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Abstract. This paper introduces a complete side channel analysis
toolbox, inclusive of the analog capture hardware, target device, cap-
ture software, and analysis software. The highly modular design allows
use of the hardware and software with a variety of existing systems. The
hardware uses a synchronous capture method which greatly reduces the
required sample rate, while also reducing the data storage requirement,
and improving synchronization of traces. The synchronous nature of the
hardware lends itself to fault injection, and a module to generate glitches
of programmable width is also provided. The entire design (hardware and
software) is open-source, and maintained in a publicly available repos-
itory. Several long example capture traces are provided for researchers
looking to evaluate standard cryptographic implementations.
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1 Introduction

The introduction of Differential Power Analysis (DPA) [1] spurned interest in
the vulnerabilities of embedded systems previously thought to be secure. The
difficulty in comparing results of attacks on different platforms was realized early
on, and the SASEBO board aimed to provide a standard platform for attacking
[2]. Likewise it was realized that for new entrants into the world of side-channel
attacks, having available code and algorithms was a useful starting point such
as the OpenSCA toolbox [3], and the DPA Book [4]. Despite this, there is still
considerable progress to be made. A researcher looking to replicate existing
work, even if that work uses a board such as the SASEBO/SAKURA board,
needs to purchase an oscilloscope, interface the oscilloscope to the computer,
and (re)implement the attack.

Work into making a complete platform has already been presented, for exam-
ple the GIAnT system, which even uses the same FPGA board as this work
[5,6] (and with additional details in [7]). This work was developed in parallel to
these systems, and the two systems use different architectures and design lan-
guages. The ChipWhisperer system presented in this work is a more modular
design, and has more extensive publicly available code for the computer control.
Certain features do differ between them: the GIAnT system has a high-speed
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Digital-to-Analog Converter (DAC) for fault injections of adjustable magnitude,
something missing on the current ChipWhisperer hardware.

This work presents a side-channel attack platform which integrates all
required elements: target device, measurement equipment, capture software, and
attack software. This work has benefits for almost any user: students have a
low-cost laboratory, researchers have an environment which can be duplicated
around the world, and embedded engineers have a method of easily testing pub-
lished research on their own systems. The entire design (both hardware and soft-
ware) is open-source, encouraging future development from users. Versions of the
project are designed to work with existing hardware, such as the SAKURA-G
and SASEBO-W board which researchers may already have access to. Modules
to control standard oscilloscopes such as PicScopes and VISA-connected devices
are also present, encouraging the use of the ChipWhisperer software with existing
measurement labs.

Beyond side-channel attacks, the hardware lends itself to glitch and fault
attacks. The device runs synchronous to the device under test (DUT), greatly
simplifying the introduction of faults on certain clock cycles. A simple glitch
generation module is included for inserting glitches at specific offsets from the
clock edge.

2 Hardware

The hardware consists of both the hardware design and the FPGA code. The
system is designed to work with several different FPGA boards, all based on
the Spartan 6 FPGA. A ‘reference’ FPGA board is also provided based on a
commercially-available FPGA module, shown in Fig. 1. This has a ZTEX FPGA
Module with a Spartan 6 LX25 FPGA, however these modules are available in
sizes from the LX9 – LX150. Researchers interested in implementing more logic
inside the control FPGA may simply switch the ZTEX module for a larger one.

This board provides several features specific to side-channel analysis: two
headers for mounting ADC or DAC boards, an AVR programmer, voltage-level
translators for the target device, clock inputs, power for a differential probe and
Low Noise Amplifier (LNA), external Phase Locked Loop (PLL) for clock recov-
ery, and extension connectors for future improvements such as fault injection
hardware. This board will be referred to as the ChipWhisperer Capture Rev2.

2.1 Modular FPGA Design

The blocks within the FPGA are designed around a central ‘register control’
module, as shown in Fig. 3. The design greatly simplifies the addition of new
modules: only one small section of the design needs to be modified to insert the
bus connections, otherwise the new module can live independently of the rest of
the system.

The modular design allows customizing of which modules to include of inter-
est to the researcher; including for example only the clock glitching module if it
is desired to work with fault attacks and use a smaller FPGA.
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Fig. 1. The reference implementation runs on a ZTEX Spartan 6 LX25 FPGA Module,
with an OpenADC as the analog front-end. The completed board is referred to as the
ChipWhisperer Capture Rev2.

