
Managing LTL Properties in Event-B

Refinement

Steve Schneider1, Helen Treharne1,
Heike Wehrheim2, and David M. Williams3

1 University of Surrey, England, UK
2 University of Paderborn, Germany

3 VU University Amsterdam

Abstract. Refinement in Event-B supports the development of systems
via proof based step-wise refinement of events. This refinement approach
ensures safety properties are preserved, but additional reasoning is re-
quired in order to establish liveness and fairness properties. In this paper
we present results which allow a closer integration of two formal meth-
ods, Event-B and linear temporal logic. In particular we show how a
class of temporal logic properties can carry through a refinement chain
of machines. Refinement steps can include introduction of new events,
event renaming and event splitting. We also identify a general liveness
property that holds for the events of the initial system of a refinement
chain. The approach will aid developers in enabling them to verify linear
temporal logic properties at early stages of a development, knowing they
will be preserved at later stages. We illustrate the results via a simple
case study.

1 Introduction

Event-B [1] is a step-wise development method with excellent tools: Rodin plat-
form [2] providing proof support and ProB [11] providing model checking. As
Hoang and Abrial [10] clearly state the focus of verification within Event-B has
been on the safety properties of a system to ensure that “something (bad) never
happens”. Typically, this has been done via the discharging of proof obligations.
Nonetheless, the use of linear temporal logic (LTL) to specify temporal liveness
properties has also been prevelant, for example in its application within the ProB
tool [12]. The challenge is to identify more natural ways of integrating Event-B
and LTL, so that LTL properties can be preserved by Event-B refinement, which
is not currently the case in general.

Event-B describes systems in terms of machines with state, and events which
are used to update the state. Events also have guards, which are conditions
for the event to be enabled. One (abstract) machine may be refined by another
(concrete) machine, using a refinement step. A linking invariant captures how the
abstract and concrete states are related, and each abstract event must be refined
by one or more concrete events whose state transformations match the abstract
one in the sense of preserving the linking invariant. Refinement is transitive, so

E. Albert and E. Sekerinski (Eds.): IFM 2014, LNCS 8739, pp. 221–237, 2014.
c© Springer International Publishing Switzerland 2014

222 S. Schneider et al.

a sequence of refinement steps, known as a refinement chain, will result in a
concrete machine which is a refinement of the original abstract one.

A particular feature provided by Event-B is the introduction of new events in
a refinement step—events which do not refine any abstract event. This allows
for refinements to add finer levels of granularity and concretisation as the design
develops; there are many examples in [1]. These new events are invisible at
the abstract level (they correspond to the abstract state not changing), and we
generally need to verify that they cannot occur forever. Event-B makes use of
labels to keep track of the status of events as a refinement chain progresses.
Event-B labels are anticipated, convergent and ordinary. The labelling of events
in Event-B form part of the core of a system description but their inclusion
is primarily to support the proof of safety properties and ensuring that events
cannot occur forever: convergent events must decrease a variant and anticipated
events cannot increase it. In this paper all newly introduced events must be
convergent or anticipated, and anticipated events must become convergent at
some stage. As an initial example, consider a Lift machine with two events top
and ground, representing movement to the top and to the ground floor. This can
be refined by a machine Lift ′ introducing two new anticipated events openDoors
and closeDoors. The events top and ground are blocked when the doors are open,
but enabled when the doors are closed.

Linear temporal logic provides a specification language for capturing proper-
ties of executions of systems, and is appropriate for reasoning about liveness and
fairness. For example, we might verify for Lift that whenever top occurs, then
eventually ground will occur. However, this is not guaranteed for its refinement
Lift ′: it may be that the doors open and close repeatedly forever following the
top event, thus never reaching the next ground event. Alternatively it may be
that the system deadlocks with the doors open, again preventing ground from
occurring. Hence we see that LTL properties are not automatically preserved
by Event-B refinement. In the first case we would require some assurance that
openDoors and closeDoors cannot repeat forever without the lift moving; in the
second case we require some liveness property on closeDoors to prevent termi-
nation with the doors open.

In this paper we present results for when temporal logic properties can be
carried through Event-B refinement chains. The results generalise to events that
are split—refined by several events—during a refinement chain. We also identify
conditions on temporal logic properties that make them suitable for use in a re-
finement chain, since some properties are not preserved by Event-B refinement
(for example, the property “closeDoor never occurs” holds for Lift but not for
its refinement Lift ′). The results are underpinned by our process algebra un-
derstanding of the Event-B semantics, in particular the traces, divergences and
infinite traces semantics used for CSP and applied to Event-B in [15].

The paper is organised as follows: Section 2 provides the necessary Event-B
refinement background and the refinement strategy we use in the paper. Section 3
introduces a running example. Section 4 defines the LTL we use. Sections 5 and 6
present and illustrate the main theoretical results. For reasons of space we do

Managing LTL Properties in Event-B Refinement 223

not include proofs, but they appear in the technical report available at [16]. We
put our work into the context of related work in Section 7 and our future work
in Section 8.

