
Analysis of Cray XC30 Performance
Using Trinity-NERSC-8 Benchmarks

and Comparison with Cray XE6 and IBM BG/Q

M.J. Cordery1(B), Brian Austin1, H.J. Wassermann1, C.S. Daley1,
N.J. Wright1, S.D. Hammond2, and D. Doerfler2

1 NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
{mjcordery,baustin,hjwasserman,csdaley,njwright}@lbl.gov

2 Center for Computing Research, Sandia National Laboratories Albuquerque,
Albuquerque, NM, USA

{sdhammo,dwdoerf}@sandia.gov

Abstract. In this paper, we examine the performance of a suite of appli-
cations on three different architectures: Edison, a Cray XC30 with Intel
Ivy Bridge processors; Hopper and Cielo, both Cray XE6’s with AMD
Magny–Cours processors; and Mira, an IBM BlueGene/Q with PowerPC
A2 processors. The applications chosen are a subset of the applications
used in a joint procurement effort between Lawrence Berkeley National
Laboratory, Los Alamos National Laboratory and Sandia National Lab-
oratories. Strong scaling results are presented, using both MPI-only and
MPI+OpenMP execution models.

Keywords: Benchmarking · HPC · Performance

1 Introduction

The classic parallel programming model, MPI, faces several new challenges on
petaflop computing platforms, which are dominated by multicore-per-node archi-
tectures [1,2]. These challenges include reduced memory capacity per core,
reduced memory and network bandwidth per core, and the inefficiency of using
two-sided messages to handle a large amount of fine-grain communication. These
challenges will only be exacerbated as the field of high performance comput-
ing moves forward into the exa-scale era wherein application developers will no
longer be able to achieve significant performance and scalability gains with an
MPI-only programming model. As on-node parallelism increases, effective use of
future technologies will require exposing more fine-grained data parallelism, bet-
ter management of data placement and data movement, exploiting longer vector
units, and exploring task-based parallelism and communication reducing algo-
rithms. To this end, several laboratories within the Department of Energy (DOE)
are collaborating on the FastForward project to research both new technologies
and new execution models. While this program advances, DOE laboratories are
working with their scientists and code development teams to address these issues.
c© Springer International Publishing Switzerland 2014
S. Jarvis et al. (Eds.): PMBS 2013 Workshops, LNCS 8551, pp. 52–72, 2014.
DOI: 10.1007/978-3-319-10214-6 3

Analysis of Cray XC30 Performance 53

This collaborative effort also extends to the realm of system procurement
where, in a debut effort, Lawrence Berkeley Laboratory (LBL), Los Alamos
National Laboratory (LANL) and Sandia National Laboratories (SNL) (the later
two comprising ACES, the Alliance for Computing at Extreme Scales), have
entered a partnership to jointly procure two systems. While one of the goals of
this partnership is to drive favorable economies of scale, a substantial benefit is
the opportunity for various DOE labs to better understand each other’s system
requirements and workload characteristics. This understanding will yield future
architectures that cover the broadest range of scientific computing needs and
are not defined by and targeted at any specific workload. As part of this pro-
curement, each of the involved laboratories contributed a selection of benchmark
codes that represent an important part of their workload. The primary aim of
this paper is to evaluate the performance characteristics of this new suite of
benchmarks on state-of-the art platforms, especially at high concurrencies. Fur-
thermore we are interested in how well different execution models perform on
different architectures, especially the comparison between the classical MPI-only
execution model and a hybrid model using many relatively lightweight threads.
To this end, we present results showing how each benchmark strong scales on
three different architectures: Edison, a Cray XC30 at NERSC; Hopper, a Cray
XE6 (also at NERSC); and Mira and Vulcan, both IBM Blue Gene/Q machines
at Argonne National Laboratory and Lawrence Livermore National Laboratory,
respectively. We compare and contrast the performance of the selected bench-
marks on each machine when using an MPI-only execution model and, at the
other extreme, how each scales when using the maximum number of OpenMP
threads possible on a node (or, in the case of Hopper and Edison, the maximum
number of threads possible in a NUMA domain). Short of an exhaustive study,
this will give us some sense of the range of performance possible for intermediate
mixes of MPI tasks and OpenMP threads. It is also of interest to us how this
new suite of benchmarks aligns with previous metrics of system performance, in
this case NERSC’s Sustained System Performance (SSP) metric.

In summary, the principle contributions of this paper are

– On a node-per-node basis, the Cray XC-30 offers a significant performance
advantage over both the Cray XE6 and IBM’s BlueGene/Q, by 1.8-3.8x
and 1.8-9.4x respectively, over a range of node counts. Based on a metric
of performance per watt, however, the Cray XE6 and the BlueGene/Q are
more equivalent.

– For the benchmarks used in this paper, over the range of nodes considered,
hybrid MPI+OpenMP applications currently run slower than MPI applica-
tions across all platforms. The principle reason for this appears to be that
the OpenMP implementations of the applications are not as efficient as the
MPI ones at expressing parallelism.

– The benchmarks used, which represent the workloads at leading DOE super-
computing centers, have low computational intensity and their performance
is primarily limited by memory bandwidth.

54 M.J. Cordery et al.

The paper is organized as follows: Section 2 describes the experimental platforms.
Section 3 presents a description of the benchmark applications used as well as
their general strategies for both MPI and OpenMP parallelism. Performance
results of the benchmark applications and microbenchmarks are presented in
Section 4. Related work is presented in Section 5. Finally, we summarize our
conclusions and future work in Section 6.

2 Test Platform Descriptions

2.1 BlueGene/Q: Mira and Vulcan

BlueGene/Q is the third revision to IBM’s high-performance BlueGene architec-
ture. Each BG/Q node consists of embedded PowerPC cores clocked at 1.6GHz
which include a 256-bit SIMD (QPX) vector processing unit. Each core is dual-
issue, 4-way multithreaded, and has a 16KB L1 data cache. In order to run at
the dual-issue rate, at least two threads must be running per core. Each BG/Q
processor chip contains 18 cores (with 16 being available to the user, one to han-
dle OS tasks, and a spare core to increase chip yields) connected with a crossbar
to a 32MB L2 and the network interface. The two memory controllers per chip
can provide a sustained bandwidth of up to 28 GB/s to 16GB of DRAM. Nodes
are connected in a high-bandwidth 5D torus. In this paper, we use both the Mira
machine located at Argonne National Laboratory (49,152 nodes) and Vulcan, an
open-science relative of Sequoia, installed at the Lawrence Livermore National
Laboratory (24,576 nodes). Although the machines vary in size, the operating
system and compiler implementation are identical and so we treat them as equiv-
alent for the purposes of benchmarking the BlueGene/Q architecture.

