
On the Use of RSA Public Exponent
to Improve Implementation Efficiency

and Side-Channel Resistance

Christophe Giraud(B)

Cryptography and Security Group, Oberthur Technologies,
4, Allée du Doyen Georges Brus, 33600 Pessac, France

c.giraud@oberthur.com

Abstract. Since the end of the nineties, cryptographic developers must
not only provide fast implementations but they must also take Side-
Channel Analysis and Fault Injection into account. From that time, many
side-channel and fault countermeasures have been proposed to reach a
double goal: provide a high level of security while having the smallest
impact on performance and memory consumption. In the particular case
of RSA, the knowledge of the public exponent has been used to propose
the most efficient fault countermeasure in terms of security and perfor-
mance. However so far no study has been published which exploits such
a variable to improve RSA efficiency and side-channel resistance.

In this paper, we fill this gap by proposing an original CRT-RSA
implementation which makes use of the knowledge of the public expo-
nent. In particular, we investigate an efficient method using only 4 pri-
vate key parameters out of 5 and we also propose a free message blinding
method to reinforce side-channel resistance.

Keywords: CRT-RSA · Efficient implementation · Side-channel coun-
termeasure

1 Introduction

1996 was one of the most amazing years for the Crypto community. Indeed in a
few months, two revolutionary attacks called Side-Channel Analysis (SCA) [21]
and Fault Injection (FI) [5] were published. These two attacks definitely affected
practitioners by changing the way of implementing cryptographic algorithms and
they also challenged theoreticians to design new cryptosystems meant to resist
such threats. The first kind of attack takes advantage of physical interactions
between the embedded device and its environment during the execution of the
cryptosystem to recover information on the corresponding secret key [24]. Indeed,
it was noticed that these interactions, such as the device power consumption [22]
or its electromagnetic radiation [15], contain information on the operations and
on the variables manipulated by the device. The second kind of attack aims
to disturb the correct execution of the algorithm and uses the corresponding
c© Springer International Publishing Switzerland 2014
E. Prouff (Ed.): COSADE 2014, LNCS 8622, pp. 56–68, 2014.
DOI: 10.1007/978-3-319-10175-0 5



On the Use of RSA Public Exponent to Improve Implementation Efficiency 57

faulty output to obtain information on the secret key [19]. Of course, numerous
countermeasures have been published since 1996 to efficiently counteract these
attacks and the fields of SCA and FI are now the most active fields of research
in cryptography.

As well as being the first practical public-key cryptosystem, RSA [29] has
also been the most widely used for many years, especially in electronic signature
schemes. It has thus been a privileged target for cryptologists to mount effective
SCA and FI and to propose efficient countermeasures. Concerning FI-resistant
RSA implementation, the most efficient method consists in using the public
exponent to verify the signature before outputting it. Whereas such an approach
has been published more than 15 years ago [6], no publication deals with the
exploitation of the public exponent to improve RSA implementation efficiency
and side-channel resistance. This article addresses such an open topic.

The rest of this paper is organised as follows. Section 2 briefly presents the
state-of-the-art of secure CRT-RSA implementation on embedded devices. In
Sect. 3, we present our new approach to implement CRT-RSA by taking advan-
tage of the knowledge of the public exponent. After presenting a functional ver-
sion of our implementation, we improve its side-channel resistance by proposing
a free message blinding method. This new approach is then compared with the
state-of-the-art implementation. Finally, we conclude in Sect. 4.

2 State-of-the-Art Secure CRT-RSA Implementation

In this section, we firstly describe RSA before presenting the main SCA and FI
countermeasures used nowadays to obtain a secure implementation.

2.1 RSA Presentation

In the following we briefly recall how to compute the RSA signature in both
standard and CRT modes.

Let N denote the public modulus being the product of two secret large prime
integers p and q. Let d refer to the private exponent and e refer to the public
exponent satisfying d·e ≡ 1 mod ϕ(N), where ϕ denotes Euler’s totient function.
The RSA signature of a message m ∈ ZN is then obtained by computing S =
md mod N . To verify the signature, one computes Se mod N and checks if the
corresponding result is equal to m.

