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Preface

Mathematical software development techniques promise to facilitate impeccable
software, which, given the reliance of society on computing devices, is undoubt-
edly a worthwhile ideal. The iFM conference series grew out of the observation
that formal methods of software development and their associated tools histori-
cally tend to focus on a single aspect of software quality, are not integrated into
the software development process, and thus their value is not widely appreciated.
For formal methods to have a wide impact, correctness of programs, modelling
of the environment, multiple representations of models, quantitative analysis,
code generation, and code efficiency (with a recent emphasis on multi-core con-
currency), security, distribution (with a recent emphasis on clouds), automation
of analysis, systematic development steps, and involvement of multiple stake-
holders in the software all need to be integrated. These proceedings document
the outcome of the 11th International Conference on Integrated Formal Meth-
ods, iFM 2014, on recent developments toward this goal. The conference was
held in Bertinoro, Italy, during September 9-11, 2014, and hosted by the Uni-
versity of Bologna. Previous editions of iFM were held in York, UK (1999),
Schloss Dagstuhl, Germany (2000), Turku, Finland (2002), Kent, UK (2004),
Eindhoven, The Netherlands (2005), Oxford, UK (2007), Düsseldorf, Germany
(2009), Nancy, France (2010), Pisa, Italy (2012), and Turku, Finland (2013).

The conference received 43 submissions of authors from 22 countries. All
full papers were reviewed by at least three members of the Program Commit-
tee. After careful deliberations, the Program Committee selected 21 papers for
presentation. In addition to these papers, this volume contains papers of two
invited speakers, Sophia Drossopoulou, Imperial College, UK and Helmut Veith,
TU Wien, Austria:

– Sophia Drossopoulou, James Noble: “How to Break the Bank: Semantics of
Capability Policies”

– Diego Calvanese, Tomer Kotek, Mantas Simkus, Helmut Veith, Florian Zuleger:
“Shape and Content: A Database-theoretic Perspective on the Analysis of
Data Structures”

Invited presentations are always the highlights of a conference; these contri-
butions are, therefore, gratefully acknowledged.

This edition of iFM was co-located with the 11th International Conference on
Formal Aspects of Component Software, FACS 2014. The programs of FACS and
iFM were overlapping, and the invited speakers were shared, fostering exchange
of ideas between the two communities. FACS and iFM were accompanied by fol-
lowing workshops, under the organization of the workshop chair, Elena Giachino,
University of Bologna:

– Harnessing Theories for Tool Support in Software (TTSS)
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– Logics and Model-checking for Self-* Systems (MOD*)
– Tools and Methods for Cyber-Physical Systems of Systems
– Workshop on Contracts for Efficient and Reliable Services
– Formal Methods: Business Impact of Application to Security-Relevant

Devices (FM-BIASED)

The conference would not have been possible without the enthusiasm and
dedication of the FACS and iFM general chair, Gianluigi Zavattaro, the Organi-
zation Committee with Gianluigi Zavattaro (chair), Saverio Giallorenzo (logis-
tics) and Jacopo Mauro (web master), and the support of the Department of
Computer Science and Engineering - DISI, University of Bologna, Italy. Addi-
tional organizational support was provided by the University Residential Center
of Bertinoto - CeUB, Bertinoro. For the work of the Program Committee and
the compilation of the proceedings, Andrei Voronkov’s EasyChair system was
employed; it freed us from many technical matters and allowed us to focus on
the program, for which we are grateful. Conferences like iFM rely on the willing-
ness of experts to serve on the Program Committee; their professionalism and
their helpfulness was exemplary. Finally, we would like to thank all the authors
for their submissions, their willingness to continue improving their papers, and
their presentations!

July 2014 Elvira Albert
Emil Sekerinski
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Shape and Content�

A Database-Theoretic Perspective
on the Analysis of Data Structures

Diego Calvanese1, Tomer Kotek2, Mantas Šimkus2,
Helmut Veith2, and Florian Zuleger2

1 Free University of Bozen-Bolzano
2 Vienna University of Technology

Abstract. The verification community has studied dynamic data struc-
tures primarily in a bottom-up way by analyzing pointers and the shapes
induced by them. Recent work in fields such as separation logic has made
significant progress in extracting shapes from program source code. Many
real world programs however manipulate complex data whose structure
and content is most naturally described by formalisms from object ori-
ented programming and databases. In this paper, we look at the verifi-
cation of programs with dynamic data structures from the perspective
of content representation. Our approach is based on description logic,
a widely used knowledge representation paradigm which gives a logical
underpinning for diverse modeling frameworks such as UML and ER.
Technically, we assume that we have separation logic shape invariants
obtained from a shape analysis tool, and requirements on the program
data in terms of description logic. We show that the two-variable frag-
ment of first order logic with counting and trees can be used as a joint
framework to embed suitable fragments of description logic and separa-
tion logic.

1 Introduction

The manipulation and storage of complex information in imperative program-
ming languages is often achieved by dynamic data structures. The verification
of programs with dynamic data structures, however, is notoriously difficult, and
is a highly active area of current research. While much progress has been made
recently in analyzing and verifying the shape of dynamic data structures, most
notably by separation logic (SL) [24,17], the content of dynamic data structures
has not received the same attention.

In contrast, disciplines as databases, modeling and knowledge representation
have developed highly-successful theories for content representation and verifi-
cation. These research communities typically model reality by classes and binary

� Kotek, Veith and Zuleger were supported by the Austrian National Research Network
S11403-N23 (RiSE) of the Austrian Science Fund (FWF) and by the Vienna Science
and Technology Fund (WWTF) through grants PROSEED and ICT12-059. Simkus
was supported by the FWF grant P25518 and the WWTF grant ICT12-15.

E. Albert and E. Sekerinski (Eds.): IFM 2014, LNCS 8739, pp. 3–17, 2014.
c© Springer International Publishing Switzerland 2014



4 D. Calvanese et al.

relationships between these classes. For example, the database community uses
entity-relationship (ER) diagrams, and UML diagrams have been studied in re-
quirements engineering. Content representation in the form of UML and ER has
become a central pillar of industrial software engineering. In complex software
projects, the source code is usually accompanied by design documents which
provide extensive documentation and models of data structure content. This
documentation is both an opportunity and a challenge for program verification.
Recent hardware verification papers have demonstrated how design diagrams
can be integrated into an industrial verification workflow [18].

In this paper, we propose the use of Description Logics (DLs) for the formu-
lation of content specifications. DLs are a well established and highly popular
family of logics for representing knowledge in artificial intelligence [3]. In particu-
lar, DLs allow to precisely model and reason about UML and ER diagrams [6,2].
DLs are mature and well understood, they have good algorithmic properties and
have efficient reasoners. DLs are very readable and form a natural base for de-
veloping specification languages. For example, they are the logical backbone of
the Web Ontology Language (OWL) for the Semantic Web [22]. DLs vary in ex-
pressivity and complexity, and are usually selected according to the expressivity
needed to formalize the given target domain.

Unfortunately, the existing content representation technology cannot be ap-
plied directly for the verification of content specifications of pointer-manipulating
programs. This is to due the strict separation between high-level content descrip-
tions such as UML/ER and the way data is actually stored. For example, query
languages such as SQL and Datalog provide a convenient abstraction layer for
formulating data queries while ignoring how the database is stored on the disk.
In contrast, programs with dynamic data structures manipulate their data struc-
tures directly. Moreover, database schemes are usually static while a program
may change the content of its data structures over time.

The main goal of this paper is to develop a verification methodology that
allows to employ DLs for formulating and verifying content specifications of
pointer-manipulating programs. We propose a two-step Hoare-style verification
methodology: First, existing shape-analysis techniques are used to derive shape
invariants. Second, the user strengthens the derived shape invariants with con-
tent annotations; the resulting verification conditions are then checked automat-
ically. Technically, we employ a very expressive DL (henceforth called L), based
on the so called ALCHOIF , which we specifically tailor to better support rea-
soning about complex pointer structures. For shape analysis we rely on the SL
fragment from [7]. In order to reason automatically about the verification con-
ditions involving DL as well as SL formulae, we identify a powerful decidable
logic CT 2 which incorporates both logics [10]. We believe that our main con-
tribution is conceptual, integrating these different formalisms for the first time.
While the current approach is semi-manual, our long term goal is to increase the
automatization of the method.



Shape and Content 5

Overview and Contributions

– In Section 2, we introduce our formalism. In particular, we formally define
memory structures for representing the heap and we study the DL L as a
formalism for expressing content properties of memory structures.

– In Section 2, we further present the building blocks for our verification
methodology: We give an embedding of L and an embedding of a fragment of
the SL from [7] into CT 2 (Lemmata 2 and 3). Moreover, we give a complexity-
preserving reduction of satisfiability of CT 2 over memory structures to finite
satisfiability of CT 2 (Lemma 1).

– In Section 3, we describe a program model for sequential imperative heap-
manipulating programs without procedures. Our main contribution is a
Hoare-style proof system for verifying content properties on top of (already
verified) shape properties stated in SL.

– Our main technical result is a precise backward-translation of content prop-
erties along loop-less code (Lemma 5). This backward-translation allows us
to reduce the inductiveness of the Hoare-annotations to satisfiability in CT 2.
Theorem 1 states the soundness and completeness of this reduction.

1.1 Running Example: Information System of a Company

Client

LargeProject

Employee

Project Manager

Department

orderedBy

1

*
works-
For

0..1

*

contact-
Person

0..1

0..1

managedBy

0..1 0..1

headedBy

0..1

1

belongsTo
* 1

Our running example will
be a simple information
system for a company
with the following UML
diagram:. The UML gives
the relationships between
entities in the informa-
tion system, but says nothing regarding the implementations of the data struc-
tures that hold the data. We focus mostly on projects, and on the employees
and managers which work on them. Here is an informal description of the pro-
grammers’ intention. The employees and projects are stored in two lists, both
using the next pointer. The heads of the two lists are pHd and eHd respectively.
Here are some properties of our information system. (i)-(iii) extends the UML
somewhat. (iv)-(vi) do not appear in the UML, but can be expressed in DL:

(i) Each employee in the list of employees has a pointer wrkFor to a project
on the list of projects, indicating the project that the employee is working
on (or to null, in case no project is assigned to that employee).

(ii) Each project in the list has a pointermngBy to the employee list, indicating
the manager of the project (or to null, if the project doesn’t have one).

(iii) Employees have a Boolean field isMngr marking them as managers, and
only they can manage projects.

(iv) The manager of a project works for the project.
(v) At least 10 employees work on each large project.
(vi) The contact person for a large-scale project is a manager.
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We will refer to these properties as the system invariants.
The programmer has written a program S (stated below) for verification. The

programmer has the following intuition about her program: The code S adds
a new project proj to the project list, and assigns to it all employees in the
employee list which are not assigned to any project.

�b : p ro j := new ;
p ro j . next :=pHd ;
pHd := pro j ;
e := eHd ;

�l : while ∼( e = null) do
i f ( e . wrkFor = null)
then e . wrkFor := proj ;
e := e . next ;

od
�e : end ;

The programmer wants to verify that the
system invariants are true after the execution
of S, if they were true in the beginning (1).
Note that during the execution of the code,
they might not be true! Additionally the pro-
grammer wants to verify that after executing
S, the project list has been extended by proj,
the employee list still contains the same em-
ployees and indeed all employees who did not
work for a project before now work for project proj (2). We will formally prove
the correctness of S following our verification methodology discussed in the in-
troduction. In Section 2.3 we describe how our DL can be used for specifying
the verification goals (1) and (2). In Section 3.4 we state verification conditions
that allow to conclude the correctness of (1) and (2) for S.

2 Logics for Invariant Specification

2.1 Memory Structures

We use ordinary first order structures to represent memory in a precise way.
A structure (or, interpretation) is a tuple M = (M, τ, ·), where (i) M is an
infinite set (the universe), (ii) τ is a set of constants and relation symbols with
an associated non-negative arity, and (iii) · is an interpretation function, which
assigns to each constant c ∈ τ an element cM ∈ M , and to each n-ary relation
symbol R ∈ τ an n-ary relation RM over M . Each relation is either unary or
binary (i.e. n ∈ {1, 2}). Given A ⊆M , a binary RM, RM and e ∈ AM, we may
use the notation RM(e) if RM is known to be a function over AM.

A Memory structure describes a snapshot of the heap and the local variables.
We assume sets τvar ⊆ τ of constants τfields ⊆ τ of binary relation symbols. We
will later employ these symbols for variables and fields in programs. A memory
structure is a structureM = (M, τ, ·) that satisfies the following conditions:

(1) τ includes the constants onull, oT, oF.
(2) τ has the unary relations Addresses, Alloc, PossibleTargets, MemPool,

and Aux.
(3) AuxM = {oMnull, oMT , oMF } and |AuxM| = 3.
(4) AddressesM ∩AuxM = ∅ and AddressesM ∪ AuxM = M .
(5) AllocM, PossibleTargetsM and MemPoolM form a partition of

AddressesM.
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(6) cM ∈M\MemPoolM for every constant c of τ .
(7) For all f ∈ τfields, f

M is a function from AddressesM to M\MemPoolM.
(8) If e ∈MemPoolM, then fM(e) ∈ {oMnull, oMF }.
(9) RM ⊆ (M\MemPoolM)n for every1 n-ary R ∈ τ \ ({MemPool} ∪ τfields).
(10) AllocM and PossibleTargetsM are finite. MemPoolM is infinite.

We explain the intuition behind memory structures. Variables in programs
will either have a Boolean value or be pointers. Thus, to represent null and the
Boolean values T and F, we employ the auxiliary relation AuxM storing 3 ele-
ments corresponding to the 3 values. AddressesM represents the memory cells.
The relation AllocM is the set of allocated cells, PossibleTargetsM contains all
cells which are not allocated, but are pointed to by allocated cells (for technical
reasons it possibly contains some other unallocated cells). MemPoolM contains
the cells which are not allocated, do not have any field values other than null and
F, are not pointed to by any field, do not participate in any other relation and
do not interpret any constant (see (6-9)). The memory cells in MemPool are
the candidates for allocation during the run of a program. Since the allocated
memory should by finite at any point of the execution of a program, we require
that AllocM and PossibleTargetsM are finite (see (10)), while the available
memory AddressesM and the memory pool MemPoolM are infinite. Finally,
each cell is seen as a record with the fields of τfields.

2.2 The Description Logic L
L is defined w.r.t. a vocabulary τ consisting of relation and constant symbols.2

Definition 1 (Syntax of L). The sets of roles and concepts of L is defined
inductively: (1) every unary relation symbol is a concept ( atomic concept); (2)
every constant symbol is a concept; (3) every binary relation symbol is a role
( atomic role); (4) if r, s are roles, then r ∪ s, r ∩ s, r\s and r− are roles; (5) if
C,D are concepts, then so are C �D, C �D, and ¬C; (6) if r is a role and C
is a concept, then ∃r.C is also a concept; (7) if C,D are concepts, then C ×D
is a role (product role).

The set of formulae of L is the closure under ∧,∨,¬,→ of the atomic formulae:
C  D ( concept inclusion), where C,D are concepts; r  s ( role inclusion),
where r, s are roles; and func(r) ( functionality assertion), where r is a role.

Definition 2 (Semantics of L). The semantics is given in terms of structures
M = (M, τ, ·). The extension of ·M from the atomic relations and constants in
M and the satisfaction relation |= are given below. If M |= ϕ, then M is a
model of ϕ. We write ψ |= ϕ if every model of ψ is also a model of ϕ.

1 Here n ∈ {1, 2}.
2 In DL terms, L corresponds to Boolean ALCHOIF knowledge bases with the ad-
ditional support for role intersection, role union, role difference and product roles.
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(C �D)M = CM ∩DM (r � s)M = rM ∩ sM

(C �D)M = CM ∪DM (r � s)M = rM ∪ sM

(¬C)M = M \CM (r \ s)M = rM \ sM
(C ×D)M = CM ×DM (r−)M = {(e, e′) | (e′, e) ∈ rM)}
(∃r.C)M = {e | ∃e′ : (e, e′) ∈ rM}
M |= C  D if CM ⊆ DM M |= r  s if rM ⊆ sM

M |= func(r) if{(e, e1), (e, e2)} ⊆ rM implies e1 = e2

The closure of |= under ∧ ∨,¬,→ is defined in the natural way. We abbreviate:
� = C�¬C, where C is an arbitrary atomic concept and ⊥ = ¬�; α ≡ β for the
formula α  β ∧ β  α; and ∃r for the concept ∃r.�; (o, o′) for the role o × o′.
Note that �M = M and ⊥M = ∅ for any structureM = (M, τ, ·).

2.3 Running Example: Content Invariants in L
Now we make the example from Section 1.1 more precise. The concepts ELst and
PLst are interpreted as the sets of elements in the employee list resp. the project
list. mngBy, isMngr and wrkFor are roles. oeHd and opHd are the constants
which correspond to the heads of the two lists. The invariants of the systems are:
The emploee and project lists are allocated: PLst � ELst  Alloc
Projects and employees are distinct: PLst � ELst  ⊥
wrkFor is set to null for projects: PLst  ∃wrkFor.onull
mngBy is set to null for employees: ELst  ∃mngBy.onull
wrkFor of employees in the list point
to projects in the list or to null: ∃wrkFor− .ELst  PLst � onull
isMngr is a Boolean field: ∃isMngr−.ELst  Boolean

mngBy of projects point ∃mngBy−.PLst 
to managers or null: (ELst � ∃isMngr.oT) � onull
The manager of a project
must work for the project: mngBy ∩ (�× ELst)  wrkFor−

Let the conjunction of the invariants be given by ϕinvariants.
Consider S from Section 1. The states of the heap before and after the execu-

tion of S can be related by the following L formulae. ϕlists−updt and ϕp−assgn.
ϕlists−updt states that the employee list at the end of the program (ELst) is
equal to the employee list at the beginning of the program (ELstgho), and that
the project list at the end of the program (PLst) is the same as the project list
at the beginning of the program (PLstgho), except that PLst also contains the
new project oproj. ELstgho and wrkForgho are ghost relation symbols, whose
interpretations hold the corresponding values at the beginning of S.

ϕlists−updt = ELstgho ≡ ELst ∧ PLstgho � oproj ≡ PLst

ϕp−assgn = ELstgho � ∃wrkForgho.onull ≡ ELst � ∃wrkFor.oproj

Ghost Symbols. As discussed in Section 2.3, in order to allow invariants
of the form ϕlists−updt = ELstgho ≡ ELst ∧ PLstgho � oproj ≡ PLst we need
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ghost symbols. We assume τ contains, for every symbol e.g. s ∈ τ , the
symbol sgho. Therefore, memory structures actually contain two snapshots of
the memory: one is the current snapshot, on which the program operates, and
the other is a ghost snapshot, which is a snapshot of the memory at the beginning
of the program, and which the program does not change or interact with. We
denote the two underlying memory structures ofM byMcur andMgho. Since
the interpretations of ghost symbols should not change throughout the run of a
program, they will sometime require special treatment.

2.4 The Separation Logic Fragment SLls

The SL that we use is denoted SLls, and is the logic from [7] with lists and
multiple pointer fields, but without trees. It can express that the heap is par-
titioned into lists and individual cells. For example, to express that the heap
contains only the two lists ELst and PLst we can write the SLls formula
ls(pHd, null) ∗ ls(eHd, null).

We denote by vari ∈ V ar and fi ∈ Fields the sets of variables respectively
fields to be used in SLls-formulae. vari are constant symbols. fi are binary
relation symbols always interpreted as functions. An SLls-formula Π � Σ is the
conjunction of a pure partΠ and a spatial part Σ.Π is a conjunction of equalities
and inequalities of variables and onull. Σ is a spatial conjunction Σ = β1 ∗· · ·∗βr

of formulae of the form ls(E1, E2) and var �→ [f1 : E1, . . . , fk : Ek], where each
Ei is a variable or onull. Additionally, Σ can be emp and Π can be T. When
Π = T we write Π � Σ simply as Σ.

The memory model of [7] is very similar to ours. We give the semantics of SLls

in memory structures directly due to space constraints. See the full paper [19] for
a discussion of the standard semantics of SLls. Π is interpreted in the natural
way. Σ indicates that AllocM is the disjoint union of r parts PM

1 , . . . , PM
r . If βi

is of the form var �→ [f1 : E1, . . . , fk : Ek] then |PM
i | = 1 and, denoting v ∈ PM

i ,
fM
j (v) = EM

j . If βi is of the form ls(E1, E2)], then |PM
i | is a list from EM

1 to

EM
2 . EM

2 might not belong to PM
i . If Σ = emp then AllocM = ∅.

2.5 The Two-Variable Fragment with Counting and Trees CT 2

C2 is the subset of first-order logic whose formulae contain at most two vari-
ables, extended with counting quantifiers ∃≤k, ∃≥k and ∃=k for all k ∈ N. W.
Charatonik and P. Witkowski [10] recently studied an extension of C2 which
trees which, as we will see, contains both our DL and our SL. CT 2 is the subset
of second-order logic of the form ∃F1 ϕ(F1) ∧ ϕforest(F1) where ϕ ∈ C2 and
ϕforest(F1) says that F1 is a forest. Note that CT 2 is not closed under nega-
tion, conjunction or disjunction. However, CT 2 is closed under conjunction or
disjunction with C2-formulae.

A CT 2-formula ϕ is satisfiable in a memory structure if there is a memory
structureM such thatM |= ϕ. We write ψ |=m ϕ ifM |= ψ impliesM |= ϕ for
every memory structure M. Lemma 1 states the crucial property of CT 2 that
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we use. It follows from [10], by reducing the memory structures to closely related
finite structures.3 (see full version [19]).

Lemma 1. Satisfiability of CT 2 by memory structures is in NEXPTIME.

2.6 Embedding L and SLls in CT 2

L has a fairly standard reduction (see e.g. [8]) to C2:

Lemma 2. For every vocabulary, there exists tr : L(τ) → C2(τ) such that for
every ϕ ∈ L(τ), ϕ and tr(ϕ) agree on the truth value of all τ-structures.

E.g., tr(C1  C2) = ∀xC1(x) → C2(x). The details of tr are given in the full
version [19].

The translation of SLls requires more work. Later we need the following re-
lated translations: α : SLls→ L extracts from the SLls properties whatever can
be expressed in L. β : SLls→ CT 2 captures SLls precisely.

Given a structureM, LM is a singly linked list from oMvar1 to oMvar2 w.r.t. the
field nextM if M satisfies the following five conditions, or it is empty. Except
for (5), the conditions are expressed fully in L below:
(1) oMvar1 belongs to LM; (2) oMvar2 is pointed to by an LM element; (3) oMvar2 does
not belong to LM; (4) Every LM element is pointed to from an LM element,
except possibly for oMvar1 ; (5) all elements of LM are reachable from oMvar1 via
nextM. Let

α1(ls) = (ovar1  L) α3(ls) = (ovar2  ¬L)
α2(ls) = (ovar2  ∃next−.L) α4(ls) = (L  ovar1 � ∃next−.L)
αemp−ls(ls) = (L  ⊥) ∧ (ovar1 = ovar2)
α(ls) = α1(ls) ∧ · · · ∧ α4(ls) ∨ αemp−ls(ls)

In memory structuresM satisfying α(ls), if LM is not empty, then it contains
a list segment from oMvar1 to oMvar2 , but additionally LM may contain additional
simple nextM-cycles, which are disjoint from the list segment. Here we use the
finiteness of AllocM (which contains LM) and the functionality of nextM. A
connectivity condition is all that is lacking to express ls precisely. α(ls) can be
extended to α : SLls→ L in a natural way (see the full version [19]) such that:

Lemma 3. For every ϕ ∈ SLls, ϕ implies α(ϕ) over memory structures.

To rule out the superfluous cycles we turn to CT 2. Let β5(ls) = ∀x∀y
[
(L(x)∧

L(y)) → (F1(x, y) ↔ next(x, y))
]
∧ ∀x

[(
L(x) ∧ ∀y (L(y) → ¬F1(y, x))

)
→ (x ≈

ovar1)
]
. β5(ls) states that the forest F1 coincides with next inside L and that the

forest induced by F1 on L is a tree. Let β(ls) = ∃F1 tr(α(ls))∧β5(ls)∧ϕforest(F1).
β(ls) ∈ CT 2 and it expresses that LM is a list. The extension of β(ls) to the
translation function β : SLls→ CT 2 is natural and discussed in the full version
[19]. The full version [19] also discusses the translation of cyclic data structures
under β.

3 In fact [10] allows existential quantification over two forests, but will only need one.
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Lemma 4. For every ϕ ∈ SLls: ϕ and β(ϕ) agree on all memory structures.

CT 2’s flexibility allows to easily express variations of singly-linked lists, such
as doubly-linked lists, or lists in which every element points to a special head
element via a pointer head, and analogue variants of trees.

2.7 Running Example: Shape Invariants

At the loop header of the program S from the introduction, the memory con-
tains two distinct lists, namely PLst and ELst. ELst is partitioned into two
parts: the employees who have been visited in the loop so far, and those that
have not. This can be expressed in SLls by the formula: ϕ�l = T � ls(eHd, e) ∗
ls(e, nil)∗ ls(pHd, nil). The translation α(ϕ�l) is given by P1�P2�P3 ≡ Alloc ∧
α(ls(eHd, e, next, P1))∧α(ls(e, null, next, P2))∧α(ls(pHd, null, next, P3))∧P1 �
P2 ≡ ⊥ ∧ P1 � P3 ≡ ⊥ ∧ P2 � P3 ≡ ⊥ ∧ αT The translation from SL assigns
concepts Pi to each of the lists. αT which occurs in α(ϕ�l ) is the translation
of Π = T in ϕ�l . In order to clarify the meaning of α(ϕ�l) we relate the Pi

to the concept names from Section 2.3 and simplify the formula somewhat. Let
ψl = P1 � P2 ≡ ELst ∧ P3 ≡ PLst. P1 contains the elements of ELst vis-
ited in the loop so far. α(ϕ�l) is equivalent to: α′(ϕ�l) = ψl ∧ ELst � PLst ≡
Alloc ∧ ELst � PLst ≡ ⊥ ∧ α(ls(eHd, e, next, P1)) ∧ α(ls(e, null, next, ELst �
¬P1))∧α(ls(pHd, null, next, PLst)). We have β5(Σ) = β5(ls(eHd, e, next, P1))∧
β5(ls(e, null, next, ELst � ¬P1)) ∧ β5(ls(pHd, null, next, PLst)) and β(ϕ�l) =
∃F1 tr(α(ϕ) ∧ β5(Σ) ∧ ϕforest(F1).

3 Content Analysis

3.1 Syntax and Semantics of the Programming Language

Loopless Programs are generated by the following syntax:

e :: var.f | var | null (f ∈ τfields, ovar ∈ τvar)
b :: (e1 = e2) | ∼ b | (b1 and b2) | (b1 or b2) | T | F
S :: var1 := e2 | var1.f := e2 | skip | S1;S2 | var := new | dispose(var) |

if b then S1 fi | if b then S1 else S2 fi | assume(b)

Let Exp denote the set of expressions e and Bool denote the set of Boolean
expressions b. To define the semantics of pointer and Boolean expressions, we
extend fM by fM(err) = err for every f ∈ τfields. We define Ee(M) : Exp →
AddressesM ∪ {null, err} and Bb(M) : Bool → {oT, oF, err} (with err �∈M):

Evar(M) = oMvar, if oMvar ∈ AllocM Be1=e2(M) = err if Eei(M) = err, i ∈ {1, 2}
Evar(M) = err, if oMvar �∈ AllocM Be1=e2(M) = oT, if Ee1(M) = Ee2(M)
Ear.f(M) = fM(Evar(M)) Be1=e2(M) = oF, if Ee1(M) �= Ee2(M)

B extends naturally w.r.t. the Boolean connectives.
The operational semantics of the programming language is: For any command

S, if E or B give the value err, then 〈S,M〉 � abort. Otherwise, the semantics
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is as listed below. First we assume that in the memory structures involved all
relation symbols either belong to τfields, are ghost symbols or are the required
symbols of memory structures (Alloc, Aux, etc.).

1. 〈skip,M〉�M.
2. 〈var1 := e2,M〉� [M | oMvar1 is set to Ee2(M)].
3. 〈var := new,M〉� [M | For some t ∈MemPoolM,

t is moved to AllocM and oMvar is set to t],
4. If oMvar �∈ AllocM, 〈dispose(var),M〉� abort;

otherwise 〈dispose(var),M〉� [M | oMvar is removed from AllocM].
5. 〈S1;S2,M〉� 〈S2, 〈S1,M〉〉
6. 〈if b then ST else SF,M〉� 〈Stv,M〉 where tv = Bb(M).
7. 〈if b then S ,M〉� 〈if b then S else skip fi,M〉.
8. If Bb(M) = T, then 〈assume(b),M〉�M;

otherwise 〈assume(b),M〉� abort.

IfM is a memory structure and 〈S,M〉�M′, thenM′ is a memory structure.
Now consider a relation symbol e.g. ELst. If 〈S,M〉�M′, then we want to

think of ELstM and ELstM
′
as the employee list before and after the execu-

tion of S. However, the constraints that ELstM and ELstM
′
are lists and that

ELstM
′
is indeed obtained from from ELstM by running S will be expressed

as formulae. In the � relation, we allow any values for ELstM and ELstM
′
.

For any tuple R̄ of relation symbols which do not belong to τfields, are not
ghost symbols and are not the required symbols of memory structures (Alloc,
Aux, etc.), we extend � as follows: if 〈S,M〉 � M′, then

〈
S,
〈
M, R̄M〉〉 �〈

M′, R̄M′
〉
, for any tuples R̄M and R̄M′

.

Programs with Loops are represented as hybrids of the programming lan-
guage for loopless code and control flow graphs.

Definition 3 (Program). A program is G = 〈V,E, 	init, shp, cnt, λ〉 such that
G = (V,E) is a directed graph with no multiple edge but possibly containing self-
loops, 	init ∈ V has in-degree 0, shp : V → SLls, cnt : V → L(τ) are functions,
and λ is a function from E to the set of loopless programs.

Here is the code S from the introduction: �b

� S�

�e

Sb

Se

V = {	b, 	l, 	e} E = {(	b, 	l), (	l, 	l), (	l, 	e)}
λ(	b, 	l) = Sb 	init = 	b
λ(	l, 	l) = assume(∼ (e = null));S�l

λ(	l, 	e) = assume(e = null);Se

Sb, S�l and Se denote the three loopless code blocks which are respec-
tively the code block before the loop, inside the loop and after the loop. The
annotations shp and cnt are described in Section 3.4.

The semantics of programs derive from the semantics of loopless programs
and is given in terms of program paths. Given a program G, a path in G is a
finite sequence of directed edges e1, . . . , et such that for all 1 ≤ i ≤ t− 1, the tail
of ei is the head of ei+1. A path may contain cycles.
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Definition 4 (�∗ for paths). Given a program G, a path P in G, and memory
structures M1 and M2 we define whether 〈P,M1〉 �∗ M2 holds inductively.
If P is empty, then 〈P,M1〉 �∗ M2 iff M1 = M2. If et is the last edge of
P , then 〈P,M1〉 �∗ M2 iff there is M3 such that 〈P\{et},M1〉 �∗ M3 and
〈λ(et),M1〉�∗M3. P\{et} denotes the path obtained from P by removing the
last edge et.

3.2 Hoare-Style Proof System

Now we are ready to state our two-step verification methodology that we for-
mulated in Section 1 precisely. Our methodology assumes a program P as in
Definition 3 as input (ignoring the shp and cnt functions for the moment).

I. Shape Analysis. The user annotates the program locations with SL formulae
from SLls (stored in the shp function of P ). Then the user proves the validity
of the SLls annotations, for example, by using techniques from [7].

II. Content Analysis. The user annotates the program locations with L-
formulae that she wants to verify (stored in the cnt function of P ). We point
out that an annotation cnt(	) can use the concepts occurring in α(shp(	)) (recall
that α : SLls→ L maps SL formulae to L-formulae).

In the rest of the paper we discuss how to verify the cnt annotations. In Sec-
tion 3.3 we describe how to derive a verification condition for every program edge.
The verification conditions rely on the backwards propagation function Θ for L-
formulae which we introduce in Section 3.5. The key point of our methodology is
that the validity of the verification conditions can be discharged automatically
by a satisfiability solver for CT 2-formulae. We show that all the verification con-
ditions are valid if and only if cnt is inductive. Intuitively, cnt being inductive
ensures that the annotations cnt can be used in an inductive proof to show that
all reachable memory structures indeed satisfy the annotations cnt(	) at every
program location 	 (see Definition 6 below).

3.3 Content Verification

We want to prove that, for every initial memory structure M1 from which the
computation satisfies shp and which satisfies the content pre-condition cnt(	init),
the computation satisfies cnt. Here are the corresponding verification conditions,
which annotate the vertices of G:

Definition 5 (Verification conditions). Given a program G, V C is the func-
tion from E to L given for e = (	0, 	) by V C(e) = ¬

[
β(shp(	0)) ∧ tr(cnt(	0)) ∧

tr
(
Θλ(e)

(
α(shp(	)) ∧ ¬cnt(	)

)) ]
V C(e) holds if V C(e) is a tautology over mem-

ory structures (� |=m V C(e)).

Θ is discussed in Section 3.5. As we will see, V C(	0, 	) expresses that when
running the loopless program λ(e) when the memory satisfies the the annotations
of 	0, and when the shape annotation of 	 is at least partly true (i.e., when
α(shp(	))), the content annotation of 	 holds.

Let J be a set of memory structures. For a formula in CT 2 or L, we write
J |= ϕ if, for everyM ∈ J ,M |= ϕ. Let Init be a set of memory structures.
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Definition 6 (Inductive program annotation). Let f : V → CT 2. We
say f is inductive for Init if (i) Init |= f(	init), and (ii) for every edge e =
(	1, 	2) ∈ E and memory structures M1 and M2 such that M1 |= f(	1) and
〈λ(e),M1〉�M2, we haveM2 |= f(	2). We say shp is inductive for Init if the
composition shp◦β : V → CT 2 is inductive for Init. We say cnt is inductive for
Init relative to shp if shp is inductive for Init and g : V → CT 2 is inductive
for Init, where g(	) = tr(cnt(	)) ∧ β(shp(	)).

Theorem 1 (Soundness and Completeness of the Verification Condi-
tions). Let G be a program such that shp is inductive for Init and Init |=
cnt(	init). The following statements are equivalent:
(i) For all e ∈ E, V C(e) holds. (ii) cnt is inductive for Init relative to shp.

Definition 7 (Reach(	)). Given a program G, a node 	 ∈ V , and a set Init of
memory structures, Reach(	) is the set of memory structuresM for which there
isMinit ∈ Init and a path P in G starting at 	init such that 〈P,Minit〉�∗M.

In particular, Reach(	init) = Init. The proof of Theorem 1 and its consequence
Theorem 2 below are given in the full version [19].

Theorem 2 (Soundness of the Verification Methodology). Let G be a
program such that shp is inductive for Init and Init |= cnt(	init). If for all
e ∈ E, V C(e) holds, then for 	 ∈ V , Reach(	) |= cnt(	).

3.4 Running Example: General Methodology

To verify the correctness of the code S, the shp and cnt annotations must be
provided. The shape annotations of program S are: shp(	b) = ls(eHd, null) ∗
ls(pHd, null), shp(	e) = (proj = pHd) �ls(eHd, null)∗ls(pHd, null), and shp(	l) =
ϕ�l , where ϕ�l is from Section 2.7.

The three content annotations require that the system invariants ϕinvariants

from Section 2.3 hold. The post-condition additionally requires that ϕp−assgn

and ϕlists−updts hold. Recall ϕp−assgn states that every employee which was not
assigned a project, is assigned to oproj . ϕlists−updts states that the content of the
two lists remain unchanged, except that the project oproj is inserted to PLst.

In order to interact with the translations α(shp(· · ·)) of the shape annota-
tions, we need to related the Pi to the concepts ELst and PLst. In Section 2.7
we defined ψl, which relates the Pi generated by α on shp(	l). We have ψ�b =
ψ�e = P1 ≡ ELst∧P2 ≡ PLst. Then cnt(	b) = ψ�b ∧ϕinvariants, cnt(	l) = ψ�l ∧
ϕinvariants∧ϕlists−updt∧ϕp−as−�l , and cnt(	e) = ψ�e ∧ϕinvariants∧ϕlists−updt∧
ϕp−assgn, where ϕp−as−�l = P1 � ∃wrkForgho.onull ≡ P1 � ∃wrkFor.oproj .
ϕp−as−�l states that, in the part of ELst containing the employees visited so
far in the loop, any employee which was not assigned to a project at the start
of the program (i.e., in the ghost version of wrkFor) is assigned to the project
proj. ϕp−as−�l makes no demands on elements ofELst which have not been reach
in the loop so far. The verification conditions of G are, for each (	1, 	2) ∈ E,
V C(	1, 	2) = ¬

[
β(shp(	1)) ∧ tr(cnt(	1)) ∧ tr

(
Θλ(l1,l2)(α(shp(	2)) ∧ ¬cnt(	2))

)]
.
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The verification conditions V C(e) express that the loopless programs on the
edges e of G satisfy their annotations. To prove the correctness of G w.r.t.
V C(e) using Theorem 2, we prove that V C(e), e ∈ E, hold, in order to get as a
conclusion that Reach(	) |= cnt(	), for all 	 ∈ V .

3.5 Backwards Propagation and the Running Example

Here we shortly discuss the backwards propagation of a formula along a loopless
program S. Let 〈S,M1〉�M2 whereM1 andM2 are memory structures over
the same vocabulary τ . E.g., in our running example, for i = 1, 2, Mi is

〈
M,

ELstMi , nextMi ,mngByMi , · · · , ELstMi

gho, next
Mi

gho, · · · , AllocMi, AuxMi · · ·
〉
.

We will show how to translate a formula for M2 to a formula for an extended
M1. Fields and variables in M2 will be translated by the backwards prop-
agation into expressions involving elements of M1. For ghost symbols sgho,

sM1

gho will be used instead of sM2

gho since they do not change during the run
of the program. Let τrem ⊆ τ be the set of the remaining symbols, i.e. the
symbols of τ \ ({PossibleTargets,MemPool} ∪ τfields) which are not ghost
symbols, for example ELst, but not ELstgho, next or mngBy. We need the
result of the backwards propagation to refer to the interpretations of symbols
in τrem from M2 rather than M1. Therefore, these interpretations are copied
as they are from M2 and added to M1 as follows. For every R ∈ τrem, we
add a symbol Rext for the copied relation. We denote by (R̄ext)M1 the tuple(
(Rext)M1 : (Rext)M1 = RM2 and R ∈ τrem

)
Let τext extend τ with Rext for

each R ∈ τrem. The backwards propagation updates the fields and variables
according to the loopless code. Afterwards, we substitute the symbols R ∈ τrem

in ϕ with the corresponding Rext. We present here a somewhat simplified
version of the backwards propagation lemma. The precise version is similar in
spirit and is in the full version [19]

Lemma 5 (Simplified). Let S be a loopless program, let M1 and M2 be
memory structures, and ϕ be an L-formula over τ . (1) If 〈S,M1〉 � M2,
then: M2 |= ϕ iff

〈
M1, (R̄

ext)M1
〉
|= ΘS(ϕ). (2) If 〈S,M1〉 � abort, then〈

M1, (R̄
ext)M1 ,

〉
�|= ΘS(ϕ).

As an example of the backwards propagation process, we consider a
formula from Section 3.4, which is part of the content annotation of 	l
and perform the backwards propagation on the loopless program inside
the loop: ϕp−as−�l = P1 � ∃wrkForgho.onull ≡ P1 � ∃wrkFor.oproj Since
next does not occur in ϕp−as−�l , backwards propagation of ϕp−as−�l

over e := e.next does not change the formula (however α(shp(	l)) by
this command). The backwards propagation of the if command gives
ΨS�l

(ϕp−as−�l) =
(
¬(∃wrkFor− .oe ≡ onull) ∧ ϕp−as−�l

)
∨ ∃wrkFor− .oe ≡

onull ∧ Ψe.wrkFor:=proj(ϕp−as−�l)
)

and Ψe.wrkFor:=proj(ϕp−as−�l)
= P1 � ∃wrkForgho.onull ≡ P1 � ∃((wrkFor\(oe ×�)) ∪ (oe, oproj)).oproj .
Ψe.wrkFor:=proj(ϕp−as−�l) is obtained from ϕp−as−�l by substituting the
wrkFor role with the correction ((wrkFor\(oe × �)) ∪ (oe, oproj)) which
updates the value of oe in wrkFor to proj. ΦS�l

(ϕp−as−�l) is obtained from
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ΨS�l
(ϕp−as−�l) by subtituting P1 with P1

ext. Θ is differs from Φ from technical
reasons related to aborting computations (see the full version [19]).

4 Related Work

Shape Analysis attracted considerable attention in the literature. The classical
introductory paper to SL [24] presents an expressive SL which turned out to be
undecidable. We have restricted our attention to the better behaved fragment in
[7]. The work on SL focuses mostly on shape rather than content in our sense.
SL has been extended to object oriented languages, cf. e.g. [23,11], where shape
properties similar to those studied in the non objected oriented case are the
focus, and the main goal is to overcome difficulties introduced by the additional
features of OO languages. Other shape analyses could be potential candidates
for integration in our methodology. [25] use 3-valued logic to perform shape
analysis. Regional logic is used to check correctness of program with shared
dynamica memory areas [5]. [16] uses nested tree automata to represent the
heap. [21] combines monadic second order logic with SMT solvers.

Description Logics have not been considerd for verification of programs
with dynamically allocated memory, with the exception of [13] whose use (mostly
undecidable) DLs to express shape-type invariants, ignoring content information.
In [9] the authors consider verification of loopless code (transactions) in graph
databases with integrity constraints expressed in DLs. Verification of tempo-
ral properties of dynamic systems in the presence of DL knowledge bases has
received significant attention (see [4,14] and their references). Temporal Descrip-
tion Logics, which combine classic DLs with classic temporal logics, have also
received significant attention in the last decade (see [20] for a survey).

Related Ideas. Some recent papers have studied verification strategies which
use information beyond the semantics of the source code. E.g., [18] is using
diagrams from design documentation to support verification. [12,1] infer the in-
tended use of program variables to guide a program analysis. Instead of starting
from code and verifying its correctness, [15] explores how to declaratively spec-
ify data structures with sharing and how to automatically generate code from
this specification. Given the importance of both DL as a formalism of content
representation and of program verification, and given that both are widely stud-
ied, we were surprised to find little related work. However, we believe this stems
from large differences between the research in the two communities, and from
the interdisciplinary nature of the work involved.
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Abstract. The object capability model is a de-facto industry standard widely
adopted for the implementation of secure software. We call capability policies
the policies enforced by programs using object capabilities. Such policies tend
to restrict the objects and the circumstances which may access services. In this
paper we argue that capability policies should be made explicit and written sepa-
rately from the code implementing them. We also argue that the specification of
capability policies requires concepts that go beyond the features of current spec-
ification languages. Moreover, we argue that we need methodologies with which
to prove that programs adhere to their capability policies as specified.

To give precise semantics to capability policy specifications, we propose ex-
ecution observations, which talk about various properties of a program’s execu-
tion. We use execution observations to write the formal specification of five out
of the six informal policies in the mint example, famous in the object capability
literature. In these specifications, the conclusions but also the premises may relate
to the state before as well as after execution, the code may be existentially or uni-
versally quantified, and interpretation quantifies over all modules extending the
current module. In statically typed languages, adherence of code to the capability
policies relies heavily on the guarantees provided by type system features such as
final and private.

1 Introduction

Capabilities — unforgeable authentication tokens — have been used to provide secu-
rity and task separation on multi-user machines since the 60s [5], e.g. PDP-1, operat-
ing systems e.g. CAL-TSS [13], and the CAP computer and operating system [38]. In
capability-based security, resources can only be accessed via capabilities: possessing a
capability gives the right to access the resource represented by that capability.

Object capabilities [22] apply capabilities to object-oriented programming. In an ob-
ject capability system, an object is a capability for the services the object provides: any
part of a program that has a reference to an object can always use all the services of that
object. To restrict authority over an object, programmers must create an intermediate
proxy object which offers only restricted services, delegating them back to the original
object.

Object capabilities afford simpler and more fine-grained protection than privilege
levels (as in Unix), static types, ad-hoc dynamic security managers (as in Java or JSand
[1]), or state-machine-based event monitoring [2]. Object capabilities have been adopted
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in several programming languages [24,19,36] and are increasingly used for the provi-
sion of security in web programming in industry [25,37,32].

Thus, object capabilities are employed to enforce policies which restrict access to
services: which objects, and under what conditions, may activate these services. We call
such policies, which regulate access to services, capability policies. Capability policies
are program centred, fine grained, open in the sense that they specify aspects of the be-
haviour of all possible extensions of a program, and have necessary as well as sufficient
parts; the latter require that certain effects may only take place if the originating code
or the runtime context satisfy some conditions, [7].

The key problem with object capability programming as practiced today is that — be-
cause capabilities are just objects — code manipulating capabilities is tangled together
with code supporting the functional behaviour of the program. The actual capability
policies enforced by a program are implicit and scattered throughout the program’s
code, and the functionality concerns are tangled with those of the capability policy.

We argue that capability policies should be specified separately from the program
implementing them. We also argue that the specification of capability policies requires
features that go beyond what is available in current specification languages.

We propose that capability policies can be specified through execution observations,
which are, essentially observations relating to program execution, accessibility, reach-
ability and tracing. For example, execution observations can say things like ”execution
of a given code snippet in a given runtime context will access a certain field”, or “it is
possible to reach certain code through execution of some initial code”.

We follow the Mint example [24] to illustrate our ideas; using execution observations
we give precise meaning to five out of the six policies proposed informally in that paper.
In these policies, the conclusions but also the premises may relate to the state before
as well as after execution, the code may be existentially or universally quantified, and
interpretation quantifies over all modules extending the current module. In the process
of developing the mint specifications, we were surprised by the many different, and
plausible interpretations we found for the policies.

The paper is organised as follows: Section 2 presents the Mint [19] as an example
of object capability programming, implemented in Joe-E/Java. Based on that example,
Section 3 distills the characteristics of capability policies. Section 4 then outlines exe-
cutions observations, while section 5 uses them to express those policies, and discusses
alternative interpretations. Section 6 discusses alternative meanings of these policies.
Section 7 surveys related work, and Section 8 concludes.

2 The Mint: An Object Capability Example

We use as running example a system for electronic money proposed in [24]. This ex-
ample allows for mints with electronic money, purses held within mints, and transfers
of funds between purses. The currency of a mint is the sum of the balances of all purses
created by that mint. The standard presentation of the mint example defines six capa-
bility policies, which we repeat here, as they were described in [24]:

Pol 1. With two purses of the same mint, one can transfer money between them.
Pol 2. Only someone with the mint of a given currency can violate conservation of that

currency.
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1 // module MMint

2 public final class Mint { }
3

4

5 // module MPurse

6 public final class Purse {
7 private final Mint mint;
8 private long balance;
9 // INV: balance ≥ 0

10

11

12 // PRE: balance ≥ 0
13 // POST: result.mint=mint ∧ result.balance = 0
14 public Purse(Mint mint, long balance) {
15 if (balance<0){ throw new IllegalArgtException(); };
16 this.mint = mint;
17 this.balance = balance;
18 }
19

20 // PRE: true
21 // POST: result.mint=prs.mint ∧ result.balance = 0
22 public Purse(Purse prs ) {
23 this.mint = prs.mint;
24 this.balance = 0;
25 }
26

27 // PRE: this.mint=prs.mint ∧ amt≤prs.balance ∧
28 // amt+this.balance≥0
29 // POST: this.balance=this.balancepre+amnt ∧
30 // prs.balance=prs.balancepre- amnt
31 public void deposit(Purse prs, long amnt) {
32 if ( mint!=prs.mint
33 || amnt>prs.balance || amnt+balance<0 )
34 { throw new IllegalArgtException(); };
35 prs.balance -= amnt;
36 balance += amnt; }
37 }
38 }

Fig. 1. The Mint example, code taken from [19], specifications added by us



How to Break the Bank: Semantics of Capability Policies 21

Pol 3. The mint can only inflate its own currency.
Pol 4. No one can affect the balance of a purse they don’t have.
Pol 5. Balances are always non-negative integers.
Pol 6. A reported successful deposit can be trusted as much as one trusts the purse one

is depositing into.

An immediate consequence of these policies is that the mint capability gives
its holder the ability to subvert the currency system by “printing money”, and that
“printing money” is only possible, if one holds the mint. This means that while
purse capabilities may safely be passed around the system, the mint capability
must be carefully protected. This also means that protecting the mint suffices in
order to protect the currency.

Several different implementations have been proposed for the mint. Fig.1 contains
an implementation in Joe-E [19], a capability-oriented subset of Java, which restricts
static variables and reflection.

In Fig.1, the policies are adhered to through the interplay of appropriate actions in the
method bodies (e.g. the check in line 15), with the use of Java’s restrictive language fea-
tures (private members are visible to the same class only; final fields cannot be changed
after initialisation; and final classes cannot be extended). The code concerned with the
functional behaviour is tangled with the code implementing the policy (e.g. in deposit,
lines 35-36 are concerned with the functionality, while lines 32-34 are concerned with
Pol 2). The implementation of one policy is scattered throughout the code, and may use
explicit runtime tests, as well as restrictive elements (e.g. Pol 2 is implemented through
a checks in line 32, the private and final annotations, and the initialisation in line 24).
Note that an apparently innocuous change to this code — such as a public getMint ac-
cessor that returned a purse’s mint — would be enough to leak the mint to untrusted
code, destroying the security of the whole system, and thus break the bank!

An alternative implementation of the mint example appears in figure 2. Here, the
Purse objects are used as indices into a map, which is held and administered by the
Mint objects. A similar scattering and tangling of the policies and the functionality may
be observed in this implementation. Policy Pol 2 is implemented through the runtime
tests in lines 17 and 19, though the transfer of moneys in lines 21 and 22, and through
the use of the private modifier on the database field.

Comparison with Hoare-logic style specification. In the code from Fig. 1, we have
given an specification in terms of PRE- and POST-conditions, in a style like that of JML.
Note that except for Pol 5, this specification does not imply the capability policies.

No garbage collection of Purses. In all above, there is an implicit assumption that no
purses are destroyed. This assumption is necessary because destruction of a purse would
decrease the currency of a mint, in opposition to Pol 3.
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1 // module Malt Purse

2 public final class Purse { }
3

4 // module Malt Mint

5 public final class Mint {
6 private final HashMap<Purse,long> database
7 = new HashMap<>();
8

9 public Purse makePurse(long balance) {
10 Purse p = new Purse();
11 database.put(p,balance);
12 return p;
13 }
14

15 public void deposit(Purse from, Purse into, long amnt) {
16 if ( (amount < 0)
17 || (!database.contains(from))
18 || (database.get(from) < amnt)
19 || (!database.contains(into)) )
20 { throw new IllegalArgtException();

};
21 database.put(from, database.get(from) - amnt);
22 database.put(into, database.get(into) + amnt);
23 }
24 }

Fig. 2. An alternative Mint implementation using a map as a database
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3 Capability Policies

We use the term capability policy to describe policies which restrict the circumstances
under which objects may have access to services. A range of such capability policies
are discernible from the literature [22,24,23].

In the case of the Mint example, and apart from Pol 6, which requires separate
studies [27], the policies from the previous section are concerned with the following
services:

S 1 Transfer of money between purses.
S 2 Affecting the balance of a purse.
S 3 Affecting the currency of a mint.

Policy Pol 1 expresses conditions for S 1: the service is protected by the respective
purses. Policies Pol 4 and Pol 5 express conditions for S 2: the service is protectedby
the purse, and the balance is always positive. Finally, Pol 2 and Pol 3 express conditions
for S 3: the service is protected by the mint, and the currency can only increase.

Capability policies generally have the following characteristics:

– They are program centered: they talk about properties of programs rather than prop-
erties of specifications or protocols.

– They are fine-grained: they can talk about individual objects, while coarse-grained
policies only talk about large components such as file servers or the DOM.

– They are open. Open requirements must be satisfied for any use of the code
extended in any possible manner — e.g. through dynamic loading, inheritance,
subclassing, mashups, mixins, reflection, intercession, or any other extension mech-
anism supported by the programming language. This is in contrast to closed speci-
fications that need only be satisfied for the actual code snippet itself.

– They have necessary as well as sufficient elements. Sufficient elements essentially
promise that execution of a code snippet in a state satisfying a given pre-condition
will reach another state which satisfies some post-condition [10]. Necessary ele-
ments promise that if execution of a code snippet reaches a certain state, or changes
state in a certain way, or accesses some program entity, then the code snippet must
satisfy some given properties.

4 Execution Observations for the Semantics of Capability Policies

In this section we introduce execution observations, the concepts necessary to give pre-
cise meaning to policies. In our yet unpublished report [8] we describe their manifesta-
tion in a “capability-safe” Java-subset and give precise definitions. We believe that such
execution observations can easily be defined for a range of different programming lan-
guages and paradigms. In this paper, we bring out the most salient issues of execution
observations.
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Modules and Linking. To model the open nature of capability policies, we need to
describe both the program we are checking, and potential extensions of that program
(through subclasses, mashups, imports etc). For this we use modules, M, to denote pro-
grams, and ∗ to describe the combination of two programs into one larger program.

Adherence to policies often relies on the correct use of restrictive features. We sup-
port the method and class annotations private and final. The type rules of Java for-
bid access to private fields or methods outside their classes, forbid extensions of final
classes, forbid redefinitions of final methods in subclasses, and forbid assignment to
final fields outside their constructor [8].

The ∗ operator links modules together into new modules. Thus, MPurse∗MMint is a
module. Linking performs some compatibility checks, and therefore ∗ is only partially
defined. For example, because the field balance is private, MPurse ∗M′ would be unde-
fined, if M′ contained the expression newPurse.balance. The operation ∗ is only defined
if it gives rise to a well-formed module.

Code. Modules are not directly executable, but are necessary for the execution of code
snippets. We use the variables code, code′ to range over code snippets.

Runtime Configurations and Code Execution. Execution takes place in the context of
runtime configurations κ ∈ RTConf . A configuration is a stack frame and heap. A
stack frame is a tuple consisting of the following four components: the address of the
receiver, a mapping giving values to the formal parameters, the class identifier, and
the method identifier of the method being executed. A heap is a mapping from object
addresses to objects.

Execution of a code snippet code for a module M takes a configuration κ and returns
a value v and a new configuration κ′. We describe this through a large step semantics,
of the shape M, κ, code � κ′, v′.

Reached and Arising Snapshots. When verifying adherence to policies, it is essential
to consider only those snapshots (i.e., configuration and code pairs) which may arise
through the execution of the given modules. For example, if we considered any well-
formed snapshots (well-formed in the sense of the type system), then we would be
unable to show that Pol 5 is obeyed by the mint example. Namely, Pol 5 guarantees
that balances are always positive: configurations where the balance is negative are well-
formed, but will never actually arise in the execution of the program.
Reach(M, κ, code) is the set of snapshots corresponding to the start of the execu-

tion of the body of any constructor or method called in the process of executing code in
the context of M and κ. For example, (κ2, this.mint := prs.mint; this.balance := 0) ∈
Reach(M, κ1, p1.deposit(p2); p3 = newPurse(p2)). Note that Reach(M, κ, code),
corresponds to the complete body of a method; for example, (κ3, this.balance := 0) /∈
Reach(M, κ4, p3 = newPurse(p2)) for any κ3 and κ4. Reach(M, κ, code) is always
defined, even though it may be infinite if execution of M, κ, code does not terminate.
Arising(M) is the set of snapshots which may be reached during execution of some

initial snapshot, κ0, code0. Similarly toReach(M, κ, code), the functionArising(M)
is always defined.
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Accessible and Used Objects. As we have already discussed, objects protect services,
i.e. some policies may require that services are only accessible through certain objects.
Therefore, availability of a service is predicated on accessibility of the corresponding
object. Therefore we need to model accessibility of objects.

We distinguish between AccAll(M, κ) — the set of all objects which are accessible
from the frame in κ through any path — and AccPub(M, κ) — the set of all objects
accessible through paths which include only public fields, and private fields of objects
of the same class as this.

The notation z :κ c indicates that z is the name of an object which exists in the heap
of κ and belongs to class c — with no requirement that there should be a path from the
frame to this object.

The notation κ ∈ c expresses that the currently executing method in κ comes from
class c, while κ ∈ M expresses that the class of the currently executing method is
defined in module M.
Used(M, κ, code) is the set of all addresses used during execution of code in the

configuration κ.

Paths, Pure Expressions, and Predicates. Capability policies are program-centered,
therefore in order to express their semantics we need to be able to talk about all program
entities, such as paths. For example, mint, prs.mint are paths.
Paths are interpreted in the context of runtime configurations,
�·� : Path −→ RTConf −→ Value

so that �p�κ = v if p is a path and ∅, κ, p � κ, v.
Functions and predicates are interpreted in the expected manner
�·� : Func Id ×Var Id∗ −→ RTConf −→ Value
�·� : Pred Id −→ P (V alue∗)

involving any necessary unfoldings of the definitions. Therefore,
�f(p1, ...pn)�κ=�fFbody[p1/x1, ....pn/xn]�κ, where fBody is the function definition
of f , with free variables x1,... xn. Finally, �P (p1, ...pn)�κ = �P �(�p1�κ, ...�pn�κ).

Defining the currency. In the Mint example, and using the code from Fig. 1, the function
Currency is defined as follows

Currency(mnt) =
∑

p∈Ps(mnt) p.balance

where Ps(mnt) = {p | p : Purse ∧ p.mint = mnt}

On the other hand, using the code from Fig. 2, the Currency is defined as follows

Currency(mnt) =
∑

{ p | mnt.database.contains(p) } mnt.database.get(p)

5 Semantics of the Mint Policies

We now turn our attention to the precise meaning of the first five policies from the
Mint example. (We do not address the sixth policy as our formalisation does not yet
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incorporate trust). We discuss the policies in order of increasing complexity of their
specification, rather than in numerical order.

Note that in the following we are specifying the policies regardless of whether the
code is taken from Fig. 1, or from Fig. 2. We have already given definitions for Currency
as defined in Fig. 1 and in Fig. 2. Wrt to the term prs.balance, when taking the Fig. 2
version, the term �prs.balance�κ is a shorthand for �mnt.database.get(prs)�κ where
mnt is such that mnt.database.contains(prs).

The fifth policy. Pol 5, “Balances are always non-negative integers”, is akin to a class
invariant [20,28,33]. We can express the policy directly by requiring that a module
M satisfies Pol 5, if for all M′ legal extensions of M, and snapshots (κ, ) arising
through execution of the augmented program M ∗M′, the balance is positive in κ.

M |= Pol 5
iff

∀M′. ∀(κ, code) ∈ Arising(M ∗M′). ∀prs :κ Purse.
�prs.balance�κ ≥ 0

Note that the arising snapshots are considered in the context of the extended module
M ∗M′, where M′ is universally quantified. This reflects the open nature of capability
policies, and allows calling methods and accessing fields defined in M but also in M′

before reaching the snapshot (κ, code).
Note also that Arising(M ∗ M′) catches snapshots at the beginning of a method

execution. Therefore, if a method were to temporarily set balance to a negative value,
but restored it to a positive value before returning, would not violate Pol 5.

The third policy. Pol 3, stating “The mint can only inflate its own currency”, could
mean that the currency of a mint never decreases, or that the mint cannot affect the
currency of a different mint. As we shall see later on, the second interpretation is a
corollary of Pol 2; here we analyse the first interpretation:

M |= Pol 3
iff

∀M′. ∀(κ, code) ∈ Arising(M ∗M′). ∀mnt :κ Mint.
M ∗M′, κ, code � κ′, v

=⇒
�Currency(mnt)�κ ≤ �Currency(mnt)�κ′
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Namely, we require that for any arising snapshot (κ, code), and any execution origi-
nating from (κ, code) and leading to a new configuration κ′, the Currency at the old
configuration is less than or equal to the currency at the new configuration. Therefore,
in the conclusion we talk about the values of functions in the old configuration (i.e.
�Currency(mnt)�κ) as well as those in the new configuration (i.e. �Currency(mnt)�κ′).
Conclusions which are in terms of the old as well as the new state are common in stan-
dard approaches to program specification. Pol 3 describes a monotonic property, and is
therefore related to history invariants [14].

The first policy. Pol 1 states “With two purses of the same mint, one can transfer money
between them”. We can understand Pol 1 to mean that if p1 and p2 are purses of the
same mint, then the method call p1.deposit(p2,m) will transfer the money. In section
6, we shall present two other possible meanings for this policy. We write this first inter-
pretation of Pol 1 as:

M |= Pol 1A
iff

∀M′.∀ (κ, p1.deposit(p2,m)) ∈ Arising(M ∗M′).
∀p1, p2 :κ Purse. �p1.mint�κ = �p2.mint�κ ∧ �p2.balance�κ ≥ m

∧ M ∗M′, κ, p1.deposit(p2,m) � κ′, v
=⇒

�p1.balance�κ′= �p1.balance�κ+m ∧ �p2.balance�κ′ = �p2.balance�κ−m.

The specification Pol 1A again ranges over all module extensions, M′. This policy is
stated as a sufficient condition, and is related to a Hoare triples,1. The quantification
over modules M′ requires that the code M′ can do nothing to break the behaviour of the
deposit method from M, thus either requiring the use of restrictive features (e.g. forcing
the method deposit to be final, or the class Purse to be final, or package confined), or
the use of contracts, where subclasses are implicitly expected to satisfy the superclass’s
contract,

The fourth policy. Pol 4, “No one can affect the balance of a purse they don’t have”,
says that if some runtime configuration affects the balance of some purse prs, then the
original runtime configuration must have had access to the prs itself.

1 The corresponding Hoare triple would be

{ p1.mint = p2.mint ∧ p1.balance = k1 ∧ p2.balance = k2+m }
p1.deposit(p2,m)

{ p1.balance = k1+m ∧ p2.balance = k2 }



28 S. Drossopoulou and J. Noble

M |= Pol 4
iff

∀M′, (κ, code) ∈ Arising(M ∗M′). ∀prs :κ Purse.
M ∗M′, κ � κ′, v

∧ �prs.balance�κ �= �prs.balance�κ′

=⇒
�prs�κ ∈ Used(M ∗M′, κ, code)

Note that in contrast to the previous policies, and in contrast to the standard approach to
program specification, the premise of the policy is in terms of both the old configuration
(here �prs.balance�κ and the new configuration (here �prs.balance�κ′ ).

The second policy. Pol 2, stating “Only someone with the mint of a given currency
can violate conservation of that currency.”, is similar to Pol 4, in that it mandates that a
change (here a change in the currency) may only happen if the originating configuration
had access to an entity (here access to the mint).

M |= Pol 2
iff

∀M′, (κ, code) ∈ Arising(M ∗M′). ∀mnt :κ Mint.
M ∗M′, κ, code � κ′, v

∧ �Currency(mnt)�κ �= �Currency(mnt)�κ′

=⇒
�mnt�κ ∈ Used(M ∗M′, κ, code)

Policy Characteristics. The meanings of policies given in the previous section vary, but
they share common characteristics:

– They refer to a fixed module M, and all its legal extensions M′.
– They specify that execution of some code, under some conditions, guarantees some

conclusions.
– Both conditions and conclusions may refer to properties of the state before as well

as after execution.
– The code may be universally or existentially quantified, or explicitly given.

6 Alternative interpretations of the Mint Policies

Because our policy descriptions have precise semantics — unlike the informal English
policies from the original Mint example — a single English policy can have a number
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of plausible interpretations in our notation. We explore some of these alternatives here;
we were surprised how many different interpretations we uncovered while analysing
this example.

The first policy revisited. Pol 1 states “With two purses of the same mint, one can
transfer money between them”. In section 4.2 we proposed as possible meaning that the
call p1.deposit(p2) will transfer the money. This is perhaps an over-specification, as it
prescribes how the transfer is to take place — by calling the p1.deposit(p2) method. Al-
ternatively, we may want to require only that it is possible for the transfer to take place,
without constraining the program design. We can define a second, more general version
of the policy, which only requires the existence of a code snippet that performs the trans-
action, provided that purses p1 and p2 share the same mint, that p2 has sufficient funds,
and that they are both accessible in κ without reading private fields (AccPub(M, κ)).

Module M satisfies policy Pol 1B
iff

∀(κ, ) ∈ Arising(M). ∀p1, p2 :κ Purse.
�p1.mint�κ=�p2.mint�κ ∧ �p2.balance�κ ≥ m

∧ �p1�κ, �p2�κ ∈ AccPub(M, κ)
=⇒

∃ code. ∀M′.
M ∗M′, κ, code � κ′, v

∧ �p1.balance�κ′= �p1.balance�κ+m
∧ �p2.balance�κ′ = �p2.balance�κ−m.

Note that this policy requires that execution of the code has the required properties for
all extending modules M′.

A third possible meaning of Pol 1 is that deposit can be called successfully only if
the two purses belonged to the same mint:

Module M satisfies policy Pol 1C
iff

∀M′. ∀(κ, p1.deposit(p2))∈Arising(M ∗M′).
M ∗M′, κ, p1.deposit(p2,m) � κ′, v

=⇒
�p1.mint�κ = �p2.mint�κ
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The requirementM∗M′, κ, p1.deposit(p2,m) � κ′, v is crucial in the premise, in that
it ensures that execution does not lead to an error (our current definition of the language
Cj does not support exceptions). Note, also, that in this specification the conclusion is
only concerned with properties observable in the original configuration, κ, while the
premise is concerned with properties observable in κ as well as κ′. This reflects the
deny nature of the policy.

Finally, a fourth, and more straightforward meaning of Pol 1 would mandate that the
balance of a purse p1 may change only if deposit was executed on p1 or with p1 as an
argument. This can be expressed as follows:

Module M satisfies policy Pol 1D
iff

∀M′. ∀(κ, code) ∈ Arising(M ∗M′). ∀p1 :κ Purse.
M ∗M′, κ, code � κ′, v

∧ �p1.balance�κ �= �p1.balance�κ′

=⇒
∃κ′, s.t.

(κ′, ) ∈ Reach(M ∗M′, κ, code)
∧ κ′ = ( , ,Purse, deposit)

∧ (�this�κ′ = �p1�κ ∨ �prs�κ′ = �p1�κ)

The assertion (κ′, ) ∈ Reach(M∗M′, κ, code) ∧ κ′ = ( , ,Purse, deposit) guarantees
that execution of the snapshot (κ, code) will reach a point where it calls the method
deposit from Purse. The assertion (�this�κ′ = �p1�κ ∨ �prs�κ′ = �p1�κ) guarantees
that the receiver or the first argument of that method call will be �p1�κ.

The second policy revisited. Pol 2, “Only someone with the mint of a given currency
can violate conservation of that currency.” mandates that a change in the currency may
only happen if the originating configuration had access to the mint. In section 4.2 we
took “access to” to mean that the code executed eventually would read the mint object
(i.e. that the mint was in the set Used). We see three alternative interpretations for the
meaning of having access to:

1. �mnt�κ ∈Used(M, κ, code), i.e. that execution of code in the context of κ will at
some point use the object mnt.

2. �mnt�κ ∈AccAll(M, κ), i.e. that κ has a path from the stack frame to mnt which
involves any fields.

3. �mnt�κ ∈ AccPub(κ, code), i.e. that κ has a path from the stack frame to mnt
which involves only public fields, or private fields from the same class as the current
receiver.

This means there are two further ways in which Pol 2 may be understood:
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M |= Pol 2B
iff

∀M′. ∀(κ, code) ∈ Arising(M ∗M′). ∀mnt :κ Mint.
M ∗M′, κ, code � κ′, v

∧ �Currency(mnt)�κ �= �Currency(mnt)�κ′

=⇒
�mnt�κ∈AccAll(M ∗M′, κ)

M |= Pol 2C
iff

∀M′. ∀(κ, code) ∈ Arising(M ∗M′). ∀mnt :κ Mint.
M ∗M′, κ, code � κ′, v

∧ �Currency(mnt)�κ �= �Currencyκ′(mnt)�κ
=⇒

�mnt�κ∈AccPub(M ∗M′, κ)

Our interpretation of Pol 2 in section 4.2 uses the first choice. In [8], we prove
that MMint ∗ MPurse |= Pol 2A. Moreover, we prove lemmas which guarantee that
mnt :κ Mint and �mnt�κ ∈ Used(M, κ, code) imply that �mnt�κ ∈ AccAll(M, κ).
Ttherefore any code which satisfies Pol 2A also adheres to Pol 2B. This gives that
MMint ∗MPurse |= Pol 2A.

What about Pol 2C? It gives a stronger guarantee than Pol 2B, and therefore is to
be preferred over Pol 2B, however, MPurse ∗MMint does not satisfy Pol 2C. More im-
portantly, without the concept of package and package-local classes, or some concept
of ownership, it is impossible to write an implementation for Purse so that it satisfies
Pol 2C. The following example shows why:

1 class CentralBank {
2 private final Mint myMint = new Mint();
3

4 public void inflate() {
5 Purse tmpPurse = new Purse(myMint,1000000000)
6 }
7 }

A CentralBank has a mint. The inflate method creates a new temporary purse
containing a billion dollars from thin air — perhaps this method should have been
called quantitativeEasing. Now consider a client of a CentralBank object — the
finance minister say. The finance minister does not have a public access to the mint
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(because the central bank is supposed to be independent!) so by Pol 2C she should not
be able to inflate the currency. If, however, the finance minister calls myCentralBank
.inflate then the currency will be inflated all the same.

Discussion. We leave the question as to the “correct” meaning of the policies open. Our
contribution is the provision of the tools with which to give precise meaning to policies,
and the clarification of the differences. However, the “correct” meaning is determined
by the use of the policies in the wider setting, for example, in the application of the
policies to prove properties of the use of the mint/purse system, e.g. in the escrow
example [21].

7 Related Work

Object capabilities were first introduced [22] seven years ago, and many recent studies
manage or verify safety or correctness of object capability programs.

Google’s Caja [25] applies sandboxes, proxies, and wrappers to limit components’
access to ambient capabilities. Sandboxing has been validated formally: Maffeis et al.
[16] develop a model of JavaScript, demonstrate that it obeys two principles of object
capability systems and show how untrusted applications can be prevented from inter-
fering with the rest of the system. Alternatively, Taly et al. [35] model JavaScript APIs
in Datalog, and then carry out a Datalog search for an “attacker” from the set of all
valid API calls. This search is similar to the quantification over potential code snippets
in our model. Murray and Lowe [26] model object capability programs in CSP, and use
a model checker to ensure program executions do not leak information.

Karim et al. apply static analysis on Mozilla’s JavaScript Jetpack extension frame-
work [12], including pointer analyses. Bhargavan et al. [3] extend language-based sand-
boxing techniques to support “defensive” components that can execute successfully
in otherwise untrusted environments. Meredith et al. [18] encode policies as types in
higher order reflective π-calculus.. Politz et al. [29] use a JavaScript typechecker to
check properties such as “multiple widgets on the same page cannot communicate.”
— somewhat similar in spirit to our Pol 4. Lerner et al. extend this system to ensure
browser extensions observe “private mode” browsing conventions, such as that “no
private browsing history retained” [15]. Dimoulas et al. [6] generalise the language
and typechecker based approach to enforce explicit policies, that describe which com-
ponents may access, or may influence the use of, particular capabilities.

The WebSand [4,17] and Jeeves [40] projects use dynamic techniques to monitor
safe execution of information flow policies. Richards et al. [31] extended this approach
by incorporating explicit dynamic ownership of objects (and thus of capabilities) and
policies that may examine the history of objects’ computations. While these dynamic
techniques can restrict or terminate the execution of a component that breaches its se-
curity policies, they cannot guarantee in advance that such violations can never happen.
While information flow policies are concerned with the flow of objects (and thus also
capabilities) across the program code, our work is more concerned with the identifica-
tion of the objects which protect the services.

A few formal verification frameworks address JavaScript’s highly dynamic,
prototype-based semantics. Gardner et al. [9] developed a formalisation of JavaScript
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based on separation logic and verified examples. Xiong and Qin et al. [39,30] worked
on similar lines. Swamy et al. [34] recently developed a mechanised verification tech-
nique for JavaScript based on the Dijkstra Monad in the F* programming language.
Finally, Jang et al. [11] developed a machine-checked proof of five important properties
of a web browser — again similar to our simple deny policies — such as “cookies may
not be shared across domains” by writing the minimal kernel of the browser in Coq.

8 Conclusions and Future Work

In this paper, we have advocated that capability policies are necessary for reasoning
about programs using object capability security. We have argued that capability policies
are program centred, fine grained, open, and contain necessary as well as sufficient
conditions.

These novel features of the policies require novel features in specifications. We have
proposed execution observations, and developed a capability specification style, which
incorporates universal and existential quantification over program code, explicit nam-
ing of snapshots before, after and during execution, and their use in premises and in
conclusions. We have used our approach to specify most of the Mint example.

We have shown how efforts at specifying policies precisely can uncover ambiguities
in policies’ interpretations, and can help find additional implicit policies that can be
made explicit. We have proposed another five policies for the Mint, and formulated
then in our language.

In further work, we want to refine the execution observations, to develop a
programmer-friendly notation for specifications, to consider the specification of the fur-
ther policies we uncovered as well as other policies from the literature, and to extend
our toy language to encompass further salient programming language features. We also
want to develop a formal logic to support reasoning about code’s adherence to capabil-
ity policies. We need to model trust (or the lack of it) between components, so we can
model systems composed both trusted and untrusted code. Finally, inspired by the orig-
inal Mint work, we want to consider the specification and verification of capabilities in
other programming languages, in particular, languages without static types.

Acknowledgments. This work is partly supported by the Royal Society of New
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Abstract. Throughout the past decades two schools have been devel-
oping formal techniques for correct software development, taking com-
plementary approaches: the model-based approach and the behavioural
approach. Combinations of languages from both approaches have also
been proposed. The lack of support for refinement of state-rich reactive
systems in a calculational style has motivated the creation of Circus,
a combination of Z, CSP, and Djikstra’s commmand language. In this
paper, we foster the reuse of theoretical results underpinned on CSP
to Circus by providing a sound mapping for processes and refinement
from Circus to CSP. This mapping is proved sound from an existing link
between these languages, established in the Unifying Theories of Pro-
gramming (UTP). Our results allow analysing Circus specifications with
techniques and tools, like FDR2 and PAT, originally developed for CSP.
We illustrate the overall approach with a running example.

Keywords: Formal methods integration, Model-checking, Circus, CSP.

1 Introduction

The existing formalisms for system modelling and verification are usually clas-
sified according to their focus on particular design aspects. Here, we emphasise
two approaches: one of them focuses on data aspects, while the other one fo-
cuses on behavioural (control flow) aspects. Languages like Z [23] use a model-
based approach, where mathematical objects from set theory form the basis of
the specification. Although possible in a rather implicit fashion, specification
of behavioural aspects such as choice, sequence, and parallel composition are
not explicitly provided by any of these languages. Complementarily, CSP [19],
among others, provide a rich set of constructs that can be used to describe the
behaviour of a system in an abstract and structured way. However, they do not
support concise description of data aspects. Notations that describe both as-
pects [9] have also been proposed. The combination of formalisms allows the
reuse of notations to describe different modelling aspects. Some combinations
have taken a syntactic approach [6] embedding one formalism into another, but
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imposing architectural restrictions. A semantic approach, in which formalisms
are combined in a common semantic model, however, needs direct tool support.

Combinations of Z with CCS [8] and CSP [6,13], VDM with CSP (CML) [17],
and B and CSP [21] are some examples. However, as far as we are aware, none
of them supports refinement of state-rich reactive systems in a calculational
style [12]. This has motivated the creation of Circus [5], which describes sys-
tems as processes grouping constructs that describe data (using Z) and control
behaviour (using CSP), and has a support for formal stepwise development [5].

Mappings from one formalism into another are available in the literature.
Some, like those presented in [6] and [13], take a syntactic approach and do not
address the soundness of the translation in a common semantical framework.
Furthermore, a partial mapping from Circus to CSP has been proposed in [2].
Our mapping, however, is proved sound and far more comprehensive including
most of the Circus constructs and relating refinement notions.

In this paper, we foster the reuse of CSP theoretical results to Circus by
providing a mapping (see Figure 1) for processes and refinement from Circus
to CSP. Our mapping is limited to a subset of feasible divergence free Circus
processes with a limited use of predicative specifications. This mapping is proved
sound from a link [3,4] between these languages established in the UTP [10].

Fig. 1. Unification Path for Model-Checking Circus

Circus is supported by some academic tools like an animator [15], a refinement
calculator [11], a translator to Java [1], and a prototype model-checker [22]. It,
however, lacks more consolidated tool support. Our results allows one to analyse
Circus specifications using well-established CSP tools like FDR2 [7] and PAT [20].

In Section 2, we introduce the relevant preliminary material. The mapping
from Circus to CSP and its soundness are presented in Section 3. Section 4
describes the practical application of our theoretical results. In Section 5, we
draw our conclusions and discuss related and future work.

2 Preliminaries

In this section, we introduce CSP, Circus and its semantical framework, the UTP.

2.1 CSP

CSP is a process algebra that can be used to describe systems composed by
interacting components, which are independent self-contained processes with
interfaces that are used to interact with the environment [19].
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The two basic CSP processes are STOP and SKIP ; the former deadlocks,
and the latter does nothing but terminates. The prefixing a → P is initially able
to perform only the event a; afterwards it behaves like process P . A boolean
guard may be associated with a process: g & P behaves like P if the predicate
g is true; it deadlocks otherwise. The operator P1; P2 combines P1 and P2 in
sequence. The external choice P1 � P2 initially offers events of both processes.
The performance of the first event or termination resolves the choice in favour of
the process that performs either of them. The environment has no control over
the internal choice P1 � P2, in which the choice is resolved internally. The sharing
parallel composition P1 |[ cs ]| P2 synchronises P1 and P2 on the events in the
set cs ; events that are not listed occur independently. The alphabetised parallel
composition P1 |[ cs1 | cs2 ]| P2 allows P1 and P2 to communicate in the sets cs1
and cs2, respectively; however, they must agree on events in cs1 ∩ cs2. Processes
composed in interleaving P1 ||| P2 run independently. The event hiding operator
P \ cs encapsulates the events that are in cs . Finally, P [[a ← b]] behaves like
P except that all occurrences of a in P are replaced by b. CSP also provides
finite iterated operators that can be used to generalise the binary operators of
sequence, external and internal choice, parallel composition, and interleaving.
For instance, ||| i : S • P(i) is the interleaving of all P(i), with i taken from the
set S . Further CSP operators are available, but omitted here for conciseness.

CSP has three classical semantic models [19]: traces, stable failures, and
failures-divergences. The traces model (T ) describes processes as a set of all
possible sequences of events (traces) it might perform. The stable-failures mod-
els (F) describes processes as a set of failures: pairs containing the trace per-
formed by the process and the set of events refused by the process after that
trace. Finally, the failures-divergences model (FD) extends F with the set of
traces that lead the process to divergence. In this paper, we consider F , which
for the non-divergent processes considered in this paper, is equivalent to FD.

2.2 Circus

Circus programs are declared as a sequence of paragraphs, which can either be a
Z paragraph, a channel declaration, a channel set declaration, or a process dec-
laration. Here, we illustrate the main constructs of Circus using the specification
of a ring buffer (Figure 2), which is composed of a ring of cells with a central
controller. Each single storage cell has its own identification and is able to store
a value. The controller receives input and output requests from the environment
and interacts accordingly with the ring of storage cells.

All the channels must be declared; we give their names and the types of the
values they communicate. For example, the process RingCell that represents
a cell communicates through channels wrt and rrd . If a channel is used just
for synchronisation, its declaration contains only its name. We also declare the
channel set CtrI that contains all possible communications on rd i and wrt i ;
these channels are used to create indexed versions of the RingCell .

The declaration of a process is composed of its name and its body specification.
A process may be explicitly defined or composed in terms of other processes, such
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maxbuff : 4
maxring = maxbuff − 1
Value = 0 . . 2
CellId = 1 . . maxring

channel input, output : Value
channel write, read, rd i,wrt i : CellId × Value
channel rrd,wrt : Value
chanset CtrI = {| rd i,wrt i |}

process RingCell =̂
begin state CellState =̂ [v : Value]

InitCell =̂� x : Value • setV (x)

setV =̂ val newV : Value • v := newV
Cell =̂ wrt?x → setV (x) � rrd!v → Skip
• InitCell; (μX • Cell; X )

end
IRCell(i) =̂

RingCell[rrd,wrt := rd i.i,wrt i.i]

DRing =̂ ||| i : CellId • IRCell(i)

process Ctr =̂
begin

state CtrState =̂
[cache : Value; size : N; top, bot : CellId]

InitCtr =̂ cache, size, top, bot := 0, 0, 1, 0
Input =̂ (size < maxbuff ) & input?x →

(size = 0) & cache := x ; size := 1
� (size > 0) &

write.top!x → size := size + 1;
top := (top mod maxring) + 1

Output =̂ (size > 0) & output!cache →
(size > 1) &

read.bot?x → Skip;
size := size − 1;
bot := (bot mod maxring) + 1

� (size = 1) & size := 0
• InitCtr ; μX • ((Input � Output); X )

end
CtrR =̂ Ctr [read,write := rd i,wrt i]
RBuffer =̂ (CtrR |[CtrI ]| DRing) \ CtrI

Fig. 2. A Distributed Ring Buffer

as the RBuffer , which is defined as the parallel composition of previously defined
processes. An explicit process definition contains a sequence of paragraphs and
a nameless main action that defines its behaviour. We use Z to define the state.
For instance, CellState describes the state of the RingCell : a value v , which is
initialised with an internally chosen value. The RingCell receives and outputs
its value via wrt and rrd , respectively.

Process paragraphs include Z paragraphs and declarations of actions. An ac-
tion can be a schema (a Z abstraction formed of variable declarations and an
optional predicate that constrains the values these variables may assume), a
primitive action like Skip, a guarded command, an invocation to another action,
or a combination of these constructs using CSP operators. Actions may also be
defined using assignment, guarded alternation, variable blocks, or a specification
statement, which is not explained as it is not used in this paper, but see [12].

The CSP operators for sequence, external and internal choice, parallelism,
interleaving and hiding may also be used to compose actions and processes.
However, the parallelism and interleaving actions have a different declaration.
In order to avoid conflict, they require the declaration of two sets that partition
the variables in scope. In the parallel composition A1 |[ ns1 | cs | ns2 ]| A2 the
actions A1 and A2 synchronise on the channels in the set cs . Both actions, A1

and A2, have access to the initial values of all variables in scope. However, A1

and A2 may modify only the variables in ns1 and ns2, respectively. Interleaved
actions A1 ||[ns1 | ns2]|| A2 have the same behaviour regarding the state variables
but they do not synchronise on any channels and run independently.

Communications and recursive definitions are also available for actions. The
RingCell has a recursive behaviour: after its initialisation, it recursively behaves
as action Cell , which represents the execution of a cycle of the RingCell . If it
receives a request to write a value, it writes this value to the state: the operation
setV sets the value v . The RingCell outputs its current value via channel rrd .
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The renaming P [o := c] replaces all references to o by references to c. For
instance, IRCell(i) parametrise RingCell replacing references to rrd and wrt , to
rd i .i and wrt i .i , respectively, using the argument i . Similarly, CtrR replaces
read and write with rd i and wrt i , respectively.

Processes may also be defined in terms of existing processes using their names,
CSP operators, or iterated CSP operators. The process DRing is the iterated
interleaving of ring cells. Furthermore, RBuffer is the parallel composition of
CtrR and DRing synchronising on rd i and wrt i , which are hidden from the
environment. Interactions with RBuffer is only through input and output . The
process CtrR receives these requests and interacts with the DRing, updating its
state according to the request and its size.

2.3 Unifying Theories of Programming

Every program, design, and specification in the UTP [10] is a relation between
an initial observation and a single subsequent observation, which may be either
an intermediate or a final observation of a program execution. The relations
are defined as predicates over observational variables, which are names that
describe all relevant aspects of a program behaviour. The initial observations of
each variable are undecorated, and subsequent observations are dashed.

Here, four observational variables are important: the boolean okay indicates
whether the process has been properly started in a stable state, in which case its
value is true, or not; okay ′ means subsequent stabilisation in an observable state;
the sequence of events tr records all the events in which a process has engaged;
the boolean wait distinguishes the intermediate observations of waiting states
from final observations on termination. In a stable intermediate state, wait ′ is
true; a false value for wait ′ indicates that the process has reached a final state.
Finally, the set of events ref describes the responsiveness of the process. All the
events that may be refused before the process has started are members of ref ,
and possibly refused events at a later moment are members of ref ′.

Healthiness conditions are used to test a program for feasibility, and reject it if
it makes implementation impossible in the target language. They are expressed in
terms of an idempotent function φ that makes a program healthy. Every healthy
program P must be a fixed-point P = φ (P). Some healthiness conditions are
used to identify the set of relations that are designs (H1 and H2), reactive
processes (R1-R3), and CSP processes (CSP1-CSP2) [10].

3 Mapping Circus into CSP

The major contribution of this paper is a sound mapping for a subset of
Circus into CSP. This subset contains processes that obey the following restric-
tions: (1) feasible (no miracles); (2) divergence free; (3) limited use of pred-
icative specifications; (4) external choices are only among prefixed actions [17],
and; (5) actions do not write to input variables. The restrictions have impact
on the specification style, but do not impose any relevant limitation in terms of
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expressiveness in practice. This is due to the fact that divergent and unfeasible
processes (restrictions 1 and 2) have a theoretical importance but are not of
practical interest. Furthermore, predicative specifications (restriction 3) may be
further refined to a more concrete specification. Finally, processes may be easily
rewritten to satisfy restrictions 4 and 5.

The lifting of theoretical results based on CSP to Circus requires us to take
processes from a state-rich setting (processes with encapsulated states and local
variables), in Circus, to a stateless one, in CSP. For this reason, our strategy for
mapping Circus processes into CSP processes is twofold.

First, in Section 3.1, we transform state-rich Circus processes into stateless
Circus processes using the memory model from [14], in which state components
and local variables are detached from the processes and moved to memory cells
that store their values. The function Ω transforms state-rich divergence-free
Circus processes that obey the conditions previously stated into CSP processes.
Its soundness is established using the Circus refinement calculus [5].

Next, in Section 3.2, we transform the resulting stateless Circus process into a
CSP process using the function Υ . This function is total on the range of Ω, which
contains all stateless processes whose main actions are defined only in terms of
Circus behavioural actions that are directly available in CSP. This includes Skip,
Stop, prefixing, external and internal choice, guarded actions, sequential compo-
sition, parallelism, interleaving, hiding, recursion and their iterated counterparts.
This mapping allows us to safely reason about Circus specifications using the CSP
notation, its semantic models and tools. The soundness of Υ is established for
the traces and the failures models. For every Circus action A that is mapped into
a CSP process P we prove that the tracesUT P and the failuresUT P of A (in the
Circus semantics given in the UTP) are the same as the traces and failures of
P (in the CSP traces and failures semantics), respectively. This is established
based on the UTP link between Circus and CSP semantic models [4].

3.1 Rewriting State-rich Circus Processes

Stateless Circus processes can be directly mapped into their CSP behaviour us-
ing the function Υ presented in the next subsection. Stateful Circus processes,
however, have state components and local variables in the main action, as in the
general form of a process P below.

process P =̂ begin state S =̂ [v0 : Tx ; . . . vn : Tz | inv(v0, . . . , vn)] PPArs
• var l0 : U0; . . . ; lm : Um • A(v0, . . . , vn , l0, . . . , lm)

end

The rewriting function Ω moves the state components v0, . . . , vn and local vari-
ables l0, . . . , lm from P to a separate Memory action that encapsulates them.
Each of them also has a corresponding member in NAME ::= v0 | . . . | vn | l0 |
. . . | ln . The set of mappings from names to values is BINDING =̂ NAME → U.

The main action of the rewritten process interacts with the memory either
by requesting a variable value (mget : NAME × U) or by setting a variable’s
value (mset : NAME × U). The memory below has a recursive behaviour,



Model-Checking Circus State-Rich Specifications 45

but may also be required to terminate. These channels are the memory’s in-
terface (MEMI =̂ {| mset ,mget , terminate |}), which is hidden. The resulting
transformation of P is a stateless process whose main action is the parallel com-
position of the memory with the rewritten main action A; if it terminates, the
memory is also forced to terminate. The type of n is given by δ(n).

process P =̂ begin Memory =̂ vres b : BINDING •
(� n : dom b • mget.n!b(n) → Memory(b))

� (� n : dom b • mset.n?nv : (nv ∈ δ(n)) → Memory(b ⊕ {n 
→ nv}))
� terminate → Skip

• var b : {x : BINDING | x(v0) ∈ T0 ∧ . . . ∧ inv(x(v0), . . . )} •
( (ΩA(A); terminate → Skip) |[ ∅ | MEMI | {b} ]| Memory(b) ) \ MEMI

end

Parallel and interleaved actions avoid conflicts in the access to variables in scope
by partitioning them in two disjoint sets. In our example, the transformed action
cannot write to any variable whilst the Memory has full access to b.

The use of a centralised memory considerably simplifies the proof of correct-
ness because it uses no replicated operators, avoiding the need for induction on
the number of memory cells in the proofs. Using the Circus refinement strategy
we demonstrated that a distributed memory with independent memory cells for
each variable is a refinement of the centralised memory [5]. The monotonicity of
Circus refinement allows us to replace the latter by the former if needed.

The transformation Ω is justified by two iterations of the Circus refinement
strategy [5]. The first one promotes all local variables to state components and
guarantees that in the resulting process: (1) references to actions are replaced
by their bodies; (2) recursive actions are written as fixed-point expressions;
(3) there are no name clashes between processes or within the same process;
(4) parametrised commands have been replaced by their definitions; (5) schemas
are normalised, and (6) channels used by the memories are not referenced.

The first iteration uses an action refinement to adapt the process to the re-
strictions described above and to bring the scope of the variables to the main
action. Finally, a process refinement promotes the local variables to state com-
ponents and removes the process actions as they are no longer referenced in the
main action. The result of this iteration is presented below.

process RingCell = begin state CellState =̂ [v : Value]

• (� x : Value • v := x); (μX • ( (wrt?x → v := x) � (rrd!v → Skip) ); X )

end

The final iteration removes the state of the process. First, a data refinement
transforms a state with multiple components into a state with a single binding
component b. Next, an action refinement transforms the main action into a
stateless main action, in which the transformed main action ΩA(A) interacts
with a memory parametrised on b. Finally, a process refinement removes the
process state as it not referenced in the main action. The resulting process is
presented in Figure 3.

The function ΩA yields actions that interact with the memory rather than
accessing state components. We present its definition for some of the Circus
actions. A full account can be found in [17].
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process RingCell =
begin Memory =̂ vres b : BINDING •

(� n : dom b • mget.n!b(n) → Memory(b))

� (�n : dom b • mset.n?nv : (nv ∈ δ(n)) → Memory(b ⊕ {n 
→ nv}))
� terminate → Skip

• var b : {x : BINDING | x(v) ∈ Value} •⎛⎜⎜⎜⎝
⎛⎝ΩA

(
(� x : Value • v := x);

(
μX •

(
wrt?x → v := x
� rrd!v → Skip

)
; X

))
;

terminate → Skip

⎞⎠
|[∅ | MEMI | {b}]|
Memory(b)

⎞⎟⎟⎟⎠ \ MEMI

end

Fig. 3. Stateless RingCell

The main objective of ΩA is to change only actions that access state compo-
nents and local variables. Its definition uses an auxiliary function Ω′

A that is very
similar to ΩA, but does not retrieve any value (mget) and replaces references to
x by its local copy vx , except when used as the identifier in memory access (i.e.
mset .x !e(x ) becomes mset .x !e(vx )). For sequential composition, the difference
is more substantial and discussed later in this section along with details on Ω′

A.
The transformation of prefixing differs according to the kind of the commu-

nication. Simple prefixing does not refer to memory components: ΩA(c → A) is
defined as c → ΩA(A). Synchronisation (c.e) and output communications (c!e)
might refer to memory components in e: before the communication, the rewrit-
ten action retrieves these values from the memory and replaces references to
v0, . . . , l0, . . . by the corresponding input variables vv0, . . . , vl0, . . . .

ΩA(c.e(v0, . . . , l0, . . . ) → A) =̂
mget.v0?vv0 → · · · → mget.l0?vl0 → · · · → c.e(vv0, . . . , vl0, . . . ) → Ω′

A(A)

We omit the similar definition for output communication.
This approach is used to rewrite all Circus actions that need a read access to

memory components like guarded actions, which use their values in the guards.

ΩA(g(v0, . . . , l0, . . . ) & A) =̂
mget.v0?vv0 → · · · → mget.l0?vl0 → · · · → g(vv0, . . . , vl0, . . . ) & Ω′

A(A)

The input prefixing c?x : P → A(x ) may be associated with a condition P
that determines the set of communicated values that may be communicated: the
rewritten action receives these values before the communication. As our strategy
forbids actions to write to input variables, they are not part of the memory.

ΩA(c?x : P(x , v0, . . . , l0, . . . ) → A) =̂
mget.v0?vv0 → · · · → mget.l0?vl0 → · · · → c?x : P(x , vv0, . . . , vl0, . . . ) → Ω′

A(A)

The rewriting of external choice requires the actions involved to be prefixed.
The noise of the mget events is avoided by performing them before the choice.

ΩA(A1 � A2) =̂ mget.v0?vv0 → · · · → mget.l0?vl0 → · · · → (Ω′
A(A1) � Ω′

A(A2))

Circus does not have shared variables: it uses a parallel-by-merge [10] approach
in the semantics of parallel composition. For this reason, we use the initial values
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of the state variables while the choice is still waiting for one of the events, even
if their values are updated by a parallel action.

In parallel composition (and interleaving), Circus avoids conflicts in the access
to the variables with the declaration of two disjoint sets of variables. In A1 |[ns1 |
cs | ns2 ]| A2, both A1 and A2 have access to the initial values of all variables,
but A1 may modify only the variables in ns1, and A2, the variables in ns2.
Furthermore, A1 is not affected by variable updates of A2, and vice-versa. Our
rewriting function uses one copy of the memory for each parallel branch. A merge
writes the final values to the main memory according to the state partition.

The local memory MemoryMerge behaves like Memory, but writes its final
bindings either to mleft or to mright after termination, based on the side given as
argument. Before termination, each parallel branch communicates with Merge
using mleft and mright , which are hidden from the environment. The Merge
receives the bindings and writes to the main memory based on the partitions.

ΩA(A1 |[ns1 | cs | ns2 ]| A2) =̂
mget.v0?vv0 → · · · → mget.l0?vl0 → · · · →⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝ (Ω′
A(A1); terminate → Skip)

|[∅ | MEMI | ∅]|
MemoryMerge({v0 
→ vv0, . . . },LEFT)

⎞⎠ \ MEMI

|[∅ | cs | ∅]|⎛⎝ (Ω′
A(A2); terminate → Skip)

|[∅ | MEMI | ∅]|
MemoryMerge({v0 
→ vv0, . . . },RIGHT)

⎞⎠ \ MEMI

⎞⎟⎟⎟⎟⎟⎟⎟⎠
|[ ∅ | MRGI | ∅ ]| Merge

⎞⎟⎟⎟⎟⎟⎟⎟⎠
\ {| mleft,mright |}

where Merge =̂ (mleft?l → (o9 n : ns1 • mset.n!l(n) → Skip))

||| (mright?r → (o9 n : ns2 • mset.n!r(n) → Skip))

Rewriting distributes over hiding, instantiation of parametrised actions, in-
ternal choice and iterated actions. Furthermore, our approach forbids input vari-
ables to be updated, yielding updates only to global variables. This allows the
rewriting also to distribute over recursion.

The commands that change the state are completely rewritten like, for exam-
ple, assignment. All the variables involved in the expressions (on the right-hand
sides of assignments) must have their current values fetched from memory; then
each expression ei can be evaluated and the corresponding value is set as the
current value of the variable xi in the memory.

ΩA(x0, . . . , xn := e0(v0, . . . , l0, . . . ), . . . , en(v0, . . . , l0, . . . )) =̂
mget.v0?vv0 → · · · → mget.l0?vl0 → · · · →
mset.x0!e0(vv0, . . . , vl0, . . . ) → · · · → mset.xn !en(vv0, . . . , vl0, . . . ) → Skip

Alternation might refer to memory components; its rewritten action reads
their values from the memory before the rewritten alternation (using Ω′

A). The
result of rewriting a specification statement first reads the values of the memory.
If the precondition is not satisfied it diverges. Otherwise, the action internally
chooses values that establish the postcondition and writes them to the memory.
The variables that are not in the frame are left unchanged (seq(w ′) = seq(w )) .
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ΩA(w : [pre(v0, . . . , l0, . . . ), post(v0, . . . , l0, . . . , v
′
0, . . . , l

′
0, . . . )]) =̂

mget.v0?vv0 → · · · → mget.l0?vl0 → · · · →
¬ pre(vv0, . . . , vl0, . . . ) & Chaos
� pre(vv0, . . . , vl0, . . . ) &⎛⎜⎜⎝� vv :

⎧⎨⎩ x0 : δ(v0); . . . ; xm : δ(l0); . . .
| post(vv0, . . . , vl0, . . . , x0, . . . , xm , . . . ) ∧ seq(w ′) = seq(w)
• (x0, . . . , xm , . . . )

⎫⎬⎭ •

mset.v0!(vv .0) → · · · → mset.l0!(vv .m) → · · · → Skip

⎞⎟⎟⎠
where w ′ = {v ′

0, . . . , l
′
0, . . . } \ w ′ and w = {v0, . . . , l0, . . . } \ w

The Circus semantics [16] assumes specifications that initially contain no com-
mand and, therefore, change the state using only Z operations, which explicitly
include the state invariant and guarantee that it is maintained. We also as-
sume that there is no additional centralised state invariant as is usual in Z state
schemas. Considering them only in operations facilitates the refinement process.