2.2 Cray XE6: Hopper

Hopper is a Cray XE6 machine deployed at NERSC. The XE6 is based on
commodity AMD processors connected via HyperTransport to a custom inter-
connect. Each processor includes six 2.1GHz AMD Opteron cores with each core
having a 128-bit SIMD (SSE3) vector floating-point unit, and 64KB L1 and
512KB L2 caches. Cores are connected to a 6MB L3 cache (1MB reserved as a
probe filter) and two DDR3-1333 memory controllers. There are four processor
chips per node. The interconnect is a Cray custom-designed “Gemini” architec-
ture. Each Gemini chip is connected to two nodes, and the Gemini chips are
connected together in a 3D-torus with dimensions 17x8x24.

2.3 Cray XC30: Edison

Edison is a Cray XC30 (Cascade) supercomputer recently installed at NERSC.
The XC30 architecture is based on commodity Intel processors connected via PCI
Express 3.0 to a custom interconnect. Each processor is a 12-core, 2.4 GHz Intel
E-series Xeon (Ivy Bridge). The core includes a 256-bit SIMD (AVX) vector

Analysis of Cray XC30 Performance 55

Processor Core

Processor Core

Processor Core

Processor Core
...

...6MB L3
Cache

6MB L3
Cache

Processor Core

Processor Core

Processor Core

Processor Core

...
...

6MB L3
Cache

6MB L3
Cache

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

Fig. 1. Node Architecture of Hopper

floating-point unit and 32KB L1 and 256KB L2 caches. Each processor-core
permits up to two-way hyperthreading and is connected to the four DDR3-1866
memory controllers and 20MB L3 cache via an arbitrated ring-bus. Nodes of
Edison feature two processor sockets and are grouped into quad-node blades for
connection to a dragonfly topology interconnect via a Cray Aries NIC. In total,
the machine contains 5200 compute nodes, providing over 120,000 compute cores.

3 Benchmarks Descriptions and Problem Definitions

In the emerging many-core era, it will become impractical for applications to run
with an MPI-only programming model. The rapidly increasing number of cores
per node and the relatively slow growth of associated memory and memory
bandwidth means that each MPI task will not only be able to access smaller
amounts of memory and memory bandwidth than today, but will also encounter
more contention for on- and off-node network resources. For these reasons, there
is increasing pressure to move applications to hybrid execution models where,
say, MPI is used for decomposing problems across nodes at a coarse level and
a lightweight threaded API is used to perform finer-grained compute work (and
possibly handle communications) on a node. To this end, we are interested in the
ability of the applications presented below to scale with an increasing number
of threads and how that performance compares to an MPI-only programming
model.

For each application, we present a set of strong scaling results using an MPI-
only execution model and an MPI+OpenMP model. In the former, we increase
only the number of MPI ranks and in the latter we increase the number of
MPI ranks but only use one MPI rank per socket, filling the remainder of the
compute cores on each socket with OpenMP threads. In each case, we completely
fill each node on each machine with either tasks or tasks and threads (though
we do not examine hyper-threading on Edison) and then compare results on a
node-per-node basis and examine what tradeoffs or limitations might exist.

56 M.J. Cordery et al.

IVB
CPU

IVB
CPU

DRAMDRDRAMDRDRAMDRAMD DRAM
DRAM

DRAMDRDRAMDRDRAMDRAMD DRAM
DRAM

IVB
CPU

IVB
CPU

IVB

DRAMDRAMD
DRAM

D
DRAM

DRAM

IVBII

M

DRAMDRAMD
DRAM

D
DRAM

DRAM

IVB
CPU

IVB
CPU

IVB

DRAMDRAMD
DRAM

D
DRAM

DRAM

IVBII

M

DRAMDRAMD
DRAM

D
DRAM

DRAM

IVB
CPU

IVB
CPU

IVB

DRAMDRAMD
DRAM

D
DRAM

DRAM

IVBII

M

DRAMDRAMD
DRAM

D
DRAM

DRAM

IVB
CPU

IVB
CPU

IVB

DRAMDRAMD
DRAM

D
DRAM

DRAM

IVBII

M

DRAMDRAMD
DRAM

D
DRAM

DRAM

NIC NIC NIC NIC8 Processor
Tiles

40 Network
Tiles

48 Router Tiles (one bidirectional
link each, 3 lanes wide, 12.5Gbps optical

14 Gbps electrical)

Fig. 2. Cray XC30 Node Architecture

In summary, for the three test platforms our execution modes are:

– Mira/Vulcan
• 16 MPI tasks per node, 4 OpenMP threads per core
• 1 MPI task per node, 64 OpenMP threads

– Hopper
• 24 MPI tasks per node
• 4 MPI tasks per node, 6 OpenMP threads per NUMA domain

(24 OpenMP threads in total)
– Edison

• 24 MPI tasks per node
• 2 MPI tasks per node, 12 OpenMP threads per NUMA domain (24

OpenMP threads in total)

Each of the benchmark problems (except FLASH) is a smaller version of
the large problems defined for the NERSC8/Trinity procurement. Each problem
was weak-scaled down by two to four times in order to provide a sufficiently
interesting range of data points for the compute capabilities of the test platforms.
Each of the benchmark codes and problem definitions is now briefly described.

