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Preface

These two volumes gather together the tributes of a distinguished group of colleagues and
friends in honor of Professor Jean-Yves Beziau on his fiftieth birthday.

The articles in each of the two volumes (of which this is the first) fall, broadly speaking,
into four categories:

1. those concerned with universal logic,

2. those concerned with hexagonal and other geometrical diagrams of opposition,
3. those concerned with paraconsistency, and

4. current work not directly connected to the work of Jean-Yves Beziau.

With these contributed papers, we want to record our gratitude for the intellectual and
organizational work of Jean-Yves in uncovering a golden tradition of logical thought, and
his constant encouragement to all of us to insure that tradition will continue and flourish.
Many thanks, Jean-Yves. Our heartfelt thanks on this your fiftieth birthday.

With the possible exception of the last category, there are three subdivisions of univer-
sal logic as conceived by Jean-Yves Beziau. In order to understand this project, we can
do no better than to recall the way in which universal logic was compactly described by
Beziau in the preface to what is probably the defining collection on the subject,! and to
expand upon it, briefly:

(i) [Beyond particular Logical Systems] “Universal logic is a general study of logical
structures. The idea is to go beyond particular logical systems to clarify fundamental
concepts of logic and to construct general proofs.” (p. v)

(i) [Comparison of Logics] “Comparison of logics is a central feature of universal
logic.” (p. v)

(iii) [Abstraction and the central notion of Consequence] “But the abstraction rise is
not necessarily progressive, there are also some radical jumps into abstraction. In
logic we find such jumps in the work of Paul Hertz on Satzsysteme (Part 1), and
of Alfred Tarski on the notion of a consequence operator (Part 3). What is primary
in these theories are not the notions of logical operators or logical constants (con-
nectives and quantifiers), but a more fundamental notion: a relation of consequence
defined on undetermined abstract objects that can be propositions of any science, but
also data, acts, events.” (p. vi)

1Beziau [2].
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(iv) [Beyond Syntax and Semantics] “In universal logic, consequence is the cen-
tral concept. But this consequence relation is neither syntactical (proof-theoretical),
nor semantical (model-theoretical). We are beyond the dichotomy syntax/semantics
(proof theory/model theory.” (p. vi)

There are of course other themes that are characteristic of Universal Logic, but it seems
evident to me that the first observation—(i) [Beyond particular Logical Systems]—
indicates clearly that universal logic does not advocate a unique logical system that is
the one correct, most expressive, accurate, and useful logical structure. Universal logic
includes in its domain a host of logical structures in all their variety. But universal logic is
not simply a catalogue of all advocated or imagined logical structures, all logical possibil-
ities, as it would have all the utility of a telephone book that is useful for certain problems,
but cognitively dumb.

It is the second observation—(ii) [Comparison of Logics]—which adds intellectual
content to the project. Comparison is indeed central to universal logic, but not compar-
isons of a vapid kind. What is intended are comparisons that not only note the difference
between logical structures, but explanations of why there are those differences in a way
that reveal their different logical character. That is, the second observation suggests that
not only are comparisons offered, but that there may be many different ways of order-
ing those logics, and one cannot take for granted that those orderings or comparisons are
coherent when taken together. This kind of issue is nicely illustrated when we think of
a paper now commonly referred to as “Beziau’s translation paradox”.> Simply put, two
logical systems K (classical propositional logic), and K /2 are described. Two orderings
or relations are proved to hold: that K is an extension of K /2 and also that there is a faith-
ful translation of K into K /2. So there are two orderings. The first seems to indicate that
K is clearly the stronger logic, yet the second result seems to say otherwise (that there is
within K /2 a faithful translation of classical propositional logic). Each of the two order-
ings seems to measure the strength of one logic over another. According then to Beziau’s
concept of universal logic, comparisons are a central task, but it is also a task of universal
logic to figure out what to do when the orderings seem to go in different directions.

Beziau has suggested that it is like the so-called Galilean “paradox”, which notes that
there are more square natural numbers than there are natural numbers, and also notes that
those two collections are evenly matched. It is not that Galileo’s solution is recommended
for the Beziau example. That is not a possible way out, since Galileo thought that, in the
case of infinite collections, the notion of “is larger than” just doesn’t apply. The intended
similarity, as we see it, is that in both cases there are two ways of explaining the notion
of one collection having more members than another, and one logic being more powerful
than another. The two ways give opposing verdicts, and the resolution of this situation,
Beziau maintains, is a task that lies squarely within the province of universal logic.

We mentioned that the study of Hexagonal logics of opposition falls squarely within the
province of universal logic, for they provide a good example of finite logical systems, with
a specified particular implication relation between their sentences (taken pairwise). In fact
there is a growing literature which considers consequence relations on finite geometrical
arrays of different dimension. All belong comfortably within the project that is universal
logic.

2Beziau [1].
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We also mentioned that paraconsistent logics are included in the program. That should
be obvious if one considers the various consequence relations to be found in that branch of
logic. Also we need to mention the beautiful studies of Dov Gabbay in which he proposed
the study of restrictive access logics as an alternative to paraconsistent logics that is an
extension of classical logic.

These restrictive access logics can be described by using a substructural consequence
relation, where there is a modification of the Gentzen structural conditions on implication.
It then becomes an interesting problem to see what features the logical operators have will
have as a consequence.* The examples of paraconsistent and restrictive logics lie well
within the province of present day logic.

In contrast, what is interesting and novel is that Beziau’s observation’s in (iv) [Beyond
Syntax and Semantics] permits the extension of the program beyond the more tradi-
tional range of contemporary logical systems. As he stated it, not only can we have the
notion of consequence for scientific propositions, and non-propositional, non-sentential
objects including, data, acts, and events, but we do now add pictures (perhaps mathemat-
ical diagrams), and even the epistemic notion of states of belief for which consequence
relations exist, and the possibility of logical operators acting on pictures as well as states
of belief. We are concerned with consequence relations that are beyond the semantical or
proof-theoretical.

The case for a consequence relation between pictures has recently been forcefully
made by Jan Westerhoff. Here, compactly, is the claim:

“I will describe an implication relation between pictures. It is then possible to give
precise definitions of conjunctions, disjunctions, negations, etc. of pictures. It will turn out
that these logical operations are closely related to, or even identical with basic cognitive
relations we naturally employ when thinking about pictures.”

This example with its particular consequence relation, and the pictures it relates, is an
extension well beyond the usual restriction of logic to syntax and semantics. It illustrates
the broad implications of Beziau’s observations in (iv) and the fertility of the project of
universal logic. It is not business as usual.

Finally we will briefly describe another case due to Peter Gérdenfors,® who developed
a logic of propositions upon the basis of a theory about belief revision. His results can be
recast in such a way that they also follow as a case where he defines propositions as special
kinds of functions, and also defines a special relation among those functions that turns
out to be a consequence relation. The result is fascinating: the conjunction of functions
turns out to be the functional composition of functions, and Gérdenfors’ special relation
among the functions is a consequence relation provided that functional composition is
commutative and idempotent.

More exactly, (1) let S be a set of states of belief of some person. (2) Let P be
a set of functions from § to § (called propositions) which is closed under functional
composition. (3) For any members f1, f2,..., f, and g in P, let (G) be the condition

‘D.M. Gabbay and A. Hunter [4].
“Private communication from D. Gabbay, 2005.

SWesterhoff, J. [6]. The implication relation proposed for pictures is similar to one that Corcoran [3]
proposed for propositions, as noted by Westerhoff.

6Girdenfors [5].
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that
i, f2, .-, fu=>g ifandonlyif gfifa...fu=fif2---Jfa

(the concatenation of two functions here indicates their functional composition).

In particular, for any two propositions (functions) f and g, f implies g (f = g) if and
only if gf = f. Itis easy to prove that the relation (G) is a consequence condition if and
only if functional composition is commutative and idempotent. The logic of these propo-
sitions has been shown by Girdenfors to be Intuitionistic, and his consequence relation
(G) is clearly epistemic. Again, it is not logic as usual, but it is just one more case of the
fruitfulness of the ideas that the project of universal logic embodies.
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Ibn Sina’s Two-Partite Versus Nine-Partite
Logicography

Musa Akrami

Abstract A tradition of writing and teaching logic came into existence in Islamic world
on the basis of Aristotle’s treatises both on logic and on topics related to logic, the most
apparent manifestation of which was to represent logic in the form of a nine-partite sys-
tem of logicography (according to eight treatises of Aristotle and Porphyry’s Isagoge).
Ibn Sina, as the most distinguished logician of the Islamic world, could combine both
Aristotelian and Stoic legacy in logic with his own critical reflections on logic, first phi-
losophy, and the relation between these two disciplines. Accordingly, he, as the most
voluminous author in the field of logic, has presented both many books in the framework
of Aristotle’s work on logic and some different books, the most important of which is
al-Isharat wat-Tanbthat: Mantiq (Remarks and Admonitions: Logic).

In this book, Ibn Sina presents his early project in textbooks of logic according to
his own conception of logic in its definition, relation with first philosophy, metaphysical
foundations, tasks, topics or subject matters, and the appropriate structure of textbooks to
manifest logic as it is or as it must be. Accordingly, Isharat became the manifestation of
representing logic in an important non-Aristotelian manner: a manner that has been called
two-partite system of logicography, with prevalence particularly in Eastern districts of the
Islamic world.

In this paper, we will speak about Ibn Stna’s innovations and achievements in logic as
well as their advantages, all relying on some points taken from the history of logic.

Mathematics Subject Classification Primary 01A30 - Secondary 03A05

Keywords Aristotelian logic - Nine-partite logic - Ibn Sina’s innovations in logic -
Relation of logic and metaphysics - Two-partite logic

1 Introduction

Aristotle’s books, in particular those on logic, were translated from Greek and/or Syriac
into Arabic during the great movement of translation in the Islamic world.

Six books were accepted as related directly to logic. Two other books and a book
written by Porphyry, on the basis of Aristotle writings, were added to the first six books
so that the number of Aristotelian books on logic came to nine. Early Muslim logicians
and philosophers received and accepted these nine books as the basis of both writing and
teaching logic as an important tradition or style of logicography.

Ibn Sina adopted this style in his early works while he was taking a critical attitude
towards the content and structure of logic in received tradition. He could make changes

© Springer International Publishing Switzerland 2015 1
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both in the content and in the structure of logicography on the basis of some justifications,
so that a two-partite style of logicography was brought out, with some advantages, along-
side the traditional style. A great number of logicians, particularly in Western and Persian
districts, adopted two-partite style, though there have been other logicians up to now who
have made use of either nine-partite system or a combination of both systems.

Various justifications, from metaphysical to educational ones, have been set forth for
the two-partite style of logicography. We will try to give a historical report as well as both
logical and metaphysical foundations of Ibn Sina’s against orthodox Aristotelian tradition
in the Islamic world.

2 Aristotle’s Books on Logic

Aristotle’s Organon, having been received such a name in Byzantine Era, consists of 6
treatises: (i) Categories, (ii) On Interpretation, (iii) Prior Analytics, (iv) Posterior Analyt-
ics, (v) Topics, and (vi) Sophistical Refutations.

While Alexander of Aphrodisias (fl. 200 AD), the Peripatetic philosopher and the most
leading commentator on the Aristotle’s works, had not regarded the treatises Poetics and
Rhetoric among Aristotle’s writings on logic, Neoplatonist philosophers such as Ammo-
nius Hermiae (c. 440—c. 520 AD) considered them as two books concerning logic. Ac-
cordingly, the number of Aristotle’s books on logic was amounted to eight and included
(vii) Poetics and (viii) Rhetoric.

Muslim logicians received such a legacy in logic and logicography with 8 parts. Thus,
according to Farabi, logic has 8 parts, as Ibn Nadim, in a section concerning the parts and
order of Aristotle’s books on logic, speaks of 8 books (with their names) (Ibn Nadim [7],
pp. 453-454).

These treatises were translated form Greek and Syriac into Arabic by translators such
as Hunayn Ibn Ishaq, Ishaq Ibn Hunayn, Yahyalbn ‘Udayy, Abu Bishr Matta Ibn Yinus
(Ibn Nadim [7], 454-456).

The Neoplatonist philosopher Porphyry of Tyre (c. 234—c. 305), gathering some mat-
ters scattered in Aristotle works on logic (mainly from Demonstration and Dialectic),
wrote an “introduction” to philosophy and logic that was called Isagoge (= Introduction)
by him. Its Latin translation was the standard textbook on logic throughout the Middle
Ages (Barnes [2], ix). This book was translated into Arabic by Ayyiib Ibn Qasim Riqqt
under the title Isagoge fi al-Madkhal 1la al-Kutub al-Mantigtyyah (Ibn Nadim [7], 445
and 462). Muslim logicians added Porphyry’s Isagoge to the eight Aristotle’s treatises,
so that the number of the books related to Aristotelian books on logic, rooted directly in
Aristotle’s legacy, has reached nine and included (ix) Isagoge. Thus nine-part/nine-partite
logic, with 9 books listed above as its corpus, was accepted among Muslims as standard
corpus of logic and logicography.

3 Logic in Ibn Sina’s Shifa (= Healing)

In logic, Ibn Sina has made use of both Aristotle’s and Stoics’ legacy. Moreover, he has
some contemplations, commentaries, and innovations (both in the contents and structures)
of his own.
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Ibn S1na has written about 15 treatises, the most important of which are

. ash-Shifa’—al-Mantiq, al-Madkhal (Healing: Logic, Isagoge),

. ash-Shifa’—al-Mantiq, al-Qiyas (Healing: Logic, On the Syllogism),

. ash-Shifa’—al-Mantiq, al-Burhan (Healing: Logic, On Demonstration),

. an-Najat—al-Mantiq (Deliverance: Logic),

. Daneshname ‘Alayr—Mantiq (‘Alayr Encyclopedia, Logic),

. al-Isharat wat-Tanbihat—Mantiq (Remarks and Admonitions: Logic), and
. Mantiq al-Mashrigiyyin (the Logic of the Orientals).

~NON R W=

One may find in the order of the above books a development of logicography from a
system based on the nine books listed above to the two-partite logicography style in which
there is a structural evolution in presenting logic.

It must be noted that there are eight features in Muslims’ scientology, called “eight
headlines”, that are important in discussing the characteristics of a science and its dif-
ferences with other sciences. One of the eight headlines is “order of the sections”. This
feature relates to the structure of the matter presented as the corpus of a science. Ac-
cordingly, any change in a traditional structure of a science may be seen as an innova-
tion.

In Shifa, as a free representation and commentary of the nine-partite logic of Aristotle,
Ibn Sina introduces logic in some “Techniques”, each having some “Articles” with some
“Chapters”.

e Technique 1, the “Introduction” (Madkhal/lsagoge), contains 3 articles as follows:

— Article 1, with 9 chapters, concerning discussions about sciences and logic, useful-
ness of logic, the subject matter of logic, definition of a simple word and a compos-
ite word, the essential and the accidental, essence, the types of the universal simple
word, and genus;

— Article 2, with 14 chapters, concerning relations of genuses, the natural and the ra-
tional and the logical, and common accident;

— Article 3, with 4 chapters, concerning the similarities and differences between the
five universals.

e Technique 2. This section, under the title “categories” (= magiilat), contains 7 articles
as follows:

— Article 1, with 6 chapters, concerning the purpose of the categories, relations be-
tween the different words, accident, and both accident and substance regarding two
different aspects;

— Article 2, with 5 chapters, concerning the kind and the basis of division of the uni-
versal, and the number of the categories;

— Article 3, with 4 chapters, concerning the first, second and third substances, universal
and particular substances, and quantity;

— Article 4, with 5 chapters, concerning quantity in accident, the properties of the quan-
tity, and study of correlation (= muzaf);

— Article 5, with 6 chapters, concerning quality and its types, passitivities;

— Article 6, with 14 chapters, concerning the types of the forth genus of quality, acci-
dents of quality, criticisms, where (or place), when (of time), and other categories;

— Article 7, with 4 chapters, concerning opposites, criticisms on the oppositions, and
contraries.
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e Technique 3. This technique, “On Interpretation”, contains 2 articles as follows:

— Article 1, with 10 chapters, concerning the knowledge of relevance between the af-
fairs and the conceptions, definition of the simple words and the composite words,
study of noun, word, statement, definition of a proposition, definitive discourse, the
First indivisible, the types of the quantified/determinate propositions, on the truth
and falsity of the quantified/determinate propositions, and contradiction;

— Article 2, with 14 chapters, concerning dyadic and triadic propositions, on the valid-
ity of these relations between quantified contradictories, specific propositions, oppo-
sition between the affirmative and negative propositions.

e Technique 4. This section, under the title “syllogism” (= giyas), contains 9 articles as
follows:

— Article 1, with 7 chapters, concerning the form of the syllogism, logic as a tool
of philosophical sciences, on affirmation and negation, necessity and contingency
and impossibility, contradictions between the premises, general absolute syllogism,
criticisms;

— Article 2, with 14 chapters, concerning conversion of premises, conversion of the
absolutes, conversion of the necessaries and the contingents, and conjunctive syllo-
gisms and their three forms;

— Article 3, with 5 chapters, concerning complex syllogisms, and contingent universal
premise and its conversion;

— Article 4, with 6 chapters, concerning possible syllogisms of the first form, complex
syllogisms of the first form, possible syllogisms of the second form, complex syllo-
gisms of the second form, and possible simple and complex syllogisms of the third
form;

— Article 5, with 5 chapters, concerning conditional syllogisms, disconjunctive condi-
tionals, simple and singular concepts in the conditionals, and the negative universal
in the conditionals; and composite conditional combinations, universal and particu-
lar;

— Article 6, with 6 chapters, concerning syllogisms made by conjunctive conditional
in three forms, syllogisms made by conjunctive and disconjunctive, and syllogisms
made by conditional categorical in three forms;

— Article 7, with 2 chapters, concerning correlation of conjunctive conditionals, the
disconjunctive conditional premises and opposition among some of them;

— Article 8, with 3 chapters, concerning the definition of exceptive syllogism and its
types, and syllogism per impossible;

— Article 9, with 24 chapters, concerning the syllogism that its meaning is not com-
plete unless being universal and affirmative, analysis of the syllogisms, situations
preventing the analysis according to the form of the syllogism and the forms of the
premises, induction, true premises implying true conclusion, demonstration in circle,
conversion of syllogism, syllogisms made by opposing premises, petition of princi-
ple, conversion of the conclusions, on induction, and on analogy.

e Technique 5. This section, under the title “demonstration” (= burhan), contains 4 arti-
cles as follows:

— Article 1, with 12 chapters, concerning the place of the book “demonstration”, foun-
dations of deductions, from the knowns to the unknowns, certain knowledge, the
validity of the premises of the demonstration;
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— Article 2, with 10 chapters, concerning the foundations of demonstration and their
universality and necessity, essential predicates, subject matters of the sciences, dif-
ferences and similarities of the sciences, and relations of the premises of a demon-
stration;

— Article 3, with 9 chapters, concerning the difference of mathematical and nonmath-
ematical sciences with dialectic, universal affirmative demonstration, difference and
similarities of the sciences in principles and subject matters;

— Article 4, with 10 chapters, concerning “definition”, relation of definition to demon-
stration, and inclusion of causes as middle terms of the demonstrations.

e Technique 6. This section, under the title “dialectic” (= jadal), contains 7 articles as
follows:

— Article 1, with 10 chapters, concerning the knowledge of dialectical syllogism and
its usefulness, the reason for its name, its definition, distinguishing dialectical syllo-
gisms, the parts of dialectical syllogism, and generally accepted premises in dialec-
tic;

— Article 2, with 6 chapters, concerning the position of proof and falsification on the
basis of the position itself or external affairs;

— Article 3, with 4 chapters, concerning genus;

— Article 4, with 3 chapters, concerning the property of dialectical syllogism and ap-
plying common positions in the property;

— Article 5, with 5 chapters, concerning the first conditions for delimitation and defi-
nition, proving the definition and falsifying the property;

— Article 6, with 1 chapter, concerning identity, otherness;

— Article 7, with 4 chapters, concerning the quests of the one who asks of syllogism
and induction.

4 Logic in Ibn Sina’s al-Isharat wat-Tanbihat (= Remarks and
Admonitions)

If we agree that it is possible to distinguish two periods of Ibn Sina’s writings, in particular
on logic, we should confirm that al-Isharat wat-Tanbihat (= Remarks and Admonitions)
is his most important book belonging to the second period, although no one can give an
exact date for writing of this book. While, as we said, logic in Shifa had been presented
according to Aristotelian tradition, Isharat manifests the author’s innovations in both di-
vision of logic and its topics. Ibn Sina briefly presents his own views in some sections
under the title “Isharat” (= Remarks), while he gives some critical points concerning the
views of other thinkers in sections called “Tanbihat” (= Admonitions).

Ibn Sina’s al-Isharat wat-Tanbihat (= Remarks and Admonitions) has four parts:
Logic, Physics, Metaphysics, and Sufism.

The book on logic, being the first book in the order, consists of 10 sections called
“way/rightway/method” (nahj). We write its contents according to its English translation
(Ibn Sina [12], pp. viii—xi), accepting the translator’s word for “nah;j” (i.e. “method”):

e The First Method, concerning the Purpose of Logic, containing 16 remarks on the
knowledge of the composite as requiring knowledge of single elements, the logi-
cian’s need for taking into consideration universal language, conception and assent,
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the logician’s need for knowing the principles of the explanatory phrase and proof,
the expression as a sign for the concept, the predicate, the essential, the acciden-
tal, the concomitant accidental, the separable accidental, the constitutive essential, the
non-constitutive concomitant, the non-concomitant accidental, the essential in another
sense, that which is stated as the answer to the question “what is it”, the various types
of that which is stated as the answer to the question, what is it?”’;

The Second Method, on the Five Simple Terms, the Definition and the Description
containing 8 remarks concerning that which is stated as the answer to the question
“what is it?” as “genus”, and that which is stated as the answer to the question “what is
it?” as “species”, the arrangement of genus and species, the difference, property and the
common accident, the description of the five [terms], definition, description, the types
of errors that occur in the identification of things by definition and description;

The Third Method, on Assertive Composition containing 10 remarks concerning the
types of propositions, affirmation and negation, singularity, indefiniteness and definite-
ness, the judgment of the indefinite proposition, the definiteness and indefiniteness of
conditional propositions, the composition of conditional propositions from predicative
ones, equipollence and positiveness, conditional propositions, the dispositions that ac-
company propositions, and that giving them specific judgments in definiteness and in
other cases, the conditions of propositions;

The Fourth Method, the Matters and Modes of Propositions containing 8 remarks
concerning the matters of the modes of propositions, and the difference between an
absolute and a necessary proposition, the mode of possibility, principles and conditions
for the modes, the determination of the universal affirmative in the modes, the determi-
nation of the universal negative in the modes, the determination of the two particular
propositions and the modes, the implication of modal propositions;

The Fifth Method, on the Contradiction and Conversion of Propositions, containing 5
remarks concerning the contradiction between absolute propositions, and the determi-
nation of the contradictory of absolute and concrete propositions, contradiction in the
remaining modal propositions, the conversion of absolute propositions, the conversion
of necessary propositions, the conversion of possible propositions;

The Sixth Method containing one remark concerning propositions, with respect to
those involving assent, and similar ones;

The Seventh Method, on the Beginning the Second Composition of Proof containing
7 remarks concerning the syllogism, induction and analogy, the syllogism, the conjunc-
tive syllogism, the various types of predicative conjunctive syllogisms, the first figure,
the second figure, and the third figure;

The Eighth Method, on Conditional Syllogisms, and on What Follows the Syllogism,
containing 4 remarks concerning conditional conjunctive syllogisms, the syllogism of
equals, repetitive conditional syllogisms, the syllogism by contradiction;

The Ninth Method, in which a Brief Explication of the Demonstrative Science is
given, containing 6 remarks concerning the various types of syllogisms, with respect
to their matters and their production of assent, the syllogisms and the demonstrative
inquiries, the subjects, principles, questions [and transference of demonstrations] in the
sciences, the correspondence of the sciences, causal demonstration and factual demon-
stration, the questions [in the sciences];

The Tenth Method, On Fallacious Syllogisms.
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5 A Comparison Between Logic in Shifa and Logic in Isharat

One may regard the first method of Isharat as equivalent to the “Introduction” (= al-
Madkhal or Isagoge) of logic in Shifa. Of course, some topics have been explained in
Shifa in detail (such as the Five Universals), while there is not enough place for the words,
the essential, and the accidental. These topics have been broadly studied in Isharat.

In Shifa, Ibn Sina pays attention to the fact that there are some topics in the foundation
of logic that are not parts of logic but they are parts of first philosophy. We emphasize
here on first philosophy as the study of being qua being or, broadly speaking, the study
of the essences as they exist in the mind or external to the mind. There have been three
different attitudes towards the relation between logic and philosophy: Different followers
of Aristotelian school of logic believed that logic is a tool for philosophy; the Stoics held
that logic is a part of philosophy; and, according to Platonists, logic is a part of philosophy
and, at the same time, a tool for philosophy.

He, in the Introduction (= Madkhalllsagoge), speaks of the precursor’s habit or prac-
tice to make long the foundations and preliminaries of logic with some topics that do not
belong to logic but to first philosophy. He also speaks of another book (other than Shifa,
1.e. Falsafat ol-Mashrighiyyah/Philosophy of the Orientals/Easterners’ Philosophy) of his
own having been written in which, contrary to his sympathetics (i.e. Peripatetic philoso-
phers), the philosophical problems have been brought forth for discussion in accordance
with the nature of the matter, avoiding the Peripatetics’ method (Ibn Sina [9], Shifa, al-
Madkhal, 9-12). In another place, he insists that he has avoided mentioning such prob-
lems, bringing them in their own appropriate place (Ibn Sina [13], Burhan (= Demon-
stration), p. 10). Ibn Sina has no commitment throughout the work to this view, so that
he studies the categories in the techniques on logic. He goes on to say that he has an-
other book in which he has presented philosophy according to his own specific view. He
says explicitly that Shifa is more extensive and more sympathetic towards the Peripatetics
(ibid). He is aware of the difference between his own style and predecessors’ manners in
writing the books on philosophy and logic: he wants to postpone some discussions con-
cerning the universal affirmative proposition to the technique on syllogism according to
habit or custom, although it is better to be stated in the third technique.

Moreover, it must be emphasized that while Ibn Sina’s approach towards logic in Shifa
is material, he has a formal approach towards logic in Isharat.

Even in his Persian book under the title Daneshname ‘Alayt (= ‘Alayt Encyclopedia),
Ibn Sina has put the section on “Definition” before the section on “Propositions”, and his
discussions concerning Dialectic, Rhetoric, and Poetics are very short (similar to corre-
sponding discussions in Najat (= deliverance)).

6 Ibn Sina’s Reasons on Changing the Structure of Logic and
the Style of Logicography

One’s method in logicography is based on his/her definition of logic as AnsarT has said: “if
you know why you should read logic, then you would know how you should read logic”
(Ansart [1], p. 320). We mention here only some main reasons for choosing two-partite
logic and logicography.
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6.1 Dividing Knowledge into Conception and Assent

Following al-Farabi in his Uyiin ol-Masa’el, Ibn Sina proceeds by dividing knowledge
into two types: (i) conception (fasawwur), being the mere imaging or grasping of an
object without any judgment (the result of conception being called “concept”, with two
types, simple and composite), and (ii) assent (tasdiq), presupposing conception.

Such a division is useful for discussing the purpose of logic. One may find this division
even in Shifa. It must be said that if knowledge has two types, ignorance too has two
types, ignorance in relation to conception and ignorance in relation to assent. The purpose
of logic is to transfer from ignorance in one of the forms of conception and assent to
knowledge in one of those two forms (Burhan, p. 18).

Such an approach reaches its perfection in Isharat. It is in this work that Ibn Sina gives
appropriate names according to what is customary: “It is customary to call the thing by
means of which the sought concept is attained “an explanatory phrase”, which includes
definition, description, and what resembles them, and to call the thing by means of which
the sought assent is attained “proof”’, which includes syllogism, induction, and their like.”
(Isharat 1984, p. 49)

According to such a view, concept brings out of concept and assent out of assent.
This is the principal basis of two-part logicography, based on “definition” and “proof™ as
two types of thought. Ibn Sina’s Isagoge, and, indeed, Isagoge in the Islamic tradition of
logic, is indeed the introduction to the logic of definition, while the study of propositions
is introduction to the logic of proof.

6.2 Study of Categories as a Part of First Philosophy

Ibn Sina explicitly says in the Categories of Shifa that inclusion of the categories in logic
is not correct since they belong to (i) first philosophy according to the quality and ex-
istence, (ii) natural philosophy or physics (as neighbor of first philosophy) according to
their establishment in human mind, and (iii) lexicography according to the words used to
refer to them (Ibn Sa [10], Shifa: al-Magilat, 5-8).

In Isharat, Ibn S1na argues that though the First Teacher (i.e. Aristotle) opens his teach-
ings with ten categories, they are not among the subject matter of logic. Indeed, they are
first intelligibles, while the subject matter of logic is second (logical) intelligibles.

Ibn Sina says that the subject matter of logic are mental subjects, having no external
correspondents, so that they are second intelligibles and predicates without any existence
for them in the external world.

Logic, therefore, pays no attention to individuals (with external or mental existence)
and the essences of the existents. It concerns the second (logical) intelligibles and mental
concepts with the names such as predicates, subjects, universals, and particulars. Logic,
of course, speaks of some meanings of the words, without any necessity of studying such
matters as its task (Ibn Sina, Shifa: Theology, pp. 1011, Introduction, pp. 22-23). He even
insists that speaking of categories in logic is to be considered a mistake (Ibn Stna [11],
Isharat 1971, Part 1, p. 43).

It must be said that Tus1, in his commentary on Isharat, takes the nine-partite system
in spite of his referring to the views of the moderns (i.e. logicians such as Ibn Sina, in
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opposition to Aristotle as the precursor) in not regarding the specification of the natures
of the universals and study of the objectivity of the existents (either substance or accident)
as belonging to logic.

Yet, he insists that the art of definition and obtaining the premises of deductions is not
possible without having conception of the categories and distinguishing the categories
from each other. He is speaking as if the founder of the logic (i.e. Aristotle) himself has
determined the place of the categories (as represented in the treatise Categories) to be
the first book of the logic and logicography. Moreover, he emphasizes on the usefulness
of knowing the categories in giving examples to make the explanation of a problem easy
(Tusi [16], p. 42).

Any way, it is evident that Tusd, in spite of accepting the nine-partite style of logicog-
raphy, agrees that categories are among metaphysical foundations of logic (i.e. they are
not genuine logical problems), though so important that must be put at the beginning of
logic and logicography. Categories, as first intelligibles or natural universals as the higher
genuses and accidents of the existents, are not the problems of logic but some of the foun-
dations for it. Their entrance into logic depends upon the view of a logician concerning
the inclusion of them in first philosophy or in any introduction to logic.

While following the precursors’ method of logicography in Shifa, Ibn Sina discusses
substances and accidents in the “Theology” (i.e. the section concerning first philosophy or
metaphysics) of Shifa, too. It is in this book that he speaks explicitly of the fact that dis-
cussing such problems is not the task of the logician so that such undertaking for logicians
is a deviation in his/her due course.

Finally, we add the words of Ibn Khaldun, in justifying the method of the moderns
in eliminating the categories in their logicography: the logicians consider the categories
accidentally not essentially (cf. Ibn Khaldun [6], vol. 2, pp. 1024-1028).

7 Two-Partite Logic Versus Nine-Partite Logic in the Islamic
Tradition

The nine-partite logic and logicography, the corpus of which consists of the eight trea-
tises of Aristotle and Porphyry’s Isagoge, became an important tradition in writing and
teaching logic in the Islamic word. It was adopted by Farabi, Ibn Sina (before Isharat),
Bahmanyar (Ibn S1na’s disciple), Ibn Rushd, Ikhvan os-Safa, Tiisi, Qutb od-Din Shirazi,
Dashtaki, Ansari, and many other logicians as the principal tradition of Aristotelian logic
in the Islamic world. This is the very tradition that Rescher has called the School of
Baghdad (Rescher [15], p. 14).

Against such a tradition, the new approach towards the structure and contents of logic
was extensively welcomed particularly in the Eastern part of the Islamic world (e.g. Per-
sian world). The typical topics of the textbooks of logic, showing the style of lexicography
and the structure of the texts, may be introduced as follows:

A compendious knowledge of logic

Study of the words

Isagoge of the five universals (an introduction to the logic of definition)
Definition

Propositions (an introduction to the logic of argumentation)

AW =
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6. Syllogism (proof in general)
7. The five figures (i.e. demonstration, dialectic, sophistry, rhetoric, poetics)
8. Situation of sciences (logic of science and scientology)

Ibn Khaldun speaks of the new system of logicography attributing it to Fakhr Raz1 (Ibn
Khaldun [6], p. 492). It is evident that he is wrong in such an attribution. His report shows
the attitude of the famous theologians, philosophers, and logicians such as Razi.

In addition to Razi, the new system attracted Ghazali, Suhravardi, Urmawi, Khunj,
Abhari, Katebi, Qutb o-Ddin Razi, Allameh Helli, Taftazan1, and Mulla Sadra.

Three of the logicians belonging to such “moderns” have had celebrated place in es-
tablishing and transferring bipartite style of logicography:

(1) Afzal od-Din Khunjt (590-646). Khunjt has written some important famous books
such as “Kashf ol-Asrar an Qumiiz al-Afkar” (= Disclosing the Secrets of the Com-
plexities of Thoughts). According to Faramarz Qaramaleki, Fakhr Razi, with his crit-
ical commentary on Isharat (called Al-Enarat ft Sharh al-Isharat (= Clarifications
in Commentary on al-Isharat), one of the many commentaries on Isharat and com-
mentaries on commentaries on Isharat), is the leading intermediate between Ibn Sina
and Khunji. (Faramarz Qaramaleki 1373/1994, 46)

(i) Seraj od-Din Urmawi (594-682). Urmawi has a book, called Bayan ol-Haqq va
Lesan os-Sedq (= Expression of the Right and Language of the Truth), to give an
explanatory report of Khunji’s book. He has written a short book called Matale’
ol-Anvar (= Rising Place of the Lights).

(iii)) Najm od-Din Kateb1 Qazwini (600—675) has written some commentaries on Khunji’s
and Raz1’s books as well as some other books on logic including a very famous
textbook under the title Resdale-ye Shamstyyeh (= Solar Treatise ) that has been read
and taught for several centuries.

It is true that from the 7th (13th) century (after the Hejira, i.e. 13th century A.D.) onward
two-part system of logicography became dominant in Iranian schools as the manifestation
of the school in logic following Ibn Sina for which Nicholas Rescher chooses the name
“Eastern School” (following Ibn Stna himself in calling the book of his late career Mantiq
al-Mashrigiyyin (= Logic of the Orientals)) in opposition to “School of Baghdad” or
“Western School” with its nine-partite logic (Rescher [15], pp. 15-17). The school of
Baghdad has been founded by Abu Bishr Matta Ibn Yunus, the translator of Posterior
Analytics and the principal teacher of Farabi. Accordingly, Rescher writes:

Ibn Sina’s call to study logic from independent treatises rather than via the Aristotelian texts met
with complete success in Eastern Islam, where after the demise of the School of Baghdad, the
formal study of Aristotle’s logical writings came to an end. (This abandonment of Aristotle may
have been a requisite for the survival of Greek logic in Islam; a discipline that demanded study
of works of an alien philosopher could probably not have survived.) Only in Muslim Spain did
the tradition of Aristotelian studies of the School of Baghdad manage—for a time—to survive.
(Rescher [15], p. 16)

Mohammasd Taqt Daneshpazhith has reported that Vattier, the Latin translator of Ibn
Sina’s Najat in the 17th century, has spoken of the two systems of logicography
(Qaramaleki [5, p. 43]).

In recent years, some books on logic have been written in the framework of some
combination of both systems of logicography without significant insistence on the his-
tory of the development of logicography. Hasan Malekshaht [14], and Ahad Faramarz
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Qaramaleki [3-5] have paid specific attention to the differences of the two systems of
logicography.

8

Main Features and Advantages of Ibn Sina’s Two-Partite
Methodology in Logicography

One may sum up the main features of two-partite logicography as follows:

1.

It regards logic as an independent art or technique not as a tool of sciences.

2. On the basis of division of thought into two parts (i.e. conception and assent), logic

10.
11.

was divided into two parts: (i) logic of definition and (ii) logic of proof (of argument).

. Matters concerning science were eliminated from “demonstration” and were attached

to logic independently.

. The detailed discussion on the Five figures (i.e. demonstration, dialectic, sophistry,

rhetoric, and poetics) was eliminated, the elimination being justified on the basis
of two principal end of logic: (i) obtaining truth and (ii) avoiding error ([8], Najat,
Arabic, p. 93).

. There is no place for categories (as some parts of metaphysical foundations of Aris-

totelian logic) in such a logic because the foundations of a science as logic are not
among its problems (being, in fact, the problems of a higher order science). The prob-
lems of each science are the rules and essential accidents of the subject matter of that
science. According to Ibn Sina, the study of categories belongs to first philosophy.
Categories are absent from Ibn Sina’s an-Najat (= Deliverance) Uytin ol-Hekmah
(= Sources of the Sophia), and Mantiq al-Mashrigiyyin (= Logic of the Orientals).
Ghzalt too regards the study of categories as a part of theology (i.e. general theol-
ogy or first philosophy) in his Magasid ol-Falasefeh (= Aims of the Philosophers),
although he puts categories at the end of his Me’yar ol-1lm (= Criterion of the Knowl-
edge), a task that is followed by Razi in his Resdale-ye Kamaliyyeh (= the Perfection
Treatise). It is interesting to know that while Ibn Stna has written the logic section
of Shifa in accordance with the nine-partite system of logicography, he speaks of
categories in philosophy section of Shifa, too.

The place of “definition” has been changed from the section on “demonstration” and
“dialectic” in Shifa to a specific place before “propositions” or “interpretation” (as
a part of the “concepts”, after the Five Universals) in Isharat (in a more systematic
detailed and separated form).

Dialectics, Poetics and Rhetoric were eliminated. They found independence in com-
bination with demonstration and sophistry under the title of the “Five Figures”
(= Sena’at-e Khams) as material logic (the Five Figures either have been eliminated,
or have been studied at the end of the books on logic).

. Some new definitions of logical concepts and issues such as “essential”, “three propo-

99 <.

sitions”, “the quantified” and some others were represented.

There is an emphasis on the role of the words on the basis of the role of the language
as reflection of the mind.

“Definition” attained independence.

Scientology, being distinguished from formal logic, was presented as an appendix.
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On the basis of what was said, we may give a hint of some advantages of Ibn Sina’s

deviation from the tradition of the Aristotelians or the followers of the School of Baghdad
in their representation of both contents and structure of logic and related textbooks:

I
II
I

v

VI

Emphasis on Formal Identity of Logic

New Attitude Towards concepts of logic, particularly “Definition”, on the Basis of
New Foundations

Separation of Formal Logic from Material Logic: demonstration, dialectic, sophistry,
rhetoric, and poetics (as the five figures) are the material logic of the proof. Accord-
ingly, they must be separated from formal logic.

Separation of Logic from First Philosophy

While Ibn Sina, in some places of his books (in particular his early works), speaks of
logic as a tool of philosophy, he regards it as an independent discipline, though with
its role in movement from the known to the unknown.

Having good justification for readiness and fluency of both teaching and learning of
logic, on the basis of natural manner of thinking.
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Homotopical Categories of Logics

Peter Arndt

Abstract Categories of logics and translations usually come with a natural notion of
when a translation is an equivalence. The datum of a category with a distinguished class
of weak equivalences places one into the realm of abstract homotopy theory where no-
tions like homotopy (co)limits and derived functors become available. We analyze some
of these notions for categories of logics. We show that, while logics and flexible transla-
tions form a badly behaved category with only few (co)limits, they form a well behaved
homotopical category which has all homotopy (co)limits. We then outline several natural
questions and directions for further research suggested by a homotopy theoretical view-
point on categories of logics.

Keywords Logics - Categories - Higher categories - Abstract homotopy theory

Mathematics Subject Classification (2000) Primary 03B22 - Secondary 55U35

1 Introduction

In his opening lecture at Unilog 2010, Jean-Yves Béziau named the following as the main
questions of Universal Logic:

1. What is a logic?

2. What is a translation between logics?
3. When are two logics equivalent?

4. How to combine logics?

Lots of different answers to these questions have been proposed over time, with a
recent increase of activity spurred by the contests of the Unilog conference series.

The consideration of categories of logics is a way of evaluating and comparing such
answers. First, observe that answering questions 1 and 2 usually results in a category
whose objects are logics and whose morphisms are translations. One then gets tentative
answers to questions 3—two logics might be called equivalent if they are isomorphic in
that category—and 4—a combination of logics may be seen as the formation of a colimit
in this category, following [47]. However, these answers to questions 3 and 4 are rarely
satisfying.

To see this, let us place ourselves in the setting of Hilbert systems, i.e. formal languages
generated by some primitive connectives and variables and endowed with a consequence
relation. A strict translation is a map of the formal languages sending generating connec-
tives to generating connectives and preserving consequence, while a flexible translation

© Springer International Publishing Switzerland 2015 13
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may send generating connectives to more complex formulas (both are required to map
n-ary connectives to n-ary connectives).

Now for question 3 consider the two presentations of classical propositional logic
CPLy := (A,—|rules...) and CPLy := (A, —,V,— |rules...). Clearly, one would say
that both are presentations of “the same” logic, since the connectives V and — appearing
additionally in the second logic, are expressible, up to logical equivalence, by composi-
tions of A and —, and do not need to be present as primitive symbols. Indeed, the inclusion
of formal languages CPL; — CPL; has the property that it is conservative, i.e. inferences
hold in the target logic if and only if they hold in the domain logic, and that any formula
of the target logic is logically equivalent to one in the image. We will call a translation
with these properties a weak equivalence.

But there can be no isomorphism between these logics. There is no strict translation
at all from CPL, to CPLy, since it would have to map the binary connectives vV and —
to the only binary connective A of CPLj, but such a map cannot preserve consequence,
since the connectives satisfy different rules. We do have a flexible translation from CPL;
to CPL; which maps, for example, — v — to the derived formula —=(—(—) A =(—)). But
this cannot be part of an isomorphism since going back via the inclusion results in the
map CPL, — CPL, which sends — v — to —(—(—) A —=(—)) — the formulas are logically
equivalent, but not equal, and an the composition of an isomorphism with its inverse has
to give the identity.

Thus we found that a sensible notion of equivalence is an extra notion, and does not
emerge from the categorical structure.

For question 4 about combining logics, the answer that the combination of logics
should be a colimit is often a good one where it applies, but this is only the case for a
restricted class of diagrams of logics. Essentially, only colimits of diagrams of strict mor-
phisms exist and behave well.! This includes a lot of cases from practice, but it would be
even nicer to be able to combine logics along flexible morphisms.

Consider, for example, a modal extension of classical propositional logic, presented
by L :=(A,—,Vv,—,0, ¢ | rules...). It receives an inclusion of classical propositional
logic CPL := (A, —,V,— |rules...). Now we might be interested in what happens if
we make the underlying propositional logic of L intuitionistic by removing the law of
excluded middle from its rules. For example, we might ask whether properties like al-
gebraizability or the validity of a metatheorem of deduction will still hold and how to
construct a semantics for the new logic. Such questions have been amply addressed in the
theory of fibring of logics, so we could try to express our “intuitionistified” logic L™ as
a fibring, i.e. a pushout, of logics:

CPL—— L

"

IPL — [int

The idea is that we embed the classical propositional sublogic of L into intuitionistic logic
IPL along the double negation translation (the left vertical arrow), and glue the extra, not

I'See Example 2.8 for a colimit of flexible morphisms which does exist, but does not behave right.



Homotopical Categories of Logics 15

doubly negated, layer that intuitionistic logic has in comparison to CPL, to the modal
logic L while maintaining the place that was formerly occupied by CPL.

The problem is that this colimit does not exist in the category of Hilbert systems and
flexible translations, and indeed very few colimits exist there.

The conclusion that we draw from these observations is that it is better to regard ques-
tions 1, 2 and 3 as fundamental questions: We should first ask for notions of logic, trans-
lation and weak equivalence. Then we have a category with an additional structure, a dis-
tinguished class of morphisms given by the weak equivalences. As harmless as it looks,
this has vast implications: Such a pair consisting of a category and a class of morphisms,
also called a relative category, is all one needs, to do an abstract form of homotopy theory.

