
Emmanuel Prouff (Ed.)

 123

LN
CS

 8
62

2

5th International Workshop, COSADE 2014
Paris, France, April 13–15, 2014
Revised Selected Papers

Constructive
Side-Channel Analysis
and Secure Design

Lecture Notes in Computer Science 8622

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Emmanuel Prouff (Ed.)

Constructive
Side-Channel Analysis
and Secure Design
5th International Workshop, COSADE 2014
Paris, France, April 13–15, 2014
Revised Selected Papers

123

Editor
Emmanuel Prouff
FNISA
Paris
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-319-10174-3 ISBN 978-3-319-10175-0 (eBook)
DOI 10.1007/978-3-319-10175-0

Library of Congress Control Number: 2014947448

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 5th workshop on Constructive Side-Channel Analysis and Secure Design
(COSADE 2014), was held in Paris, France, during April 13–15, 2014. The workshop
was supported by three golden sponsors (ANSSI, Secure IC, RISCURE) and three
silver sponsors (Cryptography Research, INVIA, and SERMA Technologies).

COSADE 2014 received 51 submissions. Each submission was reviewed by at least
3, and on average 4, Program Committee members. The review process was double-
blind, and conflicts of interest were carefully handled. The review process was handled
through an online review system (Easychair) that supported discussions among
Program Committee members. Eventually, the Program Committee selected 20 papers
(a 39 % acceptance rate) for publication in the proceedings. The Committee decided to
give the Best Paper Award to Mohamed Karroumi, Benjamin Richard, and Marc Joye
for their paper “Addition with Blinded Operands,” and the Best Student Paper Award
to Guilherme Perin for his contribution to the paper “Attacking Randomized Expon-
entiations Using Unsupervised Learning.” The program also included two invited talks,
by Dmitry Nedospasov from the Security in Telecommunications (SECT) research
group at the Berlin University of Technology (TU Berlin), and by Sebastian Faust from
EPFL Lausanne.

Many people contributed to COSADE 2014. I thank the authors for contributing
their excellent research. I thank the Program Committee members, and their external
reviewers, for making a significant effort over an extended period of time to select the
right papers for the program. I particularly thank Jean-luc Danger, the general chair,
who took care of many practical details of the event. I also thank Sorin Huss and
Werner Schindler for their support and their fruitful advices. I am very grateful to the
Telecom Paristech members, and especially Guillaume Duc, for their excellent orga-
nization of the event. Finally, I thank our sponsors for supporting COSADE financially:
ANSSI, Cryptography Research, Secure IC, Riscure, Invia, and Serma Technologies.
COSADE 2014 collects truly exciting results in cryptographic engineering, from
concepts to artifacts, from software to hardware, from attack to countermeasure. I feel
privileged for the opportunity to develop the COSADE 2014 program. I hope that the
papers in this proceedings will continue to inspire, guide, and clarify your academic
and professional endeavors.

June 2014 Emmanuel Prouff

Organization

Program Committee

Ray Cheung City University of Hong Kong, China
Christophe Clavier University of Limoges, France
Jean-Sebastien Coron University of Luxembourg, Luxembourg
Jean-Christophe Courrège THALES Communications and Security S.A,

France
Odile Derouet NXP, Germany
Markus Dichtl Siemens AG, Germany
Hermann Drexler Giesecke and Devrient, Germany
Cécile Dumas CEA, France
Benoit Feix UL Transaction Security, France
Benedikt Gierlichs KU Leuven, ESAT-COSIC, Belgium
Christophe Giraud Oberthur Technologies, France
Sylvain Guilley GET/ENST, CNRS/LTCI, France
Naofumi Homma School of Information Sciences,

Tohoku University, Japan
Michael Hutter University of Technology Graz, IAIK, Austria
Eliane Jaulmes ANSSI, France
Ilya Kizhvatov RISCURE, The Netherlands
Markus Kuhn University of Cambridge, UK
Thanh Ha Le MORPHO, France
Stefan Mangard Infineon Technologies, Germany
Amir Moradi Horst Görtz Institute for IT-Security,

Ruhr University Bochum, Germany
Debdeep Mukhopadhyay IIT Kharagpur, India
Axel Poschmann PACE, Nanyang Technological University,

Singapore
Emmanuel Prouff ANSSI, France
Anand Rajan Intel, USA
Denis Real DGA, Germany
Matthieu Rivain CryptoExperts, France
Kazuo Sakiyama The University of Electro-Communications, Japan
Patrick Schaumont Virginia Tech, USA
Joern-Marc Schmidt University of Technology Graz, IAIK, Austria
Francois-Xavier Standaert UCL Crypto Group, Belgium
Yannick Teglia ST Microelectronics, France
David Vigilant Gemalto, The Netherlands
Carolyn Whitnall University of Bristol, UK

Additional Reviewers

Agoyan, Michel
Andouard, Philippe
Balasch, Josep
Banciu, Valentina
Basu Roy, Debapriya
Battistello, Alberto
Bhasin, Shivam
Breier, Jakub
Buhan, Ileana
Carbone, Mathieu
Chen, Donald
Dambra, Arnaud
Danger, Jean-Luc
El Mrabet, Nadia
Endo, Sho
Farhady Ghalaty, Nahid
Finiasz, Matthieu
Fontaine, Arnaud
Ghosh, Santosh
Gross, Hannes
Guo, Xiaofei
Hajra, Suvadeep
Heuser, Annelie
Hoffmann, Lars
Jap, Dirmanto
Jessy, Clédière
Korak, Thomas
Kutzner, Sebastian

Li, Yang
Lomné, Victor
Omic, Jasmina
Pan, Jing
Poucheret, François
Razafindralambo, Tiana
Renauld, Mathieu
Reparaz, Oscar
Ricart, Andjy
Roche, Thomas
Rousselet, Mylène
Seysen, Martin
Stöttinger, Marc
Subidh Ali, Sk
Susella, Ruggero
Taha, Mostafa
Therond, Carine
Thierry, Loic
Tordella, Lucille
Unterluggauer, Thomas
van Oldeneel, Loic
Verneuil, Vincent
Villegas, Karine
Wenger, Erich
Witteman, Marc
Wojcik, Marcin
Wurcker, Antoine
Yao, Gavin

VIII Organization

Contents

A Note on the Use of Margins to Compare Distinguishers 1
Oscar Reparaz, Benedikt Gierlichs, and Ingrid Verbauwhede

A Theoretical Study of Kolmogorov-Smirnov Distinguishers 9
Annelie Heuser, Olivier Rioul, and Sylvain Guilley

Pragmatism vs. Elegance: Comparing Two Approaches to Simple Power
Attacks on AES . 29

Valentina Banciu and Elisabeth Oswald

Addition with Blinded Operands . 41
Mohamed Karroumi, Benjamin Richard, and Marc Joye

On the Use of RSA Public Exponent to Improve Implementation Efficiency
and Side-Channel Resistance . 56

Christophe Giraud

Common Points on Elliptic Curves: The Achilles’ Heel of Fault
Attack Countermeasures. 69

Alberto Battistello

On Adaptive Bandwidth Selection for Efficient MIA 82
Mathieu Carbone, Sébastien Tiran, Sébastien Ordas, Michel Agoyan,
Yannick Teglia, Gilles R. Ducharme, and Philippe Maurine

Generic DPA Attacks: Curse or Blessing? . 98
Oscar Reparaz, Benedikt Gierlichs, and Ingrid Verbauwhede

Support Vector Machines for Improved IP Detection with Soft Physical
Hash Functions . 112

Ludovic-Henri Gustin, François Durvaux, Stéphanie Kerckhof,
François-Xavier Standaert, and Michel Verleysen

Collision-Correlation Attack Against a First-Order Masking Scheme
for MAC Based on SHA-3. 129

Luk Bettale, Emmanuelle Dottax, Laurie Genelle, and Gilles Piret

Attacking Randomized Exponentiations Using Unsupervised Learning 144
Guilherme Perin, Laurent Imbert, Lionel Torres, and Philippe Maurine

On the Optimal Pre-processing for Non-profiling Differential Power Analysis . . . 161
Suvadeep Hajra and Debdeep Mukhopadhyay

http://dx.doi.org/10.1007/978-3-319-10175-0_1
http://dx.doi.org/10.1007/978-3-319-10175-0_2
http://dx.doi.org/10.1007/978-3-319-10175-0_3
http://dx.doi.org/10.1007/978-3-319-10175-0_3
http://dx.doi.org/10.1007/978-3-319-10175-0_4
http://dx.doi.org/10.1007/978-3-319-10175-0_5
http://dx.doi.org/10.1007/978-3-319-10175-0_5
http://dx.doi.org/10.1007/978-3-319-10175-0_6
http://dx.doi.org/10.1007/978-3-319-10175-0_6
http://dx.doi.org/10.1007/978-3-319-10175-0_7
http://dx.doi.org/10.1007/978-3-319-10175-0_8
http://dx.doi.org/10.1007/978-3-319-10175-0_9
http://dx.doi.org/10.1007/978-3-319-10175-0_9
http://dx.doi.org/10.1007/978-3-319-10175-0_10
http://dx.doi.org/10.1007/978-3-319-10175-0_10
http://dx.doi.org/10.1007/978-3-319-10175-0_11
http://dx.doi.org/10.1007/978-3-319-10175-0_12

Template Attacks on Different Devices . 179
Omar Choudary and Markus G. Kuhn

Using the Joint Distributions of a Cryptographic Function in Side
Channel Analysis . 199

Yanis Linge, Cécile Dumas, and Sophie Lambert-Lacroix

A Multiple-Fault Injection Attack by Adaptive Timing Control
Under Black-Box Conditions and a Countermeasure 214

Sho Endo, Naofumi Homma, Yu-ichi Hayashi, Junko Takahashi,
Hitoshi Fuji, and Takafumi Aoki

Adjusting Laser Injections for Fully Controlled Faults 229
Franck Courbon, Philippe Loubet-Moundi, Jacques J.A. Fournier,
and Assia Tria

ChipWhisperer: An Open-Source Platform for Hardware Embedded
Security Research . 243

Colin O’Flynn and Zhizhang (David) Chen

Verifying Software Integrity in Embedded Systems: A Side
Channel Approach. 261

Mehari Msgna, Konstantinos Markantonakis, David Naccache,
and Keith Mayes

Studying Leakages on an Embedded Biometric System Using Side
Channel Analysis . 281

Maël Berthier, Yves Bocktaels, Julien Bringer, Hervé Chabanne,
Taoufik Chouta, Jean-Luc Danger, Mélanie Favre, and Tarik Graba

On the Security of RSM - Presenting 5 First- and Second-Order Attacks 299
Sebastian Kutzner and Axel Poschmann

Author Index . 313

X Contents

http://dx.doi.org/10.1007/978-3-319-10175-0_13
http://dx.doi.org/10.1007/978-3-319-10175-0_14
http://dx.doi.org/10.1007/978-3-319-10175-0_14
http://dx.doi.org/10.1007/978-3-319-10175-0_15
http://dx.doi.org/10.1007/978-3-319-10175-0_15
http://dx.doi.org/10.1007/978-3-319-10175-0_16
http://dx.doi.org/10.1007/978-3-319-10175-0_17
http://dx.doi.org/10.1007/978-3-319-10175-0_17
http://dx.doi.org/10.1007/978-3-319-10175-0_18
http://dx.doi.org/10.1007/978-3-319-10175-0_18
http://dx.doi.org/10.1007/978-3-319-10175-0_19
http://dx.doi.org/10.1007/978-3-319-10175-0_19
http://dx.doi.org/10.1007/978-3-319-10175-0_20

A Note on the Use of Margins
to Compare Distinguishers

Oscar Reparaz(B), Benedikt Gierlichs, and Ingrid Verbauwhede

Department of Electrical Engineering-ESAT/COSIC and iMinds, KU Leuven,
Kasteelpark Arenberg 10, 3001 Leuven-Heverlee, Belgium

{oscar.reparaz,benedikt.gierlichs,ingrid.verbauwhede}@esat.kuleuven.be

Abstract. Relative distinguishing margins are becoming a popular mea-
sure for comparing distinguishers. This paper presents some examples
that show that this measure, although informative and intuitively sound,
should not be taken alone as benchmark of distinguishers.

1 Introduction

Since the introduction of Differential Power Analysis (DPA) in [3], several differ-
ent statistical tools called distinguishers have been proposed. Some distinguish-
ers claim to be more efficient assuming a leakage model (like CPA [1]) or more
generic (MIA [2] and KS [13]). A recurring topic in the literature is the need
for establishing fair criteria to compare distinguishers and extract broad con-
clusions, more generally applicable than the comparison of outcomes in specific
empirical experiments.

The notion of success rate is of extended use to evaluate distinguishers, prob-
ably due to the accessible interpretation of the measure. One of the first works
theoretically analyzing the behavior of several univariate distinguishers is pre-
sented by Mangard et al. in [7]. They show that the (asymptotic) efficiency,
measured as the success rate, of d;istinguishers based on the correlation coeffi-
cient, difference of means and Gaussian templates are essentially the same, given
the exact (single-bit) model of the power consumption. This result, however, does
not generalize to higher-order attacks as shown by Standaert et al. in [10]. Said
work shows that in the context of attacking masked implementations, the choice
of distinguisher indeed highly affects the success rate achieved in the attack.

However, measures other than the success rate have also been proposed in
previous works. Most notably, Whitnall and Oswald formalized the concept of
theoretical margins for a distinguisher in [11,12]. This measure provides an
improvement and generalization of several other measures [4,5], and it was shown
to be more expressive and informative than the success rate [11]. In short, the
relative margin measures to what extent the distinguisher value for the correct
key hypothesis stands out over other competing distinguisher values, in a nor-
malized fashion.

c© Springer International Publishing Switzerland 2014
E. Prouff (Ed.): COSADE 2014, LNCS 8622, pp. 1–8, 2014.
DOI: 10.1007/978-3-319-10175-0 1

2 O. Reparaz et al.

In the same series of papers [8,11,12], Whitnall et al. introduce a very inter-
esting idea towards separating the intrinsic distinguishing power of a distin-
guisher from estimation inaccuracies, both of which affect the success rate. To
isolate these two aspects, the distinguisher values are not estimated but directly
computed from the probability densities of the simulated leakage via numerical
integration. In this approach, the estimation problem (which for some distin-
guishers is notoriously hard) is worked around. Whitnall et al. apply this tech-
nique to theoretically compare several distinguishers and draw the conclusion
that MIA and KSA distinguishers have theoretical advantages over CPA and
that the underperformance of MIA-like attacks frequently observed in practice
is due to estimation errors.

Theoretical margins are receiving an increasing adoption. Recent works have
proposed new distinguishers and justified somehow their superiority based on
theoretical margin measures [6,13].

Contribution. This paper presents simple counterexamples of distinguishers that
exhibit the exact same success rate, yet their theoretical margins’ values can be
almost arbitrarily different. Hence, theoretical margins should not be used as
the sole measure to compare distinguishers.

Notation. A distinguisher is the statistical tool that is used to compare mea-
surements T to key-dependent predictions Zk in a standard DPA attack. The
distinguisher vector D(k) is a vector containing distinguisher values for each
subkey k. In the simulations of this paper we assume that the leakage T consists
of the Hamming weight of the first DES Sbox output Z with additive Gaussian
noise, that is T = HW(Zk)+ ε with Zk = DES-Sbox1(p⊕k). The signal-to-noise
ratio (SNR) is defined as var [HW(Zk)]

var [ε] .

Organization. In Sect. 2 we present the main idea: several distinguishers are
proposed that serve our purpose of showing that taking only the margins into
account can lead to misjudgment. In Sect. 3 we study the behavior of the distin-
guishers when noise is present.

2 Two Distinguishers

In this section, we present two distinguishers D1 and D2 that by construction
behave exactly in the same way in practice. That is, the two distinguishers will
rank key candidates in exactly the same way: the attack using D1 will be exactly
as successful as the attack using D2. However, the relative and absolute margins
for D1 and D2 are different.

2.1 Description

The first distinguisher D1 is the absolute value of Kocher et al. single bit DPA
between measurements T and key-dependent predictions Zk. That is, for each

A Note on the Use of Margins to Compare Distinguishers 3

hypothesis k of the key, the distinguisher computes

D1(k) =
∣
∣
∣Ê(T |L(Zk) = 1)− Ê(T |L(Zk) = 0)

∣
∣
∣ (1)

where L is a function that extracts one bit from the predictions and Ê is the
sample mean operator. The second distinguisher D2 is based on D1. It computes
the squared version of D1 as

D2(k) = [D1(k)]
2 (2)

=
∣
∣
∣Ê(T |L(Zk) = 1)− Ê(T |L(Zk) = 0)

∣
∣
∣

2

. (3)

2.2 Properties

It is not hard to see that D1 and D2 are in essence the same distinguisher.
For any two key hypothesis, D1 will rank them in the same way as D2. This
means that an attack using D1 will be exactly as successful as one using D2.
One can see D2 as the composition of first computing D1 and then squaring
every distinguisher value (i.e., applying the map x �→ x2), as Fig. 1 (left) shows.
Since the map x �→ x2 is strictly increasing in x ≥ 0 (possible values of D1 will
be always D1 ≥ 0), it follows from the definition that the order (key ranking)
will be preserved. However, as we will see in the next section, D1 and D2 have
different theoretical relative margins.

2.3 Margins for D1 and D2

For a given distinguisher that produces the distinguishing vector D, the relative
distinguishing margin1 is defined as

RelMargin(D) =
D(k∗)−max [D(k)|k �= k∗]

std(D)
(4)

where k∗ is the correct key and std is the sample standard deviation. The sign
of this measure indicates whether an attack using the given distinguisher and a
“large enough” number of traces would be successful (or not), and the magnitude
of the measure, up to what extend the attack was successful (or not.) In what
follows, we computed all relative margins by numerical integration as suggested
in [12].

We computed the theoretical relative distinguishing margin for D1 and D2

and got, respectively, 0.250 and 0.5176 in a noiseless scenario. Both are positive,
which means that the attacks would be successful, given enough traces. The
fact that the two magnitudes are different means that the theoretical relative
distinguishing margin is, in this situation, measuring something that does not
1 We note that the distinction between theoretical distinguishing margins and dis-

tinguishing margins is orthogonal to the observations in this paper, and the
consequences affect both.

4 O. Reparaz et al.

D1(k)

D1(k)

D2(k)

x �→ x2

10−2 100 102 104
0

1

2

3

4

5

6

7

8

SNR
re

la
tiv

e
m

ar
gi

n

Fig. 1. Left: construction of D1 and D2. Right: relative distinguishing margins for D1

and D2. Pink ◦: margins for D1. Green �: margins for D2. Blue +: margins for DMIA
1 .

Red x: margins for DMIA
2 (Color figure online).

relate to the intrinsic distinguishing ability of D1 or D2, since it is clear that by
construction both distinguishers behave identically.

We push further our study by introducing another pair of distinguishersDMIA
1

and DMIA
2 . The distinguisher DMIA

1 is MIA and is defined as

DMIA
1 = I(T ;L′(Zk)) (5)

where I(·; ·) denotes Mutual Information and L′ is some leakage model. Analo-
gously, we define DMIA

2 as the squared version of DMIA
1 :

DMIA
2 =

[

DMIA
1 (k)

]2
(6)

= |I(T ;L′(Zk))|2 . (7)

We computed theoretical margins for D1, D2, DMIA
1 and DMIA

2 as a function
of the SNR and plot them in Fig. 1 (right.) We note that the results of the
margin of DMIA

1 coincide with those from [12]2. As expected, the margins for D1

and D2 stay constant as the SNR progresses. For the difference of means based
distinguishers, noise affects every distinguisher value in the same way, keeping
the theoretical distinguishing ability unaffected. For the distinguishers based on
MIA the situation is different: margins for DMIA

1 and DMIA
2 vary as the SNR

changes, as [12] pointed out.
From the observation of Fig. 1 it is clear that all distinguishers D1, D2, DMIA

1

and DMIA
2 have distinct margins, albeit D1 (respectively DMIA

1) is essentially the
same as D2 (respectively DMIA

2). Thus, we see that margins do not necessarily
relate to success rate. We would incur a misjudgment if based on Fig. 1 and
2 Up to a typo in the caption of Fig. 2 in [12].

A Note on the Use of Margins to Compare Distinguishers 5

without any more information we assess that distinguisher D2 has more intrin-
sic distinguishing abilities than D1. Furthermore, by the same reasoning, from
the observation of Fig. 1 there is not enough information to claim that distin-
guisher DMIA

2 has more intrinsic distinguishing abilities than D2, which is a
different distinguisher not based on MIA. In the next section we elaborate on
the applicability of margins to compare distinguishers.

Note that the observation regarding different margins for DMIA
1 and DMIA

2

will hold in a theoretical scenario (where there are no estimation errors) as well
as in a practical scenario (since the estimation errors will affect DMIA

1 and DMIA
2

in exactly the same way).

3 Discussion

3.1 The Shape of the Margins Is Also Different

Upon the observation of Sect. 2.3, one might ask if the properties of the margin
are the same for DMIA

1 and DMIA
2 as the SNR varies. In other words, whether

the relative margin for DMIA
2 is just a scaled version of DMIA

1 . In this section,
we answer this question negatively.

We slightly generalize the construction of DMIA
2 . We consider the family of

distinguishers DMIA
a,b . This family is constructed akin to DMIA

2 but substituting
the squaring mapping x �→ x2 with a different strictly increasing non-linear
mapping x �→ (x+ a)b − ab for some a, b > 0. Since the mapping is still strictly
increasing in x ≥ 0, all the distinguishers in the family are essentially the same.
We further generalize and also consider the family of distinguishers DMIA

f(x) that
is constructed similarly to DMIA

2 but with a generic strictly increasing non-linear
mapping x �→ f(x). We note that linear mappings of the form x �→ a ·x+b would
not modify relative margins (and will of course lead to attacks with identical
success rates.)

In Fig. 2 we plot the theoretical relative distinguishing margin for some mem-
bers of the family of distinguishers previously defined. We can see that the evo-
lution of the relative margin as a function of the SNR can be almost arbitrary,
even though all the distinguishers in the figure are essentially the same (they
relate to the same distinguisher up to a strictly increasing non-linear mapping
at their output). Thus, one should also be skeptical about drawing conclusions
about the behavior of a specific distinguisher from the observation of the shape of
the relative distinguishing margin as the SNR varies. In Fig. 2, one could assert
from the curve corresponding to DMIA

0,1 (blue, ‘x’) that there is a stochastic-
resonance-like effect around SNR=10 since the margin achieves a maximum. We
note that the very same effect does not exhibit itself for the other equivalent
distinguisher in the figure (red, ‘+’; and green, ‘o’.) Therefore, margins alone
should not be used to assess the properties of a distinguisher as the SNR varies:
distinguisher-specific properties may or may not show in the margins.

6 O. Reparaz et al.

10−2 10−1 100 101 102 103 104
0

1

2

3

4

5

6

7

8

9

SNR

re
la

tiv
e

m
ar

gi
n

Fig. 2. Red, blue, green: margins for DMIA
a,b for several choices: red, ‘+’: a = 1.9, b = 7;

blue, ‘x’: a = 0, b = 1 (this means that D0,1 = D1); green, ‘o’: a = 0.3, b = 0.003. Pink,
�: margins for Df(x) with f(x) = ex if x < 0.05 and f(x) = 10ex+1 otherwise f(x) is
strictly increasing in x > 0 (Color figure online).

3.2 Objection: D2 is Pathologic

One could argue that the construction of appending a non-linear mapping at
the output of a previously proposed distinguisher is pathologic. Although D2

(and subsequent generalizations) was specifically crafted to show the point in
this paper regarding relative distinguishing margins and no reasonable person
would think that it is any better (or worse) than D1, we remark that the derived
distinguishers are as sound as the original ones. For example, D2 is as sound as
D1 and still gives a measure of the degree of the correlation between random
variables (only in a different scale than D1), and is as precise as D1.

3.3 What is Left to Compare Distinguishers?

The task of comparing in a fair way several distinguishers that work on differ-
ent scales seems hard. One could resort to the well-known success-rate metric,
albeit one should be aware of its limitations. Namely, success rates are highly
dependent on the statistical estimator used in the computation of the distin-
guisher values. Besides, once the signal-to-noise ratio is high enough so that the
distinguishers under study behave well (they output the correct key hypothesis
with high probability, i.e., their success rates reach values close to 1), it becomes
hard to compare distinguishers and rank which one is better, since their success
rates are all close to 1. On the bright side, success rates are easily computable in
empirical settings and can be used to compare distinguishers that work on differ-
ent scales. The same observations apply to other metrics that are only sensitive
to the ordering of the distinguishing vector, such as guessing entropy [9].

A Note on the Use of Margins to Compare Distinguishers 7

4 Conclusion

We showed in this paper that the theoretical relative distinguishing margin can
be a useful measure but is not to be used as the sole measure to compare dis-
tinguishers, and to assess properties of a specific distinguisher. Although the
measure is intuitively useful, and in many cases it informs of useful properties
of distinguishers, there are some counterexamples/corner cases shown in this
paper where the measure should not be taken solely to judge the behavior of a
distinguisher.

Acknowledgments. We thank the anonymous reviewers for their insightful com-
ments. This work was supported in part by the Research Council of KU Leuven: GOA
TENSE (GOA/11/007), by the Flemish Government FWO G.0550.12N and by the
Hercules Foundation AKUL/11/19. Oscar Reparaz is funded by a PhD Fellowship of
the Fund for Scientific Research - Flanders (FWO). Benedikt Gierlichs is Postdoctoral
Fellow of the Fund for Scientific Research - Flanders (FWO).

References

1. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

2. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

3. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

4. Le, T.-H., Clédière, J., Canovas, C., Robisson, B., Servière, C., Lacoume, J.-L.: A
proposition for correlation power analysis enhancement. In: Goubin, L., Matsui,
M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 174–186. Springer, Heidelberg (2006)

5. Le, T.-H., Clédière, J., Servière, C., Lacoume, J.-L.: Noise reduction in side channel
attack using fourth-order cumulant. IEEE Trans. Inf. Forensics Secur. 2(4), 710–
720 (2007)

6. Maghrebi, H., Guilley, S., Rioul, O., Danger, J.-L.: Some results about the distinc-
tion of side-channel distinguishers based on distributions. In: 10th International
Workshop on Cryptographic Architectures Embedded in Reconfigurable Devices
(CryptArchi 2012), Saint-Etienne, France, 19–22 June 2012

7. Mangard, S., Oswald, E., Standaert, F.-X.: One for all - all for one: unifying stan-
dard differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011)

8. Oswald, E., Mather, L., Whitnall, C.: Choosing distinguishers for differential power
analysis attacks. In: Non-Invasive Attack Testing Workshop, NIST (2011)

9. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

10. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The World Is Not Enough: Another Look on Second-
Order DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129.
Springer, Heidelberg (2010)

8 O. Reparaz et al.

11. Whitnall, C., Oswald, E.: A comprehensive evaluation of mutual information analy-
sis using a fair evaluation framework. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 316–334. Springer, Heidelberg (2011)

12. Whitnall, C., Oswald, E.: A fair evaluation framework for comparing side-channel
distinguishers. J. Cryptogr. Eng. 1(2), 145–160 (2011)

13. Whitnall, C., Oswald, E., Mather, L.: An exploration of the Kolmogorov-Smirnov
test as a competitor to mutual information analysis. In: Prouff, E. (ed.) CARDIS
2011. LNCS, vol. 7079, pp. 234–251. Springer, Heidelberg (2011)

A Theoretical Study of Kolmogorov-Smirnov
Distinguishers

Side-Channel Analysis vs. Differential Cryptanalysis

Annelie Heuser1(B), Olivier Rioul1, and Sylvain Guilley1,2

1 TELECOM-ParisTech, COMELEC, Paris, France
{heuser,rioul,guilley}@enst.fr
2 Secure-IC S.A.S., Rennes, France

Abstract. In this paper, we carry out a detailed mathematical study
of two theoretical distinguishers based on the Kolmogorov-Smirnov (KS)
distance. This includes a proof of soundness and the derivation of closed-
form expressions, which can be split into two factors: one depending
only on the noise and the other on the confusion coefficient of Fei, Luo
and Ding. This allows one to have a deeper understanding of the rela-
tive influences of the signal-to-noise ratio and the confusion coefficient
on the distinguisher’s performance. Moreover, one is able to directly
compare distinguishers based on their closed-form expressions instead
of using evaluation metric that might obscure the actual performance
and favor one distinguisher over the other. Furthermore, we formalize
the link between the confusion coefficient and differential cryptanalysis,
which shows that the stronger an S-box is resistant to differential attacks
the weaker it is against side-channel attacks, and vice versa.

Keywords: Side-channel distinguisher · Confusion coefficient ·
Kolmogorov-Smirnov analysis · Closed-form expressions · S-Box
differential uniformity · Constrained S-Box search

1 Introduction

Side-channel attacks consist in exploiting leakages in order to extract secrets
from any kind of cryptographic devices. Studies of side-channel distinguishers
have been initially empirical: they were carried out on real traces, whose char-
acteristics in terms of signal and noise were not exactly known. This allows to
compare attacks on a fair setting especially their optimizations, like for instance
using the DPA contests measurements [24]. Unfortunately, this does not allow
one to understand the role of the different parameters at hand (like the signal-
to-noise ratio (SNR) and the impact of the leakage model) and derive conclusions
for any kind of data.

Annelie Heuser is Google European fellow in the field of privacy and is partially
founded by this fellowship.

c© Springer International Publishing Switzerland 2014
E. Prouff (Ed.): COSADE 2014, LNCS 8622, pp. 9–28, 2014.
DOI: 10.1007/978-3-319-10175-0 2

10 A. Heuser et al.

For this reason, another approach consists in generating traces by simula-
tions, according to some archetype leakage signal and noise. The question that
now arises is how to compare attacks. Guidelines were given by Standaert et al.
in [22], and a formal evaluation framework was presented in [23]. Two metrics
were introduced to quantify the efficiency of attacks: success rate and guess-
ing entropy. In [10] Maghrebi et al. introduced error bars on the success rate
in order to determine a reliable decision whether one distinguisher is better than
another. Another strategy proposed by Whitnall and Oswald in [28] consists in
computing various kinds of metrics evaluating theoretical distinguishers, such
as the relative distinguishing margin. Yet another approach consists in deriving
closed-form expressions of the theoretical success rate of distinguishers. Recently,
Fei et al. [7] derived a closed-form expression of the theoretical success rate for
DPA (difference of means). In order to achieve this they introduced the confusion
coefficient, which determines the relationship between the sensitive variable of
the correct key and any other key hypotheses. Thanks to this concept, Thillard
et al. re-derived in [26] the computation of the success rate of CPA given by
Rivain in [20] in terms of the confusion coefficient.

Our Contribution. In this paper, we conduct a mathematical study on the
Kolmogorov-Smirnov (KS) distinguishers, namely KSA (KS Analysis) and iKSA
(interclass KSA). Following the empirical results in [10], we investigate the stan-
dard Kolmogorov-Smirnov distinguisher (i.e., KSA), and the interclass KS dis-
tinguisher (i.e., iKSA) as it was shown that iKSA outperforms KSA in simulated
data using the Hamming weight leakage model [10]. In particular, our study
includes the derivation of closed-form expressions as well as a proof of soundness
for both KS distinguishers, where we had to focus on the one-bit leakage scenario
(as for DPA).

We show that the closed-form expressions of KSA and iKSA depend on two
factors: one that is a function only of the noise and another one that is a func-
tion only of the confusion coefficient. A closed-form expression having also an
independent noise factor has been observed for CPA (and thus also for DPA) by
Mangard et al. in [11]. Remarkably, a re-formulation of the formula in [11] in
terms of the confusion coefficient shows that the closed-forms of DPA and KSA/
iKSA (in short (i)KSA) only differ in the factor of the noise. As a consequence we
show that, in contrast to other distinguishers like mutual information, the rel-
ative distinguishing margin of one-bit (i)KSA and DPA does not depend on the
noise, but only on the confusion coefficients. This behavior for DPA has partially
also been observed in [28].

These results highlight the relevance of a theoretical study of distinguish-
ers and the derivation of closed-form expressions, since one is able to exactly
determine the impacts of the noise and of the choice of the leakage model (e.g.
S-boxes). Moreover, this allows to compare distinguishers among themselves by
means of closed-form expressions, instead of using evaluation metrics obscuring
relevant factors.

A Theoretical Study of Kolmogorov-Smirnov Distinguishers 11

Finally, assuming that the leakage model depends on a substitution box (S-
box), we formalize the link between the confusion coefficient and differential
cryptanalysis [1] through the cryptanalytic metric called differential uniformity.
We demonstrate that the stronger the differential resistance, the weaker the side-
channel resistance and vice versa. This was only implicitly known so far (e.g.,
results of Prouff in [18]). Furthermore, we show that this behavior is not a direct
consequence of the non-linearity of the S-box, as it is commonly believed, but
rather of its resistance against differential cryptanalysis.

2 Preliminaries

2.1 Notations

Calligraphic letters (e.g.,X) denote finite sets, capital letters (e.g.,X) denote ran-
dom variables taking values in these sets, and the corresponding lowercase letters
(e.g., x) denote their realizations. We write P{X = x} or p(x) for the probability
that X = x and p(x|y) = P{X = x

∣
∣Y = y} for conditional probabilities. Let

k� denote the secret cryptographic key, k any possible key hypothesis from the
keyspace K, and let T be the input or cipher text of the cryptographic algorithm.
The mapping g : (T ,K)→ I maps the input or cipher text and a key hypothesis
k ∈ K to an internally processed variable in some space I that is assumed to relate
to the leakage X. Usually, T ,K, I are taken as F

n
2 , where n is the number of bits

(for AES n = 8).
Generally it is assumed that g is known to the attacker. A common consid-

eration is g(T, k) = Sbox[T ⊕k] where Sbox is a substitution box. The measured
leakage X can then be written as

X = ψ(g(T, k�)) +N, (1)

whereN denotes an independent additive noise. The device-specific deterministic
function ψ is normally unknown to the attacker, which for this reason is assuming
some other function ψ′ modeling an exploitable part of ψ. For any key guess
k ∈ K the attacker computes the sensitive variable

Y (k) = ψ′(g(T, k)). (2)

Without loss of generality we may assume that Y is centered and normalized,
i.e., E{Y } = 0 and V ar{Y } = 1, and that the values in Y are regularly spaced
with step Δy. For ease of notation, we let Y � = Y (k�) and Y = Y (k).

2.2 Conditions

First, we assume a basic condition that when looking directly at the leakage
distribution (not knowing the message or cipher) we cannot infer any secret.

Condition 1 (Secrecy condition). The probability distribution of the leakage
(see Eq. (1)) does not depend on the actual value of the secret key.

12 A. Heuser et al.

In other words, the Y (k)’s are identically distributed (i.d.) for all k ∈ K.
Second, similarly (but not equivalently) as in [19,30] we require the following
condition on the relationship between Y � and Y to be able to distinguish between
different keys k ∈ K. This confusion condition will be related to the confusion
coefficient later in Proposition 4.

Condition 2 (Confusion condition). For any k �= k�, the correspondence from
Y (k) to Y (k�) is non-injective, i.e., there does not exist an injective (that is
one-to-one) function ξ : Y → Y such that Y (k�) = ξ

(

Y (k)
)

with probability one.

Lemma 1. The confusion condition is equivalent to the condition that for all
k �= k� there exist y, y� ∈ Y such that

p(y�|y) is neither 0 nor 1. (3)

Proof. Negating the confusion condition, there is a k �= k� such that P
{

Y (k�) =
ξ(Y (k))

}

= 1 where ξ is some one-to-one function. This is equivalent to P
{

Y (k�)
= ξ(y)

∣
∣Y (k) = y

}

= 1 for all y ∈ Y, that is, p(y�|y) = 1 when y� = ξ(y) and
p(y�|y) = 0 otherwise. ��

Thus, the confusion condition amounts to saying that knowing Y (k) = y
(for that particular value y satisfying the condition) does not always permit to
conclude for sure about the value of Y (k�), which depends on the secret: there
is still a nonzero probability that Y (k�) has several possible values.

2.3 Multi-bit vs One-bit Leakage Models

The existing literature on KS distinguishers [10,27,29,31] deals with multi-bit
leakage models. However, a precise mathematical derivation is very much intri-
cate in the multi-bit case. We therefore present hereafter the scenario where the
sensitive variable Y is a binary variable, i.e., ψ′ : I → F2.

Note that, we do not make the same restrictions on ψ, for example, let us con-
sider the most common cases for ψ in practice, that have also been investigated
in [28]: the Hamming weight (HW) or more generally the (unequal) weighted
sum of n bits:

X =
n∑

i=1

ωi[g(T, k�)]i +N, (4)

with [·]i : F
n
2 → F2 being the projection onto the ith bit, ωi ∈ R and in case of a

HW leakage ω1 = ω2 = . . . = ωn = 1.
Let us assume in the following that [g(T, k�)]1, . . . , [g(T, k�)]n are indepen-

dent and uniformly distributed, which is implied when considering a bijective
S-box as for example in AES and randomly chosen plaintexts T . Consider that
we concentrate on bit b ∈ {1, . . . , n}, so ψ′(·) = [·]b, then we express X in terms
of the sensitive variable Y � = [g(T, k�)]b as

X = ωbY
� + Z +N

︸ ︷︷ ︸

N ′

with Z =
∑

i�=b

ωi[g(T, k�)]i. (5)

A Theoretical Study of Kolmogorov-Smirnov Distinguishers 13

Remark 1. Note that, when ψ is the HW function (ωi = 1) Z follows a binomial
law of length n− 1 and probability p = 1

2 .

In our further analysis, we assume that N ′ = Z +N is unimodal distributed
in the sense of the following definition:

Definition 1 (Unimodal distribution). A distribution f is called unimodal
if there exists a mode m such that f(x) is increasing for x ≤ m and decreasing
for x ≥ m.

To verify this assumption empirically, we perform simulations with N ∼
N (0, σ2) for several σ2, 10000 realisations, and g(T, k�) = Sbox[T ⊕ k�] being
the result of the AES S-box (SubBytes) operation. Figure 1 shows the conditional
distributions of {X|Y � = y0} and {X|Y � = y1} for (a) the HW model and (b)
using weights ω. One can see in Fig. 1(a) that for σ2 = 0.04, N ′ is clearly not
unimodal distributed1 , but when σ2 ≥ 0.36 the unimodality holds. Figure 1(b)
illustrates that N ′ is unimodal distributed for all tested σ2’s. Of course, the
bigger σ2 the closer the distribution of N ′ will be to N . Note that, observing
σ2 < 1 is very unrealistic in practice. Moreover, when using an ATMega 163
microcontroller as used in the DPA contest v4 [25], where the signal-to-noise
ratio is very high (it is not a security product), the condition of unimodality
is fulfilled (see Fig. 2), which has also been illustrated for measurements of
a microcontroller in [11] (Fig. 4.6). In the rest of the paper, to simplify the
notations, we will simply denote by N ∼ N (0, σ2) the noise (sum of algorithmic
and measurement noises).

Fig. 1. Estimated conditional distributions {X|Y � = y0} and {X|Y � = y1} using a
noise level of σ2 = {0.04, 0.16, 0.36, 0.64, 1}.

1 This visual interpretation agrees with several statistical unimodality tests.

14 A. Heuser et al.

Fig. 2. Estimated conditional leakage distributions {X|Y � = y0} and {X|Y � = y1} of

measurements from ATMega 163, 2nd AES S-box, 4th bit.

3 Study of Theoretical KS Distinguishers

3.1 A Note on DPA/CPA

In [11] Mangard et al. showed that the theoretical CPA can be expressed as

ρ(X,Y) =
ρ(Y �, Y)

√

1 + 1
SNR

, (6)

where ρ is the absolute value of the Pearson correlation coefficient. Thus, ρ(X,Y)
can be factored into one part only depending on the leakage model and one
depending on the SNR. Note that, CPA using one-bit models is equivalent to
DPA [6] (when assuming normalized Y ’s), thus Eq. (6) also holds for DPA. The
next proposition shows that in fact the part depending on the leakage model can
be directly expressed in terms of the confusion coefficient [7], which describes the
relationship between Y (k�) and any Y (k) with k ∈ K that is defined as follows.

Definition 2 (Confusion coefficient [7]). Let k� denote the correct key and
k any key hypothesis in K, then the confusion coefficient is defined as

κ(k�, k) = P{Y (k�) �= Y (k)}. (7)

Proposition 1. For binary and normalized equiprobable Y’s

ρ(X,Y) =
|1− 2κ(k�, k)|

√

1 + 1
SNR

= d ·
∣
∣
∣
∣
κ(k�, k)− 1

2

∣
∣
∣
∣
, (8)

with d = 2√
1+1/SNR

.

Proof. As Y is normalized (i.e., E(Y) = 0 and V ar(Y) = 1) we re-formulate

ρ(Y �, Y) =
|Cov(Y �, Y)|

√

V ar(Y �)V ar(Y)
(9)

= |1− 2κ(k�, k)|, (10)

since Cov(Y �, Y) = E{Y � · Y } = 1− 2P{Y (k�) �= Y (k)} = 1− 2κ(k�, k). ��

A Theoretical Study of Kolmogorov-Smirnov Distinguishers 15

3.2 KS Side-Channel Distinguishers

In this subsection we briefly sketch KS distinguishers named after Kolmogorov
and Smirnov [9,21]. For more detailed information on their use in the area of
side-channel analysis we refer to [27,29] for an evaluation of KS and to [10] for
the comparison between KSA and iKSA, which shows that the estimated iKSA
is superior to the estimated KSA using simulations for a HW leakage model.

Definition 3 (KS distinguishers). The (standard) Kolmogorov-Smirnov dis-
tinguisher [27] is defined by

KSA(k) = DKSA(X,Y) = EY

{‖F (x|Y)− F (x)‖∞
}

, (11)

where the expectation is taken over Y’s distribution, ‖ · ‖∞ is the L∞ norm:
‖Ψ(x)‖∞ = supx∈R

|Ψ(x)|, and F (x) = FX(x), F (x|y) = FX|Y =y(x) denote the
cumulative distribution functions of X and X given Y (k) = y, respectively.

The inter-class Kolmogorov-Smirnov distinguisher [10] is defined by

iKSA(k) = DiKSA(X,Y (k)) =
1
2

EY,Y ′
{‖F (x|Y)− F (x|Y ′)‖∞

}

, (12)

where Y ′ is an independent copy of Y , and the expectation is taken over the joint
distribution of Y and Y ′. The 1/2 factor makes up for double counts ((Y, Y ′)↔
(Y ′, Y)).

We need the following lemma.

Lemma 2. With the above notations and assumptions on the leakage model,

KSA(k) =
∑

y∈Y
p(y) sup

x∈R

∣
∣
∣

∑

y�∈Y

(

p(y�|y)− p(y�)
) · Φ

(x− y�

σ

)∣
∣
∣ and (13)

iKSA(k) =
1
2

∑

y,y′∈Y
y �=y′

p(y)p(y′) sup
x∈R

∣
∣
∣

∑

y�∈Y

(

p(y�|y)− p(y�|y′)
) · Φ

(x− y�

σ

)∣
∣
∣, (14)

where Φ(x) is the c.d.f. of the standard noise N/σ (of zero mean and unit
variance).

Proof. From model Eq. (1), X given Y (k�) = y� has c.d.f.

P
{

X ≤ x ∣
∣Y (k�) = y�

}

= ΦN (x− y�) = Φ
(x− y�

σ

)

, (15)

where ΦN (ν) = P{N ≤ ν} = Φ(ν/σ) is the c.d.f. of the noise N . Indeed, we
recall our notation: X = Y (k�) +N . Averaging over Y (k�) gives

F (x) = P
{

X ≤ x} =
∑

y�∈Y
p(y�)Φ

(x− y�

σ

)

. (16)

16 A. Heuser et al.

Now from Eq. (15) and the formula of total probability, X given Y (k) = y is
distributed according to the c.d.f.

F (x|y) = P
{

X ≤ x ∣
∣Y (k) = y

}

(17)

=
∑

y�∈Y
p(y�|y) · P{

X ≤ x ∣
∣Y (k�) = y�, Y (k) = y

}

(18)

=
∑

y�∈Y
p(y�|y) · P{

X ≤ x ∣
∣Y (k�) = y�

}

(19)

=
∑

y�∈Y
p(y�|y) · Φ

(x− y�

σ

)

. (20)

Plugging Eq. (16) and Eq. (20) into Eq. (11) gives Eq. (13); plugging Eq. (20)
into Eq. (12) gives Eq. (14) where it should be noted that the terms for which
y = y′ vanish. ��
Remark 2. When the noise is assumed Gaussian, Eq. (20) is the equivalent of
the well-known “mixture of Gaussian” as studied in [19].

3.3 Noise Factorization

In the following we consider the scenario highlighted in Subsect. 2.3 where Y
is binary and the noise follows a unimodal distribution. The next proposition
shows that both KS distinguishers can be factorized as a product of one factor
depending only on the noise distribution and another depending only on the sen-
sitive variables, which has also been observed for DPA in [11] (see Subsect. 3.1),
but not for any other distinguisher so far.