Circus assertions, coercions and schema expressions are defined in terms of
specification statements [16]. Furthermore, variable renaming is defined as vari-
able substitution. This is reflected in the definition of ΩA for these constructs.

The auxiliary function Ω′
A is similar to ΩA. It, however, does not read values

from the memory and replaces references to variables by references to their local
copies. For this reason, Ω′

A is the same as ΩA for actions in which no values are
retrieved like in Ω′

A(c → A). Here, we omit most of the definitions of Ω′
A, and

present only those that differ from ΩA.
In c.e → A, the expression e might refer to the memory components. The

function Ω′
A, however, does not read them from the memory.

Ω′
A(c.e(v0, . . . , vn , l0, . . . , lm) → A) =̂ c.e(vv0, . . . , vvn , vl0, . . . , vlm) → Ω′

A(A)

The most important difference is for sequential compositions A1; A2: variables
read in A1 are not in the scope of A2, which needs to access the memory again.

Ω′
A(A1; A2) =̂ Ω′

A(A1); ΩA(A2)

Syntactically, state updates in Circus can only be achieved by actions that re-
quire any subsequent action to be sequentially composed. The definition above
guarantees that the rewritten version of A2 reads the updated values before any
reference to memory components.

The result of the application of ΩA to the main action of RingCell (Figure 3)
is presented below.

(� x : Value • mget.v?vv : (δ(v)) → mset.v !x → Skip);

μX •
(

mget.v?vv : (δ(v)) →
(

rd!v → Skip
� wrt?x → mset.v !x → Skip

))
; X

This action can be mapped into CSP using the mapping discussed in Section 3.2.

Soundness. The soundness of Ω is ensured by the following theorem.

Theorem 1. Let P be a Circus process with state S and main action A in the
domain of Ω (PS .A). Then, PS .A = Ω(PS .A).

The proof of this theorem is achieved by induction on the syntax of Circus using
its refinement calculus [5]. A complete detailed proof, including those for more
elaborated compositions like parallel composition, can be found in [17] (Ap-
pendix K – Page 402). Here, we informally discuss the proof for Skip.
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Lemma 1. PS .Skip = Ω(PS .Skip)

Proof Sketch. We start the proof from the right side of the theorem by using
the definition of Ω and ΩA. Next, since Skip is the sequence unit, we remove the
Skip at the left branch of the parallel composition and the Memory is unfolded
at the right branch of the parallel composition. We then apply the semantics of
vres and, to avoid conflicts in variable names, we also rename the outermost
b to sb. Here, the scope of the innermost b (in the right branch of the paral-
lel composition) may be expanded because it is not in the left parallel branch.
Next, we remove the first assignment (b := sb), replacing b for sb in the remain-
ing action. The final and innocuous assignment sb := sb, placed at the end of
the action can also be removed. At this point, the variable b is no longer refer-
enced; we also remove its variable block. For consistency purposes, we rename
the variable sb back to b. We are left with a parallel composition of a prefix-
ing on terminate with an external choice. The only possible synchronisation in
this parallel composition is on terminate, which is hidden from the environment.
For this reason, we remove this communication, leaving a parallel composition
on Skip that is equivalent to Skip, on which hiding has no effect. Finally, we
promote the variable b to a state component of a stateless process.

3.2 Mapping Circus Stateless Actions into CSP Processes

The definition of the function that maps Circus processes into CSP processes,
Υ , is direct for most of the cases. In [17], we present its full definition. Here, we
focus on its most interesting parts. As a simple example, the restricted input
prefixing c?x : P → A slightly differs from that of CSP because, in Circus, the
restriction P is a predicate, whereas in CSP it is a set: Υ returns a CSP prefixing
restricted by the set we build based on the Circus predicate.

Υ (c?x : P → A) =̂ c?x : {x | x ← δ(c), Υ (P)} → Υ (A)

The mapping of alternation uses a special event choose. This approach main-
tains existing non-deterministic choices if more than one guard is valid. The
rewritten action offers a choice among those actions whose guards are valid, pre-
fixed by choose, which is hidden. In Circus, the alternation diverges if none of
the guards is true: to ensure divergence freedom, which is one of the mapping
requirements, at least one of the guards must be true.

Υ (if g0 → A0[] . . . [] gn → An fi) =̂
(g0 & choose → ΩA(A0) � . . . � gn & choose → ΩA(An)) \ {| choose |}

Finally, we map recursive actions to local process definitions as CSP does not
provide anonymous recursive actions.

Υ (μX • A(X )) =̂ let Arec = Υ (A(Arec)) within Arec

This illustrates the definition of the mapping Υ , which has been successfully
applied to our example. By way of illustration, we present below part of the
CSP model resulting from the application of Υ to the changed main action of
the stateless RingCell .
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...
MEM_I = {| mset, mget, terminate |}

Memory(b) = ([] n:dom(b) @ mget.n!(apply(b,n)) -> Memory(b))
[] ([] n:dom(b) @ mset.n?x:type(n) -> Memory(over(b,n,x)))
[] terminate -> SKIP

RingCellMain = (|~| v:Value @ mget.RingCell_v?vRingCell_v:(type(RingCell_v)) ->
mset.RingCell_v!((tag(RingCell_v)).v) -> SKIP);

(let MuCellX = (mget.RingCell_v?vRingCell_v:(type(RingCell_v)) ->
( rd!(value(vRingCell_v)) -> SKIP
[] wrt?x -> mset.RingCell_v!((tag(RingCell_v)).x) ->

SKIP)); MuCellX
within MuCellX)

MemoryRingCell =
|~| b:BINDINGS @ ((RingCellMain; terminate -> SKIP) [| MEM_I |] Memory(b)) \ MEM_I

Using FDR2’s functional language, we have implemented some functions on bind-
ings: dom(b) yields the domain of a given mapping b; apply(b,n) yields the value
b(n), and over(b,n,x) overwrites b by mapping n to x (in languages like Z,
one would write b ⊕ {n �→ x}). Finally, the functions type and tag deal with
the typing of the variables and their names1.

Soundness. In [4], Cavalcanti et al provide a link between Circus and CSP
theories within the UTP. The predicate An =̂ okay ∧ ¬ wait ∧ A ∧ okay ′ gives
the behaviour of the action A when its preceding action has not diverged (okay)
and has terminated (¬ wait), and when A itself does not lead to divergence (A ∧
okay ′). This is the normal behaviour of A; behaviour in other situations is defined
by healthiness conditions. The terminating, non-diverging behaviour ofA is At =̂
An ∧ ¬ wait ′. Finally, the diverging behaviour of A is Ad =̂ okay ∧ ¬ wait ∧
A ∧ ¬ okay ′. The divergent behaviour is captured by the predicate ¬ okay ′.

The function tracesUT P(A) = {tr ′ − tr | An} ∪ {(tr ′ − tr) � 〈�〉 | At} gives
the set of traces of a Circus action defined as a UTP predicate A. This gives a
traces model to A compatible with that adopted in the traces model of CSP.
The behaviour of the action itself is that prescribed when okay and ¬ wait .
The behaviour in the other cases is determined by healthiness conditions of
the UTP theory. For example, in the presence of divergence (¬ okay), every
action can only guarantee that the trace is only extended, so that past history is
not modified. This behaviour is not recorded by tracesUT P (A). The variable tr
records the history of interactions before the start of the action; tr ′carries this
history forward. Therefore, the traces in tracesUT P(A) are sequences tr ′ − tr
obtained by removing from tr ′ its prefix tr . In addition, if tr ′ − tr leads to
termination, then tracesUT P(A) also includes (tr ′ − tr) � 〈�〉, since � is used
in the CSP traces model to signal termination.

The function below gives the set of failures of a divergence-free action A.

failuresUT P(A) = {(tr ′ − tr , ref ′) | An} ∪ {(tr ′ − tr , ref ′ ∪ {�}) | An ∧ wait′}
∪ {((tr ′ − tr) � 〈�〉, ref ′) | At} ∪ {((tr ′ − tr) � 〈�〉, ref ′ ∪ {�}) | At}

In a state that is not terminating, for every refusal set ref ′, there is an extra set
ref ′∪{�}. This is because � is not part of the UTP model and is not considered

1 All the steps for the mapping from Circus to CSP of our example can be found in
http://www.dimap.ufrn.br/~marcel/research/compass/ifm2014.rar

http://www.dimap.ufrn.br/~ marcel/research/compass/ifm2014.rar
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in the definition of ref ′, just as it is not considered in the definition of tr ′. As
before, for a terminating state, the extra trace (tr ′−tr)�〈�〉 is recorded. Finally,
after termination, � is also refused, and so ref ′ ∪ {�} is included.

We demonstrate the soundness of Υ for the traces model by proving the fol-
lowing theorem, which states that for every Circus action A that have a mapping
Υ (A) in CSP, the set of traces of A (tracesUT P(A)) is equal to the set of traces,
as defined in [19], of Υ (A) in CSP (traces(Υ (A))). For the failures model, we use
a similar approach based on a similarly defined linking function failuresUT P .

Theorem 2. ∀A : dom(Υ ) • tracesUT P(A)= traces(Υ (A)) ∧ failuresUT P (A) = failures(Υ (A))

The detailed proof of this theorem for each of the Circus actions constructs is
omitted here due to space restrictions; it can be found in [17].

3.3 Refinement and Verification

In [3,4], failures refinement is defined in the expected way: P F
UT P Q if, and

only if, tracesUT P(Q) ⊆ tracesUT P(P) and failuresUT P(Q) ⊆ failuresUT P(P).
Cavalcanti et al [3] provide a characterisation for refinement of divergent-free
processes using traces refinement and conformance relations, which allows us
to establish the equivalence of Circus process refinement (P) and the failures
refinement within the UTP defined above (F

UT P). For non-divergent processes,
failures refinement corresponds to failures-divergences refinement (FD

UT P).

PStP
.MAp �P QStQ

.MAq ⇔ mainp �FD
UT P mainq

Finally, based on the results of [3,4] and the results presented here, we are able
to establish a connection between Circus process refinement and CSP’s failures-
divergence refinement (FD).

Theorem 3. For every two Circus process PStP .MAp and QStQ .MAq in the do-
main of Ω: PStP

.MAp �P QStQ
.MAq ⇔ Υ (Ω(MAp)) �FD Υ (Ω(MAq ))

The sound mapping for processes and refinement notions from Circus to CSP,
presented here, fosters the reuse of CSP theoretical results in the context of
Circus. From a more practical perspective, it provides a strategy for model-
checking Circus specifications as we discuss in the next section.

4 Model-checking Circus Specifications

A first application of our results is the use of CSP tools like FDR to analyse
Circus processes. In our experiments, we verified that the RBuffer (Figure 2)
is deadlock-free and livelock-free by translating it into CSP using our mapping
and model-checking the CSP specification in FDR (depicted in Figure 4). Such
analyses could not be done automatically before the results presented here.

This strategy was also used to verify, using FDR, that the concrete distributed
RBuffer is a refinement of an abstract specification of a centralised buffer [5].
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Fig. 4. Analysing the Circus RBuffer using FDR

At the theoretical perspective, in [18] we describe a CSP-based foundation
for a correct-by-construction strategy to ensure the preservation of deadlock-
freedom of a system (in terms of its components). The strategy can also be
applied to predict other safety and liveness properties. Using our results, we lifted
these results to provide a similar systematic approach to build trustworthy Circus
systems [17]. The main principle for lifting the approach from CSP to Circus is to
keep the main structure of the definitions and rules. Its soundness at the Circus
level is assured using our results.

5 Conclusions

In this paper, we provide a mapping for processes and refinement notions from
Circus to CSP, which fosters the reuse of theoretical results and tools (origi-
nally developed for CSP) to Circus. Our mapping was proved sound based on
the existing UTP link between Circus and CSP. This proof allows us to freely
migrate results from CSP to Circus, particularly concerning analysis that can be
conducted using existing tools for CSP, like FDR and PAT.

We have applied our mapping as a theoretical foundation for benefitting from
this potential reuse in two different perspectives. At the practical perspective,
our results provide an alternative path for model-checking Circus using the es-
tablished CSP tools. In our experiments, we have analysed properties of Circus
processes (deadlock freedom, livelockfreedom, and refinement) using FDR by
translating them into CSP using our mapping and model-checking the resulting
specification in FDR. At the theoretical perspective, we used it to validate the
lifting from CSP to Circus of a correct-by-construction strategy to ensure the
preservation of properties of a system in terms of its components.

Some mappings from state rich processes into CSP have been presented as a
means to provide combination of formalisms taking a syntactic approach [6,13].
To the best of our knowledge, however, they do not address the soundness of
the translation in a common semantic framework. The work presented in [2] is
the one that directly relates to ours as they aim at providing a mapping from
Circus to CSP. Nevertheless, the “raw initial idea described in the paper” has
not been further developed and a formal proof has not be presented. We, how-
ever, provide a far more comprehensive, concrete and detailed approach for this
mapping that includes most of the Circus constructs, and a relation between the
refinement notions. More importantly, the soundness of our approach has been
demonstrated for both the mapping of constructs and the refinement relation.
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Although our strategy allows model-checking Circus specifications, the practi-
cal application of the proposed mapping, however, requires tool support since its
manual application is very error-prone. The implementation of a tool that trans-
lates Circus specifications into CSP specifications using our mapping is in our
research agenda. This tool will also provide means for relating counter-examples
provided by FDR to the original Circus specifications.

Finally, we will also investigate the resulting CSP models aiming at an opti-
misation of FDR’s model-checking. For example, we have already reduced verifi-
cation time by forcing the memory of a process to contain only those names used
in it. For that, we use Memory(dres(b,{RingCell_v})) rather than Memory(b),
where dres(f,ns) implements the domain restriction (usually written as ns�f )
that removes from f all pairs whose first element are not in ns .
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Abstract. We present a general approach on how to integrate a semi-
automatic verification tool into a state-of-the-art integrated development
environment (IDE). The objective and challenge is to keep implementa-
tion, specification and proofs in sync. Following a change in one of the
specifications or implementations, all proofs that could possibly be af-
fected by that change are rescheduled. To improve performance we look
at several optimizations. User feedback about proof results is provided
within the IDE using standard markers and views. The approach has
been implemented and realizes an integration of the interactive verifica-
tion system KeY into the Eclipse IDE.

Keywords: Verification, Integration of formal methods into software
engineering practice.

1 Introduction

A major challenge in software development is to keep the different artefacts
such as source code, comments, test cases and manuals up-to-date. Changes in
the source code are not reflected in comments and as soon as artefacts are not
managed in a single source, which is often the case for manuals or other technical
documents, the gap widens.

Adding static analyses, such as deductive verification, to a software devel-
opment process, aggravates the problem of keeping artefacts synchronized. A
systematic analysis of the dependencies and how they can be resolved becomes
mandatory for practical formal verification. Hence, we need to analyze which
additional tasks and artefacts software verification does add to the software de-
velopment process? Obviously, there is the specification of the intended program
behavior in a formal specification language like (Event-)B [1] or the Java Model-
ing Language (JML) [10]. Second, the proof that a program adheres to its speci-
fication. Conducting proofs is generally expensive. Depending on the complexity
and expressivity of the specification language, program logic and precision of the
underlying verification system, user interaction might be needed to complete the
proofs. But also completely automatic approaches (which of course might fail to
prove that a correct program is correct) for non-trivial properties take a long
time. The artefacts produced are source code, specification and proofs.

To illustrate the dependencies between the artefacts we use the Java program
shown in Listing 1.1. The source code is specified in JML, which follows the

E. Albert and E. Sekerinski (Eds.): IFM 2014, LNCS 8739, pp. 55–70, 2014.
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design-by-contract paradigm [12]. It provides means to specify methods, instance
invariants and framing properties.

In our example the specification consists of two method contracts encompass-
ing three specification cases. The two normal_behavior cases require that if
their respective precondition (requires clause) is satisfied at invocation time
then the method terminates normally (without an exception) and in its final
state the postconditon (ensures clause) holds. The exceptional_behavior case
specifies the additional (also) method behavior in case of an uncaught excep-
tion. The signals clause is used to state the thrown exception and to provide
a postcondition for the method’s final state.

The verification argument that the two methods satisfy their respective con-
tracts gives rise to three verification conditions (proof obligations), and hence
proofs1.

Listing 1.1. Example Java class specified with JML
1 package banking;
2

3 public class Account {
4 private /*@ spec_public @*/ int balance;
5 private /*@ spec_public @*/ int overdraftLimit;
6

7 /*@ normal_behavior
8 @ requires canUpdate(amount);
9 @ ensures balance == \old(balance) + amount;

10 @ assignable balance;
11 @ also
12 @ exceptional_behavior
13 @ requires !canUpdate(amount);
14 @ signals (Exception) true;
15 @ assignable \nothing;
16 @*/
17 public void update(int amount) throws Exception {
18 if (canUpdate(amount)) { balance += amount; }
19 else { throw new Exception(); }
20 }
21

22 /*@ normal_behavior
23 @ ensures \result == balance+amount > overdraftLimit;
24 @*/
25 public /*@ pure @*/ boolean canUpdate(int amount) {
26 return balance + amount >= overdraftLimit;
27 }
28 }

1 Depending on the verification system certain verification conditions might be com-
bined into one proof or split up into several subproofs.
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As it happens, the given specification is erroneous. The method contract for
canUpdate() promises in its postcondition that the sum of the account bal-
ance and the amount argument is greater than the overdraft limit, whereas
the implementation only guarantees greater-or-equal. Consequently, we have to
change either the implementation or the specification. Changing the implemen-
tation requires to redo the proof that canUpdate() satisfies its contract (and
preserves the invariants), but all other proofs remain valid provided that they
use the method’s contract and not its implementation. Changing the contract
of canUpdate(), however, requires to redo not only the proof for canUpdate(),
but also the proof for update() which uses the contract to represent the effect of
the invocation of canUpdate() in its conditional statement (and in its contract).

The example has a rather simple structure regarding implementation and
specification, so all proofs should close automatically. In more realistic examples
it might be necessary to assist the prover by performing some proof steps inter-
actively. More complex specifications make also use of invariants and advanced
framing concepts (assignable clause) which introduce additional verification
conditions and a higher degree of dependencies among different proofs. In such a
context it becomes challenging to keep all artifacts synchronized. In particular,
in the presence of continuous changes to implementation and specification, the
whole process has to be efficient—otherwise the user will turn the feature off.
Hence, to determine the smallest set of proofs that need to be redone as well as
to communicate the failure to find proofs (and thus potential bugs) to the user
is crucial for practical adoption of formal verification.

We make the following contributions: In Section 2 we present a novel approach
to store proof dependencies (and introduce some general notions). Section 3
presents our main contribution, namely the concept on how to integrate an
interactive verification tool into an IDE. In Section 4 we present a concrete
implementation of our concept based on Eclipse and the verification system
KeY [2]. Finally, we evaluate our approach and the proposed optimizations in
Section 5.

2 Background

We introduce the concepts implemented by (almost) any integrated development
environment (IDE) to manage development projects. Further, we introduce proof
dependencies, a new concept, which allows to determine the (sub-)set of proofs
that might become obsolete due to a change and need to be redone.

2.1 Basic IDE Concepts
A project has a unique name and is the root of a structured collection of resources.
Resources are of different kinds: source code, libraries, or meta information such
as the build path and settings. IDEs present the project structure usually as a
tree resembling the standard rendering of file systems. Source code is usually
displayed as a subtree of the project tree, where the inner nodes correspond to
modules or packages and the leaves represent the actual classes or files.



58 M. Hentschel et al.

A marker is a tag that can be attached to resources or content contained in a
resource. Markers have a kind (e.g., information, warning, error), a position, and
a description text. For instance, in case of a compilation error an error marker can
be positioned at the statement or line of code causing the error. IDEs visualize
markers in several ways: as a list of errors and warnings in a separate view or as
an icon shown within an editor next to the marker’s position.

2.2 Proof Dependencies

To determine efficiently which proofs must be redone in presence of a change, we
introduce the concept of proof dependencies as one contribution of the paper. In
the following definition we assume that a program annotated with specifications
is given as the context.

Definition 1 (Proof dependency). A proof dependency is a pair (proof obli-
gation, target descriptor) linking a proof obligation to a target descriptor. A
target descriptor represents a program or specification element used in the proof
of the proof obligation. A proof dependency and a change to the context program
is called

– dangling, if one of the program elements referred to by the target descriptor
does no longer exist;

– tainted, if the change might effect the evaluation or execution of the program
or specification element referred to by the target descriptor.

Remark 1. Proof dependencies capture the dependencies of a particular proof
to source code or specification elements and are thus proof dependent.

Depending on the kind of program element and its treatment by the calculus
used as basis for the verification system, we distinguish different kinds of proof
dependencies. For instance:

Method Invocation Proof Dependencies link a proof obligation to a meth-
od invocation descriptor (m, ct, ctxt) where m denotes the signature of the
called method, ct the static type of the callee and ctxt the class where the
method invocation occurred. Such a proof dependency is created when a
proof contains an explicit case distinction over all possible implementations
of a method to evaluate a given method invocation statement. A change
causes a tainted (or even dangling) proof dependency if it removes and/or
adds a new binding for the described method invocation.

Method Inlining Proof Dependencies link a proof obligation to a method
implementation (m, ct) with ct the class containing an actual implementa-
tion of method m. Proof dependencies of this kind are created when the
verification system inlines a method (instead of using a contract). Such a
proof dependency becomes dangling when method m is removed and tainted
if its implementation has been changed.
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Use Contract Proof Dependencies link a proof obligation to a contract of
a method and are created whenever the verification system uses a method
contract instead of inlining the method. It becomes dangling if the contract
has been removed and tainted in case the contract has been changed. The
exact definition when a contract has been changed depends on the semantics
of the specification language.

Field Access Proof Dependencies link a proof obligation to a field access
descriptor (fd, ct) with fd denoting a field declaration fd and ct the static
type of the reference prefix. They are created whenever a field is accessed in
source code or specifications. A change taints a field access proof dependency
if the field declaration has changed or if the parent hierarchy has changed. A
dangling proof dependency is caused if the field has been removed altogether.

Use Invariant Proof Dependencies link a proof obligation to an instance
or static invariant. They are created whenever a property assured by an
invariant is used in a proof. They become dangling if the invariant has been
removed and tainted in case the invariant has been changed.

3 Integrated Proof Management

We describe our approach to integrated proof (or analysis) management. The
concept has been developed with semi-automatic verification systems in mind,
but we want to emphasize that automatic or completely interactive verification
or static analysis systems in general can profit as well. The approach is designed
for modular verification which gives rise to a number of proof obligations.

The concept consists of an appropriate file structure (Section 3.1) and of an
automatic update process (Section 3.2). Section 3.3 summarizes the requirements
on verification tool and IDE needed to realize our approach.

3.1 Proof Storage and Proof Markers

Proofs are the central artefacts produced by software verification tools. To man-
age proofs we extend a project with an additional resource kind for proofs.
Managing proofs as part of a project is advantageous in many ways: (i) the user
has direct access to the proofs and can inspect or manipulate them; (ii) if a
version control system is used, then source code, specifications and proofs are
committed and updated together ensuring their synchronization. Further, it is
possible to compare different versions of a proof.

For a concise representation of verification results we use markers as described
in Section 2.1 to indicate the status of proof obligations. Information markers
indicate successful (closed) proofs, possibly with a hint that not all used specifi-
cations (theorems) have yet been proven. Warning markers are created for open
proofs and provide details of the reason why a proof was not successful (timeout
or unclosable goal detected). Error markers with a failure description indicate
syntax errors in specifications, failed global correctness checks (such as cyclic
dependencies), or unexpected events like uncaught exceptions.
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3.2 Update Process

The proof manager is responsible to keep (i) source code, specification and proofs
synchronized as well as (ii) the verification status information (in the form of
markers) up-to-date.

Changes to source code and/or specifications may invalidate existing proofs
or give rise to additional proof obligations whose proofs (proof attempts) are
stored as new proofs. The markers need then to be updated to reflect the correct
status. This scenario is shown in Fig. 1a. The second source of change is a
modified proof, for instance, after the user performed some interactive proof
steps. In this case only the result markers need to be updated to reflect the
new status (see Fig. 1b). Changing the status of one proof might trigger status
changes of dependent proofs, for example: the proof that a method m adheres
to its specification could be closed but uses the contract of method n. Hence,
the overall correctness of the proof for m depends on the proof that method n
adheres to its specification.

(a) Change of code/specification (b) Change of proofs

Fig. 1. Change handling

We describe the update process for source code or specification changes (first
scenario) in detail. It contains the process for proof changes (second scenario)
as a subroutine. The update process is triggered whenever a change occurs, for
instance, every time a file is saved. The näıve approach to simply redo all proofs
upon each change turns out to be too inefficient and does not scale to larger
projects. Instead we propose the algorithm shown in Algorithm 1 to reduce the
overall verification time. The algorithm provides several anchor points in which
different optimizations can be plugged in.

Upon a change the IDE informs the proof manager and provides the affected
project as well as additional information about the change. The detail of the
provided change information depends on the IDE and the nature of the change.
It can range from detailed information like renaming of a method or field to a
simple list of files that have been changed.

When the update process is triggered by a source code or specification change,
it first retrieves all proof obligations available for the project (line 1). In a second
step (line 2) the relevant proof obligations for which proofs have to be redone



An Interactive Verification Tool Meets an IDE 61

input: A project p and a list of changes ci (change information) in p
1 allProofObligations ← listAllPO (p);
2 pendingProofObligations ← filter (allProofObligations, ci);
3 pendingProofObligations ← sort (pendingProofObligations);
4 foreach po in pendingProofObligations do
5 proofResult ← doProof (po);
6 showInfoOrWarning (proofResult);
7 end
8 cycles ← checkCycles (allProofObligations);
9 showError (cycles);

Algorithm 1. Update process (source code/specification change)

are determined and (line 3) prioritized. The proof obligations are then processed
in order of their priority and proof attempts are initiated (line 5). The status of
each performed and completed proof attempt is updated (line 6).

When all proof attempts have been completed (successful or not), a global cor-
rectness check (line 8) is performed to ensure that no cyclic proof dependencies
exist (e.g., to avoid that when proving total correctness of a recursive method
its own contract is used to eliminate the recursion). The global correctness check
must look at all proof obligations and their respective proof dependencies. Fi-
nally, the result markers are updated again (line 9) to reflect the result of the
global correctness check. In case of a proof change only the global correctness
check and result update has to be performed.

For a näıve approach the implementation of the procedures filter (line 2) and
sort (line 3) simply return the list of proof obligations given as their argument,
while method doProof starts a new proof search for each proof obligation. In the
following we present for each of these procedures an optimized implementation
to achieve a significantly reduced proof effort and to provide faster feedback to
the developer.

Optimization Selection. Proofs are modular in the sense that they rely only on
specific parts of the implementation and specification. Hence, method filter
can remove all proof obligations for which the related proof is known to not be
affected by the change. To this extent method filter retrieves the stored proof
dependencies for each proof obligation and checks whether the change caused a
tainted or dangling proof dependency (see Section 2.2). Proof obligations with
no tainted or dangling proof dependencies are filtered out. The achieved pre-
cision depends on granularity with which changes are recorded (changed files,
code fragments, specification elements, . . . ). Proof obligations remaining from
previous changes (e.g., if a previous change was not well-formed and caused
compilation errors) have to be returned as well.

Optimization Prioritization. For usability reasons it is important to provide
feedback about the status of the different proofs to the developer in a timely
manner. This is achieved by (i) updating the proof status after each completed
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proof attempt (line 6) and by (ii) prioritizing the proof-obligations to be proven
(line 3). Prioritization takes into account that the developer is not interested in
all proofs to the same degree. A developer changing the specification of a method
m has an immediate interest to know whether that method still satisfies the mod-
ified contract; once this is achieved, it is proven whether the modified contract
is (still) sufficiently strong to prove the correctness of methods invoking m. A
prioritization (in descending order) might be as follows: proof obligations (p.o.)
for the currently selected element → p.o. for the currently selected type → p.o.
for the currently selected file → p.o for other opened files → all other proof
obligations.

Optimization Proof Replay. This optimisation concerns the implementation of
doProof(). Proof replay is usually faster than proof search for two reasons:

– if closing a proof required user interaction, the interactive steps are saved
and performed automatically during proof replay (if still applicable);

– if the proof format stores each performed step (and not only a script), proof
replay avoids expensive proof search strategies completely.

To benefit from proof replay, doProof() proceeds as follows: if no saved proof
exists then proof search is used. Otherwise, proof replay is attempted. Proof re-
play may complete with two outcomes: (i) either the saved proof can be replayed
completely or (ii) the proof replay stops at some point, because some proof step
is no longer applicable (due to the performed change). In the latter case, proof
search is initiated to attempt to close the proof. Note that even in case (i) the
replayed proof might not be closed in case the change did not affect that proof
and a previous proof attempt was unsuccessful. In that case, we do not start
automatic proof search, but ask the user to finish the proof interactively.

If the underlying verification system provides more intelligent proof reuse
strategies [14,9] than simple proof replay, these can be used instead (or in com-
bination) to reduce the verification effort.

Optimization Parallelization. The for-loop of Algorithm 1 can be parallelized to
execute several proofs concurrently. The time required for proof search differs
from proof to proof and thus it is not advisable to have a fixed assignment from
proof obligations to threads, but to use pooling instead. We can even distribute
the update process to other computers as long as it reduces the overall time.

3.3 Requirements

To implement the proposed proof management and update process, the IDE and
verification tool need to satisfy some minimal requirements:

– The verification tool must be able to list all proof obligations for a project,
to instantiate a proof and start the proof search. For proof replay, the ver-
ification system must be able to save and replay proofs. For the optimized
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selection, the proof format of the verification tool must be proof produc-
ing and the proof format must contain enough information to extract proof
dependencies.

– The IDE must be extensible to add support for managing proofs inside a
project and to listen for project changes to trigger the update process. Na-
tive support for markers is advantageous for seamless integration, but not a
necessity.

4 Implementation

We realized our concept by integrating the verification system KeY into Eclipse
(the tool is available at www.key-project.org). Fig. 2 shows a screenshot of our
Eclipse integration called KeY Resources.

Fig. 2. Screenshot of KeY’s Eclipse integration

The Package Explorer view provides access to all files organized in a KeY
project which extends the original Java project with the features of the integrated
proof management as described in Sect. 3. The project structure is extended by a
proof folder proofs which stores the proofs together with meta files that contain
in particular the proof dependencies. For ease of navigation the proof folder
reflects the hierarchy of the source folder.

The editor shows the file Account.java with the program from Listing 1.1. The
Outline view lists basic code members for navigation purposes. The information

http://www.key-project.org/eclipse/KeYResources


64 M. Hentschel et al.

marker in front of line 17 indicates that both proofs of method update are closed
while the warning marker in front of line 29 indicates that the proof of canUpdate
is still open. The user can directly open a proof in KeY to inspect or continue
the proof interactively by using Eclipse’s quick fix functionality. In addition to
the markers, view Problems is used to summarize the proof results together with
other detected issues.

Eclipse satisfies all requirements on the IDE side. Projects, folders and files
are represented as a resource within Eclipse. A resource can be annotated with
resource markers which are used to present proof results to the user. Integrated
project builders are triggered when the project content has changed. We imple-
mented a builder which executes our update process.

Our implementation determines proof dependencies by analyzing the applied
calculus rules. The dependencies can be then directly extracted from their in-
troducing rules. Hence, the computation complexity is linear to the proof size.
Note, the dependencies have to be computed only once and are then stored in a
meta file.

Our implementation realizes all optimizations suggested in Sect. 3.2 except
prioritization. Eclipse provides change information by default only on the file
level which restricts the precision of the selection optimization. As a consequence,
we need to consider proof dependencies as tainted or dangling whenever the file
containing the element referenced by the target descriptor has changed (or a
file containing a subtype or supertype has changed). Proofs are performed in
parallel in a user-defined number of threads. If a stored proof is available, proof
replay is attempted.

5 Evaluation

We compare the impact of the proposed optimizations for the reduction of the
overall proof time based on our implementation. To this end, we simulate a
development process on a small Java project where the source code and its
specifications are modified several times.

We use the PayCard case study of the KeY Quicktour2 as a starting point. Ini-
tially, the PayCard case study consists of 4 classes, 18 methods and 22 contracts
but has no inheritance relations. We perform 25 modifications (see Table 1) which
add new elements, modify or remove existing ones. By performing these modifi-
cations the project grows intermittently to 10 classes, 27 methods, 61 contracts
and 6 inheritance relations. Hence, we consider the performed changes as the
independent variable. For the dependent variable we focus on the overall proof
time. We measured the total time required to perform the verification process
without the parsing time for the source code to achieve comparable results not
obfuscated by technical issues. The system used for the evaluation is powered
by an Intel Core i7-2600K CPU, 8 GB RAM and Windows 7 64 Bit. For the
Java Virtual Machine the initial heap size is 128 MB and the maximum memory
allocation is set to 1024 MB.
2 http://www.key-project.org/download/quicktour/quicktour-2.0.zip

http://www.key-project.org/download/quicktour/quicktour-2.0.zip
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Table 1. Performed modifications

Modification Description Classes Proofs

1 Populate the project with initial classes 4 22
2 Delete a proof file 4 22
3 Delete a meta file 4 22
4 Modify a proof file 4 22

5–8 Modify an initial class 4 22
9 Add two new subclasses 6 34
10 Add two new subclasses 8 49
11 Add two new subclasses 10 61
12 Modify an initial class 10 61

13–18 Modify an added class 10 61
19–21 Modify an initial class 10 61

22 Delete two added classes 8 46
23 Delete four added classes 4 22
24 Remove a method from initial class 4 21
25 Remove a constructor from initial class 4 20

Impact of Optimization Selection. Fig. 3 shows that the selection optimization
reduces the number of proofs in some cases significantly, while in others most
proofs need to be redone. The reason is that some modifications invalidate almost
all proofs while others have only a local effect. The initial population (modifi-
cation 1) requires all proofs to be redone as no previous proofs exist. Starting
with modification 2 the optimization was always successful in filtering out some
proofs. This is also reflected by the overall proof times shown in Fig. 4.
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Number of proofs done

without selection
with selection

Fig. 3. Proof count of optimization selection

As mentioned in Sect. 4, the decision whether a proof has to be performed
is based on changed files and not on the changed content within a file. We
expect even better results by taking more information about the modification
into account.
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Fig. 4. Proof times of optimization selection

Impact of Proof Replay. Fig. 5 compares the overall proof times per modification
with and without replay. Parallelization and filtering are not performed. We
observe that the proof time is almost identical across different modifications as
long as the number of performed proofs is the same. The overall proof time with
replay is always less than the proof time without proof replay.
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Fig. 5. Proof times of optimization proof replay

Impact of Optimization Parallelization. Fig. 6 shows the results comparing the
use of 1, 2, 4 and 8 threads without replaying and selecting proofs. We can see
that with a growing number of threads the proof time is reduced until a cer-
tain threshold is reached. Beyond that threshold additional threads increase the
overall proof time because of increased synchronization overhead. This overhead
is implementation- and hardware-specific and cannot be generalized.
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Fig. 6. Proof times of optimization parallelization

Combined Optimizations. As we described above each optimization on its own
reduces the overall proof time. Now we combine all optimizations such that the
number of performed proofs is reduced, replay is used and proofs are performed
in parallel. The result is shown in Fig. 7.
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Fig. 7. Proof times of combined optimizations

Table 2 summarizes the results. The first column specifies which optimizations
are used. The next three columns show first the sum of all proof times per
modification, the resulting average value and the percent compared to the worst
scenario without optimizations. The last three columns list the total number of
done proofs of all modifications, the resulting average value and again percent
comparison to the worst case.

Each optimization on its own reduces the overall proof time. The best value
is achieved by combining all optimizations and using 8 threads, which reduces
the overall proof time by 77% from 40.1 seconds to 9.1 seconds.

The achieved improvement is significant but not yet sufficient. A developer
may save a file every few seconds triggering the proof process each time. For
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Table 2. Analysis of proof times and number of performed proofs

Proof time # of proofs
Description Σ in s ∅ in s % Σ ∅ %

1 Thread no replay and no selection 1003 40.1 100 1039 41.6 100

1 Thread with no replay and selection 624 25.0 62 534 21.4 51
4 Threads no replay and selection 417 16.7 42 1039 41.6 100
8 Threads no replay and selection 421 16.8 42 1039 41.6 100

1 Thread with replay 803 32.1 80 1039 41.6 100

1 Thread with replay and selection 476 19.0 47 534 21.4 51
4 Threads with replay and selection 245 9.8 24 534 21.4 51
8 Threads with replay and selection 227 9.1 23 534 21.4 51
16 Threads with replay and selection 243 9.7 24 534 21.4 51

this reason it is required that the user can continue working while the update
process is running. To achieve this, the project builder should only be concerned
with determining and prioritizing the proof obligations. Everything else has to
be performed outside the builder.

Threats to Validity. We measured the total proof time which strongly depends
on the number and the complexity of the proofs. The chosen example is well
known in the KeY community and covers different verification scenarios. We
designed the applied changes carefully to simulate realistic modifications and to
cover all scenarios which can influence the implemented selection optimization.
However, the achieved improvement depends in the end on the source code and
its specifications as well as on the used verification tool.

6 Related Work

In [13] development graphs (DG) are suggested for proof management. DGs
constitute a more general structure than proof dependencies, but are tailored
to algebraic specification languages such as CASL. DGs capture dependencies
among specifications and can be used to compute the effect of a specification
change. Proofs seem not to be analyzed which might result in more proofs being
redone than necessary. Instantiating DGs to a design-by-contract setting for a
real-world programming language is not straightforward concerning the repre-
sentation of source code. DGs are implemented in the tool Maya, which seems not
be integrated with a mainstream IDE. Proof dependencies provide a lightweight
approach that can be implemented for most combinations of verification system
and IDE.

Dafny [11], VCC [3], SPEEDY [5] and OpenJML with ESC [4] provide an
integration into an IDE. To the best of our knowledge they do neither manage
proofs nor use change information to restrict the amount of verification effort. In
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case of interactive or semi-automatic verification tools the user is also interested
in the proofs and to maintain them along the source code.

Rodin is the main IDE used for modeling in Event-B [1]. It features a semi-
automatic verification system for Event-B models and stores proofs within the
project similar to our approach. The detection of invalidated proofs is based on
the name of proof obligations which change when the model is changed. Invalid
proofs are neither redone nor removed automatically.

Other static analyses like FindBugs [8] use also common IDE concepts to
organize the work and to present results, but do not manage their results within
the IDE and have to be run again from scratch when the source code is modified.

7 Conclusion and Future Work

We presented a lightweight approach to integrate an interactive verification tool
into an IDE and implemented it on the basis of KeY and Eclipse. The integration
achieves that source code, specifications and proofs are always in sync without
placing that responsibility on the user. Proof results are presented as early as
possible and user interaction is only required when a proof cannot be closed
automatically. Several optimizations can be added in a modular manner. With
them we could reduce overall proof time on average by 77% in our case study.

In state-of-art software development nearly all tasks are done within an IDE
to achieve a consistent software development process. Verification should aim to
become part of that process and integrate seamlessly into the existing infras-
tructure. Our approach is a step toward this goal and can be realized without
any changes on the verification tool.

We plan to increase the precision of the selection optimization by identifying
changed elements within a file and to implement the prioritization optimiza-
tion. We will also investigate whether and how proof reuse [9] and abstract
contracts [7] may help to reduce the overall proof time. In addition we will for-
malize proof dependencies to obtain a formal proof of the correctness of our
approach.
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Abstract. We consider the problem of evaluating quantitative service-level
agreements in public services such as transportation systems. We describe the
integration of quantitative analysis tools for data fitting, model generation, simu-
lation, and statistical model-checking, creating an analysis pathway leading from
system measurement data to verification results. We apply our pathway to the
problem of determining whether public bus systems are delivering an appropriate
quality of service as required by regulators. We exercise the pathway on service
data obtained from Lothian Buses about the arrival and departure times of their
buses on key bus routes through the city of Edinburgh. Although we include only
that example in the present paper, our methods are sufficiently general to apply
to other transport systems and other cities.

1 Introduction

Modern public transport systems are richly instrumented. The vehicles in a modern
bus fleet are equipped with accurate GPS receivers, Wi-Fi, and on-board communi-
cations, allowing them to report their location for purposes such as fleet management
and arrival-time prediction. High-frequency, high-resolution location data streams back
from the vehicles in the fleet to be consumed by the predictive models used in real-time
bus tracking systems.

We live in a data-hungry world. Users of public transport systems now expect to be
able to access live data about arrival times, transit connections, service disruptions, and
many other types of status updates and reports at almost every stage of their journey.
Studies suggest that providing real-time information on bus journeys and arrival times in
this way encourages greater use of buses [1] with beneficial effects for the bus service.
In contrast, when use of buses decreases, transport experts suggest that this aggravates
existing problems such as outdated routes, bunching of vehicles, and insufficient pro-
vision of greenways or bus priority lanes. Each of these problems makes operating the
bus service more difficult. Bus timetables become less dependable, new passengers are
discouraged from using the bus service due to bad publicity, which leads inevitably to
budget cuts that further accelerate the decline of the service.

Service regulators are no less data-hungry than passengers, requiring transport oper-
ators to report service-level statistics and key performance indicators which are used to
assess the service delivered in practice against regulatory requirements on the quality of
service expected. Many of these regulatory requirements relate to punctuality of buses,
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defined in terms of the percentage of buses which depart within the window of toler-
ance around the timetabled departure time; and reliability of buses, defined in terms of
the number of miles planned and the number of miles operated. The terms schedule
adherence or on-time performance are also used to refer to the degree of success of a
transportation service running to the published timetable.

With the aim of helping service providers to be able to work with models which
can be used to analyse and predict on-time performance, we have connected a set
of modelling and analysis tools into an analysis pathway, starting from system mea-
surement data, going through data fitting, model generation, simulation and statistical
model-checking to compute verification results which are of significance both to service
providers and to regulatory authorities.

The steps of the analysis pathway, depicted in Figure 1, are as follows:

1. Data is harvested from a bus tracking system to compile an empirical cumula-
tive distribution function data set of recorded journey times for each stage of the
bus journey. In this paper, we generate inputs to the system using the BusTracker
automatic vehicle tracking system developed by the City of Edinburgh council and
Lothian Buses [2].

2. The software tool HyperStar [3] is used to fit phase-type distributions to the data
sets.

3. A phase-type distribution enables a Markovian representation of journey times
which can be encoded in high-level formalisms such as stochastic process algebras.
In particular, we use the Bus Kernel model generator (BusKer), a Java applica-
tion which consumes the phase-type distribution parameters computed by Hyper-
Star and generates a formal model of the bus journey expressed in the Bio-PEPA
stochastic process algebra [4]. In addition, the BusKer tool generates an expres-
sion in MultiQuaTEx, the query language supported by the MultiVeStA statistical
model-checker [5]. This is used to formally express queries on service-level agree-
ments about the bus route under study.

4. The Bio-PEPA Eclipse Plugin [6] is used to perform stochastic simulations of the
Bio-PEPA model.

5. MultiVeStA is hooked to the simulation engine of the Bio-PEPA Eclipse Plugin,
consuming individual simulation events to evaluate the automatically generated
MultiQuaTEx expressions. It produces as its results plots of the related quantita-
tive properties.

We are devoting more than the usual amount of effort to ensuring that our tools are
user-friendly and easy-to-use. This is because we want our software tools to be used “in-
house” by service providers because only then can service providers retain control over
access to their own proprietary data about their service provision. With respect to ease-
of-use in particular, making model parameterisation simpler is a crucial step in making
models re-usable. Because vehicle occupancy fluctuates according to the seasons, with
the consequence that buses spend more or less time at bus stops boarding passengers, it
is essential to be able to re-parameterise and re-run models for different data sets from
different months of the year.

It is also necessary to be able to re-run an analysis based on historical measurement
data if timetables change, or the key definitions used in the evaluation of regulatory
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BusTracker HyperStar BusKer Bio-PEPA MultiVeStA

Fig. 1. The analysis pathway

requirements change. Evidently, a high degree of automation in the process is essential,
hence our interest in an analysis pathway.

Related work. We are not aware of other toolchains based on formal methods for the
quantitative analysis of public transportation systems. The same bus system is studied
in [7], from which we inherited the data-set acquisition and its fitting to phase-type
distributions. Differently from our approach, in [7] different software tools are individ-
ually used to perform distinct analyses of the scenario. For example, the Traviando [8]
post-mortem simulation trace analyser is fed with precomputed simulation traces of a
Bio-PEPA model similar to ours, and the probabilistic model checker PRISM [9] is used
to analyse a corresponding model defined in the PRISM’s input language.

More generally, our approach takes inspiration from generative programming tech-
niques [10], in that we aim at automatic generation of possibly large stochastic process
algebra models (our target language) from more compact higher-level descriptions (i.e.,
the timetable representation and the model parameters).

The generation of MultiQuaTEx expressions fits well with the literature on higher-
level specification patterns for temporal logic formulae [11]. Temporal logics, the com-
mon property specification languages of model checkers, are not in widespread use
in industry, as they require a high degree of mathematical maturity and experience in
formal language theory. Furthermore, most system requirements are written in natu-
ral language, and often contain ambiguities which make it difficult to accurately for-
malise them in any temporal logic. In an attempt to ease the use of temporal logic, [11]
gives a pattern-based classification for capturing requirements, paving the way for semi-
automated methodologies for the generation of inputs to model checking tools. From a
general perspective, in this work we fix the property patterns of interest, and completely
hide property generation and evaluation to the end user.

Paper structure. Section 2 motivates our reasons for constructing a stochastic model of
the problem. Section 3 describes the analysis problem in greater detail and presents the
key definitions used in the paper. Section 4 describes how measurement data is trans-
formed into model parameters to initiate the analysis which is undertaken. Section 5
describes the software tools in the analysis pathway. Section 6 presents the software
analyser which combines these disparate tools. Section 7 presents our analysis in terms
of the key definitions of the paper. Conclusions are presented in Section 8.
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2 The Importance of Modelling

We are working in a context where we have an existing operational instrumented system
which is gathering data on its service provision. However, instead of working directly
with the data we will construct a high-level stochastic model of the data, using Erlang
distributions with a number of phases and an exponentially-distributed rate to describe
a journey between two timing points. The timing points are those bus stops which are
named in the published timetable for the route.

We work with a stochastic model instead of working with the data directly because,
importantly, we are not concerned with detecting post-hoc violations of the regulations
from measurement data. Rather, we are trying to estimate the likelihood of future vio-
lations of the regulations in journeys which are similar to those which we have seen,
although not identical to them. For this reason we generalise from the data to a stochas-
tic process which describes the data well in a precise sense statistically.

Measurement data only records particular historical events: it does not generalise.
For example, if our collected observations tell us that a bus journey can take five, six,
eight, or nine minutes it is reasonable to assume that it can also take seven minutes,
although this is not actually recorded in the data. Generalising from data like this is the
act of abstraction which is at the heart of modelling. Models have many other strengths.

– Models are intellectual tools for understanding systems. They can be understood by
service operators and used to communicate with regulators or other stakeholders.

– Models impose order on data, shaping it to become information which can be used
in making decisions about how systems are modified.

– Models are concise and can be easily compared. In contrast, data is verbose and
difficult to compare.

– Models are high-level and structured. Data is low-level and unstructured.
– Models are scalable. The number of phases in the stochastic description of the jour-

ney can be easily modified in order to explore the effect of different routes. Adding
more phases corresponds to lengthening the route; removing phases corresponds to
shortening it. Data is not scalable in this way.

– Models are tuneable. Rates can be easily adjusted in order to explore the effect of
increased congestion on the routes or the effect of changes in the speed limit on
parts of a route. Data is not tuneable in this way.

– Models are editable in a way which data is not. We can predict the effect of planned
engineering works on journey times by using measurement data which incorporates
the effect of previous engineering works and scaling it to fit if needed.

Because measurement data consists of a finite number of observations we know that
there is additional possible behaviour which we have not seen. Stochastic modelling is a
powerful reasoning tool allowing us to estimate the likelihood of values which we have
not seen based on the frequency of occurrences of those values which we have seen.
Conclusions drawn solely from the data would be misleading in that we would be led
to believe that some combinations of events were impossible when in fact they are only
relatively unlikely.

Finally, in moving from the data to the stochastic model we only need to ensure that
we have identified a suitable stochastic process to represent the data. In Section 4 we
will explain the use of the Kolmogorov-Smirnov statistical test to ensure this.
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3 The Analysis Problem

The notion of punctuality which we are considering here is defined in terms of the con-
cept of a “window of tolerance” around the departure times advertised in the timetable.
Perhaps not very surprisingly, this notion differs between different operators and differ-
ent countries, for instance:

– According to Transport for London, a bus is considered to be on time if it departs
between two minutes and 30 seconds early and five minutes late [12].

– In England outside London, a bus is considered to be on time if it departs between
one minute early and five minutes, 59 seconds late [13].

– In Scotland, according to the definitions reported in the Scottish Government’s Bus
Punctuality Improvement Partnerships report, a bus is considered to be on time if
it departs between one minute early and five minutes late [14].

Each region has a definition of on-time in terms of the window of tolerance but clearly
when comparing the quality of service in one region with the quality of service in
another it is necessary to be able to re-evaluate the service delivered historically against
the definitions used by another.

Our problem is to generate a mathematical model which allows us to analyse the
following properties, for each bus stop advertised in a timetable.

P1. The average time of departure from the bus stop.
P2. The average distance of the departure time from the timetabled time.
P3. The probability that a bus departs on time.
P4. The probability of an early departure.
P5. The probability of a late departure.

Since the window of tolerance is asymmetric with respect to the timetable, property
P2 is formally defined as the expected value of the absolute value of the difference
between the time of departure and the respective timetabled time. Note that properties
P3–P5 clearly depend on the notion of punctuality adopted.

In this paper we focus on a particular bus route. Specifically, we consider the Lothian
Buses #31 bus on its journey from North Bridge in Edinburgh’s city centre to Bonnyrigg
Toll in the south, passing through the Cameron Toll and Lasswade Road timing points.
The same bus route has been studied in [7], as discussed in Section 1. Table 1 shows its
timetable, where the departure time from North Bridge is taken as the reference time 0.

Table 1. Timetable for the #31 bus operated by Lothian Buses in Edinburgh

Timing point Code Timetable (in minutes)
North Bridge NB 0
Cameron Toll CT 16
Lasswade Road LR 24
Bonnyrigg Toll BT 34
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4 From Measurement Data to Model Parameters

We now turn our attention to how model parameters are found for a BusKer input.

4.1 The BusTracker Data

The raw data which is the input to the pathway is a dataset compiling measured journey
times between timing points, forming an empirical distribution over the journey times.
This data set incorporates the unpredictable effects of many different types of delays
which the service can experience, due to traffic congestion and competition with other
buses for access to bus stops. The data is obtained from the passenger waiting time
website for Lothian Buses [2]. We collected raw data from this website by scripting, and
wrote the data to a file for post-processing. This data is available from the QUANTICOL
website at http://www.quanticol.eu. Post-processing identified departure events in
the data, and computed journey times between timing points, compiling an empirical
distribution of journey times.

4.2 HyperStar

Phase-type distributions are a class of probability distributions formally defined as the
time to absorption of a continuous-time Markov chain (CTMC). They are very popular
in the performance evaluation community because they can approximate, with arbi-
trary precision, generally-distributed events by means of appropriate stages (or phases)
of independent exponential distributions [15]. Concretely, this allows a modeller to
accurately describe general systems exhibiting nonexponential distributions using a
Markov chain as the underlying mathematical formalism. An Erlang distribution, here-
after denoted by Erl(k,λ ), is a special case of a series of k > 0 exponential phases, each
with mean duration given by 1/λ , with λ > 0. The mean duration of the distribution is
k/λ . It is particularly useful for modelling activities with low variance — in the limit
k→ ∞ it behaves deterministically. It has been found in [7] to approximate bus journey
times well. For this reason, our current implementation supports Erlang distributions
only, although an extension to general phase-type distributions is possible.

Given a set of observed durations, the problem is to find the parameters of a phase-
type distribution that fits them most appropriately (according to some criterion of opti-
mality). For an Erlang distribution, this amounts to finding the values of the parameters
k and λ that completely characterise it. For this, we use HyperStar, a new software tool
released in 2013 [3] to convert our empirical distribution to an analytic one.

4.3 The Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test can be used to quantify the distance between an empiri-
cal distribution function and a cumulative distribution function. The test can be used to
answer the question whether the data would be thought to have come from the speci-
fied distribution. We applied this test to the empirical data and the Erlang distributions
returned by HyperStar. The null hypothesis was accepted with credible test statistics
and critical values in all three cases meaning that the Erlang distributions are suitable
stochastic process descriptions of the data.

http://www.quanticol.eu
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5 The Analysis Pathway

In this section we describe in more detail the modelling tools and formal languages of
our analysis pathway, as well as their integration.

5.1 BusKer

The Bus Kernel model generator (BusKer) is a Java command-line application that
takes as input the specification of the window of tolerance (parameters maxAdvance
and maxDelay, respectively) and a BusKer specification, i.e. a comma-separated rep-
resentation of the timetable and the Erlang distribution for the time to reach the next
timetabled bus stop. For instance, in this paper we will consider the parameter fitting
used in [7] for the route in Table 1, which yields the following BusKer specification:

# Timing point,Code,Timetable,k,λ
North Bridge,NB,0,105,6.47

Cameron Toll,CT,16,83,8.79 (1)

Lasswade Road,LR,24,98,10.54

Bonnyrigg Toll,BT,34,−,−

As a result, BusKer generates the inputs for the next two steps of our analysis pathway:
a Bio-PEPA model of the bus service, and the MultiQuaTEx expression analysed by
MultiVeStA to state the quality of the studied bus service with respect to the provided
window of tolerance.

5.2 Bio-PEPA

Although designed for application to modelling problems in biological systems, Bio-
PEPA has been effectively applied to problems as diverse as crowd dynamics [16],
emergency egress [17] and swarm robotics [18]. Here, we use it because it is a stochastic
process algebra with an underlying CTMC semantics; as such it is possible to encode
phase-type distributions in Bio-PEPA. Furthermore, it is implemented by a software
tool, the BioPEPA Eclipse Plugin, which supports stochastic simulation in a way that is
easily consumable by MultiVeStA. Referring the reader to [4] for the complete formal
account, we will use the following simplified BusKer specification to briefly overview
the language:

# Timing point,Code,Timetable,k,λ
North Bridge,NB,0,3,0.19 (2)

Cameron Toll,CT,16,−,−

BusKer will generate the specification shown in Listing 1.1. The model concerns the
five species NB 1, NB 2, NB 3, CT 1 and DepsFromNB, representing the number of buses
in North Bridge (NB 1), those in the first (NB 2) and second (NB 3) part of the jour-
ney from North Bridge to Cameron Toll, and the number of buses at Cameron Toll
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1 // Definitions of rate functions
2 // Functions for North Bridge -> Cameron Toll (3 phases)
3 NBtoCT_1 = [0.19 * NB_1];
4 NBtoCT_2 = [0.19 * NB_2];
5 NBtoCT_ARRIVED = [0.19 * NB_3];
6 // Definitions of processes
7 // Processes for North Bridge -> Cameron Toll (3 phases)
8 NB_1 = NBtoCT_1 << ;
9 NB_2 = NBtoCT_1 >> + NBtoCT_2 << ;

10 NB_3 = NBtoCT_2 >> + NBtoCT_ARRIVED << ;
11 // Cameron Toll is the final stop.
12 CT_1 = NBtoCT_ARRIVED >> ;
13 // State observations
14 DepsFromNB = NBtoCT_1 >> ;
15 // Initial configuration of the system (one bus in North Bridge)
16 NB_1[1] <*> NB_2[0] <*> NB_3[0] <*>
17 CT_1[0] <*>
18 DepsFromNB[0]

Listing 1.1. The Bio-PEPA model generated by BusKer for the scenario of (2)

(CT 1). Finally, DepsFromNB is an observer process used to count the number of depar-
tures from North Bridge. Lines 16–18 provide the initial system configuration: one
bus is in North Bridge, while all the other populations are set to 0. A reaction pre-
fix such as NBtoCT 1<< in a species definition (e.g. NB 1 = NBtoCT 1<< at line 8)
causes the population count of that species (NB 1) to decrease by one when the reaction
NBtoCT 1 occurs. In particular, line 3 specifies that the reaction NBtoCT 1 occurs with
a rate obtained by multiplying the constant 0.19 with the population count of the species
NB 1. In our model we follow the journey of a single prototypical bus, so this product in
the rate expression acts as a switch, allowing the reaction to fire when a bus is present
and preventing it from firing at other times (because the rate evaluates to 0 when a bus
is not present). Similar to this is the case of the reaction prefix NBtoCT 1>>, the only
difference being that in this case the involved population counts increase by one. For
example, line 14 specifies that the population of the species DepsFromNB increases by
one whenever the reaction NBtoCT 1 occurs, making DepsFromNB a de facto counter
for the departures of buses from North Bridge. In contrast, line 10 specifies that the
population of the species NB 3, i.e. the buses in the second part of the journey from
North Bridge to Cameron Toll, increases by one whenever a bus moves from the first
to the second part of the journey (NBtoCT 2>>), and decreases by one whenever a bus
arrives at Cameron Toll (NBtoCT ARRIVED<<).

The Bio-PEPA model built from the input to BusKer is a statistically-plausible
stochastic model of the journey of a prototypical bus travelling from the first to the
last specified bus stops, using the Erlang parameters learnt from the measurement data
which has been processed by HyperStar. Clearly, the predictive power of this model
depends crucially on the quality and scope of the data supplied to HyperStar. Because
it is ultimately learnt from data, the model will incorporate the effects of contention for
bus stops with other buses serving the same route, and, for good or ill, it will incorporate
the influence of any atypical events (e.g. unusually long delays) which occurred during
the measurement period.
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1 DepartureTime ( depsFromBusStop ) =

2 i f { s . r v a l ( depsFromBusStop ) == 1.0 } then s . r v a l ("time ")
3 e l s e # DepartureTime (depsFromBusStop )

4 f i ;
5 e v a l E[ DepartureTime (" DepsFromNB ") ]; e v a l E[ DepartureTime (" DepsFromCT ") ];

6 e v a l E[ DepartureTime (" DepsFromLR ") ];

Listing 1.2. A MultiQuaTEx expression to query expected departure times

5.3 MultiVeStA

MultiVeStA [5] is a recently-developed Java-based distributed statistical model checker
which allows its users to enrich existing discrete event simulators with automated and
statistical analysis capabilities. The analysis algorithms of MultiVeStA do not depend
on the underlying simulation engine: MultiVeStA only makes the assumption that mul-
tiple discrete event simulations can be performed on the input model. The tool has been
used to reason about collision-avoidance robots [19], volunteer clouds [20] and crowd-
steering [21] scenarios.

MultiVeStA comes with a property specification language, MultiQuaTEx, which
makes it possible for users to express and evaluate many properties over the same simu-
lated path. In contrast to Continuous Stochastic Logic [22,23] and Probabilistic Compu-
tation Tree Logic [24] commonly used in probabilistic and statistical model checking,
MultiQuaTEx allows users to define their own parametric recursive temporal operators
within the logic itself, and to query real-typed properties, rather than just probabilities.
In particular, with MultiQuaTEx we can express all the properties listed in Section 3.

A MultiQuaTEx expression is evaluated statistically. Given a statistical estimate x,
then with probability (1−α) its true value lies within the interval [x− δ/2, x+ δ/2],
where (α,δ ) is a user-specified confidence interval. An in-depth presentation of Multi-
QuaTEx is out of the scope of this paper, but can be found in [5].

Listing 1.2 provides a MultiQuaTEx expression to estimate the expected departure
times from each bus stop of interest (property P1) using the BusKer specification (1).
Lines 5–6 specify the three expected values to be estimated, i.e. the departure times
from North Bridge, Cameron Toll and Lasswade Road. Lines 1–4 specify a parametric
recursive temporal operator which returns, for each simulation, the departure time of
the bus from the bus stop specified as the parameter. This is iteratively evaluated by
performing steps of simulations (triggered by the operator #) until the guard of the if

statement is satisfied, i.e. until a departure occurs from the selected bus stop. Intuitively,
as discussed in Section 5.2, the Bio-PEPA model generated by BusKer counts the depar-
tures from each bus stop by defining observer processes DepsFromNB, DepsFromCT
and DepsFromLR whose populations are incremented every time the corresponding
event happens. Finally, we note that MultiVeStA can access information about the cur-
rent state of the simulation with s.rval(observation), where observation can
be the current simulated time (i.e. time), or the current population of a species (e.g.
"DepsFromNB").
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Fig. 2. Plot generated by TBA for the specification presented in Equation (1), and the (1,5) win-
dow of tolerance

6 Tool Chaining: The Bus Analyzer

The last three tools of our analysis pathway, highlighted in Figure 1, have been inte-
grated in a single tool called TBA: The Bus Analyzer. TBA hides from the user the steps
involved in the generation of the Bio-PEPA model and of the MultiQuaTEx expres-
sion, as well as the invocation of MultiVeStA. TBA can be downloaded, together with
our BusKer specification (1), from the Tools section of the QUANTICOL web-site at
http://www.quanticol.eu/.

A first clear advantage brought by TBA is the automation of the analysis phase, as
the user only has to execute the command

java -jar TBA.jar busker scenario.busker maxAdv maxDelay [servers] (3)

where scenario.busker is a file containing a BusKer specification, and maxAdv and
maxDelay specify the required window of tolerance (in minutes). The optional parame-
ter servers gives the degree of parallelism to automatically distribute independent sim-
ulations across CPU cores.

TBA evaluates properties P1–P5. The results are provided to the user via a GUI
consisting of an interactive scatter plot containing a point for each studied property, and

http://www.quanticol.eu/
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1 // Definitions of rate functions

2 // Functions for North Bridge -> Cameron Toll (105 phases)

3 NBtoCT_1 = [6.47 * NB_1 ];

4 ...

5 NBtoCT_104 = [6.47 * NB_104];

6 NBtoCT_ARRIVED = [6.47 * NB_105];

7 // Functions for Cameron Toll -> Lasswade Road (83 phases)

8 CTtoLR_1 = [8.79 * CT_1 ];

9 ...

10 CTtoLR_82 = [8.79 * CT_82 ];

11 CTtoLR_ARRIVED = [8.79 * CT_83 ];

12 // Functions for Lasswade Road -> Bonnyrigg Toll (98 phases)

13 LRtoBT_1 = [10.54 * LR_1 ];

14 ...

15 LRtoBT_97 = [10.54 * LR_97 ];

16 LRtoBT_ARRIVED = [10.54 * LR_98 ];

17 // Definitions of processes

18 // Processes for North Bridge -> Cameron Toll (105 phases)

19 NB_1 = NBtoCT_1 <<;

20 NB_2 = NBtoCT_1 >> + NBtoCT_2 <<;

21 ...

22 NB_104 = NBtoCT_103 >> + NBtoCT_104 <<;

23 NB_105 = NBtoCT_104 >> + NBtoCT_ARRIVED <<;

24 // Processes for Cameron Toll -> Lasswade Road (83 phases)

25 CT_1 = NBtoCT_ARRIVED >> + CTtoLR_1 <<;

26 CT_2 = CTtoLR_1 >> + CTtoLR_2 <<;

27 ...

28 CT_82 = CTtoLR_81 >> + CTtoLR_82 <<;

29 CT_83 = CTtoLR_82 >> + CTtoLR_ARRIVED <<;

30 // Processes for Lasswade Road -> Bonnyrigg Toll (98 phases)

31 LR_1 = CTtoLR_ARRIVED >> + LRtoBT_1 <<;

32 LR_2 = LRtoBT_1 >> + LRtoBT_2 <<;

33 ...

34 LR_97 = LRtoBT_96 >> + LRtoBT_97 <<;

35 LR_98 = LRtoBT_97 >> + LRtoBT_ARRIVED <<;

36 // Bonnyrigg Toll is the final stop .

37 BT_1 = LRtoBT_ARRIVED >>;

38 // State observations

39 DepsFromNB = NBtoCT_1 >>; DepsFromCT = CTtoLR_1 >>; DepsFromLR = LRtoBT_1 >>;

40 // Initial configuration of the system (one bus in North Bridge)

41 NB_1 [1] <*> ... <*> NB_105 [0] <*>

42 CT_1 [0] <*> ... <*> CT_83 [0] <*>

43 LR_1 [0] <*> ... <*> LR_98 [0] <*> BT_1 [0] <*>

44 DepsFromNB [0] <*> DepsFromCT [0] <*> DepsFromLR [0]

Listing 1.3. The Bio-PEPA model generated by BusKer for input Equation (1)

are also stored on disk. For example, the interactive plot allows the modeller to hide
some properties, to apply zooming or rescaling operations, to change the considered
boundaries, and to save the plot as a picture. Figure 2 depicts the plot obtained for
the BusKer specification (1) when considering the Scottish window of tolerance, i.e.,
maxAdv=1 and maxDelay=5. A discussion of the analysis is provided in Section 7. In
the remainder of this section we focus on the usability and accessibility advantages
provided by chaining the three tools.

Clearly, given that TBA hides the generation of the model and of the property, as
well as their analysis, the user is not required to learn the two formal languages, nor to
use their related tools. Furthermore, for realistic bus scenarios the generated Bio-PEPA
models and MultiQuaTEx expressions tend to be large and thus error-prone to write
down manually. For example, the Bio-PEPA model generated by TBA for our scenario
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1 //Static part of the expression : the parametric temporal operators

2 //Probabilities of departing on time , too early or too late

3 DepartedOnTime (depsFromBusStop ,timeTabledDep ,maxAdv ,maxDelay ) =

4 i f { s . r v a l (depsFromBusStop ) == 1.0 }

5 then CheckIfDepOnTime (depsFromBusStop ,timeTabledDep ,maxAdv ,maxDelay )

6 e l s e # DepartedOnTime (depsFromBusStop ,timeTabledDep ,maxAdv ,maxDelay )

7 f i ;
8 CheckIfDepOnTime (depsFromBusStop ,timeTabledDep ,maxAdv ,maxDelay ) =

9 i f { timeTabledDep - s . r v a l (" time ") > maxAdv }

10 then 0.0

11 e l s e i f { s . r v a l ("time ") - timeTabledDep > maxDelay }

12 then 0.0 e l s e 1.0

13 f i
14 f i ;
15 DepartedTooEarly (depsFromBusStop ,timeTabledDep ,maxAdv) =//like DepartedOnTime

16 DepartedTooLate (depsFromBusStop ,timeTabledDep ,maxDelay )=//like DepartedOnTime

17 //Expected departure time

18 DepartureTime (depsFromBusStop ) = //as in Listing 1.2

19 //Expected deviation from the timetabled departure time

20 DistanceFromTimeTable (depsFromBusStop ,timeTabledDep ) =

21 i f { s . r v a l (depsFromBusStop ) == 1.0 }

22 then ComputeDistanceFromTimeTable (depsFromBusStop ,timeTabledDep )

23 e l s e # DistanceFromTimeTable (depsFromBusStop ,timeTabledDep )

24 f i ;
25 ComputeDistanceFromTimeTable (depsFromBusStop ,timeTabledDep ) =

26 i f { timeTabledDep > s . r v a l (" time ") }

27 then timeTabledDep - s . r v a l (" time ") e l s e s . r v a l (" time ") - timeTabledDep

28 f i ;
29 //Static part of the expression : the 15 properties to be estimated

30 e v a l E[ DepartureTime (" DepsFromNB ") ];

31 e v a l E[ DistanceFromTimeTable (" DepsFromNB ",0.0) ];

32 e v a l E[ DepartedOnTime (" DepsFromNB ",0.0,1.0,5.0) ];

33 e v a l E[ DepartedTooEarly (" DepsFromNB ",0.0,1.0) ];

34 e v a l E[ DepartedTooLate ("DepsFromNB ",0.0,5.0) ];

35 //same eval clauses for "DepsFromCT ", and "16.0" rather than 0.0
36 //same eval clauses for "DepsFromLR ", and "24.0" rather than 0.0

Listing 1.4. The MultiQuaTEx expression generated by BusKer

is almost 900 lines long, as sketched in Listing 1.3. This is due to the the fact that the
journeys between bus stops are modelled using Erlang distributions with many phases,
and each phase is associated with a distinct species (hence at least a line in the source
code). More specifically, Listing 1.3 can be divided in four parts: lines 1–16 define the
rates with which the modelled prototypical bus moves, lines 17–36 define the processes
specifying the bus’s stochastic behaviour, lines 37–38 define the state observations of
interest, while lines 39–44 specify the initial configuration of the system. The third
section only depends on the number of considered bus stops, while, as depicted by the
ellipsis, the other ones also depend on the number of phases of the provided BusKer
specification.

The MultiQuaTEx expression generated by BusKer for our scenario is a fixed length
for any window of tolerance. It is sketched in Listing 1.4 for the Scottish window of tol-
erance. Overall it evaluates fifteen properties, i.e., P1–P5 for each of the three bus stops.
Lines 1–28 define the parametric recursive temporal operators which specify how to
compute such properties, whereas lines 29–36 list the fifteen properties to be estimated.
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Table 2. Analysis results for the #31 bus operated by Lothian Buses in Edinburgh

North Bridge Cameron Toll Lasswade Road
P1 0.32 16.42 25.84
P2 0.32 1.28 2.13
P3 1.00 0.81 0.88
P4 0.00 0.19 0.04
P5 0.00 0.00 0.06

For each simulation, each temporal operator observes the bus stop provided as a parame-
ter, specifically: DepartedOnTime,DepartedTooEarlyand DepartedTooLate return
1 if the bus departed on time, too early, or too late, respectively. DepartureTime returns
the departure time of the bus, while DistanceFromTimeTable returns the absolute
value of the difference between the actual departure time and the timetabled one. That
expression does not depend on the number of phases of the BusKer specification, but
only on the number of timetabled bus stops. In particular, the expression can be divided
in a static part, which is given once, for any possible input specification, and a dynamic
one, which instead depends on the input specification. Thanks to their parametrisation,
the temporal operators (lines 1–27) do not depend on the input specification, and are
thus the static part of the expression. Lines 28–35 are the dynamic part of the expres-
sion, as five eval clauses instantiated with the timetabled departures and the window
of tolerance are needed for each bus stop considered.

7 Analysis of the Scenario

In this section we present the analysis of our scenario using TBA. The results for the
Scottish window of tolerance [14] are summarised in Table 2. We fixed α = 0.05 for
all properties, δ = 0.2 for those regarding the expected departure times and deviations
from the timetable, and δ = 0.05 for the probabilities. It was necessary to perform 1860
simulations to attain this confidence interval for all the 15 studied properties, requiring
less than 10 seconds in total, thus without requiring to resort to MultiVeStA’s capability
of distributing simulations.

These results suggest that buses tend to lose adherence with respect to the timetable
while performing the route. This effect is also observed in practice: the variance of
departure times is seen to increase along the route. However, this does not necessarily
correspond to a degradation of the quality of service, as a greater deviation from the
timetable generated by delayed departures may correspond to a better quality of service
than a smaller deviation generated by anticipated departures.

In order to have further insights into the quality of the studied #31 bus service, the
last three rows of Table 2 provide the probabilities that a bus departs on time, too early,
or too late from each bus stop. Consistent with the slight deviation found from the
timetable, we have that buses always depart on time from the North Bridge stop. Then,
buses tend to perform the route from North Bridge to Cameron Toll too quickly, causing
early departures in 20% of cases. The quality of service improves at Lasswade Road,
where only 12% of departures are outside the window of tolerance. This may seem to
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Table 3. The quality of the #31 bus service for the Scottish (SC) and English (EN) window of
tolerance

North Bridge Cameron Toll Lasswade Road
SC EN SC EN SC EN

P3 1.00 1.00 0.81 0.82 0.88 0.92
P4 0.00 0.00 0.19 0.18 0.04 0.05
P5 0.00 0.00 0.00 0.00 0.06 0.03

contradict the results about the deviation from the timetable, as we found that at the
Lasswade Roll time point there is a greater deviation from the timetable with respect
to that at Cameron Toll. However, this is explained by noticing that our analysis tells
us that the deviations from the timetable are mainly caused by anticipated departures
at Cameron Toll, and by delayed departures at Lasswade Road. In fact, we first of all
notice that the expected departure time is 0.42 minutes greater than the timetabled one
at Cameron Toll, and 1.84 at Lasswade Road.

Furthermore, we have early departures in 20% of cases and no late departures at
Cameron Toll. Instead, at Lasswade Road we have early departures in only 4% of cases,
and late departures in 6% of cases. In conclusion, we find that buses tend to spend more
time than is scheduled in performing the journey from Cameron Toll to Lasswade Road,
thus absorbing the effect of earlier departures from Cameron Toll, leading to a halved
percentage of departures there outside the window of tolerance with respect to Cameron
Toll.

It is worthwhile to note that analysing the quality of service with respect to other
windows of tolerance only requires launching the command (3) with different parame-
ters. For example, Table 3 compares the results using the Scottish window of tolerance
(SC), and the English one (EN), the latter obtained by setting parameters maxAdv=1 and
maxDelay=5.59. Not surprisingly, the table depicts a slightly better quality of service
for the same data when considering the looser English window of tolerance rather than
the stricter Scottish one.

8 Conclusions

In this paper we have presented an analysis pathway for the quantitative evaluation of
service-level agreements for public transportation systems. Although we discussed a
concrete application focussing on a specific bus route in a specific city, our approach is
more general and it can in principle be applied to other transportation systems publish-
ing timetabled departure times.

The methodology which we have proposed here requires the availability of the raw
data from a bus tracking system. At first sight, it might have seemed that the properties
of interest could have been calculated directly from measurement data. However, data
sets are necessarily incomplete and working from the data provides less coverage of the
full range of the system behaviour and hence delivers fewer insights than are obtained
when working with a stochastic process abstraction of the data.

In addition, only (automatically generated) models can assist service providers and
regulatory authorities in evaluating what-if scenarios, e.g., understanding the impact of
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changes along a route on the offered quality of service. In this respect, the measurements
are crucial to calibrate the model with realistic parameters, which can be changed by the
modeller (by simply manipulating the compact BusKer specification) in order to study
how the properties would be affected. For instance, regulators could determine how
proposals to amend the notion of punctuality might impact on a provider’s capability to
satisfy the regulations on services.

As discussed, the model involves a single route only, hence the measurements already
incorporate effects of contention such as those due to multiple buses sharing the same
route, and multiple routes sharing segments of the road. Developing a model where
such effects are captured explicitly is an interesting line of future work, as is extending
our analysis pathway to such a scenario.
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choukri.ben-yelles@iut-valence.fr

3 USTHB. LSI, BP32 EL-Alia, Bab Ezzouar, Algiers, Algeria
4 College of Sciences and Technology, El-Oued University, El-Oued, Algeria

abbasmessaoud@gmail.com

Abstract. UML is the defacto standard language to graphically de-
scribe systems in an object oriented way. Once an application has been
specified, Model Driven Architecture (MDA) techniques can be applied
to generate code from such specifications. Because UML lacks formal
basis to analyze and check model consistency, it is pertinent to choose a
formal target language (in the MDA process) to enable proofs and verifi-
cation techniques. To achieve this goal, we have associated to UML the
FoCaLiZe language, an object-oriented development environment using
a proof-based formal approach. This paper focuses on a subset of UML
constructors, the template classes. These latter allow developers to cre-
ate generic models that can be instantiated for actual models through a
binding relationship. Specifically, we propose a formal transformation of
UML template classes annotated with OCL constraints into FoCaLiZe
specification. The proposed mapping directly supports most of UML
template features.

Keywords: UML, OCL, template, FoCaLiZe, proof, semantics.

1 Introduction

In the last few years, UML templates have been largely used for application
development such as in Design Pattern modeling [1], aspect-oriented modeling
(AOM) [2] or in the modeling of generic classes (as in C++ templates) [3].
But using UML and OCL, we can only describe UML templates and specify
constraints upon them: no formal proof is available to check whether OCL
properties hold in an UML template.

In this context, several studies have focused on the transformation of UML/
OCL models into formal methods. Such transformations produce an abstract
formal specification in the target language where it is possible to verify and prove
the original UML/OCL properties using proof techniques available in the formal
language. The most used formal tools are the B language [4], the Alloy formal
tool [5], the Maude system [6] and the Isabelle/HOL [7] among several others.
However, they do not provide similar mechanisms.
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To address this need, we propose a formal transformation from UML template
classes annotated with OCL constraints into the FoCaLiZe environment [8]. To
achieve this goal, we adopt a compiling approach (by translation). The choice
of FoCaLiZe does not solely rely on its formal aspects. FoCaLiZe supports most
of the requirements mandated by standards upon the assessment of a software
development life cycle [9]. More precisely, our choice is motivated by the three
following arguments.

First, FoCaLiZe supports most of UML conceptual and architectural features
such as encapsulation, inheritance (generalization/specialization) and multiple
inheritance, function redefinition, late-binding, dependency. In particular, Fo-
CaLiZe supports both UML template classes and template bindings through
its own constructs without additional structures or invariants. These features
enable us to keep a similar logic of development.

The second motivation of FoCaLiZe lies in the paradigm of its language. The
FoCaLiZe language is based on the functional aspect of the Ocaml1 language,
this avoids side effects during program execution.

Finally, the use of the FoCaLiZe environment is also motivated by the avail-
ability of its automated theorem prover Zenon [10] and its proof checker Coq [11].
Realizing proofs with Zenon makes the user intervention much easier since it
manages to fulfill most of the proof obligations automatically. In addition,
whenever such a proof fails, Zenon helps the user to locate the source of the
inconsistency. At the last step, Coq validates the proof.

This document is organized as follows: sections 2 and 3 present FoCaLiZe and
UML template concepts, sections 4 and 5 describe our transformation approach.
In section 6 we develop the framework that integrates UML template classes
annotated with OCL constraints and the FoCaLiZe environment to check model
consistency. Before concluding, section 7 proposes a comparison with related
works.

2 FoCaLiZe Concepts

The FoCaLiZe [8] environment, initiated by T. Hardin and R. Rioboo, is an
integrated development environment with formal features. A FoCaLiZe develop-
ment is organized as a hierarchy of species that may have several roots. This
hierarchy is built step by step (incremental approach), starting with abstract
specifications and heading to concrete implementations using object oriented
features such as inheritance and parameterization.

A species groups together methods using ML-like types and expressions:

• The carrier type (representation), describes the data structure of the
species. The representation of a species can depend on the representation of
other species. It is mandatory and can either be explicitly given or obtained
by inheritance.

• Function declarations (signature), specify functional types that will be de-
fined later through inheritance (no computational body is provided at this
stage).

1 The Ocaml home site : http://caml.inria.fr/

http://caml.inria.fr/
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• Function definitions (let), consist of optional functional types together with
computational bodies.

• Properties (property), statements expressed by a first-order formula speci-
fying requirements to be satisfied in the context of the species.

• Properties together with their proofs (theorem).

The general syntax of a species is given as follows:
species species name =

[representation = rep type;]
signature function name : function type;
[local / logical] let [rec] function name = function body;
property property name : property specification ;

theorem theorem name : theorem specification proof = theorem proof ;

end ;;

As we mentioned above, species have object-oriented flavors [12]. We can create a
species from scratch or from other species using (multiple) inheritance. Through
inheritance, it is possible to associate a definition of function to a signature or
a proof to a property. Similarly, it is possible to redefine a method even if it is
already used by an existing method. The late-binding mechanism ensures that
the selected method is always the latest defined along the inheritance tree.

A species is said to be complete if all declarations have received definitions
and all properties have received proofs. The representations of complete species
are encapsulated through species interfaces. The interface of a complete
species is the list of its function types and its logical statements. It corresponds
to the end user point of view, who needs only to know which functions he can use,
and which properties these functions have, but doesn’t care about the details of
the implementation. When complete, a species can be implemented through the
creation of collections. A collection can hence be seen as an abstract data type,
only usable through the methods of its interface.

The following example presents the widely used species Setoid. It models
any non-empty set with an equivalence relation on the equality ( = ) method:

species Setoid = inherit Basic_object;

signature equal: Self-> Self-> bool;

signature element: Self;

property equal_reflexive: all x: Self, equal (x, x) ;

property equal_symmetric: all x y: Self, equal(x, y) -> equal (y, x) ;

property equal_transitive:all x y z: Self,

equal(x, y)-> equal(y, z) -> equal(x, z);

end;;

A species can also be parameterized either by collections or by entities of a
collection. Table 1 presents the species Circle parameterized by the species
Point. We note that the representation of the species Point is abstract (not
defined yet).

The representation of the species Circle has form P * float, where P is a
variable type. It models the type of the center of a circle. The type float
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Table 1. Example of Parameterization

species Point =

signature getX : Self -> int; signature getY : Self -> int;

signature move : Self -> int -> int -> Self;

(* distance: calculates the distance between two given points *)

let distance (a:Self, b: Self):float = if (a = b) then 0.0 else

sqrt( float_of_int( ((getX(a) - getX(b))*(getX(a) - getX(b)) ) +

((getY(a) - getY(b))*(getY(a) - getY(b)) )));

(* distanceSpecification: specifies the method distance *)

property distanceSpecification: all p :Self, distance(p, p) = 0.0;

end;;

species Circle (P is Point) =

representation = P * float ;

let newCircle(centre:P, rayon:float):Self = (centre, rayon);

let getCenter(c:Self):P = fst(c);

let getRadius(c:Self):float = snd(c);

let belongs(p:P, c:Self):bool =

( P!distance(p, getCenter(c)) = getRadius(c));

end;;

represents the radius type of a circle. As we can notice here, the species Circle
can use all methods of the species Point through the formal parameter P, even
if they are only declared. The method belongs is a logical method (returns
boolean results) deciding whether a given point p:P belongs to a given circle
c:Self.

Before implementing a species, all logical statements must be proven. Cur-
rently, FoCaLiZe uses the automated theorem prover Zenon [10], [13].

Compilation of FoCaLiZe sources gives rise to both OCaml code and Coq
code. The generated OCaml code provides the executable form of the develop-
ment. When Zenon succeeds, it provides automatically a Coq code which will
be checked by the Coq theorem prover. Coq will act as an assessor, not only on
all the proofs contained in the development but also on the whole consistency
of the model [9], [14].

3 UML Templates

The two main types of UML templates are template classes and template pack-
ages. For reason of simplicity and clarity, we only focus on template classes in
this paper, nevertheless template packages can be handled the same way. In
order to provide a formal framework for the transformation of templates into
FoCaLiZe specifications, we propose an abstract syntax for the subset of UML
template constructs that we consider, using mostly UML Metamodel syntax [15]:

class-template ::= option class class-name [param-signature] [ binds bind {, bind}*]
[ inherits class-name {, class-name }* ] = attr* opr* end
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An UML template class is an UML class that is characterized by its name and
is composed of attributes and operations. A template class can also have a list
of generalization relationships, which indicates the parent classes it specializes.

Each attribute (instance or state variable) of a template class has a name and
a specification which is either a primitive type or another class of the model.
Specifications may describe multiple values of a type ([multiplicity]):

attr ::= visibility [/]attr-name[:type-exp][[multiplicity]][=default ] [ attr-modifiers ]
type-exp ::= Integer | Boolean | String | Real | UnlimitedNatural | class-name
opr ::= [visibility][�op-stereotype�]op-name([op-param{,op-param}*])

[:return-type] [[multiplicity]]
op-param ::= [direction] param-name : type-exp [[multiplicity]] [= default ]

Each template class has a signature that specifies its formal parameters:

param-signature ::= (formal-param {, formal-param}*)
formal-param ::= formal-param-name [ : parameter-kind ] [= default ]
parameter-kind ::= type-exp | Class
default ::= class-name

The parameter-kind is an UML parameterable element (ParameterableEle-
ment in UML Template Metamodel, see [15] page 634). Only parametrable
elements can be used as formal template parameters of a template. For brevity,
we only consider classifiers (in particular, UML classes) and UML primitive types
as parametrable elements.

Bound models can be derived from template classes through substitutions of
formal parameters. These substitutions are described in a dedicated binding

relationship that links the bound model to the template class (from which it
was obtained). The binding relationship specifies a set of template parameter
substitutions that associates actual elements (of the bound model) to formal
parameters (of the template):

bind ::= class-template-name < subs [, subs*] >
subs ::= formal-param-name -> actual-param
actual-param ::= class-name | value-specification

Standard constraints impose that the type of each actual parameter (in the
bound model) must be a sub-type of the corresponding formal parameter. The
structure of the bound model is based on the structure of the template, where
any element used as a formal parameter is substituted by the actual element
specified in the binding relationship [15].

Templates have also a specific graphical notation which consists in superim-
posing a small dashed rectangle containing the signature on the top right-hand
corner of the corresponding symbol (see Fig.1). This class, CStack, is graphi-
cally represented as a standard UML class with a dashed rectangle containing
its parameter signature. Here, the signature is composed of two formal param-
eters: T of type Class (the type of the stack elements) and I of type Integer

(the maximum length of the stack). The operations head, push, pop, isFull,
isEmpty and length are the usual operations over stacks.
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Fig. 1. Template Class

The right side of this figure shows the class CPlatesStack which is bound
to the CStack template through a binding relationship. This class is the result
of the substitution of the template formal parameters T and I respectively to
actual values CPlate (the class that models plates) and the integer value 12.

4 From Template Classes to FoCaLiZe

During the transformation of template classes into FoCaLiZe, we will maintain
two contexts, ΓU for UML and ΓF for FoCaLiZe. For a given template class
named c n, ΓU (c n) is its local context. In a symmetrical way, the FoCaLiZe
typing context of a given species s n, is denoted ΓF (s n). For an UML element
U we will denote2 [[U ]]ΓU ,ΓF its translation into FoCaLiZe. The general definition
of a template class is given as follows:
< class template def > = [public | private | protected ] [final | abstract]

class c n (P) inherits H = A ; O end

where
• c n is the name of the template class,
• P is a list of formal parameter declarations,
• H designates the list of classes from which the current class inherits,
• A is the attribute list of the class,
• O is its operations list.

Since most of the UML design features can seamlessly be represented in Fo-
CaLiZe (following [12] and [16]) we transform an UML template class into a
FoCaLiZe parameterized species. For brevity, we do not describe here such ele-
ments as visibility, inheritance and instantiation.

The carrier type (representation) of the derived species is a cartesian prod-
uct type grouping all types of the instance variables. Each attribute is also
modeled with a getter function in the corresponding species. The template class
operations will be converted into functional signatures of a species. The general

2 We may use super-indexes to distinguish between the different transformation rules,
for example [[ ]]paramΓU ,ΓF

(in Fig. 2) represents parameter transformation.



Modeling UML Template Classes with FoCaLiZe 93

transformation rule is presented as follows:

[[< class-template-def >]]ΓU ,ΓF = species s n ( [[P]]ΓU ,ΓF )=
inherit Setoid, [[H]]ΓU ,ΓF ; [[A]]ΓU ,ΓF [[O]]ΓU ,ΓF

end ;;

4.1 Transformation of Template Signatures

Let P = P1,P2, . . .Pm be the list of parameters of the template class named c n.
Each Pi has form: Pi = p ni : typeExpi,
where p ni is the parameter name and typeExpi its type.

These parameters are transformed into parameters of the species s n derived
from the template class c n as described in Fig. 2. Table 2 illustrates the
transformation of the template class CStack given above.

[[P]]ΓU ,ΓF = [[p n1 : typeExp1]]
param
ΓU1

,ΓF
, . . . , [[p nm : typeExpm]]paramΓUm ,ΓF

where each [[p ni : typeExpi]]
param
ΓUi

,ΓF
=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lower(p ni) in IntCollection if typeExpi = Integer

lower(p ni) in FloatCollection if typeExpi = Float

lower(p ni) in StringCollection if typeExpi = String

lower(p ni) in BooleanCollection if typeExpi = Boolean

lower(p ni) in UnlimitedNaturalCollection if typeExpi = UnlimitedNatural

upper(p ni) is Setoid if typeExpi = Class

Γs ni(Ps ni), upper(p ni) is s ni(Γs n(Ps ni)) if typeExpi is a class name c ni

and s ni its transformation.

with:
• upper(p ni) returns p ni with its first character capitalized and lower(p ni) re-

turns p ni with its first character in lowercase,
• ΓUi = ΓU enriched with Ei, such that E1 = ∅, E2 = {p n1 : typeExp1 },

Em = {p n1 : typeExp1, ... , p nm−1 : typeExpm−1},
• Γs ni(Ps ni): returns the list of parameters of the species s ni,
• s ni(Γs n(Ps ni)) is the application of the species s ni on its parameters,
• IntCollection: the collection that models integers in FoCaLiZe,
• FloatCollection: the collection that models floats in FoCaLiZe and
• BooleanCollection: the collection that models booleans in FoCaLiZe.

Fig. 2. General transformation of template signatures

As described in Fig.2, the parameter T:Class of the template class CStack
is converted into a parameter of type Setoid and the parameter I:Integer is
converted into a parameter of type IntCollection (which models integers in
FoCaLiZe). The carrier type of the species SStack (derived from the template
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Table 2. Transformation of the template class CStack

UML Template Class FoCaLiZe species

species SStack (Obj is Setoid,

i in IntCollection)=

inherit Setoid ;

representation = list(Obj);

signature newStack : list(Obj) -> Self ;

signature get_data : Self -> list(Obj);

signature length : Self -> int;

signature push : Obj -> Self -> Self ;

signature pop : Self -> Self ;

signature head : Self -> Obj ;

signature isFull : Self -> bool ;

signature isEmpty : Self -> bool ;

end;;

class CStack) is list(Obj), since the multiplicity ([O..I]) of the attribute data
of the template CStack is different from 1. The function newStack corresponds
to the template class constructor.

4.2 Transformation of Binding Relationships

To transform a binding relationship, we use both inheritance and parameter-
ization mechanisms in FoCaLiZe. In FoCaLiZe, if a species S1 inherits from
a parameterized species S0, it must instantiate all the parameters of S0. The
instances must be sub-types of the matching formal parameters. For example,
a new species ColoredCircle may be created by inheritance from the species
Circle (see Tab.1) as follows:
species ColoredPoint = inherit Point; ... end;;

species ColoredCircle(CP is ColoredPoint) = inherit Circle(CP); ... end;;

The species ColoredCircle substitutes the formal parameter of the species
Circle (P is Point) by the actual parameter (CP is ColoredPoint). FoCaL-
iZe imposes that the species ColoredCircle should be derived through inheri-
tance from the species Point to enable such a substitution.

Considering a classifier named c n created from a template class c template
through a binding relationship, its general definition is as follows:

< binding relationship def > = class c n bind c template < T > end
where c n is the name of the bound class, T = < T1 . . . Tn > is a list of
substitutions of formal parameters with actual parameters and

Ti = formal-param-name -> actual-param, for i : 1..n.
The transformation of such a binding relationship is handled as follows :

1. We create a new species s n by inheritance from the species s template
derived from the template class c template (see Fig.3).

2. We provide actual parameters for the species s n by substitutions of its
formal parameters with actual ones, according to the substitution list T.
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< binding relationship def >ΓU ,ΓF = species s n ( [[P]]ΓU ,ΓF )=

inherit s template ([[T]]ΓU ,ΓF ) ; end;;

Fig. 3. General Transformation of a binding relationship

Table 3 shows a transformation example of a binding relationship.

Table 3. Transformation of a template binding

UML Template Binding FoCaLiZe
species SStack (Obj is Setoid,

i in IntCollection)= inherit Setoid ;
representation = list(Obj);
signature newStack : list(Obj) -> Self ;
signature get_data : Self -> list(Obj);
signature length : Self -> int;
signature push : Obj -> Self -> Self ;
signature pop : Self -> Self ;
signature head : Self -> Obj ;
signature isFull : Self -> bool ;
signature isEmpty : Self -> bool ;
end;;

species SPlate = inherit Setoid; . . . end;;
let e = IntCollection!createInt(12);;
species SPlatesStack (T is SPlate,

i in IntCollection)=
inherit SStack(T, e) ;

. . .
end;;

5 From OCL Constraints to FoCaLiZe

An OCL constraint is an expression of the OCL language [17] which uses types
and operations on types. We distinguish between primitive types (Integer,
Boolean, Real and String), enumeration types, object types (classes of UML
model) and collection types (Collection(T)).

To transform OCL expressions we have built an OCL framework library sup-
port. In this library we model primitive types using FoCaLiZe primitive types
predefined in basics library (int, bool, string and float). For collection
types, we have a species named OCL Collection(Obj is Setoid) implement-
ing OCL operations on collections (forAll, isEmpty, size . . . ). Other kinds
of collection (Set(T), OrderedSet(T), Bag(T) and Sequence(T)) are also de-
scribed by species which are inherited from OCL Collection.

All OCL constraints are mapped into FoCaLiZe properties (property or
theorem) in a particular species. For example, all the OCL constraints that
have the template class CStack as context, will be transformed and proved in
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a species that we call SStack_constraints. This latter, inherits the species
SStack derived from the class CStack.

The OCL expressions describing invariants, the pre-conditions and the post-
conditions are then converted into FoCaLiZe equivalent expressions. We have
proposed a formal transformation rule for each supported OCL construct.

During the transformation of OCL constraints into FoCaLiZe, we will main-
tain a typing context ΓO in addition to our previous contexts ΓU and ΓF . For an
OCL element S, we will denote [[S]]ΓU ,ΓF ,ΓO its transformation into FoCaLiZe.
To be brief, we will only present the general transformation of OCL invariants
and pre and post-conditions.

Let Si be an OCL invariant associated to the class named c n. Its general
form is: Si = context c n inv : Einv

where Einv is the OCL expression describing the invariant Si.
The invariant Si is converted into a FoCaLiZe property as follows:

[[Si]]
inv
ΓU ,ΓF ,ΓO

= property inv ident : all e : Self , [[Einv ]]
exp
ΓU ,ΓF ,ΓO

;

where,
• inv ident is an identifier that we assign for the invariant Si and
• [[Einv ]]

exp
ΓU ,ΓF ,ΓO

is the transformation of the OCL expression describing the in-
variant into FoCaLiZe.

Let Sj be an OCL pre and post-condition associated to the operation OP of
the class named c n. Its general form is
Sj = context c n :: OP n ( p1 : typeExp1 . . . pm : typeExpm) : returnType

pre : Epre post : Epost

where OP n is the operation name, p1 . . . pm are the operation parameters,
typeExp1 . . . typeExpm their corresponding types and Epre and Epost are the
OCL expressions describing the pre and the post conditions. An OCL pre and
post-condition is converted into a FoCaLiZe implication (pre-condition⇒ post-
condition) as follows:

[[Sj ]]
prepost
ΓU ,ΓF ,ΓO

= property pre post ident :

all e : Self,

all x1 : [[typeExp1]]ΓU ,ΓF , . . . ,

all xm : [[typeExpm]]ΓU ,ΓF , [[Epre]]
exp
ΓU ,ΓF ,ΓO

-> [[Epost]]
exp
ΓU ,ΓF ,ΓO

;

where,
• pre post ident is an identifier that we assign for Sj ,
• x1 . . .xm are bound variables, x1 = lower(p1), . . . , xm = lower(pm),
• [[typeExpi]]ΓU ,ΓF is the transformation of variable types (similar to type expression

transformation in Fig. 2) and
• [[Epre]]

exp
ΓU ,ΓF ,ΓO

([[Epost]]
exp
ΓU ,ΓF ,ΓO

) is the transformation of the OCL expressions
describing the pre (post) conditions into FoCaLiZe.

Table 4 presents the transformation of invariants stated on the template class
CStack. It also presents an example of transformation of pre and post-conditions
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associated to the operation push(t:T) of our class CStack. This latter constraint
expresses that if a stack is empty, then it remains empty when an element is
pushed and then popped. The symbol ~~ indicates the negation in FoCaLiZe.

Table 4. Example of OCL constraints transformation

OCL FoCaLiZe

context CStack

inv : self.allInstances ->

forAll(s|

s.isEmpty() implies

s.length() = 0)

inv : self.isEmpty() implies

not(self.isFull())

-- pre and post condition

context CStack :: push(t:T)

pre : self.isEmpty()

Post: let s = self.pop() in

(s.isEmpty())

species SStack_constraints

(Obj is Setoid, i in IntCollection,

S is SStack(Obj, i),

C is Ocl_Collection(S))=

inherit SStack(Obj, i)

property inv_SStack_1 : all s : Self,

isEmpty(s) -> (length(s) = 0);

property inv_SStack_2 : all s : Self,

isEmpty(s) -> ~~(isFull(s));

property pre_post_push_2: all e : Obj,

all s : Self,

isEmpty (s) -> isEmpty(pop(push(e, s)));

. . .
end ;;

6 A Framework for Formal Proofs

Our goal is to provide a framework that generates automatically a FoCaLiZe
abstract specifications from an UML template class with OCL constraint. Then
a FoCaLiZe user will be able to prove the derived properties using the automated
theorem prover Zenon.

In general, we adopt the following proof process (see Fig.4):

Fig. 4. Proof Framework
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1. Complete the FoCaLiZe abstract specifications by implementing all related
functions.

2. Introduce proof indications using the FoCaLiZe proof language.
3. Compile the FoCaLiZe source using the command focalizec. This latter in-

vokes the command zvtov to achieve the proofs by Zenon (the automated
theorem prover of FoCaLiZe).

