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Abstract. This paper addresses the potential information leakages of
a fingerprint comparison algorithm embedded as a hardware implemen-
tation. Such solution aims at comparing a reference fingerprint with a
freshly acquired one completely inside an embedded system (e.g. ASIC,
smart card, FPGA). The same way as for cryptographic operations
within a cryptoprocessor, we consider the reference fingerprint template
as a sensitive data that one may try to retrieve by attacking the chip. On
one hand, we show that we can find relevant information by the means
of Side Channel Analysis (SCA) that may help to retrieve the reference
fingerprint. On the other hand, we illustrate that reconstructing the fin-
gerprint remains not trivial and we give some simple countermeasures to
protect further the comparison algorithm.

Keywords: Side channel analysis · Fingerprint · Hardware biometric
coprocessor · Biometric comparison · Hill climbing

1 Introduction

Biometric authentication, particularly using fingerprints, is commonly used to
uniquely identify individuals. Compared to the well know What I know (pass-
word) and What I have (token), the Who I am (biometrics) offers an inherent
security. However, biometric data are personal data and their usage in authenti-
cation systems requires to take care of privacy issues. Compared to a database,
the use of a personal device as a smart card to store the reference template
is a way to protect it and thus be compliant to user privacy. An even better
approach is the Match-On-Card (MOC) principle as it performs the compari-
son1 inside the smart card [7,10,12,19]. The demand for such devices is growing.
At Fingerprint Verification Competition (FVC) of 2004 [3], a new competition
category was added to evaluate performances of authentications under resource
constraints: a 1.41 GHz working frequency, a maximum of 4 MB RAM usage
1 The comparison algorithm is often also called a matching algorithm.
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and matching execution time limited to 0.3 s. Even with this restrictions, the
available resources on these platforms are far better than what we can find in a
common smart card used for authentication (around 30 MHz frequency and 5 KB
RAM in [7]). Recently, to overcome the limited resources of a smart card when
a comparison algorithm is implemented in software, [9] introduced the design
of a hardware implementation of a fingerprint comparison algorithm in order
to define a biometric coprocessor, similarly to what had been done years ago
for cryptographic coprocessors to speed up cryptographic operations. Note that
some other embedded implementations for small devices have been proposed
earlier (see for instance [21]), but we focus on the work presented in [9] as it is
based on a classical fingerprint comparison algorithm.

A parallel to embedded cryptographic implementations on electronic chips
can thus be done by evaluating the information leakages of the biometric compar-
ison algorithm. The so called Side Channel Analysis (SCA) consists in passively
exploiting leaked information. Since Kocher presented the first timing analysis
to extract the private key of RSA asymmetric ciphering algorithm [14], a lot
of other vulnerabilities were studied mainly related to power consumption [15]
and electromagnetic emanations [17]. In this work we want to take advantage
of leakages on something else than cryptographic operations, namely biometric
comparison. These leakages have not the same consequences than for cryptogra-
phy: while the knowledge of a secret is targeted in the latter, in biometrics it’s
authentication that is sought, like, for instance, in PIN comparison.

Concerning the security of biometric matching systems, authors of [18] iden-
tified 8 points of vulnerability that an attacker may exploit. In fact, a generic
biometric system can be divided into four main modules (see Fig. 1): the sensor
taking a raw image of the fingerprint, the extractor that performs pre-processing
and features extraction, the matcher that calculates the similarity between two
biometric templates, leading to a similarity score, and the database that contains
the reference template. The embedded comparison approach, or Match-On-Card,
only considers the matcher and the reference fingerprint template.

Finger Sensor Feature extractor Matcher Final score

Database
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Fig. 1. Modules of a generic biometric system

Specific attention has also been paid to Hill Climbing attacks [16,22]. These
algorithms produce synthetic templates iteratively adapted to the score they
produce. We can as well cite a timing analysis on fingerprint matching [11] where
authors show that there can be a correlation between execution time and score.
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There is a mention of SCA on Match-On-Card in [6] but, to our knowledge, this
has not been studied much further. The ThumbPod project [21] has designed
an FPGA implementation (cf. for instance [20,23]) that resists to side channel
leakage thanks to dual rail techniques but the biometric algorithm used [24] is
not a standard one contrary to the one used in [9] and the study made was
not specific to the biometric leakages. Note again that side-channel analysis on
biometric comparison has been hardly studied in the literature and so have the
countermeasures, that is why our analysis could rely on simpler ones compared
to what is known today for attacking protected cryptographic implementations.

