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Abstract Hypersequents are a natural generalization of ordinary sequents which turn out
to be a very suitable tool for presenting cut-free Gentzent-type formulations for diverse
logics. In this paper, an alternative way of formulating hypersequent calculi (by introduc-
ing meta-variables for formulas, sequents and hypersequents in the object language) is
presented. A suitable category of hypersequent calculi with their morphisms is defined
and both types of fibring (constrained and unconstrained) are introduced. The introduced
morphisms induce a novel notion of translation between logics which preserves metaprop-
erties in a strong sense. Finally, some preservation features are explored.
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1 Introduction

In recent years, the development of methods for combining logics has gained attention,
and motivations came from different areas such as Philosophy and Computer Science
(see, for instance, [4] and [5]). Logics presented in different ways require ad hoc combi-
nation techniques. In [11], the well-known method of fibring for combining modal logics
was introduced. Categorical (a.k.a. algebraic) fibring, introduced in [16], is a wide and
extremely useful tool for combining logics, allowing to combine a vast class of logic sys-
tems of different nature (consult [5]). In general, it is possible to define two different kinds
of fibring: unconstrained fibring, in which there is no sharing of logic constructors from
the combined logics (and so the resulting logic is a coproduct of the given logics), and
constrained fibring, in which some constructors are shared. In categorical terms, the latter
is obtained from the former by taking an appropriate quotient.

In [8], a novel category of formal sequent calculi was introduced, and both types
of categorical fibring (called meta-fibring) were obtained. Two kinds of sequents were
considered: commutative sequents, formed by pairs of sets of formulas (thus taking for
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granted structural rules such as permutation and contraction) and non-commutative se-
quents, formed by pairs of sequences of formulas. The former are called general asser-
tions, while the latter are called general sequents. A remarkable feature of the presentation
of this approach is the use in the object language of variables for sets and sequences of
formulas, respectively, besides the standard use of scheme variables for formulas. This
peculiarity permits considering sequent rules with full generality, allowing to combine by
fibring two calculi in a satisfactory way. Another novelty of the approach is the notion
of morphism between sequent calculi proposed therein (called meta-translations), being
stronger than the usual one in the sense that more meta-properties (in rough terms, sequent
rules) of the consequence relation of the source logic are preserved. This is a key feature
which allows the reconstruction of a given logic by means of the fibring of its fragments.
An interesting possibility of generalization of the results obtained in [8] lies in the use of
hypersequents instead of sequents, because of their subtleties.

Hypersequents (see [2, 15] among others) constitute a natural generalization of ordi-
nary sequents and turn out to be a very suitable tool for presenting cut-free Gentzen-type
formulations for several non-classical logics. In particular, hypersequents are well-suited
for describing disjunctive properties by analytic means. The proof of cut-elimination in
a (hyper)sequent calculus for a given logic is desirable, because of its important conse-
quences, such as the consistency of the logic and interpolation properties.

This paper proposes a generalization of the work done in [8] to the richer framework
of hypersequents. Thus, departing from a formal presentation of hypersequent in which
meta-variables for contexts (i.e. sequents) are introduced in the object language, the fib-
ring of such systems is defined within a suitable category of hypersequents. Besides, it is
shown that fibring does not preserve, in general, rule-elimination properties such as the
cut-elimination property. Finally, a brief conceptual discussion about the relevance of this
approach concerning the theory of translations between logics is carried out.

2 The Category of Formal Hypersequent Calculi

This section presents the category of hypersequent calculi, generalizing the notion of
assertion calculi introduced in [8]. An independent similar approach was developed in [7].

In what follows, we shall consider a denumerable set Ξ = {ξi : i ∈ N} of symbols
called variables of level 1 (or scheme variables); a denumerable set X = {Xi : i ∈ N}
whose elements are called variables of level 2 (or context variables); and, finally, a denu-
merable set H = {Hi : i ∈ N} whose elements are called variables of level 3 (or sequent
variables) where these sets are pairwise disjoint.

A propositional signature is a denumerable family C = {Cn}n∈N of pairwise disjoint
denumerable sets; additionally, every Cn is disjoint with H ∪X ∪ Ξ . Elements in Cn are
called n-ary connectives (or constructors). The set of constructors of C is |C| = ⋃

n∈N Cn.
The algebra of type C freely generated by Ξ is denoted by L(C). Elements of L(C) are
called formulas. From now on, and for the sake of simplicity, in the examples we will
refer to a signature C as the set |C|.

Generalizing to multisets the definition from [8] of general assertion, a sequent over
a signature C is an expression of the form (A;Γ � �;B) where Γ and � are multisets
of formulas in L(C) and A,B are finite multisets of context variables such that Γ ∪ � ∪
A ∪ B �= ∅. The set of sequents over C is denoted by Seq(C).
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It should be noted that a sequent (in our sense) is nothing more than an ordinary com-
mutative sequent, enriched with both variables of type 2 for sets of formulas (describing
the context of the sequent) and variables of type 1 for formulas. This formalism allows
defining in a precise way sequent calculi and their fibring (cf. [8]). Now we shall introduce
the notion of commutative hypersequent by using sequent variables, that is, variables of
type 3.

Definition 2.1 A commutative hypersequent h over C is a pair h = 〈H;S〉 where H is
a finite multiset of sequent variables and S is a finite multiset of sequents. The set of
commutative hypersequents over C will be denoted by HSeq(C).

Following the usual notation, a commutative hypersequent

h = 〈{G1, . . . ,Gn};
{
(A1;Γ1 � �1;B1), . . . , (Am;Γm � �m;Bm)

}〉

will be written, from now on, as

h = G1| · · · |Gn|A1;Γ1 � �1;B1| · · · |Am;Γm � �m;Bm.

An empty component of a sequent will be simply omitted from the notation and so
we will write, for instance, (A;Γ � �) and (� �;B) instead of (A;Γ � �; ∅) and
(∅;∅ � �;B), respectively. As usual, Γ,Γ ′ and Γ,ϕ will stand for Γ ∪ Γ ′ and Γ ∪ {ϕ},
respectively. Besides, we shall write X and X,Y instead of {X} and {X,Y }, respectively,
for any variables X and Y . The same notation applies to sequent variables. Moreover,
given a finite multisubset H of H, the hypersequent 〈H; ∅〉 will be simply denoted by H.
Analogously, given a finite multisubset S of Seq(C) the hypersequent 〈∅;S〉 will be sim-
ply denoted by S .

Definition 2.2 Let C be a signature. A (n-ary) rule of inference of commutative hyperse-
quents over C is a pair r = 〈{h1, . . . , hn}, h〉 such that hi, h ∈ HSeq(C). If n = 0 then r is
called an axiom. A commutative hypersequent calculus (chc) is a pair A = 〈C,R〉 where
C is a signature and R is a finite set of rules of inference of commutative hypersequents
over C.

