrictions.

In the case of actions the syntax is slightly different since there is a single
modality applied to multiple actions. Here, the actions appear in the infinitive
form and the combination operator appears at the end of each line (except the
final one):

2 : Mary is allowed

- 2a : to pay , or

- 2b : to eat a bagel

This list syntax allows for nesting to an arbitrary depth.

Names. The C-O Diagram grammar dictates that all contract clauses should
have a name (label). These provide modularity by allowing referencing of other
clauses by label, e.g. in reparations and relative timing constraints. Since the
CNL cannot be lossy with respect to the COML, these labels appear in the
CNL linearisation too (see Fig. 6). Clause names are free strings, but must not
contain any spaces. This avoids the need for double quotes in the CNL. These
labels do reduce naturalness somewhat, but we believe that this inconvenience
can be minimised with the right editing tool.

A CNL for C-O Diagrams 141

payment

Contract

cl ient

payRight

pay euro

Obligation

client

payWrong

pay wrong coins

Forbiddance

AND

(a) Payment options

client

t_payRight<30

Obligation
refund

abort chooseCoffeeMilk

choose coffee
with milk

chooseCoffee

choosing

OR OR OR

choose
coffee

press
abort

(b) Choices in selection

1 payment :

2 payWrong : client mustn ’t pay wrong coins otherwise see refund and

3 payRight : client is required to pay euro

4 choosing : when clock t_payRight less than 30 client is required

5 - abort : to press abort , or

6 - chooseCoffeeMilk : to choose coffee with milk , or

7 - chooseCoffee : to choose coffee otherwise see refund

Fig. 4. Different kinds of complex contracts and their verbalisation

4 Coffee Machine Example

A user Eva must analyse the following description of the operation of a coffee
machine, and construct a formal model for it. She will do this interactively,
switching between editing the CNL and the visual representation.

To order a drink the client inputs money and selects a drink. Coffee can be
chosen either with or without milk. The machine proceeds to pour the selected
drink, provided the money paid covers its price, returning any change. The
client is notified if more money is needed; they may then add more coins or
cancel the order. If the order is cancelled or nothing happens after 30 seconds,
the money is returned. The machine only accepts euro coins.

Eva first needs to identify: i) the actors (client and machine), ii) the actions
(pay, accept, select, pour, refund), iii) and the objects (beverage, money, timer).
The first sentence suggests that to obtain a drink the client must insert coins.
Eva therefore drops an obligation box in the diagram editor and fills the name,
agent and action fields. Only accepting euro is modelled as a prohibition to the
client using a forbiddance box. The two boxes are linked using a contract box
as shown in Fig. 4a.

Eva now wants to model the choice of beverage, and the possibility the abort-
ing of the process. She creates an obligation box named choosing, adding the
timed constraint t payRight < 30 to model the 30 second timeout. She then
appends two action boxes using the or refinement, corresponding to the choice
of drinks (see Fig. 4b). Eva translates the diagram to CNL and modifies the
text, adding the action abort : to press abort as a refinement of choosing.
The result is shown in line 4 of Fig. 6.

142 J.J. Camilleri, G. Paganelli, and G. Schneider

The C-O Diagram for the final contract is shown in Fig. 5. It includes the
handling of the abort action and gives an ordering to the sub-contracts. Note
how there are two separate contracts in the CNL verbalisation: coffeeMachine
and refund, the latter being referenced as a reparation of the former.

The C-O Diagram editor allows changes to be made locally while retaining
the contract’s overall structure, for instance inserting an additional option for a
new beverage. The CNL editor is instead most practical for replicating patterns
or creating large structures such as sequences of clauses, that are faster to outline
in text and rather tedious to arrange in a visual language. The two editors have
the same expressive power and the user can switch between them as they please.

5 Evaluation

5.1 Metrics

The GF abstract syntax for basic C-O Diagrams contains 48 rules, although the
inclusion of large parts of the RGL for phrase formation pushes this number
up to 251. Including the large-scale English dictionary inflates the grammar to
65,174 rules. As a comparison, a previous similar work on a CNL for the contract
logic CL [7] had a GF grammar of 27 rules, or 2,987 when including a small verb
lexicon.

5.2 Classification

Kuhn suggests the PENS scheme for the classification of CNLs [8]. We would
classify the CNL presented in the current work as P5E1N2-3S4, F W D A. P
(precision) is high since we are implementing a formal grammar; E (expressiv-
ity) is low since the CNL is restricted to the expressivity of the formalism; N
(naturalness) is low as the overall structure is dominated with clause labels and
bullets; S (simplicity) is high because the language can be concisely described
as a GF grammar. In terms of CNL properties, this is a written (W) language
for formal representation (F), originating from academia (A) for use in a specific
domain (D).

The P, E and S scores are in line with the problem of verbalising a formal
system. The low N score of between 2–3 is however the greatest concern with
this CNL. This is attributable to a sentence structure is not entirely natural,
somewhat idiosyncratic punctuation, and a bulleted structure that could restrict
readability. While these features threaten the naturalness of the CNL in raw
form, we believe that sufficiently developed editing tools have a large part to
play in dealing with the structural restrictions of this language. Concretely, the
ability to hide clause labels and fold away bulleted items can significantly make
this CNL easier to read and work with.

A CNL for C-O Diagrams 143

client

payWrong

pay wrong coins

Forbiddance

client

payRight

pay euro

Obligation

AND

payment

OR

client

choosing

t_payRight<30

Obligation
refund

machine

pourCoffee

done(chooseCoffee)
pour coffee

Obligation
refund

machine

pourCoffeeMilk

done(chooseCoffeeMilk)
pour coffee

and milk

Obligation
refund

OR

pouringProcess

machine

giveChange

paid>10
give change

Obligation

SEQ
pourEnoughCredit

paid ≥ 10
!done(abort)

Contract
machine

refundAbort

done(abort)
refund money

Obligation

AND

AND

pouring

SEQ

machine

noPour

paid<10
pour

anything

Forbiddance

refunding

refundNotEnough

machine

refund

refund money

Obligation
coffeeMachine

Contract

Contract

Contract

Contract

refund money

Obligationpaid<10
machine

Contract

abort chooseCoffeeMilk

choose coffee
with milk

chooseCoffee

choose
coffee

press
abort

OR OR

OR

Fig. 5. The complete C-O Diagram for the coffee machine example

1 coffeeMachine : the following , in order

2 - payment : payWrong : client mustn ’t pay wrong coins otherwise

3 see refund and payRight : client is required to pay euro

4 - choosing : when clock t_payRight less than 30 client is required

5 - abort : to press abort , or

6 - chooseCoffeeMilk : to choose coffee with milk , or

7 - chooseCoffee : to choose coffee otherwise see refund

8 - pouring : all of

9 - pourEnoughCredit : when abort is not done and variable paid

10 not less than 10 first pouringProcess : pourCoffee : if

11 chooseCoffee is done machine is required to pour coffee

12 otherwise see refund or pourCoffeeMilk : if chooseCoffeeMilk

13 is done machine is required to pour coffee and milk

14 otherwise see refund , then giveChange : if variable paid

15 greater than 10 machine is required to give change

16 - noPour : if variable paid less than 10 machine mustn ’t pour

anything

17 - refunding : refundNotEnough : if variable paid less than 10

18 machine is required to refund money and refundAbort : if

19 abort is done machine is required to refund money

20 refund : machine is required to refund money

Fig. 6. The final verbalisation for the coffee machine example

144 J.J. Camilleri, G. Paganelli, and G. Schneider

6 Related Work

C-O Diagrams may be seen as a generalisation of CL [9,10,11] in terms of ex-
pressivity.2 In a previous work, Angelov et al. introduced a CNL for CL in the
framework AnaCon [7]. AnaCon allows for the verification of conflicts (contra-
dictory obligations, permissions and prohibitions) in normative texts using the
CLAN tool [12]. The biggest difference between AnaCon and the current work,
besides the underlying logical formalism, is that we treat agents and actions as
linguistic categories, and not as simple strings. This enables better agreement in
the CNL which lends itself to more natural verbalisations, as well as making it
easier to translate the CNL into other natural languages. We also introduce the
special treatment of two-item co-ordination, and have a more general handling
of lists as required by our more expressive target language.

Attempto Controlled English (ACE) [13] is a controlled natural language for
universal domain-independent use. It comes with a parser to discourse represen-
tation structures and a first-order reasoner RACE [14]. The biggest distinction
here is that our language is specifically tailored for the description of norma-
tive texts, whereas ACE is generic. ACE also attempts to perform full sentence
analysis, which is not necessary in our case since we are strictly limited to the
semantic expressivity of the C-O Diagram formalism.

Our CNL editor tool currently only has a basic user interface (UI). As already
noted however, it is clear that UI plays a huge role in the effectiveness of a CNL.
While our initial prototypes have only limited features in this regard, we point
to the ACE Editor, AceRules and AceWiki tools described in [15] as excellent
examples of how UI design can help towards solving the problems of writability
with CNLs.

7 Conclusion

This work describes the first version of a CNL for the C-O Diagram formalism,
together with web-based tools for building models of real-world contracts.

The spreadsheet format mentioned in Fig. 2 was not covered in this paper,
but we aim to make it another entry point into our system. This format shows
the mapping between original text and formal model by splitting the relevant
information about modality, agent, object and constraints into separate columns.
As an initial step, the input text can be separated into one sentence per row,
and for each row the remaining cells can be semi-automatically filled-in using
machine learning techniques. This will help the first part of the modelling process
by generating a skeleton contract which the user can begin with.

We plan to extend the CNL and C-O Diagram editors with better user in-
terfaces for easing the task of learning to use the respective representations and
helping with the debugging of model errors. We expect to have more integration

2 On the other hand, CL has three different formal semantics: an encoding into the
μ-calculus, a trace semantics, and a Kripke-semantics.

A CNL for C-O Diagrams 145

between the two applications, in particular the ability to focus on smaller subsec-
tions of a contract and see both views in parallel. While the CNL editor already
has basic input completion, it must be improvemed such that completion of func-
tional keywords and content words are handled separately. Syntax highlighting
for indicating the different constituents in a clause will also be implemented.

We currently use the RGL as is for parsing agents and actions without writ-
ing any specific constructors for them, which creates the potential for ambiguity.
While this does not effect the conversion process, ambiguity is still an undesir-
able feature to have in a CNL. Future versions of the grammar will contain a
more precise selection of functions for phrase construction, in order to minimise
ambiguity.

Finally, it is already clear from the shallow evaluation in section 5 that the
CNL presented here suffers from some unnaturalness. This can to some extent
be improved by simple techniques, such as adding variants for keywords and
phrase construction. Other features of the C-O Diagram formalism however are
harder to linearise naturally, in particular mandatory clause labels and arbitrar-
ily nested lists of constraints and actions. We see this CNL as only the first
step in a larger framework for working with electronic contracts, which must
eventually be more rigorously evaluated through a controlled usability study.

Acknowledgements. The authors wish to thank the Swedish Research Council
for financial support under grant nr. 2012-5746. We are also very grateful to the
anonymous reviewers for their suggestions, in particular with regards to CNL
evaluation and classification using the PENS scheme.

References

1. Dı́az, G., Cambronero, M.E., Mart́ınez, E., Schneider, G.: Specification and Veri-
fication of Normative texts using C-O Diagrams. IEEE Transactions on Software
Engineering (2013)

2. Mart́ınez, E., Cambronero, E., Diaz, G., Schneider, G.: A Model for Visual Spec-
ification of e-Contracts. In: IEEE SCC 2010, pp. 1–8. IEEE Computer Society
(2010)

3. Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars.
CSLI Publications, Stanford (2011)

4. Ranta, A.: The GF Resource Grammar Library. Linguistic Issues in Language
Technology 2(2) (2009)

5. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer 1(1-2), 134–152 (2014)

6. Navara, E.D., Pfeiffer, S., Berjon, R., Faulkner, S., Leithead, T., O’Connor, E.:
HTML5. Candidate recommendation, W3C (2014),
http://www.w3.org/TR/2014/CR-html5-20140204/

7. Angelov, K., Camilleri, J.J., Schneider, G.: A Framework for Conflict Analysis of
Normative Texts Written in Controlled Natural Language. Journal of Logic and
Algebraic Programming 82(5-7), 216–240 (2013)

8. Kuhn, T.: A Survey and Classification of Controlled Natural Languages.
Computational Linguistics 40(1) (2014)

http://www.w3.org/TR/2014/CR-html5-20140204/

146 J.J. Camilleri, G. Paganelli, and G. Schneider

9. Prisacariu, C., Schneider, G.: A Formal Language for Electronic Contracts.
In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468,
pp. 174–189. Springer, Heidelberg (2007)

10. Prisacariu, C., Schneider, G.: CL: An Action-Based Logic for Reasoning about
Contracts. In: Ono, H., Kanazawa, M., de Queiroz, R. (eds.) WoLLIC 2009. LNCS,
vol. 5514, pp. 335–349. Springer, Heidelberg (2009)

11. Prisacariu, C., Schneider, G.: A dynamic deontic logic for complex contracts.
Journal of Logic and Algebraic Programming 81(4), 458–490 (2012)

12. Fenech, S., Pace, G.J., Schneider, G.: CLAN: A Tool for Contract Analysis and
Conflict Discovery. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799,
pp. 90–96. Springer, Heidelberg (2009)

13. Fuchs, N.E., Schwertel, U., Schwitter, R.: Attempto Controlled English (ACE)
Language Manual, Version 3.0. Technical Report 99.03, Department of Computer
Science, University of Zurich (1999)

14. Fuchs, N.E.: First-Order Reasoning for Attempto Controlled English. In: Rosner,
M., Fuchs, N.E. (eds.) CNL 2010. LNCS, vol. 7175, pp. 73–94. Springer, Heidelberg
(2012)

15. Kuhn, T.: Controlled English for Knowledge Representation. Doctoral thesis,
University of Zurich (2010)

Handling Non-compositionality in Multilingual CNLs

Ramona Enache, Inari Listenmaa, and Prasanth Kolachina

University of Gothenburg, Sweden
{ramona.enache,inari.listenmaa,prasanth.kolachina}@cse.gu.se

Abstract. In this paper, we describe methods for handling multilingual non-
compositional constructions in the framework of GF. We specifically look at
methods to detect and extract non-compositional phrases from parallel texts and
propose methods to handle such constructions in GF grammars. We expect that
the methods to handle non-compositional constructions will enrich CNLs by pro-
viding more flexibility in the design of controlled languages. We look at two spe-
cific use cases of non-compositional constructions: a general-purpose method to
detect and extract multilingual multiword expressions and a procedure to identify
nominal compounds in German. We evaluate our procedure for multiword ex-
pressions by performing a qualitative analysis of the results. For the experiments
on nominal compounds, we incorporate the detected compounds in a full SMT
pipeline and evaluate the impact of our method in machine translation process.

1 Introduction

The work describes a series of methods used to enrich multilingual CNLs written in the
grammar formalism GF (Grammatical Framework)[20] with multilingual multiword
expressions (MMWEs). This aims to give a better separation between compositional
and non-compositional constructions in GF applications and a better understanding on
representing MMWEs in GF. We present two new GF modules: one for constructions
in a multilingual setting, and one specifically for German compound nouns.

We are targeting cases where translation equivalents have different syntactic struc-
ture: this covers pairs such as English–French (apple juice, jus de pommes ‘juice of ap-
ples’) and English–Finnish (kick the bucket, heittää henkensä ‘throw one’s life’). Only
the latter pair contains a monolingually non-compositional structure, i.e. having an in-
terpretation that cannot be inferred from the components, but we consider both of them
as MMWEs, due to the non-compositionality of translation.

We propose a solution to this, that relies on prior analysis of the domain, since GF
applications are normally developed starting from positive examples covering the do-
main [22]. We start from a parallel corpus describing the scope of the grammar and
identify MMWEs in order to add them to the grammar as special constructions.

A special case of MMWEs, which we treat separately is that of nominal compounds
in German. The need for a multilingual lexicon of such compounds and their transla-
tions originated from the use of GF in machine translation [10], [11]. This use case is
of particular interest, since it is easier to evaluate—both in terms of precision and recall
of the method, and in terms of impact on the machine translation process.

B. Davis et al. (Eds.): CNL 2014, LNAI 8625, pp. 147–154, 2014.
c© Springer International Publishing Switzerland 2014

148 R. Enache, I. Listenmaa, and P. Kolachina

This paper is structured as follows: Section 2 describes the background and related
work; Section 3 describes the implementation of the general MWE detection and com-
pound detection methods; Section 4 describes a preliminary evaluation, and finally
Section 5 describes future work.

2 Background and Related Work

2.1 Grammatical Framework

GF (Grammatical Framework) is a grammar formalism particularly fit for multilingual
natural language applications. In the recent years, it has been used extensively for de-
veloping (multilingual) CNLs, such as the in-house implementation of Attempto Con-
trolled English [21], domain-specific applications for mathematical exercises [25], [27],
[26], speech-based user interfaces [14], tourist phrases [23], business models [8] and
cultural heritage artifacts [6], [7].

Applications written in GF are represented by their abstract syntax, which models
the semantics of the domain in a language-independent fashion, and a number of con-
crete syntaxes, mapping the semantics to a number of target languages, most commonly
natural languages.

The difficulty when dealing with compositional and non-compositional constructs in
GF arises, in fact, from the multilingual character of the applications. It is of particular
difficulty to design the abstract syntax in a way that accommodates all the concrete
syntaxes, without the need for further change. As a potential solution to this, there
has been work done on deriving the abstract syntax from an existing ontology [2] or
FrameNet [13], [12]. However, such resources are not always available.

2.2 Multiword Expressions

There is a significant body of research on MWEs, ranging from classification [4], lin-
guistic analysis [24] to methods to detect MWEs (for both monolingual [15], [18] and
multilingual settings [29], [5], [28]) and evaluation measures for these methods [19].

Following the MWE taxonomy from [4] into fixed, semi-fixed and syntactically flex-
ible expressions, we note that applying the same scale to MMWEs, it is the semi-fixed
and syntactically flexible constructions that are most effectively representable in GF.
The reason is that GF allows for generalisations in terms of arguments (for relational
MWEs, such as transitive verb phrases), declension forms and topicalisation in the sen-
tence.

3 Methods for MMWE Extraction

3.1 General MMWE Candidate Extraction

The algorithm for general MMWE extraction parses a pair of sentences (X,Y) with a
wide-coverage GF grammar, often resulting in multiple parse trees for each sentence.
Then it compares all pairs of trees {(x, y) | x ∈ parse(X), y ∈ parse(Y)}, and if no
identical trees are found, the phrases are candidates for containing BMWEs.

Handling Non-compositionality in Multilingual CNLs 149

weather_adjCl : AP -> Cl ; -- it is warm / il fait chaud (Fre)
n_units_AP : Card -> CN -> A -> AP ; -- x inches long
glass_of_CN : NP -> CN ; -- glass of water / lasillinen vettä (Fin)
where_go_QCl : NP -> QCl ; -- where did X go / vart gick X (Swe)

Fig. 1. Example of constructions

Part of the test material was not parsed by the regular GF grammar. To add robust-
ness, we used a new chunking grammar1 for the language pair English–Swedish. French
and German didn’t have the chunking grammar implemented, so for pairs including
them, we used robust parsing in GF [1], [3]. With the chunking grammar, the trees kept
their local structure better, whereas the robust parser resulted in flatter structure, making
the distance to any well-formed tree high. Thus these sentences were always reported
as BMWE candidates. For our small test set, this wasn’t a problem, but for future work,
a fallback for partial trees should be considered, e.g. one that translates the sentences
both ways and calculates the word error rate.