Proposition 2 (Noise factorization). One has

KSA(k) = c
∑

y∈Y
p(y)

∣
∣p(y�|y)− p(y�)

∣
∣ (21)

iKSA(k) =
c

2

∑

y,y′∈Y
y �=y′

p(y)p(y′)
∣
∣p(y�|y)− p(y�|y′)

∣
∣ , (22)

where y� denotes any of the two possible values in Y and where

c = 2Φ
(Δy

2σ

)

− 1 > 0 . (23)

Proof. Since
∑

y�∈Y
(

p(y�|y)−p(y�)
)

= 1−1 = 0, the two coefficients in the inner
sum of Eq. (13) are opposite equal. Similarly

∑

y�

(

p(y�|y)−p(y�|y′)
)

= 1−1 = 0
and the two coefficients in the inner sum of Eq. (14) are opposite equal. It follows
that Eq. (21) and Eq. (22) hold with

c = sup
x∈R

∣
∣
∣Φ

(x− y�

σ

)

− Φ
(x− ỹ�

σ

)∣
∣
∣ , (24)

A Theoretical Study of Kolmogorov-Smirnov Distinguishers 17

where y� denotes any of the two possible values in Y and ỹ� denotes the other
one. The conclusion now follows from the following lemma. ��
Lemma 3. Let Φ(x) be the c.d.f. of random variable N/σ having even and uni-
modal distribution of unit variance. Then for every y� �= ỹ� with Δy = |ỹ�−y�|,

sup
x∈R

∣
∣
∣Φ

(x− y�

σ

)

− Φ
(x− ỹ�

σ

)∣
∣
∣ = 2Φ

(Δy

2σ

)

− 1. (25)

Proof. Assume, without loss of generality, that y� < ỹ� so that Δy = ỹ� − y�.
Since Φ is continuous and nondecreasing, the above supremum is the maximum
of Φ

(
x−y�

σ

)

−Φ
(

x−˜y�

σ

)

. Since N has even and unimodal density f , the derivative

of the latter expression is f(x − y�) − f(x − ỹ�) which is = 0 when x = y�+˜y�

2

because f is even, and which is > 0 when |x − y�| < |x − ỹ� | and < 0 when
|x − y�| > |x − ỹ� | because f is unimodal. It follows that the maximum is
unique and attained when x = y�+˜y�

2 . Therefore, the desired maximum equals

Φ
(
˜y�−y�

2σ

)

−Φ
(

y�−˜y�

2σ

)

= Φ
(

Δy
2σ

)

−Φ
(

−Δy
2σ

)

= 2Φ
(

Δy
2σ

)

−1. The latter equality
holds since f being even, one has Φ(−x) = 1− Φ(x). ��

As we shall see, due to this noise factorization, also KS distinguishers are
very appealing theoretical objects for formal studies. The quantity Δy

2σ receives
a simple interpretation: since E{Y (k)2} = (Δy/2)2, the square of Δy

2σ is simply

the leakage signal-to-noise ratio (SNR) and we can write c = 2Φ
(√

SNR
)

− 1.

For Gaussian noise2, this reduces to

c = erf
(√

SNR/2
)

, (26)

where erf : x �→ 2√
π

∫ x

−∞ exp
(−t2) dt is the standard error function.

3.4 Proof of Soundness

Definition 4 (Soundness). An attack based on maximizing the values of the
distinguisher D(X,Y (k)) over k is sound if

D(X,Y (k�)) > D(X,Y (k)) (∀k �= k�). (27)

Several theoretical distinguishers have already been proven sound: DPA, CPA,
MIA [14,19]. For KSA and iKSA the soundness conditions read

KSA(k�) > KSA(k) (∀k �= k�) (28)
iKSA(k�) > iKSA(k) (∀k �= k�), (29)

respectively. Recall that we assume the secrecy condition (Subsect. 2.2) which
amounts to saying that the Y (k)’s are identically distributed (i.d.).
2 This assumption holds for sufficiently large values of σ2 as discussed in Subsect. 2.3,

which reflects a practical scenario as illustrated e.g. in Fig. 4.6 of [11].

18 A. Heuser et al.

Proposition 3 (Soundness, i.d. case). For binary and i.d. Y (k)’s, the KSA
and iKSA are sound if and only if the confusion condition holds.

Proof. Since the Y (k)’s are i.d., p(y) does not depend on k. Let y �= y′ be ele-
ments of Y. The confusion condition Eq. (3) is equivalent to the strict inequality

|p(y�|y)− p(y�|y′)| < 1 (∀k �= k�). (30)

Now for k = k�, p(y�|y) is 0 or 1 depending on whether y = y� or y �= y�,
and therefore |p(y�|y)− p(y�|y′)| = 1. From Eq. (22) it follows upon multiplying
|p(y�|y) − p(y�|y′)| by p(y)p(y′) and summing that Eq. (30) is equivalent to
Eq. (29), i.e. the soundness of iKSA.

Proving that the KSA is sound is more intricate. Again let y �= y′ be elements
of Y. One has p(y�) = p(y)p(y�|y)+p(y′)p(y�|y′) where p(y)+p(y′) = 1. It follows
that p(y�) lies between p(y�|y) and p(y�|y′). Suppose without loss of generality
that p(y�|y) ≤ p(y�) ≤ p(y�|y′).

The confusion condition of Eq. (3) states that for any k �= k�, one has either

|p(y�|y)− p(y�)| < p(y�) or |p(y�|y′)− p(y�)| < 1− p(y�). (31)

the corresponding non-strict inequalities being always satisfied. It follows from
Eq. (21) that this is equivalent to the single strict inequality KSA(k) < c ·
(

p(y)p(y�) + p(y′)(1 − p(y�))
)

= c · (p(y)p(y�) + (1 − p(y))(1 − p(y�))
)

= 2c ·
p(y)p(y�). Since the expression for KSA(k) does not depend on the particular
value of y�, the latter upper bound should not either. There are two possibilities:

1. either y �= y� and KSA(k) < 2c · (1− p(y�))p(y�),
2. or y = y� and KSA(k) should be both < 2c · p(y�)2 and < 2c · (1 − p(y�))2.

But since min(a, b) ≤ √ab we obtain KSA(k) < 2c · (1 − p(y�))p(y�) in both
cases.

Now for k = k�, equalities hold: |p(y�|y′)− p(y�)| = 1− p(y�) and |p(y�|y)−
p(y�)| = p(y�) (since, necessarily, y �= y� and y′ = y�); hence KSA(k�) = 2c ·
(1− p(y�))p(y�). This shows that Eq. (31) is equivalent to Eq. (28). ��

As a consequence, provided that the conditions on the sensitive variable in
Subsect. 2.2 and 2.3 are met, KSA and iKSA are able to reveal the secret key with
arbitrarily high probability as the number of measurements increases indefinitely.

3.5 Simple Closed-Form Expression

In this subsection, we study KSA and iKSA under the assumption introduced by
Fei et al. in Theorem 1 of [7], which states that for a perfectly secret encryption
algorithm, each sensitive variable is equiprobable, i.e., p(y) = p(y�) = 1/2. This
requirement is stronger than our secrecy condition (Condition 1). Remarkably,
the following proposition shows that the closed-form expressions for DPA and
(i)KSA only differ in the part of the noise.

A Theoretical Study of Kolmogorov-Smirnov Distinguishers 19

Proposition 4. For binary and equiprobable Y’s, the confusion condition in
Eq. (3) reduces to the condition that

κ(k�, k) is neither 0 nor 1 (∀k �= k�). (32)

Also KSA and iKSA are completely equivalent in this case, with the following
closed-form expression

KSA(k) = 2 iKSA(k) = c · ∣∣κ(k�, k)− 1
2

∣
∣. (33)

Proof. Since the Y (k)’s are binary equiprobable, the joint distribution P
{

Y (k�)
= y�, Y (k) = y

}

should be symmetric in (y�, y) and, therefore,

p(y�|y) = P
{

Y (k�) = y�
∣
∣Y (k) = y

}

= 2P
{

Y (k�) = y�, Y (k) = y
}

=

{

κ(k�, k) if y �= y�,

1− κ(k�, k) if y = y�.

This proves Eq. (32). Also, |p(y�|y)− p(y�)| = |p(y�|y)− 1/2| = |κ(k�, k)− 1/2|
and if y �= y′ (whence y = y� or y′ = y�), one finds |p(y�|y) − p(y�|y′)| =
|2κ(k�, k) − 1|. Plugging these expressions into Eq. (21) and Eq. (22) gives
Eq. (33). ��
Remark 3. Using these simple closed-form expressions it is straightforward to
recover in the equiprobable case that KSA and iKSA are sound (Proposition 3):
Since κ(k�) = 0, the confusion condition Eq. (32) is equivalent to |κ(k�, k) −
1/2| < 1/2 = |κ(k�, k�) − 1/2| for any k �= k�. From Eq. (33), this in turn is
equivalent to Eq. (28) or Eq. (29).

Even though KSA and iKSA become equivalent if one insists on having
equiprobable bits (in Y), shows the next proposition states that KSA and iKSA
are not strictly equivalent in general.

Proposition 5. For binary Y (k)’s, KSA and iKSA are not equivalent unless the
Y (k)’s are equiprobable (i.e. the secrecy condition holds).

Proof. If y �= y′ belong to Y one has p(y�) = p(y)p(y�|y) + p(y′)p(y�|y′) where
p(y)+p(y′) = 1. It follows that p(y�) lies between p(y�|y) and p(y�|y′). Therefore,
∣
∣p(y�|y)− p(y�|y′)

∣
∣ =

∣
∣p(y�|y)− p(y�)

∣
∣ +

∣
∣p(y�)− p(y�|y′)

∣
∣ and

∑

y �=y′
p(y)p(y′)

∣
∣p(y�|y)− p(y�|y′)

∣
∣ = 2

∑

y

p(y)(1− p(y))∣∣p(y�|y)− p(y�)
∣
∣ (34)

so that
iKSA = c

∑

y

p(y)(1− p(y))∣∣p(y�|y)− p(y�)
∣
∣. (35)

The equivalence between KSA (Eq. (21)) and iKSA (Eq. (35)) holds only if p(y)
and p(y)(1− p(y)) are proportional, which is equivalent to the requirement that
p(y) is constant, i.e., the Y (k)’s are equiprobable. ��

20 A. Heuser et al.

Fig. 3. Noise factor plotted as a function of σ2.

3.6 Discussion about the Closed-Forms of DPA and (i)KSA

Note that the equality of the term related to the confusion coefficient in the
closed-form expression of DPA and (i)KSA was not obvious before, since DPA
distinguishes on a proportional scale whereas (i)KSA relies on a nominal scale
as illustrated in [30]. It can be interpreted as follows: DPA and (i)KSA exploit
equivalently the S-Box to discriminate between the correct and the incorrect key
guesses.

Figure 3 illustrates the noise factor c of (i)KSA and the noise factor d of DPA
as a function of σ2 where SNR = 1

σ2 . One can see that both factors c and d tend
to zero as the noise increases (SNR decreases). However, as c (resp. d) is simply
a multiplicative coefficient that applies both to the distinguishers value for the
correct and the incorrect key guesses, we can conclude that DPA (resp. (i)KSA)
distinguishes hypotheses on the key identically, irrespective of the SNR.

4 Confusion Coefficient Versus Cryptanalytical Metrics

Now we explicitly assume that the sensitive variable Y depends on an S-box
through an equation of the form Y (k) = S(T ⊕ k), where S is a F

n
2 → F2

Boolean function3, and F2 = {0, 1} is the two-element Galois field.

4.1 Relationship between κ(k�, k) and Differential Metrics

Lemma 4. The confusion coefficient κ(k�, k) can be written in terms of the
Boolean function S by the following well-known quantity in Boolean functions:

1
2
− κ(k�, k) =

1
2n+1

∑

y∈F
n
2

(−1)S(y)⊕S(y⊕(k�⊕k)) ∈ [− 1
2 ,

1
2]. (36)

3 This Boolean function S is typically one component of a substitution box with n
output bits. Of course, an attacker could predict the n bits altogether. Still, a mono-
bit model has the interest that it reduces the epistemic noise, meaning that an
assumption on more than one bit certainly deviates from the actual leakage.

A Theoretical Study of Kolmogorov-Smirnov Distinguishers 21

Proof. Using the customary interpretation of Booleans b ∈ F2 as integers: b =
1
2 (1− (−1)b) ∈ Z, one has

κ(k�, k) = P{Y (k) �= Y (k�)} = E{Y (k)⊕ Y (k�)}
=

1
2n

∑

y∈F
n
2

S(y ⊕ k�)⊕ S(y ⊕ k)

=
1
2n

∑

y

1
2

(

1− (−1)S(y⊕k�)⊕S(y⊕k)
)

=
1
2
− 1

2n+1

∑

y

(−1)S(y)⊕S(y⊕(k�⊕k)) . ��

S-Boxes are characterized in cryptanalysis by two metrics called linear and
differential uniformity [5,8].

Definition 5 (Linear and differential uniformity). Let S : F
n
2 → F

m
2 be an

S-Box. The linear (ΛS) and differential (ΔS) uniformities of S are defined as:

ΛS = max
a∈F

n
2 , k∈F

m
2

∗

∣
∣#{x ∈ F

n
2/(a · x)⊕ (k · S(x)) = 0} − 2n−1

∣
∣ , (37)

ΔS = max
a∈F

m
2 , k∈F

n
2

∗ #{x ∈ F
n
2/S(x)⊕ S(x⊕ k) = a} . (38)

The smaller ΛS and ΔS , the better the S-Box from a cryptanalytical point of
view, respectively against linear [12] and differential [1] cryptanalysis. Note that,
in our case m = 1 since we restrict ourselves to one-bit of the S-Box output.

Remark 4. Note that linear uniformity is related to nonlinearity, a well-known
notion in the field of vectorial Boolean functions [4]. The nonlinearity of a
Boolean function S is defined as nl(S) = 2n−1 − 1

2 maxa∈F
n
2

∣
∣
∣(̂−1)S(a)

∣
∣
∣, where

f̂(a) =
∑

z f(x)(−1)a·z is the Fourier transform of f . Again using the customary

interpretation of Booleans as integers, ΛS = 1
2 maxa∈F

n
2

∣
∣
∣
∑

x∈F
n
2
(−1)a·x⊕S(x)

∣
∣
∣ =

2n−1 − nl(S). Obviously, the smaller ΛS , the greater the nonlinearity.

Note that from Eq. (38) one has 2n−1 ≤ ΔS ≤ 2n and therefore 0 ≤ 2−nΔS−
1
2 ≤ 1

2 . Also recall that the confusion coefficient κ(k�, k) reaches its minimal value
κ(k�, k�) = 0 for k = k�, and reaches its maximal value κ(k�, k) = 1 if and only
if there exists a key k �= k� such that for all x ∈ F

n
2 , S(x⊕ k) = S(x⊕ k�). We

have the following relationship between ΔS and κ(k�, k):

Proposition 6 (Relationship between the differential uniformity and
the confusion coefficient). When considering a Boolean function S : F

n
2 → F

m
2

with m = 1, then

2−nΔS − 1
2

= max
k �=k�

∣
∣
∣
∣
κ(k�, k)− 1

2

∣
∣
∣
∣
. (39)

22 A. Heuser et al.

Proof. From Lemma 4,

#{x ∈ F
n
2/S(x)⊕S(x⊕k⊕k�) = 1} =

∑

y∈F
n
2
S(y⊕k�)⊕S(y⊕k) = 2nκ(k�, k)

and similarly #{x ∈ F
n
2/S(x)⊕ S(x⊕ k⊕ k�) = 0} = 2n − 2nκ(k�, k). It follows

from Eq. (38) that

ΔS = max
a∈F2, k∈F

n
2

∗ #{x ∈ F
n
2/S(x)⊕ S(x⊕ k) = a}

= max
{

maxk∈F
n
2

∗ #{x ∈ F
n
2/S(x)⊕ S(x⊕ k) = 0},

maxk∈F
n
2

∗ #{x ∈ F
n
2/S(x)⊕ S(x⊕ k) = 1}

}

= max
{

maxk∈F
n
2

∗ 2n −#{x ∈ F
n
2/S(x)⊕ S(x⊕ k) = 1},

maxk∈F
n
2

∗ #{x ∈ F
n
2/S(x)⊕ S(x⊕ k) = 1}

}

= max
{

max
k �=k�

2n(1− κ(k�, k)),max
k �=k�

2nκ(k�, k)
}

= 2n

(
1
2

+ max
{

max
k �=k�

1
2
− κ(k�, k),max

k �=k�
κ(k�, k)− 1

2

})

= 2n

(
1
2

+ max
k �=k�

∣
∣
∣
∣
κ(k�, k)− 1

2

∣
∣
∣
∣

)

, (40)

which proves the proposition. ��
Therefore, minimizing ΔS amounts in minimizing the distance between

κ(k�, k) for k �= k� and the factor 1
2 .

Remark 5. There is no direct link between the linear uniformity (Eq. (37)) and
the confusion coefficient κ(k�, k).

4.2 Relationship to Closed-Form Expressions

We now relate Eq. (40) to the derived closed-form expression of (i)KSA (see
Eq. (33)) and DPA (see Eq. (8)). Let D(k�) be the distinguishing value of the
correct key and D(k) be the distinguishing value of any incorrect key hypotheses.
We consider two metrics, an extensive and a relative one, which provide us with
a theoretical evaluation of the distinguishing power of a distinguisher.

Definition 6 (Distinguishing margin). The distinguishing margin DM(D)
is the minimal distance between the distinguisher for the correct key and all
incorrect keys. Formally,

DM(D) = D(k�)−max
k �=k�

D(k). (41)

The following definition introduces a normalizing denominator:

Definition 7 (Relative distinguishing margin [28]). The relative distin-
guishing margin RDM(D) is defined as

RDM(D) =
D(k�)−max

k �=k�
D(k)

√

V ar{D(K)} = min
k �=k�

D(k�)− D(k)
√

V ar{D(K)} , (42)

A Theoretical Study of Kolmogorov-Smirnov Distinguishers 23

where K is the uniformly distributed random variable modeling the choice of the
key k.

Remark 6. As the noise appears as a multiplicative factor c or d in the closed-
form expressions of (i)KSA and DPA, it is eliminated in the relative distinguishing
margin. This explains the results of Whitnall et al. in [28] where the relative
distinguishing margin of DPA is constant. For KSA we cannot directly compare
the results, as in [28] a multi-bit model was used. However, the relative margin of
KSA is almost independent on the noise (one can observe only a small variation),
which motivates for extension of our analysis to the multi-bit case.

Proposition 7 (Distinguishing margin of (i)KSA and DPA under the
secrecy condition). The distance to the nearest rival can be computed exactly
as

DM(D) = λ ·
(

1
2 − max

k �=k�

∣
∣κ(k�, k)− 1

2

∣
∣

)

= λ · (1− 2−nΔS). (43)

Proof. Under the secrecy condition, KSA(k) = 2iKSA(k) = c · ∣∣κ(k�, k)− 1
2

∣
∣ (see

Eq. (33)) and DPA(k) = d·∣∣κ(k�, k)− 1
2

∣
∣ (see Eq. (8)). Plugging this into Eq. (41)

with λ being either c or d, and noting that κ(k�, k�) = 0 gives

D(k�)−max
k �=k�

D(k) = λ ·
(

1
2 − max

k �=k�

∣
∣κ(k�, k)− 1

2

∣
∣

)

, (44)

which yields the required result from Eq. (40). ��
Proposition 7 shows that if one chooses an S-box that is resistant to differ-

ential cryptanalysis (small ΔS) the side-channel resistance is weak (high DM).
Conversely, if the distinguishing margin is minimized, the differential uniformity
is maximized. Therefore, there is a trade-off between the security against differ-
ential cryptanalyses and side-channel attacks. Note that, contrary to a common
belief 4, the easiness to attack an S-box is not directly linked to its non-linearity,
but rather to its resistance against differential cryptanalysis.

Links between cryptanalytic and side-channel metrics were already noted in
the literature. However, previously published links (e.g., [3,8,18]) were inequal-
ities because the goal was to highlight tendencies, whereas our result of Propo-
sition 7 is an equality : the metrics are explicitly and exactly tied.

4.3 Practical Evaluation

We consider in this section three different F28 → F28 bijective S-boxes. They can
be expressed as affine transforms of power functions [2]:

4 More precisely, as will be made clear in the next Sect. 4.3, the key hypotheses that
are the hardest to distinguish are those using a linear S-box. Indeed, they maximize
both ΛS (i.e. have nl(S) = 0) and ΔS , which could wrongly indicate that the linearity
is the relevant criteria.

24 A. Heuser et al.

1. A “bad” Sbox[·], termed S1, of equation y �→ a� y ⊕ b,
2. An “average” Sbox[·], termed S101, of equation y �→ a� y101 ⊕ b,
3. A “good” Sbox[·], termed S254, of equation y �→ a� y254 ⊕ b.

Fig. 4. Confusion coefficients for S1, S101 and S254

In these expressions, the operations ⊕ and � are respectively the inner addition
and multiplication of the Galois field F28 of 256 elements. The last S-Box is the
one used in the AES, i.e. SubBytes, as y254 = y−1 in F28 , by Fermat’s little
theorem. In all three cases, the 8 × 8 Boolean matrix a and the 8-bit constant
vector b are also those defined in the AES specification [15]; more precisely, we
identify F28 to F

8
2 when talking about matrices and vectors.

The values of the differential uniformity and the (relative) distinguishing
margin are given in Table 1, where DM is computed without additional noise
(σ2 = 0). Figure 4 displays the confusion coefficients κ(k�, k) for each S-box.
It is obvious from the table and from the figure that when using S1 (i)KSA
and DPA are not able to reveal the key, which can be explained as follows:
As S1 is linear, both ΛS1 and ΔS1 are maximal (i.e. attain their upper bounds,
respectively ΛS1 = 2n−1 and ΔS1 = 2n). Thus, for all key guesses k = k� ⊕ δk,
S1 satisfies

S1(T ⊕ k) = S1(T ⊕ k� ⊕ δk) = S1(T ⊕ k�)⊕ S1(δk)

=

{

S1(T ⊕ k�) or
S1(T ⊕ k�) = 1− S1(T ⊕ k�) .

So, either Y (k) = Y (k�) or Y (k) = 1 − Y (k�), depending on S1(δk). In either
case, the confusion condition (see Condition 2) is violated, because there exists an
injective correspondence ξ (either the identity or the 1’s complement) such that
Y (k�) = ξ(Y (k)) with probability one. Note that, equivalently, Lemma 1 does
not apply, since κ(k�, k) ∈ {0, 1}. Hence, (i)KSA and DPA cannot distinguish k
from k�.

Moreover, one can see that the confusion coefficients for S254 are close to
1/2, whereas the coefficients for S101 are widely spread. Thus, (i)KSA and DPA
are more efficient when using S254 instead of S101. The same effect can be seen
again in Table 1 when looking at the (relative) distinguishing margin. In contrast,

A Theoretical Study of Kolmogorov-Smirnov Distinguishers 25

Table 1. Properties of the studied
S-boxes (where σ2 = 0 for DM).

S-box ΔS DM RDM
(i)KSA/DPA

S1 256 0/0 0

S101 184 0.28/0.56 2.58

S254 144 0.44/0.88 9.82

Fig. 5. Distinguishing margin for the studied
S-boxes.

Fig. 6. Empirical success rate for S101 and S254 and σ2 = 1 for (i)KSA.

the resistance against differential attack is less efficient (see the first column).
Figure 5 displays the distinguishing margin for several values of σ2. One can
observe that the influence due to the type of S-boxes is still observable even if
the noise is very large. Note that, one cannot directly compare the values of the
DM of (i)KSA and DPA as it not a relative metric.

Furthermore, we conduct practical experiments using simulations and the
estimated (i)KSA as defined in [10] with uniformly distributed T over 100 exper-
iments. Figure 6 shows the empirical success rate when the leakage arises due
to the Hamming weight of either S101 or S254, where Y (k) = [S101/256(T ⊕ k)]4.
We additionally highlighted the standard deviation of the success rate by error
bars as defined in [10]. As already depicted by the confusion coefficients the side
channel resistance is higher for S101 than for S254.

4.4 Research of SCA-aware S-Boxes

The traditional way to select S-Boxes is to optimize a bunch of criteria, namely
non-linearity, differential uniformity, and algebraic degree (we refer the reader
to [4], or [17, Sect. 3.1]). Actually, the algebraic degree can be seen as a less

26 A. Heuser et al.

mandatory criterion than the two others: the high-order differential attack is
known to be efficient only for the second degree.

So our study shows that in order to also resist SCA, only the criterion on dif-
ferential uniformity shall be relaxed, while the others can remain stringent. But
we notice that building S-Boxes is difficult. One way is via stochastic algorithms
(e.g., genetic algorithms). However, a random function, which has (in average) a
not too bad non-linearity, has a bad differential spectrum, hence (unfortunately)
a large differential uniformity ΔS . Still, this constraint opens perspectives for
the search of S-Boxes that are both cryptographically strong and less prone to
the (i)KSA side-channel attacks. Indeed, our criterion is more simple than the
one based on the transparency order [18], used for instance in [13,16] to design
S-Boxes.

5 Conclusions and Perspectives

This paper provides a detailed theoretical analysis of KS distinguishers including
soundness in case of binary sensitive variables. We showed that the closed-form
expressions of KSA and iKSA are equivalent and can be expressed as a product
with regard to the noise and the confusion coefficient. We show that this also
holds for DPA and that even though DPA relies on a proportional scale whereas
(i)KSA distinguishes nominally their closed-form only differ in the noise factor,
but not in the factor regarding the confusion coefficient. These results underline
the importance of theoretical studies of distinguishers as their closed-form can
be directly utilized for comparisons.

Moreover, the confusion coefficient is directly related to properties of the S-
box, which we further link to a differential cryptanalytic metric. In particular,
we highlight that the more an S-box is resistant against side channel attacks the
lesser it is secured against cryptanalytic attacks and vice versa. We have noted
that the resistance against side-channel attacks is not directly linked to the
non-linearity of the S-box as commonly believed. In our practical evaluation,
we investigated three S-boxes with different power exponents 1, 101 and 254.
Interestingly, the S-box of power 1 is resistant against one-bit attacks relying on
the confusion coefficient (e.g. KS or DPA), whereas the S-box of power 254 (that
is used in AES) is less resistant to side-channel attacks.

For future work we aim to extend our analysis to the multi-bit case and to
apply the presented theoretical study as a framework to other side-channel dis-
tinguishers. We also expect to extend the study to relate the success probability
of (i)KSA to the number of traces and to the S-Box properties. Additionally, the
relationship between differential cryptanalytic attacks and side-channel attacks
is an interesting field for future work.

Acknowledgements. The authors thank Emmanuel Prouff and Claude Carlet for
sharing insights about the criteria for SCA-aware S-Boxes.

A Theoretical Study of Kolmogorov-Smirnov Distinguishers 27

References

1. Biham, E., Shamir, A.: Differential cryptanalysis of the full 16-round DES.
In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 487–496. Springer,
Heidelberg (1993)

2. Blondeau, C., Canteaut, A., Charpin, P.: Differential properties of power functions.
In: ISIT, pp. 2478–2482. IEEE (2010)

3. Carlet, C.: On highly nonlinear S-Boxes and their inability to thwart DPA attacks.
In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005.
LNCS, vol. 3797, pp. 49–62. Springer, Heidelberg (2005)

4. Carlet, C.: Boolean models and methods in mathematics, computer science, and
engineering. In: Crama, Y., Hammer, P. (eds.) Vectorial Boolean Functions for
Cryptography, pp. 398–469. Cambridge University Press, Cambridge (2010). (Pre-
liminary version http://www.math.univ-paris13.fr/carlet/pubs.html)

5. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In:
De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer,
Heidelberg (1995)

6. Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks
and leakage modeling. J. Cryptogr. Eng. 1(2), 123–144 (2011)

7. Fei, Y., Luo, Q., Ding, A.A.: A statistical model for DPA with novel algorithmic
confusion analysis. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol.
7428, pp. 233–250. Springer, Heidelberg (2012)

8. Guilley, S., Hoogvorst, P., Pacalet, R.: Differential power analysis model and
some results. In: Quisquater, J.-J., Paradinas, Y., Deswarte, Y., Kalam, A. (eds.)
Smart Card Research and Advanced Applications VI. IFIP, vol. 153, pp. 127–142.
Springer, Heidelberg (2004)

9. Kolmogorov, A.N.: Sulla determinazione empirica di una legge di distribuzione.
Giorn. Ist. Ital. Attuari 4, 83–91 (1933)

10. Maghrebi, H., Rioul, O., Guilley, S., Danger, J.-L.: Comparison between side-
channel analysis distinguishers. In: Chim, T.W., Yuen, T.H. (eds.) ICICS 2012.
LNCS, vol. 7618, pp. 331–340. Springer, Heidelberg (2012)

11. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks: revealing the secrets of
smart cards. Springer, December 2006. ISBN: 0-387-30857-1 (2006). http://www.
dpabook.org/

12. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

13. Mazumdar, B., Mukhopadhyay, D., Sengupta, I.: Constrained search for a class of
good bijective S-boxes with improved DPA resistivity. IEEE Trans. Inf. Forensics
Secur. 8(12), 2154–2163 (2013)

14. Moradi, A., Mousavi, N., Paar, C., Salmasizadeh, M.: A comparative study of
mutual information analysis under a gaussian assumption. In: Youm, H.Y., Yung,
M. (eds.) WISA 2009. LNCS, vol. 5932, pp. 193–205. Springer, Heidelberg (2009)

15. NIST/ITL/CSD: Advanced Encryption Standard (AES). FIPS PUB 197, Nov
2001. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

16. Picek, S., Ege, B., Batina, L., Jakobovic, D., Papagiannopoulos, K.: Optimality and
beyond: the case of 4 × 4 S-boxes. In: HOST, Arlington, USA. IEEE Computer
Society (2014)

17. Piret, G., Roche, T., Carlet, C.: PICARO – A block cipher allowing efficient higher-
order side-channel resistance. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012.
LNCS, vol. 7341, pp. 311–328. Springer, Heidelberg (2012)

http://www.math.univ-paris13.fr/carlet/pubs.html
http://www.dpabook.org/
http://www.dpabook.org/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

28 A. Heuser et al.

18. Prouff, E.: DPA attacks and S-boxes. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 424–441. Springer, Heidelberg (2005)

19. Prouff, E., Matthieu, R.: Theoretical and practical aspects of mutual information-
based side channel analysis. Int. J. Appl. Cryptogr. (IJACT) 2(2), 121–138 (2010)

20. Rivain, M.: On the exact success rate of side channel analysis in the gaussian
model. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381,
pp. 165–183. Springer, Heidelberg (2009)

21. Smirnov, N.V.: Tables for estimating the goodness of fit of empirical distributions.
Ann. Math. Stat. 19(2), 279–281 (1948)

22. Standaert, F.-X., Bulens, P., de Meulenaer, G., Veyrat-Charvillon, N.: Improv-
ing the rules of the DPA contest. Cryptology ePrint Archive, Report 2008/517,
December 8 (2008). http://eprint.iacr.org/2008/517

23. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

24. TELECOM ParisTech SEN research group. DPA Contest (1st edn.), 2008–2009.
http://www.DPAcontest.org/

25. TELECOM ParisTech SEN research group. DPA Contest (4th edn.), 2013–2014.
http://www.DPAcontest.org/v4/

26. Thillard, A., Prouff, E., Roche, T.: Success through confidence: evaluating the
effectiveness of a side-channel attack. In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 21–36. Springer, Heidelberg (2013)

27. Veyrat-Charvillon, N., Standaert, F.-X.: Mutual information analysis: how, when
and why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443.
Springer, Heidelberg (2009)

28. Whitnall, C., Oswald, E.: A fair evaluation framework for comparing side-channel
distinguishers. J. Cryptogr. Eng. 1(2), 145–160 (2011)

29. Whitnall, C., Oswald, E., Mather, L.: An exploration of the kolmogorov-smirnov
test as a competitor to mutual information analysis. In: Prouff, E. (ed.) CARDIS
2011. LNCS, vol. 7079, pp. 234–251. Springer, Heidelberg (2011)

30. Whitnall, C., Oswald, E., Standaert, F.-X.: The myth of generic DPA..and the
magic of learning. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 183–
205. Springer, Heidelberg (2014)

31. Zhao, H., Zhou, Y., Standaert, F.-X., Zhang, H.: Systematic construction and com-
prehensive evaluation of kolmogorov-smirnov test based side-channel distinguish-
ers. In: Deng, R.H., Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863, pp. 336–352.
Springer, Heidelberg (2013)

http://eprint.iacr.org/2008/517
http://www.DPAcontest.org/
http://www.DPAcontest.org/v4/

Pragmatism vs. Elegance: Comparing Two
Approaches to Simple Power Attacks on AES

Valentina Banciu(B) and Elisabeth Oswald

Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK

{valentina.banciu,elisabeth.oswald}@bristol.ac.uk

Abstract. Simple side-channel attacks trade off data complexity (i.e.
the number of side-channel observations needed for a successful attack)
with computational complexity (i.e. the number of operations applied to
the side-channel traces). In the specific example of Simple Power Analy-
sis (SPA) attacks on the Advanced Encryption Standard (AES), two
approaches can be found in the literature, one which is a pragmatic app-
roach that involves basic techniques such as efficient enumeration of key
candidates, and one that is seemingly more elegant and uses algebraic
techniques. Both of these different techniques have been used in com-
plementary settings: the pragmatic attacks were solely applied to the
key schedule whereas the more elegant methods were only applied to
the encryption rounds. In this article, we investigate how these methods
compare in what we consider to be a more practical setting in which
adversaries gain access to erroneous information about both key sched-
ule and encryption rounds. We conclude that the pragmatic enumeration
technique better copes with erroneous information which makes it more
interesting in practice.

1 Introduction

Historically, simple side-channel analysis seems an under-researched area in the
context of implementations of symmetric schemes: after a short remark by [8], ini-
tially only Mangard’s article [9] discusses an SPA-style attack on the key sched-
ule of the Advanced Encryption Standard (AES). Thereafter, interest was only
revived by the advent of algebraic side-channel analysis (ASCA) (see [13,14,16]).
In contrast to Mangard’s SPA attack, which used a pragmatic enumeration tech-
nique applied to the AES key schedule, ASCA represent the whole block cipher
(encryption rounds and key schedule) as a system of equations (in the input,
output, and key) that explicitly includes side-channel information. Then some
standard solvers (e.g. SAT solver) are employed to (elegantly) solve this system
which leads to the extraction of the key.

In these early works little emphasis was put on the fact that, in practice, side-
channel information tends to be noisy. Consequently, all early methods implicitly
assumed an ideal measurement setup, or some (clever) trace processing, and the
use of templates. More recently this shortcoming was picked up in a series of
c© Springer International Publishing Switzerland 2014
E. Prouff (Ed.): COSADE 2014, LNCS 8622, pp. 29–40, 2014.
DOI: 10.1007/978-3-319-10175-0 3

30 V. Banciu and E. Oswald

papers [10–12,17] which move away from simply using a standard SAT solver to
(e.g.) tools that can incorporate probability information about the side-channel
observations. This is a step towards making ASCA-style attacks potentially more
applicable to practice. However, approaches such as the one in [12] still assume
some form of template-based side-channel information extraction so do not move
away much from the afore mentioned implications for practice. Other recent
contributions in this area [2,10] focus on how the algebraic representation of
AES (which can be written in more than one way) influences the computation
time/complexity.

By looking at this historical development, one might begin to wonder about
the seeming divergence of the ‘two’ different approaches to SPA. On the one
hand, there is the somewhat trivial technique described by Mangard, which
only takes key schedule information and extracts the key without much com-
putational effort. On the other hand, there is the elegant technique of algebraic
attacks, which only takes round information and extracts the key with consider-
able computational resources. From a practical perspective (different to the one
related to error tolerance above), one can hence wonder why nobody has looked
into the strategy of combining key schedule and round information with the aim
of using observations concentrated at the beginning or end of AES. This point of
staying ‘close to’ the extremes of AES is motivated by the practical aspect of
extracting the side-channel information from the acquired traces: the closer to
the beginning (or end) the information is located, the closer one is to the trig-
ger point which can imply a more robust process of finding and extracting the
required information. Naturally, practitioners would prefer methods which are
robust per se, but also incorporate some error tolerance.

In this article we compare and contrast the two main approaches to SPA on
AES in a setting that we consider more practical than what was considered in
previous work: we aim to exploit erroneous side-channel information from the
beginning of AES (including the key schedule) using an extension of Mangard’s
simple enumeration technique, as well as using an algebraic method focusing on
Hamming weight as leakage model.

Our submission is structured as follows. We briefly review AES in Sect. 2. We
explain our extension of Mangard’s attack including results in Sect. 3. Thereafter
we explain our implementation of algebraic attacks including results in Sect. 4.
We conclude in Sect. 5. Appendix A provides results of some more experiments
that we performed. These experiments use Hamming distance as power model
and show that our conclusion remains valid: the pragmatic approach copes better
with erroneous information and hence is more suitable for practice.

2 A Brief Recap of AES

The Advanced Encryption Standard (AES) is a symmetric block cipher, with
a fixed block size of 128 bits, and a variable key size of 128, 192, or 256 bits
corresponding to 10, 12 and 14 rounds respectively. We use the 128-bit variant
as an example in this article, to which we shall refer as simply AES throughout

Pragmatism vs. Elegance: Comparing Two Approaches 31

this document. In this section, we give a brief overview of the encryption and
key schedule algorithms and explain what intermediate values we assume to be
leaking.

2.1 AES Encryption Round

At the start of the encryption process, the 16-byte plaintext block is copied to
a 4 × 4 array called state. The byte elements of the initial plaintext array are
copied in column order. Thereafter an encryption round consisting of four round
transformations is repeatedly applied to the state. The round transformations
are as follows:

1. AddRoundKey(state;RKi) performs a bitwise xor of the current round key
and state. One would expect that all memory transfers (i.e. loading of the
state as well as key bytes) and the output are leaking, although previous work
typically only takes the leakage of the output into account.

2. In the SubBytes(state) step, each byte in the state matrix is replaced accord-
ing to a look-up table. This operation provides non-linearity. We only use the
leakage of the output (as the input leakage is already being used from the
step before).

3. ShiftRows(state) operates on the rows of state, performing a cyclical left
shift of the bytes in each row by a certain offset: row n is shifted n − 1
positions. We assume that this is done implicitly via memory access and so
we do not use any leakage.

4. MixColumns(state) combines the four bytes of each column of the state.
An efficient implementation of this representation on an 8-bit microcontroller
is described in the original AES proposal [5], and we list it here to keep our
work self contained. Let ini, outi, i = 1 . . . 4 be the input, respectively output
bytes of a single column, and consider the index i modulo 4. Then, a single
column is computed as follows:

Tmp = in1 ⊕ in2 ⊕ in3 ⊕ in4

Tmi = ini ⊕ ini+1

Tmi = xtime(Tmi)
outi = ini ⊕ Tmi ⊕ Tmp

(1)

where xtime is the multiplication by 02 over GF(28). Given the target platform
that we have in mind, we would assume that only 2-operand instructions are
available on the target platform and hence the exclusive-or of all inputs ini is
done in three steps and the computation of any outi takes two steps. However,
previous work such as [16] set a precedent of only considering leakage of
the variables Tmp, Tmi and outi and so to keep our work in this respect
comparable to theirs we only take 13 out of the 19 leakage points per column.

Adding up the leakage points as explained above amounts to 21 points per
column (4 from AddRoundKey, 4 from SubBytes, and 13 from MixColumns).

32 V. Banciu and E. Oswald

2.2 AES Key Schedule

For the key expansion, the secret key is represented as 4 concatenated words,
SK = W1 ‖ W2 ‖ W3 ‖ W4. Then, subsequent round keys RK1...10 are derived
in lexicographic order, each key depending on the previous. The operations used
the key expansion are as follows:

1. RotWord(W) performs a cyclic shift to the left on a word by one byte. We
assume that each byte in the word will leak.

2. SubWord(W) substitutes each of the 4 constituent bytes of W according to
the AES S-box, which can be implemented as a 256-bit lookup table. We
expect leakage for each S-box look-up.

3. Rcon, which is a predefined round constant, is exclusive-ored to a byte of the
key. We expect the result of exclusive-or to leak.

2.3 Further Implementation Aspects

SPA attacks are typically studied in the context of software implementations
on simple (i.e. serial) micro-processors. This implies that we expect to observe
leakages for all state bytes as and when they are processed. As explained before,
we adhere to this by-and-large and only deviate from this principle to keep our
work comparable with previous publications.

Typical power models that are found in practice (for small micro-processors)
are the Hamming weight (short HW, i.e. the number of non-zero bits) of a byte,
or the Hamming distance (short HD, i.e. the number of non-zero bits in the
exclusive-or of two bytes). Leakages of this kind are observed mainly because of
intermediate values being written to (and read from) memory, which causes bus
transfers. Obviously, for HD leakage one then needs to know precisely which two
intermediate values are processed in sequence.

Notice that for our attacks we did not use data from an actual device. This
is motivated by the fact that we are not interested in the problem of how to find
and best extract the available leakage from real traces. Our contribution is with
regards to how to best (i.e. mathematically) exploit the extracted leakage. So we
use simulations to generate (truly leaked) HW (and HD) values and then ‘embed’
them in sets of a given size to simulate noise (i.e. the fact that one might not
have certainty for the HW (or HD) of correct leakages). These sets are ordered
sequences with the correct leakage as centre value, e.g. if the correct leakage for
an intermediate value is 5, a set of size three is {4, 5, 6}. We assume a uniform
distribution for the ‘incorrect’ values within each set in our experiments.

3 Pragmatic Attack on AES

Like [9], we assume that the attacker is able to extract the relevant information
from the power traces and assign it to the respective intermediate value in both
the encryption round and the key schedule. Differently to [9], we assume, how-
ever, that the extracted information is possibly erroneous. Consequently, each

Pragmatism vs. Elegance: Comparing Two Approaches 33

Algorithm 1. An informal description of an enumeration attack aimed at recov-
ering four bytes of the secret key SK using leakages of a single AES round.
1: for i = 1→ 4 do
2: generate KeySeti such that each key in KeySeti satisfies the observed leaks

L(PTi ⊕ SKi), L(SBi) and L(SKi).
3: end for
4: for all K1 ∈ KeySet1 do
5: for all K2 ∈ KeySet2 do
6: for all K3 ∈ KeySet3 do
7: for all K4 ∈ KeySet4 do
8: retain values that also match L(Tmi), L(Tmp), and L(outi)
9: end for

10: end for
11: end for
12: end for
13: return four sets {Ki} of 8-bit values that simultaneously satisfy all observed leak-

ages

leakage point translates into a set of leakage values (rather than a single value).
A necessary condition for our attack to produce meaningful results is then that
each set includes the correct leakage value.

Whilst we did not aim for the most efficient implementation that is con-
ceivable, we paid some attention to choosing strategies that speed up testing
keys against leakages. The basic strategy of an SPA attack such as [9] is that
by observing leakages relating to different intermediate (key dependent) values,
one learns something about the involved key bytes and hence reduces the overall
search space for the key. Illustrating this on a simple example that is the starting
point for an SPA attack, we note that by observing leakages on (e.g.) a plaintext
byte PT (we denote this with L(PT)) and on the key addition with this byte
PT ⊕ SK (i.e. we see a leakage L(PT ⊕ SK)), we can enumerate and in fact
precompute all those values of SK which satisfy the observed leakages (we hence
enumerate the set Kv,w = {k|L(PT⊕k) = w,L(PT) = v}). It is in fact sufficient
to fix the Hamming weight leakage of the plaintext to an arbitrary value (we
chose 0) because (PT ⊕ k) = ((0⊕ k)⊕PT), which means that the possible key
set corresponding to any nonzero plaintext byte can be easily derived by adding
PT as offset to the key set corresponding to the null value byte. We hence can
optimise and store only one such table for PT = 0.

Just observing such a single leak reduces hence the key space and we use this
reduced key space to further process and incorporate leakages from our traces,
i.e. for each possible key resulting from only looking at the first key addition,
we can also check the leakage from the SubBytes operation, which then reduces
our key space further. One can again build (precompute) tables that enumerate
possible key byte values for given input and output leakages, so this step in a
practical attack corresponds to a table lookup.

34 V. Banciu and E. Oswald

Advancing further into the AES round means that after ShiftRows, which
we assumed would give no explicit leakages because it would be done as part
of writing the byte back into the state, we work with intermediate values that
arise from the MixColumns operation. Here, we choose not to attempt further
precomputations, but rather took leakages ‘on the fly’ to further prune the key
space, see Algorithm 1 for an informal algorithmic description of this process as
applied to a single column in one round.

3.1 Attack Results

We performed all our analysis using noisy Hamming weight leakages, i.e. we chose
sets of different sizes that contain the correct leakage (ranging from set size 1,
which corresponds to no noise, to set size 5, which corresponds to tolerating 2
bits of noise).

All computations that we now discuss were performed by using a single node
on a high-performance computing facility. Such a single node is comprised of two
2.8 GHz 4-core Intel Harpertown E5462 processors, with one GB RAM per core.
Our code ran in Matlab on this platform. We terminated attacks after 48 h or if
they ran out of RAM memory on the node. We give the percentage of attacks
that terminated successfully (i.e. that terminated within the 48 h limit and did
not run out of memory) for each experiment. We provide ‘indicative execution
times’ for all experiments: these are mean values taken over the successfully
terminated experiments. We want to caution against making any inferences from
these times, because although we made some effort to produce ‘efficient’ attack
implementations, we by no means claim any optimality in any respect (recall that
we ran the attacks using Matlab). Consequently, these indicative execution times
are best understood along the lines of that some attacks terminate within the
order of several hours whereas others terminate within the order of seconds, etc.
We also note that the timings produced only refer to the effort of reducing the
key search space using the side channel information. The overall time required for
an attack, i.e. reducing the key search space and the performing the brute-force
search, would very much also depend on the brute-force search.

Attack Using Leaks from the First Encryption Round. By referring back to the
description of an AES round and the expected leaks that we gave in Sect. 2.1,
we note that we have 21 exploitable leakage points to attack 4 bytes of the
first round key (which corresponds to one column of the state). Consequently
we assume that we have 84 such points available to attack an entire round. The
attack strategy that we explained in the previous section, which works on one
column, can independently (and hence in parallel) be replicated and applied to
all four state bytes.