In embedded systems, most RSA implementations use the Chinese Remain-
der Theorem (CRT) which yields a speed-up factor of four [13]. By using the
CRT, the signature generation is composed of two exponentiations Sp = mdp

mod p and Sq = mdq mod q, where dp = d mod (p−1) and dq = d mod (q−1).
The signature is then obtained by recombining Sp and Sq, which is usually done
by using Garner’s formula [16]:

S = Sq + q · (iq · (Sp − Sq) mod p), (1)

where iq = q−1 mod p.



58 C. Giraud

We depict in Algorithm 1 the algorithmic of a standard CRT-RSA imple-
mentation as described above.

Algorithm 1. Standard CRT-RSA signature

Inputs: The message m and the private key (p, q, dp, dq, iq)
Output: The signature S of the message m

// First exponentiation

1. Sp ← mdp mod p
// Second exponentiation

2. Sq ← mdq mod q
// Recombination

3. S ← Sq + q · (iq · (Sp − Sq) mod p)

4. return S

Although RSA cryptosystem using signature protocol PSS [27] is proved
secure against theoretical cryptanalysis, it can be broken if straightforwardly
implemented on embedded devices by using Side-Channel Analysis or Fault
Injection. In the next sections, we present the main countermeasures which are
generally implemented to counteract SCA and FI.

2.2 SCA Countermeasures

When published, SCA was divided into two groups: Simple Side-Channel Analy-
sis (SSCA) and Differential Side-Channel Analysis (DSCA). The first kind aims
at recovering information on the secret key by using the side-channel leakage of
only one execution of the algorithm whereas DSCA uses several executions of the
algorithm and applies statistical analysis to the corresponding measurements to
exhibit information on the secret key.

In the particular case of RSA, the most common countermeasure to prevent
SSCA consists in using exponentiation methods where the sequence of modu-
lar operations does not depend on the corresponding secret exponent. Example
of such exponentiations are the Montgomery Ladder [20] or the Atomic expo-
nentiation [8]. Concerning DSCA countermeasures, most techniques aim at ran-
domizing the message and the exponents. This can be done for instance by
applying additive masking to these variables [9]. In such a case, one can pick
four 64-bit random values ki, i ∈ {0, · · · , 3}, and compute S′

p = (m + k0 ·
p)dp+k1·(p−1) mod 264 · p and S′

q = (m + k2 · q)dp+k3·(q−1) mod 264 · q before
combining them using the CRT-recombination. The expected signature is finally
obtained by performing a final reduction modulo N = p · q.

Instead of using additive masking to blind the message, one can apply multi-
plicative masking [24] which consists generally in multiplying the message with
re mod N where r is a non null random value. The blinding is then removed



On the Use of RSA Public Exponent to Improve Implementation Efficiency 59

at the end of the computation by multiplying the final result with r−1 mod N .
However, the inverse computation to obtain r−1 mod N is costly in terms of both
performance and memory consumption. Such an approach is therefore generally
avoided in favor of the traditional additive masking.

When combining both SSCA and DSCA countermeasures, RSA implemen-
tations resist most kind of side-channel attacks. However, a third class of SCA
called Horizontal Analysis (HA) has been published recently and could defeat
such implementations by using only one execution of the algorithm [4,10,11,31].
This kind of attack aims generally at distinguishing if each modular operation
is a multiplication with the input message or not. To counteract such power-
ful attacks, one must randomize the order of the single-precision multiplica-
tions [4,11] or randomize the blinding of each operand before each long integer
multiplication [10].

2.3 FI Countermeasures

RSA has been the first cryptosystem to be analysed versus Fault Injection [6]. In
the case of CRT-RSA, only one fault injected during one of the two exponentia-
tions provides a faulty signature which allows the attacker to recover one of the
two secret primes p or q. For instance, if a fault is injected during the computa-
tion of Sp leading to a faulty signature ˜S then one can notice that ˜S ≡ S mod q

but ˜S �≡ S mod p. Therefore, the secret parameter q can be easily recovered by
computing the gcd of S − ˜S and N . The other private key parameters can then
be straightforwardly deduced.