We used material from two sources. First, we took 246 sentences from the Wikitravel
phrase collection2 in English, German, French and Swedish. The material consists of
sentences such as asking for direction or expressing needs, in various language pairs of
which other is English. For another type of text, we took the 61–sentence short story
“Where is James?”, from the website UniLang3, which contains free material for lan-
guage learning. In total our test set was 307 sentences, functioning mostly as a proof of
concept.

After running the experiments, we found various MMWE candidates in all language
pairs. We added relevant new findings to the GF multilingual dictionary, some replac-
ing the old translations, some as new lexical items. However, the majority of the candi-
dates were predicates that span over a larger structure, and couldn’t be covered just by
lexicon—instead, we added them to a new module, called Construction (see Figure 1).

The module is, in the spirit of construction grammar, between syntax and lexicon.
Instead of applying to categories in general, most of the functions in the module are
about particular predicates which are found to work differently in different languages.
The purpose of the module is hence not so much to widen the scope of string recogni-
tion, but to provide trees that are abstract enough to yield correct translations. It is being
developed incrementally, but we envision being able to develop the module in a more
systematic manner by employing data-driven methods, such as extracting constructions
from a treebank.

3.2 GF Lexicon of Compound Words

A substantial part of the work on MWEs involved the detection and representation
of compound words in GF. The motivation for this lies in the need to improve GF-

1 https://github.com/GrammaticalFramework/GF/blob/master/lib/
src/experimental/Chunk.gf

2 http://wikitravel.org/en/List_of_phrasebooks
3 http://www.unilang.org/

150 R. Enache, I. Listenmaa, and P. Kolachina

fun ConsNomCN : N -> CN -> CN ;
fun Cons_sCN : N -> CN -> CN ;
fun Cons_enCN : N -> CN -> CN ;

Fig. 2. Example of compounds

driven machine translation from English into German, especially in the bio-medical
domain [9].

The goal is to extract pairs consisting of German compound words and their English
translations from parallel corpus, to syntactically analyse the compound and to build
a GF representation of the pair, which will be added to a compound lexicon. Because
the most frequent such compound words are nominals [4], we consider them as the use
case of our method.

The method relies on a GF resource describing rules for nominal compounding. The
following rules describe three types of compounding: first one with the modifier in
nominative, second one with the morpheme ‘s’ in the end (Lebensmittel ‘life-s-means’)
and third one with the ending ‘en’ (Krankenwagen ‘sick-en-vehicle’).

The basic procedure is the following:

– we extract candidate pairs, which fulfil the following criteria:
• their probability is above a confidence threshold
• the English part parses as an NP in GF
• the German part is composed of one word

– we employ a greedy algorithm to split the German word into a number of lexical
items from the German monolingual dictionary from GF (based on Wiktionary),
based on the German compound grammar described above; we select the split
which employs the least number of tokens

– we add the pair of GF trees to a lexical resource for compounds

In our experiments, phrase translations extracted from a English-German parallel
corpus [17] are used to detect possible nominal compounds in German. For practical
reasons, we restrict the set of possible phrase translations to phrases determined to be
constituents in the parse tree for the English sentence by a constituency parser [16].
This restricts the amount of noise in the translation memories, where noise is defined
as a pair of random sequence of words in English and German that are seen together in
the translations. Furthermore, we restrict our interest to entries that are labelled as noun
phrases by the parser.

4 Evaluation

4.1 Evaluation of General MMWE Extraction

As a tentative evaluation for the general MMWE extraction method, we used the re-
sults of the language pair English–Swedish and did qualitative analysis of the findings.
We chose Swedish, because it had the best grammar coverage out of the languages we

Handling Non-compositionality in Multilingual CNLs 151

tested; the results for French and German were poorer, due to the flat structure of trees
from robust parsing. The chunking grammar made it possible to compare trees even
when one has a complete parse and other not, since the well-formed sentence can also
be expressed as chunks.

Table 1. General MMWE extraction

Not MWE candidates 92
MWE candidates 215

False positives 44
Lexical MWEs 29

Predicates 142
All sentences 307

Table 1 shows the results of the analysis. Of the 307 sentences in English and
Swedish, we found 215 candidates, of which 44 were considered false positives, due
to parsing problems. For the algorithm to recognise two sentences as identical, it needs
to have parsed them properly, so we did not get false negatives.

Out of the remaining 171 candidates, we classified 29 to be lexical MWEs, such as
English locker vs. Swedish låsbart skåp ‘lockable closet’, or hide from vs. gömma sig
för ‘hide REFL for’. Not all of them were one-to-many; in 11 cases it was just a question
of similar words, such as little and small used in the parallel sentences.

142 candidates were predicates that span over a larger structure. The expressions
could be classified to the following subcategories: a) greetings; b) weather expressions;
c) time expressions; d) money; e) units of measurement, containers; f) spatial deixis.

These expressions are non-compositional due to different factors: e.g. greetings and
weather expressions are highly idiomatic, fixed phrases. Other cases, such as units, are
less rigid: a certain semantic class of words appears in structures like glass of NP,
which work differently in different languages. For example, Swedish uses no preposi-
tion, Finnish uses a special form glassful. Since adding a general rule for NP of NP
would be overgenerating, we added these constructions separately for each container
word (e.g. glass, bottle, cup, bucket).

An example of spatial deixis is the correspondence of direction adverbs between
languages: e.g. the word where in the sentence where did X go should be translated in
German to wohin ‘where to’ instead of wo ‘where in’; same with here and there. We
added these constructions as combinations of a motion verb and a direction adverb.

Finally, a number of the 142 phrases were correctly recognised as containing a dif-
fering subtree, but we judged the difference not to be general enough to be added as a
construction. For example, sentence (1) from the short story has the auxiliary verb can
in the English version and not in the Swedish, and the adverb tydligt means ‘clearly, dis-
tinctly’. While not general enough for the construction module, results like this could
still be useful for some kind of application grammar; the method correctly recognises
them, as long as the sentences are fully parsed.

152 R. Enache, I. Listenmaa, and P. Kolachina

(1) Hon
‘she

hör
hears

det
it

tydligt
clearly

nu
now’

(Swe)

She can hear it well now (Eng)

4.2 Evaluation of German Nominal Compounds

We evaluated the German nominal compounds detected by our algorithm based on their
utility in the task of machine translation. In this experiment, we provided the detected
nominals as possible dictionary items to an SMT pipeline and extracted a translation
memory from a news domain corpora augmented with the nominal compounds. We
evaluated the improvements in translation quality after augmenting the translation mem-
ories with these nominal compounds. Translation quality is evaluated in terms of BLEU
score, a standard metric used in evaluating performance of MT systems. Table 2 shows
the BLEU scores obtained from two different SMT systems, a baseline system and
the same system using the translation memory augmented with nominal compounds.
The BLEU scores are reported on standard test datasets used in the evaluation of SMT
systems.4

The improvement gained by using this simple method suggests that a proper handling
of MWEs could improve the BLEU scores in an even more significant manner, by taking
advantage of the full power of the GF representations, mainly by aligning all declension
forms of MWEs and adding them to the translation memories.

Table 2. BLEU scores obtained from the SMT systems

SMT system newstest2011 newstest2012
Baseline 11.71 11.64
+Compounds 11.83 11.96

5 Future Work

As GF has proven to be a reliable environment for writing multilingual CNLs and
compositionality is a known problem of such applications, our method to isolate non-
compositional constructions would be a great aid for the development of GF grammars,
if it were applied on more domains and language sets. In this manner, one could also
asses the generality of the method, both in terms of languages and types of construc-
tions, more clearly.

For the purpose of aiding the development of GF domain grammars, we are also
considering a combination between our method and the related efforts of constructing
multilingual FrameNet-based grammars [13], [12].

4 The datasets can be found at
http://www.statmt.org/wmt14/translation-task.html. We use the new-
stest2011 and newstest2012 datasets in our experiments.

http://www.statmt.org/wmt14/translation-task.html

Handling Non-compositionality in Multilingual CNLs 153

Regarding the use of MWE in machine translation, one can consider integrating the
GF resources in a more meaningful manner, by not just aligning the basic forms, but
also the declension forms. The MWE resources could also be helped to improve the
existing GF-driven hybrid translation systems [9].

Last, but not least, as our initial experiments have shown a rather large number of
false positives, we aim to develop specific pre-processing methods to address this issue.
A boost in accuracy would lead to a decrease in the size of the initial resources that are
automatically created and reduce the effort for evaluation. A possible solution would be
comparing the shape of the parse trees, in order to asses differences in the constructions.

In conclusion, our work represents the first step in handling non-compositional con-
structions in multilingual GF applications. The methods are still under development,
but they still highlight the significant advantages that the feature brings, both to general
CNLs written in GF and to large translation systems.

Acknowledgements. The authors would like to thank Koen Claessen and Aarne Ranta
for their input on both the methods developed and this paper. Moreover, we would like
to thank Víctor Sánchez-Cartagena for the fruitful discussion on a previous version of
the MWE detection algorithm and the ideas on how to implement it for parallel free
text.

We also want to thank the Swedish Research Council for financial support under
grant nr. 2012-5746 (Reliable Multilingual Digital Communication: Methods and
Applications).

References

1. Angelov, K.: The Mechanics of the Grammatical Framework. PhD thesis, Chalmers
University of Technology (2011)

2. Angelov, K., Enache, R.: Typeful Ontologies with Direct Multilingual Verbalization. In:
Rosner, M., Fuchs, N.E. (eds.) CNL 2010. LNCS, vol. 7175, pp. 1–20. Springer, Heidelberg
(2012)

3. Angelov, K., Ljunglöf, P.: fast statistical parsing with parallel multiple context-free
grammars. In: European Chapter of the Association for Computational Linguistics,
Gothenburg (2014)

4. Baldwin, T., Kim, S.N.: Multiword expressions. In: Handbook of Natural Language Process-
ing, 2nd edn. (2010)

5. Bouamor, D., Semmar, N., Zweigenbaum, P.: Identifying bilingual multi-word expressions
for statistical machine translation. In: Calzolari, N., Choukri, K., Declerck, T., Doan, M.U.,
Maegaard, B., Mariani, J., Moreno, A., Odijk, J., Piperidis, S. (eds.) Proceedings of the Eight
International Conference on Language Resources and Evaluation (LREC 2012), Istanbul,
Turkey, European Language Resources Association (ELRA) (May 2012)

6. Dannélls, D., Damova, M., Enache, R., Chechev, M.: A framework for improved access to
museum databases in the semantic web. In: Recent Advances in Natural Language Processing
(RANLP) (2011)

7. Dannélls, D., Enache, R., Damova, M., Chechev, M.: Multilingual online generation from
semantic web ontologies. In: WWW 2012, EU projects track (2012)

8. Davis, B., Enache, R., van Grondelle, J., Pretorius, L.: Multilingual Verbalisation of Mod-
ular Ontologies using GF and Lemon. In: Kuhn, T., Fuchs, N.E. (eds.) CNL 2012. LNCS,
vol. 7427, pp. 167–184. Springer, Heidelberg (2012)

154 R. Enache, I. Listenmaa, and P. Kolachina

9. Enache, R.: Frontiers of Multilingual Grammar Development. PhD thesis, University of
Gothenburg (2013)

10. Enache, R., España-Bonet, C., Ranta, A., Màrquez, L.: A hybrid system for patent translation.
In: Proceedings of the 16th Annual Conference of the European Association for Machine
Translation (EAMT 2012), Trento, Italy, pp. 269–276 (2012)

11. España-Bonet, C., Enache, R., Angelov, K., Virk, S., Galgóczy, E., Gonzàlez, M., Ranta, A.,
Màrquez, L.: WP5 final report: Statistical and robust machine translation (D 5.3) (2013)

12. Grūzı̄tis, N., Dannélls, D.: Extracting a bilingual semantic grammar from FrameNet-
annotated corpora (2014)

13. Gruzitis, N., Paikens, P., Barzdins, G.: FrameNet Resource Grammar Library for GF. In:
Kuhn, T., Fuchs, N.E. (eds.) CNL 2012. LNCS, vol. 7427, pp. 121–137. Springer, Heidelberg
(2012)

14. Kaljurand, K., Alumäe, T.: Controlled natural language in speech recognition based user
interfaces. In: Kuhn, T., Fuchs, N.E. (eds.) CNL 2012. LNCS, vol. 7427, pp. 79–94. Springer,
Heidelberg (2012)

15. Kiela, D., Clark, S.: Detecting compositionality of multi-word expressions using nearest
neighbours in vector space models. In: EMNLP, pp. 1427–1432. ACL (2013)

16. Klein, D., Manning, C.D.: Accurate Unlexicalized Parsing. In: Proceedings of ACL (2003)
17. Koehn, P.: Europarl: A Parallel Corpus for Statistical Machine Translation. In: Proceedings

of the 10th Machine Translation Summit (2005)
18. Korkontzelos, I.: Unsupervised Learning of Multiword Expressions. PhD thesis, University

of York (2010)
19. Ramisch, C., De Araujo, V., Villavicencio, A.: A broad evaluation of techniques for

automatic acquisition of multiword expressions. In: Proceedings of ACL 2012 Student
Research Workshop, ACL 2012, Stroudsburg, PA, USA, pp. 1–6. Association for Compu-
tational Linguistics (2012)

20. Ranta, A.: Grammatical Framework: Programming with Multilingual Grammars. CSLI
Publications (2011)

21. Angelov, K., Ranta, A.: Implementing Controlled Languages in GF. In: Fuchs, N.E. (ed.)
CNL 2009. LNCS, vol. 5972, pp. 82–101. Springer, Heidelberg (2010)

22. Ranta, A., Camilleri, J., Détrez, G., Enache, R., Hallgren, T.: Grammar tool manual and best
practices (D 2.3) (2012)

23. Ranta, A., Enache, R., Détrez, G.: Controlled language for everyday use: The MOLTO
phrasebook. In: Rosner, M., Fuchs, N.E. (eds.) CNL 2010. LNCS, vol. 7175, pp. 115–136.
Springer, Heidelberg (2012)

24. Sag, I.A., Baldwin, T., Bond, F., Copestake, A., Flickinger, D.: Multiword expressions: A
pain in the neck for NLP. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 1–15.
Springer, Heidelberg (2002)

25. Saludes, J., Xambó, S., The, G.F.: Mathematics Library. In: Proceedings of First Workshop
on CTP Components for Educational Software, THedu 2011 (2011)

26. Saludes, J., Xambó, S.: Proceedings of EACA 2012, TODO (2012)
27. Saludes, J., Xambó, S.: Multilingual Sage. Tbilisi Mathematical Journal (2012)
28. Tsvetkov, Y., Wintner, S.: Extraction of multi-word expressions from small parallel corpora.

In: Huang, C.-R., Jurafsky, D. (eds.) COLING (Posters), pp. 1256–1264. Chinese Informa-
tion Processing Society of China (2010)

29. Villada Moirón, B., Tiedemann, J.: Identifying idiomatic expressions using automatic word
alignment. In: Proceedings of the EACL 2006 Workshop on Multiword Expressions (2006)

Controlled Natural Language Generation

from a Multilingual FrameNet-Based Grammar

Dana Dannélls and Normunds Gruzitis

Spr̊akbanken, University of Gothenburg, Sweden
Department of Computer Science and Engineering, University of Gothenburg, Sweden

dana.dannells@svenska.gu.se, normunds.gruzitis@cse.gu.se

Abstract. This paper presents a currently bilingual but potentially
multilingual FrameNet-based grammar library implemented in Gram-
matical Framework. The contribution of this paper is two-fold. First, it
offers a methodological approach to automatically generate the grammar
based on semantico-syntactic valence patterns extracted from FrameNet-
annotated corpora. Second, it provides a proof of concept for two use
cases illustrating how the acquired multilingual grammar can be ex-
ploited in different CNL applications in the domains of arts and tourism.

Keywords: Controlled Natural Language, FrameNet, Natural Language
Generation, Multilinguality, Grammatical Framework.

1 Introduction

Two years ago, at CNL 2012, a conception of a general-purpose semantic gram-
mar based on FrameNet (FN) was proposed [1] to facilitate the development
of multilingual controlled natural language (CNL) applications in Grammatical
Framework (GF). GF [2], a type-theoretical grammar formalism and a toolkit,
provides a wide-coverage resource grammar library (RGL) for nearly 30 lan-
guages that implement a shared syntactic API [3]. The idea behind the FN-based
grammar is to provide a frame semantic abstraction layer, a shared semantic API,
over the syntactic RGL.

Following this proposal, a shared abstract syntax of wide-coverage English
and Swedish semantic grammars has been recently extracted from FN-annotated
corpora [4]. In this work, we take this approach one step further, and the con-
tribution of this paper is two-fold. First, we offer a methodological approach to
automatically generate concrete syntaxes based on the extracted abstract syn-
tax. Second, we provide a proof of concept for two use cases illustrating how the
acquired multilingual grammar can be exploited in different CNL applications
in the domains of arts and tourism. Although we focus on English and Swedish,
the same approach is intended to be applicable to other languages as well.

The future potential of our work is to provide a means for multilingual ver-
balization of FN-annotated databases that have been populated in information
extraction processes by FN-based semantic parsers and that potentially can be
mapped with the FN-based API automatically [5].

B. Davis et al. (Eds.): CNL 2014, LNAI 8625, pp. 155–166, 2014.
c© Springer International Publishing Switzerland 2014

156 D. Dannélls and N. Gruzitis

2 Background

2.1 FrameNet (FN)

FrameNet is a lexico-semantic resource based on the theory of frame seman-
tics [6]. According to this theory, a semantic frame representing a cognitive
scenario is characterized in terms of frame elements (FE) and is evoked by tar-
get words called lexical units (LU). An LU entry carries semantic and syntactic
valence information about the possible realizations of FEs. The syntactic and
semantic valence patterns are derived from FN-annotated corpora. FEs are clas-
sified in core and non-core FEs. A set of core FEs uniquely characterize the
frame and syntactically correspond to verb arguments, in contrast to non-core
FEs (adjuncts) which can be instantiated in many other frames. In this paper,
we consider only those frames for which there is at least one corpus example
where the frame is evoked by a verb. The frame-based grammar currently covers
only core FEs.

The FrameNet approach provides a benchmark for representing large amounts
of word senses and word usage patterns through the linguistic annotation of cor-
pus examples, therefore the exploitation of FN-like resources has been appealing
for a range of advanced NLP applications such as semantic parsing [7], informa-
tion extraction [8] and natural language generation [9]. There are available com-
putationally oriented FNs for German, Japanese, Spanish [10] and Swedish [11].
More initiatives exist for other languages. In this paper, we consider two FNs: the
original Berkeley FrameNet (BFN) [6] and the Swedish FrameNet (SweFN) [11].