The usual categorical notions and constructions can now be accompanied with their
“derived” versions. For example, there is the notion of homotopy colimit: Usual colimits
do not need to preserve weak equivalences, i.e. given two weakly equivalent diagrams
their colimits need not be weakly equivalent. A homotopy colimit can roughly be thought
of as the best approximation of a colimit construction which preserves weak equivalences.
One could argue that, if one devises a logically meaningful construction of a new logic
from some given other logics, then one would like equivalent inputs to lead to equivalent
outputs and that thus the derived notions are the better ones. Maybe more importantly,
homotopy (co)limits can exist where (co)limits do not exist. Indeed, for Hilbert systems
all homotopy colimits do exist.

Another benefit from working with relative categories is this: Relative categories are
commonly regarded not as the important objects in themselves, but rather as presentations
of a so-called (oo, 1)-category. As an analogy, in group theory one can have different pre-
sentations by generators and relations of a group, and these can be useful for answering
different questions about the group, while the actual object of interest is still (the isomor-
phism class of) the group itself. Analogously there can be different relative categories
which are presentations of the same (oo, 1)-category, and when asking questions whose
answers are invariant under equivalence, there is no harm in switching to a better suited
presentation. There is a theory of (0o, 1)-categories, very much parallel to usual category
theory, where one studies such invariant properties and the (oo, 1)-categories of logics
that we consider here have much better properties in this realm, than in the usual category
theoretical world where they arose.

Overview of the Article. In this article, we explore a bit of the homotopy theoreti-
cal perspective on logics that we have hinted at. In Sect. 2, we review usual categories
of logics and pin down, what is the problem with categories of flexible morphisms. In
Sect. 3, we give a quick tour through some concepts of abstract homotopy theory to ex-
plain the setting in which we wish to study categories of logics. Here we can only serve
some rough ideas of a huge area, but we need very little of the full scope of abstract ho-
motopy theory and the next chapter—particularly Sect. 4.2—can be read with very few
prerequisites. The main ingredients that will be used from here are simplicial categories
and how they arise from 2-categories as well as the notion of equivalence of simplicial
categories.

Section 4 is the technical heart of the article, where we investigate categories of Tarski
style logics. We first introduce, in Sect. 4.1, the two different notions of homotopy equiv-
alence and weak equivalence and see how they relate differently in the strict and flexible
settings. We next, in Sect. 4.2, give a short preview on work to appear that addresses the
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so-called the hammock localization of the category of Hilbert systems. It is in this setting
that we can particularly well handle the combination of logics along flexible translations,
which we hinted at above. In particular, we get preservation results for homotopy colimits
parallel to those for fibring, which was what motivated our discussion of question 4. Our
treatment of this, however, uses a particular kind of presentation of an (oo, 1)-category,
which we felt was too much to expose here in detail.

Section 4.3 exploits the fact that the set of translations between two logics carries a nat-
ural equivalence relation: Two translations f, g: L — L’ can be called equivalent if for
every formula ¢ of L the images f(¢) and g(¢) are mutually derivable from each other
in L’. Equivalence relations are a special kind of groupoid and thus categories of logics
can be seen as 2-categories and come with a natural notion of equivalence, which under
mild hypotheses coincides with the ones of Sect. 4.1. The resulting (oo, 1)-categories,
which we call the 2-categorical localizations, are homotopy theoretically very simple;
their mapping spaces are homotopy discrete. This means that they are equivalent to the
quotient categories with respect to the above equivalence relations. These quotient cat-
egories have been studied by Mariano and Mendes in [41] and [42], where they show,
among other things, that the quotient category of congruential Hilbert systems is com-
plete and cocomplete. In Sect. 4.3.2, we show how these results of Mariano and Mendes,
can be cast into the language of (oo, 1)-categories, here embodied by categories enriched
in simplicial sets. On the one hand, this is because, in our view, the simplicial cate-
gories are the natural objects one would want to study, and that this boils down to the
study of their homotopy categories could be seen as merely a technical convenience. On
the other hand, this is to offer the reader an easy entry point to get acquainted with the
language—it is the language that will be needed for the more refined categories of logics
of Sect. 5.3.

It is in Sect. 4.3 that the main technical results of the article appear. These are: The-
orem 4.26 (crucially relying on work of Mariano and Mendes), which asserts that in the
world of (oo, 1)-categories the category of logics and flexible morphisms is a reflexive
subcategory of that of strict morphisms, Theorem 4.39, which asserts that the category of
logics and flexible morphisms has all homotopy limits (contrary to the 1-categorical case)
and the discussion of Sect. 4.3.3, which asserts the existence of all homotopy colimits. We
chose to construct homotopy limits in a pedestrian way to give a feeling of how one can
handle single logics homotopically, and to sketch a proof of the existence of homotopy
colimits by abstract results, to give a different sample of homotopy theoretical methods.

In the remaining Sect. 5, we gather questions and prospects for further developments
suggested by the homotopy theoretical viewpoint on logic.
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2 Categories of Logics

2.1 Signatures

Definition 2.1 A signature S is a sequence of sets (S,,n € N).

We think of the elements of S, as the generating n-ary connectives of a formal lan-
guage. We fix once and for all a set Var := {x,, | n € N} of variables and denote as usual
by Fm(S) the absolutely free algebra with signature S generated by Var. We have a de-
composition Fm(S) = ]_[n ey Fm(8)[n], where Fm(S)[n] denotes the set of formulas with
n free variables. We also denote by Fm(S)[x1, ..., x,] the set of formulas containing ex-
actly the variables x, ..., x,.

Definition 2.2 A strict morphism f: S — S’ of signatures is a sequence of maps
(fu: Sp— S,,neN).

A flexible morphism, or simply a morphism, f: S — S’ of signatures is a sequence of
maps (f,: Sy, — Fm(§8)[x1,...,x,],n € N).

Thus a strict morphism is an arity-preserving map sending generating connectives to
generating connectives while a flexible morphism can be seen as a map sending generating
connectives to derived connectives. A strict morphism can be seen as a flexible morphism
which happens to send generating connectives to generating connectives (where a gen-
erating connective ¢ € S, is seen as the formula c(x1, ..., x,) € Fm(S)[x1, ..., x,]), see
Definition 2.5.1.

A morphism f: S — §', either strict or flexible, induces a map f: Fm(S) — Fm(S")
which is inductively defined as usual.

Example 2.3 The usual double negation translation from the standard signature of clas-
sical propositional logic to the standard signature of intuitionistic logic is a flexible mor-
phism which is not strict as it sends, for example, the binary connective A (or (x; Ax2)) to
the derived connective (——(x1) A —=—(x3)). One can make the double negation translation
into a strict morphism, if one chooses to present intuitionistic logic with extra connectives
and axioms: To resolve, for example, the above obstacle to a strict translation, one could
add a binary connective A2 to the presentation of intuitionistic logic and add the axiom
(7 A8 x5) - (==(x]) A =—(x7)). Then a translation from classical logic could be
defined by sending A to AS1sS,

Definition 2.4 The category Sig*"® is the category whose objects are signatures and
whose morphisms are strict morphisms. The category Sig is the category whose objects
are signatures and whose morphisms are flexible morphisms.

We note that the category Sig*™® is equivalent to the category Set'' of sequences of
sets and morphisms, in particular it is complete and cocomplete.

Central to our main results in Sect. 4.3 is the following adjunction established by Mar-
iano and Mendes in [42].

Definition 2.5 ([42, Proposition 1.5, Mariano/Mendes])



18 P. Arndt

1. The functor i : Sigs"t — Sig is defined on objects by the identity and on morphisms
by associating to f = (fy)nen: S — S the flexible morphism i (f) with i (f),: S, —
Fm(S)[x1,...,x,], c—~ (fu(©)(x1, -0y Xn).

2. The functor Q: Sig — Sig®"'! is defined on objects by S — Q(S) where Q(S), :=
Fm(S)[xy, ..., x,] and by sending a flexible morphism f: § — §’, given by (f,: S, —
Fm(S")[x{,...,x,]), to the sequence of induced maps Fm(S)[x(,...,x,] —
Fm(S)[x1, ..., xn].

Theorem 2.6 ([42, Theorem 1.6, Mariano/Mendes]) The functor i is left adjoint to Q.

Proof The natural isomorphisms
Homgig (i(S), 8") = {(fn: S = Fm(S")[x1, ..., xn]),, o} = Homg,uiee (S, Q(S"))

follow straight from the definitions of the morphisms of Sig (resp., Sig*"'") and the func-
tors i and Q. O

The unit S — i (Q(S)) of the adjunction is given by the inclusions S, — Fm(S)[xy, ...,
Xnl, ¢ = c(x1,...,x,). The counit Q(i(S)) — S is the flexible morphism given by the
identity maps Fm(S)[x1, ..., x,] = Fm(S)[x1, ..., x,].

In fact, by [42, Theorem 1.12, Mariano/Mendes], the category Sig is the Kleisli cate-
gory of the above adjunction. Thus it is a category of free algebras and has much worse
categorical properties than Sig*°®, It is neither complete nor cocomplete. This is to be ex-
pected, as (co)limits of free algebras, formed within their (co)complete ambient category
of all algebras, are not usually free again.

Example 2.7 The category Sig has no terminal object. Indeed, a terminal signature would
have to have a generating connective of arity > 2, since if there were only generating
connectives of arities 0 and 1 the sets of n-ary formulas Fm(S)[x1, ..., x,] would be
empty and there could be no morphism from a signature with n-ary connectives. But
if ¢ is an n-ary connective, then Fm(S)[x1, ..., x2,—1] contains the two different for-
mulas c(c(x1, ..., Xn), Xn41s .-, X2n—1) and c(xy, ..., Xp—1, (X, ..., X2,—1)) and hence
admits two different morphisms from the signature with just one generating (2n — 1)-ary
connective.

Some (co)limits do exist. Among these the colimits imported via the functor i (which
is left adjoint, hence colimit preserving) from the cocomplete category Sig®"! are well
behaved, but others are degenerate and do not express what we would like to achieve with
them in logic.

Example 2.8 Consider the signature S generated by a single unary connective []. We
have the two flexible morphisms f, g: § — S defined by f(IJ) := Ulxy, g(d) :=
00O0Ox;, respectively. Any flexible morphism 4: § — S’ which satisfies ho f =ho g
(i.e. which “coequalizes” f and g) can only map [ to the variable x; € Fm(S§")[x;]: If O
is mapped to any other formula ¢(x;) then the formulas (J0x; and OJOCx; will have the
images ¢ (¢(x1)) and ¢ (p(@(x1))), and these images will be different because the target is
an absolutely free algebra. The coequalizer can then easily be seen to be empty signature
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¢ with no generating connectives: By the usual definition of formulas, the set of formulas
is the smallest set containing all variables and closed under application of connectives,
so there we have x; € Fm(¥)[x;] and the uniqueness property of a colimit is satisfied
since this signature is initial. However, this is not what one would like in practice. The
coequalizer should remember that there was a connective [J and that “UJ0J = 0UJO”, not
just forget it completely.

Remark 2.9 One could adopt a yet more flexible notion of morphism by consid-
ering the set Fm(S')(x1,...,x,) of formulas which contain no other variables than
X1,...x, (but are allowed to contain less than these), i.e. Fm(S"){xy,...,x,) :=
11— Fm(S)[x1,...,x;], and then defining the set of morphisms as Hom(S, S’) :=
{(fu: Sy = Fm(S"){x1, ..., xn))nen}. Such morphisms would no longer preserve the
arity of formulas, and, for example, one could “delete” n-ary connectives by mapping
them to the single variable x| (substitution into which would correspond to the identity
operation). Much of what will be said in this article would carry over to this setting, as
well as to many other variants, but the notions of morphism we chose to consider seem to
be the ones of biggest interest in practice.

Definition 2.10 A substitution is a map o : Var — Fm(S).

Again a substitution induces an inductively defined map o : Fm(S) — Fm(S).

2.2 Logics

Definition 2.11 1. Let S be a signature. A consequence relation over S is a relation
FC Z(Fm(S)) x Fm(S) between subsets of Fm(S) and elements of Fm(S). As usual we
write it in infix notation I" - ¢.

2. A logic is a pair L = (S, =), where S is a signature and |- a consequence relation on
Fm(S).

Given a logic L, we will sometimes denote its underlying signature by Sy and its
consequence relation by .

Definition 2.12 A consequence relation is Tarskian if the associated operation Cn:
P (Fm(S)) > Z(Fm(S)), I' — {¢ | ' - ¢} satisfies

1. (increasingness) I" € Cn(I") for all I" € Fm(S)
2. (idempotence) Cn(Cn({")) € Cn(I") for all I' € Fm(S)
3. (monotonicity) I' € I'" = Cn(I") C Cn(I"’") for all I', I’ € Fm(S)

These conditions say exactly that Cn is a closure operator on & (Fm(S)).
Two common further additional conditions that one likes to impose on consequence
relations are:

(Finitarity) If I" I ¢ then there exists a finite subset I C I" such that I’ ¢
(Substitution invariance) If I" - ¢, then for any substitution o we have o (I") - o (¢)

Substitution invariance is also called structurality.
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Finally, the role of the following notion for the study of categories of logics has been
brought to light by Mariano and Mendes in [41, 42].

Definition 2.13 A logic (S,F) is congruential if for every two sequences of formu-
las @1, ...¢, and ¥y, ..., ¥, with ¢; 4 ¢; and every pair of formulas B(x;,, ..., x;,),
vy (Xiy, ..., x;,) with 8 4=y we have B(¢1,...¢0,) A=y (W1, ..., ¥n).

Congruentiality is a notion taking its place in the Leibniz hierarchy of degrees of alge-
braizability.

By the results of Lo§ and Suszko in [38], the consequence relations that are fini-
tary, substitution invariant and Tarskian are exactly the provability relations coming from
a Hilbert style system, where consequence is given by finite derivations using axioms,
rules and substitutions. We therefore call a logic (S,F) a Hilbert system if the conse-
quence relation has these properties. On the semantical side, there is Wojcicki’s result
from [52], saying that a finitary and substitution invariant Tarskian logic is sound and
complete for an appropriate finitary matrix semantics (see also [53, Theorem 3.1.6]).

The consequence relations over a fixed signature S can be ordered by setwise inclu-
sion: Cny; < Cny :< Cny (") € Cna (") VIT € Fm(S). Obviously, consequence relations
(without further conditions) form a complete lattice with respect to the above order. By
[53, Theorem 1.5.4], also the subset of Tarskian consequence relations on Fm(S) forms a
complete lattice with respect to this order; by [53, Theorems 1.5.5-1.5.6], the same is true
for the subsets of finitary (resp., structural) Tarskian consequence relations; and finally,
by [53, Theorem 1.5.7], the same is true for Hilbert systems.

About congruential Hilbert systems there is the following result by Mariano and
Mendes:

Proposition 2.14 ([42, Proposition 2.18, Mariano/Mendes]) The category of congruen-
tial Hilbert systems is a reflexive subcategory of the category of all Hilbert systems.

By considering colimits of diagrams of congruential logics whose underlying signature
morphisms are the identity, one can conclude that congruential Hilbert systems form a
complete lattice of consequence relations as well. It is also easy to see that intersections
of congruential consequence relations are congruential again.

In particular, for a signature S we have on Fm(S) a maximal and a minimal conse-
quence relation of each of the types just listed.

The completeness of the considered lattices of consequence relations gives us the pos-
sibility of defining direct and inverse image logics, as done for Hilbert systems in [2,
Definition 2.9]:

Definition 2.15 Given a logic (S, ) and a signature morphism f: S — S’, we can view
F as a subset of ZZ(Fm(S)) x Fm(S), take the set-theoretic image f(F) C Z(Fmyg) x
Fmg and define the direct image f.(F) as the infimum of all consequence relations of the
given type (e.g. Tarskian (resp., finitary and/or structural Tarskian) consequence relations)
containing f ().

Likewise, given a logic (S’,+') and a signature morphism f: S — &', the inverse
image f*(+') can be defined as the infimum of all consequence relations of the given type
(i.e. Tarskian (resp., finitary and/or substitution invariant Tarskian) consequence relations)
on Fm(S) containing f~! ('), the set-theoretic pre-image of .
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Definition 2.16 A translation (resp., strict translation) L = (S,F) — (§8',F) =L’ of
logics is a signature morphism (resp., strict signature morphism) f: S — S’ such that
I'te= f(INHF fle).

Remark 2.17 As noted in [2, Fact 5 (p. 12)], given two logics L = (S,F), L' = (S, ),
a signature morphism f: § — S’ is a translation iff = < f*(+) iff f.(F) <.

Definition 2.18 We denote by LOG the category of logics whose objects are logics
and whose morphisms are translations. We denote by Log(™™Y (resp., Log!inTarsk)
LogEubstTarsk) - o, o (subst, Tarsk,con) “erc ) the full subcategory of Tarskian (resp., of fini-
tary Tarskian, substitution invariant Tarskian, substitution invariant congruential Tarskian,
etc.) logics. Finally, we denote by Hilb the full subcategory of Hilbert systems and by
Hilb ™ the full subcategory of congruential Hilbert systems.

Convention 2.19 For the remainder of the article, we denote by Log any of the follow-
ing full subcategories of LOG: LOG, LogTrsk) | Log(com £ og(Tarsk,con) = p, o fin, Tarsk)
Logsubst.Tarsk) = p g(subst.Tarsk,con) 9747, - 34j]p(€°W By the terms “logic” and “conse-
quence relation” we will mean a logic (resp., a consequence relation) taken from this
chosen category Log. If we need to distinguish consequence relations from £LOG and
consequence relations defining objects of Log, we will call the latter “admissible conse-
quence relations”. In parts of Sect. 4, we will need to assume additional properties of our
logics and will then say so.

We invite the reader to read the article with a specific category of logics, such as
L0g %) or Hilb in mind.

Remark 2.20 For much of what follows we could be rather flexible about what properties
exactly we demand from our consequence relations. Much of the article can be read by
fixing a set of properties that one wishes our consequence relations to have and that satisfy
the following assumptions:

1. The lattice of consequence relations satisfying the properties is complete
2. The direct image maps satisfy g.(f«(F)) = (g o )« (F)

These assumptions are exactly what is needed for Proposition 2.24 below to hold, i.e.
that one can construct (co)limits in the corresponding category of logics by constructing
them in Sig (resp., Sig®"!) and then endow the resulting signature with an appropriate
consequence relation. Much of Sect. 4, however, needs the property of idempotence.

Remark 2.21 The completeness of the lattice of consequence relations of a chosen kind
also makes it possible to define a consequence relation by giving generating rules. For
example, given a logic (S, ) and ¢, ¥ € Fm(S), the Tarskian consequence relation gen-
erated by - and the rules {¢} F ¢, {{/} I ¢ is defined to be the infimum in the lattice
of Tarskian consequence relations of all those consequence relations containing F and
which satisfy {¢} - ¥ and {¢/} - ¢. We will freely make use of such constructions and if
we talk of the consequence relation generated by some given rules, we will always mean
the consequence relation in our chosen category Log.
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Definition 2.22 Let U: Log — Sig, (S,F) — S denote the obvious faithful forgetful
functor forgetting the consequence relation. We will denote its restriction to the subcate-
gories of strict morphisms Log®"t — SigS"t by U as well.

Lemma 2.23 The functor U has a left adjoint Min: Sig — Log, S + (S, Fmin) Which
endows a signature S with the minimal consequence relation on Fm(S), as well as a right
adjoint Max: Sig — Log, S+ (S, Fmax) placing the maximal consequence relation on
Fm(S). These adjunctions restrict to the subcategories of strict morphisms.

Proof The direct/inverse image characterization of translations of Remark 2.17 implies
that, for a morphism of signatures f: S — S, the pair (fx, f*) is a pair of adjoint functors
between the preorders of consequence relations, seen as categories. Here f is the left
adjoint, hence it preserves colimits, i.e. suprema of consequence relations. In particular,
it preserves the supremum of the empty family, i.e. the minimal consequence relation, i.e.
fe (I—fnin) = |_§1/in' Now we have natural bijections

Homy,,(Min(S), L) = { f € Homg;e(S, S.) | fi(Fmin) <1} =Homg;e(S, S.)

where the left equality is the direct image characterization of translations of Remark 2.17
and the right equality can be seen from the fact that f, ('_rSnin) =|—§1Lin and thus the condition
in the middle set is empty.

This shows that Min is left adjoint to U. The right adjointness of Max works by dual-
izing the proof, the restriction statement is clear. |

Note that we have U o Min = U o Max = ids;,.

Proposition 2.24 The category Log has (co)limits of a given diagram shape if and only
if the (co)limits of this shape exist in Sig.

Proof Since U : Log — Sig has a left and a right adjoint, it preserves colimits and limits.
Thus if (co)limits of shape D exist in Log, then, given a diagram of shape D in Sig, we
can lift it to Log, e.g. via the functor Min, take the colimit in Log and apply U. This will
yield the (co)limit of the diagram we started with.

Conversely, if colimits of shape D exist in Sig, then given a diagram F: D — Log,
we can take the colimit of the underlying diagram U o F in Sig and then endow the result-
ing signature with the smallest consequence relation such that all the incoming signature
morphisms from the original diagram become translations (this exists because of the com-
pleteness of the lattice of consequence relations). This construction of colimits is done in
all details in [2, Proposition 2.11].

Likewise, limits in Log can be constructed by taking them in Sig and endowing the
resulting signature with the maximal consequence relation such that all outgoing signature
morphisms into the diagram become translations.

An inspection of the proofs in [2] (which are written for Hilbert systems) shows that
the assumptions of Remark 2.20 are all that is needed. ]

On the one hand, this shows that the category of Log*™®® of logics and strict morphisms
is complete and cocomplete, since the underlying category Sig*"i ~ Set" of signatures is



Homotopical Categories of Logics 23

complete and cocomplete. On the other hand, the category Sig of signatures and flexible
translations is not (co)complete as seen in the last section and hence the same is true
for Log.

Clearly, we would like a category with the more flexible morphisms, in which we can
perform constructions such as (co)limits and which has good categorical properties such
local presentability. Proposition 2.24 seems to rule this out. It is one of the main points of
this article to argue that, in fact, we do not just have a category Log, but instead a category
endowed with an extra structure: A distinguished class of morphisms which we want to
see as “equivalences”. This extra structure tells us that Log is most naturally seen not
as a category but as a so-called (oo, 1)-category. There is a theory of (oo, 1)-categories,
largely parallel to usual category theory, whose basic ideas we will sketch in the following
section. It will then turn out in Sect. 4 that, seen as an (oo, 1)-category, Log does not have
the defects that it has as a 1-category.

3 Abstract Homotopy Theory

In this chapter, we review how the basic datum of a category with a distinguished class of
morphisms gives rise to structures and notions of a homotopy theoretical flavor.

A relative category is a pair (C, W) where C is a category and W C MorC is a class of
morphisms containing the identity morphisms. We will call the morphisms in W the weak
equivalences and will try to find constructions and notions that are invariant under weak
equivalences.

3.1 Simplicial Sets and Nerves

The archetypical example of a category with a distinguished class of weak equivalences is
the category Top of topological spaces and continuous maps, where a weak equivalence
X — Y is a map inducing isomorphisms 1, (X) — m,(Y) between all homotopy groups
7, n > 1 (with respect to all possible base points) and between the sets of connected
components 7o(X), 7o(Y). One important feature of abstract homotopy theory is that one
can often replace a relative category by another one which is better behaved but contains
the same information regarding “weak equivalence types”. For the category of topological
spaces the most common choice is the relative category of simplicial sets:

Definition 3.1 A simplicial set is a functor A°P — Set, where A denotes the category of
finite linearly ordered sets and order preserving maps. A morphism of simplicial sets is a
natural transformation. We denote the category of simplicial sets by sSet.

The category A (or a skeleton thereof) can be described by generators and relations:
We can take as objects the standard linearly ordered sets [n] := {0 <--- < n} and observe
that any order preserving map arises as a composition of the basic maps [n] — [n — 1]
which identify two neighboring numbers and the maps [n] — [n + 1] which leave a gap
between two neighboring numbers. To give a functor from A (or A°P) to some category,
it is then enough to say what it does on objects and on these basic maps and to ensure
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that the choice of values on the maps satisfies some relations. Thus a simplicial set can
alternatively be described as a diagram of sets of the following shape

- ==

X() Xl X2 X3

P —
- HE EH

in which the arrows satisfy certain relations (see, e.g. [22, p. 4]).

One may think about a simplicial set as follows: The set X, is the set of n-simplices of
some abstract simplicial complex, and the maps X,, — X, _1 identify the faces of these
n-simplices with certain (n — 1)-simplices from X,,_;. Thus two n-simplices can share a
common face and the whole diagram can be seen as giving combinatorial data for pasting
together the several collections of simplices (let us not care about the index increasing
maps).

We record the following standard result from category theory (see, e.g. [33, 2.7.1]):

Lemma 3.2 Let C be a small category, D a cocomplete category and F: C — D a
functor. Then there is an adjunction F : Set¢” =D Homp (F(-), —).

Here the left adjoint F is given by left Kan extension of F along the Yoneda embed-
ding, i.e. by expressing a presheaf as a colimit of representables, mapping the representa-
bles to D as prescribed by F and then taking the colimit there.

There is a cosimplicial object in Top, i.e. a functor A — Top, which associates to the
object [n] the standard n-simplex A" := {(xg,...,x,) € R+ d>xi=1, x; >0 Vi},
which send increasing maps to inclusions of faces of the standard simplex and decreas-
ing maps to continuous maps collapsing a simplex to one of its faces, see [22, Exam-
ple 1.1]. By Lemma 3.2, this induces an adjunction | - |: sSet = Top : Sing. Here the
value | X| of the left adjoint at a simplicial set X, called the geometric realization of X,
is given by taking a standard n-simplex in Top for each element of the set X,, and glu-
ing these simplices together as suggested by the face maps. The right adjoint is defined
on objects by Sing(X), := Homrep (A", X) and on maps by precomposition of face in-
clusions/retractions. Geometric realization can be seen as a formalization of the intuition
about simplicial sets offered in the previous paragraph.

One says that a map of simplicial sets is a weak equivalence if its geometric realization
is a weak equivalence of topological spaces. A first indication (but not the complete story)
that for the purpose of studying spaces up to weak equivalence one can replace Top by
sSet is the fact that the unit and counit of the above adjunction are weak equivalences at
each object, i.e. one has weak equivalences |Sing(X)| — X and Y — Sing(|Y|) so that
going back and forth between the two categories results in weakly equivalent objects.
A more complete statement is that Top and sSet form equivalent (co, 1)-categories, see
below. We therefore sometimes refer to simplicial sets as “spaces”, for example, when we
will talk about mapping “spaces” below.

Similarly, we can define the nerve functor N : Cat — sSet by applying Lemma 3.2:
There is a cosimplicial object in the category Cat of (small) categories simply given by
considering the linearly ordered sets of A as categories in the usual way, i.e. taking the
numbers 0, ...,n as objects and declaring that there is a unique morphism from i to
j if i < j. Mapping out of this cosimplicial object into a fixed category C produces a
simplicial set N (C) := Homcat (A, C) as above, and the nerve functor is the right adjoint
of Lemma 3.2 in this special case.



Homotopical Categories of Logics 25

More concretely, the nerve of a category C is the simplicial set with N(C)g = ObC,
N(C); =MorC, N(C),, = {chains of n composable morphisms of C} and whose structure
maps are given by composing arrows (resp., inserting identity morphisms into a chain).

3.2 Localization of Categories and Homotopy (Co)limits

One thing we can do with a relative category (C, W) is to force the morphisms from W
to become isomorphisms: That means we can construct a category C[W ~!] together with
a functor L: C — C[W~!] mapping morphisms from W to isomorphisms and with the
property that any other functor C — D mapping morphisms from W to isomorphisms
factorizes through L uniquely up to unique natural isomorphism.

3.2.1 Localizing Categories

Here is a concrete construction of C[W~']: As objects we take the objects of C. To de-
fine the morphisms from A to B, first say that a zig-zag from A to B is a sequence of
morphisms of C with arrows pointing in either direction

A<~ X > Xy« -« X,—B

and in which the arrows pointing from right to left are from W. Two zig-zags can be
related if one arises from the other by (a) composing two consecutive arrows which
point into the same directions, (b) deleting identity arrows, or (c) deleting two ar-
rows which are equal in C and point into opposite directions in the zig-zag. Now con-
sider the equivalence relation ~ generated by the relations (a), (b) and (c) and define
Homg y-17(A, B) := {zig-zags from A to B}/ ~. Composition in C[W~'1is induced by
concatenation of zig-zags. We have an obvious functor L: C — C[W~!] mapping the
morphisms of C to equivalence classes of zig-zags of length one. The arrows pointing
from right to left can be seen as newly added inverses to the arrows of W and with this in
mind it is not hard to prove the desired universal property of the functor L. Note that since
the zig-zags can range over all the objects of C, the class Homgy-1;(A, B) is not a set in
general (or lives in a higher Grothendieck universe), but in many cases in practice it turns
out to be a set again. One also writes Ho(C, W) := C[W '] and calls this category the
homotopy category of C with respect to W. If the class W is clear, one often suppresses it
from the notation and simply writes Ho(C).

3.2.2 Homotopy (Co)limits

Suppose that (C, W) is a relative category and C has colimits of some diagram shape D.
The diagram category CP is itself a relative category with weak equivalences given by
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objectwise weak equivalences of C, hence we also have a homotopy category Ho(CP). By
the universal property of the localization, if the colimit functor preserves weak equiva-
lences we can find a functor (represented by the dotted arrow below) making the following
diagram commute:

colim
-

L

Ho(CP) > Ho(C)

However, the colimit functor has no reason to preserve weak equivalences. A stan-
dard example in the category of topological spaces is to consider the pushouts S' =
colim([0, 1] < {0, 1} — [0, 1]) (the circle, obtained by gluing two unit intervals along
their end points) and * = colim(x < {0, 1} — *) (where % denotes the 1-point space):
The unit interval [0, 1] is contractible, so the obvious transformation from the first to the
second diagram is an equivalence. Yet the respective colimits of the two diagrams are not
equivalent (since S' has a nontrivial fundamental group).

The next best thing that we can do then is to form the right Kan extension of
CP — C — Ho(C) along CP — Ho(CP)—this is the universal approximation of the col-
imit construction by a construction that preserves weak equivalences. It results in a dia-
gram

colim

CD

C
Lo
hocolim

Ho(C?) ——= Ho(C)

which is not commutative but instead filled in with a universal natural transformation. We
emphasize that the homotopy colimit is usually not the colimit in the homotopy category;
indeed, in general Ho(CP) is not equivalent to Ho(C)P, so it does not even have the right
domain category. The notion of homotopy limit is dual, with a left Kan extension instead
of a right one.

In the category of simplicial sets, all homotopy (co)limits in the sense just defined
exist, and many techniques have been developed for computing them. We will use this
fact in the next section.

In [16], the reader can find an exposition of the basic notions and statements around
relative categories in which the weak equivalences satisfy a very mild closure condition.
A more powerful setting continuing this line of thought about homotopy (co)limits is the
theory of derivators; see, for example, [26] and the references therein.

We note that these approaches to homotopy (co)limits allow us to stay in the framework
of usual category theory. However, they have their limitations, and a richer setting with a
well developed theory is that of (oo, 1)-categories; see the next sections.
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3.3 Simplicial Categories, Simplicial Localizations and Homotopy
(Co)limits

Lots of experience indicates that the category C[W ~!] is in general too crude an object. If
one wants to treat objects of C up to equivalence, the passage from C to C[W ~!] forgets
too much; morphisms from C get identified uncontrollably and equivalence preserving
constructions in C cannot be characterized or performed just in C[W~!] alone. This has
already been visible in our above definition of homotopy (co)limits: For this we needed
both the original relative category (C, W) and its localization Ho(C).

Also note that the above definition of homotopy (co)limit only makes sense if the
(co)limits in question exist in the category C, otherwise we have nothing along which we
could take Kan extensions. Many categories of logics, however, lack (co)limits.

One can now pass to a refined variant of localization, called the simplicial localization,
which results in a category enriched in simplicial sets, i.e. instead of sets of morphisms
we get simplicial sets of morphisms, also called the mapping spaces of the simplicial cat-
egory. Such a category is also called simplicial category (this should not be confused with
simplicial objects in the category of categories). The basic intuition about a simplicial
category is that the O-simplices of the mapping spaces are morphisms, the 1-simplices
are homotopies between morphisms, the higherdimensional simplices are homotopies be-
tween homotopies, and so on.

We now give one possible construction of a simplicial localization: The hammock lo-
calization introduced in [17].

3.3.1 The Hammock Localization

Given a relative category (C, W) we define its hammock localization L (C, W) to be the
following category enriched in simplicial sets: Again we take as objects those of C. For
two objects A, B we now have to give a simplicial set map(A, B), also called the mapping
space of A and B. We define the nth set of this simplicial set to be the “set” of reduced
hammocks of width n, i.e. commutative diagrams of the shape

Xo1 — Xm Xo3 Xok
A — X1 — X2 X3 X1k B
X1 — X2 X3 Xk

in which the vertical arrows go downwards and are from W, in each column the horizontal
arrows all point into the same direction, the horizontal arrows going from right to left are
from W, no column consists only of identity arrows and the maps in adjacent columns go
into different directions. The structure maps for the simplicial sets are given by composing
downward pointing arrows (resp., duplicating a row and inserting identity arrows).
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The composition maps map(A, B) x map(B, C) — map(A, C) are given by concate-
nation of zig-zags, followed by reducing the resulting hammocks (i.e. composing adjacent
columns pointing into the same direction and deleting identity columns). For more on the
hammock localization see [16].

3.3.2 Homotopy Category of a Simplicial Category

From a simplicial category C one can obtain an ordinary category Ho(C) by passing to the
set of connected components of the Hom-simplicial sets, i.e. by keeping the same objects
and defining Homg,(c)(A, B) := mo(mapg (A, B)). The resulting category is called the
homotopy category of the simplicial category. If the simplicial category is the hammock
localization L (C, W) of a category with weak equivalences, the homotopy category is
exactly the localization from above: Ho(LH (C, W)) ~ C[W~!]. Indeed, the objects are
the same, fullness is clear, and the main point for faithfulness is that a zig-zag with two
consecutive arrows from W pointing in opposite directions is in the same connected com-
ponent of map(A, B) as the zig-zag with these arrows canceled:

X<7Y*>X

|

= X ——

The details can be found in [17, Proposition 3.1].

3.3.3 Homotopy (Co)limits Revisited

A simplicial category C also has an underlying usual category U (C) given by just re-
membering the 0-simplices of the mapping spaces, i.e. Homy ) (A, B) :=map¢ (A, B)o.
There is a natural class W of weak equivalences on U(C) given by those morphisms
which become isomorphisms in Ho(C) (alternatively one could take as weak equivalences
morphisms f € map(A, B)g such that for all objects X the induced map map(X, A) —
map(X, B) is a weak equivalence of simplicial sets; the two definitions coincide in good
cases).

For those types of diagrams which have (co)limits in U(C), we thus have the no-
tion of homotopy (co)limit introduced above by Kan extensions. However, in a sim-
plicial category one can also speak of homotopy (co)limits without supposing that
the corresponding (co)limits are present in the underlying category U(C), by defin-
ing them through the mapping spaces. The idea is that in ordinary category theory
one can define the limit of a diagram D as a representing object for the functor X +—
limgep Home (X, d), i.e. by asking for a natural isomorphism of Set-valued functors
limgep Home (—, d) ~ Homg (—, limgep d). Now in a simplicial category one can in-
stead ask for a natural weak equivalence of sSet-valued functors holimgep mapg(—, d) =
map (—, holimgep d), where the homotopy limit on the left hand side is taken in simpli-
cial sets where we already know what it means by the definition through Kan extensions.
For more details see [40, A.3.3.13].
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A different formulation which easily relates to classical category theory is to ask for
a final object in the simplicial category of “homotopy coherent” cones over the given
diagram, but we will not go into this further and instead refer the reader to the exposition
in [48].

3.3.4 Simplicial Categories from 2-Categories

Besides the hammock localization of a relative category there is a further source of sim-
plicial categories relevant for us:

A 2-category is a category enriched in the category Cat of categories, i.e. for any two
objects A, B there is a category Hom(A, B), together with composition functors satisfy-
ing the usual axioms. In such a category, there is a natural class of weak equivalences
given by those morphisms f: A — B for which there exist a g: B — A and isomor-
phisms fog~idgp € Hom(B, B), go f ~id4 € Hom(A, A). One way to get a simplicial
category from this is to form the hammock localization with respect to the class of weak
equivalences.

Another way is, for each pair of objects A, B, to take the maximal subgroupoid of
the category Hom(A, B), i.e. the subcategory of all objects and isomorphisms between
them, and apply the nerve-functor to each of them (we could also apply the nerve functor
to the whole category Hom(A, B), but this would not capture the same class of weak
equivalences).

These two constructions, though both very natural, do in general yield non-equivalent
simplicial categories in the sense of Definition 3.3 below. The reason for this is that the
hammock localization cannot distinguish between different automorphisms of the Hom-
categories, while the nerve construction clearly captures them.

3.4 Equivalences of Simplicial Categories and (0o, 1)-Categories

Simplicial categories are objects of usual enriched category theory, as exposed in [34],
where one considers categories which have, instead of sets of morphisms Hom(A, B),
objects of morphisms Hom(A, B) which live in some monoidal category M (here the cat-
egory of simplicial sets with the monoidal structure given by the product). An M-enriched
functor F: C — D is a mapping of objects Ob(C) — Ob(D) and, for each pair A, B of
objects a morphism Hom.(A, B) - Homp(FA, FB) in M, compatible with composi-
tion and identities—for example, a functor F: (C, W) — (D, W') of relative categories
such that F(W) C W’ induces a simplicial functor LY (F): L¥(C, W) — L¥ (D, W’)
between the hammock localizations as one sees easily from the definition of hammock
localization.

In enriched category theory, an M-enriched functor is an equivalence if it is essentially
surjective and fully faithful in the enriched sense, i.e. Hom (A, B) — Homp (A, B) isre-
quired to be an isomorphism in M for all A, B. However, the role played by the simplicial
enrichment in the example of the hammock localization of a relative category suggests
that one is not interested in the Hom-simplicial-sets themselves, but only in the homotopy
types of spaces they represent. Hence one defines:
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Definition 3.3 A simplicial functor F: C — D of simplicial categories is an equivalence

if it is

1. Essentially surjective, i.e. every object in D is equivalent, i.e. isomorphic in Ho(D), to
an object in the image of F and

2. Fully faithful, i.e. the maps mapy(A, B) — mapp(A, B) are weak equivalences (in-
stead of isomorphisms) of simplicial sets.

Note that in particular an equivalence F: C — D of simplicial categories induces
an equivalence Ho(F): Ho(C) — Ho(D) of usual categories, but the condition of be-
ing an equivalence is stronger than that: For having an equivalence of homotopy cate-
gories it would be enough to demand that F induces isomorphisms 7o mapg(A, B) —
momapp (FA, FB) between the sets of connected components 7o map-(A, B) (resp.,
momapp(FA, FB)) of the mapping spaces, while for an equivalence of simplicial cat-
egories one asks for isomorphisms induced on 7y and on all homotopy groups.

Definition 3.4 An (oo, 1)-category is a simplicial category. A morphism of (oo, 1)-
categories is a simplicially enriched functor.

This definition allows keeping things simple and suffices for the purposes of this arti-
cle. We insist however that with this definition the category of simplicial categories has to
be seen as a relative category itself (with the class of equivalences just defined)—different
simplicial categories may define equivalent (0o, 1)-categories and it is only the simplicial
categories up to equivalence that we are interested in. Roughly, we could also have de-
fined an (oo, 1)-category as an equivalence class of simplicial categories, with respect
to the equivalence relation generated by the above notion of equivalence of simplicial
categories. For more discussion on this see Sect. 3.5.1.

The name can be explained as follows: One thinks of the 0-simplices in the mapping
spaces of a simplicial category as the morphisms (or “1-morphisms”), of the 1-simplices
as homotopies between morphisms (or “2-morphisms”), of 2-simplices as homotopies be-
tween homotopies (or “3-morphisms”) and so on, so that one has n-morphisms for every
n € N. This explains the “00” in the term “(oo, 1)-category”. Now homotopies between
functions can always be inverted (if there is a homotopy from a function f to a function
g, then there also is a homotopy from g to f and the composition of the two homotopies
is homotopic to the identity), so that all n-morphisms for n > 2 are invertible—only the
morphisms up to level 1 are actual directed morphisms, while the higher morphisms are
(witnesses of) equivalences. This explains the “1” in the term “(oo, 1)-category”. More
generally and (n, k)-category is a category which has higher morphisms up to level n, all
of which are invertible from level k£ + 1 onwards. An (oo, 1)-category is also sometimes
called “a homotopy theory”.

3.5 Models and Computation of Homotopy (Co)limits

There can be very different looking but equivalent simplicial categories. One sees such
simplicial categories as presentations of (0o, 1)-categories, just like one can define a
group by a presentation via generators and relations. A(n isomorphism class of a) group
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can be defined by very different looking presentations and it can in practice be very dif-
ficult to determine whether the groups given by two presentations are isomorphic. In our
context, one uses the term model, rather than “presentation”.

Likewise one can see a relative category as a model (or presentation) of an (oo, 1)-
category, since it gives rise to a simplicial category via the hammock localization. This
is the way in which (oo, 1)-categories arise most commonly from usual mathematics. We
have already seen an example of two different presentations of the same (oo, 1)-category:
The categories of simplicial sets and of topological spaces, with their respective classes
of weak equivalences, are presentations of the same (oo, 1)-category, commonly called
“the (0o, 1)-category of spaces” (we gave the functors inducing this equivalence, but only
hinted at the essential surjectivity part).

Now while the datum of a relative category allows formulating the notions of homotopy
(co)limits (as well as that of derived functors) it does not help in constructing them in
concrete cases or determining whether they exist. To this end, one frequently employs
models which are not just categories with a class of weak equivalences, but which are
endowed with an additional auxiliary structure.

Probably the best kind of model one can ask for is a model category: A model category
is a tuple (C, W, Fib, Cof) consisting of a category C with finite limits and colimits and
three classes of morphisms, W (weak equivalences), Fib (“fibrations”) and Cof (“cofibra-
tions”), which are related by several axioms (often one asks for additional structure, such
as “factorization functors”). This extra structure allows concrete constructions of homo-
topy limits and colimits and also the construction of adjunctions of (co, 1)-categories by
the means of usual category theory.

A gentle introduction to model categories is [19], a more complete one is the book [29].
One downside of model categories is that it is hard to establish the existence of a model
structure on a category. The category of logics and flexible morphisms of Sect. 2.2, for
example, has no chance of bearing the structure of a model category simply because it
lacks (co)limits.

A less demanding kind of model is given by the notion of cofibration category, see [46].
This is, roughly, half a model category structure, having only a class of cofibrations and
weak equivalences, and only requiring the existence of special colimits. In a cofibration
category, homotopy colimits can be constructed explicitly and, by the results of Szumito
in [49], every (oo, 1)-category with all homotopy colimits has a presentation by a cofi-
bration category. The category of logics and flexible morphisms of Sect. 2.2 carries such
a structure.

There are several other kinds of models, such as Baues cofibration categories and semi-
model categories, which meet different purposes and one has to see in each particular
situation whether such a kind of model exists and is useful.

3.5.1 The Homotopy Theory of Homotopy Theories

Above we endowed the category of simplicial categories and simplicial functors with
a class of weak equivalences. Thus the category of simplicial categories becomes itself
a relative category. We also have a notion of weak equivalence of relative categories:
This a functor F: (C, W) — (D, W) satisfying F (W) € W’ and inducing an equivalence
LEC, W) > LH D, W) of simplicial categories on hammock localizations.
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The resulting two relative categories, that of simplicial categories and that of relative
categories, are again equivalent as relative categories. In fact, on both the category of
simplicial categories and the category of relative categories there are model structures,
and the equivalence can be given in a highly structured way (see [4, 5]).

There are several other ways of encoding (co, 1)-categories, where the emphasis is
not on extra structure allowing constructions internal to an (oo, 1)-category, but rather
on relating (oo, 1)-categories to each other, constructing new (oo, 1)-categories from old
ones, and formulating and recognizing properties of (0o, 1)-categories. For a survey of
some such settings see [7]. The setting with the best developed theory is that of qua-
sicategories, featuring, for example, (0o, 1)-categorical notions of and theorems about
fibrations, accessible and locally presentable categories, toposes, sketches and algebraic
theories. A gentle introduction is [25], a good further introduction is the first chapter of
[32], and the main references are the books [40] and [39].

4 (o0, 1)-Categories of Logics

In this chapter, we consider the categories of logics from Sect. 2.2 as (o0o,1)-categories.
We will do this in the two ways given in Sects. 3.3.1 and 3.3.4. For both we need to fix a
notion of weak equivalences of logics.

4.1 Weak Equivalences

We place ourselves in a category Log of logics as in Sect. 2.2.

Definition 4.1

1. If L is alogic and ¢, ¢ € Fm(L) are formulas satisfying {¢} ;. ¥ and {¢'} -1 ¢, we
write ¢ 1 v and call the formulas logically equivalent.