3.1 MILC

MILC (MIMD Lattice Computation) is a widely used, computationally intense
application designed to compute gauge fields as described by the theory of quan-
tum chromodynamics (QCD). The computational grid is a four-dimensional

Analysis of Cray XC30 Performance 57

space-time grid (x, y, z, t) with quark fields, defined as 3x3 complex vectors,
at the grid points and gluon variables, defined as 3x3 unitary matrices, defined
at the ‘links’ between grid points [3]. The most computationally intense part of
the program is the conjugate gradient solver which determines how the motion
of the quarks is affected by the gluons [3]. The four dimensional lattice is decom-
posed so that the sub-grid assigned to each MPI task has the minimum possible
surface-to-volume ratio. Following Gottlieb and Tamhankar [4], the code has
fine-grain parallelism implemented with OpenMP directives, mostly on loops
over all grid points in the lattice. Communications in MILC are largely dom-
inated by point-to-point transfers associated with the 4D halo exchanges and
global reductions associated with the conjugate gradient solver. MILC has been
an important part of previous NERSC procurements as it is representative of
NERSC’s high energy physics workload and because the stencil computation and
conjugate gradient solver stress both the memory and interconnect bandwidths,
respectively.

The four dimensional space-time grid (x, y, z, t) used for this paper has dimen-
sions 64x64x64x192. At the base concurrency of 12288 MPI tasks, this yields an
8x8x8x8 grid for each MPI task.

3.2 GTC

GTC is a 3-dimensional code used to study microturbulence in magnetically
confined toroidal fusion plasmas via the Particle-In-Cell (PIC) method [5]. GTC
is used for fusion energy research and thus represents an important part of
NERSC’s workload. It solves the gyro-averaged Vlasov equation in real space
using global gyrokinetic techniques and an electrostatic approximation. The
Vlasov equation describes the evolution of a system of particles under the effects
of self-consistent electromagnetic fields. The unknown is the flux, f(t, x, v), which
is a function of time t , position x, and velocity v, and represents the distri-
bution of particles (electrons and ions) in phase space. This model assumes a
collision-less plasma; i.e., the particles interact with one another only through a
self-consistent field and thus the algorithm scales as N instead of N2, where N
is the number of particles. The version of GTC used here uses a fixed 1-D spatial
decomposition with 64 domains in the toroidal direction and P particle domains
within a toroidal domain for a total of 64*P MPI tasks. Fine-grained parallelism
is implemented by using OpenMP over the particles in a particle domain and
some grid related work within a toroidal domain. Communications in GTC are
largely dominated by MPI allreduces that merge each task’s copy of the field and
MPI send/receives that move particles between domains. Furthermore, because
of the gather/scatter particle operations in GTC, the code is known to be par-
ticularly sensitive to memory latency [5], though it is also sensitive to memory
bandwidth.

It is not possible to strong scale GTC without fundamentally changing the
problem because the number of MPI tasks is fixed by the number of particle
domains (see above). Increasing the MPI concurrency would also increase the
number of particles being simulated. Hence, rather than examining strong scaling

58 M.J. Cordery et al.

through MPI, we examine the strong scaling through OpenMP threads, i.e. we
fix the MPI concurrency and increase the number of nodes used by increasing
the number of OpenMP threads per node. The base problem size is defined for
4800 MPI tasks (75 particle domains) with 32,359 particles per MPI task.

3.3 FLASH

FLASH is a publicly available, multi-physics code with core capabilities which
include Adaptive Mesh Refinement (AMR) and explicit solvers for hydrody-
namics and magneto-hydrodynamics [6,7]. It has been used to simulate X-ray
bursts, Type Ia supernovae, Core Collapse supernovae, galaxy cluster formation
and laser-driven High Energy Density Physics (HEDP) experiments. It is paral-
lelized by dividing the underlying mesh into blocks (patches) and assigning the
blocks to different MPI tasks. Each block contains a halo of guard cells which
are updated after each solver time-advancement. The solvers are multithreaded
using conditionally compiled OpenMP directives around either loops over blocks
or loops over grid points.

In this paper we run the Sedov test case, which is a pure hydrodynamics
problem involving the self-similar evolution of a spherical blast wave from an
initial pressure perturbation. The application is configured to use the unsplit
hydrodynamics solver and a uniform resolution grid containing 11523 grid points.
We use a uniform mesh and not the adaptive mesh provided by Paramesh because
Paramesh is not multithreaded and so the MPI vs MPI+OpenMP comparison
would be less interesting. The uniform mesh provides one block per MPI task
and so the OpenMP directives over grid points are conditionally compiled into
the application. Note that the uniform mesh is an important capability which is
appropriate in simulations with relatively smooth fluid flow, such as simulations
of weakly-compressible homogeneous isotropic turbulence [8].

3.4 Finite Element (MiniFE)

Many of the engineering applications in use at Sandia and other HPC computing
sites require the implicit solution of a nonlinear system of equations. As these
systems increase in size and complexity, the runtime becomes dominated by
the performance of basic mathematical operations employed by the solver rou-
tines - these typically feature some combination of dot-products, vector scaling
or AXPBY operations and sparse-matrix-vector products.

The MiniFE mini-app [9], part of the Mantevo suite [10], is an implementation
of a finite-element generation, assembly and solve for an unstructured problem.
Although the solver employed in MiniFE - a simple conjugate gradient solver -
is more simplistic than those used for production applications, the kernels that
contribute to the CG solver provide many of the characteristics of those used in
production applications and, in a number of studies, have been shown to provide
reasonable runtime and behavioral correlation [11].

Analysis of Cray XC30 Performance 59

3.5 Unstructured Mesh Transport (UMT)

UMT is a proxy application from the NNSA’s ASC program, written and main-
tained by LLNL, which performs the solution of a time- and energy-dependent
discrete ordinate radiation problem in three dimensions on an spatially unstruc-
tured grid. The algorithm employs deterministic Sn methods to model the trans-
fer of thermal protons in a three dimensional domain. Parallelism within the
UMT code is provided by decomposing the unstructured spatial grid onto MPI
tasks and using OpenMP threads to implement fine-grained parallel processing
over angles during the transport phase.

4 Performance Results

4.1 STREAM

To measure the memory bandwidth performance, which can significantly impact
many scientific codes, we ran the STREAM benchmark on each of the test
platforms. For each platform, we configured the test to utilize 60% of the on–
node memory. For Hopper and Edison, we ran separate copies of STREAM
on each of the NUMA domains and used enough OpenMP threads to fill each
domain. For Mira, we only ran one instance of the benchmark and ran with 64
OpenMP threads. The reported STREAM Triad results are as follows: Hopper -
53.9 GB/s, Edison - 103.3 GB/s, Mira - 28.6 GB/s per node.