2 Event-B

2.1 Event-B Machines

An Event-B development is defined using machines. A machine M contains a
vector of variables and a set of events. The alphabet ofM , αM , is the set of events
defined in M . Each event evti has the general form evti =̂ any x where Gi(x , v)
then v :| BAi(v , x , v

′) end, where x represents the parameters of the event, the
guard Gi(x , v) is the condition for the event to be enabled. The body is given
by v :| BAi(v , x , v

′) whose execution assigns to v any value v ′ which makes the
before-after predicate BAi(v , x , v

′) true. This simplifies to evti =̂ when Gi(v)
then v :| BAi(v , v

′) end when there are no parameters, since the guard and the
before-after predicate does not refer to the parameters x .

Variables of a machine are initialised in an initialisation event init and are
constrained by an invariant I (v). The Event-B approach to semantics is to asso-
ciate proof obligations with machines. The key proof obligation, INV, is that all
events must preserve the invariant. There is also a proof obligation on a machine
with respect to deadlock freedom which means that a guard of at least one event
in M is always enabled. When this obligation holds M is deadlock free.

2.2 Event-B Refinement

An Event-B development is a sequence of B machines linked by a refinement
relationship. In this paper we use M and M ′ when referring to a refinement
between an abstract machine M and a concrete machine M ′ whereas a chain of
refinements is referred to using numbered subscripts, i.e., M0, Mi , . . ., Mn , to
represent the specific refinement levels.

A refinement machine can introduce new events and split existing events. We
omit the treatment of merging events in this paper. New events are treated as
refinements of skip, i.e., evt ′i does not refine an event in M . Note that when
splitting events, M ′ has several events evt ′i refining a single event evti .

A machine M is considered to be refined by M ′ if the given linking invariant
J on the variables between the two machines is established by their initialisa-
tion, and preserved by all events. This requirement is captured by the INV REF

proof obligation. Formally, we denote the refinement relation between two ma-
chines, written M � M ′, when all the following proof obligations hold: feasibility
FIS REF, guard strengthening GRD REF and simulation INV REF. Feasibility of
an event is the property that, if the event is enabled (i.e., the guard is true),
then there is some after-state. Guard strengthening requires that when a con-
crete event is enabled, then so is the abstract one. Finally, simulation ensure the
occurrence of events in the concrete machine can be matched in the abstract one

224 S. Schneider et al.

(including the initialization event). Further details of these proof obligations can
be found in [1].

In Section 1 we introduced the three kinds of labelling of events in Event-B:
anticipated (a), convergent (c) and ordinary (o) and noted that convergent events
are those which must not execute forever whereas anticipated events provide a
means of deferring consideration of divergence-freedom until later refinement
steps. The proof obligation that deals with divergences is WFD REF. It requires
that the proposed variant V of a refinement machine satisfies the appropriate
properties: that it is a natural number, that it decreases on occurrence of any
convergent event, and that it does not increase on occurrence of any anticipated
event. Therefore, we augment the previous refinement relation with WFD REF

such that M �W M ′. Ordinary events can occur forever and therefore WFD REF

is not applicable for such events.

2.3 Event-B Development Strategies

Event-B has a strong but flexible refinement strategy which is described in [9].
In [15] we also discussed different Event-B refinement strategies and charac-
terised them with respect to the approaches documented by Abrial in [1] and
supported by the Rodin tool. In this paper we focus on the simplest strategy, and
the one most commonly used. The strategy has the following set of restrictions
on a refinement chain M0 �W M1 �W . . . �W Mn :

1. all events in M0 are labelled ordinary. This set of events is referred to as O0.
2. each event of Mi is refined by at least one event of Mi+1;
3. each new event in Mi is either anticipated or convergent, where i > 0;
4. each event in Mi+1 which refines an anticipated event of Mi is itself either

convergent or anticipated;
5. refinements of convergent or ordinary events of Mi are ordinary in Mi+1.
6. no anticipated events remain in the final machine.

Figure 1 illustrates our development strategy for a vending machine, detailed
in Section 3, where Ci is the set of convergent events within Mi , and Oi is the
set of ordinary events within Mi .

For example, O0 = {selectBiscuit , selectChoc, dispenseBiscuit , dispenseChoc}
and C0 = ∅ in VM1. In VM2 we note that C1 = {refund}. In VM3 we note
that C2 = {refill} and in VM4 we have C3 = {pay}. Thus we denote Call =
C1 ∪ C2 ∪ C3.

2.4 Event-B Semantics

In this paper we define a trace of M to be either an infinite sequences of events
(a,c or o), i.e., 〈e0, e1, . . .〉 or a finite sequence of events, i.e., 〈e0, . . . , ek−1〉 where
the machine M deadlocks after the occurrence of the final event. Traces corre-
spond to maximal executions of machines. Plagge and Leuschel in [14] provided
a definition of an infinite or finite path π of M in terms of a sequence of events

Managing LTL Properties in Event-B Refinement 225

selectBiscuit (o) selectBiscuit (o) selectBiscuit (o) selectBiscuit (o)
selectChoc (o) selectChoc (o) selectChoc (o) selectChoc (o)
dispenseBiscuit (o) dispenseBiscuit (o) dispenseBiscuit (o) dispenseBiscuit (o)
dispenseChoc (o) dispenseChoc (o) dispenseChoc (o) dispenseChoc (o)

pay (a) pay (a) pay (c)
refund (c) refund (o) refund (o)

refill (c) refill (o)

VM1 VM2 VM3 VM4

Fig. 1. Events and their annotations in the Vending Machine development

and their intermediate states. In order to distinguish notation we use u to repre-
sent a trace without the intermediate states. We need not consider the particular
states within a trace in our reasoning which is based on infinite traces. When a
machine M is deadlock free all of its traces are infinite. We use the functions of
concatenation (�), projection (�) and length (#) on finite and infinite traces.