2. A morphism of logics f: L = (Sp,Fr) — (Sp/,Fp/) = L is called a homotopy
equivalence if there exists a morphism g: L’ — L (a “homotopy inverse”) such
that for all ¢ € Fm(L) we have ¢ 4, (g o f)(¢) and for all ¥ € Fm(L’) we have
¥ b (f o).

3. A morphism of logics f: L — L’ is called a weak equivalence, if I' - ¢ &
f(I) Fp f(p) (.e. it is a “conservative translation”) and if for every formula ¢ in
the target there exists a formula in the image of f with the same arity as ¢ which is
logically equivalent to ¢ (it has “dense image”).

Proposition 4.2

1. In any category of logics with idempotent consequence relations, homotopy equiva-
lences are weak equivalences.

2. In any category of substitution invariant logics over Sig (i.e. with flexible morphisms),
weak equivalences are homotopy equivalences.
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Proof 1.Let f: L — L' be a homotopy equivalence. Choose a homotopy inverse g. Any
formula ¢ € Fm(L’) is logically equivalent to (f o g)(¥), which is in the image, hence f
has dense image. If I" I ¢ for I" U {¢} € Fm(L), then, since f is a translation, we have
I'¢= f(I') f(¢). Conversely, since g is a translation we have f(I") - f(¢) =
g(f(I")Fg(f(p)). Forevery y € I' we have y - g(f(y)) and also g(f(¢)) - ¢. Thus
we have I' = g(f(I")) - g(f (¢)) - ¢. Hence, by idempotence, I" I ¢.

2.Let f: L=(SL,F1) = (Sp/,Fp) = L' be a weak equivalence. To construct a ho-
motopy inverse g: L’ — L, choose for every n-ary generating connective c(xy, ..., X;)
of L" a formula ¢ € Fm(L) with c(xy, ..., x,) =1/ f (@) (which exists since f has dense
image). This defines a morphism of signatures g: S;» — Sr, which by construction sat-
isfies f(g(c(x1,...,x,))) "1/ c(xq, ..., x,) for all generating connectives. By substi-
tution invariance, it follows that f(g(y)) =+ ¢ for all formulas ¥ € Fm(L’). In par-
ticular, this holds for formulas of the form ¥ = f(¢) for any ¢ € Fm(L), i.e. we have

f(g(f(9))) "1 f(¢). By conservativity of f, we conclude g(f(¢)) 11 ¢. U

Corollary 4.3 In a category Log of idempotent, substitution invariant logics the classes
of weak equivalences and homotopy equivalences coincide.

Remark 4.4 For Tarskian logics the homotopy equivalences have been characterized in
[10, Proposition 4.3] as those (flexible) morphisms f: L — L’ for which there exists
a morphism g: L’ — L, such that f, g induce mutual inverse morphisms between the
lattices of theories of L, L.

Remark 4.5 The comparison of notions of weak equivalences and homotopy equivalences
(those which have a morphism in the opposite direction that becomes an inverse in the
homotopy category) is a standard theme in abstract homotopy theory. The coincidence of
the two classes can be phrased as saying that every object is “fibrant” and “cofibrant”.
Indeed, the category Hilb bears the structure of a so-called cofibration category and it is
true that every object of Hilb is fibrant and cofibrant in the sense of cofibration categories
(see [46]).

Remark 4.6 Note that the two classes of weak equivalences and of homotopy equiva-
lences no longer coincide, even for idempotent and substitution invariant logics, if we
consider them on the category Log®"® of logics and strict morphisms. The reason is that
to define the homotopy inverse in the proof of Proposition 4.2.2 we needed to map primi-
tive connectives to derived connectives. Indeed, consider the two presentations of classical
propositional logic CPL; := (A, — | rules...) and CPL; := (A, —, V, —| rules...) of the
introduction. Clearly, we have a conservative inclusion CPL; — CPL, which has more-
over dense image, since every formula of classical propositional logic is equivalent to one
built from just the connectives A and —. So this inclusion is a weak equivalence. A ho-
motopy inverse, or indeed any translation from CPL; to CPLy, in the category Log®"ict
would have to map the connective V to A, since the latter is the only primitive connective
of CPL; of arity 2, but this is impossible since there are rules satisfied by Vv but not by A.
We will come back to the relation of Log®"i and Log in Sect. 4.3.1.
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4.2 The Hammock Localization of Hilb

With Definition 4.1 we have made the category #Hilb of Hilbert systems into a relative
category, and hence gained an (0o, 1)-category via hammock localization, which we will
denote by Hilbhamm. We actually have more than just a relative category:

Theorem 4.7 ([1]) In the category Hilb of Hilbert systems, denote by W the class of
weak equivalences of Definition 4.1 and by Cof the class of translations whose underlying
signature morphism maps generating connectives injectively to generating connectives.
Then the triple (Hilb, W, Cof) satisfies the axioms of a cofibration category in the sense

of [46].

The proof of this theorem is out of the scope of this article. We just give a hint of
the kind of things one has to do: One of the axioms requires that every morphism fac-
tors as a cofibration followed by a weak equivalence. The proof of this for the category
‘Hilb proceeds in close analogy to that for the category of topological spaces, namely by
constructing “mapping cylinders”:

Sketch of a Proof of the Factorization Axiom. To factorize a translation f: L =
(S, kL) = (Sp, k) = L', define an intermediate logic L with the signature Sy =
Sr ]I SL, so that the formulas of L are mixed from the connectives of L and L’. In par-
ticular, we have the linguistic fragments Fm(L) C Fm(Z) D Fm(L'). The consequence
relation on Fm(Z) is generated by the rules of -, on Fm(L), the rules of -,/ on Fm(L")
and by the rules ¢ -3 f(¢) for every ¢ € Fm(L). This makes the linguistic fragment
Fm(L) C Fm(Z) equivalent to its image under f in Fm(L").

Now we have an obvious cofibration L — L which is just the inclusion Fm(L) C
Fm(L) and a translation L — L’ given by mapping the connectives from Fm(L") C
Fm(L) to themselves and those of Fm(L) C Fm(L) to their image under f. The lat-
ter map is a homotopy equivalence, with a homotopy inverse given by the inclusion
Fm(L') € Fm(L).

Corollary 4.8 The (oo, 1)-category Hilbhamm has all homotopy colimits of small dia-
grams.

Proof An (oo, 1)-category for which there exists a presentation by a cofibration category,
has all homotopy colimits, see [46, 49]. O

A proof of Theorem 4.7 will appear in [1], together with applications to the combi-
nation of logics via homotopy colimits: The extra structure of cofibrations gives an easy
construction of homotopy colimits by means of those 1-categorical colimits which do ex-
ist in ‘Hilb. Also the concrete choice of cofibrations allows transferring the usual preser-
vation results for properties of logics under fibring (like existence of implicit connectives,
position in the Leibniz hierarchy, etc.) to the combination of logics through homotopy
colimits.
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4.3 The 2-Categorical Localization of Log

Our categories of logics from Sect. 2.2 are naturally enriched in preorders: We can define
a preorder on Homg,,, (L, L") by

f<g & VoeFm(L): f(o)Fg(p).

Since preorders can be regarded as categories, this makes every category enriched in pre-
orders into a 2-category.

Recall that we defined the equivalences of a 2-category to be those 1-morphisms
f: L — L’ for which there exists a I-morphism g: L" — L and 2-isomorphisms f o g >~
idy/, g o f ~idyp. In our context, the existence of these 2-isomorphisms simply means
that f(g(¥)) -1 ¢ and g(f(¢)) 7L ¢. Thus the notion of homotopy equivalence
from Definition 4.1 is exactly the notion of equivalence coming from the structure of
2-category.

We can now perform the construction of a simplicial category from Sect. 3.3.4 with the
2-category just defined: Pass to the maximal subgroupoids of the hom-categories and then
take their nerves. The maximal subgroupoids are simply the categories having the set of
translations as objects and having a unique isomorphism between two translations f and
g whenever Vo € Fm(L): f(¢) - g(¢) holds. In this case, we also say that f and g are
homotopic. We will apply this to the categories Log and Log®"'° and call the resulting

simplicial categories £0g_.,c and Eog%t_rcig{.

strict

Proposition 4.9 The simplicial categories Log, ., and Logy

sense of Sect. 3.4, to their respective homotopy categories.

are equivalent, in the

Proof Since the hom-categories are preorders, the maximal subgroupoids are equivalent
to discrete categories: Any two objects are either uniquely isomorphic or live in distinct
connected components. Since the nerve functor sends equivalences of categories to weak
equivalences of simplicial sets, we can replace the hom-categories by actual discrete cate-
gories, namely the set of connected components of the groupoids. By definition, the nerve
functor sends discrete categories to discrete simplicial sets; therefore, Log,_., 1S equiva-
lent to a simplicial category with discrete mapping spaces. Its homotopy category is con-
structed by taking 7 (the set of connected components) of each mapping space. Since
the mapping spaces are already weakly equivalent to discrete spaces, they are equivalent
to their sets of connected components, i.e. the functor Logy_ ., — Ho(Logy_ o) 1s fully
faithful in the sense of simplicial categories and hence an equivalence.

The same reasoning goes through for Log5"<. O

As we emphasized, homotopy (co)limits are almost never (co)limits in the homotopy
category, but here this is the case.

strict

reat) are (co)limits in

Corollary 4.10 Homotopy (co)limits in Logy.c. (resp., Log
Ho(L0gy.cq) (resp., Ho(Logymeh)).

Proof Homotopy limits of discrete spaces, i.e. sets, are discrete again and are their limits
in the category of sets: The inclusion of the sub- (oo, 1)-category of discrete spaces into the
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(00, 1)-category of all spaces is right adjoint to the functor 7y which takes a space to its
set of connected components—therefore, it preserves homotopy limits, see [40, 5.5.6.5].
Given a diagram D in Log,_.,;, its homotopy limit was defined through the weak equiv-
alence of mapping spaces holimp mapy;, . (—,d) ~map,, (-, holimpd) where the
left hand homotopy limit was taken in spaces. Now we have the chain of equivalences

limp Homgo(£og, ) (—- d) == holimp Hompo(£og, ) (— d)
=~ holimp 7¢ MaP Log, o (=d)
2~ holimp map e, (=.d)
~mapg,, (—, holimp d)
~ momap,,, (=, holimp d)

= Homyy(£og, ., (—» holimp d).

Since this is a weak equivalence of discrete spaces, it is a bijection of sets and hence
identifies holimp d as the limit of the diagram in Ho(Logy_¢a)-

The proof for homotopy colimits is completely analogous (note that homotopy colimits
in L£ogy_.,; turn to homotopy /imits of mapping spaces when mapping out of them, so the
same remarks about homotopy limits of discrete spaces apply). |

In the following two statements, we notice that homotopy equivalences in Log and
Log™e are characterized by the fact that they induce equivalences of mapping spaces.

Lemma 4.11 A homotopy equivalence z: X — Y in Log (resp., Log™"Y) induces an
equivalence of mapping spaces z,: map(A, X) — map(A,Y)

Proof The homotopy equivalence z has a homotopy inverse z': ¥ — X with z o 7/ - id
and 7’ o z -+ id; this means literally that z,, becomes an inverse after applying m¢. Since
the mapping spaces of Log,_.,: (resp., Log*M) are homotopy discrete, this already means
that the map z, is a weak equivalence. |

Proposition 4.12 Let f: L — L' be a morphism of logics such that for all logics H
the induced map fy = (f o —): map(H, L) — map(H, L') is a weak equivalence of
mapping spaces. Then f is a homotopy equivalence of logics.

Proof From the hypothesis in particular, we get a weak equivalence f,: map(L’, L) —
map(L’, L"), hence the identity morphism id; is in the connected component of some
morphism in the image, i.e. there is a morphism g: L’ — L suchthat fog: L' — L — L’
satisfies (f o g) 4 id;/, i.e. we get a left inverse up to homotopy g. We will show that
we also have (g o f) 1 id; and hence f is a homotopy equivalence.
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For every logic H there is the diagram

map(H, L) L map(H, L)

\ N J/ .
(fog)«

map(H, L)

Since two of the three arrows are weak equivalences, so is the third, hence g: L’ — L
satisfies the hypothesis of the proposition and, by what we have already proved, we get a
leftinverse h: L — L' to g with g o h - idy.

Now we know f = foidy, 4+ fogoh--idy oh =h, and hence f is a left and
right homotopy inverse. O

For a category Log of idempotent, substitution invariant logics, we know that weak
equivalences and homotopy equivalences coincide, and that hence weak equivalences can
be detected on mapping spaces. In homotopy theoretical terms, this can be seen as another
incarnation of the fact that all objects of such a category Log are fibrant and cofibrant.

Remark 4.13 On the category Log®"! the 2-categorical notion of equivalence is that of
homotopy equivalence. We also have the notion of weak equivalence and there are strictly
more weak equivalences than homotopy equivalences. Weak equivalences in general do
not induce equivalences of mapping spaces as we can once again see from the exam-
ple of the two presentations of classical propositional logic CPL; with underlying signa-
ture {A, =} and CPL, with underlying signature {A, =, vV, —}: map*"i‘(CPL,, CPL) —
map(CPL;, CPL}) is not surjective on connected components, since there is no strict
translation equivalent to the flexible translations that are equivalences CPLy — CPL;.
However, every logic L is weakly equivalent in Log*™! to a logic Q(L) such that weak
equivalences into Q (L) induce equivalences of mapping spaces, see Lemma 4.19 below.

4.3.1 Logs™e! Versus Log). cqt

Convention 4.14 From now on we will suppose that the logics of Log have the property
of idempotence.

We will relate the simplicial categories Eoggt_rcigt and Log, ., via the adjunction of
Proposition 2.6. First, we need to extend these functors from signatures to the correspond-
ing categories of logics.

Let L = (Sz,Fr) be a logic. Recall from Definition 2.5 that the signature Q(Sr) is
defined by Q(S1)n :={cp | ¢ € Fm(Sp)[x1, ..., x,]} = Fm(Sp)[x1, ..., x,]. We have an
inclusion of signatures s: S — Q(SL), g — g(x1,...x,) given by considering the old n-
ary generating connectives g of St as formulas g(x1, ..., x,) in Fm(Sz)[x1, ..., x,]. This
signature morphism induces an inclusion of sets of formulas s: Fm(Sz) — Fm(Q(S1)).

Definition 4.15 Let L = (Sz,F1) be a logic. We define Q(L) to be the logic over the
signature Q(Sy) with the consequence relation generated by s, (1) (i.e. the rules of L
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imported via s) and the rules {y +F ¢} for every pair of formulas which arise from each
other by replacing connectives of the form ¢, with the corresponding formulas ¢ or vice
versa.

Remark 4.16 1f the logics in our category Log are substitution invariant and consequen-
tial, then it is enough to take the consequence relation generated by the rules s, (1) and
{cp(x1, ..., x) T @(x1,...,x,)}. The rules for more complex formulas from Defini-
tion 4.15 then become derivable by substitution invariance and congruentiality.

Lemma 4.17 In Q(L), every formula ¢(x1, ..., x,) is equivalent to a formula c(xy, ...,
Xn) where c is a generating connective.

Proof By definition of the consequence relation on Q(L), every formula of Q(L) is log-
ically equivalent to a formula ¢ of s(Fm(L)) € Fm(Q(S7)), obtained by replacing all
occurrences of the new connectives ¢y, with v. But this formula ¢ € Fm(L) is itself logi-
cally equivalent to the generating connective ¢, of Q(L). O

Lemma 4.18 There are flexible homotopy equivalences r : Q(L) = L :s.

Proof The inclusion s: L — Q(L) is a homotopy equivalence with homotopy inverse
r: Q(L) — L given by sending the connectives of Sy to themselves and the connective
¢y to @. Thus r takes a formula and replaces every occurrence of a connective ¢, by the
corresponding formula ¢. Clearly, s respects the consequence relation. To see the same for
r, note that, for I"U{p} € Fm(Q(L)) satistfying I" +y,wehave r (I") 4+ I" - ¢ 4 r (¢),
hence by idempotence r(I") F r(¢). The composition r o s is the identity and (s o r)(¢)
is logically equivalent to ¢ by definition of the consequence relation on Q(L). |

Lemma 4.19 Ler H, L be logics. The inclusion map*™'(H, Q(L)) — map(H, Q(L)) is
an equivalence of simplicial sets.

Proof By Lemma 4.17, every n-ary formula ¢ of Q(L) is equivalent to the formula
¢p(x1,...,x,). Hence a (flexible) morphism f: H — L is homotopic to the morphism
f : H — L defined on generating connectives by ¢ — ¢ () (x1, ..., X,), which is a strict
morphism. Therefore, the map in question becomes a bijection after applying m¢. This is
enough since the mapping spaces are homotopy discrete. (|

Our aim in this subsection is to show Theorem 4.26, saying that logics and flexible
morphisms form a reflexive sub-(oco, 1)-category of logics and strict morphisms. A crucial
step is the following theorem of Mariano and Mendes:

Theorem 4.20 ([42, Theorem 2.12, Mariano/Mendes]) The adjunction of signatures of
Theorem 2.6 lifts to an adjunction i : Log®" = Log : Q of logics.

Since this adjunction respects homotopies between logics, it lifts further to an adjunc-
tion of (co, 1)-categories:
Proposition 4.21 The functors i : Logst & Log, ., : Q form an adjunction of (co, 1)-
categories.
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Proof 1t is clear that the maps of sets Homg;,swict(S, S’) — Homg;e(iS,iS") and
Homg;e (S, ") — Hom Sigsmm(Q(S), Q(S")) obtained from the functors i and Q of Defi-
nition 2.5 map translations to translations.

From Theorem 2.6, we have an adjunction on the level of signatures and from this the
natural isomorphism Homg;, (i (S), N Hom&gsmct(S , O(S")) which sends a flexible
morphism (f,: S, — Fm(S)[x1, ..., Xxy]nen to itself (but becoming a strict morphism
to Q(S")), in other words it is given by postcomposition with the map S’ — Q(S").

By Theorem 4.20, this lifts to an adjunction i : Log™"i® = Log : Q of logics, i.e. the
isomorphism restricts to an isomorphism Homg,(i(L), L") — Hom ) suict (L, O(L")
between the sets of translations: Indeed, by Lemma 4.18, the morphism of logics L —
Q(L) is a homotopy equivalence in Log, hence by idempotence and Lemma 4.2 a weak
equivalence and in particular conservative, and so a morphism of signatures i S — S’ is a
translation if and only if i S — S’ — Q(§’) is.

Since homotopic translations get mapped to homotopic translations, this extends to a
morphism map(i L, L') — map*"i‘(L, Q(L’)) of mapping spaces which can be seen to
be an equivalence from the diagram

S

map(iL, L)) ——> map™ie(L, (L))

"]

~

map(L, L') —— map(L, Q(L’))

S

Here the right vertical arrow is the equivalence of Lemma 4.19 and the lower horizontal
arrow is an equivalence since the equivalence s: L — Q(L) of Lemma 4.18 induces an
equivalence on mapping spaces by Lemma 4.11. Therefore, the upper horizontal arrow
must be an equivalence, too. O

Lemma 4.22 The map of simplicial sets map(Q(H), Q(L)) — map(H, Q(L)), f
fo(H— Q(H)) is an equivalence.

Proof Againitis enough to show that applying ¢ induces a bijection. (Injectivity) A mor-
phism Q(H) — Q(L) is, up to equivalence, determined by its restriction to H € Q(H),
since every formula of Q(H) is equivalent to one of H. (Surjectivity) Any morphism
f: H— Q(L) can be extended to Q(H) by sending the additional generating connec-
tives ¢, (¢ € Fm(H)) to f(¢). U

We denote by Q(Log) the image of the functor Q in Log*"! and we will for the rest
of the subsection suppress the subscript “2-cat”.

Lemma 4.23 The functor Q o i |g(rog: Q(Log) — Q(Log) is an equivalence of
(00, 1)-categories.

Proof (Essential surjectivity) We have to show that any object in the target category
Q(Log) is equivalent to one in the image, i.e. one of the form Q(Q(L)). This is the
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case because the unit map Q(L) — Q(Q(L)) is a weak equivalence of logics in LogStriCt
by Lemma 4.18, idempotence and Lemma 4.2.

(Full faithfulness) We have to show that the morphism of simplicial sets map*™'(Q (H),
Q(L)) — map™i‘(QQ(H), Q Q(L)) is an equivalence. We know from Lemma 4.19 that
this is equivalent to showing that we have an equivalence of flexible mapping spaces
map(Q(H), Q(L)) - map(QQ(H), QQ(L)). We have a commutative diagram

map(Q(H), Q(L)) — map(QQ(H), QQ(L))

I—_—

map(Q(H), QQ(L))

where the vertical arrow is the equivalence of Lemma 4.22 and the diagonal arrow is
induced by the homotopy equivalence s of Lemma 4.18 and hence an equivalence by
Lemma 4.11. Since two of the three arrows are equivalences, so is the third. ]

Proposition 4.24  The inclusion functor i | (£og): Q(Log) — Log is an equivalence of
simplicial categories.

Proof (Essential surjectivity) This is the fact (Lemma 4.18) that L — Q(L) is an equiva-
lence of logics. (Full faithfulness) This is Lemma 4.19. 0

strict

Lemma 4.25 The category Q(Log) is a reflective sub-(oco, 1)-category of Log

Proof We know from Proposition 4.21 combined with Proposition 4.24 that the inclusion
of Q(Log) into Log®" has a left adjoint, and from Lemma 4.23 that their composition

is an idempotent functor. This is what defines a reflexive subcategory. ]
Theorem 4.26 Log is (equivalent to) a reflective sub-(00, 1)-category of Log™"' via the
reflection functor Q.

Proof This is Lemma 4.25 combined with Proposition 4.24. ]

4.3.2 Homotopy Limits in Log, ..

We will now show how homotopical thinking can lead one to the construction of homo-
topy limits in Log,_.,. By Corollary 4.10, homotopy limits are limits in Ho(L0g,_.,;) and
the existence of these (for congruential Hilbert systems) has been established by Mariano
and Mendes in [42, Theorem 2.33].

Here we will give direct constructions of several kinds of homotopy limits to show
some of the homotopy theoretical flavor. For example, in our construction of homotopy
equalizers, there occur logics resembling the path spaces of the corresponding construc-
tions in topology. This shows how signatures can be tailored to fulfill the needs of par-
ticular constructions while keeping them as small as possible. A more general approach
would be to use always the construction Q(—) of Definition 2.5.



Homotopical Categories of Logics 41
We start with the easiest case.

Homotopy Terminal Objects. We have seen in Example 2.7 that the category Sig has
no terminal object, hence by Proposition 2.24 neither does L£o0g,_.,;. In the homotopical
world, things look better:

Proposition 4.27 The category Logy_ . has homotopy terminal objects.

Proof By Corollary 4.10, it is enough to show that there is a terminal object in
Ho(Logy. ). For this take the signature S which has one generating connective of
each arity (or any other signature which produces formulas of any arity) and endow it
with the maximal consequence relation. Clearly, for any logic L there is a translation
L — (S, Fmax) given on signatures by mapping each n-ary generating connective to the
n-ary generating connective of S. Since in (S, Fpax) any two formulas are logically equiv-
alent, all morphisms into (S, Fnax) are equal in the homotopy category. (]

The reader who wishes to test this statement for another category of logics satisfying
the assumptions of Remark 2.20, should make sure that for the maximal consequence
relation actually all formulas are equivalent. This is certainly true for those of Conven-
tion 2.19.

Homotopy Equalizers. Given two parallel arrows f, g: L =% M in Log,_.,. their ho-
motopy equalizer should be a morphism e: E — L such that (f o e)(¢p) "3 (g o e)(p)
(i.e. instead of asking for equality, we ask for pointwise logical equivalence) and such
that each h: H — L with (f o h)(p) 1 (g o h) (@) factorizes uniquely up to homo-
topy through e (this is usually not equivalent to the homotopy limit condition expressed
through mapping spaces, but here it is since the mapping spaces are discrete).

Thus we would like to simply take as equalizer the set of formulas {¢ € Fm(L) |
f(p) 4 g(e)} and endow it with the consequence relation of L restricted to this sub-
set. But this set of formulas is in general not a free algebra over some signature. On the
other hand, if one tries to take as generating connectives of the homotopy equalizer just
those ¢ which satisfy f(c(xy,...,x,)) dun g(c(xy, ..., x,)) then one might miss for-
mulas ¢ with f(p) 4y g(¢). However, since homotopy equalizers are invariant under
equivalences, we can substitute L by an equivalent logic for which the second solution
works.

Definition 4.28 Let L = (Sz,Fz) be a logic, f,g: L == M be two morphisms in
‘C0g2—cat'

1. The signature S¢/# is defined by

S = S0 | [{e |0 € Fm(L). f(9) HFu (@)},

i.e. by taking as generating connectives those of Sz, plus one extra n-ary connective ¢,
for every ¢ € Fm(L)[n] whose images under f and g are logically equivalent.

2. The logic L/*# is the logic over the signature S/, defined by endowing Fm(S(/:8))
with the consequence relation generated by 1, (for the formulas of the linguistic frag-
ment generated by Sy ) and by the rules {1/ - ¢} for every pair of formulas which
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arise from each other by replacing connectives of the form ¢, with the corresponding
formulas ¢, or vice versa.

Thus the logic L#) contains a copy of L as well as lots of new generating connec-
tives which are equivalent to formulas of L which become logically equivalent under f
(resp., g). As before, for substitution invariant, congruential logics it is enough to demand
as generating rules the rules {c, 4 ¢ | ¢ € Fm(S1)}.

Lemma 4.29 The inclusion i: L — L8 is a homotopy equivalence with homotopy
inverse r: L'5'8) — L given by sending the connectives of Sy to themselves and the con-
nective cy to @.

Proof This is precisely parallel to Lemma 4.18 where the inclusion L — Q(L) was
shown to be a homotopy equivalence. Both morphisms respect the consequence relation
by definition of the consequence relation on L(/*8). The composition r o i is the identity
and i o r is the identity on Fm(L) C Fm(L®)) and maps the formula ¢y (x1, ..., x,) to
¢, which is logically equivalent. ]

Definition 4.30 Define the signature Sr as the subsignature of S(/*#) given by the con-
nectives {c, | ¢ € Fm(L), f(¢) " g(@)}. Then the logic E(£:8) s the logic over the
signature Sg endowed with the strongest consequence relation such that the inclusion
Sg — S8 becomes a translation. We denote the inclusion by e: E(/:8) — (/&)

Proposition 4.31 The diagram

roe f
E(ﬁg) — s I —= M
4

is a homotopy equalizer diagram in Log, .,

Proof We will directly show the criterion for mapping spaces, i.e. for any logic H the
map of (homotopy discrete) simplicial sets

(roe)x S
map(H,E(f’g)) — hoequ(map(H, L) ——= map(H, M))
8x

is a weak equivalence.

Since, by Lemma 4.11, a homotopy equivalence z: X — Y in Log induces an equiva-
lence of mapping spaces, by Lemma 4.29, we have a weak equivalence map(H, L) &
map(H, L/'®)). Also, by Proposition 4.9, we have equivalences map(H, L/:®)) —



Homotopical Categories of Logics 43
mwomap(H, L/#)), and hence the following equivalences of diagrams of the shape e = o:

S
map(H, L) ———= map(H, M)
8x

To ma H,LU®) —= momap(H, M)
p p
8x*

Since homotopy equalizers do not change up to equivalence upon replacing a diagram by
an equivalent one, and the homotopy equalizer of a diagram of sets is just the equalizer,
we have the following equivalences:

S
hoequ(map(H, L) ——= map(H, M))
8«

fx
~ equ(nomap(H,L(f’g)) —= momap(H, M))
8x

~{h e momap(H, LY"®) | foh = f o h}
~ {h e momap(H,LY¥)| foh g oh}

where (—) denotes the equivalence class of a morphism in the quotient o map(—, —).

The map map(H, EU8Yy 5 (hen map(H, LY8)) | foh - goh}, since it goes into
a set, factors through o map(H, E(f*g)), and we have to show that o map(H, E(f’g)) —
{h € momap(H, LY®Y| foh—-goh}isa bijection.

(Surjectivity) Every h € Homg,g(H, L/*®)) such that f o h = g o h is homotopic to a
morphism going into the linguistic fragment of E: For each connective ¢ € Sy we have
(f oh)(c(x1,...,x,)) T (g oh)(c(xy,...,xy,)), and thus & is homotopic to h': H —
L8 defined by ¢ cp(e) € Sgre S Spire -

(Injectivity) If h,h': H — E/®) go after composition with e to the same morphism
(H— EU8) — LU8) e mymap(H, L#)), then (e o h)(p) A, 1e) (e 0 k') (g) for
all ¢ € Fm(H). The fact that -5 is the restriction of - (s.e) to Fm(Sg(se)) means
that e is conservative, so h(p) " g.e #' (@) for all ¢ € Fm(H), hence h="n e
momap(H, E(8)). O

We still note that the homotopy equalizer can be characterized by map(H, E(/-8)) ~
momap(H, EY8)) = (h € momap(H, LY®) | f oh 4+ g o h} ~ {h € moymap(H, L) |
f o h - g o h}, where the latter bijection comes from the fact that every translation
H — L8 is equivalent to one going into L, seen as a sublogic of L&),
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In the construction of homotopy equalizers, we could have used Q(L) instead of L (/&)
with almost the same proofs, but we thought it to be instructive to show how one can
construct a logic tailored to the problem at hand. If we demand more properties from the
logics of the category Log, these specialized logics can become much smaller than the
universal solution via Q(L).

One can construct homotopy pullbacks in an entirely similar way to the construction
of homotopy equalizers given here. We leave this to reader, but the existence of homotopy
pullbacks follows from Theorem 4.39 below which asserts the homotopy cocompleteness
of Log 2-cat*

Homotopy Products. Given a family of logics (L; = (S;,F;) | i € I), a first tentative
construction of the product logic might be as follows: Take as signature S := ] S;, so that
the generating connectives are tuples of generating connectives from the S;. This signature
has projection maps pr;: § — §;, defined on generating connectives by (c;)ics — ¢;.
Then define a logic [[; L; by endowing Fm(S) with the strongest consequence relation
such that all these projection maps are translations—this is the consequence relation given
by (I F (¢1) & VielTiFr, .

We would now have to show that (pr; | i € I): momap(H, [[; L;) — []; mo map(H,
L;) is a bijection, but surjectivity in general fails, as seen by the following example:

Example 4.32 Take all the L; to be the same logic L = (S, I-) with signature S generated
by a single unary connective [J and the rule Ox  x. Then Fm(L) = {{Oix; | i, k € N},
where (' := O0---[ (i times). This logic has the feature that no two formulas are
equivalent, unless one can be obtained from the other by a substitution of variables
with other variables. The product [],.y7omap(L, L) contains the family (f,) with
fat L — L given by mapping O +— O". Now if (pr; | i € I): momap(H,[];, L;) —
[1; momap(H, L;) were surjective, there would have to be (up to equivalence) a formula
in [, oy L of the form (O0"x),en. This can not be the case since our tentatively defined
product signature is generated by the single connective (1), cn. Even if we allow a unary
“identity connective” which does not change a formula when it is applied, our product
signature would be generated by {(A;)nen | Ay € {id, 1}}, i.e. by tuples which in each
place have either the identity connective or []. Formulas of this signature would, as usual,
be finite combinations of the generating connectives and any such connective would have
a highest n such that a (1" occurs in some place of the tuple.

The reason behind this failure is that products of free algebras are not in general
free again, as already remarked in Sect. 2. The solution to the problem, much as in the
case of homotopy equalizers, is to substitute the logics L; whose homotopy product we
want to form, by the equivalent logics Q(L;) which have the feature that every formula
¢(x1, ..., xy) is equivalent to a formula c(xy, ..., x,) where c is a generating connective.

Definition 4.33 Let L; = (Sz,,tr,),i € I be a family of logics. We define [] S, to
be the signature with ([]Sz,)n := {(ci)ier | ¢i € (Sr;)n}, i.e. the signature whose n-ary
generating connectives are tuples of n-ary generating connectives of the S;,. There are
obvious projection maps pr;: [[ Sy, — Si,. We define the consequence relation I L
over [[S; to be the biggest consequence relation such that all projection morphisms
become translations. Finally we define the product logic to be [ L; = ([] S, Fyyz,)-
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Remark 4.34 The logic [] L; is the product of the logics L; in the category Log®"®!, by
the construction recipe given in Proposition 2.24.

Temporary Convention 4.35 In the next two statements, we establish the existence of
homotopy products in special categories Log. We make the distinction between the fol-
lowing two cases:

(A) Log is a category of logics where infima of consequence relations are given by in-
tersection. This means: If I; are consequence relations over Fm(S) which are ad-
missible for Log (i.e. (S, ;) are objects of Log), then their intersection ([); ;) €
P (L (Fm(S)) x Fm(S)) is also a consequence relation admissible for Log.

(B) Log is the full subcategory of one of the categories from A, given by logics which
additionally are finitary.

Thus categories Log of type A include, for example, Log ™% and LogsubstTarsk) and
categories Log of type B include Logi™Task) and Hilb. We insert this digression for
special categories, because this admits a nice concrete construction of homotopy products
(only finite ones in case B).

The impatient reader can skip to Proposition 4.38 which guarantees the existence of
homotopy products for general categories Log, using results from abstract homotopy the-
ory which will be sketched in Sect. 4.3.3.

Lemma 4.36 Suppose that either the objects of Log are finitary logics (case B) and
the family L; of Definition 4.33 is finite, or that finitariness is not required for the ob-
Jects of Log (case A). Then the consequence relation =1, is given by I' b1, ¢
Vipri(I') -1, pri(@).

Proof In the case (B) of a category of finitary logics Log, the consequence relation was
defined as the infimum in the complete lattice of finitary (and possibly substitution invari-
ant, Tarskian, etc.) consequence relations of the inverse images pr;” ! (1,;). The inverse
image relations are given by Fprf] (FL)e & pri(IN) Fpri(p).

By the proof of [2, Fact 4], this finitary infimum [inf(;)] of a family of consequence
relations F; is given by I' [inf (F;)]1 ¢ < 3T Chpite I such that Vi: I ; ¢.

Since all the +-; are finitary, there exist I'; Cqnite I° such that I F; ¢. If the family is
finite, then the union of these I is still finite, so that the existence of the I'" Chpite I is
always ensured. This gives the claimed description of the product consequence relation.

In the case (A) where finitariness is not demanded from the objects of Log, the infimum
of a family of consequence relations is given by I' [inf(Fi)]¢ < Vi: I'' +; ¢. U

Proposition 4.37 The category L£0g, .o has finite homotopy products, if the objects are
demanded to be finitary (case B) and all homotopy products if the objects are not de-
manded to be finitary (case A).

Proof Let L; = (S;,1,),i € I be a family of logics, which we suppose to be finite in

the first case. We claim that the strict product [ | Q(L;) of the replaced logics Q(L;) is a
homotopy product of this family. For this we need to show that for any H the map

romap(H, [ Q(L)) —» [[momap(H. L), Fr> (ori o e
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is a bijection.

(Surjectivity) From Lemma 4.18, we know that 7o map(H, L;) = momap(H, Q(L;)),
so we can replace the target by momap(H, Q(L;)). Given a family (f)ie ] €
[[; momap(H, Q(L;)), we know from Lemma 4.19 that the f; have representatives f;
given by strict morphisms. Now we can define a preimage f of the family (f;): If f;
sends a generating connective ¢ of H to a generating connective ¢; of Q(L;), then de-
fine f by f(c) := (¢i)ier € []St,. This is clearly a translation and a preimage of the
family (f;).

(Injectivity) Suppose we have f, f/ such that pr; o f =pr; o f'. The latter condition
means that (pr; o f)(¢) -+ (pr; o f')(¢) Ye. By Lemma 4.36, this implies f(¢) -+
@) Vo,ie. f=f" O

End of Temporary Convention. Now we return to our convention of denoting by Log
any category of idempotent logics satisfying the assumptions of Remark 2.20.

Proposition 4.38 The category Log, .. has all homotopy products.

Proof This follows from the fact that Log, ., is a reflective (oo, 1)-subcategory of
LogsHet and that Logy™! has all homotopy products—the latter will be established in
the next section by means of a model structure on Log®"“t. Indeed, our adjoint functors
i and Q induce an adjunction on the homotopy categories and, by Corollary 4.10, it is
enough to establish the existence of products in the homotopy category Ho(L0g car)-
Now it is an exercise in usual category theory that a reflective subcategory of a category
with products has products itself. These products are given by forming the product in the
ambient category and then applying the reflection functor. Thus the homotopy product of

a family L; is given by Q([]; L;). O
Theorem 4.39 The simplicial category L0g,_..; has all homotopy limits.

Proof We have constructed homotopy products (including a homotopy terminal object)
and homotopy equalizers. By the dual of [40, Proposition 4.4.3.2], one can build homo-
topy limits from homotopy equalizers and homotopy products, analogously to the non-
homotopical statement in classical category theory. That the limits of the cited propo-
sition really correspond to homotopy limits as explained in Sect. 3 is the content of
[40, Proposition 4.2.4.1]. 0

4.3.3 Homotopy Colimits in Log,_ .,

It would be possible to construct homotopy colimits by hand as we did for homotopy lim-
its. Instead, we sketch a proof of the existence of homotopy colimits by different means,
to give a feeling for how homotopy theoretical machinery can be brought into play for
solving such questions. For this we use Theorem 4.26, saying that Log,_.,; is a reflective
sub-(co, 1)-category of Logs™!, and show that Log)™<! has all homotopy colimits. First,
we invoke the following theorem:
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Theorem 4.40 ([35, Theorem 3.3, S. Lack]) Let C be a finitely complete and finitely co-
complete category enriched in the category Cat of categories. Then there is a model
structure on C, such that the weak equivalences are precisely the 2-categorical equiva-
lences in the sense of Sect. 3.3.4. This model structure has the feature that every object is
fibrant and cofibrant and is compatible with the enrichment.

We can apply this to the category Log®"'* enriched in the maximal subgroupoids of
the usual Hom-preorders. This is not entirely trivial, as the (co)completeness condition
of the theorem is to be understood in the enriched sense: Apart from the completeness
and cocompleteness of Logs"', which we know from Proposition 2.24 (or [2, Proposi-
tion 2.11]) one has to show that Log®"® is tensored and cotensored, in the sense of [34],
over the category Cat of categories. This can be done by techniques similar to those we
used in the construction of homotopy limits in Eog%t_rcigi.

From the theorem, we then get a Cat-enriched model category in the sense of
[35, Sect. 2.2]. Recall that the (oo, 1)-category corresponding to a model category is given
by taking the subcategory of fibrant and cofibrant objects and applying the hammock lo-
calization. Here, since all objects are fibrant and cofibrant this is simply the hammock
localization of the whole category Logs"i* with respect to the homotopy equivalences.
As the (00, 1)-category corresponding to a model category has all homotopy limits and
colimits, we have established the homotopy (co)completeness of this hammock localiza-
tion.

However, we need to know that the 2-categorical localization Eog%‘_rcig: is cocomplete,
so we still have to relate this to the hammock localization. The notion of Cat-enriched
model category is such that we get, when we apply the nerve functor to the hom-groupoids
(and here it is important that they are groupoids), a simplicial model category in the sense
of Quillen, see [29, Definition 4.2.18]. Now by [18, Proposition 4.8] for a simplicial model
category, the simplicial subcategory of fibrant and cofibrant objects—which here is ex-
actly Lﬁog;t_rcigt—is equivalent to the hammock localization considered before. Hence we
conclude that the (oo, 1)-category Log%‘_rci;{ has all homotopy limits and colimits.

Finally, now we can now use Theorem 4.26, saying that Log,_.,. is a reflective sub-
(00, 1)-category of LogSfie: The homotopy colimit of a diagram in L0g,_¢, can be con-
structed by seeing it, via the functor Q, as a diagram in Eog%t_rcigi, forming its homotopy
colimit there, and then applying the reflection functor, which as a left adjoint preserves
colimits.

A detailed elaboration of these arguments, and further exploration of the Lack model

structure on Log3™et will be given in a future work.

5 Vista

5.1 Further Studies of Categories of Logics

In the previous chapter, we gave two natural constructions of (co, 1)-categories of logics,
and showed how to explore some of their properties with the examples of Hilbert systems.
Many natural questions about £0g5_.,; and L0gp.mm» and their strict versions, remain to
be pursued. Most of these questions should not be hard to tackle, as we find ourselves in a
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rather easy region of the realm of abstract homotopy theory. The most immediate question
is the following:

Question 5.1 Are the simplicial categories £0g, . and LOgpamm €quivalent?

One approach to proving an equivalence is to simply write down an enriched func-
tor between the two simplicial categories and prove it to be an equivalence. This would
involve an analysis of the mapping spaces of the hammock localization, which would
be interesting in its own right, as it might reveal criteria for determining whether two
translations are homotopic. Other approaches could proceed by constructing appropriate
models of the two (co, 1)-categories, which are more easily comparable than the sim-
plicial categories. For example, one could try to find model categories presenting both
(00, 1)-categories and produce a Quillen equivalence between them. This allows staying
in the realm of usual categories. Candidates for such models appear below.

On the category Log®"', we have the two different notions of homotopy equivalence
and weak equivalence and we can form the hammock localizations with respect to both
of these notions of equivalence. From Lemmas 4.18 and 4.19, we know that every logic
is weakly equivalent to one such that every translation into it is homotopic to a strict
translation. So it is natural to ask:

Question 5.2 Are L7 (Log®"t, W N Log®®) and LH (Log, W) = Loghumm €quivalent
(00, 1)-categories (where W denotes the class of weak equivalences)?

Again one can either directly try to construct an equivalence of simplicial categories
or approach the question via models. The second approach is related to the next question.

Recall from Sect. 4.3.3 that there is a model structure on Log*™° whose equivalences
are the homotopy equivalences. One may ask if this model structure admits a Bousfield
localization: A Bousfield localization of a model category is a new model structure on the
same underlying category which has additional weak equivalences and fewer fibrations,
see [40, A.3.7]. The (oo, 1)-category presented by the Bousfield localization is a reflexive
(00, 1)-subcategory of the (0o, 1)-category presented by the original model structure.

Question 5.3 Is there a Bousfield localization of the Lack model structure on the cate-
gory Hilb*™®* whose weak equivalences are the weak equivalences of logics from Defini-
tion 4.1.3?

The construction of Bousfield localizations is, for example, available for the so-called
combinatorial model categories by a general theorem of J. Smith, see [3]. These are
model categories which are “cofibrantly generated” (see [40, Definition A.2.6.1(2-3)])
and whose underlying category is locally presentable. The latter is the case for Hilb*"ict
by [2, Theorem 2.16].

Here is a further candidate category for a model for the (oo, 1)-category Loghamm-
In several places in the literature, proposals have appeared to consider logics not just
on absolutely free algebras, but to instead consider consequence relations on arbitrary
algebras—note that the definition of consequence relation, Definition 2.11, does not have
to be altered for this to make sense. These gadgets have been called abstract logics in [9].
An advantage of allowing non-free algebras is that one has a better behaved, e.g. complete
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and cocomplete, category, which is, for example, the reason that they appeared in the
context of fibring of institutions in [11]. A disadvantage is that one introduces objects
which one would not commonly perceive as logics.

Question 5.4 Is there a model structure on abstract logics presenting the (oo, 1)-category
Lognamm?

The (co)completeness makes it possible in the first place to hope for such a model
structure. The weak equivalences would have to be chosen such that every general logic
would be weakly equivalent to a logic in the traditional sense and this would make the
disadvantage of unusual objects disappear (up to equivalence). One approach is the fol-
lowing: Every algebra is a quotient of an absolutely free algebra, and for an algebra with
consequence relation (A, =) one can choose such an absolutely free algebra ' — A and
endow it with the biggest consequence relation such that the quotient map becomes a
translation (then terms which become equal in A are logically equivalent in F). A differ-
ent candidate for the underlying category of a model category presenting Logp,mm Would
be the category of operads proposed in [2, Sect. 5].

We know from [2, Theorem 2.16] that the 1-category Hilb*™! of Hilbert systems and
strict translations is locally finitely presentable. A locally finitely presentable category
is a complete category with a small subcategory of finitely presentable objects (i.e. the
functors corepresented by them commute with filtered colimits) such that every object
is a filtered colimit of these. By [2, Proposition 2.15], finitely presentable objects in the
case of Hilb*™! are the logics with finitely many generating connectives whose conse-
quence relation is generated by finitely many rules. There is a corresponding notion of
presentability for (oo, 1)-categories, see [40, Definition 5.5.0.1].

Conjecture 5.5 The (o0, 1)-category Hilbpamm is presentable.