Knowing the relative magnitude of the memory bandwidth between machines
can be useful when comparing the performance of codes that are memory band-
width sensitive. In Figure 3, we show roofline models of the three test platforms
using the measured STREAM values and the known peak gigaflops/s/core rate
defined by each platform’s CPU clock speed and peak flops/clock. The roofline
model [12] is a convenient visual means of identifying if a code is compute bound
or memory bandwidth bound and can be used to guide optimization efforts. If a
code makes good use of spatial and temporal locality in its memory references,
the memory subsystem should be able to keep the vector units of the CPU full
and thus the code should operate at near the peak floating point rate (com-
pute bound). If not, a code’s performance will be limited by the memory band-
width (memory bandwidth bound). In the roofline model, these two variables,
floating point performance and memory bandwidth, are assumed to be related
through operational intensity, i.e. the number of floating point operations per
byte of DRAM traffic. Thus, the roofline of a platform is defined by the following
formula

PeakGFlops/s = MIN(
PeakF loatingPointPerformance,

PeakMemoryBandwidth ∗ OperationalIntensity)

The roofline for each compute platform is divided into two segments. The hori-
zontal segment represents the upper floating-point limit imposed by the architec-
ture. The sloped portion of the roofline represents the upper limit of performance
imposed by the peak memory bandwidth of the system.

60 M.J. Cordery et al.

If we now measure the compute intensity and gigaflops/s rate of a code we can
plot them in the figure. Codes which tend to fall on the horizontal portion of the
roofline for a platform are considered to be compute bound as their performance
is limited by the number of floating point operations that a CPU can execute each
clock cycle. Codes which fall on the sloping part of the roofline are considered
to be limited by memory bandwidth. Code performance may fall beneath the
roofline if its performance is limited by the other features of the architecture or
if it is composed of kernels with different computational intensities.

Figure 3 shows the measured performance of each of the Trinity/NERSC8
applications when running each application’s ‘large’ test case on Hopper using
an MPI-only execution model. The operational intensity for each code was mea-
sured using Cray’s Craypat performance analysis tool and the gflops/s rates were
determined using the floating point counts reported from IPM performance anal-
ysis tool and the run time values returned by each application. The results in
this figure point out that the applications in the procurement, and those studied
in more detail in this paper, are limited in performance by the rate that the
memory subsystem can feed the processor. Simply adding more floating point
capability will not increase performance. The other observation is that all of the
benchmarks have relatively low computational intensity (<1), though it must be
stressed that that the data points shown are for the entire code and not for any
individual kernel which may show higher performance. Because of this, it will be
difficult for any of these applications to attain a platform’s peak floating point
performance. This fact may have an impact on both machine inter-comparisons
and the selection of systems for procurement. In the former case, architectures
become compared based largely on their peak memory bandwidth and not the
inherent computational advantages available on each processor. In the latter
case, application developers and system procurement teams may find it easier to
choose machines with higher peak memory bandwidth rather than refactoring
their applications, or researching new algorithms, to better use the CPU. As
CPUs increase in core count and complexity these issues may become increas-
ingly prominent.

4.2 NERSC-6 Applications on Hopper and Edison

While the majority of this paper focuses on performance analysis of codes
selected from the Trinity-NERSC8 benchmark suite, we also present results for
the NERSC-6 application benchmarks [13] to facilitate comparison to previ-
ous benchmarking work on other computational platforms. Like the Trinity-
NERSC8 suite, the NERSC-6 benchmarks were selected to span an appropriate
cross-section of scientific domains and algorithms. The Community Atmospheric
Model (CAM) is a significant component of the climate science workload; it
uses 3-dimensional finite volume methods to simulate dynamical (e.g. fluid flow)
and physical (e.g. precipitation) processes in the atmosphere. GAMESS imple-
ments a broad range of ab initio models of quantum chemistry. IMPACT-T is
a relativistic particle-in-cell code used to simulate accelerator physics. MAE-
STRO is an astrophysics code that uses algebraic multigrid methods to simulate

Analysis of Cray XC30 Performance 61

Fig. 3. Roofline model of test systems and NERSC8/Trinity benchmarks. The lines in
the plot show the roofline for each test system which is obtained from the peak floating
point performance per core and the measured memory bandwidth from the STREAM
benchmark. Each symbol marks the actual results obtained on Hopper for test cases
that run on order 1000 nodes.

pre-ignition phases of Type Ia supernovae. PARATEC is a plane-wave density
functional theory code used for materials science; its functionality and perfor-
mance characteristics are quite similar to MiniDFT, which has supplanted it
in the Trinity-NERSC8 benchmark suite. GTC and MILC are included in both
benchmark suites and were described in Section 3. Detailed descriptions of the
NERSC-6 codes and inputs are available in [13].

One feature that distinguishes Edison’s Ivy Bridge processors from Hopper’s
Magny–Cours processors is the availability of Hyperthreading Technology. When
hyperthreading is enabled, each physical core presents itself to the OS as two
logical cores. The logical cores share some resources of the physical core (such
as cache, memory bandwidth and FPUs), but have independent architectural
states. Hyperthreading has the potential to increase resource utilization if an
application cannot exhaust a critical shared resource with a single instruction
stream. Thus, on Edison jobs can be run in a single-stream mode (with one
process per physical core) or dual-stream mode (with two processes per physical
core). The sharing of resources generally causes dual-stream jobs to run roughly
half as fast as single-stream jobs with the same MPI concurrency, but a net
increase in throughput may be achieved if the dual-stream job uses half as many
nodes for less than twice the single-stream walltime.

Figure 4 compares the performance of the NERSC-6 benchmarks on Hop-
per and Edison. Edison’s single-stream performance is 1.9-2.6 times faster than

62 M.J. Cordery et al.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

CAM GAMESS GTC IMPACT MAESTRO MILC PARATEC

P
er

fo
rm

an
ce

 v
s.

 H
op

pe
r

Hopper
Edison (single)

Edison (dual)
Edison (dual throughput)

Fig. 4. NERSC-6 Application speedup relative to Hopper. Each benchmark was run on
Hopper and on Edison in single- and dual-stream modes. The dual-stream throughput
accounts for reduced node counts needed in dual-stream mode.