BFN version 1.5 defines more than 1,000 frames,1 of which 556 are evoked by
around 3,200 verb LUs in more than 68,500 annotated sentences [4]. Although
BFN has been developed for English, its inventory of frames and FEs is being
reused for many other FNs [10]. Hence, the abstract semantic layer of BFN can
be seen as an interlingua for linking different FNs.

SweFN mostly uses the BFN frame inventory, however, around 50 additional
frames have been introduced in SweFN, and around 15 BFN frames have been
modified (in terms of FEs). The SweFN development version contains more than
900 frames of which 638 are evoked by around 2,300 verb LUs in more than 3,700
annotated sentences [4].2

2.2 Grammatical Framework (GF)

The presented grammar is implemented in GF, a categorial grammar formalism
specialized for multilingual (parallel) grammars [2]. One of the key features of GF
grammars is the separation between an abstract syntax and concrete syntaxes.
The abstract syntax defines the language-independent structure, the semantics
of a domain-specific application grammar or a general-purpose grammar library,
while the concrete syntaxes define the language-specific syntactic and lexical
realization of the abstract syntax.

1 https://framenet.icsi.berkeley.edu/
2 http://spraakbanken.gu.se/swefn/ (a snapshot taken in February 2014)

https://framenet.icsi.berkeley.edu/
http://spraakbanken.gu.se/swefn/

CNL Generation from a Multilingual FrameNet-Based Grammar 157

Remarkably, GF is not only a grammar formalism or programming language.
It also provides a general-purpose resource grammar library (RGL) for nearly 30
languages that implement the same abstract syntax, a shared syntactic API [3].
The use of the shared syntactic types and functions allows for rapid and rather
flexible development of multilingual application grammars without the need of
specifying low-level details like inflectional paradigms and syntactic agreement.

3 FrameNet-Based Grammar

The language-independent conceptual layer of FrameNet, i.e. frames and FEs, is
defined in the abstract syntax of the multilingual FN-based grammar, while the
language-specific lexical layers, i.e. the surface realization of frames and LUs, are
defined in concrete syntaxes.3 The syntactic API of RGL is used for generalizing
and unifying the syntactic types and constructions used in different FNs, which
facilitates porting the implementation to other languages. The FN-based gram-
mar, in turn, provides a frame semantic abstraction layer to RGL, so that the
application grammar developer can primarily manipulate with plain semantic
constructors in combination with some simple syntactic constructors instead of
comparatively complex syntactic constructors for building verb phrases (VP).
Moreover, the frame constructors can be typically specified for all languages at
once in the shared concrete syntax (functor) of an application grammar.

3.1 Abstract Syntax

Following a recently proposed approach [4], we have extracted a set of shared
semantico-syntactic frame valence patterns from the annotated sentences in BFN
and SweFN. For instance, the shared valence patterns for the frame Desiring are:

Desiring/VAct Experiencer/NPSubj Focal participant/Adv
Desiring/V2Act Experiencer/NPSubj Focal participant/NPDObj

Desiring/VVAct Event/VP Experiencer/NPSubj

which correspond, for instance, to these annotated examples in BFN:4

[Dexter]Experiencer/NP [YEARNED]V [for a cigarette]Focal participant/Adv
[she]Experiencer/NP [WANTS]V2 [a protector]Focal participant/NP

[I]Experiencer/NP would n’t [WANT]VV [to know]Event/VP

In contrast to the previous experiment [4], where the focus was on the abstract
grammar, here we generate the concrete syntaxes taking the syntactic roles for
FEs of type NP into account: subject (Subj), direct object (DObj) and indirect
object (IObj). Thus, we also consider the grammatical voice (Act/Pass) in the
pattern comparison, as well as the target verb type deduced from the syntactic
types and roles of involved FEs. Additionally, we handle FEs of common types of

3 http://www.grammaticalframework.org/framenet/
4 The actual BFN phrase types are generalized by RGL types.

http://www.grammaticalframework.org/framenet/

158 D. Dannélls and N. Gruzitis

subclauses (generalized to S, embedded sentences), as well as finite and gerundive
VPs, and PPs where the preposition governs a wh-clause or a gerundive VP, so
that the fraction of skipped BFN examples is reduced form 14% to 4%, and no
SweFN examples are skipped.

The extracted sets of valence patterns usually vary across languages depending
on corpora. For multilingual applications we are primarily interested in valence
patterns whose implementation can be generated for all considered languages.
Thus, we focus on valence patterns that are shared between FNs. The multi-
lingual criteria also help in reducing the number of incorrect patterns due to
annotation errors introduced by the automatic POS tagging and syntactic pars-
ing. However, patterns that are not verified across FNs could be separated into
FN-specific extra modules of the grammar.

To find a representative yet condensed set of shared valence patterns, we
compare the extracted patterns by subsumption instead of exact match [4].
Pattern A subsumes pattern B if A.frame = B.frame, A.verbType = B.verbType,
A.voice = B.voice, and B.FEs ⊆ A.FEs (taking into account the syntactic types
and roles). If a pattern of FN1 is subsumed by a pattern of FN2, it is added to
the shared set (and vice versa). In the final set, patterns which are subsumed by
other shared patterns are removed. To reduce the propagation of annotation er-
rors even more, we filter out once used BFN valence patterns before performing
the cross-FN pattern comparison.5

In the result, from around 66,800 annotated sentences in BFN and around
4,100 annotated sentences in SweFN, we have extracted a set of 717 shared
semantico-syntactic valence patterns covering 423 frames.

Frame valence patterns are declared in the grammar as functions (henceforth
called frame functions) that take one or more core FEs and one verb as argu-
ments. For each frame, the set of core FEs is often split into several alternative
functions according to the corpus evidence.6 Different subsets of core FEs may
require different types of target verbs. We also differentiate between functions
that return clauses in the passive voice from functions that return active voice
clauses because the subject and object FEs swap their syntactic roles and/or
the order (which otherwise is not reflected in the abstract syntax). If the verb
type and voice suffixes are not sufficient to make the function name unique,
a discriminative number is added as well. For instance, consider the following
abstract functions derived from the above given valence patterns:7

fun Desiring V : Experiencer NP → Focal participant Adv → V → Clause
fun Desiring V2 Act : Experiencer NP → Focal participant NP → V2 → Clause
fun Desiring V2 Pass : Experiencer NP → Focal participant NP → V2 → Clause

fun Desiring VV : Event VP → Experiencer NP → VV → Clause

5 A similar pre-filtering is currently not reasonable for SweFN due to its small size.
6 It is often unlikely that all core FEs can be used in the same sentence.
7 Note that Desiring V2 Pass is not directly acquired from a shared pattern; missing
passive voice patterns could be derived from the corresponding active voice patterns.
Also note that the syntactic roles are not reflected in the abstract syntax; they are
used to generate the implementation of frame functions in the concrete syntaxes.

CNL Generation from a Multilingual FrameNet-Based Grammar 159

In GF, constituents and features of phrases are stored in objects of record
types, and functions are applied to such objects to construct phrase trees. In
the abstract syntax, both argument types and the value type of a function are
separated by right associative arrows, i.e. all functions are curried. Arguments of
a frame function are combined into an object of type Clause that differs form the
RGL type Cl. A Clause whose linearization type is {np : NP; vp : VP} comprises
two constituents of RGL types. It is a deconstructed Cl where the subject NP
is separated from the rest of the clause. The motivation for this is to allow for
nested frames (see Section 4.1) and for adding non-core FEs before combining
the NP and VP parts into a clause (see Section 4.2).

In the FN-based grammar, FEs are declared as semantic categories (types)
that are subcategorized by RGL types, and these discriminators are also encoded
by suffixes in FE names to keep the names unique, for instance:

cat Experiencer NP

Note that the FE Focal participant is typically realized as a noun phrase (NP),
but some intransitive verbs require it as a prepositional phrase (PP), hence this
FE is subcategorized using the RGL types NP and Adv (adverbial modifier). In
GF, the type Adv covers both adverbs and PPs, and there is no separate type for
PPs. Also note that the word order is not specified in the abstract syntax (FEs in
the function type signatures are given alphabetically), and all FE arguments are
specified in concrete syntaxes as optional, i.e. any FE can be an empty phrase
if it is not expressed in the sentence.

The frame-evoking target verb, either intransitive (V), transitive (V2) or di-
transitive (V3), is always given as the last, mandatory argument. We additionally
differentiate two special cases of transitive verbs: verb-phrase-complement verbs
(VV) and sentence-complement verbs (VS), as well as a special case for each of
them allowing also for an indirect object (V2V and V2S respectively).

LUs are represented as functions that take no arguments. To distinguish be-
tween different senses and types of LUs, the verb type and the frame name is
added to lexical function names, for instance:

(Eng) fun want VV Desiring : VV
(Swe) fun vilja VV Desiring : VV

However, LUs between BFN and SweFN are not directly aligned, therefore an
FN-specific lexicon is generated for each language containing more than 3,300
entries for English and more than 1,100 entries for Swedish. The domain-specific
translation equivalents can be aligned in application grammars.

We assume that verbs of the same type evoking the same frame share a set of
generalized syntactic valence patterns. Patterns requiring, for instance, a tran-
sitive verb cannot be evoked by an intransitive verb. Otherwise, the current
approach does not limit the set of verbs that can evoke a frame, and the set
of prepositions that can be used for an FE if it is realized as a PP. We expect
that appropriate verbs and prepositions are specified by the application gram-
mar that uses the FN-based grammar as an API. Hence, this approach allows to
evoke a frame by a metaphor, i.e. an LU that normally evokes another frame.

160 D. Dannélls and N. Gruzitis

3.2 Concrete Syntaxes

The exact behaviour of the types and functions declared in the abstract syntax
is defined in the concrete syntax for each language.

The mapping from the semantic FN types to the syntactic RGL types is
straightforward and is shared for all languages in a functor, for instance:

lincat Focal participant NP = Maybe NP
lincat Focal participant Adv = Maybe Adv

To allow for optional FEs (verb arguments that might not be expressed in the
sentence), all linearization types are of type Maybe whose behaviour is similar
to the analogous type in Haskell: a value of type Maybe x either contains a value
of type x (represented as Just x), or it is empty (represented as Nothing).

To implement the frame functions, particularly to fill the VP part of Clause
objects, RGL constructors are applied to the arguments depending on their
RGL types and syntactic roles. The implementation of functions declared in the
previous section is systematically generated for English and Swedish as follows:

lin Desiring V experiencer focal participant v = {
np = fromMaybe NP experiencer ;
vp = mkVP (mkVP v) (fromMaybe Adv focal participant) }

lin Desiring V2 Act experiencer focal participant v2 = {
np = fromMaybe NP experiencer ;
vp = mkVP v2 (fromMaybe NP focal participant) }

lin Desiring V2 Pass experiencer focal participant v2 = {
np = fromMaybe NP focal participant ;
vp=mkVP (passiveVP v2) (mkAdv by8agent Prep (fromMaybe NP experiencer))

}
lin Desiring VV event experiencer vv = {

np = fromMaybe NP experiencer ;
vp = mkVP (mkVV vv) (fromMaybe VP event) }

Apart from RGL constructors (mkVP, mkVV, passiveVP, mkAdv, etc.8), a
helper function fromMaybe is used to handle the potentially optional FEs. This
function takes a Maybe value and returns an empty phrase of the specified type
if the Maybe value is empty (Nothing); otherwise it returns the Maybe value.

The RGL-based code templates used to implement the above functions can
be reused for many other frame functions. Given the 717 extracted shared
semantico-syntactic valence patterns, there are only 25 syntactic valence pat-
terns that match all 717 patterns if we consider only the syntactic types and roles
of FEs, and the grammatical voice the roles depend on. These patterns (except 5
once used) are listed in Table 1 that shows that the syntactic patterns underlying
functions Desiring V, Desiring V2 Act, Desiring V2 Pass and Desiring VV already
cover 55% of all shared patterns. For the same verb types, similar syntactic pat-
terns (RGL-based code templates) cover another 39% of frame functions. The
similar templates can be derived in several (incl. combined) ways:

8 http://www.grammaticalframework.org/lib/doc/synopsis.html

http://www.grammaticalframework.org/lib/doc/synopsis.html

CNL Generation from a Multilingual FrameNet-Based Grammar 161

– more adverbial modifiers can be added by recursive calls of the respective
mkVP constructor, or modifiers can be removed at all;

– the NP part of the return values can be fixed to an empty NP if no FE
is expected to fill the subject role (e.g. due to examples in the imperative
mood; however, a missing subject FE could be often automatically added);

– in the passive voice, the direct object can be possibly fixed to an empty NP.

Table 1. Syntactic valence patterns matching the shared semantico-syntactic patterns

Verb Voice FE types and roles Freq. Verb Voice FE types and roles Freq.

V2 Act NPDObj NPSubj 238 V Act Adv 8
V Act Adv NPSubj 138 V2 Act Adv NPDObj 8
V2 Pass NPSubj 70 V2V Act NPIObj NPSubj VP 5
V Act NPSubj 65 VS Pass S 3
V2 Act Adv NPDObj NPSubj 62 V Act Adv Adv Adv NPSubj 2
V2 Pass Adv NPSubj 31 V2 Act Adv Adv NPDObj NPSubj 2
VS Act NPSubj S 26 V2 Pass Adv 2
VV Act NPSubj VP 18 V2 Pass Adv Adv NPSubj 2
V Act Adv Adv NPSubj 14 V3 Act NPIObj NPSubj 2
V2 Act NPDObj 14 VS Act Adv NPSubj S 2

The remaining 6% of the shared patterns represent the use of other verb types:
V3, V2V, VS and V2S. Basic code templates that are reused to implement the
corresponding frame functions (VP parts) are illustrated by these examples:

mkVP v3 (fromMaybe NP recipient) (fromMaybe NP theme)
-- Giving: [she]Donor/NP [handed]V3 [him]Recipient/NP [the ring]Theme/NP

mkVP vs (fromMaybe S message)
-- Hear: [we]Hearer/NP [heard]VS [it was a good school]Message/S

mkVP v2v (fromMaybe NP addressee) (fromMaybe VP message)
-- Request: [UK]Speaker/NP [urges]V2V [Savimbi]Addressee/NP [to keep the peace]Message/VP

mkVP v2s (fromMaybe NP addressee) (fromMaybe S content)
-- Suasion: [he]Speaker/NP [persuaded]V2S [himself]Addressee/NP [that they helped]Content/S

Note that the RGL type S, embedded declarative sentence, is used only if the
subclause can be verbalized using the subjunction that ; otherwise such FEs are
subcategorized as Adv, and the application grammar developer has to specify the
subjunction by applying the RGL constructor mkAdv : Subj → S → Adv. Also
note that FEs of type VP or S, or Adv encapsulating an S represent nested
frames. We use the type S instead of Cl to allow for specifying sentence level
parameters like tense, anteriority and polarity of the nested frames.

The implementation of frame functions, although currently kept separate for
each language, mostly could be shared due to the syntactic abstraction provided
by RGL. In general, however, the order of Adv FEs can differ across languages.

162 D. Dannélls and N. Gruzitis

4 Case Studies

We illustrate the use of the FrameNet-based API to GF RGL by re-engineering
two existing multilingual GF application grammars: one for translating standard
tourist phrases [12] and another for generating descriptions of paintings [13],
both developed in the MOLTO project.9 In both cases, we preserve the original
functionality, and we do not make any changes in the application abstract syntax.
Changes affect only the concrete syntaxes of English and Swedish.

4.1 Phrasebook

Although the Phrasebook grammar covers many idiomatic expressions that can-
not be translated using the same frame or for which the FN-based approach
would not be suitable at all, it includes around 20 complex clause-building func-
tions that can be handled by the FN-based grammar. To illustrate the use of
the semantic API, we re-implement the following Phrasebook functions:

ALive : Person -> Country -> Action -- e.g. ‘we live in Sweden’

AWant : Person -> Object -> Action -- e.g. ‘I want a pizza’

AWantGo : Person -> Place -> Action -- e.g. ‘I want to go to a museum’

by applying the frame functions Desiring V2 Act and Desiring VV introduced in
Section 3, and some additional functions:

Motion_V_2 : Goal_Adv -> Source_Adv -> Theme_NP -> Clause

Possession_V2 : Owner_NP -> Possession_NP -> Clause

Residence_V : Location_Adv -> Resident_NP -> Clause

By using RGL constructors, ALive is implemented for English, Swedish and
other languages in the same way, except that different verbs are used:

ALive p co = mkCl p.name (mkVP (mkVP (mkV "live")) (mkAdv in_Prep co))

ALive p co = mkCl p.name (mkVP (mkVP (mkV "bo")) (mkAdv in_Prep co))

First, the language-specific verbs can be factored out by introducing a shared
abstract verb in the domain lexicon (e.g. live V that links live V Residence and
bo V Residence). Second, the implementation of ALive can be done in a shared
functor by using the FN-based API:

ALive p co = let cl : Clause =

Residence_V (Just Adv (mkAdv in_Prep co)) (Just NP p.name) live_V

in mkCl cl.np cl.vp

For AWant, neither the RGL-based nor the current FN-based implementation
can be done in the functor because, in Swedish, the verb vilja (‘to want’) evoking
Desiring V2 Act requires the auxiliary verb ha (‘to have’). This can be seen as a
nested auxiliary frame Possession:

9 http://www.molto-project.eu/

http://www.molto-project.eu/

CNL Generation from a Multilingual FrameNet-Based Grammar 163

AWant p obj = mkCl p.name (mkV2 (mkV "want")) obj -- Eng

Desiring_V2_Act (Just NP p.name) (Just NP obj) want_V2

AWant p obj = mkCl p.name want_VV (mkVP L.have_V2 obj) -- Swe

Desiring_VV

(Just VP (Possession_V2 (Nothing NP) (Just NP obj) have_V2).vp)

(Just NP p.name) want_VV

Assuming that the auxiliary verb can be optionally used also with other
Swedish verbs when applying this frame function, the nested frame could be
hidden in the Swedish implementation of Desiring V2 Act. This, however, is not
the case with AWantGo which in both languages requires a main nested frame
and, thus, can be put in the functor:

AWantGo p place = mkCl p.name want_VV (mkVP (mkVP go_V) place.to)

Desiring_VV (Just VP

(Motion_V_2 (Just Adv place.to) (Nothing Adv) (Nothing NP) go_V).vp)

(Just NP p.name) want_VV

At first gleam, the new code might look more complex, but it does not specify
how the VP is built, and the same uniform code template is used in all cases.
The re-implemented version of Phrasebook accepts and generates the same set
of sentences as before.