To protect RSA against such a threat, dozens of countermeasures have been
proposed over the last decade. These methods can be divided into four differ-
ent groups. The first group is based on Shamir’s method proposed in [30]. The
idea is to perform the two exponentiations over GF(p · t) and GF(q · t) respec-
tively where t is a small random value and then compare both results modulo t.
Amongst the numerous variants of Shamir’s method, only the improved version
of Vigilant’s proposal is considered secure against fault injection [12]. The second
methodology has been proposed by Giraud in which the fault detection comes
from the exponentiation algorithm itself [17]. He pointed out that by using the
Montgomery powering ladder [20], both values md−1 mod N and md mod N are
available at the end of the computation. These values can then be used to verify
the integrity of the exponentiation by testing if m times the first value is equal to
the second one. This method has then been extended in [7,28]. The third group
corresponds to the infective computation method which has been introduced by
Yen et al. in [32]. The idea of the countermeasure consists in modifying the sig-
nature if a fault is detected such that it provides no information to the attacker.
Despite several proposals, each and every infective method has been broken [3].
The fourth and last kind of countermeasure consists in verifying the signature
by using the public exponent before outputting it [6].



60 C. Giraud

In the rest of this paper we assume that the public exponent is small, typically
less than 216+1, which is nearly always the case in practice1. Therefore the fourth
approach presented above is the most efficient way to counteract fault attacks
on CRT-RSA in terms of both security and performances.

2.4 Summary

To sum up Sect. 2, we depict in Algorithm 2 the skeleton of a state-of-the-art
secure CRT-RSA [2, Sect. 6.1].

Algorithm 2. Secure CRT-RSA signature

Inputs: A message m, the public exponent e and the private key (p, q, dp, dq, iq)
Output: The signature S of the message m

1. Generate three 64-bit random values k0, k1 and k2

// Message blinding

2. m′ ← m + k0 · p · q
// First secure exponentiation

3. d′
p ← dp + k1 · (p− 1)

4. S′
p ← m′d′

p mod 264 · p [Using an SSCA-HA-resistant expo.]
// Second secure exponentiation

5. d′
q ← dq + k2 · (q − 1)

6. S′
q ← m′d′

q mod 264 · q [Using an SSCA-HA-resistant expo.]
// Secure recombination

7. S′ ← S′
q + q · (iq · (S′

p − S′
q) mod (264 · p))

// Signature verification

8. N ← p · q
9. if S′e mod N = m then

10. return S′ mod N

11. else

12. Security action

3 A New Approach

Whereas the public exponent has been used for more than 15 years to counteract
Fault Injection, no study has been done to investigate how such a value can be
used to improve RSA performance and side-channel resistance. This is unfortu-
nate since when setting an RSA private key, the corresponding public exponent
e is often known. For example in the case of EMV banking applications [14],

1 According to [23, Table 1], 99.95 % of the RSA public keys which are used nowadays
use one of the 15 following values as public exponent: 3, 5, 7, 11, 13, 17, 19, 21, 23,
35, 41, 47, 28 + 1, 216 − 1 and 216 + 1. In particular, more than 95% of the public
exponents are equal to 216 + 1.



On the Use of RSA Public Exponent to Improve Implementation Efficiency 61

there are only 2 different public exponents possible (3 or 216 +1) and the correct
one can be recovered from the private key by using 2 multiplications [18]. It is
therefore interesting to investigate an alternative implementation of CRT-RSA
taking advantage of the knowledge of the public exponent value.

3.1 Generic Description

In practice, the CRT-recombination is implemented by using Garner’s formula as
presented in (1) since it is the most efficient formula published so far. However,
the CRT-recombination can also be performed by using the Gauss recombina-
tion:

S = p · ip · Sq + q · iq · Sp mod N (2)

where Sp = mdp mod p, Sq = mdq mod q, ip = p−1 mod q and iq = q−1 mod p.
Of course, such a method requires either to consume extra memory to add the
extra private parameter ip or to perform a costly inverse computation to obtain
such a value on-the-fly. However, we explain in the following that CRT-RSA
using such a recombination can be more efficient than using Garner’s method if
the public exponent is known.