Table 1a shows that allowing for more noisy leakages increases the computa-
tional effort quickly, as one would expect. Clearly for noisy leaks the reduction
in key space size renders the attack actually impractical.

Pragmatism vs. Elegance: Comparing Two Approaches 35

Attack Using Leaks from First Encryption Round and Key Schedule. Rather than
making more complicated inferences to incorporate more information from the
second encryption round, it seems more natural now to incorporate the strategy
of [9] and draw on the information that is present in the key schedule. The
attack of Mangard requires, depending on how many key hypotheses one wishes
to brute force test at the end, 40 up to 81 intermediate values from the key
schedule to succeed. We chose, for the sake of consistency, to use leaks from the
first round of the key schedule only.

When faced with ‘merging’ the two attack strategies one has different options.
We decided to use the result of the attack on the round as a starting point to
the attack on the key schedule. In other words, we start the attack on the key
schedule with an already reduced key space.

Table 1c shows the results of the combined attack. The incorporation of
the noisy key schedule leakages has had a significant impact especially in the
case of set size five (i.e. 2 bits of noise). Now even this case leads to a final key
space size that can be searched through and hence leads to a practical attack.

Just for comparison we also give the numbers of Mangard’s attack on the key
schedule only in Table 1b (re-implemented and adapted to target a single round
with possibly noisy leaks). It should be obvious that by itself the strategy does
not tolerate noise very well. We can hence conclude that using leaks from both
encryption round and key schedule is indeed the most natural and promising
attack path.

4 Elegant Attack on AES

The elegant attacks that we now want to consider are essentially algebraic attacks
that incorporate additional information about the key bytes because of leakages.
The technique is viewed as elegant because one can (in theory) feed the system
of equations describing AES into some black box solver which returns the key
provided enough side-channel information is supplied.

As mentioned in the introduction, recent research has drawn attention to the
fact that it makes a significant difference (to the various black box solvers) how
and which equations are fed into them, and hence there is scope to optimise
attacks by rewriting the algebraic representation of a cipher—clearly the black
box solver is more of a grey box then.

From a practical perspective, anyone implementing an algebraic attack that
uses side-channel information needs to hence make two important choices. Firstly,
how to represent the cipher and secondly, which sort of solver to use. In our study
here we incorporated techniques that were published in previous work to ensure
we have a reasonably efficient representation. Of the many available solvers, we
used SAT solvers (we use state-of-the-art software, i.e. CryptoMiniSat 2, and
did not develop our own tools).

Whilst most side-channel attacks follow a divide-and-conquer strategy, when
performing an algebraic attack, the adversary aims for full key recovery in one
go and is able to make use of all available side-channel information at once.

36 V. Banciu and E. Oswald

Table 1. Summary of results of attack on one round

(a) Encryption round only

Set size Approximate key space size Indicative execution time Successful termination

1 1 0.02 s 100%

2 220 2.9 s 100%

3 248 73.9 s 100%

4 264 27min 100%

5 2116 2.5h 78%

(b) Key schedule only

Set size Approximate key space size Indicative execution time Successful termination

1 258 0.4 s 100%

2 274 5 s 100%

3 295 10 s 72%

4 2106 30 s 40%

5 2115 40 s 22%

(c) Round and key schedule

Set size Approximate key space size Indicative execution time Successful termination

1 1 0.03 s 100%

2 212 27 s 100%

3 213 4 min 80%

4 252 35 min 20%

5 260 12 h 10%

We assumed that attackers would include leakages corresponding to round oper-
ations and, in contrast to previous work, the key schedule.

4.1 Solver-Specific Requirements

To be able to make use of a standard solver, one needs to translate the high-level
description of a cipher into a format that the solver can work with. Essentially
this translation requires two steps. The first step is to linearise the system of
equations that represents the cryptographic algorithm. This can be done by
introducing a new variable for each higher degree monomial in the algorithm’s
representation (monomials might represent (e.g.) bits of intermediate values or
bytes). The second step is to translate this linear system into an appropriate
format, e.g. conjunctive normal form (CNF) for SAT solvers or a system of
Boolean inequalities for Pseudo-Boolean Optimizers.

Linear layers, such as AddRoundKey or MixColumns, give rise to relatively
simple equations. Non-linear layers, i.e. SubBytes, lead to fairly complex equa-
tions, and there is some scope for optimising them. Based on work by [3], an
expression for an 8-bit S-box in polynomials of maximal degree 8 was given in
[6]. Still, it was shown in [4] that SAT solvers give best performances when the

Pragmatism vs. Elegance: Comparing Two Approaches 37

degree of equations and the size of terms is limited to smaller values. Using some
specific algebraic properties of SubBytes, Courtois et al. also derive a system of
23 quadratic equations describing it, which is shown to be maximal. We used
this approach in our work.

Overall, we thus represented all intermediate values as variables with appro-
priate equations linking them to each other. An initial count of the expected
number of variables is consequently as follows. For the key schedule, 128 vari-
ables are required for each round key, and for the secret key. Auxiliary variables
can be used for the output of the S-box, but are not needed for xoring with Rcon
since this is fixed; this operation can be just as well modelled without intro-
ducing any equations, since xoring with 1 is equivalent to negation. Thus, the
equations for each round key describe only the S-box (23 × 4) and the xoring
with temp. Additionally, 128 variables are required for each intermediate out-
put state of AddRoundKey, SubBytes and MixColumns during the encryption
process, and for the plaintext. The number of equations is calculated as follows:
23 × 16 for each of the 10 S-box layers, 128 for the 11 key addition layers and
the equations corresponding to the 9 rounds of MixColumns, which can be rep-
resented either as recommended in the Rijndael proposal [5], leading to 13 × 4
equations per round, or as in [7] as a direct bitslice implementation, leading to
128 equations per round. Of these, the equations corresponding to the S-box are
the only non-linear ones. When translating the system to CNF, dummy vari-
ables are necessary for linearisation and for keeping the size of each term up to 4
monomials (as recommended by [1,4]), in particular approximately 500 auxiliary
variables and 400 equations are required per S-box, which leads to a final form
consisting in approximately 100,000 variables and 130,000 equations.

Finally, equations representing side-channel information are added to the
system. We adopt the same strategy of [15], to explicitly list all possible values
corresponding to each leakage point. However, we do use the pre-computation
strategies described in Sect. 3, to build explicit values corresponding to the input
and output pairs of each S-box.

4.2 Attack Results

We ran several experiments with our implementation. In these experiments we
varied the number of encryption rounds from which we source information as
well as the amount of noise that we want to tolerate by varying the set size.
Table 2 gives an overview of the results for AES. Remember that our attack (in
contrast to previous work on algebraic attacks) uses key schedule information in
addition to round information. There is little difference between attacking only
one or many rounds (the timings have some variation and the reported means
are hence about equal) with regards to timings. We speculate that this is because
the complexity of the equations solved stays the same irrespective of how many
rounds are used. Obviously, the more rounds one includes the more interme-
diate values need to by extracted. For each encryption round, 84 intermediate
values are used, corresponding to 32 values for the output of AddRoundKey
and SubBytes and 4 × 13 values corresponding to the intermediate values of

38 V. Banciu and E. Oswald

Table 2. Indicative solving time (in seconds) for AES, using encryption and key sched-
ule leakage

Attacked rounds 1 round 2 rounds 3 rounds 4 rounds 5 rounds

set=1 10.39 10.85 11.03 11.10 11.30
set=2 41.24 43.11 43.25 43.49 43.73

MixColumns. Additionally, for each round key at most 21 intermediate values
can be exploited, out of which 16 correspond to the key bytes, 4 to the S-box
output and 1 to the xoring with the round constant.

As expected the set size is the main factor that influences the overall compu-
tation time. We limited any solver run to 48 h (alike previous work). Given this
constraint, none of our attempts to solve instances of set size three or larger was
successful. However in contrast to previous work we could solve all instances of
set size two that terminated within the 48 h cut-off time. Clearly adding some
key schedule information helps the solver.

5 Conclusion

The research presented in this paper was based on the question of how elegant
(black box) solvers compare with a simple and reasonably efficient extension of
Mangard’s SPA attack, in a scenario where some erroneous side-channel infor-
mation is available. In contrast to previous work, we considered the scenario in
which an attacker has access to erroneous leakages from both the encryption
round and the key schedule (but limited to a single or a few rounds).

Our implementation of a pragmatic SPA attack shows that with very few
leakage points (we only use leakage points that occur within the first round of
AES and the key schedule) we can reduce the key space even with noisy leakages
to a size which can be searched through using today’s computing technology.
We speculate that with a more efficient implementation, this could be improved
further by taking more rounds (of the key schedule and the encryption) into
account. Including key schedule information in the elegant ASCA-style approach
helps, but we were not able to push beyond set size two. However, all our attacks
with set size two were successful, even when limited to using leaks from the first
round only, which is some practically relevant progress.

Our conclusion from the performed experiments is that the pragmatic app-
roach seems to be more suited for actual practical attacks because of its ability
to better tolerate noisy leakages and its concrete result that allows to actually
rule out keys and provide a concrete reduction of the key space. This is in con-
trast to using algebraic solvers, which either terminate successfully, or leave you
with no further information.

Pragmatism vs. Elegance: Comparing Two Approaches 39

Acknowledgments. Valentina Banciu has been supported by EPSRC via grant
EP/H049606/1. Elisabeth Oswald has been supported in part by EPSRC via grant
EP/I005226/1.

A More Experimental Results

See Table 3.

Table 3. Summary of results with HD model

(a) Pragmatic attack on one round

Set size Final key space size Execution time Success rate

1 213 0.03 s 100%

2 248 7 min 90%

3 258 4.5 h 32%

4 266 20 h 8%

5 N/A >24 h 0%

(b) Algebraic attack up to several rounds

Attacked rounds 1 round 2 rounds 3 rounds 4 rounds 5 rounds

set=1 20.13 20.08 20.13 19.88 19.68
set=2 641.52 601.46 600.33 609.30 640.31

References

1. Bard, G.V., Courtois, N., Jefferson, C.: Efficient methods for conversion and solu-
tion of sparse systems of low-degree multivariate polynomials over GF(2) via SAT-
solvers. IACR Cryptol. ePrint Arch. 2007, 24 (2007)

2. Carlet, C., Faugère, J.-C., Goyet, C., Renault, G.: Analysis of the algebraic side
channel attack. J. Cryptogr. Eng. 2(1), 45–62 (2012)

3. Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems
of equations. IACR Cryptol. ePrint Arch. 2002, 44 (2002)

4. Creignou, N., Daude, H.: Satisfiability threshold for random XOR-CNF formulas.
Discrete Appl. Math. 96, 41–53 (1999)

5. Daemen, J., Rijmen, V.: AES proposal: Rijndael. In: First Advanced Encryption
Standard (AES) Conference (1998)

6. Gligoroski, D., Moe, M.E.: On deviations of the AES S-box when represented as
vector valued Boolean function. Int. J. Comput. Sci. Netw. Secur. 7(4), 156–163
(2007)

7. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier,
C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Heidelberg
(2009)

40 V. Banciu and E. Oswald

8. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

9. Mangard, S.: A simple power-analysis (SPA) attack on implementations of the
AES key expansion. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587,
pp. 343–358. Springer, Heidelberg (2003)

10. Mohamed, M.S.E., Bulygin, S., Zohner, M., Heuser, A., Walter, M., Buchmann,
J.: Improved algebraic side-channel attack on AES. In: HOST, pp. 146–151 (2012)

11. Oren, Y., Kirschbaum, M., Popp, T., Wool, A.: Algebraic side-channel analysis in
the presence of errors. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 428–442. Springer, Heidelberg (2010)

12. Oren, Y., Renauld, M., Standaert, F.-X., Wool, A.: Algebraic side-channel attacks
beyond the hamming weight leakage model. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 140–154. Springer, Heidelberg (2012)

13. Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F., Yung,
M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410. Springer,
Heidelberg (2010)

14. Renauld, M., Standaert, F.-X.: Combining algebraic and side-channel cryptanalysis
against block ciphers. In: 30-th Symposium on Information Theory in the Benelux
(2009)

15. Renauld, M., Standaert, F.-X.: Representation-, leakage- and cipher- dependencies
in algebraic side-channel attacks. In: Industrial track of ACNS 2010 (2010)

16. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel
attacks on the AES: why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009)

17. Zhao, X., Zhang, F., Guo, S., Wang, T., Shi, Z., Liu, H., Ji, K.: MDASCA: an
enhanced algebraic side-channel attack for error tolerance and new leakage model
exploitation. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275,
pp. 231–248. Springer, Heidelberg (2012)

Addition with Blinded Operands

Mohamed Karroumi1(B), Benjamin Richard1, and Marc Joye2

1 Technicolor, 975 Avenue des Champs Blancs, 35576 Cesson-Sévigné Cedex, France
{mohamed.karroumi,benjamin.richard}@technicolor.com

2 Technicolor, 735 Emerson Street, Palo Alto, CA 94301, USA
marc.joye@technicolor.com

Abstract. The masking countermeasure is an efficient method to pro-
tect cryptographic algorithms against Differential Power Analysis (DPA)
and similar attacks. For symmetric cryptosystems, two techniques are
commonly used: Boolean masking and arithmetic masking. Conversion
methods have been proposed for switching from Boolean masking to
arithmetic masking, and conversely. The way conversion is applied
depends on the combination of arithmetic and Boolean/logical opera-
tions executed by the underlying cryptographic algorithm.

This paper focuses on a combination of one addition with one or
more Boolean operations. Building on a secure version of a binary addi-
tion algorithm (namely, the and-xor-and-double method), we show that
conversions from Boolean masking to arithmetic masking can be avoided.
We present an application of the new algorithm to the XTEA block-
cipher.

Keywords:Masking methods · Differential power analysis (DPA) · Side-
channel attacks · Binary addition · Block ciphers · XTEA

1 Introduction

Differential Power Analysis DPA and related attacks, introduced by Kocher
et al. in [13], exploit side-channel leakage to uncover secret information. Dur-
ing the execution of a cryptographic algorithm, the secret key or some related
information may be revealed by monitoring the power consumption of the elec-
tronic device executing the cryptographic algorithm. DPA-type attacks poten-
tially apply to all cryptosystems, including popular block ciphers like AES (e.g.,
[19]). Protection against DPA is achieved thanks to randomization techniques.
The commonly suggested way to thwart DPA-type attacks for implementations
of block ciphers is random masking [2,3,9]. The idea is to blind sensitive data
with a random mask at the beginning of the algorithm execution. The algorithm
is then executed as usual. Of course, at some step within a round the value of
the mask (or a value derived thereof) must be known in order to correct the cor-
responding output value. This general technique is referred to as the duplication
method or the splitting method. The transformed masking method [1] is a spe-
cialized technique wherein the same mask is used throughout the computation.
c© Springer International Publishing Switzerland 2014
E. Prouff (Ed.): COSADE 2014, LNCS 8622, pp. 41–55, 2014.
DOI: 10.1007/978-3-319-10175-0 4

42 M. Karroumi et al.

More specifically, all intermediate values are xored with a random mask and
the inner operations are modified such that the output of a round is masked by
the same mask as that of the input. This was for example applied to DES by
modifying its non-linear components (namely, the original S-boxes were replaced
with modified S-boxes so as to output the correct masked values), which resulted
in an implementation shown to be secure against (first-order) DPA attacks.

Masking and Switching Methods. For block ciphers involving different types of
operations, two masking techniques must usually be used: a Boolean masking
(generally by applying an xor) and an arithmetic masking. Both techniques were
for instance used for protecting the AES finalists against DPA [16]. Further, as
shown in [16], it is useful to have efficient and secure methods for switching
from Boolean masking to arithmetic masking, and conversely. The algorithm
suggested in [16] was however shown to be vulnerable to a 2-bit DPA attack
in [3]. A more secure algorithm was later proposed by Goubin in [8]. The algo-
rithm works in both directions. The secure Arithmetic-to-Boolean (A→B) con-
version is however less efficient than the secure Boolean-to-arithmetic (B→A)
conversion as its complexity depends on the length of the values being masked.
This issue was addressed by Coron and Tchulkine in [4] with a method using
Look-Up-Tables (LUTs). In [18], an extension to the table-based algorithm of [4]
was proposed, reducing the memory footprint. Another improved version can be
found in a recent paper by Debraize [5].

TEA Family. The TEA block ciphers [17,21,22] are ciphers designed by Need-
ham and Wheeler, featuring a 128-bit key-size and running over (at least) 64
rounds. They are based on a Feistel structure without use of any S-box, nor any
key expansion routines. The ciphers make alternate use of xor, Shift and mod-
ular addition, resulting in simple, efficient, and easy to implement algorithms.
The XTEA cipher [17] was later proposed as an improvement to TEA to counter
the attacks of [10]. The TEA family block-ciphers enjoys several salient features
making it attractive for light-weight applications: simplicity, minimal key-setup,
no look-up tables, and small footprint.

Our Contribution. The masking problem for (modular) addition can be stated
as how to securely compute the (modular) addition of k-bit integers x and y
from masked inputs and the corresponding masks, namely (x,y) and (rx, ry)
where x = x ⊕ rx and y = y ⊕ ry, while ensuring that the result, s = x + y
(mod 2k), is still masked with some Boolean mask rs — ‘securely’ here has to
be understood as in a way resistant against first-order DPA-type attacks.

A classical solution to this problem is to rely on secure mask-switching meth-
ods. Blinded values x = x⊕rx and y = y⊕ry are first converted into values that
are arithmetically masked, x′ = x − rx and y′ = y − ry, using a secure B→A
switching algorithm. Next, the resulting values and their masks are separately
added:

s′ = x′ + y′ and rs′ = rx + ry .

Addition with Blinded Operands 43

Noticing that s′ = (x + y) − rs′ , the blinded sum s = (x + y) ⊕ rs′ is obtained
through a secure A→B switching algorithm. This is illustrated in Fig. 1b.

x⊕ rx y ⊕ ry
Secure adder

s = (x + y)⊕ (rx ⊕ ry)

(a) Direct approach

x⊕ rx

Secure B→A mask switching

y ⊕ ry s = (x + y)⊕ (rx + ry)

x− rx y − ry
+

(unsecured)
(x + y)− (rx + ry)

Secure A→B mask switching

(b) Mask-switching approach

Fig. 1. Solving the masking problem

This paper tackles the masking problem through a more direct approach as
described in Fig. 1a. Such an approach was already alluded in [7] where hardware-
based solutions using ripple-carry addition methods are presented. These meth-
ods are not suited to software implementations and imply dedicated hardware.
Dedicated hardware for a specific cryptographic application is in general not
available and is expensive to implement. We propose in this paper an exam-
ple of an algorithm that is faster and more compact than previous methods—
including solutions built on Goubin’s method and the table-based methods—for
securely adding two blinded operands. The proposed implementation is therefore
well adapted to memory-constrained environments. Implementations for securely
subtracting two blinded operands and variants thereof are also detailed. We show
that the introduced algorithm can be applied to XTEA (and its variants) to pro-
tect against DPA-type attacks. The countermeasure advantageously retains the
efficiency of the unprotected implementations in terms of memory requirements
and speed.

Outline of the Paper. The rest of this paper is organized as follows. In the
next section, we introduce the notation that is used throughout. Section 3 is the
core of the paper. We review the add-xor-and-double addition algorithm and
then derive therefrom an addition algorithm secure against DPA-type attacks. In
Sect. 4, we analyze the security of the proposed algorithm. In Sect. 5, we present
our approach to thwart DPA on XTEA using various algorithms and evaluate
their performance. In Sect. 6, other applications and extensions of our algorithms
are proposed. Finally, we conclude in Sect. 7.

2 Notation

This section introduces some notation. Following [12, Section 7.1.3], given three
integers in their binary notation, namely x = (. . . x2x1x0)2, y = (. . . y2y1y0)2,
and z = (. . . z2z1z0)2, we write

44 M. Karroumi et al.

x& y = z ⇐⇒ zi = xi ∧ yi, for all i � 0 ;
x⊕ y = z ⇐⇒ zi = xi ⊕ yi, for all i � 0 ;

where ∧ and ⊕ respectively denote the Boolean operators and and xor (exclusive
or). It is easily verified that the bitwise operators & and ⊕ satisfy the following
properties:

– [Commutativity] x& y = y & x, x⊕ y = y ⊕ x ;
– [Distributivity] (x⊕ y) & z = (x& z)⊕ (y & z) .

We will also make use of the logical left shift operator. For a positive integer t,
we write

x� t = y ⇐⇒ yi+t = xi, for all i � 0, and y0, . . . , yt−1 = 0 .

Notice that x� t = 2t x. Hence we will sometimes write 2x instead of x� 1.

Throughout the paper, unless otherwise indicated, we assume that the
involved operands are k-bit integers (typically of 8, 16, 32 or 64 bits) and arith-
metic operations are performed modulo 2k. Modular addition and subtraction
are noted “+” and “−”, respectively. Likewise, unless otherwise indicated, the
shifting operations are performed modulo 2k. To ease the notation, we sometimes
omit writing the congruence operation (i.e., (mod 2k) is implicit). Finally, we
will use boldface symbols to represent masked values; for example, x will denote
a masked value for x.

3 Boolean Masking and Addition

3.1 Basic Algorithm

Let x and y be two k-bit integers viewed as elements of Z2k = {0, . . . , 2k − 1}.
The goal is to compute their sum s = x + y (mod 2k). Letting x =

∑k−1
i=0 xi 2i

and y =
∑k−1

i=0 yi 2i the respective binary expansions of x and y, the pencil-and-
paper method to add non-negative integers [11, p. 251] yields s =

∑k−1
i=0 si 2i in

a left-to-right fashion as:

c0 = 0 and

{

si = (xi + yi + ci) mod 2
ci+1 = (xi + yi + ci) div 2

for 0 � i � k − 1. It is readily seen that the carry-out, ci+1, is equal to 1 if and
only if at least two of xi, yi and ci are 1. Hence the previous relation can be
rewritten using logical operators as

c0 = 0 and

{

si = xi ⊕ yi ⊕ ci
ci+1 = Maj (xi, yi, ci)

(1)

Addition with Blinded Operands 45

using the majority function Maj, given by

Maj (xi, yi, ci) := (xi & yi)⊕ (xi & ci)⊕ (yi & ci)

= (xi & yi)⊕
[

(xi ⊕ yi) & ci
]

= ci & (xi ⊕ yi)⊕ (xi & yi) .

Summing up, given x, y ∈ Z2k , their sum (modulo 2k) can be obtained as

s = x⊕ y ⊕ c with c =
k−1∑

i=1

ci 2i , (2)

where c0 = 0 and ci = ci−1 & (xi−1 ⊕ yi−1)⊕ (xi−1 & yi−1) for 1 � i � k − 1.
Since c is defined modulo 2k, we immediately get from Eqs. (2) and (1)

c =
k−1∑

i=1

ci 2i =
k∑

i=1

ci 2i = 2
k−1∑

i=0

ci+1 2i = 2
k−1∑

i=0

[

ci & (xi ⊕ yi)⊕ (xi & yi)
]

2i

= 2
[

c& (x⊕ y)⊕ (x& y)
]

(mod 2k) .

This suggests to obtain the value of c by iterating the relation

c← 2
[

c& (x⊕ y)⊕ (x& y)
]

(3)

where c is initialized to 0. This yields the following addition algorithm. See
also [14] and [8, Theorem 2].

Algorithm 1. and-xor-and-double addition method
Input: (x, y) ∈ Z2k × Z2k

Output: x + y (mod 2k)

1: A← x; B← y
2: C← A & B; A← A⊕ B
3: B← 0
4: for i = 1 to k − 1 do
5: B← B & A; B← B⊕ C
6: B← B� 1
7: end for
8: A← A⊕ B

9: return A

3.2 DPA-Resistant Addition

We now consider the case of masked inputs, namely x and y are blinded as

x = x⊕ rx and y = y ⊕ ry

46 M. Karroumi et al.

for some Boolean masks rx, ry ∈ Z2k . The goal is to securely compute (s, rs)
where s = (x + y) ⊕ rs for some mask rs ∈ Z2k , from (x, rx) and (y, ry) and
without compromising the values of x or of y through DPA.

We rely on Algorithm 1; an application of Eq. (2) yields

s = (x+ y)⊕ rs = (x⊕ y ⊕ c)⊕ rs = (x⊕ rx)⊕ (y ⊕ ry)⊕ c⊕ rs
= x⊕ y ⊕ c

by setting rs = rx⊕ry. The carry c in the above formula results from the addition
of x and y in the clear! As a consequence, if not carefully done, its evaluation
might leak information on x or y by mounting a DPA-type attack. In order to
solve this issue, in a way analogous to [8], we initialize the value of c with a
Boolean mask γ when evaluating Eq. (3). In more detail, letting c(i) the output
value of c in Eq. (3) at iteration i and c(i) = c(i) ⊕ 2γ, we have

{

c(0) = 2γ
c(i) = 2

[

c(i−1) & (x⊕ y)⊕Ω]

, for 1 � i � k − 1
(4)

where Ω = 2γ & (x⊕ y)⊕ (x& y)⊕ γ.
Proof. We have

c(i) = c(i) ⊕ 2γ = 2
[

c(i−1) & (x⊕ y)⊕ (x& y)
]⊕ 2γ by Eq. (3)

= 2
[

(c(i−1) ⊕ 2γ) & (x⊕ y)⊕ (x& y)
]⊕ 2γ

= 2
[

(c(i−1) & (x⊕ y))⊕ (2γ & (x⊕ y))⊕ (x& y)
]⊕ 2γ

= 2
[

c(i−1) & (x⊕ y)⊕Ω]

as expected.
�
Given that c(0) = 2γ and the definition of Ω, it is interesting to note that

the value of c(1) simplifies to

c(1) = 2
[

2γ & (x⊕ y)⊕Ω]

= 2
[

(x& y)⊕ γ] .

Hence, letting Ω0 = (x&y)⊕γ, we can write c(1) = 2Ω0 and Ω = 2γ&(x⊕y)⊕Ω0.

Remark 1. We remark that a similar trick applies to Goubin’s arithmetic-to-
Boolean conversion. Rearranging the operations leads to a reduced cost, from a
total of 5k + 5 operations down to 5k + 1 operations. This optimized variant is
detailed in Appendix A.

It remains to express c(i) and Ω as a function of (x,y, rx, ry). From Eq. (4),
we have

c(i) = 2
[

c(i−1) & (x⊕ y ⊕ rx ⊕ ry)⊕Ω]

= 2
[(

c(i−1) & (x⊕ y)
)⊕ (

c(i−1) & (rx ⊕ ry)
)⊕Ω]

.

Addition with Blinded Operands 47

We also have

Ω = 2γ & (x⊕ y ⊕ rx ⊕ ry)⊕Ω0 =
[

2γ & (x⊕ y)
]⊕ [

2γ & (rx ⊕ ry)
]⊕Ω0 .

We need to introduce a useful theorem from [8]:

Theorem 1 (Goubin). Using previous notations, for any δ ∈ Z2k , function

Θδ : Z2k → Z2k , γ �→ [

(2γ) & δ
]⊕ γ

is bijective.
�
Assume that γ is uniformly distributed over Z2k . The previous theorem

implies that
[

(2γ) & (x ⊕ y)
] ⊕ γ is uniformly distributed over Z2k . In turn,

this implies that Ω =
[

(2γ)& (x⊕ y)]⊕γ⊕ (x& y) is uniformly distributed over
Z2k . We exploit this observation and evaluate c(i) as

c(i) = 2
[(

c(i−1) & (x⊕ y)
)⊕Ω ⊕ (

c(i−1) & (rx ⊕ ry)
)]

.

Algorithmically, we implement this as a for-loop using two accumulators, B
and T. At the end of the for-loop, accumulator B contains the value of c = c⊕2γ.

1: A0 ← x⊕ y; A1 ← rx ⊕ ry
2: B← c(1); Ω← Ω
3: for i = 2 to k − 1 do
4: T← B & A0; B← B & A1

5: B← B⊕ Ω; B← B⊕ T
6: B← B� 1
7: end for

Similarly, noting that if γ is uniformly distributed over Z2k then so is Ω0 =
γ ⊕ (x& y), we implement the calculation of Ω as:

1: A0 ← x⊕ y; A1 ← rx ⊕ ry
2: C← 2γ; Ω← Ω0

3: T← C & A0; Ω← Ω⊕ T
4: T← C & A1; Ω← Ω⊕ T

The last step is the secure evaluation of Ω0 (i.e., γ⊕(x&y)) from (x,y, rx, ry).
We make use of a trick already used in [20]. It exploits the distributive property
of the and over the xor and evaluates an and as a series of four and operations
calculated pairwise between masked operands and masks (operations are carried
out with masked operands and masks independent from each other). Specifically
we implement the calculation of Ω0 as the left-to-right evaluation of:

Ω0 = γ ⊕ (x& y) = γ ⊕ [

(x⊕ rx) & (y ⊕ ry)
]

= γ ⊕ (x & y)⊕ (x & ry)⊕ (y & rx)⊕ (rx & ry) .

Putting all together we obtain a DPA-protected addition algorithm. Our
secure addition algorithm is depicted in Algorithm 2. It makes use of 3 addi-
tional temporary k-bit variables (C, T, and Ω), generates one random mask, and
requires 5k + 8 operations:

48 M. Karroumi et al.

– (2k + 6) xors ;
– (2k + 2) ands ;
– k logical shifts .

Algorithm 2. Secure addition with blinded operands
Input: (x, y, rx, ry, γ) ∈ Z

5
2k such that x = x⊕ rx, y = y ⊕ ry and γ a pre-computed

random integer
Output: (s, rs) where s = (x + y)⊕ rs (mod 2k) and rs = rx ⊕ ry

/* Ω0 = (x & y)⊕ γ */

1: C← γ
2: T← x & y; Ω← C⊕ T
3: T← x & ry; Ω← Ω⊕ T
4: T← y & rx; Ω← Ω⊕ T
5: T← rx & ry; Ω← Ω⊕ T � Ω← Ω0

/* c(1) = 2Ω0 and Ω = 2γ & (x⊕ y)⊕ Ω0 */

6: B← Ω� 1; C← C� 1 � B← c(1); C← 2γ
7: A0 ← x ⊕ y; A1 ← rx ⊕ ry

8: T← C & A0; Ω← Ω⊕ T
9: T← C & A1; Ω← Ω⊕ T � Ω← Ω

/* Main loop */

10: for i = 2 to k − 1 do
11: T← B & A0; B← B & A1

12: B← B⊕ Ω
13: B← B⊕ T
14: B← B� 1
15: end for � B← c⊕ 2γ

/* Aggregation */

16: A0 ← A0 ⊕ B
17: A0 ← A0 ⊕ C

18: return (A0, A1)

4 Security Analysis

In this section, we study more formally the DPA resistance of the proposed
algorithm. An algorithm is first-order secure if the intermediate variables do
not reveal any information about the sensitive data. To prove first-order DPA
resistance, we first list all intermediate variables of the algorithm. We show then
that no variable exhibits dependency on the sensitive data. In the sequel, we
let Vi denote the values resulting from the intermediate operation performed at
Line i in Algorithm 2 (Table 1).

We consider that inputs x and y are respectively masked with rx and ry, two
random variables uniformly distributed over Z2k . The sensitive variables and
their associated masks are then assumed mutually independent. Furthermore,

Addition with Blinded Operands 49

Table 1. Intermediate variables

the two random variables rx and ry are chosen independently, which gives rs =
rx ⊕ ry to be also uniform over Z2k .

A bitwise and operation between two independent Boolean masked variables
does not give a uniformly distributed result. It has however the same distribution
as an and applied to two random variables. Values of T in steps V2, V3, V4, V5

and values of T = (c(i−1) ⊕ 2γ) & (rs ⊕ x ⊕ y) and B(i) = (c(i−1) ⊕ 2γ) & rs in
V11 are therefore not related to unmasked data (namely x or y). None of these
values can act as a mask, and xoring such values would leak through DPA.
However, if these are xored with a random k-bit mask γ, the resulting value
retains the uniform distribution of the mask. Consequently, the value of Ω in
steps V2, V3, V4 and V5 and B(i) = γ ⊕ c(i−1) & (x ⊕ y) ⊕ x & y in V13 are all
uniformly distributed over Z2k . The same holds true for Ω in steps V8 and V9

because, as already stated in Sect. 3.2, Ω is uniform on Z2k when γ is. As Ω is
uniform, B(i) = (c(i−1) ⊕ 2γ) & rs ⊕ Ω in V12 is also uniform on Z2k .

Calculating an xor between independent masked values or between random
masks has the same distribution as the xor of two random numbers and so is
not related to the unmasked data. The variables A0 = rs⊕(x⊕y) and A1 = rs in
steps V7 are therefore not leaking. Likewise, performing an and between masked
values and an independent mask does not reveal anything about unmasked data.
Hence, the values of T in steps V8 and V9 are not related to unmasked data.

Also, since 2a mod 2k = 2(a mod 2k−1) for any a ∈ Z2k , the values of B in
V6 and V14 and value of C in V6 are uniformly distributed over 2Z2k−1 . Finally,
it clearly appears that A0 = 2γ ⊕ rs ⊕ (x + y) and A0 = rs ⊕ (x + y), in steps
V16 and V17 respectively do not leak information about unmasked data.

5 Application to XTEA

5.1 XTEA Overview

XTEA is a 64-bit block cipher that has 32 rounds and operates with a key size
of 128 bits. It uses similar routines for encryption and decryption module.

50 M. Karroumi et al.

Round Function. Let rk[2i] and rk[2i+ 1] be the round keys (for 0 � i � 31).
Let also v0 and v1 denote the two 32-bit inputs. The outputs are then updated
as

{

v0 ← v0 + (F (v1) + v1)⊕ rk[2i]
v1 ← v1 + (F (v0) + v0)⊕ rk[2i+ 1]

where F (v) = [(v � 4)⊕ (v 5)] .

The pair (v0, v1) is initialized with 64-bit plaintext m, m = v0‖v1. The above
procedure is run for i = 0, . . . , 31, the ciphertext is the output of round 31.

Key Schedule. The master secret key is a 128-bit value K = (K[0],K[1],K[2],
K[3]) where K[j]’s are 32-bit values (0 � j � 3). The round keys are defined as
{

rk[2i] = K[ai] + δi , ai = δi & 3
rk[2i+ 1] = K[bi] + δi+1 , bi = (δi+1 11) & 3

where δi = i · δ (mod 232)

with δ = 0x9E3779B9.

5.2 Preventing First-Order DPA

A round of XTEA involves Boolean operations (xors and Shifts) and six addi-
tions. Boolean operations are easily masked through an xor whereas the addi-
tion operations are securely evaluated using Algorithm 2. We assume that fresh
32-bit masks w0, w1 and Γ are uniformly picked at random for each encryp-
tion process. The pair (w0, w1) is applied to the input plaintext. The mask Γ is
used with the secure addition algorithm. The same masks are then maintained
across all rounds, as in the transformed masking method ([1]). At the end of
the algorithm the masks (w0, w1) are applied to the output data to recover the
matching, unmasked ciphertext. For an implementation that is secure against
first-order DPA, the round keys do not need to be masked. In such a case, the
key schedule is normally implemented. Only 4 additions per round will be then
evaluated using Algorithm 2:

– two additions with the evaluation of F ,
– two additions when updating the pair (v0, v1).

A round of XTEA can be written as

vb ← vb + (F (vb̄) + vb̄)⊕ rk[2i+ b] where F (vb̄) = [(vb̄ � 4)⊕ (vb̄ 5)]

for b ∈ {0, 1}. Its masked version is implemented as

Γ← random(2k)

(A0,A1)←
(

F (vb̄), F (wb̄)
)

(A0,A1)← SecADD(A0, vb̄,A1, wb̄, Γ)
(A0,A1)← (A0 ⊕ rk[2i+ b],A1 ⊕ rk[2i+ b])
(A0,A1)← SecADD(A0, vb,A1, wb, Γ)

Addition with Blinded Operands 51

where the operations on the masked variables and the masks are processed sep-
arately without leaking information about the original variables.

As the two input variables are split into two shares, the number of Boolean
operations related to those variables is doubled. This gives 22 basic operations
per round plus 4 secure additions. Since the XTEA block-cipher operates on
words of size 32 bits, we used the addition algorithm with k = 32. Therefore
each round requires 4× 168 + 22 = 684 word operations.

5.3 Performance Analysis

We implemented an unmasked version, and a DPA resistant version of XTEA
using different addition algorithms. With previous mask-switching methods we
implemented the three conversions steps in a row. The addition algorithm
includes the two secure B→A conversions (both use the same pre-computed
32-bit random), followed by the secure A→B conversion. The code was written
in C and a 32-bit Intel based processor was used for evaluating the implemen-
tation. The compilation options were chosen to favor small code size. Optimal
code would be possible if written in assembly, but the goal was to determine the
relative costs between different secure implementation of XTEA. Details such as
the code size, RAM overhead and the cycle count are given in Table 2.

Table 2. Details of various XTEA implementations

Algorithms ROM [bytes] RAM [bytes] Cycles/byte

XTEA 114 16 60

masked XTEA (Algorithm 2) 379(80) 28 2410

masked XTEA ([8] + Algorithm 3) 395(96) 28 2515

masked XTEA ([18]) 620(262) 45 3180

masked XTEA ([5]) 664(304) 51 3403

The ROM size represents the complete XTEA code size including the addi-
tion algorithm. We also give the size of the addition algorithm inside parenthesis.
As the goal is to compare algorithms with smallest memory requirement, for the
table-based algorithms we tested the 4-bit nibble size version. The RAM size
represents the 16-byte key, the size of the look-up table if any, as well as the size
of the random numbers used for masking the inputs, generating the LUTs and
computing the secure additions. We assume that a random generator is avail-
able to provide the random numbers needed by all algorithms. Although some
algorithms need more random numbers, those numbers are only computed once
per execution. This is therefore not a determining factor in the comparison. For
this reason, the time for their generation was not taken into account.

Table 2 shows that the protected version of XTEA, using the table-based
algorithms, requires a ROM space that is almost six times larger than the unpro-
tected version. These versions also have a RAM overhead of at least 45 bytes

52 M. Karroumi et al.

(i.e., three times bigger than the unprotected version). Our implementation of
XTEA requires a ROM space that is only 3.3 times larger than the unprotected
version. Remarkably, our method is faster than the methods of [5] and [18]
which require a memory space (ROM + RAM) that is at least 1.6 times larger.
Goubin’s version has a comparable performance especially when considering the
improved A→B conversion given in Appendix A, but our algorithm remains bet-
ter. Indeed, the overall computation cost for one secure addition using Goubin’s
optimized variant is 5 · k+ 1 + 2 · 7 + 2 = 5 · k + 17. Our algorithm enables us to
save 9 operations per addition, which yields to 1152 operations saved per XTEA
execution. Algorithm 2 provides then the best choice regarding the memory
versus speed complexity and makes it suitable for resource-constrained devices.
This advantage obviously depends on the internal structure of the cryptographic
algorithm. If the structure combines additions and Boolean operations such that
several additions are performed in a row, the mask-switching methods are then
faster. Section 6.1 presents other examples where our addition algorithm presents
an advantage over the methods of [8,18] and [5].

6 Further Results

6.1 Other Applications

For larger operands, our algorithm is also applicable to the SKEIN hash function
or Threefish block-cipher [6]. These algorithms work with 64-bit variables and
make extensive use of the MIX function that combines an xor, an addition
modulo 264 and a rotation by a constant. For smaller k, the gain with our
algorithm is even more significant. For instance, one could use our algorithm for
protecting SAFER [15]. SAFER encryption alternates between use of a byte-
word xors and additions modulo 256 (i.e., k = 8).

6.2 Addition over the Integers

Although described for adding over Z2k , our secure addition algorithm (Algo-
rithm 2) readily extends to output the result s = s ⊕ rs over the integers. For
this purpose, it suffices to run the algorithm by seeing the involved operands as
elements in Z2k+1 . Indeed, as the input values x and y are smaller than 2k their
sum, z = x + y, over the integers is smaller than 2k+1 and so is an element of
Z2k+1 . More generally, our algorithm can accommodate integers x, y of arbitrary
length and compute their blinded sum s over Z by running it over Z2k+1 for any
k � max(|x|2, |y|2) —where | · |2 denotes the binary length.

6.3 Subtraction

Algorithm 2 can also be used for subtraction (which is useful for the XTEA
decryption process for example). We use the notation x to denote the bitwise
complementation of x, namely x = x⊕(−1). From the definition, we immediately
get the following identity x⊕ y = x⊕ y ⊕ (−1) = x⊕ y = x⊕ y.

Addition with Blinded Operands 53

Our secure subtraction algorithm builds on Algorithm 2 and runs in three
steps. The input is (x,y, rx, ry) ∈ (

Z2k

)4 such that x = x⊕ rx and y = y ⊕ ry
and the output is (w, rw) where w = (x− y)⊕ rw (mod 2k) and rw = rx ⊕ ry.

1. Compute x ;
2. Call Algorithm 2 on input (x,y, rx, ry) and obtain (s, rs) where s = (x+y)⊕rs

and rs = rx ⊕ ry ;
3. Set w = s and rw = rs, and return (w, rw) .

The correctness follows by observing that x = x⊕ rx = x⊕ rx. Hence, since
y = y ⊕ ry, at Step 2, we indeed have s = (x + y) ⊕ rs with rs = rx ⊕ ry. The
final step exploits the identity −x = x+ 1; the complementation of s yielding

s = (x+ y)⊕ rs = (−x− 1 + y)⊕ rs =
(−(−x− 1 + y)− 1

)⊕ rs = (x− y)⊕ rs .

7 Conclusion

This paper presented a secure addition algorithm for preventing DPA-like attacks
in symmetric-key cryptosystems. Remarkably, the developed method involves
only Boolean operations (converting to arithmetic masking is not needed) and
does not need pre-computed tables. As an illustration, we provided a counter-
measure to protect XTEA, which proved well adapted to 32-bit microprocessors.

A Optimized Variant of Goubin’s Method

We show in this appendix how to rearrange the operations in the secure A→B
algorithm used for converting A = x−r to x′ = x⊕r. As a result, the algorithm
cost is slightly reduced.

The carry expansion formula expressed using ti, 0 ≤ i ≤ k − 1 (see [8,
Corollary 2.1]) can be simplified. The idea is to start the recursion with t0 = 0
instead of t0 = 2γ. The value of t1 then simplifies to t1 = 2

[

t0&(A⊕r)⊕ω]

= 2ω.
The recursion formula can so be re-written as

ti =

{

2ω if i = 1 ,
2 [ti & (A⊕ r)⊕ ω] for 2 � i � k − 1 .

The main loop within the secure A→B conversion algorithm becomes then:

T← 2Ω

for i = 2 to k − 1 do
Γ← T & r; Γ← Γ⊕ Ω; T← T &A
Γ← Γ⊕ T; T← 2Γ

end for

54 M. Karroumi et al.

We extract the first loop iteration and trade five operations against one logical
shift operation. This reduces the algorithm cost to 5k + 1 operations. This small
change has no impact on the security of the algorithm.

Algorithm 3. Improved Goubin’s A→B conversion
Input: (A, r), such that A = x− r mod 2k

Output: (x′, r), such that x′ = x⊕ r

1: Γ← random(2k)
2: T← 2Γ; x′ ← Γ⊕ r; Ω← Γ & x′; x′ ← T⊕A; Γ← Γ⊕ x′; Γ← Γ & r; Ω← Ω⊕ Γ
3: Γ← T & A; Ω← Ω⊕ Γ; T← 2Ω
4: for i = 2 to k − 1 do
5: Γ← T & r; Γ← Γ⊕ Ω; T← T & A
6: Γ← Γ⊕ T; T← 2Γ
7: end for
8: x′ ← x′ ⊕ T

9: return (x′, r)

References

1. Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against
some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol.
2162, pp. 309–318. Springer, Heidelberg (2001)

2. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to coun-
teract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol.
1666, pp. 398–412. Springer, Heidelberg (1999)

3. Coron, J.-S., Goubin, L.: On boolean and arithmetic masking against differential
power analysis. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp.
231–237. Springer, Heidelberg (2000)

4. Coron, J.-S., Tchulkine, A.: A new algorithm for switching from arithmetic to
boolean masking. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS,
vol. 2779, pp. 89–97. Springer, Heidelberg (2003)

5. Debraize, B.: Efficient and provably secure methods for switching from arithmetic
to boolean masking. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol.
7428, pp. 107–121. Springer, Heidelberg (2012)

6. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein hash function family. Submission to NIST (Round 3),
October 2010. http://www.skein-hash.info/sites/default/files/skein1.3.pdf

7. Golić, J.D.: Techniques for random masking in hardware. IEEE Trans. Circuits
Syst. 54(2), 291–300 (2007)

8. Goubin, L.: A sound method for switching between boolean and arithmetic mask-
ing. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
3–15. Springer, Heidelberg (2001)

9. Goubin, L., Patarin, J.: DES and differential power analysis (The “duplication”
method). In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

http://www.skein-hash.info/sites/default/files/skein1.3.pdf

Addition with Blinded Operands 55

10. Kelsey, J., Schneier, B., Wagner, D.: Related-key cryptanalysis of 3-WAY, Biham-
DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Quing, S. (eds.) ICICS
1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)

11. Knuth, D.E.: The Art of Computer Programming, vol. 2, 2nd edn. Addison-Wesley,
Readin (1981)

12. Knuth, D.E.: The Art of Computer Programming, vol. 4A. Addison-Wesley, Read-
ing (2011)

13. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

14. Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential properties of
addition. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 336–350. Springer,
Heidelberg (2002)

15. Massey, J.L.: SAFER K-64: a byte-oriented block-ciphering algorithm. In:
Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 1–17. Springer, Heidelberg
(1994)

16. Messerges, T.S.: Securing the AES finalists against power analysis attacks. In:
Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 150–164. Springer, Heidelberg
(2001)

17. Needham, R.M., Wheeler, D.J.: TEA extensions. Technical report, Computer Lab-
oratory, University of Cambridge, October 1997. http://www.cl.cam.ac.uk/ftp/
users/djw3/xtea.ps

18. Neiße, O., Pulkus, J.: Switching blindings with a view towards IDEA. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 230–239. Springer,
Heidelberg (2004)

19. Örs, S.B., Gürkaynak, F.K., Oswald, E., Preneel, B.: Power-analysis attack on an
ASIC AES implementation. In: International Conference on Information Technol-
ogy: Coding and Computing (ITCC ’04), vol. 2, pp. 546–552. IEEE Computer
Society (2004)

20. Trichina, E.: Combinational logic design for AES SubByte transformation on
masked data. Cryptology ePrint Archive, Report 2003/236 (2003). http://eprint.
iacr.org/2003/236

21. Wheeler, D.J., Needham, R.M.: TEA, a tiny encryption algorithm. In: Preneel, B.
(ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)

22. Wheeler, D.J., Needham, R.M.: Corrections to XTEA. Technical report, Computer
Laboratory, University of Cambridge, October 1998. http://www.movable-type.co.
uk/scripts/xxtea.pdf

http://www.cl.cam.ac.uk/ftp/users/djw3/xtea.ps
http://www.cl.cam.ac.uk/ftp/users/djw3/xtea.ps
http://eprint.iacr.org/2003/236
http://eprint.iacr.org/2003/236
http://www.movable-type.co.uk/scripts/xxtea.pdf
http://www.movable-type.co.uk/scripts/xxtea.pdf

On the Use of RSA Public Exponent
to Improve Implementation Efficiency

and Side-Channel Resistance

Christophe Giraud(B)

Cryptography and Security Group, Oberthur Technologies,
4, Allée du Doyen Georges Brus, 33600 Pessac, France

c.giraud@oberthur.com

Abstract. Since the end of the nineties, cryptographic developers must
not only provide fast implementations but they must also take Side-
Channel Analysis and Fault Injection into account. From that time, many
side-channel and fault countermeasures have been proposed to reach a
double goal: provide a high level of security while having the smallest
impact on performance and memory consumption. In the particular case
of RSA, the knowledge of the public exponent has been used to propose
the most efficient fault countermeasure in terms of security and perfor-
mance. However so far no study has been published which exploits such
a variable to improve RSA efficiency and side-channel resistance.