Fig. 2. The complete system, including the FPGA board from Fig. 1 which is mounted
in an enclosure, a laptop computer, and the example capture board from Fig. 8. The
system can also use a breakout board to connect other embedded hardware targets.

2.2 Capture and Clock Control

If the underlying objective is to measure data on the clock edges of the system
clock, sampling at the clock rate of the system is sufficient, provided such samples
occur at the correct moment (i.e. on the clock edge). This sampling technique
is called synchronous sampling, where the sample clock is synchronized to the
device clock; the application of synchronous sampling to side-channel analysis
was first described in Sect. 5.2 of [8]. Hardware to perform synchronous sam-
pling called the OpenADC was described in [9], where the SASEBO-GII board
was attacked, and this demonstrated how sampling at 96 MS/s synchronously
achieved similar results to sampling at 2 GS/s asynchronously. The OpenADC
is used as the basis for this work.
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Fig. 3. The base design consists of several blocks connected via a internal bus in the
FPGA, shown in the blue box (Color figure online).

The analog front-end used here is the OpenADC [9], which provides a −5 dB
to 55 dB gain, simplifying measurement of low-level signals. Additionally designs
for a differential probe and Low Noise Amplifier (LNA) are provided, an example
shown in Fig. 4.

Fig. 4. Beyond capture hardware, design for a differential probe and H–Field probe
with LNA are available.

For the synchronous sampling to work, the device must be able to lock onto
the system clock. If the clock is readily available as a digital signal (e.g. from
the crystal oscillator on the DUT), it can be fed into the FPGA directly, where
internally it can be multiplied if desired. If the clock is not available, such as
in the case of internal RC oscillators, an external PLL can be used with clock
recovery logic to recover the clock [10]. Finally an asynchronous clock is available,
although due to the limited sample-rate in this platform will have very poor
performance compared to synchronous capture [9] (Fig. 5).
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Fig. 5. Clock Routing in ChipWhisperer capture hardware.

2.3 Target Control and Triggering

The FPGA provides some basic IO blocks for driving standard devices. This
includes a UART, a Smart Card interface, and Universal Serial IO device, which
can be controlled from the computer. Note the target device can be driven by an
existing connection instead; the FPGA-based IO blocks are provided simply as
a convenience to allow a single USB connection to provide both communications
and target control.

Several triggering options are provided. The most basic allows standard trig-
gering: triggering on the rising edge of a digital line for example. This is suitable
when analyzing devices which the researcher has programmed, and is able to
insert a suitable trigger event into. For more realistic examples, two additional
triggering blocks are provided. The first is a digital pattern match, which looks
for a specific sequence of transitions on an IO line. This is implemented as a state
machine, where it moves through to the next state only if the IO line remains
in the expected state for the ‘allowed’ amount of time. If the IO line fails to
match the expected state transition, the state machine resets. This system is
specifically designed for triggering on communications protocols, for example by
waiting on a response byte. The final triggering system looks for an analog pat-
tern in the waveform, using a Sum of Absolute Difference (SAD) criteria, which
is frequently used in video compression, and fast FPGA implementions exist for
[11]. Here the system continuously compares the incoming waveform to a known
pattern: when the SAD criteria falls below some threshold, the system triggers
the capture.

All of these triggering options feature a pretrigger ability. The capture buffer
is continuously filled, meaning that the trigger can occur after the actual cryp-
tographic operation has occurred. The limit is simply the size of the capture
buffer, which is primarily dependent on the size of the chosen FPGA.

The trigger out signal can be dynamically routed to an external pin. This
allows triggering of external equipment with this advanced trigger source.

2.4 Glitch Generation

A clock glitch module is also present in the system. Using two adjustable delay
lines built into the FPGA, it can insert glitches into a ‘target clock’: the ‘target
clock’ either coming from the device under test or generated by the FPGA itself.
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The glitch width can be adjusted from about 3 nS to 100 nS (maximum width
limited to 50 % of clock period or 100 nS, whichever is smaller) and the offset
from the clock edge is adjustable from −50 % to +50 % of the clock period. The
specific resolution of the glitch and offset varies for the target clock frequency,
but is always smaller than 100 pS. Figure 6 shows an example of a glitch inserted
into the output clock, although the glitch itself can be output separately from
the clock for driving modules such as optical or electromagnetic fault injection.
This method is the same as described in [12], although with improved resolution
on the glitch width and location. The minimum glitch width is limited by the
FPGA IO-pin speed: using a faster IO-standard (e.g. LVDS) allows a smaller
minimum glitch width if required.