A more complex behavioural semantics for B machines was given by Schneider
et al. in [15] based on the weakest precondition semantics of [13,6] for action
systems and CSP. In [15] there are two key results that enable us to reason
about infinite sequences of convergent and ordinary events in this paper. Firstly,
the following predicate captures that if an infinite trace u performs infinitely
many events from C then it has infinitely many events from O , where C and O
are sets of events.

Definition 1. CA(C ,O)(u) =̂ (#(u � C) = ∞ ⇒ #(u � O) = ∞)

C and O will be used to capture convergent and ordinary events through a
development. For an Event-B machine M the above means that it does not
diverge on its C events. This is precisely what we get when we prove WFD REF

but the above definition describes the result on traces.
The second result from [15], restated as Theorem 1, allows us to conclude

that there are no infinite sequences of convergent events in the final machine
of a refinement chain Mn . The function g1,n defines a compositional mapping
for all concrete events to abstract events in terms of a function mapping f at
each refinement level where fi+1 : αMi+1 �→→ αMi and fi+1(evti+1) = evti ⇔
evti+1 refines evti . (Note that g1,0 is the identity function.)

Definition 2. gi,j = fj ; fj−1; . . . ; fi

Theorem 1. If M0 �W M1 �W . . . �W Mn then

Mn sat CA(g−1
1,n(C0) ∪ . . . ∪ g−1

i,n (Ci) ∪ . . . ∪ Cn , g−1
1,n(O0))

The result for our example is simply VM4 sat CA(Call ,O0) since there is no
renaming: each function mapping fi is the identity.

3 Example

In Section 2.3 we introduced a development strategy for a vending machine.
Figures 2, 3, 4 and 5 illustrate a development chain from vending machine VM1,

226 S. Schneider et al.

machine VM1

variables chosen
invariant chosen ⊆ {choc, biscuit}
events
init =̂ chosen := {}
selectBiscuit =̂ status : ordinary

when biscuit �∈ chosen then chosen := chosen ∪ {biscuit} end
selectChoc =̂ status : ordinary

when choc �∈ chosen then chosen := chosen ∪ {choc} end
dispenseBiscuit =̂ status : ordinary

when biscuit ∈ chosen then chosen := chosen − {biscuit} end
dispenseChoc =̂ status : ordinary

when choc ∈ chosen then chosen := chosen − {choc} end
end

Fig. 2. VM1

VM2, VM3 to VM4; there are no anticipated events in VM4. Note the numbers
of the vending machines start from one. We introduce VM0 in Section 6. Thus
M0 in Theorem 1 corresponds to VM1 etc.

VM1 is a simple machine that supports the selection and dispensing of choco-
lates and biscuits via four events: selectBiscuit, selectChoc, dispenseBiscuit and
dispenseChoc. We abbreviate their names in the narrative to sb, sc, db and dc
respectively. The first refinement step introduces VM2 and the notion of pay-
ing and refunding. The pay event in VM2 is always enabled and allows positive
credit to be input. The machine allows a biscuit to be chosen if it has not already
been chosen and additionally provided a payment has been made; a chocolate
selection is similar. Hence the guards of all four of the original events sb, sc, db
and db are strengthened. The guard of the refund event means that credit cannot
be refunded for selected items and cannot occur forever since it is convergent.
Importantly, the refundEnabled flag is introduced so that it is only true after a
dispense and prevents infinite loops of the pay followed by refund.

VM3 introduces the notion of stocked items and a new refill event. We could
have chosen many different guards for the refill event. For example, we could
have labelled it anticipated with a guard of true. Instead we have made an un-
derspecification where the stock can be restocked when there may be no biscuits
or no chocolates, and established convergence. Again the guard of the four orig-
inal events have been strengthened so that they are only enabled when the
appropriate stocked item is in stock. But now db and dc also capture the non-
deterministic notion of running out or not of their respective items. The guard
of refund remains unchanged. The guard of pay has been strengthened so that
it is only enabled when there is stock but this is not strong enough to prevent
it happening infinitely often, hence it remains anticipated in VM3.