Hopper. The dual-stream performance is predictably about 50% less than single-
stream, however dual-stream ’throughput performance’ (which is identically 2x
the dual-stream performance) is up to 2.75 greater than Hopper, and marginally
better than the Edison single-stream performance for all codes except MILC.
Edison’s NERSC-6 SSP is 253 TF/s, nearly double Hopper’s 137 TF/s.

4.3 Application Performance On Test Platforms

MILC. The strong scaling performance results for MILC are shown in Figure 5.
The base configuration for these experiments was 12288 MPI tasks (512 nodes
on Hopper/Edison and 192 nodes on Mira). Note that, for Mira, the node count
is lower as we placed 64 MPI tasks on a node since MILC’s memory usage for
this problem can easily fit within the 16GB per node available.

Across the range of nodes where they overlap, the MPI-only runs on Edison
are 2.2-3.8 times faster than on Hopper whereas they are 1.9-3.8 times faster
than on Mira. The hybrid models on Edison compared to Hopper show a similar
speedup as the MPI-only runs, but the hybrid runs on Edison are 6.8-9.4 times
faster than on Mira.

For all three platforms, the hybrid model is slower than the MPI-only model.
If we look in ranges where the parallel efficiency is still reasonably good, the

Analysis of Cray XC30 Performance 63

hybrid models on Hopper are 2-3x slower than the MPI-only version, on Edison
they are about 2x slower, and on Mira they are about 3.5x slower. Looked at
another way, on both Hopper and Edison, the hybrid models need approximately
twice the concurrency to equal the same performance as an MPI-only model.
On Mira, the hybrid model needs nearly four times the concurrency. On the x86
architectures at least, this indicates that there are many serial sections remaining
in the code.

As for scaling, the MPI-only/hybrid code on Hopper shows a 2.5x/3.9x speed
up over an 8x increase in concurrency whereas on Edison there is a 4.2x/6.5x
speedup. On Mira, the same versions show a 22.3x/24.5x speedup over a 64x
increase in concurrency. One interesting feature is the bend in Mira’s MPI-only
scaling curve at 3072 nodes which is possibly due to a change in MPI protocols.
This is supported by the fact that the hybrid model on Mira does not show this
behavior - message sizes (which are presumed to trigger the protocol switch) are
significantly larger for the hybrid code.

While it appears that the Hopper and Edison MPI-only models both become
slower than their hybrid counterparts between 1024 and 2048 nodes, this effect
is the result of a loss of scaling due to increased MPI traffic at higher MPI
concurrencies. If we look at the compute time (wall clock - communication time)
then this cross-over disappears and the hybrid compute times are slower than
the MPI-only compute times across the range of nodes shown. The compute time
only efficiency curves highlight the fact that while all of the models scale well
out to 2048 nodes, they decline markedly after that point, presumably because
they’ve reached the point where the serial portions of the OpenMP code start
to become important.

The parallel efficiency figure is interesting that, while MILC on Edison shows
some evidence of superlinear speedup for both the hybrid and MPI-only models,
neither Hopper nor Mira do. The lack of superlinearity in the latter two platforms
may simply be due to cache size differences. While MPI-only models of MILC
often show superlinearity because of their typical memory footprint on a node,
the hybrid version shows more. This is presumably because the working set per
core of the hybrid code is smaller than in the MPI only version of the code.

GTC. The performance results for the OpenMP strong scaling experiment for
GTC are shown in Figure 6. For Hopper, we ran with 1,2,3 and 6 threads per
NUMA domain, for Edison we ran with 1,2,3,4,6, and 12 threads per NUMA
domain, and for Mira, we ran with 4, 8, 16, 32 and 64 threads per node. On
Hopper, GTC speeds up 4.1x using six threads, on Edison it sees a 9.2x speedup
over twelve threads, and on Mira it sees an 8.72x speed up when going from four
threads per node to 64 (a factor of 16).

The differences in the performance between the three different platforms may,
to first order, be explained by differences in clock speed and memory bandwidth.
On a node per node basis, Edison is approximately 2-2.6x faster than Hopper,
increasing with node count, and Mira is 2.6-2.8x slower than Hopper, with Edison
being approximately 7-7.8x faster than Mira. To look at it in a different way, to

64 M.J. Cordery et al.

102

103

104

105

 128 256 512 1024 2048 4096 8192 16384

R
un

tim
e

(S
ec

on
ds

)

Nodes

0.00

0.20

0.40

0.60

0.80

1.00

1.20

 128 256 512 1024 2048 4096 8192 16384

P
ar

al
le

l E
ffi

ci
en

cy

Nodes

BG/Q (16xMPI, 4xOpenMP)
BG/Q (1xMPI, 64xOpenMP)

Hopper (24xMPI)
Hopper (4xMPI, 6xOpenMP)

Edison (24xMPI)
Edison (2xMPI, 12xOpenMP)

Fig. 5. MILC Performance

run as fast as the 200 node case on Edison, Hopper requires three times as many
nodes and Mira requires over nine times as many nodes.

To first order, the differences in the parallel efficiency curves can be under-
stood by removing the MPI communication times from the run times and then
recalculating the parallel efficiency. Following that procedure, all three platforms
follow nearly the same parallel efficiency curve, with Edison’s curve being only
marginally affected by this correction. At larger numbers of nodes, the overall
performance of GTC becomes limited by the growing influence of MPI collec-
tive (allreduce) communications. However, this appears to be less of a factor on
Edison as evidenced by it’s better scaling.

FLASH. The FLASH experiments are run with a uniform resolution grid of
11523 cells and use 512 to 4096 nodes on all 3 platforms with additional exper-
iments on Mira which use up to 32,768 nodes. In 1 MPI rank per core con-
figurations, this gives a workload per MPI rank which is representative of a
typical production FLASH simulation with Paramesh on Mira. In such a simu-
lation, each MPI rank typically updates 10 to 20 blocks, each consisting of 163

cells. For comparison, in the 512 node experiment on Hopper, each MPI rank is
assigned approximately the same number of cells as 30 163 blocks. Our strong
scaling study is important because it spans the full range of typical production
simulations corresponding to 30, 15, 8 and 4 163 blocks per MPI rank. In all
experiments we obtain the FLASH run time from the “evolution” time stamp in

Analysis of Cray XC30 Performance 65

101

102

103

104

 128 256 512 1024 2048 4096 8192

R
un

tim
e

(S
ec

on
ds

)

Nodes

0.00

0.20

0.40

0.60

0.80

1.00

1.20

 128 256 512 1024 2048 4096 8192

P
ar

al
le

l E
ffi

ci
en

cy

Nodes

BG/Q
Hopper
Edison

Fig. 6. GTC Performance

the FLASH log file. This is appropriate because initialization time is small and
becomes negligible in production simulations which consist of multiple 12-hour
runs chained together.