The use of the special Digital Clock Manager (DCM) blocks along with par-
tial reconfiguration (discussed next) allow this extremely fine-grained control
over glitch width. This is an improvement on previously proposed glitch genera-
tion methods where the ‘coarse’ width control comes from a higher-speed clock,
which generally limits glitch ‘coarse’ control to a multiple of this clock speed
(often 4–10 nS) [7].

Fig. 6. Inserting a glitch into a 7.37 MHz clock coming from a target device.

2.5 Partial Reconfiguration

The clock generation and glitch generation modules both use the Digital Clock
Manager (DCM) blocks within the FPGA. These blocks have limited support for
run-time configuration of parameters such as phase delay and frequency gener-
ation, and for maximum performance the configuration must be fixed at design
time. The Xilinx-provided run-time adjustment can shift the phase only by about
±5 nS in 30 pS increments (exact values vary with operating conditions).
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To allow adjustments over a wider phase range, a partial reconfiguration
interface is provided. This interface allows changes to the FPGA configuration
while the system is operating. This is specifically used to reconfigure the DCM
blocks for a variety of parameters which are fixed at the implementation stage.
This partial reconfiguration requires that appropriate ‘bitstream difference’ files
are generated by the FPGA tools for every possible setting of the desired para-
meter, e.g. the DCM phase delay attribute. Due to the opaque nature of the
FPGA tools there is no simple mapping between parameter changes and a spe-
cific portion of the bitstream.

To generate these bitstream difference files, Xilinx’s FPGA Editor tool is used
to modify the Native Circuit Description (NCD) file for the design. A script
generates versions of the NCD file with every possible setting of the desired
attribute, e.g. for the DCM block with a fixed phase value of −255 to +255.
These NCD files are converted into bitstream difference files with the Xilinx
bitgen utility. Setting the desired DCM fixed phase offset means loading the
appropriate bitstream difference file1.

2.6 Implementation on Other Boards

This entire system is implemented as generic FPGA blocks. Whilst a reference
platform is provided, it can be used on any FPGA platform. For example this
system can be programmed into the control FPGA provided in the SAKURA-G
or SASEBO-W platform. Figure 7 shows a photo of the SAKURA-G board with

Fig. 7. The modular design allows easy implementation on other hardware, such as the
SAKURA-G board. A Spartan 6 LX75 FPGA is used for a cryptographic algorithm,
and the LX9 FPGA is used for control of the FPGA along with capturing of power
traces. This replaces both the ‘ChipWhisperer Capture Rev2’ hardware box and the
‘Target Device’, meaning the entire side-channel analysis system is present on the
SAKURA-G board.

1 See the ChipWhisperer sources for details, with additional information in the June
2014 issue of Circuit Cellar and at programmablelogicinpractice.com/?p=143.

http://programmablelogicinpractice.com/?p=143
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an OpenADC mounted. This system allows implementation of a cryptographic
algorithm in the main FPGA on the SAKURA-G, while the control FPGA
serves to actually perform the measurements. Any of the available blocks can
be inserted into this system, for example adding clock glitch generation into the
control FPGA for the SASEBO-W.

2.7 Generic Device Under Test Board

For demonstration of basic attacks, a generic target board is provided. This
board provides several target options: a 28-pin AVR socket, an XMEGA device,
and a Smart Card socket. The board also has two LNAs built onto it, along with
several clock options. Jumpers can select which target is connected, measure-
ment mode (high-side or low-side shunt), connect the AVR programmer from
the ChipWhisperer Capture Rev2, and allows an external Smart Card reader
to be connected to the smart card socket by way of a feed-through smart card
PCB. The target board is shown in Fig. 8.

The choice of a 28-pin AVR socket allows the board to accept many simi-
lar AVR devices. Attacks targeting recent processes can use the AtMega328P
or AtMega48A. Attacks looking to test older devices may use an older Mega8
device2. Note that many ‘Smart Card’ attacks are tested on a AtMega163 card,

Fig. 8. The Multi-Target board provides a simple platform for testing various attacks
and cryptographic implementations.