4.2 Painting Grammar

The Painting grammar is a part of a large scale Natural Language Generation
(NLG) grammar developed for the cultural heritage (CH) domain in order to
verbalize data about museum objects stored in an RDF-based ontology [13]. A
set of RDF triples (subject-predicate-object expressions) forms the input to the
application. As an example, a simplified set of triples representing information
about the artwork Le Général Bonaparte is:

<LeGeneralBonaparte> <createdBy> <JacquesLouisDavid>

<LeGeneralBonaparte> <hasDimension> <LeGeneralBonaparteDimesion>

<LeGeneralBonaparte> <hasCreationDate> <LeGeneralBonaparteCreationDate>

<LeGeneralBonaparte> <hasCurrentLocation> <MuseeDuLouvre>

This information is combined by the grammar to generate a coherent text.
The function in the abstract syntax that combines the triples is the following:

DPainting : Painting -> Painter -> Year -> Size -> Museum -> Description

Each argument of the function corresponds to a class in the ontology. Below
we show how the arguments are linearized in the original concrete syntax for
English and how this syntax has been adapted to generate from the FN-based
grammar. To adapt the grammar, we first identified the frames that match the
target verbs in the linearization rules. Then we matched the core FEs of the
identified frames with the verb arguments.

164 D. Dannélls and N. Gruzitis

The original grammar: Using the FrameNet-based API:

-------------------------------- -------------------------------------

DPainting painting painter DPainting painting painter

year size museum = year size museum =

let let

s1 : Text = mkText (mkS cl1 : Clause =

pastTense (mkCl painting (mkVP Create_physical_artwork_V2_Pass

(mkVP (passiveVP paint_V2) (Just NP painter.long)

(mkAdv by8agent_Prep (Just NP painting)

painter.long)) year.s))) ; paint_V2 ;

s2 : Text = mkText cl2 : Clause = Dimension_V

(mkCl it_NP (mkVP (mkVP (Just Adv size.s)

(mkVPSlash measure_V2) (Just NP it_NP)

(mkNP (mkN ""))) size.s) ; measure_V2 ;

s3 : Text = mkText cl3 : Clause = Being_located_V

(mkCl (mkNP this_Det painting) (Just Adv museum.s)

(mkVP (passiveVP display_V2) (Just NP (mkNP this_Det painting))

museum.s)) display_V2

in mkText s1 (mkText s2 s3) ; in mkText (mkText (mkS pastTense

(mkCl cl1.np (mkVP cl1.vp year.s)))

(mkText (mkCl cl2.np cl2.vp)

(mkText (mkCl cl1.np cl3.vp))) ;

The grammar exploits patterns of frames Create physical artwork, Dimension
and Being located. Since the FN-based grammar currently does not cover non-
core FEs, the adjunct Year is associated with no FE in Create physical artwork.
Instead, it is attached to the corresponding clause in the final linearization rule
(mkText) illustrating how non-core FEs can be incorporated.

The Swedish syntax was adapted in a similar way. The only difference in
comparison to English and to the original Swedish syntax is the choice of verbs
and pronouns. The descriptions generated by the new version of DPainting are
semantically equivalent to the descriptions produced by the original grammar:

Eng: Le Général Bonapart was painted by Jacques-Louis David in 1510.
It measures 81 by 65 cm. This work is displayed at the Musée du Louvre.
Swe: Le Général Bonapart m̊alades av Jacques-Louis David år 1510. Den
mäter 81 g̊anger 65 cm. Det här verket hänger p̊a Louvren.

5 Evaluation

We have conducted a simple intrinsic and extrinsic evaluation of the acquired
FN-based grammar. For an initial intrinsic evaluation, we count the number of
examples in the source corpora that belong to the set of shared frames and that
are covered by the set of shared semantico-syntactic valence patterns. Corpus
examples are represented by sentence patterns disregarding non-core FEs, word

CNL Generation from a Multilingual FrameNet-Based Grammar 165

order and prepositions, but including syntactic roles and the grammatical voice.
There are 55,837 examples in BFN that belong to the shared set of 423 frames,
and 69.4% of them are covered by the shared valence patterns despite the modest
size of SweFN. In SweFN, 2,434 examples belong to the shared set of frames,
and 68.9% of them are covered by the shared patterns. Note that the original
sentences are, in general, covered by paraphrasing.

For an initial extrinsic evaluation, we compare the original application gram-
mars with their FN-based counterparts in terms of code complexity. Since we do
not modify the abstract syntax of application grammars, the amount of lineariza-
tion rules remains the same. Therefore we count the number of constructors used
to linearize the functions. In the Painting grammar, the number of constructors
is considerably reduced from 21 to 13. In the case of Phrasebook, the number is
slightly reduced from 10 in English and 11 in Swedish to 8 in both languages.

6 Related Work

The main difference between this work and the previous approaches to CNL
grammars is that we present an effort to exploit a robust and well established
semantic model in the grammar development. Our approach can be compared
with the work on multilingual verbalisation of modular ontologies using GF
and lemon, the Lexicon Model for Ontologies [14]. We use additional lexical
information about syntactic arguments for building the concrete syntax.

The grounding of NLG using the frame semantics theory has been addressed in
the work on text-to-scene generation [15] and in the work on text generation for
navigational tasks [16]. In that research, the content of frames is utilized through
alignment between the frame-semantic structure and the domain-semantic repre-
sentation. Discourse is supported by applying aggregation and pronominalization
techniques. In the CH use case, we also show how an application which utilizes
the FN-based grammar can become more discourse-oriented; something that is
necessary in actual NLG applications and that has been demonstrated for the
CH domain in GF before [17]. In our current approach, the semantic represen-
tation of the domain and the linguistic structures of the grammar are based on
FN-annotated data.

As suggested before [18], a FN-like approach can be used to deal with poly-
semy in CNL texts. Although we consider lexicalisation alternatives and restric-
tions for LUs and FEs, we do not address the problem of selectional restrictions
and word sense disambiguation in general.

7 Conclusion

In this paper we demonstrated the advantages of utilizing a FrameNet-based
grammar to facilitate the development of multilingual CNL applications. We
presented an approach to generating semantic grammar library from two FN-
annotated corpora. We tested the feasibility of this grammar as a semantic
API for developing application grammars in GF. The major advantage is that

166 D. Dannélls and N. Gruzitis

language-dependent clause-level specifications to a large extent are hidden by
the API, making the application grammars more robust and flexible.

Acknowledgements. This research has been supported by the Swedish Re-
search Council under Grant No. 2012-5746 (Reliable Multilingual Digital Com-
munication: Methods and Applications) and by the Centre for Language Tech-
nology in Gothenburg.

References

1. Gruzitis, N., Paikens, P., Barzdins, G.: FrameNet resource grammar library for
GF. In: Kuhn, T., Fuchs, N.E. (eds.) CNL 2012. LNCS, vol. 7427, pp. 121–137.
Springer, Heidelberg (2012)

2. Ranta, A.: Grammatical Framework, a type-theoretical grammar formalism.
Journal of Functional Programming 14(2), 145–189 (2004)

3. Ranta, A.: The GF resource grammar library. LILT 2(2) (2009)
4. Dannélls, D., Gruzitis, N.: Extracting a bilingual semantic grammar from

FrameNet-annotated corpora. In: Proceedings of the 9th International Language
Resources and Evaluation Conference (LREC), pp. 2466–2473 (2014)

5. Barzdins, G.: FrameNet CNL: A knowledge representation and information extrac-
tion language. In: CNL, pp. 90–101 (2014)

6. Fillmore, C.J., Johnson, C.R., Petruck, M.R.L.: Background to Framenet.
International Journal of Lexicography 16(3), 235–250 (2003)

7. Das, D., Chen, D., Martins, A.F.T., Schneider, N., Smith, N.A.: Frame semantic
parsing. Computational Linguistics 40(1), 9–56 (2014)

8. Moschitti, A., Morarescu, P., Harabagiu, S.M.: Open domain information extrac-
tion via automatic semantic labeling. In: Proc. of the 16th IFLAIRS (2003)

9. Roth, M., Frank, A.: A NLG-based application for walking directions. In: Proceed-
ings of the 47th ACL and the 4th IJCNLP Conference, pp. 37–40 (2009)

10. Boas, H.C. (ed.): Multilingual FrameNets in Computational Lexicography (2009)
11. Borin, L., Dannélls, D., Forsberg, M., Toporowska Gronostaj, M., Kokkinakis, D.:

The past meets the present in Swedish FrameNet++. In: Proceedings of the 14th
EURALEX International Congress, pp. 269–281 (2010)

12. Ranta, A., Enache, R., Détrez, G.: Controlled language for everyday use: The
MOLTO Phrasebook. In: Rosner, M., Fuchs, N.E. (eds.) CNL 2010. LNCS,
vol. 7175, pp. 115–136. Springer, Heidelberg (2012)

13. Dannélls, D., Enache, R., Damova, M., Chechev, M.: Multilingual online generation
from Semantic Web ontologies. In: Proceedings of the 21st International World
Wide Web Conference, European Project Track, pp. 239–242 (2012)

14. Davis, B., Enache, R., van Grondelle, J., Pretorius, L.: Multilingual verbalisation
of modular ontologies using GF and lemon. In: Kuhn, T., Fuchs, N.E. (eds.) CNL
2012. LNCS, vol. 7427, pp. 167–184. Springer, Heidelberg (2012)

15. Coyne, B., Bauer, D., Rambow, O.: VigNet: Grounding Language in Graphics
Using Frame Semantics. In: Proc. of RELMS, pp. 28–36. ACL (2011)

16. Roth, M., Frank, A.: Computing EM-based Alignments of Routes and Route
Directions as a Basis for Natural Language Generation. In: Huang, C.R., Jurafsky,
D. (eds.) COLING, pp. 958–966. Tsinghua University Press (2010)

17. Dannélls, D.: Discourse Generation from Formal Specifications Using the Gram-
matical Framework, GF. In: Special issue of the RCS, pp. 167–178. Springer (2010)

18. Gruzitis, N., Barzdins, G.: Polysemy in controlled natural language texts. In: Fuchs,
N.E. (ed.) CNL 2009. LNCS, vol. 5972, pp. 102–120. Springer, Heidelberg (2010)

Architecture of a Web-Based Predictive Editor

for Controlled Natural Language Processing

Stephen Guy and Rolf Schwitter

Department of Computing,
Macquarie University,

Sydney, 2109 NSW, Australia
{Stephen.Guy,Rolf.Schwitter}@mq.edu.au

Abstract. In this paper, we describe the architecture of a web-based
predictive text editor being developed for the controlled natural language
PENGASP . This controlled language can be used to write non-monotonic
specifications that have the same expressive power as Answer Set Pro-
grams. In order to support the writing process of these specifications, the
predictive text editor communicates asynchronously with the controlled
natural language processor that generates lookahead categories and ad-
ditional auxiliary information for the author of a specification text. The
text editor can display multiple sets of lookahead categories simultane-
ously for different possible sentence completions, anaphoric expressions,
and supports the addition of new content words to the lexicon.

Keywords: controlled natural language processing, predictive editor,
web-based authoring tools, answer set programming.

1 Introduction

Writing a specification in a controlled natural language without any tool support
is a difficult task since the author needs to learn and remember the restrictions
of the controlled language. Over the last decade, a number of different tech-
niques and tools [3,5,12,13] have been proposed and implemented to minimise
the learning effort and to support the writing process of controlled natural lan-
guages. The most promising approach to alleviate these habitability problems
is the use of a predictive text editor [13,17] that constrains what the author
can write and provides predictive feedback that guides the writing process of
the author. In this paper, we present the architecture of a web-based predictive
text editor being developed for the controlled natural language PENGASP [15].
The text editor uses an event-driven Model-View-Controller based architecture
to satisfy a number of user entry and display requirements. These requirements
include the display of multiple sets of lookahead categories for different sentence
completions, the deletion of typed words, the addition of new content words to
the lexicon and the handling of anaphoric expressions. Additionally, the text
editor displays a paraphrase for each input sentence and displays the evolving
Answer Set Program [11].

B. Davis et al. (Eds.): CNL 2014, LNAI 8625, pp. 167–178, 2014.
c© Springer International Publishing Switzerland 2014

168 S. Guy and R. Schwitter

2 Overview of the PENGASP System

2.1 Client-Server Architecture

The PENGASP system is based on a client-server architecture where the predic-
tive editor runs in a web browser and communicates via an HTTP server with
the controlled natural language processor; the language processor uses in our
case an Answer Set Programming (ASP) tool as reasoning service (Fig. 1):

Fig. 1. Client-Server Architecture of the PENGASP System

The communication between the predictive editor and the HTTP server oc-
curs asynchronously with the help of AJAX technologies and by means of JSON1

objects. The predictive editor is implemented in JavaScript2 and JQuery3. The
HTTP server as well as the controlled natural language processor are imple-
mented in SWI Prolog4. The Prolog server translates JSON objects into JSON
terms and vice versa so that these terms can be processed directly by the lan-
guage processor. The language processor incrementally translates the controlled
language input via discourse representation structures [8] into an ASP program
and sends this ASP program to the ASP tool clingo [6,7] that tries to generate
one or more satisfiable answer sets for the program.

2.2 HTTP Server

SWI-Prolog provides a series of libraries for implementing HTTP server capabil-
ities. Our server is based on this technology and can be operated as a stand-alone
server on all platforms that are supported by SWI-Prolog. The following code
fragment illustrates how an HTTP server is created, a port (8085) specified, and
a request (Request) dispatched using a handler registration (http handler/3):

server(Port) :- http_server(http_dispatch, [port(Port)]).

:- http_handler(’/peng/’, handle, []).

handle(Request) :- ...

:- server(8085).

1 http://json.org/
2 http://www.ecmascript.org/
3 http://jquery.com/
4 http://www.swi-prolog.org/

http://json.org/
http://www.ecmascript.org/
http://jquery.com/
http://www.swi-prolog.org/

Architecture of a Web-Based Predictive Editor for CNL Processing 169

In our case, we can now connect via http://localhost:8085/peng/ from the
web browser to the server that uses specific JavaScript and stylesheet handlers
to load the predictive editor and to establish the communication between the
editor and the controlled language processor.

2.3 Predictive Editor

The predictive editor is implemented in JavaScript and JQuery, with the Super-
fish5 plug-in providing pull-down menu functionality. These technologies allow
the editor to be run in most browsers, which in conjunction with the capabilities
of a potentially remote language processor coded in Prolog, provides a highly
portable system. Data communication with the server provides for both com-
mand functions, such as file saving and loading, as well as data transfer between
the language processor and the predictive editor system. The JSON data for
parsing sent from the predictive editor to the HTTP server includes the current
token of a word form, its position in the relevant sentence and relevant sentence
number. For each word form or completed sentence submitted by the predictive
editor, the lookahead categories and word forms along with the output of the
language processor are returned.

An overview of a typical predictive editor display is presented in Figure 2.
Command function menus are presented at the top, below which is the main
text input field displaying the current sentence. Lookahead categories for the
available sentence completion are highlighted using the pull-down menus. Below
these lookahead categories is a display summarising relevant information in the
system, at both the client and server. First is a summary of previously entered
text at the client side. Second are the generated paraphrases at the server, with
any anaphoric references being highlighted (which may also be accessed from
the pull-down menus). Third is a summary of the current answer set program
for the input, followed by the final section of output from answer set tool clingo.

The editor allows entering text specifications manually by typing in the text
entry field, plus using pull-down menus of lookahead categories to enter text
into the input field. The reasons for allowing direct input of text include that
some users, especially those experienced in the structure of the controlled natural
language, can type faster than they can enter via menus, even with some level
of auto-completion. Additionally, the system allows entering new content words
into the lexicon, via the text field, that do not appear in the displayed lookahead
categories.

3 Processing and Reasoning in the PENGASP System

3.1 Controlled Natural Language Processor

The controlled natural language processor of the PENGASP system consists of
a chart parser, a unification-based grammar, a lexicon and a spelling corrector.

5 http://users.tpg.com.au/j_birch/plugins/superfish/

http://users.tpg.com.au/j_birch/plugins/superfish/

170 S. Guy and R. Schwitter

Fig. 2. Predictive Editor Display

The chart parser is initialised for the first time when the author moves the
cursor into the textfield of the predictive editor and reset at the beginning of
each new sentence and generates lookahead categories using the grammar and
the lexicon of the controlled language processor. These lookahead categories
inform the author of a specification how to start a sentence and are generated
dynamically for each word form that the author enters into the textfield of the
editor. This mechanism guarantees that the author can only input word forms
and construct sentences that follow the rules of the controlled language. If a word
is misspelled, then the spelling corrector is used to generate a list of candidates
that occur in the lexicon. If a content word is not in the lexicon, then the author
can add this word to the lexcion during the specification process.

The controlled natural language PENGASP [15] that the author uses as input
language has been designed as a high-level interface language to ASP programs.
In certain aspects the language PENGASP is similar to PENG Light [18] and
Attempto Controlled English [5], since it uses a version of discourse representa-
tion theory (DRT), in the spirit of [2,8], as intermediate representation language.
However, PENGASP does not rely on full first-order logic (FOL) as target lan-
guage as the use of DRT would suggest but on the language for ASP programs.

Architecture of a Web-Based Predictive Editor for CNL Processing 171

The language of FOL is in some respects more expressive than the language
of ASP but unfortunately FOL is not adequate for representing commonsense
knowledge, because FOL cannot deal with non-monotonic reasoning. ASP, on
the other hand, allows us to represent and process commonsense knowledge be-
cause of its unique connectives and non-monotonic entailment relation. Beyond
that, ASP is still expressive enough to represent function-free FOL formulas of
the ∃∗∀∗ prefix class in form of a logic program [10]. Below is an example speci-
fication in PENGASP that uses a default rule in (5), a cancellation axiom in (6),
and sentence with strong negation in (7):

1. Sam is a child.
2. John is the father of Sam and Alice is the mother of Sam.
3. Every father of a child is a parent of the child.
4. Every mother of a child is a parent of the child.
5. Parents of a child normally care about the child.
6. If a parent of a child is provably absent then the parent abnormally cares

about the child.
7. John does not care about Sam.
8. Alice is absent.

Of course, the specific features of the ASP language have an impact on what
we can express on the level of the controlled natural language and therefore rely
on the support of the predictive editor.

3.2 Reasoning Service

Since we are interested in specifying commonsense theories in PENGASP , we
need a non-monotonic reasoning service. ASP is a relatively novel logic-based
knowledge representation formalism that has its roots in logic programming
with negation, deductive databases, non-monotonic reasoning and constraint
solving [1,7]. An ASP program consists of a set of rules of the following form:

L0 ; ... ; Lk :- Lk+1, ..., Lm, not Lm+1, ..., not Ln.

where all Li’s are literals. A literal is an atom or its negation. A positive atom
has the form p(t1, ..., tn) where p is a predicate symbol of arity n and t1,

..., tn are object constants or variables. A negative atom has the form -p(t1,

..., tn) where the symbol - denotes strong negation. The symbol :- stands
for an implication. The expression on the left-hand side of the implication is
called the head of the rule and the expression on the right-hand side is called
the body of the rule. The head may consist of an epistemic disjunction of literals
denoted by the symbol ;. Literals in the body may be preceded by negation
as failure denoted by the symbol not. The head or the body of a rule can be
empty. A rule with an empty head is called an integrity constraint and a rule
with an empty body is called a fact. For instance, the example specification in
Section 3.1 is translated automatically via discourse representation structures in
the subsequent ASP program:

172 S. Guy and R. Schwitter

child(sam).

father(john,sam).

mother(alice,sam).

parent(A,B) :- father(A,B), child(B).

parent(C,D) :- mother(C,D), child(D).

care(E,F) :- parent(E,F), child(F), not ab(d_care(E,F)),

not -care(E,F).

ab(d_care(G,H)) :- parent(G,H), child(H), not -absent(G).