The performance results in Figure 7 show that at a given node count the
fastest time to solution is obtained on Edison in 1 MPI rank per core configura-
tion. We see that it takes approximately a factor of 8x more nodes on Mira to
improve upon a given Edison time. The parallel efficiency of FLASH tails off at
higher node count mainly because the unsplit hydrodynamics solver in FLASH
replicates certain guard cell computations. We find that the biggest strong scaling
loss comes from the computation of Riemann state values for all cell interfaces
within a single block. Work could be saved by communicating the guard cell
Riemann state values instead of replicating this computation. The communi-
cation vs. computation trade-off should be investigated because the replicated
work is actually more than the necessary local work in FLASH simulations with
Paramesh and blocks of 163 cells.

In all cases, the 1 MPI rank per core experiments are faster than the 1
MPI rank per NUMA domain experiments. One notable observation is that the
Hopper platform shows the smallest difference between the MPI per core and
MPI per NUMA domain performance. This is partially because there are only 6
OpenMP threads per MPI rank instead of 12 (Edison) or 64 (Mira) and so the
impact of serial code sections is smaller. Hopper also spends less time in MPI in

66 M.J. Cordery et al.

the per NUMA domain experiments than in the per core experiments. This is
the opposite to what we observe on both Edison and Mira and perhaps indicates
contention in the network is slowing down the MPI rank per core guard cell
exchange on Hopper.

101

102

103

 512 1024 2048 4096 8192 16384 32768

R
un

tim
e

(S
ec

on
ds

)

Nodes

0.00

0.20

0.40

0.60

0.80

1.00

1.20

 512 1024 2048 4096 8192 16384 32768

P
ar

al
le

l E
ffi

ci
en

cy

Nodes

BG/Q (16xMPI, 4xOpenMP)
BG/Q (1xMPI, 64xOpenMP)

Hopper (24xMPI)
Hopper (4xMPI, 6xOpenMP)

Edison (24xMPI)
Edison (2xMPI, 12xOpenMP)

Fig. 7. FLASH Performance

MiniFE. The results for MiniFE are for a strong scaled study with data points
at 512, 1024, 2048 and 4096 nodes for each platform. The input parameters were
chosen to use nominally 4 TB of aggregate memory capacity, 8 GB, 4 GB, 2
GB and 1 GB per node respectively, in order to be sufficiently larger than the
last level cache and hence fully utilize the memory hierarchy. The metric chosen
for this study is overall solve time for the conjugate gradient solver. The CG
solver contains three distinct operations, a DOT product, a WAXPY operation,
and a sparse matrix vector (SpMV) product. All three operations have been
parallelized with OpenMP. The SpMV product takes the majority of time in the
calculation, approximately 80% for the Hopper cases at 512 nodes. The amount
of time spent in MPI communication is not negligible and there can be effects
as scale increases on less balanced architectures.

Analysis of Cray XC30 Performance 67

The timing and parallel efficiency results for MiniFE are shown in Figure 8.
In general MiniFE performs similarly for the two mixes of MPI and OpenMP
on the respective platforms. There are some deviations at 4096 nodes, but they
are not significant. MiniFE scales well on both the BG/Q and Edison plat-
forms, near 90% or better parallel efficiency. On the Hopper platform, scaling is
somewhat erratic. This behavior has been observed with MiniFe in other stud-
ies of the Cray XE6 architecture, with the primary contributor being the DOT
product operation. This behavior is repeatable and has been demonstrated on
multiple instantiations of the architecture. It is believed to be an artifact of the
non-uniform communication performance of the Gemini 3D torus and how the
problem is laid out on the machine. Although this is usually not a major per-
formance issue, this study observed significant performance degradation at 4096
nodes, where parallel efficiency drops to less than 70%. The authors surmise that
if run at 8192 nodes, parallel efficiency would improve to the 90+% range seen
at 2048 nodes. In summary, Edison provides the best overall time to solution.
Both Hopper and the BG/Q platform require approximately four times as many
nodes to achieve similar performance.

100

101

102

 512 1024 2048 4096 8192

R
un

tim
e

(S
ec

on
ds

)

Nodes

0.00

0.20

0.40

0.60

0.80

1.00

1.20

 512 1024 2048 4096 8192

P
ar

al
le

l E
ffi

ci
en

cy

Nodes

BG/Q (16xMPI, 4xOpenMP)
BG/Q (1xMPI, 64xOpenMP)

Hopper (24xMPI)
Hopper (4xMPI, 6xOpenMP)

Edison (24xMPI)
Edison (2xMPI, 12xOpenMP)

Fig. 8. MiniFE Performance

UMT. The results for UMT are for a strong scaled study with data points
at 512, 1024, 2048 and 4096 nodes for each platform. The input parameters
were chosen to use nominally 4 TB of aggregate memory capacity, 8 GB, 4 GB,

68 M.J. Cordery et al.

2 GB and 1 GB per node respectively, in order to be sufficiently larger than
the last level cache and hence fully utilize the memory hierarchy. The metric
chosen was cumulative work time. For UMT much of the work for each MPI
rank does not contain OpenMP directives, the only section of the code that has
OpenMP is the step which loops over all the angles of the transport problem.
Although this is a major computational part of the solve phase, if a node has
weak single core performance, cases with minimal MPI parallelism may inher-
ently have lower performance. However, the results below show that there can be
exceptions.

The timing and parallel efficiency results for UMT are shown in Figure 9.
For the BG/Q and Edison platforms, the cases which use more MPI parallelism
perform significantly better than the respective cases with higher OpenMP par-
allelism, as surmised above. However, for the Hopper platform the two cases
show essentially equal performance across all scales. Further analysis shows that
the 24xMPI case does indeed spend approximately 20% less time in the compu-
tational sections of the code, but spends approximately 70% more time in the
MPI routines than the 4xMPI/6xOpenMP case. So for this problem, on this
platform, the total solve time is roughly equal.