Our new method is based on Relation (3):

(m · qe)dp−1 · m · qe−2 ≡ iq · Sp mod p (3)

Proof. When expanding the first term of left part of (3), we obtain:

(m · qe)dp−1 ≡ mdp−1 · qe·(dp−1) mod p (4)

≡ mdp−1 · qe·dp−e mod p (5)

≡ mdp−1 · q1−e mod p (6)

Therefore

(m · qe)dp−1 · m · qe−2 ≡ mdp−1 · q1−e · m · qe−2 mod p (7)

≡ mdp · q1−e+e−2 mod p (8)

This straightforwardly leads to (3). �

Obviously, a similar relation is obtained modulo q:

(m · pe)dq−1 · m · pe−2 ≡ ip · Sq mod q (9)

Finally, one may note that (2) is equivalent to the following relation:

S = p · (ip · Sq mod q) + q · (iq · Sp mod p) mod N (10)

Therefore, by combining Relations (3) and (9) with Relation (10), the sig-
nature S = md mod N of a message m can be computed by using the following
relation:



62 C. Giraud

S = p · S1q + q · S1p mod N (11)

where

S1p = (m · qe)dp−1 · m · qe−2 mod p,

S1q = (m · pe)dq−1 · m · pe−2 mod q.

We depict in Algorithm 3 the algorithmic of our new method.

Algorithm 3. Our new CRT-RSA signature implementation with e known

Inputs: A message m, the public key e and a subpart of the private key (p, q, dp, dq)
Output: The signature S of the message m

// First exponentiation

1. q1 ← m · qe−2 mod p

2. q2 ← q1 · q2 mod p [q2 = m · qe mod p]

3. S1p ← q
dp−1
2 · q1 mod p [S1p = iq · Sp mod p]

// Second exponentiation

4. p1 ← m · pe−2 mod q

5. p2 ← p1 · p2 mod q [p2 = m · pe mod q]

6. S1q ← p
dq−1
2 · p1 mod q [S1q = ip · Sq mod q]

// Recombination

7. S ← p · S1q + q · S1p mod (p · q)
8. return S

Comparison with the Standard Method. The main advantage of Algo-
rithm 3 over Algorithm 1 consists in a much smaller key since it does not require
the private parameter iq. This leads to a gain of log2(N)/2−log2(e) bits of mem-
ory to store the key. When using a 2048-bit RSA for instance, we gain 125 bytes
when e = 216+1. Such an improvement is of uttermost importance on embedded
devices where the memory space is very limited.

By comparing the complexity of the standard method depicted in Algorithm 1
and of our new proposal depicted in Algorithm 3, one can notice that the per-
formances are very similar for public exponents which are generally used. For
instance, if e = 3 (resp. e = 216 + 1) then we add 8 (resp. 68) modular oper-
ations to perform the two exponentiations. In the case of a 2048-bit RSA, this
corresponds to a tiny overhead of 0.3% (resp. 2.2%) on average in terms of
modular operations2. Moreover, one may note that the modular reduction of
Step 7 of Algorithm 3 can be replaced by a conditional subtraction with N since
p · S1q + q · S1p is always smaller than 2 · N .

2 To compute these figures, we assume that a modular exponentiation using dp, dp−1,
dq or dq − 1 as exponent requires 1023 squares and 512 multiplications on average,
i.e. 1585 modular operations.



On the Use of RSA Public Exponent to Improve Implementation Efficiency 63

One can also notice that the key generation of our method is slightly faster
than the traditional one, cf. Algorithms 5 and 6 in Appendix A. Indeed in such
a case, the costly inverse computation of iq = q−1 mod p is not necessary.

Last but not least, we do not need to change the key structure defined in the
Java Card standard [26] to use our method. Indeed, we just need to store the
public exponent e instead of the parameter iq. To do so, the methods setPQ and
getPQ, which are meant to set and to output the value of iq respectively, must
be adapted to fit our approach while keeping in line with the Java Card standard
functionality. The first method setPQ must compute the public key e from the
private key parameters (p, q, dp, dq) and store it in the buffer PQ. Most of the
time, such a computation can be performed by using the efficient method of [18].
Regarding the method getPQ, it must output q−1 mod p instead of outputting
the content of the buffer PQ. Even if this inverse computation is costly, this is
not a problem in practice since this method is almost never used.

