
Stephen Jarvis
Steven Wright
Simon Hammond (Eds.)

 123

LN
CS

 8
55

1

4th International Workshop, PMBS 2013
Denver, CO, USA, November 18, 2013
Revised Selected Papers

High Performance
Computing Systems
Performance Modeling,
Benchmarking and Simulation

Lecture Notes in Computer Science 8551

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Stephen Jarvis • Steven Wright
Simon Hammond (Eds.)

High Performance
Computing Systems

Performance Modeling,
Benchmarking and Simulation

4th International Workshop, PMBS 2013
Denver, CO, USA, November 18, 2013
Revised Selected Papers

123

Editors
Stephen Jarvis
Steven Wright
University of Warwick
Coventry, West Midlands
UK

Simon Hammond
Sandia National Laboratories CSRI
Albuquerque, NM
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-319-10213-9 ISBN 978-3-319-10214-6 (eBook)
DOI 10.1007/978-3-319-10214-6

Library of Congress Control Number: 2014952188

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

4th International Workshop on Performance Modeling,
Benchmarking and Simulation of High-Performance

Computing Systems (PMBS 2013)

This volume contains the 14 papers that were presented at the 4th International Work-
shop on Performance Modeling, Benchmarking and Simulation of High-Performance
Computing Systems (PMBS 2013), which was held as part of the 25th ACM/IEEE
International Conference for High-Performance Computing, Networking, Storage and
Analysis (SC 2013) at the Colorado Convention Center in Denver during November
17–22, 2013.

The SC conference series is the premier international forum for high-performance
computing, networking, storage, and analysis. The conference is unique in that it hosts
a wide range of international participants from academia, national laboratories, and
industry; this year’s conference attracted over 10,000 attendees and featured over 350
exhibitors in the industry’s largest HPC technology fair.

This year’s conference was themed HPC Everywhere, Everyday, recognizing the
impact that high-performance computing has on all aspects of society around the world,
from weather forecasting, drug design, and finance, to aerospace, national security, and
commerce.

SC offers a vibrant technical program, which includes technical papers, tutorials in
advanced areas, birds of a feather sessions (BoFs), panel debates, a doctoral showcase,
and a number of technical workshops in specialist areas (of which PMBS is one).

The focus of the PMBS 2013 workshop was comparing high-performance com-
puting systems through performance modeling, benchmarking, or the use of tools such
as simulators. We were particularly interested in receiving research papers that reported
the ability to measure and make trade-offs in hardware/software co-design to improve
sustained application performance. We were also keen to capture the assessment of
future systems, for example, through work that ensured continued application scala-
bility through peta- and exa-scale systems.

The aim of the PMBS 2013 workshop was to bring together researchers from
industry, national labs, and academia, who were concerned with the qualitative and
quantitative evaluation and modeling of high-performance computing systems. Authors
were invited to submit novel research in all areas of performance modeling, bench-
marking, and simulation, and we welcomed research that combined novel theory and
practice. We also expressed an interest in submissions that included analysis of power
consumption and reliability, and were receptive to performance modeling research that
made use of analytical methods as well as those based on tracing tools and simulators.

Technical submissions were encouraged in areas including: performance modeling
and analysis of applications and high-performance computing systems; novel tech-
niques and tools for performance evaluation and prediction; advanced simulation
techniques and tools; micro-benchmarking, application benchmarking, and tracing;
performance-driven code optimization and scalability analysis; verification and

validation of performance models; benchmarking and performance analysis of novel
hardware; performance concerns in software/hardware co-design; tuning and auto-
tuning of HPC applications and algorithms; benchmark suites; performance visual-
ization; real-world case studies; studies of novel hardware such as Intel Xeon Phi
coprocessor technology, NVIDIA Kepler GPUs, and AMD Fusion APU.

VI 4th International Workshop on Performance Modeling

PMBS 2013

We received an excellent number of submissions for this year’s workshop. This meant
that we were able to be very selective in those papers that were chosen; the acceptance
rate for full papers was approximately 30%. The resulting papers show worldwide
programs of research committed to understanding application and architecture per-
formance to enable peta-scale computational science.

Contributors to the workshop included Argonne National Laboratory, ETH Zurich,
Georgia Institute of Technology, Inria, Indiana University, Lawrence Berkeley
National Laboratory, NASA, Oak Ridge National Laboratory, San Diego Supercom-
puter Center, Sandia National Laboratories, Tokyo Institute of Technology, University
of Grenoble, University of Tennessee, US National Energy Research Scientific Com-
puting Center, amongst others.

Several of the papers are concerned with performance benchmarking and analysis
(see Sect. A). The paper by Jeffrey Vetter et al. quantifies the architectural requirements
of contemporary extreme-scale scientific applications. The paper by Subhash Saini
et al. presents a performance evaluation of NASA’s Pleiades, one of the world’s most
powerful supercomputers, using scientific and engineering applications. Matthew
Cordery and colleagues document an analysis of the performance of the Cray XC30
using NERSC benchmarks, and contrast these results with those from the Cray XE6
and an IBM BG/Q. The paper by Pericàs et al. proposes a low-overhead methodology
with which to benchmark data reuse in task-parallel runtimes, and in so doing corre-
lates reuse distance with processor and memory configuration.

Section B of the proceedings collates papers concerned with performance modeling
and simulation. Scott Levy and colleagues use simulation to identify system charac-
teristics necessary for the exploration of resiliency in high-performance computing
systems and applications. The paper by Collin McCurdy et al. introduces two analytic
techniques with which to characterize and understand the impact of hardware and
software data prefetching on scientific application performance. The performance
modeling of the 3D gyrokinetic toroidal code GTC is examined by Matthew Anderson
et al. in order to improve the efficiency and scalability of this code on many-tasking
runtime systems. A novel flow-based hybrid network model for accurately simulating
MPI applications on Ethernet/TCP networks is proposed by Paul Bédaride et al. The
paper by Joo Hwan Lee et al. presents a model-driven co-design framework for high-
performance computing architectures employing GPUs. Guillaume Aupy and col-
leagues provide a model and mathematical foundation for exploring the optimal
checkpointing period for future exascale systems.

The final section of the proceedings, Sect. C, is concerned with performance opti-
mization. The paper by Abhinav Sarje et al. presents the optimization and tuning of
HipGISAXS, a parallel X-ray scattering simulation code, on general-purpose multi-
core architectures as well as those with many-core accelerators. Prasanna Balaprakash
and colleagues document a multi-objective optimization of HPC kernels for perfor-
mance, power, and energy, with validation on three key architectures, an IBM BG/Q,
hardware comprising Intel Xeon Phis, and a current generation Intel Xeon platform.
Hongzhang Shan et al. present the performance tuning of fock matrix and two-electron

integral calculations for NWChem, a computational chemistry package, on the Cray
XE6, the Cray XC30, and the IBM BG/Q. The final paper by Priyanka Ghosh et al.
reports on a performance analysis of NWChem’s Tensor Contraction Engine module,
exploring alternative communications patterns through a new proxy application.

Acknowledgments

The PMBS 2013 workshop was extremely well attended and we thank the participants
for the lively discussion and positive feedback received throughout the workshop. We
hope to be able to repeat this success in future years.

The SC conference series was sponsored by the IEEE Computer Society and the
ACM (Association for Computing Machinery). We are extremely grateful for the
support we received from the SC 2013 Steering Committee, and in particular from
Barbara Chapman and Wolfgang Nagel, the SC 2013 workshop chairs.

The PMBS 2013 workshop was only possible thanks to significant input from AWE
in the UK, and from Sandia National Laboratories and the Lawrence Livermore
National Laboratory in the US. We acknowledge the support of the AWE Technical
Outreach Programme (project CDK0724) and the Royal Society Industry Fellowship
scheme (IF090020).

We are also grateful to LNCS for their support, and to Alfred Hofmann and Anna
Kramer for assisting with the production of this volume.

May 2014 Stephen A. Jarvis
Steven A. Wright

Simon D. Hammond

VIII PMBS 2013

Organization

Program Committee

Workshop Chairs

Stephen Jarvis University of Warwick, UK
Simon Hammond Sandia National Laboratories (NM), USA

Workshop Technical Program Committee

Pavan Balaji Argonne National Laboratory, USA
Patrick Carribault CEA, France
Todd Gamblin Lawrence Livermore National Laboratory, USA
Jeff Hammond Argonne National Laboratory, USA
Andrew Jones NAG Ltd., UK
Darren Kerbyson Pacific Northwest National Laboratory, USA
David Lecomber Allinea Software Ltd., UK
John Pennycook Intel, UK
Karthik Raman Intel Corporation, USA
Rolf Riesen IBM Research, Dublin, Ireland
Arun Rodrigues Sandia National Laboratory (NM), USA
Ali Saidi ARM Research and Development, USA
Christian Trott Sandia National Laboratories (NM), USA
Ash Vadgama UK Atomic Weapons Establishment, UK
Meghan Wingate-McClelland Xyratex, USA
Steven Wright University of Warwick, UK
Yunquan Zhang Chinese Academy of Sciences, China

Contents

Section A: Performance Benchmarking and Analysis

Quantifying Architectural Requirements of Contemporary Extreme-Scale
Scientific Applications. 3

Jeffrey S. Vetter, Seyong Lee, Dong Li, Gabriel Marin, Collin McCurdy,
Jeremy Meredith, Philip C. Roth, and Kyle Spafford

Performance Evaluation of the Intel Sandy Bridge Based NASA Pleiades
Using Scientific and Engineering Applications . 25

Subhash Saini, Johnny Chang, and Haoqiang Jin

Analysis of Cray XC30 Performance Using Trinity-NERSC-8 Benchmarks
and Comparison with Cray XE6 and IBM BG/Q . 52

M.J. Cordery, Brian Austin, H.J. Wassermann, C.S. Daley, N.J. Wright,
S.D. Hammond, and D. Doerfler

Analysis of Data Reuse in Task-Parallel Runtimes 73
Miquel Pericàs, Abdelhalim Amer, Kenjiro Taura, and Satoshi Matsuoka

Section B: Performance Modeling and Simulation

Using Simulation to Evaluate the Performance of Resilience
Strategies at Scale. 91

Scott Levy, Bryan Topp, Kurt B. Ferreira, Dorian Arnold,
Torsten Hoefler, and Patrick Widener

Characterizing the Impact of Prefetching on Scientific Application
Performance . 115

Collin McCurdy, Gabriel Marin, and Jeffrey S. Vetter

Performance Modeling of Gyrokinetic Toroidal Simulations
for a Many-Tasking Runtime System . 136

Matthew Anderson, Maciej Brodowicz, Abhishek Kulkarni,
and Thomas Sterling

Toward Better Simulation of MPI Applications on Ethernet/TCP Networks . . . 158
Paul Bédaride, Augustin Degomme, Stéphane Genaud, Arnaud Legrand,
George S. Markomanolis, Martin Quinson, Mark Stillwell,
Frédéric Suter, and Brice Videau

SESH Framework: A Space Exploration Framework for GPU Application
and Hardware Codesign. 182

Joo Hwan Lee, Jiayuan Meng, and Hyesoon Kim

Optimal Checkpointing Period: Time vs. Energy . 203
Guillaume Aupy, Anne Benoit, Thomas Hérault, Yves Robert,
and Jack Dongarra

Section C: Performance Optimization

Tuning HipGISAXS on Multi and Many Core Supercomputers 217
Abhinav Sarje, Xiaoye S. Li, and Alexander Hexemer

Multi Objective Optimization of HPC Kernels for Performance,
Power, and Energy . 239

Prasanna Balaprakash, Ananta Tiwari, and Stefan M. Wild

Performance Tuning of Fock Matrix and Two-Electron Integral
Calculations for NWChem on Leading HPC Platforms 261

Hongzhang Shan, Brian Austin, Wibe De Jong, Leonid Oliker,
N.J. Wright, and Edoardo Apra

Performance Analysis of the NWChem TCE for Different
Communication Patterns . 281

Priyanka Ghosh, Jeff R. Hammond, Sayan Ghosh, and Barbara Chapman

Author Index . 295

XII Contents

Performance Benchmarking
and Analysis

Quantifying Architectural Requirements
of Contemporary Extreme-Scale Scientific

Applications

Jeffrey S. Vetter1,2(B), Seyong Lee1, Dong Li1, Gabriel Marin3,
Collin McCurdy1, Jeremy Meredith1, Philip C. Roth1, and Kyle Spafford1

1 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
vetter@computer.org

2 Georgia Institute of Technology, Atlanta, GA 30332, USA
3 University of Tennessee–Knoxville, Knoxville, TN 37996, USA

Abstract. As detailed in recent reports, HPC architectures will
continue to change over the next decade in an effort to improve energy
efficiency, reliability, and performance. At this time of significant disrup-
tion, it is critically important to understand specific application
requirements, so that these architectural changes can include features
that satisfy the requirements of contemporary extreme-scale scientific
applications. To address this need, we have developed a methodology
supported by a toolkit that allows us to investigate detailed computa-
tion, memory, and communication behaviors of applications at varying
levels of resolution. Using this methodology, we performed a broad-based,
detailed characterization of 12 contemporary scalable scientific applica-
tions and benchmarks. Our analysis reveals numerous behaviors that
sometimes contradict conventional wisdom about scientific applications.
For example, the results reveal that only one of our applications exe-
cutes more floating-point instructions than other types of instructions.
In another example, we found that communication topologies are very
regular, even for applications that, at first glance, should be highly irreg-
ular. These observations emphasize the necessity of measurement-driven
analysis of real applications, and help prioritize features that should be
included in future architectures.

1 Introduction

As detailed by several reports [1,2], HPC architectures will continue to change
over the next decade in response to efforts to improve energy efficiency, reli-
ability, and performance. At this time of significant disruption, it is critically

Support for this work was provided by U.S. Department of Energy, Office of Science,
Advanced Scientific Computing Research. The work was performed at the Oak Ridge
National Laboratory, which is managed by UT-Battelle, LLC under Contract No.
DE-AC05-00OR22725 to the U.S. Government. Accordingly, the U.S. Government
retains a non-exclusive, royalty-free license to publish or reproduce the published
form of this contribution, or allow others to do so, for U.S. Government purposes.

c© Springer International Publishing Switzerland 2014
S. Jarvis et al. (Eds.): PMBS 2013 Workshops, LNCS 8551, pp. 3–24, 2014.
DOI: 10.1007/978-3-319-10214-6 1

4 J.S. Vetter et al.

important to understand the requirements of contemporary extreme-scale scien-
tific applications, so that these architectural changes can include features that
satisfy these requirements. The proper mapping of these features to these future
architectures will ultimately result in the best return on investment in these
future systems. For example, in just the past few years, we have seen various new
capabilities in contemporary processors and networks (e.g., integrated GPU and
CPU, integrated random number generator, transactional memory, fine-grained
power management, MPI collective offload, etc.) that have a significant impact
on application performance.

In contrast to workload characterization performed in the last twenty years,
today’s characterizations must be more broad and yet more detailed in order to
inform the design of these new architectures. Identifying architecture indepen-
dent characteristics of applications is challenging, and generating these charac-
teristics using a uniform, crosscutting methodology is vital to prioritization and
efficiency.

In this paper, we present a methodology for examining important computa-
tion and communication behaviors for a representative set of real-world extreme-
scale applications. Our initial toolkit, presented here, allows us to consistently
and uniformly measure various behaviors in these applications: instruction mixes,
memory access patterns and capacity, point-to-point messaging frequency and
payload size, collective frequency, operation, and payload size, and communica-
tion topology.

For our applications, we have selected a substantial number of important
U.S. Department of Energy (DOE) applications. Also, we have identified several
new proxy applications, which are being developed by DOE Co-design centers,
and we investigate these “proxy apps” with the same tools in order to identify
differences between proxy apps and the applications they are meant to represent.
The applications, proxy apps, and benchmarks we studied are summarized in
Tab. 2.

With these measurements, we identify a number of observations (in Sect. 5),
which we believe can inform decisions about future architectures.

1.1 Key Metrics and Methods

We identified several key metrics (Tab. 1) and methods for measuring those
metrics for our study. We focus on processor instructions, memory behavior, and
communication using the Message Passing Interface [3] (MPI), which is used by
most of our applications. Later sections describe each metric and methodology
in detail.

1.2 Related Work

A considerable amount of previous work [4–9] has characterized scientific appli-
cations using a variety of metrics and methodologies. This previous work pro-
vided detailed information about scientific applications, which typically focused

Quantifying Architectural Requirements of Contemporary 5

Table 1. Key metrics and methods

Category Metrics

Computation
Instruction mix Instruction categories and counts
SIMD mix, width SIMD counts and vector widths
Memory bandwidth Achieved R/W memory bandwidth per socket
Reuse Distance Temporal data locality
Communication
Point-to-Point Frequency, volume, type, topology
Collective Frequency, volume, type, operator

on a specific metric, like communication. These existing studies are not suffi-
cient going forward, however. With continued development of applications and
algorithms, we need to continuously revisit these questions. And, as mentioned
earlier, the new architectural decisions facing HPC are forcing us to answer new
questions.

On another front, with the growing importance of benchmarks and proxy
applications, we want to clearly distinguish these smaller programs from the
more complex existing (or future) applications they are meant to represent. In
particular, we want to identify the metrics that they represent well, and, perhaps
more importantly, the metrics that they do not represent.

1.3 Assumptions and Caveats

Any characterization study comes with a set of assumptions and caveats. In this
section, we outline some of these topics. First, although it would be preferred
to have an idealized architecture for performing these measurements, running
these full applications on a simulator or emulator at scale would be impracti-
cal. Instead, we identified a single architecture and software system on which
we preformed all of our experiments to ensure consistency and understanding
of application measurements. In particular, because processor instructions and
semantics differ across platforms, it was very important to use the same pro-
cessor and compilation system to conduct this analysis. We describe this plat-
form in Sect. 1.4. Second, since our focus is scalable scientific applications, we
included measurements of communication behavior and the runtime software,
namely MPI, in our analysis. Third, these applications, particularly the proxy
apps, are changing rapidly. Our toolkit is built to regenerate this analysis fre-
quently, expecting such rapid changes. In this work, we present a snapshot of the
behaviors for a specific version of each application. Finally, many of these appli-
cations and benchmarks can be applied to a wide range of problems in terms of
both algorithms and data sizes. In our experiments, we selected problem sizes
that were representative of typical application experiments; however, for a small
set of our measurements, such as reuse distance, we had to reduce the problem

6 J.S. Vetter et al.

size in order to complete the measurements in a practical amount of time. We
identify those constraints in our discussion of the results.

1.4 Experimental Platform

For our application characterizations, we used the Georgia Institute of Tech-
nology’s Keeneland Initial Delivery System [10] (KID). KID uses the scalable
node architecture of the HP Proliant SL-390G7. Each node has two Intel West-
mere host CPUs, 24GB of main memory, a Mellanox Quad Data Rate (QDR)
InfiniBand HCA, and a local disk. The system has 120 nodes with 240 CPUs.

At the time of our experiments, the KID software environment was based
on the CentOS 5.5 Linux distribution. In addition to the CentOS distribution’s
default software development environment based around the GNU Compiler Col-
lection (GCC), the Intel 2011 and PGI 12 compilers are available to users of the
system. To support efficient use of the system’s CPUs , math libraries such as
the Intel Math Kernel Library (MKL) are also available.

2 Instruction Mix

A program’s instruction mix captures the number and type of the instructions
the program executes when applied to a given input. To collect application
instruction mixes from fully optimized x86-64 executable files (also called bina-
ries), our toolkit uses a performance modeling framework called MIAMI. MIAMI
uses a PIN [24]-based front-end to recover the application control flow graph
(CFG) and record the execution frequency of select control flow graph edges
during program execution. After the program finishes, MIAMI recovers the exe-
cution frequency of all CFG basic blocks, builds the loop nesting structure, and
uses XED [25] to decode the instructions of each executed basic block. We decode
the x86 instructions into generic operations that resemble RISC instructions.
Thus, arithmetic instructions with memory operands are decoded into multiple
micro-ops: one for the actual arithmetic operation, plus one additional micro-op
for each memory read and write operation performed by the x86 instruction.
Each micro-op has associated attributes such as bit width, data type (integer or
floating-point), unit type (scalar or vector), and vector length where applicable.

In our methodology, we aggregate these micro-ops into a few coarser cate-
gories as seen in Tab. 3. Load and store operations are all classified as either
MemOps if they operate on scalar values, or MemSIMD if they operate with
vector data. Arithmetic operations are classified as floating-point vs. integer,
and also as scalar vs. SIMD, resulting in four exclusive categories. The Moves
category includes scalar and vector register copy operations, as well as data con-
versions from one data type to another or between different precisions of the
same data type. All conditional and unconditional branches, as well as direct
and indirect jumps, are classified as BrOps. Finally, the Misc category includes
all other types of instructions, such as traps, pop count, memory fence and other
synchronization operations.

Quantifying Architectural Requirements of Contemporary 7

T
a
b
le

2
.

A
p
p
li
ca

ti
o
n
s

a
n
d

k
er

n
el

s

A
p
p
li
c
a
ti
o
n

A
re
a

D
e
sc
ri
p
ti
o
n

In
p
u
t
P
ro

b
le
m
s

B
e
n
c
h
m

a
r
k
s
a
n
d

P
r
o
x
y

A
p
p
li
c
a
t
io

n
s

H
P
C
C

[1
1
]

B
e
n
ch

m
a
rk

C
o
ll
e
c
ti
o
n

o
f
k
e
rn

e
ls

to
te
st

sy
st
e
m
-w

id
e
a
n
d

n
o
d
e
-l
e
v
e
l
p
e
r-

fo
rm

a
n
c
e

T
w
o
n
o
d
e
s
(2

4
M

P
I
ta

sk
s)
,
si
z
e
d

to
u
se

a
p
p
ro
x
im

a
te
ly

5
0
%

o
f

m
e
m
o
ry

A
M

G
[1
2
]

M
u
lt
ig
ri
d

S
o
lv
e
r

P
a
ra

ll
e
l
so

lv
e
r
fo
r
li
n
e
a
r
sy

st
e
m
s
o
n

u
n
st
ru

c
tu

re
d

g
ri
d
s

B
u
il
t-
in

L
a
p
la
c
e

p
ro

b
le
m

o
n

u
n
st
ru

c
tu

re
d

d
o
m
a
in

w
it
h

a
n
is
o
tr
o
p
y
.

N
e
k
b
o
n
e

F
lu
id

D
y
n
a
m
-

ic
s

M
in
i-
a
p
p
li
c
a
ti
o
n

o
f
N
e
k
5
0
0
0
,
c
u
st
o
m
iz
e
d

to
so

lv
e
b
a
si
c
c
o
n
ju
-

g
a
te

g
ra

d
ie
n
t
so

lv
e
r

C
o
n
ju
g
a
te

g
ra

d
ie
n
t
so

lv
e
r
fo
r
li
n
e
a
r
o
r
b
lo
ck

g
e
o
m
e
tr
y

M
O
C
F
E

[1
3
]

N
e
u
tr
o
n

T
ra

n
sp

o
rt

S
im

u
la
te
s

d
e
te
rm

in
is
ti
c

n
e
u
tr
o
n

tr
a
n
sp

o
rt

e
q
u
a
ti
o
n

p
a
ra

l-
le
li
z
e
d

a
c
ro

ss
e
n
e
rg

y
g
ro

u
p
s,

a
n
g
le
s,

a
n
d

m
e
sh

T
e
n

e
n
e
rg

y
g
ro

u
p
s,

e
ig
h
t
a
n
g
le
s,

a
n
d

w
e
a
k
ly

sc
a
le
d

m
e
sh

L
U
L
E
S
H

[1
4
]

H
y
d
ro

-
d
y
n
a
m
ic
s

H
ig
h

d
e
fo
rm

a
ti
o
n

e
v
e
n
t

m
o
d
e
li
n
g

c
o
d
e

v
ia

L
a
g
ra

g
ia
n

sh
o
ck

h
y
d
ro

d
y
n
a
m
ic
s

S
e
d
o
v
b
la
st

w
a
v
e
p
ro

b
le
m

in
th

re
e
sp

a
ti
a
l
d
im

e
n
si
o
n
s

A
p
p
li
c
a
t
io

n
s

S
3
D

[1
5
,1

6
]

C
o
m
b
u
st
io
n

D
ir
e
c
t
n
u
m
e
ri
c
a
l
so

lv
e
r
fo
r
th

e
fu
ll
c
o
m
p
re
ss
ib
le

N
a
v
ie
r-
S
to

k
e
s,

to
ta

l
e
n
e
rg

y
,
sp

e
c
ie
s,

a
n
d

m
a
ss

c
o
n
ti
n
u
it
y
e
q
u
a
ti
o
n
s

A
m
p
li
tu

d
e

p
re
ss
u
re

w
a
v
e

w
it
h

e
th

y
le
n
e
-a
ir

ch
e
m
is
tr
y

o
n

w
e
a
k
ly

sc
a
le
d

d
o
m
a
in

S
P
A
S
M

[1
7
]

M
a
te
ri
a
ls

S
h
o
rt
-r
a
n
g
e
m
o
le
c
u
la
r
d
y
n
a
m
ic
s

C
u

te
n
si
le

te
st

w
it
h

th
e
e
m
b
e
d
d
e
d

a
to

m
m
e
th

o
d

G
T
C

[1
8
]

F
u
si
o
n

P
a
rt
ic
le
-i
n
-c
e
ll

c
o
d
e
fo
r
st
u
d
y
in
g
m
ic
ro

tu
rb

u
le
n
c
e
in

m
a
g
n
e
ti
-

c
a
ll
y
c
o
n
fi
n
e
d

p
la
sm

a
s

1
6
to

ro
id
a
l
p
la
n
e
s,

n
u
m
b
e
r
o
f
d
o
m
a
in
s
fo
r
p
la
n
e
d
e
c
o
m
p
o
si
ti
o
n

v
a
ri
e
d
,
5
p
a
rt
ic
le
s/

c
e
ll
/
d
o
m
a
in

d
d
c
M

D
[1
9
]

M
o
le
c
u
la
r

D
y
n
a
m
ic
s

C
la
ss
ic
a
l
m
o
le
c
u
la
r
d
y
n
a
m
ic
s
v
ia

fl
e
x
ib
le

d
o
m
a
in

d
e
c
o
m
p
o
si
-

ti
o
n

st
ra

te
g
y

M
o
lt
e
n

m
e
ta

l
re
-s
o
li
d
ifi
c
a
ti
o
n
,
2
5
6
M

P
I
p
ro

c
e
ss
e
s

L
A
M

M
P
S

[2
0
]

M
o
le
c
u
la
r

D
y
n
a
m
ic
s

L
a
rg

e
-s
c
a
le

A
to

m
ic
/
M

o
le
c
u
la
r
M

a
ss
iv
e
ly

P
a
ra

ll
e
l
S
im

u
la
to

r
L
J
-
a
to

m
ic

fl
u
id

w
it
h
L
e
n
n
a
rd

-J
o
n
e
s
p
o
te
n
ti
a
l;
E
A
M

-
C
u
w
it
h

E
A
M

p
o
te
n
ti
a
l;

R
H
O
D
O

-
rh

o
d
o
p
si
n

p
ro

te
in

w
it
h

lo
n
g
ra

n
g
e

fo
rc
e
s

N
e
k
5
0
0
0
[2
1
]

F
lu
id

D
y
n
a
m
-

ic
s

A
c
o
m
p
u
ta

ti
o
n
a
l
fl
u
id

d
y
n
a
m
ic
s
so

lv
e
r
b
a
se
d

o
n

th
e
sp

e
c
tr
a
l

e
le
m
e
n
t
m
e
th

o
d

3
D

M
H
D

P
O
P

[2
2
]

C
li
m
a
te

O
c
e
a
n

c
ir
c
u
la
ti
o
n

m
o
d
e
l
p
a
rt

o
f
th

e
C
o
m
m
u
n
it
y
C
li
m
a
te

S
y
s-

te
m

M
o
d
e
l
[2
3
]

1
9
2
x
1
2
8
x
2
0

d
o
m
a
in

w
it
h

b
a
la
n
c
e
d

c
li
n
ic

d
is
tr
ib
u
ti
o
n

o
v
e
r
8

M
P
I
p
ro

c
e
ss
e
s

8 J.S. Vetter et al.

Collecting instruction mixes from application binaries has both advantages
and disadvantages. Working at the binary level reveals the precise instruction
stream that gets executed on the machine after all the compiler optimizations are
applied. In addition, classifying the semantics of low level machine instructions
is less error prone than trying to understand the resulting instruction mix of a
high level source code construct. Compilers often need to generate many auxiliary
machine instructions to perform a simple source code operation such as an array
access. On the other hand, compiler choice and compiler optimizations may affect
the reported instruction mixes. In particular, the quality of the register allocator
has a direct effect on the number of memory operations in the instruction stream.
Other scalar optimizations influence the number of auxiliary instructions that
end up in the final application binary.

In our methodology, we strive to be consistent in how we profile applications,
making sure that we used the same compiler and optimization flags in all cases.
This consistency allows us to more directly compare the instruction mixes from
the applications under study.

Table 3. Instruction category descriptions

Category Description

MemOps Scalar load and store operations
MemSIMD SIMD vector load and store operations
Moves Integer and floating-point register copies; data type and precision con-

versions
FpOps Scalar floating-point arithmetic
FpSIMD Vector floating-point arithmetic
IntOps Scalar integer arithmetic
IntSIMD Vector integer arithmetic
BrOps Conditional and unconditional branches; direct and indirect jumps
Misc Other miscellaneous operations, including pop count, memory fence,

atomic operations, privileged operations

SIMD. Many commodity microprocessors used in today’s supercomputers
include support for Single Instruction Multiple Data (SIMD) instructions. When
executed, an SIMD instruction performs the same operation on several data
values simultaneously to produce multiple results. In contrast, a non-SIMD
instruction produces at most a single value. On processors that support SIMD
instructions, using such instructions is desirable because it increases the amount
of data parallelism possible using a given number of instructions. From another
perspective, using SIMD instructions places less demand on the memory subsys-
tem for instruction fetches and data loads and stores compared to a sequence
of non-SIMD instructions that perform the same sequence of operations. SIMD
instructions were introduced for commodity microprocessors in the latter half of
the 1990s [26,27] and promoted as support for accelerated graphics and gaming.
However, many operations used for graphics and gaming are also useful in sci-
entific computing, making modern SIMD instruction set extensions such as the

Quantifying Architectural Requirements of Contemporary 9

Streaming SIMD Extensions 4 (SSE4) [28] an attractive target for developers of
scientific applications.

We use an instruction’s extension as reported by XED to classify instructions
as vector or scalar operations. Some modern compilers commonly generate SSE
instructions even for scalar arithmetic, because the SIMD execution path is faster
than the x87 pipelines on current x86 architectures. To make the instruction
mix metric less dependent on the compiler, we classify SIMD instructions that
operate on a single data element as scalar. Therefore, our reported SIMD counts
correspond to true vector instructions that operate on multiple data, and the
SIMD counts may be lower than a classification based exclusively on instruction
extensions.

Table 4. Instruction mix (percentage of all instructions, NOPs excluded)

T
a
rg

et

M
em

O
p
s%

M
em

S
IM

D
%

F
p
O

p
s%

F
p
S
IM

D
%

In
tO

p
s%

In
tS

IM
D

%

M
ov

es
%

B
rO

p
s%

M
is

c%

HPCC:HPL 0.9 19.2 0.1 60.2 3.1 0.0 15.7 0.8 0.0
HPCC:MPIFFT 24.1 5.7 11.3 11.3 22.5 0.1 18.5 6.4 0.0
HPCC:MPIRandomAccess 28.2 3.3 0.0 0.0 41.1 1.8 10.9 14.6 0.1
HPCC:PTRANS 27.5 1.1 6.7 0.9 36.4 1.1 20.3 6.0 0.0
Graph 500 24.7 0.1 0.0 0.0 37.6 0.0 22.5 15.1 0.0
AMG (setup) 17.3 0.1 0.4 0.0 53.0 0.0 3.1 26.1 0.0
AMG (solve) 29.8 1.3 15.7 0.6 21.3 0.0 20.4 10.9 0.0
MOCFE 31.2 10.1 1.0 6.7 28.8 0.1 10.8 10.9 0.1
Nekbone(1024Weak) 31.3 5.1 0.3 21.2 12.1 0.1 25.3 4.7 0.0
LULESH 31.1 2.2 29.7 4.6 2.2 0.0 28.9 1.2 0.0
S3D 19.1 14.0 3.3 18.3 19.9 2.1 14.4 7.7 1.0
SPASM 31.7 0.4 21.9 0.4 13.5 0.2 24.1 7.8 0.0
GTC 32.7 0.0 7.6 0.3 38.3 0.0 4.4 16.6 0.0
ddcMD 28.6 0.2 34.9 0.3 7.1 0.0 26.7 2.3 0.0
LAMMPS EAM 36.4 0.0 28.8 0.0 8.6 0.3 20.6 5.2 0.0
LAMMPS LJ 33.7 0.1 22.6 0.0 10.4 0.0 27.6 5.6 0.0
LAMMPS RHODO 35.1 0.5 18.5 1.0 14.4 0.2 22.5 7.8 0.0
Nek5000 (MHD) 29.6 2.6 2.4 9.1 23.3 0.1 25.7 7.2 0.1
POP 18.6 15.1 8.4 14.2 20.3 1.2 14.8 7.5 0.0

Results. For this study, we classify SIMD instructions into three categories:
memory, integer, and floating-point as seen in Tab. 3. Note that SIMD regis-
ter copy operations are not reported separately. Instead, they are aggregated
together with their scalar counterparts in the Moves category.

Table 4 shows the instruction mix captured from benchmarks, proxy apps,
and full applications. A few commonalities and distinctions are noteworthy. First,
HPL is strikingly different from every other benchmark, proxy app, and full

10 J.S. Vetter et al.

T
a
b
le

5
.
D

is
tr

ib
u
ti

o
n

o
f
d
a
ta

si
ze

s
fo

r
M

em
o
ry

/
M

ov
e/

A
ri

th
m

et
ic

In
st

ru
ct

io
n
s.

A
/
B

/
C

/
D

/
E

fo
rm

a
t
re

p
re

se
n
ts

p
er

ce
n
ta

g
e

o
f
in

st
ru

ct
io

n
s

w
o
rk

in
g

o
n

8
/
1
6
/
3
2
/
6
4
/
1
2
8

b
it

w
id

th
d
a
ta

,
re

sp
ec

ti
v
el

y.
(I
n
F
p
O
p
s
fo
r
H
P
C
C
:M

P
IF

F
T
,
E

in
th
e
A
/
B
/
C
/
D
/
E

fo
rm

a
t
in
d
ic
a
te
s
8
0
bi
ts
.)

T
a
rg

e
t

M
e
m

O
p
s

M
o
v
e
s

In
t
O
p
s

In
t
S
IM

D
F
p
O
p
s

F
p
S
IM

D

8

16

32

64

128

8

16

32

64

128

8

16

32

64

128

8

16

32

64

128

8

16

32

64

128

8

16

32

64

128

H
P
C
C
:H

P
L

0
0

1
3

9
6

0
0

2
0

9
7

0
0

1
7

8
3

0
0

0
1
0
0

0
0

0
0

0
1
0
0

0
0

0
1

9
9

0
H
P
C
C
:M

P
IF

F
T

2
2

9
6
9

1
9

7
0

1
3

3
6

4
4

0
0

2
6

7
4

0
0

0
8
6

1
4

0
0

0
0

9
5

5
*

0
0

5
9
5

0
H
P
C
C
:M

P
I-
R
A

3
2

1
4

7
1

1
1

1
0

3
2

6
6

1
0

0
1
5

8
5

0
0

0
1
0
0

0
0

0
0

0
1
0
0

0
0

0
0

0
0

H
P
C
C
:P

T
R
A
N
S

1
1

5
5

4
0

4
0

0
5
4

3
0

1
6

0
0

7
5

2
5

0
0

0
1
0
0

0
0

0
0

0
1
0
0

0
0

0
4
0

6
0

0
G
ra

p
h

5
0
0

0
0

3
2

6
8

0
0

0
1
6

8
4

0
0

0
1
0

9
0

0
0

0
1
0
0

0
0

0
0

0
0

0
0

0
0

0
0

A
M

G
(s
e
tu

p
)

0
0

6
1

3
8

1
0

0
2
3

6
7

1
0

0
0

5
3

4
7

0
0

0
1
0
0

0
0

0
0

0
1
0
0

0
0

0
6
6

3
4

0
A
M

G
(s
o
lv
e
)

0
0

3
4

6
2

4
0

0
1

5
4

4
5

0
0

4
9
6

0
0

0
9
9

1
0

0
0

0
1
0
0

0
0

0
0

1
0
0

0
N
e
k
b
o
n
e

1
1

6
7
9

1
4

0
0

6
4
5

5
0

0
0

2
5

7
5

0
0

0
1
0
0

0
0

0
0

0
1
0
0

0
0

0
0

1
0
0

0
L
U
L
E
S
H

0
0

3
9
0

7
0

0
1

3
5

6
4

0
0

4
8

5
2

0
0

0
0

1
0
0

0
0

0
0

1
0
0

0
0

0
4
1

5
9

0
S
3
D

0
0

5
5
2

4
2

0
0

1
2

4
1

4
7

0
0

2
8

7
2

0
0

0
7
9

2
1

0
0

0
0

1
0
0

0
0

0
3

9
7

0
G
T
C

0
0

3
6

6
4

0
0

0
2
9

5
4

1
7

0
0

4
9
5

0
0

0
1
0
0

0
0

0
0

8
8

1
2

0
0

0
7
7

2
3

0
d
d
c
M

D
0

0
4

9
5

1
0

0
2

1
7

8
1

0
0

2
8

7
2

0
0

0
6
8

3
2

0
0

0
0

1
0
0

0
0

0
4
5

5
5

0
L
A
M

M
P
S

E
A
M

0
0

1
5

8
4

0
0

0
1
1

4
8

4
1

0
0

6
0

4
0

0
0

0
1
0
0

0
0

0
0

0
1
0
0

0
0

0
0

0
0

L
A
M

M
P
S

L
J

0
0

1
1

8
8

0
0

0
1
0

3
6

5
3

0
0

6
2

3
8

0
0

0
1
0
0

0
0

0
0

0
1
0
0

0
0

0
0

0
0

L
A
M

M
P
S

R
H

1
1

1
4

8
4

1
0

0
1
2

4
0

4
8

0
0

5
2

4
8

0
0

0
9
5

5
0

0
0

0
1
0
0

0
0

0
1
3

8
7

0
N
E
K
5
0
0
0
(M

H
D
)

1
0

1
4

7
7

8
0

0
1
4

3
6

5
0

0
0

4
2

5
8

0
0

0
1
0
0

0
0

0
0

0
1
0
0

0
0

0
0

1
0
0

0
P
O
P

1
0

8
4
7

4
5

0
0

1
0

3
5

5
5

0
0

1
9

8
1

0
0

0
1
0
0

0
0

0
0

0
1
0
0

0
0

0
1
6

8
4

0

Quantifying Architectural Requirements of Contemporary 11

application. It is composed of over 60% floating-point operations; this is nearly
double the next highest code (35% in ddcMD). It has the lowest number of
branch operations (less than 1%) as well; most codes are many times higher.
Virtually every one of its memory and floating-point operations are vectorized,
which is unique among our test codes, and it has the lowest fraction (20%) of
instructions devoted to memory operations. With respect to instruction mix,
HPL has little in common with the “real” computational science applications we
studied.

A comparison of instruction mixes can also provide interesting insights into
how well a proxy app represents its full application. For instance, consider the
Nekbone proxy app intended to represent some characteristics of the Nek5000
application. Though similar in some ways, we also see clear differences: the frac-
tion of floating-point instructions in Nekbone is about double that of Nek5000,
and the fraction of integer instructions is about half that of Nek5000. The dif-
ferent solvers in LAMMPS also exhibited some dissimilarities, such as a higher
floating-point instruction mix for EAM and a higher integer mix for RHODO,
but the similarities across these LAMMPS benchmarks outweighs their differ-
ences. For AMG, we separate the setup phase from the solution phase, as the
setup phase tended to run longer than the solution phase for the benchmark
problems we used. We saw a vast difference in the instruction mixes between
these phases, with a much greater integer instruction mix during setup, and
many more floating-point instructions during the solution.

Looking at trends across all of our test cases, memory operation mix is —
except for HPL — quite similar across the codes. Most comprise 30% to 35%
memory instructions, though the fraction of those that are SIMD varies from
none to at most half.

The fraction of integer instructions is surprisingly high across a number of
applications. A few standout examples in the applications are in GTC and the
setup phase of AMG, at 38% and 53%, respectively. In benchmarks, HPCC’s MPI-
RandomAccess and PTRANS and Graph500 are high as well, around 40% inte-
ger instructions. Excluding LULESH (2.2%), the remaining codes are between
7% to 29% integer instructions. Interestingly, though integer instruction count is
more than we expected, no code has any significant fraction of vectorized integer
instructions; most between 0% and 0.2%, and S3D is the highest at 2%.

Table 5 shows the distribution of memory/move/arithmetic instructions
according to their working data sizes, which can provide additional insight about
the workloads, especially for designing more specialized hardware. The results in
the table indicate that most of memory/arithmetic instructions work on either
32 or 64 bits, as expected.

3 Memory Behavior

3.1 Memory Bandwidth

All memory systems have a limited data transfer speed due to the limited capac-
ity of hardware queues in the processor and the memory controller, the finite

12 J.S. Vetter et al.

number of buffers and ports in memory DIMMs, as well as the limited width
and frequency of memory buses. Due to improvements in computational through-
put such as speculative execution and hardware prefetching, applications often
become bottlenecked by the transfer capacity of the memory system. This effect
is exacerbated as the number of cores on a single chip increases, since those cores
compete for limited memory resources.

It is important to understand how applications exercise the memory system.
One metric that provides insight is the consumed memory bandwidth, which for
many applications is a measure of achieved throughput. Memory bandwidth is
defined as the ratio between the amount of data transferred to and from memory,
and the time it takes to execute the application.

Achieved memory bandwidth is a performance metric dependent on both
the application and the underlying architecture. We use hardware performance
counters to measure the number of read and write transactions to memory.
Modern micro-processors expose hardware performance events at the memory
controller level. These events count read memory requests caused by both data
accesses missing in the cache and prefetch requests initiated by the hardware
prefetcher, as well as write transactions due to modified cache lines being written
back to memory.

In our methodology, we use PAPI [29]-based calipers that record the number
of read and write memory transactions as well as the wall clock time it takes to
execute the code between the calipers. We compute separate bandwidth results
for memory reads and writes.

Results. Each microprocessor in our experimental platform has its own inte-
grated memory controller. As a result, we are interested primarily in the achieved
memory bandwidths per socket. Figure 1 presents the read and write memory
bandwidths per socket we measured for our test applications. The figure also
includes the sustained peak machine bandwidth for one socket, measured for
different ratios of read and write memory transactions. To measure these peak
bandwidths, we wrote a micro-benchmark that accesses a large block of memory
and modifies part of the memory. By varying the amount of memory modi-
fied, our micro-benchmark achieves different ratios of memory writes to memory
reads. Note that with a write-allocate cache policy, our micro-benchmark can
generate write and read memory transactions in a ratio of at most 1:1.

The data in Fig. 1 shows that POP is running very close to the test machine’s
peak memory bandwidth. Therefore, POP is memory bandwidth limited and
would not benefit from an increase in core concurrency without similar increases
in available bandwidth. At the other end of the spectrum, LULESH and GTC
achieve only a small fraction of the machine’s memory bandwidth. Because
LULESH does not have MPI support, it was executed only in serial mode, achiev-
ing about 2GB/s of combined read and write memory bandwidth per core. GTC,
however, does use MPI, and still exhibited a low memory bandwidth even when
four GTC processes were run on each socket. The low GTC memory bandwidth
results indicate that GTC is likely memory latency limited.

Quantifying Architectural Requirements of Contemporary 13

Fig. 1. Measured application bandwidths and sustained peak machine bandwidth per
socket

Nek5000 and Nekbone are in between these two extremes. They achieve a
significant fraction of the sustained machine bandwidth, with some room for core
concurrency scaling. We also note that Nek5000 generates a higher ratio of write
memory transactions than its proxy, Nekbone.

3.2 Reuse Distance

Reuse distance is defined as the number of distinctive data elements accessed
between two consecutive references to the same element. We use reuse distance as
a metric to quantify the pattern of data reuse or program locality. Reuse dis-
tance is independent of architecture, because it measures the volume of the
intervening data accesses between two accesses. Reuse distance largely deter-
mines cache performance. For a fully associative cache under Least Recently
Used replacement, reuse distance can accurately measure the number of cache
hits or misses, given cache configurations. Reuse distance also allows direct com-
parison of data behavior across applications. As the memory hierarchy becomes
deeper and more adaptive, it is increasingly important to quantify reuse distance
to optimize application performance.

Measuring reuse distance is challenging due to its high cost in terms of time
and space. For each memory access, we need to check previous memory access
records to count distinctive data elements, which is often time consuming. For
a program accessing a large amount of data, the space required to save previous

14 J.S. Vetter et al.

access records is also intimidating. To work around these problems, we use an
approximate reuse distance analysis [30] with a Pin-based binary instrumenta-
tion tool to measure reuse distance. We use a splay tree to organize the last
access record of each block of data. This approach relies on the observation that
the accuracy of the last couple of digits of a reuse distance rarely matter [30].
This method significantly reduces the time and space requirements for measuring
reuse distance.

Results. Using the tool described in Sect. 3.2, we measured data block reuse
distance for 12 applications. We used a data block size of 64 bytes. Despite our
optimizations for reducing measurement cost, measuring reuse distance empir-
ically still has a high time and space cost. To make measurement feasible, we
had to use smaller problems for some of the applications we studied. Thus, for
LAMMPS, we simulated 1,600,000 atoms per process with the LJ and EAM
problems (using approximately 575 MB and 498 MB per process, respectively)
and 128,000 atoms per process for the RHODO problem (using approximately
474 MB per process).

Figure 2 shows the cumulative reuse distance function for one MPI task for
each application. The X axis represents a given reuse distance value x, while the
Y axis represents the percentage of application data block accesses that exhibit
a reuse distance of x or less under each model. Although the distribution of reuse
distance for a specific application is strongly correlated to the input problem size,
Fig. 2 shows that the reuse difference (and hence program locality) differs greatly

Fig. 2. Cumulative distribution functions (CDF) of reuse distance

Quantifying Architectural Requirements of Contemporary 15

between applications. In addition, reuse distance curves often have one or more
knees and plateaus, which correspond to different working sets [31]. In many
cases, the shape of a specific plot (knees and plateaus) is similar across different
inputs [32]. Thus, although we used a single input per program in this study
for most programs, our measurements suggest the applications, proxy apps, and
benchmarks exhibit a wide diversity of working sets.

Figure 2 shows a substantial difference between Nekbone and Nek5000 with
respect to reuse distance. In particular, 98% of Nek5000 memory references have
a reuse distance of less than 64, while the corresponding number for Nekbone
is only 85%. Upon further investigation, we found that Nekbone’s run time is
dominated by the conjugate gradient method (CG) and this method does not
have good data locality. On the other hand, Nek5000 employs various numeri-
cal algorithms, including CG. Some of these algorithms have much better data
locality than CG, which explains the higher concentration of reuse distances of
less than 64 for Nek5000.

In Fig. 2, each CDF curve exhibits only a few plateaus/knees, showing that
the reuse distance is highly concentrated in a few ranges. For example, AMG,
Nekbone, and LAMMPS-LJ have 3, 2, and 3 plateaus/knees, respectively. This is
consistent with earlier studies of reuse distance [31,32]. In addition, for SPASM,
MOCFE, GTC, and POP, more than 99% memory references have reuse dis-
tances less than 64. The high concentration of reuse distance in a few ranges
suggests that if a cache’s size is just large enough to hold a few concentrated
ranges, the cache performance will be almost the same as that of a larger cache.
However, because of the differences in the concentrated ranges across applica-
tions, a dynamic cache with a few configurable effective cache sizes may be
desirable for systems with a varied workload.

4 Communication

The efficiency and scalability of communication and synchronization operations
is a critical determinant of the overall performance of most parallel programs. In
this study, we focus on programs that use MPI for communication and synchro-
nization, for two basic reasons. First, most scalable scientific applications use
MPI including the applications we study here. Second, MPI defines an interface
that allows straightforward capture of an application’s messaging characteristics,
so there are many tools available for measuring a program’s MPI behavior.

In our methodology, the MPI data transfer operations we consider fall into
two categories: point-to-point (P2P), in which a single sending MPI task trans-
fers data to a single receiving MPI task, and collective, in which a group of
processes participate in an operation such as a data broadcast or an all-to-all
data exchange.

16 J.S. Vetter et al.

T
a
b
le

6
.

B
a
si

c
co

m
m

u
n
ic

a
ti

o
n

ch
a
ra

ct
er

is
ti

cs
.
(P

2
P

a
n
d

C
o
ll

%
a
re

th
e

p
er

ce
n
ta

g
e

o
f
in

v
o
ca

ti
o
n
s

o
f
ea

ch
cl

a
ss

o
f
M

P
I

su
b
ro

u
ti

n
es

.)

A
p
p
li
ca

ti
o
n

P
2
P

%
C

o
ll

%
P

2
P

S
u
b
ro

u
ti

n
es

C
o
ll

S
u
b
ro

u
ti

n
es

C
o
m

m
en

ts

A
M

G
9
9
.7

0
.3

R
ec

v
,
Is

en
d
,
Ir

ec
v

A
ll
re

d
u
ce

,
B

ca
st

,
A

ll
g
a
th

er
,
S
ca

n
In

se
tu

p
,
ev

en
P

2
P

m
es

sa
g
es

a
re

ex
tr

em
el

y
sm

a
ll

(<
1
2
8

b
y
te

s)
.

N
ek

b
o
n
e

(l
in

ea
r)

3
9
.8

6
0
.2

N
ek

b
o
n
e

(3
D

)
8
8
.6

1
1
.4

Is
en

d
,
Ir

ec
v

A
ll
re

d
u
ce

P
2
P

o
r

A
ll
re

d
u
ce

g
a
th

er
-s

ca
tt

er
im

p
le

-
m

en
ta

ti
o
n

ch
o
se

n
d
y
n
a
m

ic
a
ll
y

M
O

C
F
E

4
4
.1

5
5
.9

Is
en

d
,
Ir

ec
v

A
ll
re

d
u
ce

,
R

ed
u
ce

S
3
D

9
9
.7

0
.3

Is
en

d
,
Ir

ec
v
,
S
en

d
A

ll
re

d
u
ce

,
B

ca
st

3
D

N
ea

re
st

N
ei

g
h
b
o
r

o
n

R
eg

.
G

ri
d
,
p
er

io
d
ic

B
C

S
P
A

S
M

1
0
0
.0

n
eg

l
S
en

d
R

ec
v

A
ll
re

d
u
ce

,
B

a
rr

ie
r

3
D

N
ea

re
st

N
ei

g
h
b
o
r

o
n

R
eg

.
G

ri
d
,
p
er

io
d
ic

B
C

G
T

C
7
8
.9

2
1
.1

S
en

d
R

ec
v

A
ll
re

d
u
ce

1
D

N
ea

re
st

N
ei

g
h
b
o
r

a
lo

n
g

to
ro

id
d
o
m

a
in

d
d
cM

D
9
0
.0

1
0
.0

Is
en

d
,

Ir
ec

v
,

S
en

d
,

R
ec

v
A

ll
re

d
u
ce

,
B

ca
st

,
G

a
th

er
,
S
ca

tt
er

U
n
st

ru
ct

u
re

d
,
fl
ex

ib
le

d
o
m

a
in

d
ec

o
m

p
o
si

ti
o
n

L
A

M
M

P
S
-E

A
M

9
9
.0

1
.0

L
A

M
M

P
S
-L

J
1
0
0
.0

0
.0

L
A

M
M

P
S
-R

H
O

D
O

9
7
.7

2
.3

S
en

d
,
Ir

ec
v

A
ll
re

d
u
ce

L
a
rg

e
P

2
P

m
es

sa
g
es

(>
5
0
0
K

B
),

sm
a
ll

co
ll
ec

ti
v
e

m
es

sa
g
es

(<
6
4

B
y
te

s)
;

R
H

O
D

O
a
d
d
s

n
o
n
-n

ei
g
h
b
o
r

P
2
P

co
m

m
.
fo

r
lo

n
g
-r

a
n
g
e

fo
rc

es

N
ek

5
0
0
0

9
6
.6

3
.4

Is
en

d
,

Ir
ec

v
,

S
en

d
,

R
ec

v
B

ca
st

,
A

ll
re

d
u
ce

,
B

a
rr

ie
r

2
D

/
3
D

n
ea

re
st

-n
ei

g
h
b
o
r

co
m

m
u
n
ic

a
ti

o
n

p
a
tt

er
n
s

o
n

a
n

u
n
st

ru
ct

u
re

d
g
ri

d

P
O

P
5
4
.4

4
5
.6

Is
en

d
,
Ir

ec
v

A
ll
re

d
u
ce

2
D

N
ea

re
st

N
ei

g
h
b
o
r

Quantifying Architectural Requirements of Contemporary 17

Table 7. P2P communication characteristics. Buffer size columns show histogram bin
upper limit

Buffer Size

Application Topology n Min Max Med.

AMG Unstructured in 2D extruded to
3D

256 23 222 27

Nekbone Linear 128 29 29 29

Nekbone 3D geometry 128 26 222 214

MOCFE 3 Dim of Parallelism – Mesh,
Energy Group, & Angle

256 213 214 214

S3D 3D Nearest Neighbor 256 25 216 215

SPASM 3D Nearest Neighbor 256 23 213 26

GTC 1D Nearest Neighbor along the
toroid domain

256 24 219 218

ddcMD 3D unstructured 256 23 217 215

LAMMPS-EAM 3D Nearest Neighbor 96 23 222 220

LAMMPS-LJ 3D Nearest Neighbor 96 221 221 221

LAMMPS-RHODO Mainly 3D Nearest Neighbor 96 23 222 217

Nek5000 2D/3D nearest-neighbor 128 23 220 210

POP 2D Nearest Neighbor 64 29 212 29

In this study, we examined the communication behavior of our test applica-
tions running on the KID system’s Infiniband interconnection network. Table 6
summarizes the communication behavior of the applications we studied. In the
table, the columns indicating percentage of point-to-point and collective com-
munication operations show the percentage of the total MPI operation count.

To collect data about application communication behavior and performance,
we use mpiP version 3.3. Normally mpiP presents summary statistics about
a program’s MPI behavior, but we modified mpiP to also collect data about
the number of point-to-point operations performed between each pair of pro-
gram processes and the volume of data transferred in those operations. Our
modified mpiP outputs this data in the form of adjacency matrices. Visualizing
such matrices is a concise and effective way to communicate the topology of a
program’s point-to-point communication behavior. For example, visualizing the
adjacency matrix for an application whose tasks communicate only with their
nearest neighbors in a Cartesian topology (e.g., a 3D stencil operation) produces
a distinctive, repeating pattern near the matrix diagonal. With some practice,
common communication patterns can be recognized in these visualizations. We
also modified mpiP to generate histograms of the data sizes used in point-to-
point and collective operations. These histograms give an indication of the type

18 J.S. Vetter et al.

of demands a program places on a system’s interconnection network, such as
whether a program performs a large number of collective operations involving
small messages.

4.1 Point-to-Point Communication

Figure 3 shows average point-to-point communication volume per iteration for
three benchmark problems used in our study. In each case, the data shown was
captured during the first ten iterations of the program’s main loop. These figures
display the communication data as a matrix, such that the block at location (s, d)
is colored according to the volume of data sent from MPI rank s to MPI rank d.

Figure 3a shows the average communication volume for the LAMMPS EAM
benchmark running on 96 processes. The repeated pattern in the figure reflects a
three-dimensional nearest-neighbor communication pattern. Figure 3b also sug-
gests a three-dimensional nearest-neighbor communication pattern, but unlike
the pattern for the EAM benchmark the pattern suggests that sub-groups of pro-
cesses participate in communication topology that is fully-connected within each
sub-group. Also, there is a significant amount of point-to-point communication
between MPI tasks that are not neighbors in the spatial decomposition. This
is to be expected, because unlike the EAM benchmark, the Rhodo benchmark
includes long range forces in its computation of potential. These two matrices

(a) LAMMPS EAM
benchmark, 96 tasks.

(b) LAMMPS Rhodo
benchmark, 96 tasks.

(c) HPCC MPI Rando-
mAccess, 24 tasks.

(d) Nek5000 application,
128 tasks.

(e) Nekbone proxy app,
128 tasks.

(f) POP application, 64
tasks.

Fig. 3. Average volume of point-to-point communication. Color scale is consistent
across all plots.

Quantifying Architectural Requirements of Contemporary 19

also illustrate how much the communication pattern of the same program can
vary depending on the problem input.

Figure 3c presents the average point-to-point communication volume per
iteration for the HPCC MPI RandomAccess phase. Because the RandomAccess
benchmark performs updates to memory locations selected randomly with a
uniform distribution across all processes involved in the benchmark, one expects
to see that each MPI task communicated approximately the same amount to
each of the other MPI tasks, giving a matrix that is all one color except on
the diagonal (since a process need not use MPI operations for updates within
itself). Thus, the communication pattern shown in the figure, a nearest neighbor
pattern, is counter-intuitive. In fact, the figure is correct and results from the
use of an algorithm optimization that organizes the available MPI tasks into a
virtual hypercube topology and routes messages along this topology.

Figure 3d and 3e highlight the differences in point-to-point communication
patterns between a full application, Nek5000, and a proxy app intended to mimic
that application’s behavior, Nekbone. The proxy app’s communication pattern
is much more regular than that of the full application. Note that this difference
does not necessarily mean the proxy app is not a valid stand-in for the full
application, but it does suggest that the proxy is not a good representative with
respect to communication behavior for the input set we used.

Finally, Fig. 3f shows the average point-to-point communication volume for
the well-studied POP application. This figure suggests POP’s primary point-
to-point communication pattern is nearest neighbor, but that some processes
also communicate with processes that aren’t necessarily neighbors. This non-
neighbor communication appears somewhat random, and is likely a result of the
way that the earth’s oceans are mapped to the available MPI tasks.

4.2 Collective Communication

The programs we studied exhibited substantial variety in their collective com-
munication behavior. The programs varied in the number and size distribution of
the messages they sent using collective operations, but most that used collectives
did so using small message sizes. For example, our three LAMMPS benchmark
problems either did not use collectives at all during the main computation phase
(LJ benchmark), or sent very little data per operation (EAM and RHODO, which
performed collectives using messages with fewer than 64 bytes). Likewise, the
“global” phases of the HPCC benchmark exhibited more varied behavior. Both
MPIRandomAccess and MPIFFT exhibited a bimodal distribution, with some
small collective operations (fewer than 32 bytes) but also larger collective oper-
ations (MPIRandomAccess issued over 250,000 collective operations that sent
256KB per process, while MPIFFT issued operations using 256MB per process).
In both cases, the operations involving a larger amount of data were all-to-all
operations. Like LAMMPS, the collective operations in PTRANS all involved
small amounts of data per operation. Our modified version of mpiP reported no
collective data transfer operations used within the HPL phase of the benchmark
suite. Inspection of the HPCC source code shows that HPL does use collective

20 J.S. Vetter et al.

operations, but it uses its own implementation based on MPI point-to-point
operations instead of the MPI collective operations. Because mpiP only collects
data about calls to MPI functions, our current methodology cannot detect these
data transfers as logically collective operations.

5 Observations

In this section, we make a number of observations from this evidence for future
architectures. First, we consider instruction mix.

1. None of the applications makes use of integer SIMD instructions, even though
some of the applications do a reasonable amount of integer calculation.

2. About half of tested applications have more integer operations (IntOps +
IntSIMD) than floating-point operations (FpOps + FpSIMD).

3. All applications except for LULESH have non-negligible amount of integer
computations.

4. MemSIMD is rare, only occurring in S3D, POP, and MOCFE. And in those
three cases, it is still lower (by percentage) than non-SIMD mem ops.

5. For all apps except ddcMD, the number of memory operations (MemOps +
MemSIMD) are greater than the number of floating-point operations (FpOps
+ FpSIMD).

6. When FpSIMD is high, the number of branches is always low.

Second, we review the memory behavior of our applications. Not surprisingly,
memory behavior has a dramatic impact on performance, but it is also more
difficult to measure.

1. POP runs at close to peak machine bandwidth and generates a higher ratio
of write memory transactions than the other applications in this study.

2. GTC achieves a very low memory bandwidth utilization, indicating a poor
memory access pattern.

3. The reuse distance is highly concentrated in a few ranges, indicating the
opportunity for cache architecture improvements.

Third, communication is one of the most important behaviors in determining
overall performance for scalable scientific applications.

1. All of the distributed memory applications use the Allreduce collective oper-
ation with small data payloads (i.e., one double precision number). This anal-
ysis reconfirms an earlier observations [9], and has been used to motivate
hardware support for collective offload engines in the interconnect.

2. In general, the applications and benchmarks exhibited either a uni-modal
collective communication distribution with very small payloads, or a bimodal
distribution with both small payloads and very large payloads. Often the
large amounts of data sent were used in Alltoall operations, such that each
process sent a smaller amount of data to each other process, but the aggregate
amount of data sent was large.

Quantifying Architectural Requirements of Contemporary 21

3. The communication operations for several of the applications we studied were
nearly all point-to-point (P2P) operations (by count). This preference for P2P
operations appears to be driven mainly by the need for scalability; collective
operations, even when implemented with optimal algorithms, can serve as a
scalability limitation. Nevertheless, most applications require at least a few
collective operations.

4. As expected, the basic P2P communication behavior of the applications that
explicitly simulate a physical system is a nearest neighbor communication
pattern. The applications differ significantly, however, in how much data is
transmitted through those P2P operations, and whether they exhibit an ele-
ment of non-neighbor communication.

5. The runtime communication selection in Nek5000 and Nekbone reconfirms
that a well-optimized collective communication library generally performs
better than the P2P-based counterpart.

Finally, aside from specific architecture metrics, we also compare some of
the proxy applications against real applications. Benchmarks and proxy appli-
cations are very valuable because these kernels provide hardware and software
architects with comprehensible code segments that can be simulated and easily
rewritten in alternative programming languages. However, because these bench-
marks and proxy applications are precisely simplified versions of their real-world
counterparts, they also can have different behaviors.

1. Not surprisingly, HPL is a significant outlier from all the applications we
tested: practically all (79.4%) of its instructions are memory and floating-
point SIMD operations. HPL has more that twice the number of floating-
point operations than the other applications, proxy apps, and benchmarks
we studied.

2. The proxy app (e.g., Nekbone) and the corresponding full application (e.g.,
Nek5000) can have different reuse distance distributions. It is important to
investigate the full application to understand data locality.

3. Proxy applications and benchmarks tend to have higher rates of SIMD
instructions because complex memory access patterns have been removed
from compute-intensive loops, and the compiler can optimize and identify
SIMD optimizations with higher clarity.

4. Finally, the communication topologies that we measured show that some of
the proxy apps do not necessarily represent the communication behavior of
the application they are intended to model.

6 Summary

We have presented an empirical analysis of several important scalable scientific
applications, benchmarks, and proxy applications. Using a methodology sup-
ported by a toolkit of performance tools that allows us to study detailed compu-
tation, memory, and communication behavior at varying levels of resolution, we
confirmed many of our expectations but also found a number of surprises. In this

22 J.S. Vetter et al.

time of rapid architectural change for the sake of balancing energy efficiency and
reliability against realized performance, the quantitative measurements provided
by applying our methodology are critical for finding the right balance point.

References

1. Dongarra, J., Beckman, P., Moore, T., Aerts, P., Aloisio, G., Andre, J.C., Barkai,
D., Berthou, J.Y., Boku, T., Braunschweig, B., Cappello, F., Chapman, B., Chi,
X., Choudhary, A., Dosanjh, S., Dunning, T., Fiore, S., Geist, A., Gropp, B.,
Harrison, R., Hereld, M., Heroux, M., Hoisie, A., Hotta, K., Jin, Z., Ishikawa, Y.,
Johnson, F., Kale, S., Kenway, R., Keyes, D., Kramer, B., Labarta, J., Lichnewsky,
A., Lippert, T., Lucas, B., Maccabe, B., Matsuoka, S., Messina, P., Michielse, P.,
Mohr, B., Mueller, M.S., Nagel, W.E., Nakashima, H., Papka, M.E., Reed, D.,
Sato, M., Seidel, E., Shalf, J., Skinner, D., Snir, M., Sterling, T., Stevens, R.,
Streitz, F., Sugar, B., Sumimoto, S., Tang, W., Taylor, J., Thakur, R., Trefethen,
A., Valero, M., van der Steen, A., Vetter, J., Williams, P., Wisniewski, R., Yelick,
K.: The international exascale software project roadmap. International Journal of
High Performance Computing Applications 25(1), 3–60 (2011)

2. Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Den-
neau, M., Franzon, P., Harrod, W., Hill, K., Hiller, J., Karp, S., Keckler, S.,
Klein, D., Lucas, R., Richards, M., Scarpelli, A., Scott, S., Snavely, A., Sterling,
T., Williams, R.S., Yelick, K.: Exascale computing study: Technology challenges
in achieving exascale systems. Technical report, DARPA Information Processing
Techniques Office (2008)

3. Snir, M., Gropp, W.D., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.,
Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W. (eds.): MPI-the complete refer-
ence (2-volume set) 2nd edn. Scientific and Engineering Computation. MIT Press,
Cambridge (1998)

4. Asanovic, K., Bodik, R., Catanzaro, B., Gebis, J., Husbands, P., Keutzer, K.,
Patterson, D., Plishker, W., Shalf, J., Williams, S.: The landscape of parallel com-
puting research: A view from berkeley. Technical Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley (2006)

5. Vetter, J.S., Yoo, A.: An empirical performance evaluation of scalable scientific
applications. In: SC 2002, Baltimore, MD, USA. IEEE (2002)

6. Shalf, J., Kamil, S., Oliker, L., Skinner, D.: Analyzing ultra-scale application com-
munication requirements for a reconfigurable hybrid interconnect. In: Proceedings
of the 2005 ACM/IEEE Conference on Supercomputing, p. 17. IEEE Computer
Society (2005)

7. Brightwell, R., Underwood, K.D.: An analysis of the impact of mpi overlap and
independent progress. In: Proceedings of the 18th Annual International Conference
on Supercomputing, Malo, France, pp. 298–305. ACM (2004)

8. Riesen, R.: Communication patterns. In: 20th International Parallel and Dis-
tributed Processing Symposium (IPDPS), 8 p. (2006)

9. Vetter, J.S., Mueller, F.: Communication characteristics of large-scale scientific
applications for contemporary cluster architectures. In: International Parallel and
Distributed Processing Symposium (IPDPS), Ft. Lauderdale, Florida (2002)

10. Vetter, J.S., Glassbrook, R., Dongarra, J., Schwan, K., Loftis, B., McNally, S.,
Meredith, J., Rogers, J., Roth, P., Spafford, K., Yalamanchili, S.: Keeneland: Bring-
ing heterogeneous GPU computing to the computational science community. IEEE
Computing in Science and Engineering 13(5), 90–95 (2011)

Quantifying Architectural Requirements of Contemporary 23

11. Dongarra, J.J., Luszczek, P.: Introduction to the hpcchallenge benchmark suite.
Technical Report ICL-UT-05-01, Innovative Computing Laboratory, University of
Tennessee-Knoxville (2005)

12. Brown, P.N., Falgout, R.D., Jones, J.E.: Semicoarsening multigrid on distributed
memory machines. SIAM Journal on Scientific Computing 21(5), 1823–1834 (2000)

13. Smith, M.A., Marin-Lafleche, A., Yang, W.S., Kaushik, D., Siegel, A.: Method of
characteristics development targeting the high performance Blue Gene/P computer
at argonne national laboratory. In: Proceedings of the International Conference on
Mathematics and Computational Methods Applied to Nuclear Science and Engi-
neering (MC 2011). American Nuclear Society (2011)

14. Karlin, I., Bhatele, A., Chamberlain, B.L., Cohen, J., Devito, Z., Gokhale, M.,
Haque, R., Hornung, R., Keasler, J., Laney, D., Luke, E., Lloyd, S., McGraw,
J., Neely, R., Richards, D., Schulz, M., Still, C.H., Wang, F., Wong, D.: Lulesh
programming model and performance ports overview. Technical Report LLNL-
TR-608824, Lawrence Livermore National Laboratory (December 2012)

15. Chen, J.H., Choudhary, A., de Supinski, B., DeVries, M., Hawkes, E.R., Klasky, S.,
Liao, W.K., Ma, K.L., Mellor-Crummey, J., Podhorszki, N., Sankaran, R., Shende,
S., Yoo, C.S.: Terascale direct numerical simulations of turbulent combustion using
S3D. Computational Science and Discovery 2(1) (2009)

16. Spafford, K.L., Meredith, J.S., Vetter, J.S., Chen, J., Grout, R., Sankaran, R.:
Accelerating S3D: A GPGPU case study. In: HeteroPar 2009: Proceedings of the
Seventh International Workshop on Algorithms, Models, and Tools for Parallel
Computing on Heterogeneous Platforms (2009)

17. Germann, T.C., Kadau, K.: Trillion-atom molecular dynamics becomes a reality.
International Journal of Modern Physics C 19(09), 1315–1319 (2008)

18. Lee, W.W.: Gyrokinetic approach in particle simulation. Physics of Fluids 26,
556–562 (1983)

19. Richards, D.F., Glosli, J.N., Chan, B., Dorr, M.R., Draeger, E.W., Fattebert, J.L.,
Krauss, W.D., Spelce, T., Streitz, F.H., Surh, M.P., Gunnels, J.A.: Beyond homo-
geneous decomposition: Scaling long-range forces on massively parallel systems.
In: Proceedings of the Conference on High Performance Computing, Networking,
Storage and Analysis, SC 2009. ACM, New York (2009)

20. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. Journal
of Computational Physics 117, 1–19 (1995)

21. Fischer, P., Lottes, J., Kerkemeier, S.: Nek5000 website (2008)
22. Smith, R.D., Dukowicz, J.K., Malone, R.C.: Parallel ocean general circulation mod-

eling. Physica D 60(1–4), 38–61 (1992)
23. Collins, W.D., Blackmon, M.L., Bonan, G.B., Hack, J.J., Henderson, T.B., Kielh,

J.T., Large, W.G., McKenna, D.S., Bitz, C.M., Bretherton, C.S., Carton, J.A.,
Chang, P., Doney, S.C., Santer, B.D., Smith, R.D.: The Community Climate Sys-
tem Model version 3 (CCSM3). Journal of Climate 19(11), 2122–2143 (2006)

24. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2005, pp. 190–200.
ACM, New York (2005)

25. Intel Corporation: XED, http://software.intel.com/sites/landingpage/pintool/
docs/53271/Xed/html

26. Intel Corporation: Intel Architecture software developer’s manual, vol. 1: basic
architecture (1999)

http://software.intel.com/sites/landingpage/pintool/docs/53271/Xed/html
http://software.intel.com/sites/landingpage/pintool/docs/53271/Xed/html

24 J.S. Vetter et al.

27. Advanced Micro Devices Inc: 3DNow! technology manual (2000)
28. Intel Corporation: Intel SSE4 programming reference (April 2007)
29. Browne, S., Dongarra, J., Garner, N., London, K., Mucci, P.: A portable program-

ming interface for performance evaluation on modern processors. The International
Journal of High Performance Computing Applications 14, 189–204 (2000)

30. Ding, C., Zhong, Y.: Predicting whole-program locality through reuse distance
analysis. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation (2003)

31. Schuff, D.L., Parsons, B.S., Pai, V.S.: Multicore-aware reuse distance analysis. In:
Workshop on Performance Modeling, Evaluation, and Optimization of Ubiquitous
Computing and Networked Systems (2010)

32. Ding, C., Zhong, Y.: Reuse distance analysis. Technical Report UR-CS-TR-741,
Computer Science Department, University of Rochester (2001)

© Springer International Publishing Switzerland 2014
S. Jarvis et al. (Eds.): PMBS 2013 Workshops, LNCS 8551, pp. 25–51, 2014.
DOI: 10.1007/978-3-319-10214-6_2

Performance Evaluation of the Intel Sandy Bridge Based
NASA Pleiades Using Scientific and Engineering

Applications

Subhash Saini(), Johnny Chang, and Haoqiang Jin

NASA Advanced Supercomputing Division
NASA Ames Research Center

Moffett Field, CA 94035-1000, USA
{subhash.saini,johnny.chang,haoqiang.jin}@nasa.gov

Abstract. We present a performance evaluation of Pleiades based on the Intel
Xeon E5-2670 processor, a fourth-generation eight-core Sandy Bridge architec-
ture, and compare it with the previous third generation Nehalem architecture.
Several architectural features have been incorporated in Sandy Bridge: (a) four
memory channels as opposed to three in Nehalem; (b) memory speed increased
from 1333 MHz to 1600 MHz; (c) ring to connect on-chip L3 cache with cores,
system agent, memory controller, and QPI agent and I/O controller to increase
the scalability; (d) new AVX unit with wider vector registers of 256 bit; (e) in-
tegration of PCI-Express 3.0 controllers into the I/O subsystem on chip; (f) new
Turbo Boost version 2.0 where base frequency of processor increased from 2.6
to 3.2 GHz; and (g) QPI link rate from 6.4 to 8 GT/s and two QPI links to se-
cond socket. We critically evaluate these new features using several low-level
benchmarks, and four full-scale scientific and engineering applications.

1 Introduction

The Intel Nehalem, a third generation architecture (Xeon 5600 series) introduced in
2009, offers some important initial steps toward ameliorating the memory bandwidth
problem [1, 2]. The Intel X5600 launched in 2010 is the Westmere series and it is a 32
nm die shrink of Nehalem. The Nehalem architecture has overcome problems associ-
ated with the sharing of the front-side bus (FSB) in previous processor generations by
integrating an on-chip memory controller and by connecting the two processors
through the Intel QuickPath Interconnect (QPI) and to the input/output (I/O) hub. The
result is more than three times greater sustained-memory bandwidth per core than the
previous-generation dual-socket architecture. It also introduced hyper-threading (HT)
technology (or simultaneous multi-threading, “SMT”) and Intel Turbo Boost technol-
ogy 1.0 (“Turbo mode”) that automatically allow processor cores to run faster than
the base operating frequency if the processor is operating below rated power, tem-
perature, and current specification limits [3].

However, third generation Nehalem architecture still has performance and scalabil-
ity bottlenecks due to scalability of L3 cache bandwidth, I/O, limited memory band-
width, low performance of Turbo Boost, and low HT performance due to inadequate

26 S. Saini et al.

memory bandwidth per thread, low bandwidth between two processors on a node, etc.
In 2012, Intel introduced a fourth-generation eight-core architecture Intel Xeon pro-
cessor E5-2670 (“Sandy Bridge”) that introduced new architectural features and ex-
tensions and mechanisms, which has significantly improved overall performance [4].
This processor is also used in large-scale heterogeneous systems such as Stampede
with co-processor Intel Xeon Phi based on the Many Integrated Core (code-named
Knight’s Corner) architecture and Yellowstone [1], [5], [6]. New and extended fea-
tures of Sandy Bridge architecture are:

a) A ring to connect on-chip L3 cache with cores, system agent, memory controller,

and QPI agent and I/O controller to increase the scalability. L3 cache per core
has been increased from 2 MB to 2.5 MB.

b) New micro-ops (L0) cache that caches instructions as they are decoded. The
cache is direct mapped and can store 1.5 K micro-ops.

c) New Intel Advanced Vector Extensions (AVX) unit with wider vector registers
of 256 bit in Sandy Bridge instead of 128 bit in Westmere, thereby doubling the
floating-point performance.

d) Integration of PCI-Express 3.0 controllers into the I/O subsystem on chip. PCIe
lanes have been increased from 36 to 40. Earlier QPI was used to connect to I/O
hub.

e) New Turbo Boost version 2.0 where frequency boost of processor is up to 600
MHz instead of up to 400 MHz.

f) Two QPI links connecting first processor to second processor instead of one link.
QPI link rate increases from 6.4 to 8 GT/s.

g) Two loads plus one store per cycle instead of one load plus one store, thereby
doubling load bandwidth.

h) Four memory DDR3 channels as opposed to three in Westmere.
i) Memory speed increased from 1333 MHz in Westmere to 1600 MHz in Sandy

Bridge.

The potential performance improvement of Sandy Bridge architecture over Neha-

lem architecture (Nehalem and Westmere processors) is attributed due to increasing
three memory channels to four, increasing memory speed from 1333 MHz to 1600
MHz, and new technology/architecture such as ring connecting cores, L3 cache (2.5
MB vs. 2 MB per core), QPI agent, memory controller and I/O controller, and system
agent.

In the past, several researchers have evaluated the performance of high perfor-
mance computing systems [14-20]. To the best of our knowledge, this is the first pa-
per to conduct a:

a) Critical and extensive performance evaluation and characterization of an

SGI ICE X cluster based on the Intel Xeon E5-2670, hereafter called “Sandy
Bridge”, using High Performance Computing Challenge (HPCC) suite, memory
latency and bandwidth benchmarks, NAS Parallel Benchmarks (NPB), and four
real-world production-quality scientific and engineering applications (Overflow,

 Performance Evaluation of the Intel Sandy Bridge Based NASA Pleiades 27

MITgcm, USM3D, and CART3D) taken from the existing workload of NASA
and U.S. aerospace industry [7-13]

b) Detailed comparison of SGI ICE X cluster based on the Intel Xeon E5-2670 con-
nected by 4x FDR IB with an SGI ICE 8400EX based on the Intel Xeon 5670,
connected by 4x QDR IB-connected hypercube topology (hereafter called
“Westmere”) using network latency and bandwidth benchmarks of HPCC
suite [7].

c) Detailed performance comparison of AVX and SSE4.2 instructions for Sandy
Bridge using NPB and four full-scale applications.

d) Performance evaluation of Turbo Boost 2.0 for Sandy Bridge and its comparison
with Turbo Boost 1.0 for Westmere using NPB and four full-scale applications.

e) Performance evaluation of hyper-threading (HT) (or simultaneous multi-
threading, “SMT”) for Sandy Bridge and Westmere using NPB and four full-
scale applications.

f) Measurement of the latency and memory load bandwidth of L1 cache, L2 cache,
L3 cache and main memory for Sandy Bridge and Westmere.

The remainder of the paper is organized as follows: Section 2 provides details of

the Pleiades-Sandy Bridge and Pleiades-Westmere systems; in Section 3 we briefly
describe the benchmarks and applications used in the current study; in Section 4 we
present our results comparing the performance of the two systems; and in Section 5
we present our conclusions.

2 Computing Platforms

We used NASA’s Pleiades supercomputer, an SGI Altix ICE system located at NASA
Ames Research Center. Pleiades comprises 11,776 nodes interconnected with an
InfiniBand (IB) network in a hypercube topology [1]. The nodes are based on four
different Xeon processors from Intel: Harpertown, Nehalem-EP, Westmere-EP and
Sandy Bridge. In this study, we used only the Westmere-EP and Sandy Bridge based
nodes.

2.1 Pleiades Sandy Bridge

As shown in Figure 1, the Sandy Bridge-based node has two Xeon E5-2670 proces-
sors, each with eight cores. Each processor is clocked at 2.6 GHz, with a peak per-
formance of 166.4 Gflop/s. The total peak performance of the node is therefore 332.8
Gflop/s. Each core has 1.5K μ ops, 64 KB of L1 cache (32 KB data and 32 KB in-
struction) and 256 KB of L2 cache. All eight cores share 20 MB of last level cache
(LLC), also called L3 cache. The on-chip memory controller supports four DDR3
channels running at 1600 MHz, with a peak-memory bandwidth per processor of 51.2
GB/s (and twice that per node). Each processor has two QPI links to connect with the
second processor of a node to form a non-uniform-memory access (NUMA) architec-
ture. The QPI link runs at 8 GT/s (“T” for transfer), at which rate 2 bytes can be trans-

28 S. Saini et al.

ferred in each direction, for an aggregate of 32 GB/s. Each link runs at 16 GB/s in
each direction simultaneously [1].

Following are the new and extended architectural features of Sandy Bridge.

New Features

L0 (μ-ops) Cache: In Sandy Bridge, there is a μ-ops cache that caches instructions as
they are decoded. The cache is direct mapped and can store 1.5 K μ-ops. The μ-ops
cache is included in the L1(I) cache. The size of the actual L1(I) and L1(D) caches has
not changed, remaining at 32 KB each (for total of 64 KB).