For simplicity, we shall denote pairs 〈{h1, . . . , hn}, h〉 and 〈∅, h〉 by

h1 . . . hn

h
and

h
.

Example 2.3 The logical hypersequent rule r¬� for negation which is usually represented
by

r¬� = G|Γ 
 �,α

G|¬α,Γ 
 �

is here represented by

〈{G}; {({X}; ∅ � {ξ}; {Y })}〉
〈{G}; {({X}; {¬ξ} � ∅; {Y })}〉 ,
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or simply by

G|X � ξ ;Y
G|X;¬ξ � Y

(see Remark 2.5 below).

From now on, we will denote by MPfin(X) the set of all finite multisubsets of a set X.
Recall that a substitution over a signature C is a map σ : Ξ → L(C). We denote by

σ̂ : L(C) → L(C) the unique homomorphic extension of σ to L(C). Adapting [8], an
instantiation over C is a map 	 : X → MPfin(L(C) ∪ X ). If 	 is an instantiation over
C and A ∈ MPfin(X ) is a finite multiset of variables of type 2, we define the following
finite multisets:

A
	

X = {
Y ∈ X : Y ∈ 	(X) for some X ∈ A

} =
( ⋃

X∈A

	(X)

)

∩X ;

A
	

L(C) = {
ϕ ∈ L(C) : ϕ ∈ 	(X) for some X ∈ A

} =
( ⋃

X∈A

	(X)

)

∩ L(C).

Thus, given a substitution σ and an instantiation 	 over C, respectively, the map (σ,	) :
Seq(C) → Seq(C) is defined in the following way: given a sequent (A;Γ � �;B), then

(σ,	)(A;Γ � �;B) = (
A

	

X ; σ̂ (Γ ) ∪ A
	

L(C) � σ̂ (�) ∪ B
	

L(C);B	

X
)
.

In order to deal with hypersequents, we shall introduce a notion of substitution for
variables of level 3.

Definition 2.4 We shall say that λ is a sequent instantiation over C if λ is a mapping from
H to the set MPfin(H∪ Seq(C)) of all finite multisubsets of H∪ Seq(C).

Let λ be a sequent instantiation and h = 〈H;S〉 a hypersequent over C. Consider the
following multisets:

Hλ
H = {

G ∈ H : G ∈ λ(H) for some H ∈H
} =

( ⋃

H∈H
λ(H)

)

∩H;

Hλ
Seq(C) = {

s ∈ Seq(C) : s ∈ λ(H) for some H ∈ H
} =

( ⋃

H∈H
λ(H)

)

∩ Seq(C).

Then, given a substitution σ , an instantiation 	 and a sequent instantiation λ over C,
respectively, the map (σ,	,λ) : HSeq(C) → HSeq(C) is defined as follows:

(σ,	,λ)(h) = 〈
Hλ

H; (σ,	)(S) ∪Hλ
Seq(C)

〉
.

Remark 2.5 (Extensional rules vs. Intensional rules) Recall the Example 2.3 above. De-
spite the apparent similarities between the traditional notation for hypersequent rules and
our notation, there are deep differences between r¬� and our representation. In the for-
mer, G denotes an arbitrary multiset of concrete sequents; in their turn, Γ and � denote
arbitrary multisets of formulas; finally, α denotes an arbitrary concrete formula. That is,
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r¬� consists of infinite concrete rules obtained by instantiation of their metavariables,
that is, variables in the metalanguage: it is an extensional approach to inference rules. On
the other hand, our notation is extremely precise: G, X, Y and ξ are concrete variables of
the formal language of hypersequents, and so the rule is represented by a single linguistic
object instead of infinite ones represented by variables in the metalanguage, as done in
the traditional approach to (hyper)sequents. In other words, we propose an intensional
approach to inference rules. Despite the obvious advantages of this fact, there is a much
more important advantage of our formal approach to (hyper)sequents. Since we are inter-
ested in combining different (hyper)sequent calculi, the use of formal variables instead of
metavariables (that is, informal variables) is crucial. In fact, in the intensional approach,
rules are prepared to be combined, since they are open to accept new connectives: ξ can
be replaced by any formula, while X and Y can be replaced by any multisets of formu-
las, as well as G is open to be substituted by any multiset of sequents, and this holds for
any language. That is, if we add new connectives to the language (as a consequence of
a combination process), the meaning of the rule will be the same. On the other hand, in
the traditional extensional approach to (hyper)sequent rules, this possibility is no longer
allowed, and the rule must be extended in order to cope with the new language. This is
the main novelty of the intensional approach to combination of hypersequents, first intro-
duced in [8] in the setting of sequent calculi.

Now we are in conditions to define the notion of derivation in a commutative hyperse-
quent calculus.

Definition 2.6 Let A = 〈C,R〉 be a commutative hypersequent calculus and let Υ ∪
{h} ⊆ HSeq(C) be a set of hypersequents. We shall say that h is derivable in A from Υ ,
and write Υ 
A h, if there exists a finite sequence h1 . . . hn of elements of HSeq(C) such
that hn = h and, for all 1 ≤ i ≤ n, either hi ∈ Υ , or there exist an hypersequent rule
r = 〈{h′

1, . . . , h
′
k}, h′〉 in R, a substitution σ , an instantiation 	 and a sequent instantiation

λ over C such that (σ,	,λ)(h′
j ) ∈ {h1, . . . , hi−1} (for 1 ≤ j ≤ k) and (σ,	,λ)(h′) = hi .

If Υ = ∅ we shall just say that h is provable in A.

Remark 2.7 The expressive power of hypersequents, allied to the possibility of using vari-
ables either of type 1, 2 or 3, allows defining structural rules in many different ways. For
instance, the contraction rule, as pointed out by A. Avron, admits two versions: an inter-
nal (inside a sequent) and an external (inside the context of the hypersequent). Thus, the
internal version of contraction (using variables of type 1) and the external version (using
variables of type 2) are as follows:

G|X; ξ, ξ � Y

G|X; ξ � Y
,

G|X � ξ, ξ ;Y
G|X � ξ ;Y ,

G|X � Y |X � Y

G|X � Y
.

We can add one more possibility by using variables of level 3:

G|G|H
G|H .
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Clearly, the level 3 version can simulate the level 2 version, meanwhile each concrete
application of the level 3 contraction is recovered by successive applications of the level 2
contraction. On the other hand, the internal contraction can be alternatively defined by
using variables of level 2:

G|X,X,Y � Z

G|X,Y � Z
,

G|X � Y,Y,Z

G|X � Y,Z
.

In an analogous way to the remark above, the internal contractions of level 2 and level
1 are equivalent.