From an UML/OCL model, an abstract FoCaLiZe specification is generated.
Then, a FoCaLiZe user needs only to complete the specification by implementing
all derived methods to obtain a complete specification. Finally, when compiling
the FoCaLiZe source, proof obligations are generated.

If a proof fails, the FoCaLiZe compiler indicates the line of code responsible
for the error. In this case, The FoCaLiZe developer analyses the source in order
to correct and/or complete the UML model, and then restarts the development
cycle.

There are two main kinds of errors: either Zenon could not find a proof
automatically, or there are inconsistencies in the original UML/OCL model. In
the first case the developer interaction is needed to give appropriate hints to
prove the properties, while in the second case we must go back to the original
UML/OCL model to correct and/or complete it.

To illustrate how UML errors are detected, let us study the transformation of
the following binding relationship:

species C_spec =

representation = int; end ;;

species D_spec =

representation = string; end ;;

species A_spec (Q is C_spec) = end;;

species B_spec (P is D_spec) = inherit A_spec(P);

end;;

When compiling the FoCaLiZe source, we get the following error message:
“Collection ’P’ is not a subspecies of ’Q’”. This error expresses that since
D is not a sub-type of C, then the substitution T -> D is not correct.

To clarify the proof process, we present the proof of the property
pre_post_push_2 (see Tab.4) derived from the pre and post-condition associated
to the operation push(t:T) of our template class CStack. First, we obtain the
species SStack (Tab.2) and the species SStack constra- ints. This latter inher-
its from the species SStack and transforms all OCL constraints specified on the
template class CStack. For brevity, we focus on the property pre post push 2.
Then, we provide definitions to all inherited signatures and we introduce proof
scripts to prove theorems as follows:
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species SStack_constraints(Obj is Setoid, i in IntCollection,

S is SStack(Obj, i),

C is Ocl_Collection(S) ) = inherit SStack(Obj, i);

let newStack(x: list(Obj)):Self = x; let get_data (x: Self):list(Obj)=x;

let equal(x:Self, y:Self): bool = (x = y);

let isFull(x:Self):bool = (length(x) = (IntCollection!to_int(i))) ;

let isEmpty(x:Self):bool = (length(x) = 0) ;

let push (o: Obj, y: Self):Self =

if ~~(isFull(y)) then newStack(o::get_data(y))

else focalize_error ("The stack is full");

let rec length(x: Self):int = match (x) with

| [] -> 0 | y :: z -> 1 + length(z);

let head(x: Self):Obj = match get_data(x) with

| [] -> focalize_error ("The stack is empty")

| y :: z -> y;

let pop(x: Self):Self = match get_data(x) with

| [] -> focalize_error ("The stack is empty")

| y :: z -> newStack(z);

property inv_SStack_1 : all s : Self, isEmpty(s) -> (length(s) = 0);

property inv_SStack_2 : all s : Self , isEmpty (s) -> ~~(isFull(s)) ;

property pre_post_push_1 : all e : Obj, all s : Self,

~~( isFull(s)) -> equal(pop (push (e, s)), s);

property pre_post_push_2 : all e : Obj , all s : Self ,

isEmpty(s) -> isEmpty(pop(push(e, s)));

proof of pre_post_push_2 =

<1>1 assume e : Obj, s : Self,

hypothesis H1 : isEmpty(s),

prove isEmpty (pop(push(e, s)))

<2>1 prove equal( pop ( push (e, s ) ), s )

by hypothesis H1 property inv_SStack_2 , pre_post_push_1

<2>2 prove isEmpty(pop (push (e, s ) ))

by hypothesis H1 step <2>1

definition of equal property equal_symmetric

<2>3 qed by step <2>2

<1>2 conclude ;

end;;

The proof of the property pre_post_push_2 is composed of several steps
(<1>1, <2>1 . . . ) which are written in the FoCaLiZe proof language. At each
step we ask Zenon to search for a proof using the hints we provide.

Finally, the compilation of the FoCaLiZe source (stack.fcl) ensures the cor-
rectness of the specification. If no error has occurred, this means that the com-
pilation, code generation and Coq verification were successful.

7 Related Work

Several works are interested in the transformation from UML into B language
based tools such as [18, 19], UML2B [20], UML-B [21]. However, they do not
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consider UML templates and template bindings since B language based tools
do not provide such features. Formal parameters of an abstract machine may
only be scalar parameters or set parameters [4]. The formal parameters of an
abstract machine can not be an implementation (the ultimate step in B language
refinements) or another abstract machine of the model. This limitation makes
it difficult to model the UML templates with B constructs.

Alloy [5] is another formal tool which has been recently used to check the
consistency of UML/OCL models. In works such as [22] and [23], an UML class
is modeled by a signature (a set of atoms). At signature level, there is no kind
of parameterization or binding relationships. The only architecture feature is
the extends (simple inheritance in UML) relationship between signatures. At
module level3, Alloy enables to parameterize one module with signatures that
must be instantiated during module importation. In this way, it is not possible to
import abstract modules (at specification level). In Alloy, there is no mechanisms
for binding module parameters to create a new module.

The Maude system [6] is also used in formalizing UML/OCL models such
as in [24, 25]. To our knowledge, there is no particular work concerning the
transformation from UML template and template binding into Maude. Never-
theless, Maude allows to specify a module parameterized with formal parameters.
Then, a new module can be created by binding of actual parameters with for-
mal ones. We think that this feature enables to formalize UML template and
template binding. However, Maude lacks specification features such as function
redefinition and late binding mechanisms which are often used in parallel with
parameterization.

Other formal tools based on higher order logic (HOL) such as HOL-OCL [26]
are concentrated in producing OCL evaluator tools. They provide a theorem
proving environments for UML/OCL based on rewriting logic. But, they do not
support such features as template classes or binding relationships.

One can notice that UML template and template binding are ignored in all
the aforementioned works, while thanks to the specification power of the FoCaL-
iZe language, these features are naturally supported in our proposal. In fact,
FoCaLiZe enables the use of a species as a parameter of another species, even
at the specification level. Later on, the collection and late-binding mechanisms
ensure that all methods appearing in a species (used as formal parameter) are
indeed implemented and all properties are proved.

8 Conclusion and Perspectives

In this paper, we have proposed a formal transformation of UML template classes
annotated with OCL constraints into FoCaLiZe, defined in the following way:

A parameterized species is associated to each template class: formal param-
eters of a template class are converted into formal parameters of the derived

3 A module is a structure grouping some paragraphs, each paragraph may be a signa-
ture, fact, function, predicate, assertion, run command or check command.
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species, and bind relationship is formalized through inheritance and parame-
ter substitution mechanisms in FoCaLiZe. The representation of each associ-
ated species is a cartesian product type that represents the state of the object.
Class operations are converted into functions of the derived species and OCL
constraints (class invariants, pre-condition and post-condition) correspond to
FoCaLiZe properties.

To implement the presented approach, we propose to use the XMI technology
(XML Metadata Interchange) through an UML tool that supports the UML2
constructs such as the UML2 Eclipse plug-in. We parse the XMI document
to translate it into the UML proposed syntax (using an XSLT stylesheet), so
that it is possible to apply the transformation rules that we have proposed for
each UML construct. The correctness of the transformation is ensured by the
proposed formal rules.

The presented work support most of UML template class specification fea-
tures. In addition to the bind relationship, it supports encapsulation, inheri-
tance and late-binding which permit to derive a formal specification expressed
through a species hierarchy that matches the original UML model. To our knowl-
edge, there is no formal tool that supports the UML template classes features
the way they are taken care of in the FoCaLiZe environment.

This approach suggest as a direct application, the collaboration of UML tem-
plate classes and FoCaLiZe in the same framework (see Fig.4). It consists in
using an UML template class annotated with OCL constraints as a starting
point for a FoCaLiZe development to benefit from both formalisms.

As future works, first we plan to extend our mapping to deal with UML
template packages, UML packages specified with formal parameters. Second,
we will consider larger subsets of OCL. In particular, we want to deal with
the sub-types of the gene-ral collection type Collection(T) which are Set(T),
OrderedSet(T), Bag(T) and Sequence(T).
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Abstract. Ensuring resilience of large data stores in the cloud is a chal-
lenging engineering issue. It requires the development techniques that
allow the designers to predict the main resilience characteristics — fault
tolerance and performance — at the early design stages. In this paper, we
experiment with integrating Event-B modelling with discrete-event sim-
ulation. Event-B allows us to reason about correctness and data integrity
properties of data stores, while discrete-event simulation in SimPy en-
ables quantitative assessment of performance and reliability. Since test-
ing in a real cloud environment is expensive and time-consuming, the
proposed approach offers several benefits in industrial settings.

Keywords: Formal modelling, Event-B, discrete-event simulation.

1 Introduction

Development and verification of cloud-based data stores constitutes a challeng-
ing engineering task. To guarantee resilience and satisfy Service Level Agreement
(SLA) that regulates service behaviour with respect to its customers, the deve-
lopers should ensure two main properties – data integrity and performance. To
achieve this goal, F-Secure Corporation – a company providing secure data stor-
age solutions – relies on massive replication and the non-transactional approach.

In our previous work [10], we have undertaken formal modelling of resilient
data store and logically defined data integrity properties of different architec-
tural solutions. To analyse performance/fault tolerance ratio of architectural
alternatives, we have attempted to integrate quantitative verification. However,
complexity of the system turned out to be prohibitive for probabilistic model
checkers and the quantitative analysis, which is essential for engineering resilient
cloud data stores, has not been performed.

To address this issue, in this paper we propose an approach to integrating
formal modelling in Event-B with discrete-event simulation in SimPy [14] – a
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library and development framework in Python. Event-B [2] is a state-based ap-
proach to correct-by-construction system development. A powerful tool support
– the Rodin platform [11] – automates the development and provides us with a
scalable proof-based verification. In this paper, we rely on Event-B to formally
represent and verify system-level logical properties, while simulation in SimPy
is used for the quantitative analysis. SimPy [14] is a popular discrete-event sim-
ulation framework offering versatility and attractive visualisation features.

To facilitate an integration with SimPy and discussions with the industrial en-
gineers, we have created a simple graphical notation – a process-oriented model.
The notation is light-weight and introduces only the core concepts of the domain
together with the key artefacts required for formal modelling and simulation.
Such a graphical model defines the component interactions, representation of
statistical parameters as well as reactions on faults. The process-oriented model
plays the role of a unifying blue-print of the system and allows us to define the
structure of the Event-B and simulation models as well as provide an easy-to-
comprehend visual representation to the engineers. Once the initial models are
derived from the process-oriented model, the Event-B model is refined to repre-
sent and verify data integrity properties, while the simulation model is executed
to analyse performance/reliability ratio, e.g., under different service and failure
rates.

We believe that the proposed approach constitutes a promising direction in
the development of complex resilient systems. A combination of formal mod-
elling and simulation amplifies the benefits of both approaches. Reliance on
formal modelling not only guarantees system correctness but also increases con-
fidence in the created simulation models, while simulation supports quantitative
assessment of various design alternatives.

The paper is structured as follows. Section 2 briefly presents our case study,
resilient cloud data storage, which serves as a motivation of this work. Section
3 overviews the approaches we aim to integrate – Event-B and Discrete-Event
Simulation. Our integration proposal is described in detail and illustrated by
a small example in Section 4. In Section 5, we demonstrate how to apply the
proposed approach to perform quantitative assessment of our case study. Finally,
Section 6 overviews the related work and gives some concluding remarks.

2 Resilient Data Storage in the Cloud

Our work is motivated by an industrial case study – a resilient cloud data storage
[10]. The system is developed by F-Secure to provide highly performant and
secure storage of client data on the cloud. Essentially, a cloud data storage can be
seen as a networked online data storage available for its clients as a cloud service.
Cloud data storage providers should ensure that their customers can safely and
easily store their content and access it from their devices. Therefore, there is a
clear demand to achieve both resilience and high performance in handling data.

Write-ahead logging (WAL) is a standard data base technique for ensuring
data integrity. The main principle of WAL is to apply the requested changes to
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data files only after they have been logged, i.e., after the log has been stored in
the persistent storage. The WAL mechanism ensures fault tolerance because, in
case of a crash, the system can recover using the log. The WAL mechanism also
helps to optimise performance, since only the log file should be written to the
permanent storage to guarantee that a transaction is (eventually) committed.

The WAL mechanism has been studied under the reliable persistent stor-
age assumption, i.e., if the disk containing the log never crashes. However, im-
plementing such a highly-reliable data store in the cloud is rather unfeasible.
Therefore, to ensure resilience, F-Secure has chosen a solution that combines
WAL with replication. The resulting system – distributed data store (DDS) –
consists of a number of nodes distributed across different physical locations. One
of the nodes, called master, is appointed to serve incoming data requests from
DDS clients and report on success or failure of such requests. The remaining
nodes, called standby or worker nodes, contain replicas of the stored data.

Each request received by the master is recorded in the master log and then
applied to the stored data. After this, an acknowledgement is sent to the client.
The standby nodes are constantly monitoring and streaming the master log
records into their own logs, before applying them to their persistent data. If the
master crashes, one of the standby nodes becomes a new master in its stead.

DDS can implement different models of logging. In the asynchronous model,
the client request is acknowledged after the master node has performed the re-
quired modifications in its persistent storage. In the synchronous model, the
transaction is committed only after all the replica nodes have written into their
persistent storage, i.e., synchronised with the master node. Obviously, such log-
ging models deliver different resilience guarantees in cases of component crashes.

In our previous work [10], we have formally defined and verified data integrity
properties for each described architecture using the Event-B framework. Our
development provided the designers with a qualitative assessment of system re-
silience. However, while developing cloud software, it is also vital to obtain a
quantitative assessment of resilience to optimise the choice of a resource man-
agement strategy. Usually such an assessment is achieved via testing. However,
testing in the cloud requires the same usage of the resources as the real system
operation, and hence is expensive. Moreover, it is often hard to reproduce the
conditions of the peak load and hence obtain the insights on system resilience
during the stress conditions. Therefore, there is a strong demand on the in-
tegrated approaches that enable both qualitative and quantitative analysis of
resilience.

The earlier in the development process such an analysis can be performed,
the better architecture can be build. To address this issue, in this paper we
propose an approach to integrating formal modelling in Event-B and discrete-
event simulation. Next we give a short background overview of both techniques.

3 Background

Event-B. Event-B is a state-based formal approach that promotes the correct-
by-construction development paradigm and formal verification by theorem
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proving. In Event-B, a system model is specified using the notion of an abstract
state machine [2]. An abstract state machine encapsulates the model state, rep-
resented as a collection of variables, and defines operations on the state, i.e., it
describes the dynamic behaviour of a modelled system. The important system
properties to be preserved are defined as model invariants. A machine usually
has the accompanying component, called context. A context may include user-
defined carrier sets, constants and their properties (defined as model axioms).

The dynamic behaviour of the system is defined by a collection of atomic
events. Generally, an event has the following form:

e =̂ any a where Ge then Re end,

where e is the event’s name, a is the list of local variables, and (the event guard)
Ge is a predicate over the model state. The body of an event is defined by
a multiple (possibly nondeterministic) assignment to the system variables. In
Event-B, this assignment is semantically defined as the next-state relation Re.
The event guard defines the conditions under which the event is enabled, i.e.,
its body can be executed. If several events are enabled at the same time, any of
them can be chosen for execution nondeterministically.

Event-B employs a top-down refinement-based approach to system develop-
ment. A development starts from an abstract system specification. In a sequence
of refinement steps we gradually reduce system nondeterminism and introduce
detailed design decisions. The consistency of Event-B models, i.e., invariant
preservation, correctness of refinement steps, is demonstrated by discharging
the relevant proof obligations. The Rodin platform [11] provides an automated
support for modelling and verification.

Discrete-Event Simulation. Simulation is the act of imitating how an actual
system behaves over time [3]. To achieve this goal, a simulation generates an
artificial system history, thereby enabling analysis of its general behaviour. It
also allows sensitivity analysis, which can be highly beneficial in the system
design.

Table 1 shows an ad-hoc simulation of a bank with a single teller and 5
customers. Customers arrive at a uniformly distributed rate between 1 and 10
minutes. A customer requires a dedicated service from the teller in between
1 to 6 minutes. Each row represents a customer, with an identifier in column
(1). Next columns show the generated random inter-arrival times, (2), specific
computed arrival time for each customer, (3), and generated random service
times, (4). From this information, we can derive a system history and study its
performance. The conducted simulation allows us to obtain the following system
estimates:

Average time in system 18
5

= 3.6 min
The clerk is idle 9

25
= 36 % of the time

Average queuing time 2
5
= 0.4 min

Ratio of customers having to queue 1
5
= 20 %

Average queuing time for those that queued 2
1
= 2 min

One type of simulation is known as discrete-event simulation (DES). In a DES,
system state remains constant over an interval of time between two consecutive
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Table 1. Ad-hoc simulation of a bank system with one teller

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Client
Count

Arrival
Interim

Arrival
Time

Service
Time

Service
Begins

Service
Ends

System
Time

Idle
Time

Queue
Time

1 — 0 5 0 5 5 0 0
2 3 3 2 5 7 4 0 2
3 6 9 5 9 14 5 2 0
4 10 19 3 19 22 3 5 0
5 5 24 1 24 25 1 2 0

18 9 2

events. Thus events signify occurrences that change the system state. Events can
be classified as either internal or external. Internal events, e.g., the bank teller has
finished serving a customer, occur within the modelled system. External events,
like customer arrivals, occur outside the system, but still affect it. A simulation
is run by a mechanism that repeatedly moves simulated time forward to the
starting time of the next scheduled event, until there are no more events [13].

Architecturally, a DES system consists of a number of entities (e.g., compo-
nents, processes, agents, etc.), which are either producers or recipients of discrete
events. Entities can have attributes, e.g., the busy status of the bank teller. There
are two kinds of entities: dynamic entities, moving into or out of the system, like
the bank customer, and static entities, serving other entities, like the bank teller.
Static entities can often be represented as resources. Waiting for a particular
event to occur can lead to a delay, lasting for an indefinite amount of time. In
other cases, the time estimate may be known apriori, e.g., when bank customers
receive service by the teller. Events can be also interrupted and pre-empted, e.g.,
in reaction to component failures or pre-defined high-priority events.

There are four primary simulation paradigms [3]: process-interaction, event-
scheduling, activity scanning, and the three-phase method. Our simulation model
uses SimPy [14], a simulation framework based on process-interaction in Python.

Motivation and Plan for Integration. DES constitutes an attractive technol-
ogy for quantitative assessment of various characteristics of cloud applications.
Firstly, it allows the designers to perform various ”what-if” type of analysis that
demonstrates sensitivity of the service architecture to changes of its parameters.
For instance, it gives an insight on how the system reacts on peak-loads, how
adding new resources affects its performance, what is the relationships between
the degree of redundancy and fault tolerance, etc. Secondly, while simulating
the service behaviour, the designers also obtain the insights on which parame-
ters should be monitored at run-time to optimise a resource allocation strategy.
However, to obtain all the above-mentioned benefits, we have to ensure that the
simulation models are correct and indeed representative of the actual system.
This is achievable via integration of simulation with formal modelling.

To adequately model complex cloud services, we need a framework with a
good automated tool support and scalability. We have chosen Event-B because
it satisfies these criteria and has been successfully applied to model data stores in
the cloud [10]. However, the fine granularity of Event-B models made it cumber-
some to communicate the modelling decisions across a diverse team of experts.
Therefore, we needed an easy-to-understand light-weight graphical notation that
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would allow us to generate both Event-B and simulation models in a compatible
way.

One alternative to creating a visual systemmodel would be to choose one of the
existing architectural languages. However, to achieve simplicity and comprehensi-
bility, we decided against it. The introduced graphical notation, called a process-
oriented model, is domain-specific and minimal in a sense that each element is
introduced only if it is required either in our formal modelling or a DES represen-
tation. It captures only the key concepts of the domain and hence alleviates the
burden of customising a general-purpose architectural language. The proposed ap-
proach also gives us a full control over defining the interpretation of all elements of
the introduced graphical notation in Event-B and SimPy models, thus ensuring
a mutually-compatible derivation of these models. Once the models are derived
from the common process-oriented model, each of them is used independently.
The Event-B model is refined to reason about the logical system properties, while
the simulation model is exercised to perform the quantitative analysis. Obviously,
if the simulation indicates that the chosen architecture is unable to fulfil the tar-
get SLA, the architecture should be amended together with its process-oriented
model. This inevitably leads to redesign of the corresponding Event-B and SimPy
models to faithfully represent the changed architecture.

As a result of such integration, we gain more flexibility and control over the
simulation models. We can experiment more freely with different service con-
figurations and perform sensitivity analysis in a more efficient way. The formal
backbone gives us more confidence in the simulation models and we can clearly
see the entire effect of model changes, thus alleviating the verification burden.

4 Process-Oriented Model

In this section we will present a process-oriented system model that serves as
a “common ground” for both formal modelling in Event-B and simulation in
SimPy. The model has the associated graphical notation for representing system
architecture in terms of its units (components and processes) and interaction
mechanisms between these units.

In general, we are interested in modelling, simulating, and analysing the sys-
tems that have the following characteristics:

– A system consists of a number of parallel processes, interacting
asynchronously by means of discrete events;

– System processes can be grouped together into a number of components.
The discrete events triggering interactions between the component processes
then become internal process events, while the remaining discrete events can
be considered as the external component interface for its interaction with
other components or the environment;

– Within a process, execution follows the pre-defined scenario expressed in
terms of functional blocks (activities) and transitions between them. Each
such functional block is typically associated with particular incoming events
the process reacts to and/or outgoing events it produces;
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Fig. 1. Example of a system component

– A system component can fail and (in some cases) recover. In other words,
component failures and recovery mechanisms are a part of the component
description. They can be described as the special component processes sim-
ulating different types of failures and recovery procedures of the component;

– Some events (e.g., component failures) should be reacted on immediately
upon their occurrence, thus interrupting the process current activities. Such
special events (interrupts) are explicitly described in the component descrip-
tion and associated with dedicated functional blocks (interruption handlers).

An example of such a component is graphically presented on Fig.1. The com-
ponent interface consists of one incoming event (arrival evn) and two outgoing
events (rejection evn and completion evn). The component itself contains two
processes describing its “nominal” behaviour: the first one stores requests to
perform a certain service, and the second one performs a requested service and
returns the produced results. The internal event perform evn triggers the request
execution by the second process. In addition, the component includes the Failure
and Recovery processes to simulate possible component failures and its recovery.
More specifically, the Failure process generates an internal interrupt event for
both nominal processes, which is then handled by the Handler block. In general,
a component can have several such processes and handler blocks.

In our process-oriented model, time progress is associated with either waiting
for an incoming event or an internal activity requiring time (e.g., data processing
of a received service request, see Service in Fig.1). Only such functional blocks
(marked by “t” in a diagram) can be interrupted.

Some functional blocks may indicate activities related to accessing the under-
lying storage resource (e.g., putting the received data into a buffer). Such blocks
are decorated by a circle from below, for example, see Store in Fig.1.

The component state is mostly hidden in a process-oriented model, focusing
instead on the required control flow and interaction between the processes. How-
ever, sometimes we need to reveal a part of this state to be able to constrain
incoming or outgoing events as well as internal transitions between functional
blocks. For this purpose, we use the following pre-defined component attributes:

– (for each component) the component unique identifier id;
– (for each process) the process activity status PAS, which can be either Active

or Inactive. Changing this attribute to Inactive allows us to explicitly block
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Fig. 2. Using component’s attributes Fig. 3. Dynamic creation of processes

a particular process. The process will remain blocked and thus irresponsive
to any events until the attribute is not changed to Active again;

– (for each storage-related functional block) the storage availability status SAS,
which can be either Full or NotFull. The attribute value reflects whether the
operation of adding data into the storage can be successfully completed;

– (for each component) the component operational mode Mode, which can be
one of pre-defined values for this type of a component. For instance, the
component on Fig.1 can be used in two different modes, either as a “server”
or a “slave”. This assumption allows us to redefine the description of the
Nominal proc1, see Fig.2. If the mode is “server”, it forwards the request to
another (slave) component by generating the outgoing event forward evn.

If the attribute we are referring to is clear from the context, we will use a
shorthand notation [attribute value] to stand for the condition attribute name =
attribute value. For instance, in Fig.2 the transitions of Nominal proc1 from
its Store to either Reject or Accept are dependant on whether the used storage
is currently full or not. We specify this by the added conditions [Full] and [not
Full] on the corresponding process transitions. Similarly, the outgoing events
perform evn and forward evn for Accept are created depending on the component
role, which is reflected by the conditions [server] and [slave] on the corresponding
arrows. We also assume that all the events and internal transitions have implicit
conditions [Active], checking that the process in question is not currently blocked.

If we need to change the attribute value, we again use the notation [at-
tribute value], however within a functional block. In addition, for quickly chang-
ing the process activity status for a number of processes, we employ another
shorthand notation: activate(Proc1, ..., ProcN) and deactivate(Proc1, ...,
ProcN).

By default, we assume that the processes are created and terminated together
with their encompassing component. However, sometimes we need to dynami-
cally create and terminate component processes. Let us consider an alternative
version of Nominal proc2, presented in Fig.3. Here the process Nominal proc2 is
created each time a request from Nominal proc1 is ready to be served. Moreover,
once the outgoing event for successful service completion is created, the process
is terminated (depicted as a black circle).

To collect the quantitative information about the considered system, we as-
sume the implicit presence of a monitor component. The information is collected
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about the occurrence of particular events of interest. The arrows representing the
events of a component to be monitored by such a component are decorated with
small circles in a process-oriented model. If the system contains other compo-
nents, they should be explicitly composed by matching their external interfaces.

”Common ground”.A process-oriented model serves as a basis for both Event-
B development and system simulation in SimPy. Translating a process-oriented
model into Event-B gives us the starting point of our formal development with the
already fixed system architecture and control flow between main system compo-
nents. The corresponding system properties are explicitly formulated and proved
as system invariants. Additional properties (e.g., the relationships between pro-
cesses being active or inactive) can be verified too. By the definition of Event-B re-
finement, the following refined models preserve these properties, elaborating only
on the newly introduced data structures and intermediate system transitions.

While translating a process-orientedmodel to SimPy, we augment the resulting
code with concrete values for its basic quantitative characteristics, such as data ar-
rival, service, and failure rates. This allows us to compare system performance and
reliability for different system parameter configurations. If a satisfactory configu-
ration values can be found and thus re-design of the base process-orientedmodel is
not needed, the simulation results does not affect the Event-B formal development
and can be considered completely complementary to it.

Translating to Event-B. Here we present general guidelines how to proceed
from a process-oriented model of a system component to the corresponding
Event-B specification. From now on, we refer to Event-B events as operations to
avoid confusion with DES events. During the translation, the respective elements
of a process-oriented model may become one or several Event-B operations, the
corresponding guard or action expressions within a particular operation, or the
invariant predicates to be verified for the resulting Event-B model. Moreover,
a number of Event-B variables standing for component attributes, incoming or
outgoing events, as well as the variables ensuring the required control flow have
to be introduced. The translation guidelines are summarised in Fig.4.

We will demonstrate the use of these guidelines on the component example
from the previous section (Fig.1). Each functional block of the process-oriented
model is translated to one or two Event-B operations. Two operations are needed
in the cases when the block in question is interruptible. Then the first operation
specifies a possible start of the block, while the second one models its completion.
For instance, the block Store will be represented as two Event-B operations:

Store step1 =̂

when Nominal proc1 = Active

Arrived env = FALSE

then Arrived env :∈ BOOL

end

Store step2 =̂

any j

when Nominal proc1 = Active

failure interrupt = TRUE

Arrived evn = TRUE

j ∈ JOBS \ {NILL}
then ArrivedJob := j

Arrived evn := FALSE

Storage status :∈ {Full, NotFull}
end
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Here the boolean variables Arrived evn and failure interrupt model occur-
rence of the corresponding system events. Moreover, the process activity at-
tributes (e.g., Nominal proc1 ) are represented as eponymous variables that can
take values from the set {Active,Inactive}. Similarly, the storage availability at-
tribute is introduced as a separate variable Storage status taking values from
{Full,NotFull}. The other functional blocks (Reject, Service, Delay, Result) are
modelled in a similar way.

During the system execution a failure of the component might happen at any
time. In that case, the component halts its nominal processes and is only involved
in its recovery process. Upon successful recovery, the component reactivates its
nominal processes. The corresponding blocks Failure and Handler are as follows:

Failure =̂

when Failure proc = Active

failure interrupt = FALSE

then failure interrupt :∈ BOOL

end

Handler =̂

when failure interrupt = TRUE

then Failure proc := Inactive

failure interrupt := FALSE

Nominal proc1 := Inactive

Nominal proc2 := Inactive

Recovery := Active

end

The Failure operation models non-deterministic occurrence of a system failure,
which leads to a creation of the failure interrupt event. The Handler operation
models handling of this interrupt by blocking the nominal and Failure processes,
while activating the Recovery process.

In this simple system, the Recovery process is active only when all the rest
processes are inactive. This is formulated as the following invariant to be verified:

Recovery = Active ⇔ Nominal proc1 = Inactive∧Nominal proc2 = Inactive∧...

Similarly, the invariants ensuring the required control flow and component in-
teraction order can be added and verified in the resulting Event-B model.

Translating to SimPy. This section describes how to represent the system in
Fig. 1 using SimPy. In SimPy, we represent components as classes. Component
processes become SimPy processes, which are based on Python’s generators.
Functional blocks are represented as sequences of instructions that alter the sys-
tem state and wait for events. Events are used for inter-process communication
and can take optional values as arguments (see Fig. 4 for a detailed guide).

A partial code listing corresponding to the system in Fig. 1 is shown in List-
ing 1.1. This component has four processes. Lines 3–6 in Listing1.1 create these
processes upon initialisation of the component object, using a method for pro-
cess creation provided by the SimPy simulation environment. Process creation
requires a Python generator as its argument, which will become the body of
the process. On Lines 8–9 we initialise two shared events which will be used to
activate and deactivate the processes.

Lines 11–26 constitute the generator for Nominal proc1. A sub-generator used
for interrupt handling is defined in Lines 12–15. Upon invocation, this gener-
ator will activate the recovery process and wait until the activation event

is triggered, which makes Nominal proc1 inactive while recovery is in progress.
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Fig. 4. Guidelines for integration

Because all processes in this example are non-terminating, every process gener-
ator contains an infinite loop, as in Lines 17–27.

Since Nominal proc1 is interruptible, we need to surround the yield statement
with exception handling (Lines 18–27), which will catch possible interrupts. In-
terrupts can only occur at yield statements, because an interrupt must come
from another process and other processes cannot run until the active process has
yielded execution, similarly to cooperative multitasking. Line 19 corresponds to
the store activity, which uses a discrete resource, a store, as a pipe for interpro-
cess communication. Execution of the process is halted until a job is put in the
pipe. When a job arrives through the pipe, the status of the buffer is checked
and the requested is either rejected or accepted and put in the pipe connecting
Nominal proc1 and Nominal proc2.

Similarly to Nominal proc1, Nominal proc2 waits until a job arrives in its in-
coming pipe (Line 35). Thereafter, Line 36 simulates time required for serving
the job. An interrupt may occur at either of these two yield statements.

The generator for the failure process spans Lines 44–50. The process waits for
an exponentially distributed amount of time (46), the time between failures. Upon
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failure, the two nominal processes are interrupted (48–49) and the failure process
becomes inactive until the recovery process triggers the activation event.

Contrary to the other processes, the recovery process starts in an inactive
state. We achieve this by waiting until the recovery activation event is trig-
gered (Line 54). When activated, the recovery process waits for some time (Line
55) before activating the other processes (Lines 56–57) and becoming inactive
again.

5 Applying the Integrated Approach

In this section, we will demonstrate the proposed approach on our case study
– a replicated data storage in the cloud. As explained in Section 2, we consider
two different system architectures: asynchronous and synchronous models.

In Fig. 5 and Fig. 6, we present the process-oriented models for the node
components of these architectures. The component has a similar structure to the
example we considered in the previous section. Additionally, there is a separate
process FailureDet proc that models reaction to a new master notification. The
node components can be also employed either in the master or standby (worker)
modes. In addition, each system also contains the (implicit) Monitor component
as well as the Failure Detector component, responsible for detecting a failed
master and then assigning a new one. The Failure and Recovery processes are
similar to the ones from Fig.1 and are not presented here.

Listing 1.1. SimPy representation of the Component class
1 class Component:
2 def __init__ (self , env , ...):
3 self.p1 = self.env.process (self.proc1 ())
4 self.p2 = self.env.process (self.proc2 ())
5 self.failure_proc = self.env.process (self.fail())
6 self.recovery_proc = self.env.process (self.recover ())
7
8 self.activation_event = self.env.event ()
9 self.recovery_activation_event = self.env.event()

10
11 def proc1(self):
12 def handle_interrupt():
13 self.recovery_activation_event.succeed ()
14 self.recovery_activation_event = self.env.event()
15 yield self.activation_event
16
17 while True:
18 try:
19 rq = yield self.arrival_pipe.get()
20 if len(self.buffer) < self.capacity :
21 self.buffer.append(rq)
22 yield self.interproc_pipe.put(rq)
23 else:
24 self.rejected += 1
25 except Interrupt as interrupt:
26 yield from handle_interrupt()
27 continue
28
29 def proc2(self):
30 def handle_interrupt():
31 yield self.activation_event
32



Integrating Event-B Modelling and Discrete-Event Simulation 115

33 while True:
34 try:
35 yield self.interproc_pipe.get()
36 yield self.env.timeout (expovariate(self.service_rate))
37 self.buffer.pop()
38 self.completed += 1
39
40 except Interrupt as interrupt:
41 yield from handle_interrupt()
42 continue
43
44 def fail(self):
45 while True:
46 yield self.env.timeout (expovariate(self.failure_rate))
47 self.failures += 1
48 self.p1.interrupt(’failure1 ’)
49 self.p2.interrupt(’failure1 ’)
50 yield self.activation_event
51
52 def recover (self):
53 while True:
54 yield self.recovery_activation_event
55 yield self.env.timeout (expovariate(self.repair_rate))
56 self.activation_event.succeed ()
57 self.activation_event = self.env.event()

Fig. 5. Asynchronous model

Fig. 6. Synchronous model

Event-B Modelling. The resulting Event-B models become starting points
of our formal development, with main architectural system elements and their
communication already in place. In the following refinement steps, we extend the
abstract models by elaborating on the WAL mechanism and explicitly expressing
the required data interdependencies between the master and standby logs.
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(a) Asynchronous model

(b) Synchronous model

Fig. 7. Comparison of the two models. Mean arrival rate is 7.5/min, service time is 5s,
buffer capacity is 5 and mean failure rate is 1.8/h

Table 2. Results from model comparison

Completed (%) Rejected (%) Failed (%)
Asynchronous 99.3 0 0.2
Synchronous 97.2 1.6 0.7

For instance, for the asynchronous model, we formulate and prove the data
consistency property. Specifically, it states that all the requests that are now
handled by a standby node should have been already completed by the master
before. Moreover, we explicitly formulate and prove (as a model invariant) the
log data integrity property stating that the corresponding log elements of any
two storage nodes are always the same. In other words, all logs are consistent
with respect to the log records of the master node. For more details, see [10].

Simulation in SimPy. Creating simulations for the models in Fig.5 and Fig.6
allows us to compare the two architectures as well as evaluate how different pa-
rameters affect the results within an architecture. Let us consider the system
operating with the master and 3 workers. The workers poll the master 30 times
per minute. The buffer capacity is set to 5. The arrival rate is exponentially
distributed with mean 7.5/min. Each component requires 5s to process a re-
quest. Components randomly fail at an exponentially distributed rate of 1.8/h,
rendering them inoperable until they have been repaired, which takes 4 seconds.

Fig.7 shows the results of a simulation involving the two models. With iden-
tical operating conditions and parameters, the asynchronous model has higher
throughput, completing 99.3 % of requests in 1 hour. This is expected, because
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the asynchronous model involves less delay than the synchronous one, which
completes 97.2 % of requests in 1 hour. Table 2 summarises the results.

Let us take a closer look at the asynchronous architecture. What happens
if the buffer capacity was lowered from 5 to 2? What if the mean failure rate
then was increased to 18/h? These questions are easy to answer with DES.
According to Fig. 8, reducing the buffer capacity has a large negative impact on
the throughput of the system, which only manages to complete 87.4% of requests
within an hour. Contrary to the previous experiment, a substantial amount of
arriving requests, 11.9%, are rejected. Additionally increasing the mean failure
rate by a factor of 10 has less impact on the system than the previous change,
with 83.4% of requests completed. Table 3 summarises the results.

Further experiments can reveal more information about the system. For ex-
ample, changing the number of workers does not have great impact on the perfor-
mance of the asynchronous model, because its primary work-flow only involves
the master. For the synchronous model, the number of workers does not affect
performance much by itself, as processing on the workers occurs in parallel, but
if the repair rate is very low, increasing the number of workers actually results
in worse performance. This is because each request requires processing on each
component and, whenever a component fails, the system has to wait for it to
be repaired before pending requests can be completed. Increasing the number
of workers in the synchronous model then results in an effective increase in the
mean failure rate of the system.

(a) Buffer capacity is down to 2, the mean failure rate stays 1.8/h.

(b) Buffer capacity is down to 2, the mean failure rate is up to 18/h.

Fig. 8. Sensitivity analysis (Async. model). Arrival rate is 7.5/min, service time is 5 s.
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Table 3. Results from sensitivity analysis with the asynchronous model

Completed (%) Rejected (%) Failed (%)
Less Capacity 87.4 11.9 0.2

Less Capacity and More Failures 83.4 13.3 0.9

6 Related Work and Conclusions

This work augments with formal modelling our previous research [5] on using
DES to analyse reliability and cost of different session management policies in
the cloud. The problem of inadequate support for development of cloud services
has also been identified by Boer et al [4]. Similarly to us, they aim at integrating
reasoning about correctness with simulation. In our case, Event-B allows us to
formally represent and verify system-level properties, while in [4] the stress is
put on creating executable specifications and analysis of corresponding traces.

Our proposed process-oriented model is similar to Activity Cycle Diagrams
(ACD) [6,9] – a graphical notation to model discrete events and interactions. In
particular, [6] presents an extension of ACS to enable automatic translation to
Java programs, while [9] proposes extended ACD to represent the relationship
between conditions and events in a discrete event system that are not covered by
the classical ACD. In contrast, our process-oriented models allow us to represent
a high level system architecture in terms of components, processes and their
interactions. Moreover, our proposed models can be both used as a basis to
formal modelling and simulation at the same time.

The WAL mechanism has been investigated in [8,7], where the authors anal-
yse the performance aspects of this technique. They distinguish four types of
the delays that the WAL mechanism can impose on transaction handling and
propose an approach to increase log scalability. In our work, we focus on inte-
grating formal verification and DES to evaluate the system both qualitatively
and quantitatively.

The problem of a formal verification and simulation-based validation is ad-
dressed in the ADVANCE project [1]. However, the focus of the proposed method-
ologies is related to cyber-physical systems, which are characterised by a mixture
of discrete-event and continuous-time components. The proposed simulation-
based approach combines the Event-B development and co-simulation with tool-
independent physical components via the FMI interface [12]. In our work we
deal with discrete-event systems and focus on integrating separate approaches
for qualitative and quantitative reasoning about such systems.

In this paper, we have proposed a pragmatic approach to integrating formal
modelling in Event-B and discrete-event simulation in SimPy. Our aim was to
find a scalable solution to integrated engineering of resilient data stores in the
cloud. We have succeeded in overcoming the scalability problems experienced
while attempting to apply probabilistic model checking and achieved the desired
goal – quantitative assessment of system resilience. Since testing cloud services in
general is expensive and time consuming, we believe that the proposed approach
offers benefits for the designers of cloud services.
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Proof of concept integration of formal modelling and DES presented in this
paper can be seen as an initial step towards creating an automated tool support
for an integrated engineering environment of cloud services. Our future work will
continue in two directions: one the one hand, we will create a tool for automatic
translation of Event-B models in SimPy as well as work on visualisation of
formal and simulation models. On other hand, we will experiment with deriving
resilience monitors from system models to enable proactive resilience at run-time.

Acknowledgements. The authors would like to thank the reviewers for their
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Abstract. A Run-Time Management system for many-core architec-
ture is aware of application requirements and able to save energy by
sacrificing performance when it will have negligible impact on user expe-
rience. This paper outlines the application of a process for development
of a run-time management system that integrates a range of modelling,
validation, verification and generation tools at appropriate stages. We
outline the models, process and tools we used to develop a temperature
aware run-time management system for Dynamic Voltage and Frequency
Scaling (DVFS) of a media display application. The Event Refinement
Structure (ERS) approach is used to visualise the abstract level of the
DVFS control. The Model Decomposition technique is used to tackle
the complexity of the model. To model the process-oriented aspects of
the system we used iUML-B Statemachines. We use several different
visual animation tools, running them synchronously to exploit their dif-
ferent strengths, in order to demonstrate the model to stakeholders. In
addition, a continuous model of the physical properties of the cores is sim-
ulated in conjunction with discrete simulation of the Event-B run-time
management system. Finally executable code is generated automatically
using the Code Generation plug-in. The main contribution of this paper
is to demonstrate the complementarity of the tools and the ease of their
integrated use through the Rodin platform.

Keywords: Many-core, Event-B, Formal methods, Run-time manage-
ment, DVFS, Task allocation.

1 Introduction

As electronic fabrication techniques approach the limit of atomic dimension,
increases in performance can no longer be obtained from a single core with
relative ease. Transistorised electronic devices gradually wear out due to physical
phenomena such as electromigration and hot-carrier injection [1]. This effect is
becoming more significant now that fabrication techniques are approaching the
level of a few atoms. Interest in recent years, therefore, has increasingly focused
on many core devices. Managing the use of a large collection of cores to achieve a
given computing task with adequate performance in an energy efficient manner
while minimising wear-out is a challenging problem, which is being tackled by the
PRiME project [2]. A Run-Time Management system that is aware of application
requirements and able to save energy by sacrificing performance when it will
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have negligible impact on user experience is required. The run-time management
system is also required to be aware of wear-out effects and minimise situations
that accelerate them where possible. Furthermore we require such a system for
disparate operating systems and hardware platforms.

Our approach is to developed formal models in Event-B [3] using the Rodin
modelling platform [4] and plug-ins in an integrated formal development pro-
cess, from requirements analysis through to code generation, so that we obtain a
precise and correct specification from which we can generate variants and subse-
quently code for different platforms. Here we describe the models and modelling
techniques we used as part of the formal development process to specify a temper-
ature aware run-time management system for Dynamic Voltage and Frequency
Scaling (DVFS) of a media display application. The run-time management sys-
tem learns from the application when it can scale back voltage and frequency to
save energy without missing too many frame deadlines. The run-time manage-
ment system is also aware of core temperatures and controls thread scheduling
of the operating system by setting thread-core affinity in order to avoid wear-out
due to heating effects in the cores.

Figure 1 shows the complete formal development process indicating where
different tools and methods are used. This figure should be referred to through-
out the paper as different stages are discussed. The requirements are analysed
using the MCC (Monitored, Controlled, Commanded) [5,6] set of guidelines for
creating an initial abstract Event-B model. The model is defined and refined
using the Event Refinement Structure (ERS) approach [7,8] and iUML-B

Fig. 1. Formal Design Towards Implementation
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Statemachines [9,10] wherever appropriate. As well as formal refinement verifi-
cation proof, the models are demonstrated to be valid using BMotionStudio [11]
and iUML-B State-machine animation in tandem. The models are decomposed
into controller and environment using Model Decomposition [12,13]. To demon-
strate the validity of the control of continuous environmental phenomena, a
continuous model of the environment is created and co-simulated with the dis-
crete Event-B controller using the multi-simulation plug-in [14]. Code can then
be generated using the Code Generation plug-in [15] plug-in which has been
enhanced for our purposes using the theory plug-in [16].

The contribution of this paper is to show how all of these different techniques
and tools complement each other in a complete formal modelling process for
a multi-core runtime management system. In section 2 we briefly describe the
techniques and tools used. In section 3 we introduce the media decoder case study
and the run-time management control of DVFS and temperature. In section 4 we
describe the method of requirements analysis using the MCC guideline to obtain
an initial abstract model. In section 5 we described our use of diagrammatic
modelling notations. In section 6 we describe how we model the environment by
decomposing the complete system model and/or by modelling in a continuous
domain modelling tool. In section 7 we describe our use of visual animation and
simulation tools to validate the models. In section 8 we describe how we generate
an implementation from the refined models.

2 Background

Event-B [3] is a formal method for system-level modelling and analysis. Key
features of Event-B are the use of set theory and first order logic as a modelling
notation, the use of refinement to represent systems at different abstraction levels
and the use of mathematical proof to verify correctness of models and consistency
between refinement levels. The Rodin [4] platform is an Eclipse-based IDE for
Event-B that provides effective support for modelling and mathematical proof.

We use Monitored, Controlled and Commanded phenomena (MCC ) guide-
line [5,6] to structure requirements. The MCC guideline facilitates formal mod-
elling of a control system and help to formalising a set of informal requirements.
Details are presented in section 4.

We use the Event Refinement Structure (ERS) approach [7,8] to visualise
and build the abstract and refined levels of the DVFS control as an Event-B
model. ERS augments Event-B methodology with a diagrammatic notation for
explicit representation of control flows and refinement relationships. Providing
such diagrams aids understanding and analysing the control flow requirements
and refinements without getting involved with the complexity of the mathemat-
ical formal language notation. Details are presented in section 5.2.

We use Model Decomposition [12,13] to divide the DVFS control model into
two sub-models: Controller and Environment. The controller sub-model consists
of variables/events describing the softwaree layer properties whereas the envi-
ronment sub-model consists of variables/events describing the properties of the
user and the hardware layer. Details are presented in section 6.1.
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We use iUML-B Statemachines [9,10] to model the thread scheduling process
of the operating system under the influence of the run-time management sys-
tem. State-machines provide excellent visualisation of mode-oriented problems
and are animated for validation in synchronisation with BMotionStudio [11] vi-
sualisations of other parts of the model. Details are presented in section 5.3
(modelling) and 7.1 (animation).

We developed a continuous model of the thermal properties of a core depend-
ing on voltage and frequency using the Modellica [17] language. The continuous
model is simulated in conjunction with ProB [18] simulation of the Event-B run-
time management system. This is achieved via tools for mixed-simulation [14]
which are under development in the ADVANCE project [19] . Details are pre-
sented in section 6.2 (modelling) and 7.2 (simulation).

Executable code was generated using the Code Generation plug-in [15]. The
code generation feature provides support for the generation of code from refined
Event-B models. To this end a multi-tasking approach has been added to the
Event-B methodology. Tasks are modelled by an extension to Event-B, called
tasking machines which are an extension of the existing Event-B machine com-
ponent. The code generation plug-in provides the ability to translate to C and
Java in addition to Ada source code. We adapted the code generation plug-in
and used it to generate a Java implementation of the DVFS system. Details are
presented in section 8.

3 The Case Study

Multimedia applications are expected to form a large portion of workload in gen-
eral purpose PC and portable devices. The ever-increasing computation intensity
of multimedia applications elevates the processor temperature and consequently
impairs the reliability and performance of the system [20]. The run-time man-
agement system of the media decoder system scales the value of Voltage and
Frequency (VF ) for each frame of the media file. The VF value is scaled based
on the speed of playing media requested by the operator and the type of the
decoding frame. The run-time management system also learns from the number
of CPU clock cycles taken to decode previous frames. The run-time management
system aims to select an optimally minimal scaled VF value that provides ade-
quate performance at minimal power consumption. The run-time management
system also minimises thermal wear-out by selecting CPU cores that are well
within the temperature thresholds for such effects. Unnecessary thermal cycling,
which may also contribute to wear-out, is also avoided by selecting cores that
are already warm when available.

The run-time management system operates in conjunction with an operating
system by constraining or instructing the operating system in order to achieve
the additional management features. Although we focus, here, on one type of
multimedia application, the run-time management system should eventually be
more generic and handle multiple types of application running simultaneously
on a many-core platform. This is reflected in our modelling of the more generic
layers of run-time management system and operating system.
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4 Requirements and Analysis of the Case Study

Guidelines can be used to facilitate the transition between an informal require-
ments and its formal representation. Influenced by Parnas four-variable [21], a
guideline to model a control system using its monitored, commanded and con-
trolled (MCC ) phenomena is proposed in [5,6]. A phenomenon can be of type
variable or event. The definitions of MCC variable and event phenomena are
given below:

– Monitored phenomena: Monitored variables whose values are determined by
the environment. Environment events update monitored variables.

– Controlled phenomena: Controlled variables representing phenomena in the
environment whose values are set by the controller. Control events update
controlled variables.

– Commanded phenomena: Commanded variables whose values are determined
by the user and that influence controlled phenomena. Commanded events are
user requests to modify commanded variables.

We have used the MCC guideline to structure requirements of the media de-
coder case study. The PRiME architecture structures a many core system into
four layers: user, application, system software and hardware (Fig. 2). Fig. 3 and
Fig. 4 illustrate how the MCC phenomena map to the PRiME layers. In Fig. 2,
from top to bottom, the interaction between the user layer and the application
layer is categorised as commanded phenomena. We propose a new phenomena,
called task characterization. Task characterization phenomena are determined
by the application layer and are fixed during run time. The controlled phenom-
ena values are set by the software layer, and finally the monitored values are
determined by the hardware.

Fig. 3 presents the PRiME layers and corresponding requirements phenomena
for the media decoder DVFS aspects of the case study. Here the user of the
system is an operator who attempts to open the media file and request the speed

Fig. 2. PRiME Layers
Illustration

Fig. 3. DVFS As-
pects of Case Study

Fig. 4. Thermal
Aspects of Case
Study
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of playing media. The application is the decoder. The software layer corresponds
to the run-time management, and the hardware layer corresponds to the CPU
cores. The definition of the MCC phenomena are as below:

– Commanded : Frame Per Second (fps) property whose value is determined
by the operator.

– Task Characterization: Frame type property whose value is determined by
the decoder application.

– Controlled : Voltage and Frequency (VF ) property representing the value of
VF to be set in the hardware; VF value is set by the run-time management
system.

– Monitored : CPU cycles number whose value is determined by the core.

These phenomena are specified as variables and events in the Event-B model.
For example fps property is modelled as a variable and an event (set fps intro-
duced in Section 5.2) to set its value. The ordering between these phenomena
(from top to bottom) are specified as invariants and event guards in the Event-B
model (details in Section 5.2).

Fig. 4 presents the PRiME layers and corresponding requirements phenomena
for the temperature control aspects of the case study. The definition of the MCC
phenomena are as below:

– Commanded : Performance tradeoff is a property which the operator can
adjust to control the balance between performance and wear-out

– Task Characterization: Computation properties (multi-threading) whose
value is determined by the decoder application.

– Controlled : Core usage property representing the allocation of threads to
CPU cores controlled by the run-time management system.

– Monitored : Core temperature measured for each CPU core.

5 Modelling

5.1 The Event-B Formal Method

Event-B [3] evolved from the B-Method [22] and adopts the more flexible systems-
oriented refinement of Action systems [23]. New events can be introduced in
refinements or old ones split into different cases as more complex data struc-
tures reveal more detailed behaviour. Event-B modelling and verification proof
is supported by the Rodin platform [4]. Different design and modelling tech-
niques, such as UML-B, model decomposition, ERS etc., have been developed
and integrated into the Rodin platform as plug-in extensions which enrich the
Event-B modelling process. The primary aim of Event-B is to validate that we
are building the right system. Since validation is inherently a human decision it is
important to build models which clearly show the important properties of a sys-
tem. Event-B’s method of verified refinement allows us to make abstractions so
that important properties can be modelled and validated without being obscured
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by detail. Verified refinement allows us to then add more details in simple stages
in the knowledge that the validated properties are maintained. We use visual
animation tools to validate abstract levels of the model and mixed-simulation at
more refined levels.

5.2 Event Refinement Structure Approach

The Event Refinement Structure (ERS) approach [7,8] is used to visualise and
build the control flows of the abstract level and refinement levels of the DVFS
control Event-B model. In Event-B, control flows are implicitly modelled by labo-
riously adding control variables, and corresponding guards and actions in order
to specify the sequencing of events. ERS provides an explicit visual representa-
tion of control flows which is used to automatically generate these control vari-
ables, guards and actions. In addition, ERS provides explicit representation of
the refinement relationships between an abstract event and the refining concrete
events. ERS augments Event-B with a diagrammatic notation that is capable of
explicit representation of control flow requirements and the corresponding refine-
ment structure. The rest of the requirements are modelled directly in Event-B
which allows full expressiveness. Providing such diagrams aids understanding
and analysing the control flow requirements in a more direct way than the plain
Event-B representation. The ERS diagram of the DVFS control is illustrated in
Fig. 5.

Fig. 5. ERS Diagram, Abstract Level of DVFS Model

The root oval contains the name of the system, DVFS RTM, Dynamic Voltage
and Frequency System Run Time Management. Considering the abstract layer
(blue region), the leaves are read from left to right, indicating the ordering be-
tween them. First the set fps event executes followed by execution of four events
for all of the frames of the decoding media file. The “all” replicator, appear-
ing in the oval, indicates (potentially parallel) execution of its children for all
of the instances of parameter “f ” of type “frames” . For each frame, first the
optimal value of the value of the VF is calculated (calculate vf event), second
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the VF value is stored (store vf event), then the frame is executed in the core
(execute frm event) and finally the number of taken CPU cycles is monitored
(monitor cpu cycle event). In the refinement level (green region), calculate vf is
decomposed into two sub-events, predict cpu cycles and select vf. The ERS dia-
gram explicitly illustrates that the effect achieved by calculate vf at the abstract
level is realised at the refined level by occurrence of predict cpu cycles followed
by select vf. The solid line indicates that select vf event refines calculate vf event
while the dashed line indicates that predict cpu cycles event is a new event which
refines skip.

5.3 iUML-B State-Machines

iUML-B State-machines provide a mode-oriented control over a sequence of
events. Hierarchical State-machines are added to the Event-B model and con-
tribute (i.e. automatically generate) guards and actions to existing events in
order to represent the transition source and target. Additional guards and ac-
tions may be added to transitions and invariants may be placed within states. We
used state-machines to visualise the affinity-restricted thread scheduling of the
temperature control operating system (Fig. 6). The state-machine shows that a
thread is initially PREMPTED and may then start with a new time-slot (time-
slot is modelled in the underlying Event-B and not shown in the diagram). While
RUNNING, the thread can progress which consumes time-slot until it runs out
(timeup) and becomes EXPIRED. If it has completed it will then exit. If not it
returns to PREMPTED via prempt and must then resume (or resumeCold) with
a new time-slot when a core is available. When resuming, the scheduler chooses a
hot core (resume) in preference to a cold one (resumeCold) in order to avoid ther-
mal cycling which increases wear-out. The alternative suspend-SUSPENDED-
activate path represents a thread becoming blocked while waiting for resources
to become available. The superstate CURRENT, consisting of RUNNING and
EXPIRED, represents the conditions when the thread is allocated to a cpu core.
The state-machine is ‘lifted’ to the set of current threads so that each thread
has an independent state. During animation, (section 7) example instances are
used to illustrate the behaviour of the model and appear as tokens indicating
the current mode of each thread. The affinity restrictions are in the form of
additional transition guards that restrict the selection of a CPU core when the
start, resume or resumeCold transitions are taken. Refinement is performed by
adding new state-machines inside old states. For example the states RUNNING
and EXPIRED and transitions timeup and progress would not have existed in
the abstract version of Fig 6.

5.4 ERS versus State-Machines

ERS and State-machines both provide visual modelling tools for adding event
sequence restrictions to Event-B. We use ERS for explicit representation of it-
erative flow (e.g., all) and for representing event decomposition in refinement.
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Fig. 6. iUML-B State-machine model of Thread Scheduling

We choose state-machines for modelling cyclical modal behaviour and for repre-
senting state decomposition. Since these visual models are alternatives for rep-
resenting the same thing (i.e. event sequencing) they are not both used for the
same events but can be used for different sets of events within the same Event-B
model. This is achieved by simply referring to different events in the respective
diagrams. In our case study, we have used ERS to show the progressive event
refinement of the DFVS processes and state-machines for the hierarchical modal
behaviour of the thread scheduling. Another approach would be to use activity
diagrams as explored by Dygham et al. [24], however, there is currently no tool
support for activity diagrams in Rodin.

6 Modelling the Environment

6.1 Model Decomposition

Model decomposition pre-dated Event-B and is found in action systems [25].
Model decomposition in Event-B [12,13], is used to manage the complexity and
increase the modularity of an Event-B model. The idea of model decomposition
is to divide it into components that can be refined independently while ensuring
that if the components were re-composed they would constitute a valid refine-
ment of the original model. The components interact through synchronisation
over shared events. We applied the model decomposition technique to the DVFS
control model dividing it into two sub-models: Controller and Environment. The
controller sub-model consists of variables/events describing the SW layer prop-
erties whereas the environment sub-model consists of variables/events describing
the properties of the user and HW layers. We have also used the definition of the
model decomposition for code generation purpose. By using model decomposi-
tion, we introduce the controller and environment actions to the code generation
process. Details of the code generation application are provided in section 8.

The predict cpu cycles, select vf, store vf andmonitor cpu cycle events are the
actions of the operating system (SW layer) and are included in the controller sub-
model. There are two shared events between the controller and the environment
which appear in both sub-models: set fps and execute frm. The set fps event is



Applying an Integrated Modelling Process 129

the action of reading the fps value from the environment (user layer) and setting
its value in a controller variable. The execute frm event models execution of
the frame in the core; it sets the environment variable recording the CPU cycle
number taken for execution of the frames; this variable is read later by the
controller (by execution of monitor cpu cycle event).

6.2 Continuous Models of the Environment

While Event-B is very suitable for modelling the discrete state-event based be-
haviour of a system, it is sometimes important to model the physical continuous
behaviour of an environment. For the Temperature Control system we modelled
the thermal characteristics of CPU cores in Modellica [17], Fig. 7. The left side
of the model (blue connectors) calculates the amount of power being consumed.
This is the sum of the static power which is proportional to the voltage and
the dynamic power which is proportional to frequency and square of voltage.
The power then determines the amount of heat flowing into the right side (red
connectors). The thermal model consists of the heat capacitance of the core and
a thermal conductor to the cooling system (which we assume is a fixed flow to
ambient for now). The model has a boolean input Active which is controlled
by the run-time management system (Event-B ) model to represent when the
core is running a thread (i.e. in state RUNNING of Fig. 6) on that core, and an
output, temp which is returned to the run-time management system and used to
influence decisions about which cores to use. Currently the model is an approx-
imation which needs further development and more detailed comparison with
empirical measurements. In particular, the cooling component is over simplified
and the coefficients are chosen to give a typical response. However this is suffi-
cient for our purpose which is to illustrate how the controller responds to and
controls a typical environmental phenomena.

Fig. 7. Core Temperature modelled in Modellica

6.3 Decomposition versus Continuous Models

We started from an abstract model of the system that includes the application,
run-time manager, operating system and the hardware. We refine this model in
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steps to add details and then, at a suitable point, decompose it into two subsys-
tems representing the software and the hardware. We consider the hardware to
be an environment for the software subsystem. Following this process, we obtain
a discrete event model of the environment that is a verified refinement of the
abstract system model. This is an advantage when the controlled and measured
phenomena of the environment can be adequately modelled by discrete events.
However, for continuous physical properties such as temperature, the verifica-
tion relies on the validity of the discrete abstractions. Using a continuous model
enables us to validate how the run-time management system works with these
physical properties (as will be described in section 7.2) in order to improve our
confidence in the discrete representation of them that the Event-B model uses. A
further step would be to model the continuous properties in Event-B using recent
extensions for continuous domain modelling [26] which would allow verifications
of dynamic properties within Event-B. This would be beneficial when the valid-
ity of discrete approximations is less clear and can not be reliably determined
simply by simulation.

Fig. 8. Animating the model using BMotionStudio and State-machine Animation

7 Validation

7.1 BMotion Studio and Statemachine Animation

In order to validate our models we performed visual animations to demonstrate
them to stakeholders. The ProB [18] model checker provides an animation fa-
cility which is the basis for two visual animation tools. BMotionStudio [11] is
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used to provide a graphical visualisation of three cores with threads being run
on them and the resultant core temperatures increasing and decreasing. The
iUML-B state-machine plug-in includes an animation tool to highlight active
states and enabled transitions showing which threads are in each state at any
point in time. The two visualisation work together on the same ProB animation,
complementing each others view of the underlying model.

7.2 Mixed-Simulation

To validate the response of the system to the continuous model of core tem-
perature, we linked the Event-B run-time management system model with the
continuous Modellica model using the co-simulation plug-in [14] developed in the
ADVANCE project [19]. Fig. 9 shows the temperature (red line) of a single core
heating rapidly when a thread becomes active (blue line goes low) and cooling
when no thread is active. Currently the model only supports co-simulation of
a single core and we are unable to demonstrate the temperature response to
thread-core allocation for multiple cores. However, we are currently addressing
this and co-simulation has the potential to allow us to demonstrate the validity
of the run-time management system model in a simulation that appears close to
reality, before going on to generate the implementation.

Fig. 9. Mixed-Simulation of Continuous Thermal Model and Event-B Discrete Run-
time Management System

8 Code Generation

Code generation is an important part of the formal engineering tool chain that
enables support for development from high-level models down to executable im-
plementations. In the Event-B methodology, the code generation feature [15]
provides support for the generation of code, for real-time embedded control sys-
tems, from refined Event-B models. To this end a multi-tasking approach, which
is conceptually similar to that of the Ada tasking model, is designed and added
to the Event-B methodology. Tasks are modelled by an extension to Event-B,
called tasking machines which are an extension of the existing Event-B machine
component. The code generation plug-in supports translation to C, Java or Ada
source code. In the DVFS run-time management system are currently using the
Java code generation option.
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The theory plug-in [16] allows mathematical extensions to be added to an
Event-B development. The code generation plug-in uses a theory component to
define new data types, and their translation into target programming language
data types [27]. In the DVFS run-time management system model, we specify
the relation between a frame and the corresponding assigned VF as a function
data type:

frm vf ∈ FRAMES → V F
The function data type is not supported by the current release of the code

generation plug-in. We extended the code generation plug-in to support func-
tions by adding a new theory component to define a function data type and
a translation rule to the target data type (a Java hash map). Fig. 10 presents
the definition of the implementable function (pfunImp) with arguments for the
types of the domain D and range R. newpFunImp is a constructor for an empty
pfunImp.

Fig. 10. Theory Extension for the New Func-
tion Data Type

Fig. 11. Translation of Func-
tion Data Type

In the controller refinement, we first refine the Event-B definition of frm vf
as a function, to instead use the new function data type:

frm vf ∈ pfunImp(FRAMES, V F );
with initialisation:
frm vf := newpFunImpl(∅ ◦◦ P(FRAMES × V F ))
The translation of the function data-type to the target of the Java HashMap

data type is presented in Fig. 11. Here is the generated Java code for the frm vf
variable:

HashMapImpl<FRAMES,VF> frm vf = new HashMapImpl<FRAMES,VF>();

In the controller tasking machine, we specify the task body, where we define
the flow of control in the controller sub-model as below; and the control flow in
the Java codes is managed using threads.
set fps;
calculate vf ;
store vf ;
execute frm;
monitor cpu cycle
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To date, we have executed the generated code on a simulation of the hardware.
We are currently working on porting the code to run on real hardware in order
to evaluate the performance of the generated code.

9 Conclusion and Future Work

We have shown how various Rodin plug-ins can be used with the basic Event-
B modelling and verification platform to form a complete formal development
process including requirements analysis, model development using diagrammatic
modelling editors, model refinement, decomposition, validation, mixed-simulation
and code generation. Several authors have discussed using formal methods within
an existing development process (e.g. [28],[29]). However these works are quite
dated and did not have the benefit of extensive tool support. As far as we know
there is no comparable work on how all of the various Rodin centred tools and
plug-ins can be utilised to form a new development process.

We have not stressed verification in this paper. It is an inherent feature of
the Event-B refinement method where proof obligations are automatically gen-
erated and discharged within the Rodin platform ensuring that the models are
well-formed and consistent. All of our refinements were fully verified using the
Atelier-B automatic provers available for Rodin. Here we focus on the use of
diagrammatic modelling aids which make models easier to construct and under-
stand and visual validation tools which allow us to observe the behaviour of the
model so that we can demonstrate that it behaves as we desire. Having produced
a correct and useful model we use code generation to obtain a high-quality imple-
mentation from it. In summary, we use the following Rodin plug-ins to provide
tool-support for a useable model-based formal development process.

– MCC provides a systematic way of structuring the requirements and of con-
structing a formal model from the requirements for a control system.

– ERS provides explicit representation of replication of flow (e.g., all) and for
representing event decomposition.

– iUML-B state-machines provide explicit representation of cyclical modal be-
haviour and for representing state decomposition.

– Animation with BMotionStudio and iUML-B state-machines allow for easy
validation by stakeholders who do not have Event-B expertise.

– Co-simulation supports validation the the discrete controller model behaves
correctly in conjunction with a continuous model of the environment.

– Code generation provides an automated way of generating multi-tasking code
with the potential for easy targeting of different languages and architectures.

– Rodin provers support formal verification of correctness of design with re-
spect to a (discrete) model of the system.

The temperature control model contains of 4 levels of refinement, including 9
variables in total and 13 events in the last refinement. All of the proof obligation
(118 in total) are dischargedautomatically by theRodin prover.TheDVFS control
model contains 2 levels of refinement, including 9 variables and 7 events in the last
refinement. 13 out of 38 proof obligations are discharged automatically; the rest
are discharged manually due to introducing the mathematical extension using the
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theory plugin. The new defined operators cause manual effort to discharge proof
obligation generated for the sub-component after the model decomposition.

We think our process of formal design and integrated modelling can be scaled
and promoted in industry. MCC provides guidance to overcome the difficult task
of constructing an abstract model from the requirements. Diagrammatic editors
like iUML-B and ERS provide a high-level visualisation of the models and auto-
mate some of the lower-level Event-B infrastructure making the construction of
models more intuitive for engineers. Visual animation and simulation techniques
bridge the semantic gap between mathematical models and real-world problem
domains making the models accessible to stakeholders for validation. Generating
code from a verified model reduces code and testing effort to offset the resources
put into the modelling process. One self-criticism is that, although they can be
used along side each other, in some areas the plug-in tools would benefit from
better integration. For example, the ERS and iUML-B diagramming plugins
could be integrated so that they use the same common diagram framework and
generation mechanisms. Similarly, the animation tools could be integrated into
a common visualisation.

One of the motivations for our approach is that we can produce model variants
at the lower levels of refinement so that we can generate different implementa-
tions for different platforms. For example, we could provide alternative thread
scheduling for different operating systems. In future work we will investigate
these variants. Further work is also needed in order to use code generation to
different target languages such as C. In future work, we will also perform exper-
iments running the generated code on different many-core hardware platforms
such as XEON Phi etc. in order to fully evaluate the benefits of the run-time
management system.
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Abstract. This work presents a novel approach for applying abstraction
and refinement in the verification of behavioral UML models.

The Unified Modeling Language (UML) is a widely accepted mod-
eling language for embedded and safety critical systems. As such the
correct behavior of systems represented as UML models is crucial. Model
checking is a successful automated verification technique for checking
whether a system satisfies a desired property. Nevertheless, its applica-
bility is often impeded by its high time and memory requirements. A suc-
cessful approach to avoiding this limitation is CounterExample-Guided
Abstraction-Refinement (CEGAR). We propose a CEGAR-like approach
for UML systems. We present a model-to-model transformation that gen-
erates an abstract UML system from a given concrete one, and formally
prove that our transformation creates an over-approximation.

The abstract system is often much smaller, thus model checking is
easier. Because the abstraction creates an over-approximation we are
guaranteed that if the abstract model satisfies the property then so does
the concrete one. If not, we check whether the resulting abstract coun-
terexample is spurious. In case it is, we automatically refine the abstract
system, in order to obtain a more precise abstraction.

1 Introduction

This work presents a novel approach for applying abstraction and refinement
for the verification of behavioral UML models. The Unified Modeling Language
(UML) [2] is a widely accepted modeling language that can be used to specify and
construct systems. It provides means to represent a system in terms of classes and
their relationships, and to describe the systems’ internal structure and behavior.
UML has been developed as a standard object-oriented modeling language by the
Object Management Group (OMG) [11]. It is becoming the dominant modeling
language for embedded and safety critical systems. As such, the correct behavior
of systems represented as UML models is crucial and verification techniques
applicable to such models are required.

Model checking [6] is a successful automated verification technique for checking
whether a given system satisfies a desired property. It traverses all of the system
behaviors, and either confirms that the system is correct w.r.t. the checked prop-
erty, or provides a counterexample (CEX) that demonstrates an erroneous behav-
ior. Model checking is widely recognized as an important approach to increasing
reliability of hardware and software systems and is vastly used in industry.

E. Albert and E. Sekerinski (Eds.): IFM 2014, LNCS 8739, pp. 139–154, 2014.
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Unfortunately, the applicability of model checking is impeded by its high time
and memory requirements. One of the most successful approaches for fighting
these problems is abstraction, where some of the system details are hidden. This
results in an over-approximated system that has more behaviors and less states
than the concrete (original) system. The abstract system has the feature that
if a property holds on the abstract system, then it also holds on the concrete
system. However, if the property does not hold, then nothing can be concluded of
the concrete system. CounterExample-Guided Abstraction Refinement (CEGAR)
approach [4] provides an automatic and iterative framework for abstraction and
refinement, where the refinement is based on a spurious CEX. When model
checking returns an abstract CEX, a matching concrete CEX is searched. If
there exists one, then a real bug on the concrete system is found. Otherwise, the
CEX is spurious and a refinement is needed. During refinement, more details
are added to the abstract system, in order to eliminate the spurious CEX.

In this paper we focus on behavioral systems that rely on UML state machines.
UML state machines are a standard graphical language for modeling the behav-
ior of event-driven software components. We propose a CEGAR-like framework
for verifying such systems. We present a model-to-model transformation that
generates an abstract system from a given concrete one. Our transformation is
done on the UML level, thus resulting in a new UML behavioral system which is
an over-approximation of the original system. We adapt the CEGAR approach
to our UML framework, and apply refinement if needed. Our refinement is also
performed as a model-to-model transformation. It is important to note that by
defining abstraction and refinement in terms of model-to-model transformation,
we avoid the translation to lower level representation (such as Kripke structures).
This is highly beneficial to the user, since both the property, the abstraction, and
the abstract CEX are given on the UML level and are therefore more meaningful.

Our abstraction is obtained by abstracting some (or all) of the state machines
in the concrete system. When abstracting a state machine, we over-approximate
its interface behavior w.r.t. the rest of the system. In the context of behav-
ioral UML systems, the interface includes the events generated/consumed and
the (non-private) variables. We thus abstract part of the system’s variables,
and maintain an abstract view of the events generated by the abstracted state
machines. In particular, the abstract state machines may change the number
and order of the generated events. Further, abstracted variables are assigned
the “don’t-know” value. Our abstraction does not necessarily replace an entire
state machine. Rather, it enables abstracting different parts of a state machine
whose behavior is irrelevant to the checked property. We present our abstraction
construction in section 4.

We show that the abstract system is an over-approximation by proving that
for every concrete system computation there exists an abstract system compu-
tation that “behaves similarly”. This is formally defined and proved in section 5.
To formalize the notion of system computation, we present in section 3 a for-
mal semantics for behavioral UML systems that rely on state machines. Works
such as [7,10,15] also give formal semantics to state machines, however they all



Verifying Behavioral UML Systems via CEGAR 141

differ from our semantics: e.g. [7] defines the semantics on flat state machines
and present a translation from hierarchical to flat state machines, whereas we
maintain the hierarchical structure of the state machines. [10] define the seman-
tics of a single state machine. Thus it neither addresses the semantics of the full
system, nor the communication between state machines. [15] addresses the com-
munication of state machines, however their notion of run-to-completion step
does not enable context switches during a run-to-completion step. Our formal
semantics is defined for a system, possibly multi-threaded, where the atomicity
level is a transition execution (formally defined later).

Our CEGAR framework is suitable for verifying LTLx, which is the Linear-
time Temporal Logic (LTL)[22] without the next-time operator. Also, we assume
the existence of a model checker for behavioral UML systems. Extensive work
has been done in the last years to provide such model checkers by translating the
system into an input language of some model checker. [3,5] present translation
of state machines to SMV. Several works [18,14,21,1,8] translate state machines
to PROMELA, which is the input language of the model checker SPIN. A ver-
ification environment for UML behavioral models was developed in the context
of the European research project OMEGA [20], and works such as [25,19] apply
different methods for model checking these models. [12,16] translate a UML be-
havioral model to C code, and apply bounded model checking via CBMC. We
add the special value “don’t-know” to the domain of the variables. This results
in a 3-valued semantics for UML systems, as shown in section 4. To model check
abstract systems we need a 3-valued model checker. Extending a model checker
to support the 3-valued semantics (e.g., [27,13]) is straightforward.

Many works such as [26,28,24,9,23] address semantic refinement of state ma-
chines, which is adding details to a partially defined state machine while pre-
serving behavior of the original (abstracted) model. Though we also address an
abstraction-refinement relation between state machines, these works are very dif-
ferent from ours. These works look at manual refinement as part of the modeling
process, whereas we are suggesting an automatic abstraction and refinement, and
our goal is improving scalability of the verification tool. Moreover, these works
handle a single state machine level, where we consider a system which includes
possibly many state machines that interact with each other. To the best of our
knowledge, this is the first work that addresses the abstraction for a behavioral
UML system at the UML level.

2 Preliminaries - UML Behavioral Systems

Behavioral UML systems include objects (instances of classes) that process
events. Event processing is defined by state machines, which include complex
features such as hierarchy, concurrency and communication. UML objects com-
municate by sending each other events (asynchronous messages) that are kept
in event queues (EQs). Every object is associated with a single EQ, and several
objects can be associated with the same EQ. In a multi-threaded system there
are several EQs, one for each thread. Each thread executes a never-ending loop,
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taking an event from its EQ, and dispatching it to the target object. The target
object makes a run-to-completion (RTC) step, where it processes the event and
continues execution until it cannot continue anymore. RTCs are composed of a
series of steps, formally defined later. Only when the target object finishes its
RTC, the thread dispatches the next event available in its EQ. Steps of different
threads are interleaved. Next we formally define state machines, UML systems,
and the set of behaviors associated with them. The following definitions closely
follow the UML2 standard.

2.1 UML State Machines

We first define the following notions: EV = EVenv ∪ EVsys is a fixed set of
events, where EVsys includes events sent by a state machine in the system.
EVenv includes events which are considered to be sent by the “environment” of
the system. An event e is a pair (type(e), trgt(e)), where type(e) denotes the
event name (or type), and trgt(e) denotes the state machine to which the event
was sent (formally defined later). V is a fixed set of variables over finite domains.

We use a running example to present state machines and behavioral UML
systems. Fig. 1 describes the state machine of class DB. A state machine is a
tuple SM = (S,R,Ω, init, TR, L) where S and R are sets of states and regions
respectively. We assume TOP ∈ R. States are graphically represented as squares.
Ω : S ∪ R → S ∪ R ∪ {ε} represents the hierarchical structure of states and
regions: for every s ∈ S, Ω(s) ∈ R, Ω(TOP ) = ε and for every other r ∈ R,
Ω(r) ∈ S. E.g., in Fig 1, Ω(Working) = Ω(V acation) = TOP . The transitive
closure of Ω is irreflexive and induces a partial order. u′ ∈ Ω+(u) if u′ contains u
(possibly transitively). This is denoted u�u′. Two different regions r1, r2 ∈ R are
orthogonal, denoted ORTH(r1, r2), if Ω(r1) = Ω(r2). Regions are graphically
represented only if they are orthogonal. Orthogonal regions are denoted by a
dashed line. E.g., state Working contains two orthogonal regions. init ⊆ S is
a set of initial states, s.t. there is one initial state in each region. Initial states
are marked with a transition with no source state. TR is a set of transitions.
Each t ∈ TR connects a single source state, denoted src(t), with a single target
state, denoted trgt(t). L is a function that labels each transition t with a trigger
(trig(t)), a guard (grd(t)), and an action (act(t)). A trigger is a type of an event
from EV . ε ∈ EV represents no trigger. A guard is a Boolean expression over V .
An action is a sequence of statements in some programming language where skip
is an empty statement. Actions can include “GEN(e)” statements, representing
a generation of an event. In the graphical representation, a transition t is labeled
with tr[g]/a where tr = trig(t), g = grd(t) and a = act(t). If tr = ε, g = true
or a = skip they are omitted from the representation. We assume there exists
a macro GEN({e1, ..., eh}), representing a generation of one of the events from
{e1, ..., eh} non-deterministically. Given an action act, by abuse of notation we
write GEN(e) ∈ act iff GEN(e) is one of the statements in act. modif(act)
denotes the set of variables that may be modified on act (are in the left hand
side of an assignment statement). By abuse of notation, modif(t) denotes the
set of variables that may be modified by act(t).
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Fig. 1. DB State Machine

Let SM be a state machine, a state machine configuration (SM-conf) is a
tuple c = (ω, ρ) where ρ ∈ type(EV ) ∪ {ε} holds the type of an event currently
dispatched to SM and not yet consumed, and ω ⊆ S is the set of currently
active states. ω always contains a single state s s.t. Ω(s) = TOP . It also has the
property that for every s ∈ ω and for every r ∈ R s.t. Ω(r) = s there exists a
single s′ ∈ S s.t. Ω(s′) = r and s′ ∈ ω.

From here on, we assume the following restrictions on SM :
(1) An action includes at most one “GEN(e)”. In addition, an action that in-
cludes “GEN(e)” is a non-branching sequence of statements. If either one of
these restrictions does not hold, then SM can be preprocessed s.t. the transition
is replaced with a series of states and transitions, each executing part of the
original action.
(2) SM does not include the following complex UML syntactic features: history,
cross-hierarchy transitions, fork, join, entry and exit actions. It is straightfor-
ward to eliminate these features, at the expense of additional states, transitions
and variables. Note that the hierarchical structure of the state machines is main-
tained, thus avoiding the exponential blow-up incurred by flattening.

2.2 Systems

Next we define UML systems and their behavior. UML2 places no restrictions on
the implementation of the EQ and neither do we. A finite sequence q = (e1, ..., el)
of events ei ∈ EV represents the EQ at a particular point in time. We assume
functions top(q), pop(q) and push(q, e) are defined in the usual way.

A system is a tuple Γ = (SM1, ..., SMn, Q1, ..., Qm, thrd, V ) s.t. SM1, ..., SMn

are state machines, Q1, ..., Qm (m ≤ n) are EQs (one for each thread), thrd :
{1, ..., n} → {1, ...,m} assigns each SMi to a thread, and V is a collection of
variables over finite domains. A system configuration (Γ -conf) is a tuple C =
(c1, ..., cn, q1, ..., qm, id1, ..., idm, σ) s.t. ci is a SM-conf of SMi, qj is the contents
ofQj, idj ∈ {0, ..., n} is the id of the SM associated with thread j that is currently
executing a RTC (idj = 0 means that all SMs of thread j are inactive), and σ
is a legal assignment to all variables in V .
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From now on we fix a given system Γ = (SM1, ..., SMn, Q1, ..., Qm, thrd, V ).
We use c for SM-confs and C for Γ -confs. We use k as a superscript to range
over steps in time, making cki the SM-conf of SMi at time k. For every e ∈ EV ,
we define trgt(e) ∈ {0, ..., n} to give the index of the SM that is the target of e.
trgt(e) = 0 means the event is sent to the environment of Γ .

A transition t ∈ TRi can be executed in C if SMi is currently executing
a RTC, and t is enabled in C, denoted enabled(t, C). t is enabled in C if the
source state is active (src(t) ∈ ωi), the trigger is the currently dispatched event
(ρi = trig(t)) or no trigger on t if ρi = ε, the guard is satisfied under the
current variable assignment, and all transitions from states s s.t. s � src(t) are
not enabled. When t executes, SMi moves to c′i = (ω′

i, ρ
′
i), denoted dest(ci, t),

where ρ′i = ε (an event is consumed once). ω′ is obtained by removing from ω
src(t) and states contained in it and then adding trgt(t) and states contained in
it, based on init.

Let C be a Γ -conf, SMi be a state machine in Γ , and let s1, s2 ∈ Si

and t, t1, ..., ty ∈ TRi. We use the following notations. Qpush(t, (q1, ..., qm)) =
(q′1, ..., q

′
m) denotes the effect of executing t on the different EQs of the system: if

for some event e, GEN(e) ∈ act(t), then executing t pushes e to the relevant EQ
(to Qthrd(trgt(e))). The rest of the EQs remain unchanged. act(t)(σ,C) = σ′ rep-
resents the effect of executing the assignments in act(t) on the valuation σ of C,
which results in a new assignment, σ′. States are orthogonal iff they are contained
(possibly transitively) in orthogonal regions. maxORTH((t1, ..., ty), C) = true
iff (t1, ..., ty) is a maximal set of enabled orthogonal transitions. t1, ..., ty are or-
thogonal iff their sources are pairwise orthogonal. In Fig 1, the transition from
ChkSeasn to ChkDiscnt is orthogonal to the transition from ChngSeasn to Done.

The function apply defines the effect of executing a sequence of transitions
on a Γ -conf C. apply((t1, ..., ty), C) = C′ represents the effect of executing t1
on C followed by t2 on the result etc. until executing ty, which results in C′ =
(c1, ..., c

′
i, ..., cn, q

′
1, ..., q

′
m, id1, ..., idm, σ′) where: c′i = dest(...dest(ci, t1)..., ty),

q′1, ..., q
′
m = Qpush(ty, ...Qpush(t1, (q1, ..., qm))), σ′ = act(ty)(...act(t1)(σ,C), C).

3 System Computations

Def. 1 (System Computations). A computation of a system Γ is a maximal
sequence π = C0, step0, C1, step1, ... s.t.: (1) each Ck is a Γ -conf, (2) each step

Ck stepk

−−−→ Ck+1 can be generated by one of the inference rules detailed below,
and (3) each stepk is a pair (thidk, tk) where thidk ∈ {1, ...,m} represents the
id of the thread executing the step (tk is described in the inference rules).

We now define the set of inference rules describing C
step−−→ C′. We specify

only the parts of C′ that change w.r.t. C due to step.

Initialization. In the initial configuration C0 all EQs are empty, and each SMi

is inactive (for every j, id0j = 0) and is in its initial state (for every c0i , ρ
0
i = ε

and ω0
i = {s ∈ Si|s ∈ initi ∧ ∀s′ ∈ Si.s� s′ → s′ ∈ initi}).
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Dispatch. An event can be dispatched from thread j’s EQ only if the previous
RTC on thread j ended and the EQ is not empty.

DISP (j, e) :
idj = 0 qj �= φ top(qj) = e trgt(e) = l

id′j = l q′j = pop(qj) c′l = (ωl, type(e))

Transition. UML2 defines a single case where transitions are executed simul-
taneously, when the transitions are in orthogonal regions and all simultane-
ously consume an event (on the first step of a RTC). Since it is not clear
how to define simultaneous execution, we define an interleaved execution of
these transitions. Only after all transitions have executed, the next step is
enabled.

TRANS(j, (t1, ..., ty)) :

idj = l > 0 t1, ..., ty ∈ TRl

ρl �= ε→ (maxORTH((t1, ..., ty), C) = true)
ρl = ε→ (y = 1 ∧ enabled(t1, C))

C′ = apply((t1, ..., ty), C)

EndRTC. If the currently running state machine on thread j has no enabled
transitions, then the RTC is complete.

EndRTC(j, ε) :
idj = l > 0 ∀t ∈ TRl.enabled(t, C) = false

id′j = 0 c′l = (ωl, ε)

ENV. The behavior of the environment is not precisely described in the UML
standard. We assume the most general definition, where the environment
may insert events into the EQs at any step.

ENV (j, e) :
e ∈ EVenv thrd(trgt(e)) = j

q′j = push(qj, e)

Intuitively, a computation is a series of steps that follow the RTC semantics
per-thread, where RTCs of different threads are interleaved.

4 Abstracting a Behavioral UML System

4.1 Abstracting a State Machine

Let SM be a concrete state machine. The abstraction of SM is defined w.r.t. a
collection A = {A1, ..., Ak}, where for every i, the abstraction set Ai is a set of
states from S s.t. for every s, s′ ∈ Ai, Ω(s) = Ω(s′). Intuitively, our abstraction
replaces every Ai (and all states contained in Ai) with a different construct that
ignores the details of Ai and maintains an over-approximated behavior of the
events generated by Ai. For simplicity, from here on we assume the collection
contains a single abstraction set A. A description of the framework for any
collection size is available in [17].
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Fig. 2. Δ(A): The abstraction construct created for A

We add the value don′t − know, denoted ⊥, to the domain of all variables
in V , where ⊥ represents any value in the domain. The semantics of boolean
operations is extended to 3-valued logic in the usual way: ⊥ ∧ false = false,
⊥∧true = ⊥ and ¬⊥ = ⊥. An expression is evaluated to ⊥ if one of its arguments
is ⊥. For simplicity of presentation, we enable trig(t) to be a set of triggers. I.e.
trig(t) = {e1, ..., eq} ∪ ε, and enabled(t, C) = true if one of the events from
trig(t) matches ρ.

Next, we define several notions that are concrete and are defined w.r.t. A:
• S(A) = {s ∈ S|∃s′ ∈ A.(s� s′)} are the abstracted states.
• R(A) = {r ∈ R|∃s ∈ A.(r � s)} are the abstracted regions.
• TR(A) = {t ∈ TR|src(t), trgt(t) ∈ S(A)} are the abstracted transitions.
• EV (A) = {e ∈ EV |∃t ∈ TR(A).(GEN(e) ∈ act(t))}
• Trig(A) = {tr|∃t ∈ TR(A).(trig(t) = tr)} \ {ε}
• V (A) = {v ∈ V |∃t ∈ TR(A).(v ∈ modif(t))}
• GRDV (A) = {v ∈ V |∃t ∈ TR(A).(trig(t) = ε ∧ v ∈ grd(t))}

We require the following restrictions on A of SMi:
(1) For every v ∈ GRDV (A), if v can be modified by several SMs in Γ , then all
these SMs are assigned to the same thread. This is needed for correctness of the
construction (details in [17]).
(2) There are no loops without triggers within S(A). Further, there are no self
loops without a trigger on states containing S(A). This is needed to enable static
analysis described next.

In order to explain our abstraction we introduce the notion of an A-round.
Let π be a computation on the concrete system Γ , an A-round is a maximal,
possibly non-consecutive, sequence of steps, stepi1 , ..., stepid from π, s.t. all the
steps are part of a single RTC, every step executes a transition from TR(A), and
the SM remains in an abstracted state throughout the A-round. I.e., for every
j ∈ {i1, i1 + 1, ..., id}: ωj ∩ S(A) �= φ. Due to the above requirement (2), we can
easily apply static analysis in order to determine the maximal number of events
that can be generated by any single A-round. We denote this number by f .

Given an abstraction set A, our abstraction replaces S(A), R(A) and TR(A)
with a new construct, referred to asΔ(A), demonstrated in Fig. 2. Δ(A) includes
an initial state astrt and a final state aend. Every A-round over states from S(A)
is represented by a computation from astrt to aend. Δ(A) includes computations
that can generate any sequence of size 0 to f events from EV (A). Also, all the
variables that can be modified in the A-round are given the value ⊥.
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a
s t r t

a
1

{ e v G e t P r c , e v A p r v F l t ,  e v D e n y F l t ,  

e v C h n g S s n , e v V a c S t a r t , e v V a c E n d } [ z ] /        

i d l e = z ; p r i c e [ i d ] = z ; h i g h S s n = z ;

/ G E N ( e v R e t P r c , i t s D B ) ;

a
2

a
e n d

Fig. 3. Abstract DB State Machine

An A-round whose first transition consumes an event, is represented by a
computation that starts with transition τ1 from astrt to a1, which can consume
any single event from Trig(A). The guard ⊥ on τ1 and τ2 represents a non-
deterministic choice between “true” or “false”. If the first transition on an A-
round does not consume an event, it will be represented by transition τ2, which
is not marked with a trigger. Since Δ(A) contains a loop of transitions without
triggers we must ensure that all RTCs through Δ(A) are finite. We introduce
a new Boolean variable cg. A trace on Δ(A) can be initiated without a trigger
only if cg is 1. Δ(A) then sets cg to 0 on the transitions exiting astrt.

When cg is set to 1 it signals that it is possible to execute an A-round that does
not consume an event. Such a situation abstracts a concrete execution in which
the RTC that includes the A-round starts at a state that is not abstracted and
continues within the abstraction. The situation can also occur if an abstracted
transition becomes enabled due to some variable change. I.e., execution of some
transition t, which is either orthogonal to A or is in a different state machine,
and t modifies a variable v ∈ GRDV (A).

If by static analysis we can conclude that the first transition of every A-round
consumes an event, then cg is redundant (and τ2 can be removed). All the A-
rounds are then represented by computations that start by traversing τ1.

We now formally define our abstract state machines. Given SM =
(S,R,Ω, init, TR, L) and an abstraction set A ⊆ S, SM(A) =
(SA, RA, ΩA, initA, TRA, LA) is the abstraction of SM w.r.t. A. We denote func-
tions over the abstraction (src, trgt, trig, grd, and act) with a superscript A.

• SA = (S \ S(A)) ∪ {astrt, a1, ..., af+1, aend} and RA = (R \R(A))
• For every s ∈ (SA ∩ S) ∪RA: ΩA(s) = Ω(s).
For every s ∈ {astrt, a1, ..., af+1, aend}: ΩA(s) = Ω(s′) for some s′ ∈ A.
• initA = init ∩ SA or initA = (init ∩ SA) ∪ {astrt} if ∃s ∈ A s.t. s ∈ init
• TRA = (TR \ TR(A)) ∪ {τ1, ..., τ2f+4}.

The srcA, trgtA, trigA, grdA and actA functions are redefined as follows:
Transitions τ1, ..., τ2f+4 are defined according to Fig. 2. Every transition t ∈

TR \ TR(A) has a representation (matching transition) in SM(A). Note that
for every such transition, at least one of src(t) and trgt(t) are not abstracted.
If src(t) or trgt(t) are abstracted, then srcA(t) or trgtA(t) respectively are in
Δ(A). The handling of cg is added to the relevant actions, as discussed above.
In the following we present only the values of srcA, trgtA, trigA grdA and actA

that change in SM(A) w.r.t. SM . For every t ∈ TR \ TR(A):

1. trgt(t) ∈ S(A) (the target of t is abstracted): we define trgtA(t) = astrt.
If there exists an abstracted transition from trgt(t) whose trigger is ε then
actA(t) = act(t); cg = 1 (otherwise, actA(t) = act(t)).
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2. src(t) ∈ S(A) (the source of t is abstracted): we define srcA(t) = astrt,
actA(t) = cg = 0; act(t) and grdA(t) = grd(t)&⊥. We add ⊥ to the guard in
order to ensure that executions of possibly enabled transitions from states
containing the abstraction remain (possibly) enabled.

3. Otherwise (neither src(t) nor trgt(t) are abstracted):
Case a: A � trgt(t). If an execution of t results in a new ω that includes
an abstracted state s ∈ S(A), and there exists an abstracted transition from
s whose trigger is ε. Then: actA(t) = act(t); cg = 1 (otherwise, actA(t) =
act(t)).
Case b: src(t) and astrt are contained in orthogonal regions (t can be ex-
ecuted orthogonally to the abstraction). Then: actA(t) = act(t) with the
following modifications: If ∃v ∈ GRDV (A) s.t. v ∈ modif(t) then cg = 1 is
added to actA(t). In addition, if SM is in an abstracted state, then variables
that can be modified by abstracted transitions should remain ⊥. For that,
every assignment x = e in act(t), if x ∈ V (A) then x = e is replaced with:
“if (isIn(A)) x = ⊥; else x = e;” in actA(t). The current state is checked
using the macro isIn(U), that checks whether a certain state from U is
active.

Fig. 3 shows the state machine created by abstracting the DB state machine
(Fig. 1) with A = {Working, V acation}. Note that in this state machine, by
static analysis we can conclude that every A-round first consumes an event, and
therefore we do not need the cg flag and transition τ2. Also, on every A-round
no more than one event can be generated, therefore f = 1.

4.2 Abstracting a System

Next we define an abstract system. This is a system in which some of the state
machines are abstract. For SMi and an abstraction set Ai, SM

A
i denotes the

abstraction of SMi w.r.t. Ai. We denote the cg variable in SMA
i as cgi.

Def. 2. Let Γ and Γ ′ be two systems, each with n SMs and m EQs. We say
that Γ ′ is an abstraction of Γ , denoted ΓA, if the following holds. (1) For i ∈
{1, ..., n}, SM ′

i = SMi or SM ′
i = SMA

i , (2) thrd = thrd′, (3) V ′ = V ∪
{cgi|SM ′

i = SMA
i }, and (4) for every i, j ∈ {1, ..., n} s.t. i �= j, and for every

t ∈ TR′
j: if there exists a variable v ∈ GRDV (Ai) and v ∈ modif(t) then cgi = 1

is added to act′(t).

Recall that setting cgi to 1 on SMA
i signals that it is possible to execute an

A-round on SMi without consuming an event. Req. (4) in Def. 2 handles the case
where a guard of an abstracted transition of SMi may change by a transition t
of SMj . It ensures that cgi is set to 1 on such transitions of TR′

j .
Adding the value ⊥ to the domain of all variables in V affects the cases when

a transition is enabled, since now grd(t)(σ) ∈ {true, false,⊥}. Intuitively, if
grd(t)(σ) = ⊥ then we assume it can be either true or false. We thus consider
both cases in the analysis. Therefore, enabled(t, C) = true iff t can be enabled
w.r.t. C (grd(t)(σ) ∈ {true,⊥}) and all transitions t′ from states contained in
src(t) can be not enabled (grd(t′)(σ) ∈ {false,⊥}). Note that when enabling
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3-valued semantics, a transition may be enabled, even though lower level tran-
sitions may be enabled as well.

5 Correctness of the Abstraction

In this section we prove that ΓA is an over-approximation of Γ by showing that
every computation of Γ has a “matching” computation in ΓA.

Def. 3 (Abstraction of SM-conf). Let c = (ω, ρ) and cA = (ωA, ρA) be SM-
confs of SM and SMA respectively. cA abstracts c, denoted c " cA, if ρ = ρA, and
c, cA agree on the joint states: ω �= ωA iff ω \ ωA ⊆ S(A) and ωA \ ω ⊆ Δ(A).

Def. 4 (Abstraction of Γ -conf). Let C and C′ be two Γ -confs of Γ and ΓA

respectively. We say that C′ abstracts C, denoted C " C′, if the Γ -confs agree
on the EQs and id elements, and the SM-confs and σ′ of ΓA are abstraction
of the matching elements in Γ : for j ∈ {1, ...,m}, qj = q′j and idj = id′j, for
i ∈ {1, ..., n}, ci " c′i, and for every v ∈ V either σ(v) = σ′(v) or σ′(v) = ⊥.

We now define stuttering computation inclusion, which is an extension of
stuttering-trace inclusion ([6]) to system computations. For simplicity of pre-
sentation, we assume that computations are infinite. However, all the results
presented hold for finite computations as well. Intuitively, there exists stutter-
ing inclusion between π and π′ if they can be partitioned into infinitely many
finite intervals, s.t. every configuration in the kth interval of π′ abstracts every
configuration in the kth interval of π.

Def. 5 (Stuttering Computation Inclusion). Let π = C0, step0, C1, step1, ...
and π′ = C′0, step′0, C′1, step′1, ... be two computations over Γ and ΓA respec-
tively. There exists a stuttering computation inclusion between π and π′, denoted
π "s π′, if there are two infinite sequences of integers 0 = i0 < i1 < ... and
0 = i′0 < i′1 < ... s.t. for every k ≥ 0:
For every j ∈ {ik, ..., (ik+1)−1} and for every j′ ∈ {i′k, ..., (i′k+1)−1}: Cj " C′j′

Fig. 4 illustrates two computations where π "s π
′. Def. 4 implies that steps of

type DISP , ENV and EndRTC cannot be steps within an interval, due to the
effect of these steps on Γ -conf. For example, in Fig. 4, C6 " C′5. Assume step6 =
EndRTC(j, ε), then by the definition of EndRTC step, the value of idj changes
from C6 to C7. Since Γ -conf abstraction requires equality of the id elements, then
clearly C7 �" C′5. Thus C6 and C7 cannot be in the same interval. For a similar
reason, a step of type DISP , ENV or EndRTC on π implies a step of the same
type on π′, and vice versa. Steps of type TRANS that are either the first step in
a RTC or a step that generates events are also steps that cannot be part of an
interval, due to the effect of these steps on the ρ elements and the EQs.

An immediate consequence of the above is that an interval can be of size
greater than one only if the steps in the interval are TRANS steps that are
neither a first step in a RTC nor a step generating an event. Recall that Def. 4
requires a correlation between the current states of the state machines. It can
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C ’ 5 ,� ’ : :

C 0 ,� : : step1 , step3 , C 7 ,  … .s t e p 0 , C 1 ,

i n t .  1

C 2 , s t e p 2 , C 3 ,

i n t .  2

step6,C 6 ,C 4 , s t e p 4 , C 5 ,

i n t .  3
s t e p 5 ,

… .