Last Level Cache (LLC) / L3 Cache: In Westmere, all cores have their own private
path to the L3 cache. Sandy Bridge has a bi-directional 32-byte ring interconnect that
connects the 8 cores, the L3-cache, the QPI agent and the integrated memory control-
ler. The ring replaces the individual wires from each core to the L3-cache. The bus is
made up of four independent rings: a data ring, request ring, acknowledge ring, and
snoop ring. The QPI link agent, cores, L3 cache segments, DDR3 memory controller,
and an I/O controller all have stops on this ring bus. The L3 cache is divided into eight
slices/blocks, which are connected to the eight cores, and the system agent through a
ring interconnect. The red boxes in Fig. 1 are ring stations. Each core can address the
entire cache. Each slice gets its own stop station and each slice/block has a full cache
pipeline. In Westmere, there is a single cache pipeline and queue that all cores forward
requests to, whereas in Sandy Bridge, cache pipeline is distributed per cache slice.

AVX: Intel Advanced Vector Extensions (AVX) is a new set of x86 instruction-set
extensions of SSE4.2 [22]. It increases the width of the registers from 128 bits to 256
bits. Each register can hold eight single-precision floating-point values or four dou-
ble-precision floating-point values that can be operated on in parallel using SIMD
(single-instruction, multiple-data) instructions. AVX also adds three-register instruc-
tions (e.g., z=x+y), whereas previous instructions could only use two registers
(x=x+y). Square root and reciprocals vectorize with 128 bit-wide (SSE4.2) but do not
vectorize with AVX. In AVX, alignment of data is to 32 bytes boundary, whereas in
SSE4.2, it is 16 bytes boundary.

QPI 2.0: In Nehalem/Westmere, one QPI 1.0 link connects the two processors/sockets
of the node to form a non-uniform-memory access (NUMA) architecture to do point-
to-point communication; the other connects to the IO hub [4]. The QPI link runs at
6.4GT/s, at which rate 2 bytes can be transferred in each direction, for a rate of 12.8
GB/s in each direction per QPI link and a total 25.6 GB/s bidirectional rate per link. In
Sandy Bridge, two QPIs at 8.0 GT/s connect the two processors/sockets of the node
and deliver 16 GB/s in each direction with a total of 32 GB/s bidirectional. In West-
mere, the total inter-processor bandwidth is 51.6 GB/s, whereas in Sandy Bridge, it is
128 GB/s, an increase of 148%.

 Performance Evaluation of the Intel Sandy Bridge Based NASA Pleiades 29

Fig. 1. Schematic diagram of a Sandy Bridge processor

Memory Subsystem: The improvements to Sandy Bridge’s floating-point performance
by AVX instruction increase the demands on the load/store units. In Neha-
lem/Westmere, there are three load and store ports: load, store address, and store data
for L1(D) cache. The memory unit can service two memory requests per cycle, i.e., 16
bytes load and 16 bytes store, for a total of 32 bytes per cycle. In Sandy Bridge, the
load and store address ports are now symmetric so each port can service a load or store
address to L1(D) cache. By adding a second load/store port, Sandy Bridge can handle
two loads plus one store per cycle automatically. The memory unit can service three
memory requests per cycle, two 16 bytes load and a 16-byte store, for a total of 48
bytes per cycle.

Extended Features

Several existing features such as Turbo Boost, HT, the number of memory channels,
and the speed of the memory bus of Nehalem architectures (Nehalem-EP, Westmere-
EP, etc.) have been significantly enhanced and extended in Sandy Bridge architecture,
as described below.

30 S. Saini et al.

Turbo-Boost 2.0: In Westmere, TB 1.0 provides a frequency-stepping mode that ena-
bles the processor frequency to be increased in increments of 133 MHz. The amount
of Turbo boost available varies with processor bin. The processor can turbo up to
three frequency increments in less than half-subscribed mode—that is, for two or
fewer cores per chip busy, the frequency can go up by 3 x 133 MHz and by two bin
splits in half-subscribed to fully-subscribed mode (2 x 133 MHz). The frequency is
stepped up within the power, current, and thermal constraints of the processor.

In Sandy Bridge TB 2.0, the amount of time the processor spends in the TB state
depends on the workload and operating environment, such as the number of active
cores, current power consumption and processor temperature. When the processor is
operating below these limits and the workload demands additional performance, the
processor frequency dynamically increases until the upper limit of frequency is
reached. There are algorithms to manage current, power, and temperature to maxim-
ize performance and energy efficiency. The Sandy Bridge processor with a 2.6 GHz
clock frequency can boost its frequency up to 3.2 GHz, i.e., an increase of up to 23%.

Hyper-Threading 2.0: Intel provided HT 1.0 in Nehalem. In Sandy Bridge E5-2670, it
is enhanced to HT 2.0. HT enables two threads to execute on each core in order to
hide latencies related to data access. These two threads can execute simultaneously,
filling unused stages in the functional unit pipelines. When one thread stalls, a second
thread is allowed to proceed. The advantage of HT is its ability to better utilize pro-
cessor resources and to hide memory latency. It supports two threads per core, pre-
senting the abstraction of two independent logical cores. The physical core contains a
mixture of resources, some of which are shared between threads:

(a) replicated resources (register state, return stack buffer, and the instruction
queue);

(b) partitioned resources (load buffer, store buffer, and reorder buffer);
(c) shared resources (L1, L2, and L3 cache); and
(d) shared resources unaware of the presence of threads (execution units).

Memory Speed: Memory speed increased from 1333 MHz in Westmere to 1600 MHz
in Sandy Bridge, an increase of bandwidth by 20%.

Memory Channels: The number of memory channels increased from 3 in Westmere to
4 in Sandy Bridge, an increase in bandwidth by 33%.

Networks Interconnects (FDR and QDR)

The Sandy Bridge nodes are connected to the two fabrics (ib0 and ib1) of the Pleiades
InfiniBand (IB) network via the dual-port, four-link fourteen data rate (4x FDR) IB
Mezzanine card on each node, as well as via the Mellanox FDR IB switches in the
SGI ICE X IB Premium Blade. The FDR runs at 14 Gbits/s per lane. With four links,
the total bandwidth is 56 Gbits/s (7 GB/s). On each node, the IB Mezzanine card sits
on a sister board next to the motherboard, which contains the two-processor sockets.

There are 18 nodes per Individual Rack Unit (IRU). These 18 nodes are connected
to two Mellanox FDR IB switches in an SGI ICE X IB Premium Blade to join the ib0
fabric. Another set of connections between the 18 nodes and a second Premium Blade

 Performance Evaluation of the Intel Sandy Bridge Based NASA Pleiades 31

is established for ib1. However, Westmere nodes are connected via four link quad
data rate (4x QDR) IB running at 40 Gbits/s or 5 GB/s. Peak bandwidth of 4x FDR IB
is 1.75 times that of 4x QDR (56 Gbits/s vs. 32 Gbits/s).

Table I presents the characteristics of Sandy Bridge and Westmere.

Table 1. Characteristics of Sandy Bridge and Westmere

Characteristic Pleiades-Sandy Bridge Pleiades-Westmere

Processor:
Processor architecture Sandy Bridge Nehalem

Processor type
Intel Sandy Bridge-EP

(Xeon E5-2670)
Intel Westmere-EP

(Xeon X5670)

Base frequency (GHz) 2.60 2.93

Turbo Boost Version V2.0, up to 600 MHz V1.0, up to 400 MHz

Turbo frequency (GHz) 3.2 3.33

Floating/clock/core 8 4

Perf. per core (Gflop/s) 20.8 11.7

Number of cores 8 6

Peak performance 166.4 70.3

L0 (micro-op) Cache 1.5K micro-ops None

L1 cache size 32 KB (I)+32 KB(D) 32 KB (I)+32 KB(D)
L2 cache size 256 KB/core 256 KB/core
L3 cache size (MB) 20 shared 12 shared
L3 cache network Ring Individual links

Memory type
4 channels DDR3 - 2
DIMMS per channel

3 channels DDR3 - 2
DIMMS per channel

Memory speed (MHz) 1600 1333
HyperThreads / core 2 2
I/O controller On chip Off chip
PCI Lanes 40 Integrated PCIe 3.0 36 Integrated PCIe 2.0
PCIe 3.0 Speed 8 GT/s none
Node:
Number of processors 2 2

Main memory (GB) 32 24

No. of Hype Threads 32 24

Inter socket QPI links 2 1

QPI frequency (GT/s) 8.0 6.4

New instruction AVX AES-NI

32 S. Saini et al.

Table 1. (Continued)

Number of QPIs 2 1

Performance ./node
(Gflop/s)

332.8 140.6

Interconnects

Interconnect type 4x FDR IB 4x QDR IB

Peak network perfor-
mance Gbits/s

56 32

Network topology Hypercube Hypercube

Compiler, Libraries, operating system and File System:

Compiler Intel 12.1 Intel 12.1

MPI library MPT 2.06 MPT 2.06

Math library Intel MKL 10.1 Intel MKL 10.1

Type of file system Lustre Lustre

Operating system SLES11SP1 SLES11SP1

System Name SGI ICE X SGI ICE 8400EX

3 Benchmarks and Applications

In this section we present a brief description of the benchmarks and applications used
in this study.

3.1 HPC Challenge Benchmarks (HPCC)

The HPCC benchmarks are intended to test a variety of attributes that can provide
insight into the performance of high-end computing systems [7]. These benchmarks
examine not only processor characteristics but also the memory subsystem and system
interconnects.

3.2 Memory Subsystem Latency and Bandwidth

A deep understanding of the performance of the hierarchical memory system of
Sandy Bridge is crucial to understanding application performance. We measured the
latency and bandwidth for L1, L2, L3 caches and main memory for both Sandy
Bridge and Westmere [8].

3.3 NAS Parallel Benchmarks (NPB)

The NPB suite contains eight benchmarks comprising five kernels (CG, FT, EP, MG,
and IS) and three compact applications (BT, LU, and SP) [9]. We used NPB MPI
version 3.3, Class C in our study. BT, LU, and SP are typical of full production-
quality science and engineering applications.

 Performance Evaluation of the Intel Sandy Bridge Based NASA Pleiades 33

3.4 Science and Engineering Applications

For this study, we used four production-quality full applications representative of
NASA’s workload.

OVERFLOW-2 is a general-purpose Navier-Stokes solver for CFD problems [10].
The code uses finite differences in space with implicit time stepping. It uses overset-
structured grids to accommodate arbitrarily complex moving geometries. The dataset
used is a wing-body-nacelle-pylon geometry (DLRF6) with 23 zones and 36 million
grid points. The input dataset is 1.6 GB in size, and the solution file is 2 GB.

CART3D is a high-fidelity, inviscid CFD application that solves the Euler equations
of fluid dynamics [11]. It includes a solver called Flowcart, which uses a second-
order, cell-centered, finite volume upwind spatial discretization scheme, in conjunc-
tion with a multi-grid accelerated Runge-Kutta method for steady-state cases. In this
study, we used the geometry of the Space Shuttle Launch Vehicle (SSLV) for the
simulations. The SSLV uses 24 million cells for computation, and the input dataset is
1.8 GB. The application requires 16 GB of memory to run.

USM3D is a 3-D unstructured tetrahedral, cell-centered, finite volume Euler and
Navier-Stokes flow solver [12]. Spatial discretization is accomplished using an ana-
lytical reconstruction process for computing solution gradients within tetrahedral
cells. The solution is advanced in time to a steady-state condition by an implicit Euler
time-stepping scheme. The test case used 10 million tetrahedral meshes, requiring
about 16 GB of memory and 10 GB of disk space.

MITgcm (MIT General Circulation Model) is a global ocean simulation model for
solving the equations of fluid motion using the hydrostatic approximation [13]. The
test case uses 50 million grid points and requires 32 GB of system memory and 20
GB of disk to run. It writes 8 GB of data using Fortran I/O. The test case is a ¼ degree
global ocean simulation with a simulated elapsed time of two days.

4 Results

In this section we present our results for low-level benchmarks, HPCC suite, memory
subsystem latency and bandwidth benchmarks, NPB, and four full applications (Over-
flow, Cart3D, USM3D, and MITgcm).

4.1 Memory Latency and Bandwidth

In this section we present the memory latency and memory load bandwidth of Sandy
Bridge and Westmere. Figure 2 shows the memory latency of two systems. It exhibits
step function pattern with four steps; each step corresponds to L1 cache, L2 cache,
L3 cache and main memory. L1 cache latency is 1.2 ns for both Sandy Bridge and
Westmere. L2 cache latency is 3.5 ns and 3 ns for Sandy Bridge and Westmere re-

34 S. Saini et al.

spectively. L3 cache latency is 6.5 ns for both Sandy Bridge and Westmere. Main
memory latency is 28 ns and 24 ns for Sandy Bridge and Westmere respectively. L2
cache latency and main memory latency is higher on Sandy Bridge than that on
Westmere.

Fig. 2. Memory latency of Westmere and Sandy Bridge

Figure 3 shows the memory load bandwidth of L1 cache, L2 cache, L3 cache and
main memory for the two systems. Read and write bandwidth is higher on Sandy
Bridge than on Westmere except for L3 cache, where it higher on Westmere. The
reason for higher read bandwidth is due to the fact that Sandy Bridge has two memory
loads compared to one memory load in Westmere.

4.2 HPC Challenge Benchmarks (HPCC)

In this section we present results for HPCC Version 1.4.1 benchmarks for two sys-
tems [7]. We discuss the intra-node and inter-node performance separately.

Intra-Node HPCC Performance: In this section we present the intra-node HPCC
results for Westmere and Sandy Bridge. In Figure 4 we show the performance of a
subset of HPCC suite benchmarks. The performance gains by Sandy Bridge are 66%,
64%, 65%, 66%, 80%, and 141% for G-FFTE, EP-STREAM, G-Random Access,
G-PTRANS, EP-DGEMM, and G-HPL, respectively, over Westmere. The perfor-
mance of Sandy Bridge is superior to that of Westemere due to faster memory speed,
extra memory controller, larger L3 cache, higher Gflop/s per core, etc.

 Performance Evaluation of the Intel Sandy Bridge Based NASA Pleiades 35

Fig. 3. Memory load bandwidth of Westmere and Sandy Bridge

Fig. 4. Performance of HPCC on Westmere and Sandy Bridge nodes

36 S. Saini et al.

Figures 5 and 6 show the network latency and bandwidth for the intra-node West-
mere and Sandy Bridge. The minimum latency corresponds to communication within
the socket and the maximum latency across two sockets. Both intra-socket and inter-
socket latency is higher for Sandy Bridge than for Westmere. The reason for this is
that Sandy Bridge has a ring connecting all the cores to L3 cache, whereas for West-
mere, the cores are individually connected with wires. However, the ring bus makes
Sandy Bridge more scalable than Westmere and is the method of choice in the new
Intel Xeon Phi (MIC), which uses the same ring bus for 60 cores on a die. The higher
bandwidth of Sandy Bridge is due to two QPIs connecting the two sockets as opposed
to one QPI in Westmere.

Fig. 5. Network latency of Westmere and Sandy Bridge within nodes

Fig. 6. Network bandwidth of Westmere and Sandy Bridge within nodes

 Performance Evaluation of the Intel Sandy Bridge Based NASA Pleiades 37

Inter-Node HPCC Performance: In this section we present inter-node HPCC results
for the two systems [7]. In Figure 7, we plot performance of the compute-intensive
embarrassingly parallel (EP) DGEMM (matrix-matrix multiplication) for the two
systems. The theoretical one-core peak for Sandy Bridge is 20.8 Gflop/s, and for
Westmere it is 11.7 Gflop/s. When using Turbo mode on Westmere, the processor
core frequency can be increased by up to three 133 MHz increments, raising its peak
to 13.32 Gflop/s. The performance gain by Sandy Bridge is 20% to 30% for numbers
of cores ranging from 16 to 512 due to the fact that it has higher compute perfor-
mance per core and has a 20% faster memory speed (1600 MHz vs. 1333 MHz).

Fig. 7. Performance of EP-DGEMM on Westmere and Sandy Bridge

In Figure 8, we plot performance of the compute-intensive global high-
performance LINPACK (G-HPL) benchmark. For both Sandy Bridge and Westmere
we give the efficiency for their base frequencies of 2.6 GHz and 2.93 GHz, respec-
tively. The efficiency of Westmere is higher than that of Sandy Bridge and decreases
gradually from 16 to 512 cores. In addition, the efficiency of Westmere is higher than
that of Sandy Bridge in the entire range of cores except for 16 and 512 cores. The
performance gain by Sandy Bridge in terms of floating-point operations is 68% to
87% better than that on Westmere due to better memory bandwidth per core and bet-
ter Gflop/s performance per core.

38 S. Saini et al.

Fig. 8. Performance of G-HPL on Westmere and Sandy Bridge

In Figure 9, we show memory bandwidth for each system using the EP-Stream Tri-
ad benchmark. For a single core, the measured bandwidths were 14 GB/s and 9.6
GB/s for Sandy Bridge and Westmere, respectively, i.e., 45.8% higher for Sandy
Bridge due to faster memory speed (1600 vs. 1333 MHz; 20% faster on Sandy
Bridge) and larger L3 cache (2.5 MB vs. 2 MB per core; 25% larger cache on Sandy
Bridge). For 16 cores, these values decreased to 3.8 GB/s and 2.6 GB/s due to
memory contention. The aggregate node level bandwidth for Sandy Bridge in fully
subscribed mode was then 3.8 x 16 = 60.8 GB/s, which translates into 59 percent of
peak-memory bandwidth (102.4 GB/s per node = 2 processors x 4 channels x 8 bytes
x 1600 MHz per processor). The faster memory bus enables Sandy Bridge to deliver
both higher peak-memory bandwidth and efficiency, producing significant advantages
for memory-intensive codes.

Fig. 9. Performance of EP-STREAM on Westmere and Sandy Bridge

 Performance Evaluation of the Intel Sandy Bridge Based NASA Pleiades 39

In Figure 10, we show the minimum, average and maximum Ping-Pong latency for
Westmere and Sandy Bridge. The minimum latency on both systems is around 0.25
μs, this corresponding to latency within a processor/socket. The maximum latency on
both systems is around 2 μs, except for 16 cores where latency for Sandy Bridge is
74% lower than that on Westmere. This is because for Westmere, one needs two
nodes (12 cores each), whereas one needs only one Sandy Bridge node (16 cores).
The average latency of Sandy Bridge is lower than Westmere by 12% to 24%, except
for 16 cores where it is better by 60%.

Fig. 10. Ping-Pong Latency on Westmere and Sandy Bridge

Fig. 11. Ping-Pong bandwidth on Westmere and Sandy Bridge

Figure 11 shows the minimum, average and maximum ping-pong bandwidth for
Westmere and Sandy Bridge. The maximum bandwidth is within 16 cores on one
Sandy Bridge node and two Westmere nodes. The maximum bandwidths are 9.8 GB/s
and 7.2 GB/s for Sandy Bridge and Westmere, respectively. The reason for this is that

40 S. Saini et al.

for 16 cores, Sandy Bridge has two sockets with 8 cores each connected via 2 QPI
with 8 GT/s, whereas Westmere has 2 sockets with 6 cores each connected via one
QPI of 5 GT/s and it is via QDR to another node. For a large number of cores, band-
width is again higher in Sandy Bridge nodes than Westmere nodes, as the former is
connected by FDR and latter by QDR.

Figure 12 shows the Random Order Ring (ROR) latency for Sandy Bridge and
Westmere. For 16 cores, latency for Sandy Bridge is lower than that of Westmere
because in the former it is intra-node latency, whereas in the latter it is inter -node
latency. For numbers of cores ranging from 32 to 512, latency for Sandy Bridge is
higher than that of Westmere by 11% to 70%.

Fig. 12. ROR latency on Westmere and Sandy Bridge

Figure 13 shows the ROR bandwidth of Sandy Bridge and Westmere for numbers
of cores ranging from 16 to 512. In the range of 32 to 512 cores, the bandwidth on
Sandy Bridge is always higher than that of Westmere by 38% to 80%. At 16 cores,
bandwidth is higher on Sandy Bridge than that on Westmere by 155% because in the
former it is intra node and in the latter it is inter node via IB QDR.

Fig. 13. ROR bandwidth on Westmere and Sandy Bridge

 Performance Evaluation of the Intel Sandy Bridge Based NASA Pleiades 41

In Figure 14, we plot performance of the Random Access benchmark as Giga Up-
dates per second (GUP/s) for 16 to 512 cores for the two systems. In the entire range
of cores we studied, the performance was much better on Sandy Bridge than on
Westmere. Up to 32 cores, the performance on Sandy Bridge is higher than that on
Westmere by 17%. The superior performance on Sandy Bridge is due to the FDR IB
and higher memory bandwidth. Scaling is very good on Sandy Bridge and Westmere
because of the almost constant bisection bandwidth for 512 cores of the hypercube
topology used in these two systems.

Fig. 14. GUP benchmark on Westmere and Sandy Bridge

In Figure 15, we plot the performance of the PTRANS benchmark for the two sys-
tems. The benchmark performance primarily depends on the network and to a lesser
extent on memory bandwidth. At 512 cores, it was 74 GB/s for Sandy Bridge and
51.3 GB/s on Westmere. The performance was better by 44% on Sandy Bridge than
on Westmere due to the use of FDR IB. Scaling of the benchmark was very good on
both systems because of the constant bisection bandwidth for the relatively small
number of cores (up to 512) on these two systems.

In Figure 16, we plot the performance of the G-FFT benchmark on Sandy Bridge
and Westmere. The benchmark’s performance depends on a combination of flops,
memory, and network bandwidth. The FDR IB and higher sustained-memory band-
width enable Sandy Bridge to outperform Westmere. Scaling was better on Sandy
Bridge than on Westmere. At 512 cores, performance was 166.2 and 123.4 Gflop/s on
Sandy Bridge and Westmere, respectively. We note that the performance on Sandy
Bridge is especially high at 16, 64, and 256 cores. The reason for this is that for
Sandy Bridge, these numbers correspond to whole number of 1, 4 and 16 nodes,
whereas for Westmere, they correspond to 2, 6 and 22 nodes. FFT involves all-to-all
communication, which takes much longer in the case of Westmere due to poor net-
work (QDR IB vs. FDR IB).

42 S. Saini et al.

Fig. 15. Performance of PTRANS on Westmere and Sandy Bridge

Fig. 16. Performance of G-FFTE on Westmere and Sandy Bridge

4.3 Science and Engineering Applications

In this subsection, we focus on the comparative performance of four full applications
(Overflow, Cart3D, USM3D, and MITgcm) on the two systems [10-13]. The time for
all the four applications is for the main loop, i.e., compute and communication time,
and does not include I/O time.

Figures 17-20 provide the performance and scalability of the four full-scale appli-
cations used in this study. Each figure shows the scaling performance on the Sandy
Bridge and Westmere systems along with the percentage performance gain on Sandy
Bridge.

 Performance Evaluation of the Intel Sandy Bridge Based NASA Pleiades 43

Overflow: Figure 17 shows time per step for 16 cores to 512 cores for Overflow. The
performance of Overflow on Sandy Bridge is much better than on the Westmere sys-
tem across the entire range of cores. The Overflow performance on Sandy Bridge is
higher by 29% to 46% for cores ranging from 16 to 512 cores. Overflow is a memory-
intensive application, and therefore performance was better on Sandy Bridge than on
Westmere because memory bandwidth per core of the former is better (3.8 vs. 2.6
GB/s), an advantage of 46%. About 20% of the performance gain of Overflow on
Sandy Bridge is from faster memory speed (1600 MHz vs. 1333 MHz). In addition,
Sandy Bridge has an advantage, especially for large numbers of cores, as its L3 cache
is 2.5 MB per core compared with 2 MB per core of L3 for Westmere, which trans-
lates into a gain of 25%.

Fig. 17. Time per step for Overflow on Westmere and Sandy Bridge

Cart3D: Figure 18 shows the time to run Cart3D for 16 cores to 512 cores on the two
systems. The performance of Cart3D was higher on Sandy Bridge than on Westmere
by about 20% due to faster memory speed (1600 MHz vs. 1333 MHz). Using Intel
Performance Monitor Unit (PMU) we found that Cart3D is only 1% vectorized so it
does not benefit from 256-bit long vector pipeline of Sandy Bridge [21].

USM3D: Figure 19 shows the USM3D cycle time per step for a range of cores.
USM3D is an unstructured mesh-based application that solves a sparse matrix by the
Gauss-Seidel method and uses indirect addressing. The L2/L3 caches are poorly uti-
lized, and almost the entire data has to come from main memory. Using PMU,
we found that 72% of the data comes from the main memory [21]. Being
memory-intensive, its performance depends exclusively on the memory bandwidth,

44 S. Saini et al.

Fig. 18. Time for Cart3D on Westmere and Sandy Bridge

which is highest for Sandy Bridge (3.8 GB/s) and lowest for Westmere (2.6 GB/s).
Because of indirect addressing, USM3D cannot make use of the 256-bit long vector
pipe for Sandy Bridge, as it cannot be vectorized. The performance of USM3D was
better on Sandy Bridge than on Westmere by 20% to 25%, consistent with the faster
memory speed of Sandy Bridge (1600 vs. 1333 MHz), a gain of 20%.

Fig. 19. Time for USM3D on Westmere and Sandy Bridge

MITgcm: Figure 20 shows the time to run the climate modeling application MITgcm
[13]. This code is memory-bound and network bound. Since Sandy Bridge provides
the higher memory bandwidth (3.8 GB/s vs 2.6 GB/s) and better network (FDR IB vs
QDR IB), MITgcm performs much better on this system than on Westmere by about
40%.

 Performance Evaluation of the Intel Sandy Bridge Based NASA Pleiades 45

Fig. 20. Time for MITgcm on Westmere and Sandy Bridge

Figure 21 shows a summary of the performance gain by Sandy Bridge over West-
mere for four applications: Overflow, Cart3D, USM3D and MITgcm. Using PMU, we
found that USM3D and Cart3D have a low vectorization of 20% and 1% respectively
and thus cannot make use of the 256-bit long vector pipe [21]. However, both the
applications are memory bound; therefore, they benefit from faster memory speed
(1600 MHz vs. 1333 MHz; 20% faster on Sandy Bridge) and exhibit performance
gains of 17% to 20%. On the other hand, the other two applications, Overflow and
MITgcm, have 64% and 50% vectorization, respectively, and are also memory-bound,
so their performance gain is much higher (20% to 50%).

Fig. 21. Applications performance on Westmere and Sandy Bridge

Performance Impact of Turbo Boost
In this subsection, we compare results for the MPI version of the NPB with Turbo
Boost on and off. Figure 22 shows the measured performance gain of Turbo Boost on
Sandy Bridge over Westmere. We ran six NPBs (MG, SP, CG, FT, LU, and BT) for

46 S. Saini et al.

numbers of cores ranging from 16 to 512. We tabulated performance in Gflop/s in
both modes on Sandy Bridge and Westmere and calculated the performance gain by
Sandy Bridge. The performance gain was in the range of 1% to 10%. In general,
Sandy Bridge enjoys a much higher performance gain using Turbo Boost than West-
mere except for MG and FT at 512 cores, where Turbo Boost degrades the perfor-
mance by 1.7% to 3.2%.

Fig. 22. NPB performance on Sandy Bridge

Figure 23 shows the performance gain in Turbo mode for Sandy Bridge for the ap-
plications Overflow, Cart3D, USM3D and MITgcm. The performance gain due to
Turbo mode by Overflow and Cart3D is 8% to 10%. For MITgcm and USM3D, the
performance gain is about 3% at lower numbers of cores and 6% to 7.5% for higher
number of cores.

Fig. 23. Applications performance on Sandy Bridge

 Performance Evaluation of the Intel Sandy Bridge Based NASA Pleiades 47

Performance Impact of AVX
Figure 24 shows the performance gain of AVX in Sandy Bridge for the Class C size
of six NPB benchmarks [22]. The largest difference between the AVX and SSE4.2 is
for the compute intensive benchmarks (e.g.,BT and LU) and the least gain is by
memory-bound benchmarks (e.g., MG and SP). We see for BT the benchmark AVX
version versus SSE 4.2 version gives 6-10% improvement, whereas it is 6% for EP, 2-
4% for FT, 7-12% for LU, 2-4% for MG, and 1-5% for SP. CG is the only bench-
mark whose performance degrades in AVX mode. CG uses a sparse BLAS-2 (sparse
matrix times vector) and involves indirect addressing, and as such, it cannot be
vectorized so unable to use the vector pipeline.

Fig. 24. NPB performance on Sandy Bridge

Figure 25 shows the performance gain in AVX in Sandy Bridge for the four appli-
cations. The performance gain for these applications is almost insignificant and rang-
es from +2% to -3%. Cart3D shows higher performance in AVX mode.However,
memory bound applications such as Overflow, MITgcm, and USM3D don't benefit
from AVX; in fact, their performance degrades.

Impact of Hyper-Threading
In Figures 26 and 27, we show the performance gain from HT by Overflow, Cart3D,
USM3D and MITgcm on Sandy Bridge and Westmere. With HT, the node can handle
twice as many processes (32/24) as without HT (16/12). With more processes per
node, there is greater communication overhead. In other words, more processes com-
pete for the same host channel adapter (HCA) on the node. On the other hand, addi-
tional processes (or threads) can steal cycles in cases of communications imbalance or
memory access stalls. The result is better overall performance for main memory
bound applications. For example, USM3D, where 70% of the data comes from main
memory because of indirect addressing, can’t reuse the L2/L3 cache and

48 S. Saini et al.

Fig. 25. Applications performance on Sandy Bridge

Fig. 26. Applications performance gain from HT on Sandy Bridge

 Performance Evaluation of the Intel Sandy Bridge Based NASA Pleiades 49

thus gets an opportunity to hide the memory latency. Cart3D also benefits from HT
as the code is 99% scalar and has more opportunities to schedule the instructions in
the pipeline. Overflow and MITgcm are 64% and 51% vectorized, respectively, so
they do not benefit from HT as there is saturation of floating point units. The reason
why Overflow does not benefit from HT is because it is very cache-sensitive. Run-
ning in HT mode reduces the amount of L3 cache available to each process, so data
has to be fetched from main memory instead of from L3 cache, causing HT perfor-
mance to suffer [3]. On Sandy Bridge, the performance gain by HT for USM3D and
Cart3D is almost two times that on Westmere.

Fig. 27. Applications performance gain from HT on Westmere

5 Conclusions

In this paper, we conducted a comprehensive performance evaluation and analysis of
the Pleiades-Sandy Bridge computing platform, using low-level benchmarks, the
NPB, and four NASA applications. Our key findings are as follows:

• The revamped Turbo Boost 2.0 overclocking mechanism on Sandy Bridge is more
efficient than the prior implementation TB 1.0 on Westmere. The impact of Turbo
Boost in Sandy Bridge is almost doubled relative to Westmere (9% vs. 4%).

• The advantage of AVX over SSE4.2 instructions is insignificant, ranging from
+2% to -3%.

50 S. Saini et al.

• The performance of Hyper-Threading technology on Sandy Bridge is much better
than that on Westmere and is helpful in some cases, but for HPC applications this
is not universal. The impact of Hyper-Threading on Sandy Bridge is almost dou-
bled that on Westmere for USM3D and Cart3D (10% vs. 4%).

• The memory bandwidth of Sandy Bridge is about 40% higher than that of West-
mere.

• The performance of 4x FDR IB is 40% better than that of 4x QDR IB.
• The overall performance of Sandy Bridge is about 20% to 40% better than that of

Westmere for the NASA workload.

References

1. http://www.nas.nasa.gov/hecc/resources/pleiades.html
2. Saini, S., Naraikin, A., Biswas, R., Barkai, D., Sandstrom, T.: Early performance evalua-

tion of a “Nehalem” cluster using scientific and engineering applications. In: Proceedings
of the ACM/IEEE Conference on High Performance Computing, SC 2009, Portland, Ore-
gon, USA, November 14-20 (2009)

3. Saini, S., Jin, H., Hood, R., Barker, D., Mehrotra, P., Biswas, R.: The impact of hyper-
threading on processor resource utilization in production applications. In: 8th International
Conference on High Performance Computing, HiPC 2011, Bengaluru, India, December
18-21 (2011)

4. Intel Xeon Benchmark - Intel.com, www.intel.com/Xeon
5. Texas Advanced Computing Center – Stampede, www.tacc.utexas.edu/stampede
6. NCAR-Wyoming Supercomputing Center (NWSC), https://www2.cisl.ucar.edu/resources/

yellowstone/hardware
7. HPC Challenge Benchmarks, http://icl.cs.utk.edu/hpcc/
8. Schöne, R., Hackenberg, D., Molka, D.: Memory performance at reduced CPU clock

speeds: an analysis of current x86_64 processors. In: Proceedings of the 2012 USENIX
Conference on Power-Aware Computing and Systems (HotPower 2012), Hollywood,
USA, October 7 (2012), http://dl.acm.org/citation.cfm?id=2387869.2387878

9. NAS Parallel Benchmarks (NPB), http://www.nas.nasa.gov/publications/npb.html
10. OVERFLOW, http://aaac.larc.nasa.gov/~buning/
11. Mavriplis, D.J., Aftosmis, M.J., Berger, M.: High Resolution Aerospace Applications us-

ing the NASA Columbia Supercomputer. In: Proc. ACM/IEEE, SC 2005, Seattle, WA
(2005)

12. USM3D, http://tetruss.larc.nasa.gov/usm3d/
13. M.I.T General Circulation Model (MITgcm), http://mitgcm.org/
14. Saini, S., Talcott, D., Jespersen, D., Djomehri, J., Jin, H., Biswas, R.: Scientific applica-

tion-based performance comparison of SGI Altix 4700, IBM POWER5+, and SGI ICE
8200 supercomputers. In: High Performance Computing, Networking, Storage and Analy-
sis, SC 2008, Austin, Texas, November 15-21 (2008)

15. Morozov, V., Kumaran, K., Vishwanath, V., Meng, J., Papka, M.E.: Early Experience on
the Blue Gene/Q Supercomputing System. In: IEEE IPDPS, Boston, May 20-23 (2013)

16. Barker, K., Davis, K., Hoisie, A., Kerbyson, D.J., Lang, M., Pakin, S., Sancho, J.C.: Enter-
ing the Petaflop Era: The Architecture and Performance of Roadrunner. In: Proceedings of
IEEE/ACM Supercomputing, SC 2008, Austin, TX (November 2008)

 Performance Evaluation of the Intel Sandy Bridge Based NASA Pleiades 51

17. Barker, K., Hoisie, A., Kerbyson, D.: An Early Performance Analysis of POWER7-IH
HPC Systems. In: SC 2011, Seattle, November 12-18 (2011)

18. Kerbyson, D.J., Barker, K.J., Vishnu, A., Hoisie, A: Comparing the Performance of Blue
Gene/Q with Leading Cray XE6 and InfiniBand Systems. In: ICPADS 2012, pp. 556–563
(2012)

19. Alam, S., Barrett, R., Bast, M., Fahey, M., Kuehn, J., McCurdy, C., Rogers, J., Roth, P.,
Sankaran, R., Vetter, J., Worley, P., Yu, W.: Early Evaluation of IBM BlueGene/P. In:
Proceedings of the ACM/IEEE International Conference for High Performance Compu-
ting, Networking, Storage and Analysis, SC 2008, Austin, TX, November 15-21 (2008)

20. Alam, S.R., Barrett, R.F., Fahey, M.R., Kuehn, J.A., Messer, O.E., Mills, R.T., Roth, P.C.,
Vetter, J.S., Worley, P.H.: An Evaluation of the ORNL Cray XT3. International Journal
for High Performance Computer Applications 22, 52–80 (2008)

21. PMU Performance Monitoring PerfMon | Intel® Developer Zone software.intel.com/
en-us/tags/18842

22. Intel® Architecture Instruction Set Extensions Programming Reference, 319433-014 (Au-
gust 2012) http://software.intel.com/en-us/avx

Analysis of Cray XC30 Performance
Using Trinity-NERSC-8 Benchmarks

and Comparison with Cray XE6 and IBM BG/Q

M.J. Cordery1(B), Brian Austin1, H.J. Wassermann1, C.S. Daley1,
N.J. Wright1, S.D. Hammond2, and D. Doerfler2

1 NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
{mjcordery,baustin,hjwasserman,csdaley,njwright}@lbl.gov

2 Center for Computing Research, Sandia National Laboratories Albuquerque,
Albuquerque, NM, USA

{sdhammo,dwdoerf}@sandia.gov

Abstract. In this paper, we examine the performance of a suite of appli-
cations on three different architectures: Edison, a Cray XC30 with Intel
Ivy Bridge processors; Hopper and Cielo, both Cray XE6’s with AMD
Magny–Cours processors; and Mira, an IBM BlueGene/Q with PowerPC
A2 processors. The applications chosen are a subset of the applications
used in a joint procurement effort between Lawrence Berkeley National
Laboratory, Los Alamos National Laboratory and Sandia National Lab-
oratories. Strong scaling results are presented, using both MPI-only and
MPI+OpenMP execution models.

Keywords: Benchmarking · HPC · Performance

1 Introduction

The classic parallel programming model, MPI, faces several new challenges on
petaflop computing platforms, which are dominated by multicore-per-node archi-
tectures [1,2]. These challenges include reduced memory capacity per core,
reduced memory and network bandwidth per core, and the inefficiency of using
two-sided messages to handle a large amount of fine-grain communication. These
challenges will only be exacerbated as the field of high performance comput-
ing moves forward into the exa-scale era wherein application developers will no
longer be able to achieve significant performance and scalability gains with an
MPI-only programming model. As on-node parallelism increases, effective use of
future technologies will require exposing more fine-grained data parallelism, bet-
ter management of data placement and data movement, exploiting longer vector
units, and exploring task-based parallelism and communication reducing algo-
rithms. To this end, several laboratories within the Department of Energy (DOE)
are collaborating on the FastForward project to research both new technologies
and new execution models. While this program advances, DOE laboratories are
working with their scientists and code development teams to address these issues.

Analysis of Cray XC30 Performance 53

This collaborative effort also extends to the realm of system procurement
where, in a debut effort, Lawrence Berkeley Laboratory (LBL), Los Alamos
National Laboratory (LANL) and Sandia National Laboratories (SNL) (the later
two comprising ACES, the Alliance for Computing at Extreme Scales), have
entered a partnership to jointly procure two systems. While one of the goals of
this partnership is to drive favorable economies of scale, a substantial benefit is
the opportunity for various DOE labs to better understand each other’s system
requirements and workload characteristics. This understanding will yield future
architectures that cover the broadest range of scientific computing needs and
are not defined by and targeted at any specific workload. As part of this pro-
curement, each of the involved laboratories contributed a selection of benchmark
codes that represent an important part of their workload. The primary aim of
this paper is to evaluate the performance characteristics of this new suite of
benchmarks on state-of-the art platforms, especially at high concurrencies. Fur-
thermore we are interested in how well different execution models perform on
different architectures, especially the comparison between the classical MPI-only
execution model and a hybrid model using many relatively lightweight threads.
To this end, we present results showing how each benchmark strong scales on
three different architectures: Edison, a Cray XC30 at NERSC; Hopper, a Cray
XE6 (also at NERSC); and Mira and Vulcan, both IBM Blue Gene/Q machines
at Argonne National Laboratory and Lawrence Livermore National Laboratory,
respectively. We compare and contrast the performance of the selected bench-
marks on each machine when using an MPI-only execution model and, at the
other extreme, how each scales when using the maximum number of OpenMP
threads possible on a node (or, in the case of Hopper and Edison, the maximum
number of threads possible in a NUMA domain). Short of an exhaustive study,
this will give us some sense of the range of performance possible for intermediate
mixes of MPI tasks and OpenMP threads. It is also of interest to us how this
new suite of benchmarks aligns with previous metrics of system performance, in
this case NERSC’s Sustained System Performance (SSP) metric.

In summary, the principle contributions of this paper are

– On a node-per-node basis, the Cray XC-30 offers a significant performance
advantage over both the Cray XE6 and IBM’s BlueGene/Q, by 1.8-3.8x
and 1.8-9.4x respectively, over a range of node counts. Based on a metric
of performance per watt, however, the Cray XE6 and the BlueGene/Q are
more equivalent.

– For the benchmarks used in this paper, over the range of nodes considered,
hybrid MPI+OpenMP applications currently run slower than MPI applica-
tions across all platforms. The principle reason for this appears to be that
the OpenMP implementations of the applications are not as efficient as the
MPI ones at expressing parallelism.

– The benchmarks used, which represent the workloads at leading DOE super-
computing centers, have low computational intensity and their performance
is primarily limited by memory bandwidth.

54 M.J. Cordery et al.

The paper is organized as follows: Section 2 describes the experimental platforms.
Section 3 presents a description of the benchmark applications used as well as
their general strategies for both MPI and OpenMP parallelism. Performance
results of the benchmark applications and microbenchmarks are presented in
Section 4. Related work is presented in Section 5. Finally, we summarize our
conclusions and future work in Section 6.

2 Test Platform Descriptions

2.1 BlueGene/Q: Mira and Vulcan

BlueGene/Q is the third revision to IBM’s high-performance BlueGene architec-
ture. Each BG/Q node consists of embedded PowerPC cores clocked at 1.6GHz
which include a 256-bit SIMD (QPX) vector processing unit. Each core is dual-
issue, 4-way multithreaded, and has a 16KB L1 data cache. In order to run at
the dual-issue rate, at least two threads must be running per core. Each BG/Q
processor chip contains 18 cores (with 16 being available to the user, one to han-
dle OS tasks, and a spare core to increase chip yields) connected with a crossbar
to a 32MB L2 and the network interface. The two memory controllers per chip
can provide a sustained bandwidth of up to 28 GB/s to 16GB of DRAM. Nodes
are connected in a high-bandwidth 5D torus. In this paper, we use both the Mira
machine located at Argonne National Laboratory (49,152 nodes) and Vulcan, an
open-science relative of Sequoia, installed at the Lawrence Livermore National
Laboratory (24,576 nodes). Although the machines vary in size, the operating
system and compiler implementation are identical and so we treat them as equiv-
alent for the purposes of benchmarking the BlueGene/Q architecture.

2.2 Cray XE6: Hopper

Hopper is a Cray XE6 machine deployed at NERSC. The XE6 is based on
commodity AMD processors connected via HyperTransport to a custom inter-
connect. Each processor includes six 2.1GHz AMD Opteron cores with each core
having a 128-bit SIMD (SSE3) vector floating-point unit, and 64KB L1 and
512KB L2 caches. Cores are connected to a 6MB L3 cache (1MB reserved as a
probe filter) and two DDR3-1333 memory controllers. There are four processor
chips per node. The interconnect is a Cray custom-designed “Gemini” architec-
ture. Each Gemini chip is connected to two nodes, and the Gemini chips are
connected together in a 3D-torus with dimensions 17x8x24.

2.3 Cray XC30: Edison

Edison is a Cray XC30 (Cascade) supercomputer recently installed at NERSC.
The XC30 architecture is based on commodity Intel processors connected via PCI
Express 3.0 to a custom interconnect. Each processor is a 12-core, 2.4 GHz Intel
E-series Xeon (Ivy Bridge). The core includes a 256-bit SIMD (AVX) vector

Analysis of Cray XC30 Performance 55

Processor Core

Processor Core

Processor Core

Processor Core
...

...6MB L3
Cache

6MB L3
Cache

Processor Core

Processor Core

Processor Core

Processor Core

...
...

6MB L3
Cache

6MB L3
Cache

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

Fig. 1. Node Architecture of Hopper

floating-point unit and 32KB L1 and 256KB L2 caches. Each processor-core
permits up to two-way hyperthreading and is connected to the four DDR3-1866
memory controllers and 20MB L3 cache via an arbitrated ring-bus. Nodes of
Edison feature two processor sockets and are grouped into quad-node blades for
connection to a dragonfly topology interconnect via a Cray Aries NIC. In total,
the machine contains 5200 compute nodes, providing over 120,000 compute cores.

3 Benchmarks Descriptions and Problem Definitions

In the emerging many-core era, it will become impractical for applications to run
with an MPI-only programming model. The rapidly increasing number of cores
per node and the relatively slow growth of associated memory and memory
bandwidth means that each MPI task will not only be able to access smaller
amounts of memory and memory bandwidth than today, but will also encounter
more contention for on- and off-node network resources. For these reasons, there
is increasing pressure to move applications to hybrid execution models where,
say, MPI is used for decomposing problems across nodes at a coarse level and
a lightweight threaded API is used to perform finer-grained compute work (and
possibly handle communications) on a node. To this end, we are interested in the
ability of the applications presented below to scale with an increasing number
of threads and how that performance compares to an MPI-only programming
model.

For each application, we present a set of strong scaling results using an MPI-
only execution model and an MPI+OpenMP model. In the former, we increase
only the number of MPI ranks and in the latter we increase the number of
MPI ranks but only use one MPI rank per socket, filling the remainder of the
compute cores on each socket with OpenMP threads. In each case, we completely
fill each node on each machine with either tasks or tasks and threads (though
we do not examine hyper-threading on Edison) and then compare results on a
node-per-node basis and examine what tradeoffs or limitations might exist.

56 M.J. Cordery et al.

IVB
CPU

IVB
CPU

DRAMDRDRAMDRDRAMDRAMD DRAM
DRAM

DRAMDRDRAMDRDRAMDRAMD DRAM
DRAM

IVB
CPU

IVB
CPU

IVB

DRAMDRAMD
DRAM

D
DRAM

DRAM

IVBII

M

DRAMDRAMD
DRAM

D
DRAM

DRAM

IVB
CPU

IVB
CPU

IVB

DRAMDRAMD
DRAM

D
DRAM

DRAM

IVBII

M

DRAMDRAMD
DRAM

D
DRAM

DRAM

IVB
CPU

IVB
CPU

IVB

DRAMDRAMD
DRAM

D
DRAM

DRAM

IVBII

M

DRAMDRAMD
DRAM

D
DRAM

DRAM

IVB
CPU

IVB
CPU

IVB

DRAMDRAMD
DRAM

D
DRAM

DRAM

IVBII

M

DRAMDRAMD
DRAM

D
DRAM

DRAM

NIC NIC NIC NIC8 Processor
Tiles

40 Network
Tiles

48 Router Tiles (one bidirectional
link each, 3 lanes wide, 12.5Gbps optical

14 Gbps electrical)

Fig. 2. Cray XC30 Node Architecture

In summary, for the three test platforms our execution modes are:

– Mira/Vulcan
• 16 MPI tasks per node, 4 OpenMP threads per core
• 1 MPI task per node, 64 OpenMP threads

– Hopper
• 24 MPI tasks per node
• 4 MPI tasks per node, 6 OpenMP threads per NUMA domain

(24 OpenMP threads in total)
– Edison

• 24 MPI tasks per node
• 2 MPI tasks per node, 12 OpenMP threads per NUMA domain (24

OpenMP threads in total)

Each of the benchmark problems (except FLASH) is a smaller version of
the large problems defined for the NERSC8/Trinity procurement. Each problem
was weak-scaled down by two to four times in order to provide a sufficiently
interesting range of data points for the compute capabilities of the test platforms.
Each of the benchmark codes and problem definitions is now briefly described.

3.1 MILC

MILC (MIMD Lattice Computation) is a widely used, computationally intense
application designed to compute gauge fields as described by the theory of quan-
tum chromodynamics (QCD). The computational grid is a four-dimensional

Analysis of Cray XC30 Performance 57

space-time grid (x, y, z, t) with quark fields, defined as 3x3 complex vectors,
at the grid points and gluon variables, defined as 3x3 unitary matrices, defined
at the ‘links’ between grid points [3]. The most computationally intense part of
the program is the conjugate gradient solver which determines how the motion
of the quarks is affected by the gluons [3]. The four dimensional lattice is decom-
posed so that the sub-grid assigned to each MPI task has the minimum possible
surface-to-volume ratio. Following Gottlieb and Tamhankar [4], the code has
fine-grain parallelism implemented with OpenMP directives, mostly on loops
over all grid points in the lattice. Communications in MILC are largely dom-
inated by point-to-point transfers associated with the 4D halo exchanges and
global reductions associated with the conjugate gradient solver. MILC has been
an important part of previous NERSC procurements as it is representative of
NERSC’s high energy physics workload and because the stencil computation and
conjugate gradient solver stress both the memory and interconnect bandwidths,
respectively.

The four dimensional space-time grid (x, y, z, t) used for this paper has dimen-
sions 64x64x64x192. At the base concurrency of 12288 MPI tasks, this yields an
8x8x8x8 grid for each MPI task.

3.2 GTC

GTC is a 3-dimensional code used to study microturbulence in magnetically
confined toroidal fusion plasmas via the Particle-In-Cell (PIC) method [5]. GTC
is used for fusion energy research and thus represents an important part of
NERSC’s workload. It solves the gyro-averaged Vlasov equation in real space
using global gyrokinetic techniques and an electrostatic approximation. The
Vlasov equation describes the evolution of a system of particles under the effects
of self-consistent electromagnetic fields. The unknown is the flux, f(t, x, v), which
is a function of time t , position x, and velocity v, and represents the distri-
bution of particles (electrons and ions) in phase space. This model assumes a
collision-less plasma; i.e., the particles interact with one another only through a
self-consistent field and thus the algorithm scales as N instead of N2, where N
is the number of particles. The version of GTC used here uses a fixed 1-D spatial
decomposition with 64 domains in the toroidal direction and P particle domains
within a toroidal domain for a total of 64*P MPI tasks. Fine-grained parallelism
is implemented by using OpenMP over the particles in a particle domain and
some grid related work within a toroidal domain. Communications in GTC are
largely dominated by MPI allreduces that merge each task’s copy of the field and
MPI send/receives that move particles between domains. Furthermore, because
of the gather/scatter particle operations in GTC, the code is known to be par-
ticularly sensitive to memory latency [5], though it is also sensitive to memory
bandwidth.

It is not possible to strong scale GTC without fundamentally changing the
problem because the number of MPI tasks is fixed by the number of particle
domains (see above). Increasing the MPI concurrency would also increase the
number of particles being simulated. Hence, rather than examining strong scaling

58 M.J. Cordery et al.

through MPI, we examine the strong scaling through OpenMP threads, i.e. we
fix the MPI concurrency and increase the number of nodes used by increasing
the number of OpenMP threads per node. The base problem size is defined for
4800 MPI tasks (75 particle domains) with 32,359 particles per MPI task.

3.3 FLASH

FLASH is a publicly available, multi-physics code with core capabilities which
include Adaptive Mesh Refinement (AMR) and explicit solvers for hydrody-
namics and magneto-hydrodynamics [6,7]. It has been used to simulate X-ray
bursts, Type Ia supernovae, Core Collapse supernovae, galaxy cluster formation
and laser-driven High Energy Density Physics (HEDP) experiments. It is paral-
lelized by dividing the underlying mesh into blocks (patches) and assigning the
blocks to different MPI tasks. Each block contains a halo of guard cells which
are updated after each solver time-advancement. The solvers are multithreaded
using conditionally compiled OpenMP directives around either loops over blocks
or loops over grid points.

In this paper we run the Sedov test case, which is a pure hydrodynamics
problem involving the self-similar evolution of a spherical blast wave from an
initial pressure perturbation. The application is configured to use the unsplit
hydrodynamics solver and a uniform resolution grid containing 11523 grid points.
We use a uniform mesh and not the adaptive mesh provided by Paramesh because
Paramesh is not multithreaded and so the MPI vs MPI+OpenMP comparison
would be less interesting. The uniform mesh provides one block per MPI task
and so the OpenMP directives over grid points are conditionally compiled into
the application. Note that the uniform mesh is an important capability which is
appropriate in simulations with relatively smooth fluid flow, such as simulations
of weakly-compressible homogeneous isotropic turbulence [8].

3.4 Finite Element (MiniFE)

Many of the engineering applications in use at Sandia and other HPC computing
sites require the implicit solution of a nonlinear system of equations. As these
systems increase in size and complexity, the runtime becomes dominated by
the performance of basic mathematical operations employed by the solver rou-
tines - these typically feature some combination of dot-products, vector scaling
or AXPBY operations and sparse-matrix-vector products.

The MiniFE mini-app [9], part of the Mantevo suite [10], is an implementation
of a finite-element generation, assembly and solve for an unstructured problem.
Although the solver employed in MiniFE - a simple conjugate gradient solver -
is more simplistic than those used for production applications, the kernels that
contribute to the CG solver provide many of the characteristics of those used in
production applications and, in a number of studies, have been shown to provide
reasonable runtime and behavioral correlation [11].

Analysis of Cray XC30 Performance 59

3.5 Unstructured Mesh Transport (UMT)

UMT is a proxy application from the NNSA’s ASC program, written and main-
tained by LLNL, which performs the solution of a time- and energy-dependent
discrete ordinate radiation problem in three dimensions on an spatially unstruc-
tured grid. The algorithm employs deterministic Sn methods to model the trans-
fer of thermal protons in a three dimensional domain. Parallelism within the
UMT code is provided by decomposing the unstructured spatial grid onto MPI
tasks and using OpenMP threads to implement fine-grained parallel processing
over angles during the transport phase.

4 Performance Results

4.1 STREAM

To measure the memory bandwidth performance, which can significantly impact
many scientific codes, we ran the STREAM benchmark on each of the test
platforms. For each platform, we configured the test to utilize 60% of the on–
node memory. For Hopper and Edison, we ran separate copies of STREAM
on each of the NUMA domains and used enough OpenMP threads to fill each
domain. For Mira, we only ran one instance of the benchmark and ran with 64
OpenMP threads. The reported STREAM Triad results are as follows: Hopper -
53.9 GB/s, Edison - 103.3 GB/s, Mira - 28.6 GB/s per node.

Knowing the relative magnitude of the memory bandwidth between machines
can be useful when comparing the performance of codes that are memory band-
width sensitive. In Figure 3, we show roofline models of the three test platforms
using the measured STREAM values and the known peak gigaflops/s/core rate
defined by each platform’s CPU clock speed and peak flops/clock. The roofline
model [12] is a convenient visual means of identifying if a code is compute bound
or memory bandwidth bound and can be used to guide optimization efforts. If a
code makes good use of spatial and temporal locality in its memory references,
the memory subsystem should be able to keep the vector units of the CPU full
and thus the code should operate at near the peak floating point rate (com-
pute bound). If not, a code’s performance will be limited by the memory band-
width (memory bandwidth bound). In the roofline model, these two variables,
floating point performance and memory bandwidth, are assumed to be related
through operational intensity, i.e. the number of floating point operations per
byte of DRAM traffic. Thus, the roofline of a platform is defined by the following
formula

PeakGFlops/s = MIN(
PeakF loatingPointPerformance,

PeakMemoryBandwidth ∗ OperationalIntensity)

The roofline for each compute platform is divided into two segments. The hori-
zontal segment represents the upper floating-point limit imposed by the architec-
ture. The sloped portion of the roofline represents the upper limit of performance
imposed by the peak memory bandwidth of the system.

60 M.J. Cordery et al.

If we now measure the compute intensity and gigaflops/s rate of a code we can
plot them in the figure. Codes which tend to fall on the horizontal portion of the
roofline for a platform are considered to be compute bound as their performance
is limited by the number of floating point operations that a CPU can execute each
clock cycle. Codes which fall on the sloping part of the roofline are considered
to be limited by memory bandwidth. Code performance may fall beneath the
roofline if its performance is limited by the other features of the architecture or
if it is composed of kernels with different computational intensities.

Figure 3 shows the measured performance of each of the Trinity/NERSC8
applications when running each application’s ‘large’ test case on Hopper using
an MPI-only execution model. The operational intensity for each code was mea-
sured using Cray’s Craypat performance analysis tool and the gflops/s rates were
determined using the floating point counts reported from IPM performance anal-
ysis tool and the run time values returned by each application. The results in
this figure point out that the applications in the procurement, and those studied
in more detail in this paper, are limited in performance by the rate that the
memory subsystem can feed the processor. Simply adding more floating point
capability will not increase performance. The other observation is that all of the
benchmarks have relatively low computational intensity (<1), though it must be
stressed that that the data points shown are for the entire code and not for any
individual kernel which may show higher performance. Because of this, it will be
difficult for any of these applications to attain a platform’s peak floating point
performance. This fact may have an impact on both machine inter-comparisons
and the selection of systems for procurement. In the former case, architectures
become compared based largely on their peak memory bandwidth and not the
inherent computational advantages available on each processor. In the latter
case, application developers and system procurement teams may find it easier to
choose machines with higher peak memory bandwidth rather than refactoring
their applications, or researching new algorithms, to better use the CPU. As
CPUs increase in core count and complexity these issues may become increas-
ingly prominent.

4.2 NERSC-6 Applications on Hopper and Edison

While the majority of this paper focuses on performance analysis of codes
selected from the Trinity-NERSC8 benchmark suite, we also present results for
the NERSC-6 application benchmarks [13] to facilitate comparison to previ-
ous benchmarking work on other computational platforms. Like the Trinity-
NERSC8 suite, the NERSC-6 benchmarks were selected to span an appropriate
cross-section of scientific domains and algorithms. The Community Atmospheric
Model (CAM) is a significant component of the climate science workload; it
uses 3-dimensional finite volume methods to simulate dynamical (e.g. fluid flow)
and physical (e.g. precipitation) processes in the atmosphere. GAMESS imple-
ments a broad range of ab initio models of quantum chemistry. IMPACT-T is
a relativistic particle-in-cell code used to simulate accelerator physics. MAE-
STRO is an astrophysics code that uses algebraic multigrid methods to simulate

Analysis of Cray XC30 Performance 61

Fig. 3. Roofline model of test systems and NERSC8/Trinity benchmarks. The lines in
the plot show the roofline for each test system which is obtained from the peak floating
point performance per core and the measured memory bandwidth from the STREAM
benchmark. Each symbol marks the actual results obtained on Hopper for test cases
that run on order 1000 nodes.

pre-ignition phases of Type Ia supernovae. PARATEC is a plane-wave density
functional theory code used for materials science; its functionality and perfor-
mance characteristics are quite similar to MiniDFT, which has supplanted it
in the Trinity-NERSC8 benchmark suite. GTC and MILC are included in both
benchmark suites and were described in Section 3. Detailed descriptions of the
NERSC-6 codes and inputs are available in [13].

One feature that distinguishes Edison’s Ivy Bridge processors from Hopper’s
Magny–Cours processors is the availability of Hyperthreading Technology. When
hyperthreading is enabled, each physical core presents itself to the OS as two
logical cores. The logical cores share some resources of the physical core (such
as cache, memory bandwidth and FPUs), but have independent architectural
states. Hyperthreading has the potential to increase resource utilization if an
application cannot exhaust a critical shared resource with a single instruction
stream. Thus, on Edison jobs can be run in a single-stream mode (with one
process per physical core) or dual-stream mode (with two processes per physical
core). The sharing of resources generally causes dual-stream jobs to run roughly
half as fast as single-stream jobs with the same MPI concurrency, but a net
increase in throughput may be achieved if the dual-stream job uses half as many
nodes for less than twice the single-stream walltime.

Figure 4 compares the performance of the NERSC-6 benchmarks on Hop-
per and Edison. Edison’s single-stream performance is 1.9-2.6 times faster than

62 M.J. Cordery et al.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

CAM GAMESS GTC IMPACT MAESTRO MILC PARATEC

P
er

fo
rm

an
ce

 v
s.

 H
op

pe
r

Hopper
Edison (single)

Edison (dual)
Edison (dual throughput)

Fig. 4. NERSC-6 Application speedup relative to Hopper. Each benchmark was run on
Hopper and on Edison in single- and dual-stream modes. The dual-stream throughput
accounts for reduced node counts needed in dual-stream mode.

Hopper. The dual-stream performance is predictably about 50% less than single-
stream, however dual-stream ’throughput performance’ (which is identically 2x
the dual-stream performance) is up to 2.75 greater than Hopper, and marginally
better than the Edison single-stream performance for all codes except MILC.
Edison’s NERSC-6 SSP is 253 TF/s, nearly double Hopper’s 137 TF/s.

4.3 Application Performance On Test Platforms

MILC. The strong scaling performance results for MILC are shown in Figure 5.
The base configuration for these experiments was 12288 MPI tasks (512 nodes
on Hopper/Edison and 192 nodes on Mira). Note that, for Mira, the node count
is lower as we placed 64 MPI tasks on a node since MILC’s memory usage for
this problem can easily fit within the 16GB per node available.

Across the range of nodes where they overlap, the MPI-only runs on Edison
are 2.2-3.8 times faster than on Hopper whereas they are 1.9-3.8 times faster
than on Mira. The hybrid models on Edison compared to Hopper show a similar
speedup as the MPI-only runs, but the hybrid runs on Edison are 6.8-9.4 times
faster than on Mira.

For all three platforms, the hybrid model is slower than the MPI-only model.
If we look in ranges where the parallel efficiency is still reasonably good, the

Analysis of Cray XC30 Performance 63

hybrid models on Hopper are 2-3x slower than the MPI-only version, on Edison
they are about 2x slower, and on Mira they are about 3.5x slower. Looked at
another way, on both Hopper and Edison, the hybrid models need approximately
twice the concurrency to equal the same performance as an MPI-only model.
On Mira, the hybrid model needs nearly four times the concurrency. On the x86
architectures at least, this indicates that there are many serial sections remaining
in the code.

As for scaling, the MPI-only/hybrid code on Hopper shows a 2.5x/3.9x speed
up over an 8x increase in concurrency whereas on Edison there is a 4.2x/6.5x
speedup. On Mira, the same versions show a 22.3x/24.5x speedup over a 64x
increase in concurrency. One interesting feature is the bend in Mira’s MPI-only
scaling curve at 3072 nodes which is possibly due to a change in MPI protocols.
This is supported by the fact that the hybrid model on Mira does not show this
behavior - message sizes (which are presumed to trigger the protocol switch) are
significantly larger for the hybrid code.

While it appears that the Hopper and Edison MPI-only models both become
slower than their hybrid counterparts between 1024 and 2048 nodes, this effect
is the result of a loss of scaling due to increased MPI traffic at higher MPI
concurrencies. If we look at the compute time (wall clock - communication time)
then this cross-over disappears and the hybrid compute times are slower than
the MPI-only compute times across the range of nodes shown. The compute time
only efficiency curves highlight the fact that while all of the models scale well
out to 2048 nodes, they decline markedly after that point, presumably because
they’ve reached the point where the serial portions of the OpenMP code start
to become important.

The parallel efficiency figure is interesting that, while MILC on Edison shows
some evidence of superlinear speedup for both the hybrid and MPI-only models,
neither Hopper nor Mira do. The lack of superlinearity in the latter two platforms
may simply be due to cache size differences. While MPI-only models of MILC
often show superlinearity because of their typical memory footprint on a node,
the hybrid version shows more. This is presumably because the working set per
core of the hybrid code is smaller than in the MPI only version of the code.

GTC. The performance results for the OpenMP strong scaling experiment for
GTC are shown in Figure 6. For Hopper, we ran with 1,2,3 and 6 threads per
NUMA domain, for Edison we ran with 1,2,3,4,6, and 12 threads per NUMA
domain, and for Mira, we ran with 4, 8, 16, 32 and 64 threads per node. On
Hopper, GTC speeds up 4.1x using six threads, on Edison it sees a 9.2x speedup
over twelve threads, and on Mira it sees an 8.72x speed up when going from four
threads per node to 64 (a factor of 16).

The differences in the performance between the three different platforms may,
to first order, be explained by differences in clock speed and memory bandwidth.
On a node per node basis, Edison is approximately 2-2.6x faster than Hopper,
increasing with node count, and Mira is 2.6-2.8x slower than Hopper, with Edison
being approximately 7-7.8x faster than Mira. To look at it in a different way, to

64 M.J. Cordery et al.

102

103

104

105

 128 256 512 1024 2048 4096 8192 16384

R
un

tim
e

(S
ec

on
ds

)

Nodes

0.00

0.20

0.40

0.60

0.80

1.00

1.20

 128 256 512 1024 2048 4096 8192 16384

P
ar

al
le

l E
ffi

ci
en

cy

Nodes

BG/Q (16xMPI, 4xOpenMP)
BG/Q (1xMPI, 64xOpenMP)

Hopper (24xMPI)
Hopper (4xMPI, 6xOpenMP)

Edison (24xMPI)
Edison (2xMPI, 12xOpenMP)

Fig. 5. MILC Performance

run as fast as the 200 node case on Edison, Hopper requires three times as many
nodes and Mira requires over nine times as many nodes.

To first order, the differences in the parallel efficiency curves can be under-
stood by removing the MPI communication times from the run times and then
recalculating the parallel efficiency. Following that procedure, all three platforms
follow nearly the same parallel efficiency curve, with Edison’s curve being only
marginally affected by this correction. At larger numbers of nodes, the overall
performance of GTC becomes limited by the growing influence of MPI collec-
tive (allreduce) communications. However, this appears to be less of a factor on
Edison as evidenced by it’s better scaling.

FLASH. The FLASH experiments are run with a uniform resolution grid of
11523 cells and use 512 to 4096 nodes on all 3 platforms with additional exper-
iments on Mira which use up to 32,768 nodes. In 1 MPI rank per core con-
figurations, this gives a workload per MPI rank which is representative of a
typical production FLASH simulation with Paramesh on Mira. In such a simu-
lation, each MPI rank typically updates 10 to 20 blocks, each consisting of 163

cells. For comparison, in the 512 node experiment on Hopper, each MPI rank is
assigned approximately the same number of cells as 30 163 blocks. Our strong
scaling study is important because it spans the full range of typical production
simulations corresponding to 30, 15, 8 and 4 163 blocks per MPI rank. In all
experiments we obtain the FLASH run time from the “evolution” time stamp in

Analysis of Cray XC30 Performance 65

101

102

103

104

 128 256 512 1024 2048 4096 8192

R
un

tim
e

(S
ec

on
ds

)

Nodes

0.00

0.20

0.40

0.60

0.80

1.00

1.20

 128 256 512 1024 2048 4096 8192

P
ar

al
le

l E
ffi

ci
en

cy

Nodes

BG/Q
Hopper
Edison

Fig. 6. GTC Performance

the FLASH log file. This is appropriate because initialization time is small and
becomes negligible in production simulations which consist of multiple 12-hour
runs chained together.

The performance results in Figure 7 show that at a given node count the
fastest time to solution is obtained on Edison in 1 MPI rank per core configura-
tion. We see that it takes approximately a factor of 8x more nodes on Mira to
improve upon a given Edison time. The parallel efficiency of FLASH tails off at
higher node count mainly because the unsplit hydrodynamics solver in FLASH
replicates certain guard cell computations. We find that the biggest strong scaling
loss comes from the computation of Riemann state values for all cell interfaces
within a single block. Work could be saved by communicating the guard cell
Riemann state values instead of replicating this computation. The communi-
cation vs. computation trade-off should be investigated because the replicated
work is actually more than the necessary local work in FLASH simulations with
Paramesh and blocks of 163 cells.

In all cases, the 1 MPI rank per core experiments are faster than the 1
MPI rank per NUMA domain experiments. One notable observation is that the
Hopper platform shows the smallest difference between the MPI per core and
MPI per NUMA domain performance. This is partially because there are only 6
OpenMP threads per MPI rank instead of 12 (Edison) or 64 (Mira) and so the
impact of serial code sections is smaller. Hopper also spends less time in MPI in

66 M.J. Cordery et al.

the per NUMA domain experiments than in the per core experiments. This is
the opposite to what we observe on both Edison and Mira and perhaps indicates
contention in the network is slowing down the MPI rank per core guard cell
exchange on Hopper.

101

102

103

 512 1024 2048 4096 8192 16384 32768

R
un

tim
e

(S
ec

on
ds

)

Nodes

0.00

0.20

0.40

0.60

0.80

1.00

1.20

 512 1024 2048 4096 8192 16384 32768

P
ar

al
le

l E
ffi

ci
en

cy

Nodes

BG/Q (16xMPI, 4xOpenMP)
BG/Q (1xMPI, 64xOpenMP)

Hopper (24xMPI)
Hopper (4xMPI, 6xOpenMP)

Edison (24xMPI)
Edison (2xMPI, 12xOpenMP)

Fig. 7. FLASH Performance

MiniFE. The results for MiniFE are for a strong scaled study with data points
at 512, 1024, 2048 and 4096 nodes for each platform. The input parameters were
chosen to use nominally 4 TB of aggregate memory capacity, 8 GB, 4 GB, 2
GB and 1 GB per node respectively, in order to be sufficiently larger than the
last level cache and hence fully utilize the memory hierarchy. The metric chosen
for this study is overall solve time for the conjugate gradient solver. The CG
solver contains three distinct operations, a DOT product, a WAXPY operation,
and a sparse matrix vector (SpMV) product. All three operations have been
parallelized with OpenMP. The SpMV product takes the majority of time in the
calculation, approximately 80% for the Hopper cases at 512 nodes. The amount
of time spent in MPI communication is not negligible and there can be effects
as scale increases on less balanced architectures.

Analysis of Cray XC30 Performance 67

The timing and parallel efficiency results for MiniFE are shown in Figure 8.
In general MiniFE performs similarly for the two mixes of MPI and OpenMP
on the respective platforms. There are some deviations at 4096 nodes, but they
are not significant. MiniFE scales well on both the BG/Q and Edison plat-
forms, near 90% or better parallel efficiency. On the Hopper platform, scaling is
somewhat erratic. This behavior has been observed with MiniFe in other stud-
ies of the Cray XE6 architecture, with the primary contributor being the DOT
product operation. This behavior is repeatable and has been demonstrated on
multiple instantiations of the architecture. It is believed to be an artifact of the
non-uniform communication performance of the Gemini 3D torus and how the
problem is laid out on the machine. Although this is usually not a major per-
formance issue, this study observed significant performance degradation at 4096
nodes, where parallel efficiency drops to less than 70%. The authors surmise that
if run at 8192 nodes, parallel efficiency would improve to the 90+% range seen
at 2048 nodes. In summary, Edison provides the best overall time to solution.
Both Hopper and the BG/Q platform require approximately four times as many
nodes to achieve similar performance.

100

101

102

 512 1024 2048 4096 8192

R
un

tim
e

(S
ec

on
ds

)

Nodes

0.00

0.20

0.40

0.60

0.80

1.00

1.20

 512 1024 2048 4096 8192

P
ar

al
le

l E
ffi

ci
en

cy

Nodes

BG/Q (16xMPI, 4xOpenMP)
BG/Q (1xMPI, 64xOpenMP)

Hopper (24xMPI)
Hopper (4xMPI, 6xOpenMP)

Edison (24xMPI)
Edison (2xMPI, 12xOpenMP)

Fig. 8. MiniFE Performance

UMT. The results for UMT are for a strong scaled study with data points
at 512, 1024, 2048 and 4096 nodes for each platform. The input parameters
were chosen to use nominally 4 TB of aggregate memory capacity, 8 GB, 4 GB,

68 M.J. Cordery et al.

2 GB and 1 GB per node respectively, in order to be sufficiently larger than
the last level cache and hence fully utilize the memory hierarchy. The metric
chosen was cumulative work time. For UMT much of the work for each MPI
rank does not contain OpenMP directives, the only section of the code that has
OpenMP is the step which loops over all the angles of the transport problem.
Although this is a major computational part of the solve phase, if a node has
weak single core performance, cases with minimal MPI parallelism may inher-
ently have lower performance. However, the results below show that there can be
exceptions.

The timing and parallel efficiency results for UMT are shown in Figure 9.
For the BG/Q and Edison platforms, the cases which use more MPI parallelism
perform significantly better than the respective cases with higher OpenMP par-
allelism, as surmised above. However, for the Hopper platform the two cases
show essentially equal performance across all scales. Further analysis shows that
the 24xMPI case does indeed spend approximately 20% less time in the compu-
tational sections of the code, but spends approximately 70% more time in the
MPI routines than the 4xMPI/6xOpenMP case. So for this problem, on this
platform, the total solve time is roughly equal.

Looking at the parallel efficiency graph, Edison shows good scaling for both
cases. The BG/Q platform has good scaling for the 1xMPI/64xOpenMP case,
but scaling drops off significantly as the number of MPI ranks per node is
increased in the 16xMPI/4xOpenMP case. Hopper scales consistently between
the two cases, but overall performance drops to less than 40% parallel efficiency
at 4096 nodes. In summary, best overall performance is obtained with Edison
using 24 MPI ranks per node. Neither Hopper nor Vulcan achieve the same level
of performance, even when using four times as many nodes.

5 Related Work

The work most directly related to this study is that of Kerbyson et al. [14] who
compared the performance of the IBM Blue Gene/Q with the Cray XE6 and an
Infiniband system. That study is different from the work presented herein in sev-
eral ways: in particular, they presented a more detailed analysis of the network
interconnect performance and their application performance comparison focused
on weak-scaling of codes without examining thread-level parallelism. Like Ker-
byson, we observe the excellent scaling characteristics of the Blue Gene/Q inter-
connect, but we also observe comparable scaling performance in the Cray XC30
interconnect, making this system attribute less of a discriminating performance
factor between the two. Though it is difficult to directly compare weak and strong
scaling results of different problems over different node counts, we observe that
both GTC and MILC on the Cray XE6 had roughly similar speedups over the
Blue Gene/Q as those observed in [14].

Analysis of Cray XC30 Performance 69

101

102

103

 512 1024 2048 4096

R
un

tim
e

(S
ec

on
ds

)

Nodes

0.00

0.20

0.40

0.60

0.80

1.00

1.20

 512 1024 2048 4096

P
ar

al
le

l E
ffi

ci
en

cy

Nodes

BG/Q (16xMPI, 4xOpenMP)
BG/Q (1xMPI, 64xOpenMP)

Hopper (24xMPI)
Hopper (4xMPI, 6xOpenMP)

Edison (24xMPI)
Edison (2xMPI, 12xOpenMP)

Fig. 9. UMT Performance

6 Summary and Conclusions

As we have seen in this study, it is possible to see significant performance gains on
modern architectures with larger faster caches and better memory bandwidth. In
terms of raw performance acquired through improvements in memory bandwidth
and an improved interconnect, the Cray XC30 is a significant step forward from
its predecessor, the Cray XE6. For the MPI-only codes, for the smallest node
counts and where parallel efficiency is still good, the range of speedup from
Hopper to Edison is about 2x which is expected based on clock speeds and
memory bandwidth figures. Comparing Edison to Mira is a bit more interesting
as on a per core basis we expect an Edison core to be 5.4x the speed of a Mira
hardware core. Comparing on a node level, and correcting for node counts, we
expect an Edison node to have 8x the performance of a Mira node (single thread
per core). In this case Mira performs more admirably with MiniFE and Flash
running on Edison only 4.2 and 4.3x faster, respectively. Both MILC and UMT
perform even better showing speedups on Edison relative to Mira of about 2-
2.5x. For the case of MILC, the improved performance on Mira is possibly the
result of the latter’s 5D torus network being more amenable to MILC’s 4D halo
exchanges and Mira’s ability to hide memory latency, which is also an important
performance limiter for MILC. The UMT code also shows a speedup on Edison
of 2.6x, implying that it is able to exploit at least two hardware threads on
Mira effectively and may also be able to exploit hardware threading to hide the

70 M.J. Cordery et al.

latency of its indirect addressing. At higher node counts, all the codes showed a
decrease in performance due to increased network traffic resulting in increasing
gaps in performance between Edison and the other two platforms. In this case,
Edison increased it’s performance advantage over Hopper up to a range of about
2.5-3.8x and over Mira from a range of 3.5-6x.

Comparing performance at low node counts, the hybrid codes show a similar
performance improvement to the MPI-only codes on Edison relative to Hopper
of about 1.8-2.5x. Flash, UMT, and MiniFE all perform 3.5-4x better on Edison
than Mira, whereas GTC and MILC have poorer OpenMP performance and
Edison has a 6.2-6.7x performance advantage over Mira. The latter two codes
are older full applications, more representative of NERSC’s current workload
than the more recently developed mini-applications. Thus, we expect that if
we migrate to newer code bases with better OpenMP implementations and less
serialization between OpenMP sections, this performance difference would be
reduced.

At high node counts the effect of increasing MPI traffic, again, decreases
application performance for the hybrid models and widens the performance
advantage of Edison. However, in general, because we are using far fewer MPI
tasks than in the MPI-only models, the effect for most codes is relatively modest
with Edison gaining at most about a factor of 1.0-1.5x over Hopper and Mira.
Still, both GTC and MILC take substantial performance hits on Mira at high
node counts with Edison’s advantage increasing to 7.8x and 9.4x, respectively,
thus adding network overhead to already marginal OpenMP performance.

Through this study, we can see the advantages of Edison’s improved mem-
ory bandwidth and interconnect on performance both on individual application
performance and on NERSC’s system performance metric, the SSP. Comparing
the XC30 system to the BG/Q system is more difficult. While the Cray provides
roughly 4x greater application performance per core (as shown in Section 4) the
IBM system may be more attractive on an efficiency or total energy cost basis.
BG/Q nodes require less electrical power than the XC30: Edison uses about 280
W/node when running LINPACK, and Mira uses about 80 W/node. Thus, at
peak utilization, one Edison node uses 3.5x the power of a Mira node, which
places the two systems on near-equal footing when compared by a performance
per Watt metric.

Finally, we also observed that all of the benchmarks used in this study have
low computational intensity, making them sensitive to memory bandwidth per-
formance. Figure 3 clearly shows that all of the codes used in this study are
significantly limited by the memory bandwidth of each platform, and overall
the results principally track the differences in memory bandwidth between the
machines. All would benefit greatly from code optimizations to increase their
computational intensity, regardless of any increases in memory bandwidth per-
formance. A telling feature of this study is that while a few purpose-written mini-
applications (e.g. MiniFE) may exhibit nearly co-equal performance between
MPI and hybrid versions, the hybrid version of most applications is slower, in
some cases markedly so. It is clear that application developers will need to invest

Analysis of Cray XC30 Performance 71

substantial time and effort into either refactoring their codes for the many-core
era or selecting new algorithms to improve threaded performance. These changes
must be made with one eye toward reducing serialization and communications,
and another toward increasing data reuse in order to reduce memory traffic. In
fact, this work has already begun for several of these codes [15,16]. The hybrid
results presented here simply reflect a slightly older code base.

Acknowledgments. All authors from Lawrence Berkeley National Laboratory were
supported by the Office of Advanced Scientific Computing Research in the Department
of Energy Office of Science under contract number DE-AC02-05CH11231. This research
used resources of the National Energy Research Scientific Computing Center (NERSC),
which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for
the U.S. Department of Energy’s National Nuclear Security Administration (NNSA)
under contract DE-AC04-94AL85000.

This research used resources of the Argonne Leadership Computing Facility at
Argonne National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under contract DE-AC02-06CH11357.