In this paper, we fill this gap by proposing an original CRT-RSA
implementation which makes use of the knowledge of the public expo-
nent. In particular, we investigate an efficient method using only 4 pri-
vate key parameters out of 5 and we also propose a free message blinding
method to reinforce side-channel resistance.

Keywords: CRT-RSA · Efficient implementation · Side-channel coun-
termeasure

1 Introduction

1996 was one of the most amazing years for the Crypto community. Indeed in a
few months, two revolutionary attacks called Side-Channel Analysis (SCA) [21]
and Fault Injection (FI) [5] were published. These two attacks definitely affected
practitioners by changing the way of implementing cryptographic algorithms and
they also challenged theoreticians to design new cryptosystems meant to resist
such threats. The first kind of attack takes advantage of physical interactions
between the embedded device and its environment during the execution of the
cryptosystem to recover information on the corresponding secret key [24]. Indeed,
it was noticed that these interactions, such as the device power consumption [22]
or its electromagnetic radiation [15], contain information on the operations and
on the variables manipulated by the device. The second kind of attack aims
to disturb the correct execution of the algorithm and uses the corresponding
c© Springer International Publishing Switzerland 2014
E. Prouff (Ed.): COSADE 2014, LNCS 8622, pp. 56–68, 2014.
DOI: 10.1007/978-3-319-10175-0 5

On the Use of RSA Public Exponent to Improve Implementation Efficiency 57

faulty output to obtain information on the secret key [19]. Of course, numerous
countermeasures have been published since 1996 to efficiently counteract these
attacks and the fields of SCA and FI are now the most active fields of research
in cryptography.

As well as being the first practical public-key cryptosystem, RSA [29] has
also been the most widely used for many years, especially in electronic signature
schemes. It has thus been a privileged target for cryptologists to mount effective
SCA and FI and to propose efficient countermeasures. Concerning FI-resistant
RSA implementation, the most efficient method consists in using the public
exponent to verify the signature before outputting it. Whereas such an approach
has been published more than 15 years ago [6], no publication deals with the
exploitation of the public exponent to improve RSA implementation efficiency
and side-channel resistance. This article addresses such an open topic.

The rest of this paper is organised as follows. Section 2 briefly presents the
state-of-the-art of secure CRT-RSA implementation on embedded devices. In
Sect. 3, we present our new approach to implement CRT-RSA by taking advan-
tage of the knowledge of the public exponent. After presenting a functional ver-
sion of our implementation, we improve its side-channel resistance by proposing
a free message blinding method. This new approach is then compared with the
state-of-the-art implementation. Finally, we conclude in Sect. 4.

2 State-of-the-Art Secure CRT-RSA Implementation

In this section, we firstly describe RSA before presenting the main SCA and FI
countermeasures used nowadays to obtain a secure implementation.

2.1 RSA Presentation

In the following we briefly recall how to compute the RSA signature in both
standard and CRT modes.

Let N denote the public modulus being the product of two secret large prime
integers p and q. Let d refer to the private exponent and e refer to the public
exponent satisfying d·e ≡ 1 mod ϕ(N), where ϕ denotes Euler’s totient function.
The RSA signature of a message m ∈ ZN is then obtained by computing S =
md mod N . To verify the signature, one computes Se mod N and checks if the
corresponding result is equal to m.

In embedded systems, most RSA implementations use the Chinese Remain-
der Theorem (CRT) which yields a speed-up factor of four [13]. By using the
CRT, the signature generation is composed of two exponentiations Sp = mdp

mod p and Sq = mdq mod q, where dp = d mod (p−1) and dq = d mod (q−1).
The signature is then obtained by recombining Sp and Sq, which is usually done
by using Garner’s formula [16]:

S = Sq + q · (iq · (Sp − Sq) mod p), (1)

where iq = q−1 mod p.

58 C. Giraud

We depict in Algorithm 1 the algorithmic of a standard CRT-RSA imple-
mentation as described above.

Algorithm 1. Standard CRT-RSA signature

Inputs: The message m and the private key (p, q, dp, dq, iq)
Output: The signature S of the message m

// First exponentiation

1. Sp ← mdp mod p
// Second exponentiation

2. Sq ← mdq mod q
// Recombination

3. S ← Sq + q · (iq · (Sp − Sq) mod p)

4. return S

Although RSA cryptosystem using signature protocol PSS [27] is proved
secure against theoretical cryptanalysis, it can be broken if straightforwardly
implemented on embedded devices by using Side-Channel Analysis or Fault
Injection. In the next sections, we present the main countermeasures which are
generally implemented to counteract SCA and FI.

2.2 SCA Countermeasures

When published, SCA was divided into two groups: Simple Side-Channel Analy-
sis (SSCA) and Differential Side-Channel Analysis (DSCA). The first kind aims
at recovering information on the secret key by using the side-channel leakage of
only one execution of the algorithm whereas DSCA uses several executions of the
algorithm and applies statistical analysis to the corresponding measurements to
exhibit information on the secret key.

In the particular case of RSA, the most common countermeasure to prevent
SSCA consists in using exponentiation methods where the sequence of modu-
lar operations does not depend on the corresponding secret exponent. Example
of such exponentiations are the Montgomery Ladder [20] or the Atomic expo-
nentiation [8]. Concerning DSCA countermeasures, most techniques aim at ran-
domizing the message and the exponents. This can be done for instance by
applying additive masking to these variables [9]. In such a case, one can pick
four 64-bit random values ki, i ∈ {0, · · · , 3}, and compute S′

p = (m + k0 ·
p)dp+k1·(p−1) mod 264 · p and S′

q = (m + k2 · q)dp+k3·(q−1) mod 264 · q before
combining them using the CRT-recombination. The expected signature is finally
obtained by performing a final reduction modulo N = p · q.

Instead of using additive masking to blind the message, one can apply multi-
plicative masking [24] which consists generally in multiplying the message with
re mod N where r is a non null random value. The blinding is then removed

On the Use of RSA Public Exponent to Improve Implementation Efficiency 59

at the end of the computation by multiplying the final result with r−1 mod N .
However, the inverse computation to obtain r−1 mod N is costly in terms of both
performance and memory consumption. Such an approach is therefore generally
avoided in favor of the traditional additive masking.

When combining both SSCA and DSCA countermeasures, RSA implemen-
tations resist most kind of side-channel attacks. However, a third class of SCA
called Horizontal Analysis (HA) has been published recently and could defeat
such implementations by using only one execution of the algorithm [4,10,11,31].
This kind of attack aims generally at distinguishing if each modular operation
is a multiplication with the input message or not. To counteract such power-
ful attacks, one must randomize the order of the single-precision multiplica-
tions [4,11] or randomize the blinding of each operand before each long integer
multiplication [10].

2.3 FI Countermeasures

RSA has been the first cryptosystem to be analysed versus Fault Injection [6]. In
the case of CRT-RSA, only one fault injected during one of the two exponentia-
tions provides a faulty signature which allows the attacker to recover one of the
two secret primes p or q. For instance, if a fault is injected during the computa-
tion of Sp leading to a faulty signature S̃ then one can notice that S̃ ≡ S mod q
but S̃ �≡ S mod p. Therefore, the secret parameter q can be easily recovered by
computing the gcd of S − S̃ and N . The other private key parameters can then
be straightforwardly deduced.

To protect RSA against such a threat, dozens of countermeasures have been
proposed over the last decade. These methods can be divided into four differ-
ent groups. The first group is based on Shamir’s method proposed in [30]. The
idea is to perform the two exponentiations over GF(p · t) and GF(q · t) respec-
tively where t is a small random value and then compare both results modulo t.
Amongst the numerous variants of Shamir’s method, only the improved version
of Vigilant’s proposal is considered secure against fault injection [12]. The second
methodology has been proposed by Giraud in which the fault detection comes
from the exponentiation algorithm itself [17]. He pointed out that by using the
Montgomery powering ladder [20], both values md−1 mod N and md mod N are
available at the end of the computation. These values can then be used to verify
the integrity of the exponentiation by testing if m times the first value is equal to
the second one. This method has then been extended in [7,28]. The third group
corresponds to the infective computation method which has been introduced by
Yen et al. in [32]. The idea of the countermeasure consists in modifying the sig-
nature if a fault is detected such that it provides no information to the attacker.
Despite several proposals, each and every infective method has been broken [3].
The fourth and last kind of countermeasure consists in verifying the signature
by using the public exponent before outputting it [6].

60 C. Giraud

In the rest of this paper we assume that the public exponent is small, typically
less than 216+1, which is nearly always the case in practice1. Therefore the fourth
approach presented above is the most efficient way to counteract fault attacks
on CRT-RSA in terms of both security and performances.

2.4 Summary

To sum up Sect. 2, we depict in Algorithm 2 the skeleton of a state-of-the-art
secure CRT-RSA [2, Sect. 6.1].

Algorithm 2. Secure CRT-RSA signature

Inputs: A message m, the public exponent e and the private key (p, q, dp, dq, iq)
Output: The signature S of the message m

1. Generate three 64-bit random values k0, k1 and k2

// Message blinding

2. m′ ← m + k0 · p · q
// First secure exponentiation

3. d′
p ← dp + k1 · (p− 1)

4. S′
p ← m′d′

p mod 264 · p [Using an SSCA-HA-resistant expo.]
// Second secure exponentiation

5. d′
q ← dq + k2 · (q − 1)

6. S′
q ← m′d′

q mod 264 · q [Using an SSCA-HA-resistant expo.]
// Secure recombination

7. S′ ← S′
q + q · (iq · (S′

p − S′
q) mod (264 · p))

// Signature verification

8. N ← p · q
9. if S′e mod N = m then

10. return S′ mod N

11. else

12. Security action

3 A New Approach

Whereas the public exponent has been used for more than 15 years to counteract
Fault Injection, no study has been done to investigate how such a value can be
used to improve RSA performance and side-channel resistance. This is unfortu-
nate since when setting an RSA private key, the corresponding public exponent
e is often known. For example in the case of EMV banking applications [14],

1 According to [23, Table 1], 99.95 % of the RSA public keys which are used nowadays
use one of the 15 following values as public exponent: 3, 5, 7, 11, 13, 17, 19, 21, 23,
35, 41, 47, 28 + 1, 216 − 1 and 216 + 1. In particular, more than 95% of the public
exponents are equal to 216 + 1.

On the Use of RSA Public Exponent to Improve Implementation Efficiency 61

there are only 2 different public exponents possible (3 or 216 +1) and the correct
one can be recovered from the private key by using 2 multiplications [18]. It is
therefore interesting to investigate an alternative implementation of CRT-RSA
taking advantage of the knowledge of the public exponent value.

3.1 Generic Description

In practice, the CRT-recombination is implemented by using Garner’s formula as
presented in (1) since it is the most efficient formula published so far. However,
the CRT-recombination can also be performed by using the Gauss recombina-
tion:

S = p · ip · Sq + q · iq · Sp mod N (2)

where Sp = mdp mod p, Sq = mdq mod q, ip = p−1 mod q and iq = q−1 mod p.
Of course, such a method requires either to consume extra memory to add the
extra private parameter ip or to perform a costly inverse computation to obtain
such a value on-the-fly. However, we explain in the following that CRT-RSA
using such a recombination can be more efficient than using Garner’s method if
the public exponent is known.

Our new method is based on Relation (3):

(m · qe)dp−1 ·m · qe−2 ≡ iq · Sp mod p (3)

Proof. When expanding the first term of left part of (3), we obtain:

(m · qe)dp−1 ≡ mdp−1 · qe·(dp−1) mod p (4)

≡ mdp−1 · qe·dp−e mod p (5)

≡ mdp−1 · q1−e mod p (6)

Therefore

(m · qe)dp−1 ·m · qe−2 ≡ mdp−1 · q1−e ·m · qe−2 mod p (7)

≡ mdp · q1−e+e−2 mod p (8)

This straightforwardly leads to (3). �

Obviously, a similar relation is obtained modulo q:

(m · pe)dq−1 ·m · pe−2 ≡ ip · Sq mod q (9)

Finally, one may note that (2) is equivalent to the following relation:

S = p · (ip · Sq mod q) + q · (iq · Sp mod p) mod N (10)

Therefore, by combining Relations (3) and (9) with Relation (10), the sig-
nature S = md mod N of a message m can be computed by using the following
relation:

62 C. Giraud

S = p · S1q + q · S1p mod N (11)

where

S1p = (m · qe)dp−1 ·m · qe−2 mod p,

S1q = (m · pe)dq−1 ·m · pe−2 mod q.

We depict in Algorithm 3 the algorithmic of our new method.

Algorithm 3. Our new CRT-RSA signature implementation with e known

Inputs: A message m, the public key e and a subpart of the private key (p, q, dp, dq)
Output: The signature S of the message m

// First exponentiation

1. q1 ← m · qe−2 mod p

2. q2 ← q1 · q2 mod p [q2 = m · qe mod p]

3. S1p ← q
dp−1
2 · q1 mod p [S1p = iq · Sp mod p]

// Second exponentiation

4. p1 ← m · pe−2 mod q

5. p2 ← p1 · p2 mod q [p2 = m · pe mod q]

6. S1q ← p
dq−1
2 · p1 mod q [S1q = ip · Sq mod q]

// Recombination

7. S ← p · S1q + q · S1p mod (p · q)
8. return S

Comparison with the Standard Method. The main advantage of Algo-
rithm 3 over Algorithm 1 consists in a much smaller key since it does not require
the private parameter iq. This leads to a gain of log2(N)/2−log2(e) bits of mem-
ory to store the key. When using a 2048-bit RSA for instance, we gain 125 bytes
when e = 216+1. Such an improvement is of uttermost importance on embedded
devices where the memory space is very limited.

By comparing the complexity of the standard method depicted in Algorithm 1
and of our new proposal depicted in Algorithm 3, one can notice that the per-
formances are very similar for public exponents which are generally used. For
instance, if e = 3 (resp. e = 216 + 1) then we add 8 (resp. 68) modular oper-
ations to perform the two exponentiations. In the case of a 2048-bit RSA, this
corresponds to a tiny overhead of 0.3% (resp. 2.2%) on average in terms of
modular operations2. Moreover, one may note that the modular reduction of
Step 7 of Algorithm 3 can be replaced by a conditional subtraction with N since
p · S1q + q · S1p is always smaller than 2 ·N .

2 To compute these figures, we assume that a modular exponentiation using dp, dp−1,
dq or dq − 1 as exponent requires 1023 squares and 512 multiplications on average,
i.e. 1585 modular operations.

On the Use of RSA Public Exponent to Improve Implementation Efficiency 63

One can also notice that the key generation of our method is slightly faster
than the traditional one, cf. Algorithms 5 and 6 in Appendix A. Indeed in such
a case, the costly inverse computation of iq = q−1 mod p is not necessary.

Last but not least, we do not need to change the key structure defined in the
Java Card standard [26] to use our method. Indeed, we just need to store the
public exponent e instead of the parameter iq. To do so, the methods setPQ and
getPQ, which are meant to set and to output the value of iq respectively, must
be adapted to fit our approach while keeping in line with the Java Card standard
functionality. The first method setPQ must compute the public key e from the
private key parameters (p, q, dp, dq) and store it in the buffer PQ. Most of the
time, such a computation can be performed by using the efficient method of [18].
Regarding the method getPQ, it must output q−1 mod p instead of outputting
the content of the buffer PQ. Even if this inverse computation is costly, this is
not a problem in practice since this method is almost never used.

3.2 A Free Message Blinding Method

In this section, we take advantage of the new approach previously described to
provide a very efficient message blinding method to counteract Side-Channel
Analysis.

We notice that by replacing q in Relation (3) by q′ = q · r mod p where r is
a random different from 0 modulo p and modulo q, we obtain:

(m · q′e)dp−1 ·m · q′e−2 ≡ iq · Sp · r−1 mod p (12)

Similarly, by replacing p with p′ = p · r mod q in Relation (9), we obtain:

(m · p′e)dq−1 ·m · p′e−2 ≡ ip · Sq · r−1 mod q (13)

By combining Relations (12) and (13) with Relation (11), we obtain a random-
ized signature S′ which is equal to:

S′ = p · S1′
q + q · S1′

p mod N (14)

= r−1 · S mod N (15)

where

S1′
p = (m · q′e)dp−1 ·m · q′e−2 mod p,

S1′
q = (m · p′e)dq−1 ·m · p′e−2 mod q.

The expected signature S is then obtained by multiplying S′ with r modulo N .
To reach a fully secure CRT-RSA, one need also to blind the exponents dp

and dq, use SSCA-HA-resistant exponentiations and to verify the signature by
using the public exponent. We depict in Algorithm 4 such an implementation.

64 C. Giraud

Algorithm 4. Secure CRT-RSA signature using our new approach

Inputs: The message m, the public key e and a subpart of the private key (p, q, dp, dq)
Output: The signature S of the message m

1. Generate a random value r of size log2(N)/2 such that r �≡ 0 mod p and r �≡ 0 mod q

2. Generate two 64-bit random values k0 and k1

// First exponentiation

3. q′ ← q · r mod p

4. q1 ← m · q′e−2 mod p

5. q2 ← q1 · q′2 mod p [q2 = m · re · qe mod p]

6. d′
p ← dp + k0 · (p− 1)

7. S1′
p ← q

d′
p−1

2 · q1 mod p [Using an SSCA-HA-resistant expo.]
// Second exponentiation

8. p′ ← p · r mod q

9. p1 ← m · p′e−2 mod q

10. p2 ← p1 · p′2 mod q [p2 = m · re · pe mod q]

11. d′
q ← dq + k1 · (q − 1)

12. S1′
q ← p

d′
q−1

2 · p1 mod q [Using an SSCA-HA-resistant expo.]
// Recombination

13. S′ ← p · S1′
q + q · S1′

p mod (p · q) [S′ = r−1 · S mod N]
// Signature verification

14. N ← p · q
15. if (r · S′)e ≡ m mod N then

16. return r · S′ mod N

17. else

18. Security action

Comparison with the Standard State-of-the-Art Method. Firstly, Algo-
rithm 4 inherits from the various advantages presented in Sect. 3.1 over the stan-
dard Algorithm 2. In particular, it does not require the private key parameter iq.
Since Algorithms 2 and 4 both require the value of the public exponent e, we gain
in memory the size of one private key parameter, i.e. log2(N)/2 bits. Moreover,
since Algorithm 2 requires the full private key and the public exponent, the lat-
ter must be computed on-the-fly in the context of Java Card environment where
the format of the CRT-RSA key is standardized and an extra parameter cannot
be added. In such a context, our method simply stores the public exponent e
instead of the private parameter iq.

From a performance point of view, our method keeps the original size of the
operands whereas the traditional additive masking used in Algorithm 2 requires
to work with 64-bit longer operands and modulus. Since the performance of the
crypto-processor is directly linked to the size of the variables which are used,
Algorithm 4 is thus expected to be faster than Algorithm 2 since we work with
smaller operand length.

On the Use of RSA Public Exponent to Improve Implementation Efficiency 65

Table 1. Performance improvement of Algorithm 4 compared to Algorithm 2 on a
smart card providing a 32-bit modular multiplication co-processor.

CRT-RSA key size in bits Performance improvement of Algorithm 4 compared
to Algorithm 2

1024 14.2 %

2048 8.2 %

Table 1 represents our analysis on a smart card providing a 32-bit modular
multiplication co-processor. The difference between Algorithms 4 and 2 could
be much more significant in some cases, especially with co-processors having a
precision of 128 bits.

Moreover, when comparing our method versus the original multiplicative
message blinding, one can notice that the costly inverse computation r−1 mod N
is done for free during the exponentiations.

Our approach is not only faster but it also provides various advantages versus
Side-Channel Analysis. For instance, since we use Gauss’ method to recombine
the results of the exponentiations, our method is not vulnerable to specific side-
channel attacks on Garner’s formula such as the ones presented in [1,25].

4 Conclusion

Despite the fact that the public exponent has been used for a long time to
protect RSA implementation against Fault Injection, no study has been done
to investigate the benefit we can obtain from a performance and side-channel
point of view. In this paper, we present a novel approach to implement CRT-
RSA making use of the knowledge of the public exponent. We show that we can
shrink the key length and reach the same level of performance. Moreover, we
also show that this new approach can be combined with multiplicative message
blinding method without any overhead, leading to the most efficient message
blinding scheme published so far.

Acknowledgments. The author would like to thank Guillaume Barbu, Alberto
Battistello, Emmanuelle Dottax and Gilles Piret for their comments on the prelim-
inary version of this paper.

A CRT-RSA Key Generation Algorithms

Algorithm 5 describes the standard CRT-RSA key generation and Algorithm 6
presents the specific CRT-RSA key generation for our new method. One can
observe that the costly inverse computation q−1 mod p is no more necessary.
Moreover, since the public exponent is always provided as input for the key
generation, we do not need extra-computation to provide such a value.

66 C. Giraud

Algorithm 5. Standard CRT-RSA key generation

Inputs: The public exponent e and the expected key bit length n
Output: The private key (p, q, dp, dq, iq)

1. Generate a n/2-bit random prime p

2. Generate a n/2-bit random prime q

3. dp ← e−1 mod (p− 1)

4. dq ← e−1 mod (q − 1)

5. iq ← q−1 mod p

6. return (p, q, dp, dq, iq)

Algorithm 6. CRT-RSA key generation for our new method

Inputs: The public exponent e and the expected key bit length n
Output: The private key (p, q, dp, dq, e)

1. Generate a n/2-bit random prime p

2. Generate a n/2-bit random prime q

3. dp ← e−1 mod (p− 1)

4. dq ← e−1 mod (q − 1)

5. return (p, q, dp, dq, e)

References

1. Amiel, F., Feix, B., Villegas, K.: Power analysis for secret recovering and reverse
engineering of public key algorithms. In: Adams, C., Miri, A., Wiener, M. (eds.)
SAC 2007. LNCS, vol. 4876, pp. 110–125. Springer, Heidelberg (2007)

2. Barbu, G., Battistello, A., Dabosville, G., Giraud, C., Renault, G., Renner, S.,
Zeitoun, R.: Combined attack on CRT-RSA. In: Kurosawa, K., Hanaoka, G. (eds.)
PKC 2013. LNCS, vol. 7778, pp. 198–215. Springer, Heidelberg (2013)

3. Battistello, A., Giraud, C.: Fault analysis of infective AES computations. In: Fis-
cher, W., Schmidt, J.-M. (eds.) Fault Diagnosis and Tolerance in Cryptography -
FDTC 2014, pp. 101–107. IEEE Computer Society (2014)

4. Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal and vertical side-channel
attacks against secure RSA implementations. In: Dawson, E. (ed.) CT-RSA 2013.
LNCS, vol. 7779, pp. 1–17. Springer, Heidelberg (2013)

5. Bonech, D., DeMillo, R., Lipton, R.: New Threat Model Breaks Crypto Codes.
Bellcore Press Release, Morristown (1996)

6. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997)

7. Boscher, A., Naciri, R., Prouff, E.: CRT RSA algorithm protected against fault
attacks. In: Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.-J. (eds.)
WISTP 2007. LNCS, vol. 4462, pp. 229–243. Springer, Heidelberg (2007)

On the Use of RSA Public Exponent to Improve Implementation Efficiency 67

8. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple
side-channel analysis: side-channel atomicity. IEEE Trans. Comput. 53(6), 760–768
(2004)

9. Clavier, C., Feix, B.: Updated recommendations for blinded exponentiation vs.
single trace analysis. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864, pp.
80–98. Springer, Heidelberg (2013)

10. Clavier, C., Feix, B., Gagnerot, G., Giraud, C., Roussellet, M., Verneuil, V.:
ROSETTA for single trace analysis. In: Galbraith, S., Nandi, M. (eds.)
INDOCRYPT 2012. LNCS, vol. 7668, pp. 140–155. Springer, Heidelberg (2012)

11. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal corre-
lation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS
2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010)

12. Coron, J.-S., Giraud, C., Morin, N., Piret, G., Vigilant, D.: Fault attacks and
countermeasures on vigilant’s RSA-CRT algorithm. In: Breveglieri, L., Joye, M.,
Koren, I., Naccache, D., Verbauwhede, I. (eds.) Fault Diagnosis and Tolerance in
Cryptography - FDTC 2010, pp. 89–96. IEEE Computer Society (2010)

13. Couvreur, C., Quisquater, J.-J.: Fast decipherment algorithm for RSA public-key
cryptosystem. Electron. Lett. 18(21), 905–907 (1982)

14. EMV. Integrated Circuit Card Specifications for Payment Systems - Book 2 -
Security and Key Management, June 2008

15. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, p. 251.
Springer, Heidelberg (2001)

16. Garner, H.: The residue number system. IRE Trans. Electron. Comput. 8(6), 140–
147 (1959)

17. Giraud, C.: An RSA implementation resistant to fault attacks and to simple power
analysis. IEEE Trans. Comput. 55(9), 1116–1120 (2006)

18. Joye, M.: Protecting RSA against fault attacks: the embedding method. In:
Breveglieri, L., Gueron, S., Koren, I., Naccache, D., Seifert, J.-P. (eds.) Fault Diag-
nosis and Tolerance in Cryptography - FDTC 2009, pp. 41–45. IEEE Computer
Society (2009)

19. Joye, M., Tunstall, M.: Fault Analysis in Cryptography. Information Security and
Cryptography. Springer, Heidelberg (2012)

20. Joye, M., Yen, S.-M.: The Montgomery powering ladder. In: Kaliski Jr., B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer,
Heidelberg (2003)

21. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

22. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

23. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Ron was wrong, Whit is right. Cryptology ePrint Archive, report 2012/064 (2012).
http://eprint.iacr.org/

24. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smartcards. Springer, New York (2007)

25. Novak, R.: SPA-based adaptive chosen-ciphertext attack on RSA implementation.
In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 252–262.
Springer, Heidelberg (2002)

26. Oracle Corp. Application Programming Interface, Java Card Platform, Version
3.0.4 Classic Edition (2011)

http://eprint.iacr.org/

68 C. Giraud

27. PKCS #1. RSA Cryptography Specifications Version 2.1. RSA Laboratories (2003)
28. Rivain, M.: Securing RSA against fault analysis by double addition chain expo-

nentiation. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 459–480.
Springer, Heidelberg (2009)

29. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

30. Shamir, A.: How to check modular exponentiation. In: Eurocrypt’97 rump session
(1997)

31. Walter, C.D.: Sliding windows succumbs to Big Mac attack. In: Koç, Ç.K.,
Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 286–299. Springer,
Heidelberg (2001)

32. Yen, S.-M., Kim, S., Lim, S., Moon, S.-J.: RSA speedup with residue number
system immune against hardware fault cryptanalysis. In: Kim, K. (ed.) ICISC
2001. LNCS, vol. 2288, pp. 397–413. Springer, Heidelberg (2002)

Common Points on Elliptic Curves:
The Achilles’ Heel of Fault Attack

Countermeasures

Alberto Battistello1,2(B)

1 Cryptography and Security Group, Oberthur Technologies,
4, Allée du Doyen Georges Brus, 33600 Pessac, France

2 Versailles Saint-Quentin-en-Yvelines University, 45 Avenue des Etats-Unis,
78035 Versailles Cedex, France
a.battistello@oberthur.com

Abstract. Elliptic curve cryptosystems offer many advantages over
RSA-like cryptography, such as speed and memory saving. Nonethe-
less the advent of side-channel and fault-injection attacks mined the
security of such implementations. Several countermeasures have been
devised to thwart these threats, so that simple attacks on state-of-the-
art secured implementations seem unlikely. We took up the challenge
and show that a simple fault attack using a very relaxed fault model
can defeat well known countermeasures. After introducing the notion
of common points, we exhibit a new fault-injection attack that breaks
state-of-the-art secured implementations. Our new attack is particularly
dangerous since no control on the injected error is required and only one
fault is sufficient to retrieve the secret.

Keywords: Elliptic curves · Fault attack · Common points

1 Introduction

Elliptic curves cryptosystems (ECC for short) have been introduced indepen-
dently by Koblitz [13] and Miller [17] in 1985. The advantage of ECC over
other cryptosystems like RSA [19] is that they need smaller keys and parame-
ters size to achieve equivalent security bounds. The reason for such bounds is
that ECC security relies on the elliptic curve discrete-log problem (ECDLP for
short) and no polynomial time algorithm exists to solve it. When implemented
on embedded environments, ECC are also subject to other kind of attacks, such
as Side-Channel Attacks [14] (SCA) and Fault Attacks [4] (FA). The aim of
these attacks is to retrieve the secret scalar without having to effectively solve
the underlying ECDLP. On the one hand SCA exploit the information leaked
by the physical interactions of the system with its environment, such as the
power consumption or the electromagnetic radiation. Such attacks allowing the
attacker to recover information on the secret by using only one measurement

c© Springer International Publishing Switzerland 2014
E. Prouff (Ed.): COSADE 2014, LNCS 8622, pp. 69–81, 2014.
DOI: 10.1007/978-3-319-10175-0 6

70 A. Battistello

are called Simple Side-Channel Attacks (SSCA), to be distinguished from Dif-
ferential Side-Channel Attacks (DSCA) [15], where the statistical analysis of
multiple execution leakages is used to retrieve information on the manipulated
data. On the other hand FA aim at disturbing the computation in order to
gain information on the secret values using the erroneous results. For exam-
ple in [4] the authors observe that if one of the two subfield exponentiations
of an RSA-CRT signature is disturbed, the output can be used to produce a
secret factor of the public modulus, thus breaking the cryptosystem. Urging for
new countermeasures, the cryptographic community started to devise numerous
methods to counteract SCA and FA applied on ECC. The basic idea of SSCA
countermeasures is to make the algorithm execution independent of the secret
scalar. Otherwise, DSCA countermeasures aim at randomizing the manipulated
values in order to cancel the correlation of the processed data among different
executions. In the context of ECC, faults attacks seem more tricky to thwart
as the disturbance of almost any parameter of the curve can lead the attacker
to break the system [6]. Among the various countermeasures proposed so far
to counteract parameters disturbance, the most intuitive is to test the integrity
of each parameter [6]. However, a more efficient way to thwart these attacks is
to validate that the used point effectively lies on the curve [2]. Nowadays these
two countermeasures are considered equivalent. Other countermeasures aim to
thwart faults on the secret scalar, for example by testing the result of two redun-
dant computations.

In this paper we introduce the concept of common points to exhibit a new FA
on ECC implementations. This new attack allows to retrieve the secret scalar by
using a single faulted execution. The main advantage of our attack compared to
the other attacks proposed so far is that no control is required on the injected
error. Even if our attack does not always recover the full secret scalar, we show
that each faulted result provides large amount of information on the secret scalar.
With our attack we also prove that the two fault countermeasures presented
above are not equivalent since our attack is not detected by one of them. The
potential of the attack and its very relaxed fault model makes a serious threat
for actual implementations.

The rest of the paper is organized as follows: Sect. 2 introduces elliptic curves
cryptography and related fault attacks and countermeasures. Section 3 intro-
duces the concept of common points and presents our new fault attack on state-
of-the-art secured implementations. Further analysis of our attack versus known
countermeasures is carried out in Sect. 4. Finally Sect. 5 concludes this work.

2 Embedded Elliptic Curve Cryptography

After introducing the required background on elliptic curves, the main attacks
and countermeasures against faults on ECC are discussed.

Common Points on Elliptic Curves 71

2.1 Elliptic Curves

Let K be a field with Char(K) �= 2, 3, and a, b ∈ K. The short Weierstraß form
of an elliptic curve is defined by the following equation:

y2 = x3 + ax+ b (1)

The set of points (x, y) ∈ K × K satisfying Eq. (1), together with the point at
infinity O is denoted E(K). For any point P = (xp, yp) ∈ E(K), the opposite
is defined as −P = (xp,−yp), and P + O = O + P = P . For any two points
P = (xp, yp) and Q = (xq, yq) ∈ E(K), the sum R = (xr, yr) of P +Q is defined
as:

- If P �= −Q then:
{
xr = s2 − xp − xq

yr = s(xp − xr)− yp

with

s =

⎧

⎨

⎩

(yq−yp)
(xq−xp) if P �= Q
(3x2

p+a)

(2yp) otherwise

- If P = −Q then P +Q = P − P = O
The set E(K) with the “+” operation defined above form an abelian group
of neutral element O. Due to security issues, standard elliptic curves are non
supersingular, i.e. 4a3 +27b2 �= 0. The cardinality of the elliptic curve is denoted
#E(K) and for common curves it is often the product of a big prime times a
small cofactor. In the following we will drop the explicit field notation when it
is implicit or when it is not necessary for the given statement.

Scalar Multiplication and ECDLP. The scalar multiplication of the curve
point P by the scalar k ∈ N is denoted [k]P . This is defined as the addition
of the point P to himself k times. The interest of scalar multiplication in cryp-
tography is due to its computational one-wayness. In fact it is easy to compute
the result point Q = [k]P but it is computationally difficult to compute the
integer k knowing Q and P . This problem is known as the ECDLP and it is one
of the fundamental building blocks used to construct cryptographic protocols
on elliptic curves [13,17]. The ECDLP is an interesting problem that challenges
mathematicians from decades. For example, by using the Pollard’s rho or Shanks
“baby-step/giant-step” algorithm, the problem can be solved in time polynomial
on the square root of the biggest factor of the order of the base. For example,
for a curve of order q prime, the complexity of the aforementioned attacks is
O(q0.5).

2.2 Fault Attacks on ECC

Before presenting the main fault attacks published so far, we recall that the
ECDLP can be efficiently solved if the order of the logarithm base is smooth [16].

72 A. Battistello

This can happen for example if the input point does not lie on the curve, as
observed in [1], whose authors suggest that all implementations should verify
that the point lies on the curve (PoC for short) before performing the scalar
multiplication.

The first DFA on elliptic curves was published in [2]. Similarly to [1], the
authors of [2] suggest to fault the input point P after the parameters checking
such that the faulted point P ′ does not lie on the original curve. The attacker
may be able to retrieve information on the secret scalar using the corresponding
faulty output since the curve on which the computation has been done can have
a smooth order. A second attack presented in [2] suggests that by disturbing
intermediate values during the scalar multiplication, one may be able to retrieve
information on the secret scalar. The idea is to guess the produced error value
and a few bits of the secret. The attacker then computes the scalar multiplication
backward up to the fault, corrects the error, and recomputes onward to obtain
the result. If it is the correct result, then it is likely that the guesses were correct.
It is clear that the entropy of the guesses must not be too high in order to
exhaustively test them, thus the attack starts with faults near the end of the
computation, then steps backward as more bits are known. The authors state
that all these attacks can be avoided by PoC testing before and after the scalar
multiplication.

In [3], the authors propose another DFA that targets non adjacent form ECC
implementations. By disturbing the sign of a point during the scalar multiplica-
tion they can retrieve the signed bits of the secret scalar k. As they need several
faulty outputs to mount their attack, they focus on implementations that use the
same secret scalar for all executions. The countermeasure they suggest is called
combined curve check. They build a new curve containing both the given curve
and a smaller one, such that scalar multiplication on the small curve is fast.
Given the result of the scalar multiplication on the combined curve, with a sim-
ple modular reduction they can retrieve the result on both the given curve and
the small one. Thus by executing a second scalar multiplication on the small
curve they can compare the result with the one obtained from the combined
curve and detect faults.

Further analysis of faults on ECC was carried out in [6]. The authors improved
the results of [2] by observing that an unknown fault on one of the coordinates
of the input point produces a wrong curve parameter b which can be retrieved
as a solution of the curve equation with the output point coordinates as known
values. The authors also observed that a fault in the prime p defining the field K

produces a curve where the input point will likely have smooth order, thus break-
ing the security of the cryptosystem. Finally the authors also show that a fault in
one of the public parameters (typically a in Eq. (1)) is likely to transfer the ellip-
tic curve on a new one where the ECDLP is easier to solve. They observe that
by substituting the input and output point coordinates in Eq. (1) the solution of
the obtained system allows the attacker to recover the faulted curve parameters.
The authors thus remark that public parameters must be checked for faults prior
and after the scalar multiplication. They also claim that performing these checks
by using integrity checks or by PoC offer the same security level.

Common Points on Elliptic Curves 73

In Sect. 3 we show that this claim is false by exhibiting an attack that can
break the cryptosystem if the tests are performed by PoC.

3 Our New Fault Attack

This section introduces the concept of common points, and how we use them in a
fault attack to retrieve the secret scalar. The basic idea of our attack is to input
a point that lies on a family of curves that includes a weak one (i.e. a smooth
one). The attacker then forces the computation on the weak curve by means of
a fault injection. She can then use the output to solve the ECDLP and retrieve
the secret.

3.1 Common Points

Definition 1 (Common Point). Let F be a family of elliptic curves, a point
P is a common point for the family of curves F , iff P ∈ E , ∀ E ∈ F .

Example 1 (Common Point). Consider for example Eq. (1) over a field K with
Char(K) �= 2, 3, and let b = g2 ∈ K:

y2 = x3 + ax+ g2 (2)

The family of curves obtained by varying parameter a ∈ K has two common
points, namely the points (0,±g) satisfy the curve equation for any a.

Among the whole family described in Example 1, most of the curves have com-
posite order. Furthermore some of them have smooth order, allowing an attacker
to solve the ECDLP in a reasonable time. Common points are thus contained
in any curve whose b is a quadratic residue for the underlying field. Among the
curves proposed in FIPS 186-4 [10], only P-224 does not, and four out of eight
curves proposed in SECG [21] can be attacked. In the following we present our
new fault attack that makes use of these points.

3.2 Fault Attack Using Common Points

In order to apply our attack it is necessary for the attacker to choose the input
point of the scalar multiplication and to obtain the corresponding result. The
reader will notice that these assumptions are weaker than the ones of [8,12], as
we need no leakage hypothesis nor a particular fault model.

Our attack is divided in four steps as detailed below:

– Step 1: the attacker sends a point P = (0,±g) to the embedded device, and
disturbs the curve parameter a into ã at the beginning of the scalar multipli-
cation.

– Step 2: the device performs the scalar multiplication on the faulted curve
E ′ : y2 = x3 + ã · x+ g2, and return the value Q̃ = [d]P ∈ E ′.

74 A. Battistello

– Step 3: From Q̃ = (xq, yq), the attacker can recover the value ã by solving the
equation y2

q = x3
q + ã · xq + g2.

– Step 4: the attacker can then solve the ECDLP on the curve E ′, which will
work if the order o of Q̃ is smooth.

We remark that in Step 1 the attacker does not need a particular fault model
to perform the attack. Furthermore, when the order of E ′ is smooth, our attack
does involve a single fault, which means that a single, successful execution is
sufficient to completely break the cryptosystem. This property is particularly
useful for two reasons. First of all our attack does not suffer from the fact that
the secret scalar may be freshly regenerated at each execution. Furthermore it
works in environments where the number of executions is limited, while other
attacks that need to be reiterated a considerable number of times like [3,9] may
be thwart.

The simulations carried out in Sect. 3.3 show that the order of E ′ is smooth
45 % of the time. We show in the following that the other 55 % of the results
also provide very useful information on the secret scalar.

Attack Application on Not-So-Smooth Orders. When the order o of Q̃ is
not smooth enough to use square root attacks [18] for instance, the attacker can
still gain information on the secret scalar value. Let us assume that the secret
scalar is fixed for multiple executions. For an order o that contains a big factor of
� bits, the attacker can use Pohlig-Hellman decomposition [16] and retrieve the
secret scalar modulo small factors of size log(o)− � bits on each execution. Thus
by performing the attack on log(o)

log(o)−� executions on average, she can cumulate the
information thanks to the Chinese Remainder Theorem and completely reveal
the secret scalar.

Comparison with Existing Attacks. In the following, we compare the effi-
ciency of our attack with previously published ones [2,3,6,8]. The attack of [6]
uses a fault similar to the one we use to solve the ECDLP, however it is thwarted
by simply testing if the point is on the curve after the scalar multiplication. As
the authors explain in their work, by faulting parameter a into ã, the input point
P does not lie on the curve Ẽ given by the equation:

Ẽ : y2 = x3 + ã · x+ b

There exists instead a value b′ such that P lies on the curve Ẽ ′ defined by:

Ẽ ′ : y2 = x3 + ã · x+ b′

As the curve operation formulae do not involve curve parameter b, the scalar
multiplication is in fact done on Ẽ ′. At the end of the multiplication, the result
point will also lie on Ẽ ′, and thus not satisfies the equation of curve Ẽ . As b has
not been modified, by testing if the result point lies on the curve, the attack
is thwarted. On the contrary, due to the use of a common point, our attack is
not detected by this countermeasure. Indeed the common point P satisfies the

Common Points on Elliptic Curves 75

curve equation for any a. In particular the input point lies on the curve Ẽ , thus
the scalar multiplication is performed on it. This implies that the result of the
multiplication Q̃ lies on the same curve. Thus our attack is not detected by
testing if P̃ or Q̃ satisfies the equation for Ẽ if a is not reloaded before the final
PoC test.

The fault attacks of [2,3] need the faulted result of several executions to
retrieve the secret scalar value. Hence, implementations using random scalar
nonces, or with a limited number of executions may not be vulnerable to them.
The PoC countermeasure suggested by [2] does not detect our attack as explained
above, and the verification countermeasure suggested in [3] is not effective as we
do not disturb the scalar multiplication.

The authors of [8] use a fault to drop the regular input point into a weaker
curve (characterized by a wrong b′) where the faulted point will leak information
by SSCA. However they need strong hypothesis on the fault model and on the
leakage for the attack to work. As a common point lies on all curves with the same
b, the fault model required by our attack is very relaxed. Indeed, any random
fault on the parameter a provides information on the secret scalar. We insist
on the fact that our attack needs no SCA hypothesis, which make it work on
implementations that do not leak information if the point at infinity is handled
during the multiplication, contrary to the attack presented in [8].

Attack Scenario. Unfortunately, to the best of our knowledge the attack sce-
nario that we describe in this paper is not applicable to any protocol. However
our context is similar to the one of [2] Sect. 4.1 or [11] Sect. 3 for example, where
the attacker can choose the input point P , and get the output Q of the scalar
multiplication. While no actual protocol is concerned, we stress that embedded
cryptographic developers should choose their countermeasures in order to avoid
the attack that we present here, and new cryptographic protocols should be
conceived in order to avoid falling into our attack scenario.

3.3 Simulations

In order to validate the efficiency of our attack, simulations have been performed
on Pari/gp software [22] by using the standard elliptic curve P-192 proposed in
FIPS 186-4 [10].

The attack was mounted by using input point P = (0,
√
b). Afterwards, one

byte of the value a was disturbed with an error before the multiplication. For
each byte j of a, and for each value e between 1 and 28−1, the error was simulated
by assigning a ← a ⊕ 28∗je. The scalar multiplication Q̃ = [k]P was computed
for a random value k and the faulty output point Q̃ was returned. Afterwards
for each output point the cardinality o of the new curve was computed by using
the Pari/gp implementation of the SEA algorithm [20].

In order to study the probability of revealing the whole secret k with a single
fault, the size of the order o was collected for all faulted executions. At most
log2(o) bits of information can be obtained on the value k for a point Q̃ resulting
from a faulted scalar multiplication. Thus the secret k can be fully revealed only

76 A. Battistello

Fig. 1. Outcome probability for each bit-size of the result point order.

if the bit-size of o and k are similar. Figure 1 shows the occurrence probability
of the different order sizes obtained during the campaign. From the results it is
clear that once the value of k is retrieved with one application of our attack, the
remaining secret bits can be obtained by brute force since at most 18 bits are
missing.