C ’ 0 , C ’ 2 , step’2, step'3,s t e p ' 0 , C ’ 1 , s t e p ' 1 , C ’ 3 , C ’ 4 , s t e p ’ 4 , step’5, C ’ 6 … .

Fig. 4. Stuttering Computation Inclusion

therefore be shown that if stepi = TRANS(j, (t)) is a step between two config-
urations in the same interval, then one the following holds: (1) If stepi ∈ π then
t is an abstracted transition, (2) If stepi ∈ π′ then t ∈ Δ(A).

We extend the notion of stuttering inclusion to systems, and say that there
exists a stuttering inclusion between Γ and ΓA, denoted Γ "s ΓA, if for each
computation π of Γ from an initial configuration Cinit, there exists a computa-
tion π′ of ΓA from an initial configuration C′

init s.t. π "s π
′.

The following theorem captures the relation between Γ and ΓA, stating that
there exists stuttering inclusion between Γ and ΓA.

Theorem 6. If ΓA is an abstraction of Γ then Γ "s Γ
A.

Every system Γ can be viewed as a Kripke structureK, where the K-states are
the set of Γ -confs, and there exists a K-transition (C,C′) iff C′ is reachable from
C within a single step. Thus, every computation of Γ corresponds to a trace inK.
Let Γ be a system, and let Aψ be an LTL formula, where the atomic propositions
are predicates over Γ . Then Γ |= Aψ iff for every computation π of Γ from an
initial configuration, π |= ψ. By preservation of LTLx over stuttering-traces
inclusion we conclude:

Corollary 7. Let Γ and ΓA be two systems, s.t. Γ "s ΓA, and let Aψ be an
LTLx formula over joint elements of Γ and ΓA. If ΓA |= Aψ then Γ |= Aψ.

Due to the stuttering-inclusion, ΓA preserves LTLx and not LTL. It is impor-
tant to note that since Γ itself is a multi-threaded system, properties of interest
are commonly defined without the next-time operator.

The proof of Theorem 6 is available in [17]. We give here an intuitive ex-
planation to why for every π of Γ from Cinit, there exists π′ of ΓA from C′

init

s.t. π "s π′. For every step executed on Γ that does not include execution of
an abstracted transition it is possible to execute the same step on ΓA. More
specifically, for every transition t executed on Γ , if t has a matching transition
ta in ΓA, then ta can be executed on π′. For every step of type ENV , DISP
and EndRTC on π it is possible to execute the same step on π′. This holds since
matching configurations Cr and C′p of π and π′ respectively agree on their joint
elements, and σ′p might assign ⊥ to variables. Thus, if a transition t is enabled,
then its matching transition ta can be enabled.

For execution of abstracted transitions on Γ , every A-round χ on some con-
crete state machine SMi can be matched to a trace from astrt to aend on SMA

i .
The matching is as follows: every transition t that is traversed on χ and where t
generates an event (GEN(e) ∈ act(t)) matches a transition from ai to ai+1 (for
some i). Every transition t that is traversed on χ and where t does not generate
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or consume an event, matches an interval of length one on π′ (ΓA does not ex-
ecute a matching step). Since χ can generate at most f events, then indeed we
can match the transitions as described. All variables that can be modified on
χ are given the value ⊥ upon execution of the first transition in Δ(A) (transi-
tions from astrt to a1). This value is maintained in the variables throughout the
traversal on Δ(A).

6 Using Abstraction

We now present the applicability of our abstraction framework by an example.
Consider a system Γ describing a travel agent (of class Agent) that books flights
and communicates with both airline databases (of classDB) and clients. Assume
Γ includes n different DB objects, where the behavior of each DB is defined
in Fig. 1. The single Agent object in Γ communicates with clients (modeled as
the environment) and with all of the DBs. The Agent behavior is as follows:
upon receiving a flight request from a client, it requests a price offer from all
DBs by sending them event evGetPrc. After getting an answer from the DBs
(via evRetPrc), it chooses an offer, reserves the flight from the relevant DB (via
evAprvF lt) and rejects the offers from the rest of the DB (via evDenyF lt).

Assume now we create an abstract system ΓA, where the DBs are abstracted
as in Fig. 3 (the Agent remains concrete). If Agent state machine includes x
states, then Γ has (12∗n+x) states, whereas ΓA has (4∗n+x) states. Moreover,
ΓA does not include the pieces of code in the actions of the transitions of DBs,
which may be complicated. E.g., the method calcPrc() is not part of the abstract
state machine of DB, and this method might include complex computations.

Assume we want to verify the property describing that on all computations
of Γ , if Agent orders a flight from some DB, then all the DBs returned an
answer to the Agent before the Agent chooses an offer. For this property it is
enough to consider only the interface of the DBs. The property is not affected,
for example, by the calculation of a price by the DBs. It is an outcome only of
the information that every DB can consume an event evGetPrc, and can send
an event evRetPrc. We can therefore verify the property on ΓA. If the property
holds, then we can conclude that Γ also satisfies the property.

Consider another property: we want to verify that due to a single request from
the client, space decreases by at most 1. Clearly, when verifying the property on
ΓA, the result is ⊥, since ΓA abstracts the variable space. This means that we
cannot conclude whether or not the property holds on Γ by model checking ΓA.
However, it might be possible to refine ΓA, and create a different abstraction
Γ ′A for which this property can be verified. Following, in section 7 we present
how to refine an abstract system when the verification does not succeed.

7 Refinement

Once we have an abstract system ΓA, we model check our LTLx property Aψ
over the abstract system. Since variables in ΓA can have the value ⊥, then
(ΓA |= Aψ) ∈ {true, false,⊥}. If (ΓA |= Aψ) = true, then from Theorem 6 the
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property holds on Γ as well. If (ΓA |= Aψ) ∈ {false,⊥} then due to ΓA being
an over-approximation we cannot determine whether or not the property holds
on Γ . Typical model checkers provide the user with a CEX in case verification
does not succeed. A CEX πA on ΓA is either a finite computation or a lasso
computation s.t. either (πA |= ψ) = false or (πA |= ψ) = ⊥.

Next we present a CEGAR-like algorithm for refining ΓA based on πA. The
refinement step suggests how to create a new abstract system Γ ′A, where one or
more of the abstracted states of Γ are removed from the abstraction sets. Since
the concrete system Γ is finite, the CEGAR algorithm ultimately terminates
and returns a correct result.

If (πA |= ψ) = ⊥ then we cannot determine the value of the property. If (πA |=
ψ) = false, then this CEX might be spurious. In both cases we search for a
computation π on Γ s.t. π "s π

A. Given πA, we inductively construct π w.r.t. πA.
Note that if the concrete model enables non-determinism, then there might be
more than one matching concrete CEXs. In this case, all the matching concrete
CEXs are simultaneously constructed. Intuitively, the construction of π follows
the steps of πA, maintaining the stuttering inclusion. During the construction, if
for some prefix of πA: C′0, step′0, ..., step′p−1, C′p it is not possible to extend any
of the matching concrete computations based on step′p, then πA is a spurious
CEX and we should refine the system. Detailed description of the construction of
π is presented in [17]. There are three cases where we cannot extend a concrete
computation π = C0, step0, ..., Cr (Cr " C′p) based on step′p: (1) step′p is an
EndRTC step on SM ′

l but there exists an enabled transition in TRl w.r.t. C
r.

(2) step′p is a TRANS step on SM ′
l that executes a transition ta �∈Δ(A), and

the concrete transition t that matches ta is not enabled. (3) step′p is a TRANS
step on SM ′

l that executes a transition ta ∈Δ(A) that generates an event e, and
there is no enabled concrete transition t ∈ TR(A) where GEN(e) ∈ act(t).

We call the configuration C′p ∈ πA from which we cannot extend a matching
concrete computation failure-conf. Following, we distinguish between two reasons
that can cause a failure-conf, and show how to refine the system in each case.

Case 1: step′p executes a transition that does not have a matching behavior in
Γ . E.g., when step′p = TRANS(j, (ta)), id′pj = l, and the concrete t that matches
ta is not enabled since src(t) �∈ ωr

l . This is possible only if src(t) ∈ S(A) and
trgt(t) �∈ S(A). Another example for such a failure is when ΓA generates an
event e as part of the action of ta, but e cannot be generated from Cr on any
possible step. This can happen only if ta ∈ Δ(A). In both cases we refine by
removing a state s ∈ S(A) s.t. s ∈ ωr

l from the abstraction.

Case 2: There exists v ∈ V for which σ′p(v) = ⊥ and the value of σr(v) causes
the failure-conf. For example, when step′p = TRANS(j, (ta)) and the concrete
t that matches ta is not enabled since grd(t)(σr) = false. Since Cr " C′p and
grd(ta) = grd(t), then clearly grd(ta)(σ

′p) = ⊥ and for some v, σ′p(v) = ⊥ and
v affects the value of grd(ta). We refine ΓA to obtain a concrete value on v:
We trace πA back to find the variable that gave v the value ⊥. The only place
where a variable is initially assigned the value ⊥ is a transition from astrt to a1



Verifying Behavioral UML Systems via CEGAR 153

in some Δ(Ai). Thus, the tracing back of πA terminates at C′α s.t. astrt ∈ ωα
i .

We find the matching Γ -conf Cβ in π s.t. Cβ " C′α, and refine the model by
removing from the abstraction a state s ∈ S(Ai) s.t. s ∈ ωβ

i .
If we are able to construct π s.t. π " πA, then one of the following holds: (a)

If (πA |= ψ) = false then no need to check π. By construction, π �|= ψ, and we
can conclude that Γ �|= Aψ, (b) If (πA |= ψ) = ⊥ then we check π w.r.t. ψ. If
π �|= ψ then again π is a concrete CEX and we conclude that Γ �|= Aψ. Otherwise
(π |= ψ), the abstraction is too coarse and we need to refine. Notice that in the
latter case, since (πA |= ψ) = ⊥ then there exists v ∈ V which affects the value
of ψ, and v has the value ⊥. We then refine ΓA in order to have a concrete value
on v, as described above (Case 2).

Consider the example system presented in section 6, and consider a prop-
erty that addresses the variable space. Recall that under the abstraction pre-
sented for this example, such a property is evaluated to ⊥, since the variable
space is abstracted. During the refinement, state WaitForDB is suggested for
refinement, and is removed from the abstraction. We can then create a re-
fined system Γ ′A, where DB objects are abstracted w.r.t. a new abstraction
set A′ = {Idle, PriceProcessor, UpdateDB}. The property can then be verified
on Γ ′A, and we can conclude that it holds on the concrete system.

8 Conclusion

In this work we presented a CEGAR-like method for abstraction and refinement
of behavioral UML systems. It is important to note that our framework is com-
pletely automatic. An initial abstraction can be one that abstracts entire state
machines, based on the given property. We presented a basic and automatic re-
finement method. Heuristics can be applied during the refinement stage in order
to converge in less iterations. For example, when refining due to a variable v
whose value is ⊥, we can refine by adding all abstracted transitions that modify
v (or v’s cone-of-influence). Note, however, that there always exists a tradeoff
between quick convergence and the growth in size of the abstract system.
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15. Liu, S., Liu, Y., André, É., Choppy, C., Sun, J., Wadhwa, B., Dong, J.S.: A formal se-
mantics for complete UML state machines with communications. In: Johnsen, E.B.,
Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 331–346. Springer, Heidelberg (2013)

16. Madhukar, K., Metta, R., Singh, P., Venkatesh, R.: Reachability verification of
rhapsody statecharts. In: ICSTW 2013 (2013)

17. Meller, Y., Grubmerg, O., Yorav, K.: Verifying behavioral UML systems via CE-
GAR. TR CS-2014-01, Dept. of Computer Science. Technion - Israel Institute of
Technology (2014)

18. Mikk, E., Lakhnech, Y., Siegel, M., Holzmann, G.J.: Implementing statecharts in
promela/spin. In: WIFT 1998 (1998)

19. Ober, I., Graf, S., Ober, I.: Validating timed UML models by simulation and veri-
fication. STTT 8(2), 128–145 (2006)

20. IST-2001-33522 OMEGA (2001), http://www-omega.imag.fr
21. Lilius, J., Paltor, I.P.: Formalising UML state machines for model checking. In:

France, R.B. (ed.) UML 1999. LNCS, vol. 1723, pp. 430–444. Springer, Heidelberg
(1999)

22. Pnueli, A.: The temporal logic of programs. In: FOCS 1977 (1977)
23. Prehofer, C.: Behavioral refinement and compatibility of statechart extensions.

Electron. Notes Theor. Comput. Sci. 295(5), 65–78 (2013)
24. Reeve, G., Reeves, S.: Logic and refinement for charts. In: ACSC 2006 (2006)
25. Schinz, I., Toben, T., Mrugalla, C., Westphal, B.: The rhapsody UML verification

environment. In: SEFM 2004 (2004)
26. Scholz, P.: Incremental design of statechart specifications. Sci. Comput. Pro-

gram. 40(1), 119–145 (2001)
27. Seger, C.H., Bryant, R.E.: Formal verification by symbolic evaluation of partially-

ordered trajectories. Form. Methods Syst. Des. 6(2), 147–189 (1995)
28. Simons, A.J.H., Stannett, M.P., Bogdanov, K.E., Holcombe, W.M.L.: Plug and

play safely: Rules for behavioural compatibility. In: SEA 2002 (2002)

http://www-omega.imag.fr


Formal Refinement in SysML

Alvaro Miyazawa and Ana Cavalcanti

Department of Computer Science, The University of York, UK
{alvaro.miyazawa,ana.cavalcanti}@york.ac.uk

Abstract. SysML is a UML-based graphical notation for systems engi-
neering that is becoming a de facto standard. Whilst it reuses a number
of UML diagrams, it introduces new diagrams, and maintains the loose
UML semantics. Refinement is a formal technique that supports the val-
idation and verification of models by capturing a notion of correctness
based on observable behaviour. In this paper, we analyse the issue of
formal refinement in the context of SysML. First, we identify the require-
ments for supporting refinement in SysML, next we propose extensions
to SysML that satisfy these requirements, and finally we present a few
refinement laws and discuss their validity.

1 Introduction

SysML [1] is a profile of UML 2.0 for systems engineering. SysML retains a
number of UML 2.0 diagrams, modifies others (like the block definition, inter-
nal block, and state-machine diagrams) and adds a new type of diagram. It
supports modelling of a variety of aspects of a system, including software and
hardware components, and socio-technical aspects. SysML includes a notion of
refinement, but it is informal and there is no universally accepted understanding
of its meaning. Whilst it is difficult to gauge adoption of SysML in industry, its
current support by tool vendors such as IBM [2], Atego [3] and Sparx Systems [4]
indicates that adoption is at least perceived as wide.

In [5,6,7] a denotational semantics for a subset of SysML has been proposed; it
is based on the state-rich refinement process algebra CML, which is a combina-
tion of VDM [8], CSP [9,10] and the refinement calculus [11]. CML is related to
the Circus family of refinement languages, and its semantics is specified in Hoare
and He’s Unifying Theories of Programming (UTP) [12], which is a relational
refinement framework. Circus has a refinement strategy [13] with associated no-
tions of refinement that can be directly adopted in the context of CML.

In this paper we lift the notion of refinement of CML to SysML, propose
extensions to SysML that enable reasoning based on refinement at the level of
the diagrammatic notation rather than CML, and present refinement laws both
for diagrams written using only standard SysML and for diagrams that use our
extensions. Our objective is to support stepwise refinement, and we also explain
how the Circus refinement strategy can be lifted to SysML; the laws that we
present are useful in the context of that strategy.

There have been several studies of refinement in UML. They either do not
consider formal refinement [14], take refinement as a syntactic notion based
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Fig. 1. Block definition diagram of abstract model

directly on UML components [15,16,17], or do not focus on laws of refinement
for model transformations as we do here [18,19,20,21,22]. Our objective is to
support sound model transformation at the diagrammatic level.

The structure of this paper is as follows. Section 2 introduces SysML and its
formal model [7]. Section 3 presents our notions of refinement. Section 4 discusses
the limitations of SysML in supporting refinement and proposes extensions to
overcome these limitations. Section 5 presents refinement laws. Finally, Section 6
summarises our results and discusses related and future work.

2 SysML and Its Formal Model

Although our definition of refinement applies to models involving an arbitrary set
of diagrams, in this paper, we focus on block definition, internal block and state-
machine diagrams. Block definition diagrams allow the declaration of blocks,
which are the main modelling units in SysML used to define systems and their
components, and their relationships (composition, aggregation, generalisation
and association), internal block diagrams support the specification of the in-
ternal connections of a composite block, and state machines provide the means
of specifying the behaviour of a block. Activities play a similar role to state
machines, and are omitted here to simplify the exposition.

To illustrate refinement in SysML, we introduce a simple example of a chro-
nometer that records seconds and minutes, and accepts a tick signal that in-
crements the chronometer and a time operation that queries the recorded time.
The example consists of two distinct models, one abstract, depicted in Figure 1
and one concrete, shown in Figure 2, related by refinement. Whilst the abstract
model is centralised, the concrete one has two components, one recording the
seconds and the other recording the minutes. The components of the concrete
model cooperate to realise the behaviour specified in the abstract model.

Figure 1 shows the block definition diagram of the abstract model; it declares
a single block AChronometer with two private properties sec and min, both of
type Integer, and a port port that provides the operations and signals in the
interface ChronometerI. This interface is also defined by a block and contains
an operation time that returns a value of type Time, and a signal tick that
models the passing of time. The type Time is a datatype with two components,
min and sec, that encode a time instant in minutes and seconds.

Since the block AChronometer is simple, there is no internal block diagram
specifying its internal structure. The remaining diagram in the abstract model



Formal Refinement in SysML 157

Fig. 2. Block definition diagram of concrete model

Fig. 3. State machine diagram of the abstract model

is the state-machine diagram shown in Figure 3; it contains two simple states.
When the state machine is started, the properties min and sec are initialised to
0, and the state State is entered. When the state is active, either the internal
transition triggered by time is executed, or the transition triggered by tick is
executed. The first models the treatment of a call to the operation time and
returns a value of type Time built from min and sec, whilst the second models
the passing of time and increments the block’s properties. The second transition
leads to a state that is exited as soon as it is entered due to the fact that its
outgoing transitions do not have triggers.

The concrete model is formed by four diagrams: one block definition diagram,
one internal block diagram and two state-machine diagrams. The first is shown
in Figure 2; it declares three blocks CChronometer, Min and Sec. The first is
composed of the other two as indicated by the composition relation (arrow with
a black diamond). The block CChronometer is similar to the block of the abstract
model except that it has no properties. These are distributed in the components
Min and Sec. The block Min has a single private property and two ports, ip
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Fig. 4. Internal block diagram of concrete model

and ip aux, that both provide the operations in the interface MinutesI. The
provided and required interfaces of a port are the sets of operation calls and
signals that the block, respectively, receives and sends through the port.

The block Sec also has a single property, but two ports, port and ip conj.
The first is identical to the port of the block CChronometer, whilst the second is
complementary to the port ip of Min and requires the operations in the interface
MinutesI. The block definition diagram has some extra annotations (hiding and
through port), which support refinement and are explained in Section 4.

The internal block diagram of the concrete model (Figure 4) shows the com-
posite block CChronometer and its components (marked with <<part>>); it spec-
ifies that the port port of Sec is connected to the port of CChronometer, and
that the ports ip and ip conj are connected to each other. Finally, the blocks
Sec and Min have each one state machine (Figure 5). The state machine of Sec
is called SecMain and is similar to the state machine of the abstract model, ex-
cept that it delegates the operations involving minutes to the block Min. These
operations are treated by the state machine MinMain that contains a single state
with two internal transitions that react to a call to the operations minsReq and
inc. The first returns the value stored in min, and the second increments it.
Next, we describe the main elements of SysML that are covered in this paper.

Block. A block may declare properties, which are typed named elements (sec
and min in Figure 1), receptions (tick), which specify the signals that can be
treated by the block, and operations (time()). Additionally, it may generalise
other blocks, use and realise interfaces, and declare ports (ip, ip conj and port

in Figure 4), parts (min and sec in Figure 4) and references.

State machine. State machines contain states (State in Figure 3), which may
be simple or composite, regions, transitions (the four arrows in Figure 3), junc-
tions (the small black circle in Figure 3), joins, forks, history junctions, initial
junctions (the larger black circle in Figure 3) and final states. States may declare
entry actions (executed when a state is entered), do activities (executed after the
state is entered), and exit actions (executed when the state is exited). Composite
states have one or more regions, which are entered, executed and exited in par-
allel. Regions may contain states, both simple and composite, initial junctions
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Fig. 5. State machine diagrams of the concrete model

and final states. Initial junctions specify which state of a region is entered first,
and final states indicate when the behaviour of a region has terminated.

Transitions allow the deactivation of one or more states, and the activation of
others. Whilst two states may be connected directly by a transition, the connec-
tion may be extended by the use of junctions that allow the specification of more
complex flows; for instance, the three transitions connected to the junction in
Figure 3 specify that after sec is incremented, if its value is zero, nothing is done
and State is re-entered, otherwise, min is incremented and State is re-entered
Transitions may be triggered by events (tick in Figure 3) and guarded by con-
ditions ([sec <> 0] in Figure 3). Additionally, they may specify an action that
is executed when the transition is taken ([frame wr sec, min post sec = 0

and min = 0] in Figure 3). Joins and forks allow transitions to link one state
to multiple parallel states (contained in regions).

CML. A CML specification is a sequence of paragraphs that declare types,
constants, functions, channels, channel sets and processes. Figure 6 illustrates
the specification of a message buffer in CML.

First, the type of identifiers (ID) is defined as the type token, which is a
universal type in CML, and the type of messages is defined as a record type
with three components that record the origin of the message, its destination and
the text of the message. An invariant requires that the origin and destination
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types

ID = token

MSG :: origin: ID dest: ID msg: seq of char

inv mk_MSG(o,d,-) == o <> d

values MAX = 5

channels read , write: MSG

process Buffer = begin

state b: seq of MSG inv len b <= MAX

operations

Init: () ==> ()

Init () == b := []

actions

Read = [len b > 0] & read !(hd b) -> b := tl b

Write = [len b < MAX] & write?x -> b := b^[x]

@ Init (); mu X @ ((Read [] Write); X)

end

Fig. 6. A CML specification of a message buffer

must be different. Next, the maximum size of the buffer is declared as a constant
MAX, and two channels as specified: read and write. They each communicate a
message, and are used to add and remove values from the buffer.

Finally, the process Buffer is declared. It encapsulates a single state compo-
nent b that holds sequences of messages of size at most MAX. A data operation
Init is declared to initialise the state component with an empty sequence, and
two actions, Read and Write, specify how the channels read and write are used
to interact with the buffer. In the first case, it is only possible to obtain a value
through the channel read, if there is at least one value in the buffer. In the
second case, the action specifies that it is only possible to send a value through
the channel write if there is space on the buffer (len b < MAX). Finally, the data
operation and actions are combined to specify the behaviour of the process (af-
ter @): it initialises the state and starts a recursive action (mu X @ ...) that at
each step offer a choice between the actions Read and Write.

Central to CML is the notion of refinement that supports the comparison of
processes with respect to their external communications. Calculational stepwise
refinement is supported in CML by a rich catalogue of refinement laws that cover
both data and process refinement.

Formalising SysML. Our formal model of SysML is a CML specification that
declares a number of types, values, channels, channel sets and processes. The
semantics of a block is given by a CML process; it offers interactions through a
number of channels:

– set and get channels for each property of a block to allow properties to be
read and written to;

– op and sig channels that allow the receipt of operations and signals; and
– ext op and ext sig channels for each port that also allow the receipt of

operations and signals.
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The model of the system defined by the SysML diagrams is captured in CML by
the process that defines the block that characterises that system. The process
defines the system interface in terms of the above channels, and interacts with
other processes that capture other diagrams of the SysML model and restrict
the interface of the system as indicated in those diagrams.

The structure of the processes that model blocks differs according to the na-
ture of the block: simple or composite. The process that models a composite
block is formed by the parallel composition of the processes that model the
blocks that type its parts; the parallel composition is determined by the inter-
nal blocks diagram that describes the composite block. For instance, the block
CChronometer in Figure 5 is modelled by a process that is defined by the par-
allel composition of the processes that model the blocks Min and Sec with their
channels appropriately renamed to allow the communication between ports ip
and ip conj, and ports port of Sec and port of CChronometer.

Simple blocks, on the other hand, are modelled by processes that describe
which operations and signals can be received by the block and may interact
with a state machine process to treat them. These processes are formed by
the parallel composition of processes that model the block’s interface, the state
machine that describes the behaviour of the block, and the block’s ports. State
machines are modelled by CML processes that are prepared to receive SysML
events and react according to the behaviour specified in the state machines.
Whilst communication in CML is synchronous, it is asynchronous in SysML,
and, therefore, cannot be specified directly in CML. In our semantics, SysML
communications are modelled in terms of buffers and CML communications.

The semantics of SysML is specified by inductive functions over the meta-
model of SysML. The semantics of a SysML model is given by the function
t model, which takes a model as argument and characterises its corresponding
CML specification. The formalisation of the semantics of SysML is in [7].

3 Refinement in SysML

Informally, our notion of refinement for SysML models compares the two blocks
that define the systems with respect to their operations and signals. Essentially,
if a block A is refined by a block B, the following properties must hold:

1. A and B must accept exactly the same public signals;
2. A and B must accept exactly the same public operations;
3. A and B must have exactly the same public properties;
4. for each public operation of A, if its return value is nondeterministically

chosen from a set S , the same operation on block B must return a value that
is nondeterministically chosen from a subset of S ;

5. for each property of A, if its value is nondeterministically chosen from a set
S , the same property on the block B must have a value nondeterministically
chosen from a subset of S .

This refinement relation is induced by the CML semantics of SysML and corre-
sponds to the refinement relation of CML process.
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First of all, since process refinement is compositional in CML, and the main
SysML elements (blocks, state machines and activities) map to processes used to
define the CML process that defines the system model, we can refine the models
of the individual diagrams to refine the SysML model as whole.

Next, we formalise the notion of refinement for blocks and state machines.

Definition 1 (Block refinement). Let M be a SysML model, and let B1 and
B2 be blocks of M, then

B1 M
Block B2 ⇔ t model(M).B1 P t model(M).B2

That is, block B1 is refined by block B2 (written B1 M
Block B2) if, and only

if, the CML process B1 that models the block B1 is refined by the process B2

that models B2. With the view that a system is specified by a block in a SysML
model, block refinement as formalised in Definition 1 is the main relation that
must be verified to establish refinement between systems.

Data-refinement in SysML is defined similarly to behavioural refinement by
lifting CML data-refinement, which is based on forward simulation.

Definition 2 (Forward Simulation). A forward simulation (�M
R ) between

blocks B1 and B2 of a SysML model M is a relation R between B1.PrivateProps
and B2.PrivateProps if, and only if, R is a forward simulation between the
processes t model(M).B1 and t model(M).B2.

Unlike state components of CML processes, properties of blocks are not neces-
sarily encapsulated (private). For this reason, forward simulation in SysML is
defined with respect to private properties of the blocks. This is an extension of
a calculational approach to data refinement presented in [11] to allow (private)
variables in local blocks to have their types data refined.

Definition 3 (State machine refinement). Let M be a SysML model, and
let S1 and S2 be state machines of M, then

S1 M
Stm S2 ⇔ t model(M).S1 P t model(M).S2

That is, a state machine S1 is refined by another state machine S2 (written

S1 M
Stm S2) if, and only if, the CML process S1 that models the state machine

S1 is refined by the process S2 that models S2.
Notions of refinement for states (written M

State), regions, transitions and ac-
tions are similarly defined. For states, the observations that are preserved by
refinement are the activation and deactivation of the top state (that is, the sub-
states are not observable), and the signals and operation calls performed inside
the state. The observations of regions are the activation and deactivation of the
region and the signals and operation calls performed inside the region. Transition
refinement preserves the observation of activation and deactivation of states as
well as the signals and operation calls performed by the transition.

As indicated in the previous section and further explained in Section 4, a
subset of CML is used as action language for SysML. This subset excluding sig-
nals, operation calls and return statements retains the original CML semantics
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(except that they are enclosed in a variable block that models a local copy of
the shared state). For this reason, CML refinement laws for such statements can
be reused in the refinement of SysML models.

4 SysML Extensions

In general, we wish to prove that an abstract model, where possibly no particular
design has been chosen, is refined by a more concrete model in which some design
decisions have been taken. In SysML, the more concrete model often adds new
operations to the abstract model in order to implement particular designs. This,
however, makes the refinement invalid as new operations are now observable in
the concrete model. The extra operations should in fact be internal, and used
solely to implement behaviour specified in the abstract model. An alternative
notion of refinement could allow addition of operations and use hiding to lift the
CML notion of refinement. Here, we adopt the standard notion of refinement in
process algebra directly.

In our example, we wish to show that the block AChronometer is refined by
CChronometer. However, based solely on the pure SysML model, it is not possible
to verify this refinement since block CChronometer clearly offers more operations
than AChronometer: inc, minsReq and reset from block Min in Figure 2. These
operations are used to implement the operation time, and are not meant to be
visible outside the block CChronometer, that is, they are meant to be internal.

Moreover, since some of the ports of internal parts can be left unconnected,
the operations and signals they offer are not called by another part, and simply
making them internal, could lead them to occur spontaneously. For this reason,
there needs to be a way of making them unavailable when hidden.

Finally, SysML does not provide adequate support for specifying abstract
behaviours: both state machines and activities define very concrete models, and
the fact that their action language is undefined is also a hindrance. The use of
a programming language to define the action does not address this issue; as it
does not provide support for abstract specifications.

We address the problems above through five extensions to SysML: hiding,
restrictions, alphabets, plugs and the definition of an action language. The first
extension supports the specification of internal signals and operations, the next
three can be used to make certain signals and operations unavailable, and the
fifth adds support for abstract specifications.

In order to specify that certain operations and signals are internal to a block,
we propose the use of the hiding extension. A set of operations and signals rep-
resented by a SysML interface is hidden in a block by creating a dependency
between the block and the interface, and adding a hiding comment to the de-
pendency as shown in Figure 2. The semantics of this extension is given by the
hiding operator of CML, which makes a set of channels internal to a process,
and therefore, independent from external influences.

As already mentioned, any internal operation or signal that is offered but not
used can occur spontaneously, which in turn leads to an infinite loop of internal
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behaviours. Therefore, only operations and signals that are used as specified by
the internal block diagram can be made internal.

This restriction, however, is too strong as unused operations are often as-
sumed to be unavailable. In fact, in our example, none of the extra operations of
CChronometer can be hidden due to this restriction: some of them (reset) are
not used at all, and the others are used only through a particular port of Min.
The next three extensions provide mechanisms to indicate that an operation or
signal is unavailable under certain situations (and can, therefore, be hidden).

Operations and signals of a block can be called by referring directly to an
instance of the block, or through the ports that provide them. In order to support
the specification of operations and signals that are only used through ports or
(directly) through the block, we propose the use of restrictions.

Restrictions are represented by a through ports or through block com-
ment linked to an operation, signal or interface to indicate that it is offered only
through ports or only through the block. If there is no comment, it remains avail-
able through both. Figure 2 illustrates the use of restrictions in the realisation
between the block Min and the interface MinutesI. The semantics of a restriction
that declares an operation O only available through ports is given by a reduction
of the alphabet of the process that models the block. This reduction removes all
communications that allow calls to the operation directly to the block.

Alphabets specify which operations and signals of a block are available when
it is used as a part of another block. This extension is represented by a SysML
comment that lists the used operations and signals and is associated with par-
ticular instances of blocks (parts). Alphabets must be connected to part (and
not blocks) because they specify restrictions over the use of a block as a part. A
block may be used in different contexts with different alphabets. In our example,
to prevent the part min shown in Figure 4 from offering the operation reset, it
is annotated with an alphabet containing minsReq and inc.

At this point, the operation reset can be hidden because it is not offered by
the block CChronometer or its parts, but the remaining operations of Min cannot.
They are offered on ports ip and ip aux, but only used on ip as indicated by
the connector between ip and ip conj in Figure 4. Before these operations are
made internal, the unused port ip aux must be disabled. This is achieved by
means of the plug extension, which allows us to mark a port as unused (plugged).
A plug is specified by a comment linked to the port that is unavailable. Similarly
to alphabets, this annotation must be placed on a port of a part since it does not
affect a block in general, but only a particular use of a block. In our example,
the port ip aux is plugged as shown in Figure 4.

Finally, the problem of supporting abstract specifications is addressed by the
use of a subset of CML as action language in state machines (and activities).
This subset includes the CML statements (like the specification statement for
instance), as well as sequential composition, external and internal choice, inter-
leaving and guarded statements. These are the basic CML action constructors,
except for those that involve communication (prefixing and parallel composition)
since the communication paradigm of SysML (asynchronous) is different from
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that of CML (synchronous) and is already supported by signals and operation
calls. In our example, the only statements that are used are assignments. speci-
fication statement and and sequential compositions as shown in Figures 3 and 5.
The complete syntax of CML statements is in [23]

5 Refinement Laws in SysML

In this section, we describe how the Circus refinement strategy can be applied
to SysML models and present a few laws that support the strategy. These laws
fall into two main groups: refinement laws that rely solely on existing SysML
constructs, and laws that use alphabets, restrictions, plugs or hiding.

The Circus refinement strategy is an iterative process. In each iteration, ini-
tially, a centralised abstract process is data refined to introduce concrete data
models, next the actions of the process are refined to introduce parallelism, and
finally the process is partitioned into one or more processes that interact with
each other to implement the abstract process. Each of the new processes may
become the object of a subsequent iteration of the strategy.

We illustrate the use of this refinement strategy for SysML and the new laws
through a simple example that verifies that the distributed concrete model shown
in Figure 2 is a refinement of the centralised abstract model in Figure 1.

The first phase of the refinement strategy is supported in SysML by simulation
laws that distribute a forward simulation (see Definition 2) through a SysML
model. Since the data model of our concrete specification is the same as that
of the abstract specification, this phase is not required in this simple example.
Simulation laws can be found in [24].

In the second phase, we start by introducing local auxiliary behaviours in the
abstract model that are initially not used via state machine refinement laws.
Namely, the local hidden operations minsReq and inc are introduced by the
Law Local operation introduction presented below.

This law takes a block and an operation, introduces the operation in the
block as a private operation, and hides it. The resulting block is identical to the
original because the new operation is only available internally and is not used.
Whilst this seems useless, further laws can take advantage of the availability of
the local operation to replace behaviours by calls to it.

Still as part of the second phase of the strategy, we introduce some of the
structure of the design. In our example, the single state in the abstract state
machine is refined into a composite state with two regions using the Law Region
introduction shown below – the first region corresponds to SecMain in Figure 5,
and the second contains a state that offers the behaviours associated with the lo-
cal operations. This does not modify the behaviour of the state machine because
the newly introduced behaviours are triggered by unused local operations.

This law takes a composite state with a single region containing any number of
substates and transitions, and refines it into a composite state with two regions:
the first is the original region, and the second is an empty region. This is possible
because the two regions are executed in parallel, and the empty region does not
introduce new behaviours observable outside the composite state.
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Law 1. Local operation introduction.

	M
Block

provided

1. Op 
∈ used(Block .behaviour) ∪ triggers(Block .behaviour)

Law 2. Region introduction.

	M
State

In the third phase, the block AChronometer is partitioned in two using Law
Block decomposition. This law is a block refinement law that takes a simple block
with two ports, p1 and p2, and a state machine that at the top level has two
regions, R1 and R2. It refines the simple block into a composite block with the
same two ports, but whose parts are two new blocks, Block1 and Block2, each
with two ports (e.g., p1 and ip1), and each with its own state machine derived
from one of the regions R1 and R2. In this law, I1 and I2 represent both the
provided and required interfaces of the port.

The provisos of this law guarantee that no new operations or signals are
introduced and that their treatments (in the state machine) are independent
and, therefore, can be separated. That is, this law can be applied as long as the
a subset of the operations and signals (the external ones) of the original block
are partitioned in the interfaces I1 and I2 (proviso 1), the transitions of the two
top regions of the state machine have no triggers in common and the two regions
do not share block properties (proviso 2), the provided items (operations and
signals) of I1 are not used in the triggers of the transitions of region R2 and the
required items of I1 are not used in the actions of the states and transitions in
R2 (proviso 3), and the provided items of I2 are not used in the triggers of the
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Law 3. Block decomposition.

	M
Block

provided

1. I 1 ∩ I 2 = ∅ ∧ I 1 ∪ I 2 ⊆ Block
2. triggers(R1) ∩ triggers(R2) = ∅ ∧ usedV (R1) ∩ usedVR2 = ∅
3. provided(I 1) ∩ trigger(R2) = ∅ ∧ required(I 1) ∩ used(R2) = ∅
4. provided(I 2) ∩ trigger(R2) = ∅ ∧ required(I 2) ∩ used(R2) = ∅

where

1. Block1 ∩ Block2 = ∅ ∧ Block1 ∪ Block2 = Block
2. provided(II 1) = Block1 ∩ used(R2) ∧ required(II 1) = Block2 ∩ used(R1)
3. provided(II 2) = Block2 ∩ used(R1) ∧ required(II 2) = Block1 ∩ used(R2)

transitions of region R1 and the required items of I2 are not used in the actions
of the states and transitions in R1 (proviso 4).

Each block has an event pool where received events (operation calls and sig-
nals) are stored for processing. The proviso 2 of Law 3 guarantees that it is
possible to partition the event pool of the block into two parts: one containing
only events that may be consumed by the first region, and the other containing
the events that may be consumed by the second region. Since the order in which
events are sent to the state machine is non-deterministic (see [7,25]), it is not
possible to distinguish the two pairs of event pools and state machines from the
original pair, thus allowing the block to be decomposed in two.

The two new blocks produced by the Law Block decomposition partition the
operations and signals of the original block, and each has two ports; for instance,
in Block1 they are p1 and ip1. The ports p1 and p2 are identical to those of



168 A. Miyazawa and A. Cavalcanti

the original block and are linked by a connector to the corresponding ports of
the composite block. The connected ports ip1 and ip2 are introduced to allow
one part to call operations of the other, which accounts for the use of block
operations in the original state machine. The interfaces II1 and II2 of these
internal ports are such that they contain as provided items those operations and
signals of the associated block (Block1 or Block2) that are used by the region
associated with the other block, and contain as required items those that are
used by its associated region. Both of these interfaces are hidden.

In a second iteration of the refinement strategy, standard CML refinement
laws are used to (1) introduce a local variable aux initialised with min in the
behaviour of the transition triggered by time (see Figure 3), and (2) replace min
in the record constructor mk Time by the local variable. Finally, Law Operation
call introduction [24] is applied twice, once to replace aux := min by a call to
minsReq via port ip conj, and again to replace min := (min + 1) mod 60 by
a call to inc through the same port.

The soundness of these laws can be verified using the CML models induced by
our semantics, and our notions of refinement. The soundness of the refinement
laws presented in this paper is further discussed in [24].

6 Conclusions

In this paper we have presented our initial results regarding the use of refinement
in SysML models. We have identified limitations of the diagrammatic notation
that restrict, if not disallow, the use of refinement for all but the most trivial ex-
amples where concrete models add no extra operations, signals and components.
To address these limitations, we have proposed extensions to SysML that address
those limitations, and described a number of laws that support the development
and verification of SysML models by stepwise refinement.

Current work on refinement in UML tends to follow three main directions
First, [14] provides some extensions for structuring refinements, but does not
present a formal notion of refinement.

Second, the notion of refinement in UML is analysed and contrasted with
the notion of generalisation in [15], whilst in [16], it is related (informally) to a
formal notion of refinement as inspiration for transformation patterns. Bergner
et al. [17] use an extension of the informal notion of refinement available in UML
to record evolution of models across different levels of abstraction. Our notion
of refinement is induced by our semantics of SysML, whilst the above results use
a notion of refinement based directly on components of UML models.

A third line of work is pursued [18,19,20,21,22]; our work differs from those
most noticeably in our support for stepwise refinement at the level of SysML
rather than of the model adopted. Hnatkowska et al. [18] formalise in a de-
scription logic refinement between models at different levels of abstraction and
semantic levels, but it is not clear what properties are preserved by such notions
of refinement. A similar approach is taken in [20], where the notion of refinement
is based on the observation of operation calls.
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Liu et al. [19] formalise a subset of UML in an object-oriented specification
language that supports refinement. Similarly to our work, refinement patterns
are proposed and their soundness is argued based on the formalisation. However,
complicating aspects such as concurrency are not explored. Furthermore, it is
not clear if compositional refinement patterns for state machines are supported
as the formalisation of state machines is based on a preprocessing phase that
flattens the state machine eliminating the hierarchical structure.

In [21], refinement is explored in a formal variant of UML based on Event-
B [26]. This work differs from our mainly in that the Event-B approach is based
on the guess-and-verify paradigm, where a new model is created and the refine-
ment is verified rather than on refinement laws.

Finally, [22] explores refinement in UML by formalising a subset of UML in
CSP. The notions of refinement are those of CSP, and the preserved properties
are similar to ours, interaction between blocks via operations and signals. In that
work, however, refinement supports verification via model checking.

The soundness of the refinement laws is based on the formal semantics of
SysML published in [7,5,6] and the CML refinement calculus. As future work,
we will extend the catalogue of refinement laws for SysML models and apply
it to more examples. Furthermore, we plan to extend the SysML profile in [27]
to include our extensions and to use the CML theorem prover [28] to formalise
and mechanically verify our refinement laws, as well as to automate as much as
possible the verification of the provisos generated by a refinement.
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Abstract. Nowadays workflows are extensively used by companies to
improve organizational efficiency and productivity. This paper focuses on
the verification of modal workflow specifications using constraint solving
as a computational tool. Its main contribution consists in developing
an innovative formal framework based on constraint systems to model
executions of workflow Petri nets and their structural properties, as well
as to verify their modal specifications. Finally, an implementation and
promising experimental results constitute a practical contribution.

Keywords: Modal specifications, Workflow Petri nets, Verification of
Business Processes, Constraint Logic Programming.

1 Introduction

Nowadays workflows are extensively used by companies in order to improve
organizational efficiency and productivity by managing the tasks and steps of
business processes. Intuitively, a workflow system describes the set of possible
runs of a particular system/process. Among modelling languages for workflow
systems [1, 2], workflow Petri nets (WF-nets for short) are well suited for mod-
elling and analysing discrete event systems exhibiting behaviours such as con-
currency, conflict, and causal dependency between events as shown in [3, 4].
They represent finite or infinite-state processes in a readable graphical and/or
a formal manner, and several important verification problems, like reachability
or soundness, are known to be decidable. With the increasing use of workflows
for modelling crucial business processes, the verification of specifications, i.e. of
desired properties of WF-nets, becomes mandatory. To accompany engineers in
their specification and validation activities, modal specifications [5] have been
designed to allow, e.g., loose specifications with restrictions on transitions. Those
specifications are notably used within refinement approaches for software devel-
opment. Modal specifications impose restrictions on the possible refinements by
indicating whether activities (transitions in the case of WF-nets) are necessary
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or admissible. Modalities provide a flexible tool for workflow development as de-
cisions can be delayed to later steps (refinements) of the development life cycle.

This paper focuses on the verification of modal WF-net specifications us-
ing constraint solving as a computational tool. More precisely, given a modal
WF-net, a constraint system modelling its correct executions is built and then
computed to verify modal properties of interest over this workflow specification.
After introducing a motivating example in Sect. 2 and defining preliminaries on
WF-nets with their modal specifications in Sect. 3, the paper describes its main
contribution in Sect. 4. It consists in developing a formal framework based on
constraint systems to model executions of WF-nets and their structural proper-
ties, as well as to verify their modal specifications. An implementation supporting
the proposed approach and promising experimental results constitute a practical
contribution in Sect. 5. Finally, a discussion on related work is provided before
concluding.

2 Motivating Example

Our approach for verifying modal specifications is motivated by the increasing
criticity of business processes, which define the core of many industrial compa-
nies and require therefore to be carefully designed. In this context, we choose
a real-life example of an industrial business workflow, which is directly driven
by the need to verify some behavioural properties possibly at the early stage of
development life cycle, before going to implementation. This example concerns
a proprietary issue tracking system used to manage bugs and issues requested
by the customers of a tool provider company1. Basically, this system enables the
provider to create, update and drop tickets reporting on customer’s issues, and
thus provides knowledge base containing problem definition, improvements and
solutions to common problems, request status, and other relevant data needed
to efficiently manage all the company projects. It must also be compliant with
respect to several rules ensuring that business processes are suitable as well as
streamlined, and implement best practices to increase management effectiveness.

Figure 1 depicts an excerpt of the corresponding business process—specified
from textual requirements by a business analyst team of the company—modelled
using a Petri net workflow (WF-net). The main process, in the top left model, is
defined by two possible distinct scenarii (SubA and SubB), which are described
by two other workflows. In the figure, big rectangles (as for SubA and SubB) de-
fine other workflows. Some of them are not presented here: this example is indeed
deliberately simplified and abstracted to allow its small and easily understand-
able presentation in this paper; its complete WF-net contains 91 places and 113
transitions. For this business process, the goal is to verify, at the specification or
design stage of the development, some required behavioural properties (denoted
pi for later references) derived from textual requirements and business analyst
expertise such as: during a session, either the scenario SubA or the scenario
SubB (and not both of them) must be executed (p1); when the scenario SubB

1 For confidentiality reasons, the details about this case-study are not given.
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Fig. 1. Excerpt of issue tracking system WF-net

is considered then the user must login (p2); once a critical situation request is
pending, it can either be updated, validated and dispatched, or closed (p3); once
a critical situation is created, it can be updated and closed (p4); at any time,
a service request can be upgraded to a critical situation request (p5); a logged
user must logout to exit the current session (p6).

To ensure the specified business process model verifies this kind of business
rules, there is a need to express and assess them using modal specifications.
However, usual modal specifications are relevant to express properties on single
transition by specifying that a transition shall be a (necessary) must -transition
or a (admissible) may-transition, but they do not allow to express requirements
on several transitions. For instance, expressing the property p1 using usual modal
specifications allows to specify that transitions of SubA and SubB shall be may-
transitions. Nevertheless, such formula does not ensure that SubA or SubB has to
occur in a exclusive manner, and specifying some transitions as must -transition
cannot tackle this imprecision. That is why we propose in this paper to extend
the expressiveness of usual modal specifications by using modalities over a set
of transitions, and to define dedicated algorithms to automate their verification.

3 Preliminaries

This section reminds background definitions and the notations used throughout
this article. It briefly describes workflow Petri nets as well as some of their
behavioural properties. Modal specifications are also introduced.
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3.1 Workflow Petri Nets

Fig. 2. Basic example of a WF-net (ex1)

As mentioned above, workflows can be
modelled using a class of Petri nets,
called the workflow nets (WF-nets).
Figure 2 provides an example of a
Petri net where the places are rep-
resented by circles, the transitions by
rectangles, and the arcs by arrows.

Definition 1 (Petri net). A Petri net is a tuple (P, T, F ) where P is a finite
set of places, T is a finite set of transitions (P∩T = ∅), and F ⊆ (P×T )∪(T×P )
is a set of arcs.

Let g ∈ P ∪T and G ⊆ P ∪ T . We use the following notations: g• = {g′|(g, g′) ∈
F}, •g = {g′|(g′, g) ∈ F}, G• = ∪g∈G g•, and •G = ∪g∈G

•g.
A marking of Petri net is a function M : P → N. The marking represents the
number of token(s) on each place. The marking of a Petri net evolves during
its execution. Transitions change the marking of a Petri net according to the
following firing rules. A transition t is enabled if and only if ∀p ∈ •t,M(p) ≥ 1.
When an enabled transition t is fired, it consumes one token from each place of
•t and produces one token for each place of t•. With respect to these rules, a
transition t is dead at markingM if it is not enabled in any markingM ′ reachable
from M . A transition t is live if it is not dead in any marking reachable from
the initial marking. A Petri net system is live if each transition is live.

Definition 2 (WF-net). A Petri net PN = (P, T, F ) is a WF-net (Workflow
net) if and only if PN have two special places i and o, where •i = ∅ and o• = ∅,
and for each node n ∈ (P ∪ T ) there exists a path from i to o passing through n.

For example, the Petri net in Fig. 2 is a WF-net. Let us notice that in the context
of workflow, specifiers are used to consider ordinary Petri nets [6], i.e. Petri nets
with arcs of weight 1. In the rest of the paper, the following notations are used:

– M∅: the marking defined by ∀p ∈ P,M(p) = 0,

– Ma
t−→Mb: the transition t is enabled in marking Ma, and firing it results in

the marking Mb,

– Ma →Mb: there exists t such that Ma
t−→Mb,

– M1
σ−→ Mn: the sequence of transitions σ = t1, t2, ..., tn−1 leads from the

marking M1 to the marking Mn (i.e. M1
t1−→M2

t2−→ ...
tn−1−−−→Mn),

– Ma
∗−→ Mb: the marking Mb is reachable from marking Ma (i.e. there exists

σ such that Ma
σ−→Mb).

We denote Mi(k) the initial marking (i.e. Mi(n) = k if n = i, and 0 otherwise)
and Mo(k) the final marking (i.e. Mo(n) = k if n = o, and 0 otherwise). When
k is not specified, it equals 1. A sequence σ of transitions of a Petri net is an
execution if there are Ma,Mb such that Ma

σ−→ Mb. A correct execution of a
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WF-net is an execution σ such that Mi
σ−→ Mo. For example, Mi

σ−→ Mo where
σ = T 6,T 5 is a correct execution of the WF-net in Fig. 2. The behaviour of a
WF-net is defined as the set Σ of all its correct executions. For the transition t
and the execution σ, the function Ot(σ) is the number of occurrences of t in σ.

Definition 3 (Siphon/Trap). Let N ⊆ P such that N �= ∅:

– N is a trap if and only if N• ⊆ •N .
– N is a siphon if and only if •N ⊆ N•.

Figure 2 displays an example of a Petri net with a siphon. Let N = {P4}, since
•N = {T 1, T 2} ⊆ N• = {T 1, T 2}, the set of places N = {P4} is a siphon.

Theorem 1 (from [7]). An ordinary Petri net without siphons is live.

3.2 WF-Nets with Modalities

Modal specifications have been designed to allow loose specifications to be ex-
pressed by imposing restrictions on transitions [5]. They allow specifiers to in-
dicate that a transition is necessary or just admissible. In the framework of
WF-nets, this concept provides two kinds of transitions: the must-transitions
and the may-transitions. A may-transition (resp. must-transition) is a transi-
tion fired by at least one execution (resp. all the executions) of the procedure
modelled by a WF-net.

While basic modal specifications are useful, they usually lack expressiveness
for real-life applications, as only individual transitions are concerned with. We
propose to extend modal specifications to express requirements on several tran-
sitions and on their causalities. To this end, the language S of well-formed modal
specification formulae is inductively defined by : ∀t ∈ T, t is a well-formed modal
formula, and given A1, A2 ∈ S, A1 ∧ A2, A1 ∨ A2, and ¬A1 are well-formed
modal formulae. These formulae allow specifiers to express modal properties
about WF-nets’ correct executions. Any modal specification formula m ∈ S can
be interpreted as a may-formula or a must -formula. A may-formula describes a
behaviour that has to be ensured by at least one correct execution of the WF-net.
The set ofmay-formulae forms a subset of CTL formulae where only the possibly
operator (i.e. along at least one path) is used. On the other hand, a must -formula
describes a behaviour that has to be ensured by all the correct executions of the
WF-net. The set of must -formulae forms a subset of CTL formulae where only
the inevitably operator (i.e. along all paths) is used. For example, for the WF-
net ex2 of 3(b), the may-formula T 9 means that there exists a correct execution
firing transition T 9 at least once (i.e. T 9 is a may-transition). More complex be-
haviours can be expressed. For example, the must -formula (T 8∧T 9)∧(¬T 6∨T 5)
means that T 8 and T 9 must be fired by every correct execution, and if an exe-
cution fires T 6 then T 5 is also fired at least once. Formally, given t ∈ T :

– PN |=may t if and only if ∃ σ ∈ Σ. Ot(σ) > 0, and
– PN |=must t if and only if ∀ σ ∈ Σ. Ot(σ) > 0.
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Further, given a well-formed may-formula (resp. must -formula) m ∈ S, a
WF-net PN satisfies m, written PN |=may m (resp. PN |=must m), when at
least one (resp. all) correct execution(s) of PN satisfies (resp. satisfy) m. The
semantics of ¬,∨ and ∧ is standard.

Definition 4 (Modal Petri net). A modal Petri net MPN = (P, T, F,m,M)
is a Petri net PN = (P, T, F ) together with a modal specification (m,M) where:

– m ∈ S is a well-formed modal must-formula2, and
– M ⊂ S is a set of well-formed modal may-formulae.

We say that a WF-net PN satisfies a modal specification (m,M) if and only if
PN |=must m and ∀m′ ∈M,PN |=may m′.

3.3 Hierarchical Petri Nets

Modelling large and intricate WF-nets can be a difficult task. Fortunately, simi-
larly to modular programming, WF-nets can be designed using other WF-nets
as building blocks. One of the simple methods used to construct composed WF-
nets is by transitions substitution. A composed WF-net built using this method
has special transitions that represent several whole (composed or not) WF-nets.
The composed WF-nets can then be viewed as WF-nets with multiple layers of
details; they are called hierarchical WF-nets. While this does not add any expres-
siveness to WF-nets, it greatly simplifies the modelling work, allowing to model
small parts of the whole process that are combined into a composed WF-net.

3.4 Constraint System

A constraint system is defined by a set of constraints (properties), which must
be satisfied by the solution of the problem it models. Such a system can be repre-
sented as a Constraint Satisfaction Problem (CSP) [8]. It is such that each vari-
able appearing in a constraint should take its value from its domain. Formally, a
CSP is a tuple Ω =< X,D,C > where X is a set of variables {x1, . . . , xn}, D is
a set of domains {d1, . . . , dn}, where di is the domain associated with the vari-
able xi, and C is a set of constraints {c1(X1), . . . , cm(Xm)}, where a constraint
cj involves a subset Xj of the variables of X . A CSP thus models NP-complete
problems as search problems where the corresponding search space is the Carte-
sian product space d1 × . . . × dn. The solution of a CSP Ω is computed by a
labelling function L, which provides a set v (called valuation function) of tu-
ples assigning each variable xi of X to one value from its domain di such that
all the constraints C are satisfied. More formally, v is consistent—or satisfies a
constraint c(X) of C—if the projection of v on X is in c(X). If v satisfies all
the constraints of C, then Ω is a consistent or satisfiable CSP. In the rest of
the paper, the predicate SAT (C, v) is true if the corresponding CSP Ω is made
satisfiable by v, and the predicate UNSAT (C) is true if there exists no such v.

2 We only need a single must-formula because PN |=must m1 ∧ PN |=must m2 if and
only if PN |=must (m1 ∧m2), for any two must-formulae m1 and m2.
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Using Logic Programming for solving a CSP has been investigated for many
years, especially using Constraint Logic Programming over Finite Domains, writ-
ten CLP(FD) [9]. This approach basically consists in embedding consistency te-
chniques into Logic Programming by extending the concept of logical variables
to the one of the domain-variables taking their value in a finite discrete set
of integers. In this paper, we propose to use CLP(FD) to solve the CSP that
represent the modal specifications to be verified.

4 Verification of Modal Specifications

To verify a modal specification of a WF-net, we model the executions of a WF-
net by a constraint system, which is then solved to validate or invalidate the
modal specifications of interest.

4.1 Modelling Executions of WF-Nets

Considering a WF-net PN = (P, T, F ), we start by modelling all the executions

leading from a marking Ma to a marking Mb, i.e. all σ such that Ma
σ−→Mb.

Definition 5 (Minimum places potential constraint system). Let PN =
(P, T, F ) be a WF-net and Ma, Mb two markings of PN , the minimum places
potential constraint system ϕ(PN,Ma,Mb) associated with it is:

∀p ∈ P.ν(p) =
∑
t∈p•

ν(t) +Mb(p) =
∑
t∈•p

ν(t) +Ma(p) (1)

where ν : P × T → N is a valuation function.

Equation (1) expresses the fact that for each place, the number of token(s)
entering it plus the number of token(s) in Ma is equal to the number of tokens
leaving it plus the number of token(s) in Mb. This constraint system is equiva-
lent with respect to solution space to the state equation, aka the fundamental
equation, of Petri nets, the only difference is that (1) explicitly gives information
about the places involved in the modelled execution.

Theorem 2. If Ma
∗−→Mb then a valuation satisfying ϕ(PN,Ma,Mb) exists.

Proof. Let σ = t1, t2, ..., tn and Ma
t1−→M1

t2−→M2...Mn−1
tn−→Mb. We define:

– ∀t ∈ T.ν(t) = Ot(σ)
– ∀p ∈ P.ν(p) =

∑
j∈{1,2,...,n−1}∪{a,b}Mj(p)

Then ∀p ∈ P :

–
∑

j∈{1,2,...,n−1}∪{a,b}Mj(p) =
∑

t∈p• Ot(σ)+Mb(p) =
∑

t∈•p Ot(σ)+Ma(p).
Indeed, as the WF-net is an ordinary Petri net, the sum of tokens in all
markings of a place is equal to the sum of the occurrences of transitions
producing (resp. consuming) a token at this place plus the number of token(s)
in marking Mb (resp. Ma).
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– ν(p) =
∑

t∈p• ν(t) +Mb(p) =
∑

t∈•p ν(t) +Ma(p).

Consequently, ν is a valuation satisfying ϕ(PN,Ma,Mb).

For example, Mi
σ−→ Mo where σ = T 6, T 5 is a correct execution of the WF-

net in Fig. 2, therefore we can find a valuation ν(n) = 1 if n ∈ {T 6, T 5, i, o}, and
ν(n) = 0 otherwise. By Th. 2, this valuation ν satisfies the constraints system
ϕ(ex1,Mi,Mo).

Theorem 2 allows to conclude that a WF-net PN does not have any
correct executions if ϕ(PN,Mi,Mo) does not have a valuation satisfying it.
However, even if there is a valuation satisfying ϕ(PN,Mi,Mo), it does not nec-
essary correspond to a correct execution. For example, the valuation ν(n) = 1
if n ∈ {T 1, T 2, T 8, T4, i, P2, P3, P5, P6, o}, ν(n) = 2 if n ∈ {P4}, and ν(n) = 0
otherwise, satisfies ϕ(ex1,Mi,Mo) but it does not correspond to any correct
execution. This is due to the fact that transitions T 2 and T 8 cannot fire si-
multaneously using as an input token an output token of each other. Conse-
quently, the set of solutions of ϕ(PN,Mi,Mo) constitutes an over-approximation
of the set of correct executions of PN . In the rest of the paper, the solutions of
ϕ(PN,Mi,Mo) that do not correspond to correct executions of PN are called
spurious solutions. Hence our goal is to refine this over-approximation in order to
be able to conclude on properties relative to all correct executions of a WF-net.

4.2 Verifying Structural Properties over Executions

While considering the modelling of WF-net executions, siphons and traps have
interesting structural features. Indeed, an unmarked siphon will always be un-
marked, and a marked trap will always be marked. Therefore a WF-net can only
have siphons composed of at least the place i and traps composed of at least
place o. Theorem 3 allows to conclude on the existence of a siphon in a WF-net.

Theorem 3. Let θ(PN) be the following constraint system associated with a
WF-net PN = (P, T, F ):

– ∀p ∈ P, ∀t ∈• p.
∑

p′∈•t ξ(p
′) ≥ ξ(p)

–
∑

p∈P ξ(p) > 0

where ξ : P → {0, 1} is a valuation function. PN contains a siphon if and only
if there is a valuation satisfying θ(PN).

Proof. (⇐) Let ξ be a valuation satisfying θ(PN), and N ⊆ P such that ξ(p) =
1 ⇔ p ∈ N . Then ∀p ∈ N, ∀t ∈ •p.

∑
p′∈•t ξ(p

′) ≥ 1, which implies •N ⊆ N•.
Consequently, N is a siphon.
(⇒) Suppose that N is a siphon then obviously the valuation ξ(p) defined as:
ξ(p) = 1 if p ∈ N , and 0 otherwise, satisfies θ(PN).

For example, for the WF-net of Fig. 2 where the set of places N = {P4} is a
siphon, ξ(p) = 1 if p ∈ N, else 0 is a valuation satisfying θ(ex1).
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The places (excluding places i and o) and transitions composing a correct
execution of a WF-net cannot form a trap or a siphon. Using this propriety we
refine the over-approximationmade using ϕ(PN,Mi,Mo). Theorem 4 states that
for any solution of ϕ(PN,Ma,Mb), the subnet, composed of places (excluding
place i and o) and of the transitions of the modelled execution, contains a trap
if and only if it has also a siphon. Therefore we only need to check the presence
of a siphon (or, respectively, of a trap).

Theorem 4. Let PN = (P, T, F ) a WF-net, Ma, Mb two markings of PN , and
ν : P × T → N a valuation satisfying ϕ(PN,Ma,Mb). We define the subnet
sPN(ν) = (sP, sT, sF ) where:
– sP = {p ∈ P \ {i, o} | ν(p) > 0}
– sT = {t ∈ T | ν(t) > 0}
– sF = {(a, b) ∈ F | a ∈ (sP ∪ sT ) ∧ b ∈ (sP ∪ sT )}

If sPN(ν) contains a trap (resp. siphon) N then N is also a siphon (resp. trap).

Proof. (⇒) Let N ⊆ sP such that N �= ∅, so
∑

p∈N ν(p) =
∑

p∈N

∑
t∈p• ν(t)

=
∑

p∈N

∑
t∈•p ν(t). It implies

∑
p∈N

∑
t∈p•∩N• ν(t)+

∑
p∈N

∑
t∈p•∩sT�N• ν(t)

=
∑

p∈N

∑
t∈•p∩N• ν(t) +

∑
p∈N

∑
t∈•p∩sT�N• ν(t) that can be simplified as∑

p∈N

∑
t∈p• ν(t) =

∑
p∈N

∑
t∈•p∩N• ν(t) +

∑
p∈N

∑
t∈•p∩sT�N• ν(t) because

∀p ∈ N.p• ∩ sT�N• = ∅ . Let N be a trap (N• ⊆ •N) such that N is not
a siphon (•N � N•). Thus, one has

∑
p∈N

∑
t∈p• ν(t) =

∑
p∈N

∑
t∈•p∩N• ν(t)

implying
∑

p∈N

∑
t∈p• ν(t) =

∑
p∈N

∑
t∈p• ν(t) +

∑
p∈N

∑
t∈•p∩sT�N• ν(t). We

finally have ∀p ∈ N.•p ∩ sT�N• = ∅ because ∀t ∈ sT.ν(t) > 0. This implies
•N ⊆ N•, a contradiction.
(⇐) The proof that if N is a siphon then N is a trap, is similar.

Theorem 5. The Petri net sPN(ν) contains no siphon and no trap if and only
if θ(sPN(ν)) does not have a valuation satisfying it.

Proof. Follows from Th. 3 and 4.

Using Th. 5 allows defining the constraint system in Th. 6, which refines ϕ(PN,
Ma,Mb). Thanks to this new system, the spurious solutions of ϕ(PN,Ma,Mb)
corresponding to an execution with siphon/trap are no more considered.

Theorem 6. Let PN = (P, T, F ) be a WF-net and Ma, Mb two marking of
PN . There exists ν : P×T → N a valuation satisfying ϕ(PN,Ma,Mb) such that
θ(sPN(ν)) does not have a satisfying valuation if and only if there exist σ and
k ∈ N such that ∀p ∈ P \{i}. Ma′(p) = Ma(p),Ma′(i) = k, ∀p ∈ P \{o}.Mb′(p) =

Mb(p),Mb′(o) = k,Ma′
σ−→Mb′ and ∀t ∈ T. Ot(σ) ≥ ν(t).

Proof. (⇒) Suppose ν : P × T → N is a valuation satisfying ϕ(PN,Ma,Mb)
such that θ(sPN(ν)) does not have a satisfying valuation. By Th. 5, sPN(ν)
contains no siphon and therefore is live (cf. Th. 1). It implies that there is σ

such that Ma
σ−→ Mb in sPN(ν) where ∀t ∈ sT. Ot(σ) ≥ ν(t). Using the fact

that a transition of σ is in i•, and a transition of σ is in •o, we can conclude
that Ma′

σ−→Mb′ such that ∀t ∈ T. Ot(σ) ≥ ν(t).



180 H. Bride, O. Kouchnarenko, and F. Peureux

(⇐) Suppose σ such that Ma
σ−→Mb and ∀t ∈ T. Ot(σ) = ν(t). By Th. 2 we can

complete the definition of ν to make ν a satisfying valuation of ϕ(PN,Ma,Mb).
In addition, sPN(ν) contains no siphon and no trap because it would contradict

Ma
σ−→Mb. By Th. 5, θ(sPN(ν)) does not have a satisfying valuation.

For example, let us consider the WF-net of Fig. 2, the valuation ν(n) = 1
if n ∈ {T 1, T 2, T 8, T 4, i, P2, P3, P5, P6, o}, ν(n) = 2 if n ∈ {P4}, otherwise
ν(n) = 0, is a satisfying valuation of ϕ(ex1,Mi,Mo). The set of places N = {P4}
is a trap/siphon. Figure 3(a) displays sPN(ν). Therefore by Th. 3 there is a
valuation satisfying θ(sPN(ν)). By Th. 6, ν does not correspond to a correct
execution of the WF-net of Fig. 2.

(a) sPN(ν) (b) Example (ex2)

Fig. 3. WF-net examples used to illustrate over-approximation

The constraint system of Th. 6 can be used to over-approximate the correct
executions of a WF-net. Indeed, for the WF-net in Fig. 3(b), the valuation ν(n) =
1 if n ∈ {T 1, T 8, T 6, T 2, T7, T8, T5, T9, T 4, i, P2, P3, P5, P6, o}, ν(n) = 2 if
n ∈ {P1, P7}, and ν(n) = 3 if n ∈ {P4}, is a valuation satisfying ϕ(ex3,Mi,Mo)
such that θ(sPN(ν)) does not have a satisfying valuation.

By Th. 6 there exist σ and k such that Mi(k)
σ−→ Mo(k) and ∀t ∈ T. Ot(σ) ≥

ν(t). In this case there is no σ such that k = 1. Indeed, P4 cannot be empty
when either T 2 or T 8 is fired, and therefore a marking with at least one token
in P4 and one in either P2 or P3 must be reachable. As there is no execution
possible with only one token that leads to such marking, we have k > 1.

While defining an over-approximation might be useful for the verification of
safety property, in our case, we want to be able to verify a modal specification.
As the approximation is difficult to handle, we need to be able to model an
execution that violates the modal specification if it exists.

Theorem 7. Let PN = (P, T, F ) be a WF-net, and Ma, Mb its two markings. If
there is ν : P×T → N such that SAT (ϕ(PN,Ma,Mb), ν)∧UNSAT (θ(sPN(ν)))

∧∀n ∈ P × T. ν(n) ≤ 1 then Ma
σ−→Mb and ∀t ∈ T. Ot(σ) = ν(t).

Proof. Any place is involved with at most one transition consuming one token,
and at most one transition producing one token. By Th. 6 one has Ma′

σ−→Mb′ .
Since at most one transition can consume a token in i (resp. produce a token
in o), we have Ma′ = Ma (resp. Mb′ = Mb).
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In the rest of the paper, a segment of an execution is defined as an execution
modelled by the constraint system in Th. 7. In this way, we now propose to de-
compose an execution modelled by the constraint system of Th. 6 into segment(s)
modelled by Th. 7. If such a decomposition exists then the execution is a correct
execution. Otherwise, we can conclude that the found solution is a spurious one.
Indeed, spurious solutions can appear because the order of transition firing is
not taken into account in the modelled execution. Therefore, decomposing the
execution into segments forces the ordering of transitions where order matters.

Theorem 8. Let PN = (P, T, F ) be a WF-net, and Ma, Mb its two markings.

Ma
σ−→ Mb if and only if there exists k ∈ N such that M1

σ1−→ M2 · · ·Mk

σ(k)−−→
Mk+1, where M1 = Ma, Mk+1 = Mb and for every i, 0 < i ≤ k, there is νi s.t.
SAT (ϕ(PN,Mi,Mi+1, νi)) ∧ UNSAT (θ(sPN(νi))) ∧ ∀n ∈ P × T. νi(n) ≤ 1.

Proof. (⇒) Suppose Ma
σ−→ Mb where σ = t1, . . . , tk then by definition there

exist M1
t1−→ M2 · · ·Mk

t(k)−−→ Mk+1, where M1 = Ma, Mk+1 = Mb. More-
over, for every i, 0 < i ≤ k, there is νi such that SAT (ϕ(PN,Mi,Mi+1, νi)) ∧
UNSAT (θ(sPN(νi))) ∧ ∀n ∈ P × T. νi(n) ≤ 1, as νi is a valuation modelling
the execution of a single transition.
(⇐) Follows from Th. 7.

In the rest of the paper, we denote φ(PN,Ma,Mb, k) the constraint system
of Th. 8, where k is the number of segments composing the execution. As
φ(PN,Mi,Mo, k) can be used to model any execution of PN composed of k
or less segments, we propose to use it to determine the validity of a WF-net
with regards to a given modal specification.

4.3 Verifying Modal Formulae

When determining whether or not a WF-net satisfies the modal properties of in-
terest, we distinguish two decision problems. The first one, called the K-bounded
validity of a modal formula, only considers executions formed by K segments,
at most. The second one, called the unbounded validity of a modal formula,
deals with executions formed by an arbitrary number of segments; it general-
izes the first problem. To verify modalities over a single transition, constraint
systems come very naturally into the play. Intuitively, for a may-transition t,
determining one correct execution firing t at least once is enough to validate its
may-specification. On the other hand, for a must-transition t, the lack of correct
executions without firing it validates its must-specification.

In our approach, verifying modal specifications from Def. 4 relies on their
expression by constraints. To build these constraints, for every transition t ∈ T ,
the corresponding terminal symbol of the formulae is replaced by ν(t) > 0, where
ν is the valuation of the constraint system. For example, for the modal formula
(T 0 ∧ T 5) ∧ (¬T 7 ∨ T 6), the corresponding constraint is (ν(T 0) > 0 ∧ ν(T 5) >
0)∧(¬ν(T 7) > 0∨ν(T 6) > 0). Given a modal formula f ∈ S, C(f, ν) denotes the
constraint built from f , where ν is a the valuation of the constraint system. The
following theorem extends the constraint systems to verify modal specifications.
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Theorem 9. Let MPN = (P, T, F,m,M) a modal WF-net. The WF-net PN =
(P, T, F ) satisfies the modal specification (m,M) if and only if:

– there is no ν, k ∈ N such that SAT (φ(PN,Mi,Mo, k) ∧ ¬C(m, ν), ν), and
– for every f ∈ M , there exist ν, k ∈ N such that SAT (φ(PN,Mi,Mo, k) ∧

C(f, ν), ν).

Proof. By Th. 8, there exist ν, k ∈ N such that SAT (φ(PN,Mi,Mo, k)∧¬C(m,
ν), ν) if and only if PN �must m. In addition, there are ν, k ∈ N such that
SAT (φ(PN,Mi,Mo, k) ∧ C(f, ν), ν) if and only if PN |=may f .

Theorem 9 can be adapted to the case of hierarchical WF-nets. In this case,
the modal formula has to be verified for the main WF-net, i.e. the highest level
net, and also for the WF-nets substituting transitions at lower levels.

Theorem 10. Let PN = (P, T, F ) be a WF-net, R̄must the set of all well-
formed must-formulae not satisfied by PN , and Rmay the set of all well-formed
may-formulae satisfied by PN . There exists Kmax such that:

– ∀f ∈ R̄must, ∃ ν, k ≤ Kmax. SAT (φ(PN,Mi,Mo, k) ∧ ¬C(f, ν), ν),
– ∀f ∈ Rmay, ∃ ν, k ≤ Kmax. SAT (φ(PN,Mi,Mo, k) ∧ C(f, ν), ν).

Proof. Sketch. The set of correct executions of a WF-net is possibly infinite.
This is due to the fact that T-invariants (i.e. sequence of transitions σ such that

M
σ−→M) could be fired indefinitely. However, when considering the verification

of modal formulae, we are only interested in the presence or absence of transitions
in correct executions (i.e. the number of their firings does not matter). Therefore
considering the set of correct executions where T-invariants are allowed to fire
at most once is enough to check the validity of modal formulae. This restricted
set of correct executions is finite. As a consequence, there exists Kmax such that
any execution of this set can be modelled by Kmax segments, at most.

Theorem 10 implies that for any WF-net PN = (P, T, F ), there exists Kmax

such that any modal may-formula (resp. must -formula) f can be verified re-
garding the consistency of the constraint system φ(PN,Mi,Mo,Kmax)∧C(f, ν)
(resp. φ(PN,Mi,Mo,Kmax) ∧ ¬C(f, ν)). In other words, to verify any may-
formula (resp. must -formula), it is not necessary to look for the existence (resp.
non-existence) of correct execution respecting (resp. not respecting) the be-
haviour expressed by the may-formula (resp. must -formula) of this WF-net com-
posed of more than Kmax segments. However determining the Kmax value of a
WF-net from its structure is still an open problem. However, we can infer an

upper-bound of
∑|T |

j=1 j!.

5 Implementation and Experiments

The proposed approach has been fully automated, allowing practitioners, at any
stage of the workflow design, to verify modal formulae using an integrated tool
chain. This section describes this tool chain developed to experimentally validate
the proposed approach, and illustrates its use and obtained results on the case
study introduced in Sect. 2.
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5.1 Implementation Architecture

As a proof of concept, an implementation supporting the approach we propose
has been developed to provide an integrated tool chain to design WF-nets and
verify modal specifications. The architecture is shown in Fig. 4.

Fig. 4. Tool chain description

The tool chain takes as inputs a WF-net model (1) and the modal specifica-
tions (2) to be verified. WF-net model is exported from a third party software
(e.g., Yasper [10], PIPE [11]) as an XML file, as well as the modal specifications
that are expressed in a dedicated and proprietary XML format. From these in-
puts, the developed tool first checks the structure of the WF-net model (3) to
exclude Petri nets that do not correspond to WF-nets definition (cf. Def. 2). It
then checks the modal specifications regarding the syntax proposed in Sect. 4
(4). Once validated, these inputs are translated into a constraint system (5) that
is handled using the CLP(FD) library of Sicstus Prolog [12] (6). Finally, a report
about the validity of modal specifications of the WF-net is generated (7).

To verify a may-formula (resp. a must -formula) m (resp. M), the tool first
checks if there exists a solution of the over-approximation, given by Th. 6, such
that the modelled execution satisfies (resp. does not satisfy) m (resp. M). If such
an execution exists, it then tries to find an execution of the under-approximation,
given by Th. 8, which satisfies (resp. does not satisfy) m. As an illustration,
Figure 5 gives the algorithm of the function checking the validity of a must -
formula. It returns the K-bounded validity of a given modal formula m. To cope
with the complexity raised by Kmax, K can be fixed to a manageable value.
Nevertheless, when fixing K to Kmax (or greater than Kmax), the algorithm
enables to decide the unbounded validity of the must -formula m. The results in
Sect. 4.1 ensure its soundness and completeness. Finally, solving a CSP over a
finite domain being an NP-complete problem with respect to the domain size,
this algorithm inherits this complexity.

5.2 Experimental Results

The approach and the corresponding implementation have been firstly validated
on a set of models collected from the literature, especially from [4, 13, 14], and
afterwards experimented in the field of issue tracking systems using the industrial
example described in Sect. 2. Table 1 shows an extract of the experimental results
obtained on this industrial example, focusing on the six properties (p1 to p6) and
the WF-net model introduced in Sect. 2.
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Inputs: PN - a WF-net, m - a must-formula, K a positive integer.
Results: TRUE - PN |=must m, FALSE - PN �must m.
function IsMustValid(PN ,m,K)

if SAT (ϕ(PN,Mi,Mo) ∧ ¬C(m,ν), ν) ∧ UNSAT (θ(sPN(ν))) then
k = max({v(n)|n ∈ T})
if k == 1 then return FALSE
else

while k ≤ K do
if SAT (φ(PN,Mi,Mo, k) ∧ ¬C(f, v), ν) then return FALSE
else k = k + 1
end if

end while
return TRUE

end if
else return TRUE
end if

end function

Fig. 5. Algorithm checking the validity of a must-formula

The properties p1 to p6 are representative of the kind of properties that have
to be verified by engineers when they design the business process to be imple-
mented. Moreover, These properties are sufficiently clear without a complete
description of the workflow and enable to show all possible outcomes of our ap-
proach. The modal formula associated with each property is specified, and the
result of the computation is given by its final result as well as the internal evalu-
ation of ϕ. The input K and the corresponding computed value of φ(K) are also
precised when it makes sense, i.e. when the algorithm cannot conclude without
this bound.

When verifying must -formulae that are satisfied by the WF-net (see p1, p2
and p3), or may-formulae that are not satisfied by the WF-net (see p4), the over-
approximation proposed in Th. 6 is usually enough to conclude. On the other
hand, when verifying may-formulae that are satisfied by the WF-net (see p5), or
must -formulae that are not satisfied by the WF-net (see p6), the decomposition
into K segments is needed. We empirically demonstrate that this decomposition
is very effective since values ofKmax are usually moderate (Kmax = 6 in the case
of p5, less than 10 with all the experimentations on this case-study). We can also
notice the definitive invalidity of p6 (a user can exit the current session without
logout), which enabled to highlight an ambiguity in the textual requirements.

Thanks to the experiments, we can conclude that the proposed method is
feasible and efficient. Moreover, the developed tool is able to conclude about the
(in)validity of the studied properties in a very short time (less than a second).

Table 1. Experimentation results

# Formula ϕ K φ(K) Result

p1 PN |=must (SubA ∧ ¬SubA) ∨ (SubB ∧ ¬SubA) TRUE - - TRUE
p2 PN |=must SubB ⇒ Login TRUE - - TRUE
p3 PN |=must SR CreateCRITSIT ⇒ (V andD ∨ Update ∨ Closure) TRUE - - TRUE
p4 PN |=may SR CreateCRITSIT ⇒ (Update ∧ Closure) FALSE - - FALSE

p5 PN |=may SR UpgradeToCRITSIT TRUE
1 FALSE FALSE
6 TRUE TRUE

p6 PN |=must Login ⇒ Logout FALSE 1 FALSE FALSE
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6 Conclusion and Related Work

Modal specifications introduced in [15] allow loose or partial specifications in
a process algebraic framework. Since, modal specifications have been ported to
Petri nets, as in [16]. In this work, a relation between generated modal languages
is used for deciding specifications’ refinement and asynchronous composition.
Instead of comparing modal languages, our approach deals with the correct exe-
cutions of WF-nets modelled by constraint systems. A lot of work has been
done [17–19] in order to model and to analyse the behaviour of Petri nets by us-
ing equational approaches. Among popular resolution techniques, the constraint
programming framework has been successfully used to analyse properties of Petri
net [20, 21]. But, like in [21], the state equation together with a trap equation are
used in order to verify properties such as deadlock-freedom. Our approach also
takes advantage of trap and siphon properties in pursuance of modelling correct
executions. Constraint programming has also been used to tackle the reacha-
bility problem—one of central verification problems. Let us quote [22] where a
decomposition into step sequences was modelled by a constraint system. Our
approach is similar, the main difference is that the constraints we propose on
step sequences, i.e. segments, are stronger. This is due to the fact that we are
not only interested in the reachability of a marking, but also in the transitions
involved in the sequences of transitions that reach it.

This paper hence presents an original and innovative formal framework based
on constraint systems to model executions of WF-nets and their structural
properties, as well as to verify their modal specifications. It also reports on
encouraging experimental results obtained using a proof-of-concept tool chain.
In particular, a business process example from the IT domain enables to suc-
cessfully assess the reliability of our contributions. As a future work, we plan
extensive experimentation to determine and improve the scalability of our ve-
rification approach based on constraint systems. We also need to improve its
readiness level in order to foster its use by business analysts. For instance, we
could propose a user-friendly patterns to express the modal properties. Finally,
generalizing our approach by handling coloured Petri nets is another research
direction.
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Abstract. Invariant-based programming is a correct-by-construction ap-
proach to program development in which the invariants of a program are
written before the actual code. Socos is an environment for graphically
constructing invariant-based programs (as statechart-like diagrams) and
verifying their correctness (by invoking an automatic theorem prover). It
borrows the specification language, logical framework and proof tactics
from the PVS system. In this paper, we describe an extension to Socos for
animating invariant-based programs in the logical framework of PVS. An
invariant-based program is represented as an abstract datatype encoding
the program state coupled a small-step state transition function encoding
the operational semantics of the program. Socos visualizes the execution,
allowing the user to inspect the current state and identify invalid asser-
tions through test cases. Since programs are executed within the theorem
prover framework (rather than translated into another language or com-
piled to machine code), failed test cases are logically sound refutations
of the verification conditions. Invariants not executable in the general
(e.g., containing unbounded quantification) can be handled for bounded
test cases by introducing custom evaluation functions. While such func-
tions provide no correctness guarantees, they can increase the assurance
of a correctness condition before doing the actual proof. We illustrate
this workflow through a verification exercise with non-trivial verification
conditions, arguing that animation of invariant diagrams serves as an
important stepping stone towards a fully verified program.

1 Introduction

In the correct-by-construction approach to program verification, a program is
constructed together with its correctness proof. A specification is refined into
a collection of contracts (pre- and postconditions) for the individual program
routines. In the next step, the routines are implemented and proved to satisfy
their contracts. Loops are annotated with inductive invariants that must be
maintained by the loop body. Traditionally, invariants are introduced just before
the proofs are carried out. In invariant-based programming (IBP) the invariants
are instead introduced even before the program code. Consequently, the program
is structured around the invariants, rather than vice versa. This approach has the
advantage that the proof closely follows the program structure, reducing the gap
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between programming and verification. The idea was proposed in a number of
different forms already in the late seventies [22,13,4], but has later been refined
into a formal program calculus [5,8]. It has also been used as an educational
device [6] for introducing formal methods to novices.

Socos [14] is a graphical environment1 for drawing invariant diagrams and
verifying their correctness using the theorem prover PVS [19]. While most con-
ditions derived from typical programs are proved automatically, the specification
language of Socos (PVS) allows higher-order predicates, rendering the proof
tools incomplete in the general. Conditions not automatically discharged can
be proved interactively using the PVS proof assistant. In practice, this requires
considerable expertise, both in using an interactive theorem prover and in de-
veloping background theories (collections of functions and lemmas) to concisely
express the specification and proofs in the domain at hand.

Verification is an iterative, feedback-driven workflow in which both unsuccess-
ful proofs and refutations serve as stepping stones towards a fully correct pro-
gram. While correctness cannot be achieved by testing alone, tests and proofs
are complementary in practice. In early stages of development, exercising the
behavior of the program with test cases is an expedient way of detecting er-
rors. Visualization plays an important role here by providing fast feedback when
something goes wrong. In later stages, when the background theories are suffi-
ciently developed, invoking a fully automatic prover (such as an SMT solver) can
discharge a large number of verification conditions. After this stage, correctness
is achieved by proving the final remaining conditions interactively. This incre-
mental workflow prevents proof building effort being spent on invalid assertions.

This paper describes an extension to Socos called “animator” that executes
invariant diagrams within the theorem prover framework of PVS and visualizes
the state transitions in Eclipse. The animator integrates into the verification
workflow by providing refutations (failed tests) complementary to the feedback
provided by the verifier (see Figure 1). An invariant diagram is translated into

Program

Animator
Failed
tests

Unproved
conditions

Verifier

Proofs

Test cases

developer

Fig. 1. Verification workflow

1 Available at http://imped.abo.fi/socos

http://imped.abo.fi/socos
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a state datatype with a constructor for each location in the diagram. A step
function over the state type evaluates one statement using the built-in PVS
ground evaluator [24,18]. The user view of the execution is an animated diagram
accompanied by a state inspector. Non-executable specifications can be animated
through custom functions and/or PVS semantic attachments (written in Lisp).
Such functions are restricted to animation, and do not compromise the soundness
of the verifier.

The rest of the paper is structured as follows. Section 2 introduces IBP and
Socos. In Section 3, we describe our embedding of invariant diagrams in PVS.
Section 4 walks through a case study in program verification using Socos, fo-
cusing on how animation integrates into the verification workflow. Section 5
discusses related work, while Section 6 concludes the paper and suggests future
work.

2 Invariant-Based Programming in Socos

Figure 2 shows an invariant diagram representing a linear search procedure
search taking three parameters: an integer vector a, the value x to search for,
and the start index i. The keyword valres indicates that i is mutable with
value-result semantics; upon termination, i points to the next occurrence of x
following the initial value of i (denoted i__0). Boxes with round corners repre-
sent the internal situations of the procedure, respectively. The initial situation
(situation without incoming transitions) describes the precondition of the proce-
dure. In the example, the precondition constrains i to an index in vector a. Final
situations (situations without outgoing transitions) describe the postconditions
of the program. Invariant diagrams can have multiple final situations: search ex-
its in either Found or NotFound. The intermediate situation Loop defines the loop
invariant, constraining the index i and the values of elements a[i__0]. . .a[i-1].

Fig. 2. Liner search starting from index i
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Situations can additionally be nested, in which case the nested situations inherit
the invariants of the enclosing situations. The variant (ranking function) of the
loop is given in the top right hand corner of the situation; in this case, len(a)-i
must be decreasing for each re-entry into the situation and must be bounded
from below (implicitly, by 0).

A transition is an arrow labeled by an optional guard (within brackets) fol-
lowed by zero or more assignments and procedure calls. Above, two transitions
with guards [i=len(a)] and [i<len(a)] originate from Loop (the latter subse-
quently branches into two subtransitions). The guard defines the condition under
which the assignments can be executed. The decreasing keyword on the transi-
tion back to Loop specifies that the variant should be proved to decrease in this
transition.

Calls to procedures with multiple postconditions can map each postcondition
to different outgoing transitions. The loop transition of the diagram in Figure 3
contains a call to search. Depending on which postcondition search terminates
in (Found or NotFound), the program either goes into the next loop iteration or
terminates in its final situation.

Fig. 3. Procedure call

2.1 Verifying Correctness

An invariant diagram gives rise to three kinds of verification conditions: consis-
tency, termination and liveness conditions. Consistency means that the program
preserves the invariants. To verify consistency, we must prove that each transi-
tion establishes its target situation. Termination means that the program has no
infinite loops. To verify termination, we must associate each recurring situation
with a variant that is decreased by all transitions back to the situation. Liveness
means that at least one transition is enabled in all situations except for the final
situations (i.e., the disjunction of all guards is true). If we prove consistency,
termination and liveness for a program, we have proved that it is totally correct.
The individual verification conditions associated with a transition depend only
on the source and target situations, and the statements of the transition. For
example, the consistency condition for the highlighted transition in Figure 2 is:



Proofs and Refutations in Invariant-Based Programming 193

i__0<=i AND i<=len(a)
∧ (FORALL (k:nat): i__0<=k AND k<=i => a(k)/=x)
∧ i<len(a) ∧ a(i) /= x ∧ i_1 = i+1
⇒ 0<=i_1 AND i_1<=len(a)
∧ (FORALL (k:nat): i__0<=k AND k<=i_1 => a(k)/=x)

The antecedents derive from the source situation (Loop), the guards, and the
assignment statements. The consequent is simply the target situation (again
Loop).

2.2 Architecture

Socos consists of two subsystems: the front-end diagram editor and the back-
end verifier and animator (Figure 4). The front-end is implemented as a plug-
in to the Eclipse IDE and allows the user to draw invariant diagrams using
drag-and-drop gestures. By the click of a button, the back-end verifier generates
verification conditions from the diagram and sends them to PVS. The default
strategy attempts to automatically prove them using a combination of PVS
proof strategies and the Yices SMT solver [12]. Conditions that were not proved
automatically are highlighted in the diagram editor. Alternatively, the animator
executes the program until completion (as described in the sequel). Specifications
and invariants are written in the PVS syntax, and program variables can have
any PVS type. Socos programs can also import type and function definitions
from PVS theories. While PVS is primarily an interactive theorem prover, it
can also be used as a back-end through its so-called raw mode. In this mode,
PVS acts as a read-eval-loop exposing its internal Lisp API to an external process
[20]. When checking an invariant diagram, the Socos program checker generates a
PVS theory containing the situation predicates and a lemma for each verification
condition (consistency, liveness and termination). A proof script invoking Yices
is generated for each lemma, and the result of running the proofs is obtained
through the PVS API and visualized in the front-end. Socos interacts with PVS
through this interface for both verification and animation of invariant diagrams.

Front-end Back-end PVS

Eclipse Animator Verifier
Lisp Yices

ground-
evaluator

Fig. 4. Animator architecture
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3 Animating Invariant Diagrams in PVS

An invariant diagram defines a set Loc of unique locations at which the diagram
has an observable state—i.e., each scoped variable has a value. Socos supports
local variables, meaning that locations can add or remove variables to the scope.
A new variable is added to the scope when it first appears on the left-hand
side of an assignment statement. A variable disappears from the scope at the
end of a transition, unless it is declared in the target situation. The state can be
represented as the dependent type State = 〈l:Loc×(Vl → Tl)〉, where Vl → Tl is
the function mapping the variables Vl in scope at location l to their current values
of types Tl. A statement from one program location to another is represented by
a step function of type State → State. Next, we describe how the state and the
step function are implemented in PVS.

3.1 State Representation

PVS abstract data types [23] provide a flexible approach for defining data types
with multiple constructors (since the variables that are in scope can vary for each
location, a record type is not suitable for representing the state). We define the
internal state type of one invariant diagram in PVS as the following datatype:

state = l1(Vl1 :Tl1) | l2(Vl2 :Tl2) | · · · | ln(Vln :Tln)

Each li ∈ Loc (1 ≤ i ≤ n) is an internal location of the invariant diagram with
the associated list of variables Vli along with their types Tli . In other words,
the datatype state, defines the constructors l1, . . . , ln each taking variables
Vl1, . . . , Vln as parameters. The externally visible locations of the diagram (the
pre- and postconditions) are represented by a smaller, but separate datatype:

spec = pre(Vpre :Tpre) | post1(Vpost1 :Tpost1) | · · · | postm(Vpostm :Tpostm)

where pre, post1, . . . , postm ∈ Loc. The reason behind this separation is that
the actual parameters to a procedure call, as well as the results from the call,
are handled as variables of the callee’s spec type in the caller’s internal state.
The caller cannot reference the callee’s internal state type, since this leads to
cyclic imports if a procedure references itself either directly (through recursion)
or indirectly (through mutual recursion).

To exemplify the above, we show the two datatypes generated for correspond-
ing to the search procedure (Figure 2) in the listing below. For brevity, only
the constructors for the numbered locations in Figure 2 are shown (identifiers
suffixed with ’?’ are the recognizer predicates associated with the datatype).

state__search: DATATYPE BEGIN
1 ini__(a:vector[int],x:int): ini__?
2 ini__if(a:vector[int],x:int,i:nat): ini__if?
3 ini__goto(a:vector[int],x:int,i:nat): ini__goto?
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4 Loop(a:vector[int],x:int,i:nat): Loop?
...

END state__search

spec__search: DATATYPE BEGIN
ini__(a:vector[int],x:int): ini__?
NotFound(i:nat): NotFound?
Found(i:nat): Found?

END spec__search

Procedure actual parameters and return values are represented in the caller as
variables of the callee’s spec type. For example, the procedure call 5 – 6 in
Figure 3 is represented by the following constructors:

state__main: DATATYPE BEGIN
...

5 Loop__if__trs1__call1(a:vector[int],i:nat):
Loop__if__trs1__call1?

6 Loop__if__trs1__ret1(a:vector[int],i:nat,cs__:
spec__search):Loop__if__trs1__ret1?
...

END state__main

3.2 Step Function

The function step for a procedure receives the current state of the invariant
diagram and returns the next state by mapping each data type constructor
to the statement at the corresponding location. For a diagram with locations
l1, . . . , ln step is defined in a PVS theory as follows:

step(s:state): state =
CASES s OF

l1(Vl1): �l1�, . . ., ln(Vln): �ln�

ENDCASES

where �li� is the operational definition of location li. It is defined over the struc-
ture of invariant diagrams as follows:
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�
sit trs

�

= trs(Vsit )

�

goto
sit

inv

�

= IF inv(Vgoto) THEN sit(Vgoto)

ELSE goto(Vgoto)

�
...if

[grd1]
trs1

[grdm]
trsm

�

=

IF grd1(Vif ) THEN trs1(Vif )

. . .

ELSE IF grdm(Vif ) THEN trsm(Vif )

ELSE choice(Vif )�

ass
X := E

trs

�

= (LAMBDA X:trs(Vass , X))(E)

There is no explicit error state; in the case of a failed invariant assertion, the
program gets stuck at the current location. This is reported as an abnormal
termination by the front-end.

For a call p[E,X ] to procedure p with precondition prep and mapped post-
conditions postp,1 . . . , postp,m, and expressions E passed for the formal value-
parameters V and variables X passed for the formal result parameters R, we
have:

�

p[E,X]call ret

�

= (LAMBDA cs__:ret(Vcall,cs__))(prep(E,X))

�

p[E,X]

postp,1:
trs1

postp,m:
trsm

ret
...

�

=

CASES cs__ OF
postp,1(R):(LAMBDA X:trs1(Vcall ))(R)
. . .

postp,m(R):(LAMBDA X:trsm(Vcall ))(R)
ELSE: ret(Vret )

ENDCASES

Similarly to a failed assertion, an unmapped postcondition repeates the current
location (the ELSE-clause above).

For example, the PVS translation of the procedure call 5 – 6 in Figure 3 is
as follows:

exec__main: THEORY BEGIN
IMPORTING state__main
IMPORTING spec__search

step(s:state__main): state =
CASES s OF
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...
5 Loop__if__trs1__call1(a,i):

Loop__if__trs1__ret1(a,i,spec__search.ini___
(a,i)),

6 Loop__if__trs1__ret1(a,i,cs__):
CASES cs__ OF

Found(i): Loop__if__trs1__trs1__ass1(a,i
),

NotFound(i): Loop__if__trs1__trs2__goto(
a,i),

ELSE: Loop__if__trs1__ret1(a,i,cs__)
ENDCASES

...
ENDCASES

END exec__main

Note that since main is a caller of search, it imports the corresponding spec

datatype (spec__search).

3.3 Animator Back-End

When a diagram is animated Socos generates, for each procedure, the spec

and exec datatypes and a theory containing the step function. A thin run-to-
completion shell (implemented in PVS Lisp) then executes the step function
of the parameterless procedure main (maintaining a stack of exec and step
functions for procedure invocations). Evaluation of invariants can optionally be
turned off during animation. If active, the user can additionally specify anima-
tion extensions for invariants that cannot as such be evaluated (i.e., containing
uninterpreted functions, unbounded quantification or non-ground terms). Im-
portantly, such extensions are only used by the animator (the verifier ignores
them). An example of an animation extension is given in Section 4.

3.4 Animator Front-End

Figure 5 shows the linear search program given in Figure 2 animated in the Socos
environment. Execution is visualized in two Eclipse views: the current location
is highlighted in the diagram editor tab, and the state of the call stack is shown
in the “Inspector” tab. The user can start, break and single-step the execution
using toolbar buttons. The debugger environment shows the current location, the
values of the variables, and the user can optionally specify that situations should
be evaluated (if enabled, each predicate in a situation is evaluated separately).
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Fig. 5. Animating linear search

4 Example: Tree Reconstruction

In this case study, we will consider the problem of verifying an algorithm that
reconstructs a binary tree given a list of leaf depths.2 A binary tree can be
encoded as a list of natural numbers giving the depth of the leaves in order. For
example, the tree

corresponds to the list (1, 3, 3, 2). Given this list, the challenge is to reconstruct
the above tree. For lists of natural numbers not corresponding to a binary tree,
such as (1, 3, 3, 1), the algorithm should return a constant indicating failure.

Algorithm 1 (build) is a recursive solution to this problem. The algorithm
has two exits: it returns Found(t) where the tree t corresponds to the list s; or
Fail if s is not a valid tree encoding. Each recursive invocation of the procedure
build_rec either returns a subtree at depth d corresponding to a prefix of the
list, or fails. The algorithm mutates the list s throughout the recursion: when
2 A verification challenge in the 2012 VSTTE competition

(https://groups.google.com/forum/#!forum/
vstte-2012-verification-competition )

https://groups.google.com/forum/#!forum/vstte-2012-verification-competition
https://groups.google.com/forum/#!forum/vstte-2012-verification-competition
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a leaf is produced, the head of the list is popped as a side effect. While the
outermost call to build_recmay terminate leaving a non-empty list s, procedure
build succeeds only if the whole list could be reduced.

Algorithm 1. Tree reconstruction algorithm

build(s:list): tree =
case build_rec(0,s) of

Fail -> RETURN Fail,
Found(t) ->

IF s=() THEN
RETURN Fail

ELSE
RETURN Found(t

)

build_rec(d:int,s:list): tree =
IF s=() THEN

RETURN Fail;
h := head(0);
IF h<d THEN

RETURN Fail;
ELIF h=d THEN

s := tail(s);
RETURN Found(Leaf)

ELSE
l := build_rec(d+1, s)
r := build_rec(d+1, s)
RETURN Found(Node(l, r))

While verifying an implementation of this algorithm is not overly difficult,
the verification conditions associated with the program are challenging enough
to elude fully automatic proof. In addition to ensuring that the computed tree
matches the given list, the program has a completeness condition: a tree is always
returned if s is a valid tree encoding. Auxiliary lemmas need to be introduced
and proved to discharge the verification conditions. Executing the program with
invariant evaluation enables false hypotheses to be identified. Found condition
can be tested by evaluating positive cases. The Fail condition cannot be exe-
cuted as such, but a bounded evaluation can be specified through an animation
extension. In the next, we will show how these steps are carried out in Socos.