References

1. Geist, G.A.: Sustained petascale: The next MPI challenge. In: Cappello,
F., Herault, T., Dongarra, J. (eds.) PVM/MPI 2007. LNCS, vol. 4757, pp. 3–4.
Springer, Heidelberg (2007)

2. Challenges for the message passing interface in the petaflops era, www.cs.uiuc.edu/
homes/wgropp/bib/talks/tdata/2007/mpifuture-uiuc.pdf

3. Bauer, B., Gottlieb, S., Hoefler, T.: Performance modeling and comparative anal-
ysis of the MILC Lattice QCD application su3 rmd. In: Proc. CCGRID 2012:
IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing
(2012)

4. Gottlieb, S., Tamhankar, S.: Benchmarking MILC with OpenMP and MPI. Nucl.
Phys. Proc. Suppl. 94, 841–845 (2001)

5. Ethier, S., Tang, W.M., Lin, Z.: Gyrokinetic particle-in-cell simulations of plasma
microturbulence on advanced computing platforms. Journal of Physics: Conference
Series 16, 1–15 (2006)

6. Fryxell, B., Olson, K., Ricker, P., Timmes, F.X., Zingale, M., Lamb, D.Q.,
MacNeice, P., Rosner, R., Truran, J.W., Tufo, H.: FLASH: An Adaptive Mesh
Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes. The
Astrophysical Journal Supplement Series 131(1), 273 (2000)

7. The Flash Center for Computational Science, University of Chicago. FLASH User’s
Guide. Version 4.0 (September 2012), http://flash.uchicago.edu/site/flashcode/
user support/flash4 ug.pdf

8. Antypas, K., Calder, A., Dubey, A., Fisher, R.T., Ganapathy, M.K., Gallagher,
B., Reid, L.B., Riley, K., Sheeler, D.J., Taylor, N.: Scientific Applications on the
Massively Parallel BG/L Machine. In: PDPTA, vol. 2006, pp. 292–298 (2006)

www.cs.uiuc.edu/homes/wgropp/bib/talks/tdata/2007/mpifuture-uiuc.pdf
www.cs.uiuc.edu/homes/wgropp/bib/talks/tdata/2007/mpifuture-uiuc.pdf
http://flash.uchicago.edu/site/flashcode/user_support/flash4_ug.pdf
http://flash.uchicago.edu/site/flashcode/user_support/flash4_ug.pdf

72 M.J. Cordery et al.

9. Heroux, M.A., et al.: Improving Performance via Mini-applications. Technical
Report SAND2009-5574, Sandia National Laboratories (September 2009), https://
software.sandia.gov/mantevo/

10. Heroux, M.A.: Mantevo project web page, https://software.sandia.gov/mantevo/
11. Barrett, R.F., Crozier, P.S., Doerfler, D.W., Hammond, S.D., Heroux, M.A.,

Thornquist, H.K. Trucano, T.G., Vaughan, C.T.: Summary of work for asc l2
milestone 4465: Characterize the role of the mini-application in predicting key per-
formance characteristics of real applications. Sandia National Laboratories, Tech.
Rep. SAND, 4667 (2012)

12. Williams, S.W., Waterman, A., Patterson, D.A.: Roofline: An insightful visual
performance model for floating-point programs and multicore architectures. Tech-
nical Report UCB/EECS-2008-134, EECS Department, University of California,
Berkeley (October 2008)

13. Antypas, K., Shalf, J., Wasserman, H.: NERSC-6 Workload Analysis and Bench-
mark Selection Process. Technical Report LBNL 10143, Lawrence Berkeley
National Laboratory (2008)

14. Kerbyson, D.J., Barker, K.J., Vishnu, A., Hoisie, A.: Comparing the performance
of Blue Gene/Q with leading Cray XE6 and InfiniBand systems. In: Proceedings of
the 2012 IEEE 18th International Conference on Parallel and Distributed Systems,
ICPADS 2012, pp. 556–563. IEEE Computer Society, Washington, DC (2012)

15. Oliker, L.: Personal communication (2013)
16. Joó, B., Kalamkar, D.D., Vaidyanathan, K., Smelyanskiy, M., Pamnany, K., Lee,

V.W., Dubey, P., Watson III, W.: Lattice QCD on intel R©xeon phiTM coprocessors.
In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC 2013. LNCS, vol. 7905, pp.
40–54. Springer, Heidelberg (2013)

https://software.sandia.gov/mantevo/
https://software.sandia.gov/mantevo/
https://software.sandia.gov/mantevo/

Analysis of Data Reuse
in Task-Parallel Runtimes

Miquel Pericàs1(B), Abdelhalim Amer2,
Kenjiro Taura3, and Satoshi Matsuoka1,2

1 Global Scientific Information and Computing Center,
Tokyo Institute of Technology, Tokyo, Japan

pericas.m.aa@m.titech.ac.jp, matsu@is.titech.ac.jp
2 Department of Mathematical and Computing Sciences,

Tokyo Institute of Technology, Tokyo, Japan
amer@matsulab.is.titech.ac.jp

3 Graduate School of Information Science and Technology,
The University of Tokyo, Tokyo, Japan

tau@eidos.ic.i.u-tokyo.ac.jp

Abstract. This paper proposes a methodology to study the data reuse
quality of task-parallel runtimes. We introduce an coarse-grain version
of the reuse distance method called Kernel Reuse Distance (KRD). The
metric is a low-overhead alternative designed to analyze data reuse at the
socket level while minimizing perturbation to the parallel schedule. Using
the KRD metric we show that reuse depends considerably on the system
configuration (sockets, cores) and on the runtime scheduler. Furthermore,
we correlate KRD with hardware metrics such as cache misses and work
time inflation. Overall we found that KRD can be used effectively to
assess data reuse in parallel applications. The study also revealed that
several current runtimes suffer from severe bottlenecks at scale which
often dominate performance.

1 Introduction and Background

Tasking has become an established technique to program multicore systems.
This programming scheme supports many variations of parallel control, includ-
ing nested, recursive and irregular parallelism. Task-parallel models, such as
OpenMP [1], Threading Building Blocks [2] or Cilk [3], allow the developer to
annotate functions or code blocks for asynchronous task execution and add syn-
chronization points to process the children tasks’ outputs. An underlying runtime
tracks dependencies among tasks and schedules ready tasks to physical cores.

1.1 Scalability of Runtimes

Although the functionality of a runtime for homogeneous multicore systems may
seem simple, developing efficient and scalable implementations is challenging.
Design decisions can adversely affect execution time:
c© Springer International Publishing Switzerland 2014
S. Jarvis et al. (Eds.): PMBS 2013 Workshops, LNCS 8551, pp. 73–87, 2014.
DOI: 10.1007/978-3-319-10214-6 4

74 M. Pericàs et al.

Runtime Overheads. Operations such as task creation, synchronization or
scheduling introduce non-work cycles that can considerably increase execution
time. Runtime pressure grows with the number of workers and with finer task
granularities. Contention can easily occur at scale. Runtimes should be as
lightweight as possible to avoid such bottlenecks.

Scheduling Constraints. Runtimes may place restrictions on task scheduling to
simplify implementation or to set bounds on resource consumption. For example,
some runtimes never migrate tasks once they have started. Some runtimes also
limit the depth of nesting to avoid unlimited stack growth. Such constraints
limit dynamic parallelism which manifests as non-work overheads in the form of
processor idle time.

Resource Sharing. Scheduling policies, such as work-first [4] or its dual help-
first, and work stealing [5] techniques, determine the execution order of tasks.
The resulting schedule defines the order of work kernels and their sharing of
resources. A task order that ignores data locality issues can increase cache misses
and generate work time inflation (WTI) [6].

In this work we use the term non-work overheads for any kind of processor
activity that is not directly related to the program’s main functionality, which is
carried out by work kernels and the control necessary to setup their execution.
The non-work overheads include runtime execution and parallel idleness [7].
Tasks may include several kernels, but the kernels themselves do not generate any
new tasks. OVRN and WTIN (Non-work Overheads and Work Time Inflation
at N cores) are two measurable scaling factors that describe the increase of
execution time on N cores (TN) relative to the ideal parallel execution time
(T1
N). WTIN quantifies the increase of the total work time at N cores (WorkN)

relative to the work time of the serial execution (Work1). OVRN quantifies the
increase in the total running time of all threads (TN × N) relative to the total
time during which threads are performing work (WorkN):

TN =
T1

N
× WTIN × OVRN (1)

WTIN =
WorkN

Work1
(2)

OVRN =
TN × N

WorkN
(3)

Using this formulation, the speed-up on N cores becomes:

Speed-UpN =
T1

TN
=

N

WTIN × OVRN
(4)

Analysis of Data Reuse in Task-Parallel Runtimes 75

1.2 Performance Tools

Application developers are often unaware of such issues and are then surprised
by the bad performance of their applications as they scale to many cores. Qual-
ity tools are needed to detect these problems. Profilers and tracers provide
insight into non-work overheads [7–10] by quantifying load imbalance and run-
time activity overhead. Scheduling constraints are more difficult to analyze, since
they relate to algorithmic decisions inside the runtimes. Similarly, caching prob-
lems caused by scheduling decisions may be hard to identify. Low data locality
exploitation in users’ code, on the other hand, is a well known topic addressed
by several tools [11–13].

This paper focuses on the problem of understanding caching problems intro-
duced by the runtime scheduler in task-parallel applications. To analyze the
impact of schedulers on data reuse we propose a methodology based on the con-
cept of the reuse distance [14]. By analyzing the reuse distance observed at each
last level cache, the metric allows to make a system-level assessment on the reuse
performance of different runtimes.

1.3 Contributions

This paper makes the following contributions: 1) We describe the implementation
of the Kernel Reuse Distance (KRD), a metric based on to the reuse distance
targeting the analysis of temporal locality in task-parallel applications. 2) Using
KRD we evaluate the temporal locality of two benchmarks using four schedulers.
Our analysis reveals that differences in reuse increase with the number of cores
and sockets. 3) We study the correlation between the KRD metric and hardware
metrics such as cache misses and work time inflation. As part of this research
we also observed that, at scale, performance and work time inflation are often
dominated by runtime bottlenecks.

This paper is organized as follows: Section 2 sets the scenario by analyzing
the scalability of two benchmark applications. Section 3 describes the KRD met-
ric and its implementation. The metric is applied in Section 4 to observe how
temporal locality is influenced by runtime schedulers and to study its correla-
tion with performance metrics. We conclude in Sections 5 and 6 by discussing
weaknesses of the approach and by summarizing the main conclusions.

2 Case Study: Matrix Multiplication and the Fast
Multipole Method

The development of KRD is motivated with a scalability study of two codes:
Matrix Multiplication (MATMUL) and the Fast Multipole Method (FMM).

2.1 Benchmarks

The MATMUL code is a SIMD-optimized divide-and-conquer implementation
which includes a task parallel implementation based on Cilk-like spawn and

76 M. Pericàs et al.

sync constructs [4]. The code recursively bisects the matrices until all three
sub-matrices A, B and C fit in the L1 cache. For the experiment we use input
matrices of size 4096×4096, which translates into 64MB per matrix (single pre-
cision). On our test environment (described below) the granularity of each task
(kernel) is about 17 microseconds.

The Fast Multipole Method is based on the exaFMM-dev code developed by
Rio Yokota [15]. The FMM algorithm contains multiple steps. We focus only
on the dominant phase: the dual tree traversal, which includes the two main
kernels: M2L (multipole-to-local) and P2P (particle-to-particle). We run one
FMM timestep on 1 million particles organized as a plummer distribution. The
multipole expansion coefficient is set to 5 and the number of particles per leaf
box is 32. The tree traversal phase is also parallelized by a divide and conquer
approach [16], and uses the same Cilk-like constructs as MATMUL. The FMM
kernels are quite small, with each call to M2L only 500 nanoseconds. To avoid
excessive overhead the recursion stops when less than 300 bodies remain under
the current subtree, yielding multiple kernels per task. On our test system, the
average size of one task is 3.25 microseconds.

2.2 Experimental Infrastructure

We benchmark the codes on a 4-socket x86-64 server featuring 4× Intel Xeon
E7-4807 (Westmere-EX) processors, each with 6 cores clocked at 1.86GHz. The
cores have a 32KB L1 data cache (8-way set associative) and a 256KB L2 cache
(8-way). The six cores share a 18MB last level cache (L3) with 16 ways. Hyper-
threading is not used. When scaling to multiple cores, we first allocate all the
cores in one socket and then fill the cores from a different socket. All codes were
compiled using gcc version 4.7. The research platform runs a Linux distribution
with kernel version 2.6.32.

The Cilk-like constructs are translated into API calls for three runtimes,
identified as follows:

MTH : MassiveThreads [17,18] is a lightweight task-parallel library that features
a work-first scheduler, per-core LIFO task queues, and a random work stealer
similar to the MIT-Cilk design.

TBB : Threading Building Blocks [2,19] is a C++ template library for task
parallelism with a help-first approach, per-core LIFO task queues and random
work stealer. Although TBB supports thread affinities [20], we do not use this
feature in order to compare the same code. We use version tbb41 20130116oss.

QTH : Qthread [21–23] is a lightweight threading package that implements a
help-first scheduler. Qthread adds a new level to the task queues’ hierarchy
called shepherds. Shepherds can be assigned per socket to create a shared LIFO
task queue among the workers (i.e. cores) of the socket. The goal is to improve
the use of the shared cache. We refer to this configuration as QThread/Socket.
We also test a configuration with one shepherd per core, we which identify as

Analysis of Data Reuse in Task-Parallel Runtimes 77

(a) MATMUL (b) FMM

Fig. 1. Speed-ups

(a) MATMUL (b) FMM

Fig. 2. Non-Work Overheads

QThread/Core. Qthread also has a bulk work-stealer. By default it attempts to
steal 50% of the victim’s workload. The Qthread version we use is 1.9.

2.3 Scalability Analysis

The applications were manually instrumented with our own profiling library,
which we describe later. This library measures execution times, work time
inflation and non-work overheads. Figures 1, 2 and 3 show the speed-ups and
non-work overheads (OVRN) for the two applications and four schedulers when
scaling from 1 to 24 cores. We also show the product of the speed-up and over-
head normalized by the number of cores. Using the earlier equation we derive
(Speed-UpN × OVRN/N) = 1/WTIN . The product is thus a measure of the
speed-down caused by work time inflation.

The figures show that scalability of these applications is highly dependent
on the runtime. Using MassiveThreads, speed-ups of up to 21× and 18× are

78 M. Pericàs et al.

(a) MATMUL (b) FMM

Fig. 3. Speed-up Overhead Product

achieved for MATMUL and FMM at 24 cores, respectively. TBB displays very
good scaling until the first socket is filled, but performance degrades at higher
core counts. Qthreads performance is already degraded in the single socket sce-
nario. However, it scales better than TBB for multiple sockets.

These results are highly correlated with the non-work overheads. Massive-
Threads is the only runtime that does not suffer from a large increase, with
30% overhead in the worst case. The other runtimes suffer about 2-4× higher
overheads at high core counts. Both MATMUL and FMM have small task sizes,
which MassiveThreads is designed to handle efficiently. Qthread’s single core
overheads demonstrate that it is more heavy and suffers under fine-grained par-
allelism. However, scaling to higher cores reveals just a smooth degradation.
TBB’s overheads are lower than MassiveThreads for a single socket but increase
fast for multiple sockets. The QTH/Socket overheads are consistently larger than
those of QTH/Core. QTH/Socket features a per-socket shared LIFO task queue
which is accessed by all workers in a shepherd. The frequency of accesses to the
queue is proportional to the number of workers sharing it and inversely propor-
tional to the average task size. For small task sizes and large number of workers
this method is likely to suffer from contention.

The third plot shows the Speed-Up × Non-work Overhead product normal-
ized by the number of cores. In the ideal case this metric should yield 1.0. A value
below 1.0 indicates work time inflation. The plots show that work time inflation
is an important issue, contributing a further performance reduction of up to 20%
in the worst case (FMM with TBB). Since kernels never block, WTI can only
be attributed to destructive resource sharing. This effect is mainly observed as
an increased number of cache misses and/or increased memory access latencies.
Two factors can cause this: 1) When the memory subsystem or system inter-
connect is overloaded, average memory access latency increases. In addition,
runtime bottlenecks -such as excessive contention on a global lock- can steal bus
cycles from the memory subsystem which further contribute to increase latencies.

Analysis of Data Reuse in Task-Parallel Runtimes 79

2) A change in the work time can also be caused by data locality variations. Dif-
ferent kernel schedules, for example, impact temporal locality and cache misses.

Measuring how much of work time inflation is caused by the runtime and how
much is due to locality is difficult because of the small kernel sizes and because of
the high overheads of accessing hardware performance monitors using the Linux
perf subsystem [24]. To identify work time inflation due to temporal locality
issues we look for a scenario with minimal non-work overheads. For the case
of MATMUL, MassiveThreads and TBB have overheads around or below 1.1×
until 12 cores (2 sockets). Figure 3 (a) shows a work time difference of about 2%
between MTH and TBB at 12 cores that must be related to different task orders.
At 24 cores this difference is around 8%. The KRD metric defined in the next
section can provide additional insight regarding the origin of additional cache
misses.

3 Kernel Reuse Distance

To characterize the effects of task ordering on temporal locality we start with
the reuse distance metric [14]. The reuse distance has traditionally been used
as a measure of cache performance [25]. It processes traces of memory accesses
and counts the number of unique addresses between two accesses to the same
element. This count is also called the stack distance.

When analyzing task-parallel applications it is important to minimize pertur-
bation to the runtime task schedule. Heavyweight instrumentation to generate
address traces may impact the execution and result in a parallel schedule that
is not representative. To reduce overheads we extend the method to collect data
accesses only in bulk at kernel execution times. For each data structure that is
an input or output to a kernel, an identifier (usually its base address), a times-
tamp, and its size in bytes are recorded. We rely on manual instrumentation to
perform these actions.

A trace of data accesses is recorded separately for each core. To analyze the
reuse on a per-node1 basis we process a merged trace containing all the kernel
inputs and outputs accessed by the cores sharing the same last level cache. The
trace is synchronized using the timestamps. Using this merged trace, the stack
distances are computed and the histogram is generated. When a system contains
multiple nodes, we summarize the contribution of each by generating per-node
histograms and then reporting their summation.

Altogether, this set of modifications on top of the reuse distance is called the
Kernel Reuse Distance metric (KRD). KRD is is a low-overhead and architecture
independent method that provides an intuitive measure of data reuse. Its cor-
relation to hardware metrics such as cache misses and performance is analyzed
later. Figure 4 shows a diagram explaining the methodology in a single socket
environment with two cores. Two workers are running, one on each core, and
generating a series of kernel data accesses. To analyze the last level cache and
1 In this work we use node as shorthand for NUMA node.

80 M. Pericàs et al.

CORE
#1

CORE
#2

Fig. 4. Generation of the KRD metric for a single socket with two cores

memory access, the traces are merged and the reuse histogram is generated. The
histogram shows the ratio of data reuses that occur within a certain data win-
dow, shown on the x-axis. All elements have a first access. This event is included
in the last data point labeled as INF (infinity). In the multiple nodes scenario,
work steal activity across nodes introduces additional cold accesses. By looking
at the number of accesses that contribute to the INF category, one can observe
the effects of inter-node work steals.

For visualization purposes, we subdivide the histogram into close, near, and
far reuses. This choice is arbitrary but will help later in describing the plots.
As a rule of thumb, we use close reuses for those that fall within L2 cache size,
near reuses for those within last level cache (LLC) size, and far reuses for those
beyond the size of the LLC.

3.1 Implementation Details

We implemented KRD as a set of tools that can compute the histograms from
traces generated by our own low overhead profiling and tracing facility called LoI
(low-overhead instrumentation). LoI is designed to analyze task-parallel appli-
cations with fine grained kernels. LoI attempts to be as lightweight as possible
in order to not influence the task parallel schedule. The library associates times-
tamps to events, and either aggregates execution times for individual kernels or
generates timestamped traces. Timestamps are obtained by using the x86 TSC
facility [26]. For both applications the tracing facility increases execution time
less than 5% in the worst case.

Analysis of Data Reuse in Task-Parallel Runtimes 81

4 Experimental Evaluation

This section describes two experiments. We begin by generating KRD profiles
for MATMUL and FMM to display how reuse changes with the runtime sched-
uler. Next we analyze the correlation between the KRD metric and hardware
performance counters.

4.1 KRD Correlation with Runtime Schedulers

Figures 5–7 show the KRD plots for the two benchmarks using the four tested
runtime schedulers on three hardware configurations: single core, one fully-
populated socket and four sockets.

(a) MATMUL (b) FMM

Fig. 5. Kernel Reuse Distance plots for a single core

The single core histograms show that in the absence of work steals, differ-
ent schedulers have little impact on the temporal reuse of recursive divide and
conquer task-parallel codes. In fact, for MATMUL, the KRDs of both work-
first and help-first policies are identical. This is not surprising as the recursive
bisecting of the matrices and corresponding task generation are symmetric.
Work-first and help-first execute the leaf kernels in reverse order, but this has
no effect on the reuse distance. For FMM the decomposition is not completely
symmetric because of a property of the algorithm which allows to discard one
of the branches based on a condition (mutual interactions). However, differences
between schedulers are still barely noticeable.

Differences start to emerge when one socket is fully populated (6 threads),
particularly on MATMUL. QThread/Socket stands out, having the highest reuse
ratio at almost all distances. This good performance results from QThread/
Socket’s usage of a global LIFO queue shared by all the workers. In this design,
workers tend to execute tasks that have been recently generated by other work-
ers. Since programs are commonly optimized for data reuse on the serial path,

82 M. Pericàs et al.

(a) MATMUL (b) FMM

Fig. 6. Kernel Reuse Distance plots for one socket (6 cores)

(a) MATMUL (b) FMM

Fig. 7. Kernel Reuse Distance plots for four sockets (24 cores)

this policy improves cache sharing [23]. TBB also shows improved reuse compared
to MTH and QTH/Core when executing MATMUL. This is probably a side-effect of
the TBB scheduling restrictions [19]. MTH and QTH/Core, on the other hand, imple-
ment just a fully distributed random work stealer. It has the worst reuse perfor-
mance, but offers the advantage of simplicity. The differences between schedulers
are considerably smaller in the case of FMM. QTH/Socket is still better for close
reuses, but the difference is only 3% at most. Other schedulers show almost
no differences. The similarity between histograms is likely a result of FMM ’s
tree traversal algorithm, which conditionally executes two kernels that operate
on independent data. Furthermore, the non-homogeneous input (plummer dis-
tribution) generates an irregular kernel pattern that is harder for schedulers to
optimize.

The histograms for the 4-socket scenario are similar to the 1-socket case.
QTH/Socket again shows the best reuse performance, but this time it is closely

Analysis of Data Reuse in Task-Parallel Runtimes 83

Table 1. Hardware Metrics and WTI for 2-socket scenario

Runtime Exec. Time LLC Misses Kernel Time & Inflation

MTH 1.642 sec 1.829×106 17441ns (1.0250×)

TBB 1.742 sec 2.807×106 17898ns (1.0519×)

QTH/Core 1.859 sec 2.339×106 17767ns (1.0441×)

QTH/Socket 2.111 sec 1.987×106 18401ns (1.0814×)

followed by MTH for far reuses. Surprisingly, in this multi-socket scenario, TBB
has the worst reuse performance for far reuses, trailing the other schedulers
at a noticeable distance. Compared to the single-socket plots, one important
fact revealed by the four-socket KRD histograms is the larger amount of cold
accesses. This is expected, as separate sockets have disjoint caches which need
to be warmed up separately. KRD can be used to understand how many first
time accesses occurred, which indirectly correlates to the size of the working
set observed at each socket. QThread/Socket shows the lowest ratio of cold
accesses while TBB shows the highest amount. A larger number of cold accesses
means that the scheduler is distributing tasks that share the same working set
across different nodes. TBB implements several restrictions in its scheduling
algorithm that limit which tasks can be stolen and disallows the migration of
tasks that have already started [19]. These limitations might be forcing TBB
into a suboptimal work partitioning.

The fact that the KRD histograms can be correlated with different schedulers
is an encouraging result. Next we address the question whether these plots can
be correlated with actual performance.

4.2 KRD Correlation with Hardware Metrics

In the second experiment, we attempt to correlate the results of the KRD met-
ric with last level cache misses and work time inflation. To do so we select
a scenario with low runtime overheads to minimize possible perturbation. For
MATMUL using 2 sockets (12 cores), MTH and TBB present non-work inflation
of about 1.1×, while the QTH/Core overhead is about 1.2×. The KRD plot of
far reuses (i.e. beyond 18MB) for this configuration is reported in Figure 8.
Table 1 reports hardware performance counters and time measurements col-
lected as averages of five runs. The kernel times are average over all kernel
executions (∼1×106) and have been collected by reading the x86 timestamp
counter at each kernel call (RDTSC). The LLC misses column reports the per-
core LAST LEVEL CACHE MISSES metric from Intel’s Architectural PerfMon [26],
as reported by PAPI [27].

We first compare MTH and TBB, which have similar overheads. The KRD
plot in Figure 8 shows that for all distances beyond 16 MB, MTH has a higher
percentage of reuses than TBB. The LLC size of the Westmere-EX chip is 18 MB,
which makes it worth to analyze of the data point at 32 MB. For MTH, 3.57%
of the kernel references access data with a reuse distance beyond 32 MB, while

84 M. Pericàs et al.

Fig. 8. Far reuses for MATMUL in the 2-socket, 12 core scenario

for TBB the number of far reuses is 4.5%. This 25% difference correlates to a
53% increase in LLC misses and to a work time inflation of 2.7% compared to
MassiveThreads.

For QTH/Core, the KRD plots show that it has higher number of far reuses
than MTH but less than TBB for distances of more than 32MB. The number of
LLC misses and the work time inflation are between those of TBB and MTH. This
relation is also clearly observed at high distances (e.g. 128MB) and also for cold
misses. It suggests that these data points might be good indicators for cache
misses and WTI.

The KRD plot also shows that QTH/Socket has overall the smallest amount
of far reuses (3.15% at 32MB). However, its number of cache misses is higher
than MassiveThreads, and its work time inflation is the highest of all four sched-
ulers. QTH/Socket has comparatively high overheads (1.33×). A closer analysis
using perf record revealed that the MATMUL benchmark spends about 25% in
two Qthread functions (qt_scheduler_get_thread and qt_hash_lock), both of
which include memory bus locking activity. Bus locking increases memory access
latencies, and is a probable explanation for the observed work time inflation.

The 2.7% difference between MTH and TBB may seem very small, but is also
expected since the studied algorithm (MATMUL) is not particularly memory
intensive. At 4 sockets TBB has about 10% higher work time inflation compared
to MTH. In the case of FMM, the relative inflation reaches 45% for the memory
bound M2L kernel on 4 sockets. Depending on the algorithm work time inflation
can become an important issue.

Analysis of Data Reuse in Task-Parallel Runtimes 85

5 Discussion

Although KRD shows correlation with work inflation and cache misses, it should
be used mainly as an intuitive model. The KRD metric contains many simpli-
fications that are the result of the constraints set by our original goal: to qual-
itatively measure temporal reuse in task-parallel programs. The requirement of
minimal overhead is an important consideration which enables only a coarse-
grained, manually-instrumented tracking of data accesses. The model does not
consider other accesses such as stack accesses, based on the assumption that
kernel (heap) data accesses dominate cache performance.

KRD does also not attempt to measure spatial locality among individual
accesses. Our original goal was to analyze the effects of different schedulers
on data reuse. Different schedules might, however, benefit more or less from
prefetchers. If such an effect is large, then extending KRD with a metric to
quantify spatial locality [28] might be a worthy addition.

One limitation of the current model is that it does not provide enough infor-
mation to model the effects of cache coherence protocols [29,30]. When one core
writes a data structure allocated in the last level cache of a different socket, this
will conceptually result in a cache-to-cache transfer. The KRD metric currently
uses only the notion of intra-socket data accesses. It can report increases in cold
misses due to work stealing operations, but it cannot model misses due to cache
line invalidations. As part of our future work we plan to extend KRD by clas-
sifying accesses into reads and writes. This will allow a simple modeling of the
effects of cache coherence.

Finally we would like to note that, while the KRD model has been developed
with task-parallel runtimes in mind, it is actually quite generic as it does not
instrument tasks, but the kernels inside tasks. This allow it to be applied to
study any kind of shared memory parallel framework.

6 Conclusions

In this work we have attempted to provide some insight on the impact of task-
parallel schedulers on temporal locality and its effect on performance. We devel-
oped a coarse-grained version of the reuse distance metric to study reuse in task
parallel executions. Based on our analysis of two benchmarks and four runtime
schedulers we observed that schedulers can have considerable impact on the reuse
distance, and that the reuse quality depends considerably on the system con-
figuration. Furthermore we observed correlation between the KRD metric and
hardware metrics such as last level cache misses and average kernel execution
time. However, we also observed that runtime contention can be dominant in
high core count scenarios, thus minimizing overheads should take precedence
over locality optimizations.

Acknowledgments. This work has been supported by a JSPS postdoctoral fellowship
(P-12044). We would like to thank the anonymous reviewers for their valuable feedback.

86 M. Pericàs et al.

References

1. OpenMP ARB: Openmp specification (July 2013), http://www.openmp.org/
mp-documents/OpenMP4.0.0.pdf

2. Intel Corporation: Threading building blocks, https://www.threadingbuilding-
blocks.org/

3. MIT Csail Supertech Research Group: The cilk project, http://supertech.csail.mit.
edu/cilk/

4. Frigo, M., Leiserson, C.E., Randall, K.H.: The Implementation of the Cilk-5 Mul-
tithreaded Language. In: Proceedings of SIGPLAN 1998 (June 1998)

5. Mohr, E., Kranz, D.A., Halstead, R.H.: Lazy Task Creation: A technique for
Increasing the Granularity of Parallel Programs. IEEE Transactions on Parallel
and Distributed Systems 2(3) (July 1991)

6. Olivier, S.L., de Supinski, B.R., Schulz, M., Prins, J.F.: Characterizing and Miti-
gating Work Time Inflation in Task Parallel Programs. In: Proceedings of SC 2012
(November 2012)

7. Tallent, N.R., Mellor-Crummey, J.M.: Effective Performance Measurement and
Analysis of Multithreaded Applications. In: Proceedings of PPoPP 2009 (February
2009)

8. Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H., Müller,
M.S., Nagel, W.E.: The Vampir Performance Analysis Tool-Set, pp. 139–155.
Springer, Heidelberg (2008)

9. Barcelona Supercomputing Center: Extrae User Guide Manual (May 2013)
10. Virtual Institute - High Productivity Supercomputing: SCORE-P User Manual

(2013)
11. McCurdy, C., Vetter, J.: Memphis: Finding and Fixing NUMA-related Performance

Problems on Multi-core Platforms. In: Proceedings of ISPASS 2010 (March 2010)
12. Liu, X., Mellor-Crummey, J.: Pinpointing Data Locality Problems Using Data-

centric Analysis. In: Proceedings of CGO 2011 (April 2011)
13. Intel Corporation: Intel VTune Amplifier XE 2013 (2013), http://software.intel.

com/en-us/intel-vtune-amplifier-xe
14. Mattson, R., Gecsei, J., Slutz, D., Traiger, I.: Evaluation techniques for storage

hierarchies. IBM Systems Journal 9(2), 78–117 (1970)
15. Yokota, R.: exafmm-dev, https://bitbucket.org/rioyokota/exafmm-dev
16. Taura, K., Yokota, R., Maruyama, N.: A Task Parallelism Meets Fast Multipole

Methods. In: Proceedings of the SCALA 2012 Workshop (November 2012)
17. The MassiveThreads Team: Massivethreads: A lightweight thread library for high

productivity languages, http://code.google.com/p/massivethreads/
18. Nakashima, J., Nakatani, S., Taura, K.: Design and implementation of a customiz-

able work stealing scheduler. In: Proceedings of the 3rd International Workshop
on Runtime and Operating Systems for Supercomputers, ROSS 2013, pp. 9:1–9:8
(2013)

19. Intel Corporation: TBB: Scheduling algorithm, http://www.threadingbuilding-
blocks.org/docs/help/reference/task scheduler/scheduling algorithm.htm

20. Acar, U.A., Blelloch, G.E., Blumofe, R.D.: The Data Locality of Work Stealing.
In: Proceedings of SPAA 2000 (2000)

21. The Qthread Team: The qthread library, http://www.cs.sandia.gov/qthreads/
22. Wheeler, K., Murphy, R., Thain, D.: Qthreads: An API for programming with

millions of lightweight threads. In: IEEE International Symposium on Parallel and
Distributed Processing, pp. 1–8 (2008)

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
http://supertech.csail.mit.edu/cilk/
http://supertech.csail.mit.edu/cilk/
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
https://bitbucket.org/rioyokota/exafmm-dev
http://code.google.com/p/massivethreads/
http://www.threadingbuildingblocks.org/docs/help/reference/task_scheduler/scheduling_algorithm.htm
http://www.threadingbuildingblocks.org/docs/help/reference/task_scheduler/scheduling_algorithm.htm
http://www.cs.sandia.gov/qthreads/

Analysis of Data Reuse in Task-Parallel Runtimes 87

23. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Prins, J.F.: Scheduling Task Par-
allelism on Multi-Socket Multicore Systems. In: Proceedings of ROSS 2011, pp.
49–56 (2011)

24. Weaver, V.M.: Linux perf event Features and Overhead. In: Proceedings of the
2013 FastPath Workshop (2013)

25. Beyls, K., D’Hollander, E.H.: Reuse distance as a metric for cache behavior. In:
Proceedings of the IASTED Conference on Parallel and Distributed Computing
and Systems, pp. 617–662 (2001)

26. Intel Corporation: Intel 64 and ia-32 architectures software developer’s
manual volume 3b, http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html

27. PAPI Team: Performance application programming interface, http://icl.cs.utk.
edu/papi/

28. Weinberg, J., McCracken, M.O., Strohmaier, E., Snavely, A.: Quantifying Locality
In The Memory Access Patterns of HPC Applications. In: Proceedings of the 2005
ACM/IEEE Conference on Supercomputing (November 2005)

29. Intel Corporation: An Introduction to the Intel QuickPath Interconnect (2009)
30. Hackenberg, D., Molka, D., Nagel, W.E.: Comparing Cache Architectures and

Coherency Protocols on x86–64 Multicore SMP Systems. In: Proceedings of
MICRO 2009 (December 2009)

http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://icl.cs.utk.edu/papi/
http://icl.cs.utk.edu/papi/

Performance Modeling
and Simulation

Using Simulation to Evaluate the Performance
of Resilience Strategies at Scale

Scott Levy1(B), Bryan Topp1, Kurt B. Ferreira2, Dorian Arnold1,
Torsten Hoefler3, and Patrick Widener2

1 Department of Computer Science, University of New Mexico, Albuquerque, USA
{slevy,betopp,darnold}@cs.unm.edu

2 Scalable System Software, Sandia National Laboratories, Albuquerque, USA
{kbferre,pwidene}@sandia.gov

3 Computer Science Department, ETH Zürich, Zürich, Switzerland
htor@inf.ethz.ch

Abstract. Fault-tolerance has been identified as a major challenge for
future extreme-scale systems. Current predictions suggest that, as sys-
tems grow in size, failures will occur more frequently. Because increases in
failure frequency reduce the performance and scalability of these systems,
significant effort has been devoted to developing and refining resilience
mechanisms to mitigate the impact of failures. However, effective eval-
uation of these mechanisms has been challenging. Current systems are
smaller and have significantly different architectural features (e.g., inter-
connect, persistent storage) than we expect to see in next-generation
systems. To overcome these challenges, we propose the use of simula-
tion. Simulation has been shown to be an effective tool for investigating
performance characteristics of applications on future systems. In this
work, we: identify the set of system characteristics that are necessary for
accurate performance prediction of resilience mechanisms for HPC sys-
tems and applications; demonstrate how these system characteristics can
be incorporated into an existing large-scale simulator; and evaluate the
predictive performance of our modified simulator. We also describe how
we were able to optimize the simulator for large temporal and spatial
scales—allowing the simulator to run 4x faster and use over 100x less
memory.

1 Introduction

Fault-tolerance has been identified as a major challenge for exascale-class sys-
tems. As systems grow in scale and complexity, failures become increasingly
likely; impacting performance and scalability. Current predictions suggest that
for next-generation systems the mean time between failures could fall to hours,

Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.

c© Springer International Publishing Switzerland 2014
S. Jarvis et al. (Eds.): PMBS 2013 Workshops, LNCS 8551, pp. 91–114, 2014.
DOI: 10.1007/978-3-319-10214-6 5

92 S. Levy et al.

or even minutes [1]. As failure rates increase, more time is spent preparing for
and recovering from failures and less time is spent doing (useful) application
work. Given these dire predictions and the dynamics of fault-tolerance tech-
niques, significant effort has been and is being devoted to investigations aimed
at improving system resilience and related mechanisms.

Effective evaluation of fault-tolerance strategies on extreme-scale systems
has been difficult for several reasons. Most significantly, researchers often need
to study machines that either: are larger than those that are currently avail-
able; or have hypothetical architectures or configurations. As a result, existing
systems are not sufficient to evaluate the performance impact of fault toler-
ance techniques on next-generation extreme-scale systems. Tests performed on
these systems cannot accurately account for the impact of scale and may not
be able capture the impact of architectural features (e.g. interconnect technolo-
gies) whose performance varies dramatically from current systems. Second, the
largest and most advanced current machines generally are not accessible to most
researchers. Third, analytic techniques for predicting performance in future sys-
tems are lacking. While good models for coordinated checkpointing exist [2,3],
we lack analytical tools for predicting the performance impact of many other
fault tolerance mechanisms (for example, message-logging [4], communication-
induced checkpointing [5] and hierarchical checkpointing [6]).

The broader objective of this project is to study general fault-tolerance tech-
niques and their impacts on application performance. However, for the work
presented in this paper, we focused on checkpoint/restart. Checkpoint/restart
(or rollback recovery) is the technique most commonly used on today’s sys-
tems. During normal operation, checkpoint/restart protocols [7] periodically
record the state and address space of all application processes to stable storage
devices. When a process fails, a new incarnation of the failed process is recovered
from the most recent checkpoint – therefore limiting lost work. For distributed
applications, coordinated checkpointing pauses all processes to record a glob-
ally consistent snapshot of the application’s state. Uncoordinated checkpointing
protocols avoid synchronization overheads and I/O contention by allowing each
process to checkpoint independently. Uncoordinated checkpointing protocols also
avoid rolling back non-failed processes. While there have been a number of stud-
ies which show that the overheads of checkpoint/restart could be prohibitively
expensive for future extreme-scale systems [8–10], there has been a great effort in
the research community to optimize these rollback/recovery protocols to ensure
they remain viable [4,9,11–17].

Researchers have shown that simulation is an effective tool for investigat-
ing the performance characteristics of applications on current and hypothet-
ical future systems [9,18–20]. In this paper, we focus on efficient simulation
of the impact of coordinated and uncoordinated checkpoint/restart protocols
on application performance. Our approach is motivated by two observations:
(1) simulation can be very computationally expensive, and simulation efficiency
is maximized by considering only the features of the computing environment that
are relevant to the performance impact of checkpoint/restart; and (2) the coarse-

Using Simulation to Evaluate the Performance of Resilience Strategies 93

grained operation of checkpoint/restart (on the order of minutes to hours) allows
us to forego the overheads and complexities of cycle-accurate simulation. Based
on these observations, we hypothesize that like operating system noise [21,22],
resilience mechanisms (e.g., writing checkpoints, restarting after a failure or redo-
ing lost work) can be modeled as CPU detours. A CPU detour is a number of
CPU cycles that are used for something other than the application.

In this work, we provide a principled approach to simulating checkpoint/
restart based fault-tolerance for large-scale HPC systems in a failure-prone envi-
ronment. Based on this approach, we also present an efficient and accurate frame-
work for simulating the performance impact of coordinated and uncoordinated
checkpoint/restart protocols for existing and hypothetical extreme-scale systems
and applications. Specific contributions of the work include:

– A survey of system, application, and resilience characteristics required for
accurate and efficient simulation of extreme-scale workloads in a failure-
prone environment;

– A prototype checkpoint/restart simulation framework, based on functional
and performance-oriented extensions to LogGOPSim [20] which decrease mem-
ory consumption by over 100x and runtime by 4x;

– A validation of our hypothesis that resilience overheads can be modeled as
CPU detours; and

– An evaluation of the predictive performance of our simulation approach
showing an error of less than 3% against an analytic model for checkpointing
in a failure-free environment.

The organization of this paper is as follows: in the next section, we dis-
cuss the relevant system, application, failure and resilience characteristics that
must be considered by our framework. Additionally, this section offers more
background on checkpoint/restart protocols and shows how they factor into
our considerations. Section 3 provides an overview of LogGOPSim, the simulator
that serves as the basis of our prototype. In Section 4, we describe the func-
tional and performance-oriented extensions we made to LogGOPSim to improve
its ability to simulate coordinated and uncoordinated checkpoint protocols at
our desired time and space scales. In Section 5, we evaluate the impact of our
performance optimizations and validate the accuracy of the extended simulator
for checkpoint/restart. We then discuss related works in Section 6, and finally,
we summarize the impact our current contributions and plans for future work
in Section 7.

2 Considerations for Resilience at Scale

Toward the goal of efficient, large-scale simulations that allow us to evaluate
resilience techniques, we must identify the relevant hardware and software char-
acteristics that impact simulation performance. We now describe our principled
approach to identifying these characteristics: we consider system features, appli-
cation behavior, fault-tolerance mechanisms and the impact of failures.

94 S. Levy et al.

2.1 Hardware Characteristics

Our objective is to develop a simulation framework that will enable us to evalu-
ate resilience techniques on current and future systems. The simulator must be
able to accurately and efficiently model the impact of faults and fault tolerance
on application performance given the: (a) temporal scale, (b) spatial scale and
(c) architectural features of next-generation extreme-scale systems.

Temporal Scale. Faults and fault tolerance mechanisms typically operate at
large time-scales (for example, minutes, hours or even weeks). As we stated in
the introduction, projected mean-time-to-interrupt (MTTI) on the first exascale
machines are on the order of hours. Additionally, many of the target applications
are long running, and the behaviors of the applications as well as the systems are
expected to be dynamic. As a result, simulating resilience requires a simulator
that can model relatively long periods of application execution.

Spatial Scale. The largest current HPC systems are comprised of tens of thou-
sands of nodes. If current predictions hold, an exascale system may be nearly
an order of magnitude larger. Our simulator must be capable of modeling the
behavior of systems that are much larger than any that are currently available.

Architectural Features. The first exascale system is not projected to appear
until sometime after 2020 [23]. In the intervening span of years, we expect
advances in interconnect and persistent storage technologies. Our simulator
should also allow us to evaluate the impact of these advances on resilience mech-
anisms.

2.2 Application Characteristics

Our simulator must be capable of accounting for the performance aspects of the
applications behavior. Prior research and experience has shown that it may be
sufficient to do this at the course granularity of the target application’s com-
putation, specifically: its communication graph, a description of how processes
communicate with each other; its computation time, the time between commu-
nication events; and its dependencies, a partial ordering of all communication
and computation events. In the next section, we show how these characteristics
interplay with resilience mechanisms.

2.3 Impact of Checkpoint/Restart Mechanisms

In checkpoint/restart protocols [24], the application or system saves snapshots
of application state, checkpoints, to persistent storage. In coordinated check-
pointing, all processes checkpoint at the same time (in order to mark a con-
sistent global state), and in the event of a process failure, all processes must

Using Simulation to Evaluate the Performance of Resilience Strategies 95

revert to their most recent checkpoint. While coordinated checkpoint/restart
is the predominant approach, it suffers several limitations including increased
overhead with system size and global process perturbations during checkpoint
and recovery phases. Uncoordinated checkpoint/restart protocols, in which pro-
cesses can checkpoint and recover independently, address these limitations –
though they introduce new ones. In addition to these coarse protocols, many
optimizations have been proposed including: diskless [25–27], hierarchical [6,28]
communication-induced [29] and incremental checkpointing [14,30]. Despite the
proliferation of resilience mechanisms, we lack effective methods for evaluating
the true costs of each of these approaches on exascale systems [31].

Given the large temporal and spatial scales of the simulated systems that
we wish to consider, effective simulation demands that we eliminate unnecessary
detail. Existing work on modeling and simulation of coordinated checkpointing
provides a guidepost on the required components and level of details [2,3,32].

In a failure-free environment, we can accurately model the impact of coor-
dinated checkpointing by considering: the checkpoint time, amount of time that
checkpointing activities prevent the application from executing; the checkpoint
interval, time between consecutive checkpoints; and the work time, amount of
time that the application would execute in the absence of checkpointing activi-
ties. Checkpoint time may require further refinement to include a process coor-
dination phase, a checkpoint calculation phase during which time the checkpoint
data is computed, the checkpoint commit time to write the checkpoint to stable
storage and a resumption phase to continue normal application execution.

For approaches like uncoordinated checkpointing that lack explicit coordina-
tion, we also need to consider the application characteristics like communication
patterns described previously. Consider a simple uncoordinated checkpointing
strategy where each process generates checkpoints strictly according to local
policies. Communication dependencies may cause checkpointing activities in one
process to perturb the behavior and performance of other processes. For exam-
ple, if the recipient of a message is busy generating a checkpoint then reception
of the message may be delayed until the checkpoint is complete. Further, all
actions that are dependent on the reception of the message will also be delayed.
Additionally, many asynchronous resilience techniques use message logging [24]
to mitigate recovery costs. Accounting for this activity also requires that we
incorporate information about communication patterns into our simulation.

2.4 Impact of Failures

Meaningful evaluation of resilience mechanisms necessarily includes the intro-
duction of failures. Initially, we consider only fail-stop failures. To accurately
simulate the impact of the occurrence of failures on application performance, at
a minimum, we need to consider: (a) failure characterization; (b) restart time;
and (c) recovery description.

Failure Characterization. To evaluate the impact of faults in the context
of a resilience mechanism, we require a description of how failures occur in the

96 S. Levy et al.

simulated system. Although this could be expressed in many ways, the most
common and succinct description of failure occurrences is a probability distri-
bution.

Restart Time. When a failure occurs, some time elapses before any compu-
tation can be undertaken on the failed node. To account for this fact, we need
to know the time between the occurrence of a failure and the moment when
the failed node can resume computation. This includes time to restart failed
nodes and processes and to read checkpoints from persistent storage, but does
not include any time for recovery. For example, in the case of coordinated check-
pointing, the end of the restart interval coincides with the beginning of rework
(i.e., redoing work lost due to the failure).

Recovery Model. When the failed node has restarted and is able to resume
computation, there is typically some amount of work that needs to be redone
before the system can again make meaningful forward progress. For example,
in coordinated checkpointing, all of the computation between the last valid
checkpoint and the occurrence of the failure needs to be redone. Typically, each
resilience mechanisms presents a different method for recovering from a failure.
Therefore, to accurately account for the cost of recovering from a failure, we need
a model for each resilience mechanism that allows us to determine the amount
of time that will elapse before the application resumes forward progress.

3 LogGOPSim

In this section, we describe LogGOPSim [20,33], the simulator we extend to
meet the requirements prescribed by the considerations in Section 2. We choose
LogGOPSim because it is shown to be accurate, freely available and fast enough
to support large-scale simulations while already capturing many of the appli-
cation and hardware characteristics we require (as we discuss). As described
in Section 4, functionally, we simply needed to extend it to account for check-
point/restart and failure recovery.

3.1 Simulating Application Characteristics

LogGOPSim is an application simulator based on the LogP model [34]. LogP and
its variants have a long history of accurately predicting the performance of large-
scale parallel applications and algorithms. The simulation framework consists of
three major components: a trace collector (liballprof), a schedule generator
(SchedGen), and an optimized discrete-event simulator (LogGOPSim).

The trace collector records the actual MPI communication of the target appli-
cation. The schedule generator uses the MPI traces to generate a schedule that
captures the required characteristics of control- and dataflow of the application

Using Simulation to Evaluate the Performance of Resilience Strategies 97

Table 1. Summary of the parameters needed for accurate simulation of HPC appli-
cations in a failure-prone system

Required to Model Parameter Name Parameter Description

All
Checkpointing

coordination
time

time for processes to coordinate the
taking of a checkpoint

checkpoint
computation

time to compute a checkpoint

checkpoint
commit time

time to write a checkpoint to stable
storage

checkpoint
interval

time between consecutive check-
points

work time time-to-solution without failures or
resilience mechanisms

Uncoordinated
Checkpointing

communication
graph

details of inter-process communica-
tion

computation
events

failure-free computation pattern of
the application

dependencies partial ordering of communication
and computation events

Failure
Occurrences

failure
characterization

rate and distribution of failures

restart time time to read a checkpoint from sta-
ble storage after a failure

recovery model a model of the time required before
forward progress can resume

while preserving the happens-before relationship of events within the applica-
tion. The discrete-event simulator reads the generated schedule, performs a full
LogGOPS simulation and reports the completion time of each process.

This validated simulation framework was developed to simulate applications
at scale, and has the ability to extrapolate from traces collected on smaller scale
systems. This allows for the simulation of platforms larger than those currently
in existence while keeping the same communication characteristics (equivalent
to weak-scaling of the application). Although the extrapolated trace may not
precisely represent the communication pattern on the larger system, the impact
of this inaccuracy has been shown to be small [20] if extrapolation factors are
bounded. This framework has been used to evaluate the performance of collective
communications [35] and the impact of OS noise [22] on large-scale applications.
A detailed study of the simulation framework and its functionality is presented
in [20].

98 S. Levy et al.

3.2 Simulating Hardware Characteristics

Because LogGOPSim was initially developed to model application performance in
large-scale systems [22], it allows us to model systems with the characteristics
described in the preceding section. First, it provides the simulation scale neces-
sary for evaluating checkpointing techniques. For a single collective operation,
LogGOPSim can simulate up to 10,000,000 processes. For more general workloads,
it is capable of simulating more than 64,000 processes.

Second, with some minor modifications, LogGOPSim is also capable of simulat-
ing the necessary temporal scale. The initial implementation of LogGOPSim was
intended for comparatively short simulations. As a result, the temporal scope of
the simulations that can be executed by the unmodified simulator is significantly
limited by the size of the simulating system’s memory. To achieve the tempo-
ral scale that we needed with reasonable quantities of system memory, we made
some simple modifications to LogGOPSim. These modifications are discussed more
fully in a subsequent section.

Third, LogGOPSim also allows us to model the impact of emerging intercon-
nect technologies. Working within the LogGOPS model, we can simulate the
impact of many changes in network behavior on resilience techniques by modi-
fying the model’s parameters. In addition, as we discuss more fully below, our
model of resilience mechanisms allows us to evaluate how improvements to per-
sistent storage systems (e.g., the widespread availability of local SSDs) will affect
the performance of resilience mechanisms.

4 Extending LogGOPSim for Large Scale Resilience
Research

4.1 Simulating Failures and Resilience

The key insight that allows us to use LogGOPSim is that resilience mechanisms
(e.g., writing checkpoints, restarting after a failure, redoing lost work) can be
modeled as CPU detours. A CPU detour is a number of CPU cycles that are used
for something other than advancing the application’s computation, similar to OS
noise [21,22]. One key difference between OS noise and these resilience detours
is that resilience “noise” events may need to be replayed synchronously with the
application communication/computation pattern rather than asynchronously as
is typical of OS noise.

We model resilience in LogGOPSim using a new library, libsolipsis, that
generates CPU detours based on a specified resilience mechanism and the appli-
cation’s communication pattern. Similar to liballprof, the library links to the
application using the MPI profiling interface, intercepting all MPI calls. The
output of this library is a per-process detour file that can be provided as input
to LogGOPSim. The detour file contains the timestamp and the duration of each
of the resilience mechanism detours. The duration of detours, Tdetour, that rep-
resent checkpoints are computed using the following expression.

Tdetour = Tcoord + Tckpt + Tcommit

Using Simulation to Evaluate the Performance of Resilience Strategies 99

where

Tcoord = time to coordinate the taking of a checkpoint
Tckpt = time to compute a checkpoint

Tcommit = time to commit the checkpoint to stable storage

We also generate detours to represent the impact of node failure and opti-
mistic message logging. In the case of failure, the duration of the detour includes
the restart and rework time on the failed node; libsolipsis computes the
rework time by calculating the amount of simulated time that has elapsed since
the previous checkpoint. For optimistic message logging, libsolipsis deter-
mines the time required to write the message to the log given the bandwidth to
stable storage.

For the purposes of this work, we focus on the libraries’ ability to emulate
performance of two popular resilience mechanisms: coordinated checkpointing
and asynchronous checkpointing with message logging [7].

We focus on these on these two methods because coordinated checkpoint/
restart is currently the most popular approach and asynchronous checkpointing
has been proposed as a low-overhead checkpoint option for future extreme-scale
systems.

For asynchronous checkpointing with message logging, our library generates
detour files that contain the timestamp and the duration of the local check-
points. Because no coordination is required, Tcoord = 0. Also, for simplicity, we
currently assume that Tckpt = 0. For pessimistic message logging [7], we mod-
ify the CPU overhead parameter (o in the LogGOPS model) for send operations
(os) to account for the log write to stable storage. The LogGOPSim simulator uses
a single detour file to simulate the local checkpoints in the system; to model the
asynchronous nature of these checkpoints, each node starts at a different location
in the file.

For coordinated checkpoint/restart, the library generates a detour file that
contains the timestamp and the duration of each checkpoint taken by the appli-
cation. For this work, we have assumed bulk-synchronous parallel (BSP) appli-
cations. Because applications of this type are largely self-synchronizing, we set
Tcoord = 0. And again, for simplicity, we are currently assuming that Tckpt =
0. When the simulation is run, we use the “--noise-cosched” option of the
LogGOPSim simulator. This option ensures that the detour file is co-scheduled on
all processors, thereby simulating coordinated checkpoint/restart. We also force
each process to start at the beginning of the detour file to ensure proper timing
of checkpoints.

To simulate failure, the library generates failure times for each node from a
random distribution based on a per-node mean time between failure (MTBF).
When a failure is generated, the library adds a detour event that includes the
the time required to restart from the last checkpoint and the time required for
rework (i.e., the time since the last checkpoint). The LogGOPSim simulator will
ensure that all communication in the trace file that depends on the failed node
will be delayed until the node has “recovered”.

100 S. Levy et al.

4.2 Optimizing LogGOPSim for Scale

To simulate periods of execution long enough to be meaningful for fault tol-
erance (i.e., application wallclock times long enough that application failures
are expected) while keeping traces manageable, we extended LogGOPSim to sup-
port automatic execution trace extrapolation. Because LogGOPSim was originally
designed to simulate single collective operations and short application traces it
assumed a comparatively small input dataset. In our use cases, the extent to
which the existing LogGOPSim could scale up the length of simulated execution
and the number of simulated nodes was severely limited by the amount of avail-
able memory.

LogGOPSim, as originally published, requires a pre-processing step which per-
forms the extrapolation to generate communication data for all simulated nodes.
The simulator binary then attempts to map this file into virtual memory and use
it directly as input data about simulated events. The size of this file is propor-
tional to both the length of the simulated execution and the number of simulated
nodes. As a result, simulating long running applications or large-scale systems
requires very large data sets. Additionally, when collecting data at varying scales,
a user would be required to re-run the entire toolchain from the trace data to
the simulator with different parameters.

We re-wrote the input handling portion of LogGOPSim to include two critical
changes. First, the modified simulator performs extrapolation in main memory as
needed, rather than as a pre-processing step on disk. The traces generated from
profiling an MPI application are used directly as input, and are proportional
in size to the original profiled node count, rather than the extrapolated node
count. Second, the simulator works on a small sliding window of input data,
rather than mapping it in all at once. The code loads and extrapolates data
from the traces at fine granularity, loading only a small portion of the trace file
at a time. Because of these changes, the simulator’s memory usage, shown in
Fig. 1, remains constant independent of input trace size. In other words, the
same amount of memory would be required to simulate a minute, hour, day,
week or month of application execution time!

In theory, an operating system should be able to perform this type of efficient
memory allocation when using a system call such as mmap. However, on the Linux
2.6.32 systems that we used, windowing the input data at the application level
allowed for much greater scales before the system started to thrash.

5 Evaluating Our LogGOPSim Extensions

5.1 Correctness of the Extensions

We have verified with a careful comparison of the sequences of simulation events
generated by each of the two simulators that our modified LogGOPSim pro-
duces exactly the same sequence and timing of simulated events as the original
LogGOPSim. Moreover, the two simulators produce identical simulated runtimes.

Using Simulation to Evaluate the Performance of Resilience Strategies 101

M
em

or
y

U
sa

ge
 (

G
B

)

Trace Length (millions of events)

original simulator
modified simulator

 0.01

 0.1

 1

 10

 100

 0 50
 100

 150
 200

 250
 300

 350
 400

 450

(a) HPCCG

M
em

or
y

U
sa

ge
 (

G
B

)

Trace Length (millions of events)

original simulator
modified simulator

 0.01

 0.1

 1

 10

 0 50
 100

 150
 200

 250
 300

(b) LAMMPS

M
em

or
y

U
sa

ge
 (

G
B

)

Trace Length (millions of events)

original simulator
modified simulator

 0.01

 0.1

 1

 10

 100

 200
 300

 400
 500

 600
 700

 800
 900

(c) CTH

Fig. 1. Comparison of the memory consumption required to simulate a system running
one of three applications using the original LogGOPSim simulator and our modified
version as a function of input trace length. Our windowing protocol decouples memory
usage from trace length. As a result, with a fixed memory budget, our modifications
allows us to simulate much longer periods of applcation execution than was possible
with the original simulator.

102 S. Levy et al.

5.2 Evaluating Performance Enhancements

In this section, we evaluate the performance impact of our modifications to
LogGOPSim. We consider two important metrics to evaluate our changes, max-
imum memory requirement and simulation performance in events/second, and
then finally examine overall wallclock time for simulating the same problem.

Memory Usage. With our changes, the amount of disk space needed is no
longer proportional to the node extrapolation factor, and the amount of RAM
needed is no longer proportional to the length of the trace data. This enables
simulation of long executions of many nodes: for the traces used here, memory
usage decreased dramatically as shown in Fig. 2. Memory usage dropped by a
factor of 20 for HPCCG, 60 for LAMMPS, and 900 for CTH, with the magnitude
of the drop related to an applications communication pattern and the greatest
distance between the initiation of a non-blocking operation and waiting for its
completion. This increase of available memory allowed us to simulate over 12
minutes of HPCCG at 256K nodes and over 7 minutes of LAMMPS at 256K
nodes in a short amount of time, as shown in Figures 2(a) and 2(b), respectively.

Simulation Performance. Fig. 3 and Fig. 4 show the increase in performance
for our simulation framework. We show this increase both in terms of event
per second of the simulator (Fig. 3) and the wall clock time to perform the
simulation (Fig. 4). We see from these figures, a factor of 2.5 to 4X increase in
performance from our modifications. We believe that the substation performance
benefits stem from the smaller cache footprint of our implementation. We note
that simulation performance decreases slightly as the number of simulated nodes
increases. We are working on characterizing this decrease. However, we conclude
that the achieved performance is sufficient for our purposes.

5.3 Validating Checkpoint Simulation

In this section, we present the data we collected to validate our simulator. We
use both analytic models and small-scale testing to ensure that our simulator
accurately models the impact of resilience mechanisms in failure-free and failure-
prone environments.

Failure-Free Analytic Model of Coordinated Checkpointing. We begin
with a simple analytic model for coordinated checkpointing. Equation 1 models
application performance in terms of its wall clock time-to-solution, Tw, in a
failure-free environment.

Tw = Ts +
Ts

τ
× δ (1)

where Tw is the wall clock time, Ts is the solve time of the application without
any resilience mechanism, τ is the checkpoint interval [2], and δ is the checkpoint

Using Simulation to Evaluate the Performance of Resilience Strategies 103

M
em

or
y

U
sa

ge
 (

M
B

)

Nodes

original simulator
modified simulator

 1

 10

 100

 1000

 10000

128
256

512
1K 2K 4K 8K 16K

32K
64K

128K

20X

(a) HPCCG

M
em

or
y

U
sa

ge
 (

M
B

)

Nodes

original simulator
modified simulator

 1

 10

 100

 1000

 10000

128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

60X

(b) LAMMPS

M
em

or
y

U
sa

ge
 (

M
B

)

Nodes

original simulator
modified simulator

 10

 100

 1000

 10000

 100000

 1e+06

128
256

512
1K 2K 4K 8K 16K

32K

900X

(c) CTH

Fig. 2. Comparison of the memory consumption required to simulate a system running
one of three applications using the original LogGOPSim simulator and our modified
version. With a fixed memory budget, our modifications allows us to simulate systems
that are significantly larger than could be simulated with the original simulator. The
memory consumption decrease varies by communication pattern and varies from 20X
for HPCCG to 900X for CTH.

104 S. Levy et al.

S
im

ul
at

or
 P

er
fo

rm
an

ce
 (

th
ou

sa
nd

s
of

 e
ve

nt
s/

se
co

nd
)

Nodes

original simulator
modified simulator

 100

 200

 300

 400

 500

 600

 700

128
256

512
1K 2K 4K 8K 16K

32K
64K

128K

4X

(a) HPCCG

S
im

ul
at

or
 P

er
fo

rm
an

ce
 (

th
ou

sa
nd

s
of

 e
ve

nt
s/

se
co

nd
)

Nodes

original simulator
modified simulator

 100

 150

 200

 250

 300

 350

 400

 450

128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

2.5X

(b) LAMMPS

S
im

ul
at

or
 P

er
fo

rm
an

ce
 (

th
ou

sa
nd

s
of

 e
ve

nt
s/

se
co

nd
)

Nodes

original simulator
modified simulator

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

128
256

512
1K 2K 4K 8K 16K

32K

2.5X

(c) CTH

Fig. 3. Comparison of simulator performance, measured in events/second, when simu-
lating a system running one of three applications using the original LogGOPSim simu-
lator and using our improved version. Due to the memory requirements of the original
simulator, we were unable to obtain results for simulations of large-scale systems using
the original simulator. The simulation performance increase varies by application com-
munication pattern and varies from 2.5X for LAMMPS and CTH to 4X for HPCCG.

Using Simulation to Evaluate the Performance of Resilience Strategies 105

S
im

ul
at

or
 R

un
tim

e
(s

ec
on

ds
)

Nodes

original simulator
modified simulator

 10

 100

 1000

 10000

 100000

128
256

512
1K 2K 4K 8K 16K

32K
64K

128K

4X Speedup

(a) HPCCG

S
im

ul
at

or
 R

un
tim

e
(s

ec
on

ds
)

Nodes

original simulator
modified simulator

 1

 10

 100

 1000

 10000

 100000

128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

2.5X Speedup

(b) LAMMPS

S
im

ul
at

or
 R

un
tim

e
(s

ec
on

ds
)

Nodes

original simulator
modified simulator

 10

 100

 1000

 10000

 100000

128
256

512
1K 2K 4K 8K 16K

32K

2.5X Speedup

(c) CTH

Fig. 4. Comparison of simulator runtime, measured in seconds (lower is better), for
the original LogGOPSim simulating systems running three different applications using
simulator and using our improved version. Due to the memory requirements of the
original simulator, we were unable to obtain results for simulations using the original
simulator for large-scale systems. Similar to Fig. 3, the simulation wallclock speedup
varies by application; from 2.5X for LAMMPS and CTH to 4X for HPCCG.

106 S. Levy et al.

commit time (time to write one checkpoint). For coordinated checkpointing to
shared stable storage, we can express the checkpoint commit time as:

δ =
N ∗ ||cavg||

β
(2)

where N is the number of nodes, ||cavg|| is the average checkpoint size per
node, and β is the aggregate write bandwidth to stable storage.

In Figures 5(a) and 5(b), we compare the output of this model to the output of
our simulator. The times-to-solution for CTH predicted by the simulator are very
accurate, about 3% greater than the model’s predictions. More importantly, the
simulator closely matches scaling trends predicted by the model. Moreover, the
simulated times-to-solution for LAMMPS are within 1% of the analytic model.
On the whole, these data suggest that the simulator is accurately modeling how
the impact of resilience mechanisms scales with system size.

Small-Scale Testing. To further validate our simulator, we compared it against
the results of small-scale tests on real hardware. The simulator provides us with
fine-grained control over the checkpoint interval and duration. To mimic this
degree of control on real hardware, we constructed an MPI profiling library,
libchkpt. This library, based on the the libhashckpt incremental checkpoint-
ing library [14], also has the ability to take both full coordinated and uncoor-
dinated checkpointing techniques, in additional to its incremental coordinated
techniques. The full coordinated checkpointing functionality ensures all check-
points are taken simultaneously on each node, while the uncoordinated approach
takes checkpoints independently. While taking checkpoints, the CPU is taken
from the application until the checkpoint commit time has completed.

For our purposes here, we focus on validating the failure-free case. Fig. 6 and
Fig. 7 show the results of this validation. These figures compare the total wall
clock time simulated by LogGOPSim and measured with libchkpt running on our
test platform. For reference, each figure also includes the total wall clock time
in the absence of any failures. Note the performance of CTH in Fig. 6 exhibits
a distinct sawtooth pattern. This pattern is an artifact of how CTH scales the
computation as nodes counts increase. The simulator accurately predicts this
complex sawtooth pattern. We also see in this figure the simulators error in
prediction. We also note that the predictive performance of the simulator is
less accurate for CTH in comparison to LAMMPS, with the error in time to
solution bounded by 20%. This is due to the simulator not accounting for OS
noise on the node and limitations of the network model used. In our testing, OS
interference is not being generated to simplify analysis, though the simulator
allows for such accounting. This OS interfere has been shown to greatly influence
impact CTH performance [21]. Also, though the LogGOPSim simulator is capable
of sophisticated network models, in this work we use a simple network model
which does not account for network contention. As CTH does a fair amount of
bulk data transfer, network contention can be an issue.

Overall, these figures show that LogGOPSim closely tracks the results mea-
sured with libchkpt. For all the configurations that we examined, the absolute

Using Simulation to Evaluate the Performance of Resilience Strategies 107

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

Nodes

simulation
model

simulation % error

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

128
256

512
1K 2K 4K 8K 16K

32K
0 %

5 %

10 %

15 %

20 %

(a) CTH

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

Nodes

simulation
model

simulation % error

 200

 400

 600

 800

 1000

 1200

 1400

128
256

512
1K 2K 4K 8K 16K

32K
0 %

5 %

10 %

15 %

20 %

(b) LAMMPS

Fig. 5. Validation of the simulator against the simple analytic model described in
Equation 1 for coordinated checkpointing to stable storage in a failure-free environment
for CTH and LAMMPS. The model and the simulator use identical values for the Ts

(for each application), τ , and δ. The simulation error is less than 3% for CTH and less
than 1% for LAMMPS across the tested node count range.

wall clock time simulated by LogGOPSim is within 20% of the measured val-
ues. More importantly, LogGOPSim closely mimics the trends we observe with
libchkpt even as performance deviates from performance on actual hardware.

6 Related Work

Although fault tolerance for HPC has been a very active area of research, few
tools exist that allow us to project behavior beyond small-scale systems. As

108 S. Levy et al.

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

Nodes

libckpt
simulator

simulation % error

 0

 100

 200

 300

 400

 500

 600

2 4 8 16 32 64 128
0 %

20 %

40 %

60 %

80 %

100 %

(a) Coordinated Checkpointing

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

Nodes

libckpt
simulator

simulation % error

 0

 100

 200

 300

 400

 500

 600

2 4 8 16 32 64 128
0 %

20 %

40 %

60 %

80 %

100 %

(b) Uncoordinated Checkpointing

Fig. 6. Performance of LogGOPSim simulation against a coordinated and uncoordinated
checkpointing library for CTH. The simulator and libchkpt use identical values for
Tw (failure free performance), τ (checkpoint interval), and δ (checkpoint commit time).
The simulation error in this figure is less than 20%, with this differences attributed to
platform features not being simulated. For example, interference from the OS is not
being generated in this case to simplify analysis. This OS interfere has been shown to
greatly influence impact CTH performance [21].

we discussed above, simulating fault tolerance techniques requires an appropri-
ate level of detail about the communication of the target application. Without
an accurate representation of application communication, we cannot accurately
simulate some fault tolerance techniques (e.g., asynchronous checkpointing). Too
much detail unnecessarily reduces simulator performance. The application sim-

Using Simulation to Evaluate the Performance of Resilience Strategies 109

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

Nodes

libckpt
simulator

simulation % error

 0

 100

 200

 300

 400

 500

 600

2 4 8 16 32 64 128
0 %

20 %

40 %

60 %

80 %

100 %

(a) Coordinated Checkpointing

W
al

l c
lo

ck
 ti

m
e

(s
ec

on
ds

)

Nodes

libckpt
simulator

simulation % error

 0

 100

 200

 300

 400

 500

 600

2 4 8 16 32 64 128
0 %

20 %

40 %

60 %

80 %

100 %

(b) Uncoordinated Checkpointing

Fig. 7. Performance of LogGOPSim simulation against an coordinated and uncoordi-
nated checkpointing library for LAMMPS. The simulator and libchkpt use identical
values for Tw (failure free performance), τ (checkpoint interval), and δ (checkpoint
commit time). The simulation error in this figure is shown to be less than 5% in the
range tested.

ulators for fault tolerance that do exist tend to fall to either extreme; either
they are not communication-accurate or they simulate communication in much
greater detail than believed necessary.

In [32], Riesen et al. present a simulator that can model the impact of
node failure on application performance in the context of traditional coordi-
nated checkpoint/restart. This simulator can also account for process replica-
tion. Tikotekar et al. take a similar approach in [36]. They present a simulator

110 S. Levy et al.

that models coordinated checkpointing and can also simulate fault prediction
and process migration. While these tools have been shown to be effective for
their stated purposes, they are not communication-accurate. As a result, they
are unable to account for fault tolerance techniques whose performance may be
influenced by communication patterns.

At the other extreme is xSim [37]. xSim builds on the MPI profiling interface
and interposes itself between the application and the MPI library. As a result,
the simulator is able to run unmodified HPC applications. Scaling is achieved by
oversubscribing the nodes of the system used for validation. While this provides
us with a tremendous amount of detail about the performance of the application,
it imposes a significant cost. Due to limits on the degree of oversubscription,
large-scale systems are required to simulate systems that approach extreme-
scale. Moreover, as the size of the simulated system grows and the degree of
oversubscription therefore increases, the time required to simulate the system
grows dramatically. Lastly, this oversubscription could place significant limits
on the size of the problem that can be solved as the memory for each simulated
node must exist in the memory of one physical node. In contrast, our approach
allows us to simulate fault tolerance mechanisms for systems comprised of tens
or hundreds of thousands of nodes on very modest hardware (e.g., a single node).
In some cases, this simulation completes in less time than it would take to run
the application itself, but with the less detail of the computation.

Boteanu et al. present a fault tolerance extension to an existing simulator
in [38]. However, they target a datacenter environment where each job is a dis-
crete unit that is assigned to a single processing element. As a result, their
simulator does not map well to HPC workloads.

Finally, SST/macro [39,40] is a coarse-grained, lightweight simulator designed
to simulate the performance of existing and future large-scale systems. By col-
lecting traces of application execution, SST/macro is able to simulate the appli-
cation’s computation and computation patterns at scales and on hardware that
does not yet exist. However, SST/macro does not currently account for the
impact of CPU detours. Because the foundation of our approach is the obser-
vation that resilience can be modeled as CPU detours, we concluded that SST/
macro was not a suitable starting point for our investigation.

7 Conclusion and Future Work

We presented in this work, a new and promising approach to simulation at scale
of fault-tolerance mechanisms based on the checkpoint/restart model. We iden-
tified a set of platform, application, and resilience characteristics required for
accurate and efficient simulation; described a prototype framework based on
extensions to a validated and freely-available application simulator implement-
ing the LogP model; shown how resilience processing overheads can be effectively
modeled as CPU detours; and demonstrated empirically that our approach accu-
rately predicts, with an error of less than 3%, the impact of resilience mecha-
nisms. Our modifications to the LogGOPSim simulator greatly decreased its

Using Simulation to Evaluate the Performance of Resilience Strategies 111

memory consumption by a factor of 100 or greater and runtime by a factor of 4.
This performance increase allows us to evaluate potential resilience solutions at
meaningful application and temporal scales, while also enabling the modeling of
future interconnection and storage technologies.

The design space for evaluating resilience methods in large-scale HPC appli-
cations is young and still evolving. While our simulation framework has expanded
that space in new and useful ways, several areas for future work remain. Among
these, we intend to extend the framework to provide failure injection for large-
scale simulation. Additional failure types should also be modeled, e.g. corruption
of application memory or network traffic. We understand that this may mean
re-evaluating the granularity of our simulation to ensure proper and effective
simulation. We are also investigating mechanisms to integrate both coarse- and
fine-grained simulation for failures. This will allow us to use coarse-grained sim-
ulation in areas where failures do not occur, and fine-grained simulation when
failures or other interesting events do occur. We also plan to address support for
additional resilience mechanisms such as hierarchical checkpointing, replication-
based approaches, process migration and cloning, as well as integration with
ongoing standards efforts like the current fault tolerance proposal put forth in
the MPI Forum [41]. Finally, we plan to further investigate performance limi-
tations of our current simulation framework, including analyzing the benefit of
parallelizing the simulator.

References

1. Bergman, K., et al.: Exascale computing study: Technology challenges in achiev-
ing exascale systems (September 2008), http://www.science.energy.gov/ascr/
Research/CS/DARPAexascale-hardware(2008).pdf

2. Daly, J.T.: A higher order estimate of the optimum checkpoint interval for restart
dumps. Future Gener. Comput. Syst. 22(3), 303–312 (2006)

3. Bouguerra, M.-S., Gautier, T., Trystram, D., Vincent, J.-M.: A flexible check-
point/restart model in distributed systems. In: Wyrzykowski, R., Dongarra, J.,
Karczewski, K., Wasniewski, J. (eds.) PPAM 2009, Part I. LNCS, vol. 6067, pp.
206–215. Springer, Heidelberg (2010)

4. Guermouche, A., Ropars, T., Brunet, E., Snir, M., Cappello, F.: Uncoordinated
checkpointing without domino effect for send-deterministic MPI applications. In:
International Parallel Distributed Processing Symposium (IPDPS), pp. 989–1000
(May 2011)

5. Alvisi, L., Elnozahy, E., Rao, S., Husain, S., de Mel, A.: An analysis of communi-
cation induced checkpointing. In: Twenty-Ninth Annual International Symposium
on Fault-Tolerant Computing, Digest of Papers, pp. 242–249 (1999)

6. Monnet, S., Morin, C., Badrinath, R.: A hierarchical checkpointing protocol for
parallel applications in cluster federations. In: Proceedings of the 18th International
Parallel and Distributed Processing Symposium, p. 211. IEEE (2004)

7. Elnozahy, E.N.M., Alvisi, L., Wang, Y.-M., Johnson, D.B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Comput. Surv. 34(3), 375–
408 (2002)

http://www.science.energy.gov/ascr/Research/CS/DARPAexascale-hardware(2008).pdf
http://www.science.energy.gov/ascr/Research/CS/DARPAexascale-hardware(2008).pdf

112 S. Levy et al.

8. Oldfield, R.A., Arunagiri, S., Teller, P.J., Seelam, S., Varela, M.R., Riesen, R.,
Roth, P.C.: Modeling the impact of checkpoints on next-generation systems. In:
24th IEEE Conference on Mass Storage Systems and Technologies, pp. 30–46
(September 2007)

9. Ferreira, K., Riesen, R., Bridges, P., Arnold, D., Stearley, J., Laros III, J.H., Old-
field, R., Pedretti, K., Brightwell, R.: Evaluating the viability of process replication
reliability for exascale systems. In: Lathrop, S., Costa, J., Kramer, W. (eds.) SC.
ACM (November 2011)

10. Schroeder, B., Gibson, G.A.: A large-scale study of failures in high-performance
computing systems. In: International Conference on Dependable Systems and Net-
works (DSN) (June 2006)

11. Kannan, S., Gavrilovska, A., Schwan, K., Milojicic, D.: Optimizing checkpoints
using NVM as virtual memory. In: Proceedings of the International Parallel and
Distributed Processing Symposium, IPDPS 2013. ACM, New York (2013)

12. Dong, X., Muralimanohar, N., Jouppi, N., Kaufmann, R., Xie, Y.: Leveraging 3D
PCRAM technologies to reduce checkpoint overhead for future exascale systems.
In: Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, SC 2009, pp. 57:1–57:12. ACM, New York (2009)

13. Bronevetsky, G., Marques, D., Pingali, K., McKee, S., Rugina, R.: Compiler-
enhanced incremental checkpointing for openmp applications. In: IEEE Interna-
tional Symposium on Parallel & Distributed Processing, pp. 1–12 (2009)

14. Ferreira, Kurt B., Riesen, Rolf, Brighwell, Ron, Bridges, Patrick, Arnold, Dorian:
libhashckpt: hash-based incremental checkpointing using GPU’s. In: Cotronis,
Yiannis, Danalis, Anthony, Nikolopoulos, Dimitrios S., Dongarra, Jack (eds.)
EuroMPI 2011. LNCS, vol. 6960, pp. 272–281. Springer, Heidelberg (2011)

15. Moody, A., Bronevetsky, G., Mohror, K., de Supinski, B.R.: Design, modeling, and
evaluation of a scalable multi-level checkpointing system. In: ACM/IEEE Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis (SC 2010), pp. 1–11 (2010), http://dx.doi.org/10.1109/SC.2010.18

16. Ibtesham, D., Arnold, D., Bridges, P.G., Ferreira, K.B., Brightwell, R.: On the
viability of compression for reducing the overheads of checkpoint/restart-based
fault tolerance. In: 2012 41st International Conference on Parallel Processing, pp.
148–157 (2012)

17. Guermouche, A., Ropars, T., Snir, M., Cappello, F.: HydEE: Failure contain-
ment without event logging for large scale send-deterministic mpi applications.
In: IPDPS, pp. 1216–1227. IEEE Computer Society (2012)

18. Mubarak, M., Carothers, C.D., Ross, R., Carns, P.: Modeling a million-node drag-
onfly network using massively parallel discrete-event simulation. In: 2012 SC Com-
panion: High Performance Computing, Networking, Storage and Analysis (SCC),
pp. 366–376. IEEE (2012)

19. Zheng, G., Wilmarth, T., Jagadishprasad, P., Kalé, L.V.: Simulation-based per-
formance prediction for large parallel machines. International Journal of Parallel
Programming 33(2–3), 183–207 (2005)

20. Hoefler, T., Schneider, T., Lumsdaine, A.: LogGOPSim - Simulating Large-Scale
Applications in the LogGOPS Model. In: Proceedings of the 19th ACM Inter-
national Symposium on High Performance Distributed Computing, pp. 597–604.
ACM (June 2010)

21. Ferreira, K.B., Bridges, P., Brightwell, R.: Characterizing application sensitivity
to os interference using kernel-level noise injection. In: Proceedings of the 2008
ACM/IEEE Conference on Supercomputing, p. 19. IEEE Press (2008)

http://dx.doi.org/10.1109/SC.2010.18

Using Simulation to Evaluate the Performance of Resilience Strategies 113

22. Hoefler, T., Schneider, T., Lumsdaine, A.: Characterizing the Influence of Sys-
tem Noise on Large-Scale Applications by Simulation. In: International Conference
for High Performance Computing, Networking, Storage and Analysis (SC 2010)
(November 2010)

23. Simon, Horst D.: Barriers to exascale computing. In: Daydé, Michel, Marques, Osni,
Nakajima, Kengo (eds.) VECPAR. LNCS, vol. 7851, pp. 1–3. Springer, Heidelberg
(2013)

24. Elnozahy, E.N., Alvisi, L., Wang, Y.-M., Johnson, D.B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Computing Surveys 34(3),
375–408 (2002)

25. Plank, J.S., Li, K., Puening, M.A.: Diskless checkpointing. IEEE Transactions on
Parallel and Distributed Systems 9(10), 972–986 (1998)

26. Plank, J.S., Kim, Y.B., Dongarra, J.J.: Algorithm-based diskless checkpointing for
fault tolerant matrix operations. In: Twenty-Fifth International Symposium on
Fault-Tolerant Computing, Digest of Papers, Pasadena, CA, USA, pp. 351–360.
IEEE Comput. Soc. Press, Los Alamitos (1995)

27. Silva, L.M., Silva, J.G.: An experimental study about diskless checkpointing. In:
24th EUROMICRO Conference, Vasteras, Sweden, pp. 395–402. IEEE Computer
Society Press (August 1998)

28. Monnet, S., Morin, C., Badrinath, R.: Hybrid checkpointing for parallel applica-
tions in cluster federations. In: IEEE International Symposium on Cluster Com-
puting and the Grid, CCGrid 2004, pp. 773–782. IEEE (2004)

29. Alvisi, L., Elnozahy, E., Rao, S., Husain, S.A., De Mel, A.: An analysis of communi-
cation induced checkpointing. In: Twenty-Ninth Annual International Symposium
on Fault-Tolerant Computing. Digest of Papers, pp. 242–249. IEEE (1999)

30. Gioiosa, R., Sancho, J.C., Jiang, S., Petrini, F., Davis, K.: Transparent, incremental
checkpointing at kernel level: a foundation for fault tolerance for parallel comput-
ers. In: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, p. 9.
IEEE Computer Society (2005)

31. Widener, P., Ferreira, K., Levy, S., Bridges, P.G., Arnold, D., Brightwell, R.: Asking
the right questions: benchmarking fault-tolerant extreme-scale systems. In:Proc.
6th Workshop on Resiliency in High Performance Computing, Aachen,Germany
(August 2013), in conjunction with Euro-Par 2013

32. Riesen, R., Ferreira, K., Stearley, J., Oldfield, R., Laros III, J.H., Pedretti, K.,
Brightwell, R., et al.: Redundant computing for exascale systems. Technical report
SAND2010-8709. Sandia National Laboratories (2010)

33. Hoefler, T.: LogGOPSim - A LogGOPS (LogP, LogGP, LogGPS) Simulator
and Simulation Framework (April 10, 2013), http://www.unixer.de/research/
LogGOPSim/

34. Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K.E., Santos,
E., Subramonian, R., von Eicken, T.: LogP: towards a realistic model of paral-
lel computation. SIGPLAN Not. 28(7), 1–12 (1993)

35. Hoefler, T., Siebert, C., Lumsdaine, A.: Group Operation Assembly Language -
a flexible way to express collective communication. In: ICPP-2009 - The 38th
International Conference on Parallel Processing. IEEE (September 2009)

36. Tikotekar, A., Vallée, G., Naughton, T., Scott, S.L., Leangsuksun, C.: Evaluation
of fault-tolerant policies using simulation. In: 2007 IEEE International Conference
on Cluster Computing, pp. 303–311. IEEE (2007)

37. Bohm, S., Engelmann, C.: xSim: The extreme-scale simulator. In: 2011 Interna-
tional Conference on High Performance Computing and Simulation (HPCS), pp.
280–286. IEEE (2011)

http://www.unixer.de/research/LogGOPSim/
http://www.unixer.de/research/LogGOPSim/

114 S. Levy et al.

38. Boteanu, A., Dobre, C., Pop, F., Cristea, V.: Simulator for fault tolerance in large
scale distributed systems. In: 2010 IEEE International Conference on Intelligent
Computer Communication and Processing (ICCP), pp. 443–450. IEEE (2010)

39. Janssen, C.L., Adalsteinsson, H., Cranford, S., Kenny, J.P., Pinar, A., Evensky,
D.A., Mayo, J.: A simulator for large-scale parallel computer architectures. Inter-
national Journal of Distributed Systems and Technologies (IJDST) 1(2), 57–73
(2010)

40. Sst: The structural simulation toolkit (2011), http://sst.sandia.gov/about
sstmacro.html

41. Bland, W., Bouteiller, A., Herault, T., Hursey, J., Bosilca, G., Dongarra, J.J.: An
evaluation of user-level failure mitigation support in MPI. In: Träff, J.L., Benkner,
S., Dongarra, J.J. (eds.) EuroMPI 2012. LNCS, vol. 7490, pp. 193–203. Springer,
Heidelberg (2012)

http://sst.sandia.gov/about_sstmacro.html
http://sst.sandia.gov/about_sstmacro.html

Characterizing the Impact of Prefetching
on Scientific Application Performance

Collin McCurdy1, Gabriel Marin2(B), and Jeffrey S. Vetter1,3

1 Oak Ridge National Laboratory,Oak Ridge, TN 37831, USA
{cmccurdy,vetter}@ornl.gov

2 University of Tennessee, Knoxville, TN 37996, USA
gmarin@utk.edu

3 Georgia Institute of Technology, Atlanta, GA, USA

Abstract. In order to better understand the impact of hardware and
software data prefetching on scientific application performance, this
paper introduces two analysis techniques, one micro-architecture-centric
and the other application-centric. We use these techniques to analyze rep-
resentative full-scale production applications from five important Exas-
cale target areas. We find that despite a great diversity in prefetching
effectiveness across and even within applications, there is a strong cor-
relation between regions where prefetching is most needed, due to high
levels of memory traffic, and where it is most effective. We also observe
that the application-centric analysis can explain many of the differences
in prefetching effectiveness observed across the studied applications.