The final machine, VM4, is a straightforward data refinement which introduces
the capacity of the machine. Apart from highlighting the refinement relationship

Managing LTL Properties in Event-B Refinement 227

machine VM2

variables credit , chosen, refundEnabled
invariant credit ∈ N ∧ chosen ⊆ {choc, biscuit} ∧ refundEnabled ∈ BOOL
variant if refundEnabled = FALSE then 0 else 1
events
init =̂ credit := 0 || chosen := {} || refundEnabled := FALSE
pay =̂ status : anticipated

any x where x ∈ N1

then credit := credit + x end || refundEnabled := FALSE end
selectBiscuit =̂ status : ordinary

when credit > 0 ∧ biscuit �∈ chosen ∧ credit > card(chosen)
then chosen := chosen ∪ {biscuit} end

selectChoc =̂ status : ordinary
when credit > 0 ∧ choc �∈ chosen ∧ credit > card(chosen)
then chosen := chosen ∪ {choc} end

dispenseBiscuit =̂ status : ordinary
when credit > 0 ∧ biscuit ∈ chosen
then credit := credit − 1 || chosen := chosen − {biscuit} ||

refundEnabled := TRUE end
dispenseChoc =̂ status : ordinary

when credit > 0 ∧ choc ∈ chosen
then credit := credit − 1 || chosen := chosen − {choc} ||

refundEnabled := TRUE end
refund =̂ status : convergent

when credit > card(chosen) ∧ refundEnabled := TRUE
then credit := card(chosen) || refundEnabled := FALSE end

end

Fig. 3. VM2

between stocked and chocStock and biscuitStock note the strengthening of the
guard of refill so that vending machine should only be refilled when there is no
stock. Also the guard of pay is strengthened so that it becomes convergent.

4 LTL Notation

In this paper we use the grammar for the LTL operators presented by Plagge
and Leuschel [14]:

φ ::= true | [x] | ¬φ | φ1 ∨ φ2 | φ1 U φ2

A machine M satifies φ, denoted M |= φ, if all traces of M satisfy φ. The
definition for u to satisfy φ is defined by induction over φ as follows:

u |= true

u |= [x] ⇔ u = 〈x 〉� u1

u |= ¬φ ⇔ it is not the case that u |= φ
u |= φ1 ∨ φ2 ⇔ u |= φ1 or u |= φ2

u |= φ1Uφ2 ⇔ ∃ k ≥ 0. ∀ i < k .u i |= φ1 and uk |= φ2

228 S. Schneider et al.

machine VM3

variables credit , chosen, refundEnabled , stocked
invariant credit ∈ N ∧ chosen ⊆ {choc, biscuit} ∧ stocked ⊆ {choc, biscuit}

(choc ∈ chosen ⇒ choc ∈ stocked) ∧ (biscuit ∈ chosen ⇒ biscuit ∈ stocked)
variant card{choc, biscuit} − stocked
events
init =̂ . . . || stocked := {choc, biscuit}
pay =̂ status : anticipated

any x where x ∈ N1 ∧ stocked �= ∅
then credit := credit + x end || refundEnabled := FALSE end

selectBiscuit =̂ status : ordinary
when . . . ∧ biscuit ∈ stocked
then chosen := chosen ∪ {biscuit} end

selectChoc =̂ status : ordinary
when . . . ∧ choc ∈ stocked
then chosen := chosen ∪ {choc} end

dispenseBiscuit =̂ status : ordinary
when credit > 0 ∧ biscuit ∈ chosen ∧ biscuit ∈ stocked
then . . . || any x where x ⊆ {biscuit} then stocked := stocked − x end end

dispenseChoc =̂ status : ordinary
when credit > 0 ∧ choc ∈ chosen ∧ choc ∈ stocked
then . . . || any x where x ⊆ {choc} then stocked := stocked − x end end

refund =̂ status : ordinary . . .
refill =̂

status : convergent
when choc /∈ stocked ∨ biscuit /∈ stocked
then stocked := {choc, biscuit} end

end

Fig. 4. VM3

where un is u with the first n elements removed, i.e., u = 〈x0, . . . , xn−1〉� un .
From these operators Plagge and Leuschel derived several additional opera-

tors, including: conjunction (φ1 ∧ φ2), finally (or eventually) (Fφ), and globally
(or always) (Gφ), in the usual way; we also use these operators, and for explic-
itness we also provide direct definitions for them:

u |= φ1 ∧ φ2 ⇔ u |= φ1 and u |= φ2

u |= Fφ ⇔ ∃ i ≥ 0.u i |= φ
u |= Gφ ⇔ ∀ i ≥ 0.u i |= φ

We omit atomic propositions on states since our traces are only dealing with
events and not paths of states and transitions. We also omit the next operator,
see Section 7. In this paper our running example uses globally, finally, or and
implies.

Managing LTL Properties in Event-B Refinement 229

machine VM4

constants capacity
properties capacity > 0
variables credit , chosen, refundEnabled , chocStock , biscuitStock
invariant credit ≤ capacity ∧ chosen ⊆ {choc, biscuit} ∧

refundEnabled ∈ BOOL ∧ chocStock ≤ capacity ∧ biscuitStock ≤ capacity ∧
(choc /∈ stocked ⇒ chocStock = 0) ∧ (choc ∈ stocked ⇒ chocStock ≥ 0) ∧
(biscuit /∈ stocked ⇒ biscuitStock = 0) ∧ (biscuit ∈ stocked ⇒ biscuitStock ≥ 0)

variant max{(chocStock + biscuitStock) − credit , 0}
events
init =̂ . . . || chocStock := capacity || biscuitStock := capacity
pay =̂ status : convergent

any x where x ∈ N1 ∧ (chocStock + biscuitStock) > credit
then credit := credit + x end || refundEnabled := FALSE end

selectChoc =̂ status : ordinary
when . . . ∧ chocStock > 0
then chosen := chosen ∪ {choc} end

selectBiscuit =̂ status : ordinary
when . . . ∧ biscuitStock > 0
then chosen := chosen ∪ {biscuit} end

dispenseBiscuit =̂ status : ordinary
when credit > 0 ∧ biscuit ∈ chosen ∧ biscuitStock > 0
then . . . || chocStock := chocStock − 1 end

dispenseChoc =̂ status : ordinary
when credit > 0 ∧ choc ∈ chosen ∧ chockStock > 0
then . . . || chocStock := chocStock − 1 end

refund =̂ status : ordinary . . .
refill =̂ status : ordinary

when chocStock = 0 ∧ biscuitStock = 0
then chocStock := capacity || biscuitStock := capacity end

end

Fig. 5. VM4

For example, the informal specification for the Lift given in Section 1, that
whenever top happens then eventually ground will happen, could be written as