From [1] and [2], one can deduce that every logic is a filtered homotopy colimit of the
finitely presentable objects in the sense defined above. It would remain to show that these
finitely presentable objects are also finitely presentable in the sense of (co, 1)-categories,
i.e. that the mapping space functors corepresented by them commute with filtered ho-
motopy colimits, see [40, Definition 5.3.4.5]. We note that the corresponding conjecture
about ’Hilbgg;lg is true by work of Mariano and Mendes: In [42, Theorem 2.33], they show
that the homotopy category of this category is locally finitely presentable.

All these questions are still centered around our guiding examples of Tarski style ab-
stract logic. Similar investigations to those carried out in the previous sections and pro-
posed in the above questions make sense and would be interesting in other settings of
Abstract Logic.

There is, for example, the category .Alg of algebraizable logics in the sense of Blok—
Pigozzi [8]. Morphisms of algebraizable logics are translations preserving the so-called
algebraizing pairs that come with algebraizable logics, so this is a non-full subcategory of
‘Hilb. Janossy, Kurucz and Eiben in [31, Definition 3.1.3] define an equivalence relation
on the set Hom 4;,(A, B) of morphisms of algebraizable logics in terms of algebraizing
pairs. As for Hilby_cat, this equivalence relation gives rise to a simplicial category Alg, .y
with homotopy discrete mapping spaces. By Corollary 4.10, homotopy (co)limits in this



50 P. Arndt

simplicial category are precisely (co)limits in the homotopy category. The authors in-
vestigate this homotopy category, defined (without mention of a simplicial category) in
[31, Definition 3.3]. They show that it is equivalent to a certain category of quasivari-
eties and that this category has non-empty colimits (the restriction to non-empty diagrams
may be necessary; by [2, Remark 3.10] one has to be careful with initial objects). Thus we
know that we have homotopy colimits of non-empty diagrams in .Alg,_.,.. Of course, there
is also a hammock localization Algy,,, and one may ask about the relationship between
the two. In [2, Theorem 3.12], it is shown that the category Alg is finitely accessible, and
one may ask if the same is true in the (0o, 1)-categorical sense [40, Definition 5.4.2.1] for
Algs car-

In a similar vein, one can explore the categories corresponding to the various levels of
the Leibniz hierarchy, see [14] for some of these. The results of [20] on preservation of
the position in the Leibniz hierarchy under the formation of strict colimits should prove
useful here. A pioneering work in this direction is Mariano and Mendes’ study of the
category of congruential Hilbert systems [42].

A close variant of the logics treated in Sects. 2 and 4, for which the proofs should
go through with almost no modifications is obtained by admitting typed signatures. This
allows, for example, a natural treatment of first order logic by allowing a type of propo-
sitions, as we had before, and types of terms, as well as operations like “=" going from
pairs of terms to propositions. Note however that first order logics can also be encoded
into propositional logics as done in the appendix of [8].

A variant that still studies Tarski style logics, but with a possibly coarser notion of
equivalence, is the program of Mariano and Pinto of representation theory for logics [43].
Indeed, [43, Theorem 3.5] shows that their notion of left Morita equivalence is coarser
than the notion of weak equivalence studied here and one can expect an interesting rela-
tionship between the two corresponding homotopical categories.

Many other notions of logic, translation and equivalence have been proposed, like those
for metafibring [13], those of institutions [15] and m-institutions [21], model-theoretic
abstract logics [37], logical spaces [23], type theories [30], and many more, and they all
give rise to homotopical categories to be explored and compared.

5.2 Invariants of Logics

Given the fact that logics live naturally in homotopy-theoretical universes, we can ask
which other ideas of homotopy theory might apply. Classical homotopy theory studies
homotopy invariants of topological spaces. One use of invariants is to discover if two
topological spaces are not weakly equivalent. One often also tries to compute invariants
because of specific information that they contain about a space or a map, not just to merely
distinguish them.

Many of these invariants are given by mapping into, or out of, some test object. Let
us review the example of singular homology: In Sect. 3.1, we gave a cosimplicial object
A*® in the category Top of topological spaces and defined the simplicial set Sing(X) by
Sing(X), := Hompoep (A", X). Applying the “free abelian group” functor to each of the
sets Sing(X),, one gets an abelian group object in simplicial sets. The homotopy groups
of this new simplicial set are the singular homology groups H, (X; Z). Alternatively, one
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can build a chain complex from a simplicial abelian group by forming alternating sums of
the face maps and take the homology of this chain complex.

Simplicial Sets. The process of the formation of the simplicial set Sing(X) works for
any cosimplicial object in a category, but nothing guarantees that this construction has the
good properties of singular homology, like the long exact sequences which make compu-
tations feasible. But we do indeed have a natural similar construction for logics.

Definition 5.6

1. The category of general logics, GenLog, is the category whose objects are pairs (X, ),
where X is a set and - a consequence relation on it, and whose morphisms are conse-
quence preserving maps of sets.

2. The notions of homotopy equivalence and weak equivalence of general logics are de-
fined to be morphisms of general logics satisfying the conditions of Definition 4.1.
Note that Proposition 4.2 holds here as well.

3. The homotopy category of general logics Ho(GenLog) is defined to be the homotopy
category of the 2-categorical localization (with respect to the obvious preorder enrich-
ment, parallel to the one from the beginning of Sect. 4.3), of GenLog.

4. Denote by U: Log™k — GenLog the forgetful functor from Tarskian logics to gen-
eral logics given by (S, ) — (Fm(S),F)

Note that the functor U induces a functor between the homotopy categories which
we will also denote by U: Ho(Log™X) — Ho(GenLog). We introduced the category
GenLog because it contains a natural cosimplicial object:

Definition 5.7 Let D, (n € Np) be the general logic whose underlying set is the n-
element set {¢o, ..., ¢,} and whose consequence relation is the idempotent, increasing
consequence relation generated by the rules ¢; F ;1.

Since the consequence relations are required to be idempotent and increasing, the gen-
eral logics D, clearly form a cosimplicial object, i.e. the obvious maps of ordered sets
which leave out or duplicate a proposition become morphisms of general logics:

Definition 5.8 The cosimplicial object D*: A — GenLog is defined on objects by [n] —
D,, and by sending a morphism f : [n] — [k] of ordered sets to the map D,, — Dx, ¢; —

Pr):

Mapping out of a cosimplicial object produces a simplicial set. We use this to define a
tentative invariant of logics:

Definition 5.9 The simplicial set of inferences Inf, (L) of a Tarskian logic L is defined to
be the simplicial set Homg,ue(D*, U(L)). This defines a functor Inf,(L): Log™™* —
sSet.

This simplicial set encodes the implication relations between the formulas of L. In-
deed, we have

Inf ,(L)o = Fm(SL),
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Inf (L)1 = { (90, 1) € Fm(SL) x Fm(S.) | 9o -1},
Inf ,(L)> = {(90, 91, 92) € Fm(SL)* | 0o o1 F 02},

and so on. One might now have the idea of applying homotopy theoretic invariants like
homotopy and homology groups to this simplicial set, but this would contain very limited
information about the logic: A simplicial set X, remembers the direction of the edges; the
two structure maps X1 = X can be seen as source and target maps (and indeed this is
what they are if X is the nerve of a category) and they are not interchangeable.

The topological invariants of simplicial sets, however, do not distinguish the direction
of the edges, for example, the nerve of a category and the nerve of its opposite are weakly
equivalent simplicial sets. Thus applying topological invariants to Inf, (L) would amount
to only remembering whether formulas are connected by some inference, without distin-
guishing into which direction it goes. Of course, it could still be possible to distinguish
non-equivalent logics by these data but a lot of information would be lost.

Instead, one should see the simplicial set Inf,(L) as an object of directed homotopy
theory. That is, one should see it not as an object of the standard model category of simpli-
cial sets, where simplicial sets are taken to model topological spaces and in which paths
have no preferred direction, but rather as an object of the model category of quasicate-
gories where the objects are representing (oo, 1)-categories.

In general, directed homotopy theory is a field where one studies spaces (for example,
modeled by simplicial sets) with directed paths, which cannot be gone backwards. For
such a directed space, instead of the fundamental groupoid, one has a fundamental cate-
gory, instead of homology groups one has preordered homology groups. These seem to be
more promising invariants of logics.?> A good introductory survey of these ideas is [24].

Dendroidal Sets. The simplicial set Inf, (L) encodes implication relations between sin-
gle formulas. For finitary logics with a conjunction, this should give fairly complete in-
formation. In general, however, the consequence relation is between sets of formulas and
single formulas and such inferences with many hypotheses are not captured by the invari-
ant Inf ,(L). For finitary logics we can produce a dendroidal set capturing such inferences.
We will consider the definition of dendroidal sets via broad posets, as in [50] and [51].

Definition 5.10 A commutative broad poset is an idempotent, increasing general logic
with the following properties:

1. If I' ¢, then I is finite.
2. lfyeloe®, I'Fpand @y, thenp =1y.

A commutative broad poset is finite, if the relation - C Z?(A) x A is a finite set. Note that
by increasingness this implies that A is finite.

Definition 5.11 Let (X, ) be a commutative broad poset.

An element x € X is called a root, if there do not exist any y, xq,...,x, € A, y #x
such that {x, x1...,x,} F y.

An element x € X is called a leaf, if there is no I" # {x} such that I" I x.

2Cubical sets are more common than simplicial sets in directed algebraic topology, but it is also easy to
write down a cocubical object in GenLog to produce a cubical variant of Inf,(L).
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Definition 5.12 A commutative broad poset (X, ) is a dendroidally ordered set, if

1. It is finite;

2. It has a root; and

3. If x € X is not a leaf, then there exists a unique I" € X such that I" - x and with the
following property: There existsno I = {y1, ..., ¥} € X such that there is a partition
I =1]; I; with I} Fy; Vi.

The full subcategory of general logics whose objects are the dendroidally ordered sets is
called £2.

Definition 5.13 A dendroidal set is a functor £2°°P — Set.

Remark 5.14 Our definition of §2 is a reformulation of [50, Definition 4.1.1] and [51,
Definition 3.2] (where no logics are mentioned). The definition of £2 in the literature on
dendroidal sets is not usually given in terms of broad posets, but rather in terms of trees
and operads; see, e.g. [44]. The equivalence between these two definitions is the content
of [50, Theorem 4.1.15].

We admit that our definition of £2 is somewhat opaque, but the only thing that matters
for now is that it is a subcategory of the category of general logics.

Definition 5.15 The dendroidal set of inferences Inf , (L) of a Tarskian logic L is defined
to be the dendroidal set Homg,,104(£2, U(L)). This defines a functor Inf o (L): LogTarsk
— Set®?”.

Like the category of simplicial sets, the category of dendroidal sets bears several model
structures. There is the Cisinski-Moerdijk model structure [12], with the fewest weak
equivalences, which, roughly, sees dendroidal sets as encoding families of n-ary opera-
tions, closed under composition (operads). This will be the viewpoint that retains the most
information about the logic. Further there are the covariant model structure of Heuts [28]
which sees dendroidal sets as E,-spaces and the stable model structure of Basi¢/Nikolaus
[6] which sees dendroidal sets as connective spectra.

All of these model structures can be used to associate invariants to logics. In particular,
the last one can be used to define the algebraic K-theory of a logic, see [45]. It remains to
be seen how computable these invariants are, whether, e.g. there are long exact sequences
induced by cofibrations of logics, and what exactly they capture about a logic. They are
likely to get much more interesting, if one enriches the categories of logics via proof
theory as in Sect. 5.3.

Galois Style Invariants. A further type of invariant of a logic L can be constructed by
considering the category L | Log of logics receiving a translation from L and associating
to it the group of automorphisms of the forgetful functor to Log or other categories as that
of indexed frames, see Sect. 5.4. The homotopical viewpoint suggests, however, that one
should take autoequivalences instead of automorphisms. This can be seen as a version of
Galois theory for logics.

In a similar spirit, are the Morita style invariants of Mariano and Pinto [43] who,
roughly, associate to a logic the categories of algebraizable logics over/under the logic.
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5.3 Refined Categories of Logics from Proof Theory

The natural enrichment of the categories of logics in preorders lead us to the 2-categorical
localizations of Sect. 4.3. As much as this was an improvement of the corresponding
usual categories, the homotopy discrete mapping spaces are not very interesting objects.
However, they can be seen as the shadows of richer structures. We just give some sketches
and ideas here.

The analogy between proof theory and homotopy theory is as follows: A logic is a
space, formulas are points, proofs are paths between the points, transformations of proofs
are homotopies between the paths.

The somewhat degenerate situation of homotopy discrete mapping spaces in logic can
be seen from this angle. We said that two translations f, g should be declared equivalent
if for all ¢ of the domain, we have f(¢) - g(¢). This only asks for provability of f(¢)
from g(¢p), it does not distinguish different proofs. This is like asking, on the topological
side, whether two points f(¢) and g(¢) are in the same path component, while ignoring
the different paths. Distinguishing different proofs is a way to get to more interesting
enrichments of the categories of logics.

Recall that categories (actually multicategories) of proofs were introduced by Lam-
bek [36]. Given a Hilbert system, presented by a set of deduction rules, one can define a
category whose objects are the formulas and whose morphisms are proofs. Let us say for
the moment that a proof from a hypothesis ¢ to a conclusion i is a sequence of formulas
such that the final formula is i and any intermediate formula is either ¢ or follows from
the preceding ones through one of the deduction rules.

We wish to use this for an enrichment of the category of Hilbert systems. We could
start by saying that Homyy;;,(L, L) is the category whose objects are translations from
L to L’ and where a morphism f — g is given by a collection of proofs { f (¢) — g(¢) |
@ € Fm(L)}, i.e. we could ask pointwise for morphisms in the proof category of L’. Cat-
egorical thinking would, however, demand some kind of coherence between the different
morphisms. If we think of a morphism from f to g as something like a natural transfor-
mation between functors, then we would ask for the commutativity of a certain diagram:
A proof ¢ — v in the proof category of L would be mapped to two proofs f(¢) — f(¥)
and g(¢) — g(1) and we could ask that the naturality diagram commutes:

fl@) —— g(p)

L

f@) —— gW)

This means asking for an equality of proofs, which again seems quite restrictive. On
a middle ground, we could ask that the two proofs are comparable in some sense, or
transformable into each other.

This leaves us with lots of interesting options to choose from, all resulting in differ-
ent categories. There are directed and symmetric versions of relations between proofs.
Choosing the symmetric versions results in a (2, 1)-category of logics, while choosing
the directed versions results in a (2, 2)-category of logics. Here are some examples:
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1. Length of the proofs

e (symmetric) equal length
e (directed) one is longer than the other

2. Normal forms

e (symmetric) both proofs have the same normal form of some kind
e (directed) One is closer to normal form than the other (e.g. elimination rules occur
before introduction rules)

3. Degree of generalizability (Lambek). Suppose we have a proof p : A — B and the
formulas A and B arise by substitution of terms ?1, ..., #, into other formulas ¢, v,
ie. A=op(t,...,t), B=1v(t,...,t;). Then one can ask whether the proof car-
ries over to the more general situation, i.e. whether there is a proof p(xi,...,x,) :
@(x1,...,%p) = ¥(x1,...,x,) such that p = p(ty, ..., ty).

e (symmetric) p and g have the same degree of generalizability, i.e. for every “gener-
alization” of A and B the proof p carries over if and only if ¢ carries over
e (directed) For every generalization to which p carries over, ¢ also carries over

4. Required strength of the logic. One proof p : A — B might use, e.g. Modus Ponens,
© A Y ¢ and =—¢ I ¢ while another proof g : A — B only uses Modus Ponens. Or
one proof might be constructive while the other is not.

e (symmetric) Both proofs use the same logical strength
o (directed) One uses less than the other

The list could easily go on, but the point is that there are many interesting relations
between proofs that one might want to study and they all lead to different categories with
more interesting enrichments than before.

Going further, one could try to get a 3-category of logics, i.e. an enrichment in 2-
categories. For this consider the example of normal forms: Often a proof can be brought
into some normal form by a sequence of elementary steps. These sequences of steps can
be seen as 2-morphisms in the proof category. Again one has to ask when two sequences
of steps can be considered equivalent and get a 2-category of translations by pointwise
application.

In usual logic, nothing seems to be naturally coming after that. In Martin-Lof type
theory, on the other hand, one has identity types and can iterate up to arbitrary levels,
which is exactly what inspired the homotopy theoretical semantics used in homotopy
type theory. This should lead to the richest, least truncated, higher categories of logics.

We still remark that one can adapt the invariants of logics from the previous section to
the setting of these less truncated categories of logics involving some proof theory and that
here they might get more of a homotopical flavor than their more truncated companions.
We also remark that other natural enrichments can be found, for example, an enrichment in
multicategories, via the provability relation between sets of formulas and single formulas.

5.4 Comparing Paradigms of Logic

Another question that gets an interesting twist, once we have turned our categories of log-
ics into higher categories, is that of how the categories corresponding to different formal-
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izations of abstract logic, like institution theory and Tarski style consequence relations,
relate to each other. With the extra flexibility of (oo, 1)-categories it seems easier to get
adjunctions or equivalences between different such settings.

In another direction, there is the work [27] where the authors note that for several for-
malizations of the notion of logic the resulting category has a forgetful functor to the cate-
gory of indexed frames. A typical way to assess a category with such a forgetful functor is
to consider the automorphisms of this functor. In good situations, one can reconstruct the
category from the base category and the knowledge of these automorphisms, but in any
case one can associate in this way a group to a category. In the world of (co, 1)-categories,
one should instead consider autoequivalences.

6 Conclusion

Our aim was to show that a homotopy-theoretical point of view is very natural and ap-
propriate in logic. One is led to natural constructions and questions and this should be
the main reason to adopt such a point of view. A good side effect is, as exemplified by
the (co)completeness results of Sect. 4, that things look better than they might otherwise
through the lens of usual category theory.

We believe that the rich homotopy-theoretical landscape of logics, of which we have
unveiled a bit, gives ample confirmation of how fundamental and fruitful Jean-Yves’ ques-
tions from the beginning of this article really are.
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Semi-implication: A Chapter in Universal Logic

Arnon Avron

Abstract We introduce a general notion of semi-implication which generalizes both the
implications used in classical, intuitionistic, and many other logics, as well as those used
in relevance logics. It is mainly based on the relevant deduction property (RDP)—a weak
form of the classical-intuitionistic deduction theorem which has motivated the design of
the intensional fragments of the relevance logic R. However, CL.., the pure equivalential
fragment of classical logic, also enjoys the RDP with respect to <». We show that in the
language of — this is the only exception. This observation leads to an adequate definition
of semi-implication, according to which a finitary logic L has a semi-implication — iff LL
has a strongly sound and complete Hilbert-type system which is an extension by axiom
schemas of HR_, (the standard Hilbert-type system for the implicational fragment of R).
We also show that in the presence of a conjunction, or a disjunction, or an implication,
a connective — of a logic L is a semi-implication iff it is an implication (i.e. it satisfies
the classical-intuitionistic deduction theorem), and the same is true if L is induced by a
matrix which has a single designated value or a single non-designated value.

Keywords Implication - Semi-implication - Biconditional - Relevance logics - Classical
logic - Deduction theorems

Mathematics Subject Classification (2000) Primary 03B20 - Secondary 03B47

1 Introduction

In general, we take a connective — of a logic L to be an implication for L if it re-
flects the underlying consequence relation of L. Usually, this means that it satisfies the
classical-intuitionistic deduction theorem. In such a case, its availability makes it possible
to directly reduce all inferences from finite sets of premises to theoremhood in a rather
straightforward way: ¥, ..., ¥, FL o iff by, ¥y — (Yo = (- = (Y, = @) --+)). How-
ever, in relevance logics (see [1, 10]) it is reasonable to demand the presence of ¥; in the
above implication only if it is really relevant to the derivability of ¢ from {y, ..., ¥, }.
Our major goal in this paper is to introduce and investigate an adequate general notion
of semi-implication which reflects this intuition, but does not depend on the somewhat
problematic notion of “a use of a formula in a given proof” (like that used in [1, 10] to
motivate some of the relevance systems), or even on the availability of any proof system
for the logic. As we shall see, achieving this goal involves some complications, and the
need to overcome them leads to a notion which is somewhat more complex than might be
expected.
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2 Preliminaries

In the sequel, £ denotes a propositional language. The set of well-formed formulas of
L is denoted by W(L), and ¢, ¥, 0 vary over its elements. 7, S vary over theories of £
(where by a ‘theory’ we simply mean here a subset of YW(L)). We denote by Atoms(yp)
(Atoms(7)) the set of atomic formulas that appear in ¢ (in the formulas of 7).

Definition 2.1 A (Tarskian) consequence relation (tcr) for a language L is a binary re-
lation F between theories in W(L£) and formulas in W(L), satisfying the following three
conditions:

[R]  (Reflexivity) vy Ge {YIEy);
[M]  (Monotonicity) If7T vy andT €7/, then T’ v
[C] (Cut (Transitivity)) Ty and T, ¥ Fothen TUT' F .

Definition 2.2 Let - be a Tarskian consequence relation for L.

e I is structural, if for every L-substitution 6 and every 7 and v, if 7 F ¢ then 6(7) -

o).

e | is non-trivial if p ¥ ¢ for distinct atoms p, g € Atoms(L).

e + is finitary if, for every theory 7 and every formula ¢ such that 7 F 1, there is a
finite theory I' C T such that I" - .

Now we define the notion of propositional logic which is used in this paper (which is
identical to that used in [7]):
Definition 2.3

e A (propositional) logic is a pair L = (£, k1), where L is a propositional language, and
k1, is a structural and non-trivial Tarskian consequence relation for L.
e Alogic L = (L, ) is finitary if so is F,.

Next we present abstract characterizations of some basic connectives:

Definition 2.4 Let L = (£, }1,) be a propositional logic.

e A binary connective — of L is called an implication for L if the classical deduction
theorem holds for — and F,:

T,obL v ff T Lo — .

e A binary connective A of L is called a conjunction for L if it satisfies the following
condition:

Ty A@ iff Ty and Ty, @.

e A binary connective Vv of L is called a disjunction for L if it satisfies the following
condition:

T.yverrL0 ff T,y Fr0andT,¢br0.
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Note 2.5 It is easy to verify that A is a conjunction for L = (£, -1,) iff the following
three conditions hold for every v, ¢ € W(L):

L.y AobL s
2.y NobL g;
3. YL Y A

On the basis of this, it is not difficult to show that one may equivalently define a conjunc-
tion for L as a connective A such that

T,y AekL0 iff T,v9, kL 6.

It follows that a conjunction connective for L assures that for every ¢q, ..., ¥, ¢ € W(L)
it holds that ¥, ..., ¥, FL @ iff Y1 A - A, FL @]

Note 2.6 It is well-known that a finitary logic L has an implication connective — iff L
has a strongly sound and complete Hilbert-type system which is an extension by axiom
schemas of H_, (the standard Hilbert-type system for the pure implicational fragment of
intuitionistic logic).

3 The Relevant Deduction Property (RDP)

As noted in the introduction, an implication connective — for a logic L reflects the under-
lying consequence relation of L. However, such a connective necessarily validates non-
intuitive formulas like p — (¢ — p) and p — (¢ — ¢g). The latter formula also violates
the variable sharing property (VSP)—the most basic criterion for validity of implication
in relevance logics (see [1, 10]).? For logics which respect the principle that in valid en-
tailments all the assumptions should be relevant to the conclusion, it is indeed reasonable
to demand the derivability of ¢ —  from 7 only in case ¢ is absolutely necessary for the
derivability of v from 7 U {¢}. Hence it was noted in [7] that the entailment connective
of these logics should satisfy a weaker condition:

Definition 3.1 Let L = (£, L) be a propositional logic, and let — be a (primitive or
defined) connective of £. — has in L (or L has with respect to — ) the relevant deduction
property (RDP) if it satisfies the following condition:

T,obr ¢ iffeither T g ¢ or T, ¢ — 9.

Note 3.2 As was noted in [7], the RDP does not depend on the notion of “a use of a
formula in a given proof”, and is indeed the way in which A. Church stated his deduction
theorem in [8] (the paper in which the basic relevance logic HR_, described below was
introduced).

'Here Y1 A -+ A Y, might be taken to stand, e.g. for (--- (Y1 AY2) AY3)---) Ay,

2A connective — of a propositional logic L has the variable sharing property (VSP) if Atoms(g) N
Atoms () # ¥ whenever k1, ¢ — .
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Axioms:

[d] ¢—¢ (Identity)

[Tr] (¢ = ¥) = (Y = 0) = (p — 0)) (Transitivity)
[Pe] (p— (v = 0)) = (¥ = (p — 0)) (Permutation)

Rule of inference:

[MP] w

4

Fig. 1 The proof system HLL_,

We start our investigation of logics with the RDP by presenting a basic well-known
logic whose theorems are valid whenever — has the RDP:

Definition 3.3 Let £ ={—}. LL_, is the logic induced by the Hilbert-type proof system
HLL_, presented in Fig. 1.

Note 3.4 LL_, is the pure implicational fragment of linear logic [11]. HLL_, is the
axiomatization of this fragment given in [3].

Theorem 3.5 Let L be a logic in a language which contains —, and suppose that —
has in L the RDP. Then L contains LL_, 3

Proof Since L is a logic, and so structural, it suffices to show the validity of the axioms
and inference rule of HLL_, for the case where ¢, ¥ and 6 are different atomic formulas
P, q,r (respectively).

(Id) Since p Fy, p, but ¥y, p, the RDP implies that g, p — p.
(MP) Since p — g L p — ¢, the RDP entails that p, p — g 1, g.
(Tr) From the validity of [MP] it follows that p, p — g, q — r by, r. It is impossible
that p — q,q — r L r, since otherwise we would get I, p by substituting p for
g and r, and using the provability of [Id]. Hence p — ¢,q — r -1 p — r by the
RDP. Now it is impossible that p — g 1, p — r, since otherwise by substituting p
for g we would get -1, p — r, although p ¥, r. Hence the RDP entails that p —
qtL (g = r) = (p — r). Again it is impossible that -, (¢ — r) = (p — r),
since otherwise we would get 1, (p — ¢q) by substituting g for r. Hence the RDP
entails that -y, (p —> q) = ((@q > r) = (p —> 1)).
(Pe) The validity of [MP] entails that p — (¢ — r), p,q L r. On the other hand,
p — (g — r),q ¥1, r, because otherwise we would get ¢ b, r by substituting
q — r for p. Hence the RDP implies that p — (¢ — r),q 1, p — r. Now
p — (g — r) L p — r, because otherwise by substituting ¢ — ¢ for p and g
for r, we would get F, g (using previous items). Hence the RDP implies that
p— (q@q—>r)kFLqg— (p— r). Finally, ¥, ¢ — (p — r), since otherwise we
would get 1, » by substituting ¢ — ¢ for p and ¢g. Hence the RDP implies that
FL(p—= (g —=71)—> (g —=> (p—>T). O

3This theorem has already been proved in [7]. We reproduce here the proof in order to make this paper
self-contained.
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Our next results show that in many cases a connective — which has the RDP is neces-
sarily an implication.

Lemma 3.6 Suppose — has in L the RDP. Then — is an implication for L iff -, v —
(o = V) for every ¢ and V¥, iff g b1, p — q for two distinct atomic formulas p, q.

Proof Suppose — has in L the RDP. By Theorem 3.5, this implies that ¢, ¢ — ¥ 1, ¢
for every ¢ and v, and so if T bk, ¢ — ¢ then T, ¢ by, ¢. It follows that — is an
implication for L iff the converse holds as well, i.e. if T, ¢ by, ¥ implies that T Fp,
¢ — Y. Next we show that this is equivalent to ¢ 1, ¢ — ¢ for every ¢ and . The
latter is obviously a necessary condition for the former. To show that it is also sufficient,
assume that 7, ¢ k1, ¥. By the RDP, either 7+, ¢ — v or 7 b, . In the first case, we
are done, while the assumption that ¥ 1, ¢ — 1 implies this in the second case, too.
Now since L is structural, that ¢ 1, ¢ — ¢ for every ¢ and i is equivalent to g 1,
p — q for any distinct atomic formulas p, g. By the RDP, this in turn is equivalent to
FL g = (p — g) (otherwise we would have had 1, p — ¢g. Hence p -1, ¢), and so to
FL ¥ — (¢ — ) for every ¢ and . (]

Theorem 3.7 IfL has a conjunction or a disjunction or an implication, and — has in L
the RDP, then — is an implication for L.

Proof Suppose that — has in L the RDP.

e Assume that A is a conjunction for L. From the three properties of A listed in Note 2.5
it easily follows that if p and g are two distinct atomic formulas, then p,q bk, p A g,
while p ¥1, p A g (otherwise we would have got that p Iy, g). Since — has in L the
RDP, this implies that p -1, ¢ — (p A g). Similarly, these properties of A implies that
FL (p A g) — p. Since, by Theorem 3.5, ¢ — ¥, ¥ — 0 b, ¢ — 0, it follows that
p L g — p, and so — is an implication for L. by Lemma 3.6.

e Assume that V is a disjunction for L. Since p Vg1, pV g, wehave (i) pkrL, p Vg
and (ii) ¢ FL p V g. Now Theorem 3.5 implies that p, p — ¢ 1 g. Obviously, also
q,p — qFL gq. As V is a disjunction for L, the last two facts imply that p v g, p —
q FL q. Since p V q ¥1, g (otherwise we would get p k1, g by (i)), this implies that
pVghkL (p— q) — g,and so by (ii) that g 1, (p — q) — ¢. By substituting p — g
for p in the last fact, we get (*) ¢ FL ((p = q) — q) — ¢. But it is easy to see that
FLo., (((p = q) — g9) = q) — (p — q). Hence, Theorem 3.5 and (*) together imply
that ¢ F1, p — ¢, and so — is an implication for L by Lemma 3.6.

e Assume that D is an implication for L. Then p, p D g 1, g (because p D g 1 p D q).
Now p D g ¥1 g (otherwise we would get p D p b1, p as a special case, and so that
FL p). Therefore, the RDP for — implies that p D g+ p — ¢g. Since g L, p D g
(because ¢, p 1, ¢ and D is an implication for L) it follows that ¢ -, p — ¢. Hence
— is an implication for L by Lemma 3.6. (]

Note 3.8 It is easy to see that -, p — (¢ — ¢) in case — is an implication for L.
Therefore, it follows from the last theorem that if — has in L both the RDP and the VSP
(see footnote 2) then L has no conjunction, no disjunction, and no implication. This is
the reason why the intensional fragments of the relevance logic R have no conjunction,
disjunction, or implication, while the entailment connective — of R itself does not have
the RDP.
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4 The Minimal Logics with the RDP

Our next goal is to characterize the minimal logics which has a connectives — having the
RDP:

Definition 4.1 Let £L={—}.

1. HR_, is the Hilbert-type system obtained from HLL_, by adding to it the following
axiom:

[Ct] (<,0 — (¢ — Iﬂ)) — (¢ — ¥) (Contraction).

Let R_, be the logic induced by HR_, .
2. HCL,, is the Hilbert-type system obtained from HLL_, by adding to it the following
axiom:

[Eql (¢ — (¢ > ¥)) > ¥ (Equivalence).
Let CL., be the logic induced by HCL.. .

Theorem 4.2 Let L be a logic in a language which contains —, and suppose that —
has in L the RDP. Then L is an extension of either R, or CL,.

Proof By Theorem 3.5, L contains LL_,. Now the validity in L of [MP] for — entails
that p — (p — ¢q), p k1 q. By the RDP, this in turn implies that either p — (p — ¢) FL
p— q,or p— (p — q) k1, q. Since neither k-, g nor 1, p — ¢ (because p ¥y, g by
our definition of a logic), by the RDP we get that either g, (p — (p — q)) — (p — q)
or -, (p — (p — q)) — q. Hence either [Ct] or [Eq] is valid in L, implying that it is an
extension of either R_, or CL.,. O

Note 4.3 From Theorem 5.5 below it easily follows that a logic cannot be an extension
of both R_, and CL...

Corollary 4.4 Let L be a finitary logic, and suppose that — has in L the RDP. Then L
has a strongly sound and complete Hilbert-type system which is an extension by axiom
schemas of either HR_, or HCL,.

Proof Let HL be the Hilbert-type which has [MP] for — as its sole rule of inference, and
every theorem of L as an axiom. By Theorem 4.2 and its proof, HL is an extension by
axiom schemas of either HR_, or HCL.,, and is strongly sound for L. To show that it is
also strongly complete, assume that 7 b, ¢. Since L is finitary, there is a finite subset
I' €7 such that I" by, ¢. Let I' = {1, ..., ¥,} be a minimal subset of 7 with this
property. Then the RDP, the minimality of I", and the validity of [MP] in L together entail
that -y, ¥4 — (Yo = (--- — (Y, = @) ---)). Hence this formula is an axiom of HL.
Using [MP], this fact immediately implies that 7 gz ¢. O

The converse of Corollary 4.4 also holds:
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Theorem 4.5 Let ‘H be an extension by some axioms schemes of either HR_, or HCL., .
Then the logic induced by H has the RDP.*

Proof The “if” direction is trivial. The converse is proved by induction on the length of
the proof of ¢ from T U {p}. If ¥ is an axiomof Hor ¢y € T then T by . If ¥ = ¢
then 7 3y ¢ — ¥ by axiom [Id]. Finally, if ¢ was inferred from 6 and 6 — i then by
the induction hypothesis there are four cases to consider:

TRy 0and Ty 0 — then T by .

. THy60and Ty ¢ — (0 — ) then T 3 ¢ — ¢ using axiom [Pe].

M ThHye—>0and T gy 6 — 4 then T 3 ¢ — ¢ using axiom [Tr].

. Suppose Ty ¢ — 6 and T F3 ¢ — (0 — ). Then, using axioms [Pe] and [Tr],
we getthat 7 g ¢ — (¢ — ). It follows that if H extends HR_, then 7 ¢ ¢ — ¢
by axiom [Ct], while if # extends HCL., then T 4 ¥ by axiom [Eq]. (]

AW =

The results of this section are summarized in the following theorem:

Theorem 4.6 A logic L is finitary and has a connective — which has in L the RDP iff
L has a strongly sound and complete Hilbert-type system which is an extension by axiom
schemas of either HR_, or HCL,.

Proof Immediate from Corollary 4.4 and Theorem 4.5. (]

5 CL4 and the Classical Equivalence

Our next goal is to show that the logic CL., is actually the logic of the classical equiva-
lence connective. We start with the following lemma:

Lemma 5.1

L. Frcr,, (0 > ¥) = (Y — ¢);
2. Frcer, o — (U — (o = ¥)).

Proof

1. By substituting in axiom [Eq] ¥ — ¢ for ¢ and (¢ — V) — (Y — ¢) for ¥, we get
that Frer, (Y = @) > (Y = ¢) > (@ > V) > (Y = 9) = (¢ > V) —>
(¥ — @)). But it is easy to see that Frr,_ (Y — ¢) — (¥ = ¢) = (¢ = V) —
(¥ — ¢))). The last two facts imply that -gcr., (9 = ¥) = (Y — @)

2. By [Id] and [Pe], (i) Fucr, ¢ — ((¢p — ¥) — ), while by the first item of
this lemma Fgcr, (¢ = ¥) = ¥) > (Y — (¢ — ). That Fucr, ¢ — (Y —
(¢ — 1)) follows from (i) and (ii) using [Tr]. U

Theorem 5.2 HCL., is strongly sound and complete for the equivalence fragment of
classical logic (i.e. T Fucr., ¢ iff by interpreting — as the classical biconditional <,
we get that every assignment that satisfies T also satisfies ¢).

4For the extensions of HR_, this theorem was first proved in [8].
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Proof Obviously, [MP] is a valid rule of inference for the classical biconditional <. It is
also easy to check that every axiom of HCL., becomes a classical tautology if — is inter-
preted as the classical biconditional.” Hence HCL., is strongly sound for the equivalence
fragment of classical logic.

To prove strong completeness, assume that 7 ¥ gcr., 6. We show that 8 does not follow
from 7 in the classical equivalence logic. For this, extend 7 to a maximal theory 7* such
that T* Frcr., 6. Obviously, ¢ € T* iff T* Fpcr., @, and ¢ & T* iff T*, ¢ Fpcr., 6.
Therefore, the RDP implies that

(x) @¢T* iffop—>0eT™
Now define a valuation v as follows:

o )_t ifoeT™,
Y7V ifee T

We show if — is interpreted as the classical biconditional (i.e. v(¢ — ¥) =t iff v(p) =
v(¥)), then v is a legal classical valuation.

e Suppose v(p) = v(y¥) =t. Then ¢ € T* and ¢ € T*. Therefore, it follows from
the second item of Lemma 5.1 that 7T* Fgcr., ¢ — . Hence ¢ — ¥ € T*, and so
vip —> ¢¥) =t.

e Suppose v(p) =t and v(¥) = f. Then ¢ € T*, while ¢ ¢ 7*. Because of the presence
of [MP], these facts immediately imply that ¢ — v ¢ 7%, and so v(p — ¥) = f in
this case.

e Suppose v(¢) = f and v(y¥) = ¢. By the previous item, this implies that ¥ — ¢ ¢ T*.
Therefore, the first item of Lemma 5.1 implies that ¢ — ¢ ¢ T*, andsov(p — V) = f
in this case, too.

e Suppose v(p) =v(¥) = f. Then ¢ ¢ T* and ¢ ¢ T*. By (¥) above it follows that
¢ — 0 eT*and y — 6 € T*. By the first item of Lemma 5.1, the second fact implies
that 0 — ¢ € T*. Using [Tr] this last fact and the fact that ¢ — 6 € T* together imply
that ¢ — ¢ € T*, and so v(¢ — ) =1 in this case.

Since 7 C T*and 6 ¢ T*, it follows that if — is interpreted as the classical biconditional
then v is a model of 7 which is not a model of 8. Hence 6 does not follow from 7 in the
classical equivalence logic. g

Corollary 5.3 The pure <>-fragment of classical logic has the RDP for <.

Proof This is immediate from Theorems 4.5 and 5.2. O

5This is particularly easy using Lesniewski famous criterion (see, e.g. Corollary 7.31.7 in [12]), according
to which a formula built up using <> as the sole connective is a classical tautology iff every propositional
atom occurs in the formula an even number of times.

This corollary was first proved by Surma (see [18]). A direct semantic proof of it can be found in 7.31.3
of [12].
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Note 5.4

1. Axiom [Id] can easily be derived from the other axioms: it suffices to substitute in
[Eq] ¢ — ¢ for both ¢ and ¥, and then use [Tr] and [MP]. It follows that [Id] can be
dropped from the list of axioms of HCL.., leaving a system with just three axioms.

Now in [18] several other axiomatizations of CL., are presented, with just two
axioms and even a single axiom. However, none of them is a direct extension by axioms
of LL_,.

2. Instead of [Eq], we could have adopted as an axiom the schema given in the first item
of Lemma 5.1: (¢ — ) — (¥ — ¢). Indeed, [Eq] can easily be derived using [Tr]
and [MP] from the following four schemas:

@ (= (@—=> 1Y) —> (0= (F = 9));
®) (o= W —9)—> W — (¢~ 9);
© (= (p—=>9)— (g—¢)—>¥);
@ (p—=> @) > ¥) > Y.

Now (b) and (d) are easily seen to be theorems of LL_,, (c) is an instance of the
schema (¢ — ¥) — (¥ — @), while (a) easily follows from this schema in LL_, .

A property of CL., which is particularly important in the present context is given in
the next theorem:

Theorem 5.5 CL.., is strongly Post-complete: it has no proper extension in its lan-
7
guage.

Proof Suppose That L is a logic in the language of {—} which properly extends CL...
Then there is a theory 7 and a sentence ¢ in this language such that 7 b, ¢ but
T ¥cL., ¢. The latter implies that there is a classical valuation v which assigns ¢ to ev-
ery element of 7, while v(¢) = f. Let p be some propositional atom of ¢ such that
v(p) = f (such p exists, since v(¢) = f). Obtain 7’ and ¢’ from 7 and ¢ (respectively)
by substituting p — p for every atom ¢ such that v(g) =t, and p for every atom g such
that v(¢) = f. Then T’ b, ¢’ (since by, is structural), while 77 ¥cr_, ¢ (because any
valuation u such that u(p) = f is a model of 7 which is not a model of ¢’). Now if
¥ € T then Atoms(v) = {p}, and u(y/) = r in case u(p) = f. Since u(y) = t also when
u(p) =t (because Atoms(y) = {p} and we interpret — as the classical equivalence),
it follows that every ¥ € T is a classical tautology, and so Fcr,., ¥ by Theorem 5.2.
Hence Fy, v for every ¥ € T/, and so y, ¢’ as well. However, ¢’ is a formula such
that Atoms(¢’) = {p}, and u(¢’) = f in case u(p) = f. It is easy to see that in this case
¢’ — p is a classical tautology (when — is interpreted as the classical equivalence), and
so FcL., ¢’ — p by Theorem 5.2. Hence y, ¢’ — p as well, and since b, ¢’ too, it
follows that -1, p where p is atomic. A contradiction. U

TThis is a slight generalization of a theorem of Prior, who showed in [14] (p. 307) that CL., is Post-
complete in the sense that one cannot add any new axiom to it in its language.
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6 The Notion of Semi-implication

Having the RDP seems at first to be an appropriate criterion for a notion of semi-
implication that generalizes the classical-intuitionistic notion of implication, and is ade-
quate also from the relevance point of view. However, the fact that — has this property in
CL.. means that this criterion is not sufficient: intuitively, CL., seems strange as a logic
of an entailment connective, since we have that 1 — ¢ is valid in it whenever ¢ — 1 is.
Now Theorems 4.6 and 5.5 imply that CL., is indeed a singular point among the logics in
the language of {—} in which — has the RDP. All other such logics are extensions of R_,
(and unlike CL.,, there are infinitely many such extensions—see Note 6.8 below). Ac-
cordingly, the notion of semi-implication that we introduced next is designed to exclude
this singular point by forcing one more, quite natural, condition:

Definition 6.1 (Semi-implication) Let L = (£, I-1,) be a propositional logic. A (primitive
or defined) binary connective — of L is called a semi-implication for L if — has in L the
RDP, and in addition there are formulas ¢ and v such that -, ¢ — ¥ but ¥y, ¥ — ¢.

Note 6.2 Like implication, a semi-implication for L (or even just a connective which has
in L the RDP) reflects the consequence relation of L, but it does it in a more complicated
way: Y1, ..., ¥y FL @ iff for some subset {61, ..., 0} of {{,..., ¥y} it holds that -y,
> O — (= O —>¢)--)).

Proposition 6.3 Every implication for L is also a semi-implication for L.

Proof Let — be an implication for L. Obviously, — has in L the RDP. To show that
it satisfies also the second condition in the definition of a semi-implication, suppose for
contradiction that by, ¥ — ¢ whenever 1, ¢ — . Since k1, p — (¢ — q) (because
P, q F1, q), this implies that Fy, (¢ — g) — p. But b1, ¢ — ¢ as well (because g F1, ¢).
It follows that -, p, contradicting the fact that L is a logic. g

Our next result shows that R_, has with respect to semi-implications the same role that
H_, has with respect to implications (see Note 2.6):

Theorem 6.4 A logic L is finitary and has a semi-implication connective — iff L has a
strongly sound and complete Hilbert-type system which is an extension by axiom schemas
of HR_, .

Proof That if L is finitary and has a semi-implication then it has such a Hilbert-type
system follows from Theorem 4.6 and Lemma 5.1. For the converse, assume that L. has
such a Hilbert-type system. Then it is finitary, and by Theorem 4.6 it also has the RDP. To
end the proof, assume for contradiction that -y, v — ¢ whenever k1, ¢ — . Since Fgr_,
(p— (p — p)) = (p — p), this implies that -, (p — p) - (p —> (p — p)), and so
that 1, p — (p — p) (because Fyr_, p — p). In turn, this fact and our assumption
imply that -, (p — p) — p, and so that -yr . p. A contradiction. O

Note 6.5 The last theorem means that R_, is the minimal logic which has a semi-
implication. It is interesting to note that in [6] it is shown that every extension of R_,
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in its language is contained in CL_,, the implicational fragment of classical logic. Thus
CL_, is the maximal logic in the language of {—} in which — is a semi-implication.

Corollary 6.6 If a connective — has in a finitary logic L both the VSP and the RDP,
then it is a semi-implication for L.

Proof Since — has in L the RDP, it suffices by Theorems 4.6 and 6.4 to show that L is not
an extension of CL.,. But from Theorem 5.2 it follows that -c_ (p — p) = (¢ = ¢q).
Hence no extension of CL., can have the VSP. O

Note 6.7 From Proposition 6.3 and Corollary 6.6 it follows that the notion of a semi-
implication is a common generalization of the notion of implication (as defined above)
and the notion of strong relevant implication defined in [7].

Note 6.8 In [2], one can find an infinite family of logics in the language of {—}, all of
which has the VSP and are extensions of HR_, by axiom schemas. There are, of course,
in the language of {—} also many extensions of HR_, by axiom schemas which do not
have the VSP, like the implicational fragments of intuitionistic logic, classical logic, and
any intermediate logic.