4.1 Implementation in Socos

For the purpose of this example, we use the following list and tree datatypes:

list[T:TYPE]: DATATYPE BEGIN
null: null?
cons(car:T,cdr:list):cons?

END list

tree: DATATYPE BEGIN
Leaf: Leaf?
Node(l,r:tree): Node?

END tree
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These datatypes are efficiently evaluated by the PVS ground evaluator.
To formalize the Found exit condition, we introduce the function list_of to

denote the leaf-depth-list corresponding to a tree t and the auxiliary function
map_add:

map_add(n:nat,s:list[nat]): list[nat] =
map(LAMBDA (i:nat): n + i)(s)

list_of(t:tree): RECURSIVE list[nat] =
CASES t OF

Leaf: cons(0,null),
Node(l,r): map_add(1,append(list_of(l),list_of(r)))

ENDCASES
MEASURE t BY <<;

Figure 6 shows one possible invariant diagram implementation of Algorithm 1.
The final situations Fail and Found correspond to the two exit conditions of
the algorithm. The keyword valres declares that the parameter s is mutable
with value-result semantics, and allows the constant s__0 to be used in specifi-
cations to refer to the value of s upon entry to the procedure. If we ask Socos to
check this program, the default catch-all strategy (endgame) (which invokes the
SMT solver Yices) does not automatically discharge all verification conditions.
This is because the proofs requires reasoning about non-trivial tree properties
(in particular, the proof requires induction on tree). Hence, as a first step to-
wards checking the proposed program we would like to execute the program on
a number of test inputs to exercise the proposed invariants and postconditions.

4.2 Animation

To get a stronger assurance about the validity of the invariants and postcon-
ditions, we can run procedure build on a test case that is a valid encoding of
a tree. As list_of and map_add are evaluable by PVS, so is the postcondition
Found and all intermediate situations leading up to Found. An animation of the
testcase (1,3,3,1) is shown in Figure 7 (a).

On the other hand, if we run the program on a test case that is not a valid
tree encoding (e.g., (1,3,3,1)) to animate the Fail postcondition, the evaluator
cannot validate the postcondition due to unbounded quantification over trees and
lists. However, the postcondition becomes testable if we limit the quantification
to trees with a fixed number of leaves (equal to the length of the list) and
the remaining suffix of s. By introducing an animation extension for Fail that
enumerates all trees with a given leaf depth, we can achieve a higher degree
of assurance about the postcondition before attempting to prove the program.
Attachments can either be written in Lisp (as so called semantic attachments
[10]) or as executable PVS functions connected to specific situations. Taking the
latter approach, we define the following evaluable attachment of postcondition
Found in procedure build_rec:
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Fig. 6. Invariant-based implementation of Algorithm 1

FORALL (tt:trees(n)):
append(map_add(d,list_of(tt)),

sublist(s__0,length(s),length(s__0))) /= s__0

The function trees enumerates all trees of the given leaf count, whereas sublist
returns a sublist as specified by its arguments (we omit the definition of these
functions here). With the above semantic attachment in place, Fail is exhaus-
tively evaluated for all trees with leaf count equal to the length of the processed
list. Figure 7 (b) shows two scenarios, in which both Found and Fail are evaluated
in the outermost call to build_rec. Such bounded evaluation allows small test
cases to be carried out, increasing the assurance that the given invariants are
true. Even though testing does not provide correctness guarantees, specification
animation can improve the assurance that an intermediate assertion (e.g., an
invariant) is valid. In particular, it can disprove a false hypothesis before undue
proof effort is spent in vain. Hence, we find it a worthwhile step in the verifica-
tion workflow. After this step, the programmer can start proving the remaining
conditions with higher confidence.
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(a) (b)

Fig. 7. Found (a) and Fail (b) evaluated for test cases (1,3,3,2) and (1,3,3,1),
respectively

5 Related Work

State of the art examples of prover-backed verification tools for imperative lan-
guages include the Dafny language and verifier [16], the Spec# system for C#
[9], the KeY tool [3] for Java, and Frama-C [11] for C. These tools target the
verification of large object-oriented systems, and regard invariants as annota-
tions to traditional program constructs (classes, for-loops) rather than as basic
program building blocks.

Some verification tools support animation of specifications. Rodin [1] is an
Eclipse-based IDE based on the Event-B formal method [2]. Event-B focuses
on reactive systems, whereas our tool is concerned with verifying sequential
programs. The ProB animator [17] is a model checker for Event-B. It provides
a user interface for triggering events and evaluating invariants. Alloy [15] is a
bounded model checker that generates all models of a specification up to a given
size. Models are constructed by assistance of SAT solvers. However, Alloy does
not address verification.

Ad hoc animation of invariant diagrams was supported in a predecessor of
Socos [7]. This animation was based on translation into Python, rather than
being carried out in the theorem prover framework. An embedding of invariant
diagrams for the theorem prover Isabelle has been proposed [21]. An advantage
of this approach over the one described here is an (automatic) proof that the
operational definition (as a set of mutually recursive functions) is consistent
with the verification conditions (as a set of lemmas proved by the programmer).
However, no Isabelle support exists for invariant-based programming yet.
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6 Conclusion and Future Work

Invariant-based programming is a graphical formalism for correct-by-construction
development. The Socos environment allows the programmer to construct invari-
ant diagrams and check their correctness using the PVS theorem prover and the
Yices SMT solver. In this paper, we have described an extension to Socos that
allows the user to inspect the runtime behavior of invariant diagrams. An in-
variant diagram is translated into a datatype representing the state space and
a step function representing the transitions. The programmer can inspect the
state and invariants visually during animation. While the underlying evaluation
mechanism still relies on translation to Lisp, this approach requires a smaller
trusted core (the PVS ground evaluator) compared to translating diagrams to a
programming language or machine code. Animation integrates into the verifica-
tion workflow, serving as a stepping stone to a fully verified program.

Several tool enhancements still remain to be done. We are currently investigat-
ing how to integrate automatic strategies (such as bounded model checking) to
evaluate common classes of non-executable invariants (in particular, unbounded
quantification). Modifying the program state (e.g., changing the values of indi-
vidual variables) during animation, as well as standard debugging tools such as
breakpoints and watches are currently not supported. Furthermore, support for
editing the diagram during animation (cf. hot-swapping code in the Eclipse Java
debugger) would likely enhance the user experience. Finally, the approach is yet
to be tried out in a larger case study.

Acknowledgment. The authors would like to thank Viorel Preoteasa for sug-
gesting the case study presented as well as developing its background theories.
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Abstract. Calculational Style of Programming, while very appealing,
has several practical difficulties when done manually. Due to the large
number of proofs involved, the derivations can be cumbersome and error-
prone. To address these issues, we have developed automated theorem
provers assisted program and formula transformation rules, which when
coupled with the ability to extract context of a subformula, help in
shortening and simplifying the derivations. We have implemented this
approach in a Calculational Assistant for Programming from Specifi-
cations (CAPS). With the help of simple examples, we show how the
calculational assistant helps in taking the drudgery out of the derivation
process while ensuring correctness.

Keywords: Calculational Style, Program Derivation, Correct by Con-
struction, Program Correctness.

1 Introduction

Calculational Style of Programming [11], [18] is a programming methodology
wherein programs are systematically derived from their formal specifications.
At every step in the derivation process, a partially derived program/formula is
transformed into another form, by following certain heuristic guidelines. The
derived programs are correct-by-construction since correctness is implicit in
the derivation. The calculational style is known for its readability and rigour.
The calculational derivation helps in understanding the rationale behind the
introduction of the program constructs and associated invariants thereby pro-
viding more opportunities to explore alternative solutions. This method often
results in simple and elegant programs [18]. Although very appealing, there are
several practical difficulties in effectively adopting this methodology. For many
programming problems, the derivations are long and difficult to organize. As a
result, the derivations, if done manually, are error-prone and cumbersome. To
address these issues, the present work takes inspiration from various approaches
from the fields of program verification, automated theorem proving, and interac-
tive theorem proving to design and build a Calculational Assistant for Program-
ming from Specifications (CAPS)1. Our aim has been to address the difficulties

1 CAPS is available at http://www.cse.iitb.ac.in/~dipakc/CAPS

E. Albert and E. Sekerinski (Eds.): IFM 2014, LNCS 8739, pp. 205–220, 2014.
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associated with the pen-and-paper calculational style while retaining the positive
aspects.

Various tools exists to assist programmers in verifying the correctness of pro-
grams during the implementation phase itself. Tools like Dafny [19], Why3 [13],
VCC [7] and VeriFast [17] generate the verification conditions and try to auto-
matically prove these verification conditions. Dafny even has an extension called
poC (program-oriented calculations) [20] which provides support for automatic
verification of calculational proofs. However, the primary focus of such tools
being the verification of programs, these tools provide limited guidance to the
programmer in the actual task of deriving the programs.

There is a recent trend in program synthesis in which the programmer pro-
vides a syntactic template for the desired program in addition to the correctness
specification [16], [23], [24]. These are automatic approaches which require a syn-
tactic template to be provided by the user. Our focus, on the other hand, is on
calculational derivation in an interactive setting.

Tools like Refinement Calculator [5] and PRT [6] provide tool support for the
refinement based formal program derivation. Refinement Calculator uses HOL as
an underlying proof engine. The PRT tool has similar goals; it extends the Ergo
theorem prover and provides an Emacs based user interface. With these tools,
the program constructs need to be encoded in the language of the underlying
theorem prover. We chose not to tightly couple the system with any particular
theorem prover. CAPS has built-in refinement rules and the system generates the
required correctness proof obligations. We have tried to keep the notation and
style of the derivation as close as possible to the pen-and-paper calculational style
which is known for its readability. Our main emphasis has been on developing
theorem prover assisted tactics to reduce the length of the derivations.

The main contributions of this work are as follows. (a) We have designed and
implemented a calculational assistant for derivation of imperative programs. The
tool provides a tactic based framework for carrying out program as well as for-
mula transformations in a coherent way. (b) We have extended the Structured
Calculational Proof format [2] by making the transformation relation explicit
and by adding metavariable support. We have automated the mundane formula
manipulation tasks and exploited the power of automated theorem proving to
design powerful transformation rules (tactics) which help in shortening and sim-
plifying the derivations without sacrificing the correctness. The automated the-
orem prover (ATP) assisted tactics also help in carrying out derivations that are
not amenable to the calculational style. (c) By providing a unified framework
for carrying out formula as well as program transformations, we have kept the
derivation style in CAPS close to the calculational style.

With the help of simple examples, we show how the theorem prover assisted
tactics help in shortening and simplifying the derivations thereby taking the
drudgery out of the derivation process while ensuring correctness.
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2 Motivating Example

In this section, we derive – without using any tool support – a simple program by
following the calculational style of program derivation. This exercise highlights
the complex user interactions usually involved in a typical program derivation
session. We use this example in later sections to motivate and illustrate the main
features of CAPS.

Consider the following programming problem specified in a natural language
(adapted from exercise 4.3.4 in [18]).

Let f [0..N) be an array of booleans where N is a natural number. Derive a
program for the computation of a boolean variable r such that r is true iff all the
true values in the array come before all the false values.

One of the several ways to formally specify this problem is shown in Fig.
1(a) where S denotes the program to be derived. For representing quantified
expressions, we use the Eindhoven notation (OP i : R : T ) [18] where OP is the
quantifier version of a symmetric and associative binary operator op, i is a list of
quantified variables, R is the Range - a boolean expression typically involving the
quantified variables, and T is the Term - an expression. This notation is usually
used for arithmetic quantified terms (

∑
,
∏
). By using the same notation for

all the quantified terms – including the logical quantified terms (∀, ∃) – we can
have generalized calculational rules.

We start by analysing the shape of the postcondition R and apply the Re-
placing Constants by Variables heuristics [18]. In particular, we introduce a fresh
variable n, add bounds on n, and rewrite postcondition R as(

r ≡
(
∃p : 0 ≤ p ≤ n :

(
(∀i : 0 ≤ i < p : f [i])
∧ (∀i : p ≤ i < n : ¬f [i])

)))
∧ 0 ≤ n ≤ N ∧ n = N

We then apply the Taking Conjuncts as Invariant heuristics [18] to arrive at
loop invariant P0 ∧ P1 and guard ¬ (n = N) where P0 and P1 are as follows.

P0 :

(
r ≡

(
∃p : 0 ≤ p ≤ n :

(
(∀i : 0 ≤ i < p : f [i])
∧ (∀i : p ≤ i < n : ¬f [i])

)))
P1 : 0 ≤ n ≤ N

We observe that P0 and P1 can be established initially by r, n := true, 0.
At this stage, we arrive at the program shown in Fig. 1(b) as the solution for
S. We investigate an increase of n by 1 and envision the multiple assignment
r, n := r′, n+ 1 for S0 where r′ is a placeholder for the unknown expression.

From the Invariance Theorem [18], the proof obligation for invariance of P0 is
P0∧P1∧n �= N ⇒ wp (r, n := r′, n+ 1; , P0) where wp is the weakest precondition
predicate transformer [12]. To calculate r′, we assume P0, P1, and n �= N and
simplify the consequent of this formula as shown in Fig. 1(c). Every step in the
calculation is associated with the relation to be maintained (≡ in this case) and
a hint justifying the step. For brevity, we skip the proof of preservation of P1.
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con N : int {N ≥ 0}; var f : array [0..N) of bool;
var r: bool;
S

R :

{
r ≡

(
∃p : 0 ≤ p ≤ N :

(
(∀i : 0 ≤ i < p : f [i])

∧ (∀i : p ≤ i < N : ¬f [i])
))}

(a)

r, n := true, 0;{
inv : P0 ∧ P1

bound : N − n

}
do n 
= N →

S0

od

(b)

0 wp (S0, P0)
1 ≡ { envision r, n := r′, n+ 1 for S0}
2 wp (r, n := r′, n+ 1; , P0)
4 ≡ { definition of P0 and assignment }
5 r′ ≡ (∃p : 0 ≤ p ≤ n+ 1 : (∀i : 0 ≤ i < p : f [i]) ∧ (∀i : p ≤ i < n+ 1 : ¬f [i]))
6 ≡ { split off p = n+ 1; 0 ≤ n+ 1}
7 r′ ≡

(
(∃p : 0 ≤ p ≤ n : (∀i : 0 ≤ i < p : f [i]) ∧ (∀i : p ≤ i < n+ 1 : ¬f [i]))
∨ (∀i : 0 ≤ i < n+ 1 : f [i]) ∧ (∀i : n+ 1 ≤ i < n+ 1 : ¬f [i])

)
8 ≡ { empty range rule }
9 r′ ≡

(
(∃p : 0 ≤ p ≤ n : (∀i : 0 ≤ i < p : f [i]) ∧ (∀i : p ≤ i < n+ 1 : ¬f [i]))
∨ (∀i : 0 ≤ i < n+ 1 : f [i])

)
10 ≡ { split off i = n}
11 r′ ≡

(
(∃p : 0 ≤ p ≤ n : (∀i : 0 ≤ i < p : f [i]) ∧ (∀i : p ≤ i < n : ¬f [i]) ∧ ¬f [n])
∨ (∀i : 0 ≤ i < n+ 1 : f [i])

)
12 ≡ { distribute ∧ over ∃ since ¬f [n] does not have free occurrence of p}
13 r′ ≡

(
((∃p : 0 ≤ p ≤ n: (∀i : 0 ≤ i < p : f [i]) ∧ (∀i : p ≤ i < n: ¬f [i])) ∧ ¬f [n])
∨ (∀i : 0 ≤ i < n+ 1 : f [i])

)
14 ≡ { invariant P0}
15 r′ ≡(r ∧ ¬f [n]) ∨ (∀i : 0 ≤ i < n+ 1 : f [i])
16 ≡ { add invariant P2 : s ≡ (∀i : 0 ≤ i < n : f [i]) and assume P2(n := n+ 1).}
17 r′ ≡(r ∧ ¬f [n]) ∨ s
18 ≡ { instantiating r′ to (r ∧ ¬f [n]) ∨ s}
19 true

(c)

r, n, s := true, 0, true;{
inv : P0 ∧ P1 ∧ P2

bound : N − n

}
do n 
= N →

{P2}S1 {P2(n := n+ 1)};
r, n := (r ∧ ¬f [n]) ∨ s, n+ 1;

od

(d)

r, n, s := true, 0, true;{
inv : P0 ∧ P1 ∧ P2

bound : N − n

}
do n 
= N →

s := s ∧ f [n];
{P2(n := n+ 1)}
r, n := (r ∧ ¬f [n]) ∨ s, n+ 1

od

(e)

Fig. 1. Calculational derivation of the motivating example

In step 15 in Fig. 1(c), the expression under consideration is neither easily
computable nor easily expressible in terms of the program variables. We, there-
fore, introduce a variable s and add an invariant P2 : s ≡ (∀i : 0 ≤ i < n : f [i]).
We now observe that P2 can be established initially by s := true since the
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universal quantification over an empty range equals true. With this we arrive at
the program shown in Fig. 1(d).

Program S1 has been added to ensure that P2(n := n + 1) is a precondition
of the assignment to r. For S1, we envision the assignment s := s′. By following
the same procedure as before, we can calculate the value of s′ to be s∧f [n]. The
final derived program is presented in Fig. 1(e).

As this example shows, the final derived program, even when annotated with
the invariants, may not be sufficient to provide the reader with the rationale
behind the introduction of the program constructs and the invariants; whole
derivation history is required.

3 Harnessing the Automated Theorem Provers

Readability of the calculational style comes from its ability to express all the
important steps in the derivation, and at the same time being able to hide the
secondary steps. By secondary steps, we mean the steps that are of secondary
importance in deciding the direction of the derivation. For example, the steps
involved in the proof for the justifications of the transformations do not change
the course of the derivation. These justifications, when obvious, are often stated
as hints without explicitly proving them. However, when the justifications are
not obvious, it might take several steps to prove them. During the pen-and-paper
calculational derivations, the transformation steps are kept small enough to be
verifiable manually. Doing low level reasoning involving simple propositional rea-
soning, arithmetic reasoning, or equality reasoning (replacing equals by equals),
can get very long and tedious if done in a completely formal way. Moreover, the
lengthy derivations involving the secondary steps often hamper the readability.
In such cases, there is a temptation to take long jumps while doing such deriva-
tions manually (without a tool support) resulting in correctness errors. With the
help of automated theorem provers, however, we can afford to take long jumps
in the derivation without sacrificing the correctness.

Many common proof paradigms like proof by contradiction, case analysis,
induction, etc. are not easily expressed in a purely calculational style. Although,
with some effort, these proofs can be handled by the structured calculational
approach [2], employing automated theorem provers greatly simplifies the proof
process. We use ATP assisted tactics to automate transformation steps that may
not always be amenable to the calculational style.

The template based program synthesis approaches [16], [23], [24] take the
specification and the syntactic template of the program as an input and auto-
matically generate the whole program. In contrast, we are interested not just
in the final program but also in the complete derivation as it helps in under-
standing the rationale behind the introduction of the program constructs and
the associated invariants. Therefore, we employ the automated theorem provers
at a much lower level in an interactive setting. This choice gives the user more
control to explore alternative solutions since all the design decisions are manifest
in the derivation.
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Using the Why3 tool [13] as an interface, we have integrated automated the-
orem provers Alt-Ergo [8], CVC3 [4], SPASS [25] and Z3 [9] with CAPS. The
Why3 platform provides two languages: a logic language (Why) and a ML-like
programming language (WhyML). In CAPS, we use only the logic language
since we are using Why3 only for the purpose of interacting with various the-
orem provers. The proof obligation formulas are transformed to Why3’s logic
language and Why3 is invoked in the background to prove these proof obliga-
tions with the help of various theorem provers. Using Why3 as an interface saves
us from dealing with the different logical languages and predefined theories of
various theorem provers.

We next describe the CAPS system and its specific features which play vital
role in designing the theorem prover assisted tactics.

4 Calculational Assistant

1

2

3

4

5

6

7

8

9
10

11

12

13

14

Fig. 2. A schematic
representation of a
Synthesis Tree

CAPS is a calculational assistant for programming from
specifications (precondition and postcondition) specified
in first-order logic. The core component of CAPS is
implemented in the Scala programming language. An in-
teractive user interface is provided in the form of a web
application. The web application uses AJAX to provide
a responsive user interface.

The derivation style in CAPS is very similar to the
calculational style explained in Section 2. Users start
the derivation by providing the formal specification of the
program and then incrementally transform it into a fully
derived annotated program by applying predefined trans-
formation rules called Synthesis Tactics. The complete
derivation history is recorded in the form of a tree called
Synthesis Tree. Fig. 2 shows a schematic representation of
the Synthesis Tree. The portions of the tree enclosed by
rectangles correspond to the transformations performed
on the subprograms. This functionality is explained in Sec-
tion 5.1. Users have a facility to backtrack to any node in the Synthesis Tree and
branch out to explore different derivation possibilities. The final output of the
derivation is a fully synthesized AnnotatedProgram (explained in Section 4.1)
along with the complete derivation history.

The GUI of the tool is shown in Fig. 3. The tactics panel shows the list of
applied tactics (a path in the synthesis tree), the content panel shows the pro-
gram/formula corresponding to the selected node, and the input panel is shows a
input form used for a applying tactic. CAPS has in-built tactics for transforming
partially derived annotated programs and proof obligations formulas.

While reasoning about a program fragment, it is natural to treat them as
a formula (a Hoare triple) whose details needs to be worked out to make the
formula valid. In CAPS, however, we treat programs and formulas differently as
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Annotated assignment program

Annotated unknown program

Global invariants
Program variables

Fig. 3. CAPS GUI. There are three panels: Tactics Panel (left), Content Panel(center)
and Input Panel (bottom). The input panel shows the input form for the RTVInPost
(Replace term by variable) tactic.

they differ in many aspects: (a) Transformation rules for programs and formulas
are quite different. (b) Program context consists of program variables whereas
formula context consists of set of assumptions. (c) Visual representations of
programs and formulas are quite different. By treating programs and formulas
differently and keeping separate context management mechanisms for them, we
are able to reason directly at the program level. This also helps in displaying
programs and formulas in their natural form in the graphical user interface.

4.1 Program Transformations

For representing a program fragment and its specification, we introduce a data
structure called AnnotatedProgram. It is obtained by augmenting each program
construct in the Guarded Command Language (GCL) [10] with its precondition
and postcondition. We also introduce a new program construct UnknownProg
to represent an unsynthesized program fragment.

The program transformation tactics are based on the refinement rules from
the refinement calculus [3], [21] and the high level program derivation heuristics
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from the literature on calculational program derivation [12], [18]. For example,
consider the program transformation tactics shown in Fig. 4. The Weaken the
Precondition tactic captures the rule “{R}S {Q} and P ⇒ R implies {P}S {Q}”
whereas the Take Conjuncts as Invariants tactic captures the program deriva-
tion heuristics with the same name [18]. The main difference between the rules
in the refinement calculus and the transformation tactics in CAPS is that the
refinement rules gradually transform the specification to a program (without
annotations) whereas our program transformation tactics transform a partially
derived annotated program to a fully derived annotated program.

Tactic:
Weaken the Precondition.

Input:
R

Applicability condition:
P ⇒ R

{P}
UnknownProg (1)
{Q}

{P}
{P} SkipProg {R} ;
{R} UnknownProg(2) {Q}

{Q}

Tactic:
Take Conjuncts as Invariants.

Inputs:
Invariant conjuncts: R1

Variant: t
Applicability condition:

P ⇒ R1

{P}
UnknownProg (1)
{R1 ∧ R2}

{P}
{inv : R1}{variant : t}
While(¬R2) {

{R1 ∧ ¬R2}
UnknownProg (2)

{R1}
}

{R1 ∧ R2}

Fig. 4. Program transformation tactics

4.2 Formula Transformations

As discussed in Section 2, program derivation often involves guessing the un-
known program fragments in terms of placeholders and then deriving program
expressions for the placeholders in order to discharge the correctness proof obli-
gations. This functionality is implemented in CAPS by using metavariables to
represent the placeholders.

Some steps in the derivations involve transformation of annotated programs
whereas others involve transformation of proof obligation formulas. We call these
two modes of the derivation as program mode and formula mode respectively.
In order to emulate this functionality in a tactic based framework, we devised
a tactic called StepIntoPO. On applying this tactic to an annotated program
containing metavariables, a new formula node representing the proof obligations
(verification conditions) is created in the synthesis tree. This formula is then
incrementally transformed to a form, from which it is easier to instantiate the
metavariables. After successfully discharging the proof obligation and instantiat-
ing all the metavariables, a tactic called StepOut is applied to get an annotated
program with all the metavariables replaced by the corresponding instantiations.

Example. Fig. 5 shows a path in the synthesis tree corresponding to the derivation
of the Integer Division program (compute the quotient (q) and the remainder (r)
of the integer division of x by y where x ≥ 0 and y > 0). Node n1 in the synthesis
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{0 ≤ x ∧ 0 < y} q, r := q′, x {0 ≤ r ∧ q ∗ y + r = x}
n1

0 ≤ x ∧ 0 < y ⇒ wp (q, r := q′, x; , 0 ≤ r ∧ q ∗ y + r = x)

n2

0 ≤ x ∧ 0 < y ⇒ q′ = 0

n3

true

n4

{0 ≤ x ∧ 0 < y} q, r := 0, x {0 ≤ r ∧ q ∗ y + r = x}
n5

step into PO

simplify

Guess q′ to be 0

step out tactic

Fig. 5. A path in the synthesis tree for the Integer Division program. The StepIntoPO
tactic is used to create a formula node corresponding to the proof obligation of the
program node.

tree represents an assignment program which contains a metavariable q′. In order
to discharge the corresponding proof obligation, the user applies a StepIntoPO
tactic resulting in a formula node n2. The task for the user now is to derive an
expression for q′ that will make the formula valid. On further transformations,
the user arrives at node n3 from which it is easier to instantiate q′ as “0”.
Finally, the application of StepOut tactic results in a program node n5 where
the metavariable q′ is replaced with the instantiated expression “0”.

F0

R { hint justifying F0 R F1 }
F1

R { hint justifying F1 R F2 }
. . . . . .
R { hint justifying Fn−1 R Fn }

Fn

Fig. 6. Calculation representation

Formula Transformations. We adopt
a transformational style of inference
wherein a formula F0 is transformed step
by step while preserving a reflexive and
transitive relation R. Because of the tran-
sitivity of R, the sequence of transforma-
tions F0RF1R, ...RFn implies that F0RFn

holds. This derivation is represented in the
calculational notation as shown in Fig. 6.

Note that the relation maintained at an individual step can be stronger than
the overall relation as the sequence of transformations F0 R0 F1 R1, . . . Rn−1 Fn

implies F0 R Fn, provided relation Ri is at least as strong as the relation R for
all i from 0 to n− 1.

5 Theorem Prover Assisted Tactics

In order to integrate ATPs at local level, we first need to extract the context
of the subprogram/subformula under consideration. The extracted context can
then be used as assumptions while discharging the corresponding proof obliga-
tions.
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5.1 Extracting Context of Subprograms

A partially derived program at some intermediate stage in the program deriva-
tion may contain multiple unsynthesized subprograms. Users may want to focus
their attention on the derivation of one of these unknown subprograms. The
derivation of a subprogram is, for the most part, independent of the rest of the
program. Hence it is desirable to provide a mechanism wherein all the contex-
tual information required for the derivation of a subprogram is extracted and
presented to users so that they can carry out the derivation independently of
the rest of the program. For example, in Fig. 1(b), user has focused on S0 and
derived it separately as shown in Fig. 1(c).

The activity of focusing on a subproblem is error-prone if carried out without
tool support. In Fig. 1(d), subprogram S1 is added to establish P2(n := n+1). We
do not recalculate r′ since the assumptions during the derivation of r′ (invariant
P0 and P1) still continue to hold provided S1 does not modify variables r and
n. User has to keep this fact in mind while deriving S1 separately. Due care
must be taken during manual derivation to ensure that after any modification,
the earlier assumptions still continue to hold. In CAPS, every program fragment
is associated with its full specification (precondition, postcondition) and the
context, and the corresponding proof obligations are automatically generated.

Since the precondition and postcondition of each program construct are made
explicit, user can focus on synthesizing a subprogram in isolation. Focusing on
a subprogram is achieved by applying the StepInTactic which displays the sub-
program under consideration along with the context and hides the rest of the
program. User can then transform this subprogram to a desired form and apply
the StepOutTactic when done. In Fig. 2, the portions of the tree enclosed by
rectangles correspond to the transformations performed on the subprograms.

5.2 Extracting Context of Subformulas

CAPS also provides a functionality to focus on a subformula of the formula
under consideration. Besides the obvious advantage of restricting attention to the
subformula, this functionality also makes the additional contextual information
available to the user which can be used for manipulating the subformula.

We adopt a style of reasoning similar to the window inference proof paradigm
[14], [15], [22]. Our implementation differs from the stack based implementation
in [15] since we maintain the history of all the transformations.

Extracting the Context. Let F [f ] be a formula with an identified subformula f
and Γ be the set of current assumptions. Now, we want to transform the subfor-
mula f to f ′ (keeping the rest of the formula unchanged) such that F [f ]RF [f ′]
holds where R is a reflexive and transitive relation to be preserved. The rela-
tionship to be preserved (r) and the contextual assumptions that can used (Γ ′)
during the transformation of f to f ′ are governed by the following inference
pattern [26].
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Table 1. Contextual assumptions: The R-preserving transformation from F [f ] to F [f ′]
under the assumptions Γ can be achieved by r-preserving transformation from f to f ′

under the assumptions Γ ′. (It is assumed that Γ does not contain a formula with i as
a free variable. This is ensured during the derivation by appropriately renaming the
bound variables.)

F[f] R r Γ ′

A ∧ B

≡ ≡
Γ ∪ {B}⇒ ⇒

⇐ ⇐

A ∨ B

≡ ≡
Γ ∪ {¬B}⇒ ⇒

⇐ ⇐

¬ A

≡ ≡
Γ⇒ ⇐

⇐ ⇒

A =⇒ B

≡ ≡
Γ ∪ {¬B}⇒ ⇐

⇐ ⇒

B =⇒ A

≡ ≡
Γ ∪ {B}⇒ ⇒

⇐ ⇐

F[f] R r Γ ′

A ≡ B

≡ ≡
Γ⇒ ≡

⇐ ≡(
∀i : R.i : T.i

) ≡ ≡
Γ ∪ {¬T.i}⇒ ⇐

⇐ ⇒(
∃i : R.i : T.i

) ≡ ≡
Γ ∪ {T.i}⇒ ⇒

⇐ ⇐(
∀i : R.i : T.i

) ≡ ≡
Γ ∪ {R.i}⇒ ⇒

⇐ ⇐(
∃i : R.i : T.i

) ≡ ≡
Γ ∪ {R.i}⇒ ⇒

⇐ ⇐

Γ ′ & f r f ′

Γ & F [f ]RF [f ′]
(1)

Table 1 lists the assumptions Γ ′ and the relation r for a few combinations of
F [f ] and R. The StepInTactic applications can be chained together. For example,
if we want to transform A∧B ⇒ C while preserving implication (⇒) relation, we
may focus on the subformula A and preserve reverse implication (⇐) assuming
¬C and B.

Our representation is an extension of the Structured Calculational Proof for-
mat [2]. The transformations on the subformulas are indented and contextual
information is stored in the top row of the indented derivation. Each indented
derivation is called a frame. Besides the assumptions, a frame also stores the re-
lation to be maintained by the transformations in the frame. Tactic applications
ensure that the actual relation maintained is at least as strong as the frame rela-
tion. Fig. 7 shows two calculational derivations. In the first derivation, formula
F [f ] is transformed into F [f ′] by preserving relation R. The same outcome is
achieved in the second derivation by focusing on the subformula f and trans-
forming it to f ′ under the assumptions Γ ′ while preserving r provided F [ ], Γ ,
R, Γ ′, and r are in accordance with Equation 1.

Fig. 8 shows application of this tactic in CAPS. The user focuses on a subfor-
mula and manipulates it further while preserving the equivalence (≡) relation
(which is stronger than the frame relation ⇐). The assumptions extracted from
the context can be used during the transformation of the subformula.
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Frame Assumptions: Γ
Frame Relation: R

F (f)
R { Hint }

F (f ′)

Frame Assumptions: Γ
Frame Relation: R

F (f)
� {step into}

Frame Assumptions: Γ ′

Frame Relation: r
f

r { Hint }
f ′

� {step out }
F (f ′)

Fig. 7. Focusing on subformula

5.3 Automation at Tactic Level

We now describe the various functions of CAPS that are automated with the
help of ATPs and the scenarios in which these automations are helpful.

Tactic Applicability Conditions. Some of the tactics are purely syntactic ma-
nipulations and are correct by construction whereas others have applicability
conditions which need to be verified. For example, the Split Range Tactic and
the Empty Range Tactic for the universal quantifier are shown below.

Split Range Tactic
(∀ i : P.i ∨Q.i : T.i)

≡ { Split Range }
(∀ i : P.i : T.i) ∧ (∀ i : Q.i : T.i)

Empty Range Tactic
(∀ i : R.i : T.i)

≡ { Empty Range; R.i ≡ false}
true

The Split Range Tactic does not have any applicability condition whereas the
Empty Range Tactic has an additional applicability condition (∀i :: R.i ≡ false)
(i.e. R.i is unsatisfiable.). These conditions are automatically verified in CAPS
using ATPs. Note that in the absence of this integration, the way to accomplish
this transformation – at the risk of making the derivation lengthy – is to focus
onto R.i and transform it to false and then step out and transform the whole
formula to true.

Proofs involving no metavariables. Proofs that do not involve any metavariable
are good candidates for full automation. In Section 2, we skipped the proof for
preservation of the loop invariant P1 : 0 ≤ n ≤ N . This invariant proof obligation
does not involve any metavariable, and hence is not of interest from the synthesis
point of view. We automatically prove such proof obligations with the help of
ATPs. In case the automated provers fail to discharge the proof obligation or
prove it invalid, we have to revert back to the step-by-step way of proving.

Verifying the transformations. During the calculational derivations, it is some-
times easier to directly specify the desired formula and verify it to be correct
instead of deriving the formula in a purely interactive way. We have a Verified-
Transformation tactic that serves this purpose. This tactic takes the formula
corresponding to the next step and the relation to be maintained as an input
and verifies if the relation holds. This functionality is similar in spirit to the
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Fig. 8. Calculation of initialization assignment (q, r := 0, x) to establish invariant
0 ≤ r ∧ q ∗ y + r = x in the derivation of Integer Division program

verified transformation functionality offered by the poC (program-oriented cal-
culations) [21] extension of Dafny. The derivation in Fig. 8 has three instances
of application of this tactic (labeled by a hint “Replace formula by an equivalent
formula”). This tactic greatly reduces the length of the derivations.

The VerifiedTransformation tactic is also helpful in discharging proofs which
are not amenable to the calculational style. Many common proof paradigms (like
proof by contradiction, case analysis, induction, etc.) are not easily expressed in
a purely calculational style [2]. Although, with some effort, these proofs can be
discharged by using the functionality for focusing on subcomponents (which is
based on the structured calculational approach in [2]), employing the automated
theorem provers greatly simplifies the derivation. Note that this tactic is different
from the earlier tactics; in all the other tactics a formula is transformed in a
specific way and only the applicability condition is proved automatically, whereas
in this tactic, the user directly specifies an arbitrary formula as the transformed
form of a given formula and the tactic application just verifies the correctness
of the transformation.
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〈
N ≥ 1 ∧ f [0] ≤ A < f [N ] ∧ f [x] ≤ A < f [y]∧
0 ≤ x < N ∧ x ≤ y ≤ N ∧ y �= x + 1
Frame Relation: ≡

〉
f [x′] ≤ A < f [y] ∧ 0 ≤ x′ < N ∧ x′ < y ≤ N

≡ { A < f [y]; Simplify }
f [x′] ≤ A ∧ 0 ≤ x′ < N ∧ x′ < y ≤ N

≡ { y ≤ N ; Simplify }
f [x′] ≤ A ∧ 0 ≤ x′ < N ∧ x′ < y

� {step into}〈N ≥ 1 ∧ f [0] ≤ A < f [N ] ∧ f [x] ≤ A < f [y]∧
0 ≤ x < N ∧ x ≤ y ≤ N ∧ y �= x+ 1
f [x′] ≤ A ∧ 0 ≤ x′ ∧ x′ < y
Frame Relation: ≡

〉

x′ < N
≡

{
x′ < y and y ≤ N ; Simplify

}
true

� { step out }
f [x′] ≤ A ∧ 0 ≤ x′ ∧ x′ < y

(a)〈
N ≥ 1 ∧ f [0] ≤ A < f [N ] ∧ f [x] ≤ A < f [y]∧
0 ≤ x < N ∧ x ≤ y ≤ N ∧ y �= x + 1
Frame Relation: ≡

〉
f [x′] ≤ A < f [y] ∧ 0 ≤ x′ < N ∧ x′ < y ≤ N

≡ { SimplifyAuto }
f [x′] ≤ A ∧ 0 ≤ x′ ∧ x′ < y

(b)

Fig. 9. (a) Excerpt from the derivation of the binary search program using multi-
ple applications of the Simplify tactic, (b) The same derivation performed using the
SimplifyAuto tactic

Simplification. The Simplify tactic simplifies the current formula by eliminating
the true/false subformulas. For example, it transforms the formula ϕ ∧ true
to ϕ. The SimplifyAuto tactic takes this idea further by recursively focusing on
the subformulas in bottom-up fashion and verifying – with the help of ATPs –
if the subformulas are valid/invalid. The same effect can be achieved by inter-
actively focusing on each subformula, proving/disproving the subformula under
the modified assumptions, and then simplifying the formula. The SimplifyAuto
tactic automates this process resulting in simpler derivations in many cases.
Fig. 9(a) shows an excerpt from the derivation of the binary search program
whereas Fig. 9(b) shows how the same outcome can be accomplished in a single
step using the SimplifyAuto tactic.

6 Conclusions and Future Work

To address the problem of lengthy and tedious calculational program derivations,
we have proposed an approach to integrate automated theorem provers at a tactic
level and implemented it in a calculational assistant (CAPS) which we have
built to assist users in deriving imperative programs from formal specifications.
We have adapted various techniques from the fields of program verification and
theorem proving for providing features like ability to step into proof obligations,
metavariable support, and ability to extract context of a subformula, which help
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in realizing the tactic level automation. The introduced tactics help in shortening
the derivations and also in carrying out derivations that are not amenable to the
calculational style. We have managed to keep the derivation style close to the
pen-and-paper calculational style thereby retaining the benefits of readability
and rigour.

This tool will be used in the future offerings of the “Program Derivation”
(CS420) class at IIT Bombay. To improve the usability, we plan to develop
heuristics to rank the tactics in a given context so that at every stage in the
derivation, users can be presented with a list of tactics sorted by descending
likelihood of application. We also plan to develop high level program derivation
tactics where the low level synthesis tasks (like synthesizing loop-free programs)
are taken care of by the syntax-guided synthesis solvers [1].

Acknowledgements. The authors would like to thank the anonymous referees
for their helpful comments. The work of the first author was supported by the
Tata Consultancy Services (TCS) Research Fellowship.

References

1. Alur, R., Bodik, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia,
S.A., Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthe-
sis. In: Proceedings of the IEEE International Conference on Formal Methods in
Computer-Aided Design (FMCAD) (2013)

2. Back, R., Grundy, J., Von Wright, J.: Structured calculational proof. Formal As-
pects of Computing 9(5-6), 469–483 (1997)

3. Back, R.J., von Wright, J.: Refinement Calculus: A Systematic Introduction. Grad-
uate Texts in Computer Science. Springer, Berlin (1998)

4. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

5. Butler, M., L̊angbacka, T.: Program derivation using the refinement calculator. In:
von Wright, J., Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125,
pp. 93–108. Springer, Heidelberg (1996)

6. Carrington, D., Hayes, I., Nickson, R., Watson, G.N., Welsh, J.: A tool for devel-
oping correct programs by refinement. Tech. rep. (1996),
http://espace.library.uq.edu.au/view/UQ:10768

7. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

8. Conchon, S., Contejean, E.: The alt-ergo automatic theorem prover (2008),
http://alt-ergo.lri.fr

9. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

10. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

11. Dijkstra, E.W., Feijen, W.H.: A Method of Programming. Addison-Wesley Long-
man Publishing Co., Inc., Boston (1988)

http://espace.library.uq.edu.au/view/UQ:10768
http://alt-ergo.lri.fr


220 D.L. Chaudhari and O. Damani

12. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, NJ (1997)
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Abstract. Refinement in Event-B supports the development of systems
via proof based step-wise refinement of events. This refinement approach
ensures safety properties are preserved, but additional reasoning is re-
quired in order to establish liveness and fairness properties. In this paper
we present results which allow a closer integration of two formal meth-
ods, Event-B and linear temporal logic. In particular we show how a
class of temporal logic properties can carry through a refinement chain
of machines. Refinement steps can include introduction of new events,
event renaming and event splitting. We also identify a general liveness
property that holds for the events of the initial system of a refinement
chain. The approach will aid developers in enabling them to verify linear
temporal logic properties at early stages of a development, knowing they
will be preserved at later stages. We illustrate the results via a simple
case study.

1 Introduction

Event-B [1] is a step-wise development method with excellent tools: Rodin plat-
form [2] providing proof support and ProB [11] providing model checking. As
Hoang and Abrial [10] clearly state the focus of verification within Event-B has
been on the safety properties of a system to ensure that “something (bad) never
happens”. Typically, this has been done via the discharging of proof obligations.
Nonetheless, the use of linear temporal logic (LTL) to specify temporal liveness
properties has also been prevelant, for example in its application within the ProB
tool [12]. The challenge is to identify more natural ways of integrating Event-B
and LTL, so that LTL properties can be preserved by Event-B refinement, which
is not currently the case in general.

Event-B describes systems in terms of machines with state, and events which
are used to update the state. Events also have guards, which are conditions
for the event to be enabled. One (abstract) machine may be refined by another
(concrete) machine, using a refinement step. A linking invariant captures how the
abstract and concrete states are related, and each abstract event must be refined
by one or more concrete events whose state transformations match the abstract
one in the sense of preserving the linking invariant. Refinement is transitive, so
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c© Springer International Publishing Switzerland 2014



222 S. Schneider et al.

a sequence of refinement steps, known as a refinement chain, will result in a
concrete machine which is a refinement of the original abstract one.

A particular feature provided by Event-B is the introduction of new events in
a refinement step—events which do not refine any abstract event. This allows
for refinements to add finer levels of granularity and concretisation as the design
develops; there are many examples in [1]. These new events are invisible at
the abstract level (they correspond to the abstract state not changing), and we
generally need to verify that they cannot occur forever. Event-B makes use of
labels to keep track of the status of events as a refinement chain progresses.
Event-B labels are anticipated, convergent and ordinary. The labelling of events
in Event-B form part of the core of a system description but their inclusion
is primarily to support the proof of safety properties and ensuring that events
cannot occur forever: convergent events must decrease a variant and anticipated
events cannot increase it. In this paper all newly introduced events must be
convergent or anticipated, and anticipated events must become convergent at
some stage. As an initial example, consider a Lift machine with two events top
and ground, representing movement to the top and to the ground floor. This can
be refined by a machine Lift ′ introducing two new anticipated events openDoors
and closeDoors. The events top and ground are blocked when the doors are open,
but enabled when the doors are closed.

Linear temporal logic provides a specification language for capturing proper-
ties of executions of systems, and is appropriate for reasoning about liveness and
fairness. For example, we might verify for Lift that whenever top occurs, then
eventually ground will occur. However, this is not guaranteed for its refinement
Lift ′: it may be that the doors open and close repeatedly forever following the
top event, thus never reaching the next ground event. Alternatively it may be
that the system deadlocks with the doors open, again preventing ground from
occurring. Hence we see that LTL properties are not automatically preserved
by Event-B refinement. In the first case we would require some assurance that
openDoors and closeDoors cannot repeat forever without the lift moving; in the
second case we require some liveness property on closeDoors to prevent termi-
nation with the doors open.

In this paper we present results for when temporal logic properties can be
carried through Event-B refinement chains. The results generalise to events that
are split—refined by several events—during a refinement chain. We also identify
conditions on temporal logic properties that make them suitable for use in a re-
finement chain, since some properties are not preserved by Event-B refinement
(for example, the property “closeDoor never occurs” holds for Lift but not for
its refinement Lift ′). The results are underpinned by our process algebra un-
derstanding of the Event-B semantics, in particular the traces, divergences and
infinite traces semantics used for CSP and applied to Event-B in [15].

The paper is organised as follows: Section 2 provides the necessary Event-B
refinement background and the refinement strategy we use in the paper. Section 3
introduces a running example. Section 4 defines the LTL we use. Sections 5 and 6
present and illustrate the main theoretical results. For reasons of space we do
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not include proofs, but they appear in the technical report available at [16]. We
put our work into the context of related work in Section 7 and our future work
in Section 8.

2 Event-B

2.1 Event-B Machines

An Event-B development is defined using machines. A machine M contains a
vector of variables and a set of events. The alphabet ofM , αM , is the set of events
defined in M . Each event evti has the general form evti =̂ any x where Gi(x , v)
then v :| BAi(v , x , v

′) end, where x represents the parameters of the event, the
guard Gi(x , v) is the condition for the event to be enabled. The body is given
by v :| BAi(v , x , v

′) whose execution assigns to v any value v ′ which makes the
before-after predicate BAi(v , x , v

′) true. This simplifies to evti =̂ when Gi(v)
then v :| BAi(v , v

′) end when there are no parameters, since the guard and the
before-after predicate does not refer to the parameters x .

Variables of a machine are initialised in an initialisation event init and are
constrained by an invariant I (v). The Event-B approach to semantics is to asso-
ciate proof obligations with machines. The key proof obligation, INV, is that all
events must preserve the invariant. There is also a proof obligation on a machine
with respect to deadlock freedom which means that a guard of at least one event
in M is always enabled. When this obligation holds M is deadlock free.

2.2 Event-B Refinement

An Event-B development is a sequence of B machines linked by a refinement
relationship. In this paper we use M and M ′ when referring to a refinement
between an abstract machine M and a concrete machine M ′ whereas a chain of
refinements is referred to using numbered subscripts, i.e., M0, Mi , . . ., Mn , to
represent the specific refinement levels.

A refinement machine can introduce new events and split existing events. We
omit the treatment of merging events in this paper. New events are treated as
refinements of skip, i.e., evt ′i does not refine an event in M . Note that when
splitting events, M ′ has several events evt ′i refining a single event evti .

A machine M is considered to be refined by M ′ if the given linking invariant
J on the variables between the two machines is established by their initialisa-
tion, and preserved by all events. This requirement is captured by the INV REF

proof obligation. Formally, we denote the refinement relation between two ma-
chines, written M � M ′, when all the following proof obligations hold: feasibility
FIS REF, guard strengthening GRD REF and simulation INV REF. Feasibility of
an event is the property that, if the event is enabled (i.e., the guard is true),
then there is some after-state. Guard strengthening requires that when a con-
crete event is enabled, then so is the abstract one. Finally, simulation ensure the
occurrence of events in the concrete machine can be matched in the abstract one
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(including the initialization event). Further details of these proof obligations can
be found in [1].

In Section 1 we introduced the three kinds of labelling of events in Event-B:
anticipated (a), convergent (c) and ordinary (o) and noted that convergent events
are those which must not execute forever whereas anticipated events provide a
means of deferring consideration of divergence-freedom until later refinement
steps. The proof obligation that deals with divergences is WFD REF. It requires
that the proposed variant V of a refinement machine satisfies the appropriate
properties: that it is a natural number, that it decreases on occurrence of any
convergent event, and that it does not increase on occurrence of any anticipated
event. Therefore, we augment the previous refinement relation with WFD REF

such that M �W M ′. Ordinary events can occur forever and therefore WFD REF

is not applicable for such events.

2.3 Event-B Development Strategies

Event-B has a strong but flexible refinement strategy which is described in [9].
In [15] we also discussed different Event-B refinement strategies and charac-
terised them with respect to the approaches documented by Abrial in [1] and
supported by the Rodin tool. In this paper we focus on the simplest strategy, and
the one most commonly used. The strategy has the following set of restrictions
on a refinement chain M0 �W M1 �W . . . �W Mn :

1. all events in M0 are labelled ordinary. This set of events is referred to as O0.
2. each event of Mi is refined by at least one event of Mi+1;
3. each new event in Mi is either anticipated or convergent, where i > 0;
4. each event in Mi+1 which refines an anticipated event of Mi is itself either

convergent or anticipated;
5. refinements of convergent or ordinary events of Mi are ordinary in Mi+1.
6. no anticipated events remain in the final machine.

Figure 1 illustrates our development strategy for a vending machine, detailed
in Section 3, where Ci is the set of convergent events within Mi , and Oi is the
set of ordinary events within Mi .

For example, O0 = {selectBiscuit , selectChoc, dispenseBiscuit , dispenseChoc}
and C0 = ∅ in VM1. In VM2 we note that C1 = {refund}. In VM3 we note
that C2 = {refill} and in VM4 we have C3 = {pay}. Thus we denote Call =
C1 ∪ C2 ∪ C3.

2.4 Event-B Semantics

In this paper we define a trace of M to be either an infinite sequences of events
(a,c or o), i.e., 〈e0, e1, . . .〉 or a finite sequence of events, i.e., 〈e0, . . . , ek−1〉 where
the machine M deadlocks after the occurrence of the final event. Traces corre-
spond to maximal executions of machines. Plagge and Leuschel in [14] provided
a definition of an infinite or finite path π of M in terms of a sequence of events
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selectBiscuit (o) selectBiscuit (o) selectBiscuit (o) selectBiscuit (o)
selectChoc (o) selectChoc (o) selectChoc (o) selectChoc (o)
dispenseBiscuit (o) dispenseBiscuit (o) dispenseBiscuit (o) dispenseBiscuit (o)
dispenseChoc (o) dispenseChoc (o) dispenseChoc (o) dispenseChoc (o)

pay (a) pay (a) pay (c)
refund (c) refund (o) refund (o)

refill (c) refill (o)

VM1 VM2 VM3 VM4

Fig. 1. Events and their annotations in the Vending Machine development

and their intermediate states. In order to distinguish notation we use u to repre-
sent a trace without the intermediate states. We need not consider the particular
states within a trace in our reasoning which is based on infinite traces. When a
machine M is deadlock free all of its traces are infinite. We use the functions of
concatenation (�), projection (�) and length (#) on finite and infinite traces.

A more complex behavioural semantics for B machines was given by Schneider
et al. in [15] based on the weakest precondition semantics of [13,6] for action
systems and CSP. In [15] there are two key results that enable us to reason
about infinite sequences of convergent and ordinary events in this paper. Firstly,
the following predicate captures that if an infinite trace u performs infinitely
many events from C then it has infinitely many events from O , where C and O
are sets of events.

Definition 1. CA(C ,O)(u) =̂ (#(u � C ) =∞⇒ #(u � O) =∞)

C and O will be used to capture convergent and ordinary events through a
development. For an Event-B machine M the above means that it does not
diverge on its C events. This is precisely what we get when we prove WFD REF

but the above definition describes the result on traces.
The second result from [15], restated as Theorem 1, allows us to conclude

that there are no infinite sequences of convergent events in the final machine
of a refinement chain Mn . The function g1,n defines a compositional mapping
for all concrete events to abstract events in terms of a function mapping f at
each refinement level where fi+1 : αMi+1 �→→ αMi and fi+1(evti+1) = evti ⇔
evti+1 refines evti . (Note that g1,0 is the identity function.)

Definition 2. gi,j = fj ; fj−1; . . . ; fi

Theorem 1. If M0 �W M1 �W . . . �W Mn then

Mn sat CA(g−1
1,n(C0) ∪ . . . ∪ g−1

i,n (Ci) ∪ . . . ∪ Cn , g−1
1,n(O0))

The result for our example is simply VM4 sat CA(Call ,O0) since there is no
renaming: each function mapping fi is the identity.

3 Example

In Section 2.3 we introduced a development strategy for a vending machine.
Figures 2, 3, 4 and 5 illustrate a development chain from vending machine VM1,
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machine VM1

variables chosen
invariant chosen ⊆ {choc, biscuit}
events
init =̂ chosen := {}
selectBiscuit =̂ status : ordinary

when biscuit 
∈ chosen then chosen := chosen ∪ {biscuit} end
selectChoc =̂ status : ordinary

when choc 
∈ chosen then chosen := chosen ∪ {choc} end
dispenseBiscuit =̂ status : ordinary

when biscuit ∈ chosen then chosen := chosen − {biscuit} end
dispenseChoc =̂ status : ordinary

when choc ∈ chosen then chosen := chosen − {choc} end
end

Fig. 2. VM1

VM2, VM3 to VM4; there are no anticipated events in VM4. Note the numbers
of the vending machines start from one. We introduce VM0 in Section 6. Thus
M0 in Theorem 1 corresponds to VM1 etc.

VM1 is a simple machine that supports the selection and dispensing of choco-
lates and biscuits via four events: selectBiscuit, selectChoc, dispenseBiscuit and
dispenseChoc. We abbreviate their names in the narrative to sb, sc, db and dc
respectively. The first refinement step introduces VM2 and the notion of pay-
ing and refunding. The pay event in VM2 is always enabled and allows positive
credit to be input. The machine allows a biscuit to be chosen if it has not already
been chosen and additionally provided a payment has been made; a chocolate
selection is similar. Hence the guards of all four of the original events sb, sc, db
and db are strengthened. The guard of the refund event means that credit cannot
be refunded for selected items and cannot occur forever since it is convergent.
Importantly, the refundEnabled flag is introduced so that it is only true after a
dispense and prevents infinite loops of the pay followed by refund.

VM3 introduces the notion of stocked items and a new refill event. We could
have chosen many different guards for the refill event. For example, we could
have labelled it anticipated with a guard of true. Instead we have made an un-
derspecification where the stock can be restocked when there may be no biscuits
or no chocolates, and established convergence. Again the guard of the four orig-
inal events have been strengthened so that they are only enabled when the
appropriate stocked item is in stock. But now db and dc also capture the non-
deterministic notion of running out or not of their respective items. The guard
of refund remains unchanged. The guard of pay has been strengthened so that
it is only enabled when there is stock but this is not strong enough to prevent
it happening infinitely often, hence it remains anticipated in VM3.

The final machine, VM4, is a straightforward data refinement which introduces
the capacity of the machine. Apart from highlighting the refinement relationship
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machine VM2

variables credit , chosen, refundEnabled
invariant credit ∈ N ∧ chosen ⊆ {choc, biscuit} ∧ refundEnabled ∈ BOOL
variant if refundEnabled = FALSE then 0 else 1
events
init =̂ credit := 0 || chosen := {} || refundEnabled := FALSE
pay =̂ status : anticipated

any x where x ∈ N1

then credit := credit + x end || refundEnabled := FALSE end
selectBiscuit =̂ status : ordinary

when credit > 0 ∧ biscuit 
∈ chosen ∧ credit > card(chosen)
then chosen := chosen ∪ {biscuit} end

selectChoc =̂ status : ordinary
when credit > 0 ∧ choc 
∈ chosen ∧ credit > card(chosen)
then chosen := chosen ∪ {choc} end

dispenseBiscuit =̂ status : ordinary
when credit > 0 ∧ biscuit ∈ chosen
then credit := credit − 1 || chosen := chosen − {biscuit} ||

refundEnabled := TRUE end
dispenseChoc =̂ status : ordinary

when credit > 0 ∧ choc ∈ chosen
then credit := credit − 1 || chosen := chosen − {choc} ||

refundEnabled := TRUE end
refund =̂ status : convergent

when credit > card(chosen) ∧ refundEnabled := TRUE
then credit := card(chosen) || refundEnabled := FALSE end

end

Fig. 3. VM2

between stocked and chocStock and biscuitStock note the strengthening of the
guard of refill so that vending machine should only be refilled when there is no
stock. Also the guard of pay is strengthened so that it becomes convergent.

4 LTL Notation

In this paper we use the grammar for the LTL operators presented by Plagge
and Leuschel [14]:

φ ::= true | [x ] | ¬φ | φ1 ∨ φ2 | φ1 U φ2

A machine M satifies φ, denoted M |= φ, if all traces of M satisfy φ. The
definition for u to satisfy φ is defined by induction over φ as follows:

u |= true

u |= [x ] ⇔ u = 〈x 〉� u1

u |= ¬φ ⇔ it is not the case that u |= φ
u |= φ1 ∨ φ2 ⇔ u |= φ1 or u |= φ2

u |= φ1Uφ2 ⇔ ∃ k ≥ 0. ∀ i < k .u i |= φ1 and uk |= φ2
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machine VM3

variables credit , chosen, refundEnabled , stocked
invariant credit ∈ N ∧ chosen ⊆ {choc, biscuit} ∧ stocked ⊆ {choc, biscuit}

(choc ∈ chosen ⇒ choc ∈ stocked) ∧ (biscuit ∈ chosen ⇒ biscuit ∈ stocked)
variant card{choc, biscuit} − stocked
events
init =̂ . . . || stocked := {choc, biscuit}
pay =̂ status : anticipated

any x where x ∈ N1 ∧ stocked 
= ∅
then credit := credit + x end || refundEnabled := FALSE end

selectBiscuit =̂ status : ordinary
when . . . ∧ biscuit ∈ stocked
then chosen := chosen ∪ {biscuit} end

selectChoc =̂ status : ordinary
when . . . ∧ choc ∈ stocked
then chosen := chosen ∪ {choc} end

dispenseBiscuit =̂ status : ordinary
when credit > 0 ∧ biscuit ∈ chosen ∧ biscuit ∈ stocked
then . . . || any x where x ⊆ {biscuit} then stocked := stocked − x end end

dispenseChoc =̂ status : ordinary
when credit > 0 ∧ choc ∈ chosen ∧ choc ∈ stocked
then . . . || any x where x ⊆ {choc} then stocked := stocked − x end end

refund =̂ status : ordinary . . .
refill =̂

status : convergent
when choc /∈ stocked ∨ biscuit /∈ stocked
then stocked := {choc, biscuit} end

end

Fig. 4. VM3

where un is u with the first n elements removed, i.e., u = 〈x0, . . . , xn−1〉� un .
From these operators Plagge and Leuschel derived several additional opera-

tors, including: conjunction (φ1 ∧ φ2), finally (or eventually) (Fφ), and globally
(or always) (Gφ), in the usual way; we also use these operators, and for explic-
itness we also provide direct definitions for them:

u |= φ1 ∧ φ2 ⇔ u |= φ1 and u |= φ2

u |= Fφ ⇔ ∃ i ≥ 0.u i |= φ
u |= Gφ ⇔ ∀ i ≥ 0.u i |= φ

We omit atomic propositions on states since our traces are only dealing with
events and not paths of states and transitions. We also omit the next operator,
see Section 7. In this paper our running example uses globally, finally, or and
implies.
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machine VM4

constants capacity
properties capacity > 0
variables credit , chosen, refundEnabled , chocStock , biscuitStock
invariant credit ≤ capacity ∧ chosen ⊆ {choc, biscuit} ∧

refundEnabled ∈ BOOL ∧ chocStock ≤ capacity ∧ biscuitStock ≤ capacity ∧
(choc /∈ stocked ⇒ chocStock = 0) ∧ (choc ∈ stocked ⇒ chocStock ≥ 0) ∧
(biscuit /∈ stocked ⇒ biscuitStock = 0) ∧ (biscuit ∈ stocked ⇒ biscuitStock ≥ 0)

variant max{(chocStock + biscuitStock) − credit , 0}
events
init =̂ . . . || chocStock := capacity || biscuitStock := capacity
pay =̂ status : convergent

any x where x ∈ N1 ∧ (chocStock + biscuitStock) > credit
then credit := credit + x end || refundEnabled := FALSE end

selectChoc =̂ status : ordinary
when . . . ∧ chocStock > 0
then chosen := chosen ∪ {choc} end

selectBiscuit =̂ status : ordinary
when . . . ∧ biscuitStock > 0
then chosen := chosen ∪ {biscuit} end

dispenseBiscuit =̂ status : ordinary
when credit > 0 ∧ biscuit ∈ chosen ∧ biscuitStock > 0
then . . . || chocStock := chocStock − 1 end

dispenseChoc =̂ status : ordinary
when credit > 0 ∧ choc ∈ chosen ∧ chockStock > 0
then . . . || chocStock := chocStock − 1 end

refund =̂ status : ordinary . . .
refill =̂ status : ordinary

when chocStock = 0 ∧ biscuitStock = 0
then chocStock := capacity || biscuitStock := capacity end

end

Fig. 5. VM4

For example, the informal specification for the Lift given in Section 1, that
whenever top happens then eventually ground will happen, could be written as

G([top] ⇒ F [ground ])

From our running VM example, the predicate GF [selectBiscuit ] expresses that
selectBiscuit occurs infinitely often: at any point there is always some occurrence
of selectBiscuit at some point in the future. We use this construction in the VM
properties introduced in Section 5. For example, we have φ2 given as

φ2 = (¬GF [selectBiscuit ])⇒ G([selectChoc] ⇒ F [dispenseChoc])

This states that provided selectBiscuit only occurs finitely often (i.e. eventually
stops), then whenever selectChoc occurs then dispenseChoc will eventually occur.
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It will also be useful to identify the events mentioned explicitly in an LTL
formula φ. This set is called the alphabet of φ. This is written α(φ), similar to
the use of αM for the alphabet of machine M . For LTL formulae it is defined
inductively as follows:

Definition 3

α(true) = {}
α([x ]) = {x}
α(¬φ) = α(φ)

α(φ1 ∨ φ2) = α(φ1) ∪ α(φ2)

α(φ1 ∧ φ2) = α(φ1) ∪ α(φ2)

α(φ1 U φ2) = α(φ1) ∪ α(φ2)

α(Fφ) = α(φ)

α(Gφ) = α(φ)

For example, we have α(φ2) = {selectBiscuit , selectChoc, dispenseChoc} for φ2

above.

5 Preserving LTL Properties

In this section we provide results to demonstrate when properties are preserved
by refinement chains. Firstly, we consider chains which do not contain any re-
naming/splitting of events in a machine. Hence, each function mapping fi for
Mi . . .Mn is the identity. The first result is a general result identifying a par-
ticular temporal property that will always hold for all refinement chains which
abide by the rules of the strategy presented in Section 2.3. The second result
given in Lemma 2 concerns the preservation of temporal properties that would
be proposed by a specifier. We have already observed from the vending machine
example that new events can be introduced during a refinement, e.g., pay, re-
fill, etc.. We aim for such properties to hold even though new anticipated and
convergent events are being introduced.

Lemma 1 states that Mn at the end of the refinement chain will always even-
tually perform one of the events of the initial machine M0. In other words, Mn

will perform infinitely many of the initial events. This means that the events
introduced along the refinement chain cannot occur forever at the expense of
the original events. In our example, αM0 = O0.

Lemma 1. If M0 �W M1 �W . . . �W Mn and Mn is deadlock free and Mn

does not contain any anticipated events then Mn |= GF (
∨

e∈αM0

[e])

Next we provide a definition which is used in Lemma 2 below and it enables
us to gain insights into the kinds of temporal properties that are appropriate
to be proposed and have the potential of being preserved through a refinement
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chain. Definition 4 describes a maximal execution satisfying a property φ. The
execution may include some events which do not have an impact on whether the
property holds or not therefore we can restrict the maximal execution to include
only those events that impact on the property.

Definition 4. Let β be a set of events. Then φ is β-dependent if α(φ) ⊆ β and
u |= φ⇔ (u � β) |= φ.

An example of a β-dependent property is GF (pay) where β = {pay}. If u |=
GF (pay) then u � pay |= GF (pay), and vice versa. Conversely, ¬G(pay) is
not {pay}-dependent. For example, if u = 〈pay, refill , pay, pay, . . .〉 then u |=
¬G(pay) but u � {pay} �|= ¬G(pay).

As another example, define β = {sb, sc, db, dc}. Then G(sb ∨ sc ∨ db ∨ dc)
is not β-dependent. This is exemplified by any trace u which contains events
other than those in β. In this case u � {sb, sc, db, sc} |= G(sb ∨ sc ∨ db ∨ dc) but
u �|= G(sb ∨ sc ∨ db ∨ dc). VM4 exhibits such traces. Observe that this property
holds for VM1 but not for VM4: it is not preserved by refinement. Since it is not
β-dependent Lemma 2 below is not applicable for this property.

Our main result for this section identifies conditions under which an LTL
property φ will be preserved in a refinement chain. The conditions are as follows:

– by the end of the refinement chain there should be no outstanding antic-
ipated events (and so all newly introduced events have been shown to be
convergent), as given by restriction 6 of the Development Strategy of Sec-
tion 2.3;

– the final machine in the refinement chain must be deadlock-free; and
– all of the events that have an effect on whether or not φ is true are already

present in Mi (φ is β-dependent for some β ⊆ αMi ).

These conditions are enough to ensure that φ is preserved through refinement
chains. This means that Mi can be checked for φ, and we can be sure that the
resulting system Mn will also satisfy it.

The lemma is formally expressed as follows:

Lemma 2. If Mi |= φ and Mi �W . . . �W Mn and 0 ≤ i < n and Mn

is deadlock free and Mn does not contain any anticipated events and φ is β-
dependent and β ⊆ αMi then Mn |= φ.

5.1 Preserving Vending Machine Properties

We consider the application of the above Lemmas to our running example on
the refinement chain

VM1 �W VM2 �W VM3 �W VM4



232 S. Schneider et al.

In this case we obtain immediately from Lemma 1 that

VM4 |= GF ([selectBiscuit ] ∨ [selectChoc] ∨
[dispenseBiscuit ] ∨ [dispenseChoc])

Any execution of VM4 will involve infinitely many occurrences of some of these
events. The newly introduced events pay, refund , refill cannot be performed
forever without the occurrence of the original events.

We consider some further properties to illustrate the applicability of Lemma 2.
Taking VM1 to be the first machine in the refinement chain, we can consider the
following temporal properties φ for VM1:

φ1 = G([selectChoc] ∨ [selectBiscuit ]⇒ F ([dispenseChoc] ∨ [dispenseBiscuit ]))

φ2 = (¬GF [selectBiscuit ])⇒ G([selectChoc] ⇒ F [dispenseChoc])

φ3 = (¬GF [selectChoc]) ⇒ G([selectBiscuit ]⇒ F [dispenseBiscuit ])

φ4 = G([selectChoc] ⇒ F [dispenseChoc])

φ5 = G([selectBiscuit ] ⇒ F [dispenseBiscuit ])

We note that each of the properties are β-dependent. Next we consider whether
VM1 |= φi for each i ∈ 1..5. Note that in fact VM1 �|= φ4 and VM1 �|= φ5

since there is a trace for which the properties fail, e.g., in the case of φ4 the
〈sc, sb, db, sb, db, . . .〉 we could have an infinite loop of sb, db events and never
reach a dc event. Thus Lemma 2 is not applicable to these properties.

The properties φ2 and φ3 are the strongest; φ2 states that if you do not always
have an sb then you will be able to choose a chocolate and for it to be dispensed,
and the dual applies in φ3. Once we have also established the refinement chain
VM1 �W VM2 �W VM3 �W VM4, and that VM4 is deadlock free we can
deduce using Lemma 2 that VM4 |= φi for all i ∈ 1..3. Observe however that
Lemma 2 does not establish that φi holds in all refinement machines, only those
with no anticipated events. For example, VM2 and VM3 do not satisfy φ1, φ2

nor φ3 since pay is anticipated and can be executed infinitely often.
Since VM2 introduced the event pay we can also introduce new temporal

properties that are required to hold from VM2 onwards. In other words, we apply
Lemma 2 on the chain VM2 �W VM3 �W VM4. The properties to consider are:

φ6 = G([pay] ⇒ F ([dispenseBiscuit ] ∨ [dispenseChoc]))

φ7 = GF [pay]

The infinite behaviour of pay means that φ6 is not satisfied in VM2. However,
VM2 |= φ7 thus we can again apply Lemma 2, and obtain that VM4 |= φ7 since
φ7 is β-dependent. This exemplifies that new temporal properties can be added
to the refinement verification chain.

We note that in fact VM4 |= φ6. Thus φ6 and φ7 together imply that
GF ([dispenseBiscuit ] ∨ [dispenseChoc])) holds for VM4.
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6 Extending Preserving LTL Properties to Handle
Splitting Events

In this section we generalise the results of Section 5 in order to deal with split-
ting events in Event-B, which occurs when abstract events are refined by several
events in the concrete machine, corresponding to a set of alternatives. Consider
as a motivating example VM0 in Figure 6. This is refined by VM1, with link-
ing invariant item = card(chosen), selectItem refined by both selectBiscuit and
selectChoc, and dispenseItem refined by both dispenseBiscuit and dispenseChoc.
Splitting events also involves their renaming to allow for several concrete events
to map to the same abstract one. A refinement step will therefore be associated
with a renaming function h from concrete events to the abstract events that they
refine. In the general case h will be many-to-one, since many concrete events may
map to a single abstract event; and it will also be partial, since new events in
the concrete machine will not map to any abstract event.

In general, each step in a refinement chain M0 �W M1 �W . . . �W Mn will
have an event renaming function hi corresponding to the renaming and splitting
step from Mi to Mi−1. We define gi,n to be the composition of these renaming
function from hn down to hi . Observe that gi,n will be undefined on any event
that does not map to Mi−1, in other words any event that corresponds to an
event introduced at some point in the refinement chain. For example, for the
chain VM0 �W VM1 �W . . . �W VM4, we obtain that g1,4(selectBiscuit) =
g1,4(selectChoc) = selectItem, and g1,4(dispenseBiscuit) = g1,4(dispenseChoc) =
dispenseItem, and g1,4 is not defined on the remaining events of VM4.

Lemma 1 generalises to state that the final machine in the refinement chain
must always eventually perform some event relating to an event in the initial
machine.

Lemma 3. If M0 �W M1 �W . . . �W Mn and Mn is deadlock free and Mn

does not contain any anticipated events then Mn |= GF (
∨

e∈g−1
1,n(αM0)

e).

Observe that if there is no renaming or splitting, then g1,n is the identity function
on the events in αM0, yielding Lemma 1.

We are interested in how the LTL properties of an abstract machine be-
comes transformed through a refinement step such as VM0 to VM1. For ex-
ample, the property GF [selectItem] for VM0 states that from any stage that
is reached, selectItem will eventually occur. This will translate to the property
GF ([selectBiscuit ]∨[selectChoc]) for VM1. We now consider how LTL properties
translate through a renaming function h.

For a given event renaming function h, we define transh as the translation
that maps LTL formulae by mapping abstract events to the disjunction of their
corresponding concrete events, as follows:
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machine VM0

variables item
invariant item ∈ N
events
init =̂ item := 0
selectItem =̂

status : ordinary
when item ≤ 2 then item := item + 1 end

dispenseItem =̂
status : ordinary
when item > 0 then item := item − 1 end

end

Fig. 6. VM0

Definition 5

transh(true) = true

transh([x ]) =
∨

y|h(y)=x

[y]

transh(¬φ) = ¬transh(φ)
transh(φ1 ∨ φ2) = transh(φ1) ∨ transh(φ2)

transh(φ1 ∧ φ2) = transh(φ1) ∧ transh(φ2)

transh(φ1 U φ2) = transh(φ1) U transh(φ2)

transh(Gφ) = G transh(φ)

transh(Fφ) = F transh(φ)

For example

transh(G([selectItem]⇒ F [dispenseItem]))

= G(([selectBiscuit ] ∨ [selectChoc])⇒ F ([dispenseBiscuit ] ∨ [dispenseChoc]))

Lemma 2 generalises to Lemma 4 below, to state that LTL properties are car-
ried along the refinement chain by translating them. In particular, if a property
φ is established for Mi−1, then transgi,n (φ) will hold for Mn :

Lemma 4. If Mi−1 |= φ and Mi−1 �W . . . �W Mn and 0 ≤ i − 1 < n,
Mn is deadlock free and Mn does not contain any anticipated events and φ is
β-dependent and β ⊆ αMi−1 then Mn |= transgi,n (φ)

For example, from the result for VM0 that whenever selectItem occurs then
dispenseItem will eventually occur,

VM0 |= G([selectItem]⇒ F [dispenseItem]))
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we obtain from Lemma 4 that

VM4 |= G( ([selectBiscuit ] ∨ [selectChoc])

⇒ F ([dispenseBiscuit ] ∨ [dispenseChoc]) )

This states that whenever selectBiscuit or selectChoc occur, then dispenseBiscuit
or dispenseChoc will eventually occur.

7 Discussion and Related Work

One of the few papers to discuss LTL preservation in Event-B refinement is
Groslambert [8]. The LTL properties were defined in terms of predicates on
system state rather than our paper’s formulation in terms of the occurrence of
events. His paper focused only on the introduction of new convergent events. It
did not include a treatment of anticipated events but this is unsurprising since
the paper was published before their inclusion in Event-B. Our results are more
general in two ways. Firstly, the results support the treatment of anticipated
events. Secondly, we allow more flexibility in the development methodology. A
condition of Groslambert’s results was that all the machines in the refinement
chain needed to be deadlock free. The two main lemmas in our paper: Lemmas 2
and 4 do not require each machine in a refinement chain to be deadlock free,
only the final machine. It is irrelevant if intermediate Mis deadlock as long as
the deadlock is eventually refined away.

Groslambert deals with new events via stuttering and leaves them as visible
events in a trace. This is why the LTL operators used by the author do not
include the next operator (X ). As new events may happen this may violate the
X property to be checked. Plagge and Leuschel in [14] permit the use of the X
operator since they treat the inclusion of new events as internal events which
are not visible. Since we deal with new events as visible events we also lose the
ability to reason about a temporal property using the typical X operator. Our
reasoning is simpler than both Groslambert and Plagge and Leuschel since we
only focus on events but this means we cannot have atomic propositions in our
LTL, whereas they can.

The notion of verification of temporal properties of both classical and Event-B
systems using proof obligations has been considered in many research papers.
Abrial and Musat in an early paper, [3], introduced proof obligations to deal with
dynamic constraints in classical B. In a more recent paper [10] Hoang and Abrial
have also proposed new proof obligations for dealing with liveness properties
in Event-B. They focus on three classes of properties: existence, progress and
persistence, with a view to implementing them in Rodin. Bicarregui et al. in [5]
introduced a temporal concept into events using the guard in the when clause
and the additional labels of within and next so that the enabling conditions are
captured clearly and separately. However, these concepts are not aligned with
the standard Event-B labelling.
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The interest of LTL preservation through refinement is wider than simply
Event-B. Derrick and Smith [7] discuss the preservation of LTL properties in the
context of Z refinement but the authors extend their results to other logics such
as CTL and the μ calculus. They focus on discussing the restrictions that are
needed on temporal-logic properties and retrieve relations to enable the model
checking of such properties. Their refinements are restricted to data refinement
and do not permit the introduction of new events in the refinement steps. Our
paper does permit new events to be introduced during refinement steps; the
contribution is in identifying conditions for LTL properties to hold even in the
context of such new events.

8 Conclusions and Future Work

The paper has provided foundational results that justify when temporal prop-
erties hold at the end of an Event-B refinement chain for developments which
contain anticipated, convergent and ordinary events, which goes beyond that
presented in [8]. The paper has also provided restrictions on the temporal prop-
erties in terms of being β-dependent which help to determine when a temporal
property of interest should be introduced into the development chain.

We could extend the results to deal with merging events. The inclusion of
the X LTL operator and availability will require use to look at execution paths
which include state transitions (π paths). The inclusion of availability will enable
us to address more advanced and useful notions of fairness in the context of
temporal properties. Our notion of weak fairness will be akin to that described
in Barradas and Bert in [4]. It will draw on work by Williams et al. [17]. We
could also consider the impact on temporal property preservation in refinement
chains which do not achieve convergence of all its new events by the end.

In ongoing work we are looking at event liveness via the proof obligation
for strong deadlock freedom S NDF. We have defined new labelling of events to
so that liveness proofs are on particular events. This is analagous to proving
WFD REF for events that are labelled anticipated or convergent. We have re-
cently defined the semantics of Event-B in terms of stable failures and detailed
its relationship with S NDF. We are currently combining these results with our
work in [15] in order to provide a cohesive process algebra underpinning for
Event-B.

Acknowledgments. Thanks to Thai Son Hoang and Thierry Lecomte for dis-
cussions about Event-B development strategies and the challenges of discharing
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the paper.
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Abstract. Embedded real-time network protocols such as the CAN
bus cannot rely on off-the-shelf schemes for authentication, because of
the bandwidth limitations imposed by the network. As a result, both
academia and industry have proposed custom protocols that meet such
constraints, with solutions that may be deemed insecure if considered out
of context. MaCAN is one such compatible authentication protocol, pro-
posed by Volkswagen Research and a strong candidate for being adopted
by the automotive industry.

In this work we formally analyse MaCAN with ProVerif, an auto-
mated protocol verifier. Our formal analysis identifies two flaws in the
original protocol: one creates unavailability concerns during key estab-
lishment, and the other allows re-using authenticated signals for different
purposes. We propose and analyse a modification that improves its be-
haviour while fitting the constraints of CAN bus. Although the revised
scheme improves the situation, it is still not completely secure. We argue
that the modified protocol makes a good compromise between the desire
to secure automotive systems and the limitations of CAN networks.

Keywords: protocol verification, embedded systems, Controller Area
Network.

1 Introduction

The CAN Bus is a protocol for real-time broadcast communication introduced
in 1983 by Bosch, and the current de facto standard for signal communication
inside a modern vehicle. Its simplicity and long time of adoption have made it the
most reasonable solution for building interoperable hardware in the automotive
market. It is also a mandatory protocol for the OBD-II diagnostic interface in
the United States and the similar EOBD standard for European countries. This
also means that it is unlikely to be replaced by more powerful protocols in the
foreseeable future (e.g. FlexRay [8]).

CAN is an unauthenticated broadcast protocol, therefore it offers no security-
related features to system designers. As current vehicles get more interconnected
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it is necessary to ensure that messages come from the right sources in order to
secure car functionality that could result in safety hazards if compromised under
an attack. Koscher et al. have shown [12,5] that current vehicles have practically
no defence within their internal network. It is possible to perform an impressive
array of attacks from interfaces like WiFi, Bluetooth and Cellular networks that
are now available in modern vehicles.

In response to their study various groups have tried to secure the weak
link in the chain, providing various flavours of authenticated CAN protocols:
MaCAN [11], CANAuth [17], LiBrA-CAN [10] and Car2x [16]. Many of these
schemes deviate from well-established communication protocols to meet the
bandwidth and real-time constraints of the CAN network. Nevertheless, the au-
thors of MaCAN and CANAuth, for example, only claim to guarantee certain se-
curity properties (e.g. authentication, freshness), without formally proving their
correctness.

We analysed the MaCAN protocol as described in [11], with the assistance of
the ProVerif protocol verifier [4]. Our analysis showed two flaws in the specifica-
tion, one in the key distribution scheme, and another in signal authentication.

The first flaw allows the initiating principal to believe that a session has
been established, while the other parties have not received a session key. Key
distribution happens between three or more parties: an initiator, responsible for
starting the procedure, the key server, responsible for delivering the session key,
and one or more responders, which also need to obtain the session key.

The slightly asymmetric behaviour of the protocol allows an attacker to reuse
the signature of the acknowledgement message sent by the initiator, in order
to simulate an acknowledgement message coming from the responder, therefore
completing authentication on one side. Furthermore, the attacker can manipulate
the behaviour of the key server so that the responder never receives a request
for authentication, and therefore the responder is never activated. This leads to
an incomplete session establishment where one of the parties believes that it can
communicate authenticated messages while the other will refuse such messages
because it is not in possession of a valid session key.

Our proposed correction removes the asymmetry in the two phases of the
protocol, and prevents the attack. We model our modification of the MaCAN
protocol in ProVerif and discover another minor problem in the format of the
acknowledgement message, that allows the attacker to successfully send acknowl-
edgements with the signature of another principal in group sessions. Adding
source information to the signature overcomes this annoyance, and allows us to
prove the desired authentication property in the key establishment phase.

The second flaw allows repurposing an authenticated signal when a specific
message format is used. An attacker can forge the signal number without this
being detected, allowing, for example, the message with meaning “speed is 25”
to be modified to “temperature is 25”.

Our correction modifies the signature so that the signal number is considered,
preventing that particular attack form happening. However the nature of the
protocol allows replays within the validity time frame of a message, which can
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be rather long for its applications. Here we contribute with a discussion that
clarifies which properties an application designer can expect from MaCAN, and
needs to take into consideration when designing a system.

The paper proceeds as follows. Section 2 presents the applied π-calculus that
we use in our models, Section 3 introduces the CAN bus protocol and its exten-
sions, Section 4 describes the MaCAN protocol, Section 5 describes our formal
analysis of the protocol, the discovered flaws and our proposed mitigations. We
compare the result of our analysis with our implementation in Section 6 and
present our conclusions in Section 7.

2 Modeling Protocols in ProVerif

ProVerif [4] is a protocol verifier that translates models in the applied π-calculus
into a set of Prolog rules. Initially developed to verify secrecy properties [2],
ProVerif uses a different resolution algorithm than Prolog’s backward chaining
to achieve better performance on the particular set of clauses that it generates.

ProVerif was later expanded to verify injective and non-injective agreements,
by adding events to the applied π-calculus and extending the translation to verify
non-injective and injective agreements, according to Lowe’s [14] definitions. For
a detailed presentation of the applied π-calculus with events and the analysis
techniques used in this paper we refer to [3].

Figure 1 shows the language that we use in this paper. We have terms M,N
which can be either variables, names, tuples or constructors applied to sub-
terms. Patterns Π are used in inputs and let bindings and are either variable
binders, patterns on tuples or equality checks on terms. Processes P,Q are either
the stuck process, the infinite replication of a process, the parallel composition
which runs two processes in parallel, the restriction which binds a in P to a fresh
name, input which applies pattern Π to an input on channel M , output which
outputs the term N on channel M , let which applies a rewrite rule of the form
g(M1, . . . ,Mn) → M — where fv(M) ⊆

⋃
i fv(Mi) — and if it succeeds exe-

cutes P after matching the result of the destruction to the pattern Π , otherwise
executes Q, the if construct which checks equality between terms M and N and
executes P if the two terms are equal, Q otherwise, and event, which signals an
event in the execution of the process, marked with the term M .

3 CAN and Its Extensions

CAN [9] is a broadcast, prioritised, real-time protocol designed to work on a
bus network topology of interconnected microcontrollers. At a high level, a CAN
frame has two fields: (i) an identifier (CAN-ID) of either 11 or 29 bits, that is used
for specifying which signal is being transmitted, and for arbitration purposes
using Carrier Sense Multiple Access with Bitwise Arbitration (a multiple access
scheme where lower ID values have priority on higher ID values and arbitration
is resolved by sending the message IDs bit-by-bit), and (ii) a payload field of 1 to
8 bytes, that may contain information specific to the signal. Typical transmission
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M,N ::= x, y, z | a, b, c | (M1, . . . ,Mn) | f(M1, . . . ,Mn) terms

Π ::= x | (Π1, . . . ,Πn) | =M patterns

P,Q ::= 0 stuck process

| !P replication

| P |Q parallel composition

| (ν a)P restriction

| M(Π).P input

| M〈N〉.P output

| let Π = g(M1, . . . ,Mn) in P else Q destructor application

| if M = N then P else Q conditional

| event(M).P event

Fig. 1. Applied π-calculus with events

speeds of the CAN bus are 125 KHz, 500 KHz and 1 MHz, and a single CAN
frame occupies between 65 and 160 bits, depending on the length of the identifier
field and of the payload. Other safety-related features of CAN include error
detection using CRC codes and specific flags for signalling a failed transmission,
and mechanisms for detecting and disabling malfunctioning devices.

Given the restricted size of CAN frames an authenticated network protocol
must meet the tight space constraints. Splitting messages into more than one
signal is rarely an acceptable solution, because most applications have real-time
constraints and the bandwidth usage is approaching 80% [6].

To alleviate the payload limitation of CAN, two extensions have been pro-
posed: CAN+ and CAN-FD. CAN+ [18] uses a clever encoding that allows to
extend the payload by 15 times the original size, while being compatible with de-
vices that use plain CAN, who see only the non-extended payload. This allows
to use the extra bandwidth for authentication, as CANAuth [17] does. What
hampers its adoption is the higher cost of required hardware, which has already
been a compelling argument for industry to not switch to FlexRay.

CAN-FD [13] allows transmitting up to 64 bytes of payload by changing the
data rate during payload transmission. This change is not transparent to stan-
dard CAN, but CAN and CAN-FD devices can coexist in the same network.
CAN-FD is currently being integrated into ISO 11898, the standard defining
CAN, so it is very likely to be adopted as a solution for extending the CAN
payload. MaCAN has been designed to work on plain CAN networks, but it can
be extended to use the extra payload offered by CAN-FD.

4 MaCAN

MaCAN [11] is an authenticated protocol specifically designed for the CAN bus.
The authors argued that there was a need for a new authentication scheme that
could fit into its small payload size. Other proposals such as CANAuth rely on
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CAN-ID(SRC-ID)
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s

DST-ID Data

CAN-ID Data[0] Data[1-7]

Fig. 2. The Crypt Frame

the extra bits offered by CAN+ and require also switching to different hardware.
MaCAN instead authenticates messages in 4 bytes of payload, leaving the other 4
bytes available for signal information. The signature length can also be extended
when using CAN-FD in order to increase robustness and to allow more than 4
bytes of information to be transmitted.

The designers of MaCAN discarded the use of more traditional challenge-
response protocols during message authentication, because of the real-time
requirements that need to be met in the applications. They also considered prob-
lematic the use of counter values to ensure message freshness, since there is not
enough space to transmit the counter and a hash together with a message, and
synchronisation issues make it impossible to keep track of the current counter
value. Instead, they chose to authenticate messages using a timestamp to ensure
their freshness, and to synchronise the ECUs using a time server. Timestamps
need not to be sent with every frame as all ECUs have a local clock, hence
MaCAN saves precious bandwidth for communication.

4.1 The Crypt Frame

As depicted in Figure 2, the crypt frame is a specific interpretation of the tra-
ditional CAN frame where both CAN-ID and payload fields are used to encode
authentication details.

The CAN ID in the crypt frame encodes a 6 bit source ID, which indicates
the source Electronic Control Unit (ECU). The first byte of data is used to send
a 2 bit flag field and a 6 bit destination ID, which could indicate a specific ECU
or a group of ECUs, in order to make the protocol fully directional. This leaves
available the remaining 7 bytes for signals and signatures.

In the following sections we are going to present the protocol using Alice&Bob
notation for the messages, which leaves the field lengths unspecified. The reader
may refer to the original paper [11] for the specific frame formats.

4.2 Key Establishment

The key establishment procedure in MaCAN establishes a session key between
an initiator (ECUi) and a responder (ECUj) by communicating to a key
server (KS). Figure 3 represents the authentication process in Alice&Bob no-
tation. Both ECUi and ECUj have their own pre-shared key Kx,ks registered
with the key server, which the key server uses for sending session keys.

To establish a session key, the initiator ECUi sends a challenge Ci to KS,
signalling the ID of the requested partner idj (4.2.1). KS encrypts (senc) with
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ECUi → KS :CH, Ci, idj (4.2.1)

KS → ECUi :SK, senc((Ci, idj , idi, SKi,j),Ki,ks) (4.2.2)

KS → ECUj :RC (4.2.3)

ECUi → ECUj :ACK, group field, cmac((T, idj , group field), SKi,j) (4.2.4)

ECUj → KS :CH, Cj , idi (4.2.5)

KS → ECUj :SK, senc((Cj , idi, idj , SKi,j),Kj,ks) (4.2.6)

ECUj → ECUi :ACK, group field, cmac((T, idj , group field), SKi,j) (4.2.7)

ECUi → ECUj :ACK, group field, cmac((T, idj , group field), SKi,j) (4.2.8)

Fig. 3. MaCAN key establishment procedure

Ki,ks a fresh session key SKi,j, together with the challenge Ci and the IDs of
ECUi and ECUj (4.2.2). KS then sends a request for challenge (RC) to ECUj ,
in order to activate it (4.2.3).

ECUi after decrypting the session key SKi,j received from the key server,
sends an acknowledgement (ACK) to ECUj , signing it with SKi,j and the current
timestamp T . The group field is a bit vector that represents the knowledge of
ECUi about which devices are authenticated1. After sending this message,ECUi

considers itself authenticated, and awaits ECUj to conclude the protocol.
ECUj then sends its own challenge Cj to KS (4.2.5), to which the key server

replies with the encrypted session key, Cj , and the IDs of the two principals
(4.2.6). Finally ECUj sends a signed acknowledgement message to ECUi, sig-
nalling that it received the session key and updating group field (4.2.7).

In case of group authentication, when an authenticated ECU receives a
group field that does not mark itself as authenticated, it sends an acknowl-
edgement message to inform the other ECUs in the group of its presence (4.2.8).

4.3 Message Authentication

Automotive CAN applications are based on the concept of “signals” (e.g. cur-
rent vehicle speed is a signal) that are exchanged between cooperating ECUs
by periodically transmitting messages with signal values. In MaCAN it is possi-
ble to require ECUs to authenticate a specific signal upon request. Then next,
each or each n-th signal message will be additionally sent in the authenticated
format. Figure 4 shows how authenticated messages can be requested (4.3.1)
and provided (4.3.2, 4.3.3). Sig# specifies the signal number that needs to be
authenticated. Prescaler specifies the signing behaviour, and is 0 to request the
following message to be authenticated, 1 to request each following message to be

1 MaCAN supports authentication of groups with more than two ECUs, but here we
concentrate on the case where a session is established between two parties. Authen-
ticating more than two ECUs requires the key server to interpret idj as the ID of a
group, which is statically defined, and to send requests for challenge to each ECU
in the group.
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ECUi → ECUj :SIG-AUTH-REQ, Sig#, P rescaler,

cmac((T, idi, idj , Sig#, P rescaler), SKi,j) (4.3.1)

ECUj → ECUi :SIG-AUTH, Sig#, Signal, cmac((T, idi, idj , Signal), SKi,j) (4.3.2)

ECUj → ECUi :SIG-AUTH, Signal, cmac((T, idi, idj , Signal), SKi,j) (4.3.3)

ECUi → TS :CH, Ci, fwd id = 0 (4.4.1)

TS → ECUi :T, cmac((Ci, T ), SKts,i) (4.4.2)

Fig. 4. MaCAN signal authentication (4.3.1-3) and time requests (4.4.1-2)

authenticated, and any n > 1 to request each n-th message to be authenticated.
The CMAC [7] signature uses the current timestamp T , the initiator and the
responder IDs, to authenticate the request.

The responder to the authentication request replies with either (4.3.3) or
(4.3.2), depending on whether the signal value (Signal) fits in 32 bits or not.

4.4 Serving Time

All signatures include a timestamp that is not sent in clear-text over the channel,
and thus the communicating devices need to be synchronised, otherwise there
is a risk that authenticated messages might not be recognised as valid. To mit-
igate unavailability concerns due to clock synchronisation, MaCAN introduces
an authenticated time-serving protocol, shown in Figure 4.

Normally the current timestamp is broadcast periodically in an unauthenti-
cated form. When ECUi detects too big a mismatch between the internal clock
and the received timestamp, it may send a request for an authentic time value
from the time server. This is done by sending a challenge Ci to the time server
(4.4.1), who will then reply with the last broadcasted timestamp T , signed using
the challenge and a session key SKts,i shared by the time server and the ECU.

5 Formal Analysis

5.1 Key Establishment

Figure 5 shows our model of the MaCAN authentication procedure in the applied
π-calculus. All communication happens on a broadcast channel c, while we use
a private channel psk for the key server to store the long term keys of the ECUs.
The process KS represents the key server, ECUi is the initiator process and
ECUj is the responder process.

Due to the abstractions introduced by ProVerif, we have to change some
important aspects of the protocol in order to obtain a precise analysis. First and
foremost, we remove timestamps from signatures, because ProVerif abstracts
away the concept of state in its translation of processes to Horn clauses. Then



248 A. Bruni et al.

KS �c(i,=CH,=ks, ci, j).psk(=i, ki).(ν skij) event(sesski(i, j, ci, skij)).

c〈ks,SK, i, senc((ci, j, i, skij), ki)〉.c〈ks,RC, j〉.
c(=j,=CH,=ks, cj ,=i).psk(=j, kj).event(sesskj(j, i, ci, skij)).

c〈ks,SK, j, senc((cj , i, j, skij), kj)〉.c(=skij).c〈error〉.0

ECUi �(ν ci) event(authStarti(i, j, ci)).c〈i,CH, ks, ci, j〉.
c(=ks,=SK,=i, resp).let (=ci,=j,=i, skij) = sdec(resp, ki) in

event(authAcki(i, j, ci, skij)).c〈i,ACK, j, sign((j, AK), skij)〉.
c(=j,=ACK,=i,=sign((j,ACK), skij)).event(authEndi(i, j, ci, skij)).0

ECUj �c(=ks,=RC,=j)).c(i,=ACK,=j, ack).(ν cj)

event(authStartj(j, i, cj)).c〈j,CH, ks, cj , i〉.c(=ks,=SK,=j, resp).

let (=cj ,=i,=j, skij) = sdec(resp, kj) in

if ack = sign((j,ACK), skij) then event(authAckj(j, i, cj , skij)).

c(j, AK, i, sign((j,ACK), skij)).event(authEndj(j, i, cj , skij)).0

Fig. 5. MaCAN key establishment process in the applied π-calculus

we treat group field as a name instead of a bit vector, in order to simplify
the model. Finally we encode long encrypted messages that would be split into
multiple frame as a single message. We take these changes into consideration
when we interpret the results of our analysis and we argue to which extent they
introduce overapproximations.

Current MaCAN configurations have clock rates of 1 second, so it is safe to
assume that timestamps can be treated as constants, since the key establishment
procedure can complete within a single clock tick. Note that it is undesirable
to have high clock rates due to the following constraint: the receiving end of
an authenticated signal needs to check a signature against all valid timestamps
within the possible reception window of the message. Therefore, increasing the
clock rate also requires more computation on the receiving end, which in turn
increases the worst case response time for a signal transmission. The length of
the reception window for a message can be obtained with schedulability analysis
[6] and depends on the number of higher priority messages that can delay the
transmission of the message in question.

In Figure 5,KS represent the key server process. It waits on the public channel
for a challenge ci to establish a session between ECUi and ECUj , retrieves ki
from its database, produces a fresh session key skij , outputs the encoding of the
session and sends a request for challenge to ECUj . It then waits for a challenge
cj from ECUj , retrieves its key kj , and encodes the session key skij in a message
for ECUj that includes the challenge cj . Finally it waits for the session key to
be sent in clear text on the channel to signal an error. If an error is not reachable
then the secrecy of skij is guaranteed.
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authStarti(idi, idj , Ci) (5.1.1)

ECUi � KS :CH, Ci, idj (5.1.2)

M[ECUj ] → KS :CH, a, idi (5.1.3)

sesski(idj , idi, a, SKi,j) (5.1.4)

KS → ECUj :SK, senc((a, idi, idj , SKi,j),Kks,j) (5.1.5)

KS � ECUi :RC (5.1.6)

M[ECUi] → KS :CH, Ci, idj (5.1.7)

sesskj(idi, idj , Ci, SKi,j) (5.1.8)

KS → ECUi :SK, senc((Ci, idj , idi, SKi,j),Kks,i) (5.1.9)

authAcki(idi, idj , SKi,j) (5.1.10)

ECUi → ECUj :ACK, cmac((T, idj , group field), SKi,j) (5.1.11)

M [ECUj ] → ECUi :ACK, cmac((T, idj , group field), SKi,j) (5.1.12)

authEndi(idi, idj , SKi,j) (5.1.13)

Fig. 6. Attack trace

ECUi creates a new challenge ci sends the challenge to the key server, waits for
the response of the key server and decodes the message to retrieve the session key
skij . ECUi then sends an acknowledgement to ECUj signed with skij , and waits
for a similar acknowledgement from ECUj to conclude the key establishment
procedure.

ECUj waits for a request for challenge from the key server, reads the acknowl-
edgement from ECUi, sends its challenge to the key server, receives the session
key skij , verifies the validity of the acknowledgement from the other party and
finally sends its own acknowledgement, concluding its part of the procedure.

Analysis results. We analysed the following five properties for key establishment:

(i) the secrecy of long term keys ki, kj ,
(ii) the secrecy of session keys ksij ,
(iii) the agreement between the events authStarti(i, j, ci), sesski(i, j, ci, skij),

authAcki(i, j, ci, skij), authEndi(i, j, ci, skij), and
(iv) the agreement between the events authStartj(j, i, cj), sesskj(j, i, cj , skij),

authAckj(j, i, cj , skij), authEndj(j, i, cj , skij).

Using ProVerif, we were able to verify the secrecy properties (i,ii), but we
found a counterexample for the event correspondence (iii), where an attacker
can run the protocol in such a way that ECUi receives the proper session key
from message (4.2.6) instead of (4.2.2), leaving the ECUj unauthenticated. The
correspondence (iv) for ECUj is proven, therefore it can only authenticate as
intended by the protocol.