In this paper we present methods based on the simple analysis of power con-
sumption during the matching process within an embedded system to recover
some sensitive information. Then, we go further in our analysis of the leakage
by presenting a template based attack that permits to retrieve, under some
conditions, the hidden comparison score. All in one, this enables to launch an
improved hill climbing algorithm to approach the reference fingerprint template.
We illustrate our work on the hardware biometric comparison solution described
in [9]. We present also some simple countermeasures to strengthen the embed-
ded matcher against these information leakages. Our main goal is to highlight
how hardware biometric solutions like [9], that rely on state-of-the-art minutiae-
based fingerprint comparison techniques, could be improved to lead to a secure
biometric coprocessor, thus avoiding sensitive leakages.

The article is structured as follows. In Sect. 2, we give some general infor-
mation about fingerprint biometrics and the studied Match-On-Card algorithm
and about its hardware implementation. Section 3 presents our observations com-
ing from Side Channel Analysis while Sect. 4 presents a template attack on the
matching score. Section 5 deals with the exploitation of the leakages mainly based
on a hill climbing strategy. Finally, we give some countermeasures in Sect. 6.

2 Biometric Matching System

2.1 Fingerprint Biometrics

Fingerprints are one of the most used biometrics. The matching process is com-
monly based on the similarity analysis of some specific points called minutiae,
extracted from a fingerprint image. Minutiae are discontinuity points on the ridge
flows (ridge ending and ridge bifurcation). The INCITS 378 and the ISO 19794-2
[4] standards specify a compact template format based on minutiae for limited
resource systems. Each fingerprint can be represented as a set of 3-dimensional
minutiae points, where a single minutia point is described as an oriented 2D
point {x(8 bits), y(8 bits), θ(6 bits)}. The angle θ is the ridge ending or bifur-
cation orientation. Fingerprint comparison algorithms aim at best superimpose
both minutiae sets and measure their similarity. In what follows we consider that
the sensitive data that we are aiming to retrieve from the embedded system is a
set of standard minutiae points S = ({(x0, y0, θ0)}, . . . , {xn, yn, θn}).
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2.2 The Studied Fingerprint Matching Module

In [9], the authors propose a hardware module to achieve an embedded biomet-
ric comparison (hardware MOC), with the goal to define a biometric coproces-
sor, the aim being to speed up operations as do cryptographic coprocessors.
The corresponding algorithm has two main steps called registration and pairing.
Registration phase aims at retrieving best rotation and translation that make
overlap reference and input minutiae sets. After applying this affine transforma-
tion to the input set, pairing uses a Gaussian scoring method to evaluate more
accurately the similarity between both sets.

The coprocessor is composed of three modules (Transformation, Votes and
Pairing). It uses a Read Only Memory (ROM) to store the reference minutiae
and has a private volatile memory for all the processing steps. For our study we
have used a SASEBO GII board [1] that is specially designed for the study of
side channels and that includes a Virtex-5 LX30 FPGA on which the coprocessor
was embedded.

Compared to the main related works on biometric comparison with hardware
implementations, two important properties of [9]’s implementation are that it
relies on a biometric algorithm working simply with a standard compact fin-
gerprint template [4] and that is very close to the best performing algorithms
with respect to biometric error rates. For instance, with FVC2000 DB2 dataset
(cf. [2]), it achieves 1.50 % of false reject rate at 10−3 of false acceptance rate.
The speed of one comparison is also sufficiently good (less than 0.5 s) to enable
efficient side channel captures.

First Phase of a Fingerprint Comparison: Registration. Registration
(also called alignment) consists in the construction of a histogram of all possible
affine transformations (Δx,Δy,Δθ) by overlapping each input minutia with each
reference minutia. The most voted parameter triplet is considered to be optimal.
However, the number of possible transformations is too big to store the whole
histogram in a smart card. Its construction is thus adapted by dividing the
research space in many small subspaces and votes are only done with respect to
the processed subspace. This allows to reduce the size of the embedded memory
to the size of a subspace: the same memory is used for all subspace histograms.
These sub-histograms are calculated in an increasing rotation angle (Δθ) from
Δθmin