The second analysis concerns the probability that the resulting ECDLP is
smooth enough to be solved by modern computers. For each result we factored
the cardinality of the faulted curve to extract the bit-size of its biggest prime fac-
tor. Figure 2 displays the probability that the faulted curve cardinality contains
a biggest factor of a certain bit-size. To better understand this result we plot in
Fig. 3 the cumulative outcome probability of the previous distribution. In other
words Fig. 3 shows the probability that the biggest factor of the faulted curve
cardinality is smaller than a certain bit-size. We assume that the computation
limits of modern parallel Pollard’s rho implementations are bound to 112 bits
complexity [5], thus as “smooth” orders we consider orders whose biggest prime
factor is smaller than 112 bits. From the experiments it can be observed that the
probability to obtain sufficiently small sizes for the biggest factor exceeds 45 %.

Finally, in order to obtain information on the time required to solve the log-
arithm, the attack was mounted on faults that produced a smooth order result.
It has been chosen to mount the ECDLP on results whose order biggest factor
was 42, 52, and 62 bits. These sizes has been chosen starting by the smallest
obtained, in order to speed up the computation time to collect more results.
The ECDLP was solved by using Pari/gp library function elllog without opti-
mization. The computation times were evaluated on a 3 .10 GHz personal com-
puter with 8 GB RAM. The average time was computed over 500 executions for
the 42-bit ECDLP, over 205 for the 52-bit, and over 4 for the 62-bit ECDLP.
For random values of the secret key k the results are shown in Table 1, for exam-
ple for a curve whose order biggest factor is 42 bits, the required time is 53 s on
average. Thus it is clear that our attack is definitely practical on smooth order
curves.

Common Points on Elliptic Curves 77

Fig. 2. Outcome probability for the bit-size of each result point order greatest factor.

Fig. 3. Cumulative outcome probability for each point order biggest factor bit-size.

4 Countermeasures

Three conditions are necessary for our attack to reveal the secret scalar, namely
to control the input point, to know the result of the scalar multiplication, and
to have a quadratic residue as parameter b of the curve. In the following, various
state-of-the-art countermeasures are analyzed. In addition to standard FA coun-
termeasures we also focus on an SCA countermeasure which provides a good
level of resistance against our attack. Finally, Table 2 resumes the results of the
countermeasure analysis provided in this section.

4.1 Initial and Final Checks

Intuitively, initial and final parameters checking could thwart our attack, as
the curve parameters are disturbed, and thus no more consistent. As already
remarked in [8], the initial checks are ineffective if the fault is injected after the

78 A. Battistello

Table 1. Average time to solve the ECDLP for different bit-sizes of the biggest factor
of the order of the point by using NIST P-192 as original curve.

Biggest factor bit-size #Tests Avg time

42 500 53 s

52 205 20.6 min

62 4 19.21 h

countermeasure application. However for our attack to work, the adversary needs
to retrieve the output, which is not returned if the final checks fail. The authors
of [6], suggest that parameters checking can be performed by means of integrity
check or by PoC testing, and that the two mechanisms offer the same security
level. This work shows that this claim is false if parameter a is not reloaded
from memory before the final checks. Indeed it is straightforward to see that the
initial PoC does not detect the disturbance of a due to the fact that the input
common point lies also on the disturbed curve. Furthermore, if a is not reloaded
from memory before the final PoC, as the scalar multiplication is performed on
the faulted curve, the output point Q̃ lies on it. Thus the final PoC succeeds and
the result is output.

4.2 Combined Curve

The countermeasure proposed in [3] against the sign change attack is applicable
to curves over prime fields. The authors suggest to generate a random prime t
and a new random curve Et := E(Ft). They obtain then a “combined” elliptic
curve Ept := E(Zpt) which contains Et and the original curve. By performing the
scalar multiplication on Ept and Et they can then verify the result by using a
modular reduction. This countermeasure is ineffective against our attack as we
do not disturb the scalar multiplication.

4.3 Point Blinding

Intuitively a DSCA countermeasure hardly thwarts a fault attack, however the
second countermeasure proposed in [7] performs well against faults, as remarked
in [8]. The author of [7] suggests to thwart DSCA by pre-computing S = [k]R for
a random point R, then computing Q = [k](P+R) and returning Q−S. Then at
each execution a random bit b is generated and the random points are updated
with R ← (−1)b[2]R and S ← (−1)b[2]S. Such a countermeasure counteracts
efficiently our attack if the attacker has no control on the fault. However, if she
can inject the same error twice, such a countermeasure can be bypassed. Indeed,
let us assume that for two consecutive executions the bit b equals 0 (the case
b = 1 is similar). For the same fault injected in the two executions she will
thus obtain two results: Q1 = [k](P + 2R)− [2]S and Q2 = [k](P + 4R)− [4]S.
As the value S is pre-computed, the scalar multiplications [2]S and [4]S are

Common Points on Elliptic Curves 79

done over E , while the computation of [k](P + [j]R) for j = 1, 2 is done over Ẽ .
Furthermore if the fault is injected before the update of R and S, the doubling
of these two values is also done over Ẽ . The attacker thus computes over Ẽ , the
value Q2 − [2]Q1 = [k]P + [4k]R − [4]S − [2k]P − [4k]R + [4]S, by simplifying
she obtains Q2− [2]Q1 = [k](P − [2]P), and thus she can mount the ECDLP on
the faulted curve as the result is independent of R.

Table 2. Countermeasures effectiveness against our new attack. For the point blinding
countermeasure we assume that the same fault can be injected in two executions.

Countermeasure Result

PoC before multiplication Ineffective

Integrity check before multiplication Ineffective

PoC after multiplication Ineffective

Integrity check after multiplication Effective

Combined curve Ineffective

Point blinding Ineffective

5 Conclusion

In this paper we introduce the concept of common points, i.e. points that lie on
a whole family of curves, which have never been remarked before. Then we show
how to exploit their properties in our new attack to thwart state-of-the-art secure
implementations with a single fault. By forcing the computation to be performed
on another curve of the family, an attacker can try to solve the ECDLP on this
new curve which is expected to be weaker than the standard one. The use of
common points overcome the drawbacks of other known attacks, such as the
need for high accuracy on the injected error. Furthermore it was claimed that
one of the most complete still less expensive solutions to thwart fault attacks
is to test that the used point lies on the curve. Our new attack shows that
implementations relying on this countermeasure are in fact in a great danger.
Simulations of our attack show that it is practical on most standard curves, and
that the probability of success for a single execution exceeds 45 %. By analyzing
state-of-the-art SCA, DSCA and FA countermeasures, we show that our attack
is thwart only by verifying the integrity of the curve parameter a at the end
of the scalar multiplication. Last but not least, we exploited common points to
mount a very efficient fault attack but one should wonder if there is no other
way to make the most of these points by producing other kind of attacks or
countermeasures.

Acknowledgment. I am grateful to Christophe Giraud for the many fruitful discus-
sions and the time he spent to help me writing this paper. I would also like to thank

80 A. Battistello

Guillaume Barbu, Laurie Genelle, Emmanuelle Dottax, Franck Rondepierre and the
anonymous reviewers of COSADE 2014 for their helpful comments.

References

1. Antipa, A., Brown, D., Menezes, A., Struik, R., Vanstone, S.: Validation of elliptic
curve public keys. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 211–
223. Springer, Heidelberg (2002)

2. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146.
Springer, Heidelberg (2000)

3. Blömer, J., Otto, M., Seifert, J.-P.: Sign change fault attacks on elliptic curve
cryptosystems. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, J.-P. (eds.)
FDTC 2006. LNCS, vol. 4236, pp. 36–52. Springer, Heidelberg (2006)

4. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997)

5. Bos, J.W., Kaihara, M.E., Kleinjung, T., Lenstra, A.K., Montgomery, P.L.: Solving
a 112-bit prime elliptic curve discrete logarithm problem on game consoles using
sloppy reduction. IJACT 2(3), 212–228 (2012)

6. Ciet, M., Joye, M.: Elliptic curve cryptosystems in the presence of permanent and
transient faults. Des. Codes Crypt. 36(1), 33–43 (2005)

7. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

8. Fan, J., Gierlichs, B., Vercauteren, F.: To infinity and beyond: combined attack
on ECC using points of low order. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 143–159. Springer, Heidelberg (2011)

9. Faugère, J.-C., Goyet, C., Renault, G.: Attacking (EC)DSA given only an implicit
hint. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 252–274.
Springer, Heidelberg (2013)

10. FIPS PUB 186–4. Digital Signature Standard. National Institute of Standards and
Technology, July 2013

11. Fouque, P., Lercier, R., Réal, D., Valette, F.: Fault attack on elliptic curve mont-
gomery ladder implementation. In: Breveglieri, L., Gueron, S., Koren, I., Naccache,
D., Seifert, J.-P. (eds.) Fault Diagnosis and Tolerance in Cryptography - FDTC
2008, pp. 92–98. IEEE Computer Society (2008)

12. Goubin, L.: A refined power-analysis attack on elliptic curve cryptosystem. In:
Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 199–211. Springer, Heidelberg
(2002)

13. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
14. Kocher, P., Jaffe, J., Jun, B.: Introduction to differential power analysis and related

attacks. Technical report, Cryptography Research Inc. (1998)
15. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)

CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)
16. Lim, C.H., Lee, P.J.: A key recovery attack on discrete log-based schemes using a

prime order subgroup. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 249–263. Springer, Heidelberg (1997)

17. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

Common Points on Elliptic Curves 81

18. Pollard, J.: Monte Carlo methods for index computation (mod p). Math. Comput.
32, 918–924 (1978)

19. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

20. Schoof, R., Schoof, P.R.E.: Counting points on elliptic curves over finite fields. J.
Théor. Nombres Bordeaux 7(1), 219–254 (1995)

21. Standards for Efficient Cryptography Group (SECG). SEC 2 Ver 2.0 : Recom-
mended Elliptic Curve Domain Parameters. Certicom Research, January 2010

22. The PARI-Group. Pari/gp, version 2.5.3, Bordeaux (2013). http://pari.math.
u-bordeaux.fr/

http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/

On Adaptive Bandwidth Selection
for Efficient MIA

Mathieu Carbone1,2(B), Sébastien Tiran2, Sébastien Ordas2, Michel Agoyan1,
Yannick Teglia1, Gilles R. Ducharme3, and Philippe Maurine2,4

1 ST Microelectronics - Advanced System Technology,
Avenue Célestin Coq, 13790 Rousset, France

{mathieu.carbone,michel.agoyan,yannick.teglia}@st.com
2 LIRMM - Laboratoire d’Informatique de Robotique et de Microélectronique

de Montpellier, 161, Rue Ada, 34090 Montpellier Cedex 5, France
{sebastien.tiran,sebastien.ordas}@lirmm.fr

3 EPS - Institut de Mathématiques et de Modélisation de Montpellier 2, Place
Eugène Bataillon, Université Montpellier 2, 34095 Montpellier Cedex 5, France

gilles.ducharme@univ-montp2.fr
4 CEA - Centre Microélectronique de Provence Georges Charpak,

880, Route de Mimet, 13541 Gardanne, France
philippe.maurine@cea.fr

Abstract. Recently, a generic DPA attack using the mutual informa-
tion index as the side channel distinguisher has been introduced. Mutual
Information Analysis’s (MIA) main interest is its claimed genericity.
However, it requires the estimation of various probability density func-
tions (PDF), which is a task that involves the complicated problem of
selecting tuning parameters. This problem could be the cause of the lower
efficiency of MIA that has been reported. In this paper, we introduce an
approach that selects the tuning parameters with the goal of optimizing
the performance of MIA. Our approach differs from previous works in
that it maximizes the ability of MIA to discriminate one key among all
guesses rather than optimizing the accuracy of PDF estimates. Applica-
tion of this approach to various leakage traces confirms the soundness of
our proposal.

1 Introduction

Adversaries aim at disclosing secret information contained in integrated systems
which are currently the main vector of data exchanges. One approach is Side
Channel Analysis (SCA), which tries to reveal cryptographic keys by exploit-
ing the information in one or several physical leakages of cryptographic devices,
especially power consumption and electromagnetic emanations. In the seminal
paper of [1], the difference of means was used as a distinguisher to identify from
power consumption leakage the information about the key. Since then, more
efficient distinguishers have been considered, notably Pearson’s correlation coef-
ficient [2], leading to a SCA referred to as CPA, and the Mutual Information

c© Springer International Publishing Switzerland 2014
E. Prouff (Ed.): COSADE 2014, LNCS 8622, pp. 82–97, 2014.
DOI: 10.1007/978-3-319-10175-0 7

On Adaptive Bandwidth Selection for Efficient MIA 83

(MI) index, which appears as a promising alternative because it is capable of cap-
turing any type of association. Mutual Information Analysis (MIA) in SCA was
introduced in [3,4] and much work has been devoted to investigate its potential
in attacking cryptographic implementations, featuring various countermeasures
and background noises in leakage traces [5,6]. To summarize, MI was shown gen-
erally less efficient than Pearson’s coefficient when the leakage function is nearly
linear, as is usually the case in unprotected devices [4,7]. However, MIA appears
promising when an adequate leakage profiling is a priori challenging [8,9] or for
attacking some protected devices [5,6,9,10].

The main difficulty in implementing a MIA is that, in contrast to Pear-
son’s coefficient which is easily estimated via sample moments, the estimation
of the MI index requires the estimation of a number of probability distribution
functions (PDF) and this task is, both theoretically and practically, a difficult
statistical problem. Further, it has been stated [6,11,12] that the choice of a
good PDF estimator is crucial for the efficiency of a MIA. Thus, a variety of
parametric (cumulant [9] or copula [13]) and nonparametric estimators (his-
tograms [4], splines [14] and kernels [3,8]) have been explored. Among the non-
parametric methods, Kernel Density Estimators (KDE) [15,16] have emerged
in the statistical literature as one of the most popular approaches, in view of
their many appealing theoretical properties. However, KDE involves a major
technical difficulty because it requires the choice of a crucial tuning parameter,
referred to as the bandwidth (see Sect. 3). There exists formulas for choosing
in some optimal fashion this bandwidth for the problem of estimating a PDF.
Unfortunately, formulas for the problem of estimating the MI index have not
yet been developed. Thus, most MIA based on KDE (i.e. KDE-MIA) have taken
the route of estimating the PDF using these formulas, the logic being that if
all PDF are well estimated, plugging these estimates in the expression of the
MI index should yield a good estimator. But these formulas, beside being based
on an asymptotic argument (optimizing the trade-off between asymptotic bias
and variance), are averages over the whole range of the PDF. Moreover they
involve unknown quantities that in turn must be estimated. In practical situa-
tions, there is no guarantee that such average estimated values will yield globally
good PDF estimators and it is often recommended that they be used as starting
points in the estimation process. Thus, applying them in an automatic fashion
amounts to using an unsharpened tool. All this is further compounded by the
fact that in computing the MI index, many different PDF need to be simulta-
neously estimated and integrated over their range. As stated by [12], this may
help inexplaining the often lower efficiency of a standard MIA, as compared to
CPA.

In this paper, we develop a new approach that selects the bandwidth in KDE-
MIA from the point of view of optimizing the quality of the attack regarding two
criteria, namely efficiency and genericity, instead of aiming at the quality of the
PDF estimates. Applying our approach to some data sets, the new MIA, referred
to as ABS-MIA (ABS for Adaptive Bandwidth Selection), is much better than
the standard MIA and can even compete favorably with CPA.

84 M. Carbone et al.

The paper is organized as follows. Section 2 briefly recalls the modus operandi
of SCA attacks and introduces the basics of MIA. Section 3 presents the KDE.
Section 4 motivates and presents our proposal. This is then applied in Sect. 5 to
some data. Section 6 concludes the paper and discusses some extensions.

2 Side Channel Analysis: An Overview

SCA is based on the fact that the physical leakage emanating from secure devices
contains information on secret keys, and that an adversary can retrieve such keys
by relating this information to the known course of the cryptographic device. In
practice, this is done by relating the leakage to intermediate values computed by
the target device which depend on parts (e.g. sub-keys) of the secret key. The
set K of all candidate sub-keys k is assumed known and not too large. The secret
sub-key targeted is noted κ. The relation is typically achieved in three steps.

2.1 Device Observation

To implement a SCA, an adversary first observes the target device by feeding it
with known messages m in a set M, while collecting the corresponding leakage
traces {o(m) = (o1(m), . . . , oT (m))} as vectors representing the evolution of
the physical leakage at T time points. Thus, the adversary first observes O =
{o(m),m ∈M}.

2.2 Device Activity Modeling

Then the adversary measures a proxy for the electrical activity of the device.
A target intermediate value of w bits manipulated by the device is chosen and
its values are recorded for each possible combination of candidate sub-keys k
and messages m.

Then, for each candidate sub-key k ∈ K, the adversary splits the intermedi-
ate values into several clusters with similar electrical activity, using a selection
function L(m, k) = v ∈ V (typically the Hamming Weight (HW) or Hamming
Distance (HD)). For each v ∈ V, the groups Gk(v) = {(m, o(m)) ∈ M × O |
L(m, k) = v} are formed and collected to give a partition P(k) = {Gk(v), v ∈ V}
of M×O.

Note that there are several ways to manipulate the intermediate values. For
example, one could work at the word level or at the bit level. For details, see
Appendix A.

2.3 Estimation of κ

The final step of a SCA consists in processing the P(k) to get an estimate κ̂ of
κ. This is done through a distinguisher. In CPA, the distinguisher is Pearson’s
correlation coefficient: at each time point t ∈ {1, . . . , T} and for each candidate

On Adaptive Bandwidth Selection for Efficient MIA 85

sub-key k ∈ K, its value rk(t) for the data in {(L(m, k), ot(m)),m ∈M} is com-
puted. Setting Rk = maxt∈{1,...,T} rk(t), κ is estimated by κ̂ = arg maxk∈KRk.
The rationale is that when k = κ, the grouping of the traces induced by L(·, k)
could show a strong enough linear association to allow distinguishing the correct
sub-key from incorrect candidates. CPA is most fruitful when the data points
{(L(m,κ), ot(m)),m ∈M} exhibit a linear trend.

In MIA, the MI index is used. In the context considered here, where the
random vector (X,Y) is hybrid, that is X is discrete while Y is continuous with
support SY , the theoretical version of this index is defined as

MI =
∑

x

l(x)
∫

SY

f(y|x) log
f(y|x)
g(y)

dy, (1)

where f(y|x) is the conditional (on X) PDF of Y while g(y) (resp. l(x)) is the
marginal PDF of Y (resp. X)1 and the symbol

∑

x refers to a sum taken over
values x of X such that l(x) > 0. We have MI ≥ 0 and = 0 if and only if X and
Y are statistically independent. There are other equivalent formulas defining the
MI index, notably

MI = H(Y)−
∑

x

l(x)H(Y |x) (2)

= H(Y)−H(Y |X), (3)

where H(Y) = − ∫
SY

g(y) log g(y)dy is the (differential) entropy of random vari-
able Y and similarly H(Y |x) = − ∫

SY
f(y|x) log f(y|x) dy.

Specializing formula (3), MIA can be expressed as computing at each time
point t ∈ {1, . . . , T} and for each sub-key k ∈ K, the quantity

MIk(t) = H(ot(m))−H(ot(m)|L(m, k)). (4)

The correct sub-key κ should satisfy

κ = arg max
k∈K

{

max
t∈{1,...,T}

MIk(t)
}

, (5)

and if M̂Ik(t) is an estimate of MIk(t), an estimate κ̂ of κ is obtained as

κ̂ = arg max
k∈K

{

max
t∈{1,...,T}

M̂Ik(t)
}

. (6)

The main difficulty in implementing a MIA is in estimating the valuesMIk(t).

1 Formally l(x) is a probability mass function (PMF) because X is discrete. To simplify
notation, we use the generic acronym PDF.

86 M. Carbone et al.

3 Estimating a PDF

Suppose a sample of independent copies {(Xn, Yn), n = 1, ..., N} of (X,Y) is at
disposal. The problem of estimating the MI index (2) requires estimators of the
entropies H(Y) and H(Y | x), which in turn requires estimators of the PDF g(y)
and f(y|x). As stated earlier, estimation of these underlying PDF is a difficult
statistical problem.

In general, a PDF estimator must offer a good trade-off between accuracy
(bias) and variability (variance). In this section, we present the KDE. For the
interested reader, details about other nonparametric methods (histogram or B-
spline) can be found in [4,14]. Note that, for simplicity, we restrict attention to
the case of univariate PDF.

The kernel method uses a function K(·), referred to as the kernel, in con-
junction with a bandwidth h > 0. The KDE of g(y) is then

ĝKDE(y) =
1
N

N∑

n=1

Kh (y − Yn) , (7)

where Kh(y) = h−1K(y/h). Regarding the kernel, classical choices are the
Gaussian function: K(y) = 1√

2π
e−y2/2 or the Epanechnikov function: K(y) =

3
4 (1− y2) for |y| ≤ 1, but in general, this choice has less impact on the estimator
than the bandwidth, which is critical in controlling the trade-off between bias
and variance. A huge literature, over-viewed in [17], has been devoted to choos-
ing this tuning parameter, and the expression of an optimal (in an asymptotic
and global mathematical sense) bandwidth has been obtained. A relatively good
estimator of this optimal bandwidth is obtained by Silverman’s rule [18], which,
for Epanechnikov’s kernel, is

hS = 2.34 σ̂N−1/5, (8)

where σ̂ the sample standard deviation of the data {Yn, n = 1, ..., N}. From (2),
H(Y) can be estimated by

HKDE(Y) = −
∫

SY

ĝKDE (y) log ĝKDE(y) dy, (9)

and similarly

HKDE(Y |x) = −
∫

SY

f̂KDE(y|x) log f̂KDE(y|x) dy, (10)

while l(x) can be estimated by Nx/N where Nx =
∑N

n=1 I{Xn = x} where
I{A} = 1 if event A is realized and 0 otherwise.

At this stage, another hurdle is encountered because the above computations
require integration. To reduce the computational cost, one can choose points
Q = {q0 < . . . < qB} (referred to as query points) and estimate H(Y) by

H∗
KDE(Y) = −

B∑

b=1

ĝKDE(qb) log ĝKDE(qb)(qb − qb−1), (11)

On Adaptive Bandwidth Selection for Efficient MIA 87

and similarly with H∗
KDE(Y |x) in place of (10). If there exists computational

constraints, a small number of query points in Q will be preferred, but then they
be properly chosen to provide mathematical accuracy of the integral, a problem
for which various solutions exist, for example via the rectangular method of
(11) or more sophisticated quadrature formulas. Accuracy also depends on the
number of these query points B and can be made arbitrarily good by increasing
B, at the expense of computational cost. We have taken the strategy of choosing
these query points systematically, along a grid covering all the sample points,
whose coarseness is chosen depending on the available computing power.

We stress that Silverman’s rule has been developed with the view of get-
ting a globally good estimate of a PDF. There are no guarantees however that
the formula yields a good bandwidth for estimation of complex functionals as
the MI index, and this is a problem that requires further theoretical work in
mathematical statistics. In the next section, we present our proposal to address
this problem in the context of a SCA, where subject matter information allows
another solution.

4 Setting the Tuning Parameters of KDE-MIA:
Bandwidth and Query Points

To show the effect of various choices of bandwidth and query points on KDE-
MIA, a small simulation study with synthetic data was conducted.

Ten thousand pairs (HW,L) were drawn from the following non-linear leak-
age function with probability 0.5 either −0.9017+0.009 ·HW −0.0022 ·HW 2 +ε
or −0.9017 + ε, where ε ∼ N(0, 0.005). The values of HW were independently
computed from intermediate values of four independent binary (i.e. with range
{0, 1}) random variables. We used here synthetic data so that the exact value
of the MI index (= 0.0312) could be computed. This leakage model is inspired
from the actual EM data considered in Sect. 5.

Figure 1 shows the results of estimating the MI index as the bandwidth h and
the number of equispaced query points are changed. As expected, Silverman’s
rule yields a good estimate of the actual MI index when Q contains a reasonable
number of points (e.g. ≥16).

Note also that as the bandwidth is increased, the bias of the MI estimator
increases (hence its variance decreases) as the estimator (i.e. MI) decays to zero.
This is explained by the fact that, as h increases, all KDE get oversmoothed and
converge to the same function that resemble the initial kernel spread over SY ,
with the entropies converging to the same value and the MI index vanishing.

All this dovetails nicely with intuition and the admonishments in almost all
publications on MIA that, in order to have a good estimator of the MI index,
one should use adequate PDF estimators.

However, this does not guarantee maximal efficiency of the MIA. Based on
real data, Fig. 2 shows surprisingly that increasing the bandwidth results in bet-
ter attacks, in terms of partial Success Rate (pSR). This behavior was replicated

88 M. Carbone et al.

Fig. 1. Behavior of the estimator of the MI index as a function of the number of query
points and with bandwidth values h. (hS = 0.003)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
0

0.2

0.4

0.6

0.8

1

Number of traces

pS
R

h
silverman

h increases

Fig. 2. Partial Success Rate on 1st Sbox at the last round of AES from the publicly
available traces of DPAContestV2 [19] using the HD model at the word level.

with other data sets and suggests that good PDF estimation does not necessar-
ily translate in efficiency of the attack, where larger bandwidths, and smoother
PDF estimators, seem to yield better results.

It is this counterintuitive behavior that has led to the realization that the
bandwidth could be seen, not as a nuisance parameter to be dealt with in a
statistical estimation procedure, but more profitably as a lever that could be
used to fine-tune a SCA. Note that such a lever does not exist in standard CPA
and arises only with more complex distinguisher.

Our Adaptive Bandwidth Selection (ABS) procedure explicitly exploits the
fact that there exists exactly one correct sub-key κ. For all other k ∈ K, there
should be statistical independence between the intermediate value and the leak-
age, so that MIk = 0 when k �= κ while MIκ > 0 (for simplicity, we suppress

On Adaptive Bandwidth Selection for Efficient MIA 89

the time point t ∈ {1, . . . , T} from the notation because we consider only one
point of leakage). We consider the average distance to the rivals instead of the
second best rival to eliminate ghost peak effects. Thus, an alternate expression
to (5) is

κ = arg max
k∈K

{

MIk −MI−k

}

, (12)

where MI−k denotes the mean of all the MI values except MIk.
Now, using KDE, let M̂Ik(h) be an estimator of MIk using the bandwidth

h in all PDF involved in (2). The empirical version of (12) leads to the first
estimator

κ̂ = arg max
k∈K

{

M̂Ik(h)− ̂MI−k(h)
}

, (13)

where ̂MI−k(h) stands for the mean of all estimators except M̂Ik(h). At this
stage, the value h is still unused. The above suggests choosing this value to
facilitate the identification of κ. But, as noted earlier, when h increases all PDF
in (2) are oversmoothed (so that all M̂Ik(h) decay to zero, albeit at a different
rate for M̂Iκ(h). This suggests normalizing expression (13) and leads to the
consideration of

κ̂ = arg max
k∈K

⎧

⎨

⎩
max
h>0

⎡

⎣
M̂Ik(h)− ̂MI−k(h)

̂MI−k(h)

⎤

⎦

⎫

⎬

⎭
(14)

as an estimator of κ. The value of h where the inner max operator is attained
will be noted hABS .

Some computational and statistical comments are in order at this stage. First,
even when MIk = 0, M̂Ik(h) ≥ 0 (e.g. is upwardly biased) so that the denom-

inator ̂MI−k(h) is almost surely >0; this eliminates the risk of indeterminacy.
Second, the estimator M̂Iκ(h) will tend to be greater than M̂Ik(h) when k �= κ,
in the sense that Prob(M̂Iκ(h) > M̂Ik(h)) will be high. Simple algebra shows
that the term in bracket in (14) should then be in the interval [−1, 0] with high
probability, whereas when k = κ, this term should tend to be positive, thus
allowing a good probability of discrimination for κ. The following maximization
on h aims at making this discrimination independent of the choice of h and is an
automatic bandwidth selection procedure targeting the goal of getting a good
estimate of κ, in contrast to Silverman’s rule that aims at getting good esti-
mates of the PDF involved in MIk. The maximization also has the side effect
of smoothing the quirks that could occur in the individuals estimated PDF, and
thus in the resulting MIk, with a single value of h. Finally, the smoothness of
M̂Ik(h) as a function of h allows to evaluate the max operator over a (finite to
avoid trivial problems) grid of properly chosen h values ranging from some point
in the neighborhood of the value hS to some large multiple of this value, and
this accelerates the computation of κ̂. In practice, (14) is implemented as

90 M. Carbone et al.

κ̂ = arg max
k∈K

⎧

⎨

⎩
max
h∈I

⎡

⎣
M̂Ik(h)− ̂MI−k(h)

̂MI−k(h)

⎤

⎦

⎫

⎬

⎭
, (15)

where I = {hi}1≤i≤H a set of H ≥ 2 bandwidths.
From an engineering point of view, we can see the action (via the value of

h) of (14) as a focus adjustment to visualize a set of K pixels (i.e. K = 256
in the case of the MI index associated with each of the 256 key assumptions in
the case of AES). The numerator allows to highlight a single pixel (a single key
guess) while the denominator makes uniform the background of the picture, i.e.
standardizing the estimated MI values associated with the remaining guesses.

To get some feeling about the behavior of our approach, we illustrate its
action with real data. We consider the 1st Sbox at the last round of AES from
the publicly available traces of the DPAContestV2 [19] with a HD model at the
word level. It turns out that hABS = 1.8 > hS = 0.17 (Volt), so that our PDF
estimators are smoother.

Figure 3 shows the action of our ABS criterion. The top panel gives the term
in brackets of (14) for the 256 key guesses using hS . The bottom panel shows the
same with hABS . In both cases, the correct sub-key value (κ = 83), is disclosed
by MIA after the processing of all traces. However, for hS , the margin with the
second sub-key guess is relatively small while being much larger using hABS .

50 100 150 200 250
−1

−0.5

0

0.5

1

N
or

m
al

iz
ed

 A
B

S
 v

al
ue

s

Key guesses

Correct sub−key Nearest challenger

50 100 150 200 250
−1

−0.5

0

0.5

1

N
or

m
al

iz
ed

 A
B

S
 v

al
ue

s

Key guesses

Fig. 3. Values of the term in brackets in (14) for hS (top panel) and hABS (bottom
panel) for the 256 key guesses after processing all DPAContestV2 traces with HD model
at word level.

On Adaptive Bandwidth Selection for Efficient MIA 91

100 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
0

10

20

30

40

50

60

Number of traces

R
el

at
iv

e
M

ar
gi

n
(%

)

h
ABS

h
S

Fig. 4. Evolution of the relative margins (%) for hS and hABS with the number of
processed DPAContestV2 traces with HD model at word level.

Thus, the maximizing step over h reduces the impact of ghost peaks and allows
a better discrimination of the correct sub-key.

Figure 4 presents another view sustaining this behavior. It reports the relative
margin (%) of the best (correct) sub-key with respect to the second (wrong) best
sub-key guess, i.e. the difference between the estimated MI for the correct sub-
key and the highest MI value among wrong sub-keys, during each step of the
attack for hABS and hS . Again, the approach based on hABS is more effective
at reducing ghost peaks.

We close this section by noting that the principle embodied in (14) is conso-
nant with the idea mentioned in [13] who suggest detecting outlier behavior of
the correct key to perform successful recoveries. Also, when analysing a set of
traces over many time points t ∈ {1, . . . , T}, in (15), the maxt∈{1,...,T} operation
should be computed after maxh∈H (to optimize the extraction of information at
each leakage point), with the result being the operand of arg maxk∈K.

5 Experimental Results

In this section, we further compare the performance of our ABS-MIA, to MIA
using hS , referred to as S-MIA. During this evaluation, CPA was also computed
and used as a benchmark regarding three main criteria:

1. Efficiency, as measured by the number of traces to reach a target success rate
[20].

2. Genericity, the ability of a SCA to be more or less successful under a unknown
leakage model.

3. Computational burden.

Comparisons were conducted according to two scenarii

1. Bit level (multi-bit).
2. Word level.

92 M. Carbone et al.

100 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
0

0.2

0.4

0.6

0.8

1

Number of traces

pS
R

100 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
0

0.2

0.4

0.6

0.8

1

Number of traces

pS
R

CPAmb
ABS−MIAmb
S−MIAmb

CPAwd
ABS−MIAwd
S−MIAwd

hABS

hABS

hS

hS

Fig. 5. Partial Success Rates (pSR) evaluated on the 1st Sbox at the last round of the
AES with the DPAContestV2 traces over two scenarii: ‘mb’ (top) and ‘wd’ (bottom).
The HD model was considered.

To distinguish between these scenarii, ‘mb’ and ‘wd’ suffixes are used in the
remainder of the paper (see Appendix A for details).

5.1 ABS-MIA Efficiency

The attacks were conducted with the traces of the DPAContestV2 [19] at the
same fixed time point chosen in Sect. 4. Again, we focused on the 1st Sbox at
the last round of the AES. We used both the Gaussian and the Epanechnikov
kernel but report only on the latter as both give very similar results. For the
estimation of the MI index, a grid of 128 equidistant query points was taken to
cover the peak-to-peak amplitude of traces (fixed by the choice of caliber and
sensitivity during measurements) of the analog-to-digital converter of the oscil-
loscope (with a 8-bit resolution). Efficiency was measured by Success Rate (SR)
following the framework in [20]. This metric has been sampled over 50 indepen-
dent attacks to obtain an average partial Success Rate (pSR). The attacks were
conducted with the HD model. Figure 5 illustrates the promising features of our
approach. In all scenarii, ABS-MIA requires smaller number of measurements
than S-MIA, demonstrating the improvement. More importantly, we observe
that ABS-MIAmb compares favorably with the very efficient CPAwd. To sus-
tain these results, we carried out CPA, ABS-MIA and S-MIA on a different data
set of 10000 EM traces collected above a hardware AES block, mapped into an

On Adaptive Bandwidth Selection for Efficient MIA 93

100 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

Number of traces

pS
R

100 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

Number of traces

pS
R

CPAmb
ABS−MIAmb
S−MIAmb

CPAwd
ABS−MIAwd
S−MIAwd

hS

hS

hABS

hABS

Fig. 6. Partial Success Rates (pSR) evaluated on 4th Sbox at the last round of AES
with our EM traces over two scenarii: ‘mb’ (left top) and ‘wd’ (left bottom). The HD
model was considered.

FPGA, operating at 50 MHz with a RF2 probe and 48 dB low noise amplifier.
We concentrated on the 4th Sbox at the last round. The HD linear model was
once again considered. Figure 6 shows results similar to those obtained with the
DPAContestV2 data above, with ABS-MIA showing again a large improvement
over S-MIA while staying competitive with CPA.

5.2 ABS-MIA Genericity

To investigate genericity, the evaluations were performed using the second set
of traces in the previous section under the unknown HW leakage model. As the
pSR of the attacks using the ‘wd’ scenario never reached 10 % after process-
ing the 10000 traces, we excluded it for further considerations. Interestingly,
ABS-MIAmb is the only successful HW-based attack, with a pSR of 80 % after
processing 7400 traces (see Fig. 7). Besides, all the variants of CPA (i.e. CPAmb
and CPAwd) fail in this case.

5.3 ABS-MIA Computational Burden

Regarding runtime, the computational cost of MIA is related to the number of
entropies to be computed (17 for ‘mb’ and 10 for ‘wd’) and on the parameters

94 M. Carbone et al.

100 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

Number of traces

pS
R

CPAmb
ABS−MIAmb
S−MIAmb

Fig. 7. Partial Success Rates (pSR) evaluated on 4th Sbox at the last round of AES
for HW ‘mb’ model.

used to compute each entropy (number of query points, choice of bandwidth).
Recall that ABS-MIA is a two-stage procedure because, an additional preprocess-
ing step to obtain hABS is required before launching the attack. To save time, we
emphasize that this profiling step can be performed on a representative subset
of the traces to compute an approximation of hABS because the terms in braces
in (15) stabilizes quickly as the number of traces increases. Investigations were
conducted with the ‘mb’ and ‘wd’ scenarii to perform ABS-MIA in Sect. 5.4. The
time spent for this preprocessing for each Sbox is approximately one twentieth
of the time required for S-MIA. However, this time is partly recovered by the
reduction in the number of query points required for good behavior of ABS-MIA
(16 compared to at least 96 for S-MIA; because the PDF are smoother in ABS-
MIA, the integrals in (9), (10) are more easily approximated). This significantly
reduces the number of computations involved in getting M̂Ik(h).

5.4 ABS-MIA: Global Success Rate for the DPAContestV2

Finally, we applied S-MIA and ABS-MIA to the DPAContestV2 traces and con-
sidered the global Success Rate (gSR) using the HD model. We also launched
CPAwd and CPAmb as benchmarks. As in Sect. 5.1, 50 trace orders were consid-
ered. The evolutions of gSR are shown in Fig. 8. We observe that ABS-MIAmb
dominates with, in particular, 15200 traces for the gSR to be stable above 80%.
On the other hand, S-MIA fails in recovering the key. Thirty minutes (resp. two
hours) were necessary to complete both the preprocessing and the ABS-MIAwd
(resp. ABS-MIAmb) on a personal computer.

6 Conclusions

MIA was motivated by its ability to capture all structures of dependencies
between leakage and intermediate values. But the cost of this attractive feature
is the difficulty in choosing adequately some tuning parameters. By focusing on

On Adaptive Bandwidth Selection for Efficient MIA 95

100 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
0

0.2

0.4

0.6

0.8

1

Number of traces

gS
R

100 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
0

0.2

0.4

0.6

0.8

1

Number of traces

gS
R

CPAwd
ABS−MIAwd
S−MIAwd

CPAmb
ABS−MIAmb
S−MIAmb

Fig. 8. Global Success Rates (gSR) evaluated at the last round of AES available traces
of the DPAContestV2. The HD model was considered.

the goal of optimizing the KDE-based MIA instead of the auxiliary task of esti-
mating PDF, we have obtained an efficient bandwidth selection procedure. The
resulting bandwidths are usually larger than the commonly used hS (obtained
by Silverman’s rule) and give better results in terms of attack efficiency across
various experiments. We have shown that MIA driven by this method is com-
parable to the variant of CPA [2]. Additionally, we have reported that our MIA
could succeed when CPA failed (see Sect. 5.2). Our approach could be applied to
select the tuning parameters in other SCA involving nonparametric estimators,
namely histograms and splines. We feel the present work shows there can be
some benefits in adapting the principles of statistical methods to the task at
end: SCA in the present case.

A Appendix

From Sect. 2, modeling leakage consists essentially in choosing a selection func-
tion L to classify the leakage samples o(m), based on the predictions vm,k accord-
ing to m ∈M and k ∈ K, either at the word level or at the bit level (Multi-bit).

– Word. In view of the additive property of the power consumption in CMOS
technologies, traditional leakage models inspired are based on works in [2,21],
aims at mapping activities of components using intermediate values to the
physical observations by equal summation of w bits

96 M. Carbone et al.

L : F
w
2 → [0;w]

vm,k = ([vm,k]1, . . . , [vm,k]w)→ L(vm,k) =
w∑

b=1

[vm,k]b. (16)

with [.]b : F
w
2 → F2 being the projection onto the ith bit. (AES (resp. DES)

output Sbox : w = 8 (resp. w = 5))
– Multi-bit. Alternatively, as mentioned in [22], the leakage could be analyzed

bit by bit, summing up at the end each equal contribution. The multi-bit
version of a distinguisher Dk,t (D ≡MI in this paper) is calculated as

Dk,t =
w∑

b=1

|[Dk,t]b|. (17)

This model seems better adapted to the EM side-channel for which the
assumption of additivity may be less plausible. Initially introduced for the
distinguisher using the difference of means, it can be extended to other dis-
tinguishers [23].

References

1. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

2. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

3. Aumonier, S.: Generalized correlation power analysis. In: ECRYPT Workshop on
Tools For Cryptanalysis, Kraków, Poland, September 2007

4. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

5. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.X., Veyrat-Charvillon,
N.: Mutual information analysis: a comprehensive study. Cryptol. J. 24, 269–291
(2001). Springer, New York

6. Prouff, E., Rivain, M.: Theoretical and practical aspects of mutual information-
based side channel analysis. Int. J. Adv. Comput. Technol. (IJACT) 2(2), 121–138
(2010)

7. Moradi, A., Mousavi, N., Paar, C., Salmasizadeh, M.: A comparative study of
mutual information analysis under a Gaussian assumption. In: Youm, H.Y., Yung,
M. (eds.) WISA 2009. LNCS, vol. 5932, pp. 193–205. Springer, Heidelberg (2009)

8. Veyrat-Charvillon, N., Standaert, F.-X.: Mutual information analysis: how, when
and why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443.
Springer, Heidelberg (2009)

9. Le, T.-H., Berthier, M.: Mutual information analysis under the view of higher-order
statistics. In: Echizen, I., Kunihiro, N., Sasaki, R. (eds.) IWSEC 2010. LNCS, vol.
6434, pp. 285–300. Springer, Heidelberg (2010)

10. Gierlichs, B., Batina, L., Preneel, B., Verbauwhede, I.: Revisiting higher-order DPA
attacks: multivariate mutual information analysis. In: Pieprzyk, J. (ed.) CT-RSA
2010. LNCS, vol. 5985, pp. 221–234. Springer, Heidelberg (2010)

On Adaptive Bandwidth Selection for Efficient MIA 97

11. Flament, F., Guilley, S., Danger, J.L., Elaabid, M.A., Maghrebi, H., Sauvage, L.:
About probability density function estimation for side channel analysis. In: Pro-
ceedings of International Workshop on Constructive Side-Channel Analysis and
Secure Design (COSADE), pp. 15–23 (2010)

12. Whitnall, C., Oswald, E.: A comprehensive evaluation of mutual information analy-
sis using a fair evaluation framework. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 316–334. Springer, Heidelberg (2011)

13. Veyrat-Charvillon, N., Standaert, F.-X.: Generic side-channel distinguishers:
improvements and limitations. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 354–372. Springer, Heidelberg (2011)

14. Venelli, A.: Efficient entropy estimation for mutual information analysis using B-
splines. In: Samarati, P., Tunstall, M., Posegga, J., Markantonakis, K., Sauveron,
D. (eds.) WISTP 2010. LNCS, vol. 6033, pp. 17–30. Springer, Heidelberg (2010)

15. Rosenblatt, M.: Remark on some nonparametric estimates of a density function.
Ann. Math. Stat. 27, 832–837 (1956)

16. Parzen, E.: On the estimation of a probability density function and the mode. Ann.
Math. Stat. 33, 1065–1076 (1962)

17. Sheather, S.J.: Density estimation. Stat. Sci. 19(4), 588–597 (2004)
18. Silverman, B.W., Green, P.J.: Density Estimation for Statistics and Data Analysis.

Chapman and Hall, London (1986)
19. VLSI Research Group and TELECOM ParisTech: The DPA contest (2008/2009)
20. Standaert, F.-X., Gierlichs, B., Verbauwhede, I.: Partition vs. comparison side-

channel distinguishers: an empirical evaluation of statistical tests for Univariate
side-channel attacks against two unprotected CMOS devices. In: Lee, P.J., Cheon,
J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 253–267. Springer, Heidelberg (2009)

21. Messerges, T.S., Dabbish, E.A., Sloan, R.H., Messerges, T.S., Dabbish, E.A., Sloan,
R.H.: Investigations of power analysis attacks on smartcards. In: Proceedings of
the USENIX Workshop on Smartcard Technology, pp. 151–162 (1999)

22. Bévan, R., Knudsen, E.W.: Ways to enhance differential power analysis. In: Lee,
P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 327–342. Springer,
Heidelberg (2003)

23. Tiran, S., Maurine, P.: SCA with magnitude squared coherence. In: Mangard, S.
(ed.) CARDIS 2012. LNCS, vol. 7771, pp. 234–247. Springer, Heidelberg (2013)

Generic DPA Attacks: Curse or Blessing?

Oscar Reparaz(B), Benedikt Gierlichs, and Ingrid Verbauwhede

Department of Electrical Engineering-ESAT/COSIC, KU Leuven and iMinds,
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{oscar.reparaz,benedikt.gierlichs,ingrid.verbauwhede}@esat.kuleuven.be

Abstract. Generic DPA attacks, such as MIA, have been recently pro-
posed as a method to mount DPA attacks without the need for possibly
restrictive assumptions on the leakage behaviour. Previous work iden-
tified some shortcomings of generic DPA attacks when attacking injec-
tive targets (such as the AES Sbox output). In this paper, we focus
on that particular property of generic DPA attacks and explain limita-
tions, workarounds and advantages. Firstly we show that the original
fix to address this issue (consisting of dropping bits on predictions to
destroy the injectivity) works in practice. Secondly, we describe how a
determined attacker can circumvent the issue of attacking injective tar-
gets and mount a generic attack on the AES using previously mentioned
non-injective targets. Thirdly, we explain important and attractive prop-
erties of generic attacks, such as being effective under any leakage behav-
iour. Consequently, we are able to recover keys even if the attacker only
observes an encrypted version of the leakage, for instance when a device is
using bus encryption with a constant key. The same property also allows
to mount attacks on later rounds of the AES with a reduced number
of key hypotheses compared to classical DPA. All main observations are
supported by experimental results, when possible on real measurements.

Keywords: DPA · Generic DPA · MIA · KSA

1 Introduction

Side-channel attacks pose nowadays a significant threat for the security of cryp-
tographic embedded devices. Since the first publication [8] in 1996, a respectable
body of academic research on side-channel attacks and countermeasures has been
produced. Besides, side-channel attacks are not only a topic of academic research
but also relevant to industry. Present embedded security devices, such as bank
cards, phone SIMs and electronic passports normally feature some kind of pro-
tection against side-channel attacks.