G([top] ⇒ F [ground])

From our running VM example, the predicate GF [selectBiscuit] expresses that
selectBiscuit occurs infinitely often: at any point there is always some occurrence
of selectBiscuit at some point in the future. We use this construction in the VM
properties introduced in Section 5. For example, we have φ2 given as

φ2 = (¬GF [selectBiscuit]) ⇒ G([selectChoc] ⇒ F [dispenseChoc])

This states that provided selectBiscuit only occurs finitely often (i.e. eventually
stops), then whenever selectChoc occurs then dispenseChoc will eventually occur.

230 S. Schneider et al.

It will also be useful to identify the events mentioned explicitly in an LTL
formula φ. This set is called the alphabet of φ. This is written α(φ), similar to
the use of αM for the alphabet of machine M . For LTL formulae it is defined
inductively as follows:

Definition 3

α(true) = {}
α([x]) = {x}
α(¬φ) = α(φ)

α(φ1 ∨ φ2) = α(φ1) ∪ α(φ2)

α(φ1 ∧ φ2) = α(φ1) ∪ α(φ2)

α(φ1 U φ2) = α(φ1) ∪ α(φ2)

α(Fφ) = α(φ)

α(Gφ) = α(φ)

For example, we have α(φ2) = {selectBiscuit , selectChoc, dispenseChoc} for φ2

above.

5 Preserving LTL Properties

In this section we provide results to demonstrate when properties are preserved
by refinement chains. Firstly, we consider chains which do not contain any re-
naming/splitting of events in a machine. Hence, each function mapping fi for
Mi . . .Mn is the identity. The first result is a general result identifying a par-
ticular temporal property that will always hold for all refinement chains which
abide by the rules of the strategy presented in Section 2.3. The second result
given in Lemma 2 concerns the preservation of temporal properties that would
be proposed by a specifier. We have already observed from the vending machine
example that new events can be introduced during a refinement, e.g., pay, re-
fill, etc.. We aim for such properties to hold even though new anticipated and
convergent events are being introduced.

Lemma 1 states that Mn at the end of the refinement chain will always even-
tually perform one of the events of the initial machine M0. In other words, Mn

will perform infinitely many of the initial events. This means that the events
introduced along the refinement chain cannot occur forever at the expense of
the original events. In our example, αM0 = O0.

Lemma 1. If M0 �W M1 �W . . . �W Mn and Mn is deadlock free and Mn

does not contain any anticipated events then Mn |= GF (
∨

e∈αM0

[e])

Next we provide a definition which is used in Lemma 2 below and it enables
us to gain insights into the kinds of temporal properties that are appropriate
to be proposed and have the potential of being preserved through a refinement

Managing LTL Properties in Event-B Refinement 231

chain. Definition 4 describes a maximal execution satisfying a property φ. The
execution may include some events which do not have an impact on whether the
property holds or not therefore we can restrict the maximal execution to include
only those events that impact on the property.

Definition 4. Let β be a set of events. Then φ is β-dependent if α(φ) ⊆ β and
u |= φ ⇔ (u � β) |= φ.

An example of a β-dependent property is GF (pay) where β = {pay}. If u |=
GF (pay) then u � pay |= GF (pay), and vice versa. Conversely, ¬G(pay) is
not {pay}-dependent. For example, if u = 〈pay, refill , pay, pay, . . .〉 then u |=
¬G(pay) but u � {pay} �|= ¬G(pay).

As another example, define β = {sb, sc, db, dc}. Then G(sb ∨ sc ∨ db ∨ dc)
is not β-dependent. This is exemplified by any trace u which contains events
other than those in β. In this case u � {sb, sc, db, sc} |= G(sb ∨ sc ∨ db ∨ dc) but
u �|= G(sb ∨ sc ∨ db ∨ dc). VM4 exhibits such traces. Observe that this property
holds for VM1 but not for VM4: it is not preserved by refinement. Since it is not
β-dependent Lemma 2 below is not applicable for this property.

Our main result for this section identifies conditions under which an LTL
property φ will be preserved in a refinement chain. The conditions are as follows:

– by the end of the refinement chain there should be no outstanding antic-
ipated events (and so all newly introduced events have been shown to be
convergent), as given by restriction 6 of the Development Strategy of Sec-
tion 2.3;

– the final machine in the refinement chain must be deadlock-free; and
– all of the events that have an effect on whether or not φ is true are already

present in Mi (φ is β-dependent for some β ⊆ αMi).