to Δθmax
and their memory is completely reset between each subset. The

most voted (Δx,Δy,Δθ) triplet is updated on the fly in an internal register.
The drawback of this optimization is the need to test all possible affine trans-

formations for each subspace even if the result is not within the processed sub-
space borders. To improve the processing time, the sub-histogram construction
is not done on the whole reference minutiae set. For each minutia of the input
set, only minutiae of the reference set, such that the difference in orientation
angles (Δθ) belongs to the subspace, are tested. To optimize the research of
these particular reference minutiae, the reference set is sorted offline regarding
the minutiae angle. A mapping array is added, called set access, with the orien-
tation angle as key, to point directly to the first and last minutiae (noted Fθi and
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Lθi) with this particular orientation angle. A special NONE value is used if no
reference minutia has this orientation angle. Figure 2 and Algorithm 1 describe
the iterative registration process. mref denotes a minutia of the reference finger-
print and min a minutia of the input fingerprint (the fingerprint that has been
submitted to the embedded comparison module).

0
1
2

Voting

Δ{θ max−1}

Δ{θ min}
Δ{θ min+1}

Single minutiae
input set

Reference minutiae
set

Selecting a subset

@ begin @ end

Set Access

63

{Δx, Δy}

NONENONE

calculations

Δ{θ i}

Δθ i

Fig. 2. Sub-histogram construction using a memory mapping array

foreach Δθi ∈ [Δθmin , Δθmax ] do
foreach subspace do

foreach min ∈ input set do
Read (Fθi , Lθi) = set access(Δθi + θmin)
if Fθi �= NONE and Lθi �= NONE then

Calculate Δx and Δy parameters
Fill subspace histogram memory with votes
Update best {Δθ, Δx, Δy} if greater triplet is voted

else
Continue // No processing activity

end

end

end
Erase subspace memory

end

Algorithm 1. Subspaces histogram built during registration phase

Second Phase of the Fingerprint Comparison: Pairing. In the pairing
phase the affine transformation found during registration is applied on the input
set. Then a similarity measure is used to associate pairs of input and reference
minutiae: each input set point is iteratively compared to all the points of the
reference set. If close enough, the reference minutia resulting in the highest pair-
ing score is paired with the processed input minutia. Pairing phase is therefore
data dependent, the number of input and reference minutiae is directly related
to the duration of this step. Algorithm2 illustrates the pairing process after the
affine transformation has been applied.
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foreach min ∈ input set do
max 3D score = 0
pair[min] = {none,0}
foreach mref ∈ reference set do

pairscore = Gauss(Distθ, DistX , DistY )
if max 3D score � pairscore then

max 3D score = pairscore

pair[min] = {mref , pairscore }
else

Continue // No processing activity

end

end

end
Compute final score using local scores in pair

Algorithm 2. Pairing phase

The Final Score Computation and Decision. After the pairing, the final
matching score is computed by summing all the individual pairing scores. The
final decision is then taken by comparing a normalized value of the score with a
predefined threshold ScoreTh.

The normalization of the score is necessary because the two minutiae sets
could have very different sizes leading to erroneous results. In the studied imple-
mentation, the computation of the final score is done as follows:

finalScore =
∑sizein

i=0 pair[i]
Max(sizein, sizeref )

(1)

Where sizein and sizeref are respectively the number of minutiae in the input
and reference sets.

Note that this approach in three steps for fingerprint comparison is quite
classical. Consequently our side-channel analysis and associated results discussed
in the remaining of the paper can probably be also adapted to other comparison
algorithms that rely on the standard minutiae representation.

2.3 Assumptions on the Matching System

The studied biometric matching system structure is compliant to the one pic-
tured in Fig. 1 but we can additionally make the following assumptions2 on it, in
order to simplify the study, as we aim to define recommendations for designing
a secure biometric hardware coprocessor:

– We have full control of the inputs;
– There is no protection of the implementation:

• There are no side channel countermeasures;
• There is no retry counter (i.e. any number of attempts is possible).

2 Note that the scope here is not to discuss the security of any existing Match-On-Card
products.
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All these points will greatly help us to study the information leakages of the
design.

3 Information Leakage

The studied biometric hardware module behaves as follows. The private reference
fingerprint template is stored in the module and the input fingerprint template is
sent directly to the matcher. This means that the attacker has a complete control
on the submitted fingerprint (the one sent as input to the module). During the
matching execution, both reference and submitted fingerprint are manipulated,
generating secret dependent variations on power consumption.