Figure 6 shows our reconstruction of the attack trace produced by ProVerif for
the query of events related to ECUi (property iii), thereby providing feedback
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ECUi → KS :CH, Ci, idj (5.1.14)

KS → ECUi :SK, senc((Ci, idj , idi, SKi,j),Ki,ks) (5.1.15)

KS → ECUj :RC (5.1.16)

ECUi → ECUj :ACK, group field, cmac((T, idi, idj , group field), SKi,j) (5.1.17)

ECUj → KS :CH, Cj , idi (5.1.18)

KS → ECUj :SK, senc((Cj , idi, idj , SKi,j),Kj,ks) (5.1.19)

ECUj → ECUi :ACK, group field, cmac((T, idj , idi, group field), SKi,j) (5.1.20)

Fig. 7. Modified MaCAN key establishment procedure

to the protocol designer about how to amend the protocol. In this trace “�”
represents a message deleted by the attacker (this can be achieved by jamming
the signal at the proper time or by making one of the participating nodes or
an involved CAN gateway unavailable) and M[x] represent the malicious agent
impersonating x (it can be done by sending a message with the proper CAN-ID).

This attack relies on the possibility to remove messages from the channel. The
attacker learns the current challenge and the destination ID (5.1.2), while sup-
pressing the message. It then impersonates ECUj and starts sending a random
challenge (5.1.3), initiating the communication with the key server in the oppo-
site direction. The key server then sends a legitimate message to ECUj (5.1.5),
who will ignore it as it did not request a session key. Then the key server sends a
request for challenge to ECUi (5.1.6), which may be suppressed by the attacker.
The attacker remembers the previous challenge from ECUi and replays it on the
key server (5.1.7), receiving the session key encrypted for ECUi in return (5.1.9).
Finally ECUi sends its acknowledgement message (5.1.11), and since the form
of the two acknowledgement messages is the same for ECUi (4.2.4) and ECUj

(4.2.7), the attacker can impersonate ECUj and send back the same signature
(5.1.12) so that ECUi believes that also ECUj is authenticated.

Corrected model. We propose a correction of the model where the asymmetries
that cause the improper authentication behaviour are removed. Figure 7 shows
the corrected procedure.

To guarantee the agreement property we modify the form of the acknowledge-
ment message. The CMAC signature is now using the current timestamp, the
source and the destination of the message as content. Because CMAC is a hashed
signature, adding more parameters to the function does not affect the final pay-
load size, therefore the modified protocol still fits the space constraints of CAN.
The two acknowledgement messages (5.1.17) and (5.1.20) are now symmetrical.
We added the source information on the signed hashes, as well as the destina-
tion. This allows not only to prove the necessary correspondence for two-party
sessions, but in case of group sessions it removes the chance for an intruder to
reuse an acknowledgement message of another principal.
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KS �c(i,=CH,=ks, ci, j).psk(=i, ki).(ν skij) event(sesski(i, j, ci, skij)).

c〈ks,SK, i, senc((ci, j, i, skij), ki)〉.c〈ks,RC, j, i〉.
c(=j,=CH,=ks, cj ,=i).psk(=j, kj).event(sesskj(j, i, ci, skij)).

c〈ks,SK, j, senc((cj , i, j, skij), kj)〉.c(=skij).c〈error〉.0

ECUi �(ν ci) event(authStarti(i, j, ci)).c〈i,CH, ks, ci, j〉.
c(=ks,=SK,=i, resp).let (=ci,=j,=i, skij) = sdec(resp, ki) in

event(authAcki(i, j, ci, skij)).c〈i,ACK, j, sign((i, j, AK), skij)〉.
c(=j,=ACK,=i,=sign((j, i,ACK), skij)).event(authEndi(i, j, ci, skij)).0

ECUj �c(=ks,=RC,=j, i).(ν cj) event(authStartj(j, i, cj)).

c〈j,CH, ks, cj , i〉.c(i,=ACK,=j, ack).c(=ks,=SK,=j, resp).

let (=cj ,=i,=j, skij) = sdec(resp, kj) in

if ack = sign((i, j,ACK), skij) then event(authAckj(j, i, cj , skij)).

c(j, AK, i, sign((j, i,ACK), skij)).event(authEndj(j, i, cj , skij)).0

Fig. 8. MaCAN key establishment process in the applied π-calculus

Figure 8 shows the corrected model in the applied π-calculus, where we applied
the modified behaviour for the three processes. The properties (i–iv) that we
defined in Section 5.1 have all been proved in this model.

5.2 MaCAN Message Authentication

During a session, authenticated parties can send authenticated signals. As de-
scribed in Section 4.3 the transmission of an authenticated signal needs to follow
a specific request (4.3.1). Depending on whether the authenticated signal fits in
32 bits — that is half of the available CAN payload size — the responding ECU
uses either message format (4.3.3) or (4.3.2).

Figure 9 shows two communicating processes that exchange authenticated
messages according to message format (4.3.2). ECUi requests an authenticated
signal with the first output according to (4.3.1). Then it keeps waiting for an
authenticated signal and checks whether the signature corresponds to its own
computation of it, marking with an accept the acceptance of an authenticated
signal. On the other side ECUj receives a request for authentication, checks its
signature and starts sending signals, marking with a send event the transmission
of a fresh signal.

The original paper [11] is not clear about whether the CMAC signature in-
cludes the signal number. The process in Figure 9 does not include the signal
number as part of the signature for signals. Thus the correspondence between
send(sig#, signal) and accept(sig#, signal) is not verified. An attacker can read
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ECUi �c〈i,SIG-AUTH-REQ, j, sig#, n0, cmac((i, j, sig#, n0), skij)〉.
!(c(=j,=SIG-AUTH,=i, sig#, signal, xsig).

if xsig = cmac((i, j, signal), skij) then

event(accept(sig#, signal)).0)

ECUj �c(i,=SIG-AUTH-REQ,=j, sig#, prescaler, xs).

if xs = cmac((i, j, sig#, prescaler), kij) then

!((ν signal) event(send(sig#, signal)).

c〈j, SIG-AUTH, i, sig#, signal, cmac((i, j, signal), skij)〉.0)

Fig. 9. MaCAN message authentication processes in the applied π-calculus

a signed signal with a sig# value re-transmit the signal with a different sig# if
multiple sig# have been requested within the same session.

A simple solution to this problem is to add sig# as part of the signature. With
the modified process, which we omit for sake of brevity, we are able to verify the
agreement between the events send(sig#, signal) and accept(sig#, signal).

Still we fail to verify an injective agreement between the two events. Given
our specification it is possible to accept twice the same message, and this could
constitute a freshness violation. Our abstraction removes all timestamps, as the
modelling technology cannot efficiently deal with them, and we previously argued
that they can be ignored and treated as constant within their validity window.

As current configurations have clock rates of one second, this constitutes a
potentially serious flaw in the protocol. Imagine MaCAN authenticating mes-
sages for the brake control unit of a vehicle. In case of emergency braking at
high speed, the driver might be tempted to go all the way down with the foot
on the brake pedal, activating the ABS. The ABS control unit works by sending
messages to the brake control unit, releasing the brakes at a fast interval, so
that the wheels don’t slide on the ground, reducing their grip. In this example
an attacker could wait for a “release message” from the ABS control unit, and
replay it for its whole validity, therefore effectively disabling the brake for an
entire second in a dangerous situation.

Given the restrictions imposed by the CAN bus, we believe that MaCAN
constitutes a good enough solution for authenticating signals. A better level of
security can be achieved by incrementing the clock rate. This would reduce the
time window available for replaying messages, and therefore reduce the potential
effect of such replay. In case of fast control loops — where a specific signal
needs to be sent every 50 ms, for example — a solution that completely prevents
replay attacks would synchronise the clock with the message rate, and refuse any
message signed with a timestamp that has been previously used. Specific care
would then be required for synchronising the clock between the communicating
devices, and to avoid any unavailability issues due to improper synchronisation.
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In our work we also analysed CANAuth, an alternative proposal for an au-
thenticated protocol on top of CAN, which appears to be immune from this kind
of replay attacks. CANAuth uses counters as part of the signature for a message,
and a receiving ECU accepts a message only if the counter is higher than any
other counter value previously observed. This mechanism works, but relies on
the extra bandwidth provided by CAN+ for transmitting both the signature and
the current counter value. To our knowledge, MaCAN is the only protocol with
authentication that is able to fit into the constrained frame of CAN bus.

6 Discussion

Abstraction gap. We developed our models of the MaCAN protocol in the applied
π-calculus of ProVerif. We had to change some aspects of MaCAN, as described
in Section 5, to be able to analyse it. One of such aspects is the use of timestamps
to ensure freshness of messages. We were unsuccessful in modeling timestamps
in ProVerif, as the tool abstracts away state information, and therefore we were
not able to express freshness of timestamp values.

Other analysers such as StatVerif [1] have a global synchronised state, but
in order to represent potentially infinite timestamps one needs more powerful
abstractions that avoid exploring an infinite state-space. Explicitly inserting a
fresh timestamp into a list and checking whether the current timestamp is in the
list, for example, would generate terms of continuously increasing size, hanging
the engine. The same behaviour we encountered in ProVerif, not surprisingly, as
they share the same resolution engine.

A possible solution is the one offered by AIF [15], which abstracts values
into the sets to which they belong: for example timestamps could be abstracted
into current and expired ones by using two sets. We are currently working on
implementing a similar abstraction on top of the applied π-calculus, in order
to model more directly security protocols as communicating processes, reducing
the distance between the model used for verification and the concrete program.

Implementation. We compared the result of our analysis with our implementa-
tion of MaCAN, developed independently from the analysis, which is available
under an opensource license on Github2. We implemented the attacks to the
key establishment and message authentication procedure, putting the attacker
in control of a gateway as shown in Figure 10, which was demonstrated to be
possible in practice by Checkoway et al. [5].

The attack on key establishment was possible only after aligning the imple-
mentation to the specification contained in the paper, as the necessary acknowl-
edgement was already corrected in our implementation. We cannot trace back,
however, whether this correction was due to explicit considerations by our skilled
engineers, or it happened by chance by misinterpreting the flawed specification.

Our implementation also accepted authenticated acknowledgement messages
replayed by the attacker impersonating another device in group authentication,

2 https://github.com/CTU-IIG/macan

https://github.com/CTU-IIG/macan
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Attacker-
controlled

CAN gateway
ECUi ECUj KS TS

CAN bus 1 CAN bus 2

Fig. 10. Experimental setup

however with no practical consequences. We believe that this is a dangerous
mistake to leave in a reference paper, which could lead to flawed implementations
if left undetected. We could confirm the attack that allowed forging authenticated
signals by changing signal number was present in our implementation. With
it an attacker could forge potentially dangerous authenticated messages from
legitimate ones. Comparing the models with the implementation also helped us
to reveal some minor bugs that were introduced when coding it, and would have
probably not been revealed by simple testing.

7 Conclusions

In this work we analysed MaCAN using the ProVerif protocol verifier, found a
flaw in the key establishment procedure, experimentally verified the presence of
an attack in our implementation, and proposed a modified version of the protocol
that is immune from the problems that we discovered.

Resource constrained networks such as the CAN bus put a strong limit on
the design of an authenticated protocol. The designers of MaCAN had to rely
of custom schemes when designing its procedures, as previous literature did not
consider such extreme bounds in terms of bandwidth as 8 bytes of payload per
message. We contribute to the protocol with a formal and experimental analysis
of its procedures and propose two changes that improve its behaviour.

During our analysis we also encountered some limitations in expressing the
particular features of MaCAN with the languages and tools of our choice. We
are currently working on an extension of the applied π-calculus that allows us
to better model protocols with timestamps and counters.

Finally, protocols like MaCAN rely on relatively weak cryptography, so we
would like to extend our analysis to cover possible attacks in the computational
model, and be able to precisely evaluate the level of security of MaCAN.
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models and the anonymous reviewers for helpful comments.
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Abstract. This work addresses the growing need of performing mean-
ingful probabilistic analysis of security. We propose a framework that
integrates the graphical security modeling technique of attack–defense
trees with probabilistic information expressed in terms of Bayesian net-
works. This allows us to perform probabilistic evaluation of attack–
defense scenarios involving dependent actions. To improve the efficiency
of our computations, we make use of inference algorithms from Bayesian
networks and encoding techniques from constraint reasoning. We discuss
the algebraic theory underlying our framework and point out several
generalizations which are possible thanks to the use of semiring theory.

1 Introduction

Attack–defense trees [12] extend the well-known model of attack trees [26], by
considering not only actions of an attacker, but also possible countermeasures
of a defender. Since the augmented formalism models interactions between an
attacker and a defender explicitly and is able to capture evolutionary aspects
of attack–defense scenarios, it allows for a more accurate security assessment
process compared to attack trees. In [16], we have proven that the analysis of
attack–defense trees is computationally not more expensive than the analysis of
attack trees. Furthermore, the usefulness of attack–defense trees for the analysis
of real-world security problems has been validated in a large industrial case
study [2]. These results show that attack–defense trees have the potential to
become an efficient and practical security modeling and risk assessment tool.

Quantifying probabilistic aspects of attacks is one of the most important is-
sues in security evaluation. Decisions concerning which defensive mechanisms
should be implemented are based on the success probability of potential at-
tacks. Furthermore, estimation of probability is necessary in order to evaluate
risk related measures. Hence, a fully fledged methodology for security analysis
needs to contain a mature framework for probabilistic computations. Unfor-
tunately, the standard bottom-up approach for quantitative analysis of attack
tree-based formalisms [18,13] can only be used for computing probabilities under
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the assumption that all considered actions are independent. This is a very strong
assumption which is unrealistic for real-life situations.

In this paper, we develop a complete framework for probability computations
on attack–defense trees. Our approach combines the security methodology of
attack–defense trees with the probabilistic framework of Bayesian networks. This
allows us to overcome the mentioned limitation of the bottom-up approach and
perform probabilistic computations in the presence of dependent actions. Since at-
tack trees are formally a subclass of attack–defense trees, our framework applies
directly for the analysis of the former model. Thus, the paper also contributes
to the development of full-fledged analysis technique for attack trees which are
widely accepted and commonly used by industry [15].

We give a brief overview of the attack–defense tree methodology in Section 2.
After recalling basic concepts for Bayesian networks, we present our framework
for dependent probability computations on attack–defense trees, in Section 3.
Sections 4 and 5 are concerned with methods for improving the efficiency of the
framework. We describe related work in Section 6 and conclude in Section 7.

2 Modeling of Security Scenarios

This section provides background knowledge about attack–defense trees, which
is necessary to understand the framework developed in this paper. For a more
detailed description of the formalism, we refer to [13] and [16].

2.1 Attack–Defense Trees

Attack–defense trees (ADTrees) allow to illustrate and quantify security scenar-
ios that involve two opposing players: an attacker and a defender. The root of
an ADTree represents the main goal of one of the players. When the root is an
attack node, the tree represents how to attack a considered system. Conversely,
when the root is a defense node, the tree is concerned with defending the sys-
tem. In ADTrees, both types of nodes, attacks and defenses, can be conjunctively
or disjunctively refined. A goal represented by a conjunctively refined node is
reached when all the subgoals depicted by its child nodes are reached. A goal
represented by a disjunctively refined node is reached when at least one of the
subgoals depicted by its child nodes is reached. The refinement operation is ap-
plied until basic actions are obtained. Actions are considered to be basic if they
can be easily understood and quantified. Basic actions are represented by the
nodes which do not have any children of the same type. Each node of an ADTree
can also have one child of the opposite type. Children of the opposite type rep-
resent countermeasures. These countermeasures can be refined and countered
again. In ADTrees, attack nodes are modeled by circles, defense nodes by rect-
angles. A conjunctive refinement is depicted with an arc. Countermeasures are
connected to the actions they counteract by a dotted line.

Example 1. Consider a scenario in which an attacker wants to infect a computer
with a virus. In order to do this, the attacker needs to ensure that the virus
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Infect
Computer

Put Virus
on System

Send E-mail
with Attachment

Distribute
USB Stick

Have
Anti-virus

Install
Anti-virus

Run
Anti-virus

Spoof
Anti-virus

Execute
Virus

Fig. 1. ADTree for infecting a computer

file is accessible from the targeted computer and that it is executed. There are
two possibilities to make the file accessible: an attacker can send the virus in an
e-mail attachment or distribute an infected USB stick to the computer user. The
computer user, on his part, can protect himself against a virus with an anti-virus
program. For the anti-virus to be effective, it needs to be installed and it needs to
be running. A resourceful attacker, in turn, could attack the anti-virus by using
a fake version of an anti-virus, that disables the real anti-virus from running
and only pretends that it is running. Fig. 1 depicts the described attack–defense
scenario using an ADTree. In this tree, the basic actions are:

For the attacker For the defender
SE – “Send E-mail with Attachment” IA – “Install Anti-virus”
DU – “Distribute USB Stick” RA – “Run Anti-virus”
SA – “Spoof Anti-virus”
EV – “Execute Virus”

The attack–defense scenario described above is used as the running example
in this paper. Its main role is to illustrate how the introduced methodology
works. We purposely keep the example simple (and incomplete) in order not to
overwhelm the reader with too complex models.
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Remark 1. Since the root of the ADTree in Fig. 1 represents an attack goal, the
paper is concerned with the probability of attacking a system. In the case of an
ADTree having a defensive root node, we would talk about the probability of
defending a system.

2.2 The Propositional Semantics for ADTrees

In order to provide a broad spectrum of analysis methods, several formal se-
mantics for ADTees have been defined in [13]. In this paper, we employ the
propositional semantics which makes use of Boolean functions.

By r, we denote a countable set of propositional variables. A configuration
with finite domain u ⊆ r is a function x : u → {0, 1} that associates a value
x(X) ∈ {0, 1} with every variable X ∈ u. Thus, a configuration x ∈ {0, 1}u
represents an assignment of Boolean values to the variables in u.

Definition 1. A Boolean function f with domain u is a function f : {0, 1}u→
{0, 1} that assigns a value f(x) ∈ {0, 1} to each configuration x ∈ {0, 1}u.

Given a configuration x with domain u ⊆ r, we denote by x↓w the projection of
x to a subset w ⊆ u. Let f and g be two Boolean functions with domains u and
w, respectively. The disjunction (f ∨ g) and the conjunction (f ∧ g) of f and g
are Boolean functions with domain u ∪ w, defined for every x ∈ {0, 1}u∪w by:

(f ∨ g)(x) = max{f(x↓u), g(x↓w)}, (f ∧ g)(x) = f(x↓u)× g(x↓w).

The negation of f (denoted by ¬f) is a Boolean function with domain u, defined
for every x ∈ {0, 1}u by: (¬f)(x) = 1− f(x).

Now, we explain how the propositional semantics associates ADTrees with
Boolean functions. Let B denote the set of all basic actions. First, for every
B ∈ B, a propositional variable XB ∈ r is constructed. We assume that for
B,B′ ∈ B, B �= B′ =⇒ XB �= XB′ . Next, a Boolean function ft is associated
with every ADTree t, as follows.

– If t = B ∈ B, then fB : {0, 1}{XB} → {0, 1} is defined as fB(XB) = XB. In
other words, the Boolean function associated with B is an identity function.
Thus, we often abuse notation and use XB instead of fB.

– If t is disjunctively refined into t1, . . . tk, then1 ft =
k∨

i=1

fti ,

– If t is conjunctively refined into t1, . . . tk, then ft =
k∧

i=1

fti ,

– If t is countered, then ft = ft1 ∧ ¬ft2 , where t1 corresponds to the refining
subtree and t2 represents the countering subtree.

1 Here,
∧

and
∨

stand for extensions of conjunction and disjunction of two Boolean
functions to any finite number of Boolean functions. They are well-defined by asso-
ciativity of × and max.
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Example 2. Applying the introduced recursive construction results in the follow-
ing Boolean function for the ADTree t from Figure 1:

ft =
(
(XSE ∨XDU) ∧ ¬(XIA ∧ (XRA ∧ ¬XSA))

)
∧XEV. (1)

Given an ADTree t, we denote by vart the domain of the Boolean function
ft. In other words, vart is the set of propositional variables corresponding to
the basic actions involved in t. A configuration x ∈ {0, 1}vart represents which
actions succeed (the corresponding variables are set to 1) and which do not (the
corresponding variables are set to 0). Following our terminology convention from
Remark 1, if ft(x) = 1, then we say that x is an attack with respect to t.

3 Probabilistic Evaluation of ADTrees

The most often used computational procedure for quantitative assessment of
ADTrees relies on a bottom-up procedure [26,18,13,14]. In this approach, val-
ues are assigned to the basic actions and the bottom-up algorithm is used to
determine the values of the remaining nodes as a function of the values of their
children. The computation stops when the value for the root node has been
found. Since the value of a node only depends on the values of its children,
and not on their meaning, the bottom-up procedure cannot take dependencies
between actions into account. Thus, this technique implicitly assumes that all
actions of an ADTree are independent. In the case of the probability parameter,
such an assumption is unrealistic. For instance, the probability that the defender
runs an anti-virus program depends on whether the anti-virus is installed or not.

In order to compute the probability of attacking a system, while taking depen-
dencies between involved actions into account, we propose a framework which
combines attack–defense trees with Bayesian networks.

3.1 Bayesian Network Associated with an ADTree

A Bayesian network [20] is a graphical representation of a joint probability dis-
tribution over a finite set of variables with finite domains. The network itself is
a directed, acyclic graph that reflects the conditional interdependencies between
the variables associated with the nodes of the network. A directed edge from
the node associated with variable X1 to the node associated with variable X2

means that X2 stochastically depends on X1. Each node contains a conditional
probability table that quantifies the influence between the variables. The joint
probability distribution p of a Bayesian network over {X1, . . . , Xn} is given by

p(X1, . . . , Xn) =

n∏
i=1

p(Xi| par(Xi)), (2)

where, par(Xi) denotes the set of nodes that have an outgoing edge that points
into Xi. If the set par(Xi) is empty, the conditional probability becomes an
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ordinary probability distribution. Nodes (or subgraphs) of the Bayesian network
that are unconnected represent stochastically independent (sets of) variables.

Our goal is to create a Bayesian network depicting stochastic dependencies
between the actions involved in a security scenario given as an ADTree. In the
ADTree methodology, refined nodes do not contain any additional information,
other than how their children are connected (conjunctively or disjunctively).
This means that refined nodes do not depict any additional actions. This is why,
when constructing a Bayesian network for an ADTree, we take only basic actions
into account.

A Bayesian network associated with an ADTree t, denoted by BNt, is a
Bayesian network over the set of propositional variables vart, such that there
exists a directed edge from XA to XB if and only if action B stochastically de-
pends on action A. Bayesian networkBNt complements ADTree t with additional
information which is not contained in t. The structure of the Bayesian network
BNt is usually constructed manually. This process can however be supported by
numerous existing approaches for constructing Bayesian networks [8].

Example 3. A Bayesian network BNt associated with our running ADTree t is
shown in Fig. 2. The joint probability distribution for BNt is

p(XEV, XSE, XDU, XSA, XRA, XIA) = p(XRA|XIA)× p(XIA)× (3)
p(XEV|XSE, XDU)× p(XSE|XSA)× p(XDU|XSA)× p(XSA).

Install Anti-virus Run Anti-virusp(XIA = 1) = 0.6

p(XRA = 1|XIA = 1) = 0.9
p(XRA = 1|XIA = 0) = 0.0

Send E-mail
with Attachment

Execute
Virus

Spoof
Anti-virus

Distribute
USB Stick

p(XDU = 1|XSA = 1) = 0.4
p(XDU = 1|XSA = 0) = 0.5

p(XEV = 1|XSE = 1, XDU = 1) = 0.9
p(XEV = 1|XSE = 1, XDU = 0) = 0.2
p(XEV = 1|XSE = 0, XDU = 1) = 0.8
p(XEV = 1|XSE = 0, XDU = 0) = 0.1

p(XSE = 1|XSA = 1) = 0.9
p(XSE = 1|XSA = 0) = 0.5

p(XSA = 1) = 0.3

Fig. 2. Bayesian network BNt associated with ADTree t from Figure 1
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The conditional probability tables used in Figure 2 have been constructed on an
intuitive basis. The accuracy of the input values, as well as the actual methods
for their estimation are a research topic in itself and are outside the scope of this
submission. In the rest of the paper, we assume that the conditional probability
tables have been constructed and are available.

3.2 Probabilistic Computations in the Presence of Dependencies

We now present our framework for probability computations on an ADTree t,
taking the dependencies between the involved actions into account. Our compu-
tation makes use of the Boolean function ft and the Bayesian network BNt.

Given configuration x ∈ {0, 1}vart , we define

ψt(x) = ft(x) × p(x), (4)

where p is the joint probability distribution of BNt. If x is an attack with respect
to t, then ft(x) = 1 and ψt(x) returns the probability value for x from the
Bayesian network, representing the success probability of attack x. If x is not
an attack with respect to t, then ft(x) = 0 and thus ψt(x) = 0.

Example 4. Consider the situation where the attacker installs a virus file on the
system by sending an e-mail with attachment (XSE = 1 and XDU = 0), executes
the virus file (XEV = 1), but does not use a fake anti-virus program (XSA = 0).
The defender, in turn, installs a real anti-virus (XIA = 1) which however is not
running (XRA = 0). The corresponding configuration

x = (XEV = 1, XSE = 1, XDU = 0, XSA = 0, XRA = 0, XIA = 1)

is an attack, because

ft(x)
(1)
=

((
(XSE ∨XDU) ∧ ¬(XIA ∧ (XRA ∧ ¬XSA))

)
∧XEV

)
(x) = 1.

By instantiating formula (3) with values from Fig. 2, we obtain that this attack
will be successfully executed with the probability

ψt(x) = ft(x) × p(x) = p(XEV = 1|XSE = 1, XDU = 0)× p(XSE = 1|XSA = 0)

×p(XDU = 0|XSA = 0)× p(XSA = 0)× p(XRA = 0|XIA = 1)× p(XIA = 1)

= 0.2× 0.5× (1− 0.5)× (1− 0.3)× (1− 0.9)× 0.6 = 0.0021.

Next, assume we are not interested in calculating the probability of success-
fully executing a specific set of basic actions, but more generally in the success
probability of attacking a system according to the scenario represented with
ADTree t. This corresponds to the sum of the probabilities of all possible at-
tacks with respect to t. We thus have

P (t) =
∑

x∈{0,1}vart

ψt(x)
(4)
=

∑
x∈{0,1}vart

ft(x)× p(x). (5)
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We refer to the value P (t) as the probability related to ADTree t. Finally, the
success probability of the most probable attack with respect to t is computed as

Pmax(t) = max
x∈{0,1}vart

ψt(x)
(4)
= max

x∈{0,1}vart

ft(x) × p(x). (6)

4 ADTrees as Constraint Systems

We know that the number of possible configurations is exponential with respect
to the number of basic actions. Thus, for large systems, the brute force compu-
tation of P (t) and Pmax(t), as suggested by formulæ (5) and (6), is no longer
possible. We now present methods allowing us to represent P (t) and Pmax(t) in
a factorized form, in order to increase the efficiency of their computations.

4.1 Indicator Functions for ADTrees

We employ an encoding technique from constraint reasoning and construct a
factorized indicator function φt for the Boolean function ft. Indicator φt maps
to 1 if and only if its arguments represent a valid assignment with respect to ft.
The construction of the global indicator φt relies on local indicators that make
use of inner variables and are defined as follows.

1. If ft =
k∨

i=1

fti , then the propositional variables Y, Y1, . . . , Yk are associated

with ft, ft1 , . . . , ftk , respectively, and the local indicator function for ft is
defined as: φ(Y, Y1, . . . , Yk) = 1 if Y = max{Y1, . . . , Yk} and 0 otherwise.

2. If ft =
k∧

i=1

fti , then the propositional variables Y, Y1, . . . , Yk are associated

with ft, ft1 , . . . , ftk , respectively, and the local indicator function for ft is
defined as: φ(Y, Y1, . . . , Yk) = 1 if Y = Y1 × . . .× Yk and 0 otherwise.

3. If ft = ft1∧¬ft2 , then the propositional variables Y , Y1 and Y2 are associated
with ft, ft1 and ft2 , respectively, and the local indicator function for ft is
defined as: φ(Y, Y1, Y2) = 1 if Y = Y1 × (1− Y2) and 0 otherwise.

Example 5. A step-wise construction of the local indicators for the Boolean func-
tion given in Example 2 proceeds as follows:

ft =
(
(XSE ∨XDU)︸ ︷︷ ︸

Y1

∧¬ (XIA ∧ (XRA ∧ ¬XSA)︸ ︷︷ ︸
Y2

)

︸ ︷︷ ︸
Y3

)

︸ ︷︷ ︸
Y4

∧XEV

︸ ︷︷ ︸
Yt
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In this case, the inner variables are Y1, Y2, Y3, Y4, Yt and the local indicators are

φ1(Y1, XSE, XDU) = 1 exactly if Y1 = max(XSE, XDU),

φ2(Y2, XRA, XSA) = 1 exactly if Y2 = XRA × (1−XSA),

φ3(Y3, XIA, Y2) = 1 exactly if Y3 = XIA × Y2,

φ4(Y4, Y1, Y3) = 1 exactly if Y4 = Y1 × (1− Y3),

φ5(Yt, Y4, XEV) = 1 exactly if Yt = Y4 ×XEV.

Let t be an ADTree. Having constructed all local indicators, we can build the
global indicator function φt. The domain of φt contains all variables used by the
local indicators, i.e., the inner variables and the variables corresponding to basic
actions of t. An assignment over all variables is valid if and only if each local
assignment is valid. Hence, we may compute the global indicator function for ft
by multiplying all its local indicators. For the function from Example 5, we get:

φt(Y1, Y2, Y3, Y4, Yt, XSE, XDU, XRA, XSA, XIA, XEV) = φ1(Y1, XSE, XDU)×
φ2(Y2, XRA, XSA)× φ3(Y3, XIA, Y2)× φ4(Y4, Y1, Y3)× φ5(Yt, Y4, XEV). (7)

In this paper, we use the following notation: given the global indicator function
φt for t, we denote by Yt the inner variable corresponding to the entire tree t.
The set of all inner variables of φt is denoted by dt.

Consider an indicator function φ(Y, Y1, . . . , Yk). Let z be an assignment of
values to the variables Y1, . . . , Yk. There is, by definition, exactly one value y ∈
{0, 1} for Y , such that φ(y, z) = 1. Since the global indicator function is obtained
by multiplication, we may directly conclude the following theorem.

Theorem 1. Consider an ADTree t with basic actions B1, . . . , Bn and its global
indicator function φt. Given a specific assignment x of values to the variables
XB1 , . . . , XBn corresponding to basic actions, there is exactly one assignment y
to the inner variables from dt, such that φt(y,x) = 1.

An immediate consequence of Theorem 1 is that, for a specific assignment x ∈
{0, 1}vart of values to the variables associated with basic actions, we have

max
y∈{0,1}dt

φt(y,x) =
∑

y∈{0,1}dt

φt(y,x) = 1. (8)

When performing probabilistic computations as specified by formulæ (4), (5)
and (6), we are only interested in those combinations of basic actions that cor-
respond to attacks. Thus, when reasoning in terms of global indicator functions,
we need to restrict our considerations to those configurations where variable Yt

equals 1. This can be achieved by conditioning φt on Yt = 1, which means that
we invalidate all configurations with Yt = 0. We therefore define a filter Ft for
the ADTree t that satisfies Ft(Yt) = 1 if and only if Yt = 1. In other words,
Ft : {0, 1}{Yt} → {0, 1} is the identity function for variable Yt. Multiplying filter
Ft and global indicator φt results in a function, denoted by φt|Yt=1, which maps
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to 1 if and only if the assignment of values to the variables is valid with respect
to ft and it represents an attack according to t. We thus have,

∀z ∈ {0, 1}vart ∪dt : φt|Yt=1(z) = Ft(z
↓{Yt})× φt(z). (9)

Let t be an ADTree, φt be its global indicator function and Ft be the filter for t.
Assume furthermore that we are given a specific configuration x ∈ {0, 1}vart .
Configuration x is an attack with respect to t if and only if, there exists y ∈
{0, 1}dt, such that φt|Yt=1(y,x) maps to 1. Using formula (8), we obtain

max
y∈{0,1}dt

φt|Yt=1(y,x) =
∑

y∈{0,1}dt

φt|Yt=1(y,x) = ft(x) =

{
1 if x is an attack
0 otherwise.

(10)

4.2 Indicators for Probability Computation

Making use of the property described by (10), the procedure for the probabilistic
computations developed in Section 3.2 can be redefined as follows. Let t be an
ADTree and x ∈ {0, 1}vart be an assignment of Boolean values to the variables
corresponding to the basic actions of t. If x is an attack with respect to t, then
its probability is computed as

ψt(x)
(4)
= ft(x)× p(x)

(10), distrib.
=

∑
y∈{0,1}dt

(
φt|Yt=1(y,x) × p(x)

)
(11)

(10), distrib.
= max

y∈{0,1}dt

(
φt|Yt=1(y,x) × p(x)

)
. (12)

The probability related to ADTree t is expressed as

P (t)
(5)
=

∑
x∈{0,1}vart

ψt(x)
(11)
=

∑
x∈{0,1}vart

∑
y∈{0,1}dt

(
φt|Yt=1(y,x) × p(x)

)
=

∑
z∈{0,1}vart ∪dt

(
φt|Yt=1(z) × p(z↓vart)

)
. (13)

Similarly, the probability of the most probable attack with respect to t is

Pmax(t)
(6)
= max

x∈{0,1}vart

ψt(x)
(12)
= max

z∈{0,1}vart ∪dt

(
φt|Yt=1(z)× p(z↓vart)

)
. (14)

Example 6. Let u = {Y1, Y2, Y3, Y4, Yt, XSE, XDU, XRA, XSA, XIA, XEV}. The
factorized form for the probability related the ADTree from Figure 1 is

P (t)
(13),(9),(7),(3)

= (15)∑
z∈{0,1}u

(
Ft(z

↓{Yt})× φ1(z
↓{Y1,XSE,XDU})× φ2(z

↓{Y2,XRA,XSA})× φ3(z
↓{Y3,XIA,Y2})

× φ4(z
↓{Y4,Y1,Y3})× φ5(z

↓{Yt,Y4,XEV})× p(z↓{XEV ,XSE,XDU})× p(z↓{XSE,XSA})

× p(z↓{XDU,XSA})× p(z↓{XSA})× p(z↓{XRA,XIA})× p(z↓{XIA})
)
.
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5 Efficiency Considerations

The factorization of the global indicator function, in terms of local indicators
which are bounded in size, introduces additional structure that can be exploited
for so-called local computation [22]. In this section, we show how the fusion
algorithm allows us to improve the efficiency of evaluating formulas (13) and (14).

5.1 Semiring Valuations

An algebraic structure 〈A,⊕,(〉 with binary operations ⊕ and ( is called com-
mutative semiring if both operations are associative, commutative, and if ( dis-
tributes over ⊕, i.e., if for a, b, c ∈ A, we have a( (b⊕ c) = (a( b)⊕ (a( c) and
(a⊕b)(c = (a(c)⊕(b(c). Typical examples of commutative semirings include
the Boolean semiring 〈{0, 1},max,×〉, the tropical semiring 〈N,min,+〉, the
product t-norm semiring 〈[0, 1],max,×〉 and the arithmetic semiring 〈R,+,×〉.

Let u ⊆ r be a finite set of propositional variables and 〈A,⊕,(〉 be a commu-
tative semiring. A semiring valuation over 〈A,⊕,(〉 is a function φ : {0, 1}u→ A
associating a value from A with each configuration from {0, 1}u. We denote by
dom(φ) = u the domain of valuation φ. The combination of two valuations φ
and ψ over a semiring 〈A,⊕,(〉 is defined, for all x ∈ {0, 1}dom(φ)∪dom(ψ), as:

(φ⊗ ψ)(x) = φ(x↓dom(φ))( ψ(x↓dom(ψ)).

The elimination of variableX ∈ dom(φ) is defined, for all x∈{0, 1}dom(φ)\{X}, as:

φ−X(x) = φ(x, 0)⊕ φ(x, 1).

Due to associativity of semiring addition ⊕, we can eliminate variables in any
order. For {X1, . . . , Xm} ⊆ dom(φ), we may therefore write

φ−{X1,...,Xm} =
(
. . .

(
(φ−X1 )−X2

)
. . .

)−Xm

.

Indicator functions are Boolean semiring valuations over 〈{0, 1},max,×〉.
Arithmetic semiring valuations over 〈R,+,×〉 capture conditional probability
tables from Bayesian networks, and product t-norm semiring valuations over
〈[0, 1],max,×〉 compute maximum attack probabilities, as in formula (14).

It has been shown in [10] that semiring valuations over arbitrary commutative
semirings always satisfy the axioms of a valuation algebra [9,22]. The compu-
tational interest in valuation algebras is stated by the inference problem. Given
a set of (semiring) valuations {φ1, . . . , φn}, called knowledgebase, with domains
ui = dom(φi), for i = 1, . . . , n, and a set of variables {X1, . . . , Xm} ⊆ u1∪. . .∪un,
the inference problem consists of computing

φ−{X1,...,Xm} = (φ1 ⊗ . . .⊗ φn)
−{X1,...,Xm}. (16)



A Probabilistic Framework for Security Scenarios with Dependent Actions 267

Example 7. Let u = {Y1, Y2, Y3, Y4, Yt, XSE, XDU, XRA, XSA, XIA, XEV}. Com-
puting the probability in Example 6 amounts to solving the inference problem(
Ft(z

↓{Yt})× φ1(z
↓{Y1,XSE,XDU})× . . .× p(z↓{XIA})

)−u

=∑
z∈{0,1}u

(
Ft(z

↓{Yt})× φ1(z
↓{Y1,XSE,XDU})× . . .× p(z↓{XIA})

)
.

Here, the knowledgebase consists of all local indicator functions, filter Ft and all
conditional probability tables, which instantiate arithmetic semiring valuations.
Likewise, computing maximum attack probability, expressed by formula (14),
amounts to solving a similar inference problem over the product t-norm semiring.

5.2 Fusion

A direct evaluation of formulas (13), (14), and more generally of (16), is in
most cases not possible, due to the exponential complexity of combination of
semiring valuations. However, because the computational tasks are stated with
respect to a factorization of the global indicator function and the joint probability
distribution, we may exploit the additional structure inside the factorization and
perform calculations locally on the domain of the factors. Fusion [27] (or bucket-
elimination [5]) is one of the local computation algorithms that can be applied to
factorizations of arbitrary valuation algebras. Thus, we may use it for processing
inference problems obtained from ADTrees.

The elimination of a single variable X ∈ dom(φ) = dom(φ1) ∪ . . . ∪ dom(φn)
from a set {φ1, . . . , φn} of valuations can be performed as follows:

FusX({φ1, . . . , φn}) = {ψ−X} ∪ {φi : X /∈ dom(φi)}, (17)

where ψ =
⊗

i : X∈dom(φi)
φi. This means that we only need to eliminate X from

the factors that have X in the domain. As described in [9], the fusion algorithm
then follows by repeated application of this operation:

(φ1 ⊗ . . .⊗ φn)
−{X1,...,Xm} =

⊗
FusXm(. . . (FusX1({φ1, . . . , φn}))).

In every step i = 1, . . . ,m of the fusion algorithm, the combination in (17) creates
an intermediate factor ψi with domain dom(ψi). Then, variable Xi is eliminated
only from ψi in (17). We define λ(i) = dom(ψi) \ {Xi} called label and observe
that λ(m) = (dom(φ1) ∪ . . . ∪ dom(φn)) \ {X1, . . . , Xm}. The domains of all
intermediate results of the fusion algorithm are therefore bounded by the size of
the largest label plus one. The smaller the labels are, the more efficient fusion
is. We further remark that the labels depend on the chosen elimination sequence
for variables X1, . . . , Xm. Finding a sequence that leads to the smallest label is
NP-complete [1], however, there are good heuristics that achieve reasonable exe-
cution time [6]. In summary, the complexity of computing (16) is not necessarily
exponential in the number of variables involved in the problem, but only in the
size of the largest label, also called tree width [25], that occurs during fusion.
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We have applied fusion to the inference problem from Example 7. The results
show that, when fusion is used, time and space complexity of the computation
of P (t) for our running ADTree are bounded by 25. To compare, a naive, direct
computation, as in (15), is bounded by 211. We have also automated the compu-
tation of P (t) with the help of the open-source tool Nenok [23] which provides
an extensive library of generically implemented local computation algorithms.
When applying fusion, Nenok outputs the value of P (t) after 0.031 sec in con-
trast to 3.422 sec that the application requires to compute the same value in a
naive way, i.e., by using expression (15) directly.

6 Related Work

ADTrees are only one of more than 30 graphical formalisms for security assess-
ment, which are based on attack trees. A recent survey, by Kordy et al. [15]
presents a complete state of the art in the field of DAG-based approaches for
modeling of attacks and defenses. It summarizes existing formalisms, compares
their features and proposes their taxonomy. The reader is referred to this survey
for an overview of existing methods for quantitative, and in particular proba-
bilistic, analysis of security. In the remainder of this section, we compare our
framework with the most prominent, existing models that combine AND-OR
graphs with Bayesian networks.

Qin and Lee are one of the pioneers in applying Bayesian networks for secu-
rity analysis [24]. They propose a conversion of regular attack trees into Bayesian
networks, in order to make use of probabilistic inference techniques to evaluate
the likelihood of attack goals and predict potential upcoming attacks. Edges
representing disjunctive refinements in the tree are also present in the corre-
sponding Bayesian network, because they represent cause-consequence relations
between components. Contrary to our interpretation, a conjunction in attack
trees is assumed to have an explicit or implicit order in which the actions have
to be executed. This allows to convert conjunctions into a directed path in the
Bayesian network, starting from the first child, according to the given order,
and ending with the parent node. The construction from [24] implies that the
Bayesian network and the attack tree contain the same set of nodes. Furthermore
the Bayesian network models cause-consequence relationships that correspond
to the child-parent connections in the underlying attack tree. In our case, the
Bayesian network depicts additional dependencies that represent how different
basic actions are influenced by each other.

In [7], Frigault and Wang advance a model, called Bayesian attack graphs.
They construct a Bayesian network starting from an attack graph which depicts
how multiple vulnerabilities may be combined in an attack. The resulting di-
rected acyclic graph contains all nodes of the original attack graph. Employing
the CVSS mechanism [19], the nodes are then associated with the conditional
probability tables. In [21], Poolsappasit et al. revisit the framework of Bayesian
attack graphs to be able to deal with asset identification, system vulnerability
and connectivity analysis, as well as mitigation strategies. In addition to the con-
ditional probability tables that represent the probability with which an attack



A Probabilistic Framework for Security Scenarios with Dependent Actions 269

takes place, they consider edge probabilities expressing how likely a present at-
tack succeeds. Furthermore, the authors of [21] augment Bayesian attack graphs
with additional nodes and values representing defenses. This extended structure
allows them to solve the multiobjective optimization problem of how to select
optimal defenses. Even though this model is similar to ours, it does not cover
interleaved attacks and defenses.

Yet another approach that makes use of Bayesian networks for security anal-
ysis was described by Sommestad et al. [28]. It transforms defense trees [3] (an
extension of attack trees with defenses attached to leaf nodes) into extended
influence diagrams [17] (an extension of Bayesian networks with conjunctive and
disjunctive nodes as well as countermeasures). The relationships between the
nodes are encoded in conditional probability tables assigned to each node. The
authors state that with this setup, Bayesian inference can be used to derive val-
ues, however they do not provide detailed computation algorithms. Our paper
specifies how the necessary computational steps could be performed.

Contrary to our design, none of the above approaches separate the logical
structure (conjunctions and disjunctions) from the probabilistic structure. One
advantage of our approach is that we are not transforming one model into an-
other, but we are using them modularly. Merging the two methodologies is only
implicitly done during fusion. Unlike our model, all related approaches assume
a one-to-one correspondence between the nodes in the original graph and the
Bayesian network. Since in our framework, the Bayesian network concerns only
basic actions, its size is much smaller compared to the size of Bayesian networks
used by the approaches described in this section.

7 Conclusion and Future Work

This paper proposes to combine the ADTree methodology with Bayesian net-
works in order to evaluate probabilistic measures on attack–defense scenarios
involving dependent actions. The introduced approach improves upon the stan-
dard, bottom-up, computational routine for attack tree-based formalisms, which
assumes that all actions involved in the model are independent. By lifting the in-
dependency assumption, we provide a pragmatic methodology for accurate prob-
abilistic assessment of security scenarios modeled using attack trees or ADTrees.

In our framework, the Bayesian network does not replace the information rep-
resented by the structure of an ADTree, but complements it with additional
probabilistic dependencies between attack steps, which cannot be depicted using
AND-OR relations. Keeping the two models separated allows us to take advan-
tage of the strengths of both formalisms. The propositional encoding of ADTrees
is used to identify configurations which represent attacks. Bayesian networks to-
gether with the fusion algorithm and techniques based on semiring valuation
algebras provide ways to improve the efficiency of probabilistic computations.

To support modeling and quantitative analysis of security using the ADTree
methodology, a free software tool, called ADTool [11], has recently been devel-
oped. We are currently extending the functionality of ADTool by interfacing it
with Nenok, so that it can handle the framework introduced in this paper. Since
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Nenok implements generic algorithms for efficient processing of semiring-based
computations, the extended tool will support efficient, automated probabilistic
analysis of real-world, possibly large-scale, attack–defense scenarios.

Employing fusion implies that time and space complexity are bounded by a
structural parameter of the problem rather than by the total number of variables
involved. It thus cannot be predicted in general how well fusion can cope with
large problems involving many variables. It all depends on whether a small tree
width (or good elimination sequence) can be found by some heuristic. Prediction
of the tree width is possible for specific families of graphs [4]. It is one of our
future research directions to investigate whether combination of an ADTree with
a Bayesian network, both produced by human security experts, would satisfy the
definition of one such family.

The algorithmic technique based on semiring valuations that we have used
in this paper also works in a broader context. From an algebraic perspective,
the combination of indicator functions and probabilities is possible because the
Boolean semiring for indicator functions is a sub-algebra of both semirings used
for expressing probabilities, i.e., the arithmetic and product t-norm semiring.
Consequently, we may directly apply the same construction to other semiring
valuations under the additional condition that the corresponding semiring takes
the Boolean semiring as sub-algebra. The large family of t-norm semirings [22]
are important candidates used in possibility and fuzzy set theory [29].
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Abstract. Cryptographic protocols rely on message-passing to coordi-
nate activity among principals. Many richly developed tools, based on
well-understood foundations, are available for the design and analysis of
pure message-passing protocols. However, in many protocols, a princi-
pal uses non-local, mutable state to coordinate its local sessions. Cross-
session state poses difficulties for protocol analysis tools.

We provide a framework for modeling stateful protocols, and a hy-
brid analysis method. We leverage theorem-proving—specifically, PVS—
for reasoning about computations over state. An “enrich-by-need”
approach—embodied by CPSA—focuses on the message-passing part.
The Envelope Protocol, due to Mark Ryan furnishes a case study.

Protocol analysis is largely about message-passing in a model in which every mes-
sage transmitted is made available to the adversary. The adversary can deliver
the messages transmitted by the regular (i.e. compliant) principals, if desired,
or not. The adversary can also retain them indefinitely, so that in the future he
can deliver them, or messages built from them, repeatedly.

However, some protocols also interact with long-term state. For instance, the
Automated Teller Machine protocols interact with the long-term state stored in
banks’ account databases. Protocol actions are constrained by that long-term
state; for instance, an ATM machine will be told not to dispense cash to a
customer whose account has insufficient funds. Protocol actions cause updates
to long-term state; for instance, a successful withdrawal reduces the funds in the
customer’s account. State-manipulating protocols are important to electronic
finance and commerce. They are also important in trusted computing, i.e. in
systems using Trusted Platform Modules for attestation and secrecy. Indeed, as
software interacts with real-world resources in interoperable ways, cryptographic
protocols that manipulate long-term state will be increasingly central.

Long-term state is fundamentally different from message passing. The adver-
sary can always choose to redeliver an old message. But he cannot choose to
redeliver an old state; for instance, the adversary in an ATM network cannot
choose to replay a withdrawal, applying it to a state in which he has sufficient
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funds, in case he no longer does. Regular principals maintain long-term state
across protocol executions in order to constrain subsequent executions, and en-
sure that future runs will behave differently from past runs.

The Cryptographic Protocol Shapes Analyzer [24] (cpsa) is our program for
automatically characterizing the possible executions of a protocol compatible
with a specified partial execution. It is grounded in strand space theory. There
exists a mathematically rigorous theory [18] that backs up the implementation
of cpsa in Haskell, and proves the algorithm produces characterizations that are
complete, and that the algorithm enumerates these characterizations.

Part of state manipulation can be encoded by message-passing. In this “state-
passing style,” reception of a message bearing the state represents reading from
the state, and transmission of an updated state as a message represents writing
to the state. These conventions help cpsa analyze protocols with state. If a
protocol interacts with the state, we add state-bearing receive/transmit event
pairs to its roles, and cpsa attempts to find paths through state space as it
generates executions. However, cpsa constructs some executions which are in
fact not possible. In these executions, a state-bearing message is transmitted
from one node and then received by two different state-receiving nodes.

cpsa does not recognize that this is not possible in a state-history, and thus
provides only an approximate analysis. Showing the correctness of the protocol
requires a more refined analysis.

Our contribution. We apply cpsa to a system that relies on state, coupling
cpsa with the Prototype Verification System [21] (pvs) proof assistant.

We specified a version of strand space theory in pvs. On top of this theory,
we encoded the result of a cpsa analysis run as a formula in the pvs logic. This
formula is justified by the cpsa completeness result [23]. We then use this for-
mula as an axiom in pvs. Proofs using this axiom may imply the existence of
additional message transmission/receptions, leading to an enriched cpsa anal-
ysis. In this way the theorem-proving and execution-finding analysis activities
cooperate, over the common semantic foundation of strand space theory. Hence,
the combination is semantically sound.

Outline of the Analysis. Our paradigm is cpsa’s enrich-by-need approach [15].

Tbnd
��

����
Tbnd (Π)

�����

Tannot
�� Tannot (Π,�)

Tstate
��

����
Tstate(�)

����

Fig. 1. Theory Inclusions

That is, we ask: What kinds of ex-
ecutions are possible, assuming that
a particular pattern of events has
occurred? To verify authentication
properties, we observe that all execu-
tions contain certain required events.
To verify confidentiality properties,
we consider patterns that include a
disclosure, and observing that no exe-

cutions are possible. Our method involves a conversation (so to speak) between
cpsa and pvs. The main steps are:

1. Within pvs we define theories (i) Tbnd of strand spaces and protocol ex-
ecutions (“bundles”) and (ii) Tstate of transition relations and their state
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histories (see Fig. 1). Tannot is their union, a theory of protocol executions
where some protocol steps are annotated with a state transition. Augmenting
Tbnd with information about a protocol Π produces Tbnd (Π). Augmenting
Tstate with information about a particular transition relation � produces
Tstate(�). The union of Tannot , Tbnd(Π), and Tstate(�) is Tannot (Π,�).
Our pvs theories are in fact somewhat coarser than this.

2. Within the state transition theory Tstate(�), we prove lemmas in pvs such
as Lemma 1 below. Some of their consequences in the annotated protocol
theory Tannot (Π,�) use only the limited vocabulary of Tbnd(Π); we call
them bridge lemmas. Lemma 3 is a bridge lemma. They bring information
back from the state world to the protocol world.

3. Independently, cpsa analyzes the protocols, with state-manipulation mod-
eled as message-passing, but without any special knowledge about state
transition histories. A sentence, called a shape analysis sentence [22,15],
summarizes its results in a sentence in the language of Tbnd(Π). A shape
analysis sentence, such as Lemma 2, is used as an axiom in proofs within
pvs.

4. Using bridge lemmas and state analysis sentences jointly, we infer conclusions
about protocol runs in Tbnd (Π). If we prove a contradiction, that shows that
the situation given to cpsa cannot in fact occur. Otherwise, we may prove
that additional message transmissions and receptions occurred, as in Thm. 4.

5. We incorporate these additional nodes into a new cpsa starting point, and
allow cpsa to draw conclusions. Additional round trips are possible.

1 The Envelope Protocol

The proof of an important security goal of the Envelope Protocol [2] was the
focus of most of our effort. The protocol allows someone to package a secret such
that another party can either reveal the secret or prove the secret never was and
never will be revealed.

Protocol Motivation. The plight of a teenager motivates the protocol. The
teenager is going out for the night, and her parents want to know her destination
in case of emergency. Chafing at the loss of privacy, she agrees to the following
protocol. Before leaving for the night, she writes her destination on a piece of
paper and seals the note in an envelope. Upon her return, the parents can prove
the secret was never revealed by returning the envelope unopened. Alternatively,
they can open the envelope to learn her destination.

The parents would like to learn their daughter’s destination while still pre-
tending that they have respected her privacy. The parents are thus the adversary.
The goal of the protocol is to prevent this deception.

Necessity of Long-Term State. The long-term state is the envelope. Once
the envelope is torn open, the adversary no longer has access to a state in which
the envelope is intact. A protocol based only on message passing is insufficient,
because the ability of the adversary monotonically increases. At the beginning of
the protocol the adversary can either return the envelope or tear it. In a purely
message-based protocol the adversary will never lose these abilities.
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Cryptographic Version. The cryptographic version of this protocol uses a
TPM to achieve the security goal. Here we restrict our attention to a subset
of the TPM’s functionality. In particular we model the TPM as having a state
consisting of a single Platform Configuration Register (PCR) and only respond-
ing to five commands. A boot command sets the PCR to a known value. The
extend command takes a piece of data, d, and replaces the current value val of
the PCR with the hash of d and val , i.e. #(d, val ). In fact, the form of extend
that we model, which is an extend within an encrypted session, also protects
against replay. These are the only commands that alter the value in a PCR.

The TPM provides other services that do not alter the PCR. The quote

command reports the value contained in the PCR and is signed in a way as to
ensure its authenticity. The create key command causes the TPM can create
an asymmetric key pair where the private part remains shielded within the TPM.
However, it can only be used for decryption when the PCR has a specific value.
The decrypt command causes the TPM to decrypt a message using this shielded
private key, but only if the value in the PCR matches the constraint of the
decryption key.

In what follows, Alice plays the role of the teenaged daughter packaging the
secret. Alice calls the extend command with a fresh nonce n in an encrypted
session. She uses the create key command constraining that new key to be used
only when a specific value is present in the PCR. In particular, the constraining
value cv she chooses is the following:

cv = #(“obtain”,#(n, val))

where val was the PCR value prior the extend command. She then encrypts her
secret v with this newly created key.

Using typical message passing notation, Alice’s part of the protocol might be
represented as follows (where k′ denotes the key created in the second line, and
where we still ignore the replay protection):

A → TPM : {|“extend”, n|}k
A → TPM : “create key”,#(“obtain”,#(n, val))

TPM→ A : k′

A → Parent : {|v|}k′

The parent acts as the adversary in this protocol. We assume he can perform all
the normal Dolev-Yao operations such as encrypting and decrypting messages
when he has the relevant key, and interacting with honest protocol participants.
Most importantly, the parent can use the TPM commands available in any or-
der with any inputs he likes. Thus he can extend the PCR with the string
obtain and use the key to decrypt the secret. Alternatively, he can extend the
PCR with the string refuse and then generate a TPM quote as evidence the
secret will never be exposed. The goal of the Envelope Protocol is to ensure
that once Alice has prepared the TPM and encrypted her secret, the parent
should not be able to both decrypt the secret and also generate a refusal quote,
{| “quote”,#(“refuse”,#(n, val )), {|v|}k′ |}aik .
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Sorts: M, �, A, S, D, E
Subsorts: A < �, S < �, D < �, E < �
Operations: bt :M TPM boot

ex :� ×M → M TPM extend
(·, ·) :� ×� → � Pairing
{| · |}(·) :� × A → � Asymmetric encryption
{| · |}(·) :� × S → � Symmetric encryption

(·)−1 : A → A Asymmetric key inverse

(·)−1 : S → S Symmetric key inverse
# :� → S Hashing
ai, bi : A Asymmetric key constants
si : S Symmetric key constants
di : D Data constants
ei : E Text constants
gi :� Tag constants

Equations: ai
−1 = bi bi

−1 = ai (i ∈ N)
∀k : A. (k−1)

−1
= k ∀k : S. k−1 = k

Fig. 2. Crypto Algebra with State Signature

A crucial fact about the PCR role in this protocol is the injective nature of
the hashing, ensuring that for every x

#(“obtain”,#(n, val)) �= #(“refuse”, x) (1)

2 The TPM Model

In this section we introduce our TPM state theory Tstate(�) focusing on repre-
senting the value of the PCR and how the TPM commands may change it.

Fig. 2 shows the signature of the order-sorted algebra used in this paper.
Sort M is the sort of TPM machine states and sort � is the top sort of mes-
sages. Messages of sort A (asymmetric keys), sort S (symmetric keys), sort D
(data), and sort E (text) are called atoms. Messages are atoms, tag constants,
or constructed using encryption {| · |}(·), hashing #(·), and pairing (·, ·), where
the comma operation is right associative and parentheses are omitted when the
context permits.

The algebra is the initial quotient term algebra over the signature. It is easy
to show that each term t of the algebra is equal to a unique term t′ with no
occurrences of the inverse operation (·)−1

; we choose this t′ to be the canonical
representative of t.

We use the function pcr to coerce TPM states, which are of sort M, to mes-
sages, specifically to symmetric keys of sort S:

pcr (bt) = s0 pcr(ex(t,m)) = #(t, pcr (m))

where constant s0 is known to all. Modeling the injectivity of the hash function
(cf. Equation 1), we postulate that the function pcr is injective.
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The definition of the TPM transition relation � is

m0 � m1 iff m1 = bt (boot)
or ∃t :�.m1 = ex(t,m0) (extend)
or m0 = m1 (quote, decrypt)

The create key command does not interact with the state.
In this framework we prove a crucial property of all executions which we

express in terms of the notion of a state having a message. A state has a
message if an extend operation with it is part of the state. For example,
ex(“obtain”, ex(v, bt)) has “obtain” and v, but it does not have “refuse”.

An infinite sequence of states π is a path if π(0) = bt and ∀i ∈ N. (π(i),
π(i + 1)) ∈ �. Paths in this TPM model have several useful properties. For
example, if a previous state is not a subterm of a state, there must have been
an intervening boot. Also, if a state has a message, and a previous state is a
boot state, there must have been an intervening transition that extends with
the message. These two properties can be combined into the property used by
the proof of the Envelope Protocol security goal: if a previous state is not a
subterm of a state that has a message, there must have been an intervening
transition that extends with the message. Lemma 1 formalizes this property in
our state theory Tstate(�), and we proved it using pvs.

Lemma 1 (Prefix Boot Extend)

∀π ∈ path, t :�, i, k ∈ N. i ≤ k ∧ π(k) has t
⊃ subterm(π(i), π(k))
∨ ∃j ∈ N. i ≤ j < k ∧ π(j + 1) = ex(t, π(j))

3 Strand Spaces

This section introduces our strand space theory of the envelope protocol, Tbnd (Π).
In strand space theory [25], a strand represents the local behavior of a principal
in a single session. The trace of a strand is a linearly ordered sequence of events
e0 ⇒ · · · ⇒ en−1, and an event is either a message transmission +t or a recep-
tion −t, where t has sort �. A strand space Θ is a map from a set of strands to
a set of traces. In the pvs theory of strand spaces, the set of strands is a prefix
of the natural numbers, so a strand space is a finite sequence of traces.

In a strand space, a node identifies an event. The nodes of strand space Θ are
{(s, i) | s ∈ Dom(Θ), 0 ≤ i < |Θ(s)|}, and the event at a node is evtΘ(s, i) =
Θ(s)(i).

A message t0 is carried by t1, written t0  t1 if t0 can be extracted from a
reception of t1, assuming the necessary keys are available. In other words, is the
smallest reflexive, transitive relation such that t0  t0, t0  (t0, t1), t1  (t0, t1),
and t0  {|t0|}t1 . A message originates in trace c at index i if it is carried by
c(i), c(i) is a transmission, and it is not carried by any event earlier in the
trace. A message t is non-originating in a strand space Θ, written non(Θ, t), if
it originates on no strand. A message t uniquely originates in a strand space Θ at
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node n, written uniq(Θ, t, n), if it originates in the trace of exactly one strand s
at index i, and n = (s, i).

The model of execution is a bundle. The pair Υ = (Θ,→) is a bundle if it
defines a finite directed acyclic graph, where the vertices are the nodes of Θ,
and an edge represents communication (→) or strand succession (⇒) in Θ. For
communication, if n0 → n1, then there is a message t such that evtΘ(n0) = +t
and evtΘ(n1) = −t. For each reception node n1, there is a unique transmission
node n0 with n0 → n1. We use ≺ to denote the causal ordering of nodes in a
bundle: the transitive closure of → ∪ ⇒. The strand space associated with a
bundle Υ will be denoted ΘΥ unless the association is clear from the context.

When a bundle is a run of a protocol, the behavior of each strand is constrained
by a role. Adversarial strands are constrained by roles as are non-adversarial
strands. A protocol is a set of roles, and a role is a set of traces. A trace c is
an instance of role r if c is a prefix of some member of r. More precisely, for
protocol P , we say that bundle Υ = (Θ,→) is a run of protocol P if there exists
a role assignment ra ∈ Dom(Θ) → P such that for all s ∈ Dom(Θ), Θ(s) is
an instance of ra(s). In what follows, we fix the protocol P and only consider
bundles that are runs of P .

create(t : A|S|D|E) = +t tag i = + gi
pair(t0 :�, t1 :�) = −t0 ⇒ −t1 ⇒ +(t0, t1)
sep(t0 :�, t1 :�) = −(t0, t1) ⇒ +t0 ⇒ +t1
enc(t :�, k : A|S) = −t ⇒ −k ⇒ +{|t|}k
dec(t :�, k : A|S) = −{|t|}k ⇒ −k−1 ⇒ +t

hash(t :�) = −t ⇒ +#t

Fig. 3. Adversary Traces

The roles that constrain adversar-
ial behavior are defined by the func-
tions in Figure 3. The adversary can
execute all instances of these patterns.
For the encryption related roles, k:A|S
asserts that k is either a symmetric or
asymmetric key. For the create role,
t : A|S|D|E asserts that t is an atom.

Atoms, characteristically, are what the adversary can create out of thin air (mod-
ulo origination assumptions).

There is a role for each TPM operation. We represent them using a state-
passing style. The state-passing style allows cpsa to do draw conclusions about
where states could come from. Each role receives a message encoding the state
at the time it occurs. It transmits a message encoding the state after any state
change it causes. We do the encoding using a special tag g0 and an encryption.
For a transition m0 � m1, the role contains

· · · ⇒ −{| g0, pcr(m0)|}#k ⇒ +{| g0, pcr(m1)|}#k ⇒ · · · .

Here k is an uncompromised symmetric key used only in TPM operations. The
states are encoded as encryptions using the hash #k of k. Tag g0 is included to
ensure that a state-bearing message is never confused with any other protocol
message. State-passing style is less restrictive than actual state histories, since a
state-bearing message may be received many times, even if it is sent only once.

Using these receive-transmit pairs of state-bearing messages the TPM roles
are represented in Fig. 4, where tag g1 is obtain and tag g2 is refuse. In the extend
role, we now show the two initial messages that provide replay prevention; the
TPM supplies a fresh nonce as a session ID that must appear with the value to



A Hybrid Analysis for Security Protocols with State 279

boot(k : S, p :�) =
− g3 ⇒ −{| g0, p|}#k ⇒ +{| g0, s0 |}#k

extend (sid : D, tpmk : A, esk , k : S, p, t :�) =
−(g4, tpmk , {|esk |}tpmk ) ⇒ +(g4, sid) ⇒ −{| g5, t, sid |}esk

⇒ −{| g0, p|}#k ⇒ +{| g0,#(t, p)|}#k

quote(k : S, aik : A, p, n :�) =
−(g6, n) ⇒ −{| g0, p|}#k ⇒ +{| g0, p|}#k ⇒ +{| g6, p, n|}aik

decrypt (m, t :�, k′, aik : A, k : S) =
−(g7, {|m|}k′ ) ⇒ −{| g8, k′, p|}aik ⇒

−{| g0, p|}#k ⇒ +{| g0, p|}#k ⇒ +m

createkey (k, aik : A, t :�) =
−(g9, t) ⇒ +{| g8, k, t|}aik

g0 state
g1 obtain
g2 refuse
g3 boot
g4 session
g5 extend
g6 quote
g7 decrypt
g8 created
g9 create key

Fig. 4. State-Bearing Traces

be extended into the PCR. The createkey role does not interact with the state.
It simply creates a key that will be constrained by the state in the boot role.

Alice’s role, including the messages to prevent replays, is:

alice(sid , v : D, esk : S, k, tpmk , aik : A, n : E, p :�) =
+(g4, tpmk , {|esk |}tpmk)⇒ −(g4, sid)
⇒ +{| g5, n, sid |}esk ⇒ +(g9,#(g1,#(n, p)))
⇒ −{| g8,#(g1,#(n, p))|}aik ⇒ +{|v|}k

The parameters sid and tpmk help prevent replays. To make formulas more
comprehensible, we omit them.

4 CPSA

This section discusses how we use our analysis tool cpsa to infer results in the
theory Tbnd(Π). cpsa carries out enrich-by-need analysis, and characterizes the
set of bundles consistent with a partial description of a bundle.

These partial descriptions are called skeletons. cpsa takes as input an initial
skeleton A0, and when it terminates it outputs a set of more descriptive skeletons
{Bi}i∈I . They have the property that any bundle containing the structure in the
initial skeletonA0 also contains all the structure in one of the output skeletons Bi.
In particular, it infers all of the non-adversarial behavior that must be present in
any bundle satisfying the initial description. Of course for some initial skeletons
A0, there may be no bundles that are consistent with them. In this case, cpsa
outputs the empty set.

The security goal for the Envelope Protocol is that a run of Alice’s role should
ensure that the secret and the refusal certificate are not both available:
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Security Goal 1. Consider the following events:

– An instance of the Alice role runs to completion, with secret v and nonce n
both freshly chosen;

– v is observed unencrypted;
– the refusal certificate {| “quote”,#(“refuse”,#(n, val)), {|v|}k′ |}aik is ob-

served unencrypted.

These events, which we call jointly A0, are not all present in any execution.

We can feed cpsa an input skeleton A0 representing this undesirable situation.
We would hope cpsa could determine that no bundles are consistent with

this input A0 and return the empty set. However, our technique of using state-
bearing messages to represent the TPM state transitions underconstrains the
set of possible state paths. For this reason, cpsa actually produces one skeleton
in its output. This skeleton represents some activity that must have occured
within the TPM in any bundle conforming to the initial skeleton. It contains an
instance of the decrypt role (to explain the secret leaking), an instance of the
quote role (to explain the creation of the refusal token), and several instances
of the extend role (to explain how the TPM state evolved in order to allow the
other two operations).

Fig. 5 displays the relevant portion of cpsa’s output displaying only the state-
bearing nodes of the extend strands inferred by cpsa. Notice that two of the
extend strands branch off from the third strand. This is a state split in which
a single state evolves in two distinct ways. The technique of using state-bearing
messages is not sufficient to preclude this possibility.

cpsa’s enrich-by-need approach is a form of model finding, rather than theo-
rem proving. In order to use cpsa’s results to our advantage we need to express
its conclusions in the logical theory Tbnd(Π). For that purpose we transform our
skeletons into formulas in order-sorted logic and define what it means for a bun-
dle to satisfy these formulas. The sorts are the message algebra sorts augmented
with a sort Z for strands and sort N for nodes. The atomic formula htin(z, h, c)
asserts that strand z has a length of at least h, and its trace is a prefix of trace c.
The formula n0 , n1 asserts node n0 precedes node n1. The formula non(t)
asserts that message t is non-originating, and uniq(t, n) asserts that message t
uniquely originates at node n. Finally, the formula sends(n, t) asserts that the
event at node n is a transmission of message t. The roles of the protocol serve
as function symbols. A skeleton A is represented by the conjunction of all facts
true in the skeleton.

We encode an entire cpsa analysis by first encoding the input skeleton A0 and
the output skeletons {Bi}i∈I . The analysis is then encoded as an implication.
A formula Φ0 describing the input A0, is the hypothesis of the conditional.
The disjunction of the formulas Ψi describing the outputs {Bi}i∈I form the
conclusion. When cpsa discovers that there are no bundles compatible with the
initial skeleton, the conclusion is encoded as the empty disjunction, ⊥.

The satisfaction relation is defined using the clauses in Fig. 6. It relates a
bundle, a variable assignment, and a formula: Υ, α |= Φ. A bundle Υ is described
by a skeleton iff the skeleton’s sentence Φ satisfies Υ , written Υ |= Φ.
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extend •

extend

•

extend

{| g0, pcr(p)|}#k

{| g0, pcr(ex(n, p))|}#k {| g0, pcr(ex(n, p))|}#k

{| g0, pcr(ex(g1, ex(n, p))|}#k

{| g0, pcr(ex(g2, ex(n, p))|}#k

g1 is obtain
g2 is refuse

g0 is state

Fig. 5. State Splitting

Υ, α |= x = y iff α(x) = α(y);
Υ, α |= htin(z, h, c) iff |ΘΥ (α(z))| ≥ α(h) and

ΘΥ (α(z)) is a prefix of α(c);
Υ, α |= n0 � n1 iff α(n0) ≺Υ α(n1);
Υ, α |= non(t) iff non(ΘΥ , α(t));
Υ, α |= uniq(t, n) iff uniq(ΘΥ , α(t), α(n));
Υ, α |= sends(n, t) iff evtΘΥ (α(n)) = +α(t).

Fig. 6. Satisfaction

The formula Φ0 that specifies the initial skeleton relevant to the Envelope
Protocol security goal is

htin(z, 4, alice(v, esk , k, aik , n, p)) ∧ sends(n1, v)
∧ sends(n2, {| g0, pcr (ex(g2, ex(n, p)))|}aik )
∧ non(aik ) ∧ non(esk)
∧ uniq(n, (z, 1)) ∧ uniq(v, (z, 4)),

(2)

where v : D, esk : S, k, aik : A, n : E, p :�, z : Z, n1, n2 : N.
The output skeleton B1 is much larger and its formula Ψ1 is correspondingly

large. The relevant part of this formula representing the fragment in Fig. 5 is

htin(z1, 3, extend(esk , k, pcr(p), n))
∧ htin(z2, 3, extend(esk , k, pcr(ex(n, p)), g1))
∧ htin(z3, 3, extend(esk , k, pcr(ex(n, p)), g2)),

(3)

where esk , k : S, p :�, n : E, z1, z2, z3 : Z. The full formula for B1 has more con-
juncts.

Let the vector x contain the variables that appear free in Φ0, and possibly
also in Ψ1, and let the vector y contain the variables that occur free in Ψ1 only.
Summarizing cpsa’s analysis for the Envelope Protocol in Tbnd(Π), we have:

Lemma 2. ∀x. (Φ0 ⊃ ∃ y. Ψ1), where Φ0, Ψ1 are as in formulas 2–3.

However, unlike Lemma 1, this lemma was not derived within pvs. Rather, it is
true if cpsa’s analysis is correct. We import it into pvs as an axiom.
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Lemma 2 is however something capable of direct proof within pvs as a theo-
rem of Tbnd(Π). Indeed, there is precedent for constructing proofs of this sort.
Meier et al. [19] show how to instrument a different protocol analysis tool, called
Scyther [7], so that each step it takes generates a lemma in the Isabelle proof
system. Then, they use reusable results proved once within Isabelle to discharge
these lemmas. Curiously, one of the main lemmas, the authentication test the-
orem in an earlier form, has already been established within pvs [17]. Thus, it
appears possible, although a substantial undertaking, to transform cpsa from
a central piece of our analysis infrastructure to a heuristic to guide derivations
within pvs.

5 Reasoning about Messages and State

This section presents some details of the theory Tannot (Π,�). We then show
how the previous lemmas combine allowing us to conclude that the security goal
of the Envelope Protcol is achieved.

In Tannot (Π,�), the state transitions associated with a protocol are specified
by annotating some events in a role of Π with a subset of the transition rela-
tion �. The reason for annotating events with a subset of the transition relation,
rather than an element, will be explained at the end of this section. We use ⊥ for
an event that is not annotated, and ↑a for an event that is annotated with a. The
events that are annotated are the transmissions associated with receive-transmit
pairs of state-bearing messages.

· · · ⇒ −{| g0, pcr(m0)|}#k ⇒ +{| g0, pcr(m1)|}#k ⇒ · · ·
⊥ ⊥ ↑{(m0,m1)} ∩� ⊥

A node in a bundle inherits its annotation from its role. The set of nodes in Υ
that are annotated is anode(Υ ), and anno(Υ, n, a) asserts that node n in Υ is
annotated with some a ⊆�. In the Envelope Protocol, a node annotated by a
TPM extend role cannot be an instance of any other role.

Our goal is to reason only with bundles that respect state semantics. A bundle
Υ with a transition annotating role assignment is compatible [14, Def. 11] with
transition relation � if there exists 	 ∈ N, f ∈ anode(Υ )→ {0, 1, . . . , 	−1}, and
π ∈ path such that

1. f is bijective;
2. ∀n0, n1 ∈ anode(Υ ). n0 ≺ n1 ⇐⇒ f(n0) < f(n1);
3. ∀n ∈ anode(Υ ), a ⊆�.

anno(Υ, n, a) ⊃ (π(f(n)), π(f(n) + 1)) ∈ a.

A bundle that satisfies Tannot (Π,�) is a compatible bundle.
Because the function f is bijective, all annotated nodes in a compatible bundle

are totally ordered. Looking back at Fig. 5, either the nodes in the leftmost strand
precede the nodes in the rightmost strand or succeed them.

The compatible bundle assumption allows one to infer the existence of nodes
that are not revealed by cpsa. In the case of the Envelope Protocol this is done
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Fig. 7. Inferred Extend Strand

by importing the Prefix Boot Extend Lemma (Lemma 1) from Tstate(�) into the
strand space world by proving the following lemma (stated here in plain English)
within Tannot (Π,�) using pvs. Its proof uses the full content of compatibility.

Lemma 3 (Bridge, informally). Let Υ be a compatible bundle, containing
two annotated nodes, n0 ≺ n1, where n1’s state has a value t. Then either n0’s
state is a subterm of n1’s state, or else there is an extend node between them
that incorporates t.

This Bridge Lemma implies there is another extend strand between the two
strands that represent the state split. This theorem is also proved with pvs in
Tannot (Π,�); however, syntactically it is a sentence of the language of Tbnd(Π).
That is, Tannot (Π,�) adds information to Tbnd(Π), because Tannot (Π,�)’s
models are only the compatible bundles. The theorem is the following.

Theorem 4 (Inferred Extend Strand)

∀z0, z1 : Z, t, t0, t1 :�,m0,m1 :M, esk0, esk1, k0, k1 : A.
htin(z0, 2, extend(esk0, k0, pcr (m0), t0))
∧ htin(z1, 2, extend(esk1, k1, pcr(m1), t1))
∧ (z0, 1), (z1, 0) ∧m1 has t
⊃ subterm(ex(t0,m0),m1)
∨ ∃z : Z,m :M, esk , k : A.
htin(z, 2, extend(esk , k, pcr(m), t))
∧ (z0, 1), (z, 0) ∧ (z, 1), (z1, 0)

Theorem 4 implies that Fig. 5 has an additional extend strand, as shown in
Fig. 7. Restarting cpsa with A0 enriched with all of this additional information,
we learn that no such execution is possible. This justifies Security Goal 1.

Our Method. We have now completed an illustration of the hybrid method
for analyzing a protocol with state. We took the following key steps.

1. We defined states and a transition relation representing a TPM fragment.
We proved a key lemma (Lemma 1) in the resulting theory Tstate(�).
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2. We defined the envelope protocol as a pvs theory Tbnd(Π). We encoded the
states as certain encrypted messages, and used state-passing to represent the
actions of the TPM in protocol roles. The encoding function is an injective
function g. We connect · · · − t0 ⇒ +t1 · · · , as a state-passing representation,
with Tstate(�) by annotating the role with the annotation:

{(m0,m1) | t0 = g(m0) ∧ t1 = g(m1)} ∩�.

We prove bridge lemmas along the lines of Lemma 3.
3. Independently, we define Π in the cpsa input language, and query cpsa

with a starting point A0 as in our security goal. We translate the results in
the form of state analysis sentences such as Lemma 2, which we use within
pvs as axioms.

4. From a state analysis sentence and bridge lemmas, we deduce conclusions
about all compatible bundles of Π and �. Thm. 4 was an example. These
theorems may already establish our security goals.

5. Alternatively, the conclusions about compatible bundles may give us an en-
riched starting point, which we can bring back into cpsa, as we did here to
determine that Security Goal 1 is achieved, and A0 cannot appear in any
compatible bundle.

We have also applied this method to several simple protocols besides the Enve-
lope Protocol. The steps in applying the method are always the same. While the
application of these ideas is routine, it is quite time consuming. A goal of future
research is to automate much more of the method.

But why annotate events with subsets of the transition relation rather than
elements of it? The extend role does not guarantee it receives a state-bearing
message of the form {| g0, pcr(m0)|}#k. It says only that the incoming message
has the form {| g0, t0|}#k. We must eliminate strands in which t0 is not in the
range of the pcr function. That is why we use the annotation shown in Step 2.

A bundle in which a received state encoding message is not in the range of
the pcr function will have a node annotated with the empty set. This bundle
does not respect state semantics and is eliminated from consideration by the
definition of compatibility.

6 Related Work and Conclusion

Related Work. The problem of reasoning about protocols and state has been
an increasing focus over the past several years. Protocols using Trusted Platform
Modules (TPMs) and other hardware security modules (HSMs) have provided
one of the main motivations for this line of work.

A line of work was motivated by HSMs used in the banking industry [16,26].
This work identified the effects of persistent storage as complicating the security
analysis of the devices. Much work explored the significance of this problem in
the case of PKCS #11 style devices for key management [5,6,12]. These papers,
while very informative, exploited specific characteristics of the HSM problem;
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in particular, the most important mutable state concerns the attributes that
determine the usage permitted for keys. These attributes should usually be han-
dled in a monotonic way, so that once an attribute has been set, it will not
be removed. This justifies using abstractions that are more typical of standard
protocol analysis.

In the TPM-oriented line of work, an early example using an automata-based
model was by Gürgens et al. [13]. It identified some protocol failures due to
the weak binding between a TPM-resident key and an individual person. Datta
et al.’s “A Logic of Secure Systems” [9] presents a dynamic logic in the style
of PCL [8] that can be used to reason about programs that both manipulate
memory and also transmit and receive cryptographically constructed messages.
Because it has a very detailed model of execution, it appears to require a level of
effort similar to (multithreaded) program verification, unlike the less demanding
forms of protocol analysis.

Mödersheim’s set-membership abstraction [20] works by identifying all data
values (e.g. keys) that have the same properties; a change in properties for a given
key K is represented by translating all facts true for K’s old abstraction into
new facts true of K’s new abstraction. The reasoning is still based on monotonic
methods (namely Horn clauses). Thus, it seems not to be a strategy for reasoning
about TPM usage, for instance in the envelope protocol.

The paper [14] by one of us developed a theory for protocols (within strand
spaces) as constrained by state transitions, and applied that theory to a fair
exchange protocol. It introduced the key notion of compatibility between a pro-
tocol execution (“bundle”) and a state history. In the current paper we will also
rely on the same notion of compatibility, which was somewhat hidden in [14].
However, the current paper does not separate the protocol behavior from state
history as sharply as did [14].

A group of papers by Ryan with Delaune, Kremer, and Steel [10,11], and with
Arapinis and Ritter [3] aim broadly to adapt ProVerif for protocols that interact
with long-term state. ProVerif [4,1] is a Horn-clause based protocol analyzer with
a monotonic method: in its normal mode of usage, it tracks the messages that
the adversary can obtain, and assumes that these will always remain available.
Ryan et al. address the inherent non-monotonicity of adversary’s capabilities by
using a two-place predicate att(u,m) meaning that the adversary may possess m
at some time when the long-term state is u. In [3], the authors provide a compiler
from a process algebra with state-manipulating operators to sets of Horn clauses
using this primitive. In [11], the authors analyze protocols with specific syntactic
properties that help ensure termination of the analysis. In particular, they bound
the state values that may be stored in the TPMs. In this way, the authors verify
two protocols using the TPM, including the envelope protocol.

One advantage of the current approach relative to the ProVerif approach is
that it works within a single comprehensive framework, namely that of strand
spaces. Proofs about state within pvs succeeded only when definitions and lem-
mas were properly refined, and all essential details represented. As a result, our
confidence is high that our proofs about protocols have their intended meaning.
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Conclusion. The proof of the Envelope Protocol security goal presented here
shows a detailed example of our method for applying cpsa to systems that
include a state component. cpsa was coupled with about 2400 lines of pvs
specifications to produce a proof of a difficult security goal. The method is sound
due to the use of the common foundation of strand space theory for all reasoning.

The approach could be improved in two main ways. First, the proofs within
pvs are strenuous. We would like to develop a method in which—apart perhaps
from a few key reusable lemmas in the state theory Tstate(�)—the remainder of
the reasoning concerning both state and protocol behavior occurs automatically
in cpsa’s automated, enrich-by-need manner. Second, there is some artificiality
in the state-threading representation that we have used here. It requires the pro-
tocol description to make explicit the details of the full state, and to express each
state change in a syntactic, template-based form. Moreover, the state informa-
tion is also redundantly encoded in the annotations that appear in Tannot (Π,�).
Our earlier work [14] instead encapsulated all of the state information in a la-
beled transition relation. The protocol definitions contain only a type of “neutral
node” which are neither transmissions nor receptions. These nodes are associated
with the same labels as appear in labeled transitions. This allows us to define
“compatibility,” and to work with protocol and state definitions as independent
modules. We intend also to explore this style of definition.
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Abstract. Interprocedural slicing is a technique applied on programs
with procedures which relies on how the information is passed at pro-
cedure call/return sites. Such a technique computes program slices (i.e.
program fragments restricted w.r.t. a given criterion). The existing ap-
proaches to interprocedural slicing exploit the particularities of the un-
derlying language semantics in order to compute program slices. In this
paper we propose a generic technique for interprocedural slicing. More
specifically, our approach works with inferred particularities of a lan-
guage semantics, given as a rewriting-logic specification, and computes
program slices using a term slicing-based algorithm.

Keywords: slicing, semantics, Maude, debugging.

1 Introduction

Complex software systems are built in a modular fashion, where modularity
is implemented with functions and modules, in declarative-style programming;
with classes and interfaces, in object-oriented programming; or with other means
of organizing the code. Besides their structural characteristics, the modules also
carry semantic information. The modules could be parameterized by types and
values (e.g. the generic classes of Java and C#, the template classes of C++,
or the parameterized modules of Maude and OCaml) or could have specialized
usability (e.g. abstract classes in object-oriented languages).

It is preferable, for efficiency reasons, that the modular characteristics of a sys-
tem are preserved when new analysis techniques and tool support are developed.
One possible solution to integrate both analysis and tool development is to use a
formal executable framework such as rewriting logic [13]. For any given program
(correctly constructed w.r.t. the language syntax), the formal executable seman-
tics, given as a rewriting logic specification, provides the set of all the concrete
executions, for all the possible input data. Furthermore, the notion of a concrete
execution extends to an abstract execution—as an execution with an analysis
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tool—and we have the set of concrete executions as the basis of any abstraction
(and implicitly abstract execution) of a program. One particular abstraction is
program slicing [26], which computes safe program fragments (also called slices)
w.r.t. a specified set of variables. A complex variant of program slicing, called
interprocedural slicing, preserves the modularity of the underlying program and
exploits how the program data is passed between these modules.

Interprocedural slicing is the slicing method applied on programs with pro-
cedures where the slice is computed for the entire program, taking into account
the procedure calls/returns. The main problem that arises in interprocedural
slicing is related to the fact that the procedure calls/returns may be analyzed
with a too coarse abstraction. Namely, the abstraction relies only on the call
graph without taking into account the context changes (i.e., the instantiation of
the local variables during a procedure execution) occurring during a procedure
call/return. Since we develop a generic, formal semantics-based slicing method,
we assume that we do not know which language constructs produce these con-
text changes. Hence, we include in our slicing method a phase for inferring these
constructs, denoted in the following as scope-update constructs.

Now, our proposed technique for interprocedural slicing has two phases which
could be described as follows: Given a programming language semantics S, in
the first phase we extract scope-update constructs c from S and, in the second
phase, we use these constructs for the interprocedural slicing of S-programs (i.e.,
programs written in the language specified by S which, in fact, are well-formed
terms in S). In this paper we focus on the second phase of the interprocedural
program slicing, meaning the term slicing-based algorithm. The first phase, (i.e.
the extraction of the scope-update constructs) follows a similar meta-analysis of
the language semantics as in [17], where side-effect constructs are extracted. We
require S to be expressed as a rewriting logic theory [13], which is executable
and benefits of tool support via the Maude system [3], an implementation of the
rewriting logic framework. The technique to obtain the scope-update constructs
is, in fact, a meta-analysis of the programming language. The interprocedural
program slicing uses c to collect and propagate abstract information according to
the scope switches from c. This technique is concretised with an implementation
into a generic semantics-based slicing tool developed in Maude.

For presentation purposes, we consider a WHILE language [10] with functions
and local variable declarations (which introduce variable scoping); we call this
extension WhileF. Then, in order to differentiate two variables based on their
scopes, we need to identify scope-update constructs at the level of the semantics.
Note that the meta-analysis for scope-updates used in the present work is slightly
more complicated than the one for side-effects described in [17], because scope-
updates usually work in pairs so now we need to analyze S targeting pairs of
operators (for procedure call and return). Such pairs could be explicitly presented
in the language semantics definitions (through different rewrite rules for call and
return) or implicitly, as in this work (with an explicit rewrite rule for call and
implicit return instruction).
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Another interesting difference consists in the fact that the second program slic-
ing step receives as input both scope-update and side-effect information, which
implies heavy changes. In this case, it is necessary to address the representability
of the derived scope-update constructs w.r.t. the interprocedural program slicing.
Namely, a combined representation of scope-update and side-effect constructs
could consist in terms representing generic skeletons for procedure summaries (a
succinct representation of the procedure behavior w.r.t. its input variables).

The rest of the paper is organized as follows: Section 2 presents related work.
Section 3 introduces the basic notions of program slicing and rewriting logic, used
throughout the paper, while Section 4 describes the proposed program slicing
as term slicing-based algorithm. Finally, Section 5 concludes and presents some
lines of future work.

2 Related Work

Program slicing addresses a wide range of applications, from code paralleliza-
tion [23] to program testing [8], debugging [21], and analysis [12,11]. Since our
goal is to design and implement a semantics-based program analysis tool in a
rewriting-logic environment, we relate our method to both interprocedural slicing
in program analysis and in rewriting logic. With respect to the general problem
of program slicing, we refer the reader to the comprehensive survey of slicing
techniques, in [24].

The technique of program slicing was introduced in [26], and for a given pro-
gram with procedures, it computes slices using a limited form of context infor-
mation (i.e. before each procedure call). The approach resembles an on-demand
procedure inlining, using a backward propagation mechanism (thus, producing
backward slices). Our approach takes into consideration the context-update con-
structs (as extracted from the formal semantics) and produces forward slices (via
term slicing on the term program). Moreover, the context-update constructs play
the role of symbolic procedure summaries, as in [20,11,7,22]. A procedure sum-
mary is a compact representation of the procedure behavior, parameterized by
its input values, which in our proposed framework is the context-update con-
struct. The interprocedural slicing is explicit in [11,22] and implicit in [20,7],
and sets the support for interprocedural program analyses.

The work in [20] uses a data-flow analysis to represent how the information is
passed between procedure calls. It is applied on a restricted class of programs—
restricted by a finite lattice of data values—, while the underlying program
representation is a mix of control-flow and control-call graphs. In comparison,
our approach considers richer context information (as in [11]), while working on
a similar representation of a program (as a term). The work in [7] keeps the same
working structures but addresses the main data limitation of [20]. As such, the
procedure summaries are represented as sets of constraints on the input/output
variables. The underlying interprocedural slicing algorithm of [7] is more refined
than our approach (though not generic), just because of the richer representation
of context information. We follow closely the work in [11], which introduces a
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new program representation for the interprocedural slicing. In comparison, our
approach does not require the explicit context representation, but uses term
matching to distinguish between different contexts.

In the rewriting logic environment, there are several approaches towards de-
bugging [1], testing [16], and analysis [17]. The dynamic slicing technique in [1]
works on execution traces of the Maude model checker. In comparison, we pro-
pose a static approach built around a formal semantics and with an emphasis
on computing slices for programs and not for given traces (e.g. of model checker
runs). The work in [16] presents an approach to generate test cases similar to
the one presented here in the sense that both use the semantics of programming
languages formally specified to extract specific information. In this case, the se-
mantic rules are used to instantiate the state of the variables used by the given
program by using narrowing; in this way, it is possible to compute the values
of the variables required to traverse all the statements in the program, the so
called coverage. The technique in the current paper follows our previous work
on language-independent program slicing in rewriting logic environment [17].
Actually, the implementation of the current work is an extension of the slicing
tool we developed in [17]. Both approaches share the methodology steps: (1)
the initial meta-analysis of S and (2) the program analysis conducted over the
S-programs. More specifically, in [17] we use the classical WHILE language aug-
mented with side-effect constructs (assignments and read/write statements) to
exemplify (1) the inference of the set of side-effect language constructs in S, and
(2) the program slicing as term rewriting.

As a semantical framework, Maude has been used to specify the semantics of
several languages, such as LOTOS [25], CCS [25], Java [6], or C [4]. These works
describe a methodology to represent the semantics of programming languages in
Maude, led to the rewriting logic semantics project [14] and to the development
of the K [19] framework. We plan to use these semantics to perform program
analysis in the future.

3 Preliminaries

Program slicing, as introduced in [26], is a program analysis technique which
computes all the program statements that might affect the value of a variable
v at a program point of interest, p. It is a common setting to consider p as the
last instruction of a procedure or the entire program. Hence, without restricting
the proposed methodology, here we consider slices of the entire program.

A classification of program slicing techniques identifies intraprocedural slicing
when the method is applied on a procedure body and interprocedural slicing
when the method is applied across procedure boundaries. The key element of a
methodology for interprocedural slicing is the notion of context (i.e. the values of
the function/procedure parameters). Next, we elaborate on how context-aware
program slicing produces better program slices than a context-forgetful one.

Let us consider, in Fig. 1, the program from [11], written as an WhileF pro-
gram term, upon which we present subtleties of interprocedural slicing. We start
the slicing with the set of variables of interest {z}.
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The first method, in [26], resembles an on-demand inlining of the necessary
procedures. In the example in Fig. 1, the variable {z} is an argument of procedure
Add call in Inc, hence, the sliced body of Add is included in the slice of Inc. Note
that, when slicing the body of Add, z is replaced by a. Hence, the slicing of Add
deems {a} and {b} as relevant. The return statement of procedure Inc is paired
with the call to Inc, in the body of A so the variable {y} becomes relevant for
the computed slice. When the algorithm traces the source of the variable y, it
finds the second call to Add in the body of A (with the arguments x and y) and
includes it in the program slice. When tracing the source of x and y, it leads
to include the entire body of procedure Main (through the variables sum and i,
which are used by the assignments and calls of Main). Using this method, the
program slice w.r.t. the set of variables of interest - {z}, is the original program,
as in Fig. 1. This particular slice is a safe over-approximation of a more precise
one (which we present next) because the method relies on a transitive-closure—
fixpoint computation style where all the variables of interest are collected at the
level of each procedure body. As such, the body of procedure Add is included
twice in the computed slice.

function Main (){
sum := 0;
Local i;
i := 1;
while i < 11 do

Call A (sum, i)
}

function A (x, y) {
Call Add (x, y);
Call Inc (y)

}
function Add (a, b) {
a := a + b

}

function Inc (z) {
Local i;
i := 1;
Call Add (z, i)

}

Fig. 1. A WhileF program Px with procedures Main, A, Add, and Inc

The second approach in [11] exploits, for each procedure call, the available
information w.r.t. the program variables passed as arguments (i.e. the existing
context before the procedure call). Again, in the example in Fig. 1, the variable
z is an argument of procedure Add. Hence, upon the return of Add, its body
is included in the slice. However, because of the data dependencies between
variables a and b (with a using an unmodified value of b) only the variable a is
collected and further used in slicing. Next, upon the return statements of Add
and then Inc, the call of Inc in A (with parameter y) is included in the slice.
Note that the call to Add from A (with parameters x and y) is not included in
the slice because it does not modify the context (i.e. the variables of interest
at the call point in A). As such, the slicing algorithm collects only the second
parameter of procedure A, and following the call to A in Main, it discovers i as
the variable of interest (and not sum as it was the case of the previous method).
Hence, the sliced A with only the second argument is included in the computed
slice. Consequently, the variable sum from Main is left outside the slice. The
result is presented in Fig. 2.

Any program analysis that computes an interprocedural slice works with
the control-flow graph—which captures the program flow at the level of
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function Main (){
Local i;
i := 1;
while i < 11 do

Call A (i)
}

function A (y) {
Call Inc (y)

}
function Add (a, b) {
a := a + b

}

function Inc (z) {
Local i;
i := 1;
Call Add (z, i)

}

Fig. 2. The result of a context-dependent interprocedural analysis for Px

procedures—and the call graph—which represents the program flow between
the different procedures—. To improve the precision of the computed program
slice, it is necessary for the analysis to use explicit representations of procedure
contexts (as special nodes and transitions). This is the case of the second method
which relies on a program representation called system dependence graph.

4 Semantics-Based Interprocedural Slicing

We present in this section the algorithm for our interprocedural slicing approach,
and illustrate it with an example. Then, we describe a Maude prototype execut-
ing the algorithm for semantics specified in Maude.

4.1 Program Slicing as Term Slicing

In [17] we described how to extract the set of side-effect instructions SE from
the semantics specification S and how to use SE for an intraprocedural slicing
method. In the current work we focus on describing the interprocedural slicing
method which is built on top of the intraprocedural slicing result from [17].

The programs written in the programming language specified by S are denoted
as p. By program variables we understand subterms of p of sortVar . If we consider
the subterm relation as �, we have v � p where v is a program variable.

We consider a slicing criterion sc to be a subset of program variables which
are of interest for the slice. We denote by SC the slicing criterion sc augmented
with data flow information that is collected along the slicing method. Hence, SC

is a set of pairs of program variables of form
�

v, v′, denoting that v depends on
v′, or just variables v, denoting that v is independent.

We assume as given the set of program functions Fp defining the program p.
We claim that Fp can be inferred from the term p, given the S-sorts defining func-
tions, variables, and instruction sequences. We base this claim on the fact that p
is formed, in general, as a sequence of function definitions hence its sequence con-
structor can be automatically identified from S. Also, we use getFnBody(f,Fp)
to obtain the function identified by f in Fp. Note that getFnBody(f,Fp) � Fp.

Furthermore, we denote the method computing the intraprocedural slicing as
$(B,SC, SE), where B is the code, i.e., the body of some function f in p (note
that B � p), while SC is a slicing criterion and SE is the set of side-effect
constructs. Hence, $ takes the body B of a function f and a slicing criterion
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SC (i.e. a set of variables) and keeps only the parts of B that are subterms
starting with a side-effect effect construct (from SE) and containing variables
from the slicing criterion SC. The result of $(B,SC, SE) is given as a term
SC :: fn〈fn(fp�){fs}〉 where SC is the data flow augmented slicing criterion,
fn ∈ FunctionName is a function identifier, and fs is the slice computed for fn .
Meanwhile fp� is the list of fn’s formal parameters fp filtered by SC , i.e., all
the formal parameters not appearing in SC are abstracted to a fixed additional
variable �.

Now we give a brief explanation on how the intraprocedural slicing $ works.
We say that a program subterm modifies a variable v if the top operator is in
SE and v appears as a leaf in a specific part of the subterm, e.g., the variable
v appears in the first argument of _:=_ or in Local_. When such a subterm
is discovered by $ for a slicing variable then the slicing criterion is updated by
adding the variables producing the side-effects (e.g. all variables v′ in the second

argument of _:=_) and the data flow relations
�

v, v′. We call fs a skeleton subterm
of B and we denote this as fs 	 B.

In Fig. 3 we give the slicing method, termSlicing, which receives as input
the slicing criterion sc, the set of program functions Fp, and the set of side-
effect and context-updates syntactic constructs, SE and CU , respectively. The
output is the set of sliced function definitions slicedFnSet together with the
obtained data flow augmented slicing criterion dfsc. Note that Fp, SE , and CU
are assumed to be precomputed based on the programming language semantics
specification S. The algorithm for inferring SE is given in [17, Section 4]. The
algorithm for inferring CU goes along the same lines as the one for SE and it is
based on the automatic discovery of stack structures used in S for defining the
programming language commands. For example, in WhileF the only command
inducing context-updates is Call_(_) instruction. In the current work we assume
CU given in order to focus on the interprocedural slicing as term slicing method.
However, we claim that termSlicing is generic w.r.t. S since Fp, SE , and CU
can be automatically derived from S.

termSlicing is a fixpoint iteration which applies the current data-flow-
augmented slicing criterion over the function terms in order to discover new
skeleton subterms of the program that comply with the slicing criterion. The
protocol of each iteration step is to take each currently sliced function and slice
down and up in the call graph. In other words, the intraprocedural slicing is ap-
plied on every called function (i.e. goes down in the call graph) and every calling
function (i.e. goes up in the call graph).

Technically, termSlicing relies on incrementally building the program slice,
stored in workingSet , and the data flow augmented slicing criterion, stored in
dfsc. This process has two phases: the initialization of workingSet and dfsc (lines
0-6) and the loop implementing the fixpoint (lines 7-39).