Keywords: Performance evaluation · Data streaming · Prefetching

1 Introduction

Due to power and scaling limitations, the available DRAM per processing core
is projected to shrink dramatically (up to a factor 33) by the time systems reach
Exascale [1]. While innovations in NVRAM technology (Memristors [2], STT-
RAM [3], PCRAM [4]) offer the hope of more dense and thus more bountiful
memory, it would likely come at the expense of latency.

Memory parallelism reduces the impact of latency. Data prefetching, that
is identifying data that will be needed and moving it closer to the processing
unit so that it is available when required by a running application, can increase
memory parallelism and is therefore potentially extremely important in this new
environment. However, prefetching always carries the danger that ineffective
prefetches will degrade performance: data that is either not used, or will not be
used in a timely fashion, can remove useful data from caches near the processing
unit where it is needed.

Surprisingly, this extremely important, yet potentially dangerous, mecha-
nism is largely hidden from users. Software prefetching instructions are generally

c© Springer International Publishing Switzerland 2014
S. Jarvis et al. (Eds.): PMBS 2013 Workshops, LNCS 8551, pp. 115–135, 2014.
DOI: 10.1007/978-3-319-10214-6 6

116 C. McCurdy et al.

inserted by compiler, and prefetching structures are micro-architectural features
in hardware.

In order to better understand the impact of data prefetching on scientific
application performance, this paper introduces two analysis techniques.

The first technique is micro-architecture-centric: we use mechanisms that
allow disabling of hardware prefetching in a particular hardware implementation
(AMD 10H [5]), along with hardware performance counters that accurately mea-
sure prefetching events, to systematically probe the space in an existing design,
isolating the effects of multiple levels of hardware prefetchers on applications.

The second technique is application-centric: we have designed a tool that
abstractly simulates hardware mechanisms for stream detection for an arbitrary
number of streams, allowing us to determine the number of streams active at
any one time in an application.

We have used these techniques to analyze representative full-scale production
applications from five important Exascale target areas: fusion energy (GTC),
climate (CAM-HOMME), molecular dynamics (LAMMPS), materials science
(NEK), and combustion (S3D). We have further identified the dominant loop
nests in each application, enabling a deeper understanding of underlying reasons
for performance.

Overall, despite a great diversity in prefetching effectiveness (as measured
by performance improvement over no prefetching) across and even within appli-
cations, we see a strong correlation between regions where prefetching is most
needed (due to high levels of memory traffic) and where it is most effective.

Additionally, we find:

– While hardware prefetching always improves application performance in the
applications we studied, compiler-inserted software prefetches improve per-
formance substantially in some applications, but degrade performance sub-
stantially in other applications.

– While a hardware prefetcher at later levels of the memory hierarchy (such as
the memory controller) can boost serial performance significantly, contention
for the shared resource can substantially reduce effectiveness in a parallel
context.

– Prefetching substantially increases already high levels of memory parallelism,
even in applications that prominently feature irregular data accesses.

2 Related Work

There is a great deal of work in the literature regarding both hardware and
software prefetching.

Work regarding hardware prefetching tends to focus on new ideas for prefetch-
ing structures and implementations. The ideas are implemented in simulators
and evaluated using benchmarks, or portions of benchmarks, meant to represent
full applications [6–9].

Characterizing the Impact of Prefetching 117

Literature on software prefetching focuses primarily on algorithms for deter-
mining where compilers should automatically insert prefetch instructions, again
evaluated using benchmarks though often running on actual hardware [10–12].

There is little work in the literature evaluating the impact of existing micro-
architectural and compiler prefetching implementations on full-scale application
performance.

As regards our methodology, while there is plenty of discussion on the World
Wide Web about mechanisms for disabling prefetching, and even small studies
that benchmark performance of embedded systems kernels with and without
prefetching hardware enabled [13], to our knowledge this is the first description
of work that systematically enables and disables multiple levels of prefetching
mechanisms to isolate their impact on full-scale application performance.

Previous work has used simulators [14] and models [15] to understand the
performance limits of prefetching. A description of our approach for character-
izing the number of inherent streams in an application, technique developed as
part of this study, has been expanded and published separately in [16].

3 Prefetching Hardware and Software

Prefetching is a very effective technique for hiding memory latency and increasing
application performance. Prefetching works by eagerly loading into the cache
data that is expected to be needed in the near future. To be most effective, the
data must be fetched sufficiently far in advance that its loading is completed by
the time the micro-processor needs it. At least as important, prefetching must
predict correctly the data that must be fetched in advance. Incorrect predictions
increase demand on the memory subsystem, possibly evicting useful data from
caches, and increase bandwidth use.

Prefetching comes in two main flavors: software prefetching and hardware
prefetching. Software prefetching is the more common type of prefetching. Com-
pilers generally, but also programmers, insert explicit prefetch instructions in the
code to fetch data that will be needed in the near future. Prefetch instructions
are similar to load instructions, except that they do not create a dependence
on the loaded data. In addition, temporal hints can be associated with prefetch
instruction to indicate the cache level where data should be loaded.

Hardware prefetching works without any support from the compiler or the
programmer. Prefetchers based on Jouppi’s stream buffers [17] are nowadays
commonly found in modern micro-processors. The hardware detects easy to
recognize access patterns, such as strided memory accesses, and speculatively
fetches the memory addresses predicted to be accessed in the near future. While
a compiler may perform more expensive analysis on the program code and can
understand more complex memory access patterns, the hardware can observe
the stream of dynamic addresses which may be regular even if the access pat-
tern cannot be statically predicted. Thus, each one of the two approaches can
perform better in different situations.

In rare cases, software prefetching can hurt performance due to increased
issue demand on the load/store units. The hardware prefetcher works outside

118 C. McCurdy et al.

the core, and thus it does not affect issue bandwidth. However, both prefetch
approaches can increase memory bandwidth demand. In the following section
we look more closely at the two hardware prefetchers of the AMD 10H micro-
architecture, and we perform an empirical evaluation of their performance.

3.1 AMD Hardware Prefetchers

While the topic of hardware prefetching has been extensively studied in litera-
ture, few details have been disclosed about the actual implementations used by
AMD microprocessors. We know that the AMD Shanghai and the AMD Istan-
bul micro-architectures incorporate two levels of hardware prefetching. The first
prefetcher is associated with the data cache level and is replicated across all the
cores of a microprocessor. We call this the DC prefetcher. The DC prefetcher
analyzes the stream of memory addresses generated by data cache misses and
attempts to predict addresses that will be accessed by the CPU core in the near
future. If a predicted memory location is not already in the data cache, the
prefetcher fetches that data from L2, L3 or from DRAM. Because the prefetched
data is brought into the data cache, the prefetcher operates at cache line size
granularity.

The second prefetcher, the MC prefetcher, is associated with the memory
controller. It operates on the stream of memory addresses produced by accesses
that miss in the last level of cache and that originate from any of the cores
connected to that memory controller. The MC prefetcher fetches data into a
separate prefetch buffer to avoid conflicts with data loaded into the CPU caches.

The prefetchers operate by recognizing strided memory accesses. When a
prefetcher recognizes an address stream, it stores the stream information into an
internal data structure, and fetches the location that is predicted to be accessed
next. Such streaming prefetchers can track multiple data streams at the same
time, and the prefetch distance, how many predicted accesses ahead to prefetch,
can be adjusted based on the observed behavior.

The prefetchers’ performance is affected by several design choices: 1) the
maximum stride represents the largest streaming stride that can be detected by
the hardware; 2) the stream table size determines how many distinct streams
can be tracked concurrently; 3) the associativity of the stream table determines
the probability of getting conflicts in the stream table; 4) the prefetch distance,
how many lines in advance to prefetch, determines if the prefetched data is fully
loaded into the cache by the time the application needs it.

Based on data published by AMD [18], the DC prefetcher can fetch data up to
3 lines in advance, while the MC prefetcher fetches data up to 5 lines in advance.
We analyze the other characteristics empirically. To understand the prefetch-
ers’ characteristics, we developed a micro-benchmark to observe the effects on
performance while we probe part of the design space. The micro-benchmark
executes streaming memory accesses with a configurable behavior. Command
line arguments control the number of concurrent streams, the stride between
consecutive accesses to the same stream, the total size of the memory block
used by the benchmark, the number of memory access to be performed, and

Characterizing the Impact of Prefetching 119

Table 1. Event sets used in the study. Note that there is some duplication of events
between sets, allowing sanity checks. Additionally, each event set implicitly includes
CYCLES (as read from the Time Stamp Counter register via the rdtsc instruction).

SET Event 1 Event 2 Event 3 Event 4

BASE cycles inst sse ops L1 acc
L1 L1 acc L1 miss L1 frL2 L1 frNB
L2 L2 req DC L2 miss L2 fill L2 evict
L2REQ L2 req L2 req DC L2 req PF L2 req SNP
L3 L3 req L3 miss L3 fill L3 evict
MC MemCtl MemCtlWr MemCtlRd MemCtlPf
NODE Rd Req0 Rd Req1 DRAM Req0 DRAM Req1
TLB L2TLB hit TLB miss L2 req TLB L2m TLB
PF L2 req PF L2m pf MemCtlPf sw pf ALL
SWPF sw pf LS sw pf NTA ineff L1 ineff L2

Table 2. Benchmark configurations used in the empirical evaluation

Configuration Mem Size # of Streams Stream Size Stride
Name (in MB) (in pages) (in lines)

MaxStride 96 1 8*k+1 -8 to +8
Align 1 32 1 – 24 16*k+1 1
Align 2 32 1 – 24 16*k+2 1
Align 4 32 1 – 24 16*k+4 1
Align 8 32 1 – 24 16*k+8 1
Align 16 32 1 – 24 16*k+0 1
Parallel 32 1 – 24 8*k+1 1

the data alignment between different streams. In addition, the micro-benchmark
uses pointer chasing for all its memory accesses to prevent the compiler from
inserting prefetch instructions. We used hardware counters to measure the sets
of performance events L2REQ and MC shown in Table 1, while running the micro-
benchmark with different configuration parameters.

3.2 Empirical Evaluation of the AMD 10H Prefetchers

Table 2 presents a summary of the parameters used for the experiments in this
study. While most parameters are self explanatory, we discuss briefly the values
chosen for some of them.

All the streams operate on a contiguous block of memory of size given by the
Mem Size parameter. This memory block is divided into a number of equally
sized chunks, corresponding to the number of streams. The micro-benchmark
executes memory accesses from each stream in a round-robin fashion. The total
memory block size and the number of streams determine an address alignment
among the streams. While we were trying to understand the sizes of the different
hardware tables by varying the number of concurrent streams in our micro-
benchmark, we were seeing a lot of unexplained performance variation in our

120 C. McCurdy et al.

measurements. Hence, we concluded that some of the hardware data structures
must have limited associativity and what we were observing were access conflicts.

To understand these effects, we added the Stream Size parameter to control
the alignment between two consecutive streams. Based on empirical observations
and due to reasons that will be explained in Section 3.2, we try to control the
stream alignments at page granularity. We added three parameters to control
this alignment. A page factor specifies that the stream size is a multiple of the
given number of pages. Thus, 16 ∗ k specifies that the stream size is a multiple
of 16 pages. Second, a page term specifies how many additional pages are added
to the stream size. A stream size of 16 ∗ k + 1 means that the streams are a
multiple of 16 memory pages, and then one more page is added. Using these
two parameters we can enforce the page alignment between two streams. For
example, a stream size of 16 ∗ k + 2 specifies that the streams are two page
aligned, but they are not 4-page, 8-page or 16-page aligned.

However, even with these alignments we were still observing noise in our
measurements, noise that was caused by the 2-way associativity of the L1 cache.
The AMD Shanghai and Istanbul micro-architectures have 64KB, 2-way set-
associative L1 data caches. Thus, each cache way is 32KB, or 8 pages. By trying
to align the streams at 2, 4, 8 and 16 pages, accesses to all streams were hitting in
one or a handful of cache sets causing the prefetched data to be evicted before it
was used. We were also observing conflict effects on the running times when both
prefetchers were disabled. To fix this issue, we added a third parameter which
specifies a number of cache lines to be added to the size of each stream. This
parameter is not included in Table 2, but it was set to 1 for all experiments. By
staggering the streams by one cache line, we ensure that consecutive accesses to
different streams hit in different L1 sets, while only affecting the desired stream
page alignment for accesses near page boundaries.

We often use the terms prefetch or prefetching effectiveness during this empir-
ical evaluation, to quantify the performance of the hardware prefetchers. Our
micro-benchmark generates only clean strided accesses. For this section, we
define prefetching effectiveness to mean the fraction of data accesses to the next
memory level that are initiated by the hardware prefetcher. Thus, for the DC
prefetcher, the prefetching effectiveness is computed as

DCeffectiveness = L2 req PF/L2 req DC,

where L2 req PF represents the number of requests to L2 initiated by the DC
hardware prefetcher, and L2 req DC represents the number of L2 requests orig-
inating from the data cache. Note that the latter event includes both requests
to L2 caused by L1 cache misses and requests initiated by the DC prefetcher.

Similarly, the MC prefetching effectiveness is computed as

MCeffectiveness = MemCtlPf/MemCtlRd,

where the MemCtlPf event counts the number of memory requests initiated
by the memory controller prefetcher, and MemCtlRd counts the total number

Characterizing the Impact of Prefetching 121

Fig. 1. Prefetch effectiveness as a function of access stride

of memory read requests. These events are listed in Table 1, and are measured
using the hardware performance counters present on the AMD 10H architecture.

In Section 5, we evaluate the performance of the hardware prefetchers by
measuring their impact on the running time of five full-scale production appli-
cations.

Maximum Stride. To understand the maximum streaming stride recognized
by the two AMD prefetchers, we collected hardware counter events using con-
figuration MaxStride shown in Table 2, while enabling one prefetcher at a time.
Figure 1 plots the prefetching effectiveness computed for each of the two hard-
ware prefetchers as we varied the memory access stride between -8 and +8 cache
lines. We also plot the number of L1 cache misses normalized to the total num-
ber of L2 requests originating from the data cache. As explained in Section 3.1,
the MC prefetcher brings prefetched data into a buffer located at the memory
controller level. Thus, a successful prefetch does not lower the observed number
of L3 misses, but only their latencies.

The data clearly shows that the DC prefetcher recognizes only streams with
a stride of one cache line, while the MC prefetcher recognizes streams with a
stride of up to four cache lines. The two prefetchers recognize both forward and
backward streaming accesses. We also notice that the DC prefetcher does not
initiate all the data requests to L2 even for our simple, synthetic access pattern.
Streams recognized by the DC prefetcher live only inside one page. A stream is
discarded on a page boundary and a new stream must be recognized inside the
new page. It takes three strided accesses to recognize an address stream. Thus,
a number of accesses to each page are not prefetched.

Table Size and Associativity. Because prefetch streams live only inside one
memory page, and based on empirical observations from our initial experiments
that suggested the occurrence of some type of resource conflict based on the
page index of the streams, we believe that the DC prefetcher has at least one

122 C. McCurdy et al.

Fig. 2. DC prefetcher effectiveness as a function of stream count and page alignment

low associativity hardware structure that is indexed by the low bits of the page
number. To verify these observations, we performed a set of experiments where
we forced the streams to be separated by different powers of two numbers of
pages. We used configurations Align 1 to Align 16 from Table 2 to understand
the size of the hardware structures in the two prefetchers, and to determine if
there are any associativity effects.

Figure 2 shows the DC prefetcher’s effectiveness for different numbers of con-
current streams, from 1 to 24, and for different page alignments among streams.
Each curve corresponds to the streams being separated by a multiple of the
specified number of pages, but not by a multiple of a larger power of two, see
also the discussion at the start of Section 3.2. We can make several observations
based on these empirical results. Looking at the data points corresponding to x
values of 1 to 8 streams for the different stream alignments, we observe a pattern
that suggests the presence of a low associativity hardware structure.

Let the curve labeled Align 1 be the baseline configuration. When stream
locations are aligned by a multiple of 2 pages, the prefetcher performs as well as
the baseline configuration up to a number of 4 streams. After that, its effective-
ness decreases. When streams are aligned by 4 pages, the prefetcher performs
at the baseline level up to 2 streams, while for 8- and 16-page aligned streams,
the prefetcher’s performance decreases for any number of streams larger than
1. These observations suggest the presence of a direct mapped, 8 entries struc-
ture in the DC prefetcher, which is indexed by the page number. However, the
DC prefetcher continues to perform reasonably well up to 16-20 streams, which
indicates that the 8-entries hardware structure is not the main limiting factor.
Its direct-mapping, however, affects the prefetcher’s effectiveness, especially for
page alignments of 4-pages and larger powers of two.

Figure 3 presents the data collected for the MC prefetcher. Unlike the DC
prefetcher, the MC prefetcher does not seem to be affected by the streams’ page
alignment. We should note, however, that our alignment is enforced on virtual
addresses, and the MC prefetcher operates on a stream of physical addresses.

Characterizing the Impact of Prefetching 123

Fig. 3. MC prefetcher effectiveness as a function of stream count and page alignment

Fig. 4. Parallel MC prefetch effectiveness

Even so, the MC prefetcher seems to have a more consistent behavior, with
only a slight decrease in effectiveness for more than five concurrent streams. The
prefetcher’s performance drops more sharply after 16 streams, suggesting the
presence of a 16-entries hardware structure. However, the fact that its effective-
ness drops somewhat gradually, may still indicate that a hardware structure is
set-associative.

Parallel Performance. While the DC prefetcher is private to each core, the
MC prefetcher operates on the stream of physical addresses generated by all the
cores. In this section, we analyze briefly the MC prefetcher’s effectiveness as we
increase the number of processes generating memory accesses. To evaluate the
parallel effectiveness of the MC prefetcher, we loaded different numbers of con-
current instances of the micro-benchmark running configuration Parallel from
Table 2, from one to six concurrent instances.

124 C. McCurdy et al.

Figure 4 presents the fraction of memory accesses that have been prefetched
as we varied the number of benchmark instances and the number of streams
per process. The results show the prefetcher’s effectiveness decreasing rapidly as
we increase the number of processes. The prefetcher significantly underperforms
relative to its single process performance. The MC prefetcher can handle well
only 8-10 total streams across all processes in a multi-process configuration,
with 10 streams performing well only in a two process configuration. These
numbers reinforce the idea that the MC prefetcher has a set-associative hardware
structure. We do not understand well how the indexing in this structure works,
but the conflicts are exacerbated by increased process concurrency. Thus, at full
core occupancy on the Istanbul micro-architecture, the MC prefetcher performs
well only with a single stream per core. This limitation is likely to adversely
affect the scaling of applications from one to six cores.

4 Experimental Methodology

4.1 Application Preparation

As noted in the introduction, we ran our experiments on representative full-scale
production applications from five important Exascale target areas: fusion energy
(GTC), climate (CAM-HOMME), molecular dynamics (LAMMPS), materials
science (NEK), and combustion (S3D). For each application we used sample-
based profiling (HPCToolkit [19]) to identify five dominant loop nests. For
brevity, in Section 5, we refer to these loop nests using only the identifiers loop
1 − 5 for each of these applications. We attempted to choose top-level loops
close to the end of the call chain. No loops contain MPI library calls, elimi-
nating potential impact of variable message latencies. We then ’calipered’, i.e.,
marked the beginning and the end, the chosen loops with calls to the API of
another tool (Memphis [20]), which collects performance counter data with very
low overhead, allowing precise attribution of counted events to loops.

4.2 Hardware Experiments

On AMD hardware, bits in model-specific registers (MSRs) determine whether
the hardware prefetching structures described in Section 3.1 are operational. We
have implemented a user space tool that accesses the MSRs to enable or disable
the hardware prefetch mechanisms on demand.

We enable and disable software prefetching through the use of PGI compiler
(version 12.3 [21]) flags, creating two executables, one with prefetching instruc-
tions inserted and one without. PGI’s ’-fastsse’ level of optimization, often used
by application teams when running on high performance computing systems,
automatically inserts prefetch instructions where it deems suitable. We use the
’-Mnoprefetch’ flag to disable prefetching. We have made no attempt to other-
wise control the compiler’s decisions about prefetching.

Of the eight possible combinations (MC on or off, DC on or off, and SW on
or off), we chose to measure six:

Characterizing the Impact of Prefetching 125

– N: No prefetching, hardware or software, enabled.
– S: Only software prefetching enabled.
– M: Only memory controller prefetcher (MC) enabled.
– D: Only data cache prefetcher (DC) enabled.
– H: Both hardware prefetchers, MC and DC, enabled.
– HS: All prefetching mechanisms, hardware and software, enabled.

For each of the six combinations, we ran each application ten times, one for
each event set described in Table 1, once in serial mode and once in parallel
(MPI). The parallel runs used all available cores in a single socket. We pinned
processes to cores, in both serial and parallel runs, using the ’rankfile’ mechanism
provided by the OpenMPI [22] implementation.

Finally, we performed the full experiment on two AMD 10H platforms: a
Shanghai implementation with four cores per socket, and an Istanbul implemen-
tation with six cores per socket.

4.3 Stream Simulator Experiments

To help us understand the observed prefetching performance on the full-scale
production applications, we wrote a tool to abstractly understand the number
of concurrent streams in an application [16]. The tool, written on top of PIN [23],
works on unmodified and fully-optimized x86-64 binaries. In fact, for the software
simulation runs of the full applications, we used the same executables as for the
hardware measurements.

On each memory access, the simulator detects if the access is part of a stream
or not. If the access is part of a stream, it also computes the number of concurrent
streams active at that time. Optionally, memory accesses can be filtered by a
configurable cache simulator. In this case, only cache misses are further classified
as streams or not. For our full application results in Section 5, we performed two
simulation runs: 1) one simulation corresponding to the DC prefetcher detects
streams with a stride of +/- 1 cache lines, and accesses are filtered by a 64KB,
2-way set-associative cache; 2) a second simulation corresponding to the MC
prefetcher detects streams with a stride of up to four cache lines, and accesses
are filtered by a 6MB, 48-way set-associative cache.

We stress tested the tool by analyzing memory access patterns generated by
different synthetic micro-benchmarks, and the tool correctly identified streaming
behavior in each case. Figure 5 shows a simple validation of the stream simu-
lation algorithm for the micro-benchmark presented in Section 3.2 with up to
12 concurrent streams. The figure presents the distribution of stream counts
detected by the tool for several runs of the micro-benchmark using different
stream counts.

Each bar in the figure represents one execution of the micro-benchmark,
using one, two, three, four, five, and twelve concurrent streams, respectively. The
entries in the graph’s legend show the different categories in which a memory
access can be classified, representing how many parallel streams are active at
that time. If a memory access is not part of any stream, it is classified instead

126 C. McCurdy et al.

Fig. 5. Stream count simulation for micro-benchmark runs with different numbers of
streams

as NS (Not a Stream). On the y axis we stack the normalized counts of memory
accesses that fall into each of the categories listed in the legend. The stacks must
sum up to 1 in each case.

The main loop of the micro-benchmark executes perfectly strided accesses.
The simulation tool correctly detects this behavior and the actual number of
streams in each benchmark execution. While these tests are very simple, they
give us an opportunity to explain how the stream simulation data is presented
in the Results section.

5 Experimental Results

5.1 Serial Results

Figures 6 to 10 collect results from serial runs. Figure 6 demonstrates the overall
performance improvements of prefetching mechanisms, in isolation and working
cooperatively, over no prefetching (N).

Hardware prefetching (H) always helps, improving performance by as much
as 27% for GTC. Though in all applications other than LAMMPS, the DC
prefetcher alone is responsible for a large fraction of the gain, the two hardware
prefetchers are always more effective in tandem than alone, providing up to a 5%
improvement over the best individual result (again in GTC). On the other hand,
while software prefetching (S) alone helps GTC, NEK, and S3D by up to 5%, it
degrades LAMMPS performance slightly, and CAM performance significantly
(7%).

Memory Traffic. Figure 7 summarizes the memory requirements of the
applications when prefetching is turned off, overall (in the ’step’ bin) and by
each representative loop nest, as measured in memory controller transactions

Characterizing the Impact of Prefetching 127

Im
pr

ov
em

en
t O

ve
r N

o
Pr

ef
et

ch
in

g

Fig. 6. Performance improvement over no prefetching (N) ((cycles − N cycles)/N
cycles) for the following combinations of prefetching strategies: software only (S),
memory-controller prefetcher only (M), data-cache prefetcher only (D), both hardware
prefetchers (H), both hardware prefetches with software (HS)

MC
 Tr

an
s/1

00
0 I

ns
tru

ct
io

ns

Fig. 7. Memory Controller Transactions w/o prefetching

per thousand instructions. Note that the loop nests are ordered high-to-low by
memory requirement, and that the ordering is preserved in the remaining figures.

While the GTC and NEK loop nests demonstrate a fairly uniform and rel-
atively high memory requirement, reflected in the overall ’step’ numbers, S3D ’s
overall need, also high, is attributable to the extreme traffic generated by only
two loop nests. In contrast, the working sets of LAMMPS and CAM appear to
fit comfortably in cache, resulting in exceedingly low traffic to memory.

Figures 9 and 10 isolate the performance improvements of the DC and
MC prefetchers respectively. Note the correlation between the loop nests with
the highest memory requirements and those that see the greatest benefit from
prefetching. The same result holds at the application step level.

Finally, Fig. 8 isolates the impact of software prefetching. In most cases (CAM
and LAMMPS), performance degradation corresponds to low memory traffic,

128 C. McCurdy et al.

Im
pr

ov
em

en
t O

ve
r N

o
Pr

ef
et

ch
in

g

Fig. 8. Performance improvements from software prefetching

Im
pr

ov
em

en
t O

ve
r N

o
Pr

ef
et

ch
in

g

Fig. 9. Performance improvements from the DC hardware prefetcher

likely due to replacement of important data close to the processor with unneeded
data from memory. This conclusion is supported by significantly higher memory
traffic for these loop nests when software prefetching is enabled (not shown). The
one exception is the second loop nest in S3D, in which the compiler-generated
prefetches clearly get in the way of heavy demand traffic.

Memory Parallelism. Figure 11 demonstrates the inherent memory paral-
lelism (i.e., with no prefetching enabled) for the three memory-intensive applica-
tions, and the additional memory parallelism provided by the dcache prefetcher.
We arrive at these numbers by dividing total DRAM accesses by the results of
counters that measure non-overlapped requests to DRAM.

We start by noting that the base memory-parallelism is quite high for NEK
and S3D, over 4 and close to 8 respectively for a full step. Parallelism is lower
for GTC, due to a large number of indirect array accesses that serialize many
memory references. Nevertheless, the DC prefetcher substantially increases

Characterizing the Impact of Prefetching 129

Im
pr

ov
em

en
t O

ve
r N

o
Pr

ef
et

ch
in

g

Fig. 10. Performance improvements from the MC hardware prefetcher

Me
m

or
y P

ar
all

eli
sm

Fig. 11. Inherent memory parallelism (N) and increase due to DC prefetcher (D)

parallelism for all applications, by more than 50% overall. Again, in general
the effect is greater for loops with higher memory requirements.

5.2 Parallel Results

Figures 12 and 13 presents results for parallel runs using all available cores on
Shanghai (12) and Istanbul platforms (13). On Shanghai, while the DC prefetcher
performance is quite stable between serial and parallel runs, the improvement
due to the MC prefetcher alone for GTC, NEK and S3D declines markedly.

In all cases, the loss in productivity leads to a significant decrease in the
performance boost due to hardware prefetching (H) from serial to parallel runs,
accounting for a full 5% decrease for GTC. Based on analysis of loop level results,
we find that the decrease in M productivity is due to a combination of contention
for stream resources in the prefetching mechanism, and memory bandwidth
constraints.

130 C. McCurdy et al.

Im
pr

ov
em

en
t O

ve
r N

o
Pr

ef
et

ch
in

g

Fig. 12. Performance improvement over no prefetching (N) for parallel (MPI) runs
with 4 processes per socket (Shanghai)

Im
pr

ov
em

en
t O

ve
r N

o
Pr

ef
et

ch
in

g

Fig. 13. Performance improvement over no prefetching (N) for parallel (MPI) runs
with 6 processes per socket (Istanbul)

GTC. The hardware prefetchers produce significantly lower performance
improvements during the parallel runs for three loop nests in GTC: loop 1
(-18%), loop 4 (-15%), and loop 3 (-9%). In all cases, drops in MC performance
gains substantially outweigh drops in DC prefetcher gains.

While loop 1 has significant memory bandwidth requirements, with per-core
memory bandwidth dropping from 3.2 GB/s in serial mode to 2 GB/s in parallel,
the other two have more modest requirements and do not suffer a significant drop.
However, both suffer from a marked drop in prefetch efficiency, as measured by
the percentage of memory accesses due to prefetches: prefetch efficiency drops
from 95% to 9% for loop 4 , and from 98% to 21% for loop 3.

Interestingly, constructive interference from extra memory references due to
the addition of DC prefetcher in H and HS runs slightly improves the MC prefetch
efficiency for both loop 4 and loop 3. However, for loop 1, the addition of DC

Characterizing the Impact of Prefetching 131

Fig. 14. L1 miss stream coverage for GTC. Each bar on the x axis corresponds to one
loop nest. On the y axis we have the percentage of cache misses that fall into each
category listed in the graph’s legend, depending on the number of concurrent streams
active at that time.

prefetcher requests introduces destructive interference in the parallel case, reduc-
ing efficiency from 97% to 68%.

Stream simulation results, presented in Figs. 14 and 15, explain both the
benefit of MC in the serial case, and the decrease in its benefit in the parallel
case. Figure 14 demonstrates that most DC misses in loop 1 and loop 4 are not
streaming accesses, and the majority of references in loops 2 and 3 require more
than seven streams.

As noted earlier, GTC features a large number of indirect accesses. The
substantial reduction in non-streaming accesses observed in Fig. 15 demonstrates
that the L3 cache acts as a filter, removing irregular reference patterns that
confuse the DC prefetcher, and leaving a small number of regular streams for
the MC prefetcher. Furthermore, the simulation tool reveals that loop 1 features
a stride-4 reference pattern, due to the memory layout of the inner dimension of
two dominant array variables, which cannot be detected by the DC prefetcher.
Figure 15 also shows that the first four loop nests in GTC require 5 to 8 streams
per process at the memory controller level, and Fig. 4 showed us that the MC
prefetcher becomes much less effective in a multi-process configuration at higher
levels of streaming concurrency.

S3D and NEK. Two loop nests in S3D and one in NEK exhibit similar behav-
ior with respect to MC prefetcher performance. Figures 16 and 17 present stream
simulation results for S3D. In contrast with GTC, Fig. 16 shows that the streams
in both S3D loops should easily be covered by the DC prefetcher. However, since
the L3 miss rate is extremely high for these loops, the MC prefetcher sees very
nearly the same streams. Though the number of streams at the MC for the two
loops is quite low, two and three concurrent streams, respectively, we still see a

132 C. McCurdy et al.

Fig. 15. L3 miss stream coverage for GTC

Fig. 16. L1 miss stream coverage for S3D and LAMMPS

substantial reduction in prefetch efficiency in the hardware results, particularly
for the second loop nest, likely due to associativity conflicts.

LAMMPS. Finally, LAMMPS is unique in that the MC prefetcher improves
performance of the dominant loop nest (loop 1), and the contribution is not
diminished during a parallel run. The stream simulation results in Figs. 16 and
17 again explain the reason for this behavior. Based on the Fig. 16 results, the
loop 1 accesses that the DC prefetcher sees are for the most part not streamable.
However, the filtered accesses that the MC sees easily fit into a single stream,
in other words the accesses come from a single program array. The program-
level explanation for this behavior is that the loop nest computes interactions
between atoms and while access to the atoms is highly irregular, access to the

Characterizing the Impact of Prefetching 133

Fig. 17. L3 miss stream coverage for S3D and LAMMPS

neighbor list is regular. While accesses to the atom data exhibits reuse in L3,
the interaction list is linearly traversed with no temporal reuse inside the loop.

6 Conclusion

In order to better understand the impact of data prefetching on scientific
application performance, this paper has introduced two techniques, one micro-
architecture-centric and the other application-centric, to analyze the prefetching
performance of five important Exascale target applications.

We have found that despite a great diversity in prefetching effectiveness,
there is a strong correlation between regions where prefetching is most needed
(due to high levels of memory traffic) and where it is most effective. Further, we
found that while hardware prefetching always improved application performance
in the applications we studied, compiler-inserted software prefetches degraded
performance for two applications with extremely low memory requirements.

We also found that a hardware prefetcher at later levels of the memory hier-
archy can boost serial performance significantly, but contention for the shared
resource can substantially reduce effectiveness in a parallel context. Finally we
found that prefetching substantially increases already high levels of memory par-
allelism, even in applications that prominently feature irregular data accesses.

References

1. Ashby, S., Beckman, P., Chen, J., Colella, P., Collins, B., Crawford, D., Dongarra,
J., Kothe, D., Lusk, R., Messina, P., Mezzacappa, T., Moin, P., Norman, M., Ros-
ner, R., Sarkar, V., Siegel, A., Streitz, F., White, A., Wright, M.: The opportunities
and challenges of exascale computing. Technical report, U.S. Department of Energy
(2010)

134 C. McCurdy et al.

2. Chen, Y., Wang, X.: Compact modeling and corner analysis of spintronic mem-
ristor. In: IEEE/ACM International Symposium on Nanoscale Architectures 2009
(Nanoarch), pp. 7–12 (2009)

3. Hosomi, M., Yamagishi, H., Yamamoto, T., Bessho, K., Higo, Y., Yamane, K.,
Yamada, H., Shoji, M., Hachino, H., Fukumoto, C., Nagao, H., Kano, H.: A novel
nonvolatile memory with spin torque transfer magnetization switching: spin-ram.
In: Proc. International Electron Device Meeting Tech. Dig., pp. 459–462 (2005)

4. Bedeschi, F., Fackenthal, R., Resta, C., Donze, E.M., Jagasivamani, M., Buda,
E.C., Pellizzer, F., Chow, D.W., Cabrini, A., Calvi, G.M.A., Faravelli, R., Fantini,
A., Torelli, G., Mills, D., Gastaldi, R., Casagrande, G.: A Bipolar-Selected Phase
Change Memory Featuring Multi-Level Cell Storage. IEEE Journal of Solid-State
Circuits 44(1), 217–227 (2009)

5. Advanced Micro Devices Inc: Software Optimization Guide for AMD Family 10h
and 12h Processors (2011)

6. Chen, T.F., Baer, J.L.: A performance study of software and hardware data
prefetching schemes. In: Proceedings of the 21st Annual International Sympo-
sium on Computer Architecture, ISCA 1994, pp. 223–232. IEEE Computer Society
Press, Los Alamitos (1994)

7. Srinath, S., Mutlu, O., Kim, H., Patt, Y.N.: Feedback directed prefetching:
Improving the performance and bandwidth-efficiency of hardware prefetchers. In:
Proceedings of the 2007 IEEE 13th International Symposium on High Performance
Computer Architecture, HPCA 2007, pp. 63–74. IEEE Computer Society, Wash-
ington, DC (2007)

8. Ebrahimi, E., Mutlu, O., Lee, C.J., Patt, Y.N.: Coordinated control of multiple
prefetchers in multi-core systems. In: Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 42, pp. 316–326. ACM,
New York (2009)

9. Ebrahimi, E., Lee, C.J., Mutlu, O., Patt, Y.N.: Prefetch-aware shared resource
management for multi-core systems. In: Proceedings of the 38th Annual Interna-
tional Symposium on Computer Architecture, ISCA 2011, pp. 141–152. ACM, New
York (2011)

10. Callahan, D., Kennedy, K., Porterfield, A.: Software prefetching. In: Proceedings
of the Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS-IV, pp. 40–52. ACM, New York
(1991)

11. Santhanam, V., Gornish, E.H., Hsu, W.C.: Data prefetching on the hp pa-8000.
In: Proceedings of the 24th Annual International Symposium on Computer Archi-
tecture, ISCA 1997, pp. 264–273. ACM, New York (1997)

12. Luk, C.K., Mowry, T.C.: Automatic compiler-inserted prefetching for pointer-based
applications. IEEE Trans. Comput. 48(2), 134–141 (1999)

13. Intel Corporation: Optimizing embedded system performance-impact of data
prefetching on a medical imaging application (2006)

14. Puzak, T.R., Hartstein, A., Emma, P.G., Srinivasan, V.: When prefetching
improves/degrades performance. In: Proceedings of the 2nd Conference on Com-
puting Frontiers, CF 2005, pp. 342–352. ACM, New York (2005)

15. Liu, F., Solihin, Y.: Studying the impact of hardware prefetching and bandwidth
partitioning in chip-multiprocessors. SIGMETRICS Perform. Eval. Rev. 39(1),
37–48 (2011)

Characterizing the Impact of Prefetching 135

16. Marin, G., McCurdy, C., Vetter, J.S.: Diagnosis and optimization of application
prefetching performance. In: Proceedings of the 27th International ACM Con-
ference on International Conference on Supercomputing, ICS 2013, pp. 303–312.
ACM, New York (2013)

17. Jouppi, N.P.: Improving direct-mapped cache performance by the addition of
a small fully-associative cache and prefetch buffers. In: Proceedings of the
17th Annual International Symposium on Computer Architecture, ISCA 1990,
pp. 364–373. ACM, New York (1990)

18. Advanced Micro Devices Inc: BIOS and Kernel Developer’s Guide (BKDG) For
AMD Family 10h Processors (2010)

19. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey,
J., Tallent, N.R.: HPCToolkit: Tools for performance analysis of optimized parallel
programs. Concurrency and Computation: Practice and Experience 22(6), 685–701
(2010)

20. McCurdy, C., Vetter, J.: Memphis: Finding and fixing numa-related performance
problems on multi-core platforms. In: Proc. of the 2010 IEEE Intl. Symp. on Per-
formance Analysis of Systems Software, pp. 87–96 (March 2010)

21. Portland Group International Inc: PGI Compiler User’s Guide (2012)
22. Gabriel, E., et al.: Open MPI: goals, concept, and design of a next genera-

tion MPI implementation. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.)
EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 97–104. Springer, Heidelberg (2004)

23. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: building customized program analysis tools with
dynamic instrumentation. In: Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2005, pp. 190–200.
ACM, New York (2005)

Performance Modeling of Gyrokinetic Toroidal
Simulations for a Many-Tasking Runtime System

Matthew Anderson(B), Maciej Brodowicz, Abhishek Kulkarni,
and Thomas Sterling

School of Informatics and Computing, Center for Research in Extreme Scale Technologies,
Indiana University, Bloomington, Indiana

{andersmw,mbrodowi,adkulkar,tron}@crest.iu.edu
http://www.crest.iu.edu

Abstract. Conventional programming practices on multicore processors in high
performance computing architectures are not universally effective in terms of effi-
ciency and scalability for many algorithms in scientific computing. One pos-
sible solution for improving efficiency and scalability in applications on this
class of machines is the use of a many-tasking runtime system employing many
lightweight, concurrent threads. Yet a priori estimation of the potential perfor-
mance and scalability impact of such runtime systems on existing applications
developed around the bulk synchronous parallel (BSP) model is not well under-
stood. In this work, we present a case study of a BSP particle-in-cell benchmark
code which has been ported to a many-tasking runtime system. The 3-D Gyroki-
netic Toroidal code (GTC) is examined in its original MPI form and compared
with a port to the High Performance ParalleX 3 (HPX-3) runtime system. Phase
overlap, oversubscription behavior, and work rebalancing in the implementation
are explored. Results for GTC using the SST/macro simulator complement the
implementation results. Finally, an analytic performance model for GTC is pre-
sented in order to guide future implementation efforts.

Keywords: Performance modeling · ParalleX ·Many-tasking runtime systems

1 Introduction

The level of thread parallelism provided by the multicore processors pervasive in
present-day high performance computing systems has increased the relative prominence
of the concept of many-tasking: implementing an application using many lightweight
concurrent threads for a wide variety of application components. Many-tasking enables
several key execution concepts crucial for improving performance and scalability,
including: task oversubscription, or the overdecomposition of a problem resulting in
multiple tasks competing for a single computational resource; overlapping of com-
putational phases, including overlapping communication and computation phases in
order to hide network latency; and intelligent task scheduling, resulting in implicit
load balancing controlled by the task scheduler. These benefits have been documented
across a wide variety of software libraries and runtime systems, including more
c© Springer International Publishing Switzerland 2014
S. Jarvis et al. (Eds.): PMBS 2013 Workshops, LNCS 8551, pp. 136–157, 2014.
DOI: 10.1007/978-3-319-10214-6 7

Performance Modeling of Gyrokinetic Toroidal Simulations 137

recently using MPI [25], OpenMP [11], Charm++ [27], Unified Parallel C (UPC) [12],
MPI+OpenMP [6], MPI+UPC [10], Intel Threading Building Blocks (TBB) [32,34],
High Performance ParalleX (HPX) [9,26], Cilk plus [1], Chapel [7], XKaapi [15], Coar-
ray Fortran 2.0 [40], and Qthreads [38]. For several decades, the qualitative character-
istics of many-tasking have been set forth in the Actors model [20], Multilisp [35],
Fortress [2], and X10 [8].

While the many-tasking capabilities of runtime systems and libraries continue to
improve, scientific applications overwhelmingly employ the bulk synchronous paral-
lel (BSP) model [24,36]. Porting an application designed around the BSP model to a
many-tasking execution model can involve significant development time and algorithm
redesign costs while the performance benefits of such a transition are hard to quan-
tify before performing the port. Specific case studies and discrete event simulators can
assist in identifying and quantifying such performance benefits. This work provides a
specific case study as well as a discrete event simulator built for the ParalleX execution
model [14] to assist in quantifying expected performance improvements resulting from
transitioning an application from the BSP model to a many-tasking execution model.

In the case study presented here, we examine the effects of transitioning the 3D
Gyrokinetic Toroidal Code (GTC) [13] from a BSP model to the ParalleX execution
model as implemented by the HPX-3 runtime system. HPX-3 is an experimental,
ParalleX-compliant runtime system developed in C++ at the Louisiana State University.
It features lightweight (user space) multithreading, advanced synchronization primi-
tives called Local Control Objects (LCOs), parcel based communication that extends
the concept of active messages, and Active Global Address Space (AGAS). All compu-
tational objects created by an HPX program are assigned unique identifiers by AGAS
and are free to migrate between compute nodes; HPX provides mechanisms that can
transparently access both local and remote objects using the same interface. This app-
roach facilitates building of parallel, asynchronous, message-driven applications that
are capable of migrating work to data when beneficial to overall performance.

GTC uses the particle-in-cell method [37] for plasma simulations and forms part
of the NERSC-6 suite of benchmarks [4]. There are numerous performance studies
on the MPI version of GTC [39,40] across a wide array of architectures making it an
ideal candidate for this case study. The metrics explored here include performance,
communication characteristics, and the overlap of phases both in cases with an ideal
load balance and a moderate load imbalance.

Complementing the GTC implementation effort in HPX-3 are two additional per-
formance modeling efforts: one using coarse grained simulation of GTC with the SST/-
macro simulator [19] and the second using an analytic performance model of GTC for
ParalleX. Overall, this work makes the following new contributions:

– It provides both a simple legacy migration path for a BSP style code to run in a
many-tasking runtime system with minimal modifications and a performance com-
parison between the different modalities of computation. The legacy migration path
consists only of enforcing thread safety and replacing MPI calls with task model
equivalents.

138 M. Anderson et al.

– It examines the phase overlap and implicit load balancing capabilities of a many-
tasking runtime system executing a code designed for BSP and quantifies the ben-
efits derived from these capabilities.

– It provides a performance simulator for comparing performance, communication,
and phase overlap characteristics for a BSP style code in a many-tasking runtime
system.

– It provides an analytic performance model of GTC using the ParalleX execution
model.

This work is divided into six parts. Work related to this study and where this study
fits into the broader discussion about many-tasking execution models is discussed in
Section 2. Section 3 introduces the GTC code as well as the methodology behind the
GTC port to HPX-3. It presents the implementation results exploring performance,
communication, and phase overlap. Section 4 introduces the skeleton GTC code and
its use within SST/macro for gauging the impact of key runtime system overheads on
performance. Section 5 presents an analytic performance model based on ParalleX and
developed for GTC. Section 6 presents our conclusions.

2 Related Work

There are several recent efforts to explore how an application changes when transi-
tioning from MPI to a new runtime system or programming model. The Livermore
Unstructured Lagrange Explicit Shock Hydrodynamics (LULESH) applications was
recently examined using a wide range of conventional and emerging programming mod-
els, including MPI, OpenMP, MPI+OpenMP, CUDA, Charm++, Chapel, Liszt, and
Loci [28]. The numerous application implementations contain a wide range of source
code line counts and implementation choices specific to each programming model in
order to systematically explore productivity benefits of each. They found that several
emerging programming models showed significant productivity benefits over conven-
tional approaches as measured by the number of lines of code needed to produce the
parallel implementation of LULESH. However, they also found that several models
required significant additional development just to match the performance of the MPI
version.

Several other studies have compared and contrasted performance using microbench-
marks with a focus on execution overhead, such as in Appeltauer et al. [5] using context-
oriented languages and in Gilmanov et al. [16] using task models. Olivier et al. [33]
discusses comparisons of task models using an imbalanced task graph as the proxy
application. However, no study exists which examines the performance characteristics
of a full application designed for BSP but run in a many-tasking runtime system where
the only change to the original code is thread safety enforcement and the replacement of
MPI calls with task model equivalents. Performance simulators for task models along
with their comparisons to BSP are also missing from the literature.

Madduri et al. explore the impact of multicore-specific optimizations for gyroki-
netic toroidal simulations and report up to 2x speedup using hybrid MPI-OpenMP and
MPI-OpenMP-CUDA GTC versions [30]. Performance improvements by overlapping

Performance Modeling of Gyrokinetic Toroidal Simulations 139

computation and communication for GTC using OpenMP tasking have also been
demonstrated previously [29].

There are multiple performance modeling efforts either using coarse grained sim-
ulation or analytic performance models. Hoefler et al. [22] enumerate how analytic
performance models can guide systematic performance tuning. Hendry [17] analyzed
and reported on the MPI based GTC skeleton code for the SST/macro coarse grained
simulator with a focus on reducing power consumption while maintaining performance.
Analytic performance models for MPI collectives were explored by Angskun et al. [3]
while Mathis et al. [31] created a performance model for particle transport.

3 A Case Study: GTC

Using the default input parameters for GTC, we examine the code scaling, phase, and
performance characteristics in this section. The default parameter case evolves 3.2 mil-
lion particles using the particle-in-cell approach inside a toroidal mesh with 3.6 million
gridpoints for 150 steps with four point gyro-averaging on the mesh. Figure 1 provides
a visualization at a timestep in the simulation showing particles location and speed in
the mesh.

Fig. 1. A timestep in the GTC simulation showing tracking of select particles in the toroidal mesh.
The color indicates the speed of the particle while the lines dividing the torus indicate the domain
decomposition across processors or threads for this simulation.

The GTC algorithm utilizes six basic types of communication operations: allreduce,
broadcast, split communicator, gather, reduce, and send/receive. In order to port GTC
to HPX-3, nonblocking implementations of each of these operations were created using

140 M. Anderson et al.

HPX-3. The port from MPI to HPX-3 consists of replacing all MPI calls with their HPX-
3 equivalents, after making the original GTC code thread safe so that it can be used
with a multithreaded runtime system like HPX-3. The GTC version ported to HPX-3 is
identified as GTCX. Output from GTC and GTCX were verified to be identical out to
15 significant digits for 8 separate analysis fields. Simulations were conducted on a 16
node cluster of Intel Xeon E5-2670 2.60 GHz processors providing 16 cores per node
with InfiniBand interconnect between nodes. Each node is equiped with 32 GB of 1600
MHz RDIMMS.

While GTC and GTCX are nearly identical in terms of the codebase, their compu-
tational phase characteristics are not. GTCX is capable of overlapping computational
phases by overdecomposing the problem into more lightweight concurrent threads than
execution resources (cores). This overdecomposition of the problem enables the overlap
of computation and communication phases in an effort to hide network latency when
used in conjunction with the nonblocking HPX-3 equivalents of MPI collectives. The
computational phases for GTC on 64 cores is illustrated in Figures 2-3. In Figure 2, the
number of MPI processes running GTC was equivalent to the number of computational
resources. In Figure 3, however, the number of HPX-3 threads running GTCX was a
factor of two greater than the number of resources. The phases of computation are color
coded; however, in the HPX-3 case in Figure 3, context switching is usually how wait-
ing for communication is manifested since the communication calls are nonblocking.
A noticeable increase in the overlap of computational phases is evident in the GTCX
simulation compared with the GTC simulation.

The increase in overlap of computational phases becomes more evident by intro-
ducing a synthetic load imbalance to one of the threads or processes. For GTC, a load
imbalance results in the idling of resources until the slowest process catches up with
the rest of the processes in its computation. For GTCX, the load is implicitly balanced
among the resources on the node by the thread scheduler. Figure 4 compares the phases
of computation for GTC and GTCX with and without a synthetic load imbalance. In
Figure 4, a synthetic load imbalance involving computing the φ potential during the
GTC/GTCX Poisson equation solve is added to the process or thread identified as zero.
This load imbalance results in an immediate increase in time spent waiting for commu-
nication in GTC for all processes except zero. In GTCX there is also an increase in time
spent in context switches; however, that increase is amortized by the thread manager
maximizing resource usage resulting in less overall waiting.

Direct strong scaling performance measurements between GTC and GTCX are pre-
sented in Figure 5. In this figure, simulations using GTC and GTCX were performed
five times prior to averaging and reporting the results. The results also include per-
formance results from a version of the GTC code manually implemented to use non
blocking collectives from MPICH2 but without oversubscription. The GTC and GTCX
performance is nearly identical on very few codes while GTCX suffers a considerable
decrease in performance at 16 cores and higher, matching the GTC performance only
at 128 cores where the GTC code has already stopped scaling. The GTCX implemen-
tation continues to scale beyond 128 cores and produces the fastest result at 256 cores.
As will be explored in detail later in Section 3, the use of blocking collectives con-
tributes to some of the performance degradation observed in GTC. The MPI version of
GTC which uses non blocking collectives provides an intermediate comparison point

Performance Modeling of Gyrokinetic Toroidal Simulations 141

3.9 4.0 4.1 4.2 4.3 4.4

Time [seconds]

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

C
o
re

 n
u
m

b
e
r

computation

broadcast

send-recv

allreduce

gather

reduce

receive or send

Overlap of computation and communication phases in GTC

Fig. 2. The phases of computation for a portion of a second in a GTC (MPI based) simulation on
64 cores. The phases for every fourth processor are plotted in the vertical axis for GTC. There
is no oversubscription in this case; blocking MPI collectives ensure the computational phases
do not overlap signficantly. For comparison with GTCX (HPX-3 based), see Figure 3 where the
computational phases for the operations corresponding to those here are plotted.

between standard GTC and GTCX where blocking collectives are removed but no over-
subscription is present.

With the exception of a few cases, GTCX generally lags GTC performance in spite
of the increase computational phase overlap and network latency hiding capability of
GTCX. However, it also continues to scale even when the GTC code has stopped scal-
ing. The overheads associated with thread creation (2 μs) and context switching (1.2 μs)
as well as a large overhead in the network layer contributes to mitigating many of the
performance benefits in GTCX resulting from an increase in overlapping computational
phases. The legacy migration path used to create the GTCX code from GTC involves
minimal code modification and no code restructuring in order to achieve more efficient
performance for a many-tasking execution model. Restructuring GTC for a specific
programming model has resulted in significant performance gains for GTC before (e.g.
see [30]). However, for many legacy applications, restructuring an application code base

142 M. Anderson et al.

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

Elapsed time [seconds]

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

W
o
rk

e
r

th
re

a
d
 n

u
m

b
e
r

computation

broadcast

sendrecv

allreduce

reduce

gather

context switch

Computation and communication phases in GTCX on 64 cores

Fig. 3. The phases of computation a portion of a second in a GTCX (HPX-3 based) simulation
on 64 cores. The phases for every fourth core are plotted in the vertical axis for GTCX. The
simulation oversubscribes the computational resources by a factor of two in order to hide network
latency and overlap more computational phases than otherwise possible when using blocking
collectives. For comparison, the GTC case is shown in Figure 2.

for use in a new programming model is not a viable option while the legacy migration
path explored here could easily be achieved at the compiler level.

Overlapping computational phases, hiding network latency, and removing global
barriers in computation give key performance benefits which can improve scalability
in applications provided the runtime system overheads can be kept in check. Under-
standing how these overheads can affect application performance is crucial for making
design decisions and extracting more parallelism in a simulation. While runtime sys-
tem overheads cannot be easily changed in an implementation in order to empirically
observe their impact on overall application performance, overheads can be changed and
experimented with using a discrete event simulator. The following section explores this
behavior in the context of the SST/macro simulator.

4 GTCX in SST/Macro

To explore the scalability characteristics beyond the bounds of available physical
machines we used SST/macro simulator [19] developed at Sandia National Labora-
tory. SST/macro is a coarse-grain simulator, which offers a good balance of simulation
speed, accuracy of results, scaling of the model to arbitrary number of nodes, and sup-
port of emulation on alternative architectures. As such, it is ideal for realistic modeling
of applications at scale, studying the effects of network parameters and topology on

Performance Modeling of Gyrokinetic Toroidal Simulations 143

0 1 2 3 4 5

Elapsed time [seconds]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

M
P
I
p
ro

c
e
s
s
 n

u
m

b
e
r

computation

broadcast

split-comm

sendrecv

allreduce

gather

reduce

receive or send

Computation and communication phases in GTC (16 core run)

0 1 2 3 4 5 6 7

Elapsed time [seconds]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

W
o
rk

e
r

th
re

a
d
 n

u
m

b
e
r

computation

broadcast

sendrecv

allreduce

reduce

gather

context switch

Computation and communication phases in GTCX
(16 cores, oversubscription factor 32)

(a) GTC (b) GTCX

0 1 2 3 4 5

Elapsed time [seconds]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

M
P
I
p
ro

c
e
s
s
 n

u
m

b
e
r

computation

broadcast

split-comm

sendrecv

allreduce

gather

reduce

receive or send

Computation and communication phases in GTC (16 core run with load imbalance)

0 1 2 3 4 5 6 7

Elapsed time [seconds]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

W
o
rk

e
r

th
re

a
d
 n

u
m

b
e
r

computation

broadcast

sendrecv

allreduce

reduce

gather

context switch

Computation and communication phases in GTCX with load imbalance
(16 cores, oversubscription factor 32)

(c) GTC with load imbalance (d) GTCX with load imbalance

Fig. 4. Computational phase diagrams for GTC and GTCX with and without a synthetic load
imbalance on 16 cores are presented here. For GTC, a load imbalance results in the idling of
resources until the slowest process catches up with the rest of the processes in its computation
as seen by comparing (a) and (c). There is also an increase in idled resources for GTCX in the
presence of a load imbalance; however, the difference between (b) and (d) for GTCX is not as
substantial as that for GTC due to the ability to overlap computational phases and implicitly load
balance.

performance, and software prototyping of new algorithms and library designs. SST/-
macro accomplishes this through skeletonization of the modeled applications which is
a process of creating simplified code that approximately reproduces the behavior of
the original application, but without having to produce the same computational results.
From the network perspective, skeletons preserve the control flow of communication
code, resulting in as much as order of magnitude potential speedup. Currently, the con-
version process of the original application code to an equivalent skeleton is manual,
although compiler assisted utilities are being developed at Indiana University. The sim-
ulation runs as a single process (shared address space), with component application
processes emulated by user level threads.

SST/macro is capable of modeling with significantly more diverse range of param-
eters than most of the commonly available tools used to predict the performance of
MPI applications based on execution traces, such as LogGOPSim [23]. For exam-
ple, compute node parameters include core affinities, memory contention along with
NUMA effects, and NIC contention. Network switch models support packet arbitration,
adaptive routing, and buffering parameters. The network topologies are represented
accurately and may support message traffic as flows, packets, or packetized flows.
Moreover, trace gathering may substantially stress the I/O subsystem due to volume

144 M. Anderson et al.

 32

 64

 128

 256

 512

 1024

 0 50 100 150 200 250 300

R
un

tim
e

(s
ec

on
ds

)

Number of Cores (16 cores/locality)

GTC and GTCX Performance
GTC

GTCX
GTC using non blocking collectives

Fig. 5. Performance measurements for GTC and GTCX reflecting a strong scaling test. Also
shown is a version of GTC implemented using non blocking collectives but without oversub-
scription. GTCX performance varies significantly based on the number of lightweight threads
used to decompose the problem. The GTCX results presented here reflect the use of the empiri-
cally discovered optimal number of lightweight threads for decomposition. While GTCX is able
to overlap more computational phases than GTC, it also suffers from higher overheads in the form
of thread creation and context switches resulting in slightly worse performance than GTC from
16 to 128 cores.

of stored data; this frequently interferes with network operation if the storage devices
are attached to the same interconnect. SST/macro is free of these issues.

The GTCX implementation explored in Section 3 illustrated key characteristics
distinguishing the many-tasking behavior of ParalleX from the MPI behavior of the
Communicating Sequential Processes (CSP) exection model. These include computa-
tional phase overlap, overdecomposition, network latency hiding, implicit load balanc-
ing, and intelligent task scheduling. However, the GTCX implementation performance
in Section 3 was generally at par or worse than the MPI implementation due to the large
overheads introduced by the runtime system implementation. The SST/macro toolkit,
in contrast to a full runtime system implementation, is able to represent the parallel
machine using models to estimate processing and network components and thereby
modify the size of the overheads. Recently, HPX-3 semantics were added to SST/-
macro in order to model application performance using that runtime system at different
overhead levels [18]. This section explores GTCX, the HPX-3 implementation of GTC,
using the SST/macro simulator with different runtime system overheads on the Hopper
supercomputer (Cray XE6, Opteron 6172 12 cores at 2.10 GHz).

As a tool for co-design, SST/macro is frequently used for coarse grained rather
than cycle accurate simulation. SST/macro is also often used in conjunction with a
skeleton code, where all computation has been removed from an application except for

Performance Modeling of Gyrokinetic Toroidal Simulations 145

 0

 10

 20

 30

 40

 50

 60

 50 100 150 200 250

S
pe

ed
up

Number of Nodes

Context switch overhead impact on GTCX
Smaller context switch overhead
Higher context switch overhead

Fig. 6. Comparison of strong scaling for GTCX with two different context switch overheads.
The smaller context switch overhead is .1μs while the larger is 10 ms. Results using empirically
determined near-optimal oversubscription factors are plotted.

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 4 8 16 32 64 128 256

R
un

tim
e

(s
ec

on
ds

)

Number of Cores

GTC and GTCX using SST/macro
GTC

GTCX with smaller context switch overhead
GTCX with larger context switch

Fig. 7. Predicted performance comparison for GTC and GTCX using SST/macro. For GTCX,
two different context switch overheads are examined. No oversubscription was applied to GTCX;
consequently GTCX and GTC closely mirror each other in performance.

146 M. Anderson et al.

communication and control. This enables the skeleton to be used for fast prototyping
and making other design decisions. Actual non-control computations in the skeleton
code are replaced with counters in order to record the computational cost without actu-
ally performing the computation entailed. Consequently, skeleton applications can run
orders of magnitude faster than their application counterparts while still faithfully mod-
eling the communication and control characteristics of the original application. A skele-
ton application of the MPI version of GTC is provided as an example in SST/macro; this
skeleton served as the basis for the GTCX skeleton used for the data provided in this
section. The MPI GTC skeleton for SST/macro, while sharing qualitative performance
behavior with the actual MPI GTC implementation, does differ in runtime performance
prediction. These differences between the implementation performance and the skele-
ton’s predicted performance are due, in part, to the difficulty of replacing computational
loops in the implementation with computation counters in the skeleton. Consequently,
in this section we directly compare the GTC skeleton performance with the GTCX
skeleton performance rather than the full implementations.

Using the GTC skeleton provided in SST/macro, the same legacy migration path
described in Section 3 was applied producing the GTCX skeleton. Unlike the imple-
mentation in 3, however, the thread overheads and context switching overheads can be
changed as a parameter in SST/macro in order to model the performance impact of these
overheads. Figure 6 shows GTCX strong scaling behavior for context switch overheads
differing by 5 orders of magnitude from .1μs to 10 ms. Figure 7 compares the predicted
performance between GTC and GTCX in SST/macro without the benefit of oversub-
scription. Not surprisingly, without oversubscription in GTCX, the results from GTC
and GTCX are very similar. Context switching overheads become more pronounced at
64 cores or higher.

5 GTCX Analytic Performance Model

Performance prediction of applications in alternate execution models is an emerging
research problem. The overall performance gain largely depends on the characteris-
tics of the algorithm itself. Limited improvement in performance is observed already
by a straightforward translation of the BSP-style communication primitives to their
equivalent in HPX-3, as shown earlier. This is due entirely to the finer-grained concur-
rency and dataflow parallelism allowed by the execution model. Better performance can
be achieved by leveraging more features admitted by HPX-3, and at times, through a
complete rewrite of the application’s algorithm. Our port of GTC to the HPX-3 many-
tasking runtime system evaluated the effectiveness of its core parallelism constructs
and provided a feedback on the performance of the implementation at relatively mod-
est scales. To understand and appropriately quantify the effect of overlapping compu-
tation with communication through oversubscription and dataflow parallelism, in this
section, we introduce an analytic performance model of the gyrokinetic toroidal simu-
lation (GTC) code.

Analytic models that calculate the long-time running cost of parallel applications
have to strike a trade-off between accuracy and overall cost. The model described in this
section captures the essential computation and communication characteristics of the six

Performance Modeling of Gyrokinetic Toroidal Simulations 147

field

pushi

diagnosis

shifti

err_check

collision

poisson

pushe

poisson_initial

shifte

chargee

locate_tracked_particles

snapshot

write_tracked_particles

timer setup

read_input_params

set_particle_decomp

load

broadcast_input_params

rand_num_gen_init

restart_read

tag_particles

set_random_zion

chargei

rng_print_seed

rng_init

rng_step_seed

smooth fftr1d

fftc1d

Fig. 8. Static Call Graph of GTC

key phases in the application. Through parameter sweeps of the overheads involved, and
varying the degree of overlap, bounds for performance benefits of an alternate execution
model are obtained.

GTC employs the Particle-in-Cell formalism to model the plasma interactions. The
PIC algorithm involves six main phases executed at each time step. The static call-graph
of the core GTC algorithm is shown in Figure 8.

The total runtime of GTC for a given sample input depends several parameters
such as the number of particle domains (npartdom), the 1D toroidal decomposition
(ntoroidal), the size of the grid, the number of particles per cell etc. For a given input
and simulation parameters, the total runtime cost is the sum of the initialization and the
execution time of the six phases for n timesteps as given in Eqn. 1.

Ttotal = Tsetup +

n∑

i=1

(
Tcharge + Tpoisson + T f ield + Tsmooth + Tpush + Tshi f t

)
(1)

5.1 Setup

In this phase, the GTC simulation is set up by reading the input parameters. Both integer
and real parameters are read separately from an input file by the main process. These
parameters are packed and broadcasted to all other processes where they are subse-
quently unpacked and assigned locally. Relative to other phases, the time taken by this
phase is rather negligible and bounded by constant factor. We expand on this phase

148 M. Anderson et al.

only to elucidate our analytic modeling methodology and highlight the key time gains
in GTCX over GTC.

Table 1. Setup

Type Action Weight Description

Comp s1 Θ(nints) Read integer parameters
Comp s2 Θ(nreals) Read real parameters
Comm bcast 144 Broadcast integer parameters
Comm bcast 224 Broadcast real parameters
Comp k1 Θ(nints) Unpack integer parameters
Comp k2 Θ(nreals) Unpack real parameters

Table 1 shows the key communication and computation steps involved in this phase.
Since GTC is implemented in a BSP style using MPI, each of the communication steps
are inherently parallel. For instance, Tbcast represents the time taken by all processes
to perform the broadcast communication operation. We use the same terms for GTCX
to keep the presentation of our model simple. However, the collective communication
operations can themselves be decomposed into their constituent point-to-point opera-
tions as shown below.

The time taken by the main process for this phase is given by

Tsetup = s1 + s2 + Tsend(144) + Tsend(224)

and the time at all of the other processes is

Tsetup = Trecv(144) + Trecv(224) + k1 + k2

Here, Tsend(x) and Trecv(x) is the time taken to send and receive x bytes respectively.
The computation time between the communication operations is measured empirically
by profiling the application. Since we are primarily interested in comparative analysis
(between GTC and GTCX), using one of the many analytic communication models to
represent the communication costs is also a viable approach.

For instance, in the Hockney communication model [21], the time to send or receive
a message of size m is given by Tm = α+βm. Using this, a linear broadcast of n messages
of size m to P processes can be computed as follows:

Tbcast = n(P − 1) ·
(
m · (α + βm)

)

Assuming no network congestion and full bisection-bandwidth, this approximates the
time to perform broadcast at all processes.

Since there are no data dependences between the broadcast of the integer and real
parameters, GTCX can execute them concurrently in separate HPX-3 tasks, such that

Performance Modeling of Gyrokinetic Toroidal Simulations 149

the computation and communication is overlapped. Even when using a single task in
HPX-3, we have Eqn. 2.

Tsetup = s1 + Tbcast(144) +max
(
s2 + Tbcast(224),Tbcast(144) + k1

)
+ Tbcast(224) + k2

(2)

Here, the packing (and sending) of the real parameters (s2 and Tbcast(224)) is overlapped
with the unpacking (and receiving) of the integer parameters (k1 and Tbcast(144)).

By having two lightweight threads (one to send the integer parameters, and the
other to send the real parameters) run concurrently, both the tasks can be effectively
overlapped, as in Eqn. 3.

Tsetup = max
(
s1 + Tbcast(144), s2 + Tbcast(224)

)
+max

(
k1, k2

)
(3)

The degree of overlap is bounded by δ subject to factors such as the number of system
threads in HPX-3 and the progress of communication with respect to computation.

5.2 Charge

In this phase, the charge from the particle data is deposited onto the grid using a particle-
grid interpolation step. The computation operations in this phase, as shown in Table 2
are asymptotically bounded above the number of particles in each process. The load-
balance of the computation step, thus, largely depends on the particle distributions.
The steps c1, c2 iterate through the particle array and update grid locations in mem-
ory corresponding to the four-point ring representing the charged particles. The effec-
tive time taken by these steps depends on the arithmetic intensity of each step and
non-deterministic architectural factors such as cache behavior etc. These can either be
ignored completely, or measured empirically for a given run.

Table 2. Charge

Type Action Weight Description

Comp c1 Ω(mi) Particle-grid interpolation
Comp c2 Ω(mgrid · mzeta) Set density
Comm allreduce mgrid · (mzeta + 1) Deposit charge density on the grid
Comp c3 Ω(mpsi) Poloidal end cell
Comm sendrecv mgrid Send density array to left and receive from right
Comp c4 Ω(mpsi · mzeta · mthetai) Flux surface average and normalization
Comm allreduce mpsi + 1 Global sum of phi00

The time taken by this step, Eqn. 4, is the global sum of the computation steps, an
allreduce communication step to deposit charge density on the grid and the computation
of the global sum of φ.

150 M. Anderson et al.

Tcharge = c1 + c2 + Tallreduce(mgrid · (mzeta + 1)) + c3

+ Tsendrecv(mgrid) + c4 + T ′allreduce(mpsi + 1) (4)

In GTCX, the loop to iterate through the array in c2 is fused with the point-to-
point communication operations in Tallreduce so that they are interleaved and executed
concurrently. Thus, the time to compute the global sum at all processes (Tallreduce) is
offset by the time to iterate through the array to be reduced (c2) by a constant factor δ.
The time taken for the complete charge step for GTCX is given by

Tcharge = c1 +max
(
c2,Tallreduce

)
+ c3 + Tsendrecv(mgrid) +max

(
c4,T

′
allreduce

)

= c1 + c2 + δ + c3 + Tsendrecv(mgrid) + c4 + δ
′ (5)

where Tallreduce = c2 + δ, T ′allreduce = c4 + δ
′

Note that, here, we assume that there is a strong synchronization step (barrier)
between phases. The degree of overlap between computation and communication (δ
and δ′) depend on the subscription factor in GTCX. They cannot be zero due to the data
dependence between the operations, and the finite time to execute them.

Table 3. Poisson

Type Action Weight Description

Comp p1 Ω(mzeta · mgrid · mring) Initialization
Comm allgather mzeta

npartdom Gather full array φ on PEs
Comp p2 Ω(mzeta · mgrid) Assign full array φ
Comp p3 Ω(mzeta · mpsi) In equilibrium unit

5.3 Poisson

The gyrokinetic Poisson equation is solved on the grid in this phase. The compute
phases are asymptotically bounded above by the grid size (Ω(mgrid)). The only com-
munication step in the reference codes (GTC and GTCX) is an allgather collective oper-
ation. The other steps are shown in Table 3.

In case of GTC, the time taken to execute this phase depends on the available pro-
cessor parallelism. It is given by Eqn. 6.

Tpoisson = p1 + Tallgather(·) + p2 + p3 (6)

For GTCX, the performance gain due to oversubscription and dataflow parallelism
is bounded by the factor δ. With true dataflow parallelism obtained by loop fusion and
the conversion of sub-arrays into futures, the allgather communication step is effectively
executed concurrently with both p1 and p2. The marked end times of the allgather and
p2 steps are determined by:

Tpoisson = max
(
p1,Tallgather, p2

)
+ p3

= p1 + δ + p3 (7)

where Tallgather = p1 + δ1, p2 = Tallgather + δ2, δ = δ1 + δ2

Performance Modeling of Gyrokinetic Toroidal Simulations 151

5.4 Field

This phase computes the electric field on the grid. As the previous phase (Poisson),
it scales with the number of the poloidal grid points. The data redistribution involves
array shifts and thus, the communication pattern is captured by MPI’s sendrecv func-
tion calls. In GTCX, the send and receive operations are decoupled and hence can be
scheduled closer to the actual data sinks and sources in the dataflow graph.

Table 4. Field

Type Action Weight Description

Comp f1 Ω(mzeta · mgrid · mpsi) Finite difference for e-field
Comm sendrecv mgrid Send φ to right and receive from left
Comm sendrecv mgrid Send φ to left and receive from right
Comp f2 Ω(mzeta · mgrid) Unpack φ boundary and calculate E zeta
Comm sendrecv 3 · mgrid Send E to right and receive from left
Comp f3 Ω(mgrid + mzeta · (mpsi + 1)) Unpack end points

The operations to shift the φ array and compute the electric field E are referred in
Table 4. The time taken in GTC to perform the field phase for a given simulation step
is approximated by

T f ield = f1 + 2 · Tsendrecv(mgrid) + f2 + T ′sendrecv(3 · mgrid) + f3 (8)

The array shift of φ is overlapped with the computation of finite difference for the
electric field. After the φ boundaries are unpacked, the calculuation of the electric field
is fused with its communication operations. These optimizations result in a time reduc-
tion given by Eqn 9

T f ield = max
(

f1,Tsendrecv(mgrid),Tsendrecv(mgrid)
)
+ f2 + δ (9)

where T ′sendrecv = f2 + δ1, f3 = T ′sendrecv + δ2, δ = δ1 + δ2

5.5 Smooth

In this phase, the potential and charge density undergo radial smoothing. The compu-
tation kernels s1, s2ands3 perform grid-accesses relative to the grid size (mgrid). As
shown in Table 5, a 2D-matrix is transposed using scatter and gather collective opera-
tions.

Eqns 10 and 11 can be used to approximate the times required to execute this phase
in GTC and GTCX respectively.

Tsmooth = s1 + 2 · Tsendrecv(mgrid) + s2 + Tsendrecv(mgrid) +
ntoroidal∑

i=1

(
s3 + Tgather

)

+

ntoroidal∑

i=1

(
s4 + Tscatter

)
+ s5 + T ′sendrecv(mgrid) + Tgather(·) (10)

152 M. Anderson et al.

Table 5. Smooth

Type Action Weight Description

Comp s1 Ω(mzeta · (mgrid + mpsi)) -
Comm sendrecv mgrid Parallel Smoothing: send φ to right and receive

from left
Comm sendrecv mgrid Parallel Smoothing: send φ to left and receive

from right
Comp s2 Ω(mgrid · mzeta) -
Comm sendrecv mgrid Toroidal BC: send φ to left and receive from

right
Comp s3 Ω(mzeta · (mgrid + mpsi)) -
Comm gather mtdiag · mz · (idiag2 − idiag1 + 1) Transpose a 2D-matrix from (ntoroidal,mzeta ·

mzbig) to (1,mzetamax · mzbig)
Comp s4 Ω(ntoroidal · mz) -
Comm scatter mtdiag · mz · (idiag2 − idiag1 + 1) Transpose a 2D-matrix from (ntoroidal,mzeta ·

mzbig) to (1,mzetamax · mzbig)
Comp s5 Ω(mgrid) Interpolate field
Comm sendrecv mgrid Toroidal BC: send φ to right and receive from

left
Comm gather 2·mtdiag

ntoroidal · nummode Dominant (n,m) mode history data

The optimizations due to overlapping of computation with the send and receive
operations are similar to those described in the “field” phase. The transposition of
the 2D-matrix involves gather and scatter operations equal to the number of toroidal
domains.

Tsmooth = max
(
s1,Tsendrecv(mgrid),Tsendrecv(mgrid)

)
+max

(
s2,Tsendrecv(mgrid)

)

+

ntoroidal∑

i=1

(
s3 + δ1 + s4 + δ2

)
+ s5 + δ3 + Tgather(·) (11)

where Tgather = s3 + δ1, Tscatter = s4 + δ2, T ′sendrecv = s5 + δ3

5.6 Push

In this phase, the particles are advanced using the field array computed in the previous
phases. Since, this phase is dependent on the size of the particle arrays at each proces-
sor, the particle distribution among the processors determines the execution time of the
computation steps that are bounded below by Ω(mi).

Table 6 lists the computation and communication steps involved in this phase.
Despite having a higher arithmetic intensity, the communication operations in this phase
are relatively expensive, making it a critical phase in the algorithm. The grid data
accesses made by tasks {p1, . . . , p4} are irregular and results in bad cache behavior
without any data reorganization.

Tpush = p1 + Tallreduce(8) + Tallreduce(4) + p2 + 2 · Tallreduce(2 · m f lux)

+ p3 + Tallreduce(·) + p4 + Treduce(·) (12)

Performance Modeling of Gyrokinetic Toroidal Simulations 153

Table 6. Push

Type Action Weight Description

Comp p1 Ω(mi) Runge-Kutta method
Comm allreduce 8 Calculate total sum of weights
Comm allreduce 4 Calculate total number of particles
Comp p2 Ω(mi) Out of boundary particle
Comm allreduce 2 · m f lux Restore temperature profile
Comp p3 Ω(m f lux + mi) -
Comm allreduce mpsi + 1 Heat flux psi
Comm allreduce 2 · m f lux Compute marker,energy,particle
Comp p4 Ω(mpsi(mzeta + 1)) Field energy
Comm reduce 3 Total field energy from all toroidal domains

The time taken to execute this phase in GTC (Eqn 12) and that to execute in GTCX
(Eqn 13) are shown.

Tpush = max
(
p1,Tallreduce(8),Tallreduce(4)

)

+max
(
p2 + δ1, p3 + δ2

)
+ Tallreduce(2 · m f lux) + p4 + Treduce(·) (13)

where Tallreduce(2 · m f lux) = p2 + δ1, Tallreduce(mpsi + 1) = p3 + δ2

5.7 Shift

The shift phase actually moves particles between toroidal domains. This involves com-
munication of the number of particles to be shifted, the packing and shifting of particles
to neighboring toroidal domains (using MPI’s sendrecv operation), and unpacking of
particles. The particles are moved in the ±zeta direction only one domain at a time.

The time required for GTC (Tshi f t) is simply the sum of the times required for the
communication and computation steps shown in Table 7.

Tshi f t = s1 + Tallreduce(4) + s2 + 2 · Tsendrecv(8) + 2 · Tsendrecv(msend,mrecv) + s3 (14)

Table 7. Shift

Type Action Weight Description

Comp s1 Ω(mi) -
Comm allreduce 4 Total number of particles to be shifted
Comp s2 40 · Θ(1) Pack particles and fill holes
Comm sendrecv 8 Send number of particles to move right
Comm sendrecv msendright, mrecvle f t Send particle to right and receive from left
Comm sendrecv 8 Send number of particles to move left
Comm sendrecv msendle f t, mrecvright Send particle to left and receive from right
Comp s3 20 · Θ(1) Unpack particles

154 M. Anderson et al.

As shown in Eqn 15, the computation step s1 cannot be overlapped with the first
allreduce operation. Since the time to send the number of particles to shift is negligible,
it is not accounted by the overlapping of the time to move the particle data.

Tshi f t = s1 + Tallreduce(4) + 2 · Tsendrecv(msend,mrecv) + s3 (15)

where
Tsendrecv(msend,mrecv) = Tsendrecv(8) + δ

Tsendrecv(8) � Tsendrecv(msend,mrecv)

5.8 Model Validation

To quantify the performance benefits of removing global barriers and overlapping com-
putation steps in GTCX, we evaluated our model with the parameters shown in Table 8.

Figure 9 shows a strong-scaling plot of GTC against GTCX for an assumed, fixed
degree of overlap (δ) for each of the phases. The execution times for the computation
and communication steps of GTC were determined empirically by the output data of an
actual run. The model errors were found to be within 15% of the execution time.