2 While the Mega8 is an older device, recently bought ones may be produced on
newer processes. If looking for a device produced on older IC process, one will need
to confirm the production date via the date code.
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which contains an AtMega163 die from Atmel. Existing code targeting the
AtMega163 can be ported to work on a 28-pin AVR, avoiding the need to find
outdated Mega163 cards, and also using a more recent semiconductor process.

3 Software Architecture

The software is implemented in entirely in Python. Python was chosen for a
variety of reasons: it is natively cross-platform, provides a simple GUI through
PySide, can easily interface to other languages including C/C++ and MATLAB,
provides high performance using Cython, and has a large collection of modules
which provide functionality such as cryptographic functions, plotting, numeric
computations, low-level IO, and smart card interfaces. In addition the choice
of an interpreted language such as Python enables considerably more advanced
scripting options. This section will only briefly outline the software architecture,
full documentation is kept using the Sphinx system3, which combines documen-
tation built into the Python source with additional files. This documentation is
linked from www.ChipWhisperer.com, or available directly at www.newae.com/
sidechannel/cwdocs/.

The project is split into two programs. One program captures the power
traces and saves them, the other perform side-channel analysis algorithms (e.g.
CPA). The decision to split the project into two programs was done to allow
use of only part of this project by other researchers. For example researchers
with existing attack code can still use the capture program, for example saving
the data to a MATLAB workspace. Or researchers with existing traces can load
them into the analysis program without using the capture portion.

Both capture and analysis software share a common base class; this class
defines methods of modifying parameters, saving and restoring projects, using
trace files, and plotting data. In addition support for a special ‘scripting’ system
is provided. This ‘scripting’ language allows execution of either the capture or
analysis software from another Python application, which forms the ‘script’.
This design is especially powerful since it allows the script to call any function
within the entire program, and does not require the definition of specific scripting
commands. As an example, when adding a new FPGA module, it requires the
addition of the appropriate driver module to the capture software. However by
using the scripting interface, it is possible to simply send raw commands to this
module, which allow testing and debugging it before the complete driver has
been written. When options are changed using the GUI, the GUI also shows
how to accomplish the same operation with a script. Thus a user can simply
setup appropriate options from the GUI, and then save these script commands
to recreate the configuration. Listing 1.1 in Appendix A shows an example of
such a script.

The graph windows allow transformations to be performed on the data, such
as switching from time-domain to frequency-domain through an FFT, filtering
and smoothing, and exporting data in the graph.
3 sphinx-doc.org

www.ChipWhisperer.com
www.newae.com/sidechannel/cwdocs/
www.newae.com/sidechannel/cwdocs/
http://sphinx-doc.org
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3.1 Trace Management

The trace management module is common to both the capture and analysis
software, which provides a method of mapping traces from different formats
into a continuous block of trace data. The default storage method used by the
software uses the Python NumPY library’s native save and load commands.
Alternatives which store the traces to a MySQL server, and saving the traces to
the same format used by the DPAContestv3 tools are also provided.

Fig. 9. The Capture GUI provides an interface to the capture hardware, target device,
and storage media.

4 Capture Software

The capture GUI (Fig. 9) is ideal for initial experimentations with a new system,
such as trying different ADC settings or different trigger settings. For repeat-
able captures it is desirable to instead script the setup, which sets appropriate
values to various parameters. In addition this script can perform actions such
as saving the target data to a different format (e.g. a MATLAB workspace),
or used for automatically performing captures under different target conditions
(e.g. selecting an algorithm with and without countermeasures).

The script can either run the entire capture program, or simply configure
part of the window. Several example scripts are provided, which can be loaded
in an already-running ChipWhisperer-Capture application. See Listing 1.1 in
Appendix A for an example script.
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For debug purposes, a monitor window shows the input and output results
of the cryptographic operation being performed on the target. This window also
displays what the expected result would be for a known key. This can be quickly
used to confirm a device under test is operating as expected, and the encryption
key was correctly loaded into the device.

4.1 Capture Performance

The capture performance demonstrates how quickly traces can be captured with
the default system. The measurements are taken on two different computers: a
Windows 7 based Intel i5-2540M laptop, and a Linux based AMD A10-5800K
desktop. Captures are averaged over 10,000 traces. The ‘Target Connection’
indicates how the device under test (e.g. the cryptographic target, not the Chip-
Whisperer capture) connects to the computer. The ‘FPGA-x’ mode means one
of the ChipWhisperer IO blocks are being used.