Now we are going to define the category of formal commutative hypersequent calculi.
Recall that in [8] the following category of signatures was used:

Definition 2.8 The category Sig of signatures is the category whose objects are propo-
sitional signatures. A morphism f : C → C′ in Sig is a function f : |C| → L(C′) such
that f (c) is a formula which depends at most on schema variables ξ1, . . . , ξn whenever
c ∈ C′

n (in particular, f (c) ∈ L(C′
0) if c ∈ C0). If f1 : C → C′ and f2 : C′ → C′′ are two

morphisms in Sig, the composite morphism f2 ◦f1 : C → C′′ in Sig is the composite map
f̂2 ◦ f1 : |C| → L(C′′), where the function f̂2 : L(C′) → L(C′′) is defined as follows:

f̂2(ξ) = ξ, for ξ ∈ Ξ ; f̂2(c) = f2(c), for c ∈ C′
0;

f̂2
(
c(ϕ1, . . . , ϕn)

) = f2(c)
(
f̂2(ϕ1), . . . , f̂2(ϕn)

)
for c ∈ C′

n, n ≥ 1.

The identity morphism idC : C → C for the signature C is the function idC : |C| → L(C)

such that idC(c) = c(ξ1, . . . , ξn) if c ∈ Cn. In particular, idC(c) = c, if c ∈ C0.

Recall from [8] that if (A;Γ � �;B) is a sequent over C and f : C → C′ is a signature
morphism, then f̂ (A;Γ � �;B) is, by definition, the sequent (A; f̂ (Γ ) � f̂ (�);B) over
C′. This can be naturally extended to hypersequents:

f̂
(〈H;S〉) = 〈

H; f̂ (S)
〉
.

It is clear that f̂ (h) is a hypersequent over C′ provided that h is a hypersequent over C.
The category of commutative hypersequent calculi is defined as follows.

Definition 2.9 The category CHC of commutative hypersequent calculi is the category
whose objects are commutative hypersequent calculi of the form A = 〈C,R〉. A mor-
phism f : 〈C,R〉 → 〈C′,R′〉 in CHC is a morphism f : C → C′ in Sig such that, for
every r = 〈{h1, . . . , hn}, h〉 in R, it is verified that f̂ (h) is derivable in 〈C′,R′〉 from
{f̂ (h1), . . . , f̂ (hn)}. The composition of morphisms and the identity morphism in CHC
is defined as in Sig.

3 Unconstrained Fibring of Hypersequent Calculi

Taking advantage of the formal framework for defining hypersequent calculi described in
the previous section, we are now ready to combine these proof systems. The combination
method proposed here is known in the literature as (categorical) fibring (see [11, 16]).



A Formal Framework for Hypersequent Calculi and Their Fibring 79

Basically, categorical fibring can be performed in two (related) ways: the simpler one,
called unconstrained fibring, consists in joining up the inference rules of the two systems
being combined, were the rules must be rewritten in the language generated by the free
combination of the symbols of both systems. In formal terms, it is the coproduct of both
systems, in the category in which they are represented. In Sect. 6, we shall study the
second (and more general) way of categorical fibring, called unconstrained fibring, in
which some connectives of the systems to be combined are shared in the resulting system.

Prior to the definition of unconstrained fibring, it is necessary to introduce some results
and concepts.

Definition 3.1 Given substitutions σ,σ ′ and instantiations 	,	′ over C, the product
(σ,	) · (σ ′, 	′) is given by

(σ,	) · (σ ′, 	′) = (
σ · σ ′,

(
	 · 	′)

σ

)

where σ · σ ′ is the substitution over C given by σ · σ ′(ξ) = σ̂ (σ ′(ξ)) and (	 · 	′)σ is the
instantiation over C given by

(
	 · 	′)

σ
(X) = ({X}	′

X
)	

X ∪ ({X}	′
X

)	

L(C)
∪ σ̂

({X}	′
L(C)

)
.

The proof of the following useful result is straightforward:

Proposition 3.2 Let σ,σ ′ be substitutions over C and let 	,	′ be instantiations over C.
Then, for every s ∈ Seq(C),

[
(σ,	) · (σ ′, 	′)](s) = (σ,	)

((
σ ′, 	′)(s)

)
.

In order to consider variables of level 3, we introduce the following definition.

Definition 3.3 Given substitutions σ,σ ′, instantiations 	,	′ and sequent instantiations
λ,λ′ over C, the product (σ,	,λ) · (σ ′, 	′, λ′) is given by

(σ,	,λ) · (σ ′, 	′, λ′) = (
σ · σ ′,

(
	 · 	′)

σ
,
(
λ · λ′)

σ	

)

where σ ·σ ′ and (	 ·	′)σ are as in Definition 3.1; and (λ ·λ′)σ	 is the sequent instantiation
given by

(
λ · λ′)

σ	
(H) = ({H }λ′

H

)λ

H
∪ ({H }λ′

H

)λ

Seq(C)
∪ (σ,	)

({H }λ′
Seq(C)

)
.

Using Proposition 3.2, it is easy to prove the following result.

Proposition 3.4 Let σ,σ ′ be substitutions over C, let 	,	′ be instantiations over C and
let λ,λ′ be sequent instantiations over C. Then, for every h ∈ HSeq(C),

[
(σ,	,λ) · (σ ′, 	′, λ′)](h) = (σ,	,λ)

((
σ ′, 	′, λ′)(h)

)
.

The next proposition will be useful.
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Proposition 3.5 Let h1 . . . hn be a derivation of h in A from Υ . Then, for every
(σ,	,λ), the sequence (σ,	,λ)(h1) . . . (σ,	,λ)(hn) is a derivation of (σ,	,λ)(h) in A
from (σ,	,λ)(Υ ).

Proof By induction on n, taking into account Definition 2.6 and Proposition 3.4. �

Given an hypersequent h, we denote by Var(h) the set of all the scheme variables
occurring in formulas in h. If Υ is a set of hypersequents, then Var(Υ ) denotes the subset⋃

h∈Υ Var(h) of Ξ .

Corollary 3.6 Let A = 〈C,R〉 be a chc, and Υ ∪{h} ⊆ HSeq(C) such that Υ 
A h. Then,
there exists a derivation h1 . . . hn of h in A from Υ such that Var(hi) ⊆ Var(Υ ) ∪ Var(h),
for every 1 ≤ i ≤ n.

Proof Consider a derivation h1 . . . hn of h in A from Υ . Let σ be a substitution over
C such that σ(ξ) ∈ Var(Υ ) ∪ Var(h) whenever ξ /∈ Var(Υ ) ∪ Var(h), and σ(ξ) = ξ

otherwise. Let 	 and λ be the identity instantiation and the identity sequent instantia-
tion over C, respectively. By Proposition 3.5, the sequence (σ,	,λ)(h1) . . . (σ,	,λ)(hn)

is a derivation of h in A from Υ such that, for every 1 ≤ i ≤ n, Var((σ,	,λ)(hi)) ⊆
Var(Υ ) ∪ Var(h). �

The proof of the next result is routine. In particular, item (i) is an immediate conse-
quence of Proposition 3.5.