Table 8. Parameters used for validating the model

Parameter Value Parameter Value
nints 36 micell 2
nreals 28 ntoroidal 1 to 256

mzetamax 64 npartdom 1
mpsi 90 nsteps 150

mthetamax 640 numberpe 1 to 256
mgrid 32449 mi 64718 to 258872

 10

 100

 0 50 100 150 200 250 300

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Number of processors

GTC model
GTCX model

GTC (actual run)

Fig. 9. Comparative analysis of the GTC and GTCX performance model

Performance Modeling of Gyrokinetic Toroidal Simulations 155

6 Conclusions

Implementing GTC in HPX-3 and SST/macro for HPX-3 has highlighted some key
characteristics of many-tasking runtime systems while at the same time exposing some
performance deficiencies. The removal of global barriers, the increase in overlapping
phases of computation, and the presence of implicit load balancing all helped to extract
more parallelism in GTCX while the increased overhead due to oversubscription and
context switching mitigated the impact of those improvements. The legacy migration
application path for GTCX enabled overlapping computational phases and intelligent
scheduling of threads but did not take advantage of any code re-writes or data restruc-
turing that would have more directly benefited from a many-tasking execution model.
The GTCX and GTC code performance generally resembled each other both in the
full implementation and in SST/macro with only small performance and scaling gains
registered in GTCX at the area where GTC had already stopped scaling. Comparative
analysis based on the performance model enabled us to quantify the benefits due to
overlapping computation phases.

Acknowledgments. We would like to thank Gilbert Hendry and Hartmut Kaiser for their tech-
nical assistance.

References

1. http://cilkplus.org/ (2012)
2. Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessen, J.-W., Ryu, S., Steele Jr., G.L.,

Tobin-Hochstadt, S.: The Fortress language specification, version 1.0 (March 2008)
3. Angskun, T., Bosilca, G., Fagg, G.E., Gabriel, E., Dongarra, J.J.: Performance analysis of

mpi collective operations. In: Proceedings of the 19th IEEE International Parallel and Dis-
tributed Processing Symposium (IPDP 2005) - Workshop 15 (2005)

4. Antypas, K., Shalf, J., Wasserman, H.: Nersc-6 workload analysis and benchmark selection
process. Technical Report LBNL 1014E, National Energy Research Scientific Computing
Center Division Ernest Orlando Lawrence Berkeley National Laboratory (August 2008)

5. Appeltaue, M., Hirschfeld, R., Haupt, M., Lincke, J., Perscheid, M.: A comparison of
context-oriented programming languages. In: International Workshop on Context-Oriented
Programming, COP 2009, pp. 6:1–6:6. ACM, New York (2009)

6. Cappello, F., Etiemble, D.: Mpi versus mpi+openmp on the ibm sp for the nas benchmarks.
In: ACM/IEEE 2000 Conference on Supercomputing, p. 12 (2000)

7. Chamberlain, B., Callahan, D., Zima, H.: Parallel programmability and the Chapel language.
Int. J. High Perform. Comput. Appl. 21(3), 291–312 (2007)

8. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun, C.,
Sarkar, V.: X10: an object-oriented approach to non-uniform cluster computing. SIGPLAN
Not. 40, 519–538 (2005)

9. Dekate, C., Anderson, M., Brodowicz, M., Kaiser, H., Adelstein-Lelbach, B., Sterling, T.:
Improving the scalability of parallel N-body applications with an event-driven constraint-
based execution model. International Journal of High Performance Computing Applications
26(3), 319–332 (2012)

10. Dinan, J., Balaji, E., Lusk, E., Sadayappan, P., Thakur, R.: Hybrid parallel programming
with mpi and unified parallel c. In: Proceedings of the 7th ACM International Conference on
Computing Frontiers, CF 2010, pp. 177–186. ACM, New York (2010)

http://cilkplus.org/

156 M. Anderson et al.

11. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP tasks suite:
A set of benchmarks targeting the exploitation of task parallelism in OpenMP. In: Proceed-
ings of the 2009 International Conference on Parallel Processing, ICPP 2009, pp. 124–131.
IEEE Computer Society, Washington, DC (2009)

12. El-Ghazawi, T., Cantonnet, F., Yao, Y.: Evaluations of UPC on the Cray X1. In: CUG 2005
Proceedings, New York, NY, USA, p. 10 (2005)

13. Ethier, S., Tang, W.M., Lin, Z.: Gyrokinetic particle-in-cell simulations of plasma microtur-
bulence on advanced computing platforms. Journal of Physics: Conference Series 16(1), 1
(2005)

14. Gao, G. Sterling, T., Stevens, R. Hereld, M., Zhu, W.: Parallex: A study of a new parallel
computation model. In: IEEE International Parallel and Distributed Processing Symposium,
IPDPS 2007, pp. 1–6 (2007)

15. Gautier, T., Lima, J.V.F., Maillard, N., Raffin, B.: Xkaapi: A runtime system for data-flow
task programming on heterogeneous architectures. In: Proc. of the 27th IEEE International
Parallel and Distributed Processing Symposium (IPDPS) (2013)

16. Gilmanov, T., Anderson, M., Brodowicz, M., Sterling, T.: Application characteristics of
many-tasking execution models. In: Proc. of the 2013 International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA) (2013)

17. Hendry, G.: Decreasing Network Power with On-Off Links Informed by Scientific Applica-
tions. In: The Ninth Workshop on High-Performance, Power Aware Computing (May 2013)

18. Hendry, G., Rodrigues, A.: Simulator for exascale co-design, http://sst.sandia.gov/
publications.html

19. Hendry, G., Rodrigues, A.: Sst: A simulator for exascale co-design. In: Proc. of the
ASCR/ASC Exascale Research Conference (2012)

20. Hewitt, C., Baker, H.G.: Actors and continuous functionals. Technical report, Cambridge,
MA, USA (1978)

21. Hockney, R.W.: The communication challenge for mpp: Intel paragon and meiko cs-2. Par-
allel Comput. 20(3), 389–398 (1994)

22. Hoefler, T., Gropp, W., Snir, M., Kramer, W.: Performance Modeling for Systematic Perfor-
mance Tuning. In: International Conference for High Performance Computing, Networking,
Storage and Analysis (SC 2011), SotP Session (November 2011)

23. Hoefler, T., Schneider, T., Lumsdaine, A.: LogGOPSim - simulating large-scale applications
in the LogGOPS model. In: Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, pp. 597–604. ACM (June 2010)

24. HPC University and the Ohio Supercomputer Center. Report on high performance com-
puting training and education survey, http://www.teragridforum.org/mediawiki/images/5/5d/
HPCSurveyResults.FINAL.pdf

25. Iancu, C., Hofmeyr, S., Blagojevic, F., Zheng, Y.: Oversubscription on multicore processors.
In: 2010 IEEE International Symposium on Parallel Distributed Processing (IPDPS), pp.
1–11 (April 2010)

26. Kaiser, H., Brodowicz, M., Sterling, T.: ParalleX an advanced parallel execution model for
scaling-impaired applications. In: International Conference on Parallel Processing Work-
shops, ICPPW 2009, pp. 394–401 (September 2009)

27. Kale, L.V., Krishnan, S.: Charm++: Parallel Programming with Message-Driven Objects.
In: Wilson, G.V., Lu, P. (eds.) Parallel Programming Using C++, pp. 175–213. MIT Press
(1996)

28. Karlin, I., Bhatele, A., Keasler, J., Chamberlain, B.L., Cohen, J., DeVito, Z., Haque, R.,
Laney, D., Luke, E., Wang, F., Richards, D. Schulz, M., Still, C.H.: Exploring traditional and
emerging parallel programming models using a proxy application. In: Proc. of the 27th IEEE
International Parallel and Distributed Processing Symposium (IPDPS) (2013)

http://sst.sandia.gov/publications.html
http://sst.sandia.gov/publications.html
http://www.teragridforum.org/mediawiki/images/5/5d/HPCSurveyResults.FINAL.pdf
http://www.teragridforum.org/mediawiki/images/5/5d/HPCSurveyResults.FINAL.pdf

Performance Modeling of Gyrokinetic Toroidal Simulations 157

29. Koniges, A., Preissl, R., Kim, J., Eder, D., Fisher, A., Masters, N., Mlaker, V., Ethier,
S., Wang, W., Head-Gordon, M., Wichmann, N.: Application Acceleration on Current and
Future Cray Platforms. In: CUG 2010, the Cray User Group Meeting (May 2010)

30. Madduri, K., Ibrahim, K.Z., Williams, S., Im, E.-J., Ethier, S., Shalf, J., Oliker, L.: Gyroki-
netic toroidal simulations on leading multi- and manycore hpc systems. In: Proceedings of
2011 International Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2011, pp. 23:1–23:12. ACM, New York (2011)

31. Mathis, M.M., Kerbyson, D.J., Hoisie, A.: A performance model of non-deterministic parti-
cle transport on large-scale systems. Future Gener. Comput. Syst. 22(3), 324–335 (2006)

32. McCool, M.D., Robison, A.D., Reinders, J.: Structured parallel programming patterns for
efficient computation (2012)

33. Olivier, S., Prins, J.F.: Comparison of OpenMP 3.0 and other task parallel frameworks on
unbalanced task graphs. International Journal of Parallel Programming 38(5–6), 341–360
(2010)

34. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-Core Processor Par-
allelism, 1st edn. O’Reilly Media (July 2007)

35. Robert, J., Halstead, H.: Multilisp: a language for concurrent symbolic computation. ACM
Trans. Program. Lang. Syst. 7(4), 501–538 (1985)

36. Stitt, T., Robinson, T.: A survey on training and education needs for petascale computing,
http://www.prace-project.eu/IMG/pdf/D3-3-1 document final.pdf

37. Tskhakaya, D.: The particle-in-cell method. In: Fehske, H., Schneider, R., Weie, A. (eds.)
Computational Many-Particle Physics. Lecture Notes in Physics, vol. 739, pp. 161–189.
Springer, Heidelberg (2008)

38. Wheeler, K., Murphy, R., Thain, D.: Qthreads: An API for Programming with Millions
of Lightweight Threads. In: International Parallel and Distributed Processing Symposium.
IEEE Press (2008)

39. Wu, X., Taylor, V.: Performance modeling of hybrid mpi/openmp scientific applications on
large-scale multicore cluster systems. In: 2011 IEEE 14th International Conference on Com-
putational Science and Engineering (CSE), pp. 181–190 (2011)

40. Yang, C., Murthy, K., Mellor-Crummey, J.: Managing asynchronous operations in coarray
fortran 2.0. In: Proc. of the 27th IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS) (2013)

http://www.prace-project.eu/IMG/pdf/D3-3-1_document_final.pdf

Toward Better Simulation of MPI Applications
on Ethernet/TCP Networks

Paul Bédaride1, Augustin Degomme2, Stéphane Genaud3, Arnaud Legrand2,
George S. Markomanolis4, Martin Quinson1, Mark Stillwell5(B),

Frédéric Suter6, and Brice Videau2

1 Loria/INRIA/University of Nancy, Nancy, France
{paul.bedaride,martin.quinson}@loria.fr

2 CNRS/INRIA/University of Grenoble, Grenoble, France
{augustin.degomme,arnaud.legrand,brice.videau}@imag.fr

3 University of Strasbourg, Strasbourg, France
genaud@unistra.fr

4 INRIA, LIP, ENS Lyon, Lyon, France
gmarko01@ens-lyon.fr

5 School of Engineering, Cranfield University, Bedford, UK
m.stillwell@cranfield.ac.uk

6 IN2P3 Computing Center, CNRS, Lyon-Villeurbanne, France
fsuter@cc.in2p3.fr

Abstract. Simulation and modeling for performance prediction and
profiling is essential for developing and maintaining HPC code that is
expected to scale for next-generation exascale systems, and correctly
modeling network behavior is essential for creating realistic simulations.
In this article we describe an implementation of a flow-based hybrid
network model that accounts for factors such as network topology and
contention, which are commonly ignored by other approaches. We focus
on large-scale, Ethernet-connected systems, as these currently compose
37.8 % of the TOP500 index, and this share is expected to increase
as higher-speed 10 and 100GbE become more available. The European
Mont-Blanc project, which studies exascale computing by developing
prototype systems with low-power embedded devices, uses Ethernet-
based interconnect. Our model is implemented within SMPI, an open-
source MPI implementation that connects real applications to the
SimGrid simulation framework. SMPI provides implementations of col-
lective communications based on current versions of both OpenMPI
and MPICH. SMPI and SimGrid also provide methods for easing the
simulation of large-scale systems, including shadow execution, memory
folding, and support for both online and offline (i.e., post-mortem) sim-
ulation. We validate our proposed model by comparing traces produced
by SMPI with those from real world experiments, as well as with those
obtained using other established network models. Our study shows that
SMPI has a consistently better predictive power than classical LogP-
based models for a wide range of scenarios including both established
HPC benchmarks and real applications.

c© Springer International Publishing Switzerland 2014
S. Jarvis et al. (Eds.): PMBS 2013 Workshops, LNCS 8551, pp. 158–181, 2014.
DOI: 10.1007/978-3-319-10214-6 8

Toward Better Simulation of MPI Applications 159

1 Introduction

In the High Performance Computing (HPC) field, accurately predicting the
execution time of parallel applications is of utmost importance to assess their
scalability, and this is particularly true for applications slated for deployment
on next-generation exascale systems. While much effort has been put towards
understanding the high-level behavior of these applications based on abstract
communication primitives, real-world implementations often provide a number
of confounding factors that may break basic assumptions and undermine the
applicability of these higher level models. For example, implementations of the
MPI standard can select different protocols and transmission mechanisms (e.g.,
eager vs. rendez-vous) depending on message size and network capabilities. Sim-
ple delay-based models also do not account for network realities such as network
topology and contention. In this work we demonstrate how even relatively minor
deviations in low-level implementation can adversely affect the ability of simu-
lations to predict real-world performance, and propose a new network model
that extends previous approaches to better account for topology and contention
in high-speed TCP networks. We focus on large-scale, Ethernet-connected sys-
tems, which currently compose 37.8% of the TOP500 index [1]. This share is
only expected to increase as higher-speed 10 and 100GbE become more avail-
able. The European Mont-Blanc project studies exascale computing by devel-
oping prototype systems with low-power embedded devices and Ethernet-based
Interconnect [2].

Packet-level simulation has long been considered the “gold standard” for
modeling network communication, and is available for use in a number of sim-
ulation frameworks [3,4]. However, there are a number of reasons to consider
alternatives when simulating parallel applications. First, such applications are
likely to generate large amounts of network traffic, and packet-level simulation
has high overheads, resulting in simulations that may take significantly longer to
run than the corresponding physical experiments. Second, implementing packet-
level simulations that accurately model real world behavior requires correctly
accounting for a vast array of factors [5]. In practice, there is little difference
between an inaccurate model and an accurate model of the wrong system.

When packet-level simulation becomes too costly or intractable, the most
common approach is to resort to simpler delay models that ignore the network
complexity. Among these models, the most famous are those of the LogP family
[6–9]. The LogP model was originally proposed by Culler et al. [6] as a realistic
model of parallel machines for algorithm design. It was claimed as more realistic
than more abstract models such as PRAM or BSP. This model captures key
characteristics of real communication platforms while remaining amenable to
complexity analysis. Unfortunately, while this model may reflect the behavior of
specialized HPC networks from the early 1990s, it ignores potentially confound-
ing factors present in modern-day systems.

Flow-based models are a reasonable alternative to both simple analytic mod-
els and expensive and difficult-to-instantiate packet-level simulation. In a flow
based model, network traffic is treated as a steady state fluid flow through

160 P. Bédaride et al.

interconnected pipes of varying lengths and sizes (representing delay and band-
width). Flow-based models are computationally tractable while being able to
account for factors such as network heterogeneity. We seek to capture the advan-
tages of a flow-based approach by extending existing validated models of point-
to-point communication to better account for network topology and message
contention. Recent work suggests that well-tuned flow-based simulation may be
able to provide reasonably accurate results for less effort than packet-based sim-
ulation, and at much lower cost [10].

Our model is implemented within SMPI [11], an open-source MPI imple-
mentation that connects real-world applications to the SimGrid [12] simulation
framework. With SMPI, standard MPI applications written in C or FORTRAN
can be compiled and run in a simulated network environment, and traces docu-
menting computation and communication events can be captured without incur-
ring errors from tracing overheads or improper synchronization of clocks as in
physical experiments. SMPI has recently been extended so that the low-level
implementations of MPI collective operations more accurately reflect current
production versions of both OpenMPI and MPICH. SMPI and SimGrid also
provide a number of useful features for simulating applications that may require
large amounts of time or system resources to run, including shadow execution,
memory folding, and off-line simulation by replay of execution traces [13]. We
validate our results by comparing application traces produced by SMPI using
our network model with those from real world environments. We also compare
with traces obtained using models from the literature.

The specific contributions described in this paper are as follows:

– we propose a new flow-based network model that extends previous LogP-
based approaches to better account for network topology and message con-
tention;

– we describe SMPI, the simulation platform, and some useful extensions
that we have developed to make this tool more useful to developers and
researchers alike (e.g., SMPI now implements all the collective algorithms
and selection logics of both OpenMPI and MPICH for more faithful com-
parisons);

– we provide a number of experimental results demonstrating how these exten-
sions improve the ability of SMPI to accurately model the behavior of real-
world applications on existing platforms, and also show that competing
frameworks using previous models from the literature are unlikely to obtain
consistently good results;

– we demonstrate the effectiveness of our proposal by making a thorough study
of the validity of our models against hierarchical clusters using TCP over
Gigabit Ethernet.

This paper is organized as follows: In Section 2 we discuss essential back-
ground information in the area of network modeling. In Section 3 we describe
SMPI, our chosen implementation framework, along with some key features
that make it suitable for simulation of large scale systems, and comparisons to
competing simulation platforms. In Section 4 we describe our proposed hybrid

Toward Better Simulation of MPI Applications 161

network model, focusing particularly on how this model captures the complexi-
ties of network topology and message contention. In Section 5 we describe exper-
iments conducted to [in]validate the model, including comparisons of traces from
real-world environments as well as traces produced using other network models.
In Section 6 we demonstrate the capacity of SMPI to simulate complex MPI
applications on a single machine. In Section 7 we discuss related work, including
other frameworks for simulating parallel applications and their relevant draw-
backs. We conclude in Section 8 and also provide a description of proposed areas
of future work.

2 Network Modeling Background

In the LogP model, a parallel machine is abstracted with four parameters: L
is an upper bound on the latency of the network, i.e., the maximum delay
incurred when communicating a word between two machines; o denotes the
CPU overhead, i.e., the time that a processor spends processing an emission
or a reception and during which it cannot perform any other operation; g is
the gap between messages, whose reciprocal is the processor communication
bandwidth; and P represents the number of processors. Assuming that two pro-
cessors are ready to communicate, the time to transfer a message of size k is
then o + (k − 1)max(g, o) + L + o. Ideally, these four parameters should be
sufficient to design efficient algorithms. Indeed, this model accounts for compu-
tation/communication overlap since for short messages, the sender is generally

Pr

Ps

T1 T2 T3

(a) Asynchronous mode (k ≤ S).
T2 T3T5 T1T4

Ps

Pr

ts

tr

(b) Rendez-vous mode (k > S).

Routine Condition Cost
MPI_Send k ≤ S T1

k > S T4 + T5 + T1

MPI_Recv k ≤ S max(T1 + T2 − (tr − ts), 0) + T3

k > S max(o+ L− (tr − ts), 0) + o+
T5 + T1 + T2 + T3

MPI_Isend o
MPI_Irecv o

(c) MPI routine costs.

T1 = o+kOs T2 =

{
L+ kg if k < s

L+ sg + (k − s)G otherwise
T3 = o+kOr

T4 = max(L+o, tr−ts)+o T5 = 2o+ L

Fig. 1. The LogGPS model [9] in a nutshell

162 P. Bédaride et al.

released before the message is actually received. Unfortunately, it fails to accu-
rately model the transmission of long messages that are common in modern
parallel applications.

The LogGP model proposed in [7] introduces an additional parameter G to
represent the larger effective bandwidth experienced by long messages. The for-
mula for short messages is unchanged but becomes o+(k − 1)G+L+ o for long
ones. This simple distinction between short and long messages was extended in [8]
with the parameterized LogP model in which L, o, and g depend on the message
size. The rationale is that the overall network performance results from complex
interactions between the middleware, the operating system, and the transport
and network layers. Hence, performance is generally neither strictly linear nor
continuous. This model also introduces a distinction between the sender overhead
os and the receiver overhead or. However, such models may be difficult to use
to design algorithms. For instance, they assume that senders and receivers syn-
chronize and include that synchronization cost in the overhead while some MPI
implementations use schemes that may not require synchronization, depending
on message size.

Finally, Ino et al. proposed in [9] the LogGPS model that extends LogGP by
adding two parameters s and S to capture the lack of linearity and the existence
of a synchronization threshold. Overheads are represented as affine functions
o + kOs where Os (resp. Or) is the overhead per byte at the sender (resp.
receiver) side. This model is described in Figure 1, where ts (resp. tr) is the time
at which MPI Send (resp. MPI Recv) is issued. When the message size k is smaller
than S, messages are sent asynchronously (Figure 1(a)). Otherwise, a rendez-
vous protocol is used and the sender is blocked at least until the receiver is ready
to receive the message (Figure 1(b)). The s threshold is used to switch from g to
G, i.e., from short to long messages, in the equation. The message transmission
time is thus continuously piece-wise linear in message size (Figure 1(c)).

To summarize, the main characteristics of the LogGPS model are: the expres-
sion of overhead and transmission times as continuous piece-wise linear func-
tions of message size; accounting for partial asynchrony for small messages,
i.e., sender and receiver are busy only during the overhead cycle and can overlap
communications with computations the rest of the time; a single-port model,
i.e., a sequential use of the network card which implies that a processor can
only be involved in at most one communication at a time; and no topology
support, i.e., contention on the core of the network is ignored as all processors
are assumed to be connected through independent bidirectional communication
channels. Most of these hypothesis are debatable for many modern computing
infrastructures. For example, with multi-core machines, many MPI processes can
be mapped to the same node. Furthermore, the increase in the number of proces-
sors no longer allows one to assume uniform network communications. Finally,
protocol switching typically induces performance modifications on CPU usage
similar to those on effective bandwidth, while only the latter are captured by
these models.

One alternative to both expensive and difficult-to-instantiate packet-level
models and simplistic delay models is flow-level models. These models account

Toward Better Simulation of MPI Applications 163

for network heterogeneity and have thus been used in simulations of grid, peer-to-
peer, and cloud computing systems. Communications, represented by flows, are
simulated as single entities rather than as sets of individual packets. The time to
transfer a message of size S between processors i and j is then given by Ti,j(S) =
Li,j + S/Bi,j , where Li,j (resp. Bi,j) is the end-to-end network latency (resp.
bandwidth) on the route connecting i and j. Estimating the bandwidth Bi,j is
difficult as it depends on the network topology and on interactions with every
other flow. This is generally done by assuming that the flow has reached steady-
state, in which case the simulation amounts to solving a bandwidth sharing
problem, i.e., determining how much bandwidth is allocated to each flow. More
formally: Consider a connected network that consists of a set of links L, in
which each link l has capacity Bl. Consider a set of flows F , where each flow is
a communication between two network vertices along a given path. Determine a
“realistic” bandwidth allocation ρf for flow f , such that:

∀l ∈ L,
∑

f going through l

ρf ≤ Bl .

Many different sharing methods can be used and have been evaluated (for
example, in [10]). While such models are rather flexible and account for many
non-trivial phenomena (e.g., RTT-unfairness of TCP or cross-traffic interfer-
ences) [10], they ignore protocol oscillations, TCP slow start, and more generally
all transient phases between two steady-state operation points as well as very
unstable situations. Therefore, they provide generally a very good upper-bound
of what can be achieved with a given network, and can serve as a basis on which
to build more accurate models.

3 The SMPI Framework

The goal of our research is to use modeling and simulation to better understand
the behavior of real-world large-scale parallel applications, which informs the
choice of an appropriate simulation platform. That is, simulations for study-
ing the fine-grain properties of network protocols may have little in common
with simulations for studying the scalability of some large-scale parallel comput-
ing application. Likewise, models used in algorithm design are expected to be
much simpler than those used for performance evaluation purposes. Our choice
of SMPI as an implementation environment reflects this goal, as SMPI allows
for relatively easy conversion of real-world applications to simulation, and pro-
vides a number of useful features for enabling large-scale simulations. SMPI
implements about 80% of the MPI 2.0 standard, including most of the network
communication related functions, and interfaces directly with the SimGrid simu-
lation toolkit [12]. SimGrid is a versatile tool to study the behavior of large-scale
distributed systems such as grids, clouds or peer-to-peer systems. It has been
shown to be often much more scalable than ad hoc simulators [14,15] and to
handle simulations with up to two millions of processes [15] without resorting to

164 P. Bédaride et al.

a parallel machine. In this section we describe SMPI in greater detail, focusing
first on its general approach and then later highlighting some of these features.

Full simulation of a distributed application, including CPU and network emu-
lation, induces high overheads, and for many cases it can be even more resource
intensive than direct experimentation. This, coupled with the fact that a major
goal in many simulations is to study the behavior of large-scale applications on
systems that may not be available to researchers, means that there is consider-
able interest in more efficient approaches. The two most widely applied of these
are off-line simulation and partial on-line simulation, both of which are available
through SMPI.

In off-line simulation or “post-mortem analysis” the application to be studied
is instrumented before being in a real-world environment. Data about the program
execution, including periods of computation, the start and end of any communica-
tion events, and possibly additional information such as the memory footprint at
various points in time, is logged to a trace file. These traces can then be “replayed”
in a simulated environment, considering different “what-if?” scenarios such as a
faster or slower network, or more or less powerful processors on some nodes. This
trace replay is usually much faster than direct execution, as the computation and
communications are not actually executed but abstracted as trace events. A num-
ber of tools [16–21], including SMPI, support the off-line approach.

Off-line simulation carries with it a number of caveats: It assumes that pro-
grams are essentially deterministic, and each node will execute the same sequence
of computation and communication events regardless of the order in which mes-
sages are received. A bigger challenge is that it is extremely difficult to predict
the result of changing the number of nodes–while there is considerable interest
and research in this area [17,22,23], the difficulty of predicting the execution
profile of programs in general, and the fact that both applications and MPI
implementations are likely to vary their behavior based on problem and message
size, suggests that reliably guaranteeing results that are accurate within any rea-
sonable bound may be impossible in the general case. Another problem with this
approach is that instrumentation of the program can add delays, particularly if
the program carries out large numbers of fine-grained network communications,
and if this is not carefully accounted for then the captured trace may not be
representative of the program in its “natural” state.

By contrast, the on-line approach relies on the execution of the program
within a carefully-controlled real-world environment: computational sections are
executed in full speed on the available hardware, but timing and delivery of
messages are determined by the simulation environment (in the case of SMPI
this is provided by SimGrid). This approach is much faster than full emulation
(although slower than trace replay), yet preserves the proper ordering of com-
putation and communication events. This is the standard approach for SMPI,
and a number of other simulation toolkits and environments also followed this
approach [3,24–26].

To support simulations at very large scale, SMPI allows for shadow execu-
tion and to trade off accuracy for simulation speed by benchmarking the execu-
tion of program blocks a limited number of time, while skipping these blocks later

Toward Better Simulation of MPI Applications 165

1-39 40-74 105-14475-104

1G
10G

Fig. 2. The graphene cluster: a hierarchical Ethernet-based cluster

on and inserting a computation time in the simulated system clock based on the
benchmarked value. This corrupts the solution produced by the application, but
for data independent applications (those whose behavior does not depend on the
results of the computations) this is likely to result in a reasonably accurate exe-
cution profile. A related technique, also provided by SMPI, is memory folding,
whereby multiple simulated processes can share a single copy of the same malloc’d
data structure. Again, this can corrupt results and potentially result in inconsis-
tent or illegal data values, but allows larger scale simulations than what would be
possible otherwise, and may be reasonable for a large class of parallel applications.
These features are disabled by default, and have to be enabled by an expert user by
adding annotations to the application source code. Potential areas for future work
include improving this process so that it can be semi-automated, andbuildingmore
sophisticated models based on benchmarked values.

4 A “Hybrid” Network Model

In this section, we report some issues that we encountered when comparing the
predictions given by existing models to real measurement on a commodity clus-
ter with a hierarchical Ethernet-based interconnection network. The observed
discrepancies motivate the definition of a new hybrid model building upon Log-
GPS and fluid models, that captures all the relevant effects observed during
this study. All the presented experiments were conducted on the graphene clus-
ter of the Grid’5000 experimental testbed [27,28]. This cluster comprises 144
2.53GHz Quad-Core Intel Xeon x3440 nodes spread across four cabinets, and
interconnected by a hierarchy of 10 Gigabit Ethernet switches (see Figure 2).

4.1 Point-to-Point Communication Model

As described previously in Section 2, models in the LogP family resort to piece-
wise linear functions to account for features such as protocol overhead, switch

166 P. Bédaride et al.

T3

Pr

Ps

T1

T2

(a) SMPI Asynchronous
mode (k ≤ Sa)

Ps

Pr

T2T4

T1

(b) SMPI Detached
mode (Sa < k ≤ Sd)

Ps

Pr

T4 T2

(c) SMPI Synchronous
mode (k > Sd)

Routine Condition Cost
MPI_Send k ≤ S T1

k > S max(T4, 0) + T2

MPI_Recv k ≤ S min(ts + T2 − tr, 0) + T3

k > S max(−T4, 0) + T2

If k ∈ Ii:{
T1 = o

(i)
s +kO

(i)
s T2 = L(i)+k/B(i)

T3 = o
(i)
r +kO

(i)
r T4 = tr−ts

(d) SMPI communication costs

Fig. 3. The ”hybrid” network model of SMPI in a nutshell

latency, and the overlap of computation and communication. In the LogGPS
model [9] the time spent in the MPI Send and MPI Recv functions is modeled as
a continuous linear function for small messages (o + kOs or o + kOr). Unfor-
tunately, as illustrated in Figure 4, this model is unable to account for the full
complexity of a real MPI implementation. The measurements presented in Figure
4 were obtained according to the following protocol: To avoid size and sequenc-
ing measurement bias, the message size is exponentially sampled from 1 byte to
100MiB. We ran two “ping” and one “ping-pong” experiments. The ping experi-
ments aim at measuring the time spent in the MPI Send (resp. MPI Recv) function
by ensuring that the receiver (resp. sender) is always ready to communicate. The
ping-pong experiment allows us to measure the transmission delay. We ran our
analysis on the whole set of raw measurements rather than on averaged values
for each message size to prevent behavior smoothing and variability information
loss. The rationale is to study the asynchronous part of MPI (from the appli-
cation point of view) without any a priori assumptions on where switching may
occur. This approach allows us to clearly identify different modes interpreted as
follows:

– Small (when k ≤ 1, 420): this mode corresponds to messages that fit in a
TCP packet and are sent asynchronously by the kernel. As it induces memory
copies, the duration significantly depends on the message size.

– Medium (when 1, 420 < k ≤ 32, 768 or 32, 768 < k ≤ 65, 536 = Sa): these
messages are still sent asynchronously but incur a slight overhead compared
to small messages, hence a discontinuity at k = 1420. The distinction at

Toward Better Simulation of MPI Applications 167

Fig. 4. MPI Send and MPI Recv duration as a function of message size

k = 32, 768 does not really correspond to any particular threshold on the
sender side but is visible on the receiver side where a small gap is noticed.
Accounting for it allows for a better linear fitting accounting for MPI/TCP
peculiarities.

– Detached (when 65, 536 < k ≤ 327, 680 = Sd): this mode corresponds to
messages that do not block the sender but require the receiver to post the
reception before the communication actually takes place.

– Large (when k > 327, 680): for such messages, both sender and receiver
synchronize using a rendez-vous protocol before sending data. Except for
the waiting time, the durations on the sender side and on the receiver side
are very close.

As illustrated by Figure 4, the duration of each mode can be accurately
modeled through linear regression. These observations justify the model imple-
mented in SMPI that is described in Figure 3. We distinguish three modes of
operation: asynchronous, detached, and synchronous. Each of these modes can
be divided in sub-modes when discontinuities are observed. The “ping” mea-
surements are used to instantiate the values of os, OS , or, and Or for small to
detached messages. By subtracting 2(or + k.Or) from the round trip time mea-
sured by the ping-pong experiment, and thanks to a piece-wise linear regression,
we can deduce the values of L and B. It is interesting to note that similar exper-
iments with MPI Isend and MPI Irecv show that modeling their duration by a
constant term o as was done in [9] is not a reasonable assumption neither for
simulation nor prediction purposes1.

While distinguishing these modes may be of little importance when simulat-
ing applications that only send particular message sizes, obtaining good predic-
tions in a wide range of settings, and without conducting custom tuning for every
simulated application, requires accurately accounting for all such peculiarities.
This will be exemplified in Section 5.
1 More information on how to instantiate the parameters of the SMPI model and about

the study of non-blocking operations is available at http://mescal.imag.fr/membres/
arnaud.legrand/research/smpi/smpi loggps.php

http://mescal.imag.fr/membres/arnaud.legrand/research/smpi/smpi_loggps.php
http://mescal.imag.fr/membres/arnaud.legrand/research/smpi/smpi_loggps.php

168 P. Bédaride et al.

4.2 Topology and Contention Model

For most network models, dealing with contention comes down to assuming one
of the simple single-port or multi-port models. In the single-port model each
node can communicate with only one other node at a time and messages are
queued, while in the multi-port model, each node can communicate with every
other node simultaneously without any slowdown. Both models oversimplify the
reality. Some flow-level models follow a bounded multi-port approach [29], i.e.,
the communication capacity of a node is limited by the network bandwidth it
can exploit, that better reflects the behavior of communications on wide area
networks. However, within a cluster or cluster-like environment the mutual inter-
actions between send and receive operations cannot safely be ignored.

To quantify the impact of network contention of a point-to-point communica-
tion between two processors in a same cabinet, we artificially create contention
and measure the bandwidth as perceived by the sender and the receiver. We
place ourselves in the large message mode where the highest bandwidth usage
is observed and transfer 4 MiB messages.

In a first experiment we increase the number of concurrent transfers from 1
to 19, i.e., half the size of the first cabinet. As the network switch is well dimen-
sioned, this experiment does not create contention: We observe no bandwidth
degradation on either the sender side or the receiver side. Our second experi-
ment uses concurrent MPI Sendrecv transfers instead of unidirectional transfers.
We increase the number of concurrent bidirectional transfers from 1 to 19 and
measure the bandwidth on the sender (Bs) and receiver (Br) side. A single-port
model, as assumed by LogP-based models, would lead to Bs + Br = B on aver-
age since both directions strictly alternate. A multi-port model, as assumed by
other delay models, would estimate that Bs +Br = 2×B since communications
would not interfere with each other. However, both fail to model what actually
happens, as we observe that Bs + Br ≈ 1.5 × B on this cluster.

We model this bandwidth sharing effect by enriching the simulated cluster
description. Each node is provided with three links: an uplink and a downlink,
so that send and receive operations share the available bandwidth separately in
each direction; and a specific limiter link, whose bandwidth is 1.5 × B, shared
by all the flows to and from this processor.

Preliminary experiments on other clusters show that this contention param-
eter seems constant for a given platform, with a value somewhere between 1
and 2. Such value somehow corresponds to the effective limitation due to the
card capacity and the protocol overhead. Determining this parameter requires
benchmarking each cluster as described in this section. Our set of experiments
is available on the previously indicated web page. We are currently working on a
more generic benchmarking solution that one could easily use to determine the
exact contention factor for any cluster.

This modification is not enough to model contention at the level of the whole
graphene cluster. As described in Figure 2, it is composed of four cabinets inter-
connected through 10Gb links. Experiments show that these links become limit-
ing when shared between several concurrent pair-wise communications between

Toward Better Simulation of MPI Applications 169

cabinets. This effect corresponds to the switch backplane and to the protocol
overhead and is captured by describing the interconnection of two cabinets as
three distinct links (uplink, downlink, and limiter link). The bandwidth of this
third link is set to 13 Gb as measured.

DownUp DownUp DownUp DownUp

10G
1G

1-39 40-74 105-14475-104

13G

10G

Limiter

...
1.5G
1G

Limiter

DownUp

Fig. 5. Modeling the graphene cluster: rectangles represent capacity constraints.
Grayed rectangles represent constraints involved in a communication from node to
node 40 to node 104.

The resulting topology is depicted on Figure 5 and is easily described in
a compact way within SimGrid. Since SimGrid, on which SMPI is based, is a
versatile simulator, incorporating further levels of hierarchy or more complex
interconnections if needed would be easy [30].

4.3 Collective Communications Model

Many MPI applications spend a significant amount of time in collective commu-
nication operations. They are thus crucial to application performance. Several
algorithms exist for each collective operation, each of them exhibiting very differ-
ent performance depending on various parameters such as the network topology,
the message size, and the number of communicating processes [31]. A given algo-
rithm can commonly be almost an order of magnitude faster than another in a
given setting and yet slower than this same algorithm in another setting. Every
widely-used MPI implementation thus provides several algorithms for each col-
lective operation and carefully selects the best one at runtime. For instance,
OpenMPI provides a dozen distinct algorithms for the MPI Alltoall function,
and the code to select the right algorithm for a given setting is several thousand
lines long. Note that the selection logic of the various MPI implementations is
highly dependent on the implementation and generally embedded deep within
the source code.

Our [in]validation experiments quickly highlighted the importance of adher-
ing as closely as possible to this logic. Hence SMPI now implements all the

170 P. Bédaride et al.

collective algorithms and selection logics of both OpenMPI and MPICH and
even a few other collective algorithms from Star MPI [31]. Deciding which selec-
tor and which algorithms are used can be specified from command line, which
allows users to test within simulation whether replacing a default algorithm by
another may help or not on a particular combination of platform/application.

5 Model [In]Validation Experiments

5.1 Methodology

All the experiments presented hereafter have been done on the graphene cluster
that was described in the previous section. The studied MPI applications were
compiled and linked using OpenMPI 1.6. For comparison with simulated execu-
tions purposes, we instrumented these applications with TAU [32]. The simulated
executions have been performed either off-line or on-line as SMPI supports both
modes. The file describing the simulated version of the graphene cluster was
instantiated with values obtained independently from the studied applications.
We used the techniques detailed in the previous section to obtain these values.
In what follows we compare execution times measured on the graphene cluster
to simulated times obtained with the hybrid model proposed in Section 4, the
LogGPS model that supersedes all the delay-based models, and a fluid model
that is a basic linear flow-level model whose validation for WAN studies was
done in [10].

We did not limit our study to overall execution times as they may hide
compensation effects, and do not provide any information as to whether an
application is compute or communication bound or how different phases may or
may not overlap. Our experimental study makes use of Gantt charts to compare
traces visually as well as quantitatively. We rely on CSV files, R, and org-mode
to describe the complete workflow going from raw data the graphs presented in
this paper, ensuring full reproducibility of our analysis.

5.2 NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) are a suite of programs commonly used to
assess the performance of parallel platforms. In this article, we only report results
for two of these applications but results for other applications are also available
in [33]. The LU benchmark is an iterative computation of a LU factorization.
At each iteration, it exhibits a communication scheme that forms a wave going
from the first process to the last one and back. The second studied benchmark is
CG (Conjugate Gradient). It has a complex communication scheme that is com-
posed of a large number of point-to-point transfers of small messages. Moreover,
processors are organized in a hierarchy of groups. At each level communications
occur within a group and then between groups. This benchmark is then very
sensitive to the mapping of the MPI processes on to the physical processors with
regard to network organization, particularly in non-homogeneous topologies. For

Toward Better Simulation of MPI Applications 171

this series of experiments, we use the off-line simulation capacities of SMPI, i.e.,
execution traces of the benchmark are first acquired from a real system and then
replayed in a simulated context.

Both benchmarks are evaluated with two class of instances, B, and C, where
C is the larger instance. A classical goal when studying the performance of an
application or of a new cluster is to evaluate how well the application scales for a
given instance. Figure 6 shows the speedup as measured on the graphene cluster
and as obtained with the studied models. For every experiment we ensured that
both simulated and real node mapping corresponds to each others.

For the LU benchmark we can see that for the class B instances, the hybrid
and LogGPS model provide an excellent estimation of speedup evolution. As
could be expected, the fluid model provides an over-optimistic estimation, which
can be explained by its poor ability to accurately model transmission time
of small messages and computation/communication overlap. For the class C
instance, although the hybrid model provides a slightly better estimation than
the LogGPS model, both predict an optimistic scaling of this application. We
think, this can be explained by the fact that none of these models include a
noise component. Indeed, the communication pattern of LU is very sensitive to
noise as each process has to wait for the reception of a message before sending
its own data. Such a phenomenon is given by Figure 7 that shows a period of 0.2
seconds of the execution of the LU benchmark with 32 processes. The upper part

B C

q

q

q

q
q

q
q

qqq

q

q

q

q

q

q

q
q

q

q

25

50

75

10

15

20

25

30

LU
C

G

6432 128168 6432 128168
Number of nodes

S
pe

ed
up

Model
q Real

Hybrid

LogGPS

Fluid

qqq

Network collapse

Fig. 6. Comparison between simulated and actual execution times for three NAS par-
allel benchmarks

172 P. Bédaride et al.

of this figure displays the actual execution while the lower corresponds to the
simulation of the same phase with the hybrid model. Deterministic models such
as LogGPS or hybrid slightly underestimate these synchronization phases and
small delay adds up, which hinders the application scalability. However, Figure 7
clearly shows that despite the small time scale, the simulation correctly renders
the general communication pattern of this benchmark and that Figure 6 does
not hide a bad, but lucky, estimation of each component of the execution time.

Fig. 7. Part of the Gantt chart of the execution of the LU benchmark with 32 processes.
The upper part displays the actual execution while the lower is the simulation with
the hybrid model. Black areas comprise thousands wave-structured micro messages.

The results obtained for the CG benchmark are more discriminating. Indeed,
this benchmark transfers messages that never fall in the large category. As can
be observed, both the LogGPS and fluid models fail to provide good estimations
and largely underestimate the total time. Our hybrid model produces excellent
estimation except on the class B instance with 128 nodes. To determine if the
source of this gap comes from a bad estimation by the model or a problem
during the actual execution, we compared more carefully the two traces. Our
main suspect was the actual execution, which is confirmed by the Gantt chart
presented in Figure 8.

The execution time on the class B instance is 14.4 seconds while the pre-
diction of the hybrid model is only of 9.9 seconds. We can see two outstanding
zones of MPI Send and MPI Wait. Such operations typically take few microsec-
onds to less than a millisecond. Here they take 0.2 seconds. Our guess is that,
due to a high congestion, the switch drops packets and slows down one (or sev-
eral) process to the point where it stops sending until a timeout of .2 seconds is
reached. Because of the communication pattern, blocking one process impacts
all the other processes. This phenomenon occurs 24 times leading to a delay
of 4.86 seconds. Without this bad behavior, the real execution would take 9.55
seconds, which is extremely close to the 9.85 seconds prediction of the hybrid
model and would allow the effective speedup to match perfectly its prediction.
The same phenomenon is also present for class C although it is less noticeable.
In both cases, the speedup shape predicted by the hybrid model is non-trivial
since it comprises a plateau from 32 to 64 nodes. Such shape can actually be

Toward Better Simulation of MPI Applications 173

Fig. 8. Two seconds Gantt-chart of the real execution of a class B instance of CG for
128 process

well explained by the hierarchical structure of its communication pattern and
how it maps to the network topology. The LogGPS model fails at modeling such
aspects and would predict an excellent scaling.

Although we do not know for sure yet, we think the timeout issues we encoun-
tered could be somehow similar to what is known as the TCP incast problem
and which has been observed in cloud environments [34]. Such delays are linked
to the default TCP re-transmission timeout, which is equal to .2s by default
in Linux. Although such value has recently been decreased from 1s to .2s to
adapt with recent evolution of Internet characteristics, it remains inadequate for
a cluster. Such protocol collapse would clearly need to be fixed in a production
environment and we are currently investigating whether decreasing the TCP re-
transmission timeout to a drastically smaller value than .2 seconds would help
or not as it is not clear that HPC variants of TCP would really help solving such
issue.

5.3 Collective Communications

The NAS parallel benchmarks do not heavily rely on MPI collective commu-
nication primitives but instead implement a static communication pattern. We
conduct the (in)validation with the study of an isolated MPI collective operation
at a time. On medium size clusters, simple operations like broadcast only incur
minor network contention toward the end of the operation and may thus be cor-
rectly predicted with simple models like LogGPS. Therefore, although we con-
ducted similar studies for most commonly used operations, we only report the
results for the MPI Alltoall function as it is the most likely to be impacted by
network contention. Here we aim at assessing the validity of contention modeling
as the message size varies rather than the impact of using different algorithms.
To this end, although we extended SMPI so that it implements all the collec-
tive algorithms and selection logics of both OpenMPI and MPICH, we enforce
the use of a single algorithm, i.e., the pairwise-exchange algorithm [35], for all

174 P. Bédaride et al.

message sizes. We ran the experiment five times in a row and only kept the best
execution time for each message size. Indeed, we noticed that the first commu-
nication is always significantly slower than the subsequent ones, which tends to
indicate that TCP requires some warm-up time. This phenomenon has also been
noticed in experiments assessing the validity of the BigSIM simulation toolkit,
where the same workaround was applied.

q

q

q

q

q

q

q

q

q

q

q

q

medium large

0.01

0.10

1.00

0.1

1.0

10.0

4 8 16 32 64 128 4 8 16 32 64 128
Number of MPI Processes

D
ur

at
io

n
(s

ec
on

ds
)

Model
q Real

Hybrid

LogGPS

Fluid

Network collapse

Fig. 9. Comparison between simulated and actual execution times for the
MPI Alltoall operation

Figure 9 shows (in logarithmic scale) the evolution of simulated and actual
execution times for the MPI Alltoall operation when the number of MPI pro-
cesses varies for the three network models. Results are presented for two mes-
sage sizes: medium messages of 100 kiB and large messages of 4 MiB. We can
see that for large messages, the hybrid and fluid models both achieve excellent
predictions (within 10%). Unsurprisingly, the LogGPS model is overly optimistic
in such setting and completely underestimates the effects of network contention.
Its prediction error can be up to a factor of 4 when 128 processors are involved
in the All-to-All operation.

For medium messages, the hybrid model is again the best contender, with a
low prediction error for up to 64 nodes, while the LogGPS model is again too
optimistic. For such a message size, the lack of latency and bandwidth correc-
tion factors in the fluid model leads to a clear underestimation of the execution
time. Interestingly, when 128 processes are involved in the collective communi-
cation, the actual execution time increases dramatically while simulated times
continue to follow the same trend. The reason for such a large increase can again
be explained by massive packet dropping in the main switch that leads to time-
outs, and unexpected re-emissions, hence incurring significant delays compared
to usual transmission time. Modeling such phenomenon would probably be quite

Toward Better Simulation of MPI Applications 175

difficult and of little interest since fixing this problem on the real platform would
be much more useful.

6 Simulating a Real Application

Developing a research prototype that allows for simulation of a few benchmarks
already requires a lot of efforts and is useful to demonstrate the effectiveness of
an idea. However, it does not allow others to build upon it. Therefore, we also
ensured SMPI could also be used to simulate complex real applications such as
the full LinPACK suite [36], Sweep3D [37], or BigDFT, which is an open-source
Density Functional Theory (DFT) massively parallel electronic structure code
[38], and the geodynamics application SpecFEM3D [39], which is part of the
PRACE benchmark. SMPI also is tested upon 80% of the MPICH2 test suite
and against a large subset of the MPICH3 test suite every night. We can thus
claim that SMPI is not limited to toy applications but can effectively be used
for the analysis of real scientific applications.

In this section we aim at demonstrating the capacity of SMPI to simulate a
real, large, and complex MPI application. To this end, we use BigDFT, which is
the sole electronic structure code based on systematic basis sets which can use
hybrid supercomputers and is able to scale particularly well (95% of efficiency
with 4096 nodes on Curie [40]). This is why it is one of the eleven real scientific
applications that have been selected in the Mont-Blanc project [2] to assess the
potential of low-power embedded components based clusters to address future
Exascale HPC needs. One of the objectives of the Mont-Blanc project is thus
to develop prototypes of HPC clusters using low power commercially available
embedded technology such as ARM processors and Ethernet technologies.

The first Mont-Blanc prototype is expected to be available during the year
2014. It will be using Samsung Exynos 5 Dual Cortex A15 processors with an
embedded Mali T604 GPU and will be using Ethernet for communication. In
order to start evaluating the applications before 2014, a small cluster of ARM
system on chip was built. It is named Tibidabo and is hosted at the Barcelona
Supercomputing Center. Tibidabo [41] is an experimental HPC cluster built
using NVIDIA Tegra2 chips, each a dual-core ARM Cortex-A9 processor. The
PCI Express support of Tegra2 is used to connect a 1Gb Ethernet NIC, and
the board are interconnected hierarchically using 48-port 1 GbE switches. The
results we present in this section have been obtained using this platform.

For our experiments, we disable the OpenMP and GPU extensions at compile
time to study behaviors related to MPI operations. BigDFT alternates between
regular computation bursts and important collective communications. Moreover
the set of collective operations that is used may completely change depending
on the instance, hence the need to use online simulation. In the following exper-
iments, we used MPICH 3.0.4 [35] and Extrae [42] for runtime incompatibility
issues between OpenMPI, Tau and BigDFT. Last, while this application can
be simulated by SMPI without any modification to the source code, its large
memory footprint means that running the simulation on a single machine would

176 P. Bédaride et al.

Tibidabo

q
q

q

q

q

50

100

S
m

all

8 16 32 64 128
Number of nodes

S
pe

ed
up

Model
q Real

Hybrid

LogGPS

Fluid

Fig. 10. Evaluating scalability of BigDFT on Tibidabo both through real executions
and simulation. The LogGPS model fails to model the slowdown incurred by the hier-
archical and irregular network topology.

require an improbably large amount of RAM. Applying the memory folding and
shadow execution techniques mentioned in Section 3 and detailed in [11], we
were able to simulate the execution of BigDFT with 128 processes, whose peak
memory footprint is estimated to 71 GiB, on a single laptop using less than
2.5GB of memory. Such memory requirement could be further improved with
additional manual annotations but it was sufficient for our needs.

Figure 10 shows the comparison of the speedup evolution as measured on
the tibidabo cluster on a small instance. This instance has a relatively low com-
munication to computation ratio (around 20% of time is spent communicat-
ing when using 128 nodes and the main used operations are MPI Alltoall,
MPI Alltoallv, MPI Allgather, MPI Allgatherv and MPI Allreduce) despite
the slow computations of tibidabo. This instance is thus particularly difficult
to model and is expected to have a limited scalability, which one may want to
observe in simulation first to avoid wasting resources or to assess the relevance of
upgrading hardware. As expected, the LogGPS model predicts an over-optimistic
perfect scaling whereas both the fluid and the hybrid models succeed in account-
ing for the slowdown incurred by the hierarchical and irregular network topology
of this prototype platform. We think this kind of observation really questions
the use of the LogGPS model for scalability studies.

To further demonstrate the usability of our tool, we want to mention that
simulating 64 nodes of tibidabo, which is made of relatively slow ARM proces-
sors, on a Xeon 7460 with partial on-line simulation takes twice as less time (10
minutes) than running the code for real (20 minutes).

Toward Better Simulation of MPI Applications 177

7 Related Work

Packet-level network simulations are usually implemented as discrete-event sim-
ulations with events for packet emission or reception as well as network protocol
events. Such simulations reproduce the real-world communication behavior down
to movements of individual packets. Some tools following this approach, e.g.,
NS2, NS3, or OMNet++, have been widely used to design network protocols or
understand the consequences of protocol modifications [43]. However, such fine-
grain network models are difficult to instantiate with realistic parameter values
for large-scale networks and generally suffer from scalability issues. While par-
allel discrete-event simulation techniques [4,44] may speed up such simulations,
the possible improvements remain quite limited.

Some projects model MPI collective communications with simple analytic
formulas [16,18]. This allows for quick estimations and may provide a reason-
able approximation for simple and regular collective operations, but is unlikely
to accurately model the complex optimized versions that can be found in most
MPI implementations. An orthogonal approach is to thoroughly benchmark col-
lective operations to measure the distribution of communication times with
regard to the message size and number of concurrent flows. Then, these dis-
tributions are used to model the interconnection network as a black box [45].
This approach has several drawbacks. First, it does not accurately model commu-
nication/computation overlap. Second, it cannot take the independence of some
concurrent communications into account. Third, it provides little to no informa-
tion on how the performance of collective operations could be improved. Finally,
it does not allow for performance extrapolation on a larger machine with similar
characteristics and it provides little insight into the causes of poor performance.
A third approach consists in tracing the execution of collective operations and
then replaying the obtained trace using one of the aforementioned delay mod-
els [4,16–18]. However, most tools [16–18,24] use a very basic network topology
model that does not account for the complexity of modern platforms. Further-
more, current implementations of the MPI standard dynamically select from up
to a dozen different communication algorithms when executing a collective oper-
ation depending on message size and on the number of involved nodes. Thus,
using the right algorithm becomes critical when trying to predict performance.

Studying the behavior of complex HPC applications or operations and char-
acterizing HPC platforms through simulation has been at the heart of many
research projects and tools for decades. Such tools differ by their capabilities,
their structure, and by the network models they implement. BigSIM [4], LAPSE
[24], MPI-SIM [25], or the work in [26] rely on simple delay models (affine point-
to-point communication delay based on link latency and bandwidth). Other
tools, such as Dimemas [16], LogGOPSim [17], or PHANTOM [20] use variants
of the LogP model to simulate communications. Note that BigSIM also offers an
alternate simulation mode based on a complex and slow packet-level simulator.
This approach is also followed by MPI-NeTSim [3] that relies on OMNeT++.
Finally PSINS [18] and PEVPM [45] provide complex custom models derived
from intensive benchmarking to model network contention.

178 P. Bédaride et al.

8 Conclusion and Future Work

In this paper, we demonstrated that accurate modeling and performance pre-
diction for a wide range of parallel applications requires proper consideration
of many aspects of the underlying communication architecture, including the
breakdown of collective communications into their component point-to-point
messages, the interconnect topology, and contention between competing mes-
sages that are sent simultaneously over the same link. Even relatively minor
inaccuracies may compromise the soundness of the simulation, yet none of the
models previously used in the literature give due consideration to these fac-
tors. We described the implementation of a proposed hybrid network model that
improves on this situation within SMPI, and showed that SMPI-based simula-
tions do a better job of tracking real-world behavior than those implemented in
competing simulation toolkits.

Our priority in this work was the validation of the model at a small scale
and for TCP over Ethernet networks. However, we also believe that SMPI will
prove very useful to application developers by allowing them to debug parallel
applications and study the impact of selecting different collective communication
algorithms without wasting cluster resources. It also provides a good comparison
point that helps determine whether or not the platform and application behave
as expected. Previous models are expected to provide over optimistic evaluations
and are thus of little use. Finally, we think this tool will prove very useful to
efforts such as the European Mont-Blanc project [2,41], which aims at prototyp-
ing exascale platforms using low-power embedded processors interconnected by
Ethernet. A next step will be to analyze its adequacy for simulating larger plat-
forms when such machines become available for benchmarking purposes. The
study should then extend to other kinds of interconnects (such as InfiniBand)
and more complicated topologies (e.g., torus or fat trees).

As a base line, we advocate for an open-science approach, which should enable
other scientists to reproduce the experiments done in this paper. For that pur-
pose, the traces and scripts used to produce our analysis are available [46].
Accordingly, SMPI and all the software stack are provided as open-source soft-
ware available for download from the SimGrid website: http://simgrid.gforge.
inria.fr/.

Acknowledgments. This work is partially supported by the SONGS ANR project
(11-ANR-INFRA-13), the CNRS PICS N◦ 5473, the European Mont-Blanc project
(European Community’s Seventh Framework Programme [FP7/2007-2013] under grant
agreement no 288777). Experiments presented in this paper were carried out using a
PRACE (European Community funding under grants RI-261557 and RI-283493) pro-
totype and the Grid’5000 experimental testbed, being developed under the INRIA
ALADDIN development action with support from CNRS, RENATER and several Uni-
versities as well as other funding bodies (see https://www.grid5000.fr). We would also
like to thank Luigi Genovese, main developer of BigDFT, who helped us with porting
this code on top of SMPI and using interesting problem instances.

http://simgrid.gforge.inria.fr/
http://simgrid.gforge.inria.fr/
https://www.grid5000.fr

Toward Better Simulation of MPI Applications 179

References

1. TOP500 supercomputer sites. http://top500.org
2. Mont-Blanc: European Approach Towards Energy Efficient High Performance:

Montblanc. http://www.montblanc-project.eu/
3. Penoff, B., Wagner, A., Tüxen, M., Rüngeler, I.: MPI-NeTSim: A network simula-

tion module for MPI. In: Proc. of the 15th IEEE Intl. Conference on Parallel and
Distributed Systems, Shenzen, China (December 2009)

4. Zheng, G., Kakulapati, G., Kale, L.: BigSim: A Parallel Simulator for Performance
Prediction of Extremely Large Parallel Machines. In: Proc. of the 18th Interna-
tional Parallel and Distributed Processing Symposium, Santa Fe, NM (April 2004)

5. Lucio, G.F., Paredes-farrera, M., Jammeh, E., Fleury, M., Reed, M.J.: Opnet mod-
eler and ns-2: Comparing the accuracy of network simulators for packet-level anal-
ysis using a network testbed. In: Proc. of the 3rd WEAS International Conference
on Simulation, Modelling and Optimization, ICOSMO, pp. 700–707 (2003)

6. Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K.E., Santos, E., Sub-
ramonian, R., von Eicken, T.: LogP: Towards a Realistic Model of Parallel Com-
putation. In: Proc. of the fourth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPOPP), San Diego, CA, pp. 1–12 (1993)

7. Alexandrov, A., Ionescu, M.F., Schauser, K.E., Scheiman, C.: LogGP: Incorporat-
ing Long Messages Into the LogP Model - One Step Closer Towards a Realistic
Model for Parallel Computation. In: Proc. of the 7th ACM Symp. on Parallel
Algorithms and Architectures (SPAA), Santa Barbara, CA, pp. 95–105 (1995)

8. Kielmann, T., Bal, H.E., Verstoep, K.: Fast Measurement of LogP Parameters for
Message Passing Platforms. In: Rolim, J.D.P. (ed.) IPDPS-WS 2000. LNCS, vol.
1800, pp. 1176–1183. Springer, Heidelberg (2000)

9. Ino, F., Fujimoto, N., Hagihara, K.: LogGPS: a Parallel Computational Model for
Synchronization Analysis. In: Proc. of the eighth ACM SIGPLAN Symposium on
Principles and Practices of Parallel Programming (PPoPP), Snowbird, UT, pp.
133–142 (2001)

10. Velho, P., Schnorr, L., Casanova, H., Legrand, A.: On the Validity of Flow-level
TCP Network Models for Grid and Cloud Simulations. ACM Transactions on Mod-
eling and Computer Simulation 23(4), 23 (2013)

11. Clauss, P.N., Stillwell, M., Genaud, S., Suter, F., Casanova, H., Quinson, M.: Single
Node On-Line Simulation of MPI Applications with SMPI. In: Proc. of the 25th
IEEE Intl. Parallel and Distributed Processing Symposium (IPDPS), Anchorage,
AK (May 2011)

12. Casanova, H., Legrand, A., Quinson, M.: SimGrid: a Generic Framework for Large-
Scale Distributed Experiments. In: Proc. of the 10th IEEE International Confer-
ence on Computer Modeling and Simulation, Cambridge, UK (March 2008)

13. Desprez, F., Markomanolis, G.S., Suter, F.: Improving the Accuracy and Efficiency
of Time-Independent Trace Replay. In: Proc. of the 3rd International Workshop
on Performance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS), Salt Lake City, UT (November 2012)

14. Donassolo, B., Casanova, H., Legrand, A., Velho, P.: Fast and Scalable Simulation
of Volunteer Computing Systems Using SimGrid. In: Proc. of the Workshop on
Large-Scale System and Application Performance (LSAP), Chicago, IL (June 2010)

15. Quinson, M., Rosa, C., Thiéry, C.: Parallel simulation of peer-to-peer systems. In:
Proceedings of the 12th IEEE International Symposium on Cluster Computing
and the Grid (CCGrid 2012). IEEE Computer Society Press (May 2012)

http://top500.org
http://www.montblanc-project.eu/

180 P. Bédaride et al.

16. Badia, R.M., Labarta, J., Giménez, J., Escalé, F.: Dimemas: Predicting MPI Appli-
cations Behaviour in Grid Environments. In: Proc. of the Workshop on Grid Appli-
cations and Programming Tools (June 2003)

17. Hoefler, T., Siebert, C., Lumsdaine, A.: LogGOPSim - Simulating Large-Scale
Applications in the LogGOPS Model. In: Proc. of the ACM Workshop on Large-
Scale System and Application Performance, Chicago, IL, pp. 597–604 (June 2010)

18. Tikir, M.M., Laurenzano, M.A., Carrington, L., Snavely, A.: PSINS: An Open
Source Event Tracer and Execution Simulator for MPI Applications. In: Sips,
H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 135–148.
Springer, Heidelberg (2009)

19. Núñez, A., Fernández, J., Garcia, J.D., Garcia, F., Carretero, J.: New Techniques
for Simulating High Performance MPI Applications on Large Storage Networks.
Journal of Supercomputing 51(1), 40–57 (2010)

20. Zhai, J., Chen, W., Zheng, W.: PHANTOM: Predicting Performance of Parallel
Applications on Large-Scale Parallel Machines Using a Single Node. In: Proc. of the
15th ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming,
pp. 305–314 (January 2010)

21. Hermanns, M.A., Geimer, M., Wolf, F., Wylie, B.: Verifying Causality between
Distant Performance Phenomena in Large-Scale MPI Applications. In: Proc. of
the 17th Euromicro International Conference on Parallel, Distributed and Network-
based Processing, Weimar, Germany, pp. 78–84 (February 2009)

22. Wu, X., Mueller, F.: ScalaExtrap: trace-based communication extrapolation for
SPMD programs. In: Proc. of the 16th ACM Symposium on Principles and Practice
of Parallel Programming (PPoPP 2011), pp. 113–122 (2011)

23. Carrington, L., Laurenzano, M., Tiwari, A.: Inferring large-scale computation
behavior via trace extrapolation. In: Large-Scale Parallel Processing Workshop
(IPDPS 2013) (2013)

24. Dickens, P., Heidelberger, P., Nicol, D.: Parallelized Direct Execution Simulation of
Message-Passing Parallel Programs. IEEE Transactions on Parallel and Distributed
Systems 7(10), 1090–1105 (1996)

25. Bagrodia, R., Deelman, E., Phan, T.: Parallel Simulation of Large-Scale Parallel
Applications. International Journal of High Performance Computing and Applica-
tions 15(1), 3–12 (2001)

26. Riesen, R.: A Hybrid MPI Simulator. In: Proc. of the IEEE International Confer-
ence on Cluster Computing, Barcelona, Spain (September 2006)

27. Technical specification of the network interconnect in the graphene cluster of
grid’5000. https://www.grid5000.fr/mediawiki/index.php/Nancy:Network

28. Bolze, R., Cappello, F., Caron, E., Daydé, M., Desprez, F., Jeannot, E., Jégou,
Y., Lantéri, S., Leduc, J., Melab, N., Namyst, R., Mornet, G., Primet, P., Quetier,
B., Richard, O., Talbi, E.G., Touche, I.: Grid’5000: a large scale and highly recon-
figurable experimental grid testbed. International Journal of High Performance
Computing Applications 20(4), 481–494 (2006)

29. Hong, B., Prasanna, V.K.: Adaptive Allocation of Independent Tasks to Maxi-
mize Throughput. IEEE Transactions on Parallel and Distributed Systems 18(10),
1420–1435 (2007)

30. Bobelin, L., Legrand, A., Márquez, D.A.G., Navarro, P., Quinson, M., Suter, F.,
Thiery, C.: Scalable Multi-Purpose Network Representation for Large Scale Dis-
tributed System Simulation. In: Proc. of the 12th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid), Ottawa, Canada, pp.
220–227 (May 2012)

https://www.grid5000.fr/mediawiki/index.php/Nancy:Network

Toward Better Simulation of MPI Applications 181

31. Faraj, A., Yuan, X., Lowenthal, D.: STAR-MPI: self tuned adaptive routines for
MPI collective operations. In: Proc. of the 20th Annual International Conference
on Supercomputing, ICS 2006, pp. 199–208. ACM, New York (2006)

32. Shende, S., Malony, A.D.: The Tau Parallel Performance System. International
Journal of High Performance Computing Applications 20(2), 287–311 (2006)

33. Bedaride, P., Genaud, S., Degomme, A., Legrand, A., Markomanolis, G., Quinson,
M., Stillwell, Mark, L., Suter, F., Videau, B.: Improving Simulations of MPI Appli-
cations Using A Hybrid Network Model with Topology and Contention Support.
Rapport de recherche RR-8300, INRIA (May 2013)

34. Chen, Y., Griffith, R., Liu, J., Katz, R.H., Joseph, A.D.: Understanding tcp incast
throughput collapse in datacenter networks. In: Proc. of the 1st ACM Workshop
on Research on Enterprise Networking, WREN 2009, pp. 73–82. ACM (2009)

35. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of collective communica-
tion operations in MPICH. International Journal of High Performance Computer
Applications 19(1), 49–66 (2005)

36. Dongarra, J.J., Luszczek, P., Petitet, A.: The linpack benchmark: Past, present,
and future. concurrency and computation: Practice and experience. Concurrency
and Computation: Practice and Experience 15 (2003)

37. Baker, R.S., Koch, K.R.: An sn algorithm for the massively parallel CM-200 com-
puter. Nuclear Science and Engineering 128(3), 312–320 (1998). http://wwwc3.
lanl.gov/pal/software/sweep3d/

38. Genovese, L., Neelov, A., Goedecker, S., Deutsch, T., Ghasemi, S.A., Willand, A.,
Caliste, D., Zilberberg, O., Rayson, M., Bergman, A., Schneider, R.: Daubechies
Wavelets as a Basis Set for Density Functional Pseudopotential Calculations. Jour-
nal of Chemical Physics 129, 014109 (2008)

39. Peter, D., Komatitsch, D., Luo, Y., Martin, R., Le Goff, N., Casarotti, E., Le Loher,
P., Magnoni, F., Liu, Q., Blitz, C., Nissen-Meyer, T., Basini, P., Tromp, J.: For-
ward and Adjoint Simulations of Seismic Wave Propagation on Fully Unstructured
Hexahedral Meshes. Geophysical Journal International 186(2), 721–739 (2011)

40. The curie supercomputer. http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm
41. Rajovic, N., Puzovic, N., Vilanova, L., Villavieja, C., Ramirez, A.: The low-power

architecture approach towards exascale computing. In: Proc. of the Second Work-
shop on Scalable Algorithms for Large-Scale Systems, ScalA 2011. ACM (2011)

42. Barcelona Supercomputer Center: Extrae. http://www.bsc.es/computer-sciences/
extrae/

43. Minkenberg, C., Rodriguez, G.: Trace-Driven Co-Simulation of High-Performance
Computing Systems Using OMNeT++. In: Proc. of the 2nd International Confer-
ence on Simulation Tools and Techniques (SimuTools), Rome, Italy (2009)

44. Mubarak, M., Carothers, C.D., Ross, R., Carns, P.: Modeling a million-node drag-
onfly network using massively parallel discrete-event simulation. In: High Perfor-
mance Computing, Networking Storage and Analysis, SC Companion, pp. 366–376
(2012)

45. Grove, D.A., Coddington, P.D.: Communication benchmarking and performance
modelling of mpi programs on cluster computers. Journal of Supercomputing
34(2), 201–217 (2005)

46. Companion of the PMBS’13 publication on SMPI. Hosted on Figshare. http://dx.
doi.org/10.6084/m9.figshare.833851, Online version of this article with access to the
experimental data and scripts (in the org source)

http://wwwc3.lanl.gov/pal/software/sweep3d/
http://wwwc3.lanl.gov/pal/software/sweep3d/
http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm
http://www.bsc.es/computer-sciences/extrae/
http://www.bsc.es/computer-sciences/extrae/
http://dx.doi.org/10.6084/m9.figshare.833851
http://dx.doi.org/10.6084/m9.figshare.833851

SESH Framework: A Space Exploration
Framework for GPU Application

and Hardware Codesign

Joo Hwan Lee1(B), Jiayuan Meng2, and Hyesoon Kim1

1 School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA
{joohwan.lee,hyesoon}@gatech.edu

2 Argonne National Laboratory, Leadership Computing Facility, Argonne, IL, USA
jmeng@alcf.anl.gov

Abstract. Graphics processing units (GPUs) have become increasingly
popular accelerators in supercomputers, and this trend is likely to con-
tinue. With its disruptive architecture and a variety of optimization
options, it is often desirable to understand the dynamics between poten-
tial application transformations and potential hardware features when
designing future GPUs for scientific workloads. However, current code-
sign efforts have been limited to manual investigation of benchmarks
on microarchitecture simulators, which is labor-intensive and time-
consuming. As a result, system designers can explore only a small por-
tion of the design space. In this paper, we propose SESH framework, a
model-driven codesign framework for GPU, that is able to automatically
search the design space by simultaneously exploring prospective appli-
cation and hardware implementations and evaluate potential software-
hardware interactions.

Keywords: SESH framework · SW/HW co-design · GPGPU · Space
exploration

1 Introduction

As demonstrated by the supercomputers Titan and Tianhe-1A, graphics pro-
cessing units (GPUs) have become integral components in supercomputers. This
trend is likely to continue, as more workloads are exploiting data-level parallelism
and their problem sizes increase.

A major challenge in designing future GPU-enabled systems for scientific
computing is to gain a holistic understanding about the dynamics between the
workloads and the hardware. Conventionally built for graphics applications,
GPUs have various hardware features that can boost performance if carefully
managed; however, GPU hardware designers may not be sufficiently informed
about scientific workloads to evaluate specialized hardware features. On the other
hand, since GPU architectures embrace massive parallelism and limited L1 stor-
age per thread, legacy codes must be redesigned in order to be ported to GPUs.
c© Springer International Publishing Switzerland 2014
S. Jarvis et al. (Eds.): PMBS 2013 Workshops, LNCS 8551, pp. 182–202, 2014.
DOI: 10.1007/978-3-319-10214-6 9

SESH Framework 183

Even codes for earlier GPU generations may have to be recoded in order to fully
exploit new GPU architectures. As a result, an increasing effort has been made
in codesigning the application and the hardware.

In a typical codesign effort, a set of benchmarks is proposed by applica-
tion developers and is then manually studied by hardware designers in order to
understand the potential. However, such a process is labor-intensive and time-
consuming. In addition, several factors challenge system designers’ endeavors to
explore the design space. First, the number of hardware configurations is explod-
ing as the complexity of the hardware increases. Second, the solution has to meet
several design constraints such as area and power. Third, benchmarks are often
provided in a specific implementation, yet one often needs to attempt tens of
transformations in order to fully understand the performance potential of a spe-
cific hardware configuration. Fourth, evaluating the performance of a particular
implementation on a future hardware may take significant time using simulators.
Fifth, the current performance tools (e.g., simulators, hardware models, profil-
ers) investigate either hardware or applications in a separate manner, treating
the other as a black box and therefore, offer limited insights for codesign.

To efficiently explore the design space and provide first-order insights, we pro-
pose SESH, a model-driven framework that automatically searches the design
space by simultaneously exploring prospective application and hardware imple-
mentations and evaluate potential software-hardware interactions. SESH rec-
ommends the optimal combination of application optimizations and hardware
implementations according to user-defined objectives with respect to perfor-
mance, area, and power. The technical contributions of the SESH framework
are as follows.

1. It evaluates various software optimization effects and hardware configura-
tions using decoupled workload models and hardware models.

2. It integrates GPU’s performance, area, and power models into a single frame-
work.

3. It automatically proposes optimal hardware configurations given multi facet
metrics in aspects of performance, area, and power.

We evaluate our work using a set of representative scientific workloads. A
large design space is explored that considers both application transformations
and hardware configurations. We evaluate potential solutions using various met-
rics including performance, area efficiency, and energy consumption. Then, we
summarize the overall insights gained from such space exploration.

The paper is organized as follows. In Section 2, we provide an overview of our
work. In Section 3, we introduce the integrated hardware models for power and
area. Section 4 describes the space exploration process. Evaluation methodology
and results are described in Sections 5 and 6, respectively. After the related work
is discussed in Section 7, we conclude.

184 J.H. Lee et al.

2 Overview and Background

The SESH framework is a codesign tool for GPU system designers and perfor-
mance engineers. It recommends the optimal combination of hardware config-
urations and application implementations. Different from existing performance
models or architecture simulators, SESH considers how applications may trans-
form and adapt to potential hardware architectures.

2.1 Overall Framework

As Figure 1 shows, the major components of the SESH framework include
(i) a workload modeling and transformation engine, (ii) a hardware modeling
and transformation engine, and (iii) a projection engine. Using the framework
involves the following work flow:

1. The user abstracts high level characteristics of the source code into a code
skeleton that summarizes control flows, potential parallelism, instruction

Workload
Input

Source
Code

Code
Skeletons

User Effort

Energy
Projection

Performance
Projection Area Projection

Projection Engine

SESH Framework

Optimal
Transformation &

Hardware

Workload Modeling &
Transformation Engine

Hardware Modeling &
Transformation Engine

Fig. 1. Framework Overview

��������	�
������
��������
�����

�����	��	�������

����������
1.  float A[N][K], B[K][M];�
2.  float C[N][M];�
3.  int i, j, k;�
4.  // nested for loop�
5.  for(i=0; i<N; ++i)�
6.  {�
7.  for(j=0; j<M; ++j)�
8.  {�
9.  float sum = 0;�
10.  for(k=0; k<K; ++k)�
11.  {�
12.  sum+=A[i][k]*B[k][j];�
13.  }�
14.  C[i][j] = sum;�
15.  }�
16.  }�

1.  float A[N][K], B[K][M]�
2.  float C[N][M]�
3.  /* the loop space */�
4.  forall i=0:N, j=0:M�
5.  {�
6.  /* computation w/t�
7.  * instruction count�
8.  */�
9.  comp 1�
10.  /* reduction loop */�
11.  reduce k = 0:K {�
12.  /* load */�
13.  ld A[i][k]�
14.  ld B[k][j]�
15.  comp 3�
16.  }�
17.  comp 5�
18.  /* store */�
19.  st C[i][j]�
20.  }�

Fig. 2. A pedagogical example of a code skeleton in the case of matrix multiplication.
A code skeleton is used as the input to our framework.

SESH Framework 185

mix, and data access patterns. An example code skeleton is shown in Figure 2.
This step can be automated by SKOPE [1], and the user can amend the out-
put code skeleton with additional notions such as for all or reduction.

2. Given the code skeleton and the specified power and area constraints, SESH
explores the design space by automatically proposing potential application
transformations and hardware configurations.

3. SESH projects the energy consumption and execution time for each com-
bination of transformations and hardware configurations, and recommends
the best solution according to user-specified metrics, without manual cod-
ing or lengthy simulations. Such metrics can be a combination of power,
area, and performance. For example, one metric can be ”given an area bud-
get, what would be the most power efficient hardware considering potential
transformations?”.

The SESH framework is built on top of existing performance modeling frame-
works. We integrated GROPHECY [2] as the GPU workload modeling and trans-
formation engine. We also adopted area and power models from previous work
on projection engine. Below we provide a brief description about them.

2.2 GROPHECY-Based Code Transformation Engine

GROPHECY [2], a GPU code transformation framework, has been proposed
to explore various transformations and to estimate the GPU performance of a
CPU kernel. Provided with a code skeleton, GROPHECY is able to transform the
code skeleton to mimic various optimization strategies. Transformations explored
include spatial and temporal loop tiling, loop fusion, unrolling, shared memory
optimizations, and memory request coalescing. GROPHECY then analytically
computes the characteristics of each transformation. The resulting characteristics
are used as inputs to a GPU performance model to project the performance
of the corresponding transformation. The best achievable performance and the
transformations necessary to reach that performance are then projected.

GROPHECY, however, relies on the user to specify a particular hardware
configuration. It does not explore the hardware design space to study how hard-
ware configurations would affect the performance or efficiency of various code
transformations. In this work, we extend GROPHECY with parameterized power
and area models so that one can integrate it into a larger framework that explores
hardware configurations together with code transformations.

2.3 Hardware Models

We utilize the performance model from the work of Sim et al. [3]. We make it
tunable to reflect different GPU architecture specifications. The tunable param-
eters are Register file entry count, SIMD width, SFU width, L1D/SHMEM size
and LLC cache size. The model takes several workload characteristics as its
inputs, including the instruction mix and the number of memory operations.

186 J.H. Lee et al.

We utilize the work by Lim et al. [4] for chip-level area and power mod-
els. They model GPU power based on McPAT [5] and an energy introspection
interface (EI) [6] and integrate the power-modeling functionality in MacSim [7],
a trace-driven and cycle-level GPU simulator. McPAT enables users to config-
ure a microarchitecture by rearranging circuit-level models. EI creates pseudo
components that are linked to McPAT’s circuit-level models and utilizes access
counters to calculate the power consumption of each component. We use this
model to estimate the power value for the baseline architecture configuration.
Then we adopt simple heuristics to estimate the power consumption for different
hardware configurations.

3 Exploratory, Multi Facet Hardware Model

In order to explore the hardware design space and evaluate tradeoffs, the SESH
framework integrates performance, power and area models, all parameterized
and tunable according to the hardware configuration. In this section, we first
describe the process to prepare the reference models about the NVIDIA GTX
580 architecture. These models include power and area models for chip. We then
integrate these models and parameterize them so that they can reflect changes
in hardware configurations.

3.1 The Reference Model for Chip-Level Power

To get reference values for chip-level power consumption, we use the detailed
power simulator in Section ??. As Hong and Kim [8] showed, the GPU power
consumption is not significantly affected by the dynamic power consumption
except the DRAM power values. Furthermore, the static power is often the
dominant factor for on-chip power consumption. Hence, to get the first-order
approximation of the GPU power model, we focus on the static power only.

To estimate the static power for a baseline architecture of NVIDIA GTX
580, we collect power statistics from a detailed power simulator [4]. The Sepia
benchmark [9] is used as an example input for the simulation. Note that the
choice of the benchmark does not affect significantly the value of static power.
In Sepia’s on-chip power consumption, the static power consumes 106.0 W while
the dynamic power consumes 50.0 W. The DRAM power is 52.0 W in Sepia,
although it is usually more than 90.0 W in other benchmarks. As a result, the
dynamic power accounts for 24.0% of Sepia’s the total power consumption of
the chip and DRAM. Taking the dynamic power into account will be included
in our future work.

The variation in power consumption caused by thermal changes is not modeled
for the purpose of simplicity. As measured in [8], we assume a constant temper-
ature of 340 K (67 ◦C) in the power model, considering that this operation-time
temperature is higher than the code-state temperature of 57 ◦C [8].

Figure 3 shows how much total power is consumed by each component accord-
ing our model. The GPU’s on-chip power is decomposed into two categories;

SESH Framework 187

0.3% 1.4% 0.7% 3.7%
11.1%

52.7%

17.6%

0.1% 1.2% 0.2% 3.7% 0.0% 0.0%
6.5%

0.3% 0.5%
0.0%

20.0%

40.0%

60.0%

Fig. 3. Power consumption for non-DRAM components

SM-private components and SM-shared components. The total on-chip power
consumption is 156.0 W. SM-private components accounts for 93 % (144.7 W) of
the overall power, and shared components between SMs account for 7% (11.4 W)
of the overall power. From all the SM-private components we model EX ALUs
and EX FPUs consume the most power (52.7% and 11.1%, respectively). SFU
(17.6%), LLC (6.5%), and RF (3.7%) also account for large portions of the overall
power consumption.

3.2 The Reference Model for Chip-Level Area

For the area model, we utilize the area outcome from energy introspection inte-
grated with MacSim [4]. The energy introspection interface in MacSim utilizes
area size to calculate power. It also estimates area sizes for different hardware
configurations. we use the area outcomes that are based on NVIDIA GTX 580.