An important class of side-channel attacks are Differential Power Analysis
(DPA) attacks, introduced in [9] by Kocher et al. They showed that crypto-
graphic keys could be extracted from embedded devices by first measuring their
instantaneous power consumption while performing cryptographic operations
and subsequently performing a statistical analysis of the power consumption
c© Springer International Publishing Switzerland 2014
E. Prouff (Ed.): COSADE 2014, LNCS 8622, pp. 98–111, 2014.
DOI: 10.1007/978-3-319-10175-0 8

Generic DPA Attacks: Curse or Blessing? 99

measurements. The relatively inexpensive equipment needed for performing DPA
attacks greatly increases the threat of this family of attacks.

Since [9], a substantial work on the so-called distinguisher in DPA attacks
has been carried out [2,4,6,10,13]. In a nutshell, this trend tries to optimize
the performance of a DPA attack, measured in the number of traces needed for
a successful attack, under the assumption that the device leaks information in
a specific manner, usually Hamming weight (HW) or Hamming distance (HD).
Pearson’s sample correlation coefficient distinguisher is a popular choice when
mounting DPA attacks (also known as CPA attacks) on devices whose behaviour
can be linearly approximated by some leakage model (usually HD or HW) given
beforehand (essentially, acquired based on previous knowledge of the chip and
its implementation).

The choice of leakage model when attacking a device is crucial. In fact, there
must be some correspondence between the leakage behaviour of the device and
the leakage model for the attack to succeed. An example of this requirement
is shown in [18], where CPA is shown to fail if the model is sufficiently wrong.
Actually, there is a whole family of countermeasures that try to alter the leakage
signal such that it becomes more difficult to model, and thus make the attack
harder. One example of a countermeasure belonging to this family is balanced
circuits, such as dual-rail logic (for instance WDDL [15]). While in theory dual-
rail logic aims at producing data independent leakage, in practice, imperfectly-
balanced dual-rail implementations produce a leakage behaviour that is difficult
to model, rendering DPA attacks that employ inexact, non-corresponding leakage
models ineffective [15] (although in practice regression-based approaches that
perform a leakage modeling on the fly [19] can provide good results).

An importantenhancementofpoweranalysisareprofiledattacks, suchas [5,14].
These attacks do not require a leakage model previously known to the practitioner,
but instead derive the leakage model itself in a profiling step that characterizes the
device. The attack step is usually based on Maximum Likelihood classification and
can be shown to be optimal if the derived model is sound. During the profiling step,
the attacker has virtually unlimited access to a device identical to the device under
attack. This access might be difficult to obtain in reality. In short, profiled attacks
are a powerful attack strategy that is carried out by a strong adversary.

Recently, several (non-profiled) DPA strategies have been proposed that try
to bring the best from both worlds: on the one hand, they do not require a leakage
model of the device given beforehand, and thus they could be potentially applied
against any device; on the other hand, these generic strategies do not require
a profiling step, so that even a weak adversary can perform them. Typically
these generic strategies work with measurements in a nominal scale. Exemplary
generic DPA strategies are based on Mutual Information [7], on the Kolmogorov-
Smirnov distance [16], on the Cramér-von-Mises test [16] or on copulas [17]. We
will use MIA in this paper but results apply to all of them.

Despite the attractive properties of generic DPA attacks, earlier papers have
identified some theoretical shortcomings of these attacks regarding injective
targets [7,17–19]. This paper addresses the practical relevance of these theoretical

100 O. Reparaz et al.

shortcomings and explores limitations, workarounds and advantages of generic
DPA attacks.

Contribution. The contribution of this paper is threefold. Firstly, we present
experimental evidence confirming that the “bit drop” trick already proposed
in [7] to attack injective targets works even in realistic environments with high,
but not infinite, signal-to-noise ratio (SNR). Secondly, we show that by carefully
redefining the non-injective targets of the attack, it is indeed possible to launch a
fully generic MIA attack on the AES. Thirdly, we demonstrate that precisely the
same apparently unappealing property that causes MIA to fail against injective
targets enables an attacker to launch MIA attacks exploiting the leakage from an
encrypted bus, or from later rounds of AES at reduced number of key hypotheses
compared to a traditional DPA attack. The experimental results we provide
do not contradict any theoretical result from [17–19], but clarify the practical
relevance of the issues.

Organization. The remainder of this paper is organised as follows. Section 2
reviews previous work. Section 3 presents some practical experiments regard-
ing the practical applicability of the “bit drop” trick. Section 4 elaborates on a
generic MIA attack against the AES. Section 5 studies some properties of MIA
that can be exploited to mount MIA attacks on later rounds, and Sect. 6 con-
cludes the paper.

2 Previous Work

In this section we recall the fundamental concepts for MIA attacks and we state
the issues that arise when performing MIA attacks on injective targets.

2.1 Notation

Capital letters in bold face, e.g. X, denote random variables. Lower-case letters,
e.g. x, denote a specific realization of X, e.g. X = x. The plaintext byte number
i is denoted by pi. The i-th key byte is denoted by ki. The function dropi drops
i least significant bits of its argument. The expression I(X;Y) denotes Mutual
Information between X and Y, and is defined [7] as

I(X;Y) = H(X)−H(X|Y) (1)

where H(·) denotes Shannon entropy. S denotes some operation within the com-
putation of a cryptographic primitive. In particular, we denote the AES Sbox by
SAES. Ldevice denotes the leakage behaviour of the cryptographic device. Lmodel

denotes a leakage model. Id is the identity function. HW denotes the Hamming
weight function. ε denotes a Gaussian noise process, its standard deviation is
clear from the context.

Generic DPA Attacks: Curse or Blessing? 101

2.2 Original MIA

MIA was originally introduced in [7] as a new information-theoretic distinguisher
that aims at detecting any kind of dependency between observed measurements
and predicted power consumption. MIA was different from previous distinguisher
flavours in the sense that it is a generic tool suitable for attacking a wide variety
of target devices without a priori knowledge, instead of an efficient tool that
does require a priori assumptions about the target device. In this respect, MIA
neither requires specific knowledge about the exact relation between processed
data and observed measurements (leakage behaviour) nor requires to model such
behaviour under a leakage model.

More precisely, to target some intermediate value Z = S(P⊕k), MIA uses as
distinguisher the value of the Mutual Information between the observed measure-
ments O = Ldevice(Z) and the predicted power consumption H = Lmodel(Zk)
based on a key guess,

I(O;H). (2)

MIA computes the value of Eq. (2) for each key hypothesis k, ranks the key can-
didates according to decreasing values of I(O;H) and selects the key candidate
as the one that maximizes the Mutual Information value.

In contrast to other previous distinguishers, such as Pearson’s sample corre-
lation coefficient, the Mutual Information value between two random variables
expresses the degree of statistical dependency between these two variables, inde-
pendently of the specific form that the potential dependency between variables
may take. This powerful property allows the attacker to skip modelling the leak-
age behaviour Ldevice. As a matter of fact, in [7] it was mentioned that the
attacker can directly plug in Eq. (2) the hypothesized values handled by the
device as the predicted power consumption by setting H = Id(Z). By doing so,
the attacker does not place any restrictive assumption on the leakage behaviour
and thus the attack is expected to work against any device that leaks “somehow”.

Moreover, should some information about the leakage behaviour be available
beforehand, then that can be used to improve the efficiency of the MIA attack
[7], but this is not required for an attack to succeed.

2.3 Issues with Injective Targets

In several references [7,19] it was noted that for injective targets S (for instance,
S = SAES(P⊕ k)) a straightforward application of Eq. (2) with a generic leak-
age model by setting H = Id(Z) would result in an ineffective attack. Actually,
different key hypotheses just imply a permutation of the values H, and thus
result in equally meaningful partitions of the observed measurements. This, in
turn, leads to the same value for the Mutual Information of Eq. (2) for each key
hypothesis, and therefore renders the discrimination of the correct key impossi-
ble. Note that this result is not exclusive to MIA, but it extends to a broad set
of carefully defined generic attacks, as Whitnall et al. formally reason in [19].

102 O. Reparaz et al.

In [7], the authors proposed a fix to solve this issue. They suggested dropping
one bit in the predictions, H = drop1(Z), effectively destroying the phenomenon
of different keys causing equivalent (up to a permutation) values of H, yet pre-
serving the generic nature of the attack. This fix is called the “bit drop trick”
throughout this paper. They provided empirical evidence of the correctness of
this method against one AES Sbox output byte S = SAES(p⊕k) with real power
measurements using three bits of the prediction, H = drop5(Z).

The bit drop trick has been studied more thoroughly in [17,18]. First, in [17],
Veyrat-Charvillon and Standaert provide experiments in a noiseless simulated
scenario where the device leaks exactly Hamming weights Ldevice(Z) = HW(Z)
and the target is the AES Sbox output Z = SAES(p⊕k). The predictions consist
of the intermediate value Z when a variable amount of bits are dropped: H =
dropi(Z) for i ∈ {1, 2, . . . , 7}. In this situation, they show that although a MIA
attack that uses H = dropi(Z) for i ∈ {7, 6, 5, 4, 3, 2} works, a MIA attack that
uses H = drop1(Z) unexpectedly fails.

In addition, in [18], Whitnall et al. further study this effect by taking the envi-
ronmental noise into account with Ldevice(Z) = HW(Z)+ε. They conclude, from
simulations, that a MIA attack on the AES Sbox output using H = drop1(Z) as
predictions will fail for large values of the signal-to-noise ratio (that is, when the
noise ε has small variance). On the other hand, when the signal-to-noise is below
a certain threshold, MIA attacks with H = drop1(Z) will eventually succeed.
Hence, it was shown that there are high-SNR scenarios where the bit drop trick
does not work.

3 Practical Relevance of the Bit Drop Trick

In this section, we experimentally verify the practical relevance of the negative
results regarding dropping some bits in the predictions.

We performed all the experiments for this paper on an 8-bit micro controller
from Atmel’s AVR family running an unprotected implementation of AES-128.
We obtained 10, 000 power traces from encryptions of randomly chosen plaintexts
covering the first one and a half rounds. The card is clocked at 4 MHz and the
sampling frequency is 10 MS/s. The device leakage behaviour is known to be
close to Hamming weight, however, in what follows we do not make use of this
fact and proceed as if the leakage behaviour were unknown to us.

3.1 Dropping One Bit

We performed a MIA attack targeting the first Sbox output, by setting as tar-
geted intermediate value the byte Z = SAES(P1 ⊕ k1) and dropping one bit on
the predictions H = drop1(Z). The (non-parametric) density estimation process
was performed without placing any hypotheses on the leakage behaviour of the
device. Thus, densities were estimated with histograms with 256 bins, since mea-
surement samples have a resolution of 8 bits.

Generic DPA Attacks: Curse or Blessing? 103

200 400 600 800 1000

1.4

1.6

1.8

2

traces

M
ut

ua
l I

nf
or

m
at

io
n

50 100 150 200 250

1.3

1.4

1.5

1.6

key hypothesis

M
ut

ua
l I

nf
or

m
at

io
n

Fig. 1. Left: evolution of the MIA attack targeting the intermediate value z = SAES(p⊕
k) dropping one bit in the predictions, H = drop1(Z), as the number of traces increases.
Correct key in black, incorrect key hypothesis in grey. Right: outcome of the attack
using 1, 000 traces.

Figure 1 shows the result this attack when using 1, 000 traces at time sample
485. It can be observed that the attack is successful, the correct key clearly
stands out over all other competing key hypotheses. We confirmed that around
time sample 485 the implementation performs the Sbox lookups from the first
round.

The experiment highlights the limited impact of the negative results in [17,18]
regarding the drop1 trick. We can hardly conceive a practical scenario with a
higher SNR than ours, since our platform (AVR) has relatively high leakage for
industry standards. Furthermore, in reality implementations will feature some
countermeasures that will only degrade the SNR. Thus, the negative results
of [18] regarding the bit drop trick in strong-signal settings are of theoretical
relevance but we conclude that the bit drop trick works in practical, high yet
finite SNR scenarios. In other words, the high SNR of our measurements is “low
enough” for the bit drop trick to work.

3.2 Dropping More than One Bit

The experiment from Sect. 3.1 was repeated for a different amount of least signif-
icant bits dropped, ranging from 1 to 7, following the spirit of [17]. All the other
parameters of the attack are kept constant: we focus on the same time sample
485 and use the same Mutual Information estimation procedure with histograms
of 256 bins in order not to place any assumption about the leakage behaviour
during the density estimation process.

Figure 2, left, shows 7 plots for 7 different attacks. Each attack drops a differ-
ent number of bits (leftmost drops 1 bit, rightmost drops 7 bits). Each subplot
shows the evolution of the corresponding attack as the number of traces increases.

The attacks are, in every case, successful. Note that the mutual information
decreases as the number of bits dropped increases. This is natural and can be
easily explained by expanding Eq. 2 as Eq. 1 and noting that H(O|H) will only
increase as H considers fewer bits of Z.

104 O. Reparaz et al.

1000
0

0.5

1

1.5

2

M
ut

ua
l I

nf
or

m
at

io
n

1000
0

0.5

1

1.5

2

1000
0

0.5

1

1.5

2

1000
0

0.5

1

1.5

2

1000
0

0.5

1

1.5

2

1000
0

0.5

1

1.5

2

1000
0

0.5

1

1.5

2

2 4 6
40

50

60

70

80

90

100

bits dropped

S
uc

ce
ss

 ra
te

Fig. 2. Left: evolution of the performance of the attack from Fig. 1 for 1, 2, ..., 7
dropped bits. For each sub plot the X axis is number of traces and ranges from 200 to
1000. Correct key hypothesis is in black, incorrect key hypotheses are in grey. Right:
success rate of the same attacks as in left. Each line represents a fixed number of traces.
Bottommost line is 200 curves, next lines correspond to increments of 40 traces.

Albeit the attacks are eventually successful for any number of dropped bits,
the distinguishing capabilities are not the same. Figure 2, right, studies the effect
of different number of bits dropped on the success rate. Each line corresponds
to a fixed amount of power traces, starting with 200 curves for the line at the
bottom. All the parameters in the estimation process (number of bins) were kept
constant, allowing for a fair comparison.

We can see two main tendencies in Fig. 2. First, as the number of dropped
bits increases, from 1 to 5, the success rate also increases, for a given number of
traces. Second, if the number of dropped bits continues increasing to 6 and 7,
the success rate drops. Thus, for this particular target and this particular attack,
the optimum number of bits to drop to maximize the success rate of this attack
is 5. We believe that this fact is the result of the superposition of two opposite
effects. As the number of dropped bits increases, the target becomes “more non-
injective” and thus the attack works better. This is true until a certain threshold
(in our case, 5 bits), from where the effect of the algorithmic noise introduced
by the dropped, unmodelled bits is predominant. Note that this observation fits
nicely with the classic result of Messerges in [11,12], who found that in the
context of d-bit DPA, modelling only 3 bits from an 8-bit bus gave the best SNR
for a fixed number of traces.

4 Non-injective Targets on AES

There are situations, however, in which an attacker might not be able to use the
bit drop trick. As pointed out in the experiments in [18], if the leakage behaviour
of the device consists only of higher order terms, the bit drop trick will fail. In this
section, we note that an attacker who wishes to recover the key from an AES
implementation is not restricted to only performing attacks against the Sbox
output. Thus, he is not forced to employ the bit drop trick. Although we focus
on the AES, we expect that any reasonable block cipher contains non-injective
target functions.

Generic DPA Attacks: Curse or Blessing? 105

In the rest of this section, we give an example of such a non-injective target
that enables generic MIA attacks. This target was briefly mentioned in [1], in
the following we provide a detailed study and show its attractive properties.

4.1 Suitable Targets

There are suitable non-injective targets for an attack in AES. Intuitively speak-
ing, we want to find some intermediate value Z that results from the compression
of public and secret data. One such value Z suitable for generic MIA attacks nat-
urally arises as follows.

Let us take a closer look at the computation of the MixColumns transforma-
tion that is applied to the first column of the state during the first round. Name
(u, v, w, x) the 4-byte input column to this MixColumns transformation. These
4 input bytes correspond to 4 output bytes of ShiftRows in the first round. Sup-
pose that during the computation of the first output byte 2u⊕3v⊕w⊕x of this
MixColumns invocation, the implementation handles the partial intermediate
value z = 2u⊕ 3v = 2SAES(p1 ⊕ k1)⊕ 3SAES(p6 ⊕ k6)1. The target z = 2u⊕ 3v
is obviously non-injective (since it maps 16 bits of public input and 16 bits of
secret input to 8 bits) and suitable for a generic MIA attack. Below we provide
results of such an attack against our unprotected AES software implementation.

4.2 Practical Results

Since we are attacking a non-injective target, we can use directly Z as the pre-
dicted power consumption (without the bit drop trick), and proceed with a
generic MIA attack on the 16 key bits (corresponding to key bytes 1 and 6).
That is, we use the identity leakage model H = Id(Z) = Z.

To perform the attack without placing any assumption on the leakage behav-
iour, Mutual Information was estimated using histograms with 256 bins. In Fig. 3
we can see that the attack works correctly: the correct key stands out and the
attack has a unique solution. Note also that the magnitude of the Mutual Infor-
mation values is different than in the previous section, this is because we are
targeting a different time sample, 523, corresponding to the computation of
MixColumns.

4.3 Different Leakage Behaviours

The bit drop trick is known not to work against devices with highly non-linear
leakage behaviours. However, a generic MIA attack against a non-injective target
does not suffer from this limitation and can be used in such cases.

Unfortunately, we do not have access to a chip with highly non-linear leak-
age behaviour. For this reason, we resort to simulations to give an example
of an attack against z = 2u ⊕ 3v on an hypothetical device that leaks as
1 Note that the sixth Sbox output of the first round will be in state byte 5 after first

round ShiftRows.

106 O. Reparaz et al.

1000 1500 2000 2500 3000
0.8

1

1.2

1.4

1.6

traces

M
ut

ua
l I

nf
or

m
at

io
n

1 2 3 4 5 6
x 104

0.5

0.55

0.6

0.65

0.7

key hypothesis

M
ut

ua
l I

nf
or

m
at

io
n

Fig. 3. Left: evolution of the generic MIA attack targeting the intermediate value
z = 2SAES(p1⊕k1)⊕3SAES(p6⊕k6). Correct key in black, incorrect keys in grey. Time
sample index 523. Right: outcome of the attack using 3, 000 traces.

Ldevice(Z) = SAES(Z) (resembling a highly non-linear leakage behaviour) and as
Ldevice(Z) = HW(SAES(Z)) (resembling an encrypted bus scenario as explained
in the following section).

Figure 4 shows the outcomes of these attacks when the simulated curves
include Gaussian additive noise with standard deviation σ = 1. The attacks are
successful in both cases Ldevice(Z) = SAES(Z) and Ldevice(Z) = HW(SAES(Z)).
Mutual Information was estimated, as in previous cases, using histograms and
256 bins. The attacks are successful also when there is no noise σ = 0 in the
simulated traces.

1 2 3 4 5 6
x 104

6.2
6.4
6.6
6.8

7
7.2
7.4

key hypothesis

M
ut

ua
l I

nf
or

m
at

io
n

1 2 3 4 5 6
x 104

1.5

2

2.5

key hypothesis

M
ut

ua
l I

nf
or

m
at

io
n

Fig. 4. Left: Simulation of the attack from Section under leakage behaviour Ldevice =
SAES. Right: idem, under Ldevice = HW(SAES)

To sum up, unlike the drop1 strategy on the AES Sbox output, generic MIA
attacks against non-injective target functions work under any leakage condition,
any SNR level at the expense of a slightly more costly computational effort of
216 key hypotheses.

Generic DPA Attacks: Curse or Blessing? 107

5 Discussion

In this section we elaborate on the notable properties of the previous attack
that are of practical relevance when attacking devices with encrypted buses.
In addition, we comment on the possibility of mounting MIA attacks on later
rounds and discuss the implications of a parallel implementation of the AES.

5.1 Arbitrary Leakage Model and Bus Encryption

As already stated in Sect. 4.3, generic MIA attacks against non-injective targets
in AES will work with any leakage behaviour. This fact has important conse-
quences for real-world devices that employ bus encryption (also called bus scram-
bling.) We can successfully apply the attack of Sect. 4.1 even if the attacker has
only access to the leakage of some “encrypted” version of the intermediate value
(under a constant key), instead of the leakage of the actual intermediate value.
An advantage of this attack is that the adversary does not need to know the exact
details of the “encryption” function (for example, the key might be unknown).
The attacker launches the generic attack of Sect. 4.1 using as predictions the
“unencrypted” values for the intermediate sensitive variable, disregarding the
exact details of the encryption function. In what follows we explain why this
attack returns the correct key.

For instance, consider a smart-card that “encrypts” the values before sending
them over its bus2. Let Y be the “encrypted” value of Z, that is, Y = enc(Z)
for some bus “encryption” function enc (which is a permutation). We claim that
the following two attacks are equivalent (that is, have equal success rate):

1. A MIA attack against a device that handles the values in clear, O = Ldevice(Z)
and the attacker predictions correspond to the values in clear, H = Z.

2. A MIA attack against a device that handles the intermediate values encrypted,
O = Ldevice(Y) and the attacker uses as predictions the values in clear,
H = Z.

We will show that both attacks produce the same values of mutual infor-
mation, I(Ldevice(Y);Lmodel(Z)) = I(Ldevice(Z);Lmodel(Z)), and thus have the
same behaviour. We can develop Eq. (2) as

I(Ldevice(Y);Lmodel(Z)) = I(Ldevice(Y);Lmodel(Y))
= I(Ldevice(Z);Lmodel(Z)) (3)

where the first line results from Y and Z being related by a permutation (note
that the attack from Sect. 4.1 uses Lmodel = Id) and the second line results from
Y and Z being identically (uniformly) distributed (thus, due to symmetry of

2 Here we are assuming without loss of generality that the most leaking component of
the smart-card is the bus. This assumption is just for illustration purposes and the
following discussion is orthogonal to this assumption.

108 O. Reparaz et al.

H, the value of H(Z)−H(Z|Ldevice(Z)) does not change if the events of Z are
reordered).

Therefore, the previous result shows that the bus encryption has no effect on
generic DPA attacks and is transparent to them. The attacker can recover the
key observing leakage of the encrypted intermediate values, even if he ignores the
exact details of the bus encryption mechanism and the exact leakage behaviour
of the device.

5.2 Arbitrary Leakage Model and Absorbing Next Round Keys

The very same property used in the previous Subsect. 5.1 can be exploited to
mount MIA attacks that use observations of intermediate values from the second
round at a reduced number of key hypotheses. The rationale is similar: Suppose
that the attacker chooses one output byte of MixColumns as the target, z′′ =
2u⊕ 3v⊕w⊕ x. Assume that the value z′′ is later transformed into z′′′ through
AddRoundKey and further into zIV through SubBytes of the second round,
z′′′ = AK(z′′) and zIV = SB(z′′′) as shown in Fig. 5. These operations merely
permute z′′ (they do not introduce any other “variable” data), and thus the result
from Subsect. 5.1 can be applied. The attacker can perform the attack placing
hypotheses on Z′′ as Lmodel(Z′′) = Id(Z′′) but he can use the observations O
corresponding to the handling of the intermediate value from the second round
such as zIV with a 232 work load. This is not possible with standard DPA, unless
the attacker places 8 additional bits on the key hypothesis corresponding to one
key byte from the second round, resulting in an attack with 240 work load.

k1
1

S

MC

k2
1

MCMC MC MC

p1 p2 p6 p11 p16

z′

z′′

z′′′

zIV

k1
2 k1

1 k1
11 k1

16

Fig. 5. A schematic representation of the computation of the first 1.5 rounds of AES.
As explained in Sect. 5.2, the attacker can use the leakage coming from later in the
computation, for instance, z′′′ after the next key addition or even zIV after the Sbox
lookup, without placing extra key hypotheses on the second round key k2

1.

This means that the attacker can easily bypass the protections in the first
round and exploit directly leakage from the second round to recover first round
keys. This is helpful for the attacker if only the first round is protected with, for

Generic DPA Attacks: Curse or Blessing? 109

example, the masking countermeasure and highlights, again, the importance of
not only masking the outer rounds, as e.g. discussed in [3].

5.3 What Happens if MixColumns Leaks in Parallel?

In Sect. 4.1, we assumed that the implementation computes MixColumns in a
serial fashion. In this section, we analyse the case when this no longer holds, i.e.,
the implementation computes and leaks in parallel (for example, a hardware
implementation using a 32-bit or 128-bit data path). In what follows we will
work with a reduced exemplary data path of 16 bits (2 bytes). (The implications
of the study can be extrapolated to any other bit width.)

Suppose that the observations O available to the attacker correspond to
the simultaneous leakage O = Ldevice(Z,N) of two output bytes z and n from
first round MixColumns. Suppose the attacker sets z as target (and therefore n
will be considered as “algorithmic noise”) and executes the attack of Sect. 4.1.
We can distinguish two cases:

1. The leakage contribution of Z can be “decoupled” from that of N. For
instance, Ldevice(Z,N) = HW(Z)+HW(N). Here the attacker can eventually
cancel the algorithmic noise induced by the term HW(N) (note that Z and
N are statistically independent) and the attack will succeed. Another exam-
ple of Ldevice that falls in this category is Ldevice(Z,N) = HW(SAES(Z)) +
HW(SAES(N)).

2. The leakage contribution of Z cannot be “decoupled” from that of N. For
instance, Ldevice(Z,N) = HW(Z ⊕N). Here the attacker cannot cancel the
algorithmic noise (the signal from Z is effectively “masked” with N, which
by assumption is unknown to the attacker). Hence, the attack of Sect. 4.1
will not work. Another example that falls in this category is Ldevice(Z,N) =
HW(SHA(Z||N)) where || is concatenation and SHA is a cryptographic hash
function.

The requirement for a leakage behaviour to belong to the first category is
that the distribution of Ldevice(Z,N) should still be informative about Z when
the effect of N is marginalized, that is,

I(Z; EN[Ldevice(Z,N)]) > 0. (4)

In fact we can also use the example of a MIA attack against an injec-
tive Sbox to illustrate the restriction of Eq. 4. We can rewrite Ldevice(Z,N) =
L0(L1(Z), L2(N)) where Z are 7 bits of the Sbox output and N is the other
bit of the Sbox output. If L0 is such that Eq. 4 holds, the trick of using drop1

will work. On the other hand, if L0 is such that Eq. 4 does not hold, the attack
will fail.

Hence, in the case of a parallel MixColumns implementation, if L0 is such that
Eq. 4 does not hold, we would have to redefine the target value as Z′ = (Z,N),
and we find ourselves in the same situation as if we were attacking a (large)
injective Sbox. Hence, we would need to choose another suitable non-injective
target, deeper in the algorithm, at the cost of more key hypotheses.

110 O. Reparaz et al.

What does it mean to impose constraints on L0? We point out that these restric-
tions on L0 are easily met in practice. For example, the restrictions mean that we
can allow arbitrary cross-talk between the wires that represent Z, and also arbi-
trary cross-talk between the wires that represent N, but there should not be only
significant cross-talk between wires from both variables. Or, equivalently, leak-
age of Z can be “encrypted”, and also that of N, but not jointly “encrypted”.
Intuitively, we allow arbitrary leakage of Z and of N, but impose some mild
restrictions on how these individual leakages are combined (through L0).

6 Conclusion

In this work, we elaborated on the practical properties of the bit drop trick,
pointed out how generic DPA attacks can be mounted on the AES and showed
their appealing properties when attacking devices with encrypted leakage or
exploiting leakage from inner rounds. Echoing the title, generic attacks are cer-
tainly endowed with two-sided properties - curse or blessing depending on the
concrete situation.

Acknowledgments. We thank the anonymous reviewers for their thorough evalua-
tion. This work was supported in part by the Research Council of KU Leuven: GOA
TENSE (GOA/11/007), by the Flemish Government FWO G.0550.12N and by the
Hercules Foundation AKUL/11/19. Oscar Reparaz is funded by a PhD Fellowship of
the Fund for Scientific Research - Flanders (FWO). Benedikt Gierlichs is Postdoctoral
Fellow of the Fund for Scientific Research - Flanders (FWO).

References

1. Batina, L., Gierlichs, B., Prouff, E., Rivain, M., Standaert, F.-X., Veyrat-
Charvillon, N.: Mutual information analysis: a comprehensive study. J. Cryptol.
24, 269–291 (2011)

2. Bévan, R., Knudsen, E.W.: Ways to enhance differential power analysis. In: Lee,
P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 327–342. Springer,
Heidelberg (2003)

3. Biryukov, A., Khovratovich, D.: Two new techniques of side-channel cryptanalysis.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 195–208.
Springer, Heidelberg (2007)

4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

5. Chari, S., Rao, J., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

6. Coron, J.-S., Kocher, P.C., Naccache, D.: Statistics and secret leakage. In: Frankel,
Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 157–173. Springer, Heidelberg (2001)

7. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

Generic DPA Attacks: Curse or Blessing? 111

8. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

9. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

10. Mayer-Sommer, R.: Smartly analyzing the simplicity and the power of simple power
analysis on smartcards. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965,
pp. 78–92. Springer, Heidelberg (2000)

11. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Investigations of power analysis
attacks on smartcards. In: Proceedings of the USENIX Workshop on Smartcard
Technology on USENIX Workshop on Smartcard Technology, WOST’99, Berkeley,
CA, USA, p. 17. USENIX Association (1999)

12. Messerges, T.S., Dabbish, E.A., Sloan, R.H., Member, S.: Examining smart-card
security under the threat of power analysis attacks. IEEE Trans. Comput. 51,
541–552 (2002)

13. Oswald, E.: On side-channel attacks and the application of algorithmic counter-
measures. Ph.D thesis, Graz University of Technology (2003)

14. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005)

15. Tiri, K., Hwang, D., Hodjat, A., Lai, B.-C., Yang, S., Schaumont, P., Verbauwhede,
I.: Prototype IC with WDDL and differential routing – DPA resistance assessment.
In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 354–365. Springer,
Heidelberg (2005)

16. Veyrat-Charvillon, N., Standaert, F.-X.: Mutual information analysis: how, when
and why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443.
Springer, Heidelberg (2009)

17. Veyrat-Charvillon, N., Standaert, F.-X.: Generic side-channel distinguishers:
improvements and limitations. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol.
6841, pp. 354–372. Springer, Heidelberg (2011)

18. Whitnall, C., Oswald, E.: A fair evaluation framework for comparing side-channel
distinguishers. J. Cryptogr. Eng. 1(2), 145–160 (2011)

19. Whitnall, C., Oswald, E., Standaert, F.-X.: The myth of generic DPA.. and the
magic of learning. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 183–
205. Springer, Heidelberg (2014). http://eprint.iacr.org/

http://eprint.iacr.org/

Support Vector Machines for Improved IP
Detection with Soft Physical Hash Functions

Ludovic-Henri Gustin1,2, François Durvaux1, Stéphanie Kerckhof1(B),
François-Xavier Standaert1, and Michel Verleysen2

1 Crypto Group - ICTEAM, Université catholique de Louvain,
Louvain-la-Neuve, Belgium

{francois.durvaux,stephanie.kerckhof,fstandae}@uclouvain.be
2 Machine Learning Group - ICTEAM, Université catholique de Louvain,

Louvain-la-Neuve, Belgium
michel.verleysen@uclouvain.be, lg.gustin@gmail.com

Abstract. Side-channel analysis is a powerful tool to extract secret
information from microelectronic devices. Its most frequently considered
application is destructive, i.e. key recovery attacks against cryptographic
implementations. More recently, it has also been considered construc-
tively, in the context of intellectual property protection/detection, e.g.
through the use of side-channel based watermarks or soft physical hash
functions. The latter solution is interesting from the application point-
of-view, because it does not require any modification of the designs to
protect (hence it implies no performance losses). Previous works in this
direction have exploited simple (correlation-based) statistical tools in dif-
ferent (more or less challenging) scenarios. In this paper, we investigate
the use of support vector machines for this purpose. We first argue that
their single-class extension is naturally suited to the problem of intellec-
tual property detection. We then show experimentally that they allow
dealing with more complex scenarios than previously published, hence
extending the relevance and applicability of soft physical hash functions.

1 Introduction

Protecting Intellectual Property (IP) from illegal use is an important issue for
the development of markets based on third party designs (next referred to as
IP cores). Different solutions have been proposed to mitigate this problem,
among which permission-based and watermarking-based techniques are usual
candidates. The first one consists in checking whether the system has the right
permission before performing any operation (i.e. works a priori). Most com-
mon solutions are implemented with an enhanced security chip or a Physically
Unclonable Function (PUF) that contain some secret [4,16,27,37]. If the IP gets
the right answer to a defined challenge, it means that it is used properly and can
start processing. The second family (i.e. watermarking-based protections) con-
sists in hiding a piece a information for authentication or identification inside the
IP, which will be recovered by its owner(s) if needed [3,21,22,26]. The inserted
c© Springer International Publishing Switzerland 2014
E. Prouff (Ed.): COSADE 2014, LNCS 8622, pp. 112–128, 2014.
DOI: 10.1007/978-3-319-10175-0 9

Support Vector Machines for Improved IP Detection 113

information must be robust to noise and to slight transformations that may occur
in the IP manipulation. It must also be invisible to the adversary. Recently, it
has been proposed to place the mark in physical features such as the temper-
ature, power consumption, ... of the device on which the IP is executed [6,40].
In opposition to the permission-based mechanism, which prevents illegally used
IPs from running, watermarks can only detect this illegal use (i.e. they work a
posteriori).

As an alternative to these proposals, Soft Physical Hash (SPH) functions
are an a posteriori solution that also exploits information extracted from the
physical features of a target circuit. The difference with the watermarking-based
solution lies in the fact that the information extracted comes from the very char-
acteristics of the implementation, and is not inserted by the IP owner. Therefore,
and in contrast with both previous families, this solution does not need any piece
of hardware to be added, and it cannot be removed or altered as it depends on
the IP itself. SPH functions have been formalized together with IP detection
infrastructures in [14], where the requirements for this solution to be effective
(namely perceptual robustness and content sensitivity) have also been defined.
They have first been applied in a simple case study of 8-bit software implementa-
tions, and next in the more challenging context of FPGA implementations [23].

While these previous works can be seen as encouraging proofs-of-concept, and
validate the idea that SPH can be useful components in the detection of IP theft,
the main question naturally remains to know how robust it is against challenging
adversarial conditions. For example, can it be effective without knowing the
inputs/outputs of the IP to detect?, how does it resist against re-compiled/re-
synthesized IPs?, and (in the most interesting case of hardware IP) how does it
react to other parasitic IPs running in parallel (i.e. when included in a larger
system combining several proprietary designs)? In particular, the work in [23]
suggested that simple instances of SPH (where the detection procedure is based
on Pearson’s correlation-based statistics) start to encounter some failures in the
context of re-synthesized FPGA designs with a parasitic IP running in parallel.
In this work, we aim to complement these first results, and consider Support
Vector Machines (SVM) to enhance IP detection in such complex scenarios. For
comparison purposes, we consider the same case study as [23] (i.e. six FPGA
implementations of block ciphers) and show experimentally that SVM lead to
significant (perceptual robustness and content sensitivity) improvements.

Why SVM? As IP detection infrastructures based on SPH functions exploit
standard techniques from side-channel analysis, one can wonder why SVM are
preferred to other more standard tools that usually improve over correlation-
based statistics (e.g. templates [11] or stochastic approaches [34]). Before enter-
ing the core of the paper, we provide a brief argument in this respect. First, one
can notice that SVM have been shown to provide an interesting alternative to
such tools (see, e.g. [5,17,19,25]). So while it is unclear that they generally pro-
vide significant advantages over other distinguishers (especially in the context
of “standard” first-order side-channel attacks where many statistics are equiva-
lent to some extent [29]), they are at least expected to work reasonably in this
context too. Second and more importantly, the problem of IP detection differs

114 L.-H. Gustin et al.

from the one of key recovery in one important aspect. Namely, the number of
classes in key recovery is usually well identified (e.g. 256 when targeting the AES
S-box output), while it is not enumerable in IP detection. Indeed, the IP owner
can only characterize his own design, and the number and shape of suspicious
IPs is a priori unknown. As a result, the single-class extension of SVM appears
to be naturally suited to this context (since it only requires the knowledge of the
reference IP during its characterization). Eventually, SVM are particularly inter-
esting for dealing with large dimensionalities (e.g. large measurement traces in
side-channel attacks), which contrasts with templates and stochastic approaches
that work best if good points-of-interest have been identified. But the selection
of such points-of-interest usually relies on criteria such as the signal-to-noise
ratio, that (ideally) requires the knowledge of the different classes to discrim-
inate (since they define the signal). So the fact that we do not need to find
points-of-interest in SVM is appealing in our context. Summarizing, while we
certainly do not rule out the possibility that other standard side-channel dis-
tinguishers provide further improvements to our results under certain heuristic
assumptions, we believe SVM are natural candidates to investigate for enhanced
IP detection.

The rest of the paper is structured as follows. Section 2 introduces the nec-
essary background regarding the IP detection infrastructure, its underlying def-
initions, and the SVM classification tool. Section 3 instantiates our IP detection
infrastructure. Experimental results in different contexts are presented and dis-
cussed in Sect. 4 and a conclusion is eventually given in Sect. 5.

2 Background

2.1 IP Detection Infrastructure

We take advantage of the IP detection infrastructure introduced in [14] and rep-
resented in Fig. 1. It essentially makes use of soft hash functions [24]. By contrast
to cryptographic hash functions, for which the output string is highly sensitive to
small perturbations of the input, soft hash functions are such that similar objects
should return highly correlated digests (i.e. be perceptually robust), while differ-
ent objects should produce uncorrelated ones (i.e. be content-sensitive). The
SPH used in this paper are a variation of soft hash function, where we addi-
tionally extract a physical feature from the objects to protect. The resulting IP
detection infrastructure embeds the following elements:

– Object to protect: this can be any type of IP (source code, netlist, layout).
– Physical feature vector evaluation: this process outputs an intermediate

response that is expected to represent the object to characterize in the most
accurate manner. In other words, this intermediate string must be very
content-sensitive. It can correspond to any physical emanation of the device
running the IP (e.g. power consumption, electromagnetic radiation, ...).

– Extraction: this (optional) process essentially applies some signal processing
and summarizes the feature vector into a (usually smaller) output hash value,

Support Vector Machines for Improved IP Detection 115

Fig. 1. Generic framework for IP detection.

that best trades content sensitivity for perceptual robustness (e.g. by selecting
the “points of interest” in a side-channel measurement).

– Detection: this can be any statistical tool that allows determining the level of
similarity between two hash values. Most side-channel distinguishers can be
used for this purpose (e.g. Pearson’s correlation coefficient in [14,23]).

As the detection of counterfeited IPs essentially works by comparing hash
values, it is assumed that the IP owner has characterized the SPH function of
his design. Note that this characterization process does not have to be done
during development time, but may also be done after the product has been
released. As indicated by the dotted part on Fig. 1, the suspicious IP may directly
correspond to counterfeited designs, or slightly transformed ones. In the follow-
ing, we will consider the re-synthesis of a design under a different set of con-
straints and the addition of a parasitic IP running in parallel as IP-preserving
transformations. By contrast, a change of block cipher is naturally considered
as non IP-preserving. In this context, the detection performances are measured
with the content sensitivity and perceptual robustness properties defined as:

– Perceptual robustness: probability that two implementations that only differ
by IP-preserving transformations lead to a similarity score higher than τr.

– Content sensitivity : probability that two implementations that differ by non-
IP-preserving transformations lead to a similarity score lower than τs.

For the detection process to be successful, the condition τr ≥ τs must always
be satisfied. Otherwise, a legitimate IP could be mistaken for a fraudulent one
(or conversely). Eventually, such a generic framework can be run in different
scenarios that make the detection more or less easy to perform. For example,
the inputs/outputs of the design to protect and its source code can be known or

116 L.-H. Gustin et al.

unknown, and the framework can be applied to identical or different technolo-
gies, using identical or different measurement setups. These scenarios affect the
physical features that are measured during the evaluation process.

2.2 Support Vector Machines

SVM are a class of statistical models used for data classification, popular in
machine learning and artificial intelligence [8,39]. Their goal is to learn target
properties from a finite set of data points, possibly living in a high-dimensional
space, in order to classify unseen samples. For this purpose, they essentially
estimate a classification function, taking a vector of attributes as argument and
returning a discrete decision. In our context, the data samples are the hashed
vectors of the power consumption (next denoted as x and living in R

n), and the
estimated function is the belonging of those vectors to a class of IP to protect.

Binary SVM. The standard SVM model is binary and targets the estimation
of Boolean functions. It requires a supervised (i.e. profiled) learning with labels
{−1,+1}, annotating each sample of the training dataset. Its goal it to output a
correct label for the samples of an independent test set. Let us assume that the
training set is composed of m samples xi ∈ R

n, with i = 1, ..,m. For each sample
xi, let yi ∈ {−1,+1} be the associated label. The binary SVM will estimate a
decision function g whose sign defines the binary outcome of the classifier. This
function g is based on the construction of an hyperplane, separating the two
classes with the largest possible margin, in the geometrical space of the vec-
tors. The margin represents the distance between the hyperplane and the closest
member(s) of both distributions, identical for both sides. Maximizing this quan-
tity leads to a better discrimination ability on unseen samples. These concepts
are illustrated in Fig. 2, handling a simple 2D classification task (diamonds vs.
circles) where dashed lines are margin borders around the hyperplane.

Let b ∈ R and w ∈ R
n be the parameters of the hyperplane, and x a data

vector such that we have the following decision function:

g(x) = wtφ(x) + b = w · φ(x) + b. (1)

Here φ denotes a projection function that maps the data vectors into a higher
(sometimes infinite) dimensional space. If φ is not defined as the trivial iden-
tity function (as in the figure), the hyperplane will be built in the projected
space, usually called feature space (as opposed to the original data space). This
allows to find non-linear boundaries in the data space, fitting to more complex
observations. Equation (1) returns a quantity proportional with the analytical
distance of a sample from the frontier (dxi

in Fig. 2): the further the point, the
more robust the classification. When further referring to the distance from the
hyperplane, we will always mean an evaluation of the g function. Parameters b
and w are obtained by solving the following constrained quadratic program:

min
w,b

1
2w

tw

subject to yi ∗ g(xi) ≥ 1 ∀i = 1, ...,m.
(2)

Support Vector Machines for Improved IP Detection 117

Fig. 2. Binary SVM with a 2D classification problem (the analytical distances from the
hyperplane H to the origin and a datapoint xi are given by d0 and dxi , respectively).

When the problem is feasible with respect to the constraints, the data is said
to be linearly separable in the feature space. As the problem is convex, there
is a guarantee to find a unique global minimum. Usually, solvers compute the
solution of the associated dual problem, with dual variables αi, i = 1, ..,m. This
leads to an alternative formulation of the decision function g, whose sign provides
the outcome of the classification of a new data vector x:

fclassify(x) = sign

(
∑

xi∈SV

αiyi K(xi, x) + b

)

. (3)

Here, SV denotes a subset of the original training set called the support vectors.
They are solely needed to define the hyperplane associated with non-zero dual
variables (αi �= 0), and represent the closest points to the hyperplane living on
the margin (circled in Fig. 2). The symmetric kernel function K implicitly takes
into account the projection φ in the dual problem: K(xi, xj) ≡ φ(xi)Tφ(xj).
It substitutes the dot product appearing in Eq. (1). This kernel trick allows
the usage of complex projections without explicitly computing φ, which can be
computational intensive (or even impossible) in high dimensions (e.g. using a
Gaussian Kernel as we did in our experiments - see next - is equivalent to using
an infinite-dimensional feature space).

The Single Class Extension. Binary SVM require both positive and negative
samples in the training set. In the context of IP detection, this is not directly
applicable since the negative distribution is unknown (i.e. we cannot expect to
obtain samples for all the IP that have been developed by third parties). For this
reason, we will use a slightly more complex version of SVM called “unsupervised
One-class SVM” (OSVM). It allows getting rid of any hypothesis made about the
distribution of the negative class, by working with unlabeled data. This extension

118 L.-H. Gustin et al.

Fig. 3. OSVM with a 2-dimensional classification problem in which we distinguish four
classes of points: (1) outliers with their penalty cost ξi, (2) support vectors, (3) other

points, (4) the origin (the analytical half margin size is given by |ρ|
‖w‖).

was derived from the binary case thanks to the work of B. Schölkopf et al. in
the early 2000’s [35,36]. The main underlying idea is to estimate the geometrical
region concentrating most points of the distribution, by building a separating
hyperplane having a maximum margin from the origin. For this purpose, OSVM
rely on the assumption that the dataset contains a small fraction of outliers that
will be considered as rejected samples. They associate these rejected samples
with a penalty cost, that depends on their distance from the hyperplane (cfr.
Fig. 3), and is added to the original SVM objective function (adjusted with a
new parameter ν ∈]0, 1]). Let ρ ∈ R and w ∈ R

n be the parameters of the
hyperplane and ξi ∈ R

+ a penalty cost associated with xi (i = 1, ..,m), it leads
to the following quadratic problem:

min
w,ρ,ξi

1
2w

T w + 1
νm

∑m
i=1 ξi − ρ

subject to w · φ(xi) ≥ ρ− ξi ξi ≥ 0,∀i = 1, ...,m,
(4)

with the classification function according to dual variables αi given by:

fclassify(x) = sign

(
∑

xi∈SV

αi K(xi,x)− ρ
)

. (5)

Instantiation. In this work, we use a Gaussian Radial Basis Function (RBF)
kernel within the OSVM model:

K(xi,xj) = exp
(−||xi − xj||

2σ2

)

= exp(−γ||xi − xj||), γ, σ > 0. (6)

Support Vector Machines for Improved IP Detection 119

Such a kernel has been proven to work well for a wide range of application
data. Moreover, it can be shown that this RBF-OSVM model guarantees to find a
solution (i.e. any dataset x1,x2, ...,xm is separable under a Gaussian kernel [35]).
We also observed that the computational overhead of using that kernel instead
of the linear one was negligible in our case. Eventually, building a model requires
the setting of the parameters γ and ν. We selected them thanks to a grid-search,
by optimizing the true positive rate TPR, defined as:

TPR =
#TP

#TP + #FN
, (7)

where #TP represents the frequency of vectors from the validation set correctly
detected, while #FN is the frequency of vectors wrongly rejected by the model.
This function has been evaluated on a dataset independent of the training set
(the validation set) to avoid overfitting the parameters with the data used to
train the model itself. Our choice of objective function is admittedly heuristic.
As will be clear next, it was sufficient to obtain good experimental results (and
in particular, we verified that it improved over randomly selected parameters).