For high-speedUSB targets (ChipWhispererRev2, SAKURA-G, SASEBO-W)
the capture speed is primarily limited by USB latency in the host computer stack.
Note the AVR target shows both 3000 and 20000 points per trace; the resulting
speed change is much less than the 6x increase in data size would suggest. Tar-
gets connected to the computer directly run much faster, as the IO blocks in the
ChipWhisperer tend to required severalUSBtransactions, each transaction adding
latency from the USB stack. This suggests that there is considerable room for speed
improvements by streamlining transactions to reduce this latency.

In addition to the OpenADC capture hardware, three standard oscilloscopes
are shown for comparison. The capture software can be programmed to support
other oscilloscopes with minimal changes (Table 1).

5 Analysis Software

The analysis software uses the same project and trace management system used
by the capture software. Moving a project over simply means saving the project
in the capture software, and opening it in the analysis software. Alternatively,
traces can be manually imported, either if they come from an external source or
if you wish to combine traces from several different captures into a single analysis
run. In addition this manual mode is used for configuring database operation; in
this mode the analysis software can read traces from a MySQL database, which
allows analysis to occur while the capture is still ongoing.

When traces are loaded, a single trace is plotted in time. A number of traces
can be overlaid on each other, which is useful to confirm the synchronization of
traces. If traces are incorrectly synchronized, one of the preprocessing modules
(described next) can be used to resynchronize the traces.

5.1 Preprocessing

Several basic preprocessing modules are provided, which operate on the data
before passing through to the attack. Three types of resynchronization are imple-
mented: a sum-of-errors minimizer, peak detect, and cross-correlation. These
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Table 1. Traces/Second for various targets and capture hardware. Points/Trace varies
by target, and indicates number of points stored in each trace to attack the target.
The ‘—’ indicates lack of supported driver for the host OS.

Capture hardware Attack target Target Points/ Traces/Second

connection Trace

Win7 Linux

ChipWhisperer Rev2 SASEBO-GII USB 100 14.8 28.3

ChipWhisperer Rev2 AVR, 38400 Baud FPGA-Serial 3000 11.3 3.91

ChipWhisperer Rev2 AVR, 38400 Baud FPGA-Serial 20000 7.04 3.78

ChipWhisperer Rev2 AVR, 38400 Baud USB-Serial 3000 18.2 18.9

ChipWhisperer Rev2 SmartCard PS/SC Reader 3000 7.40 6.62

SAKURA-G SAKURA-G Integrated 400 6.67 7.18

SASEBO-W SmartCard FPGA-USI 3000 0.271 0.279

SASEBO-W SmartCard FPGA-SmartCard 3000 1.49 1.52

Agilent MSO54831D SASEBO-GII USB 1500 8.01 —

PicoScope 6403D SASEBO-GII USB 1500 12.1 43.6

PicoScope 6403D SAKURA-G USB 1500 15.4 29.6

PicoScope 5444B AVR, 38400 Baud USB-Serial 12000 16.4 5.63

Fig. 10. The Analyzer GUI runs a given attack on the stored traces.

methods provide very simple sliding resynchronization, which works well with
the synchronous capture methodology of the ChipWhisperer Capture hardware.
In addition a simple low-pass filter is also provided. Any of the preprocessing
modules can be chained together in an arbitrary order, and additional modules
can trivially be added to the system.



ChipWhisperer: An Open-Source Platform 255

The waveform display window shows the results after the preprocessing chain.
This could be used to confirm that traces are properly resynchronized in the time
domain before continuing on to the attack.

5.2 Attack Implementation

The attack module is designed to simplify how new attacks are added to the
system. The cryptographic model, leakage model, and attack algorithm are all
separate modules. This greatly simplifies changes and increases reuse: if a new
attack is added, it can pull in the existing cryptographic model and leakage
model modules to automatically work with both software and hardware AES
implementations. If a new cryptographic model is added such as DES for exam-
ple, it should work with the existing CPA attack.

The main attack implemented currently is a CPA attack. Figure 11 shows
the data flow within the attack system. Data coming from the ‘Trace Container’
may also have had preprocessing applied, or a certain window of data may be
selected instead of the entire trace range. The correlation calculation has several
modules that can be loaded, for example selecting between a version that takes
advantage of the fast NumPy library, and a version compiled in C using Cython.
The ‘correlation calculation’ may actually implement more advanced algorithms,
an example is the Bayesian calculation given in [13] is also implemented. The
results are stored in the ‘Attack Statistics’, which stores results after a given
number of traces, and also calculates metrics such as Partial Guessing Entropy
(PGE) at the current state [14].