Looking at the parallel efficiency graph, Edison shows good scaling for both
cases. The BG/Q platform has good scaling for the 1xMPI/64xOpenMP case,
but scaling drops off significantly as the number of MPI ranks per node is
increased in the 16xMPI/4xOpenMP case. Hopper scales consistently between
the two cases, but overall performance drops to less than 40% parallel efficiency
at 4096 nodes. In summary, best overall performance is obtained with Edison
using 24 MPI ranks per node. Neither Hopper nor Vulcan achieve the same level
of performance, even when using four times as many nodes.

5 Related Work

The work most directly related to this study is that of Kerbyson et al. [14] who
compared the performance of the IBM Blue Gene/Q with the Cray XE6 and an
Infiniband system. That study is different from the work presented herein in sev-
eral ways: in particular, they presented a more detailed analysis of the network
interconnect performance and their application performance comparison focused
on weak-scaling of codes without examining thread-level parallelism. Like Ker-
byson, we observe the excellent scaling characteristics of the Blue Gene/Q inter-
connect, but we also observe comparable scaling performance in the Cray XC30
interconnect, making this system attribute less of a discriminating performance
factor between the two. Though it is difficult to directly compare weak and strong
scaling results of different problems over different node counts, we observe that
both GTC and MILC on the Cray XE6 had roughly similar speedups over the
Blue Gene/Q as those observed in [14].

Analysis of Cray XC30 Performance 69

101

102

103

 512 1024 2048 4096

R
un

tim
e

(S
ec

on
ds

)

Nodes

0.00

0.20

0.40

0.60

0.80

1.00

1.20

 512 1024 2048 4096

P
ar

al
le

l E
ffi

ci
en

cy

Nodes

BG/Q (16xMPI, 4xOpenMP)
BG/Q (1xMPI, 64xOpenMP)

Hopper (24xMPI)
Hopper (4xMPI, 6xOpenMP)

Edison (24xMPI)
Edison (2xMPI, 12xOpenMP)

Fig. 9. UMT Performance

6 Summary and Conclusions

As we have seen in this study, it is possible to see significant performance gains on
modern architectures with larger faster caches and better memory bandwidth. In
terms of raw performance acquired through improvements in memory bandwidth
and an improved interconnect, the Cray XC30 is a significant step forward from
its predecessor, the Cray XE6. For the MPI-only codes, for the smallest node
counts and where parallel efficiency is still good, the range of speedup from
Hopper to Edison is about 2x which is expected based on clock speeds and
memory bandwidth figures. Comparing Edison to Mira is a bit more interesting
as on a per core basis we expect an Edison core to be 5.4x the speed of a Mira
hardware core. Comparing on a node level, and correcting for node counts, we
expect an Edison node to have 8x the performance of a Mira node (single thread
per core). In this case Mira performs more admirably with MiniFE and Flash
running on Edison only 4.2 and 4.3x faster, respectively. Both MILC and UMT
perform even better showing speedups on Edison relative to Mira of about 2-
2.5x. For the case of MILC, the improved performance on Mira is possibly the
result of the latter’s 5D torus network being more amenable to MILC’s 4D halo
exchanges and Mira’s ability to hide memory latency, which is also an important
performance limiter for MILC. The UMT code also shows a speedup on Edison
of 2.6x, implying that it is able to exploit at least two hardware threads on
Mira effectively and may also be able to exploit hardware threading to hide the

70 M.J. Cordery et al.

latency of its indirect addressing. At higher node counts, all the codes showed a
decrease in performance due to increased network traffic resulting in increasing
gaps in performance between Edison and the other two platforms. In this case,
Edison increased it’s performance advantage over Hopper up to a range of about
2.5-3.8x and over Mira from a range of 3.5-6x.

Comparing performance at low node counts, the hybrid codes show a similar
performance improvement to the MPI-only codes on Edison relative to Hopper
of about 1.8-2.5x. Flash, UMT, and MiniFE all perform 3.5-4x better on Edison
than Mira, whereas GTC and MILC have poorer OpenMP performance and
Edison has a 6.2-6.7x performance advantage over Mira. The latter two codes
are older full applications, more representative of NERSC’s current workload
than the more recently developed mini-applications. Thus, we expect that if
we migrate to newer code bases with better OpenMP implementations and less
serialization between OpenMP sections, this performance difference would be
reduced.

At high node counts the effect of increasing MPI traffic, again, decreases
application performance for the hybrid models and widens the performance
advantage of Edison. However, in general, because we are using far fewer MPI
tasks than in the MPI-only models, the effect for most codes is relatively modest
with Edison gaining at most about a factor of 1.0-1.5x over Hopper and Mira.
Still, both GTC and MILC take substantial performance hits on Mira at high
node counts with Edison’s advantage increasing to 7.8x and 9.4x, respectively,
thus adding network overhead to already marginal OpenMP performance.

Through this study, we can see the advantages of Edison’s improved mem-
ory bandwidth and interconnect on performance both on individual application
performance and on NERSC’s system performance metric, the SSP. Comparing
the XC30 system to the BG/Q system is more difficult. While the Cray provides
roughly 4x greater application performance per core (as shown in Section 4) the
IBM system may be more attractive on an efficiency or total energy cost basis.
BG/Q nodes require less electrical power than the XC30: Edison uses about 280
W/node when running LINPACK, and Mira uses about 80 W/node. Thus, at
peak utilization, one Edison node uses 3.5x the power of a Mira node, which
places the two systems on near-equal footing when compared by a performance
per Watt metric.

Finally, we also observed that all of the benchmarks used in this study have
low computational intensity, making them sensitive to memory bandwidth per-
formance. Figure 3 clearly shows that all of the codes used in this study are
significantly limited by the memory bandwidth of each platform, and overall
the results principally track the differences in memory bandwidth between the
machines. All would benefit greatly from code optimizations to increase their
computational intensity, regardless of any increases in memory bandwidth per-
formance. A telling feature of this study is that while a few purpose-written mini-
applications (e.g. MiniFE) may exhibit nearly co-equal performance between
MPI and hybrid versions, the hybrid version of most applications is slower, in
some cases markedly so. It is clear that application developers will need to invest

Analysis of Cray XC30 Performance 71

substantial time and effort into either refactoring their codes for the many-core
era or selecting new algorithms to improve threaded performance. These changes
must be made with one eye toward reducing serialization and communications,
and another toward increasing data reuse in order to reduce memory traffic. In
fact, this work has already begun for several of these codes [15,16]. The hybrid
results presented here simply reflect a slightly older code base.