The initialization part computes the slicing seed for the fixpoint by inde-
pendently applying the intraprocedural slicing $( , , ) with the slicing criterion
sc for each function in the program p. The notation A∪=B (line 3) stands
for “A becomes A ∪ B” where ∪ is the set union. Similarly, A .= B (line 4)
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termSlicing
Input: sc,Fp,SE ,CU
Output: slicedFnSet , dfsc
0 workingSet ′ := ∅; dfsc := ∅;
1 for all fn(args){fnBody} ∈ Fp do
2 SCinit :: fn〈fnInitSlice〉 := $(fnBody , {x ∈ sc | x � fs or x � args}, SE);
3 workingSet ′ ∪= {SCinit :: fn〈fnInitSlice〉};
4 dfsc �= SCinit ;
5 od
6 workingSet := ∅;
7 while workingSet 
= workingSet ′ do
8 workingSet := workingSet ′;
9 for all SC :: fn〈fnSlice〉 ∈ workingSet do
10 wsFnCalled := ∅;
11 for all Call ∈ CU for all Call fnCalled � fnSlice do

12 fnCldSC := SC fn�fnCalled ;
13 for all fnCldSCPrev :: fnCalled〈 〉 ∈ workingSet do
14 if fnCldSC 	 fnCldSCPrev then break;
15 fnCldBd := getFnBody(fnCalled ,Fp);
16 fnCldSCNew :: fnCalled〈fnCldSlice〉 := $(fnCldBd , fnCldSC , SE);
17 wsFnCalled ∪= {fnCldSCNew :: fnCalled〈fnCldSlice〉};
18 SC �= fnCldSCNew fnCalled�fn ;
19 od
20 wsFnCalling := ∅;
21 for all Call ∈ CU for all fnCalling ∈ Fp s.t. Call fn � fnCalling do

22 fnClgSC := SC fn�fnCalling ;
23 for all fnCallingSCPrev :: fnCalling〈 〉 ∈ workingSet do
24 if fnClgSC � fnCallingSCPrev then break;
25 fnClgBd := getFnBody(fnCalling,Fp);
26 fnClgSCNew :: fnCalling〈fnClgSlice〉 := $(fnClgBd , fnClgSC , SE);
27 wsFnCalling ∪= {fnClgSCNew :: fnCalling〈fnClgSlice〉};
28 SC �= fnClgSCNew fnCalling fn ;
29 od
30 fnBd := getFnBody(fn,Fp);
31 SCNew :: fn〈fnSliceNew〉 := $(fnBd , SC, SE);
32 dfsc �= SCNew ;
33 for all Call ∈ CU for all Call fnCalled � fnSliceNew do
34 if :: fnCalled〈 {}〉 ∈ wSetFnCalled then
35 fnSliceNew := erraseSubterm(Call fnCalled , fnSliceNew)
36 od
37 workingSet ′ 
= {SCNew :: fn〈fnSliceNew〉} 
 wsFnCalled 
 wsFnCalling ;
38 od
39 od
40 slicedFnSet := get〈〉Content(workingSet)

Fig. 3. Program slicing as term slicing algorithm

is the union of two data dependency graphs. Namely, A . B is the set union
for graph edges filtered by the criterion that if a variable v is independent
in A but dependent in B (i.e. there exists an edge �, with v on one of the
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ends) then the independent variable v is eliminated from A . B. For exam-
ple, the initialization step applied on the program in Fig. 1 produces the fol-
lowing workingSet ′: z :: Inc〈Inc(z){Call Add(z, �)}〉, ∅ :: Main〈Main(){}〉, ∅ ::
A〈A(�, �){}〉, ∅ :: Add〈Add(�, �){}〉.

The fixpoint loop (lines 7-39) discovers the call graph in an on-demand fashion
using the context-update set CU , which directs the fixpoint iteration towards
applying the slicing on the called/calling function. As such, when a context-
update (e.g. Call_(_) in the semantics of WhileF) is encountered in the current
slice, we proceed to slice the called function (lines 10-19). Next, when a context-
update of the currently considered functions is encountered, we proceed again
to slice the calling function (lines 20-29). Each time we update the current data-
flow-augmented slicing criterion and the slice of the current function (lines 30-
36). For example, the discovery of the call graph starting with the function
Inc(z){Call Add(z, �)} in the program from Fig. 1 adds, during the first iteration
of the fixpoint-loop, the called function Add(a, b){a := a + b} and the calling
function A(�, y){Call Inc(y)}. We iterate this process until the skeleton subterm
of every function is reached, i.e., workingSet is stable, e.g., see the result from
Fig. 2. Note that the stability of workingSet induces the stability of dfsc, the
data flow augmented slicing criterion.

We now describe in more details each of the three parts of the fixpoint loop:
the called (lines 10-19), the calling (lines 20-29), and the current (lines 30-36)
functions. The called and calling parts have a similar flow with slight differences
in the operators used. They can be summarized as:

SC .= SC fn/fnCalled filtered$(fnCalled ,) fnCalled�fn

SC .= SC fn�fnCalling filtered$(fnCalling ,0) fnCalling 1fn

where fn is the name of the current function, fnCalled is the name of a functions
called from fn , and fnCalling is the name of a function which is calling fn.

The operators / and � stand for the abstraction of the slicing criterion
downwards in the calling graph from fn into fnCalled and back, respectively.
The abstraction fn/fnCalled pivots on the actual parameters of fnCalled and,
based on patterns of function calls, it maps the actual parameters of fnCalled
from the current environment SC :: fn into the environment of fnCalled . The
abstraction fnCalled�fn renders the reverse mapping from the (sliced) called en-
vironment back into the current one. Similarly for the � and 1 operators,
which perform the abstraction upwards in the call graph from fn to fnCalling,
pivoting on the parameters of fn. For example, for program Px from Fig. 1 we

have
�

z, i Inc/Add
�

a, b Add�Inc
�

z, i and
�

z, i Inc�A
�

y, � =y A1Inc
�

z, i. For the cur-
rent work, the only pattern of function calls that we have experimented is the
complete list of call-by-reference parameters.

The operator filtered$(fnC , rel) (lines 13-17 and 23-27) is a filtered slicing of
fnC , where the filter is a relation between the current abstraction of SC and
previously computed slicing criterions for the called/calling function fnC . We
say that SC  SCPrev if SC is a subgraph of SCPrev such that there is no edge
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�

v, v′ in SCPrev where v is a node in SC and v′ is a function parameter which is
not in SC . This means that SC has no additional dependent data v′ among the
function parameters that should participate to the current slicing criterion. For
example, this relation is exploited for the call of function Add in function A from

Fig. 1. Namely, the algorithm discovers the relation
�

a, b for Add’s parameters
upon the call of Add from function Inc. Later, when function Add is called in A

only with parameter b, the subgraph relation b 
�

a, b shows that the already
sliced Add(a, b) contains the slice of Add(�, b) hence, there is nothing else to be
done for this function. Meanwhile, SC 0 SCPrev is defined as SCPrev  SC
due to the fact that now the sense in the dependency graph is reversed and
so the slicing criterion in the calling function (SCPrev) is the one to drive the
reasoning. Hence, if the filter relation is true then the new slice is not computed
anymore (lines 14 and 24) because the current slicing criterion is subsumed by
the previous computation.

In lines 30-36 we compute a new slice for the current function fn and in line 37
we collect the slices currently computed for the program functions.

Lines 30-36 are more of a beautification of the slice of the currently sliced
function fn. This beautification is made by the elimination from the slice of any
context-update subterm Call fnCalled having an empty body for the currently
computed slice (lines 33-36). For example, the call to function Add from function
A, i.e., CallAdd(�, b), is eliminated from the slice computed for function A due
to the emptiness of the sliced body of function Add starting with the slicing
criterion b. Note that this fact can be concluded only from the data-flow relation
among the parameters of a function, provided that we add a special symbol 	 for
the local variables such that any function parameter v depending on some local

variable is going to appear as connected to 	, i.e., either
�

v, 	 or
�

	, v. Namely, in

function Inc from Fig. 1 we have
�

z, 	 due to the fact that Add brings
�

z, i in the
SC of Inc. However, in what follows we do not insist on the data dependency
on local variables in order not to burden the notation.

Finally, in line 37 we collect all the slices computed at the current iteration in
workingSet ′. Note that 
 operator from line 37 is an abstract union which first
computes the equivalence class of slices for each function, based on the graph
inclusion of the data-flow-augmented slicing criterion, and then performs the
union of the results. Namely, if there is a function with F with three parameters

x, y, z such that
�
x, y and z is independent, and if at some iteration of the fixpoint

we have the slice F (x, y, �){Bx,y,�} in the set wsFnCalled and F (�, �, z){B�,�,z}
in the set wsFnCalling , then in workingSet ′ we have Fx, y, z{Bx,y,z} where in
Bx,y,z we put together the two skeletons Bx,y,� and B�,�,z.

Recall that, in Section 3, we described two interprocedural slicing methods
presented in [26] and [11], being the second one more precise than the first one.
In our approach the difference is based solely on the data flow relation we use for
$. Hence, we can distinguish two types of termSlicing: the näıve one where the
data flow relations are ignored and the savvy one which collects and uses data
flow relations. Note that the data flow relation is currently assumed as given.
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Main () {
sum := 0;
Local i, j;
i := 1; j := − 1;
While i < 11 Do

Call A (sum, i);
Call B (sum, j);
Call A (j, i)

}

A (x, y) {
If x > 1 Then

Call Add(x, y);
Call Inc (y)

}
B (x, y) {
If x > 0 Then

Call B(x + y, y)
}

Add (a, b) {
a := a + b

}
Inc (z) {
Local i, j;
i := 1; j := i;
Call Add (z, i);
Call Inc (j)

}
Fig. 4. PX—the extension of the WhileF program Px

For example, the iterations of the savvy termSlicing for the program PX in
Fig. 4 and the slicing criterion {z} are listed in Fig. 5. Namely, in the first boxed
rows the slicing criterion {z} is applied on FPX to produce the skeleton subterms
used as the fixpoint seed. Hence, the fixpoint seed contains one nonempty skele-
ton as z appears only in Inc. Note that i—the second parameter of Call Add—is
abstracted to � as no data dependency is currently determined for it.

In the second box of rows we consider the slicing criterion for Inc—the
only one nonempty from the seed—and we iterate the fixpoint for it. The first
row deals with the (only) called function appearing in Inc’s skeleton, namely
Add(z, �). Note that the slicing criterion z is abstracted downwards in the call
graph so the slicing criterion becomes a, the first formal parameter of Add. The
slice of Add with {a} as slicing criterion is showed in the third column while

the slicing criterion becomes
�

a, b, i.e., a depends on b. Because b is a formal
parameter, it gets abstracted back in Inc as Add’s actual parameter i. Hence,

the updated criterion used in Inc is
�

z, i and it is used for the calling function
A, in the second row, and also for the recursive call to Inc itself, in the third
row. In these rows, the slicing criterion is abstracted upwards in the call graph
and the formal parameter z becomes y in A and j in Inc. Meanwhile i is ruled
out (becomes �) because it is not a parameter and hence it is not relevant in a
calling function. The fourth row shows the computation of Inc’s skeleton based

on the current slicing criterion
�

z, i. Furthermore, upon performing the abstract
union 
 at the end of the fixpoint iteration, then Inc’s skeleton is:

Inc(z){Local i, j; i := 1; j := i; Call Add (z, i); Call Inc (j)}

The fixpoint iteration continues in the third box by adding to the slice the
function Main due to the upward phase (since Main contains a call to A). The
upward parameter substitution of y from A is i in Main and the slice of Main
is updated in the third row. Note that the � in all the other rows signifies the
reach of the break in lines 14 or 24 in termSlicing and stands for “nothing
to be done.” The fourth box contains the final step of the fixpoint when there
is nothing else changed in workingSet ′ (i.e. all the rows contain � in the last
column). Hence, for the example in Fig. 4 we obtain the slice in Fig. 2 with the
only difference that the sliced Inc is now the entire Inc from Fig. 4 (due to the
newly added assignment “j:=i” ).
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Slicing Function Computed slice

variables contexts (identified subterms)

z :: � ��Inc z → z Inc�� Inc(z) {Call Add(z, �)}
��Main � = ∅ Main��, . . . Main(){}, A(�, �){}, B(�, �){}, Add(�, �){}

z ::Inc Inc�Add a → �

a, b Add�Inc
�

z, i Add(a, b) {a := a+ b}
�

z, i::Inc Inc�A
�

y, �→
�

y, � A Inc
�

z, i A(�, y) {Call Inc(y)}
�

z, i::Inc Inc�Inc
�

j, �→ �

j, i Inc Inc
�

z, i Inc(�){Local i, j; i:=1; j:=i; Call Add(�, i); Call Inc(j)}
�

z, i::Inc
�

z, i→ �

z, i Inc(z){Local i; i:=1; Call Add(z, i)}
y :: A A�Add b 	 �

a, b::Add Add�A y �
y :: A A�Inc(z 	 �

z, i::Inc) Inc�A y �
y :: A A�Main i → i Main A y Main(){Local i;i:=1;While i<1 Do Call A(�, i)}
y :: A y = y :: A �

�

a, b::Add Add�Inc(
�

z, i � �

z, i::Inc) Inc Add y �
�

a, b::Add Add�A( �
x, y � y :: A)A Add y �

�

a, b::Add
�

a, b=
�

a, b::Add �
�

z, i::Inc Inc�Add(
�

a, b 	 �

a, b::Add) Add�Inc y �
�

z, i::Inc Inc�A(
�

y, � � y :: A)A Inc y �
�

z, i::Inc
�

z, i=
�

z, i::Inc �

y :: A A�Add(b 	 �

a, b::Add) Add�A y �
y :: A A�Inc(z 	 �

z, i::Inc) Inc�A y �
y :: A A�Main(i � i :: Main)Main A y �
y :: A y = y :: A �

�

a, b::Add Add�Inc(
�

z, i � �

z, i::Inc) Inc Add y �
�

a, b::Add Add�A( �
x, y � y :: A)A Add y �
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Fig. 5. Program slicing as term slicing - the fixpoint iterations

termSlicing terminates because there exists a finite set of function skeleton
subterms, a finite set of data flow graphs, a finite set of edges in the call graph
for each function, and any loop in the call graph is solved based on the data flow
graph ordering. Moreover, termSlicing produces a valid slice because it exhaus-
tively saturates the slicing criterion. However, the obtained slice is not minimal
due to the skeletons union 
. Still, there is a consistent difference between the
näıve and the savvy methods. In order to achieve a better degree of minimality
we have to apply abstractions on the data-flow-augmented slicing criterion.
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4.2 System Description

We briefly present in this section our prototype which is implemented in Maude
[3]. The source code is available at http://maude.sip.ucm.es/slicing/. A key
distinguishing feature of Maude is its systematic and efficient use of reflection (i.e.
Maude’s capability of handling and reasoning about terms that represent speci-
fications described in Maude itself) through its predefined META-LEVEL module
[3, Chapter 14]. We have used these features to implement a tool that receives a
set of definitions, a sort where the computations take place, and a set of slicing
variables. Since all these elements can be used as usual data, we can traverse
the semantic rules, analyze them, and execute the program using them. Note
that the user has to provide the rules responsible for context-update while the
parameter passing operators / � and � 1 are particularized here to an
all-parameters-ordered-pass-by-reference pattern.

The tool is started by loading into Maude the slicing.maude file available at
the webpage above. It starts an input/output loop where modules and commands
can be introduced by enclosing them in parentheses. Once the module with the
semantics has been loaded, we have to introduce ESt, the sort for the mapping
between variables and values, and RWBUF, the sort for the read/write buffer, as
the sorts responsible for the side effects. Similarly, we indicate that CallF is the
rule for context-update:

Maude> (set side-effect sorts ESt RWBUF .)

ESt RWBUF selected as side effect sorts.

Maude> (set context-update rules CallF .)

CallF selected as context-update rules.

We can now start the slicing process by indicating that Statement is the sort
for instructions, myFuns is a constant standing for the definition of the functions
Main, A, Add, and Inc from Figure 4, and z is the slicing variable. The tool
displays the relevant variables and the sliced code for each function as:

Maude> (islice Statement with defs myFuns wrt z .)

The variables to slice ’Inc are {i, j, z}

’Inc(z){

Local i ; Local j ;

i := _ ; j := _ ;

Call ’Add(z,i);

Call ’Inc(j)

}

...

We test our proposed method for interprocedural slicing on a set of bench-
marks addressing embedded and real-time applications. As such, we use a set of
small examples, grouped under the name bundle, from a survey [24] on program
slicing techniques, automatically-generated code from typical Scade designs [5],
as well as a standard set of real-time benchmarks—called PapaBench [15]. In
Figure 6, each program is identified by name, a short description, size param-
eters (LOC, number of functions, #funs, and function calls, #calls), and the

http://maude.sip.ucm.es/slicing/
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Name Program Description LOC #funs #calls red (%)

bundle A collection of (extended) 71 7 25 38 %

examples from [24]

selector 2 Generated code from 426 6 11 91 %

SCADE design - 2 SSM

selector 3 Generated code from 455 7 19 85 %

SCADE design - 3 SSM

autopilot PapaBench - autopilot 1384 95 214 74 %

fbw PapaBench - fly by wire 638 41 110 78 %

Fig. 6. Set of benchmark programs for interprocedural slicing

average reduction in the number of statements, for several runs with different
sets of slicing variables. This reduction shows that the methodology works better
on bigger programs (the bundle, with very small examples, presents the lowest
reduction, because all variables are closely related). The Scade benchmarks, ex-
plained below, present the greatest reduction because the variables have very
specific behaviors, hence allowing a very efficient use of slicing.

The Scade Suite development platform [5] is a mixed synchronous language,
combining variants of Lustre [9] (i.e. data-flow) and Esterel [2] (i.e. control-flow).
Scade facilitates the design of embedded and real-time systems in a modular
fashion, and the modularity is preserved in the generated C code. The two Scade
designs—selector 2 and selector 3—consist of two, and respectively three,
parallel state machines (called SSM - Safe State Machines) which embed in their
states calls to external functions and constrain (via shared variables) how these
state machines communicate among them.

PapaBench is extracted from an actual real-time system for Unmanned Aerial
Vehicle (UAV) and consists of two programs fly by wire and autopilot, de-
signed to run on different processors. The application consists of a number of
tasks which are executed in a control loop. For example, the autopilot program
focuses on the UAV airframe and has eight different tasks (e.g. for controlling
the navigation, stabilisation, altitude or communication - radio or GPS).

We test our interprocedural slicing at the level of the entire program as well
as at the level of each task. Let us consider the function radio control task

(in autopilot) which manages radio orders based on various operation modes
(e.g. PITCH, ROLL, THROTTLE, etc) and sets new values for several flight
parameters (e.g. desired roll or desired pitch). This particular function has a call
graph of about 21 nodes. We could use, for example, a slicing criterion which
consists of all program variables used in radio control task in order to in-
vestigate the tasks which are depending (i.e. their intraprocedural slice is not
empty) or not on the computation of radio control task. The interprocedu-
ral slice shows a dependence of the radio control task with tasks such as
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altitude control task and climb control task, which rely on global flight
parameters used by the radio controller. This testing strategy is applied on all
benchmarks and, together with the resulting traces and the Scade designs, are
available on the tool webpage at http://maude.sip.ucm.es/slicing/.

5 Concluding Remarks and Ongoing Work

The formal language definitions based on the rewriting logic framework sup-
port program executability and create the premises for further development of
program analyzers. In this paper we have presented a generic algorithm for inter-
procedural slicing based on results of meta-level analysis of the language seman-
tics. In summary, the slicing prerequisites are: side-effect and context-update
language constructs with data flow information for the side-effect constructs
and parameter passing patterns for the context-update constructs. The actual
program slicing computation, presented in the current work, is done through
term slicing and is meant to set the aforementioned set of prerequisites. This
work complements the recent advances in semantics-constructed tools for de-
bugging [18], automated testing [16], and program analysis [17].

From the prototype point of view, we also plan to investigate the auto-
matic inference of the newly identified slicing prerequisites, i.e., meta-analysis for
context-updates deduction and parameter passing pattern inference. This would
greatly simplify the user task, since he will just introduce the program and the
slicing criterion and the tool would be in charge of computing all the required
constructors. We also have to further develop the already existing side-effect ex-
traction with data flow information. Finally, we aim to develop the method for
language semantics defined in Maude but also in K [19].
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Abstract. Verification of hardware and software usually proceeds sepa-
rately, software analysis relying on the correctness of processors execut-
ing instructions. This assumption is valid as long as the software runs
on standard CPUs that have been extensively validated and are in wide
use. However, for processors exploiting custom instruction set extensions
to meet performance and energy constraints the validation might be less
extensive, challenging the correctness assumption.

In this paper we present an approach for integrating software analy-
ses with hardware verification, specifically targeting custom instruction
set extensions. We propose three different techniques for deriving the
properties to be proven for the hardware implementation of a custom
instruction in order to support software analyses. The techniques are
designed to explore the trade-off between generality and efficiency and
span from proving functional equivalence over checking the rules of a
particular analysis domain to verifying actual pre and post conditions
resulting from program analysis. We demonstrate and compare the three
techniques on example programs with custom instructions, using state-
of-the-art software and hardware verification techniques.

1 Introduction

Today, software verification has reached industrial size programs, and yearly
software verification competitions [1] demonstrate the continuing progress. This
success is due to recent advances in the verification techniques themselves, such
as lazy abstraction [10], and in the underlying SMT solvers [16]. In general,
software analyses rely on the correctness of the processor hardware executing
the program. More specifically, strongest postcondition computation used to
determine the successor state of a given state for a program statement assumes
that the processor correctly implements the statement’s semantics.

Assuming correct hardware is certainly valid for standard processors, since
they undergo extensive simulation, testing and partly also formal verification
processes [22]. However, during the last years processors with so-called custom
instruction set extensions became popular [9], which challenge this correctness
assumption. Customized instructions map a part of an application’s data flow
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graph to specialized functional units in the processor pipeline in order to improve
performance and/or energy-efficiency.

In this paper, we present a novel formal technique for integrating software and
hardware analyses covering custom instruction set extensions. Existing software-
hardware co-verification approaches so far either compute a joint model of soft-
ware and hardware (or specifically of their interface) [12,13,19,11] or apply some
sort of compositional reasoning [23], assuming that components can be either
implemented in hardware or in software. Here, we directly combine established
software analysis methods for software at the source code level with a set of
state-of-the-art model checking procedures for hardware. More specifically, we
derive from the software analysis requirements on the hardware which then need
to be validated in order for the software analysis to produce trustworthy re-
sults. The only other approach aiming at connecting hardware verification with
software analysis in this way is [14] who, however, start from the opposite side,
namely the application-specific instruction, and from this derive constraints on
the software. The disadvantage of this technique is that it might produce overly
complex constraints, whose validation is not needed for trustworthiness.

Our three approaches for integrating software and hardware analyses allow
for a more precise tailoring and consequently differ in what needs to be verified
on the hardware. The first approach proves behavioral equivalence between the
specification and the implementation of a custom instruction (e.g., that an adder
is really adding integer values). While proving equivalence is potentially the most
resource consuming approach it is also the most powerful, as it inherently covers
all behavioral properties of the instruction on which software analyses could rely.
The second approach ties together software and hardware analysis and makes use
of the fact that often software analyses rely on an abstract interpretation of pro-
gram statements. Consequently, hardware verification is restricted to checking
whether the custom instructions obey the rules of the particular abstract domain
(e.g., that an adder is faithful w.r.t. to signs of integers). Finally, our third ap-
proach features the closest interaction between software and hardware by using
the abstract state space of the program generated by the abstract interpreta-
tion to see what properties of the program statements the software analysis has
actually used during verification (e.g., that a positive integer is returned when
adding two positive integers). We then tailor the hardware verification exactly
to the needs of the software analysis, hoping to avoid unnecessarily complex and
runtime consuming hardware verification. Unlike what could be expected, our
three case studies show that the third approach does not always have the lowest
effort, since the software analysis might impose so many different properties to
check for the custom instruction that even checking full behavioral equivalence
becomes simpler.

In summary, our paper makes the following contributions:

– We present three different approaches for integration of software and hard-
ware analyses differing in powerfulness and level of integration.

– We exemplify, discuss and compare our approaches based on three case
studies.
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2 Background

We start with giving some background information on the type of programs we
look at, the program analysis employed and the technique of custom instructions.

2.1 Program Analysis

The programs which we consider in our software analysis technique are written
in C, or more precisely in CIL [18]. Following the notation of [2], we model a
program as a control-flow automaton (CFA). A CFA P = (L,G, l0, le) consists of
a set of locations L, a set of control flow edges G ⊆ L×Ops×L, a program entry
location l0 ∈ L and an error location le ∈ L. The set Ops contains all operations,
e.g., assign statements and assume statements such as a (negated) condition of
an if or while statement. Furthermore, V denotes the set of program variables
– all variables which occur in an operation op of an edge (·, op, ·) ∈ G. The
error location encodes (non)reachability properties of our program. Alternatively,
assert statements could be used.

The left of Figure 1 shows our example program SUM adapted from [21, ex49.c]
given in a programming language notation. All variables (sum, i, N) are of type
int. The notation +sat stands for saturating addition, an addition that neither
overflows nor underflows but saturates at max and min integer values. For the
saturating addition we will later employ a custom instruction. The label ERROR
marks the error node. We can see this to only be reachable when sum is less
than 0 at the end. Thus, our interest is in showing that the sum at the end
is non-negative. The right of Figure 1 displays the control-flow automaton of
the program. The CFA contains four assignment edges, one for each assignment
in the program, and four assume edges, reflecting the two evaluations of the
condition of the while statement and the if statement, respectively. Furthermore
it contains one blank edge for the goto statement. The rectangular node (node
l6) is the error node, le = l6.

The software analyses which we perform on the programs are all based on the
idea of abstract interpretation. Instead of exploring the complete state space of
the programs, we only generate the set of states on a specific level of abstrac-
tion, called the abstract domain or analysis domain. This level fixes what we are

l0 : sum=0;
l1 : i=0;
l2 : while i<N do

l3 : sum=sum +sat i;

l4 : i=i +sat 1;

l5 : if sum<0 then

l6 : ERROR: goto ERROR;
l7 :

Fig. 1. Example program SUM and its CFA. The two boxes in program SUM highlight
the statements replaced by custom instruction saturating addition.
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interested in with respect to property checking. All our analyses are specified
in the Configurable Program Analysis (CPA) framework [2] and are performed
using the associated tool CPAchecker1 [3]. The framework allows for the defi-
nition of arbitrary abstract interpretation based analyses ranging from dataflow
analysis to model checking. For this, we – among other parts – need to define
the analysis domain and the semantics of program operations on this domain.
The latter is given in terms of a transfer relation.

Fig. 2. Ordering 	V

of abstract values in
sign abstract domain

In the following, we describe the concepts of a CPA
using a sign-dataflow analysis S. In such an analysis, we
are only interested in the signs of variables. Consequently,
the abstract domain defines abstract states as pairs (l, d),
where l is a program location and d is a dataflow fact
assigning to every variable v ∈ V a value d(v) out of
the set {⊥,−,−0, 0, 0+,+,�} of abstract values, meaning
there is no possible value (⊥), the value of the variable is
< 0,≤ 0,= 0,≥ 0, > 0 or any value (�). This set of ab-
stract values forms a lattice with ordering V (Fig. 2). This can easily be lifted
to the dataflow facts, d D d′ iff ∀v ∈ V : d(v) V d′(v), and abstract states,
(l, d)  (l′, d′) iff (l = l′) and d D d′. The CPA framework requires all analysis
domains to form a lattice, and the ordering on this lattice needs to be consistent
with the set of concrete states represented by the values of the abstract domain.
More precisely, if c(a) denotes the set of concrete states represented by a value
a in the abstract domain, then a  a′ implies c(a) ⊆ c(a′), a, a′ being abstract
values.

The transfer relation now fixes the semantics of program statements on this
abstract domain. As an example, consider the saturating add sum=sum +sat i.
Abstractly, this statement keeps the value of all variables except for sum. Based
on the abstract values of i,sum a new value is assigned to sum. Manually defined
transfer rules describe how the value of sum changes. Some of these rules are given
in Table 1. The table can be read like a function table: the first two rows describe
abstract values of the inputs (the arguments to the custom instruction) and the
last row the abstract output value. In order to provide a sound analysis, the
abstract domain and the transfer relation need to provide an overapproximation
of the concrete semantics.

Table 1. Transfer rules for saturating addition z = x +sat y

x - -0 -0 0 0+ 0+ + . . .

y -0 - -0 0 0+ + 0+ . . .

z = x +sat y - - -0 0 0+ + + . . .

The abstract domain and the transfer relation are input to the state space ex-
ploration algorithm of CPAchecker. The algorithm builds the abstract state
space, usually represented in the form of an abstract reachability graph (ARG).
The ARG for our program on executing the sign-dataflow analysis is shown

1 http://cpachecker.sosy-lab.org

http://cpachecker.sosy-lab.org
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in Figure 3. The boxes next to the nodes give us the dataflow facts holding
at the particular locations, e.g., in location l4 we definitely know i and sum
to be positive or zero and N to be positive. The latter is due to the CFA
edge i < N which, given that i is positive or zero in l2, guarantees that N
is positive in l3. Dataflow analyses combine abstract states for same locations.
For example, state (l2, i :0, N :�, sum :0) is combined with (l2, i :+, N :+, sum :0).
Our tool replaces the existing state for l2 in the ARG by the combined one,
i.e., (l2, i :0+, N :�, sum :0) and continues exploration, finally resulting in state
(l2, i :0+, N :�, sum :0+).

Fig. 3. ARG of program SUM with initial abstract state (l0, i : �; N : �; sum : �)

2.2 Custom Instruction Set Extension

The motivation for customizing instruction sets is to improve processor perfor-
mance and/or energy-efficiency, while keeping the cost as low as possible [5].
There are several approaches to custom instruction set extension. The original
static approach analyzes a set of targeted applications to identify runtime in-
tense portions of the applications’ data flow graphs. These subgraphs are then
turned into custom instructions and mapped to specialized hardware in form of
functional units (FU) accelerating the code. These specialized FUs are then in-
tegrated into a processor pipeline and a so-called application-specific instruction
set processor (ASIP) is being fabricated.

Since the cost of designing a new processor is immense, the dynamic approach
to instruction set extension proposes a flexible interface between the processor
pipeline and a runtime reconfigurable fabric added as reconfigurable functional
unit (RFU) to a processor pipeline. Runtime reconfigurability helps not only
to lower design cost but also to increase flexibility, because the reconfigurable
fabric can accommodate different custom instructions that can be switched on
demand during runtime. While typically the RFUs are programmed with pre-
generated configurations, the most sophisticated approach currently studied in
research even shifts the tasks of identifying and generating custom instructions
to runtime with the goal to achieve transparent just-in-time acceleration.

Figure 4 displays the design process for custom instruction set extensions.
Based on an analysis of application code, potential custom instructions are iden-
tified by exploring the design space. In a second step, the most promising custom
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code
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modification of code
or compilation tools 
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configuration

CI selection

CI

Fig. 4. Design process for custom instruction (CI) set extensions

instructions are selected applying cost functions. Then, custom instruction syn-
thesis is used to generate the configurations for the RFUs and the code is mod-
ified to include the custom instructions. The custom instruction set extension
problem is well-studied, for a survey see [9].

In this paper we focus on dynamic approaches to custom instruction set ex-
tension, for which the effort that can be spent for validation is presumably much
lower than for standard processor designs. This issue is particularly emphasized
for just-in-time acceleration. It has to be noted that the circuit structures of the
underlying reconfigurable fabrics, e.g., the RFUs, are indeed well-tested. What
creates the verification challenge is the correctness of the RFU configurations
shown in Figure 4. In our example program SUM we use +sat as custom in-
struction implemented in hardware. This addition, in contrast to the standard
addition, uses saturation instead of modular arithmetic, so results do not over-
flow and wrap around, but instead saturate at the extreme values of the range.
Saturating arithmetic is often used in signal or image processing and thus can
be found in modern instruction set extensions such as Intel’s SSE2 (streaming
SIMD extensions).

In the following sections, we present a novel integrated software/hardware
verification approach where software analyses such as the one reviewed in Sec-
tion 2.1 work together with the verification of RFU configurations. We detail
three alternatives for the integration of software and hardware analyses designed
to explore the trade-off between generality and efficiency.

3 Linking Software and Hardware Analyses

We strive for establishing trust into the correctness of custom instructions, more
accurately the configurations for reconfigurable functional units. To this end, we
employ formal hardware verification, which we need to properly link to state-
of-the-art software analysis. Overall, we introduce three different approaches
for integrating software with hardware analyses. While our first approach per-
forms software and hardware verification rather independently, the other two
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approaches specifically tailor the hardware verification to the requirements of
the software analysis. The approaches differ in their generality and also in their
complexity of expressing the analysis requirements for hardware verification and
of computing the proof. In this section we present the three different approaches
using our example program SUM from Fig. 1, where the saturating add should
be implemented as a custom instruction. The next section shows how to for-
mally verify these requirements on the hardware. Due to limited space we cannot
give all details about the requirements, but we provide them as Verilog sources
on our website: http://www.cs.uni-paderborn.de/fachgebiete/computer-
engineering-group/people/wiersema/ifm.html.

3.1 Approach #1: Functional Equivalence

The most general requirement on the hardware is full functional equivalence of
the implementation I to the desired behavioral specification S. For our example,
the custom instruction +sat, we thus need to show that it carries out correct ad-
dition without overflow or underflow, by comparing the actual low-level hardware
description I, e.g., a technology mapped placed and routed netlist, to a high-
level behavioral description of the desired saturating addition S, usually given
in a hardware description language (HDL) such as Verilog. If functional equiv-
alence can be shown, then all software analysis results will automatically hold
for programs running on processor hardware using the custom instruction. For
functional equivalence we have to prove for every possible input x, which is the
vector of bits which results from mapping the program variables to the hardware
input signals, that the output of the implementation I(x) must match the output
of the behavioral specification S(x), or short: ∀x : S(x) = I(x). Checking for full
functional equivalence is done by most of the current hardware verification ap-
proaches (see e.g., [15]) and is also the basic strategy of some hardware-software
co-verification techniques [6,8]. The downside of this approach is that we actu-
ally might verify more than the software analysis needs to know, and thus might
have an unnecessarily high effort.

3.2 Approach #2: Requirements of the Analysis Domain

Our second approach provides a closer integration of software analysis and hard-
ware verification. We look at the analysis domain used by the software analysis
and only check whether the hardware provides a correct implementation w.r.t.
the transfer relation. Therefore, the hardware must follow all (transfer) rules
the transfer relation uses for the custom instruction, in case of the sign analysis
and the saturating addition, the transfer rules of Table 1. There are significant
advantages associated with this approach. First, we might need to check only
a part of the circuit implementing the custom instruction, e.g., a single output
bit of a binary number in case of sign analysis. Second, we need not even check
all different rules. Some rules will be covered by others and some are vacuous.
Intuitively, a covered rule gives no new information to the transfer relation.

http://www.cs.uni-paderborn.de/fachgebiete/computer-engineering-group/people/wiersema/ifm.html
http://www.cs.uni-paderborn.de/fachgebiete/computer-engineering-group/people/wiersema/ifm.html
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Definition 1. A rule r1 is covered by a rule r2 if the inputs to r1 are less than
or equal to the inputs of r2 and the outputs are equal, both according to the lattice
order .

The rule assigning the value −0 to z upon inputs x : 0 and y : −0 is for instance
covered by the rule x : −0, y : −0, z : −0 since 0 V −0. A vacuous rule on
the other hand provides useless information about the operation as the output
value represents the set of all concrete value.

Definition 2. A rule is vacuous if the abstract value given for the output is the
top element of the lattice.

An example for our setting is x:−, y:+, z:�. Table 1 only gives rules which are
neither covered by others nor vacuous and represents the hardware requirements
for our abstract domain sign. Compared to functional equivalence, the knowl-
edge about the abstract domain employed in the software analysis simplifies the
hardware requirements. However, the results of the hardware verification are
now only applicable to software analyses using the same abstract domain.

3.3 Approach #3: Requirements of the Specific Analysis

Our third approach presents an even tighter integration of software analysis
and hardware verification. Here, we extract the requirements for the hardware
from the specific analysis result represented by the abstract reachability graph.
The abstract reachability graph for a program as constructed by CPAchecker
exactly tells us what properties the software analysis has used. These need not
necessarily be all the rules encoding the abstract transfer relation, making the
hardware verification even simpler than in the second approach. In the extreme
case, the behavior of the custom instruction does not influence the validity of the
property at all and we need not check anything on the hardware. Furthermore,
this approach might be helpful if the knowledge about the rules is not known
since the requirement can directly be extracted from the analysis result.

In the following we describe this approach for our sign dataflow analysis for
program SUM, for which Figure 3 shows the abstract reachability graph. The
graph contains two edges labeled by a saturating addition which we want to
realize as custom instruction. The predecessor of each edge is the precondition
and the successor the postcondition. Thus, we can extract the following two
requirements:

(1) i : 0+;N : +; sum : 0+
sum=sum +sat i−−−−−−−−−−→ i : 0+;N : +; sum : 0+

(2) i : 0+;N : +; sum : 0+
i=i +sat 1−−−−−−→ i : 0+;N : �; sum : 0+

So far these requirements are formulated for the program statements but not
for the custom instruction z = x +sat y. Especially, the variable names in the
extracted requirements are those of the statement and not those of the custom
instruction. To transform between software and hardware, we carry out three
transformations on the requirements:
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1. We replace the program variables’ names with names matching the inputs of
the custom instruction. Note that the replacement is different for the precon-
dition and the postcondition. For instance, in the first requirement we need
to replace i by y and sum by x in the precondition (left part of requirement
(1)), but sum by z in the postcondition (right part of requirement (1)).

2. We eliminate irrelevant variables, e.g., variables which do not occur in the
custom instruction and which are not related to variables in the precondition
or postcondition.2 As an example, in the second requirement the value of N
is irrelevant and thus can be eliminated.

3. We replace constants by their abstract values of the analysis domain. For
example, we replace constant 1 in the second requirement by abstract value
+.

Together, for our example these three transformations give us the following re-
quirements on the hardware, the second already covered by the first.

(1) y : 0+; x : 0+
z=x +sat y−−−−−−−→ z : 0+

(2) y : +; x : 0+
z=x +sat y−−−−−−−→ z : 0+

Compared to approach #2, only 1 of 7 rules must be checked, possibly with very
low effort.

4 Hardware Analysis

As outlined in Section 3, the task of the hardware analysis is to formally ver-
ify the validity of certain correctness assumptions for custom instructions. The
correctness assumptions are used by the software analysis implicitly or explic-
itly during the analysis. Figure 5 depicts the general structure of our hardware
analysis. As verification input, we expand the implementation of the custom
instruction, i.e., its RFU configuration, I(in) with a property checking circuit
P (in, out), where in is the set of inputs of the custom instruction and out the
set of outputs, respectively. The output of the property checker is an error flag
error = P (in, out) = P (in, I(in)), which is set iff the properties encoded in
P (in, out) are violated for the given input stimuli in. To show that the encoded
properties for the implementation of the custom instruction actually hold, it is
thus sufficient to prove that the error flag is never set under all possible input
stimuli. Our main tasks are thus to encode the assumptions and requirements
posed by the software analysis into a suitable property checker, i.e., into a circuit
description in an HDL such as Verilog, and to prove unsatisfiability. While the
details of the property checker change with the used approach from Section 3,
the general structure of Figure 5 is always the same.

2 We assume the CI to be side-effect free. Note, if in contrast to our approach irrelevant
variables are kept, it will also be proven that the CI has no side-effects.
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CI implementation
out=I(in)

property checker
error=P(in,out)

in out

errorn

n

m

Fig. 5. General structure for the hardware analysis. A property checker encodes the
assumptions and requirements posed by software analysis for the implementation of
the custom instruction (CI) with n bits input and m bits output.

4.1 Construction of Property Checkers

The design of the property checker is highly dependent on the assumptions and
requirements to be verified. Our second and third approach to software/hardware
verification, i.e., taking verification requirements from an analysis domain or
from a specific analysis, often generates several independent assumptions to be
verified. In that case we can devise several property sub-checkers and simply
form the error flag as the disjunction of the outputs of these sub-checkers or as
the negated conjunction of the underlying assertions, respectively.

As mentioned above, we take the translated software assumptions (cp. Sec-
tions 3.2 and 3.3) and encode each of them into a verification input for the
hardware verification, i.e., we specify them using a behavioral hardware descrip-
tion in a language such as Verilog. Since the assumptions are already formulated
in the terms of the custom instruction at this point, the encoding is most often
pretty straight-forward, and using a high level language for property specifica-
tion enables us to use more complex properties than just boolean formulae. To
explore our technique, we performed these steps manually for our case studies,
but we are currently looking into methods for automating them.

For example, Figure 6 presents the property checker for the transfer relation
of the saturating addition, z = x +sat y, shown in Table 1. The figure dis-
plays part of the Verilog code that implements P (in, I(in)), with in = (x, y)
and out = z. Using the implication rule (a → b ≡ ¬a ∨ b, or in Verilog syntax
~a|b), the shown code is the straight-forward implementation of every implica-
tion contained in the table. To enhance readability, the actual signal compar-
isons have been replaced with auxiliary signals (e.g., x lt zero : x < 0, x ge zero
: x ≥ 0, etc.). The circuitry extracting these auxiliary signals from the input
variables is also part of the property checker. If any of the implications impi
is violated, the error flag is set. Thus proving that the error flag is never set
for any possible input (x, y) proves that all assumptions about the semantics
of the abstract domain are adhered to by the custom instruction. This method
for constructing the property checker works for all assumptions that argue over
the inputs and outputs of the custom instruction in terms of the sign data-flow
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a s s i gn imp1 = ˜( x l t z e r o & y l e z e r o ) | z l t z e r o ;
a s s i gn imp2 = ˜( x l e z e r o & y l t z e r o ) | z l t z e r o ;
a s s i gn imp3 = ˜( x l e z e r o & y l e z e r o ) | z l e z e r o ;
a s s i gn imp4 = ˜( x eq z e r o & y eq z e r o ) | z eq z e r o ;
a s s i gn imp5 = ˜( x ge z e r o & y ge z e r o ) | z g e z e r o ;
a s s i gn imp6 = ˜( x ge z e r o & y g t z e r o ) | z g t z e r o ;
a s s i gn imp7 = ˜( x g t z e r o & y ge z e r o ) | z g t z e r o ;

a s s i gn a l l imp l i c a t i o n s h o l d =
imp1 & imp2 & imp3 & imp4 & imp5 & imp6 & imp7 ;

a s s i gn e r r o r = ˜ a l l imp l i c a t i o n s h o l d ;

Fig. 6. Verilog code implementing the property checker for the transfer relation of the
saturating addition shown in Table 1 (partial code using auxiliary signals)

in

out

error

n

m

CI specification
out'=S(in)

=1

≥1

=1

Fig. 7. Property checker for proving functional equivalence between an implementation
of a custom instruction and its specification, both with n bits input and m bits output

analysis, whether they are general and cover the complete rules of the abstract
domain or concrete as obtained from a specific software analysis.

To prove full functional equivalence between an implementation of a custom
instruction and its behavioral specification, we need to construct a circuit that
is commonly called miter. A miter is comprised of the implementation I(in) and
the specification S(in), both of which receive the same inputs in. The outputs
of the implementation, out, and the specification, out′, are pairwise XOR-ed,
and the disjunction of the results forms the error flag. The specification and
implementation are equivalent if the outputs are identical for any input. Figure 7
sketches the resulting property checker for functional equivalence.

4.2 Hardware Verification Tool Flow

To perform the hardware verification we employ the open source academic tool
flow VTR [20]. We specify the custom instructions in Verilog and map them to
circuits using ODIN II for hardware synthesis, followed by ABC for technology
mapping. Both ODIN II and ABC are included in the VTR distribution. The
circuits are technology-mapped to an FPGA architecture employing logic blocks
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with 6-input lookup tables. For a real customizable processor, the resulting cir-
cuit netlist would be placed and routed for the reconfigurable fabric of an RFU
and the configuration bitstream would be generated. For the sake of simplicity
these steps are omitted in our current work. Expanding our tool flow to cover
also these steps is part of future work and will allow us to catch not only design
errors and errors introduced by hardware synthesis and technology mapping,
but also errors due to low-level FPGA implementation tools. We take the circuit
netlist for a custom instruction and convert it into an And-Inverter-Graph rep-
resentation. For the verification input, the property checkers are also specified
in Verilog and synthesized into an And-Inverter-Graph representation. When
checking for functional equivalence, we can utilize ABC which has the capability
to automatically transform two circuits into a miter if they use the same number
of inputs and outputs. In all other cases, we use our own tool to combine the
representations for the implementation and the property checker into one And-
Inverter-Graph, our verification input. Again using ABC, we simplify the graph
by removing everything that does not influence the error flag, i.e., is not in its
cone-of-influence, and then transform the graph into a large boolean formula in
conjunctive normal form (CNF). To prove unsatisfiability of the CNF formula
and thus the assumptions posed by software analysis, we leverage the SAT solver
picoSAT [4].

The different approaches explained in Section 3 require different amounts of
manual interaction and lead to different computation times for the SAT solver.
The potential of our method lies within the simplification step before generating
the CNF formula: When checking for functional equivalence the circuit will not
be reduced by much, but the other two approaches might reveal small and simple
rule sets, so that after simplification the formula will be very small. The features
and trade-offs involved for the different approaches will be illustrated using case
studies in the next section.

5 Experimental Results and Discussion

To demonstrate the feasibility of our method for integrating software and hard-
ware verification and to explore the runtime behavior of the three approaches,
we have conducted experiments with three custom instructions as case studies
which are summarized in Table 2. The first column lists the custom instructions
together with the programs that use them. The second and third column of
Table 2 display the abstract analysis domain and the analysis techniques used
for the software analysis, the fourth column presents the runtime for the soft-
ware analysis and the remaining columns present the runtimes for the hardware
analyses.

The case study programs are shown in Figure 8, where the program statements
that are being replaced by custom instructions are highlighted. The first custom
instruction, SATURATING ADD, is the saturating addition. The second custom
instruction, CONDITIONAL SET, assigns either 0 or 1 to a variable depending
on whether another variable is larger than zero. The last custom instruction
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Table 2. Experimental case studies with software and hardware analysis times for
64-bit operands, averaged over 100 runs. Hardware analysis #1 denotes functional
equivalence, #2 checking the rules of the analysis domain and #3 checking the rules
of the specific analysis.

custom instruction / software analysis hardware analysis time
source code domain technique time [ms] #1 [ms] #2 [ms] #3 [ms]

SATURATING ADD / sign data flow 30 308 276 121
ex49.c

CONDITIONAL SET / sign model checking 30 232 122 122
inf6.c

PARALLEL DECREMENT / predicate model checking 190 374 245 390
ex19.c

is PARALLEL DECREMENT and implements two saturating decrements in
parallel. The first two case studies rely on the sign domain, where the first case
study performs a dataflow analysis and the second one model checking. The
third case study again performs model checking but on the predicate domain.
To link software and hardware analyses we have mapped the data type used
in the software analysis, which is a signed integer of unspecified bit width, to
binary numbers of a pre-defined bit width encoded in two’s complement.

Figure 9 shows the runtimes for the hardware verification for varying bit
widths of inputs and outputs of the custom instruction. We have implemented
the saturating add with a ripple adder structure containing a long path to prop-
agate the carry. Hence, increasing the bit width naturally increases the complex-
ity of the circuit which results in the observed runtimes for checking functional
equivalence. Focusing on the assumptions of the abstract analysis domain signif-
icantly reduces the effort and checking only the few rules used by the software
analysis leads to the smallest runtimes. Since in this case study the software
analysis performs a sign analysis, the cone of influence for the error flag only
includes a portion of the complete circuit. In summary, this case study supports
our expectation that exploiting more knowledge about the specific analysis leads
to a more efficient verification.

The conditional assignment results in a rather flat circuit and increasing the
bit width does not change the verification complexity too much. As all circuit
paths are relatively short, even the check for functional equivalence can roughly
compete with the other approaches. The domain knowledge we have applied in
this example exploits the fact that we can deduce the correct function of the
custom instruction by simply looking at the sign bit of the input conditional
variable. The rules deduced from the software analysis form three implications
which result in almost the same checks as required when incorporating domain
knowledge. This explains why the two approaches perform nearly identically.

The parallel decrement uses two saturating adders in parallel, both of which
have one input tied to the constant minus one. We thus have expected this case
study to exhibit a behavior similar to that of the saturating adder. However, as
the results show, this is only true when comparing functional equivalence with
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inf6.c using CONDITIONAL SET

status=0;
flag=0;

if a>0 then
status = 0;

else
status = 1;

if status ! = 0 then
b=-a+1;

else
b=-a;

if a>0 then
as = 0;

else
as = 1;

if b>0 then
bs = 0;

else
bs = 1;

if bs = as then
flag = 1;

if flag! =0 then
ERROR: goto ERROR;

ex49.c using SATURATING ADD

sum=0;
i=0;
while i<N do

sum=sum +sat i;

i=i +sat 1;

if sum<0 then
ERROR: goto ERROR;

ex19.c using PARALLEL
DECREMENT

x=i;
y=j;
while x 
=0 do

x=x +sat (-1);
y=y +sat (-1);

if i == j then
if y! =0 then

ERROR: goto ERROR;

Fig. 8. Case study programs adapted from [21]

the approach using domain knowledge; checking for functional equivalence is
always more runtime intense. The absolute runtimes for functional equivalence
are also smaller than for the saturating adder since two of the four input operands
are constant which allows for some logic optimization beforehand. Surprisingly,
the software analysis posed quite complex assumptions to be verified in this case.
Rather than checking properties for both adders independently, the analysis tied
the adders together by arguing with the invariant difference of both variables
before and after execution of the custom instruction. This coupling resulted in a
hardware analysis that was more complex than the functional equivalence check.
Apparently, knowing about the parallel structure of the custom instruction one
could simplify the analysis.

The last case study program pointed to an interesting line of future work that
ties together software and hardware analyses even closer. First, reasoning about
structural information of an implementation currently is not within the scope of
the software analysis tools, but could have helped reduce complexity. Second,
sometimes the software analysis makes unrealistic assumptions about the hard-
ware, e.g., when SMT solvers reason about integers they assume unrestricted value
ranges. By changing the underlying theory used by the solver from linear arith-
metic to bitvectors we could more accurately model the behavior of the hardware.
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Fig. 9. Runtimes for the hardware analysis in seconds for various bit widths, averaged
over 100 runs

6 Conclusion

In this paper, we have proposed a new technique for software-hardware co-
verification for the area of custom instruction set extensions. Our technique
includes three different approaches, tailoring the hardware verification to the
needs of the software analysis to different extents. All of our approaches thereby
guarantee trustworthy software analysis, even in the presence of custom instruc-
tions. Experimental results show that none of the approaches is superior to all
others. However, the approach that extracts requirements from the analysis do-
main and transfer function seems to be a good compromise, with an average
overhead for hardware verification lying in between the other two approaches.

Currently, we are working on further automating the construction of property
checkers from the requirements. Moreover, we plan to extend our co-verification
approaches to hardware-software-co-certification, integrating proof-carrying code
[17] and proof carrying hardware [7].
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Abstract. We present an approach to generating program code from Event-B
models that is correct-by-construction. Correctness is guaranteed by the com-
bined use of well-definedness restrictions, refinement, and assertions. By enforc-
ing the well-definedness of the translated model, we prevent runtime errors that
originate from semantic differences between the target language and Event-B,
such as different interpretations of the range of integer values. Using refine-
ment, we show that the generated code correctly implements the original Event-B
model. We provide a simple yet powerful scheduling language that allows one to
specify an execution sequence of the model’s guarded events where assertions are
used to express properties established by the event execution sequence, which are
necessary for well-definedness and refinement proofs.

Keywords: Event-B, code generation, correct-by-construction.

1 Introduction

The Event-B modelling language [2] is a formal method that is well suited for devel-
oping embedded controllers that satisfy strong safety requirements. The advantage of
Event-B and its notion of refinement is that we can express and prove safety properties
on an abstract model of the system that includes both the controller and its working
environment. Details of the system are afterwards gradually introduced into the formal
models via refinement. Refinement in Event-B preserves the proved safety properties
of the abstract model.

Once the system’s model is sufficiently detailed, the controller part of the model can
be extracted. This must afterwards be translated into a sequential program that runs
on given hardware. We identify three main challenges for this translation. First, the
Event-B model must be restricted to a well-defined subset in order to generate code
for a particular programming language. Well-definedness for the sublanguage thereby
reflects the available data types of the target language. For example, arithmetic oper-
ations that are valid in the Event-B model, but not well-defined for a target language,
might result in overflows at runtime because of the different domains of the integer
type. Second, Event-B’s semantics is such that the event that is executed next is chosen
non-deterministically from the set of enabled events. This non-determinism must be re-
placed by a schedule that defines an execution order on the events. As the scheduling
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language becomes more sophisticated, one can generate more efficient program code.
Finally, it is evident that the translation must preserve the safety properties of the Event-
B model.

There has been extensive related work on code generation for Event-B [2, 4–6, 9, 10].
The different approaches have limitations including restricted scheduling languages [6,
9, 10], ignoring the differences between the mathematical notation of Event-B and the
target languages [2, 4–6, 10], and missing formal justification of the approach’s correct-
ness [6, 9, 10]. More details on the limitations of the existing approaches are provided
in Section 5.

To overcome these limitations, we present an approach to generating code from
Event-B models that focuses on the translation’s correctness. We therefore concentrate
on a single target language, namely C. Furthermore, our approach provides a flexible
scheduling language that is not only useful for encoding different scheduling strategies
but also for proving that the specified schedules are valid, that is, they do not result in
programs with behaviours that are not described by the original Event-B model.

scheduled
Event-B model

source code

restricted
Event-B model

schedule

final
Event-B model

is equivalent

schedules

refines

refines1. restriction 2. scheduling

3. code generation4. model generation

Fig. 1. Overview of our code generation approach

Our code generation approach has four steps. Figure 1 depicts the different entities
involved and their relationships together with the corresponding step in which they are
provided by the user or the code generator. The “final Event-B model” represents the
final refinement step of an Event-B development and is the starting point for our code
generation approach. First, we restrict the Event-B model via refinement to ensure that
the variables are of suitable types and operations on them are well-defined. Second,
we use a special scheduling language to specify a schedule for the restricted Event-B
model, that describes the intended execution order on the events. Third, we execute our
code generator with the schedule as input. Based on the schedule, the code generator
translates the restricted model into a sequential program and thereby generates source
code. Finally, our code generator also generates a scheduled Event-B model represent-
ing the semantics of the sequential program, and we prove that this scheduled model
refines the restricted Event-B model.

The correctness of our translation relies on (i) the use of partial functions and well-
definedness to ensure that the operations on the data types provided by the target lan-
guage are valid, (ii) assertions that are annotated in the schedule and subsequently
translated into invariants of the scheduled Event-B model, and (iii) the proof that the
scheduled model refines the restricted Event-B model, which relies on the automatically
generated invariants.
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Overall, our contribution is an approach to code generation from Event-B models
that guarantees that generated programs correctly implement their Event-B specifica-
tions and therefore will not incur runtime errors such as arithmetic overflows. The nov-
elty of our approach is the use of well-definedness in the restriction step to prevent
runtime errors, a flexible scheduling language with assertions for specifying scheduling
information during the second step, and the use of refinement in the fourth step of our
approach to prove the generated program code’s correctness. Based on our approach,
we implemented a plug-in for the Rodin platform [3] and successfully generated code
for industrial-scale case studies including an elevator control system and a train con-
trol system, both with strong safety properties. To make this paper self-contained, we
illustrate our approach using a comparatively simple academic example from [2].

Structure. We briefly overview the Event-B modelling method in Section 2.1 and the
“cars on a bridge” case study from [2] in Section 2.2. We use this example to illustrate
the four steps of our approach to generating code from Event-B models in Section 3.
In Section 4, we provide evidence for the general applicability of our approach. In
Section 5, we compare our approach with the existing code generation tools for Event-
B. We draw conclusions and discuss future work in Section 6.

2 Background

2.1 Event-B

Event-B [2] represents an extension as well as a simplification of the classical B-method
[1], which has been focused around the general notion of events. Event-B has a seman-
tics based on transition systems and simulation between such systems. We will not
describe in detail the semantics of Event-B here; full details are provided in [2]. In-
stead, we will describe some Event-B modelling concepts that are important for the
later presentation.

Event-B models are related by refinement and are organized in terms of the two
basic constructs: contexts and machines. Contexts specify the static part of a model and
may contain carrier sets, constants, axioms, and theorems. Carrier sets are similar to
types. Axioms constrain carrier sets and constants, whereas theorems express properties
derivable from axioms. The role of a context is to isolate the parameters of a formal
model (carrier sets and constants) and their properties, which are intended to hold for
all instances.

Machines specify behavioral properties of Event-B models. Machines may contain
variables, invariants, theorems, and events. Variables v define the state of a machine,
and are constrained by invariants I (v). Theorems are properties derivable from the
invariants. Possible state changes are described by events.

The term e =̂ any t where G(t , v) then S (t , v) end represents an event
e, where t is the event’s parameters, G(t , v) is the event’s guard (the conjunction of
one or more predicates), and S (t , v) is the event’s action. The guard states the condition
under which an event may occur, and the action describes how the state variables evolve
when the event occurs. An event’s action is composed of one or more assignments of the
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form x := E (t , v), where x is a variable in v and E (t ,v ) is an expression of the same
type as x . Assignments in Event-B may also be nondeterministic. However, we ignore
these assignments in our approach since we only translate deterministic assignments
and force the user to first refine non-deterministic assignments into deterministic ones.
All assignments of an action S (t , v) occur simultaneously. A dedicated event without
any parameter or guard is used for initialisation.

Refinement provides a means to gradually introduce details about the system’s dy-
namic behaviour into formal models [2]. A machine CM can refine another machine
AM. We call AM the abstract machine and CM the concrete machine. The states of
the abstract machine are related to the states of the concrete machine by gluing invari-
ants J (v ,w), where v are the variables of the abstract machine and w are the variables
of the concrete machine. A special case of refinement (called superposition refinement)
is when v is kept in the refinement, i.e. v ⊆ w . Intuitively, any behaviour of CM can
be simulated by a behaviour of AM with respect to the gluing invariants J (v ,w).

Refinement can be reasoned about on a per-event basis. Each event e of the abstract
machine is refined by one or more concrete events f. Simplifying somewhat, we can
say that f refines e if f’s guard is stronger than e’s guard (guard strengthening), and the
gluing invariants J (v ,w) establish a simulation of f by e (simulation).

2.2 Running Example

In this section, we describe the “cars on a bridge” example taken from [2, Chapter 2]
that we use as a running example to illustrate our approach to code generation. The
system’s main functionality is to control the cars on a bridge between an island and the
mainland. Due to the bridge’s width, only traffic in one direction is allowed at a time.
The system is equipped with four sensors to detect the presence of cars entering and
leaving the bridge. The system controls the two traffic lights located at both ends of the
bridge. Moreover, the maximum number of cars allowed on the island is limited. The
Event-B model is gradually developed in four machines. The last refinement includes
environment events modelling the movement of cars that triggers the sensors and con-
troller events setting the traffic lights accordingly. For the purpose of illustrating our
approach to generating code, we focus on the following events of the last refinement.

ML out1 :
when
ml out 10 = TRUE
a + b + 1 < d
then
a := a + 1
ml pass := 1
ml out 10 := FALSE
end

ML out2 :
when
ml out 10 = TRUE
a + b + 1 = d
then
a := a + 1
ml tl := red
ml pass := 1
ml out 10 := FALSE
end

IL tl green :
when
il tl = red
0 < b
a = 0
ml pass = 1
ml out 10 = FALSE
IL OUT SR = on
then
il tl := green
ml tl := red
il pass := 0
end

ML OUT DEP :
when
ML OUT SR = on
ml tl = green
then
ML OUT SR := off
ml out 10 := TRUE
A := A + 1
end

The events ML out1, ML out2, and IL tl green are controller events and the event
ML OUT DEP is an environment event. We omit other events for clarity. The constant
d represent the maximum number of cars allowed on the island. The variables a, b, c,
ml pass , il pass are controller variables and the variable A is an environment variable.
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Other variables are shared variables representing the sensors (from the environment to
the controller), i.e., ml out 10 , il out 10 , ml in 10 , il in 10 , ML OUT SR, and
IL OUT SR, or the actuators (from the controller to the environment), i.e., ml tl and
il tl . The interested reader can find the exact meaning of the variables in [2, Chapter 2].

3 A Code Generator for Event-B

In our approach, the code generator translates an Event-B model into C source code. As
depicted in Figure 1, prior to generating code we must restrict the Event-B model and
provide a schedule. Using the schedule as an input, the code generator then generates
two outputs, C source code and an Event-B machine that we use to prove the correctness
of the generated source code.

3.1 Well-Definedness Restrictions

The final model of an Event-B development may still include parts that are not well-
defined with respect to the target language. Using refinement, we restrict these remain-
ing parts and thereby obtain a restricted model that is well-defined. Our plug-in checks
that the model is restricted before generating source code for it. In the following, we
describe the semantic differences between Event-B and C and describe our approach to
establishing well-definedness.

Basic Types. The two basic types that our code generator supports are 32-bit integers
and booleans. While the boolean type in C is equivalent to type BOOL in Event-B, the
integer types have different ranges. We therefore define in Event-B the range of the C
integer type as a constant C INT (C INT = −2147483648 ..2147483647) and require
that every integer variable belongs to this set. C INT can be seen as a restricted data type
in the model and we say that a variable is of type C INT whenever it belongs to the set
described by the constant C INT, i.e., variable ∈ C INT .

Arrays. We support one- and two-dimensional arrays for both basic types. Arrays are
represented by total functions in Event-B. If a variable or constant is not of a basic
type, then it must be of one of the array types in the table below, where k and l are
natural numbers smaller than the maximum value in C INT. We use T (x) to represent
the translation of a string x that complies with Event-B syntax.

Event-B C
f ∈ 0 .. k → C INT int f[T (k)+1]
g ∈ 0 .. k → BOOL bool g[T (k)+1]
f ∈ 0 .. k × 0 .. l → C INT int f[T (k)+1][T (l)+1]
g ∈ 0 .. k × 0 .. l → BOOL bool g[T (k)+1][T (l)+1]

The restriction on k and l guarantees that the size of a generated array is always positive
and at most the maximum number in C INT. However, the maximal allowed size of an
array depends on the target system and its memory management. Hence, we cannot
guarantee that the memory allocation at the beginning of the running program will
succeed.
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Arithmetic Operators. Careless use of arithmetic operators is the source of integer over-
flows in software. Since the integer type in Event-B does not have a lower or upper
bound, the addition of two positive integer numbers always results in a positive integer
number. In a C program, however, this result might be larger than the maximum integer
number and cause a runtime error or be mapped to a negative number. Either way, the
outcome of the computation is different from that in the Event-B model. Due to the
restriction of integer variables to the type C INT, assignments of the form x := x + y
are already checked for well-definedness when proving the preservation of the invariant
x ∈ C INT . The intermediate results of multiple arithmetic operations and arithmetic
operations in predicates, however, are not checked. To enforce the well-definedness of
all arithmetic operations, we introduce special operators that are adapted to the integer
type C INT and we restrict the use of each arithmetic operator to just these.

c plus = {λa 
→ b·a ∈ C INT ∧ b ∈ C INT ∧ a + b ∈ C INT | a + b}
c minus = {λa 
→ b·a ∈ C INT ∧ b ∈ C INT ∧ a − b ∈ C INT | a − b}
c mul = {λa 
→ b·a ∈ C INT ∧ b ∈ C INT ∧ a ∗ b ∈ C INT | a ∗ b}
c div = {λa 
→ b·a ∈ C INT ∧ b ∈ C INT ∧ b �= 0 ∧ a ÷ b ∈ C INT | a ÷ b}
c mod = {λa 
→ b·a ∈ C INT ∧ b ∈ C INT ∧ 0 ≤ a ∧ 0 < b | a mod b}

The result of an integer division in Event-B is always rounded towards zero as in the
C99 standard. In C89 and C90, however, it is implementation dependant whether the
result of an integer division is rounded towards zero or towards minus infinity. This
difference is important when the integer division results is a negative number. When
using a compiler compliant to C89 or C90, the definition of the c div operation must
be adapted to prevent negative results and a possibly inconsistent translation. No such
action is required for the modulo operator since the domain of Event-B’s modulo oper-
ation is already restricted to natural numbers.

Due to the use of lambda expressions in the operator’s definition, arithmetic oper-
ations change from infix notation to function applications in the model. We keep this
style in the translation to source code and define macros to replace the function calls
during compilation by the standard operators.

#define c plus(x,y) (x+y)
#define c minus(x,y) (x-y)
#define c mul(x,y) (x*y)
#define c div(x,y) (x/y)
#define c mod(x,y) (x%y)

Events. For the translation of events to source code, an event’s parameters must be
fixed to specific values. Theoretically, an event parameter that is fixed to a single value
is not that useful as any occurrence of the parameter in guards and actions could just be
replaced by its fixed value. For practical reasons, we support event parameters as local
storage for computation results. If the result of a computation is used in more than one
action, it is more efficient to do the computation only once and store the result.

A core concept of our approach is that the guards of the events are not translated, but
their evaluation to true is guaranteed by the flow control structures of the schedule or
more precisely by the specified branch conditions, loop conditions, and assertions. The
only guards that are translated are those that specify the value of an event parameter. We
require in the restricted Event-B model that for every event parameter there is exactly
one guard of the form parameter = . . . , where the right-hand side of the equation
must be an expression of type BOOL or C INT.
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Since an event’s actions denote parallel assignments, the order of the actions does not
matter in Event-B. This changes when we translate the actions into a sequence of single
assignments. As a result, the right-hand side of the assignments in the source code
cannot refer to the before-values of the variables. To overcome this issue, we restrict
the actions of the event so that the right-hand side of an assignment does not refer
to variables that already occurred on the left-hand side of a previous assignment. If
this restriction is not guaranteed, the developer must either rearrange the actions where
possible or introduce parameters as auxiliary variables to store the before-value of the
conflicting variables. This task could be automated in a future version of our plug-in.

Expressions and Predicates. We restrict expressions and predicates to a subset of the
Event-B syntax for which we provide the translation mappings presented in Table 2
in Section 3.3. In developments with arrays, there are often events with guards that
contain quantifiers to express predicates on arrays. We therefore developed patterns for
translating quantified predicates. Due to space restrictions we only present predicates
with a single universal quantifier and omit translation patterns for existential quantifi-
cation and combinations of multiple quantifiers. In our approach, the quantified predi-
cate is translated to a function call of a dedicated function that evaluates the quantified
predicate.

Assignments. In Table 3 in Section 3.3 we present the allowed assignments for updating
variables in an event’s action. The right-hand side of an assignment to a variable of type
BOOL or C INT must be an expression of the corresponding type. The update of arrays
is slightly more difficult. We provide different translation rules for updating arrays at
one or more positions and for overwriting an array with a set of index-value pairs. The
bound variable used in the set comprehension is translated to the iteration variable of a
for-loop.

Example. Returning to the “cars on a bridge” example, we first restrict the context of
the development, i.e., the values for the constant d to C INT . There are two options
that we can take.

1. We apply generic instantation [7] to give d a concrete value (say d = 20) and prove
that d ∈ C INT as a theorem.

2. We add an axiom, i.e., d ∈ C INT to further constrain d . In this way, d is left
undefined and the user must define its concrete value within the program code. It is
then the user’s task to ensure that the concrete value satisfies the axioms.

In terms of safety guaranties, the first option is preferable as we prove that the values
chosen for the constants imply the specified axioms. Hence, the current version of our
plug-in follows this approach. The second option provides more flexibility as the defi-
nition of the constants’ values can be written into a header file. The constants represent
the parameters of the system and can easily be changed without generating new code.
However, we have no practical way yet to enforce that the values in the header file are
checked with respect to the model’s axioms.

We also restrict the variables of the machine of the development. More precisely,
integer variables of the machine (e.g., a, b, c) must be restricted to C INT . This can
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be done by proving the corresponding condition, i.e., a ∈ C INT , b ∈ C INT , and
c ∈ C INT as invariants or theorems of the machine. In our example, we can prove
these conditions as theorems derivable from the restriction of d to C INT , the fact
that all variables are natural numbers, and the invariant a + b + c ≤ d . Moreover,
we replace all occurrences of arithmetic operators in the events’ actions by their well-
defined version. For example, events ML out1 and ML out2 are restricted as follows.

ML out1 :
when
ml out 10 = TRUE
a + b + 1 < d
then
a := c plus(a 
→ 1)

ml pass := 1
ml out 10 := FALSE
end

ML out2 :
when
ml out 10 = TRUE
a + b + 1 = d
then
a := c plus(a 
→ 1)

ml tl := red
ml pass := 1
ml out 10 := FALSE
end

Note that arithmetic operations used in event guards need not be restricted, except for
those used to define parameters, since only parameter definitions are translated.

3.2 Scheduling the Model

To specify the execution order on the events of the restricted model, we provide the
following scheduling language in our plug-in.

<schedule> ::= <sequence>
<sequence> ::= <sequence> ;{a} <sequence> | <block>
<block> ::= event | <branch> | <loop>
<branch> ::= if(c) <body> else <body> fi
<loop> ::= do(c) <body> od
<body> ::= "" | <sequence>

The symbols a and c represent a list of assertions and a loop or branch condition, re-
spectively. The difference between a body and a sequence is that the body can be empty.
For convenience, we can omit {a} if there are no assertions required between two se-
quentially composed sequences. Furthermore, if there is no else part in the branch, we
can just write if(c) <body> fi.

Example. The first part of our schedule is as follows. The numbers are automatically
generated in the editor of our plug-in.

0: if(ml out 10 = TRUE)
1: if(c plus(c plus(a 
→b) 
→1)<d)
2: ML out1
3: else
4: ML out1

fi
fi;
{ml out 10=FALSE}

5: if(il tl=red ∧ 0<b ∧ a=0 ∧ ml pass=1 ∧ IL OUT SR=on)
6: IL tl green

fi;

Note that arithmetic operations used in the branches must be restricted. Moreover,
the assertion {ml out 10 = FALSE} before the branch at position 5: allows us to
avoid checking this condition in the branch.
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3.3 Translation to Source Code

The translation of the schedule is straightforward using if-else statements and while-
loops. We omit the translation rules here and just give an example. Event blocks as well
as branch and loop conditions are translated according to Tables 1-3. Note that we do
not translate assertions, which are only used for the proof of correctness.

Table 1. Translation of Events

Event-B C
evt-name {
ANYs, t int s = T (Ei(v, c));
WHERE bool t = T (Eb(v, c, s));
s = Ei(v, c)
s ∈ C INT (theorem) vi = T (Ei(v, c, s, t));
t = Eb(v, c, s) vb = T (Eb(v, c, s, t));
t ∈ BOOL (theorem) }

THEN
vi := Ei(v, c, s, t)
vb := Eb(v, c, s, t)

END

The translation of the basic predicates and expressions is straight forward and similar
to the translation mappings of the other approaches. Noteworthy is the possibility in
our approach to translate quantified predicates, which are useful to express conditions
in connection with arrays.

Table 2. Translation of Predicates and Expressions

Event-B C
¬x !T (x)
� true
⊥ false
a = b (T (a)==T (b))
a �= b (T (a)!=T (b))
a < b (T (a)<T (b))
a ≤ b (T (a)<=T (b))
a > b (T (a)>T (b))
a ≥ b (T (a)>=T (b))

identifier identifier

TRUE true
FALSE false

Event-B C
x ∧ · · · ∧ y (T (x) && ... && T (y))
x ∨ · · · ∨ y (T (x) || ... || T (y))
x ⇒ y (!T (x) || T (y))
x ⇔ y ((!T (x) || T (y)) &&

(!T (y) || T (x)))
f(a) f[a]
f(a 
→ b) f(T (a),T (b))
c operator(a 
→ b) c operator(T (a),T (b))

∀i·i ∈ c upto(j 
→ k) eval uid()
⇒P (v, c, i)

bool eval uid() {
for(int i=T (j);i<=T (k);i++){
if (!T (P (v, c, i)))
return false;

}
return true;

}

Noteworthy in our translation of assignments are the different patterns for updating
arrays. We can either update an array at one or more fixed positions or we can iterate
through the array and use a predicate to evaluate at runtime which positions are updated.
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Table 3. Translation of Assignments

Event-B C
vi := b vi = T (b);
vb := r vb = T (r);

f(a) := b f[a] = T (b);
g(a 
→ b) := r g[a][b] = T (r);

f := f �− {a1 
→ b1} �− . . . �− {am 
→ bm} f[T (a1)] = T (b1);
...
f[T (am)] = T (bm);

f := f �− {i·i ∈ c upto(j 
→ k) ∧ P (v, c, i) | for(int i=T (j); i<=T (k); i++){
E1(v, c, i) 
→ E2(v, c, i)} if(T (P (v, c, i)))

f[T (E1(v, c, i))] = T (E2(v, c, i));
}

Example. The C code generated corresponding to the above snippet of our schedule is
as follows.

if (ml_out_10 == true){
if (c_plus(c_plus(a,b),1) < d){
a = c_plus(a,1);
ml_pass = 1;
ml_out_10 = false;

}
else{
a = c_plus(a,1);
ml_tl = red;
ml_pass = 1;
ml_out_10 = false;

}
}
if ((il_tl == red && (0 < b && (a == 0 && (ml_pass == 1 && IL_OUT_SR == on))))) {

il_tl = green;
ml_tl = red;
il_pass = 0;

}

3.4 Proving the Correctness of the Scheduled Model
To prove the correctness of the generated source code, we generate a scheduled model
that includes the schedule encoded in the machine as follows. We introduce a new vari-
able pc that represents the program counter and add events that simulate the update of
the program counter according to the schedule. The controller events are refined by re-
moving all guards except for parameter initialisations and adding the action pc := pc+1
to simulate the increment of the program counter. The additional events for the different
blocks are as follows.

Branch. For every branch, we generate a set of events. The events differ slightly de-
pending on whether the branch has an “else” part or not. The symbols s and m represent
the block’s start and middle position, respectively within the schedule and e is the next
valid position in the schedule after the end of the branch. These numbers are automati-
cally computed by the plug-in. The branch condition is represented by bc.

if true :
when
pc = s
bc
then
pc := pc + 1
end

if false (long form) :
when
pc = s
¬bc
then
pc := m + 1
end

if false (short form) :
when
pc = s
¬bc
then
pc := e
end

if exit (long form) :
when
pc = m
then
pc := e
end
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Loop. For a loop we generate the following events. The symbols s and e represent the
block’s start and end position, respectively. Both numbers are automatically computed
by the plug-in. The loop condition is represented by lc.

do true :
when
pc = s
lc
then
pc := pc + 1
end

do false :
when
pc = s
¬lc
then
pc := e + 1
end

do return :
when
pc = e
then
pc := s
end

Example. Based on the (automatically generated) program counter associated with the
statements, the scheduled Event-B model corresponding to the above schedule snippet
is as follows. Most events are required for modelling the control flow of the schedule
determined by the program counter pc.

if ml out 10 true :
when
pc = 0
ml out 10 = TRUE
then
pc := pc + 1
end

if ml out 10 false :
when
pc = 0
ml out 10 = FALSE
then
pc := 5
end

if ml out true :
when
pc = 1
c plus(c plus(a 
→ b) 
→ 1) < d
then
pc := pc + 1
end

ML out1 :
when
pc = 2
then
a := c plus(a 
→ 1)
ml pass := 1
ml out 10 := FALSE
pc := pc + 1
end

if ml out exit :
when
pc = 3
then
pc := 5
end

if ml out false :
when
pc = 1
¬c plus(c plus(a 
→ b) 
→ 1) < d
then
pc := 4
end

ML out1 :
when
pc = 4
then
a := c plus(a 
→ 1)
ml tl := red
ml pass := 1
ml out 10 := FALSE
pc := pc + 1
end

if il tl green true :
when
pc = 5
il tl = red ∧ 0 < b ∧ a = 0 ∧ ml pass = 1 ∧ IL OUT SR = on
then
pc := pc + 1
end

IL tl green :
when
pc = 6
then
il tl := green
ml tl := red
il pass := 0
pc := pc + 1
end

if il tl green false :
when
pc = 5
¬(il tl = red ∧ 0 < b ∧ a = 0 ∧ ml pass = 1 ∧ IL OUT SR = on)
then
pc := 7
end

In addition, we generate invariants to capture the effect of the control flow and the
user-defined assertions.
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invariants :
if ml out Pre : pc = 1 ⇒ ml out 10 = TRUE
ml out1 Pre : pc = 2 ⇒ ml out 10 = TRUE ∧ c plus(c plus(a 
→ b) 
→ 1) < d
if ml out Post : pc = 3 ⇒ ml out 10 = FALSE
ml out2 Pre : pc = 4 ⇒ ml out 10 = TRUE ∧ ¬(c plus(c plus(a 
→ b) 
→ 1) < d)
if il tl green Pre : pc = 5 ⇒ ml out 10 = FALSE
IL tl green Pre : pc = 6 ⇒ ml out 10 = FALSE ∧

(il tl = red ∧ 0 < b ∧ a = 0 ∧ ml pass = 1 ∧ IL OUT SR = on)

Notice how the invariants take into account the effect of the nested branches, e.g. when
pc = 2, and of assertions, e.g. when pc = 6. Proving that the scheduled Event-B model
refines the restricted Event-B model is straightforward with these invariants, except for
the following problem regarding shared variables.

Shared Variables and Atomicity. Our schedule imposes an atomicity assumption,
captured by the scheduled Event-B model, representing the semantics of the program
code. The atomicity is indicated by the values of the program counter pc. For example,
we assume that the evaluation of conditions in branches and loops are atomic. More-
over, we also assume that the assignments of the original events (which are translated as
sequential updates) are executed atomically. However, we break the atomicity assump-
tion between checking the guards and executing the actions of the original events. In
particular, the evaluation of the event guards is often distributed to different branch and
loop conditions. For example, the guard of IL tl green is partially checked by the branch
condition at pc = 5 and partially guaranteed (assertion ml out 10 = FALSE ) by the
control flow before that. Since this atomicity assumption differs from the atomicity as-
sumption of the restricted Event-B model, where the evaluation of an event’s guards
and the execution of its actions are assumed to be atomic, inconsistency can arise. This
is in particular the case when shared variables are used in the event’s guard. Since we
schedule only controller events, the environment events in the scheduled Event-B model
can updated the shared variable at any time. This is reflected by unprovable invariant
preservation proof obligations of the scheduled Event-B model. In our example, vari-
able ml out 10 is assumed to be shared between the controller and the environment.
More specifically, the environment can change the value of ml out 10 with its event
ML OUT DEP as follows.

ML OUT DEP :
when
ML OUT SR = on
ml tl = green
then
ML OUT SR := off
ml out 10 := TRUE
A := A + 1
end

An attempt to prove that ML OUT DEP maintains invariants like IL tl green Pre
will fail, since our model does not prevent the occurrence of ML OUT DEP between
checking the branch condition at pc = 5 and executing IL tl green’s action at pc = 6.
To remedy the situation, we add a guard, e.g., pc = 0 to ML OUT DEP to prevent
the environment event from occurring during the controller’s execution. The meaning
of this guard is an assumption on the overall system such that when a car leaves the
corresponding sensor, then the controller has finished processing the last message and is
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ready to process the next message. Notice that a similar assumption regarding the speed
of the controller has also been made for the original development in [2]. In general,
guarding the environment events might give rise to assumptions that are unrealistic. In
this case, we must return to the original development and perform further refinement,
e.g., to introduce a private copy of the shared variables for the controller. Essentially,
we anticipate the possible interference of the environment and account for that earlier
in the development.

4 Experience

As stated in the introduction, we applied our approach to different developments. In
addition to the “cars on a bridge” example, we generated code for two more sophis-
ticated case studies: an elevator control system and a train control system. While the
elevator control system is a simplification of real elevator systems, we developed the
core functionality of the train control system from a real specification [7].

Table 4. Statistics

train control system
elevator control system

“cars on a bridge” controller

controller variables: 5 2 15
shared variables: 8 12 21
controller events: 8 30 34
refinement steps: 3 3 105
schedule lines: 18 88 90
invariants encoding the schedule: 14 67 69
events encoding the schedule: 18 99 92
POs for refinement: 454 9075 8757
lines of C code: 127 312 373

The numbers in Table 4 show that the elevator and train system are comparable in
terms of the size of their schedules and the number of proof obligations required to
prove refinement. This may be surprising since the train control system is substantially
more complex than the elevator control system and required considerably more effort
to develop, which is reflected by the large number of refinement steps. This is because
the train control system’s development includes several refinement steps that already
account for the later restriction step and translation to code. Hence, both control sys-
tems are refined to a level where they are close to their final implementation and the
translation to program code becomes straightforward. With the restriction of a model
as the first step of our code generation approach, we force the developer to refine the
model to a concrete level and therefore keep the translation effort in check. For this rea-
son our approach works equally well for small academic examples and large, complex
industrial systems.
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The number of proof obligations generated to prove that the scheduled Event-B
model refines the restricted model is rather high. For every invariant/event pair, we
have a proof obligation of the form pc = M & pc = N ⇒ . . ., where N and M are
numbers. However, most of them are trivial as N �= M holds. The number of rele-
vant proof obligations (i.e. N = M ) is less than 180 for all three developments and at
least 77% are automatically discharged. In fact, our plug-in can generate these relevant
proof obligations directly from the schedule rather than having Rodin generating them
together with all the irrelevant ones. The remaining task is to prove that this set of proof
obligations indeed implies those proof obligations generated to prove the refinement
relation. This proof can be done once at the meta-level and is valid for all translations.

5 Related Work

Here we discuss related work in more detail.

Merging Rules. Merging rules are introduced in [2] as a mechanism for synthesising
sequential programs from Event-B models. There are two rules for creating branches
and loops that constitute patterns for developing sequential programs. As a result, the
form of the programs are limited and not every program can be synthesised from its
Event-B model. For example, a sequential statement is only possible after a loop.

B2C Tool. The B2C tool [10] was developed to generate code for a specific Event-
B model of an instruction set architecture. As a result, the plug-in supports only the
translation of the Event-B syntax used in this particular model. The most significant
shortcoming is that it does not support contexts and therefore cannot be used when
constants and sets are used in a machine.

With the B2C tool, there is no possibility to specify a desired execution order of the
events. For every event in the model, a C function is created that checks the guards be-
fore the actions are executed. In a function named “iterate”, all these event functions are
combined in a sequence of function calls equivalent to the event ordering in the Event-B
machine. As soon as a function call is successful (the actions were executed) the iterate
function returns. In the main function, first the initialisation function is called and then
a while loop calls the iterate function as long as there is no deadlock in the system. The
disadvantage of leaving the iterate function after a successful action execution of an
event is that events at the bottom of the iteration sequence might never be executed.

EB2ALL Tool. EB2ALL [9] is a set of tools for generating code for different target
languages. Currently there are four plug-ins included for translations to C, C++,C#, and
Java respectively. The EB2ALL tool is based on the B2C tool. The authors of the tool
argue that its correctness is justified by an observable equivalence between the Event-
B model and the generated code together with some meta-proofs. It is not specified
what notion of observational equivalence is intended and no details on the meta-proof
are provided. Furthermore, they state that the generated code usually must be altered
manually after generation and that correctness is maintained if the manually added code
is also verified in some way. Again, formal details are lacking.
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In EB2ALL, the default scheduling is the same as in B2C. The tool provides an op-
timisation by automatically grouping events that have common guards. This is done by
analysing the refinement relation of the events. Two events that both refine the same
abstract event have the guards of the abstract event in common. Within the iterate func-
tion, these common guards are translated into an if-statement surrounding the function
calls of the corresponding events. The intention is that if the guards of the abstract
event evaluate to false, then there is no need to check the guards of the refining events.
Unfortunately, this approach only works if the guards of the abstract event are all de-
terministic and translatable. Furthermore, this only produces more efficient code when
many events refine one single abstract event. Otherwise, the overhead of additional if-
statements may outweigh any efficiency gains.

Tasking Event-B. Tasking Event-B [6] is a tool developed for code generation from
Event-B models into code with a special focus on concurrent processes. Currently, the
tool supports translations to C, Ada and Java. As in EB2ALL, expressions with multi-
ple arithmetic operators are supported. Currently it is not checked whether arithmetic
operators maintain the lower and upper bound of the target data type; hence runtime
overflows are possible.

Tasking Event-B is the most mature among the existing tools for code generation
with respect to scheduling. It is the only tool that provides a scheduling language for
user defined scheduling of events. Unfortunately, the language is very restrictive. The
bodies of loops and branches are limited to single events. Hence, there is no support for
schedules that include structures such as nested branches or a sequence of events within
a loop.

Scheduling Patterns. We are unaware of any tool support for the scheduling patterns
introduced in [4, 5]. The attractiveness of the work is the proof of correctness for the
patterns done using set transformers. However, this reasoning must be done manually.
Furthermore, our scheduling language is more expressive than the scheduling language
defined in [4]. For example, nested branches are not possible in [4].

Classical B. Our scheduling language has features similar to (classical) B [1], for ex-
ample conditional statements, sequential statements and loops. In B, the last model of a
refinement chain is a special construction, the IMPLEMENTATION, from which program
code can be generated. Variables of the IMPLEMENTATION must be either concrete vari-
ables (i.e., of some implementable datatype) or variables of some predefined libraries.
Updates of the variables must be well-defined, which is captured by the preconditions
of the corresponding assignments. However, loop and branch conditions do not have
preconditions to enforce their well-definedness. As a consequence, they are restricted
to predicates over simple expressions (e.g., no arithmetic operations are allowed). In
our approach, we check all conditions for well-defineness, hence they can contain any
expressions. Furthermore, our approach allows us to state assertions between two se-
quential blocks. As a result, proof obligations can be generated for each block sepa-
rately. In B, the effects of the sequentially composed statements are combined together,
which often results in complicated proof obligations.
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6 Conclusion

We presented our approach to generating program code from Event-B models. Our
approach is correct-by-construction and relies on reasoning about well-definedness, as-
sertions, and refinement. Although we presented only the translation to C source code,
our approach is also applicable to other languages by adapting the notion of well-
definedness and the restriction step to the corresponding target language.

As future work we would like to consider loop termination and liveness proper-
ties in general. The challenge here is to integrate standard loop variant reasoning into
the scheduled Event-B model. Naturally, this will lead to reasoning about deadlock-
freedom and event convergence properties as shown in [8].

Furthermore, as mentioned in Section 4, we have identified the set of relevant proof
obligations which can be generated directly from the schedule. We are working on the
meta-proof that this set of proof obligations indeed guarantees that the scheduled Event-
B model refines the restricted Event-B model. Note that our approach is also correct
without the meta-proof, but requires more proof obligations to be proved.
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Abstract. Linearizability is the standard correctness criterion for fine-grained,
non-atomic concurrent algorithms, and a variety of methods for verifying lin-
earizability have been developed. However, most approaches assume a sequen-
tially consistent memory model, which is not always realised in practice. In this
paper we define linearizability on a weak memory model: the TSO (Total Store
Order) memory model, which is implemented in the x86 multicore architecture.
We also show how a simulation-based proof method can be adapted to verify
linearizability for algorithms running on TSO architectures. We demonstrate our
approach on a typical concurrent algorithm, spinlock, and prove it linearizable us-
ing our simulation-based approach. Previous approaches to proving linearizabilty
on TSO architectures have required a modification to the algorithm’s natural ab-
stract specification. Our proof method is the first, to our knowledge, for proving
correctness without the need for such modification.

1 Introduction

The correctness of concurrent algorithms has received considerable attention over the
last few years. For algorithms that have fine-grained concurrent implementations cor-
rectness has focussed on a condition called linearizability [12]. This requires that the
fine-grained operations (e.g., insertion or removal of an element of a data structure)
appear as though they take effect “instantaneously at some point in time within their
intervals of execution” [12], thereby achieving the same effect as an atomic operation.

Such fine-grained implementations are becoming increasingly commonplace, and
are now standard in libraries such as java.util.concurrent. To increase effi-
ciency, these algorithms dispense with locking, or only lock small parts of a shared data
structure. Therefore the shared data structure might be concurrently accessed by differ-
ent processors executing different operations. This complexity makes the correctness of
such algorithms, i.e., their proofs of linearizability, a key issue.

Because linearizability is such an important condition, there has been a large amount
of interest in proof methods for verifying whether an algorithm is linearizable. How-
ever, the vast majority of this work has assumed a particular memory model; in partic-
ular a sequentially consistent (SC) memory model, whereby program instructions are
executed by the hardware in the order specified by the program. This is in contrast to
multiprocessor architectures such as x86 [15], Power [1] or ARM [1] that only provide
weaker guarantees in order to allow efficient executions.

Processor cores within modern multicore systems often communicate via shared
memory and use (local) store buffers to improve performance. Whilst this does give
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Fig. 1. The TSO architecture

greater scope for optimisation, the order in which instructions are executed by the hard-
ware is no longer the same as that specified by the program. In this paper we focus on
one such memory model, the TSO (Total Store Order) model which is implemented in
the x86 multicore processor architecture. Rather surprisingly given Intel’s and AMD’s
use of x86, and in contrast to the many different approaches and techniques for lineariz-
ability on sequentially consistent architectures, there have only been three approaches
to the question of linearizability on a TSO model: [4], [11] and [17].

The proof approaches in both [4] and [11], however, require the natural abstract
specification of a concurrent implementation to be modified. Burckhardt et al. [4] de-
fine so-called TSO-to-TSO linearizability, which as the name implies compares a con-
current implementation with an abstract specification that executes in TSO memory.
Their definition of linearizability thus compares two specifications with local buffers.
In our approach, we aim to compare the execution of an implementation in TSO against
its natural SC abstraction. In [11] Gotsman et al. define a more sophisticated mapping
between the TSO model and a sequentially consistent one (this is called TSO-to-SC lin-
earizability), but to verify the linearizability of an example like spinlock (our running
example) they weaken the abstract specification to allow non-deterministic behaviour
when one would not naturally expect it. The approach closest to ours is [17] which uses
the same principles that we discuss, but does not provide a proof method (rather they
use SPIN to model check particular runs of the algorithm, much like testing).

The purpose of this paper is to make two contributions: define linearizability of con-
current algorithms on a TSO memory model which avoids the compromises of [4, 11],
and define a proof method for verifying it. We begin in Section 2 by introducing the
TSO model as well as our running example, the spinlock algorithm. In Section 3 we
introduce linearizability and discuss how we adapt the definition to the TSO model. In
Section 4 we explain an existing simulation-based method for verifying linearizability
and show how we can adapt this to the TSO model. This method is then applied to the
spinlock example in Section 5 before we conclude in Section 6.

2 The TSO Memory Model

In the TSO (Total Store Order) architecture (see [16] for an introduction), each proces-
sor core uses a write buffer (as shown in Figure 1), which is a FIFO queue that stores
pending writes to memory. A processor core (from this point on referred to as a process)
performing a write to a memory location enqueues the write to the buffer and continues
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word x=1;

void acquire()
{

1 while(1) {
2 lock;
3 if (x==1) {
4 x=0;
5 unlock;
6 return;

}
7 unlock;
8 while(x==0){};

}
}

void release()
{

1 x=1;
}

int tryacquire()
{

1 lock;
2 if (x==1) {
3 x=0;
4 unlock;
5 return 1;

}
6 unlock;
7 return 0;

}

Fig. 2. Spinlock implementation

computation without waiting for the write to be committed to memory. Pending writes
do not become visible to other processes until the buffer is flushed, which commits
(some or all) pending writes to memory.

The value of a memory location read by a process is the most recent in the proces-
sor’s local buffer. If there is no such value (e.g., initially or when all writes correspond-
ing to the location have been flushed), the value of the location is fetched from memory.
The use of local buffers allows a read by one process, occurring after a write by another,
to return an older value as if it occurred before the write.

In general, flushes are controlled by the CPU. However, a programmer may explicitly
include a fence, or memory barrier, instruction in a program’s code to force a flush to
occur. Therefore, although TSO allows non-sequentially consistent executions, it is used
in many modern architectures on the basis that these can be prevented, where necessary,
by programmers using fence instructions.

A pair of lock and unlock commands in TSO allows a process to acquire sole access
to the memory. Both commands include a memory barrier which forces the store buffer
of that process to be flushed completely (via a sequence of atomic flushes).

2.1 Example - Spinlock

Spinlock [3] is a locking mechanism designed to avoid operating system overhead as-
sociated with process scheduling and context switching. A typical implementation of
spinlock is shown in Fig. 2, where a global variable x represents the lock and is set
to 0 when the lock is held by a process, and 1 otherwise. A process trying to acquire
the lock x spins, i.e., waits in a loop and repeatedly checks the lock for availability. It
is particularly efficient when processes only spin for short periods of time and is often
used in operating system kernels.

The acquire operation only terminates if it successfully acquires the lock. It will
lock the global memory1 so that no other process can write to x. If, however, another

1 Locking the global memory using the TSO lock command should not be confused with
acquiring the lock of this case study by setting x to 0.
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process has already acquired the lock (i.e., x==1) then it will unlock the global mem-
ory and spin, i.e., loop in the while-loop until it becomes free, before starting over.
Otherwise, it acquires the lock by setting x to 0.

The operation release releases the lock by setting x to 1. We assume that only a
process that has acquired the lock will call this operation. The operation tryacquire
differs from acquire in that it only makes one attempt to acquire the lock. If this is
successful it returns 1, otherwise it returns 0.

The lock and unlock commands act as memory barriers. Hence, writes to x by
the acquire and tryacquire operations are not delayed. For efficiency, however,
release does not have a memory barrier and so its write to x can be delayed until
a flush occurs. This leads to the possibility of a tryacquire operation of a process
q returning 0 after the lock has been released by another process p. For example, the
following concrete execution is possible, where we write (q,tryacquire(0)) to de-
note process q performing a tryacquire operation and returning 0, and flush(p)
to denote the CPU flushing a value from process p’s buffer:

〈(p,acquire), (p,release), (q,tryacquire(0)),flush(p)〉 (1)

Thus p performs an acquire, then a release and then q performs a tryacquire
that returns 0 even though it occurs immediately after the release. This is because
the flush(p), which sets the value of x in memory to 0 has not yet occurred.

At an abstract level, the operations are captured by the following Z specification,
which has parameterised operations Acquirep, Releasep and TryAcquirep, the parameter
p denoting the identifier of the process performing the operation.

AS
x : {0, 1}

Init
AS

x = 1

Acquirep

ΔAS

x = 1
x′ = 0

Releasep

ΔAS

x = 0
x′ = 1

TryAcquirep

ΔAS
out! : {0, 1}

if x = 1
then x′ = 0 ∧ out! = 1
else x′ = x ∧ out! = 0

The question is now: “Is the behaviour of spinlock under TSO comparable to this ab-
stract specification?”. We answer this question in the subsequent sections by proving
that spinlock under TSO is actually linearizable with respect to the specification.

3 Linearizability on TSO

Linearizability [12] is the standard notion of correctness for concurrent algorithms, and
allows one to compare a fine-grained implementation against its abstract specification.
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The comparison is made at the level of invocations and returns of operations as the
fine-grained nature of some operations means that an operation’s steps might be in-
terleaved with steps of another operation executed by another process. For example,
process p might start a release, but then process q invokes its tryacquire before
p’s release has returned. The key idea of linearizability is as follows.

Linearizability provides the illusion that each operation applied by concurrent
processes takes effect instantaneously at some point between its invocation and
its return. This point is known as the linearization point.

In other words, if two operations overlap, then they may take effect in any order from
an abstract perspective, but otherwise they must take effect in program order.

The original definition in [12] (for a formalisation, see [7]) is based on the concept of
possibilities, however there are now a number of different proof strategies which have
been applied to a number of algorithms. These range from using shape analysis [2, 5]
and separation logic [5] to rely-guarantee reasoning [18] and refinement-based simula-
tion methods [10, 14, 7]. The simulation-based methods, which we will adapt for use in
this paper, show that an abstraction (or simulation or refinement) relation exists between
the abstract specification of the data structure and its concurrent implementation.

We will return to the proof method in Section 4. In this section we address the ques-
tion: Is spinlock linearizable on TSO? The definition of linearizability is architecture-
neutral, so we should be able to answer the question on a TSO memory model. However,
the presence of local buffers, and operations under control of the CPU (i.e., the flushes)
complicate the answer.

Consider the execution of spinlock in (1). Obviously, such an execution has no corre-
sponding behaviour at the abstract level, since looking at the Z specification, the value
of x after Release is 1, thus TryAcquire returns 1. Hence standard approaches to proving
linearizability will fail. There are three alternative approaches to tackling the issue of
linearizability on TSO: [4], [11] and [17]. Of these, both [4] and[11] involve changes
to the natural abstract specification. For example, in [4] the abstract specification is de-
scribed with local buffers and flushes. Linearizability, as they define it, (which they call
TSO-to-TSO linearizability) then compares two specifications both with local buffers,
but this seems to miss the essential nature of the abstract to concrete transformation.
On the other hand in [11], Gotsman et al. weaken the abstract specification to allow
tryacquire to nondeterministically either fail or succeed when x is 1, i.e.,

TryAcquire2p

ΔAS
out! : {0, 1}

if x = 1
then (x′ = 0 ∧ out! = 1) ∨ (x′ = x ∧ out! = 0)
else x′ = x ∧ out! = 0

The nondeterminism in the abstract operation models that introduced to the concrete
system by hardware-controlled flushes. Since the abstract specification does not have
local buffers in it, the authors call it TSO-to-SC linearizability. Again, changing the
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abstract specification seems to weaken what one has achieved with the proof. The ap-
proach closest to ours is [17] which uses the same principles that we use here, but uses
model checking to test linearizability. Our aim is to formalise this intuition and provide
a refinement-based proof method for it.