3 Specification of the IP Detection Infrastructure

Given the tools presented in Sect. 2, we now need to incorporate SVM in the
generic IP detection infrastructure of Fig. 1. In this work we use the same
datasets as in the earlier studies exposed in [23], leading to an identical evalua-
tion phase. This section will briefly recall our measurement setup, valid for both
reference and suspicious traces, then describes what the construction of the OSVM
model implies in the extraction and detection phases. The LibSVM library suite
was used to process the data, train and evaluate models, as it supports OSVM and
many more features related to SVM classification tasks (see [10] for the details).

Object to Protect. We investigated an FPGA case-study and took the netlists
of five lightweight ciphers (HIGHT [18], ICEBERG [38], KATAN [9], NOEKEON [13]
and PRESENT [7]), together with the one of the AES Rijndael, as objects to pro-
tect. These netlists were synthesized for a Xilinx Virtex-II Pro FPGA. We built
only one reference model per protected IP, from its measurement obtained in a
standalone context (i.e. with no parasitic IP in parallel), loaded and synthesized
under standard options. Conversely, suspicious traces were measured in three
different contexts corresponding to increasingly difficult detection challenges,
namely identical standalone IPs, re-synthesized (still standalone) designs, and
re-synthesized designs with parasitic IP running in parallel.

Evaluation Phase. We used the FPGA power consumption as physical feature
vector. Measurement traces were obtained by measuring the voltage variations
around a shunt resistor on the Sasebo-G board [1]. The device was running at
24 MHz, and the oscilloscope sampling frequency was set to 2.5 GHz.

120 L.-H. Gustin et al.

Extraction Phase. This step slightly differs from the one in previous papers,
since we consider profiled side-channel distinguishers. Hence, while the extrac-
tion procedure applied to the reference IP (at the top of Fig. 1) and the suspicious
IP (at the bottom of the figure) was the same when using Pearson’s correlation
as detection tool, it has to differ in the case of SVM. Namely, the reference IP
extraction outputs the parameters of the hyperplane that define the IP to pro-
tect, and the physical feature vectors of the suspicious IP will be compared to this
model (rather than to other feature vectors). Besides and as usual, the extraction
could include additional signal processing and selection of points-of-interest (e.g.
some dimensionality reduction can be used to speed up computations). In our
experiments, these optional steps were usually ignored and we manipulated the
full measurement traces directly. As mentioned in introduction, it is an interest-
ing feature of SVM to allow dealing with such large dimensionalities efficiently.
The only exception is our last case-study, where averaging was performed on the
traces, to reduce the noise and improve detection capabilities.

As a technical remark, note that the OSVM require to work with vectors having
identical dimension, both for the training and the evaluation of the model. Since
different IPs were processed, a common length had to be fixed. We choose to work
with the shortest iteration length among our 6 IPs (i.e. n = 1251 dimensions
for the AES). This implicitly assumes that the traces can be synchronized, i.e.
starting all their encryption cycle at t0. This can be achieved by different means,
e.g. computing the correlation over a sliding window. In our experiments, we
observed that these cropped physical feature vectors were sufficiently specific to
their generating IP for making effective detections. Both reference and suspicious
extraction processes include this cropping operation as a preliminary step.

Detection Phase. Each suspicious hash value is evaluated in the reference
model. For this purpose, the OSVM simply outputs a value that is proportional to
the distance of this hash from the decision boundary (i.e. the SVM hyperplane),
whose sign indicates the classification outcome. As previously mentioned, we will
call it a “distance” for simplicity, and it can be interpreted as a similarity score
lying on an open scale, whose expression is given by Eq. (5).

4 Case Studies

In this section, we analyze our RBF-OSVM model applied in four detection scenar-
ios of increasing complexity. First we tackled the basic case of suspicious traces
emitted by a standalone design for each of the 6 IPs. Secondly, we evaluated the
case where each design was re-synthesized under a different set of constraints. We
then moved to a more challenging context, by including a parasitic IP running
in parallel of the tested design (which is aimed to emulate a complex system).
Eventually, we considered a combination of all these cases (which turned out
to be more challenging, as we will explain). In practice, we made use of 2000
measurements per IP in each context. Two thirds were used for building the ref-
erence model (i.e. 1333 traces) and the remaining third was used as suspicious IP

Support Vector Machines for Improved IP Detection 121

traces for validating the detection (i.e. 667 traces). We only present results for
the case where PRESENT is the IP to protect since it was shown previously (and
confirmed in our experiments) that it is the one leading to the most ambiguities
(hence the most challenging to detect). Unless specified otherwise, the context
in which the IP-detection is performed in the next subsections is the following:
the inputs provided to the IP are unknown, we do not have access to the source
code, and the same device and measurement setup was used for all the tests.

Before describing our experimental results in details, it is important to note
a difference between (i) the classification outcome provided by the OSVM and
(ii) the detection outcomes resulting from the use of the OSVM distance as a
similarity score. In the first case, classification returns whether a sample has
been properly labeled (belonging or not to the reference set) according to its
relative position to the hyperplane. In the second case, detection is successful if
the perceptual robustness threshold is higher than the content sensitivity one (we
further call the difference the disambiguation gap). In theory (and, as it turns
out, in practice too), it may of course happen that the classification fails while
still giving rise to a sufficient disambiguation gap. This possibility essentially
follows from the fact that the IP detection infrastructure can rely on carefully
chosen thresholds for the content sensitivity and perceptual robustness.

4.1 Standalone FPGA Designs

The results of the IP detection infrastructure applied to the standalone case are
presented in Fig. 4. Each column contains the similarity scores corresponding
to one particular suspicious IP. The black dashed line corresponds to the deci-
sion threshold used for classification. The solid green line and red dashed line
respectively correspond to the perceptual robustness threshold (i.e. the PRESENT
trace having the lowest similarity score), and the content sensitivity threshold
(i.e. the highest similarity score among all the non-PRESENT traces). Having pos-
itive similarity scores for the PRESENT IP implies that the classification outcome
is correct. Having the perceptual robustness threshold higher than the content
sensitivity one implies that the detection is successful. Note that the figure is
in fact a zoom of the region of interest of Fig. 8 available in appendix. In this
zoomed version, we omitted the AES IP which is (as expected) quite different
from other IPs, and is therefore strongly rejected by the OSVM model. More pre-
cisely, we measured a voltage swing about 5 times larger in intensity, explaining
this distance. This observation remains valid for the other detection scenarios
and the AES was therefore left out of all the figures, for readability reasons. We
observe from Fig. 4 that all non-PRESENT IPs are correctly rejected by the OSVM
classification since their scores lie below the decision threshold. PRESENT traces
expose mostly positive scores, which was expected. A few outliers have however
been rejected by the classification (<2.1%). This is mainly a consequence of
the construction properties of the OSVM model. Still, the detection is successful
in all our standalone experiments, as a disambiguation gap separates PRESENT
traces from non-PRESENT ones. In [23], this case required to work with 10 times
averaged traces (both for suspicious and reference traces) to get a similar result.

122 L.-H. Gustin et al.

Fig. 4. Similarity scores for single suspicious standalone traces with unknown inputs.

4.2 Re-Synthesized FPGA Designs

In this second (more challenging) scenario, we consider the application of a first
IP-preserving transformation by a potential counterfeiter. Namely, we evaluate
the impact of a placement and routing of our different block cipher implemen-
tations under a different set of constraints (i.e. with parameters to optimize the
area of the layout instead of its timing). This reconfiguration does not modify
the IP, which lies one abstraction layer above (source code or netlist).

Our experiments are summarized in Fig. 5. We notice a slight increase of
suspicious PRESENT wrongly rejected by the classification, as the model was
originally trained to recognize traces corresponding to another set of synthesis
parameters. Yet, the re-synthesis does not significantly affect the mean similar-
ity scores of the other IPs, which still guarantees a safe disambiguation gap.
This result is interesting since in the previous work [23], such a detection was
not possible in an unknown-plaintext scenario and the authors further had to
average their traces to reach good IP detection probabilities. So it already sug-
gests a useful improvement of our OSVM-based approach. Note that the set of
synthesis options that we used in this section could equally stand as reference.
We observed that the results are roughly identical independent of this a priori
choice.

4.3 Parasitic IP Running in Parallel

We now study a practically-important case-study, where not only the suspicious
IP would run on the target platform but also a parasitic one. As previously
mentioned, the goal is to emulate a more realistic system where the IP is inserted
in a neighborhood made of other running IPs, hence altering the measured signal.
As a first step in this direction, we investigated the case of a Linear Feedback

Support Vector Machines for Improved IP Detection 123

Fig. 5. Similarity scores for single suspicious re-synthesized traces, unknown inputs.

Shift Register (LFSR) generating an “algorithmic noise” essentially proportional
to its size (and studied sizes of up to 2018 bits). Figure 6 illustrates the results
of our IP detection infrastructure in the most challenging (2048-bit) context.
This time, we observe that the OSVM classification clearly fails at detecting the
IP-preserving transformation applied on PRESENT, as their traces lie below the
decision threshold. However, there still exists a disambiguation gap that ensures
a perfect detection. So at this stage, the interest of the OSVM-based detection
is clearly exhibited. Indeed, [23] provided an efficient detection until a 1024-bit
LFSR, while our method allows us to detect IP with a 2048-bit LFSR. Moreover,
this previous work had to harness data dependencies (i.e. known inputs) and
averaging on selected points-of-interest for lowering the noise in the extraction
phase, conversely to our work that considers unknown inputs and raw traces.

4.4 Advanced Detection Scenario

We finally investigated an advanced scenario where we combined the suspicious
traces from all the previous contexts in a single experiment. This choice was
mainly motivated by the observation of Figs. 5 and 6, where we can see that
the content sensitivity threshold in the parasitic IP scenario is higher than the
perceptual robustness threshold in the re-synthesized one. It means that when
these scenarios are mixed together, false detection or false non-detection may
occur whatever detection threshold is chosen. Such pathological cases typically
happen with the most challenging detection of PRESENT with parasitic IP from
a re-synthesized KATAN, and required two modifications/improvements.

First, we had to move to a known input context (i.e. we kept the key and
plaintext constant during the experiments), allowing us to take advantage of
data dependencies in the traces. Intuitively, this is because the information

124 L.-H. Gustin et al.

Fig. 6. Similarity scores for single suspicious traces with parasitic IP, unknown inputs.

Fig. 7. Similarity scores for 10 times averaged suspicious traces in a combined setting
with known inputs: (1) standalone PRESENT, (2) re-synthesized PRESENT, (3) PRESENT

with paras. IP, (4) standalone KATAN, (5) re-synthesized KATAN, (6) KATAN with paras. IP.

exploited in the feature vectors captured in an unknown input scenario essen-
tially corresponds to a correlation between the operations performed by the IP
and its measured power consumption. The known input context adds a correla-
tion between the data being manipulated and the measurements. Hence, a new
(data-dependent) reference model was built for PRESENT. Secondly, and in order
to get rid of a part of the algorithmic noise, we worked with averaged suspicious
traces rather than single ones. This implies a slight change in the definition of
the extraction phase, which now includes this 10 times averaging step.

Support Vector Machines for Improved IP Detection 125

The corresponding results are reported in Fig. 7. This time, only PRESENT and
KATAN are considered as suspicious IPs, since they are the most challenging ones.
Combining averaging with a characterization of the data dependencies naturally
gave rise to more detailed profiles for the reference IP, as can be observed in this
zoomed figure. First, we can now distinguish the different PRESENT IPs, even after
IP-preserving transformations. For example the similarity scores of standalone
(1) and re-synthesized (2) designs are nicely separated (even though the latter
ones have the right classification label, as expected). Next, we observe that the
classification outcome for PRESENT with parasitic IP is even worse than before
(moving from−0.01 to −0.04, roughly). However, this new model strongly rejects
the different variants of KATAN (4,5,6). So the tweaked IP detection returns a pos-
itive disambiguation gap that makes these two implementations distinguishable.
It is interesting to note that in this last combined context, we required both an
improvement of the signal (i.e. data dependencies) and a reduction of the noise
(i.e. averaging) to obtain successful detections.

5 Conclusion

Our results further validate SPH functions as a useful ingredient in the detection
of IP theft. They also suggest a context in which SVM (and their single-class
extension) seem an appealing side-channel distinguisher. Of course, IP protection
is an extremely challenging (and sometimes hard to define) problem. So the tools
in this work should only be seen as one part of the solution. In particular, deter-
mined adversaries could envision more complex IP-preserving transformations
than the ones we analyzed, and evaluating a change of technology between the
reference and suspicious IP is an interesting scope for further research. Hopefully,
there also remains tracks for improving the detection results, either by advanced
statistical tools, or by improved (e.g. localized electromagnetic) measurements.
In other words, there is a wide range of tradeoffs, between the complete reverse
engineering of a chip and the characterization of its power consumption, that
can be used by designers to protect their IP. As the cheapest and most flexible
solution for this purpose, we believe SPH functions can at least be used as a first
step in this direction, prior to more expensive approaches.

Acknowledgements. This work has been funded in parts by the Walloon region WIST
program project MIPSs and by the European Commission through the ERC project
280141 (acronym CRASH). François-Xavier Standaert is an Associate Researcher of the
Belgian Fund for Scientific Research (FNRS-F.R.S.). Stéphanie Kerckhof is a PhD stu-
dent funded by a FRIA grant, Belgium.

126 L.-H. Gustin et al.

A Stand-Alone FPGA Designs: Complete Results

Fig. 8. Similarity scores for single suspicious standalone traces with unknown inputs.

References

1. Sasebo-G measurement board. http://www.rcis.aist.go.jp/special/SASEBO/
SASEBO-G-en.html

2. 32nd IEEE Symposium on Security and Privacy, S&P 2011, 22–25 May 2011,
Berkeley, California, USA. IEEE Computer Society (2011)

3. Abdel-Hamid, A.T., Tahar, S., Aboulhamid, E.M.: A survey on IP watermarking
techniques. Des. Autom. Emb. Sys. 9(3), 211–227 (2004)

4. Baetoniu, C.: FPGA IFF copy protection using Dallas semiconductor/Maxim
DS2432 secure EEPROMs. XAPP780, May 28 (2010)

5. Bartkewitz, T., Lemke-Rust, K.: Efficient template attacks based on probabilistic
multi-class support vector machines. In: Mangard [29], pp. 263–276

6. Becker, G.T., Kasper, M., Moradi, A., Paar, C.: Side-channel based watermarks
for integrated circuits. In: HOST, pp. 30–35 (2010)

7. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher.
In: Paillier and Verbauwhede [31], pp. 450–466

8. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin
classifiers. In: Proceedings of the 5th Annual Workshop on Computational Learning
Theory, COLT ’92, pp. 144–152, New York, NY, USA, 1992. ACM (1992)

9. De Cannière, C., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - a family
of small and efficient hardware-oriented block ciphers. In: Clavier and Gaj [13], pp.
272–288

10. Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines.
ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). (Software.
http://www.csie.ntu.edu.tw/cjlin/libsvm)

http://www.rcis.aist.go.jp/special/SASEBO/SASEBO-G-en.html
http://www.rcis.aist.go.jp/special/SASEBO/SASEBO-G-en.html
http://www.csie.ntu.edu.tw/cjlin/libsvm

Support Vector Machines for Improved IP Detection 127

11. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Jr. et al. [21], pp. 13–28
12. Clavier, C., Gaj, K. (eds.): CHES 2009. LNCS, vol. 5747. Springer, Heidelberg

(2009)
13. Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: Nessie proposal: NOEKEON.

http://gro.noekeon.org/
14. Durvaux, F., Gérard, B., Kerckhof, S., Koeune, F., Standaert, F.-X.: Intellectual

property protection for integrated systems using soft physical hash functions. In:
Lee, D.H., Yung, M. (eds.) WISA 2012. LNCS, vol. 7690, pp. 208–225. Springer,
Heidelberg (2012)

15. Goubin, L., Matsui, M. (eds.): CHES 2006. LNCS, vol. 4249. Springer, Heidelberg
(2006)

16. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and
their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)

17. Heuser, A., Zohner, M.: Intelligent machine homicide - breaking cryptographic
devices using support vector machines. In: Schindler and Huss [34], pp. 249–264

18. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee,
J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A new block cipher suitable for
low-resource device. In: Goubin and Matsui [16], pp. 46–59

19. Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.:
Machine learning in side-channel analysis: a first study. J. Cryptogr. Eng. 1(4),
293–302 (2011)

20. Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.): CHES 2002. LNCS, vol. 2523. Springer,
Heidelberg (2003)

21. Kahng, A.B., Lach, J., Mangione-Smith, W.H., Mantik, S., Markov, I.L.,
Potkonjak, M., Tucker, P., Wang, H., Wolfe, G.: Watermarking techniques for
intellectual property protection. In: DAC, pp. 776–781 (1998)

22. Kahng, A.B., Mantik, S., Markov, I.L., Potkonjak, M., Tucker, P., Wang, H.,
Wolfe, G.: Robust IP watermarking methodologies for physical design. In: DAC,
pp. 782–787 (1998)

23. Kerckhof, S., Durvaux, F., Standaert, F.-X., Gérard, B.: Intellectual property pro-
tection for FPGA designs with soft physical hash functions: First experimental
results. In: HOST, pp. 7–12 (2013)

24. Lefèbvre, F., Czyz, J., Macq, B.M.: A robust soft hash algorithm for digital image
signature. ICIP 2, 495–498 (2003)

25. Lerman, L., Bontempi, G., Markowitch, O.: Side channel attack: an approach based
on machine learning. In: Constructive Side-Channel Analysis and Secure Design,
COSADE (2011)

26. Lewandowski, M., Meana, R., Morrison, M., Katkoori, S.: A novel method for
watermarking sequential circuits. In: HOST, pp. 21–24 (2012)

27. Linke, B.: Xilinx FPGA IFF copy protection with 1-wire SHA-1 secure memories.
XAPP3826, July 21 (2006)

28. Mangard, S. (ed.): CARDIS 2012. LNCS, vol. 7771. Springer, Heidelberg (2013)
29. Mangard, S., Oswald, E., Standaert, F.-X.: One for all - all for one: unifying stan-

dard differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011)
30. Paillier, P., Verbauwhede, I. (eds.): CHES 2007. LNCS, vol. 4727. Springer,

Heidelberg (2007)
31. Rao, J.R., Sunar, B. (eds.): CHES 2005. LNCS, vol. 3659. Springer, Heidelberg

(2005)
32. Roy, B., Meier, W. (eds.): FSE 2004. LNCS, vol. 3017. Springer, Heidelberg (2004)

http://gro.noekeon.org/

128 L.-H. Gustin et al.

33. Schindler, W., Huss, S.A. (eds.): COSADE 2012. LNCS, vol. 7275. Springer,
Heidelberg (2012)

34. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao and Sunar [32], pp. 30–46

35. Schölkopf, B., Platt, J.C., Shawe-Taylor, J.C., Smola, A.J., Williamson, R.C.: Esti-
mating the support of a high-dimensional distribution. Neural Comput. 13(7),
1443–1471 (2001)

36. Schölkopf, B., Smola, A.J., Williamson, R.C., Bartlett, P.L.: New support vector
algorithms. Neural Comput. 12(5), 1207–1245 (2000)

37. Simpson, E., Schaumont, P.: Offline hardware/software authentication for reconfig-
urable platforms. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249,
pp. 311–323. Springer, Heidelberg (2006)

38. Standaert, F.-X., Piret, G., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: ICEBERG
: An involutional cipher efficient for block encryption in reconfigurable hardware.
In: Roy and Meier [33], pp. 279–299

39. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York
(1995)

40. Ziener, D., Teich, J.: Power signature watermarking of IP cores for FPGAs. Sig.
Process. Syst. 51(1), 123–136 (2008)

Collision-Correlation Attack
Against a First-Order Masking Scheme

for MAC Based on SHA-3

Luk Bettale(B), Emmanuelle Dottax, Laurie Genelle, and Gilles Piret

Oberthur Technologies, 420 Rue D’Estienne D’Orves, 92700 Colombes, France
{l.bettale,e.dottax,g.piret}@oberthur.com,

laurie.genelle.p@gmail.com

Abstract. In 2012, Keccak has been selected as the SHA-3 compe-
tition winner, and NIST recently announced the standardization of a
keyed version for message authentication codes. In this paper, we con-
sider an implementation of this keyed function, protected against first-
order side-channel analysis with an efficient masking scheme proposed
by the designers. We show that this masking scheme is vulnerable to a
non-linear collision-correlation attack. Our attack advantageously needs
no assumption on device-depending parameters, and hence constitutes
an interesting alternative to second-order differential analysis.

Keywords: SHA-3 · Side-channel analysis · Collision attack · Masking
scheme

1 Introduction

Hash functions are part of the foundations of information security. When the
security of existing standards SHA-1 and SHA-2 has been questioned, the
National Institute of Standards and Technology (NIST) announced a hash func-
tion competition for a new standard SHA-3. On October 2012, Keccak [5] was
selected as the winner of this competition. This hash function can naturally be
used in a keyed version to build a Message Authentication Code (MAC) algo-
rithm. As Keccak uses the sponge construction [4], a cryptographically secure
MAC can be obtained by simply hashing the concatenation of the secret key and
the message. NIST recently announced that the standardization of this mecha-
nism is planned as well [20]. As any algorithm manipulating secret data, such a
keyed function might be vulnerable to Side-Channel Analysis (SCA).

The principle of SCA is to exploit dependencies that exist between a physical
leakage (e.g., power consumption, electromagnetic emanations) produced during
the execution of a cryptographic algorithm and the value of the manipulated
secrets. The variety of attacks ranges from Simple SCA (e.g., [21,29]) to the

Laurie Genelle - This work was done while this author was a member of the Cryp-
tography Group of Oberthur Technologies.

c© Springer International Publishing Switzerland 2014
E. Prouff (Ed.): COSADE 2014, LNCS 8622, pp. 129–143, 2014.
DOI: 10.1007/978-3-319-10175-0 10

130 L. Bettale et al.

more advanced Differential SCA (DSCA) (e.g., [12,22]) or Template Attacks [14].
To prevent these attacks, masking is an appropriate countermeasure [13]. The
principle is to inject randomness in the cryptographic algorithm computations,
so that the leakage observed at a given time does not depend on the secret
anymore. To do so, each sensitive variable x is split into several shares, by means
of random masks. For instance, a Boolean first-order masking scheme involves
one random mask r and the masked value x⊕r. Second-order DSCA (2O-DSCA)
can then be used to defeat the masking (e.g., [24,25,27]). Their principle is to
combine leakages related to the manipulation of two variables that are jointly
dependent on the sensitive variable (e.g., r and x ⊕ r). However, 2O-DSCA
require a significantly higher number of leakage observations.

A specific type of SCA is collision-based SCA. The principle is to detect col-
lisions between internal values. The idea has been used for the first time against
a DES implementation [32]. An attack against AES has been later proposed
[31], and several improvements have followed [8–10]. Interestingly, this kind of
attack can naturally be extended against some masked implementations [15]. The
advantage of these attacks when compared to classical DSCA is that they do not
rely on a leakage model, and hence do not require an a priori knowledge of the
device leakage function. This can be of particular interest, for instance when no
information on the device under attack is available, or for some leakage models
(e.g., [1,16]).

In this paper, we focus on the Keccak-based MAC [4] considered by NIST
for standardization, protected against first-order DSCA with an efficient masking
scheme introduced in [6]. We notice that the same mask is used on both the input
and the output of the non-linear step, and exploit it with a collision detection
based on correlation computation similar to [15]. It allows us to gather equations
involving secret bits. We show how to build a system of non-linear equations that
can be solved efficiently to recover the full key. To assess the feasibility of the
attack, we also give the results of some experiments done with simulations.

As already mentioned, a collision-based attack advantageously does
not require any knowledge on the leakage function of the target device. More-
over, our attack does not rely on any other device dependent parameters either,
contrary to previous collision-based SCA (e.g., [15] fixes a correlation threshold
to distinguish collisions, which implies a profiling step). Hence this attack can
be used in a non-profiled setting.

The rest of the paper is organized as follows. Section 2 sums up the previ-
ous works in the field of collision-based SCA. Section 3 briefly introduces Kec-
cak and notations, and summarizes existing results regarding SCA. Section 4 is
devoted to the description of our new attack, while Sect. 5 exhibits the results
of our experiments for the correlation attack. Eventually, Sect. 6 concludes this
paper.

2 Collision-Correlation SCA

The principle of collision-correlation attacks is to detect collisions (i.e. identical
state at two different times) using side-channel leakage during a cryptographic

Collision-Correlation Attack Against Masked Keyed Keccak 131

computation, and to use them in order to retrieve the key. The first premise of
the idea can be found in the BigMac attack [35]. Several results on asymmetric
implementations came afterwards, which we do not discuss further as our concern
is symmetric implementations.

The first application of collision attacks to a symmetric implementation has
been suggested by Schramm et al.in an attack on DES [32], and improved by
Ledig et al. [23]. One year later it was applied on AES [31]. The idea of these
papers was to use collision detection in conjunction with a differential crypt-
analysis style attack; as a consequence these attacks are chosen plaintext ones
(contrary to classical DSCA). As the collisions that are exploited are related
to the encryption of different messages, one can efficiently protect against them
by using a masking countermeasure (as masks change from one encryption to
another, collisions are no longer meaningful).

On the contrary the so-called linear collision attack presented in [15] and
[26] can be used to attack masked implementations as well. It applies to the first
round of a SPN (Substitution-Permutation Network) block cipher with bijective
S-boxes (like AES). The principle is to detect collisions at the output of two S-
boxes: that is, we try to obtain equations of type S(pi ⊕ ki) = S(pj ⊕ kj). They
imply pi ⊕ ki = pj ⊕ kj (by bijectivity of the S-box) and thus ki ⊕ kj = pi ⊕ pj .
In [15] a masked implementation is attacked, but with the masks being identical
for all S-boxes. In [26] masks are different, but the authors acknowledge that the
attack is made possible because of a flaw in the hardware implementation.

The seminal papers [32] and [31] made the hypothesis that collisions are easy
to detect. However in noisy environments it is a challenge in itself. To this end a
few papers elaborate on using statistical tools. Bogdanov [10] proposes the use
of binary and ternary votings. The drawback of these tools is that a threshold
has to be fixed a priori to decide whether a given pair of traces corresponds to
a collision or not. Gérard and Standaert [18] and Roche and Lomné [30] use a
different technique to overcome this problem: still in the context of linear collision
attacks, they derive a complete probability distribution for all differences of pairs
of key bytes Δa,b = ka ⊕ kb, and consider the word (Δ1,1,Δ1,2, . . . ,Δ15,16) as a
noisy version of a codeword corresponding to the key. Then they use decoding
techniques to retrieve it.

The attacks aforementioned only consider linear equations, which imposes
to be very restrictive on the location of the bytes that are expected to collide.
In [11] Bogdanov et al. go one step further by exploiting several different types
of collisions; each such collision transposes into a non-linear equation. Collisions
between bytes in the first and in the second round of AES are considered, as
well as collisions between bytes in the first round and bytes in the last round.
Faugère’s F4 algorithm [17] is then used to solve the system of non-linear equa-
tions.

This technique results in a reduction of the number of measurements needed
for successful key recovery. However it applies to non masked implementations.

132 L. Bettale et al.

3 Side-Channel Analysis of KECCAK

3.1 Introduction to KECCAK

We here briefly present Keccak as specified in [5] and introduce notations for
the rest of the paper.

Keccak is a family of functions with a variable-length input M and a fixed-
length output Z, based on a sponge construction which iterates a permutation
f on an internal state. The input is first padded and split in r-bit blocks, which
are absorbed sequentially into an internal state by a bitwise XOR operation. The
output is squeezed from the state. The overall hashing process is depicted in
Fig. 1: r is called the bit-rate, and c the capacity. The value b = r + c is the
width of the permutation.

r

c

0

0

M Z

pad trunc

f f f f f f

absorbing squeezing

. . .

Fig. 1. Keccak

Seven variants of the permutation are defined, with parameter b = 25w
ranging from 25 to 1600 (w = 2i, i ∈ {0, . . . , 6}); however b = 1600 (w = 64)
is the only value that has been submitted to the competition. The state A is
organized as a set of 5× 5×w bits with (x, y, z) coordinates. A[x][y][z] denotes
the bit at position (x, y, z), with indexes starting from 0, where x, y coordinates
are taken modulo 5, and z coordinate is taken modulo w.

The function f is an iterated permutation over Z
b
2 consisting in the repetition

24 times of a round function which is the composition of five primitives: ι ◦ χ ◦
π ◦ ρ ◦ θ. At round i, they are defined as follows:

– θ : A[x][y][z]← A[x][y][z] +
∑4

y′=0A[x− 1][y′][z] +
∑4

y′=0A[x+ 1][y′][z − 1];
– ρ : A[x][y][z]← A[x][y][z − (t+ 1)(t+ 2)/2],where t depends on x and y;

– π : A[x][y][z]← A[x′][y′][z],with
(
x
y

)

=
(

0 1
2 3

)(
x′

y′

)

;

– χ : A[x][y][z]← A[x][y][z] + (A[x+ 1][y][z] + 1) ·A[x+ 2][y][z];
– ι : A← A+ RC[i];

where additions and multiplications are performed in GF(2), and RC[i] is a
round constant.

Collision-Correlation Attack Against Masked Keyed Keccak 133

It is possible to build a MAC based on this function by simply taking as
input the concatenation of a secret key K and a message M and truncating the
output to p bits, with p < c: KeccakK(M) = �Keccak(K||M)�p. Thanks to
the sponge construction, this MAC function is secure [4].

3.2 Side-Channel Analysis of KECCAK

Considerations about side-channel analysis of keyed versions of Keccak have
been first presented by the designers at the SHA-3 conference [3]. They look at
keyed versions of Keccak in general and focus on the security evaluation of
countermeasures. They propose to use a classical first-order Boolean masking
scheme for software implementations, where each sensitive variable is split into
two shares. Let R and S denote the two shares of the state A: A = R⊕S. Secure
evaluation of a linear function is easy to implement: let λ denotes the linear layer
λ = π ◦ ρ ◦ θ, one has just to compute λ(R) and λ(S). The non-linear function
χ can be computed on the shares without manipulating the sensitive variables.
To ease reading, we will omit y and z indexes and simply note ax for A[x][y][z]
(the same holds for R and S). If the sensitive bits ax, ax+1, ax+2 are represented
by the shares rx, rx+1, rx+2 and sx, sx+1, sx+2 (i.e. ax = rx + sx and so on), the
authors propose to implement the χ operation

ax ← ax + (ax+1 + 1) · ax+2

as follows:
rx ← rx + (rx+1 + 1) · rx+2 + rx+1 · sx+2

sx ← sx + (sx+1 + 1) · sx+2 + sx+1 · rx+2 .
(1)

This masking scheme has been improved in [6]. The idea is to fix one of the
shares during one execution, say share S, so that (1) can be rewritten as:

rx ← rx + (rx+1 + 1) · rx+2 + rx+1 · sx+2 + (sx+1 + 1) · sx+2 + sx+1 · rx+2

sx ← sx .
(2)

Doing so, the processing of S through the linear part λ can be saved by pre-
computing the value Y = S ⊕ λ(S). The linear part can then be implemented
as:

R← λ(R)⊕ Y
S ← S .

The designers also propose in [3] a hardware architecture protected against
first-order attacks, based on a threshold implementation with three shares. The
same subject has been further studied in [2], and the masking scheme has been
improved recently by [7]. We do not detail these works here as we are interested
in software implementations.

Additionally, some papers deal with side-channel analysis of unprotected
implementations of the Keccak-based MAC. In [37] and [34], the authors con-
sider classical DSCA and exhibit the different algorithm steps that can be tar-
geted in order to recover the full key: the absorbing phase, the θ and the χ

134 L. Bettale et al.

operations. Depending on the key length, different attack paths are identified.
Only a short section of [37] is devoted to Keccak, hence scenarios for all possible
key lengths are not presented. This is done in [34], and some of these attacks are
put into practice on an FPGA implementation. The classical first-order Boolean
masking schemes introduced in [3,6] are adequate countermeasures against these
attacks.

In the next section, we show how one can mount a collision attack on the
optimized version of the masking scheme.

4 A Collision-Correlation Attack on Masked Keyed
KECCAK

When the enhanced masking scheme (2) is implemented, the same value is used
to mask both the input and the output of χ. This setting can be used to efficiently
detect collisions between these variables. In this section, we first present an
overview of the attack principle in a non-masked setting, then we focus on the
algebraic aspects and finally we explain how the masking scheme allows to detect
collisions.

4.1 Attack Principle

As already said, we consider the keyed function that consists in hashing the
concatenation of a key and a message (in this order). Without loss of generality
and as proposed in [4], we assume that the key is first padded to a complete
input block, so that the state value obtained after absorbing the key can be
precomputed. The goal of our attack is to retrieve this secret state, which is
called the key in the following.

The attack focuses on the χ operation in the first round of the f function. We
denote by M the r-bit input message and K the 25w-bit key. Both M and K can
be viewed as a 3-dimensional state. Let M [x, y, z] = 0 when (5x+ y)w+ z > r.
In the first round of f , the following operations are performed:

1. A←M ⊕K
2. A← λ(A) = π ◦ ρ ◦ θ(A)
3. A← χ(A)
4. A← ι(A) .

More specifically, at bit level for χ operation, we have

A[x, y, z]← A[x, y, z] + (A[x+ 1, y, z] + 1) ·A[x+ 2, y, z],

for each x, y, z, 0 � x < 5, 0 � y < 5, 0 � z < w. Let us assume that a collision
is found during the χ step, that is, it exists x, y, z such that

A[x, y, z] + (A[x+ 1, y, z] + 1) ·A[x+ 2, y, z] = A[x, y, z]
⇐⇒ (A[x+ 1, y, z] + 1) ·A[x+ 2, y, z] = 0 . (3)

Collision-Correlation Attack Against Masked Keyed Keccak 135

Such a collision gives valuable information on the secret. Indeed, let M ′ = λ(M)
and K ′ = λ(K). As λ is a linear transformation, it holds that λ(M ⊕ K) =
λ(M)⊕ λ(K) = M ′ ⊕K ′. Equation (3) becomes

(M ′[x+ 1, y, z] +K ′[x+ 1, y, z] + 1) · (M ′[x+ 2, y, z] +K ′[x+ 2, y, z]) = 0 . (4)

All bits M ′[x, y, z] can be known by computing λ(M). Thus, (4) is a quadratic
equation in 2 variables representing the bits of K ′. If an attacker succeeds in
recovering all bits of K ′, she just has to compute λ−1(K ′) to recover K.

The attack is split in two steps: the collision detection which allows to recover
equations, and the algebraic system solving which allows to recover the key from
the equations. In the following, we show that if an attacker is able to recover
enough equations, she is able to recover the secret key K. In the next section we
first assume that collisions have been reliably detected on any bit of the state
and focus on the resulting algebraic system. Afterward in Sect. 4.3, we address
the problem of detecting such collisions on a masked implementation.

4.2 Algebraic Collision Attack

To present our attack, we first suppose that during the execution of a keyed
Keccak, an attacker is able to detect a collision between an input bit and an
output bit of the first round χ for any input message M . Say that an attacker
detects collisions when processing n messages M (1), . . . ,M (n). We denote by ti
the number of collisions obtained with the message M (i), 1 � i � n. We denote
by (xi,j , yi,j , zi,j) the position of the j-th bit collision found with message M (i),
1 � j � ti. Finally, let M ′(i) = λ(M (i)). The attacker obtains several equations
similar to (4) as follows:

((M ′(i) ⊕K′)[xi,1 + 1, yi,1, zi,1] + 1) · ((M ′(i) ⊕K′)[xi,1 + 2, yi,1, zi,1]) = 0,

...

((M ′(i) ⊕K′)[xi,ti + 1, yi,ti , zi,ti] + 1) · ((M ′(i) ⊕K′)[xi,ti + 2, yi,ti , zi,ti]) = 0,

(5)

for each i, 1 � i � n. Note that each equation involves only 2 variables. If these
equations are gathered according to y and z, one obtains smaller independent
systems in only 5 variables. Let my,z be the number of gathered equations, we
denote by f (y,z)

1 , . . . , f
(y,z)
my,z the polynomials composing one such small system:

Fy,z =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

f
(y,z)
1 (K ′[0, y, z], . . . ,K ′[4, y, z]) = 0

...

f (y,z)
my,z

(K ′[0, y, z], . . . ,K ′[4, y, z]) = 0 ,

(6)

for each y, 0 � y < 5, z, 0 � z < w. The equations of each subsystem depend
on the messages M (1), . . . ,M (n) that have been chosen. The number my,z of
equations is also related to the input messages and their number.

136 L. Bettale et al.

Proposition 1. For a given key K, there are at most 15 different equations in
each system Fy,z.

Proof. When a message M is known, each equation (4) involves only 2 unknown
variables K ′[x+ 1, y, z] and K ′[x+ 2, y, z]. For each value x, 0 � x < 5, Eq. (4)
holds if and only if one of the following equations holds:

(i) M ′[x+ 1, y, z] = K ′[x+ 1, y, z] + 1 and M ′[x+ 2, y, z] = K ′[x+ 2, y, z] + 1
(ii) M ′[x+ 1, y, z] = K ′[x+ 1, y, z] and M ′[x+ 2, y, z] = K ′[x+ 2, y, z]
(iii) M ′[x+ 1, y, z] = K ′[x+ 1, y, z] + 1 and M ′[x+ 2, y, z] = K ′[x+ 2, y, z].

So we have 3 possible equations for each x, 0 � x < 5.
�
With enough detected collisions, one would obtain a total of 5 × w small

systems (6) of at most 15 equations in 5 variables. Solving each system indepen-
dently gives 5 secret bits K ′[0, y, z], . . . ,K ′[4, y, z]. Algebraic systems (6) can be
solved by exhaustive search (only 25 possibilities). If a small system does not
contain enough equations, several solutions may exist, which will leave us at the
end with a set of candidates for K to be exhaustively tested. To summarize, the
overall attack process is as follows.

1. Detect collisions coming from n different messages.
2. Build the 5× w small systems Fy,z for 0 � y < 5, 0 � z < w.
3. Solve each system Fy,z. Let Vy,z be the set of solutions of Fy,z.
4. Build all candidates K ′ from the Vy,z (there are

∏

y,z #Vy,z candidates).
5. Compute K = λ−1(K ′) for all K ′. Exhaustively search the correct key.

It has to be emphasized that the number of solutions of the small systems (6)
may be a blocking factor in the attack. The more collisions are detected, the
more the small systems are determined, and the better the attack is in terms of
efficiency. Figure 2 illustrates the overall process.

4.3 Collision Detection

The success of the above algebraic collision attack depends on the ability to
detect a collision between the input and the output of the χ function (i.e., in the
same execution). As explained in Sect. 2, collision detection from side-channel
leakage has been widely studied lately, mostly on the AES block cipher. The
problem in Keccak is a bit different.

The collision detection on AES generally targets two outputs of an S-box, and
hence can advantageously correlate the traces during the whole S-box computa-
tions. In our attack, we need to detect collisions between two intermediate values
that collide in two different sequences of instructions. Often, this means narrow-
ing the compared traces to a few instructions. The main difficulty is that, depend-
ing on the leakage of the device, two different values could have a similar leakage.
Let L be the device’s leakage function, in general (L(a) = L(b)) � (a = b). This
is the case for instance if L is the Hamming weight. Hence in general, detecting
such collisions may not be possible.

Collision-Correlation Attack Against Masked Keyed Keccak 137

Location of collisions detected on χ for each input message M (i):

M (1) M (2)

.
.

M (n)

System for row (0, 0):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K [0, 0, 0] + K [1, 0, 0] K [2, 0, 0] = 0

1 + K [0, 0, 0] + (1 + K [1, 0, 0]) K [2, 0, 0] = 0

.

.

.

K [4, 0, 0] + K [0, 0, 0] (1 + K [1, 0, 0]) = 0

V0,0 = {(0, 1, 1, 0, 1)}

solving

.

.

.

System for row (4, w − 1):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + K [0, 4, w − 1] + K [1, 4, w − 1] K [2, 4, w − 1] = 0

K [0, 4, w − 1] + (1 + K [1, 4, w − 1]) K [2, 4, w − 1] = 0

.

.

.

K [5, 4, w − 1] + 1 + K [0, 4, w − 1]) (1 + K [1, 4, w − 1]) = 0

V4,w−1 = {(1, 0, 0, 1, 0) , (1, 0, 1, 1, 0)}

solving

y,z #Vy,z candidates

Fig. 2. General view of the attack: collisions detected on several input messages are
modeled as algebraic equations and gathered in small systems according to the corre-
sponding row. Each system is solved independently. We obtain candidates for λ(K).
The correct key K is finally found by inverting λ.

Interestingly, the masking scheme presented in Sect. 3 will help to detect
collisions. Indeed, suppose that one looks for a collision between two variables a
and b which are masked with the same mask r: let ã = a ⊕ r and b̃ = b ⊕ r be
the masked values. When a = b, it holds that ã = b̃ for any value of r. Thus the
correlation between the leakages related to ã and b̃ is an adequate tool to detect
the desired collision, as for classical leakage functions, it also holds that

(∀r,L(a⊕ r) = L(b⊕ r))⇒ (a = b) .

We can hence use the collision-correlation analysis technique [15] to take advan-
tage of the fact that the implementation is masked.

As stated in [15,26], one advantage of the collision-correlation is that the
attacker does not need to make an assumption on the leakage model1. Con-
trary to a classical DSCA, we do not correlate the leakages against a predic-
tion function, but against other leakages supposed to leak exactly in the same
way. The main drawback is that we need to detect a high enough correlation,
that is, to decide whether a correlation corresponds to a collision. At least two
approaches are possible. Either the device has been profiled beforehand, in which
case the correlation value for a collision can be known in advance. This assump-
tion is made in [15] where the authors use a threshold to detect collisions.
1 But of course, we need to find where the sensitive variables are manipulated.

We will not describe this process and assume it has already been done.

138 L. Bettale et al.

Another technique is to use enough messages so that a collision reliably hap-
pens (or at least with very high probability). Then the highest correlations are
collisions. This has been studied in [30] in the case of AES. In this paper, we
will consider both approaches for Keccak.

Collision detection in Keccak. The Keccak algorithm is defined on words of
w = 64 bits. If we consider a software implementation on an embedded device
with an 	-bit processor, the algorithm will manipulate chunks of 	 bits of a w-bit
lane, corresponding to an 	-bit state word (A[x, y, k], . . . , A[x, y, k 	+ 	−1]) for
given values of x, y and k. Such a device will leak on 	-bit data, and hence the
correlation will detect collisions on 	-bit values. Most common sizes are 	 = 8,
	 = 16 or 	 = 32.

From now on, the term “collision” will denote a collision between an 	-bit
word of the input of χ and the corresponding 	-bit output word. For each detected
collision in a single input message, we obtain then 	 relations like (4) at a time.
With the profiling technique, after the threshold has been decided, it is sufficient
to hash random messages until enough relations are found to solve the systems
described in Sect. 4.2. The bigger the value of 	, the lower the probability to
have a collision. This probability will determine the number of messages needed
to reach the necessary amount of equations. In the non-profiled approach, 	 also
determines the number of messages required to be able to probabilistically detect
a collision. In both cases (profiled and non-profiled), the value 	 is an important
parameter for the success of our attack. In what follows, we study the probability
for a collision to happen.

Collision probability of Keccak. The probability to obtain a collision on a word
depends on the probability of collision for one bit (i.e., the probability that (4)
is satisfied), and on the word size 	.

Proposition 2. In Keccak, given a size 	, if the bits of the internal state A
are uniformly distributed, then for any values x, y, k, 0 � x < 5, 0 � y < 5,
0 � k < w

� , the probability that (A[x, y][k], . . . , A[x, y][(k + 1) 	− 1]) is equal to

(χ(A)[x, y][k], . . . , χ(A)[x, y][(k + 1) 	− 1]) is
(

3
4

)�.

Proof. For a given triplet (x, y, z), the bit collision A[x, y, z] = χ(A)[x, y, z] is
equivalent to have Eq. (3) satisfied. Equation (3) is false only when A[x+1, y, z] =
0 and A[x+ 2, y, z] = 1 (1 case among 4), and true otherwise (3 cases among 4).
If A is uniformly distributed, (3) is then true with probability

(
3
4

)

. Equations
for A[x, y, z] and A[x, y, z′] with z′ = z are independent from one another. Then
the probability to have an 	-bit collision is

(
3
4

)�.
�
We recall that the input of χ is A = λ(M ⊕ K). If the input M of keyed

Keccak is uniformly chosen, we may suppose that the input of the χ function
in the first round is also uniform. During a single execution of the χ function,
each word has a probability p =

(
3
4

)� to collide. The whole Keccak state is
composed of 25× w

� words. Having at least one collision during a single execution

Collision-Correlation Attack Against Masked Keyed Keccak 139

of Keccak is the complementary event of having no collision in any of the 25×w
�

words. The probability to have at least one collision is then 1−(1− p)25× w
� . This

value is given in Table 1 for several usual values of 	.

Table 1. Probability to have at least one collision during a single Keccak execution.