These conditions are enough to ensure that φ is preserved through refinement
chains. This means that Mi can be checked for φ, and we can be sure that the
resulting system Mn will also satisfy it.

The lemma is formally expressed as follows:

Lemma 2. If Mi |= φ and Mi �W . . . �W Mn and 0 ≤ i < n and Mn

is deadlock free and Mn does not contain any anticipated events and φ is β-
dependent and β ⊆ αMi then Mn |= φ.

5.1 Preserving Vending Machine Properties

We consider the application of the above Lemmas to our running example on
the refinement chain

VM1 �W VM2 �W VM3 �W VM4

232 S. Schneider et al.

In this case we obtain immediately from Lemma 1 that

VM4 |= GF ([selectBiscuit] ∨ [selectChoc] ∨
[dispenseBiscuit] ∨ [dispenseChoc])

Any execution of VM4 will involve infinitely many occurrences of some of these
events. The newly introduced events pay, refund , refill cannot be performed
forever without the occurrence of the original events.

We consider some further properties to illustrate the applicability of Lemma 2.
Taking VM1 to be the first machine in the refinement chain, we can consider the
following temporal properties φ for VM1:

φ1 = G([selectChoc] ∨ [selectBiscuit] ⇒ F ([dispenseChoc] ∨ [dispenseBiscuit]))

φ2 = (¬GF [selectBiscuit]) ⇒ G([selectChoc] ⇒ F [dispenseChoc])

φ3 = (¬GF [selectChoc]) ⇒ G([selectBiscuit] ⇒ F [dispenseBiscuit])

φ4 = G([selectChoc] ⇒ F [dispenseChoc])

φ5 = G([selectBiscuit] ⇒ F [dispenseBiscuit])

We note that each of the properties are β-dependent. Next we consider whether
VM1 |= φi for each i ∈ 1..5. Note that in fact VM1 �|= φ4 and VM1 �|= φ5

since there is a trace for which the properties fail, e.g., in the case of φ4 the
〈sc, sb, db, sb, db, . . .〉 we could have an infinite loop of sb, db events and never
reach a dc event. Thus Lemma 2 is not applicable to these properties.

The properties φ2 and φ3 are the strongest; φ2 states that if you do not always
have an sb then you will be able to choose a chocolate and for it to be dispensed,
and the dual applies in φ3. Once we have also established the refinement chain
VM1 �W VM2 �W VM3 �W VM4, and that VM4 is deadlock free we can
deduce using Lemma 2 that VM4 |= φi for all i ∈ 1..3. Observe however that
Lemma 2 does not establish that φi holds in all refinement machines, only those
with no anticipated events. For example, VM2 and VM3 do not satisfy φ1, φ2

nor φ3 since pay is anticipated and can be executed infinitely often.
Since VM2 introduced the event pay we can also introduce new temporal

properties that are required to hold from VM2 onwards. In other words, we apply
Lemma 2 on the chain VM2 �W VM3 �W VM4. The properties to consider are:

φ6 = G([pay] ⇒ F ([dispenseBiscuit] ∨ [dispenseChoc]))

φ7 = GF [pay]

The infinite behaviour of pay means that φ6 is not satisfied in VM2. However,
VM2 |= φ7 thus we can again apply Lemma 2, and obtain that VM4 |= φ7 since
φ7 is β-dependent. This exemplifies that new temporal properties can be added
to the refinement verification chain.

We note that in fact VM4 |= φ6. Thus φ6 and φ7 together imply that
GF ([dispenseBiscuit] ∨ [dispenseChoc])) holds for VM4.

Managing LTL Properties in Event-B Refinement 233

6 Extending Preserving LTL Properties to Handle
Splitting Events

In this section we generalise the results of Section 5 in order to deal with split-
ting events in Event-B, which occurs when abstract events are refined by several
events in the concrete machine, corresponding to a set of alternatives. Consider
as a motivating example VM0 in Figure 6. This is refined by VM1, with link-
ing invariant item = card(chosen), selectItem refined by both selectBiscuit and
selectChoc, and dispenseItem refined by both dispenseBiscuit and dispenseChoc.
Splitting events also involves their renaming to allow for several concrete events
to map to the same abstract one. A refinement step will therefore be associated
with a renaming function h from concrete events to the abstract events that they
refine. In the general case h will be many-to-one, since many concrete events may
map to a single abstract event; and it will also be partial, since new events in
the concrete machine will not map to any abstract event.

In general, each step in a refinement chain M0 �W M1 �W . . . �W Mn will
have an event renaming function hi corresponding to the renaming and splitting
step from Mi to Mi−1. We define gi,n to be the composition of these renaming
function from hn down to hi . Observe that gi,n will be undefined on any event
that does not map to Mi−1, in other words any event that corresponds to an
event introduced at some point in the refinement chain. For example, for the
chain VM0 �W VM1 �W . . . �W VM4, we obtain that g1,4(selectBiscuit) =
g1,4(selectChoc) = selectItem, and g1,4(dispenseBiscuit) = g1,4(dispenseChoc) =
dispenseItem, and g1,4 is not defined on the remaining events of VM4.

Lemma 1 generalises to state that the final machine in the refinement chain
must always eventually perform some event relating to an event in the initial
machine.