0.5%0.2%0.6%0.8%1.0%

26.3%

1.7%0.5%0.1%0.1%4.5%0.7%0.7%

61.7%

0.6%0.1%
0.0%

20.0%

40.0%

60.0%

80.0%

1.3% 0.5% 1.5% 2.2% 2.6%

69.9%

4.6% 1.5% 0.2% 0.2%
12.0%

1.8% 1.8%
0.0%

20.0%

40.0%

60.0%

80.0%

Fig. 4. Area consumption for all non-DRAM components(top) and for SM-private
components(bottom)

188 J.H. Lee et al.

Figure 4 (top) shows the area breakdown of GTX 580 based on our area
model. The total area consumption of the chip is 3588.0 mm2. LLC (61.7%)
accounts for the majority of the chip area. Figure 4 (bottom) shows the break-
down of the area for SM-private components. The main processing part, 32 SPs
(EX ALUs and EX FPUs), occupy the largest portion of the area (69.9% and
2.6%, respectively). The L1D / SHMEM is the second largest module (12.0%).
SFU (4.6%) and RF (2.2%) also account for a large portion of area consumption.

3.3 Integrated, Tunable Hardware Model

Areatarget = Areabaseline × knobtarget
knobbaseline

(1)

Powertarget = Powerbaseline × knobtarget
knobbaseline

(2)

To estimate how changes in hardware configurations affect the overall power
consumption, we employ a heuristic that the per-component power consumption
and area scales linearly with the size and the number of components (e.g., dou-
bling the shared memory size would double its power consumption and also area).
Given a target hardware’s configuration, we can compute the per-component
area and power according to Equations (1) and (2), respectively, where knob
refers to the size or number of the component in the corresponding architec-
ture. The baseline data is collected as described in Sections 3.1 and 3.2. The
per-component metrics are then aggregated to project the system-level area and
power consumption.

According to our analysis in Figures 3 and 4, the major components consum-
ing power and area include the register files, ALUs, FPUs, SFUs, L1 cache size,
and the last level cache size. The quantities of these components become tunable
variables, or knobs, in the integrated model. Table 1 lists the knobs and the value
of knobbaseline in Equations (1) and (2). The area and power consumption of
other components are approximated as constant values obtained from modeling
NVIDIA GTX 580. These components are summarized in Table 2.

Table 1. Hardware components that are modeled as tunable knobs

Stage KNOB Default(NVIDIA GTX 580)

Per-SM
RF Register file entry count 32,768 / SM
ALU SIMD width 32 / SM
FPU SIMD width 32 / SM
SFU SFU width 4 / SM
L1D/SHMEM L1D size + SHMEM size 64KB / SM

Shared
LLC L2 Cache size 768KB

SESH Framework 189

Table 2. Hardware components that are modeled with constant area and power con-
sumption

Category Stage

Per-SM(w/ fixed number of SMs) Fetch, Decode, Schedule, Execution(except ALU, FPU,
SFU), MMU, Const$, Tex$

Shared 1 MemCon, 1 NoC, 1 DRAM

3.4 DRAM Power Model

DRAM power depends on memory access patterns; the number of DRAM row
buffer hits/misses can affect power consumption noticeably. However, these num-
bers can be obtained only from the detailed simulation, which often takes several
hours for each configuration (100s of software optimizations × 10s of hardware
configurations easily create 1000s of different configurations). To mitigate the
overhead, we use a simple empirical approach to compute the first-order estima-
tion of DRAM power consumption values.

PDRAM = MaxDynP × Trans Intensity

Max Trans Intensity
+ StatP (3)

The total DRAM power (PDRAM) is computed by adding up the static power
(StatP) and dynamic power [8]. The dynamic power is computed as a fraction
of the maximum dynamic power (MaxDynP), which can only be reached in the
theoretical condition where every instruction generates a DRAM transaction.
The number of DRAM transactions per second on each SM is referred to as
DRAM transaction intensity, whose value is Max Trans Intensity under the
aforementioned theoretical condition.

Trans Intensity =
#DRAM Accesses

Exec time
(4)

In this work, the actual DRAM transaction intensity, Trans Intensity, is
approximated by Equation (4). The total number of DRAM transactions per
SM (#DRAM Accesses) and the execution time in seconds (Exec time) are
estimated values given by the performance model.

In order to construct Equation (3) as a function of the workload charac-
teristics, the values of StatP and MaxDynP

MAX Trans Intensity need to be obtained as
constant coefficients. We therefore use the power simulator to obtain the DRAM
power for SVM and Sepia in the Merge benchmarks [9] and solve for the values
of these two coefficients. Equation (5) represents the resulting DRAM model.

PDRAM = α × Trans Intensity + β (5)

where α = 1.6 × 10−6 and β = 24.4

190 J.H. Lee et al.

4 Space Exploration

Application transformations and hardware configurations pose a design space
that is daunting to explore. First, they are inter-related; different hardware con-
figurations may prefer different application transformations. Second, there are a
gigantic number of options. In our current framework, we explore each of them
independently and then calculate which combination yields the desired solution.
Note that this process is made possible largely because of the fast evaluation
enabled by modeling.

The application transformations explored include spatial and temporal loop
tiling, unrolling, shared memory optimizations, and memory request coalescing.
The hardware configurations explored include SIMD width and shared memory
size, which play significant roles in performance, area, and power. We plan to
explore more dimensions in our future work.

To compare different solutions, we utilize multiple objective functions that
represent different design goals. Those objective functions include the followings.

1. Shortest execution time
2. Minimal energy consumption
3. Largest performance per area

5 Methodology

5.1 Workloads

The benchmarks used for our evaluation and their key properties are summarized
in Table 3. HotSpot and SRAD are applications from the Rodinia benchmark
suite [10]. Stassuij is extracted from a DOE INCITE application performing
Monte Carlo calculations to study light nuclei [11,12]. It has two kernels: IspinEx
and SpinFlap. We separately evaluate each kernel of Stassuij and also evaluate
both kernels together. The sizes of matrices in Stassuij are according to real
input data. To reduce the space of code transformations to explore, for each
benchmark we set a fixed thread block size large enough to saturate wide SIMD.

HotSpot : HotSpot is an ordinary differential equation solver used in simu-
lating microarchitecture temperature. It has a stencil computation kernel with

Table 3. Workload properties

Benchmark Key Properties Input Size

HotSpot Structured grid. Iterative, self-dependent kernels. A deep
dependency chain among dependent kernels

1024 X 1024

SRAD Structured grid. Data dependency involves multiple
arrays; each points to different producer iterations

4096 X 4096

IspinEx Sparse linear algebra, A X B A : 132 X 132,
B : 132 X 2048

SpinFlap Irregular data exchange similar to spectral methods 132 X 2048
Stassuij Nested loops. Dependent parallel loops with different

shapes. Dependency involves indirectly accessed arrays
-

SESH Framework 191

structured grid. Kernels are executed iteratively, and each iteration consumes a
neighborhood of array elements. As a result, each iteration depends on the previ-
ous one. Programmers can utilize shared memory(ShM) by caching neighborhood
data for inter-thread data sharing. Folding, which assigns multiple tasks to one
thread, improves data reuse by allowing a thread to process more neighborhood-
gathering tasks. Fusing loop partitions across several iterations can be applied to
achieve better locality and reduce global halo exchanges. We also provide a hint
that indicates only one of the arrays used in double buffering is the necessary
output for the fused kernel. In our experiments, we fuse two dependent iterations
and use a 16 × 16 partition for the consumer loop. The thread block size is set
to 16 × 16.

SRAD : SRAD performs spectral removal anisotropic diffusion to an image. It
has two kernels: the first generates diffusion coefficients and the second updates
the image. We use a 16 × 16 thread block size and indicate the output array
that needs to be committed.

IspinEx : IspinEx is a sparse matrix multiplication kernel which multiplies
a 132 × 132 sparse matrix of real numbers with a 132 × 2048 dense matrix
of complex numbers. We provide a hint that the average number of nonzero
elements in one row of the sparse matrix is 14 in order to estimate the overall
workload size. Because the numbers of elements associated with different rows
may vary. we force a thread to process all elements in columns to balance the
workload among threads. We treat the real part and imaginal part of the complex
number as individual numbers and employ a 1 × 64 thread block size in our
evaluation. Due to irregularity in sparse data accesses, we provide a hint about
the average degree of coalescing, which is obtained from offline characterization
of the input data.

SpinFlap: SpinFlap exchanges matrix elements in groups of four. Each group
is scattered in a butterfly pattern in the same row, similar to spectral methods.
Which columns are to be grouped together is determined by values in another
array. SpinFlap is a memory-bounded kernel. By utilizing shared memory, pro-
grammers can expect performance improvement. There is data reuse by multiple
threads on the matrix, which are used for indirect indices for other matrices. The
performance can also be improved by folding. Performance is highly dependent
on the degree of coalescing, and it varies according to values of indirect indices.
To assess the degree of coalescing, we profiled the average data stride of indirect
indices and provide this hint to the framework. We assume a 12 × 16 thread
block size with no folding.

Stassuij(Fused): Fusion increases the reuse in shared memory. But since data
dependency caused by indirect indices in SpinFlap requires IspinEx to be par-
titioned accordingly, the loop index in IspinEx now becomes a value pointed
by indirect accesses in the fused kernel, introducing irregular strides that can
become un-coalesced memory accesses. We assume a thread block size of 16 ×
4 × 2 and provide a hint that indicates the output array.

192 J.H. Lee et al.

5.2 Evaluation Metric

To study how application performance is affected by code transformations and
architectural changes, we utilize metrics from previous work [3] to understand
the potential optimization benefits and the performance bottlenecks.

1. B serial : Benefits of removing serialization effects such as synchronization
and resource contention.

2. B itilp : Benefits of increasing inter-thread instruction-level parallelism
(ITILP). ITILP represents global ILP (ILP among warps).

3. B memlp : Benefits of increasing memory-level parallelism (MLP)
4. B fp : Benefits of improving computing efficiency. Computing efficiency rep-

resents the ratio of the floating point instructions over the total instructions.

6 Evaluation

While we have explored a design space with both code transformations and hard-
ware configurations, we present our results according to SIMD widths and shared
memory sizes in order to shed more light on hardware designs. We model 64
transformations for HotSpot, 64, 128 transformations for two kernels of SRAD,
576, 1728 and 2816 transformations for IspinEx, SpinFlap and Stassuij(Fused)
respectively.

6.1 SIMD Width

We evaluate different SIMD widths from 16 to 128. Figure 5 represents the
execution time, energy consumption, possible benefits and performance per area

Fig. 5. Execution time, energy consumption, possible benefits and performance per
area for optimal transformation for HotSpot on increasing SIMD width

SESH Framework 193

for optimal transformation for HotSpot with increasing SIMD width. The
performance-optimal SIMD width is 64 and the optimal SIMD width for mini-
mal energy consumption and maximal performance per area is 32, which is the
same as for NVIDIA GTX 580. The reason is that the increased inefficiency in
power and area is bigger than the benefit of shorter execution time, even though
minimal execution time helps reduce the energy consumption in general. Per-
formance increases from 16 to 64 but decreases from 64 to 128. The application
becomes more memory bound with increased SIMD width, and the benefit of less
computation time becomes smaller, which we can see from increasing B memlp.

Fig. 6. Comparison between optimal transformation with increasing SIMD width for
IspinEx(top) and SpinFlap(bottom)

For HotSpot, SRAD, and Stassuij, the optimal transformation remains the
same regardless of SIMD width and objective function. However, depending on
SIMD width, optimal transformation changes from 289 (16, 32, 64) to 370 (128)
for IspinEx and from 513 (16, 32) to 1210 (64, 128) for SpinFlap. Figures 6
compares the optimal transformation with increasing SIMD width for IspinEx
and SpinFlap. The optimal transformation on a narrow SIMD width is selected
because it incurs less computation, even though it incurs more memory traffic
due to un-coalesced access on a wide SIMD width than optimal transformation
on a wide SIMD width. However, the application becomes more memory bound
with increased SIMD width, therefore reducing the benefit of less computation.

The transformation ID we use in this paper can be different depending on
the degree of loop tiling, loop fusion, unrolling, shared memory optimizations,
and memory request coalescing. Figure 7 compares transformations 289 and
370 for IspinEx. Those two have same code structure; the only difference is
the decision of which loads to be cached or not. Transformation 370 utilizes
shared memory for the load ld cr[njp][ir], while transformation 289 doesn’t. The
difference between transformations 513 and 1210 for SpinFlap is also which loads
utilize shared memory or not.

194 J.H. Lee et al.

1 def i s p i n ex () {
2 . . .
3 f o r a l l j =0:nt , i r =0:ns∗2 {
4 . . .
5 reduce (f l o a t , +) n = 0 : avg j n td t {
6 . . .
7 ld cr [njp] [i r] // D i f f e r e n t on 289 & 370
8 . . .
9 }

10 . . .
11 }
12 }

Fig. 7. Comparison of transformations 289 & 370 for IspinEx

Table 4. Optimal SIMD width regarding minimal execution time, minimal energy
consumption and maximal performance per area

Benchmark Performance Energy Perf/Area

HotSpot 64 32 32
SRAD(first) 32 32 32
SRAD(second) 32 16 16
IspinEx 128 16 16
SpinFlap 128 16 128
Stassuij 32 16 32

The optimal SIMD width is different depending on workload objective func-
tions. Table 4 represents optimal SIMD width for HotSpot, SRAD, IspinEx,
SpinFlap and Stassuij regarding minimal execution time, minimal energy con-
sumption and maximal performance per area. We also find strong correlation
between minimal energy consumption and largest performance per area. Except
for SpinFlap and Stassuij, the optimal SIMD width for minimal energy con-
sumption and the one for largest performance per area are the same.

Considering source code transformation or not changes the optimal SIMD
width for SpinFlap. Table 5 compares the optimal SIMD width for SpinFlap
when using optimal transformation on NVIDIA GTX 580 or using optimal trans-
formation on each SIMD width. The optimal SIMD width for performance and
performance per area is 128 and the energy optimal SIMD width is 16 when we
consider source code transformation. However, 16 is the optimal SIMD width for
all objective functions when we do not consider source code transformation and
use the optimal transformation on NVIDIA GTX 580 instead. Figure 8 compares
the execution time, energy consumption and possible benefits for SpinFlap with
increasing SIMD width considering source code transformation or not.

In summary, increasing SIMD width helps performance. But the benefit of
large SIMD width degrades because of increased inefficiency in power and area,

Table 5. Optimal SIMD width for SpinFlap using fixed transformation or optimal
transformation on each SIMD width

Benchmark Performance Energy Perf/Area

Fixed 16 16 16
Variable 128 16 128

SESH Framework 195

Fig. 8. Execution time, energy consumption and possible benefits for optimal trans-
formation for SpinFlap with increasing SIMD width: (top) considering source code
transformation; (bottom) using fixed transformation

and the application becomes more memory bound with increased SIMD width.
The optimal SIMD width is depends on workload objective functions, with strong
correlation between minimal energy consumption and largest performance per
area. The optimal transformation changes depend on SIMD width for IspinEx
and SpinFlap. Considering source code transformation or not changes the opti-
mal SIMD width for SpinFlap.

6.2 Shared Memory Size

GPU’s shared memory is a software-managed L1 storage on an SM. A larger
shared memory would enable new transformations with more aggressive caching.
We evaluate shared memory sizes from 16 KB to 128 KB. The values of other
parameters remain constant.

The optimal transformation for HotSpot, SRAD and Stassuij and their per-
formance remain the same regardless of shared memory size. The reason is that
shared memory usage per SM for optimal transformations for these applications
is already less than 16 KB. Therefore, the performance per area for these appli-
cations decreases with increasing shared memory size.

For HotSpot and SRAD, none of the transformations are disabled even when
the shared memory size per SM is reduced to 16 KB. Such is not the case for
IspinEx, SpinFlap and Stassuij. Figure 9 presents the shared memory require-
ment for all transformations for Stassuij. Some transformation require less than
20 KB of shared memory, but other transformations require more than 80 KB
of shared memory. Therefore the number of valid transformations is different

196 J.H. Lee et al.

Fig. 9. Shared memory requirement for transformations for Stassuij

Table 6. Number of transformations available for IspinEx, SpinFlap, and Stassuij
depending on shared memory size

Benchmark 16 KB 48 KB 64 KB 128 KB

IspinEx 120 192 192 288
SpinFlap 432 1304 1304 1728
Stassuij 2240 2240 2240 2816

Fig. 10. Comparison between the optimal transformations when increasing shared
memory size for IspinEx(top) and SpinFlap(bottom)

depending on the shared memory size. Table 6 presents the number of trans-
formations available for IspinEx, SpinFlap and Stassuij depending on shared
memory size.

The optimal transformation for Stassuij remains the same regardless of shared
memory size since shared memory usage per SM for the optimal transformation
is less than 9 KB. However, the optimal transformation changes depending on
shared memory size for IspinEx and SpinFlap. New transformations become
available as we increase the shared memory size. The optimal transformation
changes from 281 (16 KB) to 289 (48, 64 KB), 317 (128 KB) for IspinEx, and
it changes from 513 (16, 48, 64 KB) to 756 (128 KB) for SpinFlap. Figure 10
compares the optimal transformation with increasing shared memory size for
IspinEx and SpinFlap. The difference between those transformations is which
loads utilize shared memory.

SESH Framework 197

Fig. 11. Execution time, energy consumption and possible benefits for optimal trans-
formation on increasing shared memory size for IspinEx(top) and SpinFlap(bottom)

Figure 11 represents the execution time and energy consumption for the
optimal transformations of IspinEx and SpinFlap with increasing shared mem-
ory size. When we consider code transformations, the optimal shared memory
size for all objective function for IspinEx is 128 KB. Without considering trans-
formations however, the optimal shared memory size is 48 KB. For SpinFlap,
the optimal shared memory size for energy and performance per area is 16 KB
and the performance-optimal shared memory size is 128 KB when we consider
source code transformation. Without considering transformations, the optimal
shared memory size remains 16 KB for all objective functions.

In summary, shared memory sizes determine the number of possible trans-
formations in terms of how the shared memory is used. For IspinEx, SpinFlap
and Stassuij, some transformations are disabled because of limitation of shared
memory size. These applications prefer either small shared memory or very large
shared memory, as we can see in Figure 9. For IspinEx and SpinFlap, the optimal
transformation changes depending on shared memory size since new transforma-
tions become available with increased shared memory size. Considering source
code transformations or not changes the optimal shared memory size for IspinEx
and SpinFlap.

6.3 Discussion

The findings from our model-driven space exploration is summarized below.

1. For a given hardware, the code transformation with minimal execution time
often leads to minimal energy consumption as well. This can be observed

198 J.H. Lee et al.

Fig. 12. Execution time and energy consumption of possible transformations of each
application on NVIDIA GTX 580. From top to bottom, HotSpot, SRAD (first) SRAD
(second), IspinEx, SpinFlap and Stassuij (Fused).

from Figure 12, which represents execution time and energy consumption of
possible transformations of each application on NVIDIA GTX 580.

2. The optimal hardware configuration depends on the objective function. In
general, performance increases with more resources (wider SIMD width or
bigger shared memory size). However, the performance benefit of more
resources may be outweighed by the cost of more resources in terms of energy
or area. Therefore, the SIMD width and shared memory size that are optimal
for energy consumption and performance per area are smaller than those for
performance. We also observe that the SIMD width and shared memory size
that minimize energy consumption also maximize performance per area.

3. The optimal transformation can differ across hardware configurations. The
variation in hardware configuration has two effects on code transformations:
it shifts the performance bottleneck, or it enables/disables potential trans-
formations because of resource availability. In the examples of IspinEx and
SpinFlap, a computation-intensive transformation becomes memory-bound
with wide SIMD; a new transformation that requires large L1 storage is
enabled when the shared memory size increases.

4. The optimal hardware configuration varies according to whether code trans-
formations are considered. For example, when searching for the performance-
optimal SIMD width for SpinFlap, the legacy implementation would suggest
a SIMD width of 16, while the performance-optimal SIMD width is 128 if
transformations are considered and would perform 2.6 × better. The optimal

SESH Framework 199

shared memory size would also change for IspinEx and SpinFlap by taking
transformations into account.

5. In order to gain performance, it is generally better to increase the SIMD
width rather than the shared memory size. Larger SIMD width increases
performance at the expense of area and power consumption. Larger shared
memory size does not have a significant impact on performance until it can
accommodate a larger working set, therefore enabling a new transforma-
tion; however, we found that a shared memory size of 48 KB is already able
to accommodate a reasonably sized working set in most cases. This coin-
cides with GPU’s hardware design trends from Tesla [13] to Fermi [14] and
Kepler [15]. Moreover, we found that energy-optimal shared memory size for
all evaluated benchmarks is less than 48 KB, which is the value for current
Fermi architecture.

Our work can be improved to enable broader space exploration in less time. A
main challenge in space exploration is the large number of possible transforma-
tions and architectural parameters. Instead of brute-force exploration, we plan
to build a feedback mechanism to probe the space judiciously. For example, if
an application is memory bound, the SESH framework can try transformations
that result in fewer memory operations but more computation, or hardware
configurations with large shared memory and smaller SIMD width.

7 Related Work

Multiple software frameworks are proposed to help GPU programming [16,
17]. Workload characterization studies [18,19] and parallel programming models
including PRAM, BSP, CTA and LogP are also relevant to our work [20,21].
These techniques do not explore the hardware design space.

To the best of our knowledge, there has been no previous work to study the
relationships between GPU code transformation and power reduction. Valluri
et al. [22] performed quantitative study of the effect of the optimizations by DEC
Alpha’s cc compiler. Brandolese et al. [23] explored source code transformation
in terms of energy consumption using the SimpleScalar simulator.

Modeling power consumption of CPUs has been widely studied. Joseph’s
technique relies on performance counters [24]. Bellosa et al. [25] also used per-
formance counters in order to determine the energy consumption and estimate
the temperature for a dynamic thermal management. Wu et al. [26] proposed
utilizing phasic behavior of programs in order to build a linear system of equa-
tions for component unit power estimation. Peddersen and Parameswaran [27]
proposed a processor that estimates its own power/energy consumption at run-
time. CAMP [28] used the linear regression model to estimate activity factor
and power; it provides insights that relate microarchitectural statistics to activ-
ity factor and power. Jacobson et al. [29] built various levels of abstract models
and proposed a systematic way to find a utilization metric for estimating power
numbers and a scaling method to evaluate new microarchitecture. Czechowski

200 J.H. Lee et al.

and Vuduc [30] studied relationship between architectural features and algo-
rithm characteristics. They proposed a modeling framework that can be used
for tradeoff analysis of performance and power.

While architectural studies and performance improvements with GPUs have
been explored widely, power modeling of GPUs has received little attention.
A few works use functional simulator for power modeling. Wang [31] extended
GPGPUSim with Wattch and Orion to compute GPU power. PowerRed [32],
a modular architectural power estimation framework, combined both analyti-
cal and empirical models; they also modeled interconnect power dissipation by
employing area cost. A few GPU power modeling works use a statistical linear
regression method using empirical data. Ma et al. [33] dynamically predicted the
runtime power of NVIDIA GeForce 8800 GT using recorded power data and a
trained statistical model. Nagasaka et al. [34] used the linear regression method
by collecting the information about the application from performance counters.
Tree-based random forest method was used on the works by Chen et al. [35] and
by Zhang et al. [36]. Since those works are based on empirical data obtained from
existing hardware, they do not provide insights in terms of space exploration.

Simulators have been widely used to search the hardware design space.
Generic algorithms and regression have been proposed to reduce the search
space by learning from a relatively small number of simulations [37]. Our work
extends their work by considering code transformations, integrating area and
power estimations, and employing models instead of simulations. Nevertheless,
their learning-based approach is complementary to our approach and may help
SESH framework prune the space as well.

8 Conclusions

We propose the SESH framework, a model-driven framework that automatically
searches the design space by simultaneously exploring prospective application
and hardware implementations and evaluate potential software-hardware inter-
actions. It recommends the optimal combination of application optimizations
and hardware implementations according to user-defined objectives with respect
to performance, area, and power. We explored the GPU hardware design space
with different SIMD widths and shared memory sizes, and we evaluated each
design point using four benchmarks, each with hundreds of transformations. The
evaluation criteria include performance, energy consumption, and performance
per area. Several codesign lessons were learned from the framework, and our find-
ings point to the importance of considering code transformations in designing
future GPU hardware.

References

1. Meng, J., Wu, X., Morozov, V.A., Vishwanath, V., Kumaran, K., Taylor, V., Lee,
C.-W.: SKOPE: A Framework for Modeling and Exploring Workload Behavior.
Argonne National Laboratory, Tech. Rep. (2012)

SESH Framework 201

2. Meng, J., Morozov, V., Kumaran, K., Vishwanath, V., Uram, T.: GROPHECY:
GPU Performance Projection from CPU Code Skeletons. In: SC 2011 (2011)

3. Sim, J.W., Dasgupta, A., Kim, H., Vuduc, R.: GPUPerf: A Performance Analy-
sis Framework for Identifying Performance Benefits in GPGPU Applications. In:
PPoPP 2012 (2012)

4. Lim, J., Lakshminarayana, N., Kim, H., Song, W., Yalamanchili, S., Sung, W.:
Power Modeling for GPU Architecture using McPAT. Georgia Institute of Tech-
nology. Tech. Rep. (2013)

5. Li, S., Ahn, J.H., Strong, R.D., Brockman, J.B., Tullsen, D.M., Jouppi, N.P.:
McPAT: an integrated power, area, and timing modeling framework for multicore
and manycore architectures. In: MICRO 42

6. Song, W.J., Cho, M., Yalamanchili, S., Mukhopadhyay, S., Rodrigues, A.F.: Energy
introspector: Simulation infrastructure for power, temperature, and reliability mod-
eling in manycore processors. In: SRC TECHCHON 2011 (2011)

7. MacSim, http://code.google.com/p/macsim/
8. Hong, S., Kim, H.: IPP: An Integrated GPU Power and Performance Model that

Predicts Optimal Number of Active Cores to Save Energy at Static Time. In: ISCA
2010 (2010)

9. Linderman, M.D., Collins, J.D., Wang, H., Meng, T.H.: Merge: a programming
model for heterogeneous multi-core systems. In: ASPLOS XIII

10. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Skadron, K.: A perfor-
mance study of general-purpose applications on graphics processors using CUDA.
Journal of Parallel and Distributed Computing (2008)

11. Pieper, S.C., Wiringa, R.B.: Quantum Monte Carlo calculations of light nuclei.
Annu. Rev. Nucl. Part. Sci. 51, 53 (2001)

12. Pieper, S.C., Varga, K., Wiringa, R.B.: Quantum Monte Carlo calculations of
A=9,10 nuclei. Phys. Rev. C 66, 044310-1:14 (2002)

13. NVIDIA Corporation: GeForce GTX 280 specifications (2008), http://www.nvidia.
com/object/product geforce gtx 280 us.html

14. NVIDIA, Fermi: Nvidia’s next generation cuda compute architecture, http://www.
nvidia.com/fermi

15. NVIDIA’s next generation CUDA compute architecture: Kepler GK110. NVIDIA
Corporation (2012)

16. Jablin, T.B., Prabhu, P., Jablin, J.A., Johnson, N.P., Beard, S.R., August, D.I.:
Automatic CPU-GPU communication management and optimization. In: PLDI
2011 (2011)

17. Jablin, T.B., Jablin, J.A., Prabhu, P., Liu, F., August, D.I.: Dynamically managed
data for cpu-gpu architectures. In: CGO 2012 (2012)

18. Spafford, K., Vetter, J.: Aspen: A domain specific language for performance mod-
eling. In: SC 2012 (2012)

19. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Communications of the ACM - A Direct
Path to Dependable Software (2009)

20. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM (1990)
21. Karp, R.M., Ramachandran, V.: A survey of parallel algorithms for shared-memory

machines. EECS Department, University of California, Berkeley, Tech. Rep. (1988)
22. Valluri, M., John, L.: Is Compiling for Performance == Compiling for Power. In:

INTERACT-5
23. Brandolese, C., Fornaciari, W., Salice, F., Sciuto, D.: The Impact of Source Code

Transformations on Software Power and Energy Consumption. Journal of Circuits,
Systems, and Computers (2002)

http://code.google.com/p/macsim/
http://www.nvidia.com/object/product_geforce_gtx_280_us.html
http://www.nvidia.com/object/product_geforce_gtx_280_us.html
http://www.nvidia.com/fermi
http://www.nvidia.com/fermi

202 J.H. Lee et al.

24. Joseph, R., Martonosi, M.: Run-time power estimation in high performance micro-
processors. In: ISLPED 2001 (2001)

25. Bellosa, F., Kellner, S., Waitz, M., Weissel, A.: Event-driven energy accounting for
dynamic thermal management. In: COLP 2003 (2003)

26. Wu, W., Jin, L., Yang, J., Liu, P., Tan, S.-D.: A systematic method for functional
unit power estimation in microprocessors. In: DAC 2006 (2006)

27. Peddersen, J., Parameswaran, S.: CLIPPER: Counter-based Low Impact Processor
Power Estimation at Run-time. In: ASP-DAC 2007 (2007)

28. Powell, M., Biswas, A., Emer, J., Mukherjee, S., Sheikh, B., Yardi, S.: CAMP: A
technique to estimate per-structure power at run-time using a few simple param-
eters. In: HPCA 2009 (2009)

29. Jacobson, H., Buyuktosunoglu, A., Bose, P., Acar, E., Eickemeyer, R.: Abstraction
and microarchitecture scaling in early-stage power modeling. In: HPCA 2011 (2011)

30. Czechowski, K., Vuduc, R.: A theoretical framework for algorithm-architecture
co-design. In: IPDPS 2013 (2013)

31. Wang, G.: Power analysis and optimizations for GPU architecture using a power
simulator. In: ICACTE 2010 (2010)

32. Ramani, K., Ibrahim, A., Shimizu, D.: PowerRed: A Flexible Power Modeling
Framework for Power Efficiency Exploration in GPUs. In: GPGPU 2007 (2007)

33. Ma, X., Dong, M., Zhong, L., Deng, Z.: Statistical Power Consumption Analysis
and Modeling for GPU-based Computing. In: HotPower 2009 (2009)

34. Nagasaka, H., Maruyama, N., Nukada, A., Endo, T., Matsuoka, S.: Statistical
power modeling of GPU kernels using performance counters. In: IGCC 2010 (2010)

35. Chen, J., Li, B., Zhang, Y., Peng, L., kwon Peir, J.: Tree structured analysis on
gpu power study. In: ICCD 2011 (2011)

36. Zhang, Y., Hu, Y., Li, B., Peng, L.: Performance and Power Analysis of ATI GPU:
A Statistical Approach. In: NAS 2011 (2011)

37. Wu, W., Lee, B.C.: Inferred Models for Dynamic and Sparse Hardware-Software
Spaces. In: MICRO 2012 (2012)

Optimal Checkpointing Period: Time vs. Energy

Guillaume Aupy1(B), Anne Benoit1, Thomas Hérault2,
Yves Robert1,2, and Jack Dongarra2

1 Laboratoire LIP, École Normale Supérieure de Lyon, Lyon, France
guillaume.aupy@ens-lyon.fr

2 University of Tennessee, Knoxville, USA

Abstract. This short paper deals with parallel scientific applications
using non-blocking and periodic coordinated checkpointing to enforce
resilience. We provide a model and detailed formulas for total execu-
tion time and consumed energy. We characterize the optimal period for
both objectives, and we assess the range of time/energy trade-offs to be
made by instantiating the model with a set of realistic scenarios for Exas-
cale systems. We give a particular emphasis to I/O transfers, because the
relative cost of communication is expected to dramatically increase, both
in terms of latency and consumed energy, for future Exascale platforms.

1 Introduction

A significant research effort is focusing on the characteristics, features, and chal-
lenges of High Performance Computing (HPC) systems capable of reaching the
Exaflop performance mark [1,2]. The portrayed Exascale systems will necessitate
billion way parallelism, resulting not only in a massive increase in the number of
processing units (cores), but also in terms of computing nodes. Considering the
relative slopes describing the evolution of the reliability of individual components
on one side, and the evolution of the number of components on the other side,
the reliability of the entire platform is expected to decrease, due to probabilistic
amplification. Even if each independent component is quite reliable, the Mean
Time Between Failures (MTBF) is expected to drop drastically. Executions of
large parallel applications on these systems will have to tolerate a higher degree of
errors and failures than in current systems. The de-facto general-purpose error
recovery technique in high performance computing is checkpoint and rollback
recovery. Such protocols employ checkpoints to periodically save the state of a
parallel application, so that when an error strikes some process, the application
can be restored into one of its former states. The most widely used protocol
is coordinated checkpointing, where all processes periodically stop computing
and synchronize to write critical application data onto stable storage. Coordi-
nated checkpointing is well understood, at least in its blocking form (when no
computing activity takes place during checkpoints), and good approximations
of the optimal checkpoint interval exist; they are known as Young’s and Daly’s
formula [3,4].

c© Springer International Publishing Switzerland 2014
S. Jarvis et al. (Eds.): PMBS 2013 Workshops, LNCS 8551, pp. 203–214, 2014.
DOI: 10.1007/978-3-319-10214-6 10

204 G. Aupy et al.

While reliability is a major concern for Exascale, another key challenge is
to minimize energy consumption, both for economic and environmental reasons.
One of the most power-consuming components of today’s systems is the proces-
sor: even when idle, it dissipates a significant fraction of the total power. How-
ever, for future Exascale systems, the power dissipated to execute I/O transfers
is likely to play an even more important role, because the relative cost of com-
munication is expected to dramatically increase, both in terms of latency and
consumed energy [5].

In this short paper, we investigate trade-offs between execution time and
energy consumption for the execution of parallel applications on future Exascale
systems. The optimal period T opt

Time given by Young’s and Daly’s formula [3,4]
will minimize (expected) execution time. However, this period T opt

Time will not
minimize energy consumption, mainly because the fraction of power PCal spent
when computing (by the CPUs) is not the same as the fraction of power PI/O

spent when checkpointing. In particular, we revisit the work of Meneses, Sarood
and Kalé [6] for checkpoint/restart, where formulas are given to compute the
time-optimum and energy-optimum periods. However, our model is more precise:
(i) we carefully assess the impact of the power consumption required for I/O
activity, which is likely to play a key role at the Exascale; (ii) we consider non-
blocking checkpointing that can be partially overlapped with computations; (iii)
we give a more accurate analysis of the consumed energy.

Altogether, this short paper provides the following main contributions:

– We provide a refined analytical model to compute both the execution time
and the consumed energy with a given checkpoint period. The model handles
the case where checkpointing activity can be non-blocking, i.e., partially
overlapped with computations.

– We provide analytical formulas to approximate the optimal period for time
T opt

Time as well as the optimal period for energy T opt
Energy, thereby refining and

extending Daly [4] and Meneses, Sarood and Kalé [6] results to non-blocking
checkpoints.

– We assess the range of time/energy trade-offs to be made by instantiating
the model with a set of realistic scenarios for Exascale systems.

2 Model

In this section, we introduce all the model parameters. We start with parame-
ters related to resilience (checkpointing) before moving to parameters related to
energy consumption.

2.1 Checkpointing

We model coordinated checkpointing [7] where checkpoints are taken at regular
intervals, after some fixed amount of work units have been performed. This
corresponds to an execution partitioned into periods of duration T . Every period,
a checkpoint of length C is taken.

Optimal Checkpointing Period: Time vs. Energy 205

An important question is whether checkpoints are blocking or not. On some
architectures, we may have to stop executing the application before writing to
the stable storage where the checkpoint data is saved; in that case checkpoint
is fully blocking. On other architectures, checkpoint data can be saved on the
fly into a local memory before the checkpoint is sent to the stable storage, while
computation can resume progress; in that case, checkpoints can be fully over-
lapped with computations. To deal with all situations, we introduce a slow-down
factor ω: during a checkpoint of duration C, the work that is performed is ωC
work units. In other words, (1 − ω)C work units are wasted due to checkpoint
jitter disrupting the progress of computation. Here, 0 ≤ ω ≤ 1 is an arbitrary
parameter. The case ω = 0 corresponds to a fully blocking checkpoint, while
ω = 1 corresponds to a checkpoint totally overlapped with computations. All
intermediate situations can be represented.

Next we have to account for failures. During t time units of execution, the
expectation of the number of failures is t

μ , where μ is the MTBF (Mean Time
Between Failures) of the platform. Note that if the platform if made of N identi-
cal resources whose individual mean time between failures is μind, then μ = μind

N .
This relation is agnostic of the granularity of the resources, which can be any-
thing from a single CPU to a complex multi-core socket. When a failure strikes,
there is a downtime of length D (time to reboot the resource or set up a spare),
and then a recovery of length R (time to read the last stored checkpoint). The
work executed by the application since the last checkpoint and before the failure
needs to be re-executed. Clearly, the shorter the period T , the less work to re-
execute, but also the more overhead due to frequent checkpoints in a failure-free
execution. The best trade-off when ω = 0 (blocking checkpoint) is achieved for
T =

√
2Cμ + C (Young’s formula [3]) or T =

√
2C(μ + D + R) + C (Daly’s

formula [4]). Both formulas are first-order approximations and valid only if all
checkpoint parameters C, D and R are small in front of μ (and these formulas
collapse if they become negligible). In Section 3, we show how to extend these
formulas to the case of non-blocking checkpoints (see also [8] for more details).

2.2 Energy

To compute the energy consumption of the application, we need to consider the
energy consumption of the different phases, and hence the power consumption
at each time-step. To this purpose, we define:

– PStatic: this is the base power consumed when the platform is switched on.
– PCal: when the platform is active, we have to consider the CPU overhead in

addition to the static power PStatic.
– PI/O: similarly, this is the power overhead due to file I/O. This supplemen-

tary power consumption is induced by checkpointing, or when recovering
from a failure.

– PDown: for coordinated checkpointing, when one processor fails, the rest
of the machine stays idle. PDown is the power consumption overhead when
one machine is down, that may be incurred for instance by rebooting the
machine. In general, we let PDown = 0.

206 G. Aupy et al.

Meneses, Sarood and Kalé [6] have a simpler model with two parameters,
namely L, the base power (corresponding to PStatic with our notations), and H,
the maximum power (corresponding to PStatic + PCal with our notations). They
use PI/O = PDown = 0.

In Section 3, we show how to compute the optimal period that minimizes
the energy consumption. In Section 4, we instantiate the model with expected
values for power consumption of Exascale platforms.

3 Optimal Checkpointing Period

We consider a parallel application whose execution time is Tbase without any
overhead due to the resilience method or the occurrence of failures. We compute
the expectation Tfinal of the total execution time (accounting both for check-
pointing and for failures) in Section 3.1, and the expectation Efinal of the total
energy consumed during this execution of length Tfinal in Section 3.2. We will
compute the optimal period T that minimizes the objective, either Tfinal or Efinal.

3.1 Execution Time

The total execution time Tfinal of the application depends on two sources of
overhead. We first compute Tff, the time taken by a fault-free execution, thereby
accounting only for the overhead due to periodic checkpointing. Then we com-
pute Tfails, the time lost due to failures. Finally, Tfinal = Tff + Tfails. We detail
here both computations:

– The reasoning to derive Tff is simple. We need to execute a total amount
of work equal to Tbase. During each period of length T , there is an amount
of time T − C where only computations take place, and an amount of
time C of checkpointing, where only a work ωC is done. Therefore, the total
number of work units executed during a period of length T is T −C +ωC =
T − (1 − ω)C, and

Tff = Tbase
T

T − (1 − ω)C
.

– The reasoning to compute Tfails is the following. Since the mean time between
two failures is μ, the average number of failures during execution is Tfinal

μ .
For each failure, the time lost is expressed as:

• D + R for downtime and recovery;
• a time ωC for the work that was done during the previous checkpoint

and that has to be redone because it was not checkpointed (because of
the failure);

• with probability T−C
T , the failure happens while we are not checkpoint-

ing, and the time lost is on average A = T−C
2 ;

• otherwise, with probability C
T , the failure happens while we are check-

pointing, and the time lost is on average B = T − C + C
2 = T − C

2 .

Optimal Checkpointing Period: Time vs. Energy 207

The time lost for each failure is

D + R + ωC +
T − C

T
A +

C

T
B = D + R + ωC +

T

2
.

Finally,

Tfails =
Tfinal

μ

(
D + R + ωC +

T

2

)
.

We are now ready to express the total execution time:

Tfinal = Tff + Tfails

= Tbase
T

T − (1 − ω)C
+

Tfinal

μ

(
D + R + ωC +

T

2

)

=
T

(T − (1 − ω)C)
(
1 − D+R+ωC+T/2

μ

)Tbase

=
T

(T − a)
(
b − T

2μ

)Tbase,

where a = (1 − ω)C and b = 1 − D+R+ωC
μ .

This equation is minimized for

T opt
Time =

√
2(1 − ω)C(μ − (D + R + ωC)). (1)

When ω = 0, we obtain an expression close to that of Young and Daly,
but slightly different because they have less accurately approximated the total
execution time. In the following, we let AlgoT be the checkpointing strategy
that checkpoints with period T opt

Time.

3.2 Energy Consumption

In order to compute the total energy consumption of the execution, we consider
the different phases during which the different powers introduced in Section 2.2
are used:

– First, we consume PStatic during each time-step of the execution. Indeed,
even when a node fails and is shutdown, we still pay for the power of all the
other nodes, for the cooling system, etc. The corresponding energy cost is
TfinalPStatic.

– Next, let TCal be the time during which the CPU is used, inducing a power
overhead PCal. TCal includes the base work Tbase, and Tre-exec, the work that
must be re-executed after each failure (which we multiply by the number of
failures Tfinal/μ):

• with probability T−C
T , the failure does not happen during a checkpoint,

and the work to re-execute is A = ωC + T−C
2 ;

208 G. Aupy et al.

• with probability C
T , the failure happens during the execution of a check-

point, and the work to re-execute is B = ωC + T − C + ωC
2 .

We derive Tre-exec = T−C
T A + C

T B, hence

Tre-exec = ωC +
T 2 − C2

2T
+

ωC2

2T
.

Finally, we have:

TCal = Tbase +
Tfinal

μ

(
ωC +

T 2 − C2

2T
+

ωC2

2T

)
.

The corresponding energy consumption is TCalPCal.
– Let TI/O be the time during which the I/O system is used, inducing a power

overhead PI/O. This time corresponds to checkpointing and recovery from
failures.

• The total number of checkpoints that are taken in a fault-free execution
is equal to the number of periods, Tbase

T−(1−ω)C , and the time taken by
checkpoints is therefore TbaseC

T−(1−ω)C .

• For each failure, there is an additional overhead:
1. the system needs to recover, which lasts R time-steps;
2. with probability T−C

T , the failure does not happen during a check-
point, and there is no additional I/O overhead;

3. however, with probability C
T , the failure happens during a check-

point, and the I/O time wasted is (in average) C
2 .

Altogether, we obtain

TI/O =
TbaseC

T − (1 − ω)C
+

Tfinal

μ

(
R +

C2

2T

)
.

The corresponding energy consumption is TI/OPI/O.
– Finally, let TDown be the total down time, incurring a power overhead PDown.

We have
TDown =

Tfinal

μ
D,

and the corresponding energy cost is TDownPDown. This term is only included
for full generality, as we expect to have PDown = 0 in most scenarios.

The final expression for the total energy consumed is

Efinal = TCalPCal + TI/OPI/O + TDownPDown + TfinalPStatic

=
(

Tbase +
Tfinal

μ

(
ωC +

T 2 − C2

2T
+

ωC2

2T

))
PCal

+
(Tfinal

μ

(
R +

C2

2T

)
+ C

Tbase

T − (1 − ω)C

)
PI/O

+
Tfinal

μ
DPDown + TfinalPStatic.

Optimal Checkpointing Period: Time vs. Energy 209

It is important to understand that Tfinal �= TCal + TI/O + TDown, unless ω =
0. Indeed, CPU and I/O activities are overlapped (and both consumed) when
checkpointing. To ease the derivation of the optimal period that minimizes Efinal,
we introduce some notations and let PCal = αPStatic, PI/O = βPStatic, and
PDown = γPStatic. Re-using parameters a = (1−ω)C and b = 1− D+R+ωC

μ from
Section 3.1, we obtain:

T ′
final

Tbase
=

−ab + T 2

2μ

(T − a)2
(
b − T

2μ

)2 , and

E′
final

PStatic
= T ′

final
μ

(
αωC + βR + γD + αT

2 − α(1−ω)C2

2T + βC2

2T + μ
)

+Tfinal
2μ

(
α + α(1−ω)C2

T 2 − βC2

T 2

)
− βCTbase

(T−(1−ω)C)2
.

Then, letting K =
(T−a)2(b− T

2µ)2
PStaticTbase

, we have:

KE ′
final =

−ab+T2
2µ

μ

(
(αωC + βR + γD + μ) + αT

2 + α(1−ω)C2

2T + βC2

2T

)

+
(T−a)(b− T

2µ)

2μ

(
α + α(1−ω)C2−βC2

T

)
− βC

(
b − T

2μ

)2

= T 3
(

1
4μ − 1

4μ

)
+ T 2

(
αωC+βR+γD

2μ2 +
b+ a

2µ
2μ − βC

4μ2 + 1
2μ

)

+T
(
− ab

2μ − ab
2μ + βCb

μ − 2 (α(1−ω)−β)C2

4μ2

)
− βCb2

−ab(αωC+βR+γD+μ)
μ −

(
b
2μ − a

4μ2

)
(α(1 − ω) − β)C2

+ 1
T

(
(α(1 − ω) − β) C

2μ − (α(1 − ω) − β) C
2μ

)

= T 2
(

αωC+βR+γD
2μ2 + b

2μ + a−βC
4μ2 + 1

2μ

)

+T
(

(βC−a)b
μ − 2 (α(1−ω)−β)C2

4μ2

)

−ab(αωC+βR+γD+μ)
μ − βCb2

+
(

b
2μ + a

4μ2

)
(α(1 − ω) − β)C2 .

Let T opt
Energy be the only positive root of this quadratic polynomial in T : T opt

Energy

is the value that minimizes Efinal. In the following, we let AlgoE be the check-
pointing strategy that checkpoints with period T opt

Energy.
As a side note, let us emphasize the differences with the approach of Meneses,

Sarood and Kalé [6] when restricting to the case ω = 0 (because they only
consider the blocking variant). For each failure, they consider that:

– energy lost due to re-execution is T−2C
2 PCal, while we have

(
T − C

T

(
T − C

2

)
+

C

T
(T − C)

)
PCal =

T 2 − C2

2T
PCal;

– energy lost due to I/O is CPI/O, while we have C2

2T PI/O.

210 G. Aupy et al.

Theses differences come from our more detailed analysis of the impact of the
failure location, which can strike either during the computation phase, or during
the checkpointing phase, of the whole period.

4 Experiments

In this section, we instantiate the previous model with scenarios taken from cur-
rent projections for Exascale platforms [1,2,5,9]. We choose realistic values for
all model parameters: this includes all types of power consumption (PStatic, PCal,
PI/O and PDown), all checkpoint parameters (C, R, D and ω), and the platform
MTBF μ. We start with a word of caution: our choices for these parameters may
be somewhat arbitrary, and do not cover the whole range of scenarios that can
be investigated. However, a key feature of our model is its robustness: as long as
μ is reasonably large in front of checkpoint times, the model is able to accurately
predict the best period for execution time and for energy consumption.

The power consumption of an Exascale machine is capped to 20 Mega-watts.
With 106 nodes, this represents a nominal power of 20 watts per node. Let us
express all power values in watts. A reasonable scenario is to assume that half
this power is used for operating the platform, hence to let PStatic = 10. The
overhead due to computing would represent the other half, hence PCal = 10. As
for communications and I/Os, which are expected to cost an order of magnitude
more than computing [5], we take an overhead of 100, hence PI/O = 100. A key
parameter for the experimental study is the ratio

ρ =
PStatic + PI/O

PStatic + PCal
=

1 + β

1 + α
. (2)

With our values, we get ρ = 5.5. Note that if we used PStatic = 5 and kept
the same overheads 10 and 100 for computing and I/O respectively, we would get
PCal = 10, PI/O = 100, and ρ = 7. These two representative values of ρ (ρ = 5.5
and ρ = 7) are emphasized by vertical arrows in the plots below on Figure 1. As
for PDown, the power during downtime, we use PDown = 0, meaning that during
downtime we only account for the static power PStatic of the processors that are
idle.

The Jaguar platform, with N = 45, 208 processors, is reported to have expe-
rienced about one fault per day [10], which leads to an individual (processor)
MTBF μind equal to 45,208

365 ≈ 125 years. Therefore, we set the individual (pro-
cessor) MTBF to μind = 125 years. Letting the total number of processors N
vary from N = 219, 150 to N = 2, 191, 500 (future exascale platforms), the plat-
form MTBF μ varies from μ = 300 min (5 hours) down to μ = 30 min. The
experiments use resilience parameters that are representative of current and
forthcoming large-scale platforms [9,11]. We take C = R = 10 min, D = 1 min,
and ω = 1/2.

On Figures 1 and 2, we evaluate the impact of the ratio ρ (see Equation (2))
on the gain in energy and loss in time of AlgoE with respect to AlgoT.

Optimal Checkpointing Period: Time vs. Energy 211

 1
 1.05

 1.1
 1.15

 1.2
 1.25

 1.3
 1.35

 1.4
 1.45

 1 2 3 4 5 6 7 8 9 10

E
fi
n

a
l(
T

ti
m

e
)/

E
fi
n

a
l(
T

e
n

e
rg

y
)

ρ

(μ=300)
(μ=120)
(μ=30)

 1
 1.02
 1.04
 1.06
 1.08

 1.1
 1.12
 1.14
 1.16
 1.18

 1 2 3 4 5 6 7 8 9 10

T
fi
n

a
l(
T

e
n

e
rg

y
)/

T
fi
n

a
l(
T

ti
m

e
)

ρ

Fig. 1. Time and energy ratios as a function of ρ, with C = R = 10 min, D = 1 min,
γ = 0, ω = 1/2, and various values for μ

 50 100 150 200 250 300

μ

 1

 10

ρ

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

(a) Energy ratio of AlgoT over
AlgoE

 50 100 150 200 250 300

μ

 1

 10

ρ

 1

 1.05

 1.1

 1.15

 1.2

 1.25

(b) Execution time ratio of AlgoE
over AlgoT

Fig. 2. Ratios of the different strategies with C = R = 10 min, D = 1 min, γ = 0,
ω = 1/2 as a function of μ and ρ

The general trend is that using AlgoE can lead to significant gains in energy
at the price of a small increase in execution time.

We then study in Figure 3 the scalability of the approach on forthcoming
platforms. We set the duration of the complete checkpoint and rollback (C and R,
respectively) to 1 minute, independently of the number of processors, and we let
the downtime D equal to 0.1 minutes. It is reasonable to consider that checkpoint

212 G. Aupy et al.

storage time will not increase with the number of nodes in the future, but on the
contrary will remain constant. Indeed, system designers are studying a couple
of alternative approaches. One consists of providing each computing node with
local storage capability, ensuring through hardware mechanisms that this storage
will remain available during a failure of the node. Another approach consists
iof using the memory of the other processors to store the checkpoint, pairing
nodes as “buddies”, thus allowing to take advantage of the high bandwidth
capability of the high speed network to design a scalable checkpoint storage
mechanism [12–15].

The MTBF for 106 nodes is set to 2 hours, and this value scales linearly
with the number of components. Given these parameters, Figures 3a and 3b
shows (i) the execution time ratio of AlgoE over AlgoT, and (ii) the energy
consumption ratio of AlgoT over AlgoE, both as a function of the number
of nodes. Figures 3a and 3b confirm the important gain in energy that can be
achieved, namely up to 30% for a time overhead of only 12%. When the number
of nodes gets very high (up to 108), then we observe that both energy and time
ratios converge to 1. Indeed, when C becomes of the order of magnitude of the
MTBF, then both periods T opt

Time and T opt
Energy become close to C to account for

the higher failure rate.

 1
 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35

10
5

10
6

10
7

E
fi
n
a
l(
T

ti
m

e
)/

E
fi
n
a
l(
T

e
n
e
rg

y
)

Number of nodes

(ρ=5.5)

 1
 1.02
 1.04
 1.06
 1.08
 1.1

 1.12
 1.14

10
5

10
6

10
7

T
fi
n
a
l(
T

e
n
e
rg

y
)/

T
fi
n
a
l(
T

ti
m

e
)

Number of nodes

(ρ=5.5)

(a) Time and energy ratios, as a function
of the number of nodes, when ρ = 5.5

 1
 1.05

 1.1
 1.15

 1.2
 1.25

 1.3
 1.35

10
5

10
6

10
7

E
fi
n

a
l(
T

ti
m

e
)/

E
fi
n

a
l(
T

e
n

e
rg

y
)

Number of nodes

(ρ=7)

 1
 1.02
 1.04
 1.06
 1.08

 1.1
 1.12
 1.14

10
5

10
6

10
7

T
fi
n

a
l(
T

e
n

e
rg

y
)/

T
fi
n

a
l(
T

ti
m

e
)

Number of nodes

(ρ=7)

(b) Time and energy ratios, as a func-
tion of the number of nodes, when ρ = 7

Fig. 3. Ratios of total energy and time for the two period strategies, as a function of
the number of nodes, with μ = 120 min for 106 nodes, C = R = 1 min, D = 0.1 min,
γ = 0, ω = 1/2

5 Conclusion

In this short paper, we have provided a detailed analysis to compute the optimal
checkpointing period, when the checkpointing activity can be partially over-
lapped with computations. We have considered two distinct objectives: either
the goal is to minimize the total execution time, or it is to minimize the total

Optimal Checkpointing Period: Time vs. Energy 213

energy consumption. Because of the different power consumption overheads due
to computations and I/Os, we obtain different optimal periods.

We have instantiated the formulas with values derived from current and
future Exascale platforms, and we have studied the impact of the power overhead
due to I/O activity on the gains in time and energy. With current values, we
can save more than 20% of energy with an MTBF of 300 min, at the price of an
increase of 10% in the execution time. The maximum gains are expected for a
platform with between 106 and 107 processors (up to 30% energy savings).

Our analytical model is quite flexible and can easily be instantiated to
investigate scenarios that involve a variety of resilience and power consumption
parameters.

Acknowledgments. This work was supported in part by the ANR RESCUE project
and by DOE grant # DE-SC0006733. A. Benoit and Y. Robert are with the Institut
Universitaire de France.

References

1. Dongarra, J., Beckman, P., Aerts, P., Cappello, F., Lippert, T., Matsuoka,
S., Messina, P., Moore, T., Stevens, R., Trefethen, A., Valero, M.: The
international exascale software project: a call to cooperative action by the global
high-performance community. Int. Journal of High Performance Computing Appli-
cations 23, 309–322 (2009)

2. Sarkar, V., et al.: Exascale software study: Software challenges in extreme scale
systems (2009), White paper available at; http://users.ece.gatech.edu/mrichard/
ExascaleComputingStudyReports/ECSS%20report%20101909.pdf

3. Young, J.W.: A first order approximation to the optimum checkpoint interval.
Comm. of the ACM 17, 530–531 (1974)

4. Daly, J.T.: A higher order estimate of the optimum checkpoint interval for restart
dumps. FGCS 22, 303–312 (2004)

5. Shalf, J., Dosanjh, S., Morrison, J.: Exascale computing technology challenges.
In: Palma, J.M.L.M., Daydé, M., Marques, O., Lopes, J.C. (eds.) VECPAR 2010.
LNCS, vol. 6449, pp. 1–25. Springer, Heidelberg (2011)

6. Meneses, E., Sarood, O., Kalé, L.V.: Assessing Energy Efficiency of Fault Tolerance
Protocols for HPC Systems. In: Proceedings of the 2012 IEEE 24th International
Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD 2012), New York, USA (2012)

7. Chandy, K.M., Lamport, L.: Distributed snapshots: Determining global states of
distributed systems. Transactions on Computer Systems 3(1), 63–75 (1985)

8. Bosilca, G., Bouteiller, A., Brunet, E., Cappello, F., Dongarra, J., Guermouche,
A., Hérault, T., Robert, Y., Vivien, F., Zaidouni, D.: Unified model for assessing
checkpointing protocols at extreme-scale. Concurrency and Computation: Practice
and Experience (2013) (to be published); Also available as INRIA research report
7950 at http://graal.ens-lyon.fr/∼yrobert

9. Ferreira, K., Stearley, J., Laros, J.H.I., Oldfield, R., Pedretti, K., Brightwell, R.,
Riesen, R., Bridges, P.G., Arnold, D.: Evaluating the Viability of Process Repli-
cation Reliability for Exascale Systems. In: Proc. of the ACM/IEEE SC Conf.
(2011)

http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
http://graal.ens-lyon.fr/~yrobert

214 G. Aupy et al.

10. Zheng, G., Ni, X., Kalé, L.V.: A scalable double in-memory checkpoint and restart
scheme towards exascale. In: Dependable Systems and Networks Workshops (DSN-
W) (2012)

11. Cappello, F., Casanova, H., Robert, Y.: Preventive migration vs. preventive check-
pointing for extreme scale supercomputers. Parallel Processing Letters 21, 111–132
(2011)

12. Zheng, G., Shi, L., Kalé, L.V.: FTC-Charm++: an in-memory checkpoint-based
fault tolerant runtime for Charm++ and MPI. In: Proc. 2004 IEEE Int. Conf.
Cluster Computing. IEEE Computer Society (2004)

13. Ni, X., Meneses, E., Kalé, L.V.: Hiding checkpoint overhead in HPC applications
with a semi-blocking algorithm. In: Proc. 2012 IEEE Int. Conf. Cluster Computing.
IEEE Computer Society (2012)

14. Dongarra, J., Hérault, T., Robert, Y.: Revisiting the double checkpointing algo-
rithm. In: 15th Workshop on Advances in Parallel and Distributed Computational
Models, APDCM 2013. IEEE Computer Society Press (2013)

15. Rajachandrasekar, R., Moody, A., Mohror, K., Panda, D.K.D.: A 1 PB/s file sys-
tem to checkpoint three million MPI tasks. In: Proceedings of the 22nd Inter-
national Symposium on High-Performance Parallel and Distributed Computing,
HPDC 2013, pp. 143–154. ACM, New York (2013)

Performance Optimization

Tuning HipGISAXS on Multi and Many Core
Supercomputers

Abhinav Sarje1(B), Xiaoye S. Li1,
and Alexander Hexemer2

1 Computational Research Division, Lawrence Berkeley National Laboratory,
Berkeley, CA, USA
asarje@lbl.gov

2 Advanced Light Source, Lawrence Berkeley National Laboratory,
Berkeley, CA, USA

Abstract. With the continual development of multi and many-core
architectures, there is a constant need for architecture-specific tuning
of application-codes in order to realize high computational performance
and energy efficiency, closer to the theoretical peaks of these architec-
tures. In this paper, we present optimization and tuning of HipGISAXS,
a parallel X-ray scattering simulation code [9], on various massively-
parallel state-of-the-art supercomputers based on multi and many-core
processors. In particular, we target clusters of general-purpose multi-
cores such as Intel Sandy Bridge and AMD Magny Cours, and many-core
accelerators like Nvidia Kepler GPUs and Intel Xeon Phi coprocessors.
We present both high-level algorithmic and low-level architecture-aware
optimization and tuning methodologies on these platforms. We cover a
detailed performance study of our codes on single and multiple nodes of
several current top-ranking supercomputers. Additionally, we implement
autotuning of many of the algorithmic and optimization parameters for
dynamic selection of their optimal values to ensure high-performance and
high-efficiency.

1 Introduction

Multi-core and many-core processors are ubiquitous these days, driving most of
the electronics available. These emerging architectures are designed to deliver
higher computing power by exploiting multiple levels of parallelism. In high-
performance scientific computing (HPC), these architectures play a central role
in delivering the much needed compute and memory resources to the wealth of
scientific codes and are used on a daily basis. In this paper, we consider one such
application code developed by us recently, HipGISAXS, which is a massively
parallel X-ray scattering simulation code [5,9]. This code targets one particular
kind of X-ray scattering, called the Grazing Incidence Small-Angle X-ray Scatter-
ing (GISAXS). This, available at numerous Synchrotron Light-source facilities,
is a widely used tool by scientists for the characterization of macromolecules
and nano-particle systems based on their structural properties, such as their
c© Springer International Publishing Switzerland 2014
S. Jarvis et al. (Eds.): PMBS 2013 Workshops, LNCS 8551, pp. 217–238, 2014.
DOI: 10.1007/978-3-319-10214-6 11

218 A. Sarje et al.

shape and size, at the micro/nano-scales. Some of the major applications of these
include the characterization of materials for the design and fabrication of energy-
relevant nanodevices, such as photovoltaic cells and energy storage devices, and
development of high-density storage media. Although current high-throughput
synchrotron light-sources can generate tremendous amounts of raw data at a high
rate, analysis of this data for the characterization processes remains the primary
bottleneck, demanding large amounts of computational resources. HipGISAXS
was developed to address this challenge through the use of massive parallelism.

This X-ray scattering pattern simulation code is based on the Distorted Wave
Born Approximation (DWBA) theory, and involves a large number of compute-
intensive form-factor calculations. Scattered light intensity at a point in inverse
space is proportional to the form-factor at that point. A form-factor is computed
as an integral over the shape functions of the nanoparticles in a given sample. A
simulated sample structure is taken as an input in the form of discretized shape-
surfaces, such as a triangulated surface. Intensities are determined at a set of
q-points which form a 3D grid. Resolutions of shape-surface discretization, as well
as of this spatial 3D grid involved also contribute toward the compute-intensity
of the simulations. For computational purposes, the form-factor at a single point
is described through a summation over the discretized shape-surface:

F (q) = − i

|q|2
nt∑

t=1

eiq·rtqn,tst (1)

where q is a point in the inverse space where light intensity is to be determined,
and the summation is over all the nt triangles of the discretized input sample,
T = {t0 · · · tnt−1}. Such form factors are computed for all q-points in the 3D grid
termed as the Q-grid. We represent it by Q in the following. Q is a grid of size
nx × ny × nz and is described by three vectors, one for each spatial dimension,
qα = 〈p0 · · · pnα−1〉, α ∈ {x, y, z}. This form factor computational kernel is the
focus of our tuning and optimization study in this paper.

Although the various emerging architectures are able to deliver high
computational power, they require intensive architecture-aware code tuning in
order to do so. This gap between the performance of a straight-forward imple-
mentation and that of a highly-optimized code, is described quite well in [7,10]
where they call it the “ninja gap”. In the work presented in this paper, we address
the challenge of adapting HipGISAXS to various parallel architectures through
intensive optimizations specific to the systems under consideration. These opti-
mizations involve efficient mapping of computations and data transfers on to
a given processor architecture. These architectures have a high-degree of par-
allelism at various levels ranging from instruction level parallelism to multiple
NUMA regions on one processor. Such processors form an integral part of todays
supercomputers [4]. Many of these processors are built to be generic enough to
be used for general-purpose computing. These are majorly the ubiquitous multi-
core CPUs. Some of the processors are designed as highly specialized to deliver
computing power for specific types of computations. These processors generally
are many-core and typically work in conjunction with a main general-purpose

Tuning HipGISAXS on Multi and Many Core Supercomputers 219

host CPU. The most common examples of these are graphics processors and
Intel’s Many Integrated Cores architecture.

Contributions. The goal of HipGISAXS optimizations described in this paper
is to take advantage of various high-performance capabilities offered by the dif-
ferent emerging architectures, and make it truly a “high-performance” code. The
work presented in our previous paper [9] includes the parallelization and initial
implementation of HipGISAXS on Nvidia Fermi GPU clusters, as well as generic
multi-core CPU clusters. In our current work presented this paper, we:

– implement additional architecture-specific optimizations on Nvidia Fermi
and Kepler GPUs;

– parallelize and optimize HipGISAXS on the Intel MIC architecture;
– optimize HipGISAXS on the AMD Magny Cours and Intel Sandy Bridge

processors;
– implement auto-tuning of many of the compute and optimization parameters

involved; and
– present a detailed performance study on supercomputers based on these four

architectures and discuss a comparison.

We conduct our study on the following supercomputers which are based on the
above architectures (the rankings below were correct as of the June 2013 Top500
list [4]):

1. Titan, ranked 2nd, is a Cray XK7 system which gets most of its performance
from the Nvidia Kepler K20X cards available on each node.

2. Stampede, ranked 6th, is a cluster with an Intel Phi coprocessor, which are
based on the Intel MIC architecture, available on each node.

3. Hopper, ranked 24th, is a Cray XE6 system which has dual 12-core AMD
Magny Cours processors on each of its compute nodes.

4. Edison Phase I, an under development system, is a Cray XC30 system which
currently has dual Intel Sandy Bridge processors on each compute node.

2 HipGISAXS Overview

HipGISAXS has been implemented in C++ and uses several capabilities of the
C++11 standard. It is a highly modularized code which allows for easy access to
various routines for optimization, as well as try and compare different optimiza-
tions. Depending on the architecture it is compiled for, it calls the GPU, MIC,
AMD, or Intel specific codes for the main computational kernel: the numerical
form factor calculations. In the following we give a brief overview of this compu-
tational kernel. For more details on its basic parallelization and implementation,
refer to [9].

The form factor computation at a single q-point involves accessing data and
performing independent calculations for each of the input shape triangles, fol-
lowed by a reduction over all the triangles. This is done for all the q-points in the
problem under consideration. The output matrix F of size same as the Q-grid

220 A. Sarje et al.

Q, is constructed with the results of these computations. This is summarized in
the following equation:

F : f(q) = − i

|q|2
nt∑

t=1

eiq·rtqn,tst, ∀q ∈ Q. (2)

The computational complexity of this kernel is simply the product of all the
four dimensions, . A basic implementation of this kernel can be done with four
nested loops, with an outer-most loop iterating over all the triangles defining
the input shapes and three inner loops iterating over each of the x, y and z
dimensions of the q-points, representing the computation over Q. This is then
followed by a sum-reduction operation over all the triangles for each q-point. To
make referring to these loops easier, let us denote each of them with Lt, Lx, Ly

and Lz, respectively. A pseudocode of the kernels is given below. This is how
the form factor kernel was originally implemented in HipGISAXS. The definition
of a single triangle consists of seven real numbers representing its surface area,
three components of its face normal and three components of its centroid. Note
that the computations are performed on complex numbers, where re and im
represent the real and imaginary parts of a complex number in the following.

procedure Phase1FormFactor(Q, T)
Input nx, ny, nz, nt

Input Q-grid: Q = Qα{qα0, · · · , qα(nα−1)}, α ∈ {x, y, z}
Input Shape triangles: T = {t0, · · · , tnt−1}
Output F ′

nx×ny×nz×nt

for each l ∈ {0...(nt − 1)} do � Loop Lt

s ← T [l].s � triangle surface area
px ← T [l].px, py ← T [l].py, pz ← T [l].pz � triangle face normal
cx ← T [l].cx, cy ← T [l].cy, cz ← T [l].cz � triangle centroid
for each k ∈ {0...(nz − 1)} do � Loop Lz

qk ← Qz [k]
for each j ∈ {0...(ny − 1)} do � Loop Ly

qj ← Qy [j]
for each i ∈ {0...(nx − 1)} do � Loop Lx

qi ← Qx[i]
qc ← (cxqi + cyqj + czqk)/(q

2
i + q2

j + q2
k)

qp ← pxqi + pyqj + pzqk

F ′[i, j, k, l] ← sqpeqc,im (cos(qc,re) + isin(qc,re))
end for

end for
end for

end for
end procedure

procedure Phase2Reduction(F ′)
Input nx, ny, nz, nt

Input F ′

Output Fnx×ny×nz

for each k ∈ {0...(nz − 1)} do
for each j ∈ {0...(ny − 1)} do

for each i ∈ {0...(nx − 1)} do
f ← 0 + i0
for each l ∈ {0...(nt − 1)} do

f ← f + F ′[i, j, k, l]
end for
F [i, j, k] ← −if

end for
end for

end for
end procedure

Tuning HipGISAXS on Multi and Many Core Supercomputers 221

Fig. 1. Problem decomposition schemes. (Left) Phase 1 kernel maps a thread block to
a subset of qy, qz and T . (Center) Reduction phase kernel maps a thread block to a
unique submatrix of Q. (Right) Hyperblocking scheme to handle memory limitations.
Graphics taken from [9].

Since the problem under study is embarrassingly parallel, a basic paralleliza-
tion of the code is quite straightforward. A tiling scheme is used to distribute
computations among all the available nodes through MPI. On one node, in order
to handle any limitations on the required memory for computations, as well as to
increase efficiency, HipGISAXS has a blocking scheme where the computations
are decomposed along each of the four dimensions, t, z, y and x, into hyper-
blocks. Computation of hyperblocks is generally performed one after the other.
This blocking scheme also has the advantage of making memory transfer and
computation overlap, as well as data prefetching, possible. This is specially of
essential importance on systems which use an offloading model to transfer com-
putations to a coprocessor. A GPU version is also a part of HipGISAXS, which
also incorporates computation decomposition at the level of thread blocks. Fig. 1
shows this existing tiling, hyperblocking, and thread blocking schemes.

In the following we present our performance optimizations and tuning, as well
as performance analysis, on each of the four architectures under consideration:
Nvidia GPUs, Intel Phi coprocessors, AMD Magny Cours CPUs and Intel Sandy
Bridge CPUs.

3 Graphics Processors

We start by giving a description of various optimizations performed on
HipGISAXS for the Nvidia Fermi and Kepler architecture based GPUs [1]. The
starting point for these optimizations is the code developed earlier as mentioned
above. In the following, we describe our additional optimizations and autotuning
work tailored to the Nvidia GPUs.

3.1 Nvidia GPU Optimizations

Algorithmic Optimizations. For parallelizing the computations on Fermi
and Kepler architectures, we encounter a number of choices to make. Each of
these choices affects the performance, some greatly and some marginally. Goal
of any performance optimization is to make the choices which would give the

222 A. Sarje et al.

best performance. On GPUs, one of the first choices to make is to decide which
components should define a CUDA thread block. In our case, there are two
kernels for each of the two phases of computations: computing the inner term
in Eq. 2, followed by a sum reduction along the triangles. In the first phase,
the initial implementation of HipGISAXS generated CUDA thread blocks by
performing a one-dimensional decomposition along only the t dimension. This
clearly limits the amount of parallelism by the number of triangles and disregards
the independence of each of the q-points. Hence, it does not expose enough
parallelism for cases where Q is large but the shape definition is small. This
kernel was therefore updated to decompose the computations along the three y,
z and t dimensions. Recall that the x dimension is typically small, most often
being equal to one. This loop reordering and new decomposition scheme solved
the limitations of the initial kernels. To maintain independence in computations,
the reduction phase decomposed the domain along the spatial dimensions but
not along the triangles since this dimension needs to be reduced. The choice of
the sizes of both the hyperblocks and CUDA thread blocks also plays a crucial
role in delivering high-performance. We will deal with these choices later in
Section 3.1.

One of the main performance disadvantages with the above two kernels is
the generation of 4-dimensional intermediate data. Each computed hyperblock
is stored by the first kernel in the device memory and then read by reduction
kernel. We can eliminate this step of writes and reads by kernel fusion. The idea
is to keep reducing the computed components and generate only 3-dimensional
output which is written to the device memory. This also has the advantage
of using less amount of device memory. Parallelization implemented earlier is
hence modified: We generate CUDA thread blocks by decomposition along the
y and z dimensions and introduce sequentiality along the t dimension. Hence,
each thread now executes a loop over the hyperblock triangles and reduces the
computed data on the fly. This kernel fusion improved the code’s performance
on average by about 87%.

Memory Optimizations. Computation of each hyperblock generates partial
output corresponding to a submatrix of F . This computed data is copied to
the host, reduced with previously computed data corresponding to the same
submatrix, and placed at its appropriate position in the larger F . This work is
performed by the host CPU while the GPU carries on computations on next
hyperblock. Double-buffering is commonly used to hide such memory transfer
latencies. We explored, going one step ahead, the use of k-buffering. It was
interesting to note that while the performance of triple-buffering was around
5% better than double-buffering, the performance of k-buffering for k ≥ 3 was
about the same (we tried until k = 32). Since the memory copy latency is much
smaller than the compute duration for each hyperblock, once the latency was
completely hidden with triple-buffering, increasing the number of buffers did
not have any affect. We verified this against profiler trace data. Usage of the
fast on-chip shared memory on each SM of a GPU is critical to obtain good

Tuning HipGISAXS on Multi and Many Core Supercomputers 223

performance. In our case, shared memory can be used to store the input Q-
grid and shape triangles information as well as the computed output. Storing
input makes data reuse possible, minimizing the amount of memory transfers
taking place. Storing the output in shared memory first and then writing to the
device memory provides good memory coalescing, increasing the data transfer
bandwidth. Storing both input and output on-chip can be expensive since shared
memory usage may limit the number of simultaneously scheduled thread blocks
on an SM, thereby limiting parallelism and hence, performance. A tradeoff comes
into place. After experimentation with the possible cases, our choice was to use
shared memory only for the input data: parts of the vectors qy and qz defining a
particular thread block, and the triangles definition data. All threads in a thread
block collectively load the required input to the shared memory in minimum
possible number of load operations, and then perform computations on them,
storing the results directly into the device memory.

Low-Level Optimizations. As described earlier, the definition of a single
shape-surface triangle consists of seven real numbers, representing its surface
area, three components of its surface normal, and three components of its cen-
troid coordinates. Since this size (7) does not provide efficient memory-alignment,
we padded each triangle definition by one more number to make the count as 8
real numbers. In single-precision, this represents 32 bytes. Doing so aligns each
triangle definition to a 32-byte line, making memory transfers more efficient.
Further, a manual analysis of the PTX code generated by the compiler for the
innermost loop Lt of the kernel revealed that the shared memory address calcu-
lation for the 7 components consisted of about one multiply and two adds each.
This code is shown below on the left side:

mul.wide.u32 %rd35, %r101, 4;
add.s64 %rd37, %rd11, %rd35;
add.s32 %r75, %r101, 1;
mul.wide.u32 %rd38, %r75, 4;
add.s64 %rd39, %rd11, %rd38;
add.s32 %r76, %r101, 2;
mul.wide.u32 %rd40, %r76, 4;
add.s64 %rd41, %rd11, %rd40;
add.s32 %r77, %r101, 3;
mul.wide.u32 %rd42, %r77, 4;
add.s64 %rd43, %rd11, %rd42;
add.s32 %r78, %r101, 4;
mul.wide.u32 %rd44, %r78, 4;
add.s64 %rd45, %rd11, %rd44;
add.s32 %r79, %r101, 5;
mul.wide.u32 %rd46, %r79, 4;
add.s64 %rd47, %rd11, %rd46;
add.s32 %r80, %r101, 6;
mul.wide.u32 %rd48, %r80, 4;
add.s64 %rd49, %rd11, %rd48;
ld.shared.f32 %f72, [%rd37];
ld.shared.f32 %f42, [%rd39];
ld.shared.f32 %f25, [%rd41];
ld.shared.f32 %f34, [%rd43];
ld.shared.f32 %f27, [%rd47];
ld.shared.f32 %f36, [%rd49];
ld.shared.f32 %f39, [%rd45];

mul.wide.u32 %rd1, %r91, 4;
add.s64 %rd2, %rd1, 4;
add.s64 %rd3, %rd1, 8;
add.s64 %rd4, %rd1, 12;
add.s64 %rd5, %rd1, 16;
add.s64 %rd6, %rd1, 20;
add.s64 %rd7, %rd1, 24;
ld.shared.f32 %f40, [%rd1];
ld.shared.f32 %f41, [%rd2];
ld.shared.f32 %f42, [%rd3];
ld.shared.f32 %f43, [%rd4];
ld.shared.f32 %f44, [%rd5];
ld.shared.f32 %f45, [%rd6];
ld.shared.f32 %f46, [%rd7];

224 A. Sarje et al.

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 0 5 10 15 20 25 30 35

N
or

m
al

iz
ed

 T
im

e

Unroll factor

Normalized Time

Fig. 2. The effect of loop unrolling on performance. Unroll factor means that the loop
is unrolled that many times. Note that best performance is achieved for unroll factors
16 and 32.

In order to reduce the number of operations, and instructions, in Lt, we replaced
this code with hand-written PTX code. This code takes advantage of the fact
that the memory location offset for each of the 7 triangle components is already
known beforehand. Hence, 6 of the 7 multiplies and half of the adds could be
eliminated. This code is shown above on the right side. Since each thread in a
thread block loops over all the triangles in the corresponding hyperblock, we can
take advantage of loop unrolling. Interestingly, the execution time of the kernel
reduced by almost 50% on using an unroll factor of 16. In Fig. 2 is shown the
trend of execution time (normalized) with the unroll factor.

Nvidia GPUs provide hardware support for single-precision sine and cosine
functions at the cost of accuracy. In our optimizations, we take advantage of
them since this code does not require high-precision. We implement our own
optimized functions for complex number operations and use intrinsics whenever
possible to improve performance.

Autotuning Decomposition Parameters. In Section 3.1 we talked about
various decomposition parameters, such as the hyperblock size and the CUDA
block size. Making an optimal choice of these parameters is crucial to obtaining
good performance. These parameters are architecture dependent, and are gener-
ally independent of the problem instance. Hence, the code needs to be tuned for
optimal parameters only once for a given system. In the following, we study the
behavior of the execution time with respect to the possible parameter values.

Recall that a hyperblock size is defined primarily by the dimensions y (hy),
z (hz) and t (ht). Each parameter has a tradeoff attached to it. For instance, a
larger value of hy (or hz) means smaller number of resulting hyperblocks. Com-
putation of each such hyperblock would require larger amount of system memory,
resulting in larger volume of each memory transfer (although fewer number of
transfers). Depending on how much of these data transfer latencies can be hid-
den with computations dictates the performance. Also, a fewer number of hyper-
blocks means less overlap for border cases, which might be significant given the

Tuning HipGISAXS on Multi and Many Core Supercomputers 225

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

 8
00

 9
00

 1
00

0

z-
di

m
en

si
on

 s
iz

e

y-dimension size

low

high

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0

 2
00

 4
00

 6
00

 8
00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

 2
00

0

t-d
im

en
si

on
 s

iz
e

z-dimension size

low

high

 0

 16

 32

 48

 64

 80

 96

 112

 128

 0 16 32 48 64 80 96 112 128

y-
di

m
en

si
on

 s
iz

e

x-dimension size

low

high

Fig. 3. (Left and Center) The variation in execution time with change in hyperblock
sizes. Low is better (yellow regions). (Right) Variation of performance with the choice
of CUDA thread block size. The x and y dimensions here correspond to the thread
block dimensions.

large size of the hyperblocks. Similarily, a smaller value of hy (or hz) would gen-
erate a larger number of smaller hyperblocks. The size of a hyperblock needs to
be sufficient to occupy all the SMs on the GPU. Too small a size will not provide
enough parallelism and, hence, result in under-utilization of the SMs.

Fig. 3 (left) shows an example of the variation in performance as a heat-
map with varying values of hy and hz, given a constant CUDA thread block
size. The first thing we notice in this figure is its banded nature. Also note that
the performance is not symmetrical for y and z dimensions. We attribute this
primarily to the data organization in memory. We have taken nx = 1, and follow
a row-major order storage scheme, which groups the y values together. Each
hyperblock is decomposed into thread blocks and each vertical band corresponds
to the same number of warps for a given hz. The change in runtime with hz is
more gradual. Suppose for a given hz, the matrix F is perfectly decomposed
into equal sized hyperblocks, and we observe good performance. If we increase
this hz by one, an offset in decomposition is created due to which the last
set of hyperblocks are partly empty, decreasing performance a little. Further
increments of hz result in this empty region to grow, continually decreasing
performance. When hz reaches a value where F is perfectly decomposed, we
observe a higher performance. This is exactly what we observe in the heat-map.
Similarly, Fig. 3 (center) shows a heat-map, with varying hz and ht values.
Increasing ht creates a similar situation as we saw for hz above. Hence, this
looks more symmetric along hz and ht.

The choice of CUDA thread block sizes poses different criteria. Firstly, the
total number of threads in a CUDA thread block, i.e. the product of thread
block dimension sizes, is limited to 1024 on Fermi and Kepler. Fig. 3(right)
shows the trend in execution times with respect to variation in the sizes of the
two dimensions of a thread block. It can be clearly seen that the sizes which are
multiple of 32 give the best performances. This is because a warp size is 32, and
a full warp would give better performance due to better utilization than the one
which is partially empty.