7 Semi-implication in Special Types of Matrices

Theorem 3.7 shows that in many cases a semi-implication is necessarily an implication. In
this section, we describe some very common semantic circumstances in which the same
phenomenon occurs. We start by recalling some basic definitions concerning multiple-
valued logics.

Definition 7.1 Let £ be a propositional language.
1. A matrix for L is a triple M = (V, D, O), where

e Vis a non-empty set of truth values;

e D is a non-empty proper subset of V' (whose elements are called the designated
elements of V),

e O is a function that associates an n-ary function S : V" — V with every n-ary
connective ¢ of L.

2. An M-valuation for L is a function v : W(L) — V such that for every ¥, ..., ¥y:
VOW, s ¥n)) = SO ), - v(Yn)).

3. An M-valuation v is an M-model of a formula v, or v M-satisfies { (notation,
vEM V), if v(¥) € D. vis an M-model of a theory T (notation, v =pq T), if it is
an M-model of every element of 7.

4. The consequence relation - 44 which is induced by (or is associated with) a matrix M
is defined by: T a4 ¥ if v Epq ¥ whenever v is an M-valuation such that v =4 7.

5. If M is a matrix for £ then Ly = (L, ) is the logic induced by M.

Next we introduced two very important special types of matrices.
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Definition 7.2 Let M = (V, D, O) be a matrix for L. M is called a t-matrix if D is
a singleton, in which case we denote the single designated element by ¢. M is called
an f-matrix if V — D is a singleton, in which case we denote the single non-designated
element by f.

Note 7.3 At the beginning of the study of many-valued logics all matrices that were
considered (like Luksiewicz’ various matrices, the three-valued matrices of Kleene and
Bochvar, Godel matrices, etc.) were f-matrices, and these matrices are still the most stud-
ied class of matrices. In paraconsistent logics, on the other hand, the use of f-matrices is
very common. A general extensive study of 7-matrices and f-matrices has been done in
[4, 51.

Theorem 7.4 Let M be a matrix for L which is either a t-matrix or an f-matrix, and
suppose that — is a semi-implication for L nq. Then — is an implication for L p4.

Proof Let M = (V, D, O), and assume that — is a semi-implication for L o¢. By The-
orem 6.4, L A, is an extension of R_, 3 Therefore, for any two atomic formulas p and g
we have:

@ p,p—=>qgtmg

® Fmp—p

© Fmp—=>Up—>9) —>q)
drFmp—>pP—>9)—>(pP—>q)

© Fmpp—>@—>r)—>(@G@—>(p—>r)
O Fmp—>q)—>(g—>r)—>(p—>r))

Obviously, (a) implies that (%) b € D in case a € D and a—b € D. This and (f) together
imply that (%) a—c € D whenever a—b € D and b—>c € D.

In the rest of the proof, we separately deal with each of the two cases considered in the
formulation of the theorem.

1. Assume that M is a t-matrix. Let a € V. Then (b) implies that a—=a = ¢, while
(d) implies that (a—(a—a))—>(a—a) = t. Together these two facts imply that
(1) (a=>t)=>t =t. On the other hand (c) implies that (ii)) a— ((a—=t)—t) =t. Now
from (i) and (ii) it follows that a—t =t for every a € V. Hence g Ay p — ¢. By
Lemma 3.6, this fact implies that — is an implication for L z4.

2. Assume that M is an f-matrix. In this case, (*) implies that (i) a— f = f fora € D,
while (b) implies that (ii) a—a € D for every a € V. In turn, these two facts to-
gether imply that (f= f)—= f = f. Therefore, had there been some a € V such that
f—a = f then we would have that (f=>(f—>a))=>(f>>a) = f. However, this con-
tradicts (d). It follows that (iii) f—>a € D for every a € V. Now (iii) and (i) together
imply that (p — g) — p Faq p. Since — is a semi-implication for L 54, this implies
that = ¢ ((p = q¢) = p) — p. It follows that (b= f)—>b)—>b € D forevery b € V,
and so by (i) we have: (iv) (f—>b)—=>b € D for every b € D. On the other hand,

8Theorem 6.4 is about finitary logics, but its proof shows that being an extension of R_, is a property of
every logic with a semi-implication. It is also worth noting that by a theorem of Shoesmith and Smiley
(see [15, 16]), L o4 is finitary whenever M is finite.
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(iii) implies that f— (a—=b) € D for every a and b, and so by (e) and (*) we have:
v) a=>(f=>b) € D. Now from (v), (iv), and (¥*) it follows that a—b € D when-
ever b € D. Hence g -aq p — ¢. Again by Lemma 3.6, this fact implies that — is an
implication for L z4. (]

We end with an example of a matrix M such that L x4 has a semi-implication which
is not an implication. By the last theorem, this matrix has, of course, more than one des-
ignated element and more than one non-designated element.

Example 7.5 Let Sj,17 be the standard 8-Sugihara matrix for the language {—, —}, i.e.
Sio,17 = ([0, 1], {x € [0, 1] | x > 1/2}, {;, —=1}), where [0, 1] is the unit interval, —a =
1 —a, and a>b =max(l — a,b) if a < b, min(l — a, b) if a > b. It is well-known
that RM:) , the implication-negation fragment of the semi-relevant logic RM, is strongly
sound and complete for Spo 1], and that this fragment can be axiomatized by adding
to HR_, the two axioms for negation of R (see [1, 10]), as well as the mingle axiom
¢ — (¢ — ¢).” Therefore, it follows from Theorem 6.4 that — is a semi-implication
for LS[O.”. Since ¢ }‘5[011] p — q (take, e.g. v(g) =1/2, v(p) = 1), by Lemma 3.6, — is
not an implication for this logic. At this point, it is also worth noting that in [13] it
was shown that RM:) is weakly sound and complete for Sobociniski three-valued logic

(see [171),'9 which is an f-matrix. This fact does not contradict, of course, Theorem 7.4
because RM _, is not strongly complete for Sobocinski’s matrix.
—

An Open Problem. The matrix used in the above example is infinite, and so are all other
examples I know of matrices which induce logics that have semi-implications which are
not implications. Are there also finite matrices with this property?
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A Formal Framework for Hypersequent Calculi
and Their Fibring

Marcelo Esteban Coniglio and Martin Figallo

Abstract Hypersequents are a natural generalization of ordinary sequents which turn out
to be a very suitable tool for presenting cut-free Gentzent-type formulations for diverse
logics. In this paper, an alternative way of formulating hypersequent calculi (by introduc-
ing meta-variables for formulas, sequents and hypersequents in the object language) is
presented. A suitable category of hypersequent calculi with their morphisms is defined
and both types of fibring (constrained and unconstrained) are introduced. The introduced
morphisms induce a novel notion of translation between logics which preserves metaprop-
erties in a strong sense. Finally, some preservation features are explored.

Keywords Hypersequents - Fibring - Translation between logics
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1 Introduction

In recent years, the development of methods for combining logics has gained attention,
and motivations came from different areas such as Philosophy and Computer Science
(see, for instance, [4] and [5]). Logics presented in different ways require ad hoc combi-
nation techniques. In [11], the well-known method of fibring for combining modal logics
was introduced. Categorical (a.k.a. algebraic) fibring, introduced in [16], is a wide and
extremely useful tool for combining logics, allowing to combine a vast class of logic sys-
tems of different nature (consult [5]). In general, it is possible to define two different kinds
of fibring: unconstrained fibring, in which there is no sharing of logic constructors from
the combined logics (and so the resulting logic is a coproduct of the given logics), and
constrained fibring, in which some constructors are shared. In categorical terms, the latter
is obtained from the former by taking an appropriate quotient.

In [8], a novel category of formal sequent calculi was introduced, and both types
of categorical fibring (called meta-fibring) were obtained. Two kinds of sequents were
considered: commutative sequents, formed by pairs of sets of formulas (thus taking for
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granted structural rules such as permutation and contraction) and non-commutative se-
quents, formed by pairs of sequences of formulas. The former are called general asser-
tions, while the latter are called general sequents. A remarkable feature of the presentation
of this approach is the use in the object language of variables for sets and sequences of
formulas, respectively, besides the standard use of scheme variables for formulas. This
peculiarity permits considering sequent rules with full generality, allowing to combine by
fibring two calculi in a satisfactory way. Another novelty of the approach is the notion
of morphism between sequent calculi proposed therein (called meta-translations), being
stronger than the usual one in the sense that more meta-properties (in rough terms, sequent
rules) of the consequence relation of the source logic are preserved. This is a key feature
which allows the reconstruction of a given logic by means of the fibring of its fragments.
An interesting possibility of generalization of the results obtained in [8] lies in the use of
hypersequents instead of sequents, because of their subtleties.

Hypersequents (see [2, 15] among others) constitute a natural generalization of ordi-
nary sequents and turn out to be a very suitable tool for presenting cut-free Gentzen-type
formulations for several non-classical logics. In particular, hypersequents are well-suited
for describing disjunctive properties by analytic means. The proof of cut-elimination in
a (hyper)sequent calculus for a given logic is desirable, because of its important conse-
quences, such as the consistency of the logic and interpolation properties.

This paper proposes a generalization of the work done in [8] to the richer framework
of hypersequents. Thus, departing from a formal presentation of hypersequent in which
meta-variables for contexts (i.e. sequents) are introduced in the object language, the fib-
ring of such systems is defined within a suitable category of hypersequents. Besides, it is
shown that fibring does not preserve, in general, rule-elimination properties such as the
cut-elimination property. Finally, a brief conceptual discussion about the relevance of this
approach concerning the theory of translations between logics is carried out.

2 The Category of Formal Hypersequent Calculi

This section presents the category of hypersequent calculi, generalizing the notion of
assertion calculi introduced in [8]. An independent similar approach was developed in [7].

In what follows, we shall consider a denumerable set & = {§; : i € N} of symbols
called variables of level 1 (or scheme variables); a denumerable set X = {X; :i € N}
whose elements are called variables of level 2 (or context variables); and, finally, a denu-
merable set $ = {H; : i € N} whose elements are called variables of level 3 (or sequent
variables) where these sets are pairwise disjoint.

A propositional signature is a denumerable family C = {C,},,en of pairwise disjoint
denumerable sets; additionally, every C,, is disjoint with H U X U . Elements in C,, are
called n-ary connectives (or constructors). The set of constructors of C is |C| = | J,,cy Ch-
The algebra of type C freely generated by = is denoted by L(C). Elements of L(C) are
called formulas. From now on, and for the sake of simplicity, in the examples we will
refer to a signature C as the set |C]|.

Generalizing to multisets the definition from [8] of general assertion, a sequent over
a signature C is an expression of the form (A; I > A; B) where I" and A are multisets
of formulas in L(C) and A, B are finite multisets of context variables such that " U A U
A U B # . The set of sequents over C is denoted by Seq(C).
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It should be noted that a sequent (in our sense) is nothing more than an ordinary com-
mutative sequent, enriched with both variables of type 2 for sets of formulas (describing
the context of the sequent) and variables of type 1 for formulas. This formalism allows
defining in a precise way sequent calculi and their fibring (cf. [8]). Now we shall introduce
the notion of commutative hypersequent by using sequent variables, that is, variables of
type 3.

Definition 2.1 A commutative hypersequent h over C is a pair h = (H; S) where H is
a finite multiset of sequent variables and S is a finite multiset of sequents. The set of
commutative hypersequents over C will be denoted by HSeq(C).

Following the usual notation, a commutative hypersequent
h={{G1,....Ga}: {(A;; 1 > A1 B1), ..., (A T = A B })
will be written, from now on, as
h=G1|---|GulA1; I7 > Av; Byl -+ |Am; T > Ams B

An empty component of a sequent will be simply omitted from the notation and so
we will write, for instance, (A; I" = A) and (> A; B) instead of (A; " > A; ) and
(?; & = A; B), respectively. As usual, I", I'" and I", ¢ will stand for " U I"" and I" U {¢},
respectively. Besides, we shall write X and X, Y instead of {X} and {X, Y}, respectively,
for any variables X and Y. The same notation applies to sequent variables. Moreover,
given a finite multisubset # of $), the hypersequent (#; @) will be simply denoted by H.
Analogously, given a finite multisubset S of Seq(C) the hypersequent (#; S) will be sim-
ply denoted by S.

Definition 2.2 Let C be a signature. A (n-ary) rule of inference of commutative hyperse-
quents over C is a pair r = ({h1, ..., hy}, h) such that h;, h € HSeq(C). If n =0 then r is
called an axiom. A commutative hypersequent calculus (chc) is a pair A = (C, R) where
C is a signature and R is a finite set of rules of inference of commutative hypersequents
over C.

For simplicity, we shall denote pairs {{hy, ..., h,}, h) and (@, h) by

hy ... hy

and -—.
h h

Example 2.3 The logical hypersequent rule r—. for negation which is usually represented
by

_ GII'HA,a

" G|lma,TFA

F—s

is here represented by

(G XL 9= {6 {YDD
(G X} (=&} = 2 (YD)’
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or simply by
G| X>§&Y
GIX;=E>Y
(see Remark 2.5 below).

From now on, we will denote by M Py, (X) the set of all finite multisubsets of a set X.

Recall that a substitution over a signature C is a map o : & — L(C). We denote by
6 : L(C) — L(C) the unique homomorphic extension of o to L(C). Adapting [8], an
instantiation over C is a map o : X — MPg,(L(C) U X). If g is an instantiation over
C and A € MPs,(X) is a finite multiset of variables of type 2, we define the following
finite multisets:

Ag{={YeX:Yeg(X)forsomeXeA}:(U Q(X))ﬂX;
XeA

Ai(c) ={peL(C):peco(X)forsome X € A} = (U Q(X)) N L(C).
XeA

Thus, given a substitution o and an instantiation o over C, respectively, the map (o, 0) :
Seq(C) — Seq(C) is defined in the following way: given a sequent (A; I" > A; B), then

(0,0)(A; ' > A; By = (A%:6(IN U A‘i(c) = 6(A)U Bi(c); B%).

In order to deal with hypersequents, we shall introduce a notion of substitution for
variables of level 3.

Definition 2.4 We shall say that A is a sequent instantiation over C if A is a mapping from
£ to the set MPgn($ U Seq(C)) of all finite multisubsets of £ U Seq(C).

Let A be a sequent instantiation and & = (H; S) a hypersequent over C. Consider the
following multisets:

’H%:{Geﬁ:Gek(H)forsomeHeH}z ( U )»(H)>ﬂ55;
HeH

’ngq(c) = {s € Seq(C) :s € A(H) for some H € ’H} = < U A(H)) N Seq(C).
HeH

Then, given a substitution o, an instantiation ¢ and a sequent instantiation A over C,
respectively, the map (o, 0, A) : HSeq(C) — HSeq(C) is defined as follows:

(0.0. M) (h) = (Hi: (0.0)(S) UHbyc))-

Remark 2.5 (Extensional rules vs. Intensional rules) Recall the Example 2.3 above. De-
spite the apparent similarities between the traditional notation for hypersequent rules and
our notation, there are deep differences between r—, and our representation. In the for-
mer, G denotes an arbitrary multiset of concrete sequents; in their turn, /" and A denote
arbitrary multisets of formulas; finally, o« denotes an arbitrary concrete formula. That is,
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r—~ consists of infinite concrete rules obtained by instantiation of their metavariables,
that is, variables in the metalanguage: it is an extensional approach to inference rules. On
the other hand, our notation is extremely precise: G, X, Y and £ are concrete variables of
the formal language of hypersequents, and so the rule is represented by a single linguistic
object instead of infinite ones represented by variables in the metalanguage, as done in
the traditional approach to (hyper)sequents. In other words, we propose an intensional
approach to inference rules. Despite the obvious advantages of this fact, there is a much
more important advantage of our formal approach to (hyper)sequents. Since we are inter-
ested in combining different (hyper)sequent calculi, the use of formal variables instead of
metavariables (that is, informal variables) is crucial. In fact, in the intensional approach,
rules are prepared to be combined, since they are open to accept new connectives: & can
be replaced by any formula, while X and Y can be replaced by any multisets of formu-
las, as well as G is open to be substituted by any multiset of sequents, and this holds for
any language. That is, if we add new connectives to the language (as a consequence of
a combination process), the meaning of the rule will be the same. On the other hand, in
the traditional extensional approach to (hyper)sequent rules, this possibility is no longer
allowed, and the rule must be extended in order to cope with the new language. This is
the main novelty of the intensional approach to combination of hypersequents, first intro-
duced in [8] in the setting of sequent calculi.

Now we are in conditions to define the notion of derivation in a commutative hyperse-
quent calculus.

Definition 2.6 Let A = (C, R) be a commutative hypersequent calculus and let 7" U
{h} € HSeq(C) be a set of hypersequents. We shall say that 4 is derivable in A from 7,
and write 7" 4 h, if there exists a finite sequence £ ... i, of elements of HSeq(C) such
that 4, = h and, for all 1 <i < n, either h; € T, or there exist an hypersequent rule
r={({h},...,h}, ') in R, a substitution o, an instantiation ¢ and a sequent instantiation
A over C such that (o, g, k)(h’j) €f{hy,...,hi_1} (for 1 < j <k)and (o, 0, A)(h') = h;.
If T = ¢ we shall just say that 4 is provable in .A.

Remark 2.7 The expressive power of hypersequents, allied to the possibility of using vari-
ables either of type 1, 2 or 3, allows defining structural rules in many different ways. For
instance, the contraction rule, as pointed out by A. Avron, admits two versions: an inter-
nal (inside a sequent) and an external (inside the context of the hypersequent). Thus, the
internal version of contraction (using variables of type 1) and the external version (using
variables of type 2) are as follows:

G| X;&,6>Y G|l X>§§&Y
G| X;E~Y "~ G|l X>&Y '
GIX>-Y|X>Y
GIX>Y

We can add one more possibility by using variables of level 3:

G|G|H
GIH
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Clearly, the level 3 version can simulate the level 2 version, meanwhile each concrete
application of the level 3 contraction is recovered by successive applications of the level 2
contraction. On the other hand, the internal contraction can be alternatively defined by
using variables of level 2:

GIX,X,Y~Z GIX>Y,Y,Z
GIX.Y~Z GIX~Y,Z *

In an analogous way to the remark above, the internal contractions of level 2 and level
1 are equivalent.

Now we are going to define the category of formal commutative hypersequent calculi.
Recall that in [8] the following category of signatures was used:

Definition 2.8 The category Sig of signatures is the category whose objects are propo-
sitional signatures. A morphism f : C — C' in Sig is a function f : |C| — L(C’) such
that f(c) is a formula which depends at most on schema variables &1, ..., &, whenever
c € C,, (in particular, f(c) € L(Cy) if c € Co). If f1: C — C"and f>: C" — C” are two
morphisms in Sig, the composite morphism f, o f; : C — C” in Sig is the composite map
fr0 fi:]C] = L(C"), where the function f>: L(C') — L(C") is defined as follows:

hE) =& forsed:  fao)=fale), forceCy;

Hlc@r,....o0) = (L@, ..., lg) forceCln>1.

The identity morphism id¢ : C — C for the signature C is the function id¢c : |C| — L(C)
such that idc(c) = c(&1, ..., &) if c € Cp,. In particular, idc (c) = ¢, if ¢ € Cy.

Recall from [8] thatif (A; I" > A; B) isasequentover C and f : C — C ’Ais a signature
morphism, then f(A; I" > A; B) is, by definition, the sequent (A; f(I") > f(A); B) over
C’. This can be naturally extended to hypersequents:

F((H:8) = (H: f(S).

It is clear that f (h) is a hypersequent over C’ provided that / is a hypersequent over C.
The category of commutative hypersequent calculi is defined as follows.

Definition 2.9 The category CHC of commutative hypersequent calculi is the category
whose objects are commutative hypersequent calculi of the form A = (C, R). A mor-
phism f : (C,R) — (C’, R’) in CHC is a morphism f : C — C’ in Sig such that, for
every r = ({h1,...,hy}, h) in R, it is verified that f(h) is derivable in (C’, R") from
{ f (h1), ..., f (hy)}. The composition of morphisms and the identity morphism in CHC
is defined as in Sig.

3 Unconstrained Fibring of Hypersequent Calculi

Taking advantage of the formal framework for defining hypersequent calculi described in
the previous section, we are now ready to combine these proof systems. The combination
method proposed here is known in the literature as (categorical) fibring (see [11, 16]).
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Basically, categorical fibring can be performed in two (related) ways: the simpler one,
called unconstrained fibring, consists in joining up the inference rules of the two systems
being combined, were the rules must be rewritten in the language generated by the free
combination of the symbols of both systems. In formal terms, it is the coproduct of both
systems, in the category in which they are represented. In Sect. 6, we shall study the
second (and more general) way of categorical fibring, called unconstrained fibring, in
which some connectives of the systems to be combined are shared in the resulting system.

Prior to the definition of unconstrained fibring, it is necessary to introduce some results
and concepts.

Definition 3.1 Given substitutions o, ¢’ and instantiations g, o’ over C, the product
(0,0) - (o', 0) is given by

(0,0)-(0",0")=(0-0",(e-0'),)

where o - o’ is the substitution over C given by o -0/(§) =6 (c/(£)) and (0 - 0')s is the
instantiation over C given by

o'\e o'\e - o
(Q : 9/)U(X) = ({X}X)X U ({X}X)L(C) U U({X}L(C))'
The proof of the following useful result is straightforward:

Proposition 3.2 Let 0, ¢’ be substitutions over C and let g, o' be instantiations over C.
Then, for every s € Seq(C),

[(O—a Q) : (OJ’ Q/)](S) = (0—7 Q)((OJ’ Q/) (S))
In order to consider variables of level 3, we introduce the following definition.

Definition 3.3 Given substitutions o, o’ instantiations @, ¢’ and sequent instantiations
A, A over C, the product (o, 0, 1) - (¢/, 0’, 1) is given by

(O’, Q, )L) ‘ (OJ, Q/v )L/) = (0 : 0/’ (Q : Q/)(r’ ()L : )L/)UQ)

where o -0 and (¢ - '), are as in Definition 3.1; and (A - 1)+, is the sequent instantiation
given by

Y VA e
()‘ ) A/)(;Q(H) = ({H}ﬁ)j’) U ({H}f))Seq(C) U (o, Q)({H}Seq(C))'
Using Proposition 3.2, it is easy to prove the following result.

Proposition 3.4 Let o, ¢’ be substitutions over C, let o, o' be instantiations over C and
let A, )| be sequent instantiations over C. Then, for every h € HSeq(C),

[(@,0.2)-(0",0", )] () = (0,0, M)((0”, 0", M) ().

The next proposition will be useful.
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Proposition 3.5 Let hy...h, be a derivation of h in A from Y. Then, for every
(0,0, A), the sequence (o, 0,A)(hy)...(0,0,A)(h,) is a derivation of (o, 0,1)(h) in A
from (o, 0, 1) (7).

Proof By induction on n, taking into account Definition 2.6 and Proposition 3.4. ]

Given an hypersequent /#, we denote by Var(h) the set of all the scheme variables
occurring in formulas in 4. If 7" is a set of hypersequents, then Var(7") denotes the subset
Uney Var(h) of &.

Corollary 3.6 Let A= (C, R) beachc,and Y U{h} C HSeq(C) suchthat Y \4 h. Then,
there exists a derivation hy ... h, of h in A from Y such that Var(h;) C Var(T") U Var(h),
forevery 1 <i <n.

Proof Consider a derivation hp...h, of h in A from 7. Let o be a substitution over
C such that o(¢) € Var(T) U Var(h) whenever & ¢ Var(Y') U Var(h), and o(§) =&
otherwise. Let o and A be the identity instantiation and the identity sequent instantia-
tion over C, respectively. By Proposition 3.5, the sequence (o, 9, A)(h1) ... (0, 0, A)(hy)
is a derivation of 4 in A from 7 such that, for every 1 <i < n, Var((o, 0, A)(h;)) €
Var(Y) U Var(h). O

The proof of the next result is routine. In particular, item (i) is an immediate conse-
quence of Proposition 3.5.
Theorem 3.7
() If T = h, then (0,0, \)(T) -4 (0, 0, 1)(h), for every triple (o, 0, A).
(1) If Y 4, h, then f(T) &4, f(h), for every morphism f : Ay — A, in CHC.
Recall from [8] the following result:

Proposition 3.8 The category Sig has finite coproducts.

The coproduct of the signatures C and C’ will be denoted by C @ C’, with the canonical
injections i : C > C®C' andi’:C' > Co C'.
The (unconstrained) fibring of hypersequent calculi is defined as expected:

Definition 3.9 Let A= (C, R) and A’ = (C’, R’) be two chcs. The (unconstrained) fib-
ring of A and A’ is the commutative hypersequent calculus A & A" = (C, R) where:

0C=C:€9C/, N
e R={i(r):re R}U{i’(r):r € R}.

Here i and i’ are the canonical injections from C and C’ to C @ C’, respectively.

The characterization of unconstrained fibring as a coproduct can be proved by gener-
alizing the corresponding proof for sequent calculi found in [8]:

Proposition 3.10 Let A = (C, R) and A" = (C', R") be two chcs. Then, A ® A’ is the
coproduct in CHC of A and A’ with canonical injections induced by the injections i
and i’ in Sig.
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4 Admissible and Derivable Rules and the Rule Elimination Property

Recall that a rule of inference is admissible in a formal system if the set of theorems of
the system is closed under the rule. In our context, we arrive to the following definition:

Definition 4.1 Let A= (C, R), and let r = ({hy, ..., h,}, h) be an inference rule over C
(r can belong or not to R). We say that r is an admissible inference rule of A if, for every
substitution o, instantiation ¢ and sequent instantiation A over C, it is verified that

if -4 (0,0,A)(h;) foralli=1,...n, then 4 (o,0,X)(h).

That is to say, an admissible rule is one whose conclusion holds whenever the premises
hold, and so that rule can be added to the system without changing theoremhood. It is easy
to prove the following:

Proposition4.2 Let A = (C,R) and let r be an inference rule over C. Let A" =
(C, RU{r}). Then r is admissible in A iff, for every hypersequent h over C, - r h
implies =4 h.

Clearly, if r € R then r is admissible in (C, R). A related notion is that of derived rule.
A rule r is said to be derivable in a chc if its conclusion can be derived from its premises
using the other rules of the system. Formally:

Definition 4.3 Let A= (C, R), and let r = (7, h) be an inference rule over C such that
r ¢ R. We say that r is a derived inference rule of Aif T 4 h.

From now on, if A = (C, R), we will denote by A, the chc (C, R\ {r}).

Remark 4.4

(i) If f: A— A’ is a morphism in CHC and r € R, then we have that f (r) is a derived
inference rule of A'.
(i1) Every derived rule is admissible, but the converse does not hold.

Recall that the cut-elimination theorem (Hauptsatz) states that any sentence that pos-
sesses a proof in the sequent calculus (hypersequent calculus) that makes use of the cut
rule also possesses a cut-free proof, that is, a proof that does not make use of the cut
rule. It was originally proved by G. Gentzen (see [12]) for the systems LJ and LK for-
malizing intuitionistic and classical logic, respectively. It is well known that in a sequent
calculus where cut elimination holds, the cut rule is admissible in the calculus obtained
by removing the cut rule. Taking that into account we introduce the following definition:

Definition 4.5 (Rule elimination property) Let A = (C, R) be a chc, and let r be a
rule in R. We shall say that A admits elimination of rule r (or simply that A has the
r-elimination property) if every time that h € HSeq(C) has a proof in A, then there is a
proof of & in A,.
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Then, by Proposition 4.2, we have:

Corollary 4.6 Let A= (C, R) be a chc, and let r be a rule in R. Then, the following
conditions are equivalent:

(1) r is admissible in A,;
(ii) A has the r-elimination property.

Definition 4.5 can be generalized as follows:

Definition 4.7 Let A = (C, R) be a chc, and let r be a rule in R. We shall say that A
admits full elimination of the rule r (or simply that A has the full r-elimination property)
if for every derivation of & from 7" in A, there is a derivation of & from 7" in A,.

Clearly, if A admits full elimination of r then it admits the elimination of r: it is enough
to take 7" = . The converse does not hold.
The next result is the counterpart of Corollary 4.6 in terms of the notion of derivability.

Proposition 4.8 Let A= (C, R) be a chc, and let r be a rule in R. Then, the following
conditions are equivalent:

(i) r is derivable in A,
(ii) A has the full r-elimination property.

5 Preservation Features and Translating Derivations

In this section, some preservation features are explored. In particular, it is noted that
r-elimination property is not preserved by fibring of commutative hypersequent calculi,
provided that one (or both) of the calculi enjoys this property. Additionally, by using the
notion of goedelization proposed in [5], we shall be able to translate derivations from a
given calculus into another.

Observe that, in general, the rule-elimination property is not preserved by fibring
of commutative hypersequent calculi provided that just one of the calculi has the rule-
elimination property: for instance, cut-elimination property is not preserved by fibring of
commutative hypersequent calculi such that just one of them enjoys cut-elimination.

Example 5.1 A. Avron (in [1]) constructed a commutative hypersequent calculus called
GLCW enjoying cut-elimination property such that, by adding the connective A together
with the usual rules, the resulting calculus GLC* does not have the cut-elimination prop-
erty. In our framework, this means that the fibring of GLCW (with cut-elimination) and
a calculus of conjunction plus cut (without cut-elimination), results in a calculus without
cut-elimination.

This proves the following assertion:

Fact 5.2 In general, unrestricted fibring of commutative hypersequent calculi does not
preserve the cut-elimination property, provided that just one of them has this metaprop-

erty.
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The more interesting case is when both fibred systems admit r-elimination. However,
it is not hard to see that the obtained system need not to admit r-elimination. Indeed,
take the sequent calculus for the multiplicative fragment of abelian logic and the additive
fragment of linear logic (see [15]). Both calculi have cut-elimination, but the result of
fibring does not.

Fact 5.3 In general, unrestricted fibring of commutative hypersequent calculi does not
preserve the cut-elimination property, provided that both of them have this metaproperty.

Remark 5.4 Observe that connectives are not shared in the unrestricted fibring. However,
the rule r is present in both calculi, collapsing into just one rule in the fibring. Then,
r must be a rule without occurrences of connectives, that is, a structural rule like, for
instance, Cut or Contraction.

On the other hand, things change when we consider full rule elimination. From Propo-
sition 4.8 we have:

Fact5.5 Let A= (C, R) be a chc. If A has the full r-elimination property, then so does
A® A, for any che A = (C', R').

The next two results are tools for translating derivations from a given calculus into
an extension of it, and vice versa. This technique is based on the notion of goedelization
introduced in [5].

Definition 5.6 Let C and C’ be two signatures. An embedding from C to C’ is a signature
morphism / : C — C’ such that, for every n > 0 and ¢ € C,,, there exists a unique ¢’ € C,
suchthatl(c) =c'(&1,...,&,),ifn > 0,and I(c) = ¢’ if n = 0. We write C <; C’ to denote
that/ : C — C' is an embedding.

Observe that if C <; C’ then the underlying functions [ : |C| — L(C’) and [:
L(C) — L(C’) are injective. Additionally, C; <i; C1 ® C; for j = 1,2, for every sig-
natures C; and C;. That is, the canonical injections i; and iy of the coproduct Cy & C»
are embeddings.

Definition 5.7 Let C and C’ be two signatures such that C <; C’, and consider a re-
cursive bijection (from now on called goedelization) g : L(C') — N. The translation
Tg ! L(C’) — L(C) is the function inductively defined as follows:

o T,(&§) =6t1, for§ € &y

o 7,(I(c)) =c, for c € Cy;

o 74(c") = &xq(er), for ¢’ € Cy \ 1(Co):

o 7,(lO)W], ... y)) =c(tg(¥]), ... 14(y))), for c € Cy, k> 0 and y/ € L(C);

o T (c'(Yf, . V) = 528(0’(V1"--~»Vk/))’ if k>0, ¢’ € Cp is such that ¢’ (&1, ..., &) #(c)
for every ¢ € Cy, and y/ € L(C").

The substitution T, 1. & — L(C’) is the function defined by

o 7, (&i11) =& and
o ;' (&2) =g (i), foralli e N.
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We shall denote by 7, ! the only extension of T, "to L(C). It can be proved that T,
and 7, I are inverses of each other. The function defined by

T(A; T > A;B) = (A; T, (I7) > T4 (A); B)

induces the function 7, : MPgn(X U L(C")) = MPgp(X U L(C)) in a natural way; and
if we define

o ((H: 8)) = (H: £,(S)),

it induces a function r:g : MPﬁn(Yj U Seq(C")) — MPgn($H U Seq(C)).

Analogously, we define 7, : MPgn (X U L(C)) = MPgin(X U L(C')) and 7!
MPen (9 U Seq(C")) - MPen (5 U Seq(C)).

Remark 5.8 Tt is easy to see that 7, and fg ; and ‘L'g and 7, ! are inverse to each other,
respectively.

Lemma 5.9 Let C and C’ be two signatures such that C <; C’, and let g : L(C') - N
be a goedelization.

(1) If o’ : E — L(C’) is a substitution over C’', then & : & — L(C) given by 5 (§) =

7o(0'(&)) is a substitution over C such that 5(p) = g 6" {())) forall ¢ € L(C).

(i) If o' : X = MPgn(X U L(C")) is an instantiation over C" and Ty : MPgp(X U
L(C")) = MPsn(XUL(C)) is defined as above, then the composite map 0 = T4 00’
is an instantiation over C. R

(i) If A" 1 H — MPqn($H U Seq(C")) is a sequent instantiation over C' and Ty :
MPen(HUSeq(C")) = MPan(HUSeq(C)) is defined as above, then the composite
map = ri, o A is a sequent instantiation over C.

(iv) With the notation used in the above items, if h € HSeq(C) then

%((o', 0/, M) () = @, 8, ) (h).
Proof Straightforward. O
Using the above results we are now able to translate derivations.

Proposition 5.10 Let A= (C, R) and A" = (C', R') be two chcs such that C <; C" and
I[(R) C R, and let Y U {h} C HSeq(C ) such that hi.. hn is a derivation of h in A’

from T using exclusively rules from l(R) Then, tg('f) Fa ‘L'g (h), for any goedellzatlon
g : L(C") — N. Moreover, tg (hy).. rg (hy) is a derivation of T, T (h) in A from tg (7).

Proof We shall use induction over the length m of the derivation. If m = 1, then we have
two possible cases:

Case 1. hy € Y and h; = h. Then, Z(h)) € (Y) C HSeq(C) and Z(h) = Ty (h).
Hence, 7, (Y) 4 T, (h).

Case 2. hj is the image of an axiom of R. That is to say, there areanr € R, r = (#, h'), a
substitution ¢’ over C’, an instantiation ¢’ over C’ and asequent instantiation A over C’

such that h| = (07, ¢/, A)(l(h )). By Lemma 5.9(iv), rg(hl) _rg((a o', N )(l(h ) =
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(6,0, »)(h'), where &, o and A are a substitution, an instantiation, and a sequent instan-
tiation, respectively, over C. This means that - 4 7, (%), and therefore 7, (Y") - 4 7, (h).

Suppose now that the assertion stands for derivations of length < m and let us see that it
also stands for length m + 1.
Let

XU P

be a derivation of & in A’ from 7. Then 1:1, (h1)... 1:; (hy,) is a derivation of th (hp) in A
from 7, (7).

If either A, is the image of an axiom of R or it belongs to 7, the treatment is as
above.

On the other hand, suppose that there are an r € R, r = {{g1,..., &k}, &), a sub-
stitution o', an instantiation @', and a sequent instantiation )‘: on C’ such that (¢’, 0", 1)
(l(g])) € {hi,....,hy}, for 1 < j <k, and (0,0’ A)(l(g )) = hyy1 = h. Then,

Tg((U o )»)(l(g]))) = (5.0.2)(8)) € {(h).....Tg(hm)}, for 1 < j <k, and

20" ¢ )(0(8))) = G2 ))& = 2, (tma1) = £, (), by Lemma 5.9(iv). By induc-
tion hypothesis, we may assert that

Ze(h1) ... T (hn) T (1)
is a derivation of tﬁg (h) in A from ég (7). O
And conversely:

Proposition 5.11 Let A = (C, R) and A = (C',R) be two chcs such that C <; C’
and l(R) CR, and let T U {h} C HSeq(C) such that h1 Lhyisa derivation of hin A
from T . Then, © 1(h]) 1(h ) is a derivation ofr Ly in A from t (1), for any
goedelization g : L(C ) — N

Proof 1t is similar to the previous one. d

6 Extension to Constrained Fibring

In Sect. 3, we introduced the notion of unconstrained fibring in CHC, that is, the combi-
nation of two chcs without sharing any connectives. However, it is frequently necessary to
combine logics while sharing some connectives. Here is when the constrained fibring ap-
pears. In this section, we shall introduce the notion of constrained fibring in the category
CHC, generalizing the results of the previous sections.

Let C be a signature and let = C |C| x |C| be an equivalence relation on |C|. We shall
say that = is a signature congruence over C if it verifies the following condition:

c1=cy implies ¢y, ¢z € Cy, for some n € N.

It is clear that C/= = {C, /=},eN is a signature. The canonical map q : |C| — L(C/=)
is the function defined as follows:
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e g(c) =[cl,if c € Cy,
e g(c)=[clé&1,...,&),ifceCy, forn>1

where [c] denotes the equivalence class of ¢ by =. Clearly, g is a morphismg : C — C/=
in Sig.

Definition 6.1 Let A= (C, R) be a chc and let = be a signature congruence over C. The
quotient commutative hypersequent calculus (or simply the quotient calculus) determined
by = is the chc A/= = (C/=, R’) such that

R'={4(r):reR}.

It is clear that A/= is indeed a commutative hypersequential calculus and that ¢ in-
duces a morphism ¢ : A — A/= in CHC.

Proposition 6.2 If A has the full r-elimination property, then so does A/= for any
congruence =.

Proof Straightforward. |

Let A= (C, R) and A’ = (C’, R’) be two chcs to be combined by sharing the connec-
tives in the signature CNC’ = {C, NC, }pen. Letinc: CNC' — Cand inc’ : CNC' — C’
be the inclusion morphisms. Consider now the coproduct C @ C’ and the canonical injec-
tionsi :C —>C®C',i':C'— C @ C'. Then, the relation = given by

=={(lioinc(c)],|i"0inc'(c)|):ceCcnC’}U{(d.):e(cuc)\cnC'}

where CU C’ ={C, U C) }pen and |c(&1, ..., &,)] = c for any connective c, is a congru-
ence over C @ C'.

cnc’

S
C\ /C/
i i

cCocC

(Cal)/=
The constrained fibring of A and A’ by sharing the symbols in C N C’ is the chc
cne’ )
A @ A=ApA)/=

Observe that if ¢’ € (CHC"),, we have the following cases:
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(D ['1=A{li oinc(c)], [i’ oinc'(c)]}, for c € (C, N C));
(1) ['1={li(c)]} for a unique c € C, \ C};;
(1) [¢'1={li'(c)]} for a unique ¢ € C}, \ Cp.

Example 6.3 Let |C| = {—, —, A, v,O} and |C’| = {—, —, &, o}. Then,

{—, —}
{—, =, A, Vv, 0} {—, >, &, 0o}

i
{—1, =1, A1, V1,01, ™, =2, &2, 00}

{(m1(=),=1(==2),A1. V1.0, &2, 5}

Then, the formula 0; =1 (& = (& &2 £3)) of L((C'@C?)/ =) stands for identifying
the following formulas of L(C'@C?):

O1-1(& =1 (52 &283)),
i=1(&1 =2 (62 &2 83)),
Ur1—2(81 —1 (52 &2 63)), and
Ur1—2(81 =2 (52 &2 63)).

From Fact 5.5 and Proposition 6.2, we can state the following:

cnc’
Fact 6.4 Let A a che. If A has the full r-elimination property then so does A & A, for
every chc A'.

7 The Non-commutative Case

In the previous section, ‘concrete’ sequents were considered as formed by pairs of (finite)
multisets of formulas, while ‘concrete’ hypersequents were defined as (finite) multisets
of sequents. It is a natural question how to generalize the previous approach to general
(non-commutative) sequents and hypersequents, where finite sequences are taken instead
of multisets. It is worth noting that the case of general sequents was already addressed
in [8]. The aim of this section is to generalize the previous definitions and results to
general hypersequents, composed of general sequents.

Given a set X, we denote by X* the set of all finite sequences formed by elements of
X, and by X? the Cartesian product X x X. The empty sequence is denoted by €. The
concatenation of two finite sequences s, s’ € X* is the finite sequence denoted by s - 5’
Note that s - € =€ - s = s, for every s € X*.

Recall from Sect. 2 that =, X’ and §) are the set of scheme variables, context variables
and sequent variables, respectively.
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Definition 7.1 Let C be a signature. A general sequent (over C) is a pair of finite se-
quences whose elements are either formulas over C or elements of X. The set of all
general sequents over C will be denoted by GSeq(C). That is,

GSeq(C) = ((L(C)U X)*).

A general sequent (s ...Sy, si ...s;,) will be usually written as s ...s, > si ...S

The sequent (¢, €) is called the bottom sequent, and it is denoted by L.

/!
m-

Definition 7.2 Let C be a signature. A general hypersequent (over C) is a finite sequence
whose elements are either general sequents over C or elements of 3. The set of all general
hypersequents over C will be denoted by GHSeq(C). That is,

GHSeq(C) = (GSeq(C) U $)".

A general hypersequent s . . . s, will be usually written as 51| - - - |s,,. The hypersequent
€ is called the bottom hypersequent, denoted by L.

Definition 7.3 Let C be a signature. A (n-ary) inference rule of general hypersequents
over C is a pair r = ({h1, ..., hy}, h) such that h;, h € GHSeq(C). If n = 0 then r is
called an axiom. A general hypersequent calculus (ghc) is a pair A = (C, R) where C is
a signature and R is a finite set of inference rules of general hypersequents over C.

As it was done for chcs, rules of the form ({Ay, ..., h,}, h) and (@, h) will be simply
denoted by

L T and —.
h h

Recall that a substitution over a signature C isamap o : £ — L(C), and that its unique
homomorphic extension to L(C) is denote by 6 : L(C) — L(C). Additionally, if o and o’
are substitutions over C then o - ¢ is the substitution over C givenby o -0’ (§) =6 (¢'(§))
which satisfies the following:

o-0/=606"

Adapting [8] and the previous definitions of instantiation o, sequent instantiation A
as well as the mappings of the form (o, g, 1) : HSeq(C) — HSeq(C), we introduce the
following notions to deal with inference rules of general hypersequents.

Definition 7.4 (Context substitutions) Let o be a substitution over C and let o : X —
(L(C) U X)* be a mapping (called context instantiation over C). A pair (o, @) is called a
context substitution over C.

A context substitution u = (o, 0) generates naturally a function i : L(C) U X —
(L(C) U X)* as follows: ji(s) =6 (s), if s € L(C), and ji(s) = o(s), if s € X (note that
this is well-defined, since it is assumed that L(C) N X = @). It induces a unique function
o (L(C)U X)) — (L(C)U X)* as follows: fi(sy...s,) = ia(sy)...n(sy), for n > 0.
Note that ji(€) = €. Finally, the last mapping induces a unique function /i : GSeq(C) —
GSeq(C) as expected: [L((s1...8n,5]...8,)) = ((L(s1...8,), (5] ...s;,)). Observe that
a(Lls) = Ls.
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The following notion comes from [8]. Let u = (o0, ¢) and u' = (0’, 0’} be context
substitutions over C, and consider the context instantiation (g - 0’)s over C defined as
follows: if s € X and @'(s) = s1...s, then (0 - 0')s (s) = fg (s1) -+ fg (sn), where, for
every s’ € L(C)U X,

orn o) ifs' ek,
1o ) 6(s") ifs’ € L(C).

It is easy to prove that the context substitution u” = (o - ¢’, (0 - ©')s) over C is such
that 1" =io /.

Definition 7.5 (Sequent substitutions) Let o be a substitution over C, ¢ a context instan-
tiation over C and let A : § — GHSeq(C) be a mapping (called general sequent instanti-
ation over C). A triple (o, 0, A) is called a sequent substitution over C.

A sequent substitution x = (0, 0,A) generates a function k : GSeq(C) U $H —
GHSeq(C) as follows: k(s) = @(s), if s € GSeq(C), and k (s) = A(s), if s € H. From
this, a unique function k : GHSeq(C) — GHSeq(C) is defined as follows: K (s} ...s,) =
k(s1)---k(sp), for n > 0. Note that € (L) = Lp.