Lemma 3. If M0 �W M1 �W . . . �W Mn and Mn is deadlock free and Mn

does not contain any anticipated events then Mn |= GF (
∨

e∈g−1
1,n(αM0)

e).

Observe that if there is no renaming or splitting, then g1,n is the identity function
on the events in αM0, yielding Lemma 1.

We are interested in how the LTL properties of an abstract machine be-
comes transformed through a refinement step such as VM0 to VM1. For ex-
ample, the property GF [selectItem] for VM0 states that from any stage that
is reached, selectItem will eventually occur. This will translate to the property
GF ([selectBiscuit]∨[selectChoc]) for VM1. We now consider how LTL properties
translate through a renaming function h.

For a given event renaming function h, we define transh as the translation
that maps LTL formulae by mapping abstract events to the disjunction of their
corresponding concrete events, as follows:

234 S. Schneider et al.

machine VM0

variables item
invariant item ∈ N

events
init =̂ item := 0
selectItem =̂

status : ordinary
when item ≤ 2 then item := item + 1 end

dispenseItem =̂
status : ordinary
when item > 0 then item := item − 1 end

end

Fig. 6. VM0

Definition 5

transh(true) = true

transh([x]) =
∨

y|h(y)=x

[y]

transh(¬φ) = ¬transh(φ)
transh(φ1 ∨ φ2) = transh(φ1) ∨ transh(φ2)

transh(φ1 ∧ φ2) = transh(φ1) ∧ transh(φ2)

transh(φ1 U φ2) = transh(φ1) U transh(φ2)

transh(Gφ) = G transh(φ)

transh(Fφ) = F transh(φ)

For example

transh(G([selectItem] ⇒ F [dispenseItem]))

= G(([selectBiscuit] ∨ [selectChoc]) ⇒ F ([dispenseBiscuit] ∨ [dispenseChoc]))

Lemma 2 generalises to Lemma 4 below, to state that LTL properties are car-
ried along the refinement chain by translating them. In particular, if a property
φ is established for Mi−1, then transgi,n (φ) will hold for Mn :

Lemma 4. If Mi−1 |= φ and Mi−1 �W . . . �W Mn and 0 ≤ i − 1 < n,
Mn is deadlock free and Mn does not contain any anticipated events and φ is
β-dependent and β ⊆ αMi−1 then Mn |= transgi,n (φ)

For example, from the result for VM0 that whenever selectItem occurs then
dispenseItem will eventually occur,

VM0 |= G([selectItem] ⇒ F [dispenseItem]))

Managing LTL Properties in Event-B Refinement 235

we obtain from Lemma 4 that

VM4 |= G(([selectBiscuit] ∨ [selectChoc])

⇒ F ([dispenseBiscuit] ∨ [dispenseChoc]))

This states that whenever selectBiscuit or selectChoc occur, then dispenseBiscuit
or dispenseChoc will eventually occur.

7 Discussion and Related Work

One of the few papers to discuss LTL preservation in Event-B refinement is
Groslambert [8]. The LTL properties were defined in terms of predicates on
system state rather than our paper’s formulation in terms of the occurrence of
events. His paper focused only on the introduction of new convergent events. It
did not include a treatment of anticipated events but this is unsurprising since
the paper was published before their inclusion in Event-B. Our results are more
general in two ways. Firstly, the results support the treatment of anticipated
events. Secondly, we allow more flexibility in the development methodology. A
condition of Groslambert’s results was that all the machines in the refinement
chain needed to be deadlock free. The two main lemmas in our paper: Lemmas 2
and 4 do not require each machine in a refinement chain to be deadlock free,
only the final machine. It is irrelevant if intermediate Mis deadlock as long as
the deadlock is eventually refined away.

Groslambert deals with new events via stuttering and leaves them as visible
events in a trace. This is why the LTL operators used by the author do not
include the next operator (X). As new events may happen this may violate the
X property to be checked. Plagge and Leuschel in [14] permit the use of the X
operator since they treat the inclusion of new events as internal events which
are not visible. Since we deal with new events as visible events we also lose the
ability to reason about a temporal property using the typical X operator. Our
reasoning is simpler than both Groslambert and Plagge and Leuschel since we
only focus on events but this means we cannot have atomic propositions in our
LTL, whereas they can.

The notion of verification of temporal properties of both classical and Event-B
systems using proof obligations has been considered in many research papers.
Abrial and Musat in an early paper, [3], introduced proof obligations to deal with
dynamic constraints in classical B. In a more recent paper [10] Hoang and Abrial
have also proposed new proof obligations for dealing with liveness properties
in Event-B. They focus on three classes of properties: existence, progress and
persistence, with a view to implementing them in Rodin. Bicarregui et al. in [5]
introduced a temporal concept into events using the guard in the when clause
and the additional labels of within and next so that the enabling conditions are
captured clearly and separately. However, these concepts are not aligned with
the standard Event-B labelling.

236 S. Schneider et al.

The interest of LTL preservation through refinement is wider than simply
Event-B. Derrick and Smith [7] discuss the preservation of LTL properties in the
context of Z refinement but the authors extend their results to other logics such
as CTL and the μ calculus. They focus on discussing the restrictions that are
needed on temporal-logic properties and retrieve relations to enable the model
checking of such properties. Their refinements are restricted to data refinement
and do not permit the introduction of new events in the refinement steps. Our
paper does permit new events to be introduced during refinement steps; the
contribution is in identifying conditions for LTL properties to hold even in the
context of such new events.