The number of traces to use in the attack is also configurable, and allows for
looping the attack several times over different sections of the traces. If 100,000
traces are present in the project for example, one could perform the attack with

Fig. 11. In the CPA attack module, the cryptographic model, hardware model, and
statistics update are all separate. This allows simple selecting of Hamming-Weight
(HW) or Hamming-Distance (HD) models for example, or selecting the AES round to
attack.
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1000 traces, and repeat it 100 times. When final metrics are calculated, the
system can average the results of all 100 attacks.

Correlation Power Analysis. The basic equation for a Correlation Power
Analysis (CPA) attack, where ri,j is the correlation coefficient at point j for
hypothesis i, td,j is power measurement of trace number d at point j, and hd,i

is the hypothetical power consumption of hypothesis i for trace number d, with
a total of D traces is given in Eq. 1. This basic formula does not allow online
calculation, where new traces are easily added without recalculation of the entire
sum. Instead the form shown in Eq. 2 is used [15]. This form lends itself to online
calculation, where when a new trace is added the sums are updated and the new
correlation coefficient calculated.

The online update is used during calculation of attack statistics, where it
is desired to track the attack results as new traces are added. As a practical
matter, note the denominator of either Eq. 1 or 2 may have numeric stability
problems due to cancellation in either of the two terms. Forms given in [16] may
result in more stable calculations, however experimental results shown that for
measurements of real systems the numerical stability is not an issue.

ri,j =
∑D

d=1

[(
hd,i − hi

) (
td,j − tj

)]

√
∑D

d=1

(
hd,i − hi

)2 ∑D
d=1

(
td,j − tj

)2
(1)

ri,j =
D

∑D
d=1 hd,itd,j − ∑D

d=1 hd,i

∑D
d=1 td,j

√((∑D
d=1 hd,i

)2

− D
∑D

d=1 h2
d,i

)((∑D
d=1 td,j

)2

− D
∑D

d=1 t2d,j

) (2)

5.3 Results Display

The output of the attack is stored in a ‘Results Container’ type. Generally the
assumption is that the output of the attack container will contain a metric for
each hypothesis of the subkey, at each point in time. The metric can be sorted
to give the most likely subkey hypothesis.

The results display module can plot the value of the attack output for each
point in time, for each of the hypothetical keys. If the correct key is known,
this is plotted in a separate color as in Fig. 10. In addition if the correct key
is known additional metrics can be calculated, such as the Partial Guessing
Entropy (PGE). As previous mentioned this PGE will be averaged over many
trials when available.

6 Example Results

This section demonstrates some example results of the platform. Two example
devices will be tested: the first is the AtMega328P microcontroller, which is a
reasonably recent AVR microcontroller from Atmel. The system is loaded with
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Fig. 12. Partial Guessing Entropy (PGE) of SASEBO-GII running at 24 MHz. No
smoothing has been applied.
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Fig. 13. Partial Guessing Entropy (PGE) of CPA attack against AES-128 running on
AVR Microcontroller. Traces recorded with ChipWhisperer Capture Rev2 hardware at
29.5 MS/s synchronous to device clock. No smoothing has been applied, graph comes
from ChipWhisperer Analyzer software.

basic code which performs encryptions when requested over a serial protocol,
and returns the encryption result. The Partial Guessing Entropy (PGE) of the
CPA attack is shown in Fig. 13 using the ChipWhisperer Capture Rev2 hardware
(i.e. as in Fig. 2). As a comparison Fig. 14 shows the PGE of the same attack
where traces have been recorded with a normal oscilloscope.

This device can also be targeted for glitch attacks. When the AVR was run-
ning at 7.3728 MHz, glitches were inserted into the clock with the following spec-
ifications: glitch width of 15.2 % (20.6 nS), glitch offset of −17.0 % (−23.1 nS).
The glitch was XOR’d with the clock, and repeated on 200 consecutive clock
edges. The objective was simply to cause the embedded system to skip authen-
tication code, which was successfully accomplished.
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Fig. 14. Partial Guessing Entropy (PGE) of CPA attack against AES-128 running on
AVR Microcontroller. Traces recorded with PicoScope 6403D at 312 MS/s (as with any
oscilloscope, this sampling is done asynchronous to device clock). No smoothing has
been applied, graph comes from ChipWhisperer Analyzer software.