Although at first sight it would seem that linearizability simply fails without chang-
ing the abstract specification, one needs to take into account the role of the local buffers.
Since the flush of a process’s buffer is sometimes the point that the effect of an oper-
ation’s changes to memory become globally visible, the flush can be viewed as being
the final part of the operation. For example, the flush of a variable, such as x, after an
operation, such as release, can be taken as the return of that operation. Under this
interpretation, the release operation extends from its invocation to the flush which
writes its change to x to the global memory. The key point is the following principle:

The return point of an operation on a TSO architecture is not necessarily the
point where the operation ceases execution, but can be any point up to the last
flush of the variables written by that operation.

Formalisation: We now formalise this intuition. In the standard definition of lineariz-
ability, histories are sequences of events which can be invocations or returns of opera-
tions from a set I and performed by a particular process from a set P. Invocations have
an associated input from domain In, and returns an output from domain Out (we assume
both domains contain an element⊥ denoting no input or output, respectively). On TSO,
we generalise events so that they can also be flushes which are performed by the CPU
and operate on a particular process’s buffer:

Event ::= inv〈〈P× I × In〉〉 | ret〈〈P× I × Out〉〉 | flush〈〈P〉〉
History == seq Event

The TSO history corresponding to the execution (1) is2:

〈inv(p,acquire, ), ret(p,acquire, ), inv(p,release, ), ret(p,release, )

inv(q,tryaquire, ), ret(q,tryacquire, 0), flush(p)〉 (2)

To prove linearizability on a TSO architecture we transform this history to one where
the flush on p is the return of the release, since in TSO it is the flush that makes the
effect visible. The original return of the release in the history above is removed. That
is, the above history is transformed to:

〈inv(p,acquire, ), ret(p,acquire, ), inv(p,release, ),

inv(q,tryaquire, ), ret(q,tryacquire, 0), ret(p,release), )〉 (3)

In general, we need to transform a history h consisting of invocations, returns and
flushes to a history Trans(h) which replaces flushes by the appropriate returns whilst
removing all other flushes and returns that are no longer required. The transformation
Trans(h) is formalised below. This new history consists just of invocations and returns,
the latter indicating when the effect of an operation is made visible globally.

2 We omit ⊥ in the events of this and subsequent histories in this section, e.g., inv(p, acquire, )
denotes inv(p, acquire,⊥).
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3.1 Defining the Transformation

We first present a number of preliminary definitions that enable the transformation to
be carried out deterministically. Let mp(p,m, n, h) denote matching pairs of invocations
and returns by process p in history h as in [7]. Its definition requires that h(m) and h(n)
are executed by the same process p and are an invocation and return event, respectively,
of the same operation. Additionally, it requires that for all k between m and n, h(k) is
not an invocation or return event of p. That is, given inv?(e) and ret?(e) denote that the
event e is an invocation and return event, respectively, e.π denotes the process executing
e, and e.i the operation being executed, mp(p,m, n, h) holds iff

0 < m < n ≤ #h ∧
inv?(h(m)) ∧ ret?(h(n)) ∧ h(m).π = h(n).π = p ∧ h(m).i = h(n).i ∧
∀ k • m < k < n⇒ h(k).π �= p

Let bs(p,m, h) denote the size of process p’s buffer at point m in the history h, and
nf (p,m, n, h) denote the number of flushes of process p’s buffer between points m and
n in h. The number of new items in process p’s buffer between two points m and n in a
history h is given by

bi(p,m, n, h) =̂ bs(p, n, h) + nf (p,m, n, h)− bs(p,m, h)

We use the function mpf below to find indices m, n and l in h such that (m, n) is a
matching pair and l corresponds to the point to which the return of the matching pair
must be moved.

mpf (p,m, n, l, h) =̂ mp(p,m, n, h) ∧ n ≤ l ∧
if bi(p,m, n, h) = 0 then l = n
else h(l) = flush(p) ∧

nf (p,m, l, h) = bs(p,m, h) + bi(p, n,m, h)

The first part of the if states that l = n if no items are put on the buffer by the
operation invoked at point m. The second states that l corresponds to a flush of p’s
buffer and the number of flushes between m and l is precisely the number required to
flush the contents of the buffer at m and any items added to the buffer between m and n.

To transform a history h, we do the following two steps.

Step 1. Given mpf (p,m, n, l, h) holds for some p:
if n �= l
then h(l) becomes h(n) and h(n) becomes a dummy event δ
else we do nothing because the return should not be moved.

This results in a history h′ ∈ seq(Event ∪ {δ}), where all returns have been moved to
the return positions of their corresponding flushes.

Step 2. The second step is straightforward: all δ and flushes are removed.

The algorithm described above is deterministic; we let Trans(h) be the function that
returns a transformed history by applying the algorithm to history h. For example, his-
tory (2) is transformed to the following via Step 1
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〈inv(p,acquire, ), ret(p,acquire, ), inv(p,release, ), δ,
inv(q,tryaquire, ), ret(q,tryacquire, 0), ret(p,release, )〉

which in turn is transformed to history (3) by Step 2.

3.2 TSO Linearizability

A formal definition of linearizability is given in [7]. We adapt this definition as follows.
An incomplete history h is extended with a sequence h0 of return and flush events,
then matched to a sequential history hs by removing the remaining pending invocations
using a function complete, i.e., complete(h) is a subhistory of h formed by removing
all pending invocations from h. We say a history h is legal iff for each n : 1..#h such
that ret?(h(n)), there exists an earlier m : 1..n− 1 such that mp(p,m, n, h), and for each
n : 1..#h such that h(n) = flush(p), bs(p, n, h) > 0.

A key part of adapting the standard definition to TSO is what we mean by a matching
pair of invocations and returns. The formal definition of the function mp in [7] (defined
above) requires that for all k between m and n, h(k) is not an invocation or return event
of p. This is not true for our transformed histories on TSO since operations by the same
process may overlap. Therefore, we will use a new version of matching pairs mpTSO

defined as follows.

mpTSO(p,m, n, h) iff mpf (p, x, z, y, h)
where m = x−

∑
p:P

nf (p, 1, x, h) and n = y−
∑
p:P

nf (p, 1, y, h) and x < z ≤ y

Given RF is the set of all return and flush events, we define TSO linearizability as
follows.

Definition 1 (TSO linearizability). A history h : History is TSO linearizable with
respect to some sequential history hs iff lin(h, hs) holds, where

lin(h, hs) =̂ ∃ h0 : seq RF • legal(h � h0) ∧ linrel(Trans(complete(h � h0)), hs)

where

linrel(h, hs) =̂ ∃ f : 1..#h �→ 1..#hs • (∀ n : 1..#h • h(n) = hs(f (n)))∧
(∀ p : P; m, n : 1..#h • m < n ∧mpTSO(p,m, n, h)⇒ f (n) = f (m) + 1) ∧
(∀ p, q : P; m, n,m′, n′ : 1..#h •

n < m′ ∧ mpTSO(p,m, n, h) ∧mpTSO(q,m′, n′, h)⇒ f (n) < f (m′)) �

That is, operations in hs do not overlap (each invocation is followed immediately by its
matching return) and the order of non-overlapping operations in h is preserved in hs.

Note that history (2) is a complete legal history, and that Trans applied to this history
gives us history (3). Since release and tryacquire now overlap in the trans-
formed history (3), a potential linearization in terms of the abstract specification is

〈inv(p,Acquire, ), ret(p,Acquire, ), inv(q, TryAcquire, ), ret(q, TryAcquire, 0),
inv(p,Release, ), ret(p,Release, )〉

Thus, spinlock is TSO linearizable with respect to the abstract specification.
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4 A Proof Method for Linearizability on TSO

We do not work directly with this definition of linearizability, but rather use a refinement-
based proof method for verifying linearizability as defined in [6–8, 14]. This approach
defines simulation rules that form a sound (and complete) proof method for verify-
ing linearizability. Different classes of algorithm use slightly different rules, where the
difference depends on how easy it is to identify the linearization points — in some algo-
rithms these can’t be identified directly, and depend on the behaviour of other processes
[8]. However, for the example in this paper we can use the simplest set of rules found
in [7] and described below.

General Approach. The approach is based on proving a concrete specification that
has one operation for each line of code is a non-atomic refinement [9] of the abstract
specification capturing the code’s intent. Each allowable sequence of concrete steps
must simulate a sequence of abstract operations despite the interleaving of concrete
steps performed by different processes3.

Let P be the set of processes. Let our abstract and concrete specifications be given
as A = (AState,AInit, (AOPp,i)p∈P,i∈I) and C = (CState,CInit, (COPp,j)p∈P,j∈J) where
the sets I and J are used to index the abstract operations and concrete steps, respectively.
The function abs : J → I maps each concrete step to the abstract operation it (together
with other steps) implements. We assume the concrete state space CState is composed of
a global state GS (the shared memory) and the local state LS of one process (the program
counter, local variables and, on TSO, the local buffer). Following [7], linearizability is
then shown by:

1. Defining a status function that identifies the linearization points of operations.
Let STATUS ::= IDLE | IN〈〈In〉〉 | OUT〈〈Out〉〉 where In and Out are the domains
of inputs and outputs, respectively, as defined in Section 3. We define a function
status : GS × LS→ STATUS such that the following hold.
If a process has no pending operation then the status of the process is IDLE. If it is
executing an operation and has not passed the linearization point, then the status of
the process is IN(in) where in is the input of the operation, if any, and⊥ otherwise.
If it is executing an operation and has passed the linearization point, the status is
OUT(out) where out is the output of the operation if any, and ⊥ otherwise.

2. Showing individual concrete runs of a process correctly implement the abstract
operations using non-atomic refinement.
We find a forward simulation R relating the global state and the local state of a
process to the abstract state, i.e., R ⊆ AState× (GS × LS), and a set of simulation
rules which additionally update the status function appropriately as shown in the
example in Fig. 3. In this example, the input in of an invocation step INVOP(in)
is used to establish a status of IN(in). After the invocation an internal operation
implements skip and leave the status unchanged. Then the linearization point that
implements AOp(in, out) is passed and the status changes to OUT(out). Finally the
status is used to compute the output of a return step RETOP(out) and the status
returns to IDLE.

3 We use the term steps in this section to distinguish the concrete operations of the specification
from the operations of the code (such as acquire in our example).
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status=IDLE status=IN(in)

COp COp RETOP(out)

status=OUT(out)

COpINVOP(in)

status=IDLE

AOp(in,out)

Fig. 3. The status information for non-atomic refinement

There are 5 different simulation rules depending on whether the particular concrete
step being considered is an invocation step, a return step, or an internal step before
linearization, after linearization or at the linearization point. As an example, the
simulation rule for a concrete invocation step is4:

∀ as : AState; gs, gs′ : GS; ls, ls′ : LS; in : In •
R(as, gs, ls) ∧ status(gs, ls) = IDLE ∧ INVOPj(in, gs, ls, gs′, ls′)
⇒ (status(gs′, ls′) = IN(in) ∧ R(as, gs′, ls′))
∨ (∃ as′ : AState; out : Out •

AOPabs(j)(in, as, as′, out) ∧ status(gs′, ls′) = OUT(out) ∧
R(as′, gs′, ls′))

where the first and second disjuncts in the consequent capture invocations that do
and do not correspond to a linearization, respectively.

3. Showing interference freedom, i.e., that other processes running in parallel do not
destroy this non-atomic refinement.
To ensure steps of other processes preserve the local simulation relation R, we de-
fine R(as, gs, ls) =̂ ABS(as, gs) ∧ INV(gs, ls) where ABS(as, gs) captures how the
abstract state is represented by the global state, and INV(gs, ls) provides further
constraints between the global and local variables. ABS(as, gs) is preserved by all
steps of all processes. Hence it is sufficient to prove that INV(gs, ls) is preserved
by other processes. The interference freedom condition is:

∀ as : AState; gs, gs′ : GS; ls, ls′, lsq : LS •
ABS(as, gs) ∧ INV(gs, ls) ∧ INV(gs, lsq) ∧ D(ls, lsq) ∧ COPj(gs, ls, gs′, ls′)
⇒ INV(gs′, lsq) ∧ D(ls′, lsq) ∧ status(gs′, lsq) = status(gs, lsq)

where a symmetric predicate D ⊆ LS × LS is used to constrain the relationship
between the local states of any two processes. This predicate must also be preserved
by the steps of all processes.

4. Showing the concrete initialisation satisfies the abstract initialisation.

∀ gs : GSInit • ∃ as : AInit •
ABS(as, gs) ∧ (∀ ls : LSInit • INV(gs, ls)) ∧ (∀ ls, lsq : LSInit • D(ls, lsq))

4 In this paper, we use R(x, y) and R(x, y, z) as shorthands for (x, y) ∈ R and (x, (y, z)) ∈ R,
respectively, for all relations R.
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where GSInit and LSInit are the initial states of the global and local state spaces,
respectively. �

The status function captures the status of a single pending operation. Under TSO, how-
ever, we may have several pending operations: that operation currently being executed
by the process, if any, and those that have completed apart from the flushing of their
writes to memory. In our extension to the above approach, we let status capture the
status of the operation which the process is currently executing. If there is no such pro-
cess, the status is IDLE. All other pending operations, i.e., those completed apart from
flushes, will necessarily be before their linearization points.

The other role of the status function is to carry the inputs of the operation until they
are needed at the linearization point where they, along with the operation’s outputs,
must match those of the associated abstract operation. To adapt the approach to TSO,
we need to be able to keep track of the inputs of completed, but pending, operations.
We also need to keep track of the abstract operation associated with each completed,
but pending, operation and the completed operation’s outputs (since the operation has
already completed, its outputs will have already occurred).

To do this we add four auxiliary variables to the local concrete state space LS. The
first of these lin : seq((I ∪ {null}) × In × Out) records, for each buffer entry, the
abstract operation for which its flush is a linearization point (null indicates its flush is
not a linearization point), the abstract operation’s input, and the abstract operation’s
output. When a flush occurs the values corresponding to the flushed entry are read into
the other three auxiliary variables op : I ∪ {null}, in : In and out : Out.

We also need to introduce two new simulation rules. The first corresponds to a pro-
cess with status IN returning to IDLE without linearizing. This would be the case where
the operation is to be linearized by a flush which is yet to occur.

Return without Lin.
∀ as : AState; gs, gs′ : GS; ls, ls′ : LS; in : In •

R(as, gs, ls) ∧ status(gs, ls) = IN(in) ∧ RETOPj(gs, ls, gs′, ls′, out)⇒
status(gs′, ls′) = IDLE ∧ R(as, gs′, ls′)

The second corresponds to the occurrence of a flush. A flush acts as either an internal
step or a linearizing step as shown in cases (a) and (b) of Fig. 4, respectively. Case (a)
can occur when the process has any status and its status is not changed. When the status
is IN or OUT the internal step may be of the pending operations, and for any status it
may be of an operation which has previously completed.

Case (b) also occurs from any status and when the status is IDLE or OUT it remains
unchanged. Such a flush in these statuses corresponds to the linearization of an opera-
tion which has already completed. When the status is IN the flush may also be lineariz-
ing an operation which has already completed, in which case the status is unchanged,
or it may be linearizing the pending operation, in which case the status becomes OUT.

The rule refers to the post-states of the auxiliary variables op, in and out via ls′.op,
ls′.in and ls′.out, respectively.
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(a)

Flush

StatusA StatusA

Flush

StatusB StatusC

AOp(in,out)(b)

Fig. 4. Simulation rules for flush

Flush.
∀ as : AState; gs, gs′ : GS; ls, ls′ : LS; in : In •

R(as, gs, ls) ∧ Flush(gs, ls, gs′, ls′)⇒
(ls′.op = null⇒ R(as, gs′, ls′) ∧ status(gs′, ls′) = status(gs, ls)) ∧
(ls′.op �= null⇒

(∃ as′ : AState • AOPls′.op(ls′.in, as, as′, ls′.out) ∧ R(as′, gs′, ls′)) ∧
(status(gs′, ls′) = status(gs, ls)
∨ (status(gs, ls) = IN(ls′.in) ∧ status(gs′, ls′) = OUT(ls′.out)))

5 Spinlock Is Linearizable on TSO

To show that spinlock is linearizable using the approach described in Section 4, we
produce a concrete specification of the algorithm. Given P is the set of all process iden-
tifiers, the global state of the concrete specification includes the value of the shared
variable x which is initially 1, and a variable lock denoting which process, if any, cur-
rently has the global memory locked.

GS
x : {0, 1}
lock : PP

#lock ≤ 1

GSInit
GS

x = 1
lock = ∅

The local state of a given process is specified in terms of its process identifier from P,
a program counter indicating which operation (i.e., line of code) can next be performed,
and the process’s buffer.

Let PC ::= 1 | 2 | a1 | . . . | a8 | ta1 | . . . | ta7 | r1 where the value 1 denotes the
process is idle when it has not acquired the spinlock, the value 2 denotes the process is
idle when it has acquired the spinlock, the values ai, for i ∈ 1 . . 8, denote the process is
ready to perform the ith line of code of acquire, the values tai, for i ∈ 1 . . 7, denote
the process is ready to perform the ith line of code of tryacquire, and the value r1
denotes the process is ready to perform the first line of release.

LS0

id : P
pc : PC
buffer : seq{0, 1}
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As detailed in Section 4, we add auxiliary variables to our local state to keep track of
information required at linearization points corresponding to a flush. Let I == {1, 2, 3}
be the indices of the abstract operations such that 1 denotes Acquire, 2 denotes Release
and 3 denotes TryAcquire. Let In == {⊥} be the set of input values of operations, and
Out == {0, 1,⊥} be the set of output values.

LS
LS0

op : I ∪ {null}
in : In
out : Out
lin : seq((I ∪ {null})× In× Out)

#lin = #buffer

LSInit
LS

pc = 1
buffer = 〈 〉

Given this specification, the lines of code are formalised as Z operations5. For ex-
ample, for the acquire operation we have an operation A0 corresponding to the invo-
cation of the operation, an operation A1 corresponding to the line of code while(1),
and an operation A2 corresponding to the line of code lock.

A0
ΞGS
ΔLS

pc = 1
pc′ = a1

A1
ΞGS
ΔLS

pc = a1
pc′ = a2

A2
ΔGS
ΔLS

lock = ∅ ∧ pc = a2
lock′ = {id} ∧ pc′ = a3

To model the fact that A2 also results in all entries of the process’s buffer being
flushed, the operation A3 corresponding to the following line of code, x=1, is not en-
abled unless buffer = 〈 〉. It will become enabled after the required number of Flush
operations have occurred. These remove an entry from the buffer and update the aux-
iliary variables op, in and out according to the information in lin. This information is
added to lin when the buffer entries are added. For example, the operation A4, corre-
sponding to the line x=0, updates lin to indicate that the flush of this value will not be
a linearization point.

A3
ΞGS
ΔLS

buffer = 〈 〉
pc = a3
if x = 1
then pc′ = a4
else pc′ = a7

Flush
ΔGS
ΔLS

lock = ∅ ∨ lock = {id}
buffer �= 〈 〉
x′ = head buffer
buffer′ = tail buffer
head lin = (op′, in′, out′)
lin′ = tail lin

A4
ΞGS
ΔLS

pc = a4

buffer′ = buffer � 〈0〉
pc′ = a5

lin′ = lin � 〈(null,⊥,⊥)〉

5 To simplify the presentation we adopt the convention that the values of variables that are not
explicitly changed by an operation remain unchanged.
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The other concrete operations are modelled similarly. The operations corresponding
to the unlock statements are only enabled when buffer = 〈 〉 modelling that the buffer
must be completely flushed before the memory is unlocked.

Such a concrete specification is well-formed only if any sequence of operations cor-
responding to an abstract operation has exactly one linearization point. It is important,
therefore, when modelling operations which change lin (i.e., those that write to the
buffer) to ensure this. If a buffer entry is marked as a linearization point, the sequence
of operations in which it occurs should not be linearized by a change in status from IN
to OUT, nor by any other buffer entry.

Linearization can now be proved by defining the function status so that the lineariza-
tion points of Acquire and TryAcquire are the operations which release the memory
lock, and the linearization point of Release is the flush that commits the associated
value of 1 to the global variable x.

The required relations ABS, INV and D are as follows.

ABS : AS↔ GS

∀ as : AS; gs : GS | ABS(as, gs) •
(gs.lock = ∅⇒ gs.x = as.x) ∧ (gs.lock �= ∅ ∧ gs.x = 1⇒ as.x = 1)

INV : GS↔ LS

∀ gs : GS; ls : LS | INV(gs, ls) •
(ls.pc = {1, a1, a2, a3, ta1, ta2} ∧ ls.buffer �= 〈 〉 ⇒ gs.x = 0) ∧
(ls.pc ∈ {a4, ta3} ⇒ gs.x = 1) ∧
(ls.pc ∈ {a5, ta4} ∧ ls.buffer = 〈 〉 ⇒ gs.x = 0) ∧
(ls.pc ∈ {a5, ta4} ∧ ls.buffer �= 〈 〉 ⇒

gs.x = 1 ∧ ls.buffer = 〈0〉 ∧ (head ls.lin).1 = null) ∧
(ls.pc ∈ {2, a6, ta3, ta6, r1}⇒ gs.x = 0) ∧
(ls.pc �∈ {a6, ta6} ∧ ls.buffer �= 〈 〉 ⇒

ls.buffer = 〈1〉 ∧ (head ls.lin).1 = 2) ∧
(ls.pc ∈ {2, a4, a6, a7, a8, ta3, ta5, ta6, ta7, r1}⇒ ls.buffer = 〈 〉) ∧
(ls.pc ∈ {a3, a4, ta2, ta3}⇒ gs.lock = {ls.id}) ∧
(gs.x = 1 ∧ ls.buffer �= 〈 〉 ⇒ gs.lock = {ls.id})

D : LS↔ LS

∀ ls, lsq : LS | D(ls, lsq) •
ls.buffer �= 〈 〉 ⇒ lsq.buffer = 〈 〉 ∧
lsq.buffer �= 〈 〉 ⇒ ls.buffer = 〈 〉 ∧
ls.pc ∈ {2, a4, a6, ta3, ta5, r1}⇒ ls.buffer = lsq.buffer = 〈 〉 ∧
lsq.pc ∈ {2, a4, a6, ta3, ta5, r1}⇒ ls.buffer = lsq.buffer = 〈 〉 ∧
ls.pc ∈ {a5, ta4} ⇒ lsq.buffer = 〈 〉 ∧
lsq.pc ∈ {a5, ta4} ⇒ ls.buffer = 〈 〉

For example, consider a Flush operation occurring when pc = a5. For the op-
eration to occur, buffer �= 〈 〉. Hence, by INV(gs, ls), gs.x = 1, ls.buffer = 〈0〉,
(head ls.lin).1 = null and gs.lock = {ls.id}.
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Consider the Flush rule of Section 4. Since ls′.op = (head ls.lin).1 = null and
status(gs, ls) = IN(⊥), this will hold if both ABS(as, gs′) and INV(gs′, ls′) hold and
status(gs′, ls′) = IN(⊥). The latter follows since the operation does not change ls.pc.
ABS(as, gs′) also holds since the operation does not change gs.lock (i.e., gs′.lock �= ∅)
and sets gs′.x = 0. INV(gs′, ls′) holds since in addition to setting gs′.x = 0 the Flush
operation sets ls′.buffer = tail ls.buffer = 〈 〉.

We also need to prove non-interference for this operation. Let ls denote the state
of the process on whose buffer the flush is performed. Since ls.buffer �= 〈 〉, when
D(ls, lsq) holds for all lsq �= ls, all other process buffers are empty. Since the other
process’s buffers are not changed by the operation, DS(ls′, lsq) holds. Although the
operation changes the value of the global variable gs.x to 0, INV(gs′, lsq) will remain
true since it can only be affected by this change when lsq.pc ∈ {a4, ta3, a5, ta4} and in
each of these cases ls.buffer would be equal to 〈 〉 by D(ls, lsq), i.e., the Flush operation
would not be enabled.

Since similar proofs can be carried out for each concrete operation, and the initial-
isation condition holds (since as.x = gs.x = 1 implies ABS(as, gs), ls.pc = 1 and
ls.buffer = 〈 〉 implies INV(gs, ls), and ls.buffer = lsq.buffer = 〈 〉 implies D(ls, lsq)),
spinlock is linearizable on TSO.

6 Conclusions

This paper has presented a definition and simulation-based proof method for lineariz-
ability on the TSO memory model. The key to our definition is the treatment of flushes
of local buffer entries as part of the operation which made the entries. This enables a
proof method which, unlike existing methods, can be used to show implementations
of algorithms are linearizable with respect to their natural abstract specifications. This
work has applied state-based methods to program verification, and is part of a larger ef-
fort on the verification of linearizability on sequentially consistent architectures as well
as weaker memory models. This larger effort mechanises the proofs of linearizability
by integrating the state-based reasoning into the KIV theorem prover, see [6–8], and in
[14] we prove (and mechanise the proof) that our approach is complete, in that all lin-
earizable algorithms can be verified by such simulation-based methods. Given we are
using the same simulation-based approach, mechanisation and integration into KIV of
the theory in this paper will be relatively straightforward.

One interesting consequence of our approach is that operations on a single process
may overlap and hence be reordered under linearizability. This is in contrast to ear-
lier work on sequentially consistent architectures where linearizability implies the ad-
ditional correctness criterion of sequential consistency [13], i.e., that operations on a
single process occur in the order that they are called. Sequential consistency will only
hold on TSO when, in addition to linearizability, memory barriers are included in all
operations which (a) do not write to memory, but (b) occur in a process with other
operations which do write to memory. This can be checked by inspection of the code.

Investigating alternative definitions of linearizability on TSO which maintain se-
quential consistency is an area of future work. Other areas of future work include
the reducing the effort needed to apply the proof method. For example, the use of a
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coarse-grained abstraction as an intermediate layer between the concrete and abstract
specifications, and a means to automatically generate the required invariants.
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Abstract. We introduce a compositional, complete proof method for
linearizability that combines temporal logic, rely-guarantee reasoning
and possibilities. The basic idea of our proof method is that each pro-
cess must preserve possibility steps as an additional guarantee condition
for linearizability. To illustrate the expressiveness of our method, we ap-
ply it to a wait-free multiset implementation with intricate linearization
points. Both the soundness of our method as well as its application to
our multiset have been mechanized in the interactive verifier KIV.
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ity, Wait-Freedom, Multiset, Interactive Verification.

1 Introduction

Data structure implementations that offer fast concurrent access on multi-core
machines are of particular importance. These implementations use fine-grained
locking or non-blocking techniques that apply atomic hardware instructions in-
stead of locks, e.g., compare-and-set (CAS). Thus a higher degree of parallelism
can be achieved.

The central safety property of these implementations is linearizability [6].
Roughly speaking, it requires that each concurrent data structure behavior cor-
responds to some behavior of an abstract data type with atomic operations.
Furthermore, linearizability imposes the following constraint on the order of ab-
stract behaviors: It must preserve the order of concrete executions that do not
overlap in time. A strong progress condition for non-blocking data structures
is wait-freedom: Wait-free operations terminate in a finite number of steps, in-
dependent of the behavior of other processes. Wait-free implementations are
particularly useful in real-time settings where the number of execution steps of
an operation must be known beforehand.

Our proof method for linearizability is based on the well-known (intuitive)
technique of identifying linearization points. The key idea behind this approach
is that a linearizable operation appears to take effect instantaneously during its
execution [6]. This point in time is called a linearization point: In simple cases,
linearization points are internal and static, i.e., they coincide with one spe-
cific instruction of a running operation, independent from the overall concurrent
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system execution. We call linearization points that depend on the concurrent
behavior of other processes potential linearization points [1]. In more complex
cases, linearization points can be external, i.e., they can happen with an instruc-
tion of another process. Algorithms with potential external linearization points
are particularly challenging for proving linearizability.

Possibilities [6] formalize the intuition of identifying linearization points. Our
proof method is based on the key insight [13] that backward simulation with
possibilities is a complete proof strategy for linearizability. To reason composi-
tionally about linearizability, we combine a rely-guarantee decomposition rule
with possibilities: The basic idea is that each process must preserve possibilities
as an additional guarantee condition which performs a step-local backward sim-
ulation. We specify and verify our proof method for linearizability in the logic
Rely-Guarantee Interval Temporal Logic (RGITL), which offers an expressive
framework for the symbolic execution of sequential/interleaved programs with
temporal logic [14]. The logic makes it possible to verify safety and liveness prop-
erties. It is implemented in the interactive verifier KIV. Both the soundness of
our proof method as well as its application to verify the multiset linearizable
and wait-free are mechanized in KIV [8].

To illustrate the expressiveness of our proof method, we consider a novel
multiset implementation with wait-free operations to insert, lookup and delete
an element, respectively. While our multiset operations are pretty simple, they
pose intricate linearization problems similar to Herlihy and Wing’s queue [6]. In
particular, the multiset has potential external linearization points that change
the abstract representation and linearize several other running processes.

The structure of the rest of this paper is as follows: Section 2 introduces our
wait-free multiset implementation and shows the challenges of proving it lineariz-
able. Section 3 briefly introduces RGITL, in particular rely-guarantee reasoning
in the logic. Section 4 then defines our proof method and Section 5 illustrates
its application to verify the multiset correct. Finally, Section 6 discusses related
work and Section 7 concludes with a brief summary and possible future work.

2 A Simple Wait-Free and Linearizable Multiset

2.1 The Multiset Implementation

We introduce a multiset data structure that can be accessed concurrently by an
arbitrary finite number of processes that repeatedly execute one of the algorithms
INSERT, DELETE or LOOKUP given in Figure 1. All individual (atomic) steps of
these operations are executed in an interleaved manner. First we explain these
operations, then we describe our overall concurrent system model.

The implementation stores elements x of the multiset in a shared array Ar of
size N �= 0. Each array slot either contains an element or empty . All operations
get an element x as input parameter (before the semicolon). They sequentially
run through the array Ar and compute a boolean output value Out (these two
are reference parameters).
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INSERT(x;Ar ,Out) {
letFound = f ,Pos = 0 in

while ¬ Found ∧ Pos < N do {
CAS(empty , x;Ar [Pos ],Found);
if ¬ Found
then Pos := Pos + 1

};Out := Found}

DELETE(x;Ar ,Out) {
letFound = f ,Pos = 0 in

while ¬ Found ∧ Pos < N do {
CAS(x, empty ;Ar [Pos ],Found);
if ¬ Found
then Pos := Pos + 1

};Out := Found}
LOOKUP(x;Ar ,Out) {
letFound = f ,Pos = 0 in

while ¬ Found ∧ Pos < N do {
if Ar [Pos ] = x
then Found := t
else Pos := Pos + 1

};Out := Found}

CAS(Exp,New ;Curr ,Out) {
if* Curr = Exp
then Curr := New ,Out := t
else Out := f}

Fig. 1. The Wait-Free Multiset Operations INSERT, LOOKUP and DELETE in RGITL

When operation INSERT finds an empty slot, it atomically replaces empty with
x using a CAS instruction. CAS atomically compares a current location Curr
with an expected value Exp. If the values are equal it sets Curr to a new value
New and returns true; otherwise it returns false. We specify this using parallel
assignments separated by comma, which need one atomic step to execute, and
if*, which (in contrast to using if) does not take an extra step to execute its test.
Local variables are introduced with let. Operation DELETE atomically assigns
empty to the first slot in Ar that it finds to contain x. Operation LOOKUP returns
true if it finds the searched element throughout its scan, otherwise it returns
false.

In the following, let V in introduces arbitrary initial values for variables V .
For better readability we will write process identifiers p : N0 as subscripts rather
than as an input parameter or function argument.

RGITL offers an operator ‖ which interleaves1 steps of its first and second
component. Thus we can specify an overall concurrent system

SPAWNn(S) { if* n = 0 then PROC0(S) else {PROCn(S) ‖ SPAWNn−1(S)} }

that recursively interleaves n+1 processes PROCp(S) with identifiers p ≤ n. The
overall system state is S : state. Each process repeatedly executes an operation
COPp(I , In;S,Out)

PROCp(S) { {let I , In,Out in COPp(I , In ;S,Out)}* }

with some operation index I : index, input In : input and output Out : output.
The star operator * denotes arbitrary iteration.

For the multiset, the operation index is one of ins | del | lkp, the input is an
element, the state is Ar , the output is of type bool, and we instantiate COPp as
{if* I = ins then INSERT(In;S,Out) else if* I = del then DELETE . . . }.
1 The version here does not assume (weak) fairness.
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2.2 The Abstract and Concrete Specifications for Linearizability

To better understand the challenges of proving our multiset implementation
linearizable, we first define its semantics in terms of an abstract specification.
Then we briefly explain how to extend the abstract/concrete specifications with
execution histories that represent the visible behaviors for linearizability.

Our abstract specification is based on atomic operation relations

AOP(I )(In ,AS ,AS ′,Out)

where I is again the operation index, AS/AS ′ is the abstract state before/after
an atomic AOP-transition and In/Out are input and output values, respectively.
Initial abstract states are specified according to a predicate AInit(AS).

For the multiset, the abstract state is an algebraic multiset Ms and we define
AOP(lkp) = ALookUp, AOP(del) = ADelete and AOP(ins) = AInsert as the
following atomic relations: The lookup relation ALookUp leaves the multiset
unchanged and sets its output to true iff the input element x occurs at least
once in the current multiset (x ∈ Ms).

ALookUp(x,Ms ,Ms ′,Out) ≡ Ms ′ = Ms ∧ (Out ↔ x ∈ Ms)

The ADelete relation removes one occurrence of its input element x from the
current multiset Ms if x occurs in the multiset, otherwise it leaves the multiset
unchanged and returns false (where {|.|} denotes a multiset).

ADelete(x,Ms ,Ms ′,Out) ≡ Ms ′ = Ms \ {|x|} ∧ (Out ↔ x ∈ Ms)

Finally, the insert relation AInsert either adds its input x to the current
multiset (this increases the number of occurrences of x by 1) and returns true,
or it non-deterministically returns with output false and leaves the multiset
unchanged. Restricting AInsert to only return false if the multiset is full w.r.t. a
predefined bound on the number of elements (typically the size N of the array)
would make the implementation non-linearizable.2

AInsert(x,Ms ,Ms ′,Out) ≡ Ms ′ = Ms ∪ {|x|} ∧ Out ∨ Ms ′ = Ms ∧ ¬ Out

Linearizability defines the behaviors of concrete and abstract operations in
terms of execution histories which are finite sequences of events. An event
e : event models either the invocation invp(I , In) or the return retp(I ,Out) of a
particular operation I that is invoked by a process p with some input, possibly
returning an output. We use the following simple selectors on events: e.p/e.i
selects the process identifier/the operation index and invp.in/retp.out are the
associated input/output values.

Linearizability extends the abstract operation relations with history parame-
ters Hs/Hs ′ and these extended operations additionally add a pair of an invoke

2 For the same reasons, an atomicity check [4] for our multiset fails, since running the
concrete code without interruption as an abstract specification does not offer the
possibility to return false non-deterministically.
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and return event to Hs with every AOP-transition. Sequences of such operations
that are executed by a finite number of processes from an initial state (where
AInit holds and Hs is empty), generate the histories of the abstract specification.

Similarly, we extend the state of our concurrent system model SPAWNn with
a history variable H such that each process now first adds an invoke event
invp(I , In) to H before it executes the internal steps COPp(I , In;S,Out) that
leave H unchanged.

COPp(I , In;S,H,Out) {
H := H + invp(I , In); COPp(I , In;S,Out);H := H + retp(I ,Out) }

With its return, process p adds a return event retp(I ,Out) to H . The overall
system state is initialized using a predicate Init(S,H) which requires H to be
empty. Hence, the visible behaviors H of the extended system SPAWNn(S,H)
consist of either i) invp/retp events of a process p that correspond to terminated
executions of an operation or ii) pending invoke events where p has added an
invoke event toH but not yet returned, i.e., it is still running. Due to preemption,
invoke events in H can be followed by events of other processes.

Roughly speaking, SPAWNn(S,H) is linearizable if every prefix of its histories
H corresponds to some history Hs of the abstract specification that preserves
the order of non-overlapping executions in H . (Two executions in H are non-
overlapping iff the invoke event of one operation occurs after the return event
of the other one.) However, it is cumbersome to reason about linearizability
by searching for a corresponding abstract behavior for each possible concrete
behavior [6]. Reasoning in terms of linearization points (possibilities) is more
convenient: The basic idea is that the unique order of linearization points in a
concurrent execution precisely determines the order of atomic operations in a
corresponding abstract execution.

2.3 Challenges of Proving the Multiset Linearizable

This work started by looking at [3] where a lock-based multiset without a delete
operation is shown to be linearizable. We and the authors of [3] first thought that
adding a delete operation would violate linearizability. However, our presumed
counter-example was flawed as we explain below. Our result here suggests that
adding a (blocking) delete operation to their implementation should also be
correct. Thus it solves an open challenge from [17].

The presumed counter example was based on the following concrete execution.
A lookup and a delete operation concurrently search for an element x that lies
ahead of their current positions but they have not reached x’s position yet:

x Ms = {|x|}Ar

DELETEx

LOOKUPx

Next, both operations are preempted and a concurrent insert operation success-
fully inserts x below the current search indices of lookup and delete:



362 B. Tofan, G. Schellhorn, and W. Reif

xx Ms = {|x, x|}Ar

DELETEx

LOOKUPxINSERTx : t

Then the delete operation runs to completion and removes x from the upper
part of the array:

x Ms = {|x|}Ar

LOOKUPx DELETEx : t

Finally, the lookup operation completes and returns false.
This concurrent behavior seems to contradict linearizability: At least one oc-

currence of x is always in the multiset while lookup returns false. It is however
wrong to think that if some x is always in the array, then it must also be in the
multiset. Indeed, according to linearizability, the order of the abstract insert and
delete operations may be changed here, since the respective concrete executions
do overlap in time. That is, the concrete history

invp(lkp, x), invq(del, x), invr(ins, x), retr(ins, t), retq(del, t), retp(lkp, f)

can be correctly reordered to the abstract history

invq(del, x), retq(del, t), invp(lkp, x), retp(lkp, f), invr(ins, x), retr(ins, t)

where first the delete operation takes effect, deleting the initial occurrence of x
in the multiset, and thus making a lookup with false possible.

The concurrent execution above already motivates a central idea of our lin-
earizability proof in terms of linearization points: Successful delete operations
must potentially linearize early during their execution, before they actually
delete their element from the array. Consequently, the abstract representation
becomes a collection of multisets, since potentially linearizing a delete operation
does not leave the abstract state unchanged and the linearization must be possi-
bly revised due to future executions of other processes. To illustrate this effect,
we consider the previous concurrent execution again:

Initially, no process is running and the abstract representation is merely
{{|x|}}. In general, when no running delete operation exists, the abstract multi-
set is uniquely given by the elements in the array. As soon as a delete operation
starts, it might have already linearized which gives possible multisets {{||}, {|x|}}
where the empty multiset {||} results from deleting x from the initial multiset
{|x|}. After the insert operation succeeds, the abstract representation is either
{|x, x|}, or {|x|} if the delete has potentially linearized. Finally, as soon as the
delete operation succeeds, {|x|} becomes the only possible multiset again.

Thus we compute possible abstract multisets by executing running operations
to the end, then abstracting the array content to a multiset. This corresponds
to the general approach of [13] to compute observation trees.

Note that in the execution above, the lookup operation must linearize to false
with the potential linearization of the delete operation that removes the last
occurrence of x from the multiset. If there were any delay between these two
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linearizations, then a concurrent INSERT might insert x below the current posi-
tion of the lookup operation and linearizing to false would no longer be possible,
since any possible abstract multiset would contain x. In this case, the lineariza-
tion point of the delete operation is also an external potential linearization point
for all running lookup/delete operations that can now complete with false.

The linearizability proof poses a further challenge for lookup/delete opera-
tions that return false: These operations must potentially linearize with false
before they pass the first slot of the array. Starting with an empty array, af-
ter passing the first slot, a concurrent insert at the first slot makes linearizing
these operations to false impossible. Together, successful delete operations, plus
lookup/delete operations that return false, must potentially linearize early dur-
ing their execution. Intuitively speaking, this allows us to move their lineariza-
tion point towards the time of their invocation. We will formalize this intuition
when we instantiate the abstraction relation of our proof method (see properties
DELt/DELf /LKPf in Section 5.1).

3 RGITL

We specify and verify our proof method and the multiset case study in the logic
RGITL that we briefly introduce next. For a detailed exposition refer to [14].

3.1 Syntax and Semantics

The semantics of RGITL is based on intervals which are finite or infinite se-
quences of the form I = (I(0), I ′(0), I(1), I ′(1), I(2), . . .) where every I(k) and
I ′(k) is a state function that maps variables to values. The state transition
from I(k) to I ′(k) is called a program transition, whereas the transition I ′(k) to
I(k+1) from a primed to the subsequent unprimed state is an environment tran-
sition. Thus intervals alternate between program and environment transitions,
similar to reactive sequences [12].

The logic discerns static variables v (written lowercase) that do not change
in any transition of an interval, from dynamic variables V (written uppercase)
that can change arbitrarily. Primed and double primed variables V ′ and V ′′ are
evaluated over I ′(0) and I(1), respectively, if I is not empty. (For an empty
interval, both V ′ and V ′′ are evaluated over I(0).) Formulas ϕ are higher-
order/temporal logic expressions of boolean type: For instance, the temporal
logic operator ϕ1 untilϕ2 states that ϕ2 holds in some state of a given interval
and up to that state ϕ1 holds. From this operator, the standard temporal logic
operators eventually � and always � can be easily derived. For instance, for-
mulas � V = V ′ and � V ′ = V ′′ state that variable V does not change in any
program/environment transition of an interval.

Assertions in RGITL are based on the well-known sequent calculus where a
sequent Γ & Δ is valid if the conjunction of all formulas from the antecedent
Γ implies the disjunction of all formulas from the succedent Δ. Programs in
RGITL are formulas: A program restricts the program transitions of an interval
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only. A typical program assertion Init , α, E & ϕ states that program α satisfies
property ϕ, starting in an initial state that satisfies predicate logic formula Init ,
given that the environment behaves according to formula E.

3.2 RG Reasoning

Rely-Guarantee (RG) reasoning [7] extends Hoare’s well-known approach to rea-
son about sequential programs with pre-/post-conditions to a concurrent set-
ting: Assumptions of a process p about possible environment transitions are
specified using a two-state predicate Rp : state × state → bool over the entire
program state. These are called rely conditions. In return, each process p must
specify guarantees for its steps using a further two-state predicate Gp : state ×
state → bool, called guarantee conditions.

RGITL offers native support for RG assertions which are a special type of
temporal formulas: An RG assertion for partial correctness

Pre(S), Inv(S) & [R(S′, S′′), G(S, S′), Inv(S), α(S)] Post(S)

requires that final states of a program α satisfy the post condition Post :
state → bool if the program starts in a state where the precondition Pre :
state → bool holds; program transitions preserve G and propagate the invariant
Inv : state → bool if previous environment transitions satisfy R and propagate
Inv , respectively. This semantics can be easily formalized in the logic using the
until operator, see [17].

Similarly, an RG assertion for total correctness (using 〈 . 〉 instead of [ . ])
strengthens partial correctness by additionally requiring that α terminates if the
environment always preserves the rely conditions and propagates the invariant.
(We verify such liveness properties by induction over a given variant term.)

RGITL offers a Hoare-style calculus for the symbolic execution of RG asser-
tions for partial and total correctness of sequential programs. For instance, we
execute an assignment (S := e);α according to the following rule

Pre(s0), Inv(s0), s1 = e & G(s0, s1)

Pre(s0), Inv(s0), s1 = e & Inv(s1)

Pre(s0), s1 = e,R(s1, S), Inv(S) & 〈R,G, Inv , α〉 Post(S)
Pre(S), Inv(S) & 〈R(S′, S′′), G(S, S′), Inv(S), (S := e);α〉 Post(S) (1)

where the static variables s0/s1 denote the state vector S before/after the
assignment. In its first/second premise, the rule requires proving the guaran-
tee/invariant propagation for the assignment transition. In the third premise, the
RG assertion must be shown for the rest program α: The antecedent is typically
simplified to the stable part of Pre(s0) over the assignment and the subsequent
rely, i.e., to a formula Prenew (S) with Pre(s0)∧ s1 = e∧R(s1, S)→ Prenew (S).

Symbolic execution is practical for sequential but not for interleaved pro-
grams. Therefore, we apply RG decomposition rules for interleaved programs
that reduce the verification to the constituent (sequential) sub-programs. Here
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we use the following RG decomposition rule for SPAWNn(S) (ignoring operation
indices, inputs/outputs and histories for a moment):

1) reflexive(Gp), transitive(Rp), Gp(S, S
′) → Rq(S, S

′)

2) Prep(S
′) ∧ Rp(S

′, S′′) → Prep(S
′′), Postp(S

′) ∧ Rp(S
′, S′′) → Postp(S

′′)

3) Inv(S),Prep(S) & [Rp, Gp, Inv(S), COPp(S)] Postp(S)

4) (∃ S. Init(S)) ∧ (Init(S) → Inv(S) ∧
∧
p≤n

Prep(S))

Init(S) & [
∧
p≤n

Rp,
∨
p≤n

Gp, Inv(S), SPAWNn(S)]
∧
p≤n

Postp(S)

(2)

The conclusion of the rule states that each transition of the interleaved system
preserves some guarantee Gp and propagates the invariant as long as the pre-
vious environment transitions satisfy all rely conditions Rp and propagate the
invariant. (Note that we can not prove total correctness for SPAWNn, since the
system can invoke infinitely many operations.) Premises 1), 2) and 4) are sim-
ple predicate logic conditions on the used RG conditions: Guarantees must be
reflexive, relies transitive, and a guarantee step of a process p must be a rely
step for each other process q. Moreover, pre-/post-conditions must be stable over
rely steps, since a process might start after/terminate before another process.
Finally, there must exist an initial overall system state where predicate Init , the
invariant and all pre-conditions hold. The central premise 3) requires proving an
RG assertion for partial correctness of an individual operation COPp(S).

4 Proof Method: RG Reasoning with Possibilities

Our proof method for linearizability combines RG reasoning with possibilities
as we explain next. The underlying system model is SPAWNn(S,H), Section 2.2.

4.1 Possibilities

Possibilities characterize linearizability in terms of linearization points (see The-
orems 9 and 10 in [6]). Intuitively, our possibilities predicate Poss(H,R,AS)3

holds if H,R,AS has been reached by a finite sequence of invocation, lineariza-
tion and return steps as defined below. Parameter set R stores the return events
for those running operations that have already linearized but not yet returned.

Formally, we define possibilities

Poss(H,R,AS ) ≡ ∃ AS 0. AInit(AS0) ∧ ΔPoss(([ ], ∅,AS0), (H,R,AS))

as possibility steps ΔPoss on triples (H,R,AS) that start with an empty history,
an empty set R and an initial abstract state AS0. A possibility step is either an

3 See [13], p. 248 for a comparison with the original syntax in [6].
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invocation step Invoke, an abstract atomic operation step Linearize , or a return
step Return

ΔPoss ≡ (Invoke ∨ Linearize ∨ Return)∗

where ∗ denotes the reflexive and transitive closure of the underlying relation.
In an invocation step, the executing process p must not have a pending invo-

cation event in H (nopip(H)). The step adds an invoke event to H but changes
neither the return set R nor the abstract state AS .

Invoke((H,R,AS), (H ′, R′, AS′)) ≡ ∃ p, I , In.

H ′ = H + invp(I , In) ∧ nopip(H) ∧ R = R′ ∧ AS = AS ′

The execution of a linearization step requires a pending invoke in H (denoted
pi(n,H) where n < #H) for a process that has not yet linearized (no corre-
sponding event in R). It executes an abstract atomic transition AOP and adds
the corresponding return event to R.

Linearize((H,R,AS ), (H ′, R′,AS ′)) ≡ H = H ′ ∧ ∃ n,Out.

pi(n,H) ∧ (∀ e. e ∈ R → e.p �= H(n).p)

∧ AOP(H(n).i)(H(n).in,AS ,AS ′,Out) ∧ R′ = R+ retH(n).p(H(n).i,Out)

We write LinI,Out for a linearization step of operation I with output Out .
Finally, a return step completes a running operation that has already lin-

earized by removing its return event e from R and adding it to the history.

Return((H,R,AS), (H ′, R′, AS′)) ≡
AS = AS′ ∧ ∃ e. e ∈ R ∧ H ′ = H + e ∧ R′ = R \ {e}

To illustrate possibilities, we reconsider the concurrent multiset execution
from Section 2.3 where the abstract multiset is {|x|} initially and a lookup and
a delete operation are invoked by processes p/q: Executing the Invoke steps
for processes p and q we get a history H = invp(lkp, x), invq(del, x). Now we
have three possible continuations which yield possible values (R,Ms) as follows:
Either i) no Linearize transition is executed (∅, {|x|}), or ii) the delete operation
linearizes with true ({retq(del, t)}, {||}), or iii) the delete operation linearizes with
true and then the lookup linearizes with false ({retq(del, t), retp(lkp, f)}, {||}).

4.2 Proof Method

Our proof method is a linearizability-specific instance of rule (2). Similar to
premise 3) of the rule, our method essentially requires to show the following RG
assertion for partial correctness of an individual process p

nopip(H), Inv(S , H),� Out ′ = Out ′′

& [Rp(S
′, H ′, S ′′, H ′′) ∧ Rposs

p (H ′, H ′′), Gp(S , H,S ′, H ′) ∧ Gposs(S , H,S ′, H ′),

Inv(S , H), COPp(I , In; S , H,Out)] t (3)
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ΔPossR,AS R′,AS ′

S , H S ′, H ′

Abs Abs

COPp−transition

Fig. 2. Step-Local Backward Simulation

In (3), the rely/guarantee predicates Rp/Gp can be chosen freely for each
case study whereas predicates Rposs

p /Gposs have linearizability-specific defini-
tions that we introduce next. Predicate

Gposs(S , H,S ′, H ′) ≡ ∀ R′,AS ′. Abs(S ′, H ′, R′,AS ′)→
∃ R,AS. Abs(S , H,R,AS) ∧ΔPoss(H,R,AS,H ′, R′, AS′)

ensures linearizability by propagating possibility steps backwards over each pro-
gram transition as Figure 2 shows: For each transition of COPp from S , H to
S ′, H ′, we must show that each abstract state R′,AS ′ that is related to S ′, H ′

according to an abstraction relation Abs, has been reached by a finite number
of possibility steps starting from some abstract state R,AS that Abs relates to
S , H .

The main idea of the abstraction relation is to restrict the number of possible
abstract states that must be propagated backwards in concrete proofs, by taking
the concrete state into account. The abstraction relation must be total over
invariant states Inv(S , H) → ∃ R,AS . Abs(S , H,R,AS).

Furthermore, proof obligation (3) uses the following rely properties

Rposs
p (H ′, H ′′) ≡ (nopip(H

′)→ nopip(H
′′))

∧ ∀ n. pi(n,H ′) ∧H ′(n).p = p→ pi(n,H ′′) ∧H ′(n) = H ′′(n)

which ensure that after adding an invoke event invp to H , this event remains
pending and unchanged in H throughout the entire execution of p. These prop-
erties obviously hold for an individual process of the concurrent system. They
are required to propagate possibility steps during p’s execution, e.g., the lin-
earization step Linearize requires a pending invocation in H for the respective
process.

In (3), the output variable Out is local, so the output that is computed by
the internal steps in COPp corresponds to the output that is added to H in the
final return transition. The post-condition is trivial for simplicity, but using an
extra predicate to allow more complex post-conditions is possible.

Finally, there must exist an initial concrete system state. All concrete initial
states must correspond to abstract initial states where no process has linearized.

InitH(S ) ∧ Abs(S , H,R,AS) → AInit(AS ) ∧ R = ∅
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Theorem 1 (Compositional Proof Method for Linearizability).
With the predicate logic side conditions above, proof obligation (3) is a composi-
tional proof method for linearizability:

InitH(S), SPAWNn(S,H),� (S ′ = S ′′ ∧ H ′ = H ′′)

& � ((∃ r, as. Poss(H, r, as)) ∧ (∃ r, as. Poss(H ′, r, as)))

Intuitively, the theorem states that each prefix of H has a possibility (which
implies linearizability). Further details and a mechanized soundness proof are
described at [8]. Our method is compositional as it ensures the overall system
property of linearizability based on the process-local RG proof obligation (3).
Completeness of the method follows from the completeness of the step-local
backward simulation technique in [13] (based on Owicki/Gries reasoning [11])
and the completeness of RG reasoning w.r.t. the Owicki/Gries method [12].

Since we typically want to talk about local states in concrete RG specifications,
procedure COPp in (3) can initialize local variables S .LSf p of process p with
the invocation transition using an initialization function init(I ). (Directly using
a let for the initialization would hide relevant local state information from
specifications. We leave locality properties for LSf p implicit in (3).)

5 Verifying the Multiset

To talk about local states in the multiset specifications, we introduce a function
LSf as part of the program state S = LSf ,Ar which stores the following local
information for each process p: Ip is the operation index, Inp is the input element,
Foundp is the boolean flag that determines whether the operation has found the
searched element and Posp is the current index position of the running operation.

5.1 Instantiating the Abstraction Relation

The abstraction relation Abs of our proof method formalizes the intuitive con-
siderations from Section 2.3 by relating a concrete state S , H to possible ab-
stract states R,Ms as Abs(S , H,R,Ms) ≡ BASE ∨ DELt ∨ DELf ∨ LKPf . In
the base case BASE ≡ Ms = Absf (Ar) ∧ R = Linsf (LSf ,Ar) the abstract
multiset Ms consists of all elements in Ar , computed by function Absf . Set R
corresponds to precisely those running processes which have either not found
their searched element and are at the end of their scan or which have found it
and set their found-flag to true. Function Linsf computes the return events of
these processes.

The second disjunct in the definition of Abs describes the early linearization
of a running delete operation (of process p) that potentially deletes the searched
element that lies ahead of its current position at Ar [n].

DELt(S,H,R,Ms) ≡ ∃ p, n.

Ip = del ∧ ¬ Foundp ∧ Posp ≤ n < #Ar ∧ Ar [n] = Inp

∧ (∀ n0. Posp ≤ n0 < n→ Ar [n0] �= Inp) ∧ retp(del, t) ∈ R

∧ Abs(LSf ,Ar [n]:=empty , H + retp(del, t), R \ {retp(del, t)},Ms)
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The definition can be viewed to consist of three steps. First a possible future state
(S′, H ′) from current state (S,H) is computed by running the remaining steps
of p. This deletes input element Inp = Ar [n] (the resulting array Ar′ is written
Ar [n]:=empty) and adds the return event retp(del, t) to H . Second, Abs is called
recursively to compute a possible abstract state (R′,Ms ′) for state (S′, H ′). If the
recursive call chooses the base case then Ms ′ is just the content of Ar′. Finally
the effect of linearizing the delete early is to add the return event retp(del, t) to
the set R′. The final result of Abs therefore is (R,Ms) = (R′ ∪ retp(del, t),Ms ′).

The third disjunct of Abs similarly considers a running delete process that
potentially linearizes to false as it does not see its searched element ahead

DELf ≡ ∃ p.

Ip = del ∧ ¬ Foundp ∧ Posp < #Ar ∧ (∀ n. Posp ≤ n < #Ar → Ar [n] �= Inp)

∧ retp(del, f) ∈ R ∧ Abs(LSf ,Ar , H + retp(del, f), R \ {retp(del, f)},Ms)

The last disjunct LKPf for a lookup operation that returns false is symmetric
to DELf . It is easy to see that the recursion in Abs is well-founded, since it
decreases the number of running processes.

5.2 The Main Proofs

Instantiating the RG parameters of our proof method is straight-forward: In
the overall initial system state the array is empty. The invariant states that for
each running process, the pending invocations in H correspond to the respective
local state information in LSf . The rely condition Rp states that the length of
the array is not concurrently changed and the guarantee Gp is defined as the
rely conditions of all other processes.

With these instances, the predicate logic premises of our proof method hold
trivially. Therefore, we only focus on the central proof obligation (3) which re-
quires to prove an RG assertion for partial correctness for each individual mul-
tiset operation run by a process p. To also prove wait-freedom of each multiset
operation, we show its stronger version for total correctness by induction over the
variant #Ar−Posp. Symbolic execution of the algorithms leads to proof goals for
each transition (first premise of rule (1) for an assignment) where the guarantee
must be shown. In particular, Gposs must hold for the transition, so a sequence of
suitable abstract steps ΔPoss has to be chosen which makes the diagram of Fig. 2
commute. The choice is easy— usually the empty sequence since the step does not
linearize any running algorihm— for all steps except for one step in each algorithm
as detailed below. All proofs then are by well-founded induction over the number
of running processes. They unfold the definition of Abs for both states (S,H) and
(S′, H ′). The base case is usually trivial, each of the three recursive cases gives
two states (S0, H0) and (S′

0, H
′
0) shown in Fig. 3 that are reached by executing

one pending operation to the end (indicated by the dashed line). Often the COPp-
transition commutes, i.e., it also modifies (S0, H0) to (S

′
0, H

′
0). Then the induction

hypothesis (the dotted lines in the figure) closes the premise immediately. Other-
wise, the state (S′′

0 , H
′′
0 ) reached by executing the transition from (S0, H0) must be
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S , H S ′, H ′
COPp−transition

COPp−transition
S0, H0 S ′

0, H
′
0

S ′′
0 , H

′′
0

IndhypAbs

R,AS R′,AS ′

Abs Abs

Fig. 3. Inductive proof scheme for backward simulation

shown to represent the same possible abstract states as (S′
0, H

′
0), which is usually

proved as a lemma using the same proof principle again.
The complex case for the DELETEx operation is the invocation transition. The

proof discerns three cases. First, the delete may not have linearized, i.e., the
set R′ in Fig. 2 does not contain a return event for the process p executing
the operation. Then ΔPoss is empty. Otherwise, when the multiset after the in-
voke (AS′ in Fig. 2) still contains x, then just the delete linearizes, i.e., ΔPoss =
Lindel,t. Otherwise, the linearization of the delete triggers some linearizations of
lookups and deletes to false, i.e. ΔPoss = Lindel,t; (Lin lkp,f ∨ Lindel,f )

∗. The
exact sequence is determined by the difference between R′ and R.

The critical transition for LOOKUPx is finding x. In particular, if we consider a
multiset (after this transition) that does not contain x, there must be a running
delete process q that (potentially) removes the last occurrence of x right after p
linearizes with true. As a consequence, the transition then linearizes the current
lookup process with true, the running delete process q with true, plus again a
sequence (Lin lkp,f ∨Lindel,f )

∗ of currently running lookup/delete processes that
can now return with false.

The critical transition of INSERTx is when it puts x in an empty array slot. This
step can additionally linearize a running delete operation that now potentially
deletes the element that has just been inserted. In this case the effects of the
abstract insert and delete operations cancel each other (such behavior is typically
found for data structures that use elimination [10]).

6 Related Work

The basic idea of our guarantee condition Gposs is based on [13] where back-
ward simulation is shown to be sound and complete for linearizability. The ap-
proach uses predicate logic and non-compositional Owicki/Gries reasoning [11].
The adaptation to our temporal logic setting with RG reasoning has the fol-
lowing benefits: Verified programs can be specified in an abstract programming
language rather than as transition systems with program counters. More im-
portantly, it avoids the manual encoding of local state information that merely
reflects the control flow of a program. Such properties are automatically com-
puted and propagated by the symbolic execution of RG assertions (see also
[17] for a comparison of our two local proof methods for linearizability for a
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restricted class of linearizable algorithms where potential linearization points do
not modify the abstract state). Finally, we can verify liveness properties within
one framework, here wait-freedom (total correctness) of the multiset operations.
(For more challenging liveness proofs in RGITL see [15,14].)

Doherty et al. [2] use forward/backward simulations in a non-compositional
approach to verify linearizability based on IO-automata. They also report on
model checking linearizability. In general, model checking linearizability can
quickly find bugs, however, it does not consider all possible executions [19].

Recent work [9] describes an RG-based approach for proving linearizability
which annotates potential linearizations in the concrete specifications using ab-
stract auxiliary code that works on a state that roughly corresponds to our
R,AS. In contrast, we separate concrete and abstract code using a step-local
simulation. The approach is manual and only considers partial correctness, while
we mechanically verify the soundness of our method as well as its application.

The proof obligations in [18] are restricted to “pure” linearization points that
leave the abstract state unchanged (as in [1]) and thus cannot prove our multi-
set. In more recent work [5], a complete approach for proving linearizability for a
specific type of purely blocking queue algorithms is introduced. (An operation is
purely blocking if its infinite blocked executions never modify the shared state.)
Proof obligations are not based on linearization points, but rather on a charac-
terization of queue-specific behaviors. They mechanize a proof for Herlihy Wing’s
queue, but only give a manual soundness proof of their reduction. Nevertheless, as
our wait-free multiset is purely blocking, it would be interesting to find such char-
acterizations for multisets and to analyse how their proofs would relate to ours.

7 Conclusion

We have introduced a general proof method for linearizability based on possibil-
ities. It improves the complete proof strategy of [13] by using RG reasoning and
symbolic execution with temporal logic. We have illustrated the expressiveness of
our method by verifying a novel wait-free multiset implementation with potential
external linearization points that change the representation and linearize several
other processes.We leave it for future work to investigate whether the multiset can
be verifiedwith only a fixed small number of local states instead of the full function
LSf , by exploiting the symmetry of the underlying operations (similar to [16]). An-
other option for future work is to apply our techniques to further algorithms such
as the elimination queue [10] that can be verified based on similar ideas.

Acknowledgement. We thank Stefan Schödel for verifying various lemmas of
the case study in KIV.
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LNCS, vol. 3235, pp. 97–114. Springer, Heidelberg (2004)

3. Elmas, T., Qadeer, S., Sezgin, A., Subasi, O., Tasiran, S.: Simplifying linearizability
proofs with reduction and abstraction. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 296–311. Springer, Heidelberg (2010)

4. Flanagan, C., Freund, S.N.: Atomizer: A dynamic atomicity checker for multi-
threaded programs. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2004, pp. 256–267. ACM,
New York (2004)

5. Henzinger, T., Sezgin, A., Vafeiadis, V.: Aspect-oriented linearizability proofs. In:
D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 242–
256. Springer, Heidelberg (2013)

6. Herlihy, M., Wing, J.: Linearizability: A correctness condition for concurrent ob-
jects. ACM Trans. on Prog. Languages and Systems 12(3), 463–492 (1990)

7. Jones, C.B.: Specification and design of (parallel) programs. In: Proceedings of
IFIP 1983, pp. 321–332. North-Holland (1983)

8. KIV: Presentation of KIV proofs for wait-free multiset (2014) (2013),
https://swt.informatik.uni-augsburg.de/swt/projects/ifm14.html

9. Liang, H., Feng, X.: Modular verification of linearizability with non-fixed lineariza-
tion points. In: Proceedings of the 34th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2013, pp. 459–470. ACM (2013)

10. Moir, M., Nussbaum, D., Shalev, O., Shavit, N.: Using elimination to implement
scalable and lock-free fifo queues. In: SPAA, pp. 253–262. ACM (2005)

11. Owicki, S.S., Gries, D.: An Axiomatic Proof Technique for Parallel Programs I.
Acta Inf. 6, 319–340 (1976)

12. de Roever, W.P., de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y., Poel, M.,
Zwiers, J.: Concurrency Verification: Introduction to Compositional and Noncom-
positional Methods. Cambridge Tracts in Theoretical Computer Science, vol. 54.
Cambridge University Press (2001)

13. Schellhorn, G., Derrick, J., Wehrheim, H.: How to prove algorithms linearisable.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 243–259.
Springer, Heidelberg (2012)

14. Schellhorn, G., Tofan, B., Ernst, G., Pfähler, J., Reif, W.: RGITL: A temporal
logic framework for compositional reasoning about interleaved programs. Annals
of Mathematics and Artificial Intelligence (AMAI) (2014)
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Abstract. In designing systems, engineers decompose the problem into
smaller, more manageable tasks. A classic example of this is the separa-
tion principle from control systems which allows one to decompose the
design of an optimal feedback control system into two independent tasks
by designing (a) an observer, and (b) a controller. We investigate an
analogous result for embedded system interfacing that will allow separa-
tion of the design of the input and output hardware interfaces while still
guaranteeing the ability of the software to meet the system requirements.
We define the notions of observability (controllability) of the system re-
quirements with respect to the input (output) interface. We show that
for a system that can be modeled by a functional four-variable model,
observability and controllability allow for the separation of the design
of the input and output interfaces. We also show that this separation is
not always possible for systems that need the general, relational four-
variable model. By strengthening either observability or controllability,
we restrict the choice of input or output interfaces, but ensure separa-
bility of their designs.

1 Introduction

In designing systems, engineers like to decompose system design into smaller,
more manageable tasks. A classic example of this is a conjecture by Kalman [7]
that became known as the “separation principle” or “separation theorem” for
linear control systems which states that one can decompose the physical realiza-
tion of a state feedback controller into two stages: (a) an observer that computes
a “best approximation” of the physical plant’s state based upon the observations
of the physical plant’s outputs (monitored quantities), and (b) computation of
the control signals to the plant (the control outputs) assuming access to perfect
state information from the plant. When the actual plant’s state is replaced in (b)
by the approximation computed in (a), it can be shown that an optimal control
results [5].

For reasons of flexibility and cost, the designs produced by control engineers
are usually implemented as software-controlled embedded systems. A general
view of an embedded system based upon [13] is depicted by the inner loop of
Fig. 1. Based on the measured values of plant parameters obtained from the
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sensors, the software controller commands the actuators with the purpose of
maintaining certain properties in the plant. Parnas and Madey’s four-variable
model [11] (outside square of Fig. 1) helps to clarify the behaviour of, and the
boundaries between, the plant, sensors, actuators, and control software. The
model has been used successfully for the past five decades in the development
of safety-critical embedded systems in various industries [14,3,8,15]. The four-
variable model was also used extensively in the Requirements Engineering Hand-
book [9] that was put together at the request of the U.S. Federal Aviation Ad-
ministration.

M C

I O

REQ

IN

SOF

OUT

NAT

plant

sensors

controller

actuators

Monitored
Variables

Controlled
Variables

Software
Input

Software
Output

Fig. 1. The four-variable model

In the four-variable model there are four types of “variables” (hence the
name): monitored variables (physical parameters of interest in the plant such
as temperatures, voltages, aileron angle in a plane wing etc.); controlled vari-
ables (the physical parameters the system attempts to control); input variables
(the digital representations of the monitored variables available to the software);
and output variables (the variables set by the software in order to modify con-
trolled variables). The sets of the possible values of the monitored and controlled
variables are denoted by M and C, respectively; the sets of the possible values
of the input and output variables are denoted by I and O, respectively. The
system requirements REQ relate values of monitored variables to values of con-
trolled variables. The environmental constraints on the system are described by
the relation NAT (from “nature”), which restricts the possible values of the
monitored and controlled variables. An environmental constraint might be, for
instance, the maximum rate of climb of an aircraft in the case of an avionics sys-
tem. The possible system implementations (system designs) are modelled by a
sequential composition of IN, SOF, and OUT. Here, IN models the input hard-
ware interface (sensors and analog-to-digital converters) and relates values of
monitored variables to values of input variables. The output hardware interface
(digital-to-analog converters and actuators) is modelled by OUT, which relates
values of output variables to values of controlled variables. Relating values of
input variables to values of output variables is SOF, which models the control
software.
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To account for the inaccuracies introduced by the hardware interfaces, IN
and OUT are in general relations, not functions. For example, assume that IN
models an A/D converter that converts analog voltages in the range 0–5V with
an accuracy of ±0.5V; then, for an actual monitored voltage of 2.5V, the value of
the corresponding input variable in the software can be any of the digital repre-
sentations that correspond to 2V, 2.5V, and 3V. A typical engineering practice is
to allow tolerances on requirements (i.e., more outputs acceptable for the same
input), in which case REQ is a relation as well [8]. If we want to capture all
the possible implementations of the control software (i.e., the software require-
ments), then SOF will typically have to be a relation. An actual implementation
of SOF is a deterministic program that runs on a computer and can be modeled
by a function.

The relations NAT and REQ are described by application domain experts
and control engineers. The system designers allocate the system requirements
between hardware and software, and describe IN and OUT. The software engi-
neers must determine SOF and verify whether it is acceptable with respect to
NAT, REQ, IN, and OUT. A difficult part in designing a system is to come up
with the right triple IN, SOF, and OUT such that their integration produces an
acceptable system design. For complex projects that require numerous subcon-
tractors, communication and agreement between the various teams tend to be
challenging, especially when the teams are large and geographically dispersed.
Being able to design the input and output interfaces separately would:

– help designers manage with system design complexity;
– reduce the interaction required between the various teams;
– allow changes to the input (output) interface without requiring changes to

the output (input) interface, an idea similar to Parnas’ information hiding
principle [10] that prevents local changes from propagating throughout other
parts of the system.

At the same time, it would also be highly desirable for the pair of input/output
interfacing to not prevent acceptable software implementations from being pos-
sible. The control software must be able to observe specific changes in the mon-
itored variables via the input interface and react to these changes by modifying
the values of the controlled variables via the output interface, as specified in the
requirements. Thus in our attempt at a separation principle for embedded sys-
tems interfacing, IN plays a role similar to Kalman’s observer and OUT plays
a role similar to Kalman’s controller.

To address the deficiencies of the software acceptability notion presented in
[11], we proposed in [12] a new semantics for the four-variable model based on
the demonic calculus of relations. Using this semantics, we formalized software
acceptability and proved a necessary and sufficient condition for an acceptable
software implementation to exist. In the current paper we revisit this condition
in Section 3 and present it from a different angle by introducing the notions
of observability and controllability of requirements with respect to the input,
and, respectively, output interfaces. As it turns out, this necessary and sufficient
condition has a surprising practical implication: if functions are used, the input
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and output interfaces can always be designed independently and an acceptable
software implementation will still be possible as long as the observability and
controllability conditions both hold; in the relational case, however, the input
and output hardware interfaces are, in general, mutually dependent. Since rela-
tional specifications are more realistic in practice because they can model the
nondeterminism induced by hardware inaccuracies and tolerances on require-
ments, in Section 4 we prove two stronger conditions that allow the input and
output interfaces to be designed independently while still guaranteeing the abil-
ity of the software to meet the system requirements. In Section 5 we discuss some
of the practical and theoretical implications of our results as well as limitations
and future research directions.

2 Mathematical Preliminaries

The mathematics presented in this section will be applied to the four-variable
model in the subsequent sections of the paper. We take a semantic view and
consider that relations are models of specifications as well as of actual imple-
mentations.

2.1 Relations and Covers

A relation R from a set A to a set B is a subset of the cartesian product A×B.
In other words, R is a subset of the set of all ordered pairs (a, b), where a ∈ A
and b ∈ B. Some operations involving a relation R ⊆ A×B are:

– domain of R: dom (R) = {a ∈ A | ∃b ∈ B. (a, b) ∈ R};
– range of R: ran (R) = {b ∈ B | ∃a ∈ A. (a, b) ∈ R};
– converse of R: R� = {(b, a) ∈ B ×A | (a, b) ∈ R};
– image set of a ∈ A under R: R(a) = {b ∈ B | (a, b) ∈ R}.

The image set of an element in the domain of a relation denotes the inaccuracy
or tolerance acceptable for that input.

A relation R ⊆ A×B is univalent if it maps every element in its domain to ex-
actly one element in its range. Univalent relations also go by the name functional
relations or partial functions. Relation R is total if and only if dom (R) = A. The
relations that are both univalent and total are called mappings or total functions.

A cover of a set A is a family C = {Cα ⊆ A | α ∈ I} where α is an index in
some index set I, A =

⋃
α∈I Cα, and the subsets Cα of A, called the cells of C,

are not necessarily pairwise disjoint. A particular case of a cover is the Wonham
cover induced by a relation on its domain [16]. The Wonham cover induced by
R ⊆ A×B on dom (R) is:

cov (R) =
{
A′ ⊆ A

∣∣ ∃b ∈ ran (R). A′ = R
�
(b)

}
. (1)

The cells of cov (R), indexed by ran (R), are the image sets of the elements in
the range of R under the converse of R. In the sequel, when we use the word
cover we will mean a Wonham cover.
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2.2 Demonic Factorization of Relations

For the goals set in Section 1, we are interested in existence conditions for the
dotted arrows in the commutative diagram depicted in Fig. 2. This diagram is
isomorphic to the four-variable model diagram.

A D

B C

R

P

Z�P�R�Q

Q

Y �R�Q

X�P�R

Fig. 2. Demonic factorization

The composition of two relations P ⊆ A×B and Q ⊆ B × C is the relation

P .,Q = {(a, c) ∈ A× C | ∃b ∈ B. (a, b) ∈ P ∧ (b, c) ∈ Q} . (2)

The problem with this notion of composition is that specifications P and Q are
allowed where some points in the range of P are not in the domain of Q. In prac-
tice, this means that an implementation of P .,Q will not always produce a result
when expected to. Consider, for instance, the relations P = {(a1, b1), (a1, b2)}
and Q = {(b1, c1)}, depicted in Fig. 3. In this example, P ., Q allows the dead
end (a1, b2) because a1 can still reach c1 via b1. Semantics that allow such be-
haviours are called angelic. In angelic semantics, specifications that allow “bad”
behaviours for some inputs are permitted as long as they also allow “good”
behaviours for those inputs. In contrast, a demonic semantics rejects any speci-
fication that allows “bad” behaviours. Considering that many embedded systems
are used in safety-critical applications, it is always wise to plan for the worst,
hence we find a demonic semantics more adequate.

a1 c1

b1

b2

P .,Q

P
Q

(a) Angelic composition

a1 c1

b1

b2

P �Q = ∅

P
Q

(b) Demonic composition

Fig. 3. Composition of relations

The demonic composition of P with Q is the relation

P �Q = {(a, c) ∈ A× C | (a, c) ∈ P .,Q ∧ P (a) ⊆ dom (Q)} . (3)

As can be seen in Fig. 3, P �Q is empty for those inputs for which there is
a chance of not producing expected results, thus it is our choice of sequential
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composition in the four-variable model. Demonic and angelic compositions are
the same when P is univalent or Q is total.

The following subrelation of a relation P ⊆ A×B is obtained by restricting
the domain of P to the domain of another relation R ⊆ A× C:

P
∣∣
dom(R)

= {(a, b) ∈ P | a ∈ dom (R)} . (4)

This construction is helpful when working with partial relations. The rationale
for allowing partial relations is that, in practice, in the early stages of system
development it is more likely that incomplete specifications are produced rather
than total specifications. More detail is added as the system becomes better
understood and, eventually, the specifications will cover all the possible cases
that can arise. Before getting to that point, however, many useful analyses can
be performed, such as the implementability checks described in Sections 3 and 4.

A relation P ⊆ A × B is a demonic refinement of a relation R ⊆ A × B,
written P � R, if and only if dom (R) ⊆ dom (P ) and P

∣∣
dom(R)

⊆ R. Demonic

refinement is also known as total correctness in [2,6]. The intuition for demonic
refinement is as follows:

– for every input in the domain of R, P must produce only outputs allowed by
R (i.e., an implementation is at least as deterministic as its specification);

– for the inputs outside the domain of R, P is allowed to produce any output
or no output at all.

Demonic refinement is a partial order on relations. As an example, consider the
relations in Fig. 4: R = {(a1, b1), (a1, b2), (a2, b2)}, P = {(a1, b1), (a2, b2),
(a3, b2), (a3, b3)}, and Q = {(a1, b1), (a2, b1), (a3, b2), (a3, b3)}. Here, P refines R,
but Q does not refine R because (a2, b1) /∈ R.

a1

a2

a3

b1

b2

b3

P refines R

R

P

Q

a1

a2

a3

b1

b2

b3

Q does not refine R

Fig. 4. Examples of demonic refinement

Demonic composition and demonic refinement induce two residuation oper-
ations, the demonic left and right residuals. If composition is seen as a multi-
plicative operation, then the residuation operations play the role of division and
their results are quotients. The demonic left and right residuals are useful when
a relation is refined by a demonic composition of two relations and one of these
relations is not known, as in triangles 3A,B,D and 3A,C,D in Fig. 2. The
demonic left residual of R by Q, denoted R�Q, is defined as the largest solution,
with respect to �, of the inequation Y �Q � R, where Y is the unknown:

Y �Q � R⇔ Y � R �Q . (5)
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A solution Y, called a demonic left factor of R through Q, does not always
exist. In [12], we proved the following necessary and sufficient condition for the
existence of a demonic left factor:

(∃Y. Y �Q � R)⇔ ∀a ∈ dom (R). ∃c ∈ dom (Q). Q(c) ⊆ R(a) . (6)

According to (5), the demonic left residual R�Q is defined only when a demonic
left factor exists. If R �Q is defined, then its value is:

R �Q � {(a, c) ∈ A× C | c ∈ dom (Q) ∧Q(c) ⊆ R(a)} . (7)

The symbol �, called “venturi tube” [6], has the following meaning: for any two
expressions φ and ψ, if φ � ψ, then ψ is defined and equal to φ if and only if φ
is defined.

Similarly to the demonic left residual, the demonic right residual of R by
P, denoted P � R, is defined as the largest solution, with respect to �, of the
inequation P �X � R, where X is the unknown:

P �X � R⇔ X � P �R . (8)

A solution X, called a demonic right factor of R through P, does not always
exist. Therefore, by (8), the demonic right residual P �R is not always defined.
We proved in [12] that the following condition is necessary and sufficient for the
existence of a demonic right factor and for the definedness of the demonic right
residual:

(∃X. P �X � R)⇔

dom (R) ⊆ dom (P ) ∧ ∀b ∈ ran
(
P
∣∣
dom(R)

)
. ∃d ∈ D.

(
P
∣∣
dom(R)

)�
(b) ⊆ R

�
(d) .

(9)

If P �R is defined, then its value is:

P �R �

{
(b, d) ∈ B ×D

∣∣∣∣ b ∈ ran
(
P
∣∣
dom(R)

)
∧
(
P
∣∣
dom(R)

)�
(b) ⊆ R

�
(d)

}
.

(10)
The demonic left and right residuals are also useful when we wish to decom-

pose a relation into a demonic composition of three relations and the relation
in the middle is not known. This situation is depicted in Fig. 2, where we are
interested in solving the inequality P �Z�Q � R for Z. A solution Z, which we
call a demonic mid factor of R through P and Q, does not always exist. In [12]
we showed that:

(∃Z. P �Z�Q � R)⇔

dom (R) ⊆ dom (P ) ∧ ∀b ∈ ran
(
P
∣∣
dom(R)

)
. ∃c ∈ dom (Q).

Q(c) ⊆
{
d ∈ D

∣∣∣∣ (P ∣∣dom(R)

)�
(b) ⊆ R

�
(d)

}
. (11)
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We also proved that any demonic mid factor is a demonic refinement of the
residual P � R � Q, which we call the demonic mid residual of R by P and Q.
In other words, this residual is the largest solution, with respect to �, of the
inequality P �Z�Q � R:

P �Z�Q � R⇔ Z � P �R �Q . (12)

If a demonic mid factor exists, then the value of P � R � Q is well defined and
is given by:

P �R �Q �

{
(b, c) ∈ B × C

∣∣∣∣ b ∈ ran
(
P
∣∣
dom(R)

)
∧ c ∈ dom (Q)∧

Q(c) ⊆
{
d ∈ D

∣∣∣∣ (P ∣∣dom(R)

)�
(b) ⊆ R

�
(d)

}}
. (13)

More details on the demonic calculus of relations can be found in [4,1,2,6,12].

3 Implementability

In this section we ask the question of implementability of system requirements:
is an acceptable implementation of the system requirements possible given a
particular choice of hardware interfacing between the system and the physical
environment? We present necessary and sufficient implementability conditions
in both the functional and relational cases of the four-variable model. For the
reasons mentioned in the introduction, we would like to be able to design the
input and output interfaces independently of each other, while ensuring that an
acceptable implementation is still possible. As it turns out, this separation is
always possible in the functional setting, but not always when relational speci-
fications are used.

To not overcomplicate the presentation, in this paper we do not use the
relation NAT explicitly; instead, we assume that the system requirements specify
only physically meaningful outputs for the inputs that are possible from the
environment. More details about how NAT affects implementability can be found
in [12].

We now return to the question of implementability of system requirements
and give the following definition for implementability.

Definition 1. System requirements REQ are implementable if an input inter-
face IN, an output interface OUT and software SOF exist such that IN �SOF �

OUT � REQ.

In Definition 1, a system implementation is given by the demonic composition
of IN, SOF, and OUT. As explained in Section 2.2, the demonic composition
ensures that there are no dead ends when integrating IN, SOF, and OUT. As
a satisfaction criterion, we use the demonic refinement of relations, which en-
sures that for every input in the domain of the requirements an implementation
will produce only results allowed by the requirements. The demonic refinement
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allows arbitrary system behaviour for the inputs outside the domain of the re-
quirements, but this should present no danger as it is assumed that for a final
product hazard analyzes have been conducted and all the inputs that could
lead to hazardous system behaviour have been added to the domain of REQ
as additional safety requirements. We call acceptable a system implementation
IN �SOF �OUT such that IN �SOF �OUT � REQ. Definition 1 implies that
the system requirements are implementable only if an acceptable system imple-
mentation exists. A software implementation is acceptable if and only if it is
part of an acceptable system implementation. Therefore, the implementability
of system requirements reduces to the existence of an acceptable software im-
plementation, which is relative to the choices made by the system designers for
the input and output hardware.

The question now is when does an acceptable software implementation exist?
The software must be able to observe specific changes in the monitored variables
via the input interface and react to these changes by modifying the values of the
controlled variables via the output interface, as specified in the requirements. We
introduce the notions of observability and controllability of system requirements
with respect to the input and, respectively, output hardware interfaces.

Definition 2. System requirements REQ are observable with respect to an input
interface IN if there exists a demonic right factor of REQ through IN.

For system requirements REQ to be observable, Definition 2 requires that there
exists a relationX ⊆ I×C such that IN �X � REQ. Observability is a necessary
condition for implementability since if IN �SOF �OUT � REQ we can take
X = SOF �OUT . Intuitively, observability says that in the worst case IN always
retains at least as much information about the monitored variables as REQ.

Definition 3. System requirements REQ are controllable with respect to an
output interface OUT if there exists a demonic left factor of REQ through OUT.

For system requirements REQ to be controllable, Definition 3 requires that there
exists a relation Y ⊆M×O such that Y �OUT � REQ. Clearly controllability
is also necessary for implementability since if IN �SOF �OUT � REQ we can
always take Y = IN �SOF . The intuition for controllability is that in the worst
case OUT must be at least as precise as REQ.

In the remainder of the section, we will discuss how observability and con-
trollability affect implementability of system requirements in both the functional
and relational cases of the four-variable model.

3.1 Functional Case

Here we assume the extreme case where the specifications in the four-variable
model are all total functions.

Proposition 1. System requirements REQ are observable with respect to an
input interface IN if and only if ∀M ′ ∈ cov (IN). ∃M ′′ ∈ cov (REQ). M ′ ⊆M ′′.
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Proof. By (1) and specializing (9) to total functions. ��

Proposition 2. System requirements REQ are controllable with respect to an
output interface OUT if and only if ran (REQ) ⊆ ran (OUT ).

Proof. By specializing (6) to total functions. ��

Proposition 3. System requirements REQ are implementable with respect to an
input interface IN and an output interface OUT if and only if REQ is observable
with respect to IN and controllable with respect to OUT.

Proof. By specializing (11) to total functions. ��

Because observability is defined only in terms of REQ and IN, and con-
trollability only in terms of REQ and OUT, a corollary of Prop. 3 is that for
an acceptable SOF to exist, IN and OUT are always separable. The practical
implication is that the input and output interfaces of a system modeled using
a functional four-variable model can always be designed independently and an
acceptable software implementation is guaranteed to exist.

3.2 Relational Case

We now consider the most general case where the specifications in the four-
variable model are partial relations.

Proposition 4. System requirements REQ are observable with respect to an
input interface IN if and only if the following conditions are both satisfied:

(i) dom (REQ) ⊆ dom (IN);

(ii) ∀M ′ ∈ cov
(
IN

∣∣
dom(REQ)

)
. ∃M ′′ ∈ cov (REQ). M ′ ⊆M ′′.

Proof. Follows from (1) and (9). ��

Proposition 4(i) requires an input interface to “see” every input for which
the requirements specify system behaviour. Proposition 4(ii), also known as re-
finement of covers in mathematical topology, requires the accuracy of the input
interface to be the same or of finer granularity than what the requirements imply.

For example, in Fig. 5a, cov
(
IN

∣∣
dom(REQ)

)
= {{m1,m2,m3}} and cov (REQ) =

{{m1,m2}, {m3}}. The cell IN�(i1) = {m1,m2,m3} in cov
(
IN

∣∣
dom(REQ)

)
cor-

responds to i1 and represents the accuracy with which IN produces i1; in other
words, the software is not able to distinguish between m1, m2, or m3 when it
receives the input i1. The requirements in this example, on the other hand, re-
quire the system to make a distinction in how it treats m3 compared to m1

and m2, reflected by the two distinct cells REQ�(c2) = {m3} and, respectively,
REQ�(c1) = {m1,m2} in cov (REQ). The software will not be able to make this

distinction because the cell {m1,m2,m3} in cov
(
IN

∣∣
dom(REQ)

)
is not contained
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in any of the cells of cov (REQ). Consequently, the accuracy of IN is coarser
than required and REQ is not observable with respect to IN. In the example

depicted in Fig. 5b, cov
(
IN

∣∣
dom(REQ)

)
= {{m1,m2}, {m2}} and cov (REQ) =

{{m1}, {m1,m2}, {m2}} satisfy Prop. 4(ii). Because dom (REQ) = dom (IN),
Prop. 4(i) is also satisfied, hence REQ is observable with respect to IN, ensuring
that there is a way to relate the software inputs to values of controlled variables
via a demonic right factor of REQ through IN. Note that IN � REQ is the
largest, with respect to �, such factor (i.e., the least restrictive specification).

m1

m2

m3

i1

c1

c2

REQ

IN IN �REQ = ∅

(a) REQ is not observable

m1

m2

i1

i2

c1
c2

c3

REQ

IN
IN �REQ
well defined

(b) REQ is observable

Fig. 5. Observability

Proposition 5. System requirements REQ are controllable with respect to an
output interface OUT if and only if ∀C ′ ∈ cov

(
REQ�). ∃C ′′ ∈ cov

(
OUT�).

C ′′ ⊆ C ′.

Proof. Follows from (1) and (6). ��

The intuition for Prop. 5 is that for the system requirements to be controllable
the output hardware should allow for the same or finer control over the controlled
variables than what is implied by the requirements. The cells in the covers of
REQ� or OUT� are measures of the amount of control: the smaller the cell, the
more precise the control. For example, in Fig. 6a the cell REQ(m1) = {c1, c2}
in cov

(
REQ�) does not contain any of the cells of cov

(
OUT�). As such, OUT

does not have the right amount of control over the controlled variables and REQ
is not controllable with respect to OUT. Figure 6b depicts an example where
there is a way to relate the monitored values to software outputs via a demonic
left factor of REQ through OUT and, consequently, REQ is controllable. Note
that REQ � OUT is the largest, with respect to �, such factor (i.e., the least
restrictive specification).

In contrast to the functional case, in the relational case observability and
controllability are not sufficient for implementability. A counterexample to the
sufficiency of their conjunction is given in Fig. 7a, which combines the exam-
ples from Figs. 5b and 6b. In this example, REQ is observable and controllable
even though there is no acceptable software. By (12), any acceptable software
implementation is a demonic refinement of IN � REQ � OUT , which is not
well defined here. The reason for this is that i1 cannot be connected with either
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m1

m2

o1
o2

o3

c1
c2

c3

REQ

OUT
REQ �OUT

not well defined

(a) REQ is not controllable

m1

m2

o1
o2

o3

c1
c2

c3

REQ

OUT
REQ �OUT
well defined

(b) REQ is controllable

Fig. 6. Controllability

m1

m2

i1

i2

o1
o2

o3

c1
c2

c3

REQ

IN OUT

IN �REQ �OUT
not well defined

(a) REQ is not implementable

m1

m2

i1

i2

o1
o2

o3

c1
c2

c3

REQ

IN OUT

SOF � IN �REQ �OUT

(b) REQ is implementable

Fig. 7. Implementability

o1 or o2 without breaking demonic refinement. For example, if we connect i1
with o1, then m2 will be connected with c1 via IN �SOF �OUT , something not
allowed by REQ. If we extend OUT with the pair (o2, c2) as in Fig. 7b, then
IN � REQ � OUT becomes well defined, hence an acceptable SOF is possible.
The demonic mid residual IN �REQ�OUT is the least restrictive specification
for acceptable software.

Proposition 6. System requirements REQ are implementable with respect to
an input interface IN and an output interface OUT if and only if the following
two conditions are both satisfied:

(i) dom (REQ) ⊆ dom (IN);

(ii) ∀M ′ ∈ cov
(
IN

∣∣
dom(REQ)

)
. ∃C ′ ∈ cov

(
OUT�). C ′ ⊆

⋂
m∈M ′ REQ(m).

Proof. Follows from (1) and (11). ��
The conditions in Prop. 6 imply both observability and controllability. How-

ever, the requirements are implementable if and only if a certain balance exists
between observability and controllability. In Fig. 7b, REQ is implementable be-

cause if we consider the cell IN�(i1) = {m1,m2} in cov
(
IN

∣∣
dom(REQ)

)
, then

there is the cell OUT�(o2) = {c2} = REQ(m1)∩REQ(m2) in cov
(
OUT�); simi-

larly, for IN�(i2) = {m2} in cov
(
IN

∣∣
dom(REQ)

)
, there is OUT�(o3) = {c2, c3} =

REQ(m2) in cov
(
OUT�), hence Prop. 6(ii) is satisfied.

As can be seen in Prop. 6(ii), IN and OUT are coupled. In practice, this
means that for the requirements to be implementable, the input and output
hardware cannot be, in general, designed independently of each other.
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4 Separability

In this section, we present two stronger implementability conditions for the re-
lational setting that allow the input and output hardware to be designed inde-
pendently of each other.

We obtain the first stronger implementability condition by strengthening
controllability as follows.

Proposition 7. System requirements REQ are implementable with respect to an
input interface IN and an output interface OUT if the following two conditions
are both satisfied:

(i) REQ is observable with respect to IN;

(ii) ∀M ′ ∈ cov (REQ). ∃C ′ ∈ cov
(
OUT�). C ′ ⊆

⋂
m∈M ′ REQ(m).

Proof. To prove the implementability of REQ we have to show that Prop. 6 is
satisfied. Proposition 6(i) follows easily from Prop. 7(i). Also from Prop. 7(i),

we have that for any M ′ ∈ cov
(
IN

∣∣
dom(REQ)

)
there is a M ′′ ∈ cov (REQ)

such that M ′ ⊆ M ′′. If we substitute M ′′ for M ′ in Prop. 7(ii), we get that
there exists a C ′ ∈ cov

(
OUT�) such that C ′ ⊆

⋂
m∈M ′′ REQ(m). Because

M ′ ⊆ M ′′, we also have that C ′ ⊆
⋂

m∈M ′ REQ(m). In conclusion, we have

proved that for any M ′ ∈ cov
(
IN

∣∣
dom(REQ)

)
there is a C ′ ∈ cov

(
OUT�) such

that C ′ ⊆
⋂

m∈M ′ REQ(m), which is exactly Prop. 6(ii). ��

We call a relation REQ that satisfies Prop. 7(ii) strongly controllable with
respect to OUT. An example of strongly controllable requirements is in Fig. 7b.
Strong controllability is not necessary for implementability, as shown in Fig. 8a.
Here, the requirements are implementable and, consequently, controllable with
respect to OUT, although they are not strongly controllable. As such, strong
controllability reduces the number of output hardware choices when compared
with controllability. On the other hand, strong controllability ensures that IN
and OUT can be chosen independently of each other as long as they satisfy their
respective constraints in Prop. 7.

m1

m2

i1

i2

o1
o2

o3

c1
c2

c3

REQ

IN OUT

SOF

(a) REQ is implementable, but not
strongly controllable

m1

m2

i1

i2

o1
o2

o3

c1
c2

c3

REQ

IN OUT

SOF

(b) REQ is implementable, but not
strongly observable

Fig. 8. Strong observability and controllability not necessary for implementability
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In the second stronger implementability condition, we strengthen observabil-
ity as follows.

Proposition 8. System requirements REQ are implementable with respect to
an input interface IN and an output interface OUT if the following conditions
are all satisfied:

(i) dom (REQ) ⊆ dom (IN);

(ii) ∀M ′ ∈ cov
(
IN

∣∣
dom(REQ)

)
. ∃C ′ ∈ cov

(
REQ�). M ′ ⊆

⋂
c∈C′ REQ�(c);

(iii) REQ is controllable with respect to OUT.

Proof. Similar to the proof for Prop. 7. ��

We call REQ strongly observable with respect to IN if REQ and IN sat-
isfy Props. 8(i) and 8(ii). An example of strongly observable requirements is
in Fig. 8a. Strong observability is not necessary for implementability (Fig. 8b).
In this example, the requirements are implementable without Prop. 8(ii) being
satisfied. As such, strong observability restricts the acceptable choices of input
hardware compared with observability, but at the same time it allows the sepa-
ration of IN and OUT as long as they satisfy the constraints of Prop. 8.

5 Discussion

In this paper, we presented one necessary and sufficient (Prop. 6) and two
sufficient (Props. 7 and 8) implementability conditions that allow the system
designers to choose a pair of input and output hardware interfaces such that
an acceptable software implementation is guaranteed to exist. Implementability
does not imply that implementing the SOF relation is practical. Nevertheless,
it gives software engineers the confidence that their efforts are not destined to
fail from the beginning. If implementability is not satisfied, then no acceptable
implementation will be possible.

From a system development perspective, an important question is which
implementability condition to use and when. If separating IN and OUT at design
time is important, then one of the stronger implementability conditions should
be used as follows:

– if the input hardware is more difficult to design than the output hardware,
then it is desirable to have as many options as possible for the input hard-
ware. In such cases, Prop. 7 is more suitable because the implied strong
controllability limits only the choices of output hardware without overly-
restricting the input hardware. If for observability the necessary and suffi-
cient condition of Prop. 4 is used, then this will allow the widest possible
range of acceptable input hardware;

– similarly, Prop. 8 together with Prop. 5 should be used if having more de-
sign options for the output hardware is more important than for the input
hardware.
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If the system designers need as many acceptable options as possible for both the
input and output interfaces, and separability of IN and OUT is not as important,
then the necessary and sufficient implementability conditions in Prop. 6 should
be used.

The stronger implementability conditions in Props. 7 and 8 can be viewed
as a “separation principle” for embedded systems interfacing similar to the well
known separation principle for linear control systems design [7]. The analogy
is not perfect, however. An observer in the control engineering sense would be
constructed in the four-variable model as a simulation of a linear system inside
SOF. The relation IN represents the input hardware that obtains the samples
that would be used as input to the observer simulation. Similarly, a state feed-
back controller in the control engineering sense would be computed as a matrix
multiplication inside SOF, the results of which would then be sent to the physical
plant via the output hardware represented by OUT. Also, in control engineer-
ing observability and controllability of a plant are sufficient for separability of
observers and controllers, while in the relational four-variable model either ob-
servability or controllability of REQ needs to be strengthened in order for the
designs of the input and output interfaces to be separable.

The results presented in this paper are very general. The relations REQ, IN,
OUT, and SOF model input-output behaviours without internal states. Also,
we did not assume any structure on the sets M, C, I, and O. Because of this
generality, our implementability conditions do not explicitly consider constraints
that a practical implementation has to deal with, such as timing. In our current
formalization, the sets M, C, I, and O contain all the possible values for every,
respectively, monitored, controlled, input, and output variable. Time can be
added explicitly to the four-variable model by treating the elements of M, C,
I, and O as functions of time [11,8]. A useful research direction would be to
specialize our implementability conditions to their timed versions.

The results also have applicability beyond embedded systems. They can be
applied to essentially any system that can be modeled using a commutative dia-
gram similar to the one of the four-variable model (Figs. 1 and 2). Such commu-
tative diagrams also appear in stepwise refinement techniques where mappings
between behaviours at different levels of abstraction are rather frequent.

To be useful in practice, our implementability checks need to be supported
by tools. For a completely automated check, SMT solving may be a fruitful
direction, although many SMT solvers do not cope well with formulas that have
existential quantifiers within the scope of universal quantifiers. Another approach
would be to develop heuristic algorithms for the problem at hand. When SMT
solving and heuristics do not work, or in the case of very large or infinite relations,
verifying implementability will still be possible in an higher-order proof assistant
such as Coq, Isabelle, PVS etc., paying the price of having to do tedious and,
more than often, hard proofs.

We have formalized and checked the mathematics presented in the paper
with the proof assistant Coq. The files are available at www.cas.mcmaster.ca/

~patcaslm/papers/2014-iFM/coq.
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Hähnle, Reiner 55
Hentschel, Martin 55
Hoang, Thai Son 323

Jakobs, Marie-Christine 307
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