8 Conclusions and Future Work

The paper has provided foundational results that justify when temporal prop-
erties hold at the end of an Event-B refinement chain for developments which
contain anticipated, convergent and ordinary events, which goes beyond that
presented in [8]. The paper has also provided restrictions on the temporal prop-
erties in terms of being β-dependent which help to determine when a temporal
property of interest should be introduced into the development chain.

We could extend the results to deal with merging events. The inclusion of
the X LTL operator and availability will require use to look at execution paths
which include state transitions (π paths). The inclusion of availability will enable
us to address more advanced and useful notions of fairness in the context of
temporal properties. Our notion of weak fairness will be akin to that described
in Barradas and Bert in [4]. It will draw on work by Williams et al. [17]. We
could also consider the impact on temporal property preservation in refinement
chains which do not achieve convergence of all its new events by the end.

In ongoing work we are looking at event liveness via the proof obligation
for strong deadlock freedom S NDF. We have defined new labelling of events to
so that liveness proofs are on particular events. This is analagous to proving
WFD REF for events that are labelled anticipated or convergent. We have re-
cently defined the semantics of Event-B in terms of stable failures and detailed
its relationship with S NDF. We are currently combining these results with our
work in [15] in order to provide a cohesive process algebra underpinning for
Event-B.

Acknowledgments. Thanks to Thai Son Hoang and Thierry Lecomte for dis-
cussions about Event-B development strategies and the challenges of discharing
liveness proofs. Thanks to Steve Wesemeyer for discussions on the example.
Thanks to the reviewers for their constructive comments that helped to improve
the paper.

Managing LTL Properties in Event-B Refinement 237

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

2. Abrial, J.-R., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.:
Rodin: an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–
466 (2010)

3. Abrial, J.-R., Mussat, L.: Introducing dynamic constraints in B. In: Bert, D. (ed.)
B 1998. LNCS, vol. 1393, pp. 83–128. Springer, Heidelberg (1998)

4. Barradas, H., Bert, D.: Specification and proof of liveness properties under fairness
assumptions in B event systems. In: Butler, M., Petre, L., Sere, K. (eds.) IFM 2002.
LNCS, vol. 2335, pp. 360–379. Springer, Heidelberg (2002)

5. Feige, U., Arenas, A.E., Aziz, B., Massonet, P., Ponsard, C.: Towards modelling
obligations in event-B. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ
2008. LNCS, vol. 5238, pp. 181–194. Springer, Heidelberg (2008)

6. Butler, M.J.: A CSP approach to Action Systems. DPhil thesis, Oxford U. (1992)
7. Derrick, J., Smith, G.: Temporal-logic property preservation under Z refinement.

Formal Asp. Comput. 24(3), 393–416 (2012)
8. Groslambert, J.: Verification of LTL on B Event Systems. In: Julliand, J.,

Kouchnarenko, O. (eds.) B 2007. LNCS, vol. 4355, pp. 109–124. Springer, Hei-
delberg (2006)

9. Hallerstede, S., Leuschel, M., Plagge, D.: Validation of formal models by refinement
animation. Science of Computer Programming 78(3), 272–292 (2013)

10. Hoang, T.S., Abrial, J.-R.: Reasoning about liveness properties in Event-B. In: Qin,
S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 456–471. Springer, Heidelberg
(2011)

11. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

12. Leuschel, M., Falampin, J., Fritz, F., Plagge, D.: Automated property verification
for large scale B models. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS,
vol. 5850, pp. 708–723. Springer, Heidelberg (2009)

13. Morgan, C.: Of wp and CSP. Beauty is our business: a birthday salute to E. W.
Dijkstra, pp. 319–326 (1990)

14. Plagge, D., Leuschel, M.: Seven at one stroke: LTL model checking for high-level
specifications in B, Z, CSP, and more. STTT 12(1), 9–21 (2010)

15. Schneider, S., Treharne, H., Wehrheim, H.: The behavioural semantics of Event-B
refinement. Formal Asp. Comput. 26(2), 251–280 (2014)

16. Schneider, S., Treharne, H., Wehrheim, H., Williams, D.: Managing LTL properties
in Event-B refinement. arXiv:1406:6622 (June 2014)

17. Williams, D.M., de Ruiter, J., Fokkink, W.: Model checking under fairness in ProB
and its application to fair exchange protocols. In: Roychoudhury, A., D’Souza, M.
(eds.) ICTAC 2012. LNCS, vol. 7521, pp. 168–182. Springer, Heidelberg (2012)

	Managing LTL Properties in Event-B
Refinement

	1 Introduction
	2 Event-B
	2.1 Event-B Machines
	2.2 Event-B Refinement
	2.3 Event-B Development Strategies
	2.4 Event-B Semantics

	3 Example
	4 LTL Notation
	5 Preserving LTL Properties
	5.1 Preserving Vending Machine Properties

	6 Extending Preserving LTL Properties to Handle Splitting Events
	7 Discussion and Related Work
	8 Conclusions and Future Work
	References