Acknowledgments. All authors from Lawrence Berkeley National Laboratory were
supported by the Office of Advanced Scientific Computing Research in the Department
of Energy Office of Science under contract number DE-AC02-05CH11231. This research
used resources of the National Energy Research Scientific Computing Center (NERSC),
which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for
the U.S. Department of Energy’s National Nuclear Security Administration (NNSA)
under contract DE-AC04-94AL85000.

This research used resources of the Argonne Leadership Computing Facility at
Argonne National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under contract DE-AC02-06CH11357.

References

1. Geist, G.A.: Sustained petascale: The next MPI challenge. In: Cappello,
F., Herault, T., Dongarra, J. (eds.) PVM/MPI 2007. LNCS, vol. 4757, pp. 3–4.
Springer, Heidelberg (2007)

2. Challenges for the message passing interface in the petaflops era, www.cs.uiuc.edu/
homes/wgropp/bib/talks/tdata/2007/mpifuture-uiuc.pdf

3. Bauer, B., Gottlieb, S., Hoefler, T.: Performance modeling and comparative anal-
ysis of the MILC Lattice QCD application su3 rmd. In: Proc. CCGRID 2012:
IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing
(2012)

4. Gottlieb, S., Tamhankar, S.: Benchmarking MILC with OpenMP and MPI. Nucl.
Phys. Proc. Suppl. 94, 841–845 (2001)

5. Ethier, S., Tang, W.M., Lin, Z.: Gyrokinetic particle-in-cell simulations of plasma
microturbulence on advanced computing platforms. Journal of Physics: Conference
Series 16, 1–15 (2006)

6. Fryxell, B., Olson, K., Ricker, P., Timmes, F.X., Zingale, M., Lamb, D.Q.,
MacNeice, P., Rosner, R., Truran, J.W., Tufo, H.: FLASH: An Adaptive Mesh
Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes. The
Astrophysical Journal Supplement Series 131(1), 273 (2000)

7. The Flash Center for Computational Science, University of Chicago. FLASH User’s
Guide. Version 4.0 (September 2012), http://flash.uchicago.edu/site/flashcode/
user support/flash4 ug.pdf

8. Antypas, K., Calder, A., Dubey, A., Fisher, R.T., Ganapathy, M.K., Gallagher,
B., Reid, L.B., Riley, K., Sheeler, D.J., Taylor, N.: Scientific Applications on the
Massively Parallel BG/L Machine. In: PDPTA, vol. 2006, pp. 292–298 (2006)

www.cs.uiuc.edu/homes/wgropp/bib/talks/tdata/2007/mpifuture-uiuc.pdf
www.cs.uiuc.edu/homes/wgropp/bib/talks/tdata/2007/mpifuture-uiuc.pdf
http://flash.uchicago.edu/site/flashcode/user_support/flash4_ug.pdf
http://flash.uchicago.edu/site/flashcode/user_support/flash4_ug.pdf

72 M.J. Cordery et al.

9. Heroux, M.A., et al.: Improving Performance via Mini-applications. Technical
Report SAND2009-5574, Sandia National Laboratories (September 2009), https://
software.sandia.gov/mantevo/

10. Heroux, M.A.: Mantevo project web page, https://software.sandia.gov/mantevo/
11. Barrett, R.F., Crozier, P.S., Doerfler, D.W., Hammond, S.D., Heroux, M.A.,

Thornquist, H.K. Trucano, T.G., Vaughan, C.T.: Summary of work for asc l2
milestone 4465: Characterize the role of the mini-application in predicting key per-
formance characteristics of real applications. Sandia National Laboratories, Tech.
Rep. SAND, 4667 (2012)

12. Williams, S.W., Waterman, A., Patterson, D.A.: Roofline: An insightful visual
performance model for floating-point programs and multicore architectures. Tech-
nical Report UCB/EECS-2008-134, EECS Department, University of California,
Berkeley (October 2008)

13. Antypas, K., Shalf, J., Wasserman, H.: NERSC-6 Workload Analysis and Bench-
mark Selection Process. Technical Report LBNL 10143, Lawrence Berkeley
National Laboratory (2008)

14. Kerbyson, D.J., Barker, K.J., Vishnu, A., Hoisie, A.: Comparing the performance
of Blue Gene/Q with leading Cray XE6 and InfiniBand systems. In: Proceedings of
the 2012 IEEE 18th International Conference on Parallel and Distributed Systems,
ICPADS 2012, pp. 556–563. IEEE Computer Society, Washington, DC (2012)

15. Oliker, L.: Personal communication (2013)
16. Joó, B., Kalamkar, D.D., Vaidyanathan, K., Smelyanskiy, M., Pamnany, K., Lee,

V.W., Dubey, P., Watson III, W.: Lattice QCD on intel R©xeon phiTM coprocessors.
In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC 2013. LNCS, vol. 7905, pp.
40–54. Springer, Heidelberg (2013)

https://software.sandia.gov/mantevo/
https://software.sandia.gov/mantevo/
https://software.sandia.gov/mantevo/

	Analysis of Cray XC30 Performance Using Trinity-NERSC-8 Benchmarks and Comparison with Cray XE6 and IBM BG/Q
	1 Introduction
	2 Test Platform Descriptions
	2.1 BlueGene/Q: Mira and Vulcan
	2.2 Cray XE6: Hopper
	2.3 Cray XC30: Edison

	3 Benchmarks Descriptions and Problem Definitions
	3.1 MILC
	3.2 GTC
	3.3 FLASH
	3.4 Finite Element (MiniFE)
	3.5 Unstructured Mesh Transport (UMT)

	4 Performance Results
	4.1 STREAM
	4.2 NERSC-6 Applications on Hopper and Edison
	4.3 Application Performance On Test Platforms

	5 Related Work
	6 Summary and Conclusions
	References