Theorem 3.7

(i) If Υ 
A h, then (σ,	,λ)(Υ ) 
A (σ,	,λ)(h), for every triple (σ,	,λ).
(ii) If Υ 
A1 h, then f̂ (Υ ) 
A2 f̂ (h), for every morphism f : A1 → A2 in CHC.

Recall from [8] the following result:

Proposition 3.8 The category Sig has finite coproducts.

The coproduct of the signatures C and C′ will be denoted by C ⊕ C′, with the canonical
injections i : C → C ⊕ C′ and i′ : C′ → C ⊕ C′.

The (unconstrained) fibring of hypersequent calculi is defined as expected:

Definition 3.9 Let A = 〈C,R〉 and A′ = 〈C′,R′〉 be two chcs. The (unconstrained) fib-
ring of A and A′ is the commutative hypersequent calculus A⊕A′ = 〈C,R〉 where:

• C = C ⊕ C′,
• R = {î(r) : r ∈ R} ∪ {î′(r) : r ∈ R}.
Here i and i′ are the canonical injections from C and C′ to C ⊕ C′, respectively.

The characterization of unconstrained fibring as a coproduct can be proved by gener-
alizing the corresponding proof for sequent calculi found in [8]:

Proposition 3.10 Let A = 〈C,R〉 and A′ = 〈C′,R′〉 be two chcs. Then, A ⊕ A′ is the
coproduct in CHC of A and A′ with canonical injections induced by the injections i

and i′ in Sig.
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4 Admissible and Derivable Rules and the Rule Elimination Property

Recall that a rule of inference is admissible in a formal system if the set of theorems of
the system is closed under the rule. In our context, we arrive to the following definition:

Definition 4.1 Let A = 〈C,R〉, and let r = 〈{h1, . . . , hn}, h〉 be an inference rule over C

(r can belong or not to R). We say that r is an admissible inference rule of A if, for every
substitution σ , instantiation 	 and sequent instantiation λ over C, it is verified that

if 
A (σ,	,λ)(hi) for all i = 1, . . . n, then 
A (σ,	,λ)(h).

That is to say, an admissible rule is one whose conclusion holds whenever the premises
hold, and so that rule can be added to the system without changing theoremhood. It is easy
to prove the following:

Proposition 4.2 Let A = 〈C,R〉 and let r be an inference rule over C. Let Ar =
〈C,R ∪ {r}〉. Then r is admissible in A iff, for every hypersequent h over C, 
Ar h

implies 
A h.

Clearly, if r ∈ R then r is admissible in 〈C,R〉. A related notion is that of derived rule.
A rule r is said to be derivable in a chc if its conclusion can be derived from its premises
using the other rules of the system. Formally:

Definition 4.3 Let A = 〈C,R〉, and let r = 〈Υ,h〉 be an inference rule over C such that
r /∈ R. We say that r is a derived inference rule of A if Υ 
A h.

From now on, if A = 〈C,R〉, we will denote by Ar the chc 〈C,R \ {r}〉.

Remark 4.4

(i) If f : A → A′ is a morphism in CHC and r ∈ R, then we have that f̂ (r) is a derived
inference rule of A′.

(ii) Every derived rule is admissible, but the converse does not hold.

Recall that the cut-elimination theorem (Hauptsatz) states that any sentence that pos-
sesses a proof in the sequent calculus (hypersequent calculus) that makes use of the cut
rule also possesses a cut-free proof, that is, a proof that does not make use of the cut
rule. It was originally proved by G. Gentzen (see [12]) for the systems LJ and LK for-
malizing intuitionistic and classical logic, respectively. It is well known that in a sequent
calculus where cut elimination holds, the cut rule is admissible in the calculus obtained
by removing the cut rule. Taking that into account we introduce the following definition:

Definition 4.5 (Rule elimination property) Let A = 〈C,R〉 be a chc, and let r be a
rule in R. We shall say that A admits elimination of rule r (or simply that A has the
r-elimination property) if every time that h ∈ HSeq(C) has a proof in A, then there is a
proof of h in Ar .
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Then, by Proposition 4.2, we have:

Corollary 4.6 Let A = 〈C,R〉 be a chc, and let r be a rule in R. Then, the following
conditions are equivalent:

(i) r is admissible in Ar ;
(ii) A has the r-elimination property.

Definition 4.5 can be generalized as follows:

Definition 4.7 Let A = 〈C,R〉 be a chc, and let r be a rule in R. We shall say that A
admits full elimination of the rule r (or simply that A has the full r-elimination property)
if for every derivation of h from Υ in A, there is a derivation of h from Υ in Ar .

Clearly, if A admits full elimination of r then it admits the elimination of r : it is enough
to take Υ = ∅. The converse does not hold.

The next result is the counterpart of Corollary 4.6 in terms of the notion of derivability.

Proposition 4.8 Let A = 〈C,R〉 be a chc, and let r be a rule in R. Then, the following
conditions are equivalent:

(i) r is derivable in Ar ;
(ii) A has the full r-elimination property.

5 Preservation Features and Translating Derivations

In this section, some preservation features are explored. In particular, it is noted that
r-elimination property is not preserved by fibring of commutative hypersequent calculi,
provided that one (or both) of the calculi enjoys this property. Additionally, by using the
notion of goedelization proposed in [5], we shall be able to translate derivations from a
given calculus into another.

Observe that, in general, the rule-elimination property is not preserved by fibring
of commutative hypersequent calculi provided that just one of the calculi has the rule-
elimination property: for instance, cut-elimination property is not preserved by fibring of
commutative hypersequent calculi such that just one of them enjoys cut-elimination.

Example 5.1 A. Avron (in [1]) constructed a commutative hypersequent calculus called
GLCW enjoying cut-elimination property such that, by adding the connective ∧ together
with the usual rules, the resulting calculus GLC∗ does not have the cut-elimination prop-
erty. In our framework, this means that the fibring of GLCW (with cut-elimination) and
a calculus of conjunction plus cut (without cut-elimination), results in a calculus without
cut-elimination.

This proves the following assertion:

Fact 5.2 In general, unrestricted fibring of commutative hypersequent calculi does not
preserve the cut-elimination property, provided that just one of them has this metaprop-
erty.
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The more interesting case is when both fibred systems admit r-elimination. However,
it is not hard to see that the obtained system need not to admit r-elimination. Indeed,
take the sequent calculus for the multiplicative fragment of abelian logic and the additive
fragment of linear logic (see [15]). Both calculi have cut-elimination, but the result of
fibring does not.

Fact 5.3 In general, unrestricted fibring of commutative hypersequent calculi does not
preserve the cut-elimination property, provided that both of them have this metaproperty.