Now, let « = (0, 0, A) and k' = (o’, 0’, )} be sequent substitutions over C, and con-
sider the general sequent instantiation (A - A’ )oo over C defined as follows: if A(s) =
S1 ... 5 then (A - 1/)go(s) =05 % (s1) - -- 05 °(s0), where, for every s” € GSeq(C) U §,

A(s if s € 9,
ore(s) =4
{0, 0)(s") if s’ € GSeq(C).
It is immediate that the sequent substitution k” = (o - 0/, (0 - 0')o'» (A - X)) OVer C
is such that €’ =k o k’.
Now, we can define the notion of derivation in ghcs:

Definition 7.6 Let A = (C, R) be a general hypersequent calculus over C and let
T U {s} € GHSeq(C). We say that h is derivable in A from 7", and write 7" 4 h, if
there is a finite sequence A ...k, of elements of GHSeq(C) such that h, = h and for
all 1 <i <n, either h; € T, or there exist an inference rule r = ({h},..., h}}, k') in R,
a substitution o, a context instantiation ¢ and a general sequent instantiation A over C
such that (o, o, A)(h’j) €lhi,....,hi—1} (for1 < j<k)and (0,0, )W) =h;. f T =0
we shall just say that / is provable in A.

The category of general hypersequent calculi can now be defined.

If s1...5, > s]...5;, is a general sequent over C and f : C — C’ is a signature

morphism, then f (S1...8, > 8] ...sy,) is, by definition, the general sequent 51 ...5, >
5 ...5,, over C' where, for every s € L(C) U X, § is f(s),if s € L(C), and s otherwise.
This can be naturally extended to hypersequents:

f(sl o Sp)=81...5,
where, for every s € GSeq(C) U $), 5 is f(s), if s € GSeq(C), and s otherwise. It is clear
that f(h) is a general hypersequent over C’ provided that & is a general hypersequent
over C.
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Definition 7.7 The category GHC of general hypersequent calculi is the category whose
objects are general hypersequent calculi. A morphism f : (C, R) — (C’, R’) in GHC
is a morphism f : C — C’ in Sig such that, for every r = ({hy,...,h,}, h) in R, it is
verified that f(h) is derivable in (C’, R') from {f(h1), ..., f(hn)}. The composition of
morphisms and the identity morphism in GHC is defined as in Sig.

It should be clear that all the previous definitions and results on (constrained and un-
constrained) fibring of chcs, translation of derivations and preservation theorems can be
reproduced in the framework of general hypersequent calculi. We left the details to the
interested reader.

8 Hypersequent Calculi and Hypertranslations

In [8], the notion of meta-fibring based on meta-translations was proposed. Within this
framework, designed to deal with sequent calculi, every morphism f (called meta-
translation) in the category of sequent calculi has the following property: every (formal)
sequent rule of the form

(V) S1 Sn

N

is preserved by f. By interpreting a sequent rule as above as a meta-property of the logic
associated to the given calculus, a morphism f can be, therefore, seen as a translation
between logics which preserves all the meta-properties as above. This was the startpoint
of [8], additionally developed in [6], where meta-translations were called contextual trans-
lations. In [3], the notion of meta-translation was also used to analyze the combination of
the logics of (classical) conjunction and disjunction.

The main difference between meta-translations and usual translations is that the latter
just preserve simple metaproperties of the logic of the form I" I ¢, while the former pre-
serves logical combinations of them described by sequent rules as above. As argued in [6],
contextual translations refine the usual concept of translation between logics, helping to
analyze the complex question of how a logic should be translated into another one as well
as the question of how a logic can be extended faithfully. As it was proved recently, the
simpler notion of conservative translation was shown not to be informative enough, since
any two reasonable deductive systems can be conservatively translated into each other
(cf. [14]). This is not obviously the case for meta-translations: in order to be contextu-
ally translatable, the target logic must satisfy at least all the structural rules satisfied by
the source logic (see [6]). This is why the inclusion morphism between the sequent cal-
culi INT for intuitionistic propositional logic and CPL, the sequent calculus for classical
propositional logic, is a meta-translation and so INT can be considered a “good” sublogic
of CPL, since every meta-property of the former is enjoyed by the latter (cf. [6]).

But things are not so simple. As it is well-known, Godel was the first to observe
(cf. [13]) that, unlike to what happens in classical logic, intuitionistic propositional logic
has the disjunction property, namely:

(DP) If (@ Vv B) is a theorem, then « is a theorem or 8 is a theorem.



A Formal Framework for Hypersequent Calculi and Their Fibring 91

It is easy to see that (DP) cannot be expressed as a metaproperty in the language of (for-
mal) sequents introduced in [8]. In fact, the metaproperty (DP) has the form

Favp
Fa or F§B

which lies outside the scope of the language of sequent rules of the form (7). In this
perspective, INT could not be considered such a good sublogic of CPL since the former
satisfies the metaproperty (DP) which is not satisfied by the latter. This distinction can be
made precise within the framework of hypersequents.

Recall the notion of morphism in the category CHC of chces given in Definition 2.9, as
well as the definition of morphism in the category GHC of ghcs given in Definition 7.7.
In both cases, every (formal) hypersequent rule of the form

(r ,) hy ... hy
h

is preserved by such a morphisms. As it was done with sequents, an hypersequent rule

as (r") could be seen as a meta-property of the logic associated to the given calculus, but

written in a richer (meta)language which allows expressing metaproperties such as (DP).
In fact, (DP) can be represented by the following hypersequent rule:

=&V

(DP/) %—l $2 .
& | >&

By Definition 2.9 or 7.7, a morphism f will force the target logic to satisfy the following

metaproperty:

>¢(§1,62)
& | >&
where ¢ (&1, &) is the formula associated by f to the disjunction operator V, and so
f &1V &) =91, &). In particular, if f is the inclusion morphism, the rule (DP) will
be satisfied by the target logic, since in this particular case we have that f &1 VvéE) =
&1 v &. In other words, if intuitionistic propositional logic (presented as an hypersequent
calculus) is extended through an inclusion morphisms of hypersequent calculi, the target
calculus must also satisfy the disjunction property. This justify to call the morphisms of
hypersequent calculus as hypertranslations.

From the above discussion, we believe that the present framework of formal hyperse-
quent calculi can throw some light on the subject of translations between logics and its
significance.

(DP')

9 Concluding Remarks

The present paper generalizes in a natural way the formal treatment of sequent calculi and
their fibring introduced in [8]. Additionally, some preservation features were analyzed. Fi-
nally, the relevance of this approach concerning the theory of translations between logics
was stressed.

As observed in Remark 2.5, we propose here an intensional approach to inference
rules, in contrast with the traditional, extensional approach to inference rules. Being so,
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a single linguistic object represents infinite concrete rules which are obtained by instanti-
ation of their metavariables, that is, variables in the metalanguage. The advantage of using
formal variables instead of informal metavariables is crucial in the context of combining
logic systems: in our framework, the rules are prepared to be combined, being ready to
accept new connectives by means of substitutions over the language resulting from the
combination procedure.

Several other questions remain open, and deserve future research. The use of hyperse-
quents instead of sequents opens interesting possibilities to the study of how a logic can
be constructed (or deconstructed) from (into) its fragments, along the lines of the stud-
ies initiated in [8]. The preservation by fibring of some meta-properties of hypersequent
calculi (interpolation, for instance) should also be addressed.
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Investigating Knowledge and Opinion

John Corcoran and Idris Samawi Hamid

Abstract This work treats correlative concepts of knowledge and opinion, in various
senses. In all senses of ‘knowledge’ and ‘opinion’, a belief known to be true is knowledge;
a belief not known to be true is opinion. In this sense of ‘belief’, a belief is a proposi-
tion thought to be true—perhaps, but not necessarily, known to be true. All knowledge is
truth. Some but not all opinion is truth. Every proposition known to be true is believed to
be true. Some but not every proposition believed to be true is known to be true. Our focus
is thus on propositional belief (“belief-that”): the combination of propositional knowl-
edge (“knowledge-that”) and propositional opinion (“opinion-that”). Each of a person’s
beliefs, whether knowledge or opinion, is the end result of a particular thought process
that continued during a particular time interval and ended at a particular time with a con-
clusive act—a judgment that something is the case. This work is mainly about beliefs in
substantive informative propositions—not empty tautologies.

We also treat objectual knowledge (knowledge of objects in the broadest sense, or
“knowledge-of”), operational knowledge (abilities and skills, “knowledge-how-to”, or
“know-how”), and expert knowledge (expertise). Most points made in this work have
been made by previous writers, but, to the best of our knowledge, they have never before
been collected into a coherent work accessible to a wide audience.

Mathematics Subject Classification Primary 03B42 - Secondary 03A05

Keywords Belief - Knowledge/opinion - Propositional - Operational - Objectual -
Cognition

There was a time when I believed that you belonged to me. But, now I know your heart is shackled
to a memory.—Hank Williams

1 Preliminaries

It is only with respect to propositions' that the distinction between [sc. propositional]
knowledge and opinion applies—for example, a person’s abilities cannot be said to be

'We use the word ‘proposition’ in the abstract sense in which one proposition might be expressed by many
different sentences. Our usage—which follows Church [8, 9] where ‘proposition’ is a near synonym for
‘thought’ in the sense of Frege’s [27] “The Thought”—is explained more fully in Corcoran [19] and [20].
Also, see Frege [28, 325].
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opinion or knowledge in the correlative sense. In fact, it is only with respect to proposi-
tions that belief applies: every belief is a proposition that is or was believed to be true by
some person or persons, and conversely, of course.

The last sentence is lexically ambiguous? in virtue of its one occurrence of the am-
biguous common noun ‘belief’: in the more basic sense, a belief is someone’s attitude of
believing of a proposition; in the more derivative sense used above, a belief is a proposi-
tion someone believes. In the basic attitudinal sense, a person’s belief that Plato admired
Socrates is inseparable from the person. In the derivative propositional sense, a person’s
belief that Plato admired Socrates is independent of the person.

In the basic attitudinal sense, no two persons can have the same belief and every belief
comes into being when its believer starts believing its propositional content and it perishes
no later than its believer’s demise. Moreover, in the attitudinal sense, no belief per se has
a truth-value: the belief’s propositional content might be either true or false.

In the derivative propositional sense, two persons can have the same belief. Moreover,
it would be wrong to say that every belief comes into being when its believer starts be-
lieving its propositional content and it perishes no later than its believer’s demise. Rather,
being a belief is an extrinsic’ property of a proposition: it is not that the belief comes into
being and then perishes but that the proposition becomes and then ceases to be a certain
person’s belief. More explicitly, the proposition comes to be believed and then ceases to
be believed. Moreover, in the propositional sense, every belief has a truth-value. Having a
truth-value is an intrinsic property of propositions—as explained further in Corcoran [20].

In the basic attitudinal sense, having a certain believer is an intrinsic property of a be-
lief. In the derivative propositional sense, having a certain believer is an extrinsic property
of a belief.

Besides propositional knowledge, each of us has objectual knowledge—of the ob-
jects that propositions are about—and operational knowledge, or “know-how”. Proposi-
tional knowledge that five plus seven is twelve might be held to presuppose objectual
knowledge—of five, seven, and twelve—as well as operational knowledge—knowing
how to add, or at least knowing how to add five to seven [23]. As said above, being a
belief applies to propositions alone: all belief is propositional.*

The distinction between propositional and objectual knowledge is routinely illus-
trated by reference to two interpretations of the ancient Greek injunction “Know thyself”
[43, p. 240]. Taking ‘know’ in the propositional sense, “Know thyself”” can be understood
as “Know for thyself”, i.e. take the responsibility to verify your own beliefs; do not rely on
the word of others. This is related to the contemporary saying, “Trust but verify”. Taking
‘know’ in the objectual sense, “Know thyself” can be understood as “Know of or about

2Here, ambiguity is having multiple normal meanings and a sentence is lexically ambiguous if it contains
an ambiguous word (lexical item). See Corcoran [19].

3Being an even square is an intrinsic property of the number four, being the number of Evangelists is
an extrinsic property of four. Having four letters is an intrinsic property of the word ‘four’, being a
name of the number of Evangelists is an extrinsic property of ‘four’. Changes in intrinsic properties
are known as ordinary changes whereas changes in extrinsic properties are variously called “Cambridge

changes”, “Pickwickian changes”, “relative changes”, and others. For further discussion and examples,
see Corcoran [12].
“In the sense of ‘belief’ used in this work, propositions are exclusively the objects of believing: what a

person believes is a proposition. Thus, a person’s acceptance as true of an incoherency such as ‘Socrates
is equal’ is not belief in the sense of this paper.
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thyself”, i.e. learn your own nature; determine your abilities and limitations; do not allow
others to define your identity for you.

There is no corresponding “objectual belief” and no corresponding “operational be-
lief”. Objectual knowledge does not contrast with “objectual opinion”, nor does opera-
tional knowledge contrast with “operational opinion”. The expression ‘my knowledge of
[a certain entity]’ can be used to refer to propositional knowledge or to objectual knowl-
edge or even in some cases to operational knowledge. However, the expressions ‘my belief
about [a certain entity]’ and ‘my opinion about [a certain entity]’ can be used coherently
to refer only to propositional belief and propositional opinion, respectively.’ In a given
context, the appropriate senses of the word ‘knowledge’ are correlated with correspond-
ing appropriate senses of the word ‘opinion’. In appropriately correlated senses, a belief
is knowledge if and only if it is not opinion.

Nevertheless, strictly speaking, it would be wrong to say that no knowledge is
opinion—if ‘knowledge’ refers to everyone’s propositional knowledge and ‘opinion’
refers to everyone’s opinions. As a rule, we have the following situation for a given person,
say A: Some of A’s opinions are known to be true by others, and some of other people’s
opinions are known to be true by A. What is true is that no proposition is knowledge and
opinion for the same person at the same time.

Another basic point is that every proposition that can be knowledge can be opinion:
every subject matter that can be the subject matter of a proposition known to be true can
be the subject matter of a proposition believed but not known to be true. Moreover, a
fundamental assumption of this investigation is that no subject matter is beyond the scope
of belief.®

The words ‘knowledge’ and ‘opinion’ have complementary senses determined by the
propositional sense of ‘know’ being used: we will consider the strict traditional sense as
well as other widely used senses. In effect, ‘knowledge’ means “belief that is not opinion”
and ‘opinion’ means “belief that is not knowledge”.” In any given context, the senses of
the words ‘know’, ‘knowledge’, and ‘opinion’ are interdependent.

In every sense considered, propositional knowledge implies truth and belief. If a person
knows that something is the case, it is the case and the knower believes that it is. However,
neither truth nor belief, nor even the combination of truth and belief, implies knowledge.
In contrast, propositional opinion implies belief but does not imply truth. As suggested
above, no proposition known to be true is false; but many opinions, which are propositions
believed to be true, are false. Each of a person’s beliefs, whether knowledge or opinion, is
the end result—the culmination, so to speak—of a particular thought process that ended
at a particular time with a judgment: the process that produces knowledge has distinctive
characteristics.

3 An expression ‘my belief of [a certain entity]” is questionable English if English at all unless the entity
is something special such as a person’s statement: ‘my belief of the number one’ is ungrammatical. An
expression ‘my opinion of [a certain entity]’ would be taken to refer to a propositional opinion. For
example, our opinion of knowledge is that people’s lives are improved by it.

SFor Corcoran, this is a working hypothesis; for Hamid, it is firmly held belief.

7Writing in 1846, Augustus De Morgan [24, 1-3] thought that negative substantive expressions such as
‘non-human’ were logically defective and would not occur in a logically perfect language [39, p. 183].
Instead, each substantive would have its own equally “positive” complementary substantive—as ‘knowl-
edge’ has its complementary ‘opinion’.
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As said, this work treats four forms of knowledge: propositional, objectual, opera-
tional, and expert. Each instance of the first three (propositional, objectual, and opera-
tional knowledge) can involve instances of one or both of the other two. The paradigm
case of the fourth—expert knowledge—is the knowledge possessed by an active qual-
ified practitioner—the medical knowledge possessed by a physician or the mathe-
matical knowledge possessed by a mathematician. A person’s expertise includes their
experience—practical and theoretical. Moreover, it involves all of the other three kinds of
knowledge. Perhaps most importantly, experts know the limitations of their own exper-
tise. Typically, the expert has a stock of unsolved problems and unsettled hypotheses to
be investigated [23]. In fact, the hallmark of the expert is the ability to call to mind open
questions, or hypotheses, propositions not known to be true and not known to be false.®
The expert has no hesitation and no embarrassment saying, “I do not know”—when ap-
propriate. Experts do not just share their knowledge: Experts unashamedly share their
“ignorance”. Being an expert excludes being a know-it-all. In the traditional university,
the central concern is propositional knowledge; in the traditional professional school, the
central concern is expert knowledge.

One who does not embrace the fundamental principles of Logic or any other Science, whatever he
may have taken on authority and learned by rote, knows, properly speaking, nothing of [Logic or]
that Science.—Whately [48, xvii].

2 Introduction

The first sense of the word ‘knowledge’ considered in this paper is the traditional strict
sense. In this sense, a given person knows that a given proposition is true only if they have
judged that the proposition is true by means of a cognitive judgment. A cognitive judg-
ment is one that was the culmination of a process including the following: understanding
the proposition, gathering sufficient evidence based on personal experience of the facts
the proposition is about, and bringing that evidence to bear on the issue of whether the
proposition is true.’ In this work, belief that is knowledge in the strict sense is called
certain knowledge or cognition.

The strict sense of ‘knowledge’ is what is referred to in the ancient Greek injunction
“Know thyself” in at least one of its interpretations that take ‘know’ in a propositional
sense. Moreover, in the strict sense of ‘knowledge’, knowledge is personal, e.g. reliable
testimony does not produce knowledge: one person cannot gain knowledge of a proposi-
tion simply by being told that it is true by another person, even if the other person knows
in the strict sense. Cognitions are non-transferable. Although a proposition, whether true
or false, is communicable, knowledge of the truth of a proposition is not communica-
ble [13, pp. 113f].

8The terminology for propositions not known to be true and not known to be false is awkward and unset-
tled. What is called an open question is often not a question in any of the more usual senses. Moreover,
what is called a hypothesis was never hypothesized by anyone. See the article “Conjecture” in Audi [5].

9The late Dr. Ray Lucas asked whether having made a cognitive judgment is sufficient for having a
cognition. Unfortunately, the answer is no, people can lose cognitions. People can lose belief in a propo-
sition they once knew because of a later mistake or because of memory decay. We suspect that there are
propositions we once knew but no longer believe and thus no longer know.
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Other belief merits being called knowledge only to the extent that its acquisition ap-
proximates that of cognition, knowledge in the strict sense. Cognition fulfills an ideal
only approximated by other knowledge—just as mathematical circles fulfill an ideal only
approximated by certain visible shapes, we nevertheless also call such visible shapes cir-
cles. Once we leave the realm of certain knowledge, the border between what is called
knowledge and what in contrast is called opinion shifts according to the degree of cer-
tainty required. Moreover, it loses its sharpness. More and more beliefs that had been
“opinions” become “knowledge”. This is explained more fully below.!?

The process that results in cognition deserves the name the cognitive process. It is im-
portant to emphasize that the cognitive process begins with the process of grasping, under-
standing, a proposition—a process that has its own component processes and its own an-
tecedents. Besides the grasping of a proposition, which is also called apprehension,'! the
cognitive process also involves evidence gathering and evidence marshaling—the bring-
ing of the evidence to bear on the proposition to be decided. To be explicit, the cognitive
process has four components: proposition grasping, evidence gathering, evidence mar-
shaling, and proposition judging. The four are more succinctly but less explicitly called
respectively: apprehension, observation, marshaling, and judging. The positions of the
first and last are fixed. The first is required to set the goal of the whole process and the
last achieves that goal. Cognition is a goal-directed activity.

In a way, it was somewhat arbitrary to begin the cognitive process with apprehension,
grasping a proposition. For some purposes, it is important to include whatever prompts or
inspires the grasping. Philosophers, including Aristotle, Peirce, Dewey, and Kuhn, have
started the cognitive process before the grasping stage with experience of an obstacle, an
“aporia”, a blockage, a difficulty, frustration, confusion, failure, disappointment, or some
other sort of discontentment or unpleasantness.12 For reasons that will become clear, we
emphatically exclude doubt from the list.

Above we used the word ‘cognition’ as an epistemic mass noun, which—Iike
‘knowledge’—does not have a plural form (‘knowledges’ is not even an English word)
and which does not follow grammatical indefinite articles (‘a knowledge is true’ is not
well formed). In fact, ‘cognition’ was an exact synonym for ‘knowledge’ in the strict
sense. Below, it is convenient to follow J.S. Mill [34, vol. I, 317], and others in using the
word ‘cognition’ as a common or count noun that does pluralize and that does take arti-
cles. A cognition is a proposition known to be true: cognitions are propositions known to
be true. Although knowledge is cognition and cognition is knowledge, because the word

10Nothing said above should be interpreted as suggesting that any given cognition is more meritorious or
more worthy than any non-cognitive item of knowledge. The relative worth of two items of knowledge
is beyond the scope of this essay. However, there are clearly cases in which knowledge of a certain
mathematical theorem is less valuable than knowledge that a certain pill stops a certain pain.

1 Applied to propositions, apprehension is an action while comprehension is an attitude or state
[41, p. 140]. Normally, after someone apprehends a given proposition, they comprehend it for a time—
often a long time during which they are only occasionally aware of the fact that they comprehend it.
Apprehending a proposition takes place in a time interval—often relatively short—whose end coincides
with the onset of comprehension. In a way, apprehension is to comprehension as judging is to believing:
judging is an act not an attitude, believing is an attitude not an act [20].

120f course, all or at least many such experiences require the subject to be pursuing a goal prior to the
event. Thus, some thinkers might prefer to start the process with a goal, or even with the pursuit of the
goal, or even with the desire that prompted the pursuit.
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‘knowledge’ does not pluralize or take articles, it thus cannot be substituted in the previ-
ous sentence. The following is ungrammatical: “A knowledge is a proposition known to
be true: knowledges are propositions known to be true”.

The word ‘truth’ is used as a count noun as in ‘truths are propositions that are true’; it
is also used as a mass noun as in ‘some truth is knowledge’.

In every sense considered, every proposition known to be true is true. Moreover, knowl-
edge in every such sense is personal; it represents a cognitive accomplishment by the
knower. There is no way to buy knowledge or even to impart it. A teacher can assist in
various ways, e.g. by directing students’ attention and by encouraging students to be-
come more autonomous by thinking and doing for and by themselves. Not all ‘learning’
is gaining knowledge. Very little of what is learned in school is knowledge. The acquisi-
tion of knowledge is autonomous, self-affirming, disciplined, courageous, and dignified.
It presupposes intellectual autonomy, intellectual freedom, and responsibility.

Propositional knowledge in the broadest sense spans a spectrum between two limiting
cases.!3 One limiting case is included, the other excluded. At the included end, we have
cognition—which is thought to be more common in logic and mathematics than in other
fields. On the excluded end, we have groundless true belief—which is not knowledge at
all. Such belief is called credence here. Credence is groundless belief in true proposi-
tions. In this broad sense, knowledge includes all cognition, at one extreme; but it ex-
cludes all credence, at the other extreme. Between the two extremes, we have non-certain
knowledge—also called probable knowledge.'* This might include most true beliefs. Our
essential daily decisions are based more often on probable knowledge than on knowledge
in the strict sense.

Absolute, apodictic, or mathematical certainty is the state of having knowledge in the
strict sense. As we move away from mathematical certainty along the spectrum of prob-
able knowledge, we come to scientific certainty, which has a slightly lower level of war-
ranted assertibility. In some cases, a belief held with scientific certainty is close to cog-
nition. We can have scientific certainty that smoking is deleterious to health. A person’s
decision to give up smoking is often based on probable knowledge. As we move further
along, we come to moral certainty, the state of holding true belief that is sufficiently
grounded to serve as basis for responsible action and warranted assertion. In many cases,
a member of a jury should vote to acquit unless moral certainty has been achieved.'> After
moral certainty, the level of warranted assertibility continues to decline.

Eventually we find true beliefs that were acquired through processes that hardly qual-
ify them to be called probable knowledge. It is worth emphasizing that in the sense of
‘probable’ used here, probable knowledge is actually knowledge, non-certain knowledge,

13See “Limiting case” and “Borderline case” in Audi [5].

14The word ‘probable’ is used in the original sense going back to around 1600 before the invention of
“probability theory” gave it another meaning. In this sense, it applies to beliefs and contrasts with ‘cer-
tain’. See any dictionary that dates senses, for example, Definition 1 in the Merriam-Webster Collegiate
Dictionary [33]. It is still widely used in the original sense where there is no question of assigning num-
bers to “events”. Frege uses it in the original sense in his classic 1918 paper “The Thought” [27] (p. 306).

5We do not know the history of the expression ‘moral certainty’. Antoine Arnauld (1612-1694) and
Pierre Nicole (1625-1695) use the expression without comment as if it were a common locution in their
1662 masterpiece The Art of Thinking known as The Port-Royal Logic [4, 264, 270]. Dessi [25, xvii]
traces it to John Locke (1632—1704). Dessi (loc. cit.) and Whately [48, 243] both use it in the sense just
explained.
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and thus is actually true. We need to be clear that this sense of ‘probable’ is not one of the
senses used in connection with probabilities of events. A belief that is probable knowl-
edge might be almost a cognition, known with certainty, or it might be little more than
mere credence, a true belief not known at all. Being probable knowledge is not the same
as probably being knowledge. With every level of warranted assertibility, there is a corre-
sponding level of opinion. Some members of a jury who do not have moral certainty of
the guilt of the accused might nevertheless have a somewhat grounded, true belief, which
would then be opinion in comparison with moral certainty.

It seems pointless to try to coin terminology for the levels of opinion that comple-
ment scientific certainty and moral certainty. It is clear that in these contexts the word
‘scientific’ carries epistemically honorific connotations not warranted by many opinions
lacking scientific certainty. Thus, the expression ‘scientific opinion’ is often inappropri-
ate. Likewise, the word ‘moral’ carries epistemically honorific connotations not warranted
by many opinions lacking moral certainty. Thus, the expression ‘moral opinion’ is often
inappropriate.

The expressions ‘absolute certainty’, ‘mathematical certainty’, ‘scientific certainty’,
and ‘moral certainty’ are peculiarly ambiguous constructions. In the sense used here,
‘absolute certainty’ does not mean “certainty about absolutes”, and ‘mathematical cer-
tainty’ does not mean ‘“‘certainty about mathematics”. Likewise, for ‘scientific certainty’
and ‘moral certainty’. Moreover, ‘certain knowledge’ does not mean “knowledge about
certainties” and ‘probable knowledge’ does not mean “knowledge about probabilities”.

We read fine things but never feel them to the full until we have gone the same steps as the
author.—John Keats

3 The Spectrum of True Beliefs

As said above, the distinction between knowledge and opinion applies only to proposi-
tional knowledge (or knowledge-that) and not to either objectual knowledge (knowledge-
of) or operational knowledge (knowledge-how-to).!6 It was also said that in many cases,
each of the three requires the other two. To see how propositional knowledge involves
the other two, consider propositional knowledge that no square number is twice a square
number. This involves among other things objectual knowledge of the system of numbers
(positive integers) and operational knowledge how to square numbers. It also involves fur-
ther operational knowledge: ability to count and to perform other arithmetic operations,
ability to understand propositions, ability to make judgments, and ability to deduce con-
clusions from premises—to mention a few of the skills used acquiring arithmetic knowl-
edge [23].

As already emphasized, in every sense of ‘know’ used in this essay, every proposi-
tion known to be true actually is true. Truth is a precondition of knowledge. Moreover,
except in rare cases, every such proposition was true before it was known. Fact is prior
to knowledge. As Frege explicitly noted, the process of achieving knowledge in no way

16The complementarity and interconnectedness of objectual, operational, and propositional knowledge
has been a cornerstone of our thinking for many years. See Corcoran [10].
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intrinsically alters the proposition known.!” Consider the proposition that no square num-
ber is twice a square number. This very proposition, which Corcoran came to know only
a few years ago, was unknown until first known to be true by one of our predecessors
thousands of years ago, perhaps in ancient Greece or ancient China. Later, it came to
be known by countless others, one after another, down through the years in Asia Minor,
North Africa, and in many other places. One and the same proposition that was at one
time not known at all became known by one person and then by more and more people,
speaking in different languages, at different times, and in different places—each time by
one person acting autonomously. Although knowledge cannot be transmitted, a person
who knows a proposition to be true can sometimes help others to come to know the same
proposition. '8

However, by becoming a cognition of a new person the proposition is changed ex-
trinsically: more people know it than knew it earlier. A proposition not widely known
becomes widely known. However, everything people relate to changes extrinsically every
time someone relates to it: thinking of the number one changes it extrinsically.

Knowledge is objective in that it is of objective reality. Moreover, there is no such thing
as disembodied knowledge. Every proposition known to be true is known to be true by a
person. Knowledge in all senses is personal: it is subjective in the sense of being achieved
by a knowing subject. The objectivity of knowledge is prior but no less essential than its
subjectivity. The knowing subject willingly defers to the object known, so to speak.

Thus, knowledge per se is both objective and subjective, in appropriate senses of these
troublingly ambiguous words. In contrast, truth per se is objective but not subjective. If
everyone who knows a given true proposition were to forget it, there would no longer be
knowledge of it, but its truth would not be altered. Being known to be true is an extrinsic
property of propositions; being true is an intrinsic property.

Truth is necessary for knowledge, but knowledge is not necessary for truth. As said
above, strictly speaking, knowledge is sufficient for truth. However, this should not be
taken to mean that knowledge produces truth, which is a common fallacy. Rather, knowl-
edge is sufficient for truth because knowledge has truth as a precondition.

To indicate that ‘know’ is being used in the strict sense emphasized in this work, words
such as ‘with certainty’, ‘categorically’, or ‘conclusively’ can be added—as long as this is
meant to refer to what the knower did objectively as opposed to what the knower felt sub-
jectively. Below we will distinguish knowing with certainty from believing with certitude.
Strict knowing requires that the knower accurately judge based on conclusive evidence.
Philosophers can agree to use the words ‘know’ and ‘knowledge’ in the strict sense and
yet disagree on whether a given proposition is known with certainty to be true by a given
person at a given time or whether there is any such knowledge outside mathematics or
even whether anyone has ever known any proposition with certainty. To some philoso-
phers it seems amazing, implausible, or even incredible to think that people might have
certain knowledge.

7Frege makes this point several places. However, without qualification, it is misleading to say that he
said propositions do not change intrinsically—he did not emphasize the intrinsic/extrinsic distinction
explained below.

181n fact, even belief cannot be transmitted in this sense. One person’s blood can be transfused into an-
other’s body but one person’s belief cannot not be moved to another person or copied on another person’s
mind. Beliefs are formed by judging and each judging must be autonymous. Of course, magicians, for
example, trick people into making judgments they would not otherwise make.
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As already noted, true opinion complementing strict knowledge spans the spectrum
starting after cognition or absolute certainty—the limiting case of entirely adequate,
evidence-based deliberation included in knowledge in the broad sense. The spectrum of
true belief continues through scientific certainty and through moral certainty. It is impor-
tant to recall that scientific certainty and moral certainty are only opinion in relation to
knowledge in the strict sense: scientific certainty is knowledge in a less strict sense—a
sense in which moral certainty is in the realm of opinion. The spectrum of true opinion fi-
nally ends with true credence or groundless opinion that happens to be true—the limiting
case of total lack of evidence-based deliberation.

As an analogy, compare the spectrum of true belief to the fractions between one and
zero inclusive of end-points. Imagine that the sizes somehow represent amounts of “evi-
dentiality”. The spectrum of probable knowledge excludes both one (the cognitions) and
zero (the credences), but the spectrum of knowledge in the broad sense excludes only
Zero.

All humans [anthropoi] by nature desire knowledge.—Aristotle, Metaphysics A.1 [2]
4 The Spectra of Certainty

In a given person’s lifetime or even in a relatively short interval of years or days, their
degree of certainty in a given known belief may vary from near credence to absolute
or near absolute certainty through increasing degrees as evidence accumulates. In fact,
sometimes credence taken on trust is transformed by the cognitive process into certain
knowledge. Of course, in another case, the process might reverse and a true proposition,
one time known with certainty, through deteriorating memory or other factors, may over
time end up being taken purely on faith.

Thus, for every person, and for each of their true beliefs, there is a spectrum of de-
grees of certainty within which their actual degree of certainty at a given time is located.
Of course, each of these many spectra, or spectrums, is similar to what we called the
spectrum of true belief above.

In appropriate orthogonal senses of ‘objective’ and ‘subjective’, there is no contradiction in say-
ing that one and the same thing is both objective and subjective, e.g., perception, inference, and
cognition.—Albert Hammond (paraphrase).

5 Senses of ‘Objective’ and ‘Subjective’

Above we used the words ‘objective’ and ‘subjective’ as non-opposing adjectives in the
domain of cognitions.

As opposing adjectives, the words ‘objective’ and ‘subjective’ are applied in differ-
ent senses in different domains or ranges of applicability [11, pp. 38f]. A judgment is
objective to the extent that it is based on logic and evidence or other factors pertaining
to the objects that the judgment concerns; a judgment is subjective to the extent that it
is based on loyalties and feelings or other factors pertaining to the subject making the
judgment. People are objective to the extent they make objective judgments; people are
subjective to the extent they make subjective judgments. Advice, testimony, journalism,
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and the like are objective to the extent that they reflect objective judgments, and subjec-
tive to the extent that they reflect subjective judgments. A person is objective to the extent
that their judgments are objective, and they are subjective to the extent that their judg-
ments are subjective. These are all interrelated but distinguishable uses of ‘objective’ and
‘subjective’.

A distinction drawn between two objects in a given domain is objective insofar as it
is based on intrinsic features of those objects, and it is subjective insofar as it based on
the tastes, loyalties, feelings, etc. of the person who drew it. For example, in the domain
of integers, the distinction between even and odd integers is objective but any distinction
between large and small is subjective. Again, in the domain of propositions about integers,
the distinction between true and false is objective but any distinction between interesting
and uninteresting or between simple and complicated is subjective. Of course, we are
not denying any author’s right to stipulate objective usage to words whose normal use is
to mark subjective distinctions. For example, certain numbers are called perfect without
any suggestion that they are better than the non-perfect numbers: the perfect versus non-
perfect distinction in mathematics is objective even though the same words are applied
elsewhere for subjective value judgments.

Church, Tarski, and other mathematically oriented logicians use cognates of the words
object and subject—such as objective, subjective, objectively, subjectively, objectivity,
and subjectivity—in senses related to those in traditional subject—object epistemology
where thinking subjects make judgments about factual objects. In Corcoran—Hamid [22],
we survey use and conspicuous non-use of such words in logic.

For example, modern formalizations of geometry—and other historically established
disciplines—require distinguishing between the underlying logic and the overlying sci-
ence. Church said such distinctions are “subjective and essentially arbitrary” [9, pp. 58ff].
Tarski implied there is no “objective” basis for them [46, esp. pp. 412 and 418f]. Neither
gives grounds for his claim—and neither explains his crucial term.

Distinguishing between the underlying logic and the overlying science requires distin-
guishing between the logical and the scientific concepts or—what amounts to the same
thing with respect to interpreted formalized languages—between the logical and the sci-
entific constants. Tarski explicitly stated that he knew of no “objective” basis for the latter
distinction [46, esp. pp. 412, 418f].1°

Remarkably, Church [9] uses subjective frequently while completely avoiding objec-
tive whereas in Tarski [46] the exact opposite holds: there objective occurs frequently
while subjective is completely absent. The above epistemic uses of cognates of subject
and object contrast with other essentially unrelated uses. For example, in logical syntax
the word zero is called the subject of the sentence zero precedes two and the word two
its object. Moreover, the goal or aim of a work is often called its objective. There seems
to be no parallel contrasting usage of ‘subjective’. Curiously, although the objectives of
Quine and Ullian’s 1970 book The Web of Belief [44] overlap with those of this work, it
uses ‘objective’ only twice, both in the sense of “aim”, and it uses ‘subjective’ only twice,
both in the sense of “not objectively grounded”.

9However, in the posthumously published “What are logical notions? Tarski [47], he proposed a condi-
tion for distinguishing logical from non-logical objects: individuals, sets, relations, functions, etc. This
proposal does not imply a condition for distinguishing logical from non-logical concepts (senses) and
thus does not yield a condition for distinguishing logical from non-logical terms (expressions).



Investigating Knowledge and Opinion 105

In primary senses, objective and subjective are correlative adjectives like old and
young. It is difficult to determine what is being conveyed by calling something objec-
tive or subjective unless writers give (i), for each, examples where they would apply one
as opposed to the other and (ii) some sense of their criteria for applying each word. More-
over, when a writer asserts something without giving any objective grounds, the reader
is justified in suspecting that the assertion was empty rhetoric or that it was based on a
subjective judgment. In the case of the distinction between logical and scientific concepts,
there is a history of such distinctions being made or implicitly used going back through
modern, renaissance, medieval, and ancient logic. If all those logicians were mistaken,
we need some kind of explanation of how they went wrong. The apparent fact that Tarski
could not think of an objective basis for distinguishing between the logical and the sci-
entific concepts does not warrant his conclusion that no such basis exists. Likewise, the
apparent fact that Church could not think of an objective basis for distinguishing between
the underlying logic and the overlying science does not warrant his conclusion that there
is none.

In the broad sense of ‘animal’, every human is an animal; in the narrow sense, no human is an
animal.—Frango Nabrasa, 2001 (personal communication).

6 Broad and Narrow Senses of ‘Believe’

The verb ‘believe’ is used in several senses even when its direct object is the proposition.
In all such senses, belief can manifest itself in action. If the right circumstances occur, a
person who believes something will react in one way and a person not believing it will
react in another way—even if in some cases the action is entirely private and not observ-
able by others. One broad inclusive sense and two narrow exclusive senses of ‘believe’ are
pertinent. In the broad and inclusive sense used above and throughout this work, believing
is accepting as true regardless of whether done with absolute certainty, with a lower level
of certainty, or with no certainty. A person believes every one of his or her own cognitions
and every one of his or her own opinions.

In both of the narrow and exclusive senses, discussed but not used here—sometimes
signaled by a word such as ‘merely’—no proposition is known to be true and believed
to be true by the same person: “beliefs exclude knowledge”. A person aware of merely
believing will sometimes answer, “I believe so”” where a person who knows would answer
simply “Yes”.

Of course, it makes a difference whether only certain knowledge is excluded or whether
all knowledge including probable knowledge is excluded. The less exclusive narrow sense
in which only certain knowledge is excluded is used mainly in mathematics and philoso-
phy. In this sense, most scientific and medical knowledge is mere belief. In the more ex-
clusive narrow sense of ‘belief’, all knowledge, certain and probable, is being excluded.
In this sense, the mere beliefs are only the credences. In this sense, all mere belief is
entirely subjective in the sense of coming from within the believing subject: the process
leading to it includes no component, however small, based on objective evidence and de-
liberation. For example, in some cases, all of what was taken as evidence was in some
sense constructed by the believer. In other conceivable cases, the believers made no effort
to square their judgments with objective reality: loyalties, preconceptions, fears, hopes,
or other subjective factors were dominant.
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Many mere beliefs can be expected to be false, regardless of whether ‘mere belief’
is taken in the less or the more exclusive sense. However, nothing precludes subjective
beliefs from being true—in some cases by accident, so to speak. True mere beliefs in
the more exclusive sense are what we called true credences above. By contrast, in the
broad and inclusive sense of ‘believe’ used in this work—sometimes signaled by suffixing
words such as ‘in the broad sense’—every proposition known to be true is believed to be
true: “beliefs include knowledge”. More explicitly, for a given person, the set of their
beliefs includes their cognitions. In order to speak of belief that a proposition is true, we
sometimes speak of belief in the proposition. Sometimes, “I think that” is interchangeable
with “I believe that”.

Certitude is not the test of certainty.—O.W. Holmes, Jr.
7 Certitude and Certainty

Certitude is the subjective feeling of assurance of the truth of a proposition.”’ Certitude
can be the result of thorough objective investigation which started from a suspension of
belief or even from doubt or disbelief, and it can also arise without investigation or be
the result of deception, rationalization, indoctrination, error, or hallucination, to mention
a few. O.W. Holmes, Jr., reminded us that “Certitude is not the test of certainty”.

Certainty, as used by Holmes and in this work, is not a feeling at all; it is the state of
having knowledge in the broad sense. The expression ‘false certitude’ is sometimes used
for misdirected certitude: a feeling of assurance toward a false proposition. It is also used
for improperly derived certitude: certitude arrived at by persuasion, enthusiasm, illusion,
fallacious reasoning, and the like.

False certitude is analogous to false trust, false distrust, false security, false danger,
false guilt, false righteousness, false pride, false shame, and the rest. Holmes could have
added, for example, that guilt is not the test of immorality: the world has known peo-
ple who had done nothing wrong but who were consumed with guilt. Freud and Tarski
lamented these cases.

Aristotle said that every person by nature desires knowledge. Peirce disagreed; he said
that every person by nature desires belief. According to Aristotle, the goal of inquiry
is the possession of truth. According to Peirce, the goal of inquiry is the cessation of
doubt. Aristotle sought certainty, the possession of truth.?! Peirce sought certitude, the
subjective feeling of certainty.?> Aristotle’s view relates more to the spectra of certainty;

20The expression ‘the truth of a proposition’ should not be detached from its context. By ‘assurance of
the truth of a proposition’, we mean assurance that the proposition is true. It is a mistake to think that the
truth of a proposition is an entity separate from the proposition itself.

21 There are two difficult issues here for the Aristotle scholar. The easier is whether our indirect quotation
of Aristotle—that every person by nature desires knowledge—is a fair interpretation of the famous first
line of Metaphysics [2]. The other issue is whether Aristotle held the general view that we attribute to
him. Scholars we consulted do not all agree. After a nuanced discussion, David Hitchcock (per. comm.)
concluded: “So I think that it is fair to say that Aristotle took one cognitive goal of all human beings to
be the possession of truth.” Very recent scholarship concurs. See Anagnostopoulous [1, 102f].

22Perhaps the classic expression of Peirce’s views is in Sects. III, IV, and V of his famous 1877 article
“The Fixation of Belief” [37] reprinted in the 1992 Houser and Kloesel volume [40, 109-123]. The
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Peirce’s relates more to spectra of certitude. Of course, it is a matter for scholars to decide
whether, for the respective thinker, either view is a “mature” one.

Absolute, apodictic, or mathematical certainty is the state of having knowledge in the
strict sense. Scientific certainty and moral certainty are two states of having probable
knowledge. It is unfortunate that the words “I am certain” often indicate certitude, not
certainty. Certitude is a feeling of confidence in a belief. Some authors such as Tarski
write of “intuitive certainty” and of being “intuitively certain” to refer to certitude. It is
also unfortunate that certitude, the feeling, is often not distinguished from the scientific
or moral certainty it sometimes reflects. It is even more unfortunate that the two words
‘certitude’ and ‘certainty’ are sometimes used interchangeably with one meaning. It is
confusing that sometimes when the two meanings are distinguished, the words are used
with the meanings reversed.

As Holmes said, certitude is not always based on certainty. Moreover, certainty does
not always give rise to certitude; and when it does, time might pass between the achiev-
ing of certainty and the feeling of certitude. Even absolute certainty is not always or
not immediately accompanied by certitude—especially in cases where the knower is at
first surprised, delighted, or dismayed to find out that the proposition is true. In fact,
for modest and objective investigators into important issues, sometimes the more cer-
tainty they achieve, the more they grasp the complexities and the less certitude they
might feel. As implied above, philosophers disagree on whether absolute certainty is
achievable. John Stuart Mill had certitude that “There is no such thing as absolute cer-
tainty”’.

Many of a person’s beliefs, including all those based on testimony, are not their cer-
tain knowledge, and some, even some that are true, are probably not certain knowledge
for most. An example is the famous Fermat Theorem: given any three numbers that
are all the same power exceeding two, no one is the sum of the other two. This im-
plies that no cube is a sum of two cubes, that no fourth power is a sum of two fourth
powers, and so on. Corcoran, for example, thinks that he is fully justified in believing
this. Part of his justification is based on his knowledge that mathematicians he has rea-
son to respect have testified in print that it has been proved to be true by a proof that
has been carefully studied and found to be cogent by qualified experts. Here is a justi-
fied and true belief of Corcoran’s that is not his certain knowledge, i.e. not his cogni-
tion; it is, of course, one of his scientific certainties. In contrast, for the other author,
Hamid—whose expertise does not extend as far into mathematics as Corcoran’s—the
Fermat Theorem is not a scientific certainty: it is merely a moral certainty. Probably most
people who believe Fermat’s Last Theorem have less evidence than Corcoran or even
Hamid.