3.2 A Free Message Blinding Method

In this section, we take advantage of the new approach previously described to
provide a very efficient message blinding method to counteract Side-Channel
Analysis.

We notice that by replacing q in Relation (3) by q′ = q · r mod p where r is
a random different from 0 modulo p and modulo q, we obtain:

(m · q′e)dp−1 · m · q′e−2 ≡ iq · Sp · r−1 mod p (12)

Similarly, by replacing p with p′ = p · r mod q in Relation (9), we obtain:

(m · p′e)dq−1 · m · p′e−2 ≡ ip · Sq · r−1 mod q (13)

By combining Relations (12) and (13) with Relation (11), we obtain a random-
ized signature S′ which is equal to:

S′ = p · S1′
q + q · S1′

p mod N (14)

= r−1 · S mod N (15)

where

S1′
p = (m · q′e)dp−1 · m · q′e−2 mod p,

S1′
q = (m · p′e)dq−1 · m · p′e−2 mod q.

The expected signature S is then obtained by multiplying S′ with r modulo N .
To reach a fully secure CRT-RSA, one need also to blind the exponents dp

and dq, use SSCA-HA-resistant exponentiations and to verify the signature by
using the public exponent. We depict in Algorithm 4 such an implementation.



64 C. Giraud

Algorithm 4. Secure CRT-RSA signature using our new approach

Inputs: The message m, the public key e and a subpart of the private key (p, q, dp, dq)
Output: The signature S of the message m

1. Generate a random value r of size log2(N)/2 such that r �≡ 0 mod p and r �≡ 0 mod q

2. Generate two 64-bit random values k0 and k1

// First exponentiation

3. q′ ← q · r mod p

4. q1 ← m · q′e−2 mod p

5. q2 ← q1 · q′2 mod p [q2 = m · re · qe mod p]

6. d′
p ← dp + k0 · (p− 1)

7. S1′
p ← q

d′
p−1

2 · q1 mod p [Using an SSCA-HA-resistant expo.]
// Second exponentiation

8. p′ ← p · r mod q

9. p1 ← m · p′e−2 mod q

10. p2 ← p1 · p′2 mod q [p2 = m · re · pe mod q]

11. d′
q ← dq + k1 · (q − 1)

12. S1′
q ← p

d′
q−1

2 · p1 mod q [Using an SSCA-HA-resistant expo.]
// Recombination

13. S′ ← p · S1′
q + q · S1′

p mod (p · q) [S′ = r−1 · S mod N ]
// Signature verification

14. N ← p · q
15. if (r · S′)e ≡ m mod N then

16. return r · S′ mod N

17. else

18. Security action

Comparison with the Standard State-of-the-Art Method. Firstly, Algo-
rithm 4 inherits from the various advantages presented in Sect. 3.1 over the stan-
dard Algorithm 2. In particular, it does not require the private key parameter iq.
Since Algorithms 2 and 4 both require the value of the public exponent e, we gain
in memory the size of one private key parameter, i.e. log2(N)/2 bits. Moreover,
since Algorithm 2 requires the full private key and the public exponent, the lat-
ter must be computed on-the-fly in the context of Java Card environment where
the format of the CRT-RSA key is standardized and an extra parameter cannot
be added. In such a context, our method simply stores the public exponent e
instead of the private parameter iq.

From a performance point of view, our method keeps the original size of the
operands whereas the traditional additive masking used in Algorithm 2 requires
to work with 64-bit longer operands and modulus. Since the performance of the
crypto-processor is directly linked to the size of the variables which are used,
Algorithm 4 is thus expected to be faster than Algorithm 2 since we work with
smaller operand length.



On the Use of RSA Public Exponent to Improve Implementation Efficiency 65

Table 1. Performance improvement of Algorithm 4 compared to Algorithm 2 on a
smart card providing a 32-bit modular multiplication co-processor.

CRT-RSA key size in bits Performance improvement of Algorithm 4 compared
to Algorithm 2

1024 14.2 %

2048 8.2 %

Table 1 represents our analysis on a smart card providing a 32-bit modular
multiplication co-processor. The difference between Algorithms 4 and 2 could
be much more significant in some cases, especially with co-processors having a
precision of 128 bits.