Remark 5.4 Observe that connectives are not shared in the unrestricted fibring. However,
the rule r is present in both calculi, collapsing into just one rule in the fibring. Then,
r must be a rule without occurrences of connectives, that is, a structural rule like, for
instance, Cut or Contraction.

On the other hand, things change when we consider full rule elimination. From Propo-
sition 4.8 we have:

Fact 5.5 Let A = 〈C,R〉 be a chc. If A has the full r-elimination property, then so does
A⊕A′, for any chc A′ = 〈C′,R′〉.

The next two results are tools for translating derivations from a given calculus into
an extension of it, and vice versa. This technique is based on the notion of goedelization
introduced in [5].

Definition 5.6 Let C and C′ be two signatures. An embedding from C to C′ is a signature
morphism l : C → C′ such that, for every n ≥ 0 and c ∈ Cn, there exists a unique c′ ∈ C′

n

such that l(c) = c′(ξ1, . . . , ξn), if n > 0, and l(c) = c′ if n = 0. We write C ≤l C′ to denote
that l : C → C′ is an embedding.

Observe that if C ≤l C′ then the underlying functions l : |C| → L(C′) and l̂ :
L(C) → L(C′) are injective. Additionally, Cj ≤ij C1 ⊕ C2 for j = 1,2, for every sig-
natures C1 and C2. That is, the canonical injections i1 and i2 of the coproduct C1 ⊕ C2
are embeddings.

Definition 5.7 Let C and C′ be two signatures such that C ≤l C′, and consider a re-
cursive bijection (from now on called goedelization) g : L(C′) → N. The translation
τg : L(C′) → L(C) is the function inductively defined as follows:

• τg(ξi) = ξ2i+1, for ξi ∈ Ξ ;
• τg(l(c)) = c, for c ∈ C0;
• τg(c

′) = ξ2g(c′), for c′ ∈ C′
0 \ l(C0);

• τg(l(c)(γ
′
1, . . . , γ

′
k)) = c(τg(γ

′
1), . . . , τg(γ

′
k)), for c ∈ Ck , k > 0 and γ ′

i ∈ L(C′);
• τg(c

′(γ ′
1, . . . , γ

′
k)) = ξ2g(c′(γ ′

1,...,γ
′
k))

, if k > 0, c′ ∈ C′
k is such that c′(ξ1, . . . , ξk) �= l(c)

for every c ∈ Ck , and γ ′
i ∈ L(C′).

The substitution τ−1
g : Ξ → L(C′) is the function defined by

• τ−1
g (ξ2i+1) = ξi and

• τ−1
g (ξ2i ) = g−1(i), for all i ∈N.
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We shall denote by τ−1
g the only extension of τ−1

g to L(C). It can be proved that τg

and τ−1
g are inverses of each other. The function defined by

τ̂g(A;Γ � �;B) = (
A; τg(Γ ) � τg(�);B)

induces the function τ̂g :MPfin(X ∪ L(C′)) → MPfin(X ∪ L(C)) in a natural way; and
if we define

ˆ̂τg

(〈H;S〉) = 〈
H; τ̂g(S)

〉
,

it induces a function ˆ̂τg :MPfin(H∪ Seq(C′)) → MPfin(H∪ Seq(C)).

Analogously, we define τ̂g
−1 : MPfin(X ∪ L(C)) → MPfin(X ∪ L(C′)) and ˆ̂τ−1

g :
MPfin(H∪ Seq(C′)) →MPfin(H∪ Seq(C)).

Remark 5.8 It is easy to see that τ̂g and τ̂g
−1; and ˆ̂τg and ˆ̂τ−1

g are inverse to each other,
respectively.

Lemma 5.9 Let C and C′ be two signatures such that C ≤l C′, and let g : L(C′) → N

be a goedelization.

(i) If σ ′ : Ξ → L(C′) is a substitution over C′, then σ̄ : Ξ → L(C) given by σ̄ (ξ) =
τg(σ

′(ξ)) is a substitution over C such that ˆ̄σ(ϕ) = τg(σ̂
′(l̂(ϕ))) for all ϕ ∈ L(C).

(ii) If 	′ : X → MPfin(X ∪ L(C′)) is an instantiation over C′ and τ̂g : MPfin(X ∪
L(C′)) → MPfin(X ∪L(C)) is defined as above, then the composite map 	̄ = τ̂g ◦	′
is an instantiation over C.

(iii) If λ′ : H → MPfin(H ∪ Seq(C′)) is a sequent instantiation over C′ and ˆ̂τg :
MPfin(H∪Seq(C′)) → MPfin(H∪Seq(C)) is defined as above, then the composite
map λ̄ = ˆ̂τg ◦ λ′ is a sequent instantiation over C.

(iv) With the notation used in the above items, if h ∈ HSeq(C) then

ˆ̂τg

((
σ ′, 	′, λ′)(l̂(h)

)) = (σ̄ , 	̄, λ̄)(h).

Proof Straightforward. �

Using the above results we are now able to translate derivations.

Proposition 5.10 Let A = 〈C,R〉 and A′ = 〈C′,R′〉 be two chcs such that C ≤l C′ and
l̂(R) ⊆ R′, and let Υ ∪ {h} ⊆ HSeq(C′) such that h1 . . . hn is a derivation of h in A′
from Υ using exclusively rules from l̂(R). Then, ˆ̂τg(Υ ) 
A ˆ̂τg(h), for any goedelization

g : L(C′) →N. Moreover, ˆ̂τg(h1) . . . ˆ̂τg(hn) is a derivation of ˆ̂τg(h) in A from ˆ̂τg(Υ ).

Proof We shall use induction over the length m of the derivation. If m = 1, then we have
two possible cases:

Case 1. h1 ∈ Υ and h1 = h. Then, ˆ̂τg(h1) ∈ ˆ̂τg(Υ ) ⊆ HSeq(C) and ˆ̂τg(h) = ˆ̂τg(h1).

Hence, ˆ̂τg(Υ ) 
A ˆ̂τg(h).
Case 2. h1 is the image of an axiom of R. That is to say, there are an r ∈ R, r = 〈∅, h′〉, a

substitution σ ′ over C′, an instantiation 	′ over C′ and a sequent instantiation λ over C′
such that h1 = (σ ′, 	′, λ′)(l̂(h′)). By Lemma 5.9(iv), ˆ̂τg(h1) = ˆ̂τg((σ

′, 	′, λ′)(l̂(h′))) =
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(σ̄ , 	̄, λ̄)(h′), where σ̄ , 	̄ and λ̄ are a substitution, an instantiation, and a sequent instan-
tiation, respectively, over C. This means that 
A ˆ̂τg(h), and therefore ˆ̂τg(Υ ) 
A ˆ̂τg(h).

Suppose now that the assertion stands for derivations of length ≤ m and let us see that it
also stands for length m + 1.