-care(john,sam).

absent(alice).

4 Predictive Editor Requirements

In addition to the generic requirements outlined in Section 2.3, a number of
detailed user input and system display requirements for the lookahead categories
are determined to aid in the design of the predictive editor architecture. The main
requirements are that the system should allow appropriate editing of information
already entered, that the lookahead categories for a particular sentence position
are displayed until all possibilities are no longer possible and that the lookahead
categories for the next sentence position are displayed as soon as the relevant
options are possible. These requirements are presented in detail in the following
sections.

4.1 User and System Requirements

User Entry Requirements

Requirement E.1.1: The system will allow deletion of characters or words
already typed, or all or part of a sentence not yet submitted. (This deletion
will be referred to as backward editing).

Requirement E.2.1: A new sentence is not commenced (via the chart
parser being reset) until a submit or an enter event or a beginning of sentence
character/word occurs after an end-of-sentence marker (full stop or question
mark). A new sentence being commenced means that the previous sentence
has been submitted.

Requirement E.3.1: A user is allowed to enter a content word not in the
lexicon and force its submission to the language processor as the next content
word.

Requirement E.3.2: A user may enter a misspelt word that is yet to be
completed with the word still subject to backward editing.

Requirement E.4.1:A word is completed if it followed by a space or directly
by a valid punctuation character which in turn is followed by a space or
sentence submission. This latter requirement of a space after the punctuation
allows the system to distinguish the state from the case of an incomplete
misspelt word with an erroneous punctuation character at the end.

Architecture of a Web-Based Predictive Editor for CNL Processing 173

System Display Requirements

Requirement D.1.1: Before and whilst a word is being entered at position
A (or for a new sentence commencing at position A), the system should
display all the lookahead categories for position A until all of those categories
are no longer possible.

Assertion D.1.1: All lookahead categories for position A are no longer
possible if the next non-punctuation word at position A+1 has commenced,
or a word is completed according to Requirement E.4.1.

Requirement D.2.1: The system should display the lookahead categories
for position A+1 when a word entered at position A matches the lookahead
categories for position A.

Note that in terms of displaying one set of lookahead categories for a particular
word, requirements D.1.1 and D.2.1 are not mutually exclusive, that is there
occur system states where the lookahead categories at position A and position
A+1 need to be displayed concurrently.

Assertion D.2.1: If a word at position A matches the lookahead categories
for position A, then other lookahead categories for position A may still be
possible.

4.2 Display of Multiple Sentence Completions

Some examples are presented to help clarify the requirements detailed above.
The two main cases which are catered for are the existence of subsets within the
lookahead categories for one sentence position and the allowed juxtaposition of
punctuation directly after a word without an intervening space.

For the case of subsets in lookahead categories, consider the commencement
of a sentence and the above two display requirements D.1.1 and D.2.1. Initial
lookahead categories may include “The”, “There is”, “A”, “Thelma”, “John”
and “Johnathan” for example, which according to D.1.1 should all be displayed
by the system. A user entering the characters “The” would then satisfy require-
ment D.2.1, whereby the lookahead categories for the next position would be
displayed. If these categories included the word “child”, the user could enter this
word and the entered text would be “The child”, illustrating that a display of
this sentence completion option was necessary. However, the original situation
of the user entering the characters “The” may have been the precursor to the
entry of the words “There is” or even “Thelma”. Thus even though requirement
D.2.1 is satisfied after the entry of “The”, requirement D.1.1 still holds for the
presentation of the original lookahead categories whilst the user completes this
entry, thus illustrating assertion D.2.1. Whether the user has entered “Thelma”
or “The” without a subsequent character, requirement E.4.1 has not been sat-
isfied, so a user may backward edit from the word “Thelma” back to “The” or
“Thelma”/“The” back to “A”.

174 S. Guy and R. Schwitter

For the case of juxtaposition of word forms with punctuation and requirements
E.4.1 and D.2.1, the lexicon and grammar allows phrases such as “John, Thelma
and Pete are parents.”. Here, a word is followed directly by punctuation, so
that once the characters “John” are entered, according to requirement D.2.1,
the system must display the options for the next lookahead categories which
include the comma which could be clicked or typed directly. Alternatively, a
user may have been intending to type “Johnathan”, so as for the case of subsets
must see the original set of lookahead categories. If a user accidentally hit the
comma on the fifth character, leaving “John,” (John comma), as the current
word, the system should still display the original lookahead categories, including
“Johnathan”, as the word has not been completed according to requirement
E.4.1.

5 Architecture of the Predictive Editor

The predictive editor is designed to meet the requirements of the PENGASP

system, the asynchronous client-server communications, the different modes of
the editor input as well as user entry and system display requirements.

5.1 Model-View-Controller Architecture

The architecture of the predictive editor is based approximately on that of a
Model-View-Controller (MVC) system [4,16] in terms of separation and inde-
pendence.

TheModel includes the currently active sentence, including that entered by the
user and that submitted to the HTTP server, all previously entered sentences and
all data (including lookahead categories) received from the language processor
via the HTTP server. The model also stores all variables relevant to determining
the state of the system.

The View includes the events-triggered input text field, the pull-down menu
display of lookahead categories and the input of word forms via mouseover selec-
tion. It also displays the overall model of entered sentences and the ASP model
generated by the language processor.

The Controller synchronises all functions, and importantly monitors for the
need of a state change in the Model, such as when the user has input data that
is different from the currently active sentence and if so, whether to submit new
data to the server or not. Additionally, the Controller co-ordinates loading of all
the returned lookahead categories into data structures and determines which of
these lookahead categories are displayed to the user as dependent on the current
state of the system.

5.2 Event-Triggered Implementation

A key issue with the implementation of the MVC architecture is the require-
ment to have event-driven data processing and control to be compatible with

Architecture of a Web-Based Predictive Editor for CNL Processing 175

the asynchronous AJAX communication between the predictive editor and the
HTTP server and events-triggered predictive editor input. When content words
are submitted to the HTTP server via JSON data, the predictive editor system
must wait until corresponding lookahead data is returned by the server.

Once this information is received, it may then be stored in the model and only
then can the Controller process this model data to determine if the model state
variables should be changed and update the display if necessary. To implement
this, the Controller organises run-time execution of events in a pipe and filter
architecture, where each element of the pipe is a data structure containing the
relevant primary data for that event, the relevant processing function and an
optional link to the next data structure in the pipe.

Whilst this may not be a classical MVC implementation, it provides a robust
method of ensuring model data is in a consistent state for process control. Thus
for the above example of sending a new content word to the server, the AJAX
send/receive routine will trigger the return data storage event, which when com-
plete will trigger the model state change assessment functionality, which when
complete may cause a trigger of the display of the next lookahead categories to
the display.

Any multi-stage data processing may also be organised as a pipe and filter
structure using the above data structures, with the next stage of the processing
function only allowed once the model data from the previous processing function
becomes stable.

5.3 Data Structures

As with many client-server systems, some model data is stored and processed at
the predictive editor client side to allow for optimal processing and control. The
model data is stored in objects defined by JavaScript functions, with appropriate
object methods declared to allow for this data to be processed conveniently and
allowing functionality beyond the capabilities of using raw JSON objects for
storage. For example, the model data includes stack objects (containing stacks
of anything from word forms to whole sentences), individual send and received
objects plus a single object of correlated send and receive data. Methods can
detect if a beginning or end of sentence token is present, or whether a word
form matches a lookahead category and whether it is also a subset of another
lookahead category (such as “The” being a subset of “There”). Display objects
allow storage of different sets of lookahead categories and the ability to switch
the display from ‘displayed’ to ‘hidden’ and vice versa.

5.4 Predictive Editor Controller

Given the user entry and system display requirements discussed Section 4.1
and generic requirements presented in Section 2.3, the control system for the
predictive editor has been designed to allow displaying of multiple lookahead
categories for different sentence completions and strict control over when data
entered by a user is ultimately committed to the server. The currently active

176 S. Guy and R. Schwitter

sentence is stored in two forms, namely from a tokenisation of the user input
and from a summary of the data submitted to the server. By comparing a stack
of the set of tokens in each sentence, a difference stack is generated to aid the
controller in determining a change in the model state. Any newly entered valid
words, or changes in the current word are assessed for submission, or alternately
earlier submitted tokens/words may be removed and new tokens sent in their
place (such as in the case of backward editing).

As discussed regarding requirement D.2.1 in Section 4.1, if an entered word
matches a lookahead category for that position, the controller automatically sub-
mits this word to the server and retrieves the next set of lookahead categories for
this new token. However, this data transfer is just the predictive editor gather-
ing information and doesn’t directly synchronise with the totality of the display
to the user. If the controller doesn’t detect a word completion, or finds that at
least one lookahead category from the previous word is still possible, the previous
lookahead categories are not cleared as per assertion D.2.1.

As described in Section 5.3, display data structures allow easy addition and
display of data and hiding of data as necessary. As well as automatically sub-
mitting a word matching the current lookahead categories, a word matching the
previous set of lookahead categories where the previous word is a subset of the
new word will also trigger an automatic submission of the token to the HTTP
server. This would be the case for “Thelma” being typed after “The” has been
submitted to the server and lookahead categories already returned for the next
sentence position.

5.5 Adding Content Words to the Lexicon

Recall from requirement E.3.1 that a user may forcibly submit a word form
to the language processor that does not correspond to the lexicon. When this
occurs, the language processor may offer a set of spelling suggestions (assuming
that an incorrect word has been submitted by mistake) or the predictive editor
will offer an option to add this new word to the lexicon in this current context.
If the user selects to add a word, then the position in the sentence, the lexical
category and the new word form are collected and sent to the server where the
new word is added to the lexicon. The new word is then parsed again by the
language processor and a new set of lookahead categories is generated and sent
to the predictive editor.

6 Future Research

The current predictive editor may be extended for multiple users in line with
the web-based portability of the system. A user login would allow for a number
of features, such as a user-group based lexicon depending on the nature of the
specification system for that group (e.g. medical, engineering, automotive, etc.).
Additionally, an individual could have their own extended lexicon for any content
words added to the lexicon. A user could set a level of knowledge for their

Architecture of a Web-Based Predictive Editor for CNL Processing 177

grammar, which would aid in controlling the complexity of the pull-down menus,
in that instead of displaying all possible lexical categories, a user with limited
knowledge could display a smaller number of less-technial word categories, such
as “function words” instead of individual groups such as “adjective”, “adverb”,
“noun”, etc. The user login could be used to set preferences for any further
adjustable enhancements.

7 Conclusion

In this paper, we introduced the architecture of a web-based predictive text ed-
itor developed for the PENGASP system. This system is suitable for writing
non-monotonic specifications that have the expressive power of Answer Set Pro-
grams. The web-based predictive editor supports the writing process of these
specifications and is based on a portable client-server architecture and is pre-
dominantly implemented in JavaScript. An event-driven Model-View-Controller
based architecture was used for the editor, allowing strict control of system func-
tionality to satisfy a set of user entry and display requirements that included
the display of multiple sets of lookahead categories for different sentence com-
pletions. The predictive editor allows for new content words to be added to the
lexicon and supports the selection of anaphoric expressions An extension of a
user login would allow tailoring of preferences and a user-based lexicon.

References

1. Brewka, G., Eiter, T., Truszczyński, M.: Answer Set Programming at a Glance.
Communications of the ACM 54(12) (December 2011)

2. van Eijck, J., Kamp, H.: Discourse Representation in Context. In: van Benthem,
J., ter Meulen, A. (eds.) Handbook of Logic and Language, 2nd edn., pp. 181–252.
Elsevier (2011)

3. Franconi, E., Guagliardo, P., Trevisan, M., Tessaris, S.: Quelo: an ontology-driven
query interface. In: Proceedings of the 24th International Workshop on Description
Logics (DL 2011) (2011)

4. Freeman, E., Robson, E., Bates, B., Sierra, K.: Head First Design Patterns,
pp. 526–577. O’Reilly (2004)

5. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for Knowledge
Representation. In: Baroglio, C., Bonatti, P.A., Ma�luszyński, J., Marchiori, M.,
Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 104–124.
Springer, Heidelberg (2008)

6. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider, M.:
Potassco: The Potsdam Answer Set Solving Collection. AI Communications 24(2),
105–124 (2011)

7. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in
Practice. In: Synthesis Lectures on Artificial Intelligence and Machine Learning,
vol. 6(3), pp. 1–238 (2012)

8. Kamp, H., Reyle, U.: From Discourse to Logic. Kluwer, Dordrecht (1993)
9. Kuhn, T., Schwitter, R.: Writing Support for Controlled Natural Languages. In:

Proceedings of ALTA, Tasmania, pp. 46–54 (2008)

178 S. Guy and R. Schwitter

10. Lierler, Y., Lifschitz, V.: Logic Programs vs. First-Order Formulas in Textual
Inference. In: Proceedings of the 10th International Conference on Computational
Semantics (IWCS 2013), Potsdam, Germany, pp. 340–346 (2013)

11. Lifschitz, V.: What is Answer Set Programming? In: Proceedings of AAAI 2008,
pp. 1594–1597 (2008)

12. Power, R.: OWL Simplified English: a finite-state language for ontology editing.
In: Kuhn, T., Fuchs, N.E. (eds.) CNL 2012. LNCS, vol. 7427, pp. 44–60. Springer,
Heidelberg (2012)

13. Schwitter, R., Ljungberg, A., Hood, D.: ECOLE: A Look-ahead Editor for a Con-
trolled Language. In: Proceedings of EAMT-CLAW 2003, Dublin, pp. 141–150
(2003)

14. Schwitter, R.: Controlled Natural Languages for Knowledge Representation. In:
Proceedings of COLING 2010, Beijing, China, pp. 1113–1121 (2010)

15. Schwitter, R.: The Jobs Puzzle: Taking on the Challenge via Controlled
Natural Language Processing. Journal of Theory and Practice of Logic Program-
ming 13(special Issue 4-5), 487–501 (2013)

16. Sommerville, I.: Software Engineering, International Edition, 9th edn., pp. 155–164.
Pearson (2011)

17. Tennant, H.R., Ross, K.M., Saenz, R.M., Thompson, C.W., Miller, J.R.: Menu-
based natural language understanding. In: Proceedings of ACL, pp. 151–158 (1983)

18. White, C., Schwitter, R.: An Update on PENG Light. In: Pizzato, L., Schwitter,
R. (eds.) Proceedings of ALTA 2009, Sydney, Australia, pp. 80–88 (2009)

Explaining Violation Traces with Finite State Natural
Language Generation Models

Gordon J. Pace and Michael Rosner

University of Malta, Malta
{gordon.pace,mike.rosner}@um.edu.mt

Abstract. An essential element of any verification technique is that of identify-
ing and communicating to the user, system behaviour which leads to a deviation
from the expected behaviour. Such behaviours are typically made available as long
traces of system actions which would benefit from a natural language explanation
of the trace and especially in the context of business logic level specifications. In
this paper we present a natural language generation model which can be used to
explain such traces. A key idea is that the explanation language is a CNL that is,
formally speaking, regular language susceptible transformations that can be ex-
pressed with finite state machinery. At the same time it admits various forms of
abstraction and simplification which contribute to the naturalness of explanations
that are communicated to the user.

1 Introduction

The growth in size and complexity of computer systems has been accompanied by an
increase in importance given to the application of verification techniques, attempting to
avoid or at least mitigate problems arising due to errors in the system design and imple-
mentation. Given a specification of how the system should behave (or, dually, of what
the system should not do), techniques ranging from testing to runtime verification and
model checking attempt to answer the question of whether or not the system is correct.
One common issue with all these techniques, is that a negative answer is useless unless
accompanied by a trace showing how the system may perform leading to a violation of
the expected behaviour.

Consider, for example, the specification of a system which allows user to log in, as
shown in Figure 1, which states that “after three consecutive failed user authentications,
users should not be allowed to attempt another login”. A testing or runtime verification
tool may deduce that the system may perform a long sequence of events which lead to a
violation. Although techniques have been developed to shorten such counter-examples
[ZH02], such traces may be rather long, and using them to understand the circumstances
in which the system failed to work as expected may not always be straightforward.

In the case of implementation-level properties and traces, tools such as debuggers
and simulators may enable the processing of long traces by developers to understand
the nature of the bug, but in the case of higher-level specifications, giving business-
logic level properties, such traces may need to be processed by management personnel.
For example, a fraud expert may be developing fraud rules to try to match against the
behaviour of known black-listed users, and may want to understand why a trace showing

B. Davis et al. (Eds.): CNL 2014, LNAI 8625, pp. 179–189, 2014.
c© Springer International Publishing Switzerland 2014

180 G.J. Pace and M. Rosner

Logged out
(0 attempts)start

Logged out
(1 attempt)

Logged out
(2 attempts)

Authentication
(0 attempts)

Authentication
(1 attempt)

Authentication
(2 attempts)

User
Disabled ERROR

Logged in

request password

request password

request password

good password
bad password

good password

bad password

good password

bad password

read file

write file

logout

request password

Fig. 1. An automaton-based specification

the behaviour of such a user does to trigger a rule he may have just set up. In such cases,
a natural language explanation of such a trace would help the expert to understand better
what is going wrong and why.

In this paper, we present the use of finite state natural language generation (NLG)
models to explain violation traces. We assume that the basis of the controlled natural
language used to describe such behaviour is given by the person writing the specifica-
tion, by articulating how the actions can be described using a natural language, and how
they can be abstracted into more understandable explanations. We present a stepwise re-
finement of the process, explaining how a more natural feel to the generated controlled
natural language text can be given using finite state techniques.

Although the work we present is still exploratory, we believe that the approach can
be generalised to work on more complex systems, and it can give insight into how far
out the limits of finite state NLG techniques can be pushed.

2 The Roles of NLG and CNL

In this section we illustrate a solution to the problem of generating reasonably natu-
ral explanations from sequences of the above type in a computationally efficient way.
The two critical ingredients are (i) NLG, which, in a general sense, provides a set of
techniques for generating text flexibly given an abstract non-linguistic representation of
semantic content, and (ii) CNLs which, in a nutshell, are natural languages with a de-
signer element — natural in the sense that they can be understood by native speakers of
the “parent” language and designed to to be simpler than that language from some com-
putational perspective such as translation to logic or, as in this paper, NLG. An excellent
survey and classification scheme for CNLs appears in Kuhn [Kuh14]

Explaining Violation Traces with Finite State Natural Language Generation Models 181

The final output of NLG is clearly natural language of some kind. The nature of the
process that produces that output is somewhat less clear, in that there are still many ap-
proaches though most research in the area is consistent with the assumption that that it
includes at least the stages of content planning (deciding what to say), content packaging
(packaging the content into sentence-sized messages), and surface realisation (construct-
ing individual sentences). These three stages are linked together in a pipeline, according
to the architecture proposed by Reiter and Dale [RD00].

The complexity of NLG arises from fact that the input content severely underdeter-
mines the surface realisation and that there are few guiding principles available to narrow
the realisation choices. Consequently, the process is even more nondeterministic than the
inverse process of of natural language understanding where at least it is possible to ap-
peal to common sense when attempting to choose amongst competing interpretations.
With NLG, some dimensions of complexity must be sacrificed for the computation to
be feasible.