But the proposition in question is a justified true belief of dozens of mathematicians for
whom it is knowledge. With regard to the Fermat Theorem, while Corcoran has certitude
but not absolute certainty, some mathematicians have certitude and absolute certainty.
Corcoran has probable knowledge that the Fermat Theorem is true. In fact, he thinks he
has moral certainty, even scientific certainty.

interpretation putting Peirce in diametrical opposition to Aristotle is almost universally shared by Peirce
scholars as being a view that Peirce actually held at the time of the article. However, Peirce’s writings
are replete with subtlety, irony, and scathing sarcasm. So much so, that it is hard to be certain that he was
not actually expressing the opposite of what he wrote. Moreover, it might well be that he later came to
embrace in a nuanced form a view he had formerly ridiculed in a naive and exaggerated form.
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There is no such thing as absolute certainty.— John Stuart Mill.
8 The Spectra of Certitude

In a given person’s lifetime, or even a relatively short interval of years or days, their degree
of certitude in a given belief may vary from absolute or near absolute certitude though
lesser degrees until there is no certitude whatever, when the person’s belief might be said
to lack all conviction. At such a point, doubt may start to accumulate until a maximum is
approached.

Of course, a similar observation applies to each disbelief. Moreover, as we all know,
one day’s belief might be replaced over time by the diametrically opposed disbelief. How-
ever, let us focus on a given belief belonging to a given person. Analogous to the spectra
of certainty there are spectra of certitude, which range from a maximum of certitude
through ever more diminishing level until a state of subjective neutrality is passed and
doubt begins to increase to its maximum.

To picture a spectrum of [objective] certainty with the corresponding spectrum of [sub-
jective] certitude, we may represent the former spectrum as a horizontal axis that extends
from credence (starting point) on the left to cognition on the right. We may then represent
the certitude spectrum as a vertical line on the left whose neutral midpoint lies at the point
of credence. The high point of the vertical axis above the horizontal axis represents max-
imal certitude; the low point of the vertical axis below the horizontal represents maximal
doubt.

As a given cognitive process moves the knower’s level of certainty from credence to
cognition, certitude sometimes may increase, and the curve rises above the axis of the
certainty spectrum. However, in some cases, as evidence increases doubt increases and
the curve goes below the axis of the certainty spectrum.

An extreme skeptic may experience doubt when they have certainty, even when there is
cognition. An extreme paraskeptic—to coin a word—may experience certitude even when
there is only credence. Such extreme skeptic’s subjective feeling of doubt is disconnected
from their objective state of certainty in one direction; such an extreme paraskeptic’s
subjective feeling of certitude is disconnected from their objective state of certainty in the
other direction.

Philosophers counsel thinkers to adjust their level of certitude to be proportional to
their level of certainty without suggesting how this can be accomplished.

The certitude-doubt axis is independent of the certainty axis. Besides, a person can
have unbounded certitude in a false proposition and unbounded doubt in a true proposi-
tion.

Doubt is more often the mark of knowledge than certitude is. Certitude is more often the mark of
error than doubt is.—Frango Nabrasa

9 Certain Knowledge
How does a person go about arriving at certain knowledge of the truth of a proposi-

tion even if, in at least some cases, knowledge in the strict sense is the ideal limit of
a process that can never be completed—except perhaps in mathematics? Let us use the
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word ‘hypothesis’ for a proposition not known to be true and not known to be false by
a given knower. In the first place, it is necessary to understand the hypothesis to be in-
vestigated. Next, it is necessary to connect with the reality that the proposition is about
in order to acquire from it evidence sufficient to ground a judgment that the proposi-
tion is true. Third, it is necessary to marshal the evidence, to bring the evidence to bear
on the hypothesis. Finally, it is necessary to see that the evidence is conclusive and to
accurately judge on the basis of the understanding and marshaling that the proposition
is true. A belief that resulted from successful completion of this process is said to be
cognitively grounded or justified. Husserl was referring to knowledge in this strict sense
when he said that in having knowledge, “we possess truth as the object of a correct judg-
ment” [29, 130].

In the case of the proposition that no square number is twice a square number, which
was probably known to be true by Socrates, Plato, Aristotle, Leibniz, Pascal and many oth-
ers, the evidence phase included reviewing previously known arithmetic propositions and
the marshaling phase included inferring the hypothesis from them by logical deduction.

Certain knowledge is cognitively justified true belief. In this context, the word ‘true’ is
redundant in the sense that every cognitively justified belief is true. A belief that a given
proposition is true is cognitively justified only if there was a successfully completed four-
step method or its equivalent. Moreover, a proposition that is a certain person’s true belief
but not now their knowledge can become cognitively justified and thus become knowledge
if the believer successfully completes the four-step method.

Notice that in regard to cognitive justification, praise and blame are often beside the
point. A person might flawlessly make every effort to apply the four-step method to a
proposition that they believe and yet fail because of circumstances beyond their control
such as the necessary evidence having been destroyed.

The verb ‘justify’ is ambiguous. In several other senses of ‘justified’, the word ‘true’ is
not redundant in the sentence ‘knowledge is justified true belief’. Unless ‘true’ is redun-
dant, the sentence expresses a false and misleading proposition, as we show below—in
agreement with Plato, who criticized such formulations toward the end of the Theatetus.
Preus [43, 93] wrote: “In the Theaetetus, the hypotheses that knowledge might be “true
belief” (alethé doxa) or “true belief plus an account” (logos) are discussed and refuted”.
Other qualified scholars concur; see, for example, [42, 59].

In some of the other senses, justifying a belief involves explaining something to oth-
ers: perhaps why I should not be blamed for having the belief or why other people in my
circumstances would have come to the same conclusion. No matter how these explana-
tory senses of justification are spelled out, it is clear that knowledge is not justified true
belief. Gaining knowledge that a proposition is true does not require explaining anything
to anyone.

As explained above, acquisition of knowledge comes about through a personal pro-
cess that begins with apprehending a proposition and ends with a judgment. There is
no need for the knower to explain anything to anyone. There is no room in the process
for accounting to others. In fact, the suggestion that knowledge requires explanation is
contrary to the principle of the autonymy of knowing—a principle emphasized in this
paper.

More generally, in any sense of ‘justify’ in which a false belief is justified, it is not
the case that justified true belief is knowledge in the strict sense—there are indefinitely
many propositions that could become justified true beliefs without thereby becoming my
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certain knowledge. The reason is based on the fact that from any false proposition in-
definitely many true propositions are deducible. If we justifiably believe that you own
a new pen when in fact your pens are all old, then we could justifiably believe without
knowing the true proposition that you own a pen—if we were to deduce the latter truth
from the former falsehood. Our belief that you own a pen would have been formed by
a flawed process—in this case inferring from a false premise, one form of begging-the-
question [11, 22f].

In the cognitive sense of ‘justify’, every justified belief is true and, in the strict sense of
‘knowledge’, justified belief is knowledge; knowledge is justified belief. To be even more
explicit, cognition is cognitively justified belief. The formula ‘knowledge is justified true
belief’ is dangerously flawed and should never be used without adequate qualification.
In statements using the formula without qualification, ‘justify’ can be interpreted either
cognitively or non-cognitively: if the former ‘true’ is misleadingly redundant; if the latter,
the formula expresses a falsehood.

10 Speaking of Propositional Knowledge

Previous paragraphs present one of many ways of organizing propositional knowledge for
purposes of discussion. Every item of propositional knowledge is someone’s true belief
that something is the case. These beliefs have all been established with some degree of
certainty. Each was derived by a process involving some objective considerations.

We started with knowledge in the strict sense, the most firmly and objectively es-
tablished beliefs, which we called cognitions.23 These beliefs are known with certainty
and are thus also known as certain knowledge. If the word ‘knowledge’ is used in the
strict sense, ‘certain knowledge’ is a redundancy, a mere rhetorical flourish, and ‘proba-
ble knowledge’ is an oxymoron. When ‘knowledge’ is used in a less strict sense, we can
speak of certain knowledge without redundancy and of probable knowledge without con-
tradiction. Even then, putting the adverb ‘absolutely’ in front of ‘certain knowledge’ is a
mere rhetorical flourish exactly analogous to other uses of the adverb in expressions such
as ‘absolutely true’ and ‘absolutely perpendicular’.

The established true beliefs that are not cognitions are all called probable knowledge.
The degree of firmness starts very high but then shades off imperceptibly through the less
and less probable, tending toward but excluding true credences, which are not established
at all and not knowledge. The most firmly established of true beliefs that are not cogni-
tions have scientific certainty. Moving on from there, we reach those with moral certainty,
less firmly established but still sufficiently so to serve as the basis for responsible action
and warranted assertion. After that we eventually come to beliefs that hardly merit being
called probable knowledge but are still awkwardly (but strictly) so-called. In this usage,
putting ‘scientifically’ and ‘morally’ in front of ‘certain’ weakens the adjective in the
same way that ‘partly’ and ‘lightly’ weakens ‘cooked’, ‘scrubbed’, ‘seeded’, and other
such expressions.

23 A person’s most firmly established beliefs are rarely those they believe most firmly, i.e. those of which
they are most strongly convinced. This point relates to the contrast, dealt with elsewhere in this work,
between the objective state of certainty and the subjective feeling of certitude.
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As observed above, in the sense of ‘probable’ used here, all probable knowledge
is knowledge. There are other senses of ‘probable’ recognized by dictionaries. In an-
other sense, saying that a given proposition is probable knowledge might mean that it
is likely to have been investigated and found to be true. In the latter sense, probable
knowledge is probably knowledge, but it might not actually be knowledge; in this sense,
then, not all probable knowledge is knowledge. In fact, in this sense, not all probable
knowledge is true. In the sense of ‘probable’ used in this work, all probable knowledge
is true.

Cognitions are said to be known with mathematical certainty, not because such cog-
nitions are necessarily about mathematics, but only because mathematical cognitions are
often taken as paradigm examples. The mathematical community is known to aspire to the
highest standards of clarity, transparency, rigor, and cogency. Likewise, beliefs said to be
known with scientific certainty are not necessarily about science; they are so-called only
because this level of certainty is often aspired to or achieved by the scientific community.
Finally, beliefs said to be known with moral certainty are hardly ever about morality; they
are so-called only because this level of certainty is often required for beliefs on which
moral action is to be based.

People might have cognitions that they just locked up their house. Shortly after lock-
ing up, they might have scientific certainty that the house is locked. But after enough
time has passed, perhaps they can have only moral certainty that the house is locked.
And after even more time has passed they might not be able to have even moral cer-
tainty.

Notice that this organization applies only to propositional knowledge, not to objectual
knowledge or operational knowledge. Moreover, it also does not apply to knowledge in
the sense of scientific competence or expertise. As explained above, by ‘expertise’ we
refer to the result of years of observation, experimentation, investigation, and delibera-
tion that fine-tunes instincts of the dedicated scientist. For example, Newton probably had
more scientific competence and expertise in mechanics than any person who came before
him, and yet, after Einstein, many of Newton’s beliefs about mechanics have been shown
to be false, even though they are close enough for many applications. In fact, many scien-
tists who have extensive knowledge in their respective fields expect that future researchers
will find to be false many if not all of the propositions they currently believe to be true.
If scientific knowledge were to be measured by propositional knowledge, the proposi-
tions currently regarded as established truths, then there would be little or no progress in
science.

Focus on propositional knowledge to the exclusion of expertise is unfortunate, even
in mathematics or philosophy. Studies of propositional knowledge, including this work,
will probably be valued less for specific achievements than for preparing the way for a
broader and more inclusive study of knowledge and for underlining the need for more
attention to expertise, the fourth kind of knowledge mentioned. The fact that contempo-
rary epistemology focuses almost exclusively on propositional knowledge is especially
regrettable.

It is true that traditional philosophy often extolled the seeking of wisdom, which is
inseparable from expertise. But the fact that expertise and the accompanying wisdom re-
quire practice, experience, learning from mistakes, and other mundane activity is rarely
mentioned. Even more unfortunate from our perspective is that in many discussions of
wisdom-seeking no mention is made of propositional, operational, and objectual knowl-
edge.
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11 Cognitivism, Probabilism, and Skepticism

Among the tensions that pervade discussions of knowledge and belief is the perennial
issue of whether knowledge in the strict sense is ever achievable or whether it is merely
an ideal to which objective people can only strive but never fully reach. Our personal
opinion is that it is achievable—but often only with great difficulty and often not at all.
We believe that the main role of the concept of cognition in our lives is serving as an
ideal standard by which to measure our performances: an ideal goal to strive for and a
constant reminder of the shakiness of many of our beliefs. It would serve these important
purposes even were there no cognitions, no knowledge in the strict sense. When Aristotle
wrote that every human by nature desires to know, he was thinking of knowing in the
strict sense.

With respect to any given proposition, we can distinguish three philosophic viewpoints
a given person might have: cognitivism, probabilism, and skepticism. Cognitivism holds
that the proposition is or can be known in the strict sense, i.e. that it or its negation is or can
become certain knowledge or cognition. Probabilism holds that the proposition cannot be
known in the strict sense, but that it or its negation is or can become morally certain or
even scientifically certain. Skepticism holds that the proposition cannot be known in the
strict sense, and that neither it nor its negation is or can become even morally certain,
much less scientifically certain.>*

Both authors agree with cognitivism with respect to many but not all mathematical
propositions. They also agree with probabilism with respect to many but not all proposi-
tions about the material world. For example, they think that they have scientific certainty
that smoking is deleterious to health. However, they differ on philosophical propositions:
Corcoran agrees with skepticism but Hamid agrees with probabilism with respect to most
but not all philosophical propositions. For example, Corcoran thinks that it is impossible
to know even with moral certainty whether there is cosmic justice, i.e. whether each good
act will be rewarded in proportion to its degree of goodness and each bad act will be
punished in accord with its degree of badness [21]. However, Hamid thinks that this “cos-
mic justice hypothesis” can be settled with moral certainty, perhaps even with scientific
certainty.

12 Understanding Propositions

Understanding a proposition is grasping its truth-condition, knowing what its being true
would be and what its being false would be. A person who understands a given proposition
will often be able to imagine what it would be like to affirm it, or to deny it. A person who
understands a given proposition can wonder whether it is true or false. Such a person can
recognize in simple cases its implications—what it implies, what follows from it. They

24The word ‘skepticism’, or ‘scepticism’, derives from the Greek verb meaning “to consider carefully”,
which was taken by some to mean “to consider so carefully that no conclusion is reached”. The Greek
skeptic (skeptikos) did not subscribe to the view called ‘scepticism’ above; the skeptic meticulously
avoided subscribing to any view at all. Today, the word ‘skepticism’, or ‘scepticism’, is used in vari-
ous senses, often as above, rarely if ever in the etymological sense. See Preus [43, 237-8].
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can also recognize in simple cases its implicants—what implies it, what it is implied by. In
addition, again in simple cases, they can recognize what it contradicts, what is inconsistent
with it. In some cases, a person who understands a proposition can look for methods to
settle it affirmatively or negatively.

Before a person can begin to marshal or even acquire evidence by which to judge
that a proposition is true, it is necessary to understand the proposition. In fact, as Frege
said in several places, it is necessary to understand a proposition before one can make a
judgment concerning it.>> He suggested without explicitly saying so that understanding is
necessary before we can wonder whether it is true or false, before one can become aware
that it is a hypothesis. There are many propositions that are widely understood but are
not known to be true and not known to be false by anyone—or so it is said. Clearly, in
most if not all cases, it would be impossible to know with absolute certainty, to have a
cognition, that a given proposition is neither known to be true nor known to be false by
anyone. This would require exhaustive knowledge of the mental states of every person
now alive.

The Goldbach Hypothesis [23, p. 39] is that every even number exceeding two is the
sum of two prime numbers. This proposition is easy to understand but difficult to settle.
Despite the fact that many able mathematicians have spent long years trying to determine
whether it is true, none have succeeded.

It is possible to understand all of the concepts in a proposition without understand-
ing the proposition—just as it is possible to understand each step in a proof with-
out understanding the proof and to grasp each note in a melody without grasping the
melody. In all cases, even adding to apprehension of the constituents a grasping of their
order does not account for an understanding of the whole. One of the most perplex-
ing problems in the theory of propositional knowledge is that of how a proposition is
understood—assuming that its constituent concepts are understood. However, the prob-
lem is even more challenging to philosophers such as Frege who believed, or at least
said, that we apprehend a proposition’s constituent concepts only after apprehending
the proposition, that the concept is grasped by analyzing a proposition containing it.
Cf. [41, p. 140].

In order to understand a proposition it is normally not necessary to know what under-
standing a proposition is. In order for a person, a young student for instance, to understand
the proposition that there are four single-digit square numbers it is not necessary for the
student to know what it is to have understanding of a proposition. However, in order for
a person, Hamid for instance, to understand the proposition that a proposition must be
understood before it can be known to be true it is necessary for him to know what it is to
have understanding of a proposition. However, this is not a typical case. A child can come
to know that the family dogs each have four legs without it understanding the proposition
that it understood the proposition that the family dogs each have four legs. Our assump-
tion in this article is that understanding propositions precedes having knowledge of what
understanding propositions is.

2Frege [27, 62] speaks of understanding as “grasping” the proposition and he speaks of judging as
“acknowledging” its truth. See Frege [28, 329]. He seems oblivious of the fact that understanding is an
act-process that takes time to complete. He seems likewise oblivious of the process intervening between
understanding and judging. Moreover, he is vague about the nature of judging.
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At the 1990 Buffalo Church Symposium, Hartley Rogers said that John Myhill once called him up
to ask whether a certain hypothesis that had just occurred to him had been settled. Rogers replied
that it was known to the field as Myhill’s Theorem.—Sriram Nambiar

13 Knowing That One Knows

Let us start with an example of a cognition and then consider what else would be required
to know that it is a cognition. Corcoran believes that he knows that every [sc. geometric]
square is equal in area to the sum of two smaller squares of different sizes. He also believes
he knows that each square is equal in area to the sum of two smaller squares that are equal
to each other. Every square is equal to twice a square. If you draw the two diagonals, you
make four isosceles right triangles, any two of which make a square.

He remembers discovering this and proving it in connection with one of his many read-
ings of Plato’s Meno. This geometric proposition is related to the Pythagorean Theorem,
which might have been discovered and proved by Pythagoras.

In order for Corcoran to know that this proposition is true, it was not necessary for
him to recall the details of his own thought process. But for him to know that he knows
this proposition to be true, it is necessary for him to be able to recall the processes by
which he gained that knowledge and to verify that the steps were properly carried out
and completed. For example, he must verify that, ar the exact time of the process, he
succeeded in understanding the proposition, he succeeded in gathering sufficient evidence,
and he succeeded in properly bringing the evidence to bear on the issue of the truth of the
proposition. We doubt whether this is even possible.

The proposition itself is about geometric squares; it is not about Corcoran, and it
is not about a proposition. The proposition that he knows that it is true is about him
(his past cognitive history) and about the proposition; it is not about geometric squares.
Knowing that one knows is different than knowing, and far more complicated and
problematic. Corcoran believes that he knows the geometrical proposition with math-
ematical certainty; but he thinks he has at best moral certainty that he knows that he
knows.

Similar points apply in the case of belief. We imagine that there are propositions that
we believe but concerning which the issue of whether we actually do believe them has
never come up. In such cases, we believe that it is true, but we do not even believe, much
less know, that we believe it. There are difficult issues about knowing that one knows
even though it is often very easy to know that one does not know. In order to know
that one knows, it is necessary to know that one believes. But, by what criterion do we
determine that we believe a given proposition? We have made mistakes about what we
thought we believed. For example, Corcoran now knows that he was wrong in believing
that he believed certain propositions. He now knows that there are propositions that he
did not even understand but that he believed that he believed. People he trusted led him
to believe that he believed propositions that, as he now knows, he did not believe. As he
reflects on his youthful views, he is frequently surprised at what in his youth he thought
were his beliefs.

One of the most confusing mistakes that we can make regarding cognition or even
knowledge in the broad sense is thinking that in order to know it is necessary to know that
we know. There are many people who have cognitions who do not even understand, much
less know to be true, the proposition that they know the cognition to be true. A person
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who knows that five plus seven is twelve need not understand the proposition that the
proposition that five plus seven is twelve is known to be true. The idea that knowledge that
a proposition is true requires knowledge that the proposition is known to be true leads to
an infinite regress and thus to skepticism, the view that knowledge is impossible. Persons
who know that we are writing about knowledge and opinion need not know that they know
that they know that they know that we are writing about knowledge and opinion. Why
anyone should have thought otherwise has baffled us for years.”® We should never forget
that the skeptics do not feel bound by logic or by the requirement of testifying in accord
with their own knowledge—which they deny they have. But, it is not just skeptics who
held that knowledge requires knowledge of itself. Aristotle held that having knowledge of
an axiom (arche) required knowledge of the knowledge [1, 68].

The above treats knowing with absolute certainty that one knows with absolute cer-
tainty. Knowing with scientific certainty that one knows with scientific certainty is equally
problematic. Knowing with scientific certainty that one knows a given proposition with
scientific certainty requires knowing that the proposition is true, but it does not require
knowing with absolute certainty that the proposition is true. Thus, it might be possible
to know with scientific certainty, given a proposition that cannot be known with absolute
certainty but is known with scientific certainty, that it is known with scientific certainty.
However, it is impossible to know with absolute certainty, given a proposition that cannot
be known with absolute certainty but is known with scientific certainty, that it is known
with scientific certainty.

The problem of knowing that one knows is closely related to the problem of knowing
how one knew. For example, can we determine of a given cognition whether it was inferred
from previous cognitions or whether it was achieved by some other means?

Beliefs formed by logical deduction from previous beliefs were called inferences and
those formed without deduction were called intuitions. In this sense, not every intuition
is known to be true and, in fact, not every intuition is true. Intuitions that are known with
absolute certainty, i.e. that are cognitions, are called cognitive intuitions or intuitive cog-
nitions. Cognitions formed by logical deduction from previous cognitions can be called
cognitive inferences or inferential cognitions.

The word ‘intuition’ has other meanings, of course. One relatively common usage
is in a way broader and in a way narrower. It is broader in that it applies to objectual
knowledge as well. It is narrower in that it does not apply to beliefs that are not cog-
nitions. The common usage just mentioned is in Bruce Russell’s entry “Intuition” [45]
in the Cambridge Dictionary of Philosophy. It also agrees with the 1868 Peirce article
“Questions Concerning Certain Faculties Claimed for Man”, which has a long and inter-
esting footnote on the history of the word. Peirce wrote [40, p. 11]: “Intuition here will
be nearly the same as ‘premise not itself a conclusion’; the only difference being that
the premises and conclusions are judgments, whereas an intuition may be any kind of
cognition whatever”.

Some philosophers from previous centuries believed that it is possible to determine
with certainty whether a given cognition was an inference or an intuition. In other
words, it was held that in every case a person who has a given cognition can have a

26We are aware of the literature on “knowing that one knows” centered on or stemming from “epistemic
logic”, for example, Hilpinen [31]. The definitions of knowing used in that literature are so alien to those
used here that little written there is relevant.
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cognition about that given cognition, viz. either a cognition that the given cognition is
an inference or a cognition that it is an intuition. Moreover, Aristotle, Frege [26, §3,
§4], and others have been interpreted as holding that, in case of a cognitive inference,
knowers have the capacity to trace their chains of reasoning back and back until they
come upon cognitive intuitions, propositions that they knew to be true without infer-
ence. The cognitive intuitions were called axioms, principles, first principles, primitive
truths, or something similar. Even though the overwhelming majority of mathematical
cognitions were held to be the results of inference from cognitive intuitions, not one
example of such backwards tracing has been presented and no one has ever proposed
a criterion for determining of a given belief whether it is an axiom or an inference.
Needless to say, we are skeptical concerning the hypothesis that knowers have the ca-
pacity to trace each of their cognition-producing chains of reasoning back to cognitive
intuitions.

Each of the four steps in the method of cognition admits of slippage. Coming to know
that a proposition is true is like securing a house having four complicated locks. If A
person’s attention wavers at any lock in the process, a person might have locked the house
without knowing so. And a person might be mistakenly certain of having locked the house
regardless of whether they actually had locked it.

14 Results, Intuitions, Inductions, and Inferences

We need a word for a belief that is the result of a cognitive process however complete or
incomplete, successful or unsuccessful, it may have been. In other words, we need a word
for beliefs that are not entirely subjective. We propose result. Every cognition is a result,
and so is every moral certainty and every scientific certainty. Every result that is not the
conclusion of a chain of deduction is believed on the basis of experience, whether sense-
based, intuition-based, or mixed, whether reliable or unreliable. Using this terminology,
we can say that every belief is either a result or a credence.

We propose induction for a belief arrived at through experience and not through de-
duction. We are not the first to adopt this usage. Aristotle’s word for this kind of belief,
epagoge, is routinely translated ‘induction’. Further, we can say that every result is ei-
ther a deduction or an induction, using the word ‘deduction’ in the broad sense in which
‘fallacious deduction’ is not oxymoronic.

One famous induction is Aristotle’s belief that all swans are white (Prior Analytics
A4.26b7-14 [3]). Another example of an induction is Archimedes’ belief in his Law
of Buoyancy that an immersed body is buoyed by a force equal to the weight of the
displaced fluid. Corcoran’s initial belief in Archimedes’ Law was also an induction in
this sense, but unlike Archimedes’ belief, his involved very little experience: it was
largely based on his teacher’s testimony and the experiment the teacher showed the class
how to do.

There is an important difference between inductions involving sense experience such
as the Archimedes example and those based on abstract experience such as those tradition-
ally attributed to Thales, Pythagoras, Euclid and other mathematicians. Those involving
sense experience are not normally given a special term, but they may be called empirical
inductions. Those involving abstract experience are often called mathematical intuitions.
Mathematical intuitions are sometimes misleadingly said to be self-evident even though



Investigating Knowledge and Opinion 117

nothing is evident to anyone unless they have gone to the trouble to understand it, to expe-
rience the relevant reality, and to complete the cognitive process. The ambiguous words
‘apriori’ and ‘aposteriori’, which are not used in this investigation, have been used to
distinguish mathematical from empirical inductions—and in several other ways as well
[16, 1-3].

Every mathematical cognition is either an inference or a mathematical intuition.
Of course, no cognition is both an inference and a mathematical intuition. But there is
no reason we can see for not thinking that one and the same proposition that is the content
of one person’s cognitive inference might also be the content of another person’s cognitive
intuition. In fact, we would say that one and the same proposition which is the content
of one person’s cognitive intuition might also be deducible from one or more of the same
person’s cognitive intuitions.

When is a statement true? There is a temptation to answer, ‘When it corresponds to the facts’. And,
as a piece of standard English, this can hardly be wrong. Indeed, I must confess I do not really
think it is wrong at all.—Austin [6] and [7, 89].

15 Truth and Knowledge

In this work, the word ‘true’ is used in the traditional classical sense traced by Tarski back
to Aristotle. If something is the case, then it is frue that it is the case. And conversely, if
it is true that something is the case, then it is the case. To separate the classical sense of
‘true’ from its near neighbors, we can observe that in the classical sense the following are
obvious to everyone who understands them.

The proposition that Aristotle read Plato is true if and only if Aristotle read Plato.

The proposition that Aristotle read Euclid is true if and only if Aristotle read Euclid.
The proposition that Euclid read Aristotle is true if and only if Euclid read Aristotle.
The proposition that Euclid didn’t read Aristotle is true if and only if Euclid didn’t read
Aristotle.

These are obvious even though the four proposition they are about are not obvious to
many. The proposition that Aristotle read Plato is known with moral certainty to be true
by persons who have read Plato and Aristotle. The proposition that Aristotle read Euclid
is known with moral certainty to be false: Aristotle died before Euclid wrote anything.
The proposition that Euclid read Aristotle is a hypothesis—highly improbable to many
given what the two wrote, but far from settled.

Every proposition is either true or false. But not every proposition is either known to
be true or known to be false, by either of us or by any other person. In fact, not every
true proposition is known to be true. Corcoran knows that there is a true proposition not
known by him to be true. He can say this even though he knows that he cannot give an
example. It is logically impossible for Corcoran to give a proposition that he knows to be
a true proposition not known by him to be true. There are many counterexamples for the
proposition that every true proposition is known to be true. And, for all we know, “every
perfect number is even” might be one of them. But we can never give a counterexample
and know that it is a counterexample [14].
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Truth includes knowledge and goes well beyond knowledge: the set of true proposi-
tions includes as a relatively small subset of the set of propositions known to be true. And
it includes much more—namely the vast expanse of true propositions not known to be
true.

No proposition is both true and false. And no proposition is both known to be true and
known to be false, by either of us or by any given person. In fact, no proposition is both
known to be true by either of us and known to be false by some other person. Nevertheless,
there are many propositions believed by one of us to be true and believed by others to be
false.

There are many modern philosophers who believe that Corcoran was wrong to say that
he has certain knowledge of the fact that no square number is twice a square number. It is
not that they have any doubt of the fact, rather they disbelieve that Corcoran has absolute
certainty of it. We are glad to discuss the issue with them. Without them this work would
be less interesting.

Above we explained what we mean by saying that a certain proposition is true. For
example, the proposition “No square is twice a square” is true. Better, the proposition
“No number which is the sum of two numbers of the same power exceeding two is also
of that same power” is true. Even better, the proposition “No perfect number is odd” is
true. The reason we moved through these examples has to do with the following facts: we
think we know the first to be true, we think that the second is true but that it is not known
to be true by us, and we neither believe nor disbelieve the third. Moreover, we think that
the third is not known to be true or known to be false by anyone. Nevertheless, as Tarski
taught, we are fully warranted in stating the following:

The proposition “No perfect number is odd” is true if and only if no perfect number is
odd.

The proposition “Every perfect number is even” is true if and only if every perfect
number is even.

These contrast with the following:

The proposition “No perfect number is odd” is known to be true if and only if some
person knows that no perfect number is odd.

The proposition “Every perfect number is even” is known to be true if and only if some
person knows that every perfect number is even.

In order for either of the two arithmetic propositions to be true, it is not necessary for any-
one to do anything. In order for these propositions to be known to be true, it is necessary
for someone to do something—something very difficult that no one has yet managed to
accomplish. In addition, for these propositions to be known to be true it is necessary for
them to be true. It is not that the knowing would be what would make them true, as some
philosophers and mathematicians have held.

In many cases, in order for a person to responsibly state that a proposition is true, it is
necessary for that person to know that it is true. But this should not be taken as evidence
that knowledge is necessary for truth. What was just said of the two arithmetic proposi-
tions could be said with equal warrant of the four propositions about the two arithmetic
propositions.
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A cerebral habit of the highest kind, which will determine what we do in fancy as well as what
we do in action, is called a belief. The representation to ourselves that we have a specified habit of
this kind is called a judgment. Peirce [38, §1].

16 Beliefs and Disbeliefs

For a given person saying, “I believe a certain proposition” amounts to saying “I believe
it to be true”, or “it is one of my beliefs”. Saying “I disbelieve a certain proposition”
amounts to saying “I believe it to be false”, or “it is one of my disbeliefs”. It is important
to be explicit about some elementary points. Although every proposition that is not true
is false, it is not the case that every proposition not one of a person’s beliefs is one of
their disbeliefs. There are many propositions a certain person has never thought of, and
among those they have thought of, there are many they have no belief concerning. One
way this point is missed is that the words “I do not believe it” are used to say the same as
“I disbelieve it”, not simply “it is not one of my beliefs”. It would be better either to say
“I do not believe it; I need to see how the evidence available is sufficient for concluding
it” or else to say “I disbelieve it; I have sufficient evidence to the contrary”. The atheist
disbelieves what the theist believes; the agnostic does not believe or disbelieve what the
theist believes—and therefore does not believe or disbelieve what the atheist believes.

In judging, a fresh belief is formed, often a belief in the truth of a proposition not
previously believed by the person judging, but people often form a new belief in (the truth
of) a proposition they previously believed. Judgment creates belief and thus contrary to
Peirce’s usage in [38] and [39], belief begins as judgment ends. Of course, once beliefs are
formed, it can happen that the believers perceive their having those beliefs and then form
judgments to that effect. This creates beliefs about beliefs, which we have called belief-
beliefs. However, as a general point, this article’s usage conflicts with Peirce’s 1880 usage
quoted above.

As Frege, Husserl, and others taught, propositions are timeless, “beyond time”—to use
Husserl’s phrase. In contrast, statements, judgments, and beliefs are dated [20]. The belief
Corcoran formed years ago when he first learned that 10° Celsius is 50° Fahrenheit started
years before the new belief he formed of the same proposition today. We imagine that
many readers had to do a calculation to achieve belief that 10° Celsius is 50° Fahrenheit
and could substitute their own name for Corcoran’s above.

In contrast, the belief Corcoran formed years ago when he first learned that seven plus
five is twelve might have persisted uninterrupted to this day even though weeks may pass
without him reflecting on the fact or on the circumstances of his learning it. Often, our
beliefs persist for years even when not put to use, so to speak.

Each belief comes into existence sometime during the life of a person who believes it
and perishes no later than the death of the believer—earlier if memory fades. Each belief
depends for its existence on its believer. No two persons have the same belief although
in many cases two persons have different beliefs with the same propositional content—as
emphasized earlier in this article.

The word ‘belief’ is frequently used elliptically for ‘the content of a belief’, the propo-
sition believed. In this sense, there are beliefs that no one still believes: there are beliefs in
the non-temporal sense that are not beliefs in the femporal sense. In the temporal sense,
none of a person’s mere beliefs can ever become anything else; a mere belief can never
become a cognition—even if the person subjects the propositional content to a cognitive



120 J. Corcoran and I.S. Hamid

process that produces knowledge. In such a case, the belief in the non-temporal sense
became a cognition, but the cognition is a belief with a later starting date. Of course, the
words ‘statement’ and ‘judgment’ both have temporal and non-temporal senses.

In contrast, the act of stating per se does not form new beliefs, although there are
simple cases in which judging and stating are simultaneous, or very nearly so. Usually the
date of a statement is not the same as that of the belief stated. Sometimes the statement is
made before the belief is formed. Of course, propositions are not dated at all even though,
as just mentioned, the word ‘belief’ is sometimes used non-temporally to refer not to
the dated belief but to the undated proposition believed. This is the case when we say that
Euclid and Pythagoras had the same belief about right triangles even though one was born
centuries after the other died.

As said above, propositions do not change in the process of becoming belief or knowl-
edge. The proposition about right triangles was not changed as Pythagoras came to know
it. The proposition about right triangles known by Pythagoras was not changed as Euclid
came to know it. John Dewey is sometimes interpreted as saying the opposite, that every
proposition is transformed by becoming knowledge.

Moreover, just as propositions are undated, propositions that are true did not become
true. A proposition known to be a truth became a belief, but it did not become a truth.
A proposition known to be a falsehood became a disbelief, but it did not become a false-
hood. Every proposition either is a truth or is a falsehood, but not every proposition either
is a belief or is a disbelief. William James is sometimes interpreted as disputing these
points.

Consensus among objective investigators researching the same hypothesis from differ-
ent points of view is taken to be a mark of truth or probable truth. We might wish that in
the fullness of time the community of investigators will come to share common beliefs
in the central true hypotheses under current investigation; we might wish that consensus
will be achieved—and also that it will be correct. But the idea that in the long run ev-
ery true proposition will become a belief, much less a consensus belief, is absurd—most
true propositions will never even be understood much less believed. The view, some-
times attributed to Peirce, that being true is coextensive with being believed to be true in
the long run by the community of investigators must be mistaken. Perhaps it should be
attributed to wishful thinking. Besides, in the fullness of time there might be no investi-
gators.

Others have attributed to Peirce the even more irresponsible view that ‘being true’
means “being believed in the long run by the community of investigators”. This view
implies that every attribution of truth to a proposition is a statement about the future
attitudes or mental states of people who have not yet been born [18, 36].

17 Lying and Telling the Truth

This section is about deliberate statements. It excludes inadvertent remarks, misstate-
ments, statements made under distracting conditions, and the like. The two expressions
‘telling a falsehood’ and ‘telling the truth’ can be misleading. The first does not mean
“saying something false”, and the second does not mean ““saying something true”. Telling
a falsehood is lying, and that is not necessarily saying something false. And a person can
say something false without lying. Likewise, telling the truth is stating what one believes
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to be true and beliefs are not necessarily true. And a person can say something true with-
out telling the truth. Lying and telling the truth are forms of statement-making: they are
human actions called speech-acts. Some philosophers have misunderstood the nature of
the lie. A lie is a speech-act, not merely a sentence, or a proposition. A lie is a statement
of a proposition that is not a belief of the speaker. Speakers who state their false beliefs
are not lying. Likewise, speakers who state true propositions that they do not believe are
lying—regardless of whether the non-belief is disbelief. Persons who state propositions
on which they have no opinion are lying as much as those who state propositions they
believe to be false.

Lies of ignorance are statements that are neither believed nor disbelieved by the
speaker. Lies of knowledge are statements contrary to the speaker’s beliefs or disbeliefs.
Lies of ignorance can be just as harmful as lies of knowledge and just as effective in pro-
moting the aims of the liar. Moreover, because of confusion about the nature of lying, it
is often easier to get away with lies of ignorance. As a matter of terminology, it might be
better to call lies of ignorance lies of unbelief and to call lies of knowledge lies of belief
or disbelief.

Perhaps paradoxically, there is often no way to tell a lie of ignorance without indirectly
telling a lie of knowledge. The reason is that any given statement that something is the case
carries with it the indirect statement that the speaker believes the given statement. When
speakers know that they do not believe their direct statements, their indirect statements
are lies of knowledge.

If a person states that the house is locked up, there are at least two propositions that
they have stated: a primary or direct statement about the house—that it is locked up—and
a secondary or indirect statement about themselves—that they believe that the house is
locked up. If they have no such belief, the primary statement is a lie of ignorance. If they
know that they have no such belief, the secondary statement is a lie of knowledge.

18 Objectual Knowledge and Operational Knowledge

In order to have propositional knowledge, e.g. knowledge that two is the only even prime
number, it is necessary to have objectual knowledge of several objects including but by no
means limited to the following: the number two, the properties of being even and of being
prime, the system of numbers, and the exemplification relation, i.e. the logical relation
of a number to a numerical property that belongs to it. The number two exemplifies the
property of being even. The word ‘object’ is being used in a very broad sense. Objectual
knowledge is knowing of objects, including properties, relations, concepts, and anything
else. We have objectual knowledge of everything we are acquainted with directly or in-
directly as well as everything we know of by inference or reflection, such as the concept
of truth. Some philosophers have implied that it is possible to know of an object by de-
scribing it, but this has always seemed to us to have the facts reversed. We do not see
how we could describe something and thereby acquire knowledge of it unless we did not
previously know of it. At this point it is not necessary to be more precise about the limits
of objectual knowledge.

In the process of acquiring propositional knowledge that two is the only even prime
number, Corcoran used various know-how, skills, or abilities that he had acquired previ-
ously. The skills and abilities that he has are what we have been calling his operational
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knowledge or knowledge-how-to. In the case being discussed, several items of operational
knowledge might have come into play: the ability to factor a number, the ability to sur-
vey the progression of numbers starting with one, the ability to deduce consequences of
propositions, the ability to understand propositions, the ability to make judgments.

It might well be that some or all of his objectual knowledge derives from exercising
operational knowledge, for example, that he learns of numbers by counting, or conversely
that some or all of his operational knowledge somehow derives from or depends on re-
flecting on his objectual knowledge, for example, that he learns how to count through re-
flecting on numbers. It is beyond the scope of this work to reflect on such issues. However,
to forestall possible confusion, it is important to notice that he has objectual knowledge
of propositions and of skills, which of course are objects in the broad sense. As is evident
from the above, we know of propositions concerning which we do not have propositional
knowledge, for example the Goldbach Hypothesis. In addition, we know of skills that
we have not acquired. For example, Corcoran does not have operational knowledge of
playing the violin or touch-typing but he has objectual knowledge of those skills.

My first act of free will shall be to believe in free will.—William James, 1870.

19 Choosing Beliefs and Disbeliefs

A person presented with several beliefs in the propositional sense might want to choose
one for any number of purposes, e.g. to discuss first or to think about first. There is no
problem here: it is always possible to choose randomly. However, when beliefs in the
attitudinal sense are considered, the situation has changed.

Forming or shedding a belief and holding or lacking a belief are not acts like turn-
ing a switch on or turning it off. Forming and shedding beliefs are more like waking up
and falling asleep. Holding and lacking a belief are more like staying awake and staying
asleep. Turning a switch is voluntary and arbitrary in a way that belief formation is not.
I can never form a belief in a given proposition by deciding to believe it and then throwing
some sort of switch. This point has been denied by William James, who believed in “the
will’s primacy, even in choosing what to believe”—to use Rebecca Goldstein’s formula-
tion. According to Goldstein [30, 25], James wrote in his journal in 1870, “My first act of
free will shall be to believe in free will”.

Once a proposition has been understood and the evidence gathered and marshaled,
the judgment is almost automatic—if it happens. Sometimes no result is reached. When a
result is reached, it could be contrary to the desires of the believer. However, it is important
to realize that although judgment is voluntary, it is not arbitrary at least when knowledge
is achieved. An attitude or state of mind that was caused and not autonomously achieved
through judgment is not even belief in the sense of this investigation.

Likewise, once there is awareness of a serious deficiency in the process that led to a
belief, say that the source of testimony has been discredited or the instruments used found
flawed, often the belief is lost or at least its certitude is diminished regardless of how
attached to it the believer is. Charles Sanders Peirce agreed here, but he might have gone
a little too far with it when he wrote [37, 119-120]: “Now, there are some people [...]
who, when they see that any belief of theirs is determined by any circumstance extraneous
to the facts, will from that moment [. . .], experience real doubt of it, so that it ceases to be
a belief™.
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If a coin is flipped and the outcome covered, as long as the evidence is unavailable
there is no way for a person to form the belief that it is heads, say, no matter how much
they might want it to be heads. More generally, there is no way to form a belief in a
proposition that is now a hypothesis simply by deciding to believe it. The statement that
some people believe what they want to believe is a misleading half-truth. To the extent
that it would be fair to say it, it would be just as fair to say that some people believe what
they want to disbelieve. People sometimes confuse hopes and fears with evidence. The
expressions “too awful to be true” and “too good to be true” are common enough.

Forming a belief is not like deciding to purchase a given item and then putting it in
the shopping cart. Some philosophers have disagreed, holding that a credence such as
a religious belief is an exception, that a belief can be freely chosen when there is no
hope of finding evidence. However, some religious thinkers have disputed that conclusion,
saying that humans are powerless to construct such beliefs, that humans must await divine
intervention, and that “the gift of faith” cannot be chosen but is freely bestowed.

Persons who find that two or more of their beliefs are inconsistent have all of those
beliefs undermined. They are not free to decide which they prefer to keep and which to
drop. They cannot arbitrarily decide, contrary to what some logicians seem to say. There
is no switch to pull that reinstates some as beliefs while rendering others as disbeliefs.
The issue here is not whether it is morally acceptable to adopt arbitrarily a belief and it is
not whether a person who does this risks losing intellectual integrity. The issue concerns
how beliefs are formed.

Some logicians recommend that we adjust our degrees of certitude so that they are
proportional to our degrees of certainty. They say that the more certainty we have of a
belief the more certitude we should feel and, accordingly, the less certainty we have the
less certitude we should feel. However, we have no more control over the intensity of our
feelings of certitude than we have over our judgments. Moreover, no way of measuring
relative certitude or relative certainty has been devised. Those logicians might as well
have recommended that we adjust our level of fear in proportion to the level of danger or
that we adjust our level of happiness in proportion to our level of well-being.

The above should not be taken to deny that we often choose to try to understand one
proposition while choosing to try not to understand another. Selective attention and will-
ful ignorance are common enough. Nor should it be taken to deny that we can choose to
seek evidence or arguments for one proposition while choosing to ignore evidence and ar-
guments for another. The reality of partisanship, rationalization, and self-deception must
be acknowledged, and it is just to hold people responsible in such cases. There is some-
thing unsavory about trying to choose a belief; it seems to violate intellectual integrity.
Choosing to adopt or shed a belief seems to be a kind of self-deception, a kind of lie of
ignorance.

The selfless autonomy of the objective judgment is counterpoised against the selfish ar-
bitrariness of the subjective decision. Selfishness, laziness, impatience, lack of discipline,
and other character defects that interfere with the successful completion of the cognitive
process are open to blame.

However, with exceptions such as those just noted, it is absurd to blame people for
holding, lacking, adopting, or shedding belief in a given proposition regardless of how
deleterious or beneficial we might think it would be. It is even more absurd to try to
require someone to adopt or shed a belief in a given proposition. This would be like
trying to require people to enjoy something they find repulsive or requiring them to be
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repulsed by something they enjoy. Attempting to coerce belief or disbelief compounds
absurdity with injustice. Compare Peirce [39, p. 188].