A second example uses the SASEBO-GII board running at 24 MHz, with
the AES core loaded from the ‘DPA Contest V3’, and the results plotted in
Fig. 12. Comparison to previously published results from the SASEBO-GII board
indicate the ChipWhisperer system is performing as expected [9].

7 Conclusion and Future Work

This work has demonstrated a embedded security analysis platform, which is
completely self-contained and requires no additional hardware or software besides
a standard computer. The design is extremely modular and allows users to use
only a portion of the design; for example using a normal oscilloscope with this
system, taking advantage of the advanced triggering mechanisms or the clock
glitching capability without using the analog capture hardware.

All design material including source code and hardware design files are main-
tained in a GIT repository at www.ChipWhisperer.com. A wiki is used to main-
tain documentation, and contributions to either documentation or design are
welcome. For users interested in the analysis algorithms, large example cap-
tures are available as well: a set of 500,000 traces of AES-128 executed on an
AtMega328P microcontroller along with 500,000 traces from the SASEBO-GII.
Example traces from other hardware is also available, and community submis-
sions are welcomed.
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in this work, and Akashi Satoh and Pankaj Rohatgi for donation of the SASEBO-GII
and SASEBO-W also used in this work. Thanks to COSADE 2014 reviewers for many
insightful comments on initial revision of this papers.
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Appendix A: Script Example

Listing 1.1. Example user script for running automated capture and saving traces to
MATLAB file

1 l s t = [

2 # Clock Routing Setup

3 [ ’CW Extra ’ , ’CW Extra Se t t i n g s ’ , ’ Clock Source ’ ,

4 ’ Target IO−IN ’ ] ,

5 [ ’OpenADC ’ , ’ Clock Setup ’ , ’ADC Clock ’ , ’ Source ’ ,

6 ’EXTCLK x4 v ia DCM’ ] ,

7 # Sample Length/ Of f s e t Setup

8 [ ’OpenADC ’ , ’ Tr igger Setup ’ , ’ Total Samples ’ , 3000 ] ,

9 [ ’OpenADC ’ , ’ Tr igger Setup ’ , ’ O f f s e t ’ , 1500 ] ,

10 # Low Noise Ampl i f i e r Gain Se t t i ng

11 [ ’OpenADC ’ , ’Gain Se t t i ng ’ , ’ S e t t i ng ’ , 4 5 ] ,

12 # Ris ing Edge Tr igger

13 [ ’OpenADC ’ , ’ Tr igger Setup ’ , ’Mode ’ , ’ r i s i n g edge ’ ] ,

14 # Fina l s tep : make DCMs r e l o c k in case they l o s t sync

15 [ ’OpenADC ’ , ’ Clock Setup ’ , ’ Relock DCMs ’ , None ] , ]

16

17 # cap va r i ab l e conta in s i n s t anc e o f ChipWhispererCapture ( )

18

19 # Download a l l hardware setup parameters

20 f o r cmd in l s texample : cap . setParameter (cmd)

21

22 # Set number o f t r a c e s

23 cap . setParameter ( [ ’ Generic S e t t i n g s ’ , ’ Acqu i s i t i on Se t t i n g s ’ ,

24 ’Number o f Traces ’ , 7 5 ] )

25

26 # Capture a few t r a c e s i n i t i a l l y ( not saved )

27 cap . capture1 ( )

28 # pe ( ) i s a macro which p r o c e s s e s any queued events i t must

29 # be c a l l e d when i n t e r a c t i n g with the low− l e v e l API d i r e c t l y .

30 pe ( )

31 cap . capture1 ( )

32 pe ( )

33

34 # Star t capture p roce s s o f 75 t race s , save to memory

35 wr i t e r = cap . captureM ( )

36

37 # Save f i l e s to MATLAB workspace f i l e i n s t ead o f nat ive format

38 s i o . savemat ( ’ s ca data . mat ’ , { ’ powertrace ’ : w r i t e r . t race s ,

39 ’ t e x t i n ’ : w r i t e r . t ex t in s ,

40 ’ t extout ’ : w r i t e r . t extouts ,

41 ’ knownkey ’ : w r i t e r . knownkey })
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