In this paper, the sacrifice comes down to a choice concerning two sets of languages:
(i) that which expresses the content, which we will call the C language, and (ii) a se-
quence of languages in which explanations are realised that we will call E1, E2, etc. C is
a form of semantic representation language, whilst E1, E2, . . . En are CNLs in Kuhn’s
sense.

In both cases, we assume that both C and Ei languages are regular languages in the
formal sense. This has a number of advantages: the computational properties of such
languages are well understood, and we know that algorithms for parsing and generation
of are of relatively low complexity. Additionally, we can express linguistic processes as
relations over such languages that can be computed by finite-state transducers. Elemen-
tary transductions can be composed together to carry out complex linguistic processing
tasks. Using techniques originally advocated for morphological analysis by Beesley and
Kattunen [BK03] we can envisage a complex NLG process as a series of finite state
transductions combined together under relational composition, thus opening up the pos-
sibility of describing the synthesis of an explanation to efficient, finite-state machinery.

Of course, the restriction to regular languages imposes certain limitations upon what
content can possibly be expressed in C, and may also impact the naturalness of the vi-
olation description expressed in E. However, these are empirical issues that will not be
tackled in this paper.

We are not the first to have used simplified languages in the attempt to reduce the
complexity of natural language processing. In the domain of NLG, Wilcock [Wil01]
proposed “the use of XML-based tools to implement existing well-known approaches
to NLG”. Power [Pow12] uses finite-state representations for expressing descriptions of
OWL-LITE sentences. It is of course in the area of computational morphology where
finite state methods are best known.

The main contribution of the paper is to substantiate and present the hypothesis that
according to the choice of C and E, it is possible to realise a family of efficient NLG
systems that are based on steadfastly finite-state technology.

182 G.J. Pace and M. Rosner

start

ERROR

l

l

l

g

b

g

b

g

b

r

w

x

l

NL explanation
b the user gave a bad password
g the user gave a good password
l the user requested to log in
x the user logged out
r the user read from a file
w the user wrote to a file

Fig. 2. The specification augmented with NL explanations

3 Languages

In what follows we first present the C language and then a sequence of E languages,
progressively adding features to attain a more natural explanation of the trace. As we
shall investigate in more detail in Section 4, at each stage we use further information to
obtain more natural generated text.

3.1 The C Language

We assume that the basic specification of the C language is given by the automaton
shown in Figure 2. The following trace is a sentence

lgrxlblgwwxlgrwxlgxlblblbl

Note that although the automaton itself is not necessary for the explanations that ensue,
it could in principle be used to check which trace prefix leads to an error state to allow
for an explanation when such a state is reached.

Next we turn to the series of E languages. Since these are all CNLs we will refer
to them as CNL0, CNL1, CNL2 and CNL3 respectively. All four languages are similar
insofar as they all talk about the same underlying, domain-specific world of states and
actions, and they all finite state. At the same time they are somewhat different linguisti-
cally.

3.2 CNL0

Sentences of the CNL0 language are very simple declarative sentences of the kind that
we typically associate with simple predicate-argument structures. In the example shown
in Figure 3 here, each sentence has a subject, a verb, and possibly a direct object.

In this paper, the mapping between the C language and CLN0 is given extensionally
by means of a lexicon that connects the individual transition names with a sentence with
a simple and fixed syntactic structure. The lexicon itself is expressed as a finite state

Explaining Violation Traces with Finite State Natural Language Generation Models 183

The user requested to log in. The user gave a good password. The user read
from a file. The user logged out. The user requested to log in. The user gave a
bad password. The user requested to log in. The user gave a correct password.
The user wrote to a file. The user wrote to a file. The user logged out. The user
requested to log in. The user gave a correct password. The user read from a
file. The user wrote to a file. The user logged out. The user requested to log in.
The user gave a good password. The user logged out. The user requested to log
in. The user gave a bad password. The user requested to log in. The user gave
a bad password. The user requested to log in. The user gave a bad password.
The user requested to log in, which should not have been allowed.

Fig. 3. A naïve explanation of the trace: CNL0

transducer, as described in Section 4.1. For more complex systems such an approach
might not be practical, and a solution could then be to derive the sentence associated
with each transition from more fundamental properties of the underlying machine.

CNL0 provides for a somewhat naïve explanation of traces using the explanations
provided by the domain expert directly.

3.3 CNL1

Next we turn to CNL1 which offers some improvements. The main feature of CNL1 is
that it is a sequence of paragraphs, where each paragraph is simply a sequence of CNL0
sentences, as shown in Figure 4.

1. The user requested to log in. The user gave a good password. The user
read from a file. The user logged out.

2. The user requested to log. The user gave a bad password.
3. The user attempted to log in. The user gave a good password. The user

wrote to a file. The user wrote to a file. The user logged out.
4. The user requested to log in. The user gave a good password. The user

read from a file. The user wrote to a file. The user logged out.
5. The user requested to log in. The user gave a good password. The user

logged out.
6. The user requested to log in. The user gave a bad password.
7. The user requested to log in. The user gave a bad password.
8. The user requested to log in. The user gave a bad password.
9. The user requested to log in, which should not have been allowed.

Fig. 4. A grouped explanation: CNL1

There are two consequences to this slightly richer structure. One is that it provides
the skeleton upon which to hang the numbered steps. This is a presentation issue that

184 G.J. Pace and M. Rosner

arguably increases the naturalness and improves comprehension. The other is that it
gives a structural identity to each paragraph that could be exploited in order to attribute
certain semantic properties to the associated sequence of actions. For example, we have
the notion of correctness which has the potential to figure in explanations. Nevertheless,
this property is not actually exploited in CNL1.

3.4 CNL2
The main novelty in CNL2, (see Figure 5) in contrast to CNL1, is the use of aggregation
to reduce each multi-sentence paragraph to a single, more complex sentence. This is
a technique which is used for removing redundancy (see Dalianis and Hovy [DH93]),
yielding texts that are more fluid, more acceptable and generally less prone to being
misunderstood by human readers than CNL1-style descriptions.

1. The user requested to log in, gave a correct password and after reading
from a file logged out.

2. The user requested to log in, and gave a bad password.
3. After a log in request the user gave a correct password and wrote twice to

a file before logging out.
4. The user requested to log in, gave a correct password, read from a file,

wrote to a file and then logged out.
5. After requesting a log in, the user gave a good password and logged out.
6. The user requested to log in, gave a bad password, requested again to log

in, gave another bad password and after requesting to log in, gave another
bad password.

7. Finally, the user made a request to log in, which should not have been
allowed.

Fig. 5. A better grouped explanation: CNL2

The linguistic renderings resulting from aggregation in CNL2 include:
1. Punctuation other than full stops
2. Temporal connectives (“after”, “then”, “finally”)
3. The use of contrastive conjunctions like “but"
4. Collective terms (“twice")

3.5 CNL3
Finally CNL3 (see Figure 6) is considerably more complex, because it not only contains
further aggregation but also summarisation.

In this example, there are only two sentences. The first sentence not only aggregates
the first six sentences, but it also omits some of the information (for example, the the
user read from a file, that the user logged out etc.). It also includes the use of certain
phrases whose correct interpretation, as mentioned earlier, requires consideration of the
context of occurrence as well as use of adverbs (“she unsuccessfully attempted") and the
use of more complex tenses (“should not have been allowed").

Explaining Violation Traces with Finite State Natural Language Generation Models 185

The user logged in a number of times, interspersed by sequences of one or two
bad logins, after which she unsuccessfully attempted to log in 3 times. The user
then made another request to log in, which should not have been allowed.

Fig. 6. A natural explanation: CNL3

4 Finite State Generation

In this section we will look into using finite state CNLs for NLG. This is based on finite
state techniques as embodied in xfst (Beesley and Karttunen [BK03]) that has already
been used extensively in several other areas of language processing such as computa-
tional morphology and light parsing. xfst provides a language for the description of
complex transducers together with a compiler and a user interface for running and test-
ing transducers. Our aim is to better understand the tradeoffs involvedbetween producing
reasonably natural explanations from traces and the use of the efficient computational
machinery described here.

4.1 Naïve Generation: CNL0

Just as in Figure 2, our starting point is a regular input language C defined as follows

define SIGMA b|l|g|x|r|w;
define C SIGMA*;

SIGMA is the alphabet of the original FSA and the entire generation mechanism ac-
cepts inputs that are arbitrary strings over this alphabet. Strings containing illegal char-
acters yield the empty string and hence, no output.

CNL0 can be obtained more or less directly via a dictionary which links symbols in
SIGMA to simple declarative sentences, as follows1:

define SP " ";
define USR {the SP user};
define DICT b-> [{user} SP {gives} SP {bad} SP {password}],

l-> [{user} SP {requests} SP {login}],
g-> [{user} SP {gives} SP {good} SP {password}],
x-> [{user} SP {logs} SP {out}],
r-> [{user} SP {reads} SP {from} SP {a} SP {file}],
w-> [{user} SP {writes} SP {to} SP {a} SP {file}];

define CNL0 C .o. DICT;

1 Some of the syntactically more obscure aspects of this definition have been omitted for the sake
of clarity.

186 G.J. Pace and M. Rosner

The first line defines the space character, and the second the symbol USR. The third
defines the dictionary DICT which is implemented as finite state transducer that maps
from the individual action symbols to primitive sentences, all of which have the same
basic structure. The input sequence is represented as a string

define input {lgrxlblgwwxlgrwxlgxlblblbl};

To get the output we compose CNL0 with input using the expression ([input .o.
CNL0]), extract the lower side of the relation with the l operator ([input .o. CNL0].l).
The problem with the generated output is that there are no separators between the sen-
tences. The solution is to compose the input with a transducer sentencesep that inserts
a separator.

input .o. sentencesep .o. CNL0

This turns the input into the following string:

l.g.r.x.l.b.l.g.w.w.x.l.g.r.w.x.l.g.x.l.b.l.b.l.b.l.

Such a string can be made to yield exactly the sentences of CNL0 by arranging for the
mappingof the fullstops to insert a space. This is just another transducer that is composed
into the pipeline. The result of this process is exactly the text shown in Figure 3.

4.2 Adding Structural Information: CNL1

At a simplest level, we can specify how the explanation may be split into an enumerated
sequence of paragraphs, aiding the comprehension of the trace explanation. Consider
being given the following list of subtrace specifications using regular explanations:

Correct login session: lg(r + w)∗x.
Sequence of incorrect login requests: (lb)∗.

In CNL1, the main feature is that we will use this information to group text. We will
assume that the following paragraph definitions are supplied:

define correct l g [r | w]* x;
define incorrect [l b];
define group1 correct @-> ... %|, incorrect @-> ... %|;

The group1 definition includes a piece of xfst notation that causes a vertical bar to be
inserted just after whatever matched the left hand side of the rule, yielding

lgrx|lb|lgwwx|lgrwx|lgx|lb|lb|lb|l

As shown earlier, we can when applied to the input, where the vertical bar is used to
delimit paragraphs.

l.g.r.x.|l.b.|l.g.w.w.x.|l.g.r.w.x.|l.g.x.|l.b.|l.b.|l.b.|l.

Fig. 7. CNL1 representation just prior to lexicalisation

Explaining Violation Traces with Finite State Natural Language Generation Models 187

Composing this with an augmented version of CNL0 that also handles the paragraph
breaks yields exactly the paragraph structure of the CNL1 rendering shown in Figure 4.
An inherent limitation of this approach is that it is impossible to produce a finite-state
transducer that will output a numbering scheme for arbitrary numbers of paragraphs.
Our solution is to postprocess the output, and generate, for instance HTML or LATEX
output which will handle the enumeration as required..

4.3 Adding Aggregation: CNL2

We can now move on to CNL2. This involves several intermediate stages which are
diagrammed below:

A: l.g.r.x.|l.b.|l.g.w.w.x.|l.g.r.w.x.|l.g.x.|l.b.|l.b.|l.b.|l.
B: l,g,r,x.|l,b.|l,g,w,w,x.|l,g,r,w,x.|l,g,x.|l,b.|l,b.|l,b.|l.|
C: aggregation1
D: aggregation2

A is as shown in Figure 7. We must now prepare for aggregation by first replacing
all but the paragraph-final fullstops with commas. Because the transducer that achieves
this uses the paragraph marker to identify the final fullstop, we must first insert that
final paragraph marker as as shown in B. The next two phases of aggregation are best
explained with the following example: we wish to transform “the user requested to lo-
gin. the user gave a good password. the user logged out.” to the more natural “the user
requested login, gave a good password, and logged out”. The first phase removes the
subject (i.e. the phrase “ the user”) of all sentences but reinstates the same subject at
the beginning of the paragraph. The second inserts an “and" just before the final verb
phrase of each aggregated sentence. In this way we are able to achieve paragraph 2 of the
CNL2 example as shown in Figure Similar, surface-oriented techniques can be used to
obtain the other paragraphs in Figure 5. Specifically, we have composed rules for insert-
ing the words “after", “then", “twice", “another", “finally" and “and". However, space
limitations prevent us from describing these in full.

4.4 Adding Abstraction: CNL3

We note that certain sequences of actions can be combined into a simpler explanation,
abstracting away (possibly) irrelevant detail, thus aiding comprehension. For instance,
consider the following rules, consisting of (i) a regular expression matching a collection
of subtraces which may be explained more concisely; and (ii) a natural language expla-
nation which may replace the detailed text one would obtain from the whole subtrace:

Consecutive correct login sessions: (lg(r + w)∗x)n explained as “The user success-
fully logged in n times”.

Consecutive correct failed login attempts: (lb)n explained as “The user unsuccess-
fully attempted to log in n times”.

Correct login sessions interspersed with occasional incorrect one: ((lg(r+w)∗x)∗
lb(lg(r+w)∗x)+)∗ explained as “The user successfully logged in a number of times,
with one off bad logins in between”.

188 G.J. Pace and M. Rosner

Correct login sessions interspersed with occasional incorrect one or two: ((lg(r +
w)∗x) ∗ (lb+ lblb)(lg(r+ w)∗x))∗ explained as “The user logged in a number of
times, interspersed by sequences of one or two bad logins”.

Note that xfst allows regular expressions that are parametrised for the number of
times a repeated expression matches. For example, the statement

define success3 [l g [r | w]* x]^3;

achieves the first definition above and associates it with the multicharacter symbol
success3. This can be added to the dictionary DICT and associated with the string
in much the same way as the strings associated with transitions, as shown above.

We will assume that these rules will be applied using a maximal length strategy — we
prefer a longer match, and in case of a tie, the first rule specified is applied. xfst allows
the user to choose between longest and shortest match strategies. Using appropriatexfst
rules would result in the description given in Figure 6.

4.5 Adding Contextuality: CNL4

To further enrich the generation explanations, we can extend the approach used in the
previous section for CNL3, to allow for actions to be described using different terms
in different contexts. For example, a logout action when logged in may be described as
‘the user logged out’, while a logout occuring while the user is already logged out would
better be described as ‘the user attempted to log out’. We can use techniques similar to
the ones presented in the previous section, using regular expressions to specify contexts
in which an action will be described in a particular manner.

Consider the specification below, in which each action and natural language descrip-
tion pair is accompanied by two regular expressions which have to match with the part
of the trace immediately preceding and following the action for that description to be
used2:

Action Pre Post CNL rendering
x l x∗ – user logs out

otherwise user attempts to log out
l – b the user attempts to log in

otherwise the user logs in

This technique can be further extended and refined to deal with repetition of actions as
shown below with repeated logins:

Action Pre Post CNL rendering
l l b l

∗
b user attempts to log in again

– b user attempts to log in
l b l

∗ – user logs in again
otherwise user logs in

It is interesting to see how far this approach can be pushed and generalised to allow for
the generation of more natural sounding text from the input traces.

2 We use the notation a to signify any single symbol except for a.

Explaining Violation Traces with Finite State Natural Language Generation Models 189

5 Discussion and Conclusions

In this paper we have presented preliminary results illustrating how finite state
approaches can be used generate controlled natural language explanations of traces. Al-
though there is still much to be done, the results are promising and it is planned that we
use such an approach to allow for the specification of natural language explanations to
be used in the runtime verification tool Larva [CPS09].

Two problems underlying our task are: (i) the discovery of subsequences that are in-
teresting for the domain in question and (ii) how to turn an interesting subsequence into a
natural-soundingexplanation. In this paper we have provided somewhat ad hoc solutions
to both these problems. While one can use profiling techniques to discover interesting,
or frequently occurring subsequences, clearly there needs to be a strong human input
in identifying which of these sequences should be used to abstract and explain traces
more effectively. On the other hand, we see that many of the ad hoc solutions adopted to
make explanations more natural-sounding may be generalised to work on a wide-range
of situations. We envisage that the person building the specification may add hints as
to how to improve the explanation, such as the tables shown in Section 4.4 to improve
abstraction and the ones given in Section 4.5 to add contextuality.

Given that, essentially, we are using regular grammars to specify our natural lan-
guage generator, the generalisation process to reduce human input while generating more
natural-sounding text is bound to hit a limit. It is of interest to us, however, to investigate
how far these approaches can be taken without resorting to more sophisticated tech-
niques usually applied to language generation.

References

[BK03] Beesley, K.R., Karttunen, L.: Finite State Morphology. Number v. 1 in Studies in com-
putational linguistics. CSLI Publications (2003)

[CPS09] Colombo, C., Pace, G.J., Schneider, G.: Larva — safer monitoring of real-time java
programs (tool paper). In: Seventh IEEE International Conference on Software Engi-
neering and Formal Methods (SEFM), pp. 33–37. IEEE Computer Society (November
2009)

[DH93] Dalianis, H., Hovy, E.H.: Aggregation in natural language generation. In: Adorni, G.,
Zock, M. (eds.) EWNLG 1993. LNCS, vol. 1036, pp. 88–105. Springer, Heidelberg
(1996)

[Kuh14] Kuhn, T.: A survey and classification of controlled natural languages. Computational
Linguistics 40(1), 121–170 (2014)

[Pow12] Power, R.: Owl simplified english: A finite-state language for ontology editing. In: Kuhn,
T., Fuchs, N.E. (eds.) CNL 2012. LNCS, vol. 7427, pp. 44–60. Springer, Heidelberg
(2012)

[RD00] Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge
University Press, New York (2000)

[Wil01] Wilcock, G.: Pipelines, templates and transformations: Xml for natural language gener-
ation. In: Proceedings of the First NLP and XML Workshop, NLPXML 2001 EWNLG,
Tokyo. LNCS, pp. 1–8 (2001)

[ZH02] Zeller, A., Hildebrandt, R.: Simplifying and isolating failure-inducing input. IEEE
Trans. Softw. Eng. 28(2), 183–200 (2002)

A Brief State of the Art of CNLs

for Ontology Authoring

Hazem Safwat and Brian Davis

Insight Centre for Data Analytics,
National University of Ireland,

Galway, Ireland
{hazem.abdelaal,brian.davis}@insight-centre.org

Abstract. One of the main challenges for building the Semantic web
is Ontology Authoring. Controlled Natural Languages CNLs offer a user
friendly means for non-experts to author ontologies. This paper provides
a snapshot of the state-of-the-art for the core CNLs for ontology author-
ing and reviews their respective evaluations.