As an analogy with usual side channel analysis on cryptographic processes,
we will study here the impact of manipulating a secret data (reference fingerprint
is used here instead of the secret key for classical side channel analysis) and a
chosen data (a chosen fingerprint sent to the comparison algorithm is used here
instead of a plain text message for classical side channel analysis). However there
are several differences:

The size of the secrets space, for example on an AES (Advanced Encryption
Standard) is 2128, with a 128-bit key. For our fingerprint comparison scenario,
each minutia is represented on 22 bits (8 bits for x and y, and 6 bits for the angle),
which means that with an average minutiae number of 20, the average secrets
space size is upper bounded by 2440.

On the other hand, a single bit difference on the secret key in cryptography
directly leads to a rejection while an error on fingerprint acquisition is allowed
(more or less minutiae, slight shift on position or angle of a minutia. . . ). Thus
the attacker may gain an interesting advantage by adapting the submitted fin-
gerprints during an attack.

In the sequel we use Simple Power Analysis (SPA) in order to identify some
patterns in power consumption which give information about what is executed
on the target chip. As usual, this is made by measuring current that flows from
the power supply to the attacked device.

3.1 SPA on Pairing Phase

In the second part of the matching execution, each minutia of the reference
fingerprint is compared with all the transformed input fingerprint minutiae. On
Fig. 3, we can see that the pairing phase is composed of Sizein similar patterns
that correspond to the iterations of the pairing loop. If we zoom on a single loop
iteration, we can identify Sizeref + 1 steps. For each input minutia (the outer
loop), there are Sizeref accesses to reference minutiae plus one access to the
input minutia access. A simple count gives the size of the reference minutiae set.

3.2 SPA on Registration Phase

As we can see from the Algorithm 1, there is a difference of process activity if
the set access value for a specific angle is NONE or not.
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Fig. 3. Information leakage on pairing step

Since we have full control on the input fingerprint, we tried to submit a single
minutia as a fingerprint input to reveal some activity which only depends on the
reference fingerprint. The coordinates of the single minutia are not important,
but we set the angle value at 0, to start from the first angle. For each computed
transformation, if all the corresponding differences in orientation angles Δθi are
out of bounds (i.e. [θin − 1, θin + 1]), there will be a noticeable difference in
power consumption due to the process activity inequality. This difference can be
seen on the power consumption trace of the registration part (Fig. 4). The angle
values of the reference fingerprint minutiae were distributed as follows:

|19 20 20 20 22 23 23 24 25 26 26 27 27 27 28 28 28 30 30 31 31 32 32 34
|50 53 53 54 54 55|62 (2)

We can see some drops in the power consumption which correspond to the
angle area where there is no minutiae matching in the reference fingerprint (red
lines in (2) vs. red markers in Fig. 4). This is due to the affine transformation of
the input fingerprint (single minutia) that does not match with a reference one.

We then tried to analyze the dependence between the angle of the submitted
fingerprint minutia and these drops on the trace. We processed several match-
ings with an increasing angle value and kept the trace for each match. Figure 5
shows the traces of 3 different matchings with an increasing angle value (not
consecutive).

The drops are shifted to the left when we start the registration with a higher
angle value. Increasing the angle of the input minutia from i to i + 1 will cause
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Fig. 4. Power consumption during registration with a single minutia input fingerprint
(color figure online)

Fig. 5. Shifting drops in power consumption with 3 increasing input minutia angle
values

a shift in the starting reference minutia from the angle i − 1 to i. This means
that we can get the number of minutiae for each angle value by increasing the
angle value of the input minutia.

As we can see in Fig. 6, there is a strong dependence between the number of
minutiae for a chosen angle in the reference fingerprint and the drops shift in
power consumption. By observing the drops delay between two consecutive angle
values of input minutia for each possible angle value, we are able to get the dis-
tribution of the reference fingerprint minutiae angles (the number of minutiae
concerned by the ith angle value among the total number of minutiae). There are
only 64 matchings to perform.