Let

h1 . . . hmhm+1

be a derivation of h in A′ from Υ . Then ˆ̂τg(h1) . . . ˆ̂τg(hm) is a derivation of ˆ̂τg(hm) in A
from τ̂g(Υ ).

If either hm+1 is the image of an axiom of R or it belongs to Υ , the treatment is as
above.

On the other hand, suppose that there are an r ∈ R, r = 〈{g1, . . . , gk}, g′〉, a sub-
stitution σ ′, an instantiation 	′, and a sequent instantiation λ′ on C′ such that (σ ′, 	′, λ′)
(l̂(gj )) ∈ {h1, . . . , hm}, for 1 ≤ j ≤ k, and (σ,′ 	′, λ′)(l̂(g′)) = hm+1 = h. Then,
ˆ̂τg((σ

′, 	′, λ′)(l̂(gj ))) = (σ̄ , 	̄, λ̄)(gj ) ∈ { ˆ̂τg(h1), . . . , ˆ̂τg(hm)}, for 1 ≤ j ≤ k, and
ˆ̂τg((σ

′, 	′, λ′)(l̂(g′))) = (σ̄ , 	̄, λ̄)(g′) = ˆ̂τg(hm+1) = ˆ̂τg(h), by Lemma 5.9(iv). By induc-
tion hypothesis, we may assert that

ˆ̂τg(h1) . . . ˆ̂τg(hm) ˆ̂τg(hm+1)

is a derivation of ˆ̂τg(h) in A from ˆ̂τg(Υ ). �

And conversely:

Proposition 5.11 Let A = 〈C,R〉 and A′ = 〈C′,R′〉 be two chcs such that C ≤l C′
and l̂(R) ⊆ R′, and let Υ ∪ {h} ⊆ HSeq(C) such that h1 . . . hn is a derivation of h in A
from Υ . Then, ˆ̂τ−1

g (h1) . . . ˆ̂τ−1
g (hn) is a derivation of ˆ̂τ−1

g (h) in A′ from ˆ̂τ−1
g (Υ ), for any

goedelization g : L(C′) → N.

Proof It is similar to the previous one. �

6 Extension to Constrained Fibring

In Sect. 3, we introduced the notion of unconstrained fibring in CHC, that is, the combi-
nation of two chcs without sharing any connectives. However, it is frequently necessary to
combine logics while sharing some connectives. Here is when the constrained fibring ap-
pears. In this section, we shall introduce the notion of constrained fibring in the category
CHC, generalizing the results of the previous sections.

Let C be a signature and let ≡ ⊆ |C| × |C| be an equivalence relation on |C|. We shall
say that ≡ is a signature congruence over C if it verifies the following condition:

c1 ≡ c2 implies c1, c2 ∈ Cn, for some n ∈N.

It is clear that C/≡ = {Cn/≡}n∈N is a signature. The canonical map q : |C| → L(C/≡)

is the function defined as follows:
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• q(c) = [c], if c ∈ C0,
• q(c) = [c](ξ1, . . . , ξn), if c ∈ Cn, for n ≥ 1

where [c] denotes the equivalence class of c by ≡. Clearly, q is a morphism q : C → C/≡
in Sig.

Definition 6.1 Let A = 〈C,R〉 be a chc and let ≡ be a signature congruence over C. The
quotient commutative hypersequent calculus (or simply the quotient calculus) determined
by ≡ is the chc A/≡ = 〈C/≡,R′〉 such that

R′ = {
q̂(r) : r ∈ R

}
.

It is clear that A/≡ is indeed a commutative hypersequential calculus and that q in-
duces a morphism q :A → A/≡ in CHC.

Proposition 6.2 If A has the full r-elimination property, then so does A/≡ for any
congruence ≡.

Proof Straightforward. �

Let A = 〈C,R〉 and A′ = 〈C′,R′〉 be two chcs to be combined by sharing the connec-
tives in the signature C∩C′ = {Cn ∩C′

n}n∈N. Let inc : C∩C′ → C and inc′ : C∩C′ → C′
be the inclusion morphisms. Consider now the coproduct C ⊕ C′ and the canonical injec-
tions i : C → C ⊕ C′, i′ : C′ → C ⊕ C′. Then, the relation ≡ given by

≡ = {(⌊
i ◦ inc(c)

⌋
,
⌊
i′ ◦ inc′(c)

⌋) : c ∈ C ∩ C′} ∪ {(
c′, c′) : c′ ∈ (

C ∪ C′) \ C ∩ C′}

where C ∪ C′ = {Cn ∪ C′
n}n∈N and �c(ξ1, . . . , ξn)� = c for any connective c, is a congru-

ence over C ⊕ C′.

C ∩ C′
inc inc′

C

i

C′

i′
C ⊕ C′

q

(C⊕C′)/≡
The constrained fibring of A and A′ by sharing the symbols in C ∩ C′ is the chc

A
C∩C′
⊕ A′ = (

A⊕A′)/≡.

Observe that if c′ ∈ (C⊕C′)n, we have the following cases:
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(I) [c′] = {�i ◦ inc(c)�, �i′ ◦ inc′(c)�}, for c ∈ (Cn ∩ C′
n);

(II) [c′] = {�i(c)�} for a unique c ∈ Cn \ C′
n;

(III) [c′] = {�i′(c)�} for a unique c ∈ C′
n \ Cn.

Example 6.3 Let |C| = {¬,→,∧,∨,�} and |C′| = {¬,→,&,◦}. Then,

{¬,→}
inc inc′

{¬,→,∧,∨,�}

i

{¬,→,&,◦}

i′{¬1,→1,∧1,∨1,�1,¬2,→2,&2,◦2}

q

{¬1(= ¬2),→1(= →2),∧1,∨1,�1,&2,◦2}

Then, the formula �1¬1( ξ1 →1 (ξ2 &2 ξ3)) of L((C1⊕C2)/ ≡) stands for identifying
the following formulas of L(C1⊕C2):

• �1¬1( ξ1 →1 (ξ2 &2 ξ3)),
• �1¬1( ξ1 →2 (ξ2 &2 ξ3)),
• �1¬2( ξ1 →1 (ξ2 &2 ξ3)), and
• �1¬2( ξ1 →2 (ξ2 &2 ξ3)).

From Fact 5.5 and Proposition 6.2, we can state the following:

Fact 6.4 Let A a chc. If A has the full r-elimination property then so does A
C∩C′
⊕ A′, for

every chc A′.

7 The Non-commutative Case

In the previous section, ‘concrete’ sequents were considered as formed by pairs of (finite)
multisets of formulas, while ‘concrete’ hypersequents were defined as (finite) multisets
of sequents. It is a natural question how to generalize the previous approach to general
(non-commutative) sequents and hypersequents, where finite sequences are taken instead
of multisets. It is worth noting that the case of general sequents was already addressed
in [8]. The aim of this section is to generalize the previous definitions and results to
general hypersequents, composed of general sequents.