1 Introduction

The Semantic Web endeavours to extend the current Web, by enriching informa-
tion with well defined meaning, which is machine processable [1]. This process
is heavily dependent on the existence of ontologies, which describe the domain
of interest. Formal data representation can be a significant deterrent for non-
expert users or small organisations seeking to create ontologies and subsequently
benefit from adopting semantic technologies. This challenges researchers to de-
velop user-friendly means for ontology authoring. Controlled Natural Languages
(CNLs) for knowledge creation and management offer an attractive alternative
for non-expert users wishing to develop small to medium sized ontologies. Con-
trolled Natural Languages are defined as “subsets of natural language whose
grammars and dictionaries have been restricted in order to reduce or eliminate
both ambiguity and complexity”[2]. The goal of this paper is to provide a snap-
shot overview of the state-of-the-art with respect to CNLs for the Semantic web.
However, for a broader review of the CNLs literature in general, we refer the
reader to [3]. In the remainder of this paper, Section 2, provides an overview
of the core CNLs players for the Semantic web. In Section 3, generation driven
CNLs will be discussed. Section 4, discusses evaluation of different CNLs, and
finally Section 5 offers analytic conclusions.

2 Main CNLs for the Semantic Web

2.1 Attempto Controlled English ACE

A well known approach involving CNL translation into First Order Logic (FOL)
is the popular CNL, Attempto Controlled English1 (ACE) [4]. It is a subset

1 http://www.ifi.unizh.ch/attempto/, accessed, Thu 25 Jul 2013 16:54:32 IST.

B. Davis et al. (Eds.): CNL 2014, LNAI 8625, pp. 190–200, 2014.
c© Springer International Publishing Switzerland 2014

http://www.ifi.unizh.ch/attempto/

A Brief State of the Art of CNLs for Ontology Authoring 191

of standard English designed for knowledge representation and technical speci-
fications, and constrained to be unambiguously machine readable into discourse
representation structures, a form of first-order logic (ACE can also be translated
into other formal languages.) ACE is a mature CNL and has been in devel-
opment since 1995 for over fourteen years [5]. It was first introduced by Fuchs
and Schwitter [6]. Over forty articles have been published by the Attempto group
and over 500 articles contain the term “Attempto Controlled English” on Google
Scholar, [5]. ACE is a general purpose CNL and is not restricted to any specific
domain. The grammar of ACE is perhaps the most expressive in that it can parse
a variety of syntactic phenomena in comparison to other CNLs. ACE caters for
instance for relative clauses, coordinated noun phrases, coordinated adverbial
and adjectival phrases, numerical and distributed quantifiers, negation, condi-
tional sentences and some anaphoric pronouns2.

ACE Web Ontology Language known as ACE OWL, a sublanguage of ACE,
as a means of writing formal, simultaneously human-and-machine-readable sum-
maries of scientific papers [7] [8]. ACEView is a plugin for the Protègè editor3

[9]. It empowers Protègè with additional interfaces based on the ACE CNL in
order to create, browse and edit an ontology. The user can also query the on-
tology using ACE questions to access newly asserted facts from the knowledge
base. ACE has also served as the basis for other applications such as interface
language for a first-order reasoner [10], a query language for the Semantic Web
[11], an application for the partial annotation of Webpages [12] and the usage
of ACE for producing summaries within the biomedical domain [13]. A recent
development is the translation of a complete collection of paediatric guideline
recommendations into ACE [14]. In addition, AceWiki [15] is a monolingual
CNL based semantic wiki that takes advantage of ACE for its syntactically user
friendly formal language, and of OWL frameworks for applying classification
and querying. The AceWiki content is based on ACE predictive editor notation
grammar called codeco [16]. The main benefit of codeco is that it can translate
all AceWiki content to OWL.

2.2 Grammatical Framework GF

Grammatical Framework is an implementation framework for multiple CNLs [17]
and [18]. GF can cope with a variety of CNLs as well as boost the development
of new ones. In [17], the authors reverse engineer ACE for GF in order to demon-
strate how portable CNLs are to the GF framework as well as how CNLs can be
targeted to other natural languages. ACE is ported from English to five other
natural languages. In short, the core advantage of GF is its multilingualism in
that its primary task is domain specific knowledge based Machine Translation
(MT) of controlled natural languages. It adds a syntax formalism to the logical
framework which defines realisations of formal meanings as concrete linguistic

2 http://attempto.ifi.uzh.ch/site/docs/ace/6.5/ace_constructionrules.html,
accessed, Thu 25 Jul 2013 16:54:32 IST.

3 http://Protege.stanford.edu/, accessed, Thu 25 Jul 2013 16:54:32 IST.

http://attempto.ifi.uzh.ch/site/docs/ace/6.5/ace_constructionrules.html
http://Protege.stanford.edu/

192 H. Safwat and B. Davis

expressions. The semantic model is called the abstract syntax while the syntactic
realisation functionality is called concrete syntax. The authors state that GF is
multilingual, in that one abstract syntax, acting as an interlingual, can be (given
a concrete syntax for one or more source languages) re-targeted to several lan-
guages. The GF libraries now contain a collection of wide coverage grammars
for over 15 natural languages. There is an increasing activity with respect to the
GF development and a vibrant open source community, which continues to cre-
ate language resources for GF. The success is also due to the European project,
MOLTO (Multilingual On-Line Translation)4. This has boosted the uptake of
GF and resulted in many comprehensive applications. GF applications range
from mathematical proofing, dialog systems, patent translation [19], multilin-
gual wikis and multilingual generation in the culture heritage domain [17][20].
In addition, there have been recent efforts to cater for semantic web ontologies
in GF. In [21], the authors develop a conversion tool for compiling axioms in the
SUMO ontology [22] written in the KIF language [23] to GF abstract syntax. In
addition, the authors produce CNL from the ontology and allow users to edit
SUMO axioms in CNL. SUMO contains natural language templates for Nat-
ural Language Generation (NLG), which were processed and covered into GF
concrete syntax. It permits language generation for up to 10 languages, but the
templates were lacking with respect to morphological realisation for languages
other than English. GF compensates for these deficits and a fraction of the En-
glish CNL generated was ported to both French and Romanian. Other work
in this context involves multilingual generation from a knowledge base within
the cultural heritage domain [24]. Although GF has no specific CNL, one could
argue that its growing open source community may result in GF becoming the
de-facto open source general framework for developing resources for engineering
multilingual CNLs. In [25], the authors introduce a multilingual extension of the
previously mentioned AceWiki called AceWiki-GF, where users can get all the
benefits of AceWiki in addition to the multilingual environment. The implemen-
tation was done by modifying the original AceWiki to include GF multilingual
Ace grammar, GF parser, GF source editor, and GF abstract tree set. This study
included an evaluation about the accuracy of translation in AceWiki-GF. The
evaluation showed that the translation accuracy was acceptable, although some
errors due to different reasons in terms of Resource Grammar Library (RGL),
where incorrect use of RGL by mixing regular and irregular paradigms, using
unnatural phrases to native speakers, and negative determiners. The authors
promised a more detailed evaluation in the future work.

2.3 Other CNLs

RABBIT Controlled English is a well known implementation [26]. It is es-
sentially an extension of Controlled Language for Ontology Editing CLOnE [27],
but is much more powerful with respect to grammar expressiveness and ontol-
ogy authoring capabilities. Like CLOnE, Rabbit is implemented using the GATE
framework [28]. Rabbit was developed by the national mapping agency in Great

4 http://www.molto-project.eu/, accessed, Thu 25 Jul 2013 16:54:32 IST.

http://www.molto-project.eu/

A Brief State of the Art of CNLs for Ontology Authoring 193

Britain - Ordnance Survey. Rabbit can be converted to OWL5 to provide natural
language support for ontology authoring. OWL development is not the primary
objective of Rabbit. It is primarily a vehicle for capturing, representing and com-
municating knowledge in a form that is easily understood by domain experts.
There are three broad types of sentences in Rabbit - declarations, axioms and
import statements. Interestingly, a given class or concept can refer to a specific
ontology in Rabbit i.e. one can refer to the animal Duck within a specific on-
tology - Waterfowl as opposed to a default ontology. Therefore, more than one
ontology can be referenced in the Rabbit language [26]. Rabbit attempts to cater
for property restrictions such as transitivity and symmetry, but as the authors
themselves argue that such concepts are “not aligned to the way people think”
and that there is no ideal solution to creating natural language equivalents to
property restrictions. Arguably, these issues should be dealt with by support
from the ontology engineer and not the domain expert directly.

Rabbit to OWL Ontology authoring ROO is an editing tool seeks to
cater for the entire ontology engineering process [29]. It was developed by the
University of Leeds and is an open source Java based plug-in for Protégé. ROO
supports the domain expert in creating and editing ontologies using Rabbit. The
authors argue that CNL interfaces tend to ignore the ontology construction pro-
cess. The design of the ROO interface is based on Ordnance Survey proposed
ontology development methodology called Kanga [30]. Domain experts are in-
volved in the early stages of the ontology engineering process and engage in the
conceptualisation of the ontology, while the ontology engineer is involved at the
end stages and focus on the logical level of the ontology. The work of [29], gives
a good overview of Rabbit’s expressiveness with respect to Rabbit’s syntax pat-
terns and their corresponding ontology mappings such as existential quantifiers,
union, disjointness and cardinality. A new intelligent model was integrated to
ROO to understand the user actions and give feedback accordingly. The model
was introduced in [31] to resolve the modelling errors, by providing a framework
for semantic feedback when adding a new fact to an existing ontology. The new
framework extends the syntactic analysis performed by Rabbit through catego-
rizing the new ontological facts into four categories concerning inconsistency and
novelty of facts. This feedback approach was observed to be repetitive, confus-
ing and sometimes redundant [32]. As a result, a new framework with dialogue
interfaces was introduced in [32] as an extension to Rabbit. It provides more
appropriate feedback according to different situations by keeping track of the
ontology history. In addition, the inputs of the domain experts are analyzed and
an intention is assigned to each input.

3 Generation Driven CNLs

What you see is what you meant - WYSIWYM. With respect to ontology
driven generation of CNLs or conceptual authoring, a well-known implementa-
tion which employs the use of NLG to aid the knowledge creation process is

5 http://www.w3.org/TR/owl-features/, accessed, Thu 25 Jul 2013 16:54:32 IST.

http://www.w3.org/TR/owl-features/

194 H. Safwat and B. Davis

WYSIWYM [33]. It involves direct knowledge editing with natural language
directed feedback. A domain expert can edit a knowledge based reliably by in-
teracting with natural language menu choices and the subsequently generated
natural language feedback which can then be extended or re-edited using the
menu options. Similar to WYSIWYM, GINO (Guided Input Natural Language
Ontology Editor) provides a guided, controlled NLI (natural language interface)
for domain-independent ontology editing for the Semantic Web. GINO incremen-
tally parses the input not only to warn the user as soon as possible about errors
but also to offer the user (through the GUI) suggested completions of words
and sentences—similarly to the “code assist” feature of Eclipse6 with respect to
morphological realisation and other development environments [34].

Round Trip Ontology Authoring ROA builds on and extends the existing
advantages of the CLOnE software and input language. It generates the entire
CNL document first using SimpleNLG that is less sophisticated than WYSI-
WYM [35]. However, it has performed well in user’s evaluation [36].

OWL Simplified English is another WYSIWYM inspired CNL [37]. It is
a finite state language for ontology editing. The argument for the finite state
approach is that the majority of the OWL expressions created by ontology de-
velopers were invariably right branching and hence could be recognised by a finite
state grammar. Based on previous studies of ontology corpora, the authors show
how the individuals, classes and properties tend to have distinct Part Of Speech
(POS) tags. Individuals or instances tend to be either proper nouns, common
nouns or numbers, while classes are composed mostly of common nouns, adjec-
tives and proper nouns. Finally, properties tend to open with a verb or auxiliary
verb in the present tense. In paper [37], the authors describe a finite state network
that is capable of interpreting the CNL sentences in the grammar with minimal
knowledge of content words. OWL Simplified English permits the acceptance of
some technical phrases that violate normal English. The language can capture
ontology operations such as simple negation, cardinality, object intersection but
aims to reduce or eliminate structural ambiguity. We include OWL simplified
English as the interface, under construction, is a WYSIWYM based interface.

4 Evaluation of CNLs

With respect to related work, we will review existing CNL research, but in the
context of user evaluation. As discussed in Section 2.1, Attempto Controlled En-
glish ACE is a well known CNL [4]. Recently Kuhn [38] described an evaluation
framework for CNLs based on Ontographs. Ontographs are a graphical notation
to enable tool independent and reliable evaluation of the human understand-
ing of a given knowledge representation language. The author categorises CNLs
evaluations into (1) task-based, whereby users are provided with a specific task
to complete, and (2) paraphrase-based which are concerned with testing the un-
derstandability of the CNL. Ontographs serve as a common basis for testing and
comparing the understandability of two different formal languages and facilitate

6 http://www.eclipse.org/, accessed, Thu 25 Jul 2013 16:54:32 IST.

http://www.eclipse.org/

A Brief State of the Art of CNLs for Ontology Authoring 195

the design of tool-independent and reliable experiments. The author claims that
Ontographs are simple and intuitive. They are useful for representing simple
logical forms but they do not cater for functions and are restricted to unary and
binary predicates. In short, Ontographs serve to test the relative understanding
of the core logic for two different formal languages. The experiments compared
the syntax of the CNL framework ACE versus OWL framework called simplified
Manchester OWL to test which framework is better in terms of, understand-
ability, learning time, and users acceptance. The results showed that users were
able to do better classification using ACE with approximately 5% more accuracy
than Manchester OWL, and 4.7 minutes less for learning and testing. Also, in
terms of understandability ACE got a higher score than Manchester OWL [38].

In [39], the authors undertake a paraphrase-based evaluation to assess whether
domain experts without any ontology authoring development can author and un-
derstand declaration and axiom sentences in Rabbit. The experiment included
21 participants from the ordnance survey domain and a Rabbit language ex-
pert. The participants were given a text that describes a fictional world and
were asked to make knowledge statements which were then compared to equiv-
alent statements created by the Rabbit expert. The sentences produced by non-
experts were analysed for correctness (with regard to the knowledge captured)
by independent experts and were compared to those produced by the Rabbit
expert. Interestingly, on average 51% of the sentences generated at least one
error. Furthermore, the most common error was the omission of the quantifier
at the beginning of every sentence. An evaluation study of ROO was conducted
against ACEView [9] where participants from the domains of geography and
environmental studies were asked to create ontologies based on hydrology and
environmental models, respectively. Both ontology creation tasks were designed
to resemble real tasks performed by domain experts at OS. Controls were put
in place to eliminate bias and ontologies for both domains, were also produced
by the OS to compare against the ROO generated ontologies. The quantitative
results were favourable. Although ACEView users were more productive (not in
the statistically significant sense), they tended to create more errors in the result-
ing ontologies. Furthermore, with respect to ROO users, their understanding of
ontology modelling improves significantly in comparison to ACEView. Interest-
ingly, but not surprisingly, none of the ontologies produced were usable without
post editing. With respect to the extension of ROO in [31] the study showed
that 91% of the feedback messages were helpful to the users, and 78% were in-
formative. However, feedback caused confusion and overwhelming for 10% of the
cases.

An evaluation of WYSIWYM was carried out with 16 researchers and PhD
students from the social sciences domain. Users were shown a six minute back-
ground video which described the main functionalities of the WYSIWYM inter-
face [40]. Descriptions of four resources (documents to associate metadata) were
provided to the users. These descriptions were described as paragraphs of English.
The goal was to reproduce the descriptions using the WYSIWYM tool. Each sub-
ject also received the descriptions in varied order. Four descriptions were given,

196 H. Safwat and B. Davis

which were further divided into eight to ten sub tasks. The successful completion
of certain sub-tasks was dependent on the preceding sub-task. Task completion
times, number of operations as well as errors including “avoidable” errors (which
imply the result of an error introduced from a previous sub-task), were measured.
The results were encouraging, where users mean completion times decreased sig-
nificantly. Hence, users gained speed over time. In addition, user feedback was
positive, however the results were less positive in comparison to an earlier eval-
uation of WYSIWYM [41], whereby users completion of tasks was less accurate
[40]. Note that the domain ontology was medical as it was in the context for the
CLEF7 project. Furthermore, the evaluation involved composing SQL queries to
a relational database. More importantly, users from the social sciences field re-
ported that they were overwhelmed by the large number of options available i.e.
thirty properties per one object. CLEF was also developed for the well structured
domain of medicine while social sciences tends to be more varied with many differ-
ent theories and approaches. Consequently, the underlying domain ontology can
have a large a significant impact on usability.

5 Conclusion

With respect to CNLs for ontology authoring we make the following analytic
conclusions:

– Grammatical Framework, (GF) appears to be gaining momentum in the CNL
research community. It is possible that GF, may take on the role of a gen-
eral architecture for developing controlled languages. Furthermore, research
within the CNL community is turning its attention towards multilingual con-
trolled languages, with recent efforts to generate ACE, using GF, for several
European languages.

– There has been an increasing tendency towards conducting proper user eval-
uation for CNLs. While some CNL researchers have conducted task based
evaluations, there have been less comparative evaluations across tools. In
general, the CNL community should invest more in conducting strong user
evaluations and not to lose track of the end goal - the creation of more user
friendly ontology editing interfaces.

– A major question is whether a CNL is appropriate for the task? Although,
in the context of ontology authoring, CNLs like CLOnE and ACE offer an
attractive alternative to ontology editors, we argue that a CNL is not a
panacea for formal knowledge engineering. We argue that for these scenarios,
there should be a pre-existing use case for a human orientated CNL, in other
words a restricted vocabulary or syntax for a technical domain either legal,
clinical or aeronautics such as ASD Simplified Technical English8. Without
such a use case (despite it being possible to adapt a human-orientated CNL
to a machine processable CNL), there would be little incentive for users

7 http://www.clinical-escience.org/ , Retrieved 2008-05-22.
8 http://www.asd-ste100.org/, accessed, Thu 25 Jul 2013 16:54:32 IST.

http://www.clinical-escience.org/
http://www.asd-ste100.org/

A Brief State of the Art of CNLs for Ontology Authoring 197

to interact with it. Factors to be taken into account when designing CNLs
include, the knowledge creation task complexity, target user (specialist or
non expert), the domain (open or specific), available corpora, sample texts,
pre-existing language resources or vocabularies, ontologies, multilingualism,
requirements for language generation capabilities, and finally, availability
of an NLP engineer or computational linguist for development of general
purpose CNLs.