4 Side Channel Attack on the Comparison Score

A traditional approach to enhance privacy is to hide the score that can be
exploited by Hill Climbing attacks in favor of a boolean answer. Therefore, we
investigate side channels in order to retrieve the score when not directly available
and thus we are able to climb back to the reference minutiae set.
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Fig. 6. Comparison between the number of minutiae neighbors in reference fingerprint
and the value of drop shift

4.1 Introduction to Template Attack Combined with PCA

Template Attack. Template attack is a powerful statistical tool that is based
on the leakage profiling of a similar device, which allows to retrieve the secret
with less traces than differential attacks, or where these last ones simply fail [8].
Thus it is assumed that the adversary is in possession of an open similar device
on which the learning can be done. Thus a state/operation Si is character-
ized by computing its template TSi

= {μSi
, CovSi

} consisting of the mean and
the covariance matrix of the leakage traces respectively. In order to decrease
the learning stage complexity, the computation is restricted to relevant leakage
points as it will be discussed further in Sect. 4.2.

Therefrom, when another similar device is attacked, the adversary aims to
reveal an unknown Sx by computing the maximum likelihood. Computation of
the likelihood is done as the following:

p(L|S = Si) =
T∏

j=1

p(Lj |μSi
, CovSi

), where (3)

p(Lj |μSi
, CovSi

) =
1

√
(2π)N |Cov|

× e− 1
2 (Lj−μSi

)T Cov−1(Lj−μSi
). (4)

Where i ∈ {1, . . . , λ}, with λ the total number of possible states. T is the set
of leakage traces L each one of N samples.

Projection on Principal Components. Computation magnitude of the max-
imum likelihood increases according to the number of used samples in leak-
age traces, which may result in significant resources loads. Inversion of the
covariance matrix can also be one of the barriers prohibiting a direct computa-
tion of the likelihood. This may be due to the potential linearity between neigh-
bour samples. Therefrom the adversary can consider the Principal Component
Analysis [13] in order to keep only relevant informations (i.e., with maximum
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variance). This operation is done by projecting templates and leakage traces
into low dimensional subspaces. Computation of the principal components and
projection matrices is out of the scope of this paper (see [5]). Thus, in our attack
we use PCA to avoid covariance matrix issues.

4.2 Profiling and Attacking the Score Computation

The Hardware Implementation. For our analysis we focused on profiling the
score register consumption. The score computation stated in Eq. 1 is processed
as follows: first, the register that will hold the final score is used to accumu-
late all local scores. In fact, this accumulation requires a 22-bit register and
consists of the computation of the division nominator. Second, the accumulated
scores are normalized by the maxPairs denominator (see Sect. 2.2) by using a
restoring division. This technique is a naive Euclidean approach that processes
successive subtractions and comparisons, and outputs one quotient bit at each
clock cycle. The binary version of this approach relies on successive left shifts of
the nominator register which allows to reuse this register to store the quotient
bits successively in the LSB. Thus, at the first clock cycle of this computation
the score MSB is output and so on. Interestingly, the restoring division is one of
the standard implementation that is adopted by many processors and hardware
designers.

The Learning Phase. To perform the learning phase 10k traces were used. As
the target register is an LFSR, we assume the Hamming distance between two
consecutively computed bits as the leakage model. This results in two classes for
each of the 22 bits. In practice, in order to determine relevant leakage moments,
we compute the correlation coefficient between the ith bit model over all samples.
Figure 7a shows the correlation traces for the 16 LSB, in order of computation.
In fact, it turns out that the first 6 MSBs of the acquisition campaign have an
unbalanced parity of 0 and 1 (more than 90% equal to 0). Hence, for a proof of
concept, we consider that profiling and attacking remaining bits is sufficient.

The Attack Phase. The success rate metric is a simple statistical tool giving
the average of successful attacks on different sets of traces of different sizes.
In other words, it allows to determine the average of what an adversary can
achieve or expect with a certain amount of traces. For our attack, the amount of
traces to reach a success rate of 80 %, varies according to the targeted bit from a
single trace to 34 traces (the LSB need less traces). This is due to the low SNR
consequence of the intrinsic and ambient noise. Indeed, the activity leaked by
one register bit is low relatively to the rest of the device activity. In Fig. 7b we
plot the success rate with 100 attack retries on independent sets of traces.