Moreover, when comparing our method versus the original multiplicative
message blinding, one can notice that the costly inverse computation r−1 mod N
is done for free during the exponentiations.

Our approach is not only faster but it also provides various advantages versus
Side-Channel Analysis. For instance, since we use Gauss’ method to recombine
the results of the exponentiations, our method is not vulnerable to specific side-
channel attacks on Garner’s formula such as the ones presented in [1,25].

4 Conclusion

Despite the fact that the public exponent has been used for a long time to
protect RSA implementation against Fault Injection, no study has been done
to investigate the benefit we can obtain from a performance and side-channel
point of view. In this paper, we present a novel approach to implement CRT-
RSA making use of the knowledge of the public exponent. We show that we can
shrink the key length and reach the same level of performance. Moreover, we
also show that this new approach can be combined with multiplicative message
blinding method without any overhead, leading to the most efficient message
blinding scheme published so far.

Acknowledgments. The author would like to thank Guillaume Barbu, Alberto
Battistello, Emmanuelle Dottax and Gilles Piret for their comments on the prelim-
inary version of this paper.

A CRT-RSA Key Generation Algorithms

Algorithm 5 describes the standard CRT-RSA key generation and Algorithm 6
presents the specific CRT-RSA key generation for our new method. One can
observe that the costly inverse computation q−1 mod p is no more necessary.
Moreover, since the public exponent is always provided as input for the key
generation, we do not need extra-computation to provide such a value.



66 C. Giraud

Algorithm 5. Standard CRT-RSA key generation

Inputs: The public exponent e and the expected key bit length n
Output: The private key (p, q, dp, dq, iq)

1. Generate a n/2-bit random prime p

2. Generate a n/2-bit random prime q

3. dp ← e−1 mod (p− 1)

4. dq ← e−1 mod (q − 1)

5. iq ← q−1 mod p

6. return (p, q, dp, dq, iq)

Algorithm 6. CRT-RSA key generation for our new method

Inputs: The public exponent e and the expected key bit length n
Output: The private key (p, q, dp, dq, e)

1. Generate a n/2-bit random prime p

2. Generate a n/2-bit random prime q

3. dp ← e−1 mod (p− 1)

4. dq ← e−1 mod (q − 1)

5. return (p, q, dp, dq, e)

References

1. Amiel, F., Feix, B., Villegas, K.: Power analysis for secret recovering and reverse
engineering of public key algorithms. In: Adams, C., Miri, A., Wiener, M. (eds.)
SAC 2007. LNCS, vol. 4876, pp. 110–125. Springer, Heidelberg (2007)

2. Barbu, G., Battistello, A., Dabosville, G., Giraud, C., Renault, G., Renner, S.,
Zeitoun, R.: Combined attack on CRT-RSA. In: Kurosawa, K., Hanaoka, G. (eds.)
PKC 2013. LNCS, vol. 7778, pp. 198–215. Springer, Heidelberg (2013)

3. Battistello, A., Giraud, C.: Fault analysis of infective AES computations. In: Fis-
cher, W., Schmidt, J.-M. (eds.) Fault Diagnosis and Tolerance in Cryptography -
FDTC 2014, pp. 101–107. IEEE Computer Society (2014)

4. Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal and vertical side-channel
attacks against secure RSA implementations. In: Dawson, E. (ed.) CT-RSA 2013.
LNCS, vol. 7779, pp. 1–17. Springer, Heidelberg (2013)

5. Bonech, D., DeMillo, R., Lipton, R.: New Threat Model Breaks Crypto Codes.
Bellcore Press Release, Morristown (1996)

6. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997)

7. Boscher, A., Naciri, R., Prouff, E.: CRT RSA algorithm protected against fault
attacks. In: Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.-J. (eds.)
WISTP 2007. LNCS, vol. 4462, pp. 229–243. Springer, Heidelberg (2007)



On the Use of RSA Public Exponent to Improve Implementation Efficiency 67

8. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple
side-channel analysis: side-channel atomicity. IEEE Trans. Comput. 53(6), 760–768
(2004)