Given a set X, we denote by X∗ the set of all finite sequences formed by elements of
X, and by X2 the Cartesian product X × X. The empty sequence is denoted by ε. The
concatenation of two finite sequences s, s′ ∈ X∗ is the finite sequence denoted by s · s′.
Note that s · ε = ε · s = s, for every s ∈ X∗.

Recall from Sect. 2 that Ξ , X and H are the set of scheme variables, context variables
and sequent variables, respectively.
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Definition 7.1 Let C be a signature. A general sequent (over C) is a pair of finite se-
quences whose elements are either formulas over C or elements of X . The set of all
general sequents over C will be denoted by GSeq(C). That is,

GSeq(C) = ((
L(C) ∪X

)∗)2
.

A general sequent 〈s1 . . . sn, s
′
1 . . . s′

m〉 will be usually written as s1 . . . sn � s′
1 . . . s′

m.
The sequent 〈ε, ε〉 is called the bottom sequent, and it is denoted by ⊥s.

Definition 7.2 Let C be a signature. A general hypersequent (over C) is a finite sequence
whose elements are either general sequents over C or elements of H. The set of all general
hypersequents over C will be denoted by GHSeq(C). That is,

GHSeq(C) = (
GSeq(C) ∪H

)∗
.

A general hypersequent s1 . . . sn will be usually written as s1| · · · |sn. The hypersequent
ε is called the bottom hypersequent, denoted by ⊥h.

Definition 7.3 Let C be a signature. A (n-ary) inference rule of general hypersequents
over C is a pair r = 〈{h1, . . . , hn}, h〉 such that hi, h ∈ GHSeq(C). If n = 0 then r is
called an axiom. A general hypersequent calculus (ghc) is a pair A = 〈C,R〉 where C is
a signature and R is a finite set of inference rules of general hypersequents over C.

As it was done for chcs, rules of the form 〈{h1, . . . , hn}, h〉 and 〈∅, h〉 will be simply
denoted by

h1 . . . hn

h
and

h
.

Recall that a substitution over a signature C is a map σ : Ξ → L(C), and that its unique
homomorphic extension to L(C) is denote by σ̂ : L(C) → L(C). Additionally, if σ and σ ′
are substitutions over C then σ ·σ ′ is the substitution over C given by σ ·σ ′(ξ) = σ̂ (σ ′(ξ))

which satisfies the following:

σ̂ · σ ′ = σ̂ ◦ σ̂ ′.

Adapting [8] and the previous definitions of instantiation 	, sequent instantiation λ

as well as the mappings of the form (σ,	,λ) : HSeq(C) → HSeq(C), we introduce the
following notions to deal with inference rules of general hypersequents.

Definition 7.4 (Context substitutions) Let σ be a substitution over C and let 	 : X →
(L(C) ∪X )∗ be a mapping (called context instantiation over C). A pair 〈σ,	〉 is called a
context substitution over C.

A context substitution μ = 〈σ,	〉 generates naturally a function μ̄ : L(C) ∪ X →
(L(C) ∪ X )∗ as follows: μ̄(s) = σ̂ (s), if s ∈ L(C), and μ̄(s) = 	(s), if s ∈ X (note that
this is well-defined, since it is assumed that L(C) ∩X = ∅). It induces a unique function
μ̃ : (L(C) ∪ X )∗ → (L(C) ∪ X )∗ as follows: μ̃(s1 . . . sn) = μ̄(s1) . . . μ̄(sn), for n ≥ 0.
Note that μ̃(ε) = ε. Finally, the last mapping induces a unique function μ̂ : GSeq(C) →
GSeq(C) as expected: μ̂(〈s1 . . . sn, s

′
1 . . . s′

m〉) = 〈μ̃(s1 . . . sn), μ̃(s′
1 . . . s′

m)〉. Observe that
μ̂(⊥s) = ⊥s.
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The following notion comes from [8]. Let μ = 〈σ,	〉 and μ′ = 〈σ ′, 	′〉 be context
substitutions over C, and consider the context instantiation (	 · 	′)σ over C defined as
follows: if s ∈ X and 	′(s) = s1 . . . sn then (	 · 	′)σ (s) = f σ

	 (s1) · · ·f σ
	 (sn), where, for

every s′ ∈ L(C) ∪X ,

f σ
	

(
s′) =

{
	(s′) if s′ ∈X ,

σ̂ (s′) if s′ ∈ L(C).

It is easy to prove that the context substitution μ′′ = 〈σ · σ ′, (	 · 	′)σ 〉 over C is such
that μ̂′′ = μ̂ ◦ μ̂′.

Definition 7.5 (Sequent substitutions) Let σ be a substitution over C, 	 a context instan-
tiation over C and let λ : H → GHSeq(C) be a mapping (called general sequent instanti-
ation over C). A triple 〈σ,	,λ〉 is called a sequent substitution over C.

A sequent substitution κ = 〈σ,	,λ〉 generates a function κ̄ : GSeq(C) ∪ H →
GHSeq(C) as follows: κ̄(s) = 〈̂σ,	〉(s), if s ∈ GSeq(C), and κ̄(s) = λ(s), if s ∈ H. From
this, a unique function κ̂ : GHSeq(C) → GHSeq(C) is defined as follows: κ̂(s1 . . . sn) =
κ̄(s1) · · · κ̄(sn), for n ≥ 0. Note that κ̂(⊥h) = ⊥h.

Now, let κ = 〈σ,	,λ〉 and κ ′ = 〈σ ′, 	′, λ′〉 be sequent substitutions over C, and con-
sider the general sequent instantiation (λ · λ′)σ	 over C defined as follows: if λ′(s) =
s1 . . . sn then (λ · λ′)σ	(s) = θ

σ	
λ (s1) · · · θσ	

λ (sn), where, for every s′ ∈ GSeq(C) ∪H,

θ
σ	
λ

(
s′) =

{
λ(s′) if s′ ∈H,

〈̂σ,	〉(s′) if s′ ∈ GSeq(C).

It is immediate that the sequent substitution κ ′′ = 〈σ · σ ′, (	 · 	′)σ , (λ · λ′)σ	〉 over C

is such that κ̂ ′′ = κ̂ ◦ κ̂ ′.
Now, we can define the notion of derivation in ghcs:

Definition 7.6 Let A = 〈C,R〉 be a general hypersequent calculus over C and let
Υ ∪ {s} ⊆ GHSeq(C). We say that h is derivable in A from Υ , and write Υ 
A h, if
there is a finite sequence h1 . . . hn of elements of GHSeq(C) such that hn = h and for
all 1 ≤ i ≤ n, either hi ∈ Υ , or there exist an inference rule r = 〈{h′

1, . . . , h
′
k}, h′〉 in R,

a substitution σ , a context instantiation 	 and a general sequent instantiation λ over C

such that (σ,	,λ)(h′
j ) ∈ {h1, . . . , hi−1} (for 1 ≤ j ≤ k) and (σ,	,λ)(h′) = hi . If Υ = ∅

we shall just say that h is provable in A.