5 Exploitation

We emphasized in the previous sections different information that are observed
through side channel from the comparison algorithm execution. We will explain
here an advanced strategy to exploit those information.
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(a) Localization of relevant samples (b) Success rate of the template attack

Fig. 7. The proling and the attack results

5.1 Hill Climbing Attack

One of the possible attacks on a biometric system is to reach a positive veri-
fication using synthetic input minutiae sets rather than using the genuine user
fingerprint. A brute-force attack is very hard unless the verification system has
a significant discrimination error rate (false acceptance rate). This is due to the
amount of minutiae points in a fingerprint template (≈20–100) which results in
a possibility space of 22200 ((2(8+8+6))100) in the worst case. Note that, in this
rough estimation, we consider that the attacker has no knowledge on fingerprint
geometry and will take into account the whole possibility space. Fingerprints
with minutiae at the edges or with identical minutiae are hence considered.

A more efficient strategy exists: Authors of [22] used the Hill Climbing (HC)
heuristic to find modifications that increase the comparison score between syn-
thetic minutiae sets and the targeted reference set. It considers a starting set
of minutiae points which is iteratively modified and sent back to the matcher
module for score evaluation. An applied modification is kept only when the score
increases. Possible modifications on a minutiae set are:

1. Randomly translate or rotate a randomly selected minutia;
2. Add a minutia;
3. Replace a randomly selected minutia;
4. Delete a randomly selected minutia.

The heuristic stops when the synthetic set reaches the matcher validation
score for which sets are considered as sufficiently close to reference data. Thus,
the attack on the matcher combined with this private reference fingerprint tem-
plate is considered as a success.

Of course, the HC approach assumes that the attacker has a direct access
to the matcher input (i.e. the attacker is able to choose the input fingerprint)
and that the matching score is known (not only the binary OK/NOK result).
The first condition is verified in our case following the assumptions explained in
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Sect. 2.3. And we explained in the previous section how to retrieve the matching
score, thus we assume below that the score could be known.

5.2 Hill Climbing Improvement

In the previous description of Hill Climbing, the added and modified minutiae are
randomly chosen. This means that there are 222 = 256 × 256 × 64 possibilities
each time we have to add or modify a single minutia. Our study on power
consumption, as discussed in Sect. 3, gave some interesting information about
the reference fingerprint template: the number of minutiae per angle. The most
important information here is to have the distribution of the minutiae among
the 64 angles.

A simple way to use this knowledge is to pick a minutia according to a
distribution table. This distribution table, containing an associated probability
for each angle, is created thanks to the shift timings values from the previous
study. For each angle (64 matching executions) we store the time shift value
among the total of all the 64 time shifts (which correspond to the registration
step time).

To evaluate the improvement, we compared 3 different levels of Hill Climbing:

– Without optimization: new minutiae are picked randomly (equivalent to the
HC in [22] with a single initial guess).

– List mode: new minutiae are picked from a list of existing angles, but there is
no associated probability.

– Distribution mode: new minutiae are picked from a distribution table, with
probabilities deduced from side channel analysis and thus approximately cor-
responding to those of the reference fingerprint template.

Figure 8 shows the result of these 3 modes on 4 times averaged Hill Climbing.
It describes the score (vertical scale) among the matching iterations (horizontal
scale). The horizontal line depicts the score threshold above which the synthe-
sized fingerprint is accepted as corresponding to the reference one.

The distribution mode reaches the threshold score with 4000 iterations
instead of 8000 iterations for the two other modes. To achieve this improve-
ment, only 64 matching executions are necessary.

It has to be recalled (see Sect. 4.2) that the extraction of the score using the
profiled attack, needs roughly 34 traces at each iteration. This gives an idea of
the total number of traces needed to construct an approximation of the reference
fingerprint data.

Keeping the assumptions from Sect. 2.3 verified, we are able to succeed a Hill
Climbing with half the matching iterations otherwise needed. This improvement
is possible thanks to the information leaked via side channel while executing
biometric comparisons. We bet that deeper analysis of the side channel leakage
would probably lead to further improvement. This means that some specific
countermeasures have to be implemented to protect the biometric comparison
coprocessor from that kind of leakages.
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Fig. 8. Hill Climbing result for 3 modes, each replayed and averaged 4 times

6 Countermeasures

In previous sections we presented an approach that may allow an adversary
to break through the simple countermeasure of hiding the score in order to
perform the HC again. We also showed how it can be possible to reduce the HC
needed iterations by a further exploitation of side channels. In this section, we
will describe one countermeasure for each threat previously identified. Many of
them require random numbers, which could be assumed coming from a random
generator from the smart card in which the biometric coprocessor is attached to.