20 Background

It might be supposed that discussion of knowledge versus opinion took center stage in
American philosophy with the 1877 publication by Charles Sanders Peirce of his seminal
paper “The Fixation of Belief”, which has justly become somewhat a locus classicus for
the issue. It is evident to scholars that the above discussion is heavily indebted to the
Peirce paper both in spirit and in particular views. The above resonates with several of
Peirce’s points including his “method of science”, his supposition that “there is some one
thing to which a proposition should conform”, and his view that what is believed is in
no way determined or changed by our thinking—to mention only three. In terms of the
present discussion, roughly speaking, “The Fixation of Belief” presents four methods that
can be used to increase certitude in a proposition already believed. One of those methods,
the method of science, increases certainty.

Nevertheless, Peirce does not explicitly raise the issue of distinguishing “knowledge”
from “opinion”. Perhaps surprisingly, he does not even use the word ‘knowledge’ or a
synonym, and he does not make a distinction analogous to certitude/certainty.

However, the above discussion does not relate to certain “pragmatic themes” in later
Peirce writings, in which focus on the nature of truth as “conforming to facts” gives
way to focus on the criterion of truth as leading us to fulfilling our aims. A fortiori, the
above does not relate to other classic American philosophers such as William James and
John Dewey who worked in paradigms that might even be incommensurable with those
currently flourishing in the United States. James and Dewey would dispute that “truth is a
precondition to knowledge” and that “the proposition known is not changed by becoming
known”.

The present discussion of the knowledge/opinion distinction addresses the more an-
alytic side of post-World War II American philosophy. One of the most accessible of
relevant texts is the 1978 monograph The Web of Belief by Quine and Ullian [44]. An
excellent contemporary American treatment of propositional knowledge, which explicitly
treats the knowledge/opinion distinction, is the 1991 treatise Knowledge and Evidence by
Paul Moser [35].
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The Algebra of Opposition
(and Universal Logic Interpretations)

Razvan Diaconescu

Abstract We give clear algebraic sense to logical opposition by providing negation-free
lattice-theoretic definitions for the concepts around the notorious square of opposition.
These include contradiction, contrariety, subcontrariety, the square and the hexagon of
opposition, etc. This constitutes a platform for an analysis of the mathematical properties
of logical opposition. We also discuss several examples of squares of opposition arising
from universal logics studies, including Boolean as well as less conventional non-Boolean
squares. The latter kind arise from a very general study of negation and consistency within
the context of many-valued consequence relations. This work is a tribute to Jean-Yves
Béziau, friend and colleague, on the occasion of his 50th birthday.

Keywords Square of opposition - Universal logic - Many-valued logic - Lattice theory -
Consequence - Consistency

Mathematics Subject Classification (2000) 03B22 - 03B50 - 06B05

1 The Square of Opposition

The meta-logical square of opposition has its origins in the work of the ancient Greek
philosopher Aristotle [1] and it has been used since antiquity until now in philosophical
logic as tool and doctrine. In recent years, there has been a new interest in the square of
opposition reflected by various new interpretations and a diversity of extensions. These
activities have recently found a home in a series of dedicated World Congresses very
much due to the effort of Jean-Yves Béziau, a glimpse of them can be seen in [5].

The modern look of the square of opposition is like below, with the red lines repre-
senting logical contradiction, the black ones subalternation (or implication), the blue one
contrariety, and the green one subcontrariety.

A =— |

I )
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1.1 The Consequence Square of Opposition

The original intention behind the square of opposition is to describe falsifiability. This is
a logical issue which is not really dependent upon a particular concrete logic, so it can
be approached at a very general level by using Tarski’s abstract axiomatization of con-
sequence relations [19]. Here we use its entailment style formulation [18] rather than its
original formulation in terms of closure operators, these being equivalent formulations of
the same concept. Note that the theory of abstract consequence, either in its closure oper-
ator or entailment relation form, constitutes one of the important origins of the universal
trend in logic [3], that in the recent decades has gained a prominent status, again very
much due to the dedication of Jean-Yves Béziau. Universal logic represents a general ab-
stract study of logic phenomena that is completely independent of any particular logical
systems; this is a top-down non-substantialist conceptual process very different for the
bottom-up substantialist thinking underlying the conventional approach to logic.

Definition 1.1 (Entailment) A pair (S, ) is an entailment relation when S is a set and
+C 25 x S such that for all E, I € S and peSs:

o (Reflexivity) E - p if p € E; and
o (CutyErpifI'tpand EFy foreachy € I'.

The set S in Definition 1.1 abstracts the sentences, or closed formulz, of actual logical
systems. Actual entailment relations can be obtained either model or proof theoretically.
The model-theoretic entailments can be determined in a very general way by employing
the following abstract concept of satisfaction.

Definition 1.2 ([14]) A room is arelation =C M x § where M is a class (of ‘models’)
and S is a set (of ‘sentences’).

The following is folklore in some very abstract approaches to model theory, such as
institution theory [14]; its proof is completely straightforward and can be checked easily
by the reader.

Proposition 1.3 Every room =C M x S determines a canonical entailment relation
(S, ), called semantic entailment, by

TkE=p ifandonlyiforeachM e M,M |=p whenever M=t foreachteT.

Often in logic there is no distinction between triviality and inconsistency; this is due to
the fact that in classical logics, and not only, these two concepts coincide. However, the
distinction between them, which is quite apparent when employing an abstract universal
logic perspective, constitutes in fact the main idea underlying paraconsistent logics [17].

Definition 1.4 (Triviality) In any entailment relation (S, ) any 7' C S is called a theory.
A theory T is non-trivial when there exists a p such that T' I/ p, otherwise is trivial.

Definition 1.5 (Consistency) Given an entailment relation (S,F) and a function
—: §— S,atheory T C § is —-consistent when there does not exist p such that T - p
and T + —p; otherwise T is called —-inconsistent.
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The function — is consistent (with respect to ) when for each p € §, the set {p, —p}
is a trivial theory in (S, I); otherwise — is called paraconsistent.

The following, which constitutes a general clarification of the relationship between
non-triviality and consistency, gets a straightforward proof from the definitions above.

Proposition 1.6 In any entailment (S, \-), the following are equivalent properties for a
function —: S — S:

1. — is consistent; and
2. For each theory T, T is non-trivial if and only if T is —-consistent.

The negations of classical logics, as well as of most non-classical logics are consis-
tent. Non-classical logics with consistent negation in the sense of Definition 1.5 include
both local and modal semantic consequences, intuitionistic logics, etc., but exclude para-
consistent logics. The following represents a general way to obtain consistent semantic
entailments that is applicable to all classical logics, but not only.

Definition 1.7 (Semantic negation) A room =C M X S admits negation when there
exists a function — : S — S such that for each M € M andeach p € §

M =—-p ifandonlyif M ~ p.

Fact 1.8 For any room with a negation —, this is consistent with respect to the induced
semantic entailment.

Corollary 1.9 For any room with negation —, in the corresponding semantic entailment
a theory T is non-trivial if and only if it is —-consistent.

The consistency of negation for the global consequence relations in modal logics and
for the consequence relations of intuitionistic logics holds but falls outside the scope of
Fact 1.8. The same can be said about the semantic consequence in the weakened version
of classical propositional logic proposed in [2] where S may be taken as the set of ordinary
propositional logic sentences for a given set P of propositional variables and the models
are the valuations M : § — {0, 1} that respect that usual truth table semantics of all the
Boolean connectives except negation, for which they are required to respect one half of
the usual condition, namely M (p) = 1 implies M (—p) = 0.

The following straightforward characterization of —-consistency is particularly rele-
vant for the consequence-theoretic interpretations of the square of opposition. Note that
this holds independently of the consistency property for —.

Corollary 1.10 For any entailment relation (S,V) and for any function —:S — S, a
theory T C § is —-consistent if and only if for each p € S, T &= —p implies T 1/ p.

In an entailment relation (S, ), for any —: S — §, any —-consistent theory T C §
and any p € S determine the following binary square of opposition in the sense that each
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node represents one of the values O (for false) or 1 (for true).

Thp——TF—p

T -p TWp

The essential relations defining this as an opposition square are those of
o (Contradiction)

— (TP ATHP)=0:(TFp) v (THp)=1and
— (TH=p)A(THP)=0;(TF=p) V(T Hp)=1;

and
o (Subalternation)

- (T+p) < (T —p)and
= (TH=p)<(THp).

The relations of

o (Contrariety) (T = p) AN(T = —=p) =0 and
o (Subcontrariety) (T —p)V (T H p)=1

R. Diaconescu

(1.1)

are determined from the previous two relations just by calculations in the binary Boolean

algebra.

In order to lift this binary square to a non-binary (but yet Boolean) square, we may

eliminate the parameter p:

Corollary 1.11 Given an entailment system (S,+) and —: S — S, for each theory T C

S let us denote as follows:

Ar={peS|TF p};
Er={peS|THF—p}
It ={peS|TVW—p}and
Or={peS|TWp}

We then have the following relations:

1. ArNOr =0, A7rUO0r =S, ITrNEr=0,Ir UET =S,

2. If T is —-consistent then Ar C It, Er C O, ArNEr =Wand It U O = S.

Proof Relation 1 is trivial. The first part of relation 2 follows from Corollary 1.10, the

other ones are Boolean consequences of all previous ones.

O
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The conclusion of Corollary 1.11 may be graphically represented by the following
square of opposition whose nodes are elements of the Boolean algebra S5.

AT_ET

(1.2)

I Or

1.2 The Modal Square of Opposition

Another notorious interpretation of the square of opposition, a modern one, comes from
modal logic (as usually [J denotes necessity and ¢ possibility):

Op ———— ~0p
(1.3)

Op —Up

In what follows, we present the most general structure that provides a precise mathe-
matical sense to the square (1.3). For this we employ the general method of ‘modalization’
of logics common to works such as [10, 13, 15], etc.; this is also a universal logic device.

Definition 1.12 Given a room =C M x §, we define:

e M(S) the set of terms formed from S as constants, —, [, { as unary functions, and A
as binary function;
e K (M) is the class of pairs (W, M) where

— W= (W|, W,) with |W| being a set and W, C |W| x |W| a binary relation on |W/|,
and
— M :|W| — M being a function,

and
o (W, M) p for each (W, M) € K(M), p € M(S) and i € |W| defined by induction
on the structure of p as follows:

- (W, M) ' p) =(M; = p) when p € S; ,

= (W, M) =" p1 A p2) = (W, M) =" p1) A((W, M) E' p2);
- (W.M)E' —=p)=—(W,M) E' p);

- (W, M) E'Up) = N\ jyew, (W, M) =/ p); and

- (W, M) E' Op) =V jyew, (W, M) E p).
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The elements of M(S) may be referred to as ‘the (propositional) modal sentences
over S’ and the elements of K (M) as the ‘Kripke structures over M.

Proposition 1.13 For any Kripke structure (W, M) and any sentence p, let us denote as
follows:

A={ie|W[|(W,M)E"Up};
E={ie|W||(W,M)E" =0p};
I={ie|W||(W,M)E Op}; and
O={ie|W||(W,M)E -Up}.

We then have the following relations:

1. ANO=0,AUO0=|W,INE=0,IUE =|W|;
2. If the accessibility relation W), is reflexive then AC I, EC O, ANE=@,and I U
o0 =|W|.

Proof Relation 1 is trivial. The first two facts of relation 2 follow from the fact that (lp =
Q¢ p holds in the model, this being a consequence of (Jp = p and of p = {p, that hold
because of the reflexivity of the accessibility relation Wj. The other relations follow by
straightforward Boolean calculations. ]

The relations of Proposition 1.13 can be also represented by a square of opposition,
but with the nodes in the Boolean algebra 2!V

2 The Square of Opposition as a Lattice Theoretic Structure

Both examples of consequence and modal theoretic squares of opposition discussed
above, in fact, represent sets of equations in Boolean algebras that involve four constants
corresponding to the nodes of the squares of opposition. These equations can be given
in any bounded lattice, which leads us to an abstract definition of the concept of square
of opposition as a lattice-theoretic structure. Note that this is done without assuming a
negation, in our view the concept of negation not being an inherent part of the concept of
logical opposition, at least not from a general perspective.

Definition 2.1 In any bounded lattice (L, <, A, V, 0, 1), we define the following rela-
tions:

e (Contrariety) By ={(x,y) |x Ay =0};
o (Subcontrariety) G, = {(x,y) | x Vy=1}; and
o (Contradiction) R = B, NGp.

Note that in the literature on the square of opposition (e.g. [4]) the relation x < y is
called ‘y is subalterned by x’.
According to Definition 2.1, we can see that

Contradiction = Contrariety 4+ Subcontrariety.
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Definition 2.2 (Square of opposition) In any bounded lattice L, a square of opposition
is a 4-tuple (a, e, i, 0) such that

e (a,o0),(i,e) € Ry; and
e a<i,e<o.

The following simple result shows that in a square of opposition the contrariety and
the subcontrariety relations are determined by the contradiction and subalternation rela-
tions, hence an economical definition of the square of opposition does not need to include
the former relations. However, the common presentations of the square of opposition do
include all these relations, which I think may be due to not viewing the square of op-
position as an algebraic structure, the algebraic perspective making redundancies rather
transparent.

Proposition 2.3 In any square of opposition (a, e, i, 0), we have the following:
1. (a,e) € Br; and

2. (i,0)eGy.

Proof The conclusion follows by simple calculations:
l.ane<ano=0,hencearne=0.

2.ivo>iVve=1,hencei vo=1. O

The following result shows that, assuming the distributivity of the lattice (which in
lattice theory is a heavy condition with many implications), given two Contradictions (red)
a corresponding square of opposition may be determined only by a Contrariety relation
(blue) or by a Subcontrariety (green) one. In fact, the original Aristotle’s formulation of
the square of opposition was given in the form of two Contradictions and a Contrariety.

Proposition 2.4 In any distributive bounded lattice L, given a 4-tuple (a,e,i,0) such
that (a,0), (i, e) € Ry, the following are equivalent:

1. (a,e,i,0) is a square of opposition;
2. (a,e) € Br; and
3. (i,0) eGyp.

Proof From Proposition 2.3.

2. = 3. |By the following calculation:

ivo=ivov0=(vVvoVvare)y=>GVova)A(ivove)y=>1IVIA(oVv])=
Inl=1.

3. = 1. [ By the following calculations:
a=anl=an(@iVvo)y=(@Ani)V(aro)=(@Ai)vO=aAni,

e=eANl=en(iVvo)=(erni)V(eno)=0V(erno)=eAo. (I

The squares of opposition may be mirror-reflected:
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Fact 2.5 If (a, e, i, 0) is a square of opposition then (e, a, 0,1i) is also a square of oppo-
sition.

In each bounded lattice, there are three trivial squares of opposition:

) =—0 )—1 ]=—0

Recall that a complementation in a bounded lattice L is a function ¥ : L — L such
that for each element x, we have x A ¥x =0, xVv ¥x = 1. In each lattice with an comple-
mentation Y that is order-reversing (i.e. ¥x <y if y < x), each relation a <i (or, in the
mirror, e < o) determines a square of opposition as follows:

a

Yi=e

|

i Ya=o0

Note that, in general, an order reversing complementation ¥ does not necessarily have to
fulfill Y {x = x, as shown by the simple example of the pentagon lattice N5

L

e 0

a |

AN 0 e

with the complementation Y defined by Ya = o. Then Y e # e. However, if the lattice
is a Boolean algebra, then there is a unique complementation which moreover enjoys
Y ¥x = x, so in this case there is a unique square of opposition determined by the relation
a < i. For example, the squares of opposition (1.1) associated to an entailment relation
are of the Boolean kind, being completely determined by the fact that T F p implies
T t/ —p, which is equivalent to the fact that 7 is —-consistent. Also the modal squares of
opposition (1.3) are Boolean, being completely determined by the implication Hp = Op.

2.1 The Lattice Theoretic Hexagon of Opposition

There are several extensions of the square of opposition, among them the hexagon dis-
covered independently by Sesmat and Blanché [6] represents a response to several logical
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issues that do not get a proper answer within Aristotle’s square. The hexagon of opposi-
tion consists of three squares of opposition as in the figure below.

— E
/l 2.1
)

Definition 2.6 (Hexagon of opposition) In any bounded lattice, a hexagon of opposition
is a 6-tuple (a, e, i, 0,u, y) such that (a, e, i, 0), (a, y,u,0) and (e, y, u, i) are squares of
opposition.

A common way to extend a square to a hexagon of opposition (see [4]) is captured in
this lattice theoretic approach by Proposition 2.7 below. Note, however, that this requires
(again) the distributivity property for the lattice.

Proposition 2.7 In any distributive bounded lattice, if (a, e, i, 0) is a square of opposition
then (a,e,i,o,aV e,i A o0) is a hexagon of opposition.

Proof We have only to check that (a,i Ao,a Ve,o0)and (e,i Ao,aV e, i) are squares of
opposition.

‘ (a,i No,aVe,o) ‘Obviously, a<aVeandi Ao <o. That (a,0) € Ry holds by hy-
pothesis. That (i A o,a V e) € Ry, holds by the following calculations:

inoyn@ave)y=>Gnona)V(irone)=(1IA0)VO0A0)=0v0=0;
(ino)V(ave)y=(@(VvaveyAlovave)=(1Va)A(lVve)=1A1=1.

|(e.ino.ave,i)|Obviously,e <aVveandi Ao <i.That (e, i) € Ry holds by hypoth-
esis. That (i Ao, a Vv e) € Ry has been already proved. O

3 Non-Boolean Squares via Many-Valued Consequence

We may say that squares of opposition are truly interesting in non-Boolean lattices be-
cause of the greater independence between the components of the square (recall that in
Boolean algebras squares of opposition may be determined just by one subalternation).
For example, in the pentagon lattice N5 we have six non-trivial squares of opposition, the
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following three plus their mirror reflections:

Q
S
)

a o a o [¢ (&

In what follows, we will show how such non-Boolean squares of opposition may ac-
tually arise from universal logic, not necessarily as mere dry lattice theoretic structures.
However, in order to achieve such examples, we have to go beyond the realm of binary
truth.

3.1 Many-Valued Consequence

We may refine the Boolean square (1.1) to non-Boolean ones by considering a many-
valued consequence rather than a binary one. This means that T I p is allowed to take
other values than just true or false. Such many-valued approach to consequence, albeit
marginal for the tradition of many-valued or fuzzy logic (see [11] for a discussion about
this), has a history that can be traced back to the superb work of Pavelka [16]. Moreover,
many-valued consequence arises naturally and has important applications in approximate
reasoning in artificial intelligence, medicine, etc., formal methods based upon temporal
logic. In the recent work [9], the author discusses several such examples from a logic
perspective.

The original approach to many-valued consequence of [16] is on the side of closure
operators in the style of Tarski [19] rather than on the entailment theoretic side. Unlike in
the binary case, as several works in the literature show (e.g. [9]), in a many-valued context
the equivalence between these two is highly problematic.

Definition 3.1 [16] Given a partial order (P, <) a closure operator is a function
C : P — P such that

o (Reflexivity) x < Cx for each x € P;
e (Monotonicity) Cx < Cy foreach x <y € P; and
e (Idempotency) CCx = Cx foreach x € P.

Given a lattice L and a set S, an L-consequence operator on S is just a closure operator
on the power lattice LS.

The following is a many-valued generalization of Definition 1.1. It should be noted that
Definition 3.2 below introduces a mathematically weaker concept than the many-valued
approach to entailment of [7-9, 12] often referred to as ‘graded consequence’.

Definition 3.2 (Many-valued entailment) Given a bounded lattice L, a pair (S, }F) is a
weak L-entailment relation when S is asetand - : 25 x S — L suchthatforall E, " C §
and p € S:
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o (Reflexivity) (EF p)=1if p € E; and
e (Cuty(I'Fp)<(EtFp)if(EFy)=1foreachy e

The following gives a natural interpretation of L-consequences as weak L-entailments,
which generalizes the corresponding interpretation from the binary case.

Notation 3.3 Given any set S and any bounded lattice L, let use the following notation:
forany T C SletT : S — L bedefinedby T(p) =1if p € T and T (p) = 0 otherwise.

Proposition 3.4 For any bounded lattice L, any L-consequence C on a set S determines
a weak L-entailment (S, V) defined for each T C S and each p € S by

(T+p)=(CT)p. 3.1

Proof Reflexivity of F is easy. For each p € E C S, we have that E(p) = 1, hence by the
Reflexivity of C we get that (CE)p =1hence E - p.

For establishing Cut for -, let us assume E, I" € § such that (E I y) =1 for each
y € I'. This means that r < CE. By the Monotonicity of C, it follows that cr < CCE.
By the Idempotency of C, it further follows that C r <C E , which is the conclusion of
Cut. [l

The following gives a natural interpretation of weak L-entailments as L-consequences,
which generalizes the corresponding interpretation from the binary case.

Proposition 3.5 For any complete lattice L, any weak L-entailment (S, ) determines
an L-consequence on S defined for each X : S — L by

(CX)p:/\{TI—p|X(y)§Tl—yf0reachyeS}. (3.2)

Proof The Reflexivity of C is immediate from (3.2). The Monotonicity of C follows by
(3.2) by noting that if X <Y then

{T|Y(y)<Tryforeachy € S} C{T | X(y) <TFy foreachy € S}.

For the Idempotency, let us note that by (3.2) it follows that X(y) < T + y for each
y € S implies (CX)y <T F y foreach y € S. Since X < CX (by Reflexivity) it follows
that X(y) < T+ y foreach y € S and (CX)y <T Iy for each y € S, are equivalent
properties. Hence

(CX),o:/\{TI—,o|X(y)§T|—yforeachyeS}
:/\{Tl—,o|(CX)y§T|—yforeach)/eS}

= (CCX)p. 0

Proposition 3.6 The interpretation of L-consequences as weak L-entailments (of Propo-
sition 3.4) is a retract to the interpretation of weak L-entailments as L-consequences (of
Proposition 3.5).
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Proof We have to show that for each weak L-entailment (S, ), when we interpret it as an
L consequence C by (3.1) and then when we interpret C as a weak L-entailment (S, ")
by (3.2), we have that = = F'. According to (3.1) and (3.2), we have that

(TI—’p):/\{EI—p|T(y)fEl—yforeachyeS}.

Since T(y) < Tk y for each y € § it follows that (T F p) < (T F p). On the other
hand, for each E such that T(y) < E F y for each y € § it follows that E -y =1 for
each y € T. By Cut, it follows that (T - p) < (E  p) hence (T F p) < (T F p). O

3.2 Many-Valued Consistency and Squares of Opposition

We have seen that consistency plays a crucial role in the consequence-theoretic square of
opposition. The following concept of many-valued non-triviality was introduced in [16]:

Definition 3.7 [16] Any mapping X : S — L is non-trivial with respect to an L-
consequence operator C on S if and only if CX # 1; otherwise X is trivial.

The following is both an entailment styled replica of Definition 3.7 and a generalization
of Definition 1.4 to many-valued truth.

Definition 3.8 In any weak L-entailment (S,F), T C S is non-trivial when there exists
o € S such that (T F p) # 1; otherwise T is trivial.

The following gives the link between the two concepts of many-valued triviality above.

Fact3.9 If (S,b) is the weak L-entailment system determined by an L-consequence
operator C on S then any T C S is non-trivial in (S, V) if and only if T is non-trivial with
respect to C.

A careful look at the binary consequence square of opposition (1.1) reveals that it in-
volves two negations, an object level one —, and a meta level one t. The former one is
syntactic while the latter functions implicitly as the ordinary binary negation. In a many-
valued context of an arbitrary lattice L of truth values, the meta level negation may be
abstracted to a function Y : L — L. We have already seen that the consequence square of
opposition (1.1) relies crucially upon a consistency property for 7 relative to the syntac-
tic negation — (Definition 1.5). While this can be replicated without much thinking to a
many-valued context, it would be highly inadequate both from a technical and an interpre-
tational point of view. Much more adequate would be to lift the equivalent characterization
of consistency given by Corollary 1.10 in the form of a definition of many-valued consis-
tency. This requires also an abstraction of the binary negation as a unary function on the
lattice of truth values (the function Y below).

Notation 3.10 For any weak L-entailment (S,F) and any X : L — L, welet T I/ p
denote (T + p).
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Definition 3.11 In any weak L-entailment (S,F), forany —=: S — Sandany Y : L —
L,atheory T C S is (—, Y)-consistent when for each p € § we have that

(TE=p) = (THp).

In a general many-valued setting, the equivalence between non-triviality and —-
consistency given by Proposition 1.6 is not possible; however, one implication holds quite
easily and is given below. In the next section, we will be able present a set of sufficient
conditions for such an equivalence, but in a semantic setting.

Proposition 3.12 Given a non-trivial lattice L and a weak L-entailment (S, V), for any
—: S— Sand¥: L— L suchthat Y1 =0, then T is (—, ¥)-consistent implies that T
is non-trivial.

Proof Let T C S be (—, Y)-consistent. By reductio ad absurdum, let us assume that T is

trivial, i.e. that (T + p) =1 for each p € S. For each p € S it follows that (T t/ p) =0,

and by the (—, ¥)-consistency hypothesis that (T + —p) = 0, too. Since L is non-trivial,

we have that (T + —p) # 1, which yields a contradiction. (I
The following is an immediate consequence of Definition 3.11.

Corollary 3.13 In any weak L-entailment (S,V), forany —: S — S and any ¥ : L —

L an complementation, any (—, Y)-consistent theory T C S determines a square of oppo-
sition in L that generalizes the square (1.1)

Thp——TF-p

(3.3)

T —p TWp

An example for L that gives rise to non-Boolean squares (3.3) is given by N5 above,
with Ya =0 and —a =e.

3.3 Many-Valued Abstract Semantics

Now we show that many-valued consequence theoretic squares of opposition like (3.3)
may arise from many-valued semantics. This means that now, besides the meta-level nega-
tion ¥, the object level negation — will be treated as a semantic entity, too. Let us extend
Definition 1.2 to many-valued truth.

Definition 3.14 (Many-valued room) Given a set L, an L-room is a function =: M x
S— L.
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The following generalizes the famous Galois connection between syntax and semantics
in institution theory [14].

Definition 3.15 [9] Given a complete lattice L and an L-room |=: M x § — L, we let
the following:

e Forany N C M, N*: S — L is defined by N*(p) = A\ yyeps(M = p); and
e Forany X : § — L, X* C M isdefinedby X*={M e M | X < M*}.

Corollary 3.16 [9] The mapping ()** : LS — L5 is an L-consequence operator on S.

Notation 3.17 For any complete lattice L and any L-room =C M x S, let (S, =) denote
the weak L-entailment determined by the L-consequence operator (_)** on S according
to Proposition 3.4.

The following gives the semantic concept of consistency, a consistent theory being one
that has at least a model.

Definition 3.18 For any L-room =C M x §,a T C S is =-consistent when (T)* +.
The following generalizes Definition 1.7 to many-valued truth.

Definition 3.19 (Many-valued semantic negation) Given a function —: L — L, an L-
room =C M x S admits — when there exists a function — : § — § such that for each
M e Mandeachp e S

(M = —p) =—(M = p).

Proposition 3.20 For any —: L — L and any L-room =C M x S that admits — the
following hold:

1. If T C S is non-trivial for (S, =) then T is =-consistent.
2. If 1 #£ =1 then {p, —p} is =-inconsistent.
3. If 1 # =1 then {p, —p} is inconsistent in (S, |=).

Proof 1. Let p € S such that (T = p) # 1. Since (T = p) = /\fsM*(M = p) it follows

that there exists M € M such that T < M*, hence (T)’k 0.

2. By reductio ad absurdum, let us assume that {p, —p} is |=-consistent. There exists
M € M such that (M = p) =1 and (M = —p) = 1. Since the room admits —, it follows
that | = (M = —p) = =(M = p) = —1, which contradicts 1 # —1.

3. Follows immediately from 1. and 2. by considering T = {p, —p}. O

Proposition 3.21 Given a complete lattice L, functions —, ¥ : L — L, and an L-room
=C M x S such that

- =
— Y is order-reversing; and
— the L-room admits —,

then any |=-consistent theory is (—, Y)-consistent in (S, =).
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Proof Let T be a |=-consistent theory and let M € (T)*, which means T < M*. The
conclusion is established by the following calculation:

(T E=p) = (T)*(=p) (by (3.1))
= /\ (N l=—p) (by definition of (S, =))
T<N*
< (M = —p) (since T < N*)
=-(M = p) (because the L-room admits —)

<AM = p) (since = < ¥)

=+ /\ (N E=p) (since T < M* and by monotonicity of )
T<N*
= (T ¥ p) (by definition of (S, E)). O

The following is an immediate consequence of Fact 3.9, Propositions 3.20, 3.21
and 3.12 and gives a set of sufficient conditions for the equivalence between many-valued
non-triviality and consistency in an abstract semantic setup. It also constitutes a high gen-
eralization of Corollary 1.9.

Corollary 3.22 Given a non-trivial complete lattice L, functions =, : L — L, and an
L-room =C M x § such that

- =

- X1 =0;

— Y is order-reversing; and
— the L-room admits —,

the following are equivalent for a theory T C S:

. T is non-trivial for the semantic consequence operator (_)**;
. T is non-trivial for (S, =);

. T is =-consistent; and

. T is (—,¥)-consistent for (S, E).

AW N =

The binary case given by Corollary 1.9 is obtained from Corollary 3.22 by letting
L ={0, 1}, and — =¥ the ordinary binary negation.

The following shows that in many-valued logics, semantically consistent theories give
rise to squares of opposition which are in general non-Boolean.

Corollary 3.23 [f, in addition to the hypotheses of Proposition 3.21, we have that Y is a
complementation, then the following is an opposition square in L for each |=-consistent
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theory T and each p € S:

TkEp TE-p

T -p TW¥p

3.4 All Squares of Opposition Are Consequence Theoretic

The generality of the many-valued consequence theoretic concepts employed above al-
lows for a simple representation of any square of opposition (in the general lattice theo-
retic sense of Definition 2.2) as a square of the form (3.3). This is based upon the following
fact:

Fact 3.24 Given a square of opposition (a, e, i, 0) in a bounded lattice L, the following
defines a weak L-entailment (S,F):

o S={p,p'};and

[ ]
Fo=a, {p}rp=a, {p)Fp=1, {p.p'}Fp=1,
Fo'=e {p}rp'=e {o'}Fp =1, {p.p'}Fp' =1

Now it remains to note that we can define a function X : L — L such that i =Ye
and 0 =Ya and define —: S — S by —=p = p’ and —p’ = p. Under these definitions, the
square (a, e, i, 0) is indeed of the form (3.3) by considering 7' = .

4 Conclusions

We have provided a very general consequence-theoretic framework for the traditional
square of opposition and have also presented an abstract Kripke semantics supporting
the modal interpretation of the square of opposition. Next we have defined the square of
opposition as a negation-free lattice theoretic structure and, within that context, performed
a analysis of the relationships between its components. Moreover, the lattice theoretic
hexagon of opposition came naturally as an extension of the square. We have generalized
the consequence-theoretic square of opposition from the binary to many-valued truth,
these being examples of non-Boolean squares, in general. This generalization is based
upon a very abstract universal logic perspective on negation and consistency, in a many-
valued context, and both at the consequence and model theoretic levels. Finally, we have
shown that any lattice theoretic square of opposition may be represented as a many-valued
consequence-theoretic one.
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This work shows that the square of opposition as a general lattice theoretic structure
represents a good meta-tool for a general universal logic study of negation and consis-
tency.
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Universal Logic as a Science of Patterns

Brian R. Gaines

Abstract This article addresses Béziau’s (Sorites 12:5-32, 2001) vision that universal
logic should be capable of helping other fields of knowledge to build the right logic for
the right situation, and that for some disciplines mathematical abstract conceptualization
is more appropriate than symbolic formalization. Hertz’s (Math. Ann. 87(3-4):246-269,
1922) diagrams of logical inference patterns are formalized and extended to present the
universal logic conceptual framework as a comprehensible science of patterns. This fa-
cilitates those in other disciplines to develop, visualize and apply logical representation
and inference structures that emerge from their problématique. A family of protologics is
developed by resemantifying the sign for deduction, —, with inference patterns common
to many logics, and specifying possible constraints on its use to represent the structural
connectives and defeasible reasoning. Proof-theoretic, truth-theoretic, intensional and ex-
tensional protosemantics are derived that supervene on the inference patterns. Examples
are given of applications problem areas in a range of other disciplines, including the rep-
resentation of states of affairs, individuals and relations.

Keywords Universal logic - Inference patterns - Protologic - Protosemantics - Structural
connectives - Paraconsistency - Default reasoning - Applied logic

Mathematics Subject Classification (2000) Primary 03B22 - Secondary 03A05

1 Introduction

Twenty years ago, Jean-Yves Béziau [9] proposed that the notion of deduction in any
logical system should be studied within an integrative conceptual framework that pre-
supposes no particular axioms. He termed this framework universal logic by analogy to
Birkhoff’s [23] universal algebra. This approach encompasses all logical systems and
facilitates specifying each of their particular axioms whether they are common to many
logics, or peculiar to a few.

Logical systems have proliferated since the 1920s when Hilbert, Frege and Russell
extended the inference patterns of Aristotle’s syllogistic [7, 33] to provide formal founda-
tions for mathematics. Béziau’s proposal situates a wide range of historical and ongoing
studies of such systems within a coherent framework, and suggests significant directions
for further research. His publications expounding [11, 13, 14] and illustrating [10, 12, 19]
the approach, and the fora he has provided through editing books [15, 18], conference
proceedings [21, 22], and the Logica Universalis journal, have inspired a research com-
munity collaborating within the universal logic paradigm.
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Béziau [14, p. 14] presents the study of logical structures as a mathematical discipline
in its own right, a Bourbakian [25] mother system “having the same status as algebraic,
topological and order structures”. However, like other sub-disciplines of mathematics,
it also provides foundational capabilities for many other disciplines. A universal logic
conceptual framework contributes to these disciplines by providing techniques for tailor-
ing logical systems to address the precise purposes for which they are required. It helps
build “the right logic for the right situation” [11, p. 19], making it possible to avoid the
wholesale import of inappropriate axioms of a logical system that may introduce artifacts
by going beyond those deriving from a conceptual analysis of the problématique.

In order to support other disciplines, Béziau [11, p. 23] has suggested that univer-
sal logic might be presented as a formal but comprehensible conceptual framework that
avoids unnecessary symbolism, that, for example, “the definitions philosophers need in-
volve mathematical abstract conceptualization rather than symbolic formalization.” How-
ever, most universal logic research has naturally adopted the symbolism of formal logic
and this, like mathematical symbolism in general, can be a significant barrier to under-
standing [66].

This article addresses the question of whether the conceptual framework of univer-
sal logic may be formalized and presented in a way that minimizes the use of technical
terminology and mathematical symbols. Its objective is to preserve formal rigor while
providing a useful and comprehensible tool for those applying logic to problems of rep-
resentation and inference in non-mathematical disciplines. It adopts the perspective that
views mathematics as a science of patterns [95], and presents possible inference patterns
in a logical system as two-dimensional configurations of an arrow symbolizing deduction.

2 Logic as a Science of Patterns

The objective of this section is to develop the conceptual framework of universal logic
in a simple and comprehensible form as a science of patterns. The primitive notion of
deduction is represented as a process of recognizing a pattern within a structure that li-
censes the addition of deletion of part of that structure. This process is itself represented
by metastructures termed inference patterns, a collection of which will be said to consti-
tute a protologic [79].

2.1 Foundations for a Universal Protologic

The genesis of what has come to be termed universal logic was in the philosophy of
Hilbert that he derived by reflecting on his experience in proving his basis theorem [68]
and rationally reconstructing Euclidean geometry [69], and the resultant controversy with
Gordan [83, p. 18] and Frege [49, pp. 1-24] about his innovations in the logical founda-
tions of mathematics.

Hilbert [70] evolved a new conceptual framework for axiomatic thinking that involved
reconstructing a formalized discipline by abstraction to a minimal set of independent ax-
ioms, each having a meaningful interpretation in that discipline. His methodology intro-
duced notions such as logical existence [49, p. 12] being equivalent to lack of contradic-
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tion, and ideal elements [71] being introduced in order to simplify the axioms even though
they were not part of the original system.

Hilbert [70, p. 413] emphasized that the axiomatic foundations of logic underpinned
those of other disciplines and themselves needed to be made secure. When he and his
colleagues at Gottingen, such as Hertz, Bernays and Gentzen, worked on this problem it
was natural for them to adopt his principles of axiomatic thinking and deconstruct logical
deduction as a minimal collection of axioms, introducing ideal elements as necessary to
simplify them, and focusing on freedom from contradiction and the complete reconstruc-
tion of expected inferential outcomes.

The objective was to provide logical foundations for mathematics and the axiomatic
method rather than to characterize all possible logics. However, there were already two
contending logics for mathematics, classical and intuitionistic [58], and it was natural for
Hertz [67] in applying Hilbert’s axiomatic thinking to logic to abstract as much as possible
and consider inference patterns between arbitrary sentences. He even abstracted from the
notion of inference itself, stating that there is no need to specify “what the symbol —
linking the characters a — b or the word ‘if” in the corresponding linguistic formulation
means” [67, p. 247].

Bernays further extends Hertz’s level of abstraction when he used it to exemplify
Hilbert’s philosophy of mathematics by reducing — to a sign rather than a symbol: “If the
hypothetical relationship ‘if A then B’ is symbolically represented by A — B, then the
transition to the formal position is that we abstract from that the meaning of the symbol
— and take the linkage by the ‘sign’ — itself as the primary consideration.” [8, p. 333].

In her analyses of the evolution of written language to include non-phonetic technical
material involving mathematical and logical symbology, Kriamer [75] has characterized
such extreme abstraction as complete desemantification. Dutilh Novaes [39] adopted this
terminology and situated the desemantification of logic historically through her analysis
of the use of the qualifier formal in the logical literature. She [40, §6.1.2] introduces
the term resemantification to describe the process of reintroducing expected features of a
desemantified system.

The following sections develop a universal protologic by commencing with deduction
as a desemantified sign, —, and incrementally resemantifying it by introducing common
logical constraints as inference patterns represented by structures based on —. The ad-
ditional term semantification is used to distinguish various extra-logical interpretations
that add meaning without changing the underlying logical system, including: those intrin-
sic to the logical system, such as truth values (Sect. 4.2), and intensional (Sect. 4.3) and
extensional (Sect. 4.4) reconstruction.

2.1.1 Protosemantics

Whilst the protologic is itself a mathematical abstraction, it is intended to have practical
applications and terms have been adopted to name abstract patterns that reflect those in the
literature and seem natural to those patterns. However, these terms are strictly technical
and none of their possible connotations beyond their formal definitions are used to draw
inferences. That is, the protologic semantifies the terms and not the terms the protologic.

For example, A — B is read as ‘A includes B’ and two complementary technical terms
are also introduced to provide an abstract protosemantics. The term content is used to
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reference that which might be included. That is, A — B may be read as ‘the content of
A includes the content of B.” This terminology is consistent with that of those who have
proposed that logical entailment be explicated as meaning [41], sense [90] or content [26]
containment, and enables one to assess when that notion is appropriate and when it is not.

The term context, is used to reference the effect of inclusion, of being within the scope
of the meaning. That is, A — B may be read as ‘the context of B encloses the context
of A’ This terminology is consistent with Aristotle’s [1, 1061b30] use of the term qua
in his Metaphysics to introduce a context, for example, to consider physical objects ‘qua
moving’ rather than ‘qua bodies.” However, any connotations of the terms ‘content’ and
‘context’ derive explicitly from the constraints placed upon the use of —, rather than from
a priori intuitions.

2.1.2 Arrows, Links and Graphs

Béziau [9, p. 85] introduces a minimal resemantification of a deduction sign by going
back to the Latin roots of the term and interpreting it as leading away from premise to
conclusion, that is, we may regard the arrow in A — B as a directed connective leading
from the symbol ‘A’ at the tail to the symbol ‘B’ at the head. The resulting structure may
be termed a link constituted by the triple (A, —, B). It may also be described as a link out
of A constituted by the pair (—, B) or a link in to B constituted by the pair (A, —).

A link is naturally represented in graphical form as two labeled nodes
with an arrow between them or, more generically, as an arrow between two
anonymous nodes. It is assumed that labels constitute unique identifiers O_)O
from some family of identifiers with an equality relation, and that an anonymous node
has an implicit label unique to that node.

The resemantification involved in labeling nodes is the assumption that the entities
linked by — may be identified, distinguished and equated. Node labels may be chosen
to suggest possible connotations but these make no formal contribution to the logical
structure represented by the links. They are logically meaningful only to the extent that
the linkage structure represents such connotations.

Nodes with identical labels will be taken to represent the same node shown more than
once, and may be merged to form a canonical graph-like structure with no duplication of
nodes. This allows structures to be split into substructures, possibly overlapping, that can
be merged to reconstitute the original structure. It also allows a structure to be merged with
one of several other structures, each representing an alternative component, for example,
a different ‘ontology’ or ‘theory.*

Figure 1 shows a number of links merged into a graphical structure, S, with no dupli-

cation of nodes.
0005 0=
LT

Fig. 1 Graphical structure specified by multiple links
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Note that the graph representation adds no additional information to that of a linear rep-
resentation as the multiset,

S=[A—-B,B—-~C,B—-~C,C—-D,D—-E,D—-EE—-EF—-B,B—H,
G— H,H— D,D— H]

It is only a more perspicuous representation of the structure represented by multiple links
involving the same nodes.

Figure 2 shows the same links merged into three overlapping substructures, S1, S2 and
S3, representing the same structure in a modular way.

TS

Fig. 2 Same structure specified modularly as three substructures

The linear representations are shown below and S is their multiset sum:

S1=[A—-B,B— C,F— B]
S$2=B—-C,C—-D,D—-E,B—H,H—D,G— H]
S3=[D—E,E—E,D— H]
S=S1wS24¥S3

The resemantification of the arrow sign so far is sufficient to support the basic struc-
tures of graph theory. However, as evident in the examples, there are no constraints to
preclude parallel arrows between the same nodes or loops from a node to itself. Hence, in
graph-theoretic terms, the examples given are not strictly directed graphs but rather nets
[65, pp. 4-7] or directed pseudographs [4, p. 4].

There is also, as yet, no support for the inferential processes of logic. However, in the
continuing resemantification inference pattern are introduced such that — represents a
partial order underlying a logical system (Sect. 2.5).

2.1.3 Inference Patterns and Invariance Under Logical Interpretations

While it is convenient to use the terminology of graph theory to describe the nets that
represent collections of links, logical theory focuses on the dynamics of change in such
collections. This is not a primary concern of graph theory [64].

The logical dynamics of nets will be captured in terms of inference patterns in which
an abstract subnet of a particular form is recognized as licensing the addition or deletion
of one or more links while leaving any ‘logical interpretation’ of the net invariant. These
notions are formalized in the following sections.

A logical interpretation of a net is defined to be an inference-preserving conservative
translation [29] of the net into statements of a logical system supporting some notion of
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inference. To state that it is invariant under a change to the net is to assert that, within that
logical system, the translation of the changed net will have the same inferences as that of
the original net. Two nets with the same logical interpretations will be termed logically
equivalent.

This is a constraint upon appropriate translations, that the target logical system must
implement within its own framework the inference patterns of the protologic, and this
must be verified for each translation. It is also intended that the inference patterns in the
protologic can be understood in their own right and that the graphical language can be
used to represent the form of knowledge structures and the dynamics of inference.

An inference pattern may be seen as an analytic invariant of a net in that it can dynam-
ically expand a net by adding logical inferences implicit in its links, and hence can also
delete them as being superfluous, contracting the net, possibly to a minimal form. Ad-
ditions or deletions that maintain the net logically invariant will be termed conservative
expansions or conservative contractions, respectively.

2.2 Inclusion Inference Pattern

A significant example of resemantification through a logical inference pattern is that tran-
sitivity of — which is common to its usage in most logical systems and has been taken to
be a characteristic feature of ‘a logic’ [101]. Figure 3 shows Hertz’s [67, Fig. 1] diagram
to specify the transitivity of — on the left, and, in the center, its representation by an
inclusion inference pattern in a net.

Fig. 3 Inclusion inference pattern

A metalogical distinction has been made in the inference pattern by showing the
pattern-defining arrows as solid lines and the inferred arrow as a dotted line. The in-
ference pattern indicates that if the pattern-defining links are found then an inferred link
may be added, or any existing inferable link may be deleted, without changing the logical
interpretation of the net of which the pattern is part.

The same pattern is drawn differently on the right to show that the inclusion inference
pattern might be visualized either as the copying, or inheritance, of a horizontal inclu-
sion link downwards from the head to the tail of a vertical inclusion link, or of a reverse
horizontal inclusion link upwards from the tail to the head of a vertical inclusion link.

If x, y and z are links, S a multiset of links, and = indicates identical logical interpre-
tations, an equivalent linear representation might be:

forany x,y,z, S, [S,x—>y,y—=>z]=[S,x—>VYy,y— z, X —> 7]

One advantage of using the two-dimensional structure of the page to provide a non-
linear graphical presentation is that, as Shonfinkel [99, p. 17] has noted, the introduction
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of variable names is distract