9. Clavier, C., Feix, B.: Updated recommendations for blinded exponentiation vs.
single trace analysis. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864, pp.
80–98. Springer, Heidelberg (2013)

10. Clavier, C., Feix, B., Gagnerot, G., Giraud, C., Roussellet, M., Verneuil, V.:
ROSETTA for single trace analysis. In: Galbraith, S., Nandi, M. (eds.)
INDOCRYPT 2012. LNCS, vol. 7668, pp. 140–155. Springer, Heidelberg (2012)

11. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal corre-
lation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS
2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010)

12. Coron, J.-S., Giraud, C., Morin, N., Piret, G., Vigilant, D.: Fault attacks and
countermeasures on vigilant’s RSA-CRT algorithm. In: Breveglieri, L., Joye, M.,
Koren, I., Naccache, D., Verbauwhede, I. (eds.) Fault Diagnosis and Tolerance in
Cryptography - FDTC 2010, pp. 89–96. IEEE Computer Society (2010)

13. Couvreur, C., Quisquater, J.-J.: Fast decipherment algorithm for RSA public-key
cryptosystem. Electron. Lett. 18(21), 905–907 (1982)

14. EMV. Integrated Circuit Card Specifications for Payment Systems - Book 2 -
Security and Key Management, June 2008

15. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, p. 251.
Springer, Heidelberg (2001)

16. Garner, H.: The residue number system. IRE Trans. Electron. Comput. 8(6), 140–
147 (1959)

17. Giraud, C.: An RSA implementation resistant to fault attacks and to simple power
analysis. IEEE Trans. Comput. 55(9), 1116–1120 (2006)

18. Joye, M.: Protecting RSA against fault attacks: the embedding method. In:
Breveglieri, L., Gueron, S., Koren, I., Naccache, D., Seifert, J.-P. (eds.) Fault Diag-
nosis and Tolerance in Cryptography - FDTC 2009, pp. 41–45. IEEE Computer
Society (2009)

19. Joye, M., Tunstall, M.: Fault Analysis in Cryptography. Information Security and
Cryptography. Springer, Heidelberg (2012)

20. Joye, M., Yen, S.-M.: The Montgomery powering ladder. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer,
Heidelberg (2003)

21. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

22. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

23. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Ron was wrong, Whit is right. Cryptology ePrint Archive, report 2012/064 (2012).
http://eprint.iacr.org/

24. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smartcards. Springer, New York (2007)

25. Novak, R.: SPA-based adaptive chosen-ciphertext attack on RSA implementation.
In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 252–262.
Springer, Heidelberg (2002)

26. Oracle Corp. Application Programming Interface, Java Card Platform, Version
3.0.4 Classic Edition (2011)

http://eprint.iacr.org/


68 C. Giraud

27. PKCS #1. RSA Cryptography Specifications Version 2.1. RSA Laboratories (2003)
28. Rivain, M.: Securing RSA against fault analysis by double addition chain expo-

nentiation. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 459–480.
Springer, Heidelberg (2009)

29. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

30. Shamir, A.: How to check modular exponentiation. In: Eurocrypt’97 rump session
(1997)

31. Walter, C.D.: Sliding windows succumbs to Big Mac attack. In: Koç, Ç.K.,
Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 286–299. Springer,
Heidelberg (2001)

32. Yen, S.-M., Kim, S., Lim, S., Moon, S.-J.: RSA speedup with residue number
system immune against hardware fault cryptanalysis. In: Kim, K. (ed.) ICISC
2001. LNCS, vol. 2288, pp. 397–413. Springer, Heidelberg (2002)


	On the Use of RSA Public Exponent to Improve Implementation Efficiency and Side-Channel Resistance
	1 Introduction
	2 State-of-the-Art Secure CRT-RSA Implementation
	2.1 RSA Presentation
	2.2 SCA Countermeasures
	2.3 FI Countermeasures
	2.4 Summary

	3 A New Approach
	3.1 Generic Description
	3.2 A Free Message Blinding Method

	4 Conclusion
	A CRT-RSA Key Generation Algorithms
	References