226 A. Sarje et al.

We implement autotuning in our code which makes an optimal choice of
these block size parameters. It is done through an exhaustive search within
the parameter space in parallel. As we mentioned above, these parameters are
architecture dependent and not problem instance dependent, hence setting them
once is enough on a given system. All executions of the code can then use these
values, amortizing their auto-tuning computation cost.

3.2 Theoretical Analysis on GPUs

To compute the number of floating-point operations (FLOPs) on GPUs, we
refer to the generated PTX code. We count each of the special functions of
reciprocal, exponent and sine-cosine as one floating-point operation each since
the hardware provides support for these functions. Each operation on complex
numbers is composed of one or more floating-point operations. The main kernel
consists of total of 22 FP multiply operations, 3 FP additions, 3 FP subtractions,
9 FP FMA operations, 2 FP reciprocal, 2 FP absolutes, 1 exponent, 1 sine and
cosine operations. Of these 1 multiply and 1 FMA lie outside the loop Lt. Hence,
we have a total of 42 FLOPs in a single iteration of Lt, giving a total of 42nt +2
FLOPs for the form factor computation at one q-point. The total FLOPs in the
computation of the kernel among all hyperblocks is therefore nxnynz(42nt + 2).

To compute the arithmetic intensity (flop/byte ratio), let us consider the
computation performed by a single CUDA thread block. For ease of represen-
tation, let the CUDA thread block dimension sizes be nx, ny, nz and nt. In the
optimized version of the code, there are a total of 4(nx + ny + 7nt) + 8nz bytes
read and 8nxnynz bytes written. Hence, the arithmetic intensity is linear in
number of triangles, O(nt). The kernel is clearly compute bound.

3.3 Performance Analysis on Titan

In the following, we first cover the performance analysis of our GPU opti-
mized code on both Fermi and Kepler architectures. Specifically, we consider
the M2090 and the K20X GPUs. M2090 has a theoretical peak performance of
1331 GFLOP/s in single-precision, while K20X has almost 3950 GFLOP/s. In
Table 1 we show the performance of our code on a single GPU node. Our code
obtains about 814 GFLOP/s on the M2090, and about 2,172 GFLOP/s on K20X
GPUs. The former is 61.2% of the theoretical peak and the latter is about 55%
of the theoretical peak.

We also perform scaling study on the Titan supercomputer, which is a Cray
XK7 with an Nvidia Tesla K20Xm available on each of its nodes. In Fig. 4 we
show the strong scaling of our code for an input data consisting of 2M and 8M
q-points and 7.5M triangles defining the shape of an organic photovoltaic (OPV)
sample. It can be seen that our code scales well. For the case with 2M q points,
there is not enough parallelism in the problem instance to efficiently utilize more
than 1,024 GPU nodes and, hence, we see flattening in its performance. For the
second case with 8M q-points, this is not the case and the code scales up to the

Tuning HipGISAXS on Multi and Many Core Supercomputers 227

Table 1. Single node execution times in seconds for various input sizes on M2090 and
K20X GPUs

T Q M2090 GFLOP/s K20X GFLOP/s

6,600 2M 0.68 813.6 0.25 2172.2
6,600 8M 2.73 813.2 1.02 2167.2
91,753 2M 9.47 813.4 3.56 2159.1
91,753 8M 37.9 813.4 14.25 2161.5

103

104

105

106

107

 1 10 100 1000 10000

G
FL

O
P

/s

Number of GPU Nodes

Ideal
2M q-points
8M q-points

Fig. 4. Strong scaling on the Titan supercomputer. Data is shown for two different
Q-grid sizes, and 7.5M triangles. Note how the Q-grid size affects the performance.
The code achieves 1.25 PetaFLOPs of sustained performance when using 8,192 GPU
nodes.

available 8,192 GPU nodes. It attains a performance of about 1.25 PetaFLOP/s
when using 8,192 nodes.

4 Many Integrated Cores (MIC)

The second architecture we consider is Intel’s Many Integrated Cores (MIC)
architecture. Intel Xeon Phi processors [2] are based on this architecture. This
platform acts as a coprocessor connected to a host CPU. Although codes can run
in native mode on MIC without the intervention of the host CPU, in our case
we use the offload model where the host offloads the kernel computations onto
the coprocessor. We chose this model due to three major reasons: HipGISAXS
uses certain third-party libraries such as imaging and parallel I/O libraries which
either are not available for the MIC architecture or perform best on generic multi-
core CPUs, the host in our case, since a single core performance of the host CPU
is generally higher than single core performance of this many-core coprocessor.
Secondly, by offloading the compute intensive kernels to the coprocessor, the host
is available to perform other computations simultaneously, which is beneficial in
the case of HipGISAXS since it can perform computations such as structure-
factor computation independent of the form-factor computations. In addition to
these, offloading also enables overlay computations for large problems since the
main memory on the coprocessor is limited while the host may have much larger

228 A. Sarje et al.

capacity, enabling offloading one hyperblock at a time which would fit into the
coprocessor memory.

4.1 Intel MIC Optimizations

In the following, we present some of our optimizations performed on the form
factor kernel of HipGISAXS to adapt it to the Intel MIC architecture.

Algorithmic Optimizations. A straightforward parallelization of form factor
computations on the MIC can be done by using OpenMP for the nested loops.
We are again faced with the choice of which loops to parallelize, and we choose
the loops Ly and Lz for this purpose, with loop Lt being the innermost loop
executed by all the threads. This choice is beneficial in our case due to two
primary reasons. Firstly, it allows better non-local cache utilization by data
reuse since each thread requires the shape triangles data. Secondly, it allows
for a better vectorization of the code, which we will explain in Section 4.1. In
addition, it eliminates the need for synchronization in reduction operation over
the triangles.

We follow a similar scheme as described for GPUs previously for paralleliza-
tion. Hyperblocking decomposes the computations into smaller subproblems,
each of which is computed one at a time using all the available cores on the
processor. Since we are using the offload model, this also allows us to exploit
data transfer latency hiding through overlap with computations with the use
of asynchronous kernel offloading and data copying features available on this
coprocessor.

To implement the kernel, we use kernel fusion to merge the reduction step
along with the first phase of computing the inner terms.Further, an obvious
optimization on the two loops Ly and Lz under consideration is loop collapsing.
This enables availability of high parallelism for efficient work distribution among
the various threads.

Memory Optimizations. In implementing the code using the offload model,
we minimize the number of data transfers by using the nocopy, alloc if and
free if features, as well as asynchronous data copy. With these features, we
implement triple-buffering scheme for offloading hyperblock computations and
computed submatrix data transfers. This enables a perfect data transfer latency
hiding, similar to our case for GPUs. All the data buffers used are aligned to 64-
bytes (cache line), and padded to maintain this alignment in order to maximize
performance.

We perform detailed performance profiling of our code using the Intel VTune
Amplifier profiling tool. The obtained data was used to guide our optimiza-
tions. One of the major bottlenecks revealed by the profiler was in loading of
the shape triangle data. The data in the triangles buffer is originally organized
according to the format of the data read from the input shape definition file.
This consists of data for each triangle appearing consecutively. As we mentioned

Tuning HipGISAXS on Multi and Many Core Supercomputers 229

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

1p x 240t

2p x 120t

3p x 80t

4p x 60t

5p x 48t

6p x 40t

10p x 24t

12p x 20t

15p x 16t

Ti
m

e
[m

s]

Configuration

balanced
compact
scatter
none

Fig. 5. The performance of various possible configurations on the Intel Phi coprocessor.
A configuration is represented by number of MPI processes running on the host (p)
and number of OpenMP threads belonging to each MPI process (c) running on the
coprocessor. Data is shown for the four different possible affinities: balanced, compact,
none and scatter.

previously, this definition consists of 7 real numbers. Hence, the data was stored
as such. Since the compiler performed automatic vectorization of the kernel, it
had to use gather instructions such as vgatherdps to obtain data correspond-
ing to each component of the triangles definition, which had large stride values
spanning over multiple triangles. These gather operations are expensive, and
proved to be a major bottleneck in the code. Hence, we performed data reorga-
nization to eliminate such operations. While constructing the triangles buffer,
we grouped each component of all triangles together. This allowed to have unit
stride values for accessing the data to facilitate automatic vectorization. With
this optimization we observed a performance improvement of about 33%.

Environmental Optimizations. Intel compilers provide a wealth of options to
perform optimizations. We took advantage of these, along with those provided by
environment variables. The VTune profiler also showed that a significant amount
of time was being spent in thread waiting routines of OpenMP. Fortunately,
setting the environment variable KMP BLOCKTIME to 0 reduced this overhead.
We also employed high pages by setting the value of the environment variable
MIC USE 2MB BUFFERS to 4K. We also set MIC KMP AFFINITY = granularity =
fine, compact, which performed the best among other affinity configurations
with our code.

Since we use offload model with MPI processes running on the host, and 240
hardware threads (4 threads per core) on the MIC, it is natural to explore vari-
ous possible configurations in terms of number of MPI processes running on the
host and the number of threads each process creates on the MIC. In our case, the
host is a dual 8-core processor providing total of 16 cores. Hence, we explore var-
ious configurations ranging from 1 MPI process on the host with 240 OpenMP

230 A. Sarje et al.

threads on the coprocessor to 15 MPI processes with 16 OpenMP threads each
with different affinities. We employed the variable MIC KMP PLACE THREADS to
explicitly pin the threads to particular cores depending on which MPI process
they belong to. Note that there is no straightforward way to specify the case of 16
MPI processes with 15 OpenMP threads since each core runs 4 threads. The per-
formances we observed for the various configurations using affinities balanced,
compact, none and scatter are shown in Figure 5. It can be seen that balanced,
scatter and compact affinities perform nearly similar. The default affinity of
none performs erratically: the execution times varied significantly between dif-
ferent runs with the same experimental configuration, sometimes even by 200%.
The configurations of 6 MPI processes on host with 40 threads (10 cores) each
on the coprocessor and 12 MPI processes on host with 20 threads (5 cores) each
on the coprocessor and compact affinity are our choices on this platform.

Vectorization and Complex Operations. Intel compilers are capable of
automatically vectorizing parts of the code in order to utilize the 512-bit vector
registers (floating-point and integer). Keeping the loop Lt as innermost, for each
thread to execute, is helpful in vectorization since multiple triangles can be
processed simultaneously through SIMD parallelism. Analysis of assembly code
of the kernel generated by the compiler showed good vectorization, but not
perfect. Since most of the computations in our kernel are operations on complex
numbers (i.e. each entity consisting of two floating-point numbers), it is not
straightforward for the compiler to vectorize them effectively.

The MIC architecture does not support Intel MMX, SSE or AVX vector
instruction sets. It implements its own vector instructions (Initial Many Core
Instructions [6]) on 512-bit vectors due to the availability of 512-bit integer and
floating-point registers. Hence it can perform operations on 16 single-precision or
integer data via SIMD. To address the compiler’s failure to efficiently vectorize
complex number operations, we implemented our own vectorization by using a
combination of the low-level vector intrinsics and assembly code. Before we do
that, we need to make a choice on how to represent complex number vectors.
A straightforward way is to represent one 512-bit vector by 8 single-precision
complex numbers, with the real and imaginary components of a complex number
stored next to each other. In practice, this approach does not work well in parallel
since to perform operations, the real and imaginary components are treated
separately and performing operations on interleaved data is not an efficient way
to vectorize. Hence, we follow the “structure-of-arrays” schema and define a
complex vector by two 512-bit vector components, one for real part and other
for the imaginary part as follows:

typedef struct {
__m512 _xvec;
__m512 _yvec;

} __m512c;

Hence, one complex vector holds 16 complex numbers. This way, we can make
full use of the SIMD capabilities on MIC. We implement all our operations on

Tuning HipGISAXS on Multi and Many Core Supercomputers 231

vectorized complex numbers using this datatype using the real number intrinsics
and instructions. For example, a simple complex-complex multiplication can be
written as follows using 4 multiply, 1 add and 1 subtract intrinsics:

static inline __m512c _mm512_mul_pc(__m512c a, __m512c b) {
__m512c vec;
__m512 t1 = _mm512_mul_ps(a.xvec, b.xvec);
__m512 t2 = _mm512_mul_ps(a.yvec, b.yvec);
vec.xvec = _mm512_sub_ps(t1, t2);
t1 = _mm512_mul_ps(a.xvec, b.yvec);
t2 = _mm512_mul_ps(a.yvec, b.xvec)
vec.yvec = _mm512_add_ps(t1, t2);
return vec;

}

We manually vectorize the entire form factor kernel using such intrinsics
and assembly code. Since MIC does not provide hardware support for functions
such as sine and cosine, they are implemented in software and their vectorized
versions are available through libraries such as SVML. We use such functions
from SVML in our code. Compared to the compiler generated vectorization, our
manual vectorized code showed about 22% performance improvement.

With the above optimizations, the main bottlenecks in our code were now
the two SVML functions we used: exponent and sine-cosine. About 80% of the
time was spent together in these functions. Hence, we decided to use our own
optimized functions for these operations. We obtained a basic implementation of
exp and sincos functions from [8] and performed extensive optimizations (such
as instruction re-ordering, arithmetic optimizations, minimize add and multiply
instructions through the use of fused-multiply-add). Using these functions in our
kernel gave a further overall performance improvement of about 25%. Through
micro-benchmarking of the kernel we computed that our exponent function was
about 3.57× faster than the SVML implementation. Similarly, our sine-cosine
function was about 1.5× faster than the SVML implementation.

Autotuning Decomposition Parameters. Similar to our GPU optimization
case, we implement autotuning for optimal choice of the computational decom-
position parameters. For the MIC version of the code, we primarily need to tune
the hyperblock sizes. An example of the trend of execution time observed for
various values of hy and hz is shown in Fig. 6. Another example with varying
values of hz and ht is also shown in the same figure.

Quite different to the behavior we saw in the case of GPUs, here all the
small hyperblock sizes should be avoided. Although from the figure it is tempting
to choose the largest hyperblock size from the top right corner of the plot, it
should be noted that the data for these graphs was obtain through extrapolation,
and those configurations with large values of all hy, hz and ht are actually
not possible due to memory limitations on the coprocessor. Hence, most of the
yellow region we see in the figures should be removed, and we should be able to
choose parameter values from the center of the heat maps. Again, the optimal
values of these parameters is independent of the problem instance, unless the

232 A. Sarje et al.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

 8
00

 9
00

 1
00

0

z-
di

m
en

si
on

 s
iz

e

y-dimension size

low

high

Fig. 6. Variation in performance with change in hyperblock dimension sizes. Low is
better (yellow regions). Note that most of the top right parts are not possible due to
memory limitations on the coprocessor.

optimal values are larger than the corresponding sizes in the given problem, the
autotuner needs to be executed only once on a system, and all subsequent runs
of HipGISAXS will use these values and amortize the cost.

4.2 Theoretical Analysis on Intel MIC

We refer to our kernel implementation for MIC architecture, done using vector
intrinsics and assembly language, to count the number of floating-point opera-
tions. In this case we do not consider the special functions as 1 FLOP because
they are implemented using the basic arithmetic operations. We do not count
floating-point comparisons in our calculations. For operations on complex num-
bers, we count the number of real FP operations they are built upon. Hence, a
real-complex add is just 1 FLOP, complex-complex add is 2 FLOPs, and so on.
Our implementation of exp contains 26 FLOPs, and sincos contains 23 FLOPs.
Adding up these and all remaining operations, we obtain 78nt + 18 FLOPs for
a single q-point, making the overall total to be nxnynz(78nt + 18) FLOPs for
the entire problem instance. In this case as well, the arithmetic intensity is a
function of number of triangles, O(nt) making this kernel compute bound for
MIC architecture also.

4.3 Performance Analysis on Stampede

We now present some of the performance results we were able to obtain on the
Stampede system in the limited time of access and limited number of nodes.
We plan to get access to more time and larger number of nodes in order to
perform much in depth performance analysis and scaling in the next couple
of months. In Table 2 we list the performance on a single MIC node of the
Stampede system with various input sizes. The theoretical peak performance of
a MIC card is 2,021 GFLOP/s in single-precision. Our codes were able to achieve
484 GFLOP/s, which is about 24% of the peak.

Tuning HipGISAXS on Multi and Many Core Supercomputers 233

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 40 80 120 160 200 240

G
FL

O
P

/s

OpenMP threads

2292 triangles
19800 triangles

102

103

104

105

106

 1 2 4 8 16 32 64 128 256

G
FL

O
P

/s

Number of MIC Nodes

Ideal
91,753 triangles, 8M q-points

Fig. 7. (Left) Strong scaling is shown for a single node, with varying number of threads.
(Right) Strong scaling on multiple nodes of Stampede. Each node has one MIC copro-
cessor. On 1,024 nodes, we achieved 0.1 PetaFLOPs of performance.

Table 2. Single node execution times in seconds for various input sizes on Stampede,
containing the Intel Phi coprocessors (MIC)

Triangles # q-points Time [s] GFLOP/s

6,600 2M 2.27 453.58
6,600 8M 8.769 469.67

91,753 2M 30.767 465.22
91,753 8M 118.49 483.19

7,514,364 2M 2565.18 456.98

In Fig. 7, we show strong scaling of our code – on a single node, and across
multiple nodes upto 256 nodes of the Stampede system. We were unable to get
access to larger number of nodes except for one run on 1,024 nodes of Stampede.
It can be seen that the code scales quite well. On 1,024 nodes we ran a problem
instance with nt = 7, 514, 364 and 2M q-points, and the code was able to achieve
about 0.1 PetaFLOP/s (1024 nodes).

5 On Multi-core CPUs

Next we consider general-purpose multi-core CPU architectures for optimizing
HipGISAXS. Due to various similarities with previous cases, and space limita-
tions, we will keep this brief.

5.1 AMD Magny Cours and Intel Sandy Bridge

Cray XE6 and Cray XC30 are built using AMD Magny Cours and Intel Sandy
Bridge processors, respectively. These are both general-purpose multi-core
processors, the former with 12 cores and the latter with 8 cores. L1, L2 and LLC
caches are all system managed. Although it is relatively simple to implement
codes for such processors, obtaining high-performance necessitates adapting the

234 A. Sarje et al.

code to their specific architectural features. These include effective use of caches
through exploitation of spatial and temporal localities in data accesses, and low-
level instruction optimizations such as vectorization and ILP exploitation.

We implement data and loop blocking techniques on the innermost loop Lt

of our form factor kernel in order to exploit localities on both architectures. We
use fused kernel in this case as well, hence, the reduction operation over the
triangles minimizes synchronization. Our optimizations of the kernel function
on these processors was guided using PAPI [3] through the available hardware
counters. AMD Magny Cours provides 128-bit vector registers and supports
SSE2 and SSE4a vector instructions. To perform better than the compiler gen-
erated vectorization, we implemented the entire form factor kernel using SSE2
vector intrinsics. Intel Sandy Bridge, on the other hand, provides 256-bit vec-
tor registers and supports AVX vector instructions. Hence, for this architecture
we implemented our kernel using AVX vector intrinsics. In both the cases, we
implemented our own optimized versions of operations on complex numbers as
well as the special functions exp and sincos. On Sandy Bridge, since AVX
intrinsics do not include integer operations, we implemented them using 128-bit
SSE2 vectors. Also, we performed the input shape triangles data reorganization
similar to the MIC case explained earlier in order to facilitate efficient vector-
ization and avoid expensive memory stalls. In addition, this data reorganization
includes data blocking to take advantage of localities through available cache as
mentioned earlier. Furthermore, we also unrolled the vector loop by a factor of
2 in order to hide instruction latencies. Further, we also incorporate autotuning
of the hyperblock decomposition parameters into these codes as well. The trend
of the execution time with varying hyperblock dimension sizes was quite simi-
lar to that we saw for the MIC architecture previously, hence we do now show
it here.

5.2 Theoretical Analysis on Multi-core CPUs

We count the number of floating-point operations in the form factor kernel for
our implementations on these multi-core CPUs. These implementations are quite
similar (but with different instruction sets: SSE2, AVX). We also count the basic
operations for each of the exponent and sine-cosine functions. The total number
of floating-point operations in the kernel for a single q-point turns out to be
68nt +20 on Magny Cours and 85nt +16 on Sandy Bridge. Hence, overall FLOP
counts on the two architectures are nxnynz(68nt + 20) and nxnynz(85nt + 16),
respectively. Again, similar to the case with MIC and GPU implementations,
the arithmetic intensity in this case is also a linear function of the number of
triangles, O(nt).

5.3 Performance Analysis on Hopper and Edison

A single node of Hopper is dual socket containing two AMD Magny Cours pro-
cessors, providing a total of 24 cores. This XE6 node has 4 NUMA regions,
consisting of 6 cores each. In this environment, we have the liberty of choosing

Tuning HipGISAXS on Multi and Many Core Supercomputers 235

Table 3. Single node execution times in seconds for various input sizes (number of
triangles and number of q-points) on AMD Magny Cours processors of Cray XE6 and
Intel Sandy Bridge processors of Cray XC30, and corresponding GFLOP/s

T Q XE6 GFLOP/s XC30 GFLOP/s

6,600 2M 6.34 141.7 2.97 378.2
6,600 8M 25.28 142.1 11.87 378.3

91,753 2M 88.16 141.7 41.0 379
91,753 8M 352.0 142 164.1 380

the number of MPI processes and the number of OpenMP threads per process
while using all the 24 cores. Through experimentation, we determined that for
our code, 4 MPI processes with 6 OpenMP threads each on a node performs the
best, and we use this configuration in all subsequent experiments on the Hopper
system. These processes and threads are pinned to their respective locations in
each NUMA region. In contrast, an XC30 node is dual socket with two Sandy
Bridge processors, but with only 2 NUMA regions. This processor also supports
Hyper-Threading, providing a total of 16 physical and 32 logical cores. On this
system, we observed that the configuration consisting of single threaded 16 MPI
processes per node, and without Hyper-Threading, performs the best. Hence, we
use this configuration for our experiments on the Edison system. In Table 3 we
list single node performance on both systems for several input sizes. The theo-
retical peak performance of one node of XE6 in single-precision is 403 GFLOP/s,
and that of XC30 node is 664 GFLOP/s. With our optimized codes, on a single
node of the XE6, we achieved 142 GFLOP/s which is 35.2% of the peak, while
on a single node of the XC30, we achieved 380 GFLOP/s which is 57.2% of
the peak performance.

Moving on to multiple nodes, in Fig. 8 we show the performance scaling of
our optimized code on the Hopper and Edison systems. We utilized up to 6,000
nodes on Hopper (144,000 cores) reaching 0.63 PetaFLOP/s, and 512 nodes on
Edison (8,192 cores) reaching 0.19 PetaFLOP/s.

6 Comparisons

In the following we discuss a brief comparison of the optimizations and perfor-
mance of our codes on the different systems presented in this paper. Both Nvidia
GPUs and Intel MIC provide a high-degree of fine grained parallelism, which was
beneficial in our case due to the independent nature of computations involved
in the form factor kernel. Although comparing the different systems is not an
easy task, in our case we plot the performances obtained on the three systems
on the same number of nodes. Hence, on Titan, one node provides one K20X
GPU, on Stampede, one node provides one Intel Phi coprocessor, on Hopper,
one node provides dual socket AMD Magny Cours processors with a total of 24
cores, and on Edison, one node is dual socket with Intel Sandy Bridge with a
total of 16 physical cores. On a single node of the four systems, our code achieved

236 A. Sarje et al.

102

103

104

105

106

 1 2 4 8 1
6

 3
2

 6
4

 1
28

 2
56

 5
12

 1
02

4

 2
04

8

 4
09

6
 6

00
0

G
FL

O
P

/s

Number of Nodes

XE6, 7.5M triangles
XC30, 7.5M triangles

Fig. 8. Strong scaling on the Hopper system, a Cray XE6, and Edison, a Cray XC30.
The former is built with AMD Magny Cours processors, each node with 24 cores,
making a total of 144,000 cores for 6,000 nodes. The latter consists of Intel Sandy
Bridge processors, each node with 16 physical cores, making a total of 8,192 cores
for 512 nodes. Our code achieves 0.63 PetaFLOPs on 6,000 nodes of Hopper, and
0.19 PetaFLOPs on 512 nodes of Edison.

102

103

104

105

106

107

 1 2 4 8 1
6

 3
2

 6
4

 1
28

 2
56

 5
12

 1
02

4
 2

04
8

 4
09

6
 8

19
2

G
FL

O
P

/s

Number of Nodes

Titan
Hopper
Edison

Stampede

100

101

102

103

104

105
 1 2 4 8 1
6

 3
2

 6
4

 1
28

 2
56

 5
12

 1
02

4
 2

04
8

 4
09

6
 8

19
2

Th
ro

ug
hp

ut
 (i

n
m

ill
io

ns
)

Number of Nodes

Titan
Hopper
Edison

Stampede

Fig. 9. Comparison of performance of our codes on Titan, Stampede, Hopper and
Edison. (Left) Performance in GFLOP/s is shown. (Right) Throughput in TQP/s
(number of triangle-q-points processed per second, i.e. one iteration of the loop Lt).

142 GFLOP/s on Magny Cours, 380 GFLOP/s on Sandy Bridge, 484 GFLOP/s
on MIC and 2172 GFLOP/s on K20X, the building blocks of the four systems.
The graphs shown in Fig. 9 compare the performance of our codes on all the four
systems for comparison, with the same number of nodes on each. It can be seen
that the performance of Edison and Stampede are very comparable. Scaling on
Hopper and Edison is better than on Titan and Stampede. It should be noted
that Nvidia GPUs considered above are the only processors among these which
provide hardware support for approximate sine-cosine computations. This made
a lot of difference since on other systems, these functions had to be implemented
in software using basic mathematical operations.

Although developing a bare-bones working code with acceptable performance
is easier on multi-core CPUs like the AMD Magny Cours and Intel Sandy Bridge,
than on GPUs or MIC, since they are general-purpose processors, extraction of

Tuning HipGISAXS on Multi and Many Core Supercomputers 237

high-performance from them is no easier than the implementations on graphics
processors or the MIC architecture. In an attempt to quantify the effort required
by each of these architectures to extract the raw computational power, we note
that basic code development person-hours was least for the multi-core CPUs,
and highest for GPUs. But taking all together the optimization efforts, the effort
went into them is quite comparable. In terms of power, we note that the per-
formance per watt achieved by our codes on each of K20X GPU, MIC, Magny
Cours and Sandy Bridge architectures are respectively, 8.98 GFLOP/s/Watt,
1.98 GFLOP/s/Watt, 1.3 GFLOP/s/Watt, and 3.3 GFLOP/s/Watt.

7 Conclusions

In this paper we described in detail our efforts on optimizing HipGISAXS, a high-
performance X-ray scattering simulation code. In our work targeted four specific
architectures: Nvidia GPUs (Fermi/Kepler), Intel MIC (Phi processor), AMD
Magny Cours and Intel Sandy Bridge CPUs. These different architectures form
the basic building block of four of the top supercomputers: Titan, Stampede,
Hopper and Edison, respectively. We presented detailed optimization strategies
and analyzed the code performance on these supercomputers. On each of these
architectures, our code achieved 55% of peak on Nvidia K20X, 24% of peak on
Intel MIC, 35.2% of peak on dual AMD Magny Cours, and 57.2% of peak on
dual Intel Sandy Bridge. On the scale of the supercomputers used, our code
was able to achieve 1.25 PetaFLOP/s on 8,192 nodes of Titan, 0.1 PetaFLOP/s
on 1,024 nodes of Stampede, 0.63 PetaFLOP/s on 6,000 nodes of Hopper and
0.19 PetaFLOP/s on 512 nodes of Edison.

Acknowledgments. The authors thank Samuel Williams for the many helpful dis-
cussions, and Nvidia for donating several Kepler GPU cards used in the development
of HipGISAXS. The authors also thank the rest of the HipGISAXS development team,
Slim Chourou and Elaine Chan. This work was supported by the Director, Office of
Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
This work was also supported by DOE Early Career Award granted to Alexander Hexe-
mer. This research used resources of the National Energy Research Scientific Computing
Center (NERSC), which is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC02-05CH11231, of the Oak Ridge Leadership Com-
puting Facility (OLCF) at the Oak Ridge National Laboratory, which is supported by
the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725. The authors further acknowledge the Texas Advanced Computing Center
(TACC) at The University of Texas at Austin for providing HPC resources that have
contributed to the research results reported within this paper.

References

1. Tesla Kepler GPU Accelerators. Datasheet (2012)
2. Intel Xeon Phi Coprocessor. Developer’s Quick Start Guide. Version 1.5. White

Paper (2013)

238 A. Sarje et al.

3. Performance Application Programming Interface (PAPI) (2013), http://icl.cs.utk.
edu/papi

4. Top500 Supercomputers (June 2013), http://www.top500.org
5. Chourou, S., Sarje, A., Li, X., Chan, E., Hexemer, A.: HipGISAXS: A High Perfor-

mance Computing Code for Simulating Grazing Incidence X-Ray Scattering Data.
Submitted to the Journal of Applied Crystallography (2013)

6. Intel Corp.: Intel Xeon Phi Coprocessor Instruction Set Architecture Reference
Manual (September 2012)

7. Kim, C., Satish, N., Chhugani, J., et al.: Closing the Ninja Performance Gap
through Traditional Programming and Compiler Technology. Tech. Rep. (2011)

8. Pommier, J.: SIMD implementation of sin, cos, exp and log. Tech. Rep. (2007),
http://gruntthepeon.free.fr/ssemath

9. Sarje, A., Li, X., Chourou, S., Chan, E., Hexemer, A.: Massively Parallel X-ray
Scattering Simulations. In: Supercomputing (SC 2012) (2012)

10. Satish, N., Kim, C., Chhugani, J., et al.: Can traditional program-
ming bridge the Ninja performance gap for parallel computing appli-
cations? SIGARCH Computer Architecture News 40(3), 440–451 (2012).
http://doi.acm.org/10.1145/2366231.2337210

http://icl.cs.utk.edu/papi
http://icl.cs.utk.edu/papi
http://www.top500.org
http://gruntthepeon.free.fr/ssemath
http://doi.acm.org/10.1145/2366231.2337210

Multi Objective Optimization of HPC Kernels
for Performance, Power, and Energy

Prasanna Balaprakash1,2, Ananta Tiwari3, and Stefan M. Wild1(B)

1 Argonne National Laboratory, Mathematics and Computer Science Division,
Argonne, IL, USA

2 Argonne National Laboratory, Leadership Computing Facility, Argonne, IL, USA
3 Performance Modeling and Characterization (PMaC) Lab, San Diego

Supercomputer Center, La Jolla, CA, USA
pbalapra@mcs.anl.gov, tiwari@sdsc.edu, wild@anl.gov

Abstract. Code optimization in the high-performance computing realm
has traditionally focused on reducing execution time. The problem, in
mathematical terms, has been expressed as a single objective optimiza-
tion problem. The expected concerns of next-generation systems, how-
ever, demand a more detailed analysis of the interplay among execution
time and other metrics. Metrics such as power, performance, energy, and
resiliency may all be targeted together and traded against one another.
We present a multi objective formulation of the code optimization prob-
lem. Our proposed framework helps one explore potential tradeoffs
among multiple objectives and provides a significantly richer analysis
than can be achieved by treating additional metrics as hard constraints.
We empirically examine a variety of metrics, architectures, and code
optimization decisions and provide evidence that such tradeoffs exist in
practice.

1 Introduction

The race to exascale is rapidly changing supercomputer architecture designs.
Shrinking circuit sizes and a growing push toward heterogeneous architectures is
yielding systems with processors with many cores, sometimes differing vastly in
their capabilities. From a user’s standpoint, these changes fundamentally alter
the way one interacts with these systems. System resiliency, which traditionally
was “free,” will no longer be so. Lower voltage, a larger number of elements
within a node, and elements’ shrinking feature sizes are expected to decrease the
mean time between failures [1]. Adding extra logic into the hardware to address
the resiliency issue takes up valuable chip real estate; the burden of making sure
the application ran to a successful and correct completion may be shifted—at a
performance/energy price—to the software.

Another challenge the new architecture designs expose is the power wall
problem. As an example, [1] recommends the power wall for exascale systems be
20 MW, a limit that is already being flirted with by current-generation petaflop

240 P. Balaprakash et al.

systems1. Hardware architects are consequently working closely with application
scientists to design systems that can deliver more FLOPs per Watt. Hardware-
based solutions alone cannot, however, address all the different stress scenarios
that software phases might put on hardware. Part of the solution has to come
from the software side as well; these solutions can be addressed by autotuning.
Autotuning is the systematic process of navigating the space defined by the soft-
ware and hardware parameters that impact a metric related to the performance
of the system. Next-generation autotuning strategies should efficiently identify
and obtain high-performance code optimizations that can help reduce the power
demands of key computational pieces of the scientific applications and carefully
orchestrate hardware-provided configuration options to reduce the power draw.
Exascale systems will also provide massive concurrency; billions of cores are
projected. Writing an application that can take advantage of the available com-
pute resources will provide substantial challenges to today’s high-performance
computing (HPC) application developers.

Traditionally, the autotuning problem has been expressed as a single-objective
(execution time) minimization problem (see, e.g., [3]). Given current and pro-
jected changes in architecture designs, however, this formulation of the problem
is insufficient for a wide variety of emerging autotuning problems. Execution
time will be one among several, possibly competing, system-related metrics such
as system resiliency and energy consumption that must be optimized. Ramping
up the speed of the processor to complete the application execution, for example,
can jeopardize system resiliency because the increase in chip temperature can
make it more vulnerable to failures. Similarly, launching an application to utilize
more cores than its computational phases need, or can exploit, wastes energy.
Therefore, a multi objective formulation of the autotuning problem is needed.

Multi objective optimization concerns the study of optimizing two or more
objectives simultaneously. Even if there is a unique optimal (software/hardware)
decision when any of the objectives is considered in isolation, there may be
an entire set of solutions when the objectives are considered collectively. This
set is referred to as a Pareto front (formally described in Section 3) and plays
an integral role in a wide variety of decision problems in HPC. Two examples
relevant to this paper are the following:

1. HPC administrators increasingly must balance financial costs associated with
energy consumption with the need for users to obtain results in a timely
manner. In some cases it may be possible to quantify a price on time and
thereby obtain a single, weighted objective comprising both energy and time
costs. However, such a priori weights are typically unknown, and minimizing
such a single objective does not provide information when these weights (or
the price of energy) change. A Pareto front in the time-energy space provides
optimal solutions for all possible weights/prices.

2. For hardware design and thermal considerations, power capping—where
one must perform a computation while satisfying a specified power limit/

1 For example, the Tianhe-2 computer requires 17.8 MW of power to achieve 33.8
LINPACK petaFLOP/s [2].

Multi Objective Optimization of HPC Kernels 241

budget—is increasingly done. Performance tuning in this context could min-
imize the single objective of run time subject to a constraint on power.
However, such a single-objective optimization will not identify the implica-
tions associated with that particular power limit. A one watt increase in
this limit could be deemed acceptable if it allowed for a 20% reduction in
time. Similarly, a decrease in the power limit could result in a negligible per-
formance loss, and thus placing less thermal stress on the hardware would
come at minimal cost. A Pareto front in time-power space provides valuable
information on the performance consequences of setting power limits.

Hence, multi objective optimization studies provide significantly richer insight
than do single-objective and constrained optimization approaches. The related
work summarized in Section 2 provides further examples where considering sev-
eral metrics simultaneously is of interest.

In Section 3, we present a mathematical formulation of the multi objective
performance tuning problem. In Section 4 we bridge the terminologies used by
the mathematical optimization and performance-tuning communities for the spe-
cific case of time, power, and energy metrics. We establish conditions when prob-
lems using these metrics benefit from a multi objective formulation and when
the number of objectives of interest can effectively be reduced. To illustrate the
relationship between tuning decisions and multiple, simultaneous objectives, we
consider a set of problems based on common HPC kernels. Section 5 presents
decision spaces consisting of different loop optimization techniques (e.g., loop
tiling, unrolling, scalar replacement, register tiling), clock frequencies, and par-
allelization (e.g., thread and node counts). We use these problems to conduct an
experimental study on multiple objectives on several novel architectures. To the
best of our knowledge, this is the first detailed work on empirical analysis of run
time, power, and energy tradeoffs on an Intel Xeon Phi coprocessor (Section 6.1),
an Intel Xeon E5530 (Section 6.2), and an IBM Blue Gene/Q (Section 6.3). Our
results show that tradeoffs exist in practice under a number of different settings.

Although current architectures expose only a limited set of energy and power-
related parameters (e.g., CPU clock frequency) to the software, we anticipate
that exascale architectures may admit a richer set of hardware parameters (e.g.,
power gating of different hardware components) that have power and energy
implications. Therefore, we believe that presenting a framework that shows how
tradeoffs can be explored is an important contribution to the HPC community.
Furthermore, the existence of these tradeoffs can motivate hardware designers to
expose a richer set of configuration knobs to future administrators and software
designers. This framework and our analysis are sufficiently general and can be
easily extended to incorporate new hardware- and software-based power and
energy configuration options as they become available.

2 Related Work

Several recent works have examined metrics based on performance and power/
energy models. An energy-aware compilation framework was developed in [4].

242 P. Balaprakash et al.

The framework can estimate and optimize energy consumption of a given code
taking as input the architectural and technological parameters, energy models,
and energy/performance constraints. A performance-adaptive algorithm for opti-
cal interconnects was proposed in [5] and used to optimize power consumption,
throughput, and latency for various traffic patterns. A multi objective algo-
rithm based on game theory was proposed in [6] for mapping tasks onto multi
core architectures in order to optimize performance and energy. An integrated
architecture-circuit optimization framework was used by Azizi et al. [7] to study
the tradeoff between energy and performance; the authors showed that volt-
age scaling plays a crucial role in this tradeoff while the choice of an optimal
architecture and circuitry does not have a significant impact. The authors in [8]
adopted machine-learning techniques to build predictive models for power draw,
execution time, and energy usage of computational kernels. A “roofline” model
for energy that takes into account algorithm characteristics (e.g., operations,
concurrency, and memory traffic) and machine characteristics (time and energy
costs per operation or per word of communication) was developed in [9]; using
this model, the authors also analyzed the conditions for tradeoffs between time
and energy.

Objectives based on architectural simulations have also been used. A multi
objective exploration of the mapping space of a mesh-based network-on-chip
architecture was performed in [10]; using evolutionary computing techniques,
the authors obtained the mappings on a performance-power Pareto front. Per-
formance, power and resource usage objectives were treated by the design space
tool in [11] to explore the vast design space of the Grid ALU Processor and its
post-link optimizer.

Closer to the presented work are exploratory studies using empirical per-
formance data in conjunction with power or energy. The impact of energy con-
straints for multithreaded applications on multiprocessor applications was
studied in [12] and synchronization-aware algorithms were proposed to save
energy with a user-acceptable loss in speedup. Power-monitoring device, Pow-
erMon2, was developed in [13] to enable the analysis of performance and power
tradeoffs. The authors in [14] used a power-aware performance prediction model
of hybrid MPI/OpenMP applications to develop an algorithm to optimize energy
consumption and run time. An automated empirical tuning framework that can
be configured to optimize both performance and energy efficiency was proposed
in [15]. Energy and performance characteristics of different parallel implemen-
tations of scientific applications on multi-core systems were investigated in [16],
and interactions between power and application performance were explored.
The empirical performance tuning tool Active Harmony [17] was used in [18]
to explore the tradeoff between energy consumption and performance for HPC
kernels. The effects of CPU and network bandwidth tuning from a whole-system-
level perspective were analyzed in [19]; in demonstrating opportunities for energy
savings, tradeoffs between power and run times were found.

Researchers have also explored search algorithms for multi objective prob-
lems. In addition to execution time, many of these works involve objectives that

Multi Objective Optimization of HPC Kernels 243

are simpler to evaluate, e.g., code size; and none have looked at power or energy
objectives. Performance and code size were considered in a multi objective app-
roach in [20] when an unroll factor was varied. A multi objective evolutionary
algorithm was adopted in [21] to find Pareto-optimal (for combinations of code
size, compilation time, and execution time) compiler optimization levels. Evo-
lutionary search algorithms were also used in the adaptive compiler framework
[22] to find compiler optimization sequences that minimize code size, average
run time, and worst-case run time. Automated tuning of a just-in-time com-
piler through multi objective evolutionary search was performed in [23]. The
tuning identified optimization plans that are Pareto-optimal in terms of compi-
lation time and a measure of code quality. Milepost GCC [24] is a self-tuning
optimization infrastructure that supports general multi objective optimization
where a user can choose to minimize execution time, code size and compilation
time. A multi objective autotuning framework that adopts differential evolution
algorithms as a search methodology was developed in [25]. The authors demon-
strated the proposed approach by optimizing run time and parallel efficiency
when varying loop tiling and thread-count parameters for parallel codes.

3 Multi Objective Optimization: Background and
Notation

We consider the multi objective (sometimes called “multi criteria” [26]) mathe-
matical optimization problem

min
x∈X

F (x) = [F1(x), . . . , Fp(x)], (1)

where p > 1 objectives are simultaneously minimized. In this paper, we assume
that the n-dimensional decision space X ⊂ R

n is a finite collection of discrete
points of size |X |. The assumption of a discrete and finite decision space can
be relaxed. We assume that each of the p objectives is bounded from below
but can take on the extended value “+∞” (e.g., corresponding to an infeasible
code transformation within the space X or a—ideally, reproducible—runtime
failure) and that there is at least one point in the decision space X at which all
p objectives are finite.

Many of the standard properties from single-objective optimization have
analogies in the multi objective setting. For example, objectives f that should be
maximized can be brought into the framework (1) by defining Fi(x) = −f(x).
Similarly, the units of the component objectives Fi do not matter since the
solution set of (1) is invariant to shift and positive-scale transformations2.

In the case of minimizing a single objective f , the idea of (global) optimal-
ity is simple: x̂ ∈ X is optimal if and only if f(x̂) ≤ f(x) for all x ∈ X . For
multiple objectives, however, we must alter this notion of optimality. The follow-
ing definitions are standard in multi objective mathematical optimization (see,
e.g., [26]).
2 The solution set for minx F (x) is exactly that for minx{α + diag(β)F (x)} for any

α ∈ R
p and any positive β ∈ R

p.

244 P. Balaprakash et al.

Fig. 1. Illustration of Pareto fronts when minimizing two objectives (fdtd kernel, input
size 512, Intel Xeon E5530; see Section 6.2). Left: The points A, B, C, and D are non
dominated and hence belong to the Pareto front. Right: The Pareto front is a single
point, A, which dominates all other points.

Definition 1. We say that F (x) ≤ F (y) if Fi(x) ≤ Fi(y) for all i = 1, . . . , p,
and F (x) �= F (y); in this case we have that y is dominated by x. We say that a
point x ∈ X is Pareto optimal for (1), or non dominated, if there is no y ∈ X
with F (y) ≤ F (x). We denote the set of Pareto-optimal points by X ∗ ⊆ X . The
set of objective function values of all Pareto-optimal points, F∗ = {F (x) : x ∈
X ∗}, is called the Pareto front.

The concepts introduced in Definition 1 are perhaps best illustrated by an
example. Figure 1 (left) considers the case when the p = 2 objectives of time,
F1, and total power, F2, are simultaneously minimized. The F1 × F2 objective
space shown is not to be confused with the decision space X (which in this
example corresponds to parameter values defining loop unrolling and other code
transformations, see Section 5). For the examples in Fig. 1, we assume that the
objective values of every feasible decision x ∈ X are shown. The shaded area
represents the region in F1×F2 space that is dominated by the point C; all points
in this region are inferior to C in both objectives. The set of non dominated points
form the Pareto front F∗.

If the objective F1 (F2) is minimized in isolation, then we obtain the point A
(B), which necessarily belongs on the Pareto front. Similarly, the minimizers of
the single objective fλ(x) = F1(x)+(1−λ)F2(x), for λ ∈ [0, 1], corresponding to
a convex combination of the objectives, will lie on the Pareto front. However, not
all points on the Pareto front necessarily correspond to minimizers of a linear
combination of the objectives (e.g., point D in Fig. 1 (left)).

Hence, the Pareto front contains significantly richer information than one
obtains from single-objective formulations. For example, if one were to minimize
time subject to a constraint on power, F2(x) ≤ P , the Pareto front provides the
solution for all possible values of the cap P . In Fig. 1 (left), we see that caps of
260 W, 257 W, and 254 W would result in minimal times of 6 s, 6.5 s, and 8 s,
respectively.

Multi Objective Optimization of HPC Kernels 245

In some cases, the multiple objectives may not be competing. For the same
decision space X considered in Fig. 1 (left), Fig. 1 (right) has a second objective
of energy consumption, which is strongly correlated with the objective F1. In
fact, the Pareto front now corresponds to a single point, which simultaneously
minimizes both objectives.

As evidenced in these examples, only certain regions of the objective space
are of interest. Typically, search algorithms for efficiently finding Pareto fronts
focus on a hyperrectangle defined by two points formally defined below.

Definition 2. The ideal objective point F I=[F I
1 , . . . , F I

p] for (1) is defined com-
ponent wise by F I

i = min
x∈X

Fi(x). The nadir objective point FN = [FN
1 , . . . , FN

p]

for (1) is defined component-wise by FN
i = max

x∈X ∗
Fi(x).

The ideal point represents the best possible value in isolation for each objec-
tive. The ideal point can be attained only if the Pareto front consists of a single
point as in Fig. 1 (right). The nadir point is the extreme point defined by the
Pareto front. In the example in Fig. 1 (left), the ideal and nadir points are
at (5.97 s, 252.5 W) and (8.57 s, 260.5 W), respectively. Together, the ideal
and nadir points define the range of objective values that decision makers may
encounter if they are interested in all possible optimal tradeoffs.

Before directing our focus to three specific metrics, we note that hard con-
straints, including those involving an objective of interest, can also be incorpo-
rated in (1). We assume that these constraints define the decision space X and
that the choice of this decision space can directly affect the objective space, and
hence the ideal and nadir points.

4 Optimization of Time, Power, and Energy

In this section we focus on the particular bi objective cases where either time
and power or time and energy are simultaneously minimized. We could just
as easily examine more than two simultaneous objectives. However, interpre-
tation/visualization of the empirical results presented in Section 6 would be
less straightforward. Furthermore, though our experimental focus is on objec-
tives defined by empirical evaluation, our framework can also include objectives
defined by model or simulator evaluation.

For clarity, we denote the time, power, and energy objectives by T , P , and
E, respectively. Since power corresponds to a rate of energy, these two problems
(which we can write as F = [T, P] and F = [T, E]) are clearly related, with
E = PT .

One can exploit other properties of these three objectives in their simultane-
ous optimization. For example, since T, P,E are strictly positive, we can freely
multiply/divide by T, P,E without changing inequalities. Similarly, for many
problems of interest one can assume that the objective values of two differ-
ent decision points are different (i.e., for all x, y ∈ X with x �= y, T (x) �= T (y)).

246 P. Balaprakash et al.

This property ensures that there is a one-to-one correspondence between Pareto-
optimal decision points X ∗ and the Pareto front F∗.

Furthermore, we may have a priori knowledge about the relationship between
some decision parameters and some objectives. For example, for many architec-
tures it is safe to assert that power is monotonically increasing in the number of
nodes employed. Such relationships can be exploited by both exploratory studies
and search algorithms to reduce the number of distinct decision points evaluated.

Because of the relationship between power and energy, we have a simple
relationship between the two objective spaces considered here.

Definition 3. Let X ∗P ⊆ X denote the set of Pareto-optimal points for F =
[T, P], and let X ∗E⊆ X denote the set of Pareto optimal points for F = [T, E].

Proposition 1. All points on the energy-time Pareto front have a corresponding
point on the power-time Pareto front: X ∗E ⊆ X ∗P .

Proof. Let x̂ ∈ X ∗E denote a point on the energy-time Pareto front (and hence
there is no point x ∈ X that dominates x̂ for the objectives T and E). Now
suppose that x̂ /∈ X ∗P , and hence there is some x̃ ∈ X that dominates x̂. If
T (x̃) < T (x̂) and P (x̃) ≤ P (x̂) , then E(x̃) = T (x̃)P (x̃) < T (x̂)P (x̂) = E(x̂),
and hence x̃ is strictly better in both T and P . On the other hand, if T (x̃) ≤
T (x̂) and P (x̃) < P (x̂), then E(x̃) < E(x̂). In both cases, T (x̃) ≤ T (x̂) and
E(x̃) < E(x̂), which contradicts the definition of x̂ being non dominated for the
T and E.

Proposition 1 says that the number of non dominated points for energy-time
is bounded by the number of non dominated points for power-time.

Definition 4. Let x(1) ∈ X ∗P denote a non dominated point on the T -P front
that minimizes time: x(1) ∈ arg minx∈X ∗P T (x) (where the inclusion is done in
case there is not a unique minimizer).

Proposition 2. A necessary condition for x ∈ X to be a non dominated point
on the T -E Pareto front is that

P (x) ≤ P (x(1))T (x(1))
T (x)

. (2)

Proof. By the definition of x(1), T (x(1)) ≤ T (x) for all x ∈ X . Hence, x ∈ X can
be on the T -E Pareto front only if E(x) ≤ E(x(1)), which can be rewritten as
(2) since T (x) > 0 for all x ∈ X .

Many necessary bounds exist in addition to (2), but (2) is especially useful
because it provides a convenient bound that requires only a minimizer of a
single objective (time). Furthermore, it offers a mathematical relationship for
the conditions needed in order for the energy-time Pareto front to comprise

Multi Objective Optimization of HPC Kernels 247

Fig. 2. Illustration of the points comprising a relaxed Pareto front for different values
of ε (SPAPT adi problem, Intel Xeon Phi; see Section 6.1). The points within each
shaded region belong the relaxed Pareto front obtained from (4).

more than one point. Clearly this inequality does not hold for the example in
Fig. 1.

Proposition 2 can also be used to look at the effect of idle power. If we
decompose the power into a constant idle power and a varying difference above
idle power, P (x) = PI + ΔP (x), then (2) is equivalent to

ΔP (x(1))T (x(1)) − ΔP (x)T (x) ≥
(
T (x) − T (x(1))

)
PI . (3)

A necessary condition for (3) is that the power savings must outpace the product
of idle power and relative slow-down,

P (x(1)) − P (x) ≥ T (x) − T (x(1))
T (x(1))

PI .

Hence, for fixed times T (x) and T (x(1)), it becomes more unlikely that tradeoffs
exist as the idle power PI grows (since there’s always an upper bound to peak
available power).

For many time-power-energy multi objective problems, one may need to
acknowledge the measurement error in each objective. Assuming that there is a
fixed error margin εi ≥ 0 for the ith objective, if Fi(x) is within εi of Fi(y), then
we cannot say that x is truly better than y (or vice versa) with respect to the
objective Fi. The notion of non dominance in Definition 1 would thus need to
be modified so that x dominates y if F (x) �= F (y) and

Fi(x) + εi ≤ Fi(y) for all i = 1, . . . , p. (4)

As a result, one would arrive at a relaxed Pareto front that potentially consists
of a cloud of points. This is illustrated in Fig. 2 for different multiples of the
measurement error margin (ε1 = .2s,ε2 = 2W). In practice, one often knows
what the εi should be. For example, we know what the measurement resolution of

248 P. Balaprakash et al.

power and time are for each of our experiments; see the measurement descriptions
in Section 6.

To simplify the presentation, we follow the convention in Definition 1 (which
takes εi = 0 for i = 1, . . . , p) for the results reported in Section 6.

5 Problem Sets and Decision Spaces

We now describe the set of problems, consisting of HPC kernels from SPAPT
[27], TORCH [28], and CSPARSE [29], and the proxy application miniFE [30],
that we used for our empirical multi objective study. We also describe the code
transformation framework that we utilize to generate variants with different
flavors of compiler optimizations.

Each search problem in the SPAPT [27] suite is a specific combination of a
kernel, an input size, a set of tunable decision parameters, a feasible set of possi-
ble parameter values, and a default configuration of these parameters for search
algorithms. These problems are expressed in an annotation-based language that
can be readily processed by Orio [31]. The tunable decision parameters are loop
unroll/jamming, cache tiling, register tiling, scalar replacement, array copy opti-
mization, loop vectorization, and multi core parallelization using OpenMP. The
kernels in SPAPT are grouped into four groups: elementary dense linear algebra
kernels, dense linear algebra solver kernels, stencil code kernels, and elementary
statistical computing kernels. This work considers problems from three groups:
matrix-matrix multiplication (mm), matrix transpose and vector multiplication
(atax), and triangular matrix operations (trmm) from the basic dense linear alge-
bra kernels; bi conjugate gradient (bicgkernel) and lu decomposition kernels
from the dense linear algebra solver kernels; and matrix subtraction, multipli-
cation, and division (adi), 1-D Jacobi computation (jacobi), finite-difference
time domain (fdtd), and matrix factorization (seidel) kernels from the stencil
code kernels.

To generate and evaluate a set of points in the SPAPT decision space, (which
can be further extended to include different compiler optimization parameters),
we must use a source-to-source transformation framework. We use Orio [31],
which is an extensible and portable software framework for empirical perfor-
mance tuning. It takes an Orio-annotated C or Fortran implementation of a
problem along with a tuning specification that consists of various performance-
tuning directives as inputs, generates multiple transformed code variants of the
annotated code, empirically evaluates the performance of the generated codes,
and has the ability to select the best-performing code variant using various search
algorithms. We refer the reader to [31] for a detailed account of annotation pars-
ing and code generation schemes in Orio.

On multi core architectures, larger core counts reduce the ratio of peak mem-
ory bandwidth to peak floating-point performance. To analyze such behavior, we
include two bandwidth-limited problems: a sparse matrix multiplication kernel
and a quick sort kernel that sorts n items in O(n log n) time. The reference imple-
mentation of the sparse matrix multiplication kernel is based on CSPARSE, a

Multi Objective Optimization of HPC Kernels 249

concise sparse matrix package in C [29], and takes sparse matrix triplets as input.
For the quick sort kernel, we use the implementation from the TORCH Compu-
tational Reference Kernels [28], a collection of core problems in scientific com-
puting. While in the sparse matrix multiplication kernel the number of nonzero
elements in the matrix leads to floating-point operations, the quick sort kernel
performs only comparisons without any significant floating-point operations.

For large-scale multi node experiments, we use a proxy application from the
Mantevo project, which was designed to explore the capabilities of emerging
architectures [30]. miniFE is a finite-element mini-application that implements
kernels representative of unstructured, implicit finite-element applications. It
assembles a sparse linear system from a steady-state heat conduction problem
on a brick-shaped domain of linear, 8-node hex elements. It then solves the linear
system using a simple (unpreconditioned) conjugate gradient (CG) algorithm.
Thus the kernels that miniFE contains are computation of element-operators
(diffusion matrix, source vector), assembly (scattering element-operators into
sparse matrices and vectors), sparse matrix-vector products (during the CG
solve), and vector operations (level-1 BLAS: axpy, dot, norm). Running miniFE
with a fixed set of dimensions and varying the number of MPI ranks is a com-
monly used strong scaling test.

To illustrate the wide applicability of our framework, we use different HPC
platforms in the experimental study (platforms are described in the next Section).
For each platform, we use a subset of the problems described above that can exer-
cise the unique and important aspects of that platform. The decision-making
process for selecting the benchmarks for experimental evaluation of the pro-
posed framework had one more important dimension – choosing kernels and
applications that are well known to the HPC community, so that the results can
be evaluated and assimilated within the larger context of what the community
already knows about the behaviors (e.g., performance consequences of different
compiler optimizations) of those kernels.

6 Experimental Results

We now summarize the findings from our empirical evaluations on three markedly
different platforms. The Intel Xeon Phi’s Many Integrated Core (MIC) architec-
ture serves as a platform that allows us to explore the tradeoffs among concur-
rency, power, and performance on nodes with many simple cores, a characteristic
that we anticipate will be increasingly common in next-generation large-scale
systems. The Intel Xeon E5530 architecture allows us to explore the tradeoffs
among power, energy, and performance in a current-generation architecture. The
availability of clock frequency scaling on the Xeon E5530 allows us to enrich our
decision space X (see Section 3) with hardware-provided, power-related config-
uration options. Our measurement setup on the Xeon E5530 also provides us
with more detailed power measurement capabilities. IBM’s BG/Q was chosen as
a way to demonstrate our framework’s applicability on a vastly different proces-
sor architecture and to explore the tradeoffs among concurrency, power, and
performance on a large, multi nodal scale.

250 P. Balaprakash et al.

Fig. 3. Power, energy, and time for the fdtd SPAPT kernel on Intel Xeon Phi (includes
both thread count and code transformation variants)

6.1 Intel Xeon Phi

The experiments described in this section are carried out on a first-generation
Intel Xeon Phi coprocessor (based on the Intel Many Integrated Core (MIC)
architecture) [32], consisting of 60 standard cores clocked at 1090 MHz and with
full cache coherency across all cores. Each core offers four-way simultaneous
multithreading (SMT) and 512-bit-wide SIMD vectors, which corresponds to
8 double-precision or 16 single-precision floating-point numbers. Each core has
a fully coherent 32 KB L1 instruction cache, a 32 KB L1 data cache, and a
512KB unified L2 cache. The coprocessor card contains 8 GB of memory, and is
connected via a PCI Express bus to a Westmere host running CentoOS 6.3 and
with 64 GB of host main memory.

Setup and Measurement. For power measurement, we relied on the system
management utility micsmc (v. 4346-16) designed for monitoring and managing
Xeon Phi coprocessors. Currently, micsmc has a time resolution of 0.5 seconds
and power measurement resolution of 1 W. The icc compiler (version 13.0.0
20120731), with -mmic (for native MIC libraries) and -O3 optimization flags,
was used to compile the code variants.

We configure each variant to run k times, where k is selected (separately for
each kernel) so that the total run time is at least 50 seconds. Let r1(x), . . . , rk(x)
denote a sequence of k run times for the variant x and let (t1(x), p1(x)), . . . ,
(tm(x), pm(x)) denote a time-stamped sequence of power measurements obtained
from the micsmc utility. To calculate power draw for the variant, we consider
all power readings (ti(x), pi(x)) with r2(x) ≤ ti(x) ≤ 50 (with r1(x) omitted to
remove any cold-cache effect and the time needed for memory allocation on the
card). A 10-second sleep interval in between two successive executions ensures
that the processor returns to a normal temperature and power state.

Results. Figure 3 shows the results obtained on the SPAPT problem fdtd (with
an input size of 500×500). In these plots, we show the average run time, average
power, and average energy required by the code variants. The results show a clear

Multi Objective Optimization of HPC Kernels 251

Fig. 4. Power, energy, and time for the sparse matrix multiplication kernel on Intel
Xeon Phi

Fig. 5. Power, energy, and time for the quick sort kernel on Intel Xeon Phi

tradeoff between run time and power and the number of threads. The number
of threads adopted has the largest impact on the power draw whereas the code
transformation decisions have the largest impact on run time. We observe that
the code variants are clustered based on the number of threads. The power draw
increases by approximately 5W with an increase of 30 threads. The corresponding
energy plot does not show a tradeoff; it exhibits a race-to-idle condition [33].
Similar trends were seen for other SPAPT problems.

When there is no activity, the coprocessor enters into a complete idle state
(PC-state), where it has an efficient power management module to save power
and energy by power gating [34]. Currently, the power draw we observe is approx-
imately 60 W. After transitioning from an idle state to the normal operating
state, however, we observe high idle power (currently between 80 W and 90 W).
Consequently, even a small run time reduction results in significant energy sav-
ings. We note that some previous works (e.g., [35,36]) subtract idle power from
the power drawn during the normal operating state in order to consider only
the increase in the power draw that can be attributed to a given workload’s

252 P. Balaprakash et al.

execution. Our figures show the view from a system operator’s perspective and
take into account the total system power (idle and workload computation power).

Next we focus on the sparse matrix multiplication kernel with the input
trdheim, a large, sparse matrix from the UFL sparse matrix collection [37] with
1,935,324 nonzeros. Other inputs tested (including std1 Jac3 db, biplane-9,
and t3dl from [37]) produced similar results. We study the impact of varying
the number of threads (concurrency) on run time, power, and energy. Figure 4
shows the Pareto front. Although there is a tradeoff between run time and power,
we can observe race-to-idle behavior when it comes to energy efficiency. This
can be due to a number of architectural specializations of the Intel Xeon Phi
to improve bandwidth [32]. The aggregate bandwidths of L1 and L2 caches are
approximately 15 and 7 times faster than the aggregate memory bandwidth,
respectively. A 16-stream hardware prefetcher is used to improve the cache hits.
It uses a special instruction called “streaming store” that allows the cores to
write an entire cache line without reading it first. The interconnect has a 64-byte-
wide data block ring to support the high bandwidth requirement. The memory
controllers are symmetrically interleaved around the ring to provide a uniform
access pattern, which eventually increases the bandwidth response.

Figure 5 shows the results of the quick sort kernel on an input size (the
number of random integers to sort) of 107. We see a similar trend except that
the variants with larger thread counts are slightly slower and thus less energy
efficient.

The results from Intel Xeon Phi show that for compute-limited kernels, the
use of large core counts results in significant performance benefits with respect
to both time and energy. Nevertheless, power is a limiting factor. Because of the
effective high-bandwidth memory subsystem, the bandwidth-limited kernels also
exhibit a similar trend. We note that in all our Intel Xeon Phi experiments, we
observe that the maximum power is between 140 W and 145 W, irrespective of
the type of kernel tested. The average power draw is determined by the number of
threads used rather than the type of computation. This observation underscores
the importance of developing workload-aware parallelization schemes for the
next-generation systems with many cores, so that one uses only the number of
cores (or threads) that the workload can actually exploit.

6.2 Intel Xeon E5530

We now describe our results on an Intel Xeon E5530 workstation with two quad-
core processors. Each core has its own 32 KB L1 cache and 256 KB L2 cache;
each of the quad-core processors has a shared 8 MB L3 cache (for a total of
16 MB of L3 for the 8 cores). The processors can be clocked at 1.60, 1.73,
1.86, 2.00, 2.13, 2.26, or 2.39 GHz. Processor clock frequency is changed by
using the cpufreq-utils package [38] that is available with many popular Linux
distributions.

Setup and Measurement. Component-level (CPUs and DIMMs) power mea-
surements are collected by using a PowerMon2 apparatus [13]. PowerMon2 is a

Multi Objective Optimization of HPC Kernels 253

hardware and software framework designed to obtain fine-grained (up to 1,024
samples per second) current and voltage measurements for different components
of a target system (e.g., CPUs, memory subsystem, disks, GPUs). We measure
the system-level power draw using the WattsUp Pro power meter [39]. The power
meter is a fairly inexpensive device, costing less than $150 at the time of this
writing. Although the device is easy to use, it provides relatively coarse-grained
measurements, roughly one reading per second. We implemented a command-
line interface on top of the WattsUp driver to monitor and calculate the overall
energy usage of an application.

Since we can measure system level power only at 1-second granularity, we
configure the main computational loops to run k times, where k is selected
(separately for each kernel/input) so that the total run time at the highest CPU
frequency is more than five seconds. This ensures that we collect a sufficient
number of power readings that can be attributed to the main computation of
the kernels. The execution time reported in the paper is for these k iterations
of the computation kernel. A post processing step sweeps through the data to
attribute portions of the power measurements to the actual kernel loops. These
power measurements are then averaged to determine the power draw for a single
execution. To account for the unavoidable noise in this empirical data collection
process, we measure each variant three times. The execution time and the power
draw reported here are averages of these three runs.

Here we discuss results for the fdtd, jacobi, and bicgkernel SPAPT ker-
nels. For fdtd, we selected two different input sizes: 512 × 512 (henceforth ref-
erenced as fdtd512) and 4096 × 4096 (fdtd4096). The selection decision was
driven by our desire to ensure that we have test cases that stress the CPU
and memory subsystem in different ways. Indeed, the last level cache misses per
instruction for the base SPAPT case (no transformations) ranges from 1.8×10−4

for bicgkernel (making it a very compute-bound kernel) to 0.03 for fdtd4096
(making it a memory-bound kernel).

The code transformations applied to the kernels and the transformation
spaces are taken as in [27]. However, we supplement the SPAPT decision spaces
with a CPU clock frequency parameter. For each of the kernels, we select 300 (a
number chosen simply to limit the time required for data collection) randomly
selected variants from the code transformation space. Each of these variants is
evaluated on all available clock frequencies.

Results. Figure 6 shows the Pareto fronts for the objectives time and total sys-
tem power (as measured at the wall). The first observation that demonstrates
the richness of the decision space is that, for a given hardware frequency para-
meter, the power range for the code variants is large. Tradeoffs between time
and system-level power draw are evident. The power draw is lower for slower
clock speeds, but this comes with a slow-down of the computation. Especially
interesting is that the Pareto fronts show cases where one can reduce the power
draw and not impact the performance substantially. Such behavior should be of
high interest to co-design centers designing power-limited hardware targeted to
specific types of computations.

254 P. Balaprakash et al.

Fig. 6. Pareto fronts (for each clock frequency) for SPAPT kernels on Intel Xeon E5530
for the objectives time and total system power. The shaded area shows the Pareto front
across all frequencies.

We can also examine particular transformation variants. Figure 7 shows the
energy and time for the five highest-performing (as measured at the fastest clock
rate) variants. This figure shows some interesting tradeoff decisions that we can
explore. For example, for variant v1 of the memory-bound fdtd4096 kernel, we
see that we can trade 0.8% loss in performance with 7.5% decrease in the energy
consumption by running the kernel at the lowest frequency. The energy savings
amount is not as significant for the compute-bound bicgkernel, where one can
trade 1.2% loss in performance with 2.8% decrease in the energy consumption
by running variant v1 at clock frequency 2.12GHz.

Figure 8 shows the Pareto fronts for each clock frequency for component-level
power draws of the fdtd4096 kernel. When we analyze each of the fronts for
different clock frequencies in isolation, we see a clear tradeoff between DIMM
and CPU power draws for different code variants. We attribute this behavior
intuitively to the optimizations that impact data motion. Code variants that have
better data motion behavior reduce the stress on DIMMs thereby lowering the
DIMM power. At the same time, better data motion leads to more compute work
for the CPU, thereby raising its power demand. Such tradeoffs are of interest in
studies for future architectures where one may consider constraining CPU draw

Multi Objective Optimization of HPC Kernels 255

Fig. 7. Energy and time on Intel Xeon E5530 for the five highest-performing vari-
ants (v1–v5) from the SPAPT transformation space. The curves illustrate the tradeoff
behavior as clock frequency is changed.

(e.g., for thermal/fault considerations) and/or DIMM draw (e.g., as a proxy for
effective memory footprint or simulator of memory-starved systems).

6.3 Vesta IBM Blue Gene/Q

Vesta is a developmental platform for Mira, a 10-petaflop IBM Blue Gene/Q
supercomputer [40] at Argonne. Vesta’s architecture is the same as Mira’s except
that it has two compute racks (Mira has 48 racks). A rack has 32 node boards,
each of which holds 32 compute cards. Each compute card comprises 16 compute
cores of 1600 MHz PowerPC A2 processors with 16 GB RAM (1GB/core). In
total, Vesta has 2,048 nodes (32,768 compute cores). The nodes are connected via
a proprietary 5-D torus network. The compute nodes are water-cooled for ther-
mal efficiency and run on CNK, a proprietary, lightweight kernel that minimizes
OS noise.

Setup and Measurement. For the power measurements in BG/Q, we use
a power profiling code that periodically samples power draw [41]. Because of
cabling and control system limitations, the code requires a minimum partition
size of 128 nodes, which spans 4 node boards. The profiler code runs one thread

256 P. Balaprakash et al.

Fig. 8. Pareto fronts (for each clock frequency) on Intel Xeon E5530 for component-
level power draws

Fig. 9. Power, energy, and time for miniFE on BG/Q

on each node board and records the power on all the domains every 0.25 seconds
along with a time stamp. We refer the reader to [41] for further details on the
power profiling in BG/Q.

We set the input size (controlling the box domain from which a finite-element
problem is assembled and solved) of miniFE to nx = ny = nz = 1000. We
considered a decision space with four parameters: two generic parameters that
control the scaling behavior and two application-specific parameters. The generic
parameters are the number of nodes ({128, 256, 512, 1024}) and the number of
threads per core (either 8 (one thread every other core) or 16 (one thread per
core)). The two miniFE specific parameters are the percentage of unbalance
in the decomposition ({5, 10, 20, 30, 40, 50, 60, 70, 80, 90}) and a Boolean
decision parameter ({Yes, No}) that controls whether matrix-vector products
are performed with overlapping communication and computation. In total, we
had 160 code variants for the experimental analysis.

Results. The results in Figure 9 show that there are tradeoffs between time to
completion and both power and energy. As expected, increasing the node count

Multi Objective Optimization of HPC Kernels 257

decreases the time to completion but increases the power draw. In addition to
the workload power, the significant increase in the power draw can be attributed
to the fact that each node board consumes an idle power of roughly 1500 W
[41]. The node count of 1024 uses 32 node boards, but 128 uses only 4 node
boards. Concerning energy, the best parameter configuration within each node
count provides a tradeoff between time to completion and energy consumption.
Within a given node count, however, the fastest code variant consumes the least
energy.

7 Conclusions and Outlook

In this paper we have provided a formalism for multi objective optimization stud-
ies of broad applicability in autotuning, architecture design, and other areas of
HPC. With a focus on time, power, and energy, we illustrated that a multi objec-
tive analysis provides richer insight than do constrained and single-objective
formulations. We have also contributed a significant empirical study, spanning a
diverse set of platforms, power measurement technologies, kernels, and decision
spaces. Our findings showed that in some settings objectives are strictly corre-
lated and there is a single, “ideal” decision point; in others, significant tradeoffs
exist.

A key component in most autotuning frameworks is the search algorithm
that carefully orchestrates the selection and evaluation of various parameters
to optimize given (multiple) objectives. Measuring the quality of a parameter
configuration in the decision space is crucial for any search algorithm. Our multi
objective optimization framework can enable the search algorithm to compare
the quality of the parameter configurations in the context of conflicting multiple
objectives.

Future work includes characterizing settings where empirical tradeoffs agree
with those predicted by models (e.g., the roofline work in [9]) and where rela-
tionships between objectives are not as well understood. Significant opportuni-
ties exist for studying the tradeoffs among additional objectives; we especially
mention resiliency since its relationship to power-based and temperature-based
objectives is expected to be a prime concern in future extreme-scale systems [1].

Acknowledgments. Support for this work was provided through the Scientific Dis-
covery through Advanced Computing (SciDAC) program funded by the U.S. Depart-
ment of Energy, Office of Science, Advanced Scientific Computing Research. This
research used the computational resources of the Argonne Leadership Computing Facil-
ity under a Director’s discretionary allocation. We thank Paul Hovland and Laura
Carrington for valuable discussions and Kazutomo Yoshii for insights on the power
monitoring systems of BG/Q and Intel Xeon Phi and valuable feedback.

References

1. Kogge, P.: The tops in flops. IEEE Spectrum 48(2), 48–54 (2011)
2. TOP500 List: June 2013 Report, http://www.top500.org

http://www.top500.org

258 P. Balaprakash et al.

3. Balaprakash, P., Wild, S.M., Hovland, P.D.: Can search algorithms save large-scale
automatic performance tuning? Procedia Computer Science 4, 2136–2145 (2011)

4. Kadayif, I., Kandemir, M., Vijaykrishnan, N., Irwin, M., Sivasubramaniam, A.:
EAC: A compiler framework for high-level energy estimation and optimization.
In: Proceedings of the Design, Automation and Test in Europe Conference and
Exhibition, pp. 436–442. IEEE (2002)

5. Kodi, A., Louri, A.: Performance adaptive power-aware reconfigurable optical inter-
connects for high-performance computing (HPC) systems. In: Proceedings of the
2007 ACM/IEEE Conference on Supercomputing (SC), pp. 1–12 (2007)

6. Ahmad, I., Ranka, S., Khan, S.U.: Using game theory for scheduling tasks on multi-
core processors for simultaneous optimization of performance and energy. In: IEEE
International Symposium on Parallel and Distributed Processing (IPDPS), pp. 1–6.
IEEE (2008)

7. Azizi, O., Mahesri, A., Lee, B.C., Patel, S.J., Horowitz, M.: Energy-performance
tradeoffs in processor architecture and circuit design: A marginal cost analysis. In:
ACM SIGARCH Computer Architecture News, vol. 38, pp. 26–36. ACM (2010)

8. Tiwari, A., Laurenzano, M.A., Carrington, L., Snavely, A.: Modeling power and
energy usage of HPC kernels. In: IEEE 26th International Parallel and Distributed
Processing Symposium Workshops & PhD Forum (IPDPSW), pp. 990–998. IEEE
(2012)

9. Choi, J.W., Bedard, D., Fowler, R., Vuduc, R.: A roofline model of energy. In: 2013
IEEE 27th International Symposium on Parallel Distributed Processing (IPDPS),
pp. 661–672. IEEE (May 2013)

10. Ascia, G., Catania, V., Palesi, M.: Multi-objective mapping for mesh-based NoC
architectures. In: Proceedings of the 2nd IEEE/ACM/IFIP International Confer-
ence on Hardware/Software Codesign and System Synthesis, pp. 182–187. ACM
(2004)

11. Jahr, R., Ungerer, T., Calborean, H., Vintan, L.: Automatic multi-objective
optimization of parameters for hardware and code optimizations. In: Interna-
tional Conference on High Performance Computing and Simulation (HPCS),
pp. 308–316. IEEE (2011)

12. Park, S., Jiang, W., Zhou, Y., Adve, S.: Managing energy-performance tradeoffs
for multithreaded applications on multiprocessor architectures. In: ACM SIGMET-
RICS Performance Evaluation Review, vol. 35, pp. 169–180 (2007)

13. Bedard, D., Lim, M.Y., Fowler, R., Porterfield, A.: PowerMon: Fine-grained and
integrated power monitoring for commodity computer systems. In: IEEE South-
eastCon 2010, pp. 479–484 (2010)

14. Li, D., de Supinski, B.R., Schulz, M., Cameron, K., Nikolopoulos, D.S.: Hybrid
MPI/OpenMP power-aware computing. In: IEEE International Symposium on
Parallel & Distributed Processing (IPDPS), pp. 1–12. IEEE (2010)

15. Rahman, S.F., Guo, J., Yi, Q.: Automated empirical tuning of scientific codes
for performance and power consumption. In: Proceedings of the 6th International
Conference on High Performance and Embedded Architectures and Compilers,
pp. 107–116. ACM (2011)

16. Lively, C., Wu, X., Taylor, V., Moore, S., Chang, H.C., Cameron, K.: Energy and
performance characteristics of different parallel implementations of scientific appli-
cations on multicore systems. International Journal of High Performance Comput-
ing Applications 25(3), 342–350 (2011)

Multi Objective Optimization of HPC Kernels 259

17. Tăpuş, C., Chung, I.H., Hollingsworth, J.K.: Active harmony: towards automated
performance tuning. In: Proceedings of the 2002 ACM/IEEE conference on Super-
computing, Supercomputing 2002, pp. 1–11. IEEE Computer Society Press, Los
Alamitos (2002)

18. Tiwari, A., Laurenzano, M.A., Carrington, L., Snavely, A.: Auto-tuning for energy
usage in scientific applications. In: Alexander, M., et al. (eds.) Euro-Par 2011, Part
II. LNCS, vol. 7156, pp. 178–187. Springer, Heidelberg (2012)

19. Laros III, J.H.: Measuring and tuning energy efficiency on large scale high perfor-
mance computing platforms. Technical Report SAND2011-5702, Sandia National
Laboratories (August 2011)

20. Heydemann, K., Bodin, F.: Iterative compilation for two antagonistic criteria:
Application to code size and performance. In: Proceedings of the 4th Workshop on
Optimizations for DSP and Embedded Systems (2006)

21. Hoste, K., Eeckhout, L.: Cole: Compiler optimization level exploration. In: Pro-
ceedings of the 6th Annual IEEE/ACM International Symposium on Code Gener-
ation and Optimization, pp. 165–174. ACM (2008)

22. Lokuciejewski, P., Plazar, S., Falk, H., Marwedel, P., Thiele, L.: Multi-objective
exploration of compiler optimizations for real-time systems. In: 13th IEEE Interna-
tional Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing (ISORC), pp. 115–122 (2010)

23. Hoste, K., Georges, A., Eeckhout, L.: Automated just-in-time compiler tuning.
In: Proceedings of the 8th Annual IEEE/ACM International Symposium on Code
Generation and Optimization (CGO), pp. 62–72. ACM (2010)

24. Fursin, G., Kashnikov, Y., Memon, A.W., Chamski, Z., Temam, O., Namolaru, M.,
Yom-Tov, E., Mendelson, B., Zaks, A., Courtois, E., et al.: Milepost gcc: Machine
learning enabled self-tuning compiler. International Journal of Parallel Program-
ming 39(3), 296–327 (2011)

25. Jordan, H., Thoman, P., Durillo, J.J., Pellegrini, S., Gschwandtner, P., Fahringer,
T., Moritsch, H.: A multi-objective auto-tuning framework for parallel codes. In:
Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis (SC), pp. 10:1–10:12. IEEE Computer Society Press,
Los Alamitos (2012)

26. Ehrgott, M.: Multicriteria Optimization. 2nd edn. Springer (2005)
27. Balaprakash, P., Wild, S.M., Norris, B.: SPAPT: Search problems in automatic

performance tuning. Procedia Computer Science 9, 1959–1968 (2012)
28. Kaiser, A., Williams, S., Madduri, K., Ibrahim, K., Bailey, D., Demmel, J.,

Strohmaier, E.: TORCH computational reference kernels: A testbed for computer
science research. Technical Report UCB/EECS-2010-144, EECS Department, Uni-
versity of California, Berkeley (December 2010)

29. Davis, T.A.: Direct methods for sparse linear systems, vol. 2. SIAM (2006)
30. Heroux, M.A., Doerer, D.W., Crozier, P.S., Willenbring, J.M.: Improving perfor-

mance via mini-applications. Technical Report SAND2009-5574, Sandia National
Laboratories (September 2009)

31. Norris, B., Hartono, A., Gropp, W.: Annotations for productivity and performance
portability. In: Petascale Computing: Algorithms and Applications. Computational
Science, pp. 443–462. Chapman & Hall/CRC Press (2007)

32. Intel Xeon Phi Coprocessor - the Architecture: http://software.intel.com/en-us/
articles/intel-xeon-phi-coprocessor-codename-knights-corner

33. Albers, S., Antoniadis, A.: Race to idle: New algorithms for speed scaling with a
sleep state. In: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 1266–1285. SIAM (2012)

http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

260 P. Balaprakash et al.

34. Intel Xeon Phi Coprocessor System Software Developers Guide:
http://software.intel.com/en-us/articles/
intel-xeon-phi-coprocessor-system-software-developers-guide

35. Alonso, P., Dolz, M.F., Igual, F.D., Mayo, R., Quintana-Orti, E.S.: Saving energy
in the LU factorization with partial pivoting on multi-core processors. In: 20th
Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP), pp. 353–358. IEEE (2012)

36. Springer, R., Lowenthal, D.K., Rountree, B., Freeh, V.W.: Minimizing execution
time in MPI programs on an energy-constrained, power-scalable cluster. In: Pro-
ceedings of the Eleventh ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pp. 230–238. ACM (2006)

37. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
Transactions on Mathematical Software 38(1) 1:1–1:25 (2011)

38. CPU Freq. Scaling, https://wiki.archlinux.org/index.php/Cpufrequtils
39. WattsUp? Meters, https://www.wattsupmeters.com/
40. IBM System Blue Gene Solution - Overview, http://www-03.ibm.com/systems/

technicalcomputing/solutions/bluegene/
41. Yoshii, K., Iskra, K., Gupta, R., Beckman, P., Vishwanath, V., Yu, C., Coghlan, S.:

Evaluating power-monitoring capabilities on IBM Blue Gene/P and Blue Gene/Q.
In: IEEE International Conference on Cluster Computing (CLUSTER), pp. 36–44.
IEEE (2012)

http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-system-software-developers-guide
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-system-software-developers-guide
http://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-system-software-developers-
https://wiki.archlinux.org/index.php/Cpufrequtils
https://www.wattsupmeters.com/
http://www-03.ibm.com/systems/technicalcomputing/solutions/bluegene/
http://www-03.ibm.com/systems/technicalcomputing/solutions/bluegene/

Performance Tuning of Fock Matrix
and Two-Electron Integral Calculations

for NWChem on Leading HPC Platforms

Hongzhang Shan1(B), Brian Austin1, Wibe De Jong1, Leonid Oliker1,
N.J. Wright1, and Edoardo Apra2

1 CRD and NERSC Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA

{hshan,baustin,wadejong,loliker,njwright}@lbl.gov
2 WR Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest

National Laboratory, Richland, WA 99352, USA
edoardo.apra@pnnl.gov

Abstract. Attaining performance in the evaluation of two-electron
repulsion integrals and constructing the Fock matrix is of considerable
importance to the computational chemistry community. Due to its
numerical complexity improving the performance behavior across a vari-
ety of leading supercomputing platforms is an increasing challenge due
to the significant diversity in high-performance computing architectures.
In this paper, we present our successful tuning methodology for these
important numerical methods on the Cray XE6, the Cray XC30, the
IBM BG/Q, as well as the Intel Xeon Phi. Our optimization schemes
leverage key architectural features including vectorization and simulta-
neous multithreading, and results in speedups of up to 2.5x compared
with the original implementation.