– Other issues include whether to adopt a shallow or deeper NLP approach?
CLOnE and RABBIT [26] are based on a suite of shallow linguistic analysis
tools while Grammatical Framework (GF) and Attempto Controlled English
(ACE) are more lexicalised. Furthermore, they are both more powerful with
respect to knowledge modelling. Both GF and ACE are bidirectional, which
is extremely useful for surface realisation. In addition, GF, which is based
on the functional language paradigm, can exploit subsumption for free and
moreover has an exhaustive bank of application grammars for multiple lan-
guages. ACE on the other hand is logic based and has built-in discourse
representation structures which are unification based. However, both RAB-
BIT and CLOnE, respectively, as GATE applications, have a number of
Semantic Web and Linked Data processing resources available as GATE re-
sources [42]. In summary, deciding on what CNL or tools to use depends
very much on the complexity of both the knowledge creation task and the
language modelling task of the CNL as well as the target knowledge repre-
sentation language and whether there is a need to reuse existing ontologies
or vocabularies.

– As research into CNLs has been invigorated to a certain degree by the Se-
mantic Web initiative, Semantic Web researchers with an interest in CNLs,
should observe lessons learned by previous work in designing CNLs. Corpus
analysis and empirical approaches should be a necessary step when designing
a CNL [43].

Acknowledgements. This publication has emanated from research conducted
with the financial support of Science Foundation Ireland (SFI) under Grant
Number SFI/12/RC/2289

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
284(5), 34–43 (2001)

2. Schwitter, R., Tilbrook, M.: Controlled natural language meets the semanticweb.
In: Proceedings of the Australasian Language Technology Workshop 2004, Sydney,
Australia, pp. 55–62 (2004)

3. Kuhn, T.: A Survey and Classification of Controlled Natural Languages. Compu-
tational Linguistics 40(1), 121–170 (2014)

4. Fuchs, N., Schwitter, R.: Attempto controlled english, ace (1996), See citeseer,
ist.psu.edu/article/fuchs96attempto.html

ist.psu.edu/article/fuchs96attempto.html

198 H. Safwat and B. Davis

5. Kuhn, T.: Controlled English for Knowledge Representation. PhD thesis,
University of Zurich (2010) (to appear)

6. Fuchs, N., Schwitter, R.: Attempto Controlled English (ACE). In: CLAW 1996:
Proceedings of the First International Workshop on Controlled Language Appli-
cations, Leuven, Belgium (1996)

7. Kaljurand, K., Fuchs, N.E.: Bidirectional mapping between OWL DL and
Attempto Controlled English. In: Alferes, J.J., Bailey, J., May, W., Schwertel, U.
(eds.) PPSWR 2006. LNCS, vol. 4187, pp. 179–189. Springer, Heidelberg (2006)

8. Kuhn, T.: Attempto Controlled English as ontology language. In: Bry, F., Schw-
ertel, U. (eds.) REWERSE Annual Meeting 2006 (2006)

9. Kaljurand, K.: ACE View — an ontology and rule editor based on Attempto
Controlled English. In: 5th OWL Experiences and Directions Workshop (OWLED
2008), Karlsruhe, Germany, 12 pages (2008)

10. Fuchs, N.E., Schwertel, U.: Reasoning in attempto controlled english. In: Bry, F.,
Henze, N., Ma�luszyński, J. (eds.) PPSWR 2003. LNCS, vol. 2901, pp. 174–188.
Springer, Heidelberg (2003)

11. Bernstein, A., Kaufmann, E., Fuchs, N., von Bonin, J.: Talking to the semantic
web: a controlled english query interface for ontologies. In: 14th Workshop on
Information Technology and Systems, pp. 212–217 (2004)

12. Fuchs, N.E., Schwitter, R.: Web-annotations for humans and machines. In:
Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519,
pp. 458–472. Springer, Heidelberg (2007)

13. Kuhn, T., Royer, L., Fuchs, N.E., Schröder, M.: Improving text mining with
controlled natural language: A case study for protein interactions. In: Leser, U.,
Naumann, F., Eckman, B. (eds.) DILS 2006. LNCS (LNBI), vol. 4075, pp. 66–81.
Springer, Heidelberg (2006)

14. Shiffman, R.N., Michel, G., Krauthammer, M., Fuchs, N.E., Kaljurand, K., Kuhn,
T.: Writing clinical practice guidelines in controlled natural language. In: Fuchs,
N.E. (ed.) CNL 2009. LNCS, vol. 5972, pp. 265–280. Springer, Heidelberg (2010)

15. Kuhn, T.: AceWiki: A Natural and Expressive semantic wiki. In: Semantic Web
User Interaction at CHI 2008: Exploring HCI Challenges (2008)

16. Kuhn, T.: A Principled Approach to Grammars for Controlled Natural Languages
and Predictive Editors. Journal of Logic, Language and Information (2012)

17. Angelov, K., Ranta, A.: Implementing controlled languages in gf. In: Fuchs, N.E.
(ed.) CNL 2009. LNCS, vol. 5972, pp. 82–101. Springer, Heidelberg (2010)

18. Ranta, A.: Grammatical Framework: A Type-Theoretical Grammar Formalism.
Journal of Functional Programming 14(2), 145–189 (2004)

19. España-Bonet, C., Enach, R., Slaski, A., Ranta, A., Marquez, L., Gonzalez, M.:
Patent translation within the molto project. In: Workshop on Patent Translation,
MT Summit XIII, pp. 70–78 (2011)

20. Dannélls, D.: Generating tailored texts for museum exhibits. In: Proceedings of
the LREC 2008, Workshop on Language Technology for Cultural Heritage Data
(LaTeCH), Marrakech, Morocco, pp. 17–20 (2008)

21. Angelov, K., Enache, R.: Typeful Ontologies with Direct Multilingual Verbaliza-
tion. In: Rosner, M., Fuchs, N.E. (eds.) CNL 2010. LNCS, vol. 7175, pp. 1–20.
Springer, Heidelberg (2012)

22. Niles, I., Pease, A.: Towards a standard upper ontology. In: Proceedings of the
International Conference on Formal Ontology in Information Systems, FOIS 2001,
pp. 2–9. ACM, New York (2001)

23. Genesereth, M., Fikes, R., et al.: Knowledge interchange format-version 3.0: ref-
erence manual (1992)

A Brief State of the Art of CNLs for Ontology Authoring 199

24. Dannélls, D., Damova, M., Enache, R., Chechev, M.: Multilingual online gen-
eration from semantic web ontologies. In: Proceedings of the 21st International
Conference Companion on World Wide Web, pp. 239–242. ACM (2012)

25. Kaljurand, K., Kuhn, T.: A Multilingual Semantic Wiki Based on Attempto
Controlled English and Grammatical Framework. In: Cimiano, P., Corcho, O.,
Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882,
pp. 427–441. Springer, Heidelberg (2013)

26. Hart, G., Johnson, M., Dolbear, C.: Rabbit: Developing a control natural lan-
guage for authoring ontologies. In: Bechhofer, S., Hauswirth, M., Hoffmann, J.,
Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 348–360. Springer,
Heidelberg (2008)

27. Funk, A., Tablan, V., Bontcheva, K., Cunningham, H., Davis, B., Handschuh, S.:
CLOnE: Controlled language for ontology editing. In: Aberer, K., et al. (eds.)
ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 142–155. Springer, Heidelberg
(2007)

28. Cunningham, H.: GATE, a General Architecture for Text Engineering. Computers
and the Humanities 36, 223–254 (2002)

29. Dimitrova, V., Denaux, R., Hart, G., Dolbear, C., Holt, I., Cohn, A.G.: Involving
Domain Experts in Authoring OWL Ontologies. In: Sheth, A.P., Staab, S., Dean,
M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008.
LNCS, vol. 5318, pp. 1–16. Springer, Heidelberg (2008)

30. Kovacs, K., Dolbear, C., Hart, G., Goodwin, J., Mizen, H.: A Methodology for
Building Conceptual Domain Ontologies. In: Ordnance Survey Research Labs
Tech. Report IRI-0002 (2006)

31. Denaux, R., Thakker, D., Dimitrova, V., Cohn, A.G.: Interactive Semantic Feed-
back for Intuitive Ontology Authoring. In: 7th International Conference on Formal
Ontology in Information Systems, Graz (2012)

32. Denaux, R., Dimitrova, V., Cohn, A.: Interacting with Ontologies and Linked
Data through Controlled Natural Languages and Dialogues. In: Do-Form: En-
abling Domain Experts to use Formalised Reasoning @ AISB, Exeter (2013)

33. Power, R., Scott, D., Evans, R.: What you see is what you meant: direct knowl-
edge editings with natural language feedback. In: Prade, H. (ed.) 13th European
Conference on Artificial Intelligence (ECAI 1998), pp. 677–681. John Wiley and
Sons, Chichester (1998)

34. Bernstein, A., Kaufmann, E.: GINO - A guided input natural language ontology
editor. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika,
P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 144–157.
Springer, Heidelberg (2006)

35. Gatt, A., Reiter, E.: Simplenlg: a realisation engine for practical applications. In:
Proceedings of the 12th European Workshop on Natural Language Generation,
ENLG 2009, pp. 90–93. Association for Computational Linguistics, Stroudsburg
(2009)

36. Davis, B., Iqbal, A.A., Funk, A., Tablan, V., Bontcheva, K., Cunningham, H.,
Handschuh, S.: Roundtrip ontology authoring. In: Sheth, A.P., Staab, S., Dean,
M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008.
LNCS, vol. 5318, pp. 50–65. Springer, Heidelberg (2008)

37. Power, R.: Owl simplified english: A finite-state language for ontology editing. In:
Kuhn, T., Fuchs, N.E. (eds.) CNL 2012. LNCS, vol. 7427, pp. 44–60. Springer,
Heidelberg (2012)

38. Kuhn, T.: The understandability of OWL statements in controlled. English Se-
mantic Web 4(1), 101–115 (2013)

200 H. Safwat and B. Davis

39. Engelbrecht, P.C., Hart, G., Dolbear, C.: Talking rabbit: A user evaluation
of sentence production. In: Fuchs, N.E. (ed.) CNL 2009. LNCS, vol. 5972,
pp. 56–64. Springer, Heidelberg (2010)

40. Hielkema, F., Mellish, C., Edwards, P.: Evaluating an ontology-driven wysiwym
interface. In: White, M., Nakatsu, C., McDonald, D. (eds.) INLG. The Association
for Computer Linguistics (2008)

41. Hallett, C., Scott, D., Power, R.: Composing questions through conceptual
authoring. Comput. Linguist. 33(1), 105–133 (2007)

42. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applica-
tions. In: Proceedings of the 40th Anniversary Meeting of the Association for
Computational Linguistics (ACL 2002) (2002)

43. Grover, C., Holt, A., Holt, E., Klein, E., Moens, M.: Designing a controlled lan-
guage for interactive model checking (2000)

Author Index

Barzdins, Guntis 90

Camilleri, John J. 135
Cardey, Sylviane 66
Condamines, Anne 33

Dannélls, Dana 155
Davis, Brian 190

El Abed, Walid 66
Enache, Ramona 147

Feuto Njonko, Paul Brillant 66

Greenfield, Peter 66
Gruzitis, Normunds 155
Guy, Stephen 167

Haralambous, Yannis 102

Kang, Juyeon 55
Keet, C. Maria 78
Khumalo, Langa 78
Kolachina, Prasanth 147
Kuhn, Tobias 44

Listenmaa, Inari 147

Pace, Gordon J. 179
Paganelli, Gabriele 135
Power, Richard 20
Puentes, John 102

Ranta, Aarne 1
Rosner, Michael 179

Safwat, Hazem 190
Saint-Dizier, Patrick 55
Saulwick, Adam 123
Sauvage-Vincent, Julie 102
Schneider, Gerardo 135
Schwitter, Rolf 8, 167
Suchowolec, Karolina 112

Third, Allan 20

Volk, Martin 44

Warnier, Maxime 33
Williams, Sandra 20
Winkler, Kurt 44

	Preface
	Organization
	Table of Contents
	Embedded Controlled Languages
	1 Introduction
	2 Defining Controlled Languages in GF
	3 Embedding a Controlled Language in the Host Language
	4 Work in Progress
	References

	Controlled Natural Language Processingas Answer Set Programming: An Experiment
	1 Introduction
	2 Answer Set Programming (ASP)
	3 Writing a CNL Grammar in ASP
	4 From Syntax Trees to Reified ASP Rules
	5 Reasoning with Reified ASP Rules
	6 Conclusion
	References

	How Easy Is It to Learn a Controlled Natural Language for Building a Knowledge Base?
	1 Introduction
	2 Related Studies
	3 Tools, Materials and Method
	3.1 OWL Simplified English
	3.2 SWAT Editing Tool
	3.3 Materials
	3.4 Method

	4 Results
	4.1 Learning OSE
	4.2 Knowledge Modelling
	4.3 Sentence Construction
	4.4 Identifier Name Construction

	5 General Discussion
	6 Conclusion and Future Work
	References

	Linguistic Analysis of Requirements of a Space Project and Their Conformity with the Recommendations Proposed by a Controlled Natural Language
	1 Introduction
	2 Methodology
	2.1 Description of the Corpus
	2.2 Tools and Resources
	2.3 INCOSE Recommendations

	3 First Results
	3.1 Quantitative Analysis
	3.2 Qualitative Analysis (Analysis of Examples)

	4 Conclusions and Future Work
	References

	Evaluating the Fully Automatic Multi-language Translation of the Swiss Avalanche Bulletin
	1 Introduction
	2 Background
	3 Catalogue-Based Translation System
	3.1 Creating the Phrases in the Source Language
	3.2 Translation of the Catalogue
	3.3 Operational Use

	4 Quality of the Texts
	4.1 Method
	4.2 Analysis
	4.3 Results

	5 Discussion
	6 Conclusions
	References

	Towards an Error Correction Memory toEnhance Technical Texts Authoring in LELIE
	1 Introduction
	2 The Case of Fuzzy Lexical Items
	3 A Method for the Definition of an Error Correction Memory
	3.1 A Lexicon of Fuzzy Lexical Items
	3.2 Memorizing Technical Writers’ Behavior
	3.3 Error Correction Memory Scenarios
	3.4 Error Contexts
	3.5 Error Correction Patterns

	4 Perspectives
	References

	RuleCNL: A Controlled Natural Languagefor Business Rule Specifications
	1 Introduction
	2 Business Rules and Controlled Natural Languages
	2.1 Business Rules
	2.2 Controlled Natural Languages

	3 Related Work
	4 RuleCNL: A Controlled Natural Language for Business Rules Specifications
	4.1 Introduction
	4.2 RuleCNL Vocabulary
	4.3 RuleCNL Grammar
	4.4 Formalization of the Grammar
	4.5 RuleCNL Semantics

	5 RuleCNLTool
	5.1 Implementation
	5.2 Evaluation

	6 Conclusions and Future Work
	References

	Toward Verbalizing Ontologies in isiZulu
	1 Introduction
	2 Some Very Basic Aspects of isiZulu
	3 Summary of the Relevant Grammar Rules
	4 Experimental Evaluation of the Verbalisation Patterns
	4.1 Survey Design
	4.2 Results and Discussion

	5 Discussion
	6 Conclusions
	References

	FrameNet CNL: A Knowledge Representation and Information Extraction Language
	1 Introduction
	2 FrameNet
	2.1 Frame-Semantic Parsing
	2.2 “Latvian” FrameNet Subset

	3 Knowledge Representation in FN-CNL
	4 Information Extraction with FN-CNL
	5 FrameNet Controlled Natural Language (FN-CNL)
	6 Conclusions
	References

	INAUT, a Controlled Language for the FrenchCoast Pilot Books Instructions nautiques
	Introduction
	1 Modelling the Instructions nautiques
	2 The SHOM Knowledge Base
	3 The Controlled Languages INAUT and LitINAUT
	4 Controlled Language Generation
	5 Interaction with ENCs
	6 Collaborative Updates of the Knowledge Base
	7 Conclusion and Future Work
	References

	Are Style Guides Controlled Languages?The Case of Koenig & Bauer AG
	1 Introduction
	2 Background
	3 Language Constraints at KBA
	3.1 Lexical Level
	3.2 Syntactic and Stylistic Level

	4 Prospects
	5 Discussion
	6 Concluding Remarks
	References

	Lexpresso: A Controlled Natural Language
	1 Introduction
	2 System Architecture and Module Functions
	3 Syntactic Structures
	4 Semantic Structures
	5 Classification of Lexpresso
	6 Conclusion
	References

	A CNL for Contract-Oriented Diagrams
	1 Introduction and Background
	1.1 C-O Diagrams
	1.2 Grammatical Framework

	2 Implementation
	2.1 Architecture
	2.2 Editing Tools
	2.3 Syntactic Extensions to C-O Diagrams

	3 CNL
	3.1 Grammar
	3.2 Language Features

	4 Coffee Machine Example
	5 Evaluation
	5.1 Metrics
	5.2 Classification

	6 Related Work
	7 Conclusion
	References

	Handling Non-compositionality in Multilingual CNLs
	1 Introduction
	2 Background and RelatedWork
	2.1 Grammatical Framework
	2.2 Multiword Expressions

	3 Methods for MMWE Extraction
	3.1 GeneralMMWE Candidate Extraction
	3.2 GF Lexicon of CompoundWords

	4 Evaluation
	4.1 Evaluation of General MMWE Extraction
	4.2 Evaluation of German Nominal Compounds

	5 Future Work
	References

	Controlled Natural Language Generationfrom a Multilingual FrameNet-Based Grammar
	1 Introduction
	2 Background
	2.1 FrameNet (FN)
	2.2 Grammatical Framework (GF)

	3 FrameNet-Based Grammar
	3.1 Abstract Syntax
	3.2 Concrete Syntaxes

	4 Case Studies
	4.1 Phrasebook
	4.2 Painting Grammar

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Architecture of a Web-Based Predictive Editorfor Controlled Natural Language Processing
	1 Introduction
	2 Overview of the PENGASP System
	2.1 Client-Server Architecture
	2.2 HTTP Server
	2.3 Predictive Editor

	3 Processing and Reasoning in the PENGASP System
	3.1 Controlled Natural Language Processor
	3.2 Reasoning Service

	4 Predictive Editor Requirements
	4.1 User and System Requirements
	4.2 Display of Multiple Sentence Completions

	5 Architecture of the Predictive Editor
	5.1 Model-View-Controller Architecture
	5.2 Event-Triggered Implementation
	5.3 Data Structures
	5.4 Predictive Editor Controller
	5.5 Adding Content Words to the Lexicon

	6 Future Research
	7 Conclusion
	References

	Explaining Violation Traces with Finite State NaturalLanguage Generation Models
	1 Introduction
	2 The Roles of NLG and CNL
	3 Languages
	3.1 The C Language
	3.2 CNL0
	3.3 CNL1
	3.4 CNL2
	3.5 CNL3

	4 Finite State Generation
	4.1 Naïve Generation: CNL0
	4.2 Adding Structural Information: CNL1
	4.3 Adding Aggregation: CNL2
	4.4 Adding Abstraction: CNL3
	4.5 Adding Contextuality: CNL4

	5 Discussion and Conclusions
	References

	A Brief State of the Art of CNLsfor Ontology Authoring
	1 Introduction
	2 Main CNLs for the Semantic Web
	2.1 Attempto Controlled English ACE
	2.2 Grammatical Framework GF
	2.3 Other CNLs

	3 Generation Driven CNLs
	4 Evaluation of CNLs
	5 Conclusion
	References

	Author Index