6.1 Protecting the Score Computation

Manipulation of the comparison score, whether by normalization (our case) or
other approaches may leak sensitive information leading to its recovery. As stated
in Sect. 2.2, in order to produce a binary answer, normalization of the accumu-
lated score is followed by a comparison to acceptance threshold ScoreTh. This
operation can be expressed in a different way in manner to avoid normalization.
Thus the accumulated score is compared to a dynamically adjusted threshold.
This approach avoids the usage of a register which makes the combinatorial path
the main source of leakage. The answer computation is thus:

Here, the number of minutiae in the reference set sizeref is not considered
as a sensitive information. Thus, even if the decision is made in two cycles (i.e.
DyScoreTh is stored in a register) and the adversary succeeds in retrieving
sizeref , this last one is of a low entropy.
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AccuScore =
∑sizein

i=0 pair[i]
DyScoreTh = ScoreTh × Max(sizein, sizeref )
if DyScoreTh � AccuScore then

Answer = 1
else

Answer = 0
end

Algorithm 3. Hiding score computation

6.2 Randomization of the Registration Phase by Masking

A first method to protect the information leakage during the registration part
is to start the registration from a randomly chosen rotation angle instead of
going systematically from Δθmin

to Δθmax
. This random offset value has to be

different for each fingerprint comparison to avoid the correlation between the
processing order and the orientation of the input minutiae. The same result can
be obtained by applying on the reference fingerprint a randomly chosen pre-
translation-rotation. This countermeasure would solve the incremental minutia
angle parse threat, but would not be efficient enough because reference minutiae
are still parsed in a sorted angle order. On average, 400 attempts of matching
with a same single minutia will give the 64 angles distribution, with a 90 %
success rate. In this case, the probability of obtaining the original minutiae parse
sequence is 1/64.

A better countermeasure is to completely randomize the processing sequence
regarding the orientation angle. An efficient way to achieve this is to use a
randomly generated mask to change the sequence order. There are 64 rotation
angles to test, thus a log2(64)-bit length vector rot a is used to iterate through
the sequence Δθmin

..Δθmax
. rot a⊕mask will give a random permutation of the

original sequence. As the angle parse order is changed (and not only the angle
start value), the drops on which we measure the time shift are split and other
may appear. In that way, the angles distribution of the reference fingerprint is
impossible to retrieve. The hardware cost of such a countermeasure is very small,
and the probability of obtaining the original minutiae parse sequence is increased
to 1/64!.

6.3 Input Fingerprint Requirements

The observation of the angles distribution of the reference minutiae is eased by
the fact that we are allowed to send and match a single minutia fingerprint, or
a fingerprint with several occurrences of the same minutia repeated. An either
simple countermeasure would be to disable matching if the submitted fingerprint
does not fulfill some basic requirements like:

– A minimum and maximum number of minutiae.
– No duplicated minutiae.
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6.4 Random Additional Cycles During Pairing Phase

The pairing phase leaks some information about the reference fingerprint minu-
tiae number. This information alone is not enough to improve a Hill Climbing
attack, but it can still be protected with a low cost countermeasure.

As we have seen on Fig. 3, it is easy to count the number of cycles inside
a reference minutia loop, and hence get the minutiae number of the reference
fingerprint. Adding a random number of extra cycles per reference minutia loop
would break this leakage and create a random delay effect on the whole pairing
step. The idea is to choose a single random value Rng FP which will be common
to all reference minutiae loops, and an additional one Rng minui, different for
each loop.

For instance, if Rng FP is chosen with a maximum of 20 % of the reference
minutiae number (Rng FP ∈ [0; 0.2 ∗ sizeref ]), and Rng minui are chosen with
max of 10 %, the average global extra computation time on pairing step will be
15 %. This is a low cost countermeasure as the pairing step represents less than
10 % of the whole matching process.

7 Conclusion

In this paper, we analyzed, for the first time, the potential information leakages
of a hardware biometric comparison module that relies on state of the art fin-
gerprint comparison techniques. We pointed out that we can find out relevant
information of the private reference fingerprint template by the means of side
channel analysis. These informations, together with a template attack to retrieve
the value of the comparison score, enable us to mount an improved hill climbing
attack to approach the reference template. This shows the need to protect the
implementation. Fortunately, there are some simple countermeasures that can
be used to thwart the information leakages. Our future work will thus cover
the design study of a secure biometric coprocessor by including such kind of
countermeasures.
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