1 Introduction

NWChem [18] is an open source computational chemistry package for solving
challenging chemical and biological problems using large scale ab initio molecular
simulations. Since its open-source release three years ago, NWChem has been
downloaded over 55,000 times world wide and played an important role in solving
a wide range of complex scientific problems. The goal of NWChem is to not only
provide its users a computational chemistry software suite, but also to provide
fast time to solution on major high-performance computing (HPC) platforms.
It is essential for a software tools like NWChem to effectively utilize a broad
variety of supercomputing platforms in order for scientists to tackle increasingly
larger and more complex problem configurations.

Moden HPC platforms represent diverse sets of architectural configurations,
as clearly seen in different processor technologies and custom interconnects of the
current top five fastest computers in the world [17]. The No.1 system employes
Xeon E5-2682 and Xeon Phi (Intel MIC) processors while the No. 2 system uses
c© Springer International Publishing Switzerland 2014
S. Jarvis et al. (Eds.): PMBS 2013 Workshops, LNCS 8551, pp. 261–280, 2014.
DOI: 10.1007/978-3-319-10214-6 13

262 H. Shan et al.

Fig. 1. The total running times and the corresponding fock matrix construction and
integral calculation times on Hopper

Opteron 6274 and Tesla K20X processors. These two platforms follow similar
host+accelerator design patterns. The No. 3 and 5 systems use IBM PowerPC
A2 processors (IBM BG/Q), and No. 4 uses SPARC64 processors. The diversity
of the high performance computing architectures poses a great challenge for
NWChem to make efficient use of these designs.

In this work, we address this issue by tuning the performance of NWChem
on three currently deployed HPC platforms, the Cray XE6, the Cray XC30, the
IBM BG/Q, and the Intel MIC. Although NWChem provides extensive capabil-
ities for large scale chemical simulations, we focus on one critical component: the
effective evaluation of two-electron repulsion integrals with the TEXAS integral
module that are needed for the construction of the Fock matrix needed in the
Hartree-Fock (HF) and Density Functional Theory calculations [7]. This capa-
bility consists of about 70k lines of code, while the entire NWChem distribution
includes more than 3.5 million lines. Figure 1 shows the total running times of
our NWChem benchmark c20h42.nw on the 24-core node of Hopper, the Cray
XE6 platform. This benchmark is designed to measure the performance of the
Hartree-Fock calculations on a single node with a reasonable runtime for tun-
ing purposes. Each worker is a thread created by the Global Array Toolkit [4],
which is responsible for the parallel communication within NWChem. The total
running times are dominated by the Fock matrix construction and primarily the
two-electron integral evaluation.

By exploring the performance on these four platforms, our goal is to answer
the following questions and infer guidelines for future performance tuning.

Performance Tuning of Fock Matrix and Two-Electron Integral Calculations 263

Table 1. The Important Node Characteristics of the Four Platforms

Cray XE6 Cray XC30 Intel Xeon Phi IBM BG/Q

Node Two 12-core Two 8-core 60 Intel 16 IBM
AMD Opteron (24) Intel Xeon (16) MICs 5110P Power A2

Two Sockets Two Sockets Multi Sockets SMP

Memory 32GB DDR3 64GB DDR3 8GB GDDR5 16GB DDR3
800MHz 1666MHz 2500MHz 1333MHz

51.2 GB/s 106 GB/s 352 GB/s 42.6 GB/s

Core 2.1 GHz 2.6 GHz 1.05 GHz 1.6 GHz
1 Thread 2 Hyper Threads 4 Hyper Threads 4 Hyper Threads
8.4 GF/s 20.8 GF/s 16.8 GF/s 12.8 GF/s

SSE 4-way SIMD 8-way SIMD Quad FU

Cache L1: 64KB L1: 32KB L1: 32KB L1: 16KB
L2: 512KB L2: 256KB L2: 512KB L2: 32MB(shared)

L3: 6MB/6 Cores L3: 20MB/8 Cores

(I) What kind of optimizations are needed? (II) How effective are these opti-
mizations on each specific platforms? (III) How should the code be adapted to
take maximum advantage of the specific hardware features, such as vectorization
and simultaneous multithreading? (IV) Is there a consistent approach to opti-
mize the performance across all four platforms? Our insights to these questions
are discussed and summarized in Sections 8 and 10.

The rest of the paper is organized as follows. In Section 2, we describe the four
experimental platforms and in Section 3 we briefly introduce the background for
Fock matrix construction and two electron repulsion integral calculations. The
tunning processes and the corresponding performance improvements on the four
platforms are discussed in Sections 4, 5, 6, 7 individually. We summarize the
tuning results in Section 8. Related work is discussed in Section 9. Finally we
summarize our conclusions and outline future work in Section 10.

2 Experimental Platforms

To evaluate the impact of our optimizations, we conduct experiments on four
leading platforms, the Cray XE6, the Cray XC30, the Intel MIC, and the IBM
BG/Q. Below, we briefly describe the four platforms we used and Table 1 sum-
marizes the important node characteristics of these four different architectures.

2.1 The Cray XE6, Hopper

The Cray XE6 platform, called Hopper [8], is located at NERSC and consists
of 6,384 dual-socket nodes connected by a Cray Gemini high-speed network.
Each socket within a node contains an AMD “Magny-Cours” processor with 12
cores running at 2.1 GHz. Each Magny-Cours package is itself a MCM (Multi-
Chip Module) containing two hex-core dies connected via HyperTransport. Each

264 H. Shan et al.

die has its own memory controller that is connected to two 4-GB DIMMS. This
means each node can effectively be viewed as having four chips and there are large
potential performance penalties for crossing the NUMA domains. Each node has
32GB DDR3-800 memory. The peak data memory bandwidth is 51.2GB/s. Each
core has 64KB L1 cache and 512KB L2 cache. The six cores on the same die
share 6MB L3 cache. The compiler is PGI Fortran 64-bit compiler version 13.3-0.

2.2 The Cray XC30, Edison

The Cray XC30 platform, called Edison [2], is also located at NERSC. The first
stage of the machine contains 664 compute nodes connected together by the
custom Cray Aries high-speed interconnect. Each node is configured with 64GB
DDR3-1666 memory. The peak memory bandwidth is 106 GB/s. Each node has
two 8-core intel Sandy Bridge processors (16 cores total) running at the speed
of 2.6 GHz. Each core supports two hyper threads and supports 4-way SIMD
vector computations. Each core has 64KB L1 cache and 256KB L2 cache. The
8-core processor has 20MB L3 cache shared by all eight cores. The compiler we
used is Intel Fortran 64 Compiler XE version 13.0.1.

2.3 The Intel MIC, Babbage

The Intel MIC platform, called Babbage [12], is a new test platform located at
NERSC. There are total 45 compute nodes connected by the Infiniband inter-
connect. Each node contains two MIC cards and two Intel Xeon host processors.
Each MIC card contains 60 cores running at the speed of 1.05 GHz and 8 GB
GDDR5-2500 memory. The peak memory bandwidth is 352GB/s. However, using
STREAM benchmark, the best achievable bandwidth is only around 170GB/s.
Each core supports 4 hardware threads and an 8-way SIMD vector processing
unit capable of delivering 16.8 GF/s floating-point computations. Each core has
32KB L1 cache and 512KB L2 cache. The compiler we used is Intel Fortran 64
Compiler XE version 13.0.1.

2.4 The IBM BG/Q, Mira

The IBM BG/Q platform, called Mira [13], is located at Argonne National Labo-
ratory. Each node contains 16 compute cores (IBM Power A2) and 1 supplemen-
tal core to handle operating system tasks. The memory size on a node is 16 GB
DDR3-1333 with 42.6 GB/s peak memory bandwidth. Each core supports 4-way
simultaneous multithreading and a QUAD SIMD floating point processing unit
capable of 12.8 GF/s computing speed. Each core has 16KB L1 data cache and
all 16 cores share the 32MB L2 cache. The memory on the node follows SMP
(symmetric multiprocessing) not NUMA (nonuniform memory access) architec-
ture. The compiler is IBM XL fortran compiler for BG/Q version 14.1.

Performance Tuning of Fock Matrix and Two-Electron Integral Calculations 265

3 Background for Fock Matrix Construction and
Two-Electron Integral Evaluation

In quantum physics or chemistry, the Hartree-Fock method [7] is a fundamental
approach to approximate the solution of Schrödinger’s equation [5,20,21]. Dur-
ing this approach, a matrix called the Fock matrix (F) needs to be repeatedly
constructed. It is a two-dimensional matrix and its dimensional size is deter-
mined by the number of basis functions, N . Elements of the Fock matrix are
computed by the following formula [3]:

Fij = hij +
N∑

k=1

N∑

l=1

Dkl((ij|kl) − 1
2
(ik|jl))

where h is one-electron Hamiltonian, D is the one-particle density matrix, and
(ij|kl) is a two-electron repulsion integral. The time to construct the Fock matrix
is dominated by the computation of these integrals. In NWChem, the most
heavily used module to calculate the integrals is called TEXAS [19]. Given this
equation, the total number of quartet integrals to build the matrix F could reach
O(N4) making it computationally prohibitive. However, by applying molecular
and permutation symmetry as well as screening for small values, the complexity
can be reduced to O(N2 − N3).

The computation of each single or block of integrals is an independent oper-
ation that can be easily parallelized. However, the computational cost of each
individual integral differs substantially depending on the angular momentums of
the corresponding basis functions. Therefore, a dynamic load balancing method
is used to ensure that all parallel workers perform equal amounts of integral com-
putations. The Fortran pseudo-code of this approach is shown in Listing 1. The
algorithm utilizes a global task counter to distribute work to a parallel worker
that is available. To avoid network pressure on the global task counter, in each
iteration a runtime determined block of tasks gets assigned to a parallel worker.

Listing 13.1. Dynamic Load Balancing Method

my task = g l oba l t a s k c oun t e r (t a s k b l o c k s i z e)
cu r r en t t a sk = 0
do i j k l = 2∗ntype , 2 , −1
do i j = min (ntype , i j k l −1) , max(1 , i j k l −ntype) , −1

k l = i j k l − i j
i f (my task . eq . cu r r en t t a sk) then

c a l l c a l c u l a t e i n t e g r a l b l o c k ()
c a l l add i n t g r a l s t o Fock ()
my task = g l oba l t a s k c oun t e r (t a s k b l o c k s i z e)

end i f
cu r r en t t a sk = cu r r en t t a sk + 1

enddo
enddo

266 H. Shan et al.

For efficiency, blocks of integrals with similar characteristics are passed to
TEXAS integral package. The goal is to enable sharing and reuse of tempo-
rary data for integrals in the same block. However, the number of integrals can
efficiently be performed concurrently is limited by the cache size and memory
requirements. Therefore, we implement two levels of blocking. The higher level
is used to assign a block of integrals to the parallel workers. The lower level is
used to decide how many integrals can actually be done at the same time in the
TEXAS integral package. The integrals are calculated according to the Obara-
Saika (OS) method [14]. The algorithm [19,22] also uses the method proposed
by Tracy Hamilton (TRACY) to shift angular momenta from electron 1 (centers
1, 2) to electron 2 (centers 3,4). If the sum of the angular momentum of the
quartet shells is less than two, the integrals are handled by a special fast path.

Our performance tuning work focused on the intra-node performance. The
inter-node communication of NWChem is handled by a separate software package
called the Global Array Toolkit [4]. Optimizing the inter-node communication
performance is out of the scope of this paper. Actually, each integral calculation
does not involve any communication. Only constructing the Fock matrix does.

4 Performance Tuning on Hopper

The initial performance of building the Fock matrix and calculating the integrals
for the benchmark and the expected perfect linear scaling performance are shown
in Figure 2. We note that as the number of workers increases, the running time
is reduced linearly. However, for large number of workers scaling performance
deteriorates, especially when utilizing all 24 cores/node of the NERSC Hopper
system.

4.1 Task Granularity for Dynamic Load Balancing

Profiling results indicate that the non-perfect linear scaling behavior is related
with the dynamic load balancing approach. In order to reduce the number of task
requests, we assign a chunk of tasks to each worker (instead of just one). There
is a thus a balance between the request overhead and the assigned task granu-
larity (smaller granularities result in higher overheads to request those tasks).
The baseline version NWChem computes the task granularity using an algorithm
based on the number of workers, the request overhead, and the problem char-
acteristics. However, developing a perfect algorithm is challenging due to two
reasons. First, the time to finish a task may differ substantially, sometimes even
by orders of magnitude. Second, a chunk of tasks assigned to a worker together
may further exacerbate the situation.

The granularity size selected by the default algorithm shows inefficiencies
when relatively large number of parallel workers are applied. The selected chunk
size tends to be too big, leading to the load imbalance. To improve the per-
formance, we modify the default algorithm so that a smaller granularity size
can be chosen. Fortunately, the overhead for requesting the tasks increased only

Performance Tuning of Fock Matrix and Two-Electron Integral Calculations 267

Fig. 2. The initial performance of building Fock matrix and evaluating two-electron
integrals on Hopper

slightly. The performance improvement is shown in Figure 3 labeled with Task
Granularity. For a fully saturated node of 24 workers, our optimization approach
improves performance by over 40%.

4.2 Data Locality

As mentioned in Section 3, the TEXAS integral code does not compute the two-
electron integrals one by one. Instead, integrals with similar types are organized
in one block and computed together so that intermediate results can be reused.
There are some overheads to create the related data structures and perform
preliminary computations. If the number of integrals in the block is small, the
overhead cannot be effectively amortized. More importantly, array access per-
formance is directly related to this number; small sizes may cause runtimes to
suffer due to poor spatial data locality.

By examining the profiling analysis we found that there exist many cases
with small block sizes. In extreme cases, the block size is equal to one, leading to
poor data locality and low efficiency of the blocking structure. This occurs with
the special handling of integrals consisting of only s, p, and sp basis functions. To
improve the data locality and the efficiency of the block structure, we updated
the code to avoid generating block lengths of one. The performance improvement
results are shown in Figure 3 labeled with Data Locality. Results show that
performance has been further improved by 10-18% for all configurations. Note
that the graph displays cumulative performance improvements.

268 H. Shan et al.

Fig. 3. The cumulative performance improvement relative to the original code on the
Cray XE6

4.3 Other Optimizations

We additionally performed several other optimizations. Although the effect of
each individual optimization is not significant, the combined effect results in an
additional 10% improvement, seen in Figure 3 as “Additional Opts”. First, we
examined function uniq pairs, which is used to compute the unique ij or kl pairs
appeared in a block of integrals and sort them in ascending order. The original
implementation first collects all pairs, sorts them using a algorithm similar to
quicksort, and stores the unique pairs in an array. However, we found that many
pairs are redundant, and therefore developed a simple hash algorithm to partially
remove the redundant data first and then sort the remaining data. The number
of pairs to be sorted has thus been reduced greatly, resulting in a 75% running
time reduction for this function, which accounted for 2-3% of the total program
run time.

Other optimizations focused on applying loop transformations to several
time-consuming loops. Techniques include loop un-rolling and blocking and data
pre-fetching. Although compilers may perform these optimizations automati-
cally, our goal was to help compilers generate more efficient code. The perfor-
mance impact varied across the loops, sometimes leading to additional small
improvements. Finally, we optimized several statements to remove redundant
computations.

By combining all these optimization efforts, overall performance improved
significantly, by 25-75% relative to the original implementation, as shown in
Figure 3.

Performance Tuning of Fock Matrix and Two-Electron Integral Calculations 269

Fig. 4. The cumulative performance improvement relative to the original code on the
Cray XC30

5 Performance Tuning on Edison

The same set of optimization were also applied to Edison. Figure 4 shows the
cumulative performance improvement of our optimization schemes. Similar to
Hopper, when more than eight workers are active, the original implementation
suffers from load imbalance. By reducing the task granularity, the performance
improves up to 50% when 16 workers are used. Optimizing data locality fur-
ther improved the performance by approximately 13-20%. Finally, other specific
optimizations discussed in Section 4 resulted in performance gains of another
8%. On Edison, results show that loop transformations, such as unrolling and
blocking, has a much smaller performance impact compared with Hopper. This
is encouraging for application developers, since these kind of optimizations are
not only difficult but also result in less readable code. Overall, the final accumu-
lative performance improvement for all optimizations on Edison resulted in an
improvement of 1.2 – 1.8x compared to the original version.

5.1 Simultaneous Multi-threading

One major architectural difference between Edison and Hopper is that Edison
uses Intel Sandy Bridge processors that supports hyper-threading. Each physical
core can thus be treated as two logical cores, running two threads concurrently,
allowing us to run up to 32 workers per node. Using the optimized implemen-
tation with hyper-threading, with 32 workers per node, results in an additional

270 H. Shan et al.

Fig. 5. The cumulative performance improvement relative to the original code on the
Intel MIC

performance improvement of approximately 14% compared with 16 workers (in
single-threaded mode).

6 Performance Tuning on Babbage

The Intel MIC architecture supports two programming modes, allowing either
execution on the host with selected code sections offloaded to the Intel MIC
accelerator (offload mode) or native execution on the Intel MIC architecture
(native mode). In this work, we focus our effort to the native mode.

Figure 5 shows the performance improvement on the Intel MIC architec-
ture, which contains 60 physical cores per card. Load balancing is once again a
significant bottleneck, and adjusting the task granularity, allows a performance
improvement of up to 28% when 60 workers are used. Increasing data locality
is additionally effective, further improving the performance about 10% across
all shown configurations. Finally, the performance effect of additional optimiza-
tions become much more prominent, delivering 20 - 30% performance gains, due
mainly to their effects on compiler-driven vectorization. Similar to the Edison
platform, manual loop transformations do not show a performance impact.

6.1 Vectorization

One important feature of the Intel MIC architecture is its vector processing unit.
Each core has 32 512-bit-wide vector registers and its vector unit can execute

Performance Tuning of Fock Matrix and Two-Electron Integral Calculations 271

Table 2. The total running times for NWChem with and without vectorization on
the Intel MIC

No. of Workers 1 2 4 8 16 32 60

With Vec 4170 2080 1050 517 261 133 72

Without Vec 5380 2610 1310 665 333 167 92

8-wide double precision SIMD instructions in a single clock, providing 1TFlops/s
peak floating-point performance per card. Making effective use of the vector pro-
cessing unit is the key to obtain high-performance on this architecture, and can
be obtained via two approaches. The first is the use of low-level intrinsic functions
to explicitly implement vectorization, while the second leverages the compilers
and compiler directives to vectorize the code. We focus on the second approach
to maintain a general and portable code version (although more extensive vec-
torization is likely possible via the intrinsic approach). Note that there are some
loops that are not vectorizable due to serialization, data dependence, complex
code structures, or other reasons. By adding directives or transforming the loop
bodies, the compiler is able to vectorize certain key loops. (The effectiveness
of the transformations was determined from the vectorization report generated
by the Intel compiler’s -vec-report6 option.) The transformations include using
temporary arrays to assemble data for vectorization, splitting the loop body to
separate the vectorizable and non-vectoriable codes.

One important parameter that effects the performance of the vector pro-
cessing units is the vector length. Recall that in the TEXAS implementation,
the number of quartet integrals that can be computed together is decided by
a block size. This number is carefully decided by TEXAS based on cache size
and shell characteristics. It is also the length of a several important data arrays.
Increasing this number may potentially improve the vector units performance,
while simultaneously degrade data reuse and cache efficiency. We experimented
with different sizes and found that the best overall performance is obtained
when the default size is quadruped. Further increasing this number causes the
cache performance to degrade significantly, especially for the recursive OBASAI
functions.

Table 2 shows impact of vectorization for NWChem by comparing vector-
ized results with compiler disabled vectorization via the no-vec option. Results
show that vectorization improves performance by approximately 22%. For a more
detailed analysis, we explored the sequential running times of the top ten subrou-
tines in the TEXAS integral package with and without vectorization in Figure 6,
which account for about 73% of the total running times. Function erintsp is used
to compute the integrals when the sum of the angular momentum of the quartet
shells is less than two. The other functions, except destbul, are used to imple-
ment the OBASAI and TRACY algorithms, which are applied when the sum
is not less than two. The destbul function is used to put the non-zero integral
results and corresponding shell labels from a selected block of quartets of shells
into a buffer.

272 H. Shan et al.

Fig. 6. The running times for the top ten functions in TEXAS integral package with
and without vectorization on the Intel MIC

– ERINTSP: Most of its time is spent on the FM function which returns the
incomplete gamma function fm(x). Based on the value of its input variable
x, FM jumps to different branches depending on conditionals. The complex
code structure cannot be vectorized directly. By profiling, we discovered that
the most often executed branch is the one with time-consuming computa-
tion 1√

(x)
. Our optimization thus performed the inverse square root for all

the input variables in advance and stored the results in a temporary array.
Therefore the results can be directly accessed from the temporary array. The
advantage is that the compiler can automatically apply a vectorized imple-
mentation of the inverse square root operation. Unfortunately, for some input
values, the computation is unnecessary. The final performance results indi-
cate that overall this change is a valuable optimization on the MIC platform.

– SSSSM: Calculates the integrals of the form (s, s|s, s)(m) using the FM
function. Compared with erintsp, its running time is more heavily depen-
dent on the performance of the inverse square root operations. A similar
optimization as in erintsp has been performed.

– OBASAI: Computes the integrals of the form (i + j + k + l, s|s, s)(m) or
(s, s|i + j + k + l, s)(m) based on the results of ssssm. Among the top ten
functions, this one benefits most from vectorization, showing an improvement
of 2.5x. The innermost loops are dominated by uni-stride data access and
can be automatically vectorized by compiler.

– WT2WT1, AMSHF: Are dominated by data movement with segmented
uni-stride data access, and require compiler directives to vectorize the code.

Performance Tuning of Fock Matrix and Two-Electron Integral Calculations 273

– TRAC12: Calculates the integrals of the form (i + j, s|k + l, s)(m) based
on obasai results by shifting angular momenta from position 1 to 3 or 3 to
1. The innermost loops can be fully vectorized with uni-stride data access.
However, some code transformations are required.

– XWPQ, PRE4N, ASSEM: Preprocess or postprocess data for Obasai and
Tracy algorithms. Though most loops inside these functions can be vector-
ized, the data access is dominated by indirect, scattered data access due to
integral screening. Memory performance is the bottleneck, not the floating-
point operations, thus vectorization has little impact on performance. The
improved performance of vectorized assem comes from some loops with uni-
stride data access patterns.

– DESTBUL: Returns the results of non-zero integrals and corresponding
labels. The code can not be easily vectorized due to data dependence.

Of the top ten functions, four routines (obasai, wt2wt1, trac12, and
amshf) with uni-stride data access benefit directly from vectorization as the
compiler can automatically vectorize the code. Some routines require compiler
directives to guide the vectorization or perform source level loop transformations.
Two other subroutines (ssssm and erintsp) need the introduction of tempo-
rary arrays to take advantage of the vectorized inverse square root function.
Three other subroutines (assem, xwpq, pre4n) suffer from indirect, scattered
data access and can not easily benefit from vectorization. The final function
(destbul) cannot be vectorized due to data dependence.

Overall, significant effort has been dedicated to vectorizing each individual
subroutine. Our observation is that the process of leveraging vectorization is not
only time consuming but also extremely challenging to fully leverage. Future
research into new algorithms that are better structured to utilize wide vector
units could significantly improve the behavior of the two-electron integral eval-
uation algorithms.

6.2 Simultaneous Multi-threading

The Intel MIC architecture features many in-order cores on a single die, where
each core also supports 4-way hyper-threading (4 hardware threads). However,
the front-end of the pipeline can only issue up to 2 instructions per cycle, where
the two instructions are issued by different threads. Therefore, at least two hard-
ware threads are necessary to achieve the maximum issue rate. By running two
workers per physical core (120 threads), using the optimized implementation,
the running time can be reduced from 72 to 56 seconds — a 30% improvement.
Unfortunately, we can not run more than two workers per physical core due to
memory limitation. There is only 8GB memory per card, which seriously limits
the total number of workers that can be run concurrently.

7 Performance Tuning on Mira

On the Mira BG/Q, the Global Array Toolkit [4] is built using communica-
tion network ARMCI-MPI. As a result, dynamic load balancing becomes very

274 H. Shan et al.

Fig. 7. The cumulative performance improvement relative to the original code on the
IBM BG/Q

expensive. Initial results showed that more than 30% of the running time is
spent on requesting tasks. This is related with MPI-2 RMA operation which
does not support atomic operations. To reduce the overhead, we developed a
PAMI (Parallel Active Message Interface [11]) interface using PAMI Rmw func-
tion to request tasks. The overhead was therefore reduced to around 10%, how-
ever this is still a significant cost compared with other platforms. Using the MU
(messaging unit) SPI (system programming interface) may improve performance
and will be the subject of future investigation. Instead, we adopt a master-slave
approach, which devotes one worker to responding to the task requests and not
performing integral calculations. In this way, the overhead of requesting tasks
becomes trivial. However, this is offset by the cost of lossing one worker for the
integral calculation.

The performance improvement of our optimizations on the 16-core per node
platform is shown in Figure 7. Recall that given the dedicated master thread,
only an odd number of workers is available. Additionally we successfully applied
all previously discusssed optimizations, resulting in an overall performance
improvement of 35 - 49%.

7.1 Vectorization

The BG/Q architecture supports vectorization, where each core has a quad-
vector double precision floating point unit called IBM QPX capable of 8 float-
ing point operations per cycle. Compiler directives are provided to inform the
compiler the conditions of data dependence and data alignment. However, we

Performance Tuning of Fock Matrix and Two-Electron Integral Calculations 275

Fig. 8. The running times for top ten functions in TEXAS integral package with and
without vectorization on the IBM BG/Q

observed that the requirements of BG/Q compiler derived vectorization is even
more strict than on the Intel MIC architecture. The loops with indirect data
access can not be automatically vectorized by the IBM compiler. Nonetheless,
comparing the results of vectorized version and non-vectorized version, results
show that the vectorized code delivers a 25% improvement compared with the
non-vectorized version. Figure 8 shows the running times for top ten subroutines
in the TEXAS integral package with and without vectorization on the BG/Q.
The pattern of vectorization effect on these subroutines is similar to that on the
Intel MIC architecture. The first two subroutines benefit from the vectorization
of inverse square root operation, The next four subroutines benefit from vec-
torization of the uni-stride data access. The next three subroutines suffer from
indirect, scattered data access. The last one can not be vectorized due to data
dependence. Note that the impact of vectorization also differs depending on the
subroutine and architecture (BG/Q versus MIC).

7.2 Simultaneous Multi-threading

Similar to the Intel MIC architecture, each BG/Q core also supports four hard-
ware threads. Each cycle two instructions can be issued selected from two dif-
ferent threads with one to the XU units and another to the AXU units [1]. XU
handles all branch, integer, load/store instructions while AXU executes floating-
point instructions. Therefore, at least two threads are needed to maximize the
instruction issue rate. Figure 9 displays the NWChem running times when

276 H. Shan et al.

Fig. 9. The performance of running 1, 2, and 4 hardware threads per core on a full
IBM BG/Q node

1, 2, and 4 hardware threads per core are used on a full node. Running 2 workers
per core (32 per node) improves performance by a factor of 1.7x, while running
4 workers per core (64 per node) results in a significant improvement of 2.2x
— thus demonstrating the effective impact of simultaneous multithreading for
NWChem on the BG/Q platform.

8 Results and Discussion

The goal of our study is to understand the performance effect of different opti-
mization techniques and find a consistent tuning approach that enables NWChem
to perform efficiently on a variety of leading scientific platforms. The architec-
tural diversity of high-end computing systems make this a significant challenge,
which was tackled on four important platforms: the Cray XE6, the Cray XC30,
the Intel MIC, and the IBM BG/Q.

Experimental results show that improving load balance is the most efficient
approach to accelerate NWChem performance on all four platforms, followed by
increasing data locality. Developing more intelligent algorithms based on appli-
cation insights (such as the hash sorting algorithm) is also effective across all
platforms. However, those optimizations and directly related loop transforma-
tions, such as loop unrolling and data prefetching, and are only effective on some
of the platforms. This is actually a good sign for application developers, as com-
piler maturity and emerging auto-tuning techniques may relieve users of these
burdensome transformations.

Performance Tuning of Fock Matrix and Two-Electron Integral Calculations 277

Fig. 10. The node performance relative to Cray XE6

Simultaneous multi-threading and vectorization are key architectural features
that increasingly are driving high node performance. Our results show that multi-
threading is effective in improving NWChem performance. On the IBM BG/Q
platform, running 2, and 4 tasks per core can improve performance by 1.7x
and 2.2x, respectively. While, on the Intel MIC, running two tasks per core can
improve the performance 1.3x. The limited memory size (8GB) prohibited us
from running 4 tasks per core (240 threads per node) on MIC. From the design
of the instruction issue on the IBM BG/Q and the Intel MIC, two instructions
issued in a clock cycle must come from different threads, necessitating multi-
threading to achieve high performance.

Vectorization has long been supported by many processor families. How-
ever, as recent architectures have moved to higher SIMD lengths, vectorization
has become a more critical component of extracting high performance from the
underlying hardware. Our experimental results showed that the performance
difference between the vectorized code (using compiler directives) and the non-
vectorized code is about 22% and 25% MIC and BG/Q respectively. The key to
extracting performance from vectorization is to develop uni-stride data access or
use vectorized library functions. For NWChem, simply focusing on each individ-
ual subroutines and attempting to vectorize the loops is not enough to extract
full potential from the vector processing units. A better approach is to develop
new algorithmic designs that can maximize the advantages of vectorization.

Finally, Figure 10 presents a summary comparison normalized to the Cray
XE6, which highlights original, optimized, and multi-threaded performance
(where appropriate). Overall our approach consistently improves the Fock matrix

278 H. Shan et al.

construction and integral calculation for NWChem across all four platforms,
attaining up to 2.5x speedup compared with the original version.

9 Related Work

There are numerous studies examining NWChem optimization schemes. The
importance of vectorization for integral calculations had been recognized by
Hurley, Huestis, and Goddard [9] in previous work. They described a vector-
ized procedure to transform integrals over atomic symmetry orbitals into inte-
grals over molecular orbitals on a vector platform Alliant FX8/8. Foster et
al. [3] presented scalable algorithms for distributing and constructing the Fock
matrix in SCF problems on several massively parallel processing platforms.
They also developed a mathematical model for communication cost to compare
the efficiency of different algorithms. Tilson et al. [16] compared the perfor-
mance of TEXAS integral package with the McMurchie-Davidson implemen-
tation on IBM SP, Kendall Square KSR-2, Cray T3D, Cray T3E, and Intel
Touchstone Delta systems. Ozog et al. [15] explored a set of static and dynamic
scheduling algorithms for block-sparse tensor contractions within the NWChem
computational chemistry code. Similar algorithms may also be applied for inte-
gral calculations. Hammond et al. [6] studied the performance characteristics of
NWChem using TAU. However, the focus was on communication. In addition,
Jong et al. [10] provided a review of the current state of parallel computational
chemistry software utilizing high-performance parallel computing platforms. The
major difference of our work is that we focus on performance tuning (as opposed
to algorithm development), and developed an effective strategy across four mod-
ern HPC platforms.

10 Summary and Conclusions

In this paper, we examined the performance tuning processes for the Fock matrix
construction and integral calculations of NWChem on four deployed high per-
formance computing platforms. The results indicate that load balancing has
significant potential for improving performance, and attains up to 50% speedup.
When combined with our additional optimization strategies, an overall speedup
of up to 2.5x was achieved.

On platform that supports simultaneous multithreading, running multiple
threads can improve the performance significantly. On the IBM BG/Q platform,
running 2 and 4 threads per core can improve performance by 1.7x and 2.2x,
respectively.

Finally, extracting the full performance potential from the vector processing
units is a significant challenge for NWChem. Via substantial programming effort,
we obtained a vectorized version running approximately 25% faster compared to
non-vectorization mode on the MIC and BG/Q platforms. However, the current
code can not be fully vectorized due to complex code structures, indirect non-
continuous data access, and the true data dependence and serialization. Our

Performance Tuning of Fock Matrix and Two-Electron Integral Calculations 279

future work will focus on developing new algorithms which can more effectively
harness the potential of the vector processing units and multithreading on next-
generation supercomputing platforms.

Acknowledgments. All authors from Lawrence Berkeley National Laboratory were
supported by the Office of Advanced Scientific Computing Research in the Department
of Energy Office of Science under contract number DE-AC02-05CH11231. This research
used resources of the National Energy Research Scientific Computing Center (NERSC),
which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

References

1. A2 Processor User’s Manual for BlueGene/Q, http://www.alcf.anl.gov/
user-guides/ibm-references#a2-processor-manual

2. Edison Cray XC30, http://www.nersc.gov/systems/edison-cray-xc30/
3. Foster, I., Tilson, J., Wagner, A., Shepard, R., Harrison, R., Kendall, R., Littlefield,

R.: Toward High-Performance Computational Chemistry: I. Scalable Fock Matrix
Construction Algorithms. Journal of Computational Chemistry 17, 109–123 (1996)

4. Global Arrays Toolkit, http://www.emsl.pnl.gov/docs/global/
5. Gill, P.M.W.: Molecular Integrals Over Gaussian Basis Functions. Advances in

Quantum Chemistry 25, 141–205 (1994)
6. Hammond, J., Krishnamoorthy, S., Shende, S., Romero, N.A., Malony, A.: Perfor-

mance Characterization of Global Address Space Applications: A Case Study with
NWChem. Concurrency and Computation: Practice and Experience, 1–17 (2010)

7. Harrison, R., Guest, M., Kendall, R., Bernholdt, D., Wong, A., Stave, M., Anchell,
J., Hess, A., Littlefield, R., Fann, G., Nieplocha, J., Thomas, G., Elwood, D.,
Tilson, J., Shepard, R., Wagner, A., Foster, I., Lusk, E., Stevens, R.: Toward high-
performance computational chemistry: II. a scalable self-consistent field program.
Journal of Computational Chemistry 17, 124–132 (1996)

8. Hopper Cray XE6, http://www.nersc.gov/systems/hopper-cray-xe6/
9. Hurley, J.N., Huestis, D.L., Goddard, W.A.: Optimized Two-Electron-Integral

Transformation Procedures for Vector-Concurrent Computer Architecture. The
Journal of Physical Chemistry 92, 4880–4883 (1988)

10. Jong, W.A., Bylaska, E., Govind, N., Janssen, C.L., Kowalski, K., Muller, T.,
Nielsen, I.M., Dam, H.J., Veryazov, V., Lindh, R.: Utilizing High Performance
Computing for Chemistry: Parallel Computational Chemistry. Physical Chemistry
Chemical Physics 12, 6896–6920 (2010)

11. Kumar, S., Aamidala, A.R., Faraj, D.A., Smith, B., Blocksome, M., Cernohous,
B., Miller, D., Parker, J., Ratterman, J., Heidelberger, P., Chen, D., Steinmacher-
Burrow, B.: PAMI: A Parallel Active Message Interface for the Blue Gene/Q
Supercomputer. In: The 26th International Parallel and Distributed Processing
Symposium (May 2012)

12. The Intel MIC, http://www.intel.com/content/www/us/en/architecture-and-
technology/many-integrated-core/intel-many-integrated-core-architecture.html

13. Mira IBM Bluegene/Q, http://www.alcf.anl.gov/user-guides/mira-cetus-vesta
14. Obara, S., Saika, A.: Efficient Recursive Computation of Molecular Integrals Over

Cartesian Gaussian Functions. The Journal of Chemical Physics 84, 3963–3975
(1986)

http://www.alcf.anl.gov/user-guides/ibm-references#a2-processor-manual
http://www.alcf.anl.gov/user-guides/ibm-references#a2-processor-manual
http://www.nersc.gov/systems/edison-cray-xc30/
http://www.emsl.pnl.gov/docs/global/
http://www.nersc.gov/systems/hopper-cray-xe6/
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.alcf.anl.gov/user-guides/mira-cetus-vesta

280 H. Shan et al.

15. Ozog, D., Shende, S., Malony, A., Hammond, J.R., Dinan, J., Balaji, P.: Inspector-
Executor Load Balancing Algorithms for Block-Sparse Tensor Contractions. In:
Proceedings of the 27th International ACM Conference on International Confer-
ence on Supercomputing (May 2013)

16. Tilson, J.L., Minkoff, M., Wagner, A.F., Shepard, R., Sutton, P., Harrison, R.J.,
Kendall, R.A., Wong, A.T.: High-Performance Computational Chemistry: Hartree-
Fock Electronic Structure Calculations on Massively Parallel Processors. Interna-
tional Journal of High Performance Computing Applications 13, 291–306 (1999)

17. Top500 Supercomputer Sites, http://www.top500.org/lists/2013/06/
18. Valiev, M., Bylaska, E., Govind, N., Kowalski, K., Straatsma, T., van Dam, H.,

Wang, D., Nieplocha, J., Apra, E., Windus, T., de Jong, W.: Nwchem: a com-
prehensive and scalable open-source solution for large scale molecular simulations.
Computer Physics Communications 181, 1477–1489 (2010)

19. Wolinski, K., Hinton, J.F., Pulay, P.: Efficient Implementation of the Gauge-
Independent Atomic Orbital Method for NMR Chemical Shift Calculations. Jounal
of the American Chemical Society 112, 8251–8260 (1990)

20. Helgaker, T., Olsen, J., Jorgensen, P.: Molecular Eletronic-Structure Theory. Wiley
(2013), www.wiley.com

21. Helgaker, T., Taylor, P.R.: Gaussian Basis Sets and Molecular Integrals. In: Modern
Electronic Structure Theory (Advances in Physical Chemistry). World Scientific
(1995), www.worldscientific.com

22. Lindh, R., Ryu, U., Liu, B.: The Reduced Multiplication Scheme of the Rys
Quadrature and New Recurrence Relations for Auxiliary Function Based Two Elec-
tron Integral Evaluation. The Journal of Chemical Physics 95, 5889–5892 (1991)

http://www.top500.org/lists/2013/06/
www.wiley.com
www.worldscientific.com

Performance Analysis of the NWChem TCE
for Different Communication Patterns

Priyanka Ghosh1, Jeff R. Hammond2(B), Sayan Ghosh1,
and Barbara Chapman1

1 Department of Computer Science, University of Houston,
Houston, TX 77004, USA

{pghosh06,sgo,chapman}@cs.uh.edu
2 Leadership Computing Facility, Argonne National Laboratory,

Lemont, IL 60439, USA
jhammond@alcf.anl.gov

Abstract. One-sided communication is a model that separates com-
munication from synchronization, and has been in practice for over two
decades in libraries such as SHMEM and Global Arrays (GA). GA is
used in a number of application codes, especially NWChem, and provides
a superset of SHMEM functionality that includes remote accumulate,
among other features. Remote accumulate is an active-message operation
that applies y+ = a ∗ x at the target rather than just y = x (as in Put)
which gives the programmer additional choices with respect to algorithm
design. In this paper, we discuss and evaluate communication scenarios
for dense block-tensor contractions, one of the mainstays of the NWChem
computation chemistry package. We show that apart from the classical
approach involving dynamic scheduling of data blocks for load balancing,
reordering one-sided Get and Accumulate calls affects the performance of
tensor contractions on leadership-class machines substantially. In order
to understand why this reordering affects the performance, we develop a
proxy application for the NWChem Tensor Contraction Engine (TCE)
module. We utilize this proxy application to compare different imple-
mentations with a focus on communication.

Keywords: NWChem · One-sided communication · Global Arrays ·
MPI-3 · Tensor contractions

1 Introduction

NWChem [3,17] is one of the best-known applications that relies heavily upon
one-sided communication, having employed the Global Arrays (GA) since the
outset and never explicitly adopted the ubiquitous MPI model1. GA [11] is a
PGAS (Partitioned Global Address Space) programming model in library form
that includes a much richer set of functionality than SHMEM, which has existed
1 The exception to this statement is not relevant to this paper.

c© Springer International Publishing Switzerland 2014
S. Jarvis et al. (Eds.): PMBS 2013 Workshops, LNCS 8551, pp. 281–294, 2014.
DOI: 10.1007/978-3-319-10214-6 14

282 P. Ghosh et al.

for approximately the same amount of time. SHMEM provides a set of remote
memory access (RMA) primitives that are implementable in hardware, thereby
enabling efficient implementations that can – at least in theory – consume no
processing resources except when processing elements make SHMEM calls. On
the other hand, the design of GA exposes features that the programmer needs
to implement mathematical algorithms found, for example, in quantum chem-
istry, which frequently include multidimensional array accesses and floating-point
accumulate (Acc)2. Generalized noncontiguous access (i.e., beyond simple strided
access) and remote floating-point accumulate are rarely implemented in network
hardware (except when the “network” is shared-memory). Consequently, GA
consumes processing resources in the background - frequently in the form of a
communication helper thread but occasionally as remote interrupts - that can
have a nontrivial impact on performance in some cases [5]. However, the overall
application performance benefits despite this overhead because of greater algo-
rithmic flexibility in the application design. For example, eliminating remote
accumulate in favor of remote writes reduces parallelism because, unlike the for-
mer, the latter cannot occur concurrently on the same remote buffer within a
synchronization epoch.

Parallel performance optimization of NWChem is much like any other code
in most respects; one attempts to reduce load-imbalance [1,12,16], use caching
to avoid communication if not a memory bottleneck [9], and reduce the cost
of remote data lookup [8], etc. Just as in MPI programs, one can trade a set
of communication operations for another equivalent set. For example, in MPI
one pads arrays in FFT to replace MPI Alltoallv with MPI Alltoall, which
is more efficient if the padding overhead is low; on the other hand, trading
MPI Alltoallv for many send-recv calls will be more efficient in the sparse
case (many processes send no data). Transforming communication patterns are
not always about reducing data movement, of course; reducing synchronization
overhead is essential for scalable algorithms.

A widely-held view is that one-sided communication is less synchronous than
two-sided communication, but the practical differences between Put/Get and
Send/Recv, for example, are primarily due to their implementation. If Put/Get
use only network hardware while Send/Recv use network hardware plus process-
ing on both sides, then the processing overhead may be a noticeable difference.
Within the one-sided regime, Put and Get differ with respect to local comple-
tion, since this entails a round-trip in the case of Get (since the data must arrive
for the buffer to be used), while in Put, local completion can be strictly local.
Remote accumulate (Acc) is similar to Put, at least from the perspective of the
initiator.

In GA programs, there are two types of synchronization overheads: explicit
and implicit. Obviously, explicit synchronization overheads are the well-known
ones (e.g., global synchronization via a barrier, as in ga sync). Implicit synchro-
nization is required when issuing a Get, for example, as the request for remote
2 We emphasize all instances involving calls to (GA, MPI) Get, (GA, MPI)

Accumulate with Get and Acc in this paper.

Performance Analysis of the NWChem TCE 283

data must be delivered to the remote node3, acted upon, and the data delivered
back to the initiator. On the other hand, Put and Acc will complete locally with-
out any explicit remote activity. Additional latency for Get with respect to Put
or Acc can arise from contention on the network, waiting in the remote active-
message queue, and the cost of the active-message itself, which might entail a
strided memory copy that crosses multiple levels of the memory hierarchy. Put
and Acc see all of these same effects but the cost is mostly hidden from the
application, at least with respect to direct measurement of their costs, because
the initiator proceeds without waiting on their remote completion. In aggregate,
however, the sum of the remote processing costs are visible unless the associated
resources would otherwise be idle. For this reason, Acc is more expensive than
Put, since it requires floating-point computation. What is not clear is whether -
in terms of aggregate parallel performance - one should favor Get or Acc. One of
the goals of this paper is to determine the answer to this question experimentally.

One of the more popular methods in NWChem is the quantum many-body
method known as coupled cluster (CC) theory, which is used heavily for solving
chemical problems requiring quantitative accuracy for chemical bond-breaking,
e.g. combustion. Given its steep computational cost – O(N7) in the case of the
most commonly used CC variant, CCSD(T) – simulations running on thousands
of cores for many hours are rather common, hence even modest performance
improvements in the scalability and efficiency of these methods pay off signifi-
cantly. Given that much of the floating-point computation in CC simulations is
performed using the BLAS3 subroutine DGEMM, which usually runs at more than
80% of peak for the dimensions used in NWChem, the most obvious place for
optimization in NWChem CC codes is in the communication, synchronization,
and load balancing.

Past approaches to improve performance involve efficient strategies to reduce
the amount of load imbalance in the CCSD module [12]. In this paper, our focus
is the design space of the Tensor Contraction Engine (TCE) module to eval-
uate the performance behavior observed for CCSD block tensor contractions
when restructuring Get and Acc calls. We consider two types of optimizations:
(1) reordering of the loops over tiles to trade Get calls for Acc calls and (2) reduc-
tion in Get calls by fetching multiple blocks at a time into a cache. The individual
tensor contractions in NWChem are very complex, supporting a range of dimen-
sions (up to 8-dimensional arrays) with both permutation symmetry and block
sparsity (which arises from point-group symmetry - see [12] for details) and
containing a number of optimizations that are opaque to non-chemists. There-
fore, we implemented a stripped down proxy application that exposes only the
essential features of an individual tensor contraction implemented using the TCE
3 Different node resources may be involved in processing these requests depending on

the implementation strategy and the nature of the request itself; contiguous requests
may be processed in hardware while noncontiguous requests often require processor
intervention to pack messages to be large enough to saturate the network bandwidth.

284 P. Ghosh et al.

template. The proxy considers only the cases of 2-dimensional arrays4 and uses
regular tiling, which reduces some of the issues associated with load balancing.
Thus, the proxy is most useful for understanding the trade-offs associated with
restructuring the communication operations, which is exactly the purposes for
which it was designed. We did not implement a proxy version of optimization
(2) since it was not necessary to understand the results for that case.

The primary contributions of this paper are: (1) design and implementa-
tion of two new variants of the NWChem TCE tensor contraction template
that are demonstrated empirically to be significantly faster than the original for
real-world chemistry problems on the primary hardware platform for NWChem
(x86/InfiniBand); (2) development of a proxy application to model the different
communication pattern found in one of these variants; and (3) implementation
of the proxy application in the original GA programming model and MPI (3.0
standard [10]) to evaluate any potential differences between the communication
infrastructure therein. The differences in the behavior of the full NWChem appli-
cation and the proxy demonstrate the shortcomings of the proxy and reveal the
downsides of eliminating domain-specific application complexity.

2 Implementation and Design

The Tensor Contraction Engine (TCE) [2,7] is a project to automate the deriva-
tion and parallelization of quantum many-body methods such as CC. A large
number of procedures are necessary because of many different types of contrac-
tions possible between tensors of various rank. All tensors are decomposed using
tiling, where each tile falls into a single symmetry class (see [7] for details) and
these tiles define the granularity of all tensor contractions.

2.1 Algorithms Implemented in NWChem

Algorithm 1 provides an overview of the default implementation of a distributed
tensor contraction in TCE. NXTVAL represents the centralized dynamic load
balancer inherited from TCGMSG, a communication library which predates
MPI, that queries a global counter and runs over all possible tasks in a given
contraction. The Symmetry function is a condensation of a number of logical
tests in the code that determine whether a particular tile will be nonzero. In
Algorithms 1, 2, and 3, the indices given for the local buffer contraction are
the tile indices where each tile index represents a set of contiguous indices and
where each tile is grouped in such a way that the symmetry properties of all its
constitutive elements are identical.
4 A tensor contraction involving 2-dimensional arrays is just a matrix-matrix multi-

plication and optimal algorithms for these are known, but we are trying to model
arbitrary dimensionality and the benefit to the proxy of supporting this is not jus-
tified given the additional complexity required to implement it explicitly.

Performance Analysis of the NWChem TCE 285

Algorithm 1 illustrates the Original (default) version of the tensor contrac-
tion template, wherein all the Gets are performed in the innermost loop repeat-
edly for fetching every tile into local buffers. This approach entails redundant
calls to TCE Get since the same tile is fetched multiple times during subsequent
iterations. The calls to GA Accumulate are, however, sparse due to the aggrega-
tion of dense inner loop, computations satisfying a set of symmetry conditions
into a single task. TCE Get is shorthand for a small number (between 1 and 8)
of GA Get operations combined with the accumulation of the resulting buffers
from these onto a single buffer, as described in [8].

Algorithm 1. Pseudocode for Original version of TCE-CCSD implemen-
tation

Tiled Global Arrays: A, B, C
Local buffers: a, b, c;
forall the h1, h2, p3, p4 ∈O,V tiles do

if NXTVAL(my pe)=True then
if Symmetry(h1,h2,p3,p4)=True then

Allocate c for C(h1,h2,p3,p4) tiles
for p5, p6 ∈V tiles do

if Symmetry(h1,h2,p5,p6)=True then
if Symmetry(p5,p6,p3,p4)=True then

TCE Get A(h1,h2,p5,p6) into a
TCE Get B(p5,p6,p3,p4) into b
c(h1,h2,p3,p4) += a(h1,h2,p5,p6) * b(p5,p6,p3,p4)

end

end

end
GA Acc c into C(h1,h2,p3,p4)

end

end

end

Algorithm 2 illustrates the Inverted version of the TCE-CCSD method where
the number of calls to Gets are drastically reduced by transferring the Get call
to the outer loop. Therefore, once a tile is fetched into the local buffer b, it is
reused in all computations of the dense inner loop satisfying the set of symmetry
conditions. The penalty on the hand mandates the need for excessive number
of calls to Accumulate, after it is moved inside the innermost loop in order to
maintain the symmetry criterion.

In quantum chemistry applications, such as NWChem, a usually large molec-
ular system lacking any spatial symmetry produces set of tiles which align well
to the number of processors and can be used to obtain high scalability. In such
a scenario, we encounter lesser load imbalance among tasks owing to the proper
distribution of the dense computations and thus stand to gain performance ben-
efit if we were to reduce the cost of communication, by minimizing the number of

286 P. Ghosh et al.

Algorithm 2. Pseudocode for Inverted version of TCE implementation
Tiled Global Arrays: A, B, C
Local buffers: a, b, c;
forall the p3, p4, p5, p6 ∈V,V tiles do

if Symmetry(p3,p4,p5,p6)=True then
if NXTVAL(my pe)=True then

TCE Get B(p5,p6,p3,p4) into b
for h1, h2 ∈O tiles do

if Symmetry(h1,h2,p3,p4)=True then
if Symmetry(h1,h2,p5,p6)=True then

Allocate c for C(h1,h2,p3,p4) tiles
TCE Get A(h1,h2,p5,p6) into a
c(h1,h2,p3,p4) += a(h1,h2,p5,p6) * b(p5,p6,p3,p4)
GA Acc c into C(h1,h2,p3,p4)

end

end

end

end

end

end

calls to Gets and Accumulates. Algorithm 3 illustrates such an approach wherein
we strip the outer loop and save the blocks obtained from a Get call for mul-
tiple reuse later. This approach (Cache version) guarantees fewer calls to Get
compared to both the Original and Inverted versions as well as fewer calls to
Accumulate in comparison to the Inverted version.

2.2 TCE Proxy Applications

We designed a proxy application replicating the TCE module functionality for
both the Original and Inverted versions. We implemented this using two pro-
gramming models namely GA and MPI. Apart from revealing software over-
heads between MPI and GA versions of the block tensor contraction kernel,
the RMA implementation of MPI is fundamentally different to that of ARMCI
and by extension, GA. As the RMA implementation of MPI has substantially
improved, we expected better results for the Original version (lesser accumulates
with local completion semantics [passive target synchronization]) for most of the
test data sizes, than the Inverted version, which requires a request handle for
waiting (local completion) on outstanding accumulates.

The Inverted version incorporates a double-buffering scheme, wherein two
local buffers for the same array are maintained, one for communication and
the other for computation. Data is transferred using the communication buffer,
and local computations proceed with the compute buffer (a wait is issued prior
to using the compute buffer, to ascertain completion of previous task). The
buffers are swapped at the end of an iteration. MPI request based accumulate

Performance Analysis of the NWChem TCE 287

Algorithm 3. Pseudocode for Cache version of TCE implementation
Tiled Global Arrays: A, B, C
Local buffers: a, b, c;
Local Hash Table: Htable;
forall the h1, h2, p3, p4, p5, p6 ∈O,V,V tiles, unroll U do

if NXTVAL(my pe)=True then
forall the h1i, h2i, p5i, p6i ∈U,U tiles do

if Symmetry(h1i,h2i,p5i,p6i)=True then
TCE Get A(h1i,h2i,p5i,p6i) and save into Htable

end

end
forall the p3i, p4i, p5i, p6i ∈U,U tiles do

if Symmetry(p3i,p4i,p5i,p6i)=True then
TCE Get B(p5i,p6i,p3i,p4i) and save into Htable

end

end
forall the h1i, h2i, p3i, p4i ∈U,U tiles do

Allocate c for C(h1i,h2i,p3i,p4i) tiles
for p5i, p6i ∈U tiles do

if Symmetry(h1i,h2i,p3i,p4i)=True then
if Symmetry(h1i,h2i,p5i,p6i)=True then

Fetch block(h1i,h2i,p5i,p6i) from Htable into a
Fetch block(p5i,p6i,p3i,p4i) from Htable into b
c(h1i,h2i,p3i,p4i) += a(h1i,h2i,p5i,p6i) *
b(p5i,p6i,p3i,p4i)

end

end

end
GA Acc c into C(h1i,h2i,p3i,p4i)

end

end

end

(MPI Raccumulate with MPI Wait) and ARMCI non-blocking operation
(ARMCI NbAccS with ARMCI Wait) are used for taking advantage of this over-
lap in computation and communication.

3 Experimental Results

We have performed all our experiments on an InfiniBand cluster Tukey, a 96-
node, 16-core, 2-way SMP AMD processor with 64 GB memory per node at
Argonne National Laboratory. The system is running Linux kernel 2.6.32
(x86 64). NWChem was compiled with GCC 4.4.6 and linked against Goto-
BLAS 2 1.13[4]. Because BLAS calls dominate the computation in NWChem,
compiler optimizations do not significantly affect the performance (this has been
confirmed experimentally in the past by one of the present authors). For the

288 P. Ghosh et al.

proxy applications (GA/MPI), BLAS from ATLAS library[18] is used. The high-
performance interconnect is InfiniBand QDR with a theoretical throughput of
4 GB/s per link and ∼ 2 µs latency. The communication libraries used were
ARMCI from GA 5.1, which is heavily optimized for InfiniBand, with MVA-
PICH2 1.8 (for NWChem and GA proxy) and MVAPICH2-X 2.a (for MPI
proxy). We have launched all our NWChem experiments with eight MPI pro-
cesses per node, whereas for the proxy applications, we have four MPI processes
per node.

3.1 Full Application Tests

Figures 1a and 1b represent the comparison in terms of performance obtained for
a 8-H2O and 9-H2O CCSD simulation respectively, with the aug-cc-pvdz basis
running on the Tukey cluster. CC simulations can be categorized as symmetri-
cally sparse or asymmetrically dense. We find the problems falling in the latter
category (characteristic to the water molecule), a more suitable candidate to per-
form the cache optimization. In both figures we notice the strong scalability of
the Inverted version in comparison to the Original version. This is attributed to
fewer Get operations performed in the Inverted version. Since Gets in NWChem
have to satisfy several symmetry constraints, it is a far costlier operation com-
pared to Accumulate. The Cache version accounts for a 27% reduction in the
total number of Gets compared to Inverted and a 72% reduction compared to
Original (as seen in Table 1). This contributes towards an average performance
improvement of 20% and 10% for Original and Inverted respectively, due to the
reduction in the overall network communication.

The percentage of improvement is subject to change based on the size and
symmetry of the molecule being used in the simulation. With smaller molecules,
which lead to fewer tasks, the dynamic load balancer (NXTVAL) will add some
overhead for the Cache version and in case of molecules with high symmetry, we
may not encounter a reduction in the total number of Gets.

Table 1. Results comparing the number of Gets and Accumulates encountered for the
three TCE-CCSD implementations

Input Data Molecule Total Number
8-H2O Get Accumulate

Original 84700 682
Inverted 32065 71632
Cache 23353 21582

9-H2O Get Accumulate
Original 119448 810
Inverted 45072 101196
Cache 32904 25650

Performance Analysis of the NWChem TCE 289

Table 1 draws a comparison based on the number of Gets and Accumulates
recorded for the various implementations of TCE-CCSD module in NWChem.
These results have been acquired using a TCE profiling interface (TPI) con-
structed within the TCE framework.

 140

 160

 180

 200

 220

 240

 260

 280

 300

320 384 448 512

T
im

e
in

 S
ec

on
ds

Total number of cores

Original
Inverted

Cache

(a) Results comparison for water w8 aug-cc-pvdz

 250

 300

 350

 400

 450

 500

360 440 520 600

T
im

e
in

 S
ec

on
ds

Total number of cores

Original
Inverted

Cache

(b) Results comparison for water w9 aug-cc-pvdz

Fig. 1. Results obtained for Original, Inverted and Cache versions for the water w8
and w9 molecules

3.2 Proxy Applications Using GA and MPI

GA. The results obtained for the proxy application using GA depicted in
Figures 2a and 2b representing square matrix sizes of 24K and 32K respec-
tively, clearly indicate that the Original version surpasses the Inverted version
in terms of performance. In contrast to NWChem, this behavior is expected since
the Get operations in the proxy application are computationally less expensive
in comparison to the TCE Get ’s in NWChem resulting in Accumulates becoming
more costly. Since the Original version performs the least number of Accumu-
lates, it clearly wins in terms of performance. However, the Original version

290 P. Ghosh et al.

demonstrates weaker scalability compared to Inverted especially for cases with
larger block sizes as seen in Figure 2b with block size of 1200. We suspect this
is owing to the creation of fewer number of tasks in case of Original, where the
lack of core count saturation results in higher load imbalance. Inverted scales
better than Original due to creation of more tasks, increase in core saturation
resulting in better load balance.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

400 600 800 1000 1200

T
im

e
in

 s
ec

on
ds

Block Sizes

Inverted (cores=160)
Original (cores=160)
Inverted (cores=200)
Original (cores=200)
Inverted (cores=240)
Original (cores=240)
Inverted (cores=280)
Original (cores=280)

(a) 24K square matrix with ppn=4 and nodes=40,50,60 and 70 using GA

 40

 60

 80

 100

 120

 140

 160

 180

 200

800 1000 1200

T
im

e
in

 s
ec

on
ds

Block Sizes

Inverted (cores=200)
Original (cores=200)
Inverted (cores=240)
Original (cores=240)
Inverted (cores=280)
Original (cores=280)
Inverted (cores=320)
Original (cores=320)

(b) 32K square matrix with ppn=4 and nodes=50,60,70 and 80 using GA

Fig. 2. Results obtained for Original, Inverted versions of the GA proxy application

Performance Analysis of the NWChem TCE 291

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

400 600 800 1000 1200

T
im

e
in

 s
ec

on
ds

Block Sizes

Inverted (cores=160)

Original (cores=160)

Inverted (cores=200)

Original (cores=200)

Inverted (cores=240)

Original (cores=240)

(a) 24K square matrix with ppn=4 and nodes=40,50 and 60 using MPI

 50

 100

 150

 200

 250

 300

800 1000 1600

T
im

e
in

 s
ec

on
ds

Block Sizes

Inverted (cores=200)
Original (cores=200)
Inverted (cores=320)
Original (cores=320)

(b) 32K square matrix with ppn=4 and nodes=50 and 80 using MPI

Fig. 3. Results obtained for Original, Inverted versions of the MPI-3 proxy application

MPI. Since the domain decomposition technique for MPI proxy-app versions
rely on dimensions being perfectly divisible by the total number of processes,
we have chosen only the cases which satisfy this criteria. The performance of
Inverted versions are subpar compared to that of Original, which could be
attributed to a greater number of Accumulates. However, the Inverted versions
for larger processes were observed to be better in terms of scalability. This pat-
tern is observed from execution on 240 processes for 24K matrices as shown in
Figure 3a and 32K matrices using 320 processes in Figure 3b. This indicates that
for larger data sizes (with coarser block sizes) on proportionally large number

292 P. Ghosh et al.

of processes, we obtain the benefit of overlapping computation with communi-
cation. However, for the Original case, we observe from Figures 3a and 3b that
execution times remain fairly consistent with different block sizes, and transitions
between small block sizes (like 600 to 1000 in 24K matrices shown in Figure 3a)
is almost negligible. In this case too, large block sizes (and a larger number
of processes) have a positive impact on performance, as we could observe from
Figure 3b (12 secs difference between block sizes 1600 and 800 on 320 processes
for 32K matrices), as opposed to a trivial change in performance from 800-1600
block sizes on 200 processes for the same case.

4 Related Work

Fundamentally different algorithms for distributed-memory tensor contractions
have been explored in the Cyclops Tensor Framework (CTF) [15]. The relative
merits of the CTF approach and the TCE approach depend upon the details of
the architecture and the degree of irregularity (e.g., block-sparsity) in the compu-
tation. The Cyclops tensor framework exploits the challenges of high dimensional
symmetry in coupled cluster by employing a cyclic distribution to decompose
tensor contractions with a redistribution kernel, which transposes tensors of any
dimension minimizing communication by increasing computation. Redistribution
of data permutes the dimensions such that the subsequent contraction phase may
apply a matrix-martix multiplication algorithm (Recursive SUMMA) in an effort
to minimize the amount of data communicated for each tensor. Sadayappan and
coworkers have attempted to bring together the best of CTF and TCE in the
CAST project [14], but the lack of integration into NWChem means we cannot
compare directly with our full application results.

The Inspector-Executor model [13] employs low-overhead static partitioning
techniques for reducing the load imbalance encountered for block-sparse tensor
contractions within NWChem to mitigate the ovehead and dynamic scheduling
algorithms for block-sparse tensor contractions within NWChem (alternative
to the dynamic global load balancer NXTVAL). Additionally, with the use of a
“Dynamic Buckets” design, tasks are split into buckets which are then associated
with groups of processors thereby minimizing the effect of variation in task
execution time.

Our work, on the other hand, focuses on minimizing the cost of communica-
tion across the network by limiting the number of calls to Get and Accumulate
in NWChem’s TCE. By employing strategies to store data locally (within a
processor), we curtail the cost of redundant one-sided communication evident
particularly in dense nonsymmetric molecules with regular task sizes. Similar
to the ideas discussed in [6], we also designed self-contained application proxies
for exploring algorithmic design choices pertaining to NWChem TCE, estimat-
ing the performance trade-off between the different communication patterns and
varying communication runtime libraries.

Performance Analysis of the NWChem TCE 293

5 Conclusions and Future Work

We identified two new implementations of the TCE template that improve the
performance of NWChem by more than 10%. One of these is based upon invert-
ing communication to reduce Get in favor of Accumulate while the other reduces
Get using caching. To understand how the different communication patterns
affect performance, we developed a simple proxy application and tested it using
both GA and MPI. However, the simple proxy was unable to reproduce the quan-
titative results of the full application, although some of the basic trends were
the same. We are developing more complex proxies with the intent of reconciling
their behavior to the full application. Once more accurate proxies are developed,
we can employ them to understand a variety of one-sided programming mod-
els, including GA, MPI, OpenSHMEM, and PGAS languages such as UPC and
CAF. We will also expand our experimental studies to other architectures and to
many thousands of cores. We also intend to further optimize the Cache variant
by incorporating static partitioning so that we can implement it on accelerator
systems (Intel MIC and GPU). The Cache version is ideal for accelerator offload
model since it has higher compute intensity per task.

Acknowledgments. This research used resources of the Argonne Leadership Com-
puting Facility at Argonne National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.

References

1. Aprà, E., Rendell, A.P., Harrison, R.J., Tipparaju, V., de Jong, W.A., Xantheas,
S.S.: Liquid water: obtaining the right answer for the right reasons. In: Proceedings
of the ACM/IEEE SC Conference on High Performance Networking and Comput-
ing, pp. 1–7. ACM, New York (2009)

2. Auer, A.A., Baumgartner, G., Bernholdt, D.E., Bibireata, A., Choppella, V.,
Cociorva, D., Gao, X., Harrison, R., Krishnamoorthy, S., Krishnan, S., Lam, C.-
C., Lu, Q., Nooijen, M., Pitzer, R., Ramanujam, J., Sadayappan, P., Sibiryakov,
A.: Automatic code generation for many-body electronic structure methods: the
tensor contraction engine. Molecular Physics 104(2), 211–228 (2006)

3. Bylaska, E.J., de Jong, W.A., Govind, N., Kowalski, K., Straatsma, T.P.,
Valiev, M., van Dam, H.J.J., Wang, D., Aprà, E., Windus, T.L., Hammond, J.,
Autschbach, J., Nichols, P., Hirata, S., Hackler, M.T., Zhao, Y., Fan, P.-D., Harri-
son, R.J., Dupuis, M., Smith, D.M.A., Nieplocha, J., Tipparaju, V., Krishnan,
M., Vazquez-Mayagoitia, A., Wu, Q., Voorhis, T.V., Auer, A.A., Nooijen, M.,
Crosby, L.D., Brown, E., Cisneros, G., Fann, G.I., Früchtl, H., Garza, J., Hirao,
K., Kendall, R., Nichols, J.A., Tsemekhman, K., Wolinski, K., Anchell, J., Bern-
holdt, D., Borowski, P., Clark, T., Clerc, D., Dachsel, H., Deegan, M., Dyall, K.,
Elwood, D., Glendening, E., Gutowski, M., Hess, A., Jaffe, J., Johnson, B., Ju, J.,
Kobayashi, R., Kutteh, R., Lin, Z., Littlefield, R., Long, X., Meng, B., Nakajima,
T., Niu, S., Pollack, L., Rosing, M., Sandrone, G., Stave, M., Taylor, H., Thomas,
G., van Lenthe, J., Wong, A., Zhang, Z.: NWChem, a computational chemistry
package for parallel computers, version 6.0 (2010)

294 P. Ghosh et al.

4. Goto, K.: Gotoblas. Texas Advanced Computing Center, University of Texas at
Austin, USA (2007), http://www.otc.utexas.edu/ATdisplay.jsp

5. Hammond, J.R., Krishnamoorthy, S., Shende, S., Romero, N.A., Malony, A.D.:
Performance characterization of global address space applications: a case study
with NWChem. Concurrency and Computation: Practice and Experience 24,
135–154 (2011)

6. Heroux, M.A., Doerfler, D.W., Crozier, P.S., Willenbring, J.M., Edwards, H.C.,
Williams, A., Rajan, M., Keiter, E.R., Thornquist, H.K., Numrich, R.W.: Improv-
ing performance via mini-applications. Sandia National Laboratories, Tech. Rep.
SAND2009-5574 (2009)

7. Hirata, S.: Tensor contraction engine: Abstraction and automated parallel imple-
mentation of configuration-interaction, coupled-cluster, and many-body perturba-
tion theories. The Journal of Physical Chemistry A 107(46), 9887–9897 (2003)

8. Kowalski, K., Hammond, J.R., de Jong, W.A., Fan, P.-D., Valiev, M., Wang, D.,
Govind, N.: Coupled cluster calculations for large molecular and extended sys-
tems. In: Reimers, J.R. (ed.) Computational Methods for Large Systems: Electronic
Structure Approaches for Biotechnology and Nanotechnology. Wiley (2011)

9. Liu, X., Patel, A., Chow, E.: A new scalable parallel algorithm for fock matrix
construction, pp. 1–12 (May 2014)

10. MPI Forum. MPI: A message-passing interface standard. Version 3.0 (November
2012)

11. Nieplocha, J., Harrison, R.J., Littlefield, R.J.: Global arrays: A portable “shared-
memory” programming model for distributed memory computers. In: Supercom-
puting (SC) (1994)

12. Ozog, D., Hammond, J.R., Dinan, J., Balaji, P., Shende, S., Malony, A.: Inspector-
executor load balancing algorithms for block-sparse tensor contractions. In: Inter-
national Conference on Parallel Processing (ICPP) (October 2013)

13. Ozog, D., Shende, S., Malony, A.D., Hammond, J.R., Dinan, J., Balaji, P.: Inspec-
tor/executor load balancing algorithms for block-sparse tensor contractions. In:
ICS, pp. 483–484 (2013)

14. Rajbhandari, S., Nikam, A., Lai, P.-W., Stock, K., Krishnamoorthy, S.,
Sadayappan, P.: Framework for distributed contractions of tensors with symmetry.
Ohio State University (2013) (Preprint)

15. Solomonik, E., Matthews, D., Hammond, J., Demmel, J.: Cyclops tensor frame-
work: reducing communication and eliminating load imbalance in massively par-
allel contractions. In: Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS) (2013)

16. Straatsma, T.P., McCammon, J.A.: Load balancing of molecular dynamics simu-
lation with NWChem. IBM Systems Journal 40(2), 328–341 (2001)

17. Valiev, M., Bylaska, E., Govind, N., Kowalski, K., Straatsma, T., Dam, H.V.,
Wang, D., Nieplocha, J., Apra, E., Windus, T., de Jong, W.: NWChem: A com-
prehensive and scalable open-source solution for large scale molecular simulations.
Computer Physics Communications 181(9), 1477–1489 (2010)

18. Whaley, R.C., Dongarra, J.J.: Automatically tuned linear algebra software. In:
Proceedings of the 1998 ACM/IEEE Conference on Supercomputing (CDROM),
pp. 1–27. IEEE Computer Society (1998)

http://www.otc.utexas.edu/ATdisplay.jsp

Author Index

Amer, Abdelhalim 73
Anderson, Matthew 136
Apra, Edoardo 261
Arnold, Dorian 91
Aupy, Guillaume 203
Austin, Brian 52, 261

Balaprakash, Prasanna 239
Benoit, Anne 203
Brodowicz, Maciej 136
Bédaride, Paul 158

Chang, Johnny 25
Chapman, Barbara 281
Cordery, M.J. 52

Daley, C.S. 52
De Jong, Wibe 261
Degomme, Augustin 158
Doerfler, D. 52
Dongarra, Jack 203

Ferreira, Kurt B. 91

Genaud, Stéphane 158
Ghosh, Priyanka 281
Ghosh, Sayan 281

Hammond, Jeff R. 281
Hammond, S.D. 52
Hexemer, Alexander 217
Hoefler, Torsten 91
Hérault, Thomas 203

Jin, Haoqiang 25

Kim, Hyesoon 182
Kulkarni, Abhishek 136

Lee, Joo Hwan 182
Lee, Seyong 3

Legrand, Arnaud 158
Levy, Scott 91
Li, Dong 3
Li, Xiaoye S. 217

Marin, Gabriel 3, 115
Markomanolis, George S. 158
Matsuoka, Satoshi 73
McCurdy, Collin 3, 115
Meng, Jiayuan 182
Meredith, Jeremy 3

Oliker, Leonid 261

Pericàs, Miquel 73

Quinson, Martin 158

Robert, Yves 203
Roth, Philip C. 3

Saini, Subhash 25
Sarje, Abhinav 217
Shan, Hongzhang 261
Spafford, Kyle 3
Sterling, Thomas 136
Stillwell, Mark 158
Suter, Frédéric 158

Taura, Kenjiro 73
Tiwari, Ananta 239
Topp, Bryan 91

Vetter, Jeffrey S. 3, 115
Videau, Brice 158

Wassermann, H.J. 52
Widener, Patrick 91
Wild, Stefan M. 239
Wright, N.J. 52, 261

	4th International Workshop on Performance Modeling,Benchmarking and Simulation of High-PerformanceComputing Systems (PMBS 2013)
	PMBS 2013
	Organization
	Contents
	Performance Benchmarkingand Analysis
	Quantifying Architectural Requirements of Contemporary Extreme-Scale Scientific Applications
	1 Introduction
	1.1 Key Metrics and Methods
	1.2 Related Work
	1.3 Assumptions and Caveats
	1.4 Experimental Platform

	2 Instruction Mix
	3 Memory Behavior
	3.1 Memory Bandwidth
	3.2 Reuse Distance

	4 Communication
	4.1 Point-to-Point Communication
	4.2 Collective Communication

	5 Observations
	6 Summary
	References

	Performance Evaluation of the Intel Sandy Bridge BasedNASA Pleiades Using Scientific and EngineeringApplications
	1 Introduction
	2 Computing Platforms
	2.1 Pleiades Sandy Bridge

	3 Benchmarks and Applications
	3.1 HPC Challenge Benchmarks (HPCC)
	3.2 Memory Subsystem Latency and Bandwidth
	3.3 NAS Parallel Benchmarks (NPB)
	3.4 Science and Engineering Applications

	4 Results
	4.1 Memory Latency and Bandwidth
	4.2 HPC Challenge Benchmarks (HPCC)
	4.3 Science and Engineering Applications

	5 Conclusions
	References

	Analysis of Cray XC30 Performance Using Trinity-NERSC-8 Benchmarks and Comparison with Cray XE6 and IBM BG/Q
	1 Introduction
	2 Test Platform Descriptions
	2.1 BlueGene/Q: Mira and Vulcan
	2.2 Cray XE6: Hopper
	2.3 Cray XC30: Edison

	3 Benchmarks Descriptions and Problem Definitions
	3.1 MILC
	3.2 GTC
	3.3 FLASH
	3.4 Finite Element (MiniFE)
	3.5 Unstructured Mesh Transport (UMT)

	4 Performance Results
	4.1 STREAM
	4.2 NERSC-6 Applications on Hopper and Edison
	4.3 Application Performance On Test Platforms

	5 Related Work
	6 Summary and Conclusions
	References

	Analysis of Data Reuse in Task-Parallel Runtimes
	1 Introduction and Background
	1.1 Scalability of Runtimes
	1.2 Performance Tools
	1.3 Contributions

	2 Case Study: Matrix Multiplication and the Fast Multipole Method
	2.1 Benchmarks
	2.2 Experimental Infrastructure
	2.3 Scalability Analysis

	3 Kernel Reuse Distance
	3.1 Implementation Details

	4 Experimental Evaluation
	4.1 KRD Correlation with Runtime Schedulers
	4.2 KRD Correlation with Hardware Metrics

	5 Discussion
	6 Conclusions
	References

	Performance Modelingand Simulation
	Using Simulation to Evaluate the Performance of Resilience Strategies at Scale
	1 Introduction
	2 Considerations for Resilience at Scale
	2.1 Hardware Characteristics
	2.2 Application Characteristics
	2.3 Impact of Checkpoint/Restart Mechanisms
	2.4 Impact of Failures

	3 LogGOPSim
	3.1 Simulating Application Characteristics
	3.2 Simulating Hardware Characteristics

	4 Extending LogGOPSim for Large Scale Resilience Research
	4.1 Simulating Failures and Resilience
	4.2 Optimizing LogGOPSim for Scale

	5 Evaluating Our LogGOPSim Extensions
	5.1 Correctness of the Extensions
	5.2 Evaluating Performance Enhancements
	5.3 Validating Checkpoint Simulation

	6 Related Work
	7 Conclusion and Future Work
	References

	Characterizing the Impact of Prefetching on Scientific Application Performance
	1 Introduction
	2 Related Work
	3 Prefetching Hardware and Software
	3.1 AMD Hardware Prefetchers
	3.2 Empirical Evaluation of the AMD 10H Prefetchers

	4 Experimental Methodology
	4.1 Application Preparation
	4.2 Hardware Experiments
	4.3 Stream Simulator Experiments

	5 Experimental Results
	5.1 Serial Results
	5.2 Parallel Results

	6 Conclusion
	References

	Performance Modeling of Gyrokinetic Toroidal Simulations for a Many-Tasking Runtime System
	1 Introduction
	2 Related Work
	3 A Case Study: GTC
	4 GTCX in SST/Macro
	5 GTCX Analytic Performance Model
	5.1 Setup
	5.2 Charge
	5.3 Poisson
	5.4 Field
	5.5 Smooth
	5.6 Push
	5.7 Shift
	5.8 Model Validation

	6 Conclusions
	References

	Toward Better Simulation of MPI Applications on Ethernet/TCP Networks
	1 Introduction
	2 Network Modeling Background
	3 The SMPI Framework
	4 A ``Hybrid'' Network Model
	4.1 Point-to-Point Communication Model
	4.2 Topology and Contention Model
	4.3 Collective Communications Model

	5 Model [In]Validation Experiments
	5.1 Methodology
	5.2 NAS Parallel Benchmarks
	5.3 Collective Communications

	6 Simulating a Real Application
	7 Related Work
	8 Conclusion and Future Work
	References

	SESH Framework: A Space Exploration Framework for GPU Application and Hardware Codesign
	1 Introduction
	2 Overview and Background
	2.1 Overall Framework
	2.2 GROPHECY-Based Code Transformation Engine
	2.3 Hardware Models

	3 Exploratory, Multi Facet Hardware Model
	3.1 The Reference Model for Chip-Level Power
	3.2 The Reference Model for Chip-Level Area
	3.3 Integrated, Tunable Hardware Model
	3.4 DRAM Power Model

	4 Space Exploration
	5 Methodology
	5.1 Workloads
	5.2 Evaluation Metric

	6 Evaluation
	6.1 SIMD Width
	6.2 Shared Memory Size
	6.3 Discussion

	7 Related Work
	8 Conclusions
	References

	Optimal Checkpointing Period: Time vs. Energy
	1 Introduction
	2 Model
	2.1 Checkpointing
	2.2 Energy

	3 Optimal Checkpointing Period
	3.1 Execution Time
	3.2 Energy Consumption

	4 Experiments
	5 Conclusion
	References

	Performance Optimization
	Tuning HipGISAXS on Multi and Many Core Supercomputers
	1 Introduction
	2 HipGISAXS Overview
	3 Graphics Processors
	3.1 Nvidia GPU Optimizations
	3.2 Theoretical Analysis on GPUs
	3.3 Performance Analysis on Titan

	4 Many Integrated Cores (MIC)
	4.1 Intel MIC Optimizations
	4.2 Theoretical Analysis on Intel MIC
	4.3 Performance Analysis on Stampede

	5 On Multi-core CPUs
	5.1 AMD Magny Cours and Intel Sandy Bridge
	5.2 Theoretical Analysis on Multi-core CPUs
	5.3 Performance Analysis on Hopper and Edison

	6 Comparisons
	7 Conclusions
	References

	Multi Objective Optimization of HPC Kernels for Performance, Power, and Energy
	1 Introduction
	2 Related Work
	3 Multi Objective Optimization: Background and Notation
	4 Optimization of Time, Power, and Energy
	5 Problem Sets and Decision Spaces
	6 Experimental Results
	6.1 Intel Xeon Phi
	6.2 Intel Xeon E5530
	6.3 Vesta IBM Blue Gene/Q

	7 Conclusions and Outlook
	References

	Performance Tuning of Fock Matrix and Two-Electron Integral Calculations for NWChem on Leading HPC Platforms
	1 Introduction
	2 Experimental Platforms
	2.1 The Cray XE6, Hopper
	2.2 The Cray XC30, Edison
	2.3 The Intel MIC, Babbage
	2.4 The IBM BG/Q, Mira

	3 Background for Fock Matrix Construction and Two-Electron Integral Evaluation
	4 Performance Tuning on Hopper
	4.1 Task Granularity for Dynamic Load Balancing
	4.2 Data Locality
	4.3 Other Optimizations

	5 Performance Tuning on Edison
	5.1 Simultaneous Multi-threading

	6 Performance Tuning on Babbage
	6.1 Vectorization
	6.2 Simultaneous Multi-threading

	7 Performance Tuning on Mira
	7.1 Vectorization
	7.2 Simultaneous Multi-threading

	8 Results and Discussion
	9 Related Work
	10 Summary and Conclusions
	References

	Performance Analysis of the NWChem TCE for Different Communication Patterns
	1 Introduction
	2 Implementation and Design
	2.1 Algorithms Implemented in NWChem
	2.2 TCE Proxy Applications

	3 Experimental Results
	3.1 Full Application Tests
	3.2 Proxy Applications Using GA and MPI

	4 Related Work
	5 Conclusions and Future Work
	References

	Author Index