The category of general hypersequent calculi can now be defined.
If s1 . . . sn � s′

1 . . . s′
m is a general sequent over C and f : C → C′ is a signature

morphism, then f̂ (s1 . . . sn � s′
1 . . . s′

m) is, by definition, the general sequent s̄1 . . . s̄n �
s̄′

1 . . . s̄′
m over C′ where, for every s ∈ L(C) ∪X , s̄ is f̂ (s), if s ∈ L(C), and s otherwise.

This can be naturally extended to hypersequents:

f̂ (s1 . . . sn) = s̃1 . . . s̃n

where, for every s ∈ GSeq(C) ∪H, s̃ is f̂ (s), if s ∈ GSeq(C), and s otherwise. It is clear
that f̂ (h) is a general hypersequent over C′ provided that h is a general hypersequent
over C.
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Definition 7.7 The category GHC of general hypersequent calculi is the category whose
objects are general hypersequent calculi. A morphism f : 〈C,R〉 → 〈C′,R′〉 in GHC
is a morphism f : C → C′ in Sig such that, for every r = 〈{h1, . . . , hn}, h〉 in R, it is
verified that f̂ (h) is derivable in 〈C′,R′〉 from {f̂ (h1), . . . , f̂ (hn)}. The composition of
morphisms and the identity morphism in GHC is defined as in Sig.

It should be clear that all the previous definitions and results on (constrained and un-
constrained) fibring of chcs, translation of derivations and preservation theorems can be
reproduced in the framework of general hypersequent calculi. We left the details to the
interested reader.

8 Hypersequent Calculi and Hypertranslations

In [8], the notion of meta-fibring based on meta-translations was proposed. Within this
framework, designed to deal with sequent calculi, every morphism f (called meta-
translation) in the category of sequent calculi has the following property: every (formal)
sequent rule of the form

(r)
s1 . . . sn

s

is preserved by f . By interpreting a sequent rule as above as a meta-property of the logic
associated to the given calculus, a morphism f can be, therefore, seen as a translation
between logics which preserves all the meta-properties as above. This was the startpoint
of [8], additionally developed in [6], where meta-translations were called contextual trans-
lations. In [3], the notion of meta-translation was also used to analyze the combination of
the logics of (classical) conjunction and disjunction.

The main difference between meta-translations and usual translations is that the latter
just preserve simple metaproperties of the logic of the form Γ 
 ϕ, while the former pre-
serves logical combinations of them described by sequent rules as above. As argued in [6],
contextual translations refine the usual concept of translation between logics, helping to
analyze the complex question of how a logic should be translated into another one as well
as the question of how a logic can be extended faithfully. As it was proved recently, the
simpler notion of conservative translation was shown not to be informative enough, since
any two reasonable deductive systems can be conservatively translated into each other
(cf. [14]). This is not obviously the case for meta-translations: in order to be contextu-
ally translatable, the target logic must satisfy at least all the structural rules satisfied by
the source logic (see [6]). This is why the inclusion morphism between the sequent cal-
culi INT for intuitionistic propositional logic and CPL, the sequent calculus for classical
propositional logic, is a meta-translation and so INT can be considered a “good” sublogic
of CPL, since every meta-property of the former is enjoyed by the latter (cf. [6]).

But things are not so simple. As it is well-known, Gödel was the first to observe
(cf. [13]) that, unlike to what happens in classical logic, intuitionistic propositional logic
has the disjunction property, namely:

(DP) If (α ∨ β) is a theorem, then α is a theorem or β is a theorem.
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It is easy to see that (DP) cannot be expressed as a metaproperty in the language of (for-
mal) sequents introduced in [8]. In fact, the metaproperty (DP) has the form


 α ∨ β


 α or 
 β

which lies outside the scope of the language of sequent rules of the form (r). In this
perspective, INT could not be considered such a good sublogic of CPL since the former
satisfies the metaproperty (DP) which is not satisfied by the latter. This distinction can be
made precise within the framework of hypersequents.

Recall the notion of morphism in the category CHC of chcs given in Definition 2.9, as
well as the definition of morphism in the category GHC of ghcs given in Definition 7.7.
In both cases, every (formal) hypersequent rule of the form

(
r ′) h1 . . . hn

h

is preserved by such a morphisms. As it was done with sequents, an hypersequent rule
as (r ′) could be seen as a meta-property of the logic associated to the given calculus, but
written in a richer (meta)language which allows expressing metaproperties such as (DP).
In fact, (DP) can be represented by the following hypersequent rule:

(
DP′) � ξ1 ∨ ξ2

� ξ1 | � ξ2
.

By Definition 2.9 or 7.7, a morphism f will force the target logic to satisfy the following
metaproperty:

(
DP′) � ϕ(ξ1, ξ2)

� ξ1 | � ξ2

where ϕ(ξ1, ξ2) is the formula associated by f to the disjunction operator ∨, and so
f̂ (ξ1 ∨ ξ2) = ϕ(ξ1, ξ2). In particular, if f is the inclusion morphism, the rule (DP) will
be satisfied by the target logic, since in this particular case we have that f̂ (ξ1 ∨ ξ2) =
ξ1 ∨ ξ2. In other words, if intuitionistic propositional logic (presented as an hypersequent
calculus) is extended through an inclusion morphisms of hypersequent calculi, the target
calculus must also satisfy the disjunction property. This justify to call the morphisms of
hypersequent calculus as hypertranslations.

From the above discussion, we believe that the present framework of formal hyperse-
quent calculi can throw some light on the subject of translations between logics and its
significance.

9 Concluding Remarks

The present paper generalizes in a natural way the formal treatment of sequent calculi and
their fibring introduced in [8]. Additionally, some preservation features were analyzed. Fi-
nally, the relevance of this approach concerning the theory of translations between logics
was stressed.

As observed in Remark 2.5, we propose here an intensional approach to inference
rules, in contrast with the traditional, extensional approach to inference rules. Being so,
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a single linguistic object represents infinite concrete rules which are obtained by instanti-
ation of their metavariables, that is, variables in the metalanguage. The advantage of using
formal variables instead of informal metavariables is crucial in the context of combining
logic systems: in our framework, the rules are prepared to be combined, being ready to
accept new connectives by means of substitutions over the language resulting from the
combination procedure.

Several other questions remain open, and deserve future research. The use of hyperse-
quents instead of sequents opens interesting possibilities to the study of how a logic can
be constructed (or deconstructed) from (into) its fragments, along the lines of the stud-
ies initiated in [8]. The preservation by fibring of some meta-properties of hypersequent
calculi (interpolation, for instance) should also be addressed.
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