Bit-size � 8 16 32

prob. collision (1− 10−9) 0.635 0.005

According to Table 1, for 	 = 8 or 	 = 16, the probability to have at least one
collision is quite high, contrary to the attacks on the AES. A profiling step is
then not necessary to detect a collision. The higher correlations obtained from
the 25 w

� correlations are collisions with high probability.

Remark 1. As in the attacks on the AES, it is possible to build a set of messages
such that for any 	-bit word of the state, a collision occurs for at least one of
these messages. In the case of Keccak, as the collision probability is high, using
random messages is a better strategy (less messages are needed).

5 Experiments

In this section we give some experiments regarding the algebraic collision attack.
We consider the setting 	 = 8 and we try to determine the feasibility of the attack
depending on the number of available messages. Even when the considered set
of messages allows to have one collision equation for each bit of the state, the
system may have too many valid solutions. More messages are needed for the
system to have one unique solution, or at least a sufficiently low number of
solutions so that an exhaustive search is possible. We summarize in Table 2 the
number of collisions, obtained equations and solutions observed in average.

According to Table 2, 70 messages are enough to mount the algebraic attack
with an extra exhaustive search on 220 key candidates. For all messages,

Table 2. Algebraic attack behavior depending on the number of messages for � = 8
bits leakages. The table shows the number of collisions #C, the number of equations
#Fy,z and the number of solutions #V of the attack. The values are averaged over 20
executions of the attack.

140 L. Bettale et al.

the collisions have to be reliably found (no false collisions). The success rate
of the attack depends on the success rate of the collision detection, which is
related to the attacked device and the detection technique.

As a proof of concept, we simulated our attack in the following framework: we
consider a device whose leakage on an 	 = 8 bits variable is the sum between the
Hamming weight of this variable and an independent noise. The latter is modeled
with a Gaussian distribution centered in zero and with a standard deviation σ.
We give in Fig. 3 an example of the correlations obtained for various numbers
of executions for a fixed input message. The traces in black correspond to the
8-bit words that are actually colliding. It can be seen that these are the more
correlated.

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

C
o
rr

el
a
ti

o
n

Nb. of executions

no collision
collision

(a) simulation with σ = 2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

C
o
rr

el
a
ti

o
n

Nb. of executions

no collision
collision

(b) simulation with σ = 4

Fig. 3. Correlations obtained for 8-bit leakages according to the number of executions.

We consider the collision detection step of our attack to be successful when
the highest correlation obtained for a non-collision is significantly above the
lowest correlation obtained for a collision. The success rate of this step can be
experimentally computed according to the number of executions for different σ.
For instance, when σ = 2 (Fig. 3a), only 4 500 executions are needed to have
100 % of correct collisions (averaged over 100 trials). This value has to be mul-
tiplied by the number of messages needed to succeed in the algebraic solving
part. This amounts to 315 000 total executions to reach a 100 % success rate.
For σ = 4 (Fig. 3b), a total of 3 500 000 executions are needed. Experiments
with other leakage models and comparison to second order DSCA are available
in Appendix A.

6 Conclusion

In this paper, we have presented the first collision-correlation attack on an imple-
mentation of a MAC based on SHA-3, secure against first-order DSCA. This
attack builds an algebraic system from the detected collisions. We have given a
full description of this system, and we have studied in detail the feasibility of

Collision-Correlation Attack Against Masked Keyed Keccak 141

the attack. As any collision-based SCA, our attack does not require knowledge
of the leakage function. Moreover, the collision detection of our attack requires
no knowledge of any other characteristic of the component. Thus this attack can
advantageously be used in a non-profiled setting, when no information on the
device is available.

A Comparison with Second-Order DSCA

We compare our new attack to second-order DSCA for different leakage models
studied in the literature [16]. For the 2O-DSCA, we make predictions in the HW
model and we use Pearson’s linear correlation coefficient as a distinguisher [12].
We use the normalized product as a combination function [28,33]. The considered
leakage models for our simulations are the Hamming Weight of the byte (HW),
a polynomial combination of the bits of degree two (quad), and a polynomial
combination of the bits not bounded on the degree (full). For the HW leakage
model, we used the same noise level as the simulations in [30]. We have adapted
the noise level to keep the same signal-to-noise ratio for the two other leakage
functions. The number of executions needed are given in Table 3.

Table 3. Number of executions needed to perform our attack and a 20-DSCA according
to the leakage model (simulations).

HW quad full

This attack 315 000 × 70 200 000 × 70 5 000 × 70

2O-DSCA 600 000 >1 500 000 >1 500 000

We observe that for both the quad and full leakage functions, the 2O-DSCA
proves to be less efficient than our attack (more traces are needed). This is due
to the fact that the predicted and actual leakage functions are no more linearly
related. In such cases, we conclude that a collision-correlation attack is a valuable
alternative to 2O-DSCA.

References

1. Akkar, M.-L., Bévan, R., Dischamp, P., Moyart, D.: Power analysis, what is now
possible. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 489–502.
Springer, Heidelberg (2000)

2. Bertoni, G., Daemen, J., Debande, N., Le, T.H., Peeters, M., Van Assche, G.:
Power analysis of hardware implementations protected with secret sharing. In: 45th
Annual IEEE/ACM International Symposium on Microarchitecture Workshops
(MICROW). pp. 9–16. IEEE Computer Society (2012)

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Building power analysis resis-
tant implementations of Keccak. In: Second SHA-3 Candidate Conference (2010)

142 L. Bettale et al.

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic Sponge Func-
tions, Version 0.1 (2011)

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak Reference,
Version 3.0 (2013)

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Keccak imple-
mentation overview, Version 3.2 (2012)

7. Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V., Van Assche, G.: Effi-
cient and first-order DPA resistant implementations of Keccak. In: Francillon, A.,
Rohatgi, P. (eds.) Smart Card Research and Advanced Applications. LNCS, vol.
8419, pp. 187–199. Springer, Heidelberg (2014)

8. Biryukov, A., Khovratovich, D.: Two new techniques of side-channel cryptanalysis.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 195–208.
Springer, Heidelberg (2007)

9. Bogdanov, A.: Improved side-channel collision attacks on AES. In: Adams, C.,
Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 84–95. Springer,
Heidelberg (2007)

10. Bogdanov, A.: Multiple-differential side-channel collision attacks on AES. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 30–44. Springer,
Heidelberg (2008)

11. Bogdanov, A., Kizhvatov, I., Pyshkin, A.: Algebraic methods in side-channel col-
lision attacks and practical collision detection. In: Chowdhury, D.R., Rijmen,
V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 251–265. Springer,
Heidelberg (2008)

12. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye and Quisquater [19], pp. 16–29

13. Chari, S., Jutla, C., Rao, J., Rohatgi, P.: Towards sound approaches to counteract
power-analysis attacks. In: Wiener [36], pp. 398–412

14. Chari, S., Rao, J., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–29. Springer, Heidelberg
(2003)

15. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Improved collision-
correlation power analysis on first order protected AES. In: Preneel, B., Takagi, T.
(eds.) CHES 2011. LNCS, vol. 6917, pp. 49–62. Springer, Heidelberg (2011)

16. Dabosville, G., Doget, J., Prouff, E.: A new second-order side channel attack based
on linear regression. IEEE Trans. Comput. 62(8), 1629–1640 (2013)

17. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J.
Pure Appl. Algebra 139(1–3), 61–88 (1999). (http://www-salsa.lip6.fr/jcf/Papers/
F99a.pdf)

18. Briais, S., et al.: 3D hardware canaries. In: Prouff, E., Schaumont, P. (eds.) CHES
2012. LNCS, vol. 7428, pp. 1–22. Springer, Heidelberg (2012)

19. Joye, M., Quisquater, J.-J. (eds.): CHES 2004. LNCS, vol. 3156. Springer,
Heidelberg (2004)

20. Kelsey, J.: SHA3 - past, present, and future. In: Presented at the rump session of
CHES 2013 (2013)

21. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

22. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener [36], pp. 388–
397

23. Ledig, H., Muller, F., Valette, F.: Enhancing collision attacks. In: Joye and
Quisquater [19], pp. 176–190

http://www-salsa.lip6.fr/jcf/Papers/F99a.pdf
http://www-salsa.lip6.fr/jcf/Papers/F99a.pdf

Collision-Correlation Attack Against Masked Keyed Keccak 143

24. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hard-
ware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 157–171. Springer, Heidelberg (2005)

25. Messerges, T.S.: Using second-order power analysis to attack DPA resistant soft-
ware. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000)

26. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis col-
lision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol.
6225, pp. 125–139. Springer, Heidelberg (2010)

27. Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical second-order DPA
attacks for masked smart card implementations of block ciphers. In: Pointcheval,
D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Heidelberg (2006)

28. Prouff, E., Rivain, M., Bévan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

29. Quisquater, J.J., Samyde, D.: A new tool for non-intrusive analysis of smart cards
based on electro-magnetic emissions, the SEMA and DEMA methods. In: Presented
during EUROCRYPT’00 Rump Session (2000)

30. Roche, T., Lomné, V.: Collision-correlation attack against some 1st-order boolean
masking schemes in the context of secure devices. In: Prouff, E. (ed.) COSADE
2013. LNCS, vol. 7864, pp. 114–136. Springer, Heidelberg (2013)

31. Schramm, K., Leander, G., Felke, P., Paar, C.: A collision-attack on AES (Com-
bining Side Channel and Differential-Attack). In: Joye and Quisquater [19], pp.
163–175

32. Schramm, K., Wollinger, T., Paar, C.: A new class of collision attacks and its
application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–
222. Springer, Heidelberg (2003)

33. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The world is not enough: another look on second-order
DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer,
Heidelberg (2010)

34. Taha, M., Schaumont, P.: Side-channel analysis of MAC-Keccak. In: IEEE Interna-
tional Symposium on Hardware-Oriented Security and Trust - HOST 2013. IEEE
Computer Society (2013)

35. Walter, C.D.: Sliding windows succumbs to big mac attack. In: Koç, Ç.K.,
Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 286–299. Springer,
Heidelberg (2001)

36. Wiener, M. (ed.): CRYPTO 1999. LNCS, vol. 1666. Springer, Heidelberg (1999)
37. Zohner, M., Kasper, M., Stöttinger, M., Huss, S.A.: Side channel analysis of the

SHA-3 finalists. In: Rosenstiel, W., Thiele, L. (eds.) Design, Automation and Test
in Europe Conference & Exhibition, DATE 2012, pp. 1012–1017. IEEE Computer
Society (2012)

Attacking Randomized Exponentiations
Using Unsupervised Learning

Guilherme Perin1(B), Laurent Imbert1(B), Lionel Torres1,
and Philippe Maurine1,2

1 LIRMM/UM2, 161, Rue Ada, 34095 Montpellier, France
{perin,laurent.imbert}@lirmm.fr

2 CEA-TECH LSAS Laboratory, 880 Avenue de Mimet, 13541 Gardanne, France

Abstract. Countermeasures to defeat most of side-channel attacks on
exponentiations are based on randomization of processed data. The expo-
nent and the message blinding are particular techniques to thwart simple,
collisions, differential and correlation analyses. Attacks based on a single
(trace) execution of exponentiations, like horizontal correlation analysis
and profiled template attacks, have shown to be efficient against most
of popular countermeasures. In this paper we show how an unsupervised
learning can explore the remaining leakages caused by conditional con-
trol tests and memory addressing in a RNS-based implementation of the
RSA. The device under attack is protected with the exponent blinding
and the leak resistant arithmetic. The developed attack combines the
leakage of several samples over the segments of the exponentiation in
order to recover the entire exponent. We demonstrate how to find the
points of interest using trace pre-processing and clustering algorithms.
This attack can recover the exponent using a single trace.

Keywords: RSA · Randomized exponentiation · Electromagnetic analy-
sis · Unsupervised learning · Clustering algorithms · Single-execution
attacks

1 Introduction

Not only designers of cryptographic devices have to implement the algorithms
efficiently, they also have to ensure that sensible information that leaks through
several side-channels (time, temperature, power consumption, electromagnetic
emanations, etc.) during the execution of an algorithm, remains unexploited
by an attacker. If not sufficiently protected, both symmetric and asymmetric
cryptographic implementations are vulnerable to these so-called side-channel
attacks (SCA). For public-key algorithms such as RSA, the main operation to be
armoured consists of a multi-digit exponentiation over a finite ring. In this paper,
we present an improved single-execution attack on a randomized implementation
of RSA. However, the ideas and tools that we exploit would also apply in the
context of CRT-RSA and (hyper)elliptic curves.
c© Springer International Publishing Switzerland 2014
E. Prouff (Ed.): COSADE 2014, LNCS 8622, pp. 144–160, 2014.
DOI: 10.1007/978-3-319-10175-0 11

Attacking Randomized Exponentiations Using Unsupervised Learning 145

Attacking an exponentiation consists of identifying the bits of the exponent,
a value that is often to be kept secret (it is either a secret key or a random
secret value). Simple side-channel attacks [2], which uses a single trace of exe-
cution, are easily protected using so-called constant-time algorithms such as
square-and-multiply-always [4], the Montgomery ladder [7] or atomicity [23].

However, these constant-time algorithms are not sufficient to defeat the more
powerful differential [3] and correlation attacks [5]. Although very efficient on not
sufficiently protected implementations, these attacks suffer from the very large
number of traces to be collected in order to recover (part of) the secret. Colli-
sion attacks proposed by Fouque in 2003 [6] are very efficient; they only require
two traces of execution on well chosen inputs. All these attacks are generally
protected using exponent and/or message blinding using elementary algebraic
manipulations. For example, randomization of an RSA exponent relies on the
fact that md ≡ md+rφ(n) mod n for any (random) value r (see Sect. 5). Apart
from these well known tricks, randomization can also take place at the arith-
metic level. The LRA concept [9], based on the Residue Number System, seems
to be a robust, yet efficient [24,25] alternative to more expensive (hardware)
countermeasures.

Novel attacks [14–17] have recently emerged. Unlike the well studied family of
differential [3] and correlation attacks [5], these so-called horizontal correlation
attacks (HCA), aim at correlating the Hamming Weight HW(m) of a known
message m, with a set of well-chosen sample points ti from one single trace.
Some of them [15,17] are indeed efficient in the presence of message blinding.
They exploit the very high regularity of multi-digit exponentiation algorithms
and represent a very serious threat against classical randomization countermea-
sures. A major advantage of single-trace-based attacks is their natural immunity
to exponent blinding, since, in many cases, recovering a random exponent is
sufficient to break the cryptosystem (see Sect. 5).

Profiled template attacks can recover the exponent using few traces. As the
original template attack [11] suggests, the attacker must have full control of
the device. In particular, he must be able to send plain-texts of his choice to a
known key device. In the case of public-key algorithms, the public-key is known
and also can be used in the profiling phase. In this case, the pre-computations
whose objective is to build the template set is refereed to as supervised learn-
ing. In [13] supervised template attacks are successfully applied on modular
exponentiations in order to differentiate squarings from multiplications. More
recently, a template attack on constant-time exponentiation algorithms was pre-
sented in [12], while [19] suggests a technique to attack the exponent blinding.
A template attack targeting the memory addressing was presented in [22]. All
those methods fall into the class of supervised attacks, i.e., a learning phase
is required during which the adversary constructs templates by exploring the
statistical characteristics of various types of operations.

When the adversary does not have a full control of the device, unsuper-
vised methods are necessary. In [18], unsupervised learning has been presented
to demonstrate the efficiency of localized EM attacks on exponentiations using a

146 G. Perin et al.

k-means clustering algorithm to differentiate the attacked samples. Their attack
is performed on an ECC [27] implementation over a binary field using Lopez-
Dahab coordinates [26]. The scalar is recovered using leakages collected during
the execution of a single scalar multiplication (k ∈ Z, P ∈ E(F2m) −→ [k]P ∈
E(F2m). However, their attack relies on the ability to acquire several simultane-
ous EM traces from different probe positions1. The leakages obtained from these
multi-measurement sources are then combined together in order to reduce the
signal-to-noise ratio. By doing so, they managed to classify the sampled points
into two distinct sets which correspond to the zero bits (resp. non-zero bits) of
the scalar k.

In this paper, we present a single-trace, single-probe unsupervised attack,
i.e. the side-channel data is collected from one EM probe only. In the next
sections, we present the setting and statistical tools that we used to recover
the entire exponent of a constant-time, randomized RSA implementation. Our
attack is unsupervised because it does not require any a priori knowledge of
the device, in particular we did not use the public key or send any chosen mes-
sages in order to learn the characteristics of the device. The chip under attack
is a constant-time, RNS-based FPGA implementation of RSA protected with
the Leak Resistant Arithmetic [9] and exponent blinding. Since all manipulated
data is randomized, we explore the remaining leakages due to control instruc-
tions and memory activities. As previously demonstrated in the literature [20],
memory and register addresses leak information related to the secret key. Instead
of using simultaneous measurements as in [18], we combine the cluster classifi-
cations of several samples from each bit of the exponent. We thus process the
probabilities obtained from this first phase to recover the entire exponent. Our
attack requires four phases: trace pre-processing, points of interest identification,
fuzzy k-means clustering, and exponent recovery. For this final phase, we present
results obtained with three different statistical techniques (majority rule, normal
probability density function and Bayesian classifier).

The paper is organized as follows: Sect. 2 gives details about the randomized
exponentiation and the device under attack. The unsupervised learning based
on clustering algorithms is detailed in Sect. 3. Section 4 presents the attack in
details and the results that we obtained with the three statistical tools mentioned
above. Possible countermeasures are suggested in Sect. 6.

2 The Randomized Exponentiation and the Device
Under Test

The device under attack is a RNS-based implementation of RSA mapped onto
a Spartan-3E xc3s1600 FPGA. For demonstration purposes, we considered a
very weak 512-bit RSA. The modular exponentiation is computed with the reg-
ular and SPA-protected Montgomery ladder [8] using two sets of RNS bases

1 Their setting simulates the use of 9 probes uniformly positioned over the chip under
attack.

Attacking Randomized Exponentiations Using Unsupervised Learning 147

A and B [10]. The atomic square-and-multiply [23] is also a regular and faster
exponentiation. However as proposed in [15], randomized exponentiations can be
explored through horizontal correlation attacks (HCA) if one of the intermediate
operands, in the case the randomized input message, is used in several modular
multiplications.

According to the leak resistant arithmetic (LRA) concepts [9], the RNS mod-
uli can be randomized before each exponentiation. This countermeasure acts as
a message blinding technique because it offers a high degree of randomization
to the data. Furthermore, HCA exploits the regularity of long-integer multipli-
cation (or squaring). The parallel RNS arithmetic is then a very limiting factor
for this attack. Moreover, our hardware is protected with exponent blinding.
Algorithm 1 shows the randomized exponentiation.

Algorithm 1. LRA-RNS Montgomery Powering Ladder [9]
Data: x in A ∪ B, where A = (a1, a2, ..., ak), B = (b1, b2, ..., bk), A =

∏k
i=1 ai,

B =
∏k

i=1 bi, gcd(A, B) = 1, gcd(B, N) = 1 and d = (d�...d2d1)2.

Result: z = xd mod N in A ∪ B
1 Pre-Computations: |AB mod N |A∪B
2 randomize(A, B)
3 dr = d + r.φ(N)
4 A0 = MM(1, AB mod N, N, A, B) (in A ∪ B)
5 A1 = MM(x, AB mod N, N, A, B) (in A ∪ B)
6 for i = � to 1 do
7 Adri

= MM(Adri
, Adri

, N, B, A) (in A ∪ B)

8 Adri
= MM(Adri

, Adri
, N, B, A) (in A ∪ B)

9 end
10 A0 = MM(A0, 1, N, B, A) (in A ∪ B)

The operation MM(x, y,N,B,A) returns xyB−1 mod N in the two RNS
bases A and B. Both squarings and multiplications are computed with the same
number of clock cycles.

First, as the exponent is randomized, single-trace attack was the only option.
Further, because the manipulated data is randomized with LRA, the target infor-
mation of our unsupervised attack is not the data contribution in the EM traces.
By data, we mean the intermediate variables which depend on the randomly
selected RNS bases and the input message. Exponent-dependent decisions are
taken by the architecture’s control in order to determine the memory address
for reading or writing operands before, during and after the modular multiplica-
tions. These conditional tests, as well as the accessed memory addresses, cause
subtle leakages of information. These are the only sources of leakages that we
exploit in the present unsupervised attack. We present the details of our attack
in the next sections.

3 Unsupervised Learning and the Clustering Algorithms

Clustering is one of the most frequently used data mining techniques, which is an
unsupervised learning process for partitioning a data set into sub-groups so that

148 G. Perin et al.

the instances within a group are similar to each other and are very dissimilar to
the instances of other groups. That is, we shall see what can be done when the
collected samples are unlabelled and must be grouped in homogeneous clusters.
Two different clustering methods are used in this work: the k-means and the
fuzzy k-means algorithms [28].

The k-means algorithm is a geometric procedure for finding c means or cen-
ters (μ1, . . . , μc) considering a set of n samples xj , where 1 ≤ j ≤ n. The initial-
ization phase consists in defining the number of clusters c and setting a random
sample to each mean μi. Thereafter, the algorithm computes the Euclidean dis-
tances EDi,j =‖ xj − μi ‖2 for all n samples to obtain the maximum-likelihood
estimation of the means μi. The k-means algorithm is shown in Algorithm 2.

Algorithm 2. K-Means Clustering Algorithm
1 begin initialize x, n, c, μ1, . . . , μc

2 do classify n samples xj according to nearest μi by computing EDi,j

3 recompute μi

4 until no change in μi

5 return μ1, . . . , μc

6 end

The k-means algorithm iterates until no changes in μi are verified. In all
iterations each sample is assumed to be in exactly one cluster. The fuzzy k-
means algorithm relaxes this condition and assumes that each sample xj has
some membership with different clusters ωi, rather than belonging completely
to just one cluster.

Initially, the probabilities of cluster membership for each point xj of a n
sample vector x are normalized according to all clusters ωi as:

c∑

i=1

P (ωi|xj) = 1 (1)

where P (ωi|xj) is the probability that the sample xj is in the cluster ωi. At
each iteration of the fuzzy k-means algorithm, the means (or centers) μi are
recomputed according to the following equation:

μj =

∑n
j=1[P (ωi|xj)]bxj
∑n

j=1[P (ωi|xj)]b
(2)

and the new probabilities are recomputed:

P (ωi|xj) =
(1/EDij)1/(b−1)

∑c
r=1(1/EDrj)1/(b−1)

, EDij =‖ xj − μi ‖2 (3)

where b > 1 is a free parameter chosen to adjust the “blending” of different clus-
ters. Its appropriate choice can improve the cluster classification if the analyzed

Attacking Randomized Exponentiations Using Unsupervised Learning 149

Algorithm 3. Fuzzy K-Means Clustering Algorithm
1 begin initialize n, c, μ1, . . . , μc, P (ωi|xj)
2 normalize probabilities of cluster memberships by Eq. 1
3 do classify n samples according to nearest μi

4 recompute μi by Eq. 2
5 recompute P (ωi|xj) by Eq. 3
6 until no change in μi and P (ωi|xj)
7 return μ1, . . . , μc

8 end

data set is too much noisy. In this work, this parameter is set to 2. Algorithm 3
shows the fuzzy k-means algorithm.

The next section describes the unsupervised attack in four phases. The k-
means algorithm is used in the search for the points of interest. The fuzzy k-
means is employed in the cluster classification after having selected the points
of interest.

4 The Unsupervised Attack

In a realistic assumption for single-execution attacks on exponentiations, the
adversary works in a noisy environment and, as already stated in [19], “single
bits are never known with certainty [. . .] and an SPA attacker [. . .] can only
give a probability that any particular operation is a squaring or a multiplication”,
if the attacked device executes the square-and-multiply algorithm. If a single-
execution attack is able of recovering 98 % of the 1024 exponent bits and the
adversary does not know the wrong bit positions inside the exponent, a brute
force attack requires

∑21
j=0 C

1024
j = 2144 steps to retrieve the incorrect bits.

Therefore, the number of wrong bits in the recovered exponent must be at least
very low, otherwise a single-execution attack is impracticable.

When applying non-profiled attacks on a single trace of an exponentiation,
the adversary has no knowledge about the operation features (mean μ, vari-
ance σ2). All information must be recovered in a unsupervised manner. Regular
binary algorithms [8,23] compute the exponentiation iteratively and for each bit
of the exponent (or segment) same operations are performed. Thus, a initial par-
titioning step is applied to the measured electromagnetic exponentiation trace
in order to have � segments, each one representing one exponent bit interpre-
tation. The segments are aligned and compressed to reduce the noise and clock
jitter effects. Thereafter, as proposed in this attack, several points of interest
are identified in each segment by computing an estimated and approximated
difference of means. The cluster classification using the fuzzy k-means algorithm
is applied in each set of compressed samples, each set representing a selected
point of interest and providing an estimated exponent. The last step consists
in retrieving the randomized exponent using all estimated exponents obtained

150 G. Perin et al.

time

am
pl

itu
de M MM MS SS S

...
1 1 2 2 3 3

d1,k d2,k d3,k d... ,kd1: ,k =

Fig. 1. Exponentiation trace and the segmentation in multiplications and squarings.

with the cluster classification. The proposed attack, divided in four phases, is
detailed below.

4.1 Phase 1: Trace Pre-processings

The attack starts by acquiring a single execution exponentiation trace from
the device. Let us consider that the randomized exponent is d1:�,k, where � is the
length of the exponent and k is index of the exponentiation trace. In our case,
the exponentiation is computed using the regular Montgomery ladder algorithm.
The EM trace, with size L, is sliced in � operations of multiplications and �
operations of squarings, as depicted in Fig. 1.

Each multiplication (Mi) or squaring (Si) in the acquired EM trace contains
74 clock cycles. The oscilloscope sampling rate was set to 20 GS/s during the
acquisition step and the hardware computes the exponentiation at a clock fre-
quency of 50 MHz, resulting in 59200 samples per exponent bit interpretation
(MiSi). The device under attack does not feature any hardware countermeasure,
e.g., time disarrangement, dummy cycles or frequency dividers. Therefore, the
� segments of multiplication-squarings MiSi, can be easily identified and com-
bined to explore the leakage of information. However, the clock jitter effect is
still present in the acquired EM trace and must be suppressed using a trace
alignment procedure.

Another important role in unsupervised single-execution attacks is to identify
the points of interest which present greater leakages. A simple solution consists
in averaging the 400 samples of one clock cycle into 1 sample and taking each
averaged sample as a point of interest. Here, in order to preserve the informa-
tion over smaller windows, the trace is compressed by averaging 100 samples
into 1 sample. Then, this allows reducing the amount of data from 59200 to
592 compressed samples during an exponent bit interpretation di,k (denoted by
operation 〈MS〉i in the sequel).

Now, the � operations are represented by a matrix T :

T =

⎡

⎢
⎢
⎢
⎣

〈MS〉1
〈MS〉2

...
〈MS〉�

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

t1,1 t1,2 · · · t1,592

t2,1 t2,2 · · · t2,592

...
...

. . .
...

t�,1 t�,2 · · · t�,592

⎤

⎥
⎥
⎥
⎦

(4)

Attacking Randomized Exponentiations Using Unsupervised Learning 151

Each row of the matrix T is a set of compressed samples 〈MS〉i = {ti,j}
representing an exponent bit interpretation di,k. The term � is the exponent bit
length and, of course, is the iterations number in the Algorithm 1 (steps 6–9).
After the trace pre-processing, the attack enters in the second phase that consists
in finding the points of interest.

4.2 Phase 2: Finding the Points of Interest

The success of the attack depends on the choice of the points of interest. With
profiling or supervised attacks, these points can be found by computing a dif-
ference of means and observing the highest peaks of amplitude. In such a case,
the adversary has a known key d and computes averaged traces Tr0 and Tr1
representing the truncated windows of sampled points when the exponent bit is
zero and one, respectively and according to:

Tr0 =
∑

i

〈MS〉di=0 Tr1 =
∑

i

〈MS〉di=1 (5)

Because the presented attack aims at revealing the exponent through an
unsupervised manner, the attacker should be considered as having minimal
knowledge about the target implementation to identify the points of interest.
Because all data are randomized, the remaining leakage is related to addressing
and control executions. Therefore, by observing and studying the collected EM
trace, the attacker can, for instance, localize the time points where the device
performs such operations and discard the points that clearly show no compro-
mising information.

Our unsupervised analysis needs a set of points of interest in each segment
〈MS〉i to retrieve the exponent. A basic idea is to initially apply a clustering
algorithm over each set of compressed samples {t1:�,j} (each column of matrix
T) and find 592 approximated exponents d̂1:�,j , for 1 ≤ j ≤ 592. In our practical
experiments, this leads to the recovery of around 93 % of the entire exponent on
the most leaking set of compressed samples {t1:�,j}. It is insufficient. However,
this result can be used for calculating approximated and averaged traces T̂r0
and T̂r1 from the approximated exponent d̂1:�,j . For this initial step, we consid-
ered the k-means clustering algorithm because it is a simple and fast technique.
Figure 2(a) shows the relation between the percentage of success recovery of the
exponent and the analyzed set of compressed samples {t1:�,j}, for 1 ≤ j ≤ 592.

If the adversary selects the most likely exponent (in the case the set {t1:�,465})
he computes the averaged traces T̂r0 and T̂r1. Figure 2(b) shows the approx-
imated difference of mean traces D̂ = T̂r0 − T̂r1. The difference of means
D = Tr0 − Tr1, for the real randomized exponent running in the device, is
depicted in Fig. 2(c).

Note that the results in Fig. 2(b) and (c) are quite similar and the adversary
can select points of interest observing the highest peaks of amplitude in D̂. In a
worst case, the adversary would try to compute approximated difference of mean

152 G. Perin et al.

0 100 200 300 400 500
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0 100 200 300 400 500
50

55

60

65

70

75

80

85

90

95

100

Samples

(a)Mi Si

50 150 250 350 450 550

50 150 250 350 450 550

(b)Mi Si

0 100 200 300 400 500
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Samples
50 150 250 350 450 550

(cMi Si)

Fig. 2. (a) Percentage of correct exponent bits. (b) Approximated difference of mean

traces ̂D =̂Tr0 −̂Tr1 (c) Difference of mean traces D = Tr0 − Tr1.

traces, and selecting points of interest, from each one of the 592 possibilities.
It is clear that the selection of the most leaking point of interest reduces the
computational time of the unsupervised attack. Besides, we observed (see Fig. 2)
that the highest percentages of correct exponent recovery match with the highest
peaks of amplitude in the approximated difference of means D̂. We used this
observation as a heuristic in order to select the points of interest.

4.3 Phase 3: Cluster Classification

After computing the approximated difference of mean traces from the set of
compressed samples {t1:�,465}, let us suppose the selection of u points of interest

Attacking Randomized Exponentiations Using Unsupervised Learning 153

0 50 100 150 200 250 300 350 400 450 500
-0.020

-0.015

-0.010

-0.005

0

0.005

0

(a) (b)

-0.020

-0.015

-0.010

-0.005

0

0.005

50 100 150 200 250 300 350 400 450 500

Centers Centers

Fig. 3. Errors of cluster classification: (a) Correct classification. (b) Fuzzy k-means
classification.

P = {pj}, for 1 ≤ j ≤ u, among the 592 possibilities. Observing the approxi-
mated difference of means D̂ in Fig. 2(b), 17 points of interest were selected (pj =
165, 166, 169, 281, 282, 284, 285, 342, 461, 462, 464, 465, 497, 498, 577, 580, 581),
which evidently are the most leaking points.

A clustering is computed for all set of compressed samples {t1:�,pj
}, for

1 ≤ j ≤ u by applying the fuzzy k-means algorithm. Thus, a classification
for these samples in two classes (bits zeros and ones), which leads to one esti-
mated exponent d̂1:�,pj

per set of samples {t1:�,pj
}, is obtained. Because real

attacks work on noisy environments, the clustering over each point of interest
pj contains errors of classification. Figure 3 illustrates the cluster classification
error for the set of compressed samples {t1:�,169}. Figure 3(a) shows the correct
classification according to the real randomized exponent d1:�,k and the Fig. 3(b)
presents the cluster classification returned by the fuzzy k-means algorithm.

For each point of interest pj , the fuzzy k-means clustering algorithm returns
two centers μ1 andmu2 and two groups of clustered samples. A common problem
would be to identify what class or operation (exponent bit zero or one) each
cluster center represents. With u = 17 cluster classifications into two classes,
there will be 217 = 131072 different possibilities. The identification of the classes
can be performed in two different ways:

1. Instead of selecting random samples to initialize the values μ1 and μ2 in the
Algorithm 3, we select the minimum and maximum samples from the set
{t1:�,pj

} according to their amplitudes. The initialization in Algorithm 3 is
done by assigning μ1 = min{t1:�,pj

} and μ2 = max{t1:�,pj
}. It ensures that

μ1 < μ2 after the clustering. Then, comparing the resulting cluster means μ1

and μ2 with the amplitude of the approximated difference of means D̂, and
also T̂r0 and T̂r1, it is straightforward to identify the classes.

2. As all selected leaking points may lead to more than 50 % of exponent recov-
ery, we take one recovered exponent d̂1:�,v from one point of interest v,
v ∈ {pj}, and compute the bitwise XOR between this exponent and the
other estimated exponent values. Let � be the size of the exponent, d̂1:�,pj

all the recovered exponents for 1 ≤ j ≤ u, pj 	= v, and the bitwise results

154 G. Perin et al.

Table 1. Cluster classification of the (first 40) exponent bits and the recovery of d̂1:�,k

using the majority rule.

h1:� =XOR(d̂1:�,pj
, d̂1:�,v) for pi 	= v. If

∑�
i=1 hi < �/2 then returns NOT

(d̂1:�,pj
), otherwise keep unchanged.

After the cluster classifications and respective association of the classes, the
attack enters in the last step in order to combine all estimated exponents into
one final exponent.

4.4 Phase 4: Exponent Recovery

The recovery of the final randomized exponent is computed through three differ-
ent statistical techniques: majority decision, probability density function (pdf)
and Bayesian classifier.

Majority Decision. Table 1 shows the cluster classification results for the first
40 bits of each estimated exponent d̂1:�,pj

considering the u = 17 points of
interest. Using the majority decision we can retrieve a randomized exponent
d̂1:�,k.

Because the majority rule is a simple statistical procedure, it requires more
points of interest for achieving the correct exponent if compared to the next two
adopted techniques, as will be demonstrated at the end of this section.

Probability Density Function. In [19], the probability density function,
which is based on the normal distributions parameters N (μ0, σ0) and N (μ1, σ1),

Attacking Randomized Exponentiations Using Unsupervised Learning 155

where μ and σ are the mean and the standard deviation, returns the likelihood
that a sample ti,j is the operation when the exponent bit di,k = 0. As the pre-
sented analysis is unsupervised, we do not know μ0 and μ1. However, the fuzzy
k-means cluster classification returns two means or centers μ1 and μ2 for each
set of compressed samples {t1:�,pj

} which can be used in place of the means. The
standard deviation σ is computed from all the set of samples {t1:�,pj

}, consider-
ing the evaluated point of interest pi. Then, the likelihood that a sample ti,pj

is
an operation when di,k = 0 is given by the equation below:

p(ti,pj
, μ1) =

e− 1
2 (ti,pj

−μ1)
2/2σ2

e− 1
2 (ti,pj

−μ1)2/2σ2
+ e− 1

2 (ti,pj
−μ2)2/2σ2 , 1 ≤ i ≤ �, 1 ≤ j ≤ u (6)

Following, the defined sum of probabilities gives the likelihood that a set
of points of interest {ti,p1:u}, representing the operation 〈MS〉i, is an operation
performed when the randomized exponent bit di,k = 0 and is computed by:

S0,1:u =
1
u

u∑

j=1

p(ti,pj
, μ1) 1 ≤ i ≤ � (7)

Then, for 1 ≤ i ≤ �, the following decision returns the estimated randomized
exponent bit d̂i,k:

d̂i,k =
{

0, if S0,1:u ≥ 0.5)
1, if S0,1:u < 0.5) (8)

Table 2 shows the final sum of probabilities S0,1:u and the exponent decision
from Eq. 8 considering the 20 first exponent bits d̂1:20,k (for space in Table 2)
and u = 17 points of interest.

Bayesian Classifier. The Bayesian decision theory makes the assumption that
the decision problem is posed in probability terms. The classifier lies on the
computation of the posterior probabilities P (μc|ti,pj

) which is computed from
the prior probabilities P (μc) and the probability density function for normal
distributions p(ti,pj

, μc), where c = {0, 1} and p(ti,pj
, μc) ∈ [0, 1]. Thus, the

classification starts by obtaining the pdf estimation for each point of interest
ti,pj

of each operation i. Again, this analysis considers the two cluster centers
μ1 and μ2 in the place of means and the standard deviation is computed from
all the set of compressed samples {t1:�,pj

}:

p(ti,pj
, μ1) =

1
σ
√

2π
e−

(ti,pj
−μ1)2

2σ2 (9)

p(ti,pj
, μ2) =

1
σ
√

2π
e−

(ti,pj
−μ2)2

2σ2 (10)

The probability density functions p(ti,pj
, μ1) and p(ti,pj

, μ2) are obtained for
1 ≤ i ≤ � and 1 ≤ j ≤ u. Considering P (μc) as the prior probabilities for

156 G. Perin et al.

Table 2. Cluster classification of the (first 20) exponent bits and the recovery of d̂1:�,k

using the probability density function for normal distributions.

the points of interest pj−1, where c = {0, 1}, by Bayes’s formula we obtain the
posterior probabilities P (μc|ti,pj

) for the operations i and points of interest pj :

P (μ1|ti,pj
) =

p(ti,pj
, μ1)P (μ1)

p(ti,pj
, μ1)P (μ1) + p(ti,pj

, μ2)P (μ2)
(11)

P (μ2|ti,pj
) =

p(ti,pj
, μ2)P (μ2)

p(ti,pj
, μ1)P (μ1) + p(ti,pj

, μ2)P (μ2)
(12)

The Bayes’s formula is repeated for all points of interest pj over the same
operation i. At the end, this estimation returns the probabilities that a certain
operation 〈MS〉i is being executed when the exponent bit di,k = 0. Table 3 shows
the evolution of posterior probabilities P (μ1|ti,pj

) over all points of interest ti,pj
,

for 1 ≤ j ≤ u, and the respective percentage of correct exponent bits. Again, in
this example we consider the first 20 exponent bits.

For the three presented methods, we showed the cluster classification results
for u = 17 points of interest. Figure 4 demonstrates the evolution of the exponent
recovery related to the number of points. In Fig. 4(a), it was considered the
evolution from the least to the most leaking point. Note that using the Bayesian
classifier 11 points are necessary to recover the entire exponent. The same result
can be observed in Table 3. On the other hand, in Fig. 4(b), if the evolution is
from the most to the least leaking point, the Bayesian classifier achieves 100 %
of the exponent using only 4 points of interest per exponentiation segment.

Attacking Randomized Exponentiations Using Unsupervised Learning 157

Table 3. Cluster classification of the (first 20) exponent bits and the recovery of d̂i:�,k

using the Bayesian classifier.

2 4 6 8 10 12 14 1670

75

80

85

90

95

100

(a)

E
xp

on
en

tB
its

1 2 3 4 5 6 7 885

90

95

100

(b)

3 5 7 9 11 13 15 171

Fig. 4. Relation between the exponent recovery and the number of points of interest:
(a) from the least to the most leaking point and (b) from the most to the least leaking
point (this Figure is represented in a different scale).

5 Obtaining the Private Key from Randomized
Exponents

For decryption and message signing, the retrieval of the randomized exponent
dr = d+ r.φ(N) is the same as retrieving d. Therefore, a single-execution attack
is sufficient to break the target device. However, for non-CRT implementations of
RSA and in the case when the recovered randomized exponents present few error
bits, the adversary can also improve the procedure using a step-by-step attack,
as proposed in [19]. In this case, the recovering of several blinding factors r in
the exponent randomization is used to derive the exponent d.

Approximately the �/2 most significant bits of the exponent d are exposed
when the public key e is small (3, 17 or 216 + 1). In this procedure, the term
φ(N) is approximated by N and the approximated exponent is given by, k ∈ Z:

158 G. Perin et al.

d̃ =
⌊1 + kN

e

⌋

Consequently, the adversary can obtain the �/2 most significant bits of all
the possible randomized exponents by computing d̃ri

= d̃ + ri.N , for all i and
ri ∈ [0, 232 − 1]. Considering λ as being the bit length of the blinding factor r,
the λ most significant bits of d + r.φ(N) are equivalent to the most significant
bits of d̃ + r.N . Then, the adversary can compute all possible values for r and
by observing the recovered randomized exponent dr, he can deduce r. Finally,
he constructs the attack on exponentiation traces containing possibly known
blinding factors.

6 Countermeasures

The efficiency of single-execution attacks on exponentiations are related to the
signal-to-noise ratio (SNR) of acquired traces. Theoretically, the Algorithm 1
is SPA-protected because it is regular and all manipulated data are random-
ized due to algorithmic (exponent blinding) and arithmetic (leak resistant arith-
metic) countermeasures. If different operands are read and written depending
on the exponent bits, in a practical implementation of the Montgomery ladder
the memory accesses cause addressing related leakages, as demonstrated through
the unsupervised attack.

Hardware countermeasures as the insertion of time disarrangement, dummy
cycles or frequency dividers reduce the SNR. Balancing the power consumption
is an alternative to avoid the leakage of information due conditional tests or
control decisions.

If the leakage is related to memory accesses, a possible solution is the ran-
domization of the RAM addresses during the exponentiation. By doing so, the
unsupervised attack was unable to entirely recover the randomized exponent.
By selecting the same points of interest P = {pj}, we applied the fuzzy k-means
clustering algorithm and recovered approximately 80 % of the exponent using
the Bayesian classifier technique.

7 Conclusions

This paper presented an unsupervised attack on randomized exponentiations.
The explored leakages are based on control executions and memory addressing.
We proposed to combine the cluster classification for several points of interest
over each exponent bit interpretation in order to derive the randomized expo-
nent using a single EM trace. The results were presented through three differ-
ent statistical techniques and specifically for the probability density function
and Bayesian Classifier techniques, we showed the likelihood for the randomized
exponent bits.

The presented unsupervised attack demonstrated the efficiency of cluster-
ing algorithms against single execution of exponentiations even in the presence

Attacking Randomized Exponentiations Using Unsupervised Learning 159

of algorithmic and arithmetic countermeasures. The obtained results show the
importance of employing hardware countermeasures in public-key architectures.

References

1. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

2. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

3. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, p. 388. Springer, Heidelberg (1999)

4. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

6. Fouque, P.-A., Valette, F.: The doubling attack – why upwards is better than down-
wards. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779,
pp. 269–280. Springer, Heidelberg (2003)

7. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

8. Joye, M., Yen, S.-M.: The Montgomery powering ladder. In: Kaliski, B.S., Koç,
Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer,
Heidelberg (2003)

9. Bajard, J.-C., Imbert, L., Liardet, P.-Y., Teglia, Y.: Leak resistant arithmetic.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 62–75.
Springer, Heidelberg (2004)

10. Bajard, J.-C., Didier, L.-S., Kornerup, P.: An RNS Montgomery modular multi-
plication algorithm. IEEE Trans. Comput. 47(7), 766–776 (1998)

11. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

12. Herbst, C., Medwed, M.: Using templates to attack masked Montgomery ladder
implementations of modular exponentiation. In: Chung, K.-I., Sohn, K., Yung, M.
(eds.) WISA 2008. LNCS, vol. 5379, pp. 1–13. Springer, Heidelberg (2009)

13. Hanley, N., Tunstall, M., Marnane, W.P.: Using templates to distinguish multipli-
cations from squaring operations. IJIS 10(4), 255–266 (2011)

14. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal corre-
lation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS
2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010)

15. Clavier, C., Feix, B., Gagnerot, G., Giraud, C., Roussellet, M., Verneuil,
V.: ROSETTA for single trace analysis. In: Galbraith, S., Nandi, M. (eds.)
INDOCRYPT 2012. LNCS, vol. 7668, pp. 140–155. Springer, Heidelberg (2012)

16. Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal and vertical side-channel
attacks against secure RSA implementations. In: Dawson, E. (ed.) CT-RSA 2013.
LNCS, vol. 7779, pp. 1–17. Springer, Heidelberg (2013)

160 G. Perin et al.

17. Bauer, A., Jaulmes, É.: Correlation analysis against protected SFM implementa-
tions of RSA. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol.
8250, pp. 98–115. Springer, Heidelberg (2013)

18. Heyszl, J., Ibing, A., Mangard, S., Santis, F., Sigl, G.: Clustering algorithms
for non-profiled single-execution attacks on exponentiations. In: Francillon, A.,
Rohatgi, P. (eds.) CARDIS 2013. LNCS, pp. 79–93. Springer, Heidelberg (2014)

19. Bauer, S.: Attacking exponent blinding in RSA without CRT. In: Schindler, W.,
Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 82–88. Springer, Heidelberg
(2012)

20. Itoh, K., Izu, T., Takenaka, M.: Address-bit differential power analysis of crypto-
graphic schemes OK-ECDH and OK-ECDSA. In: Kaliski, B.S., Koç, Ç.K., Paar,
C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 129–143. Springer, Heidelberg (2003)

21. Walter, C.D.: Sliding windows succumbs to Big Mac attack. In: Koç, Ç.K.,
Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, p. 286. Springer,
Heidelberg (2001)

22. Dyrkolbotn, G.O., Snekkenes, E.: Modified template attack detecting address bus
signals of equal hamming weight. In: The Norwegian Information Security Confer-
ence (NISK), pp. 43–56 (2009)

23. Chevallier-Mames, B., Ciet, M., Joye, M.: Low-cost solutions for preventing simple
side-channel analysis: side-channel atomicity. IEEE Trans. Comput. 51(6), 760–768
(2004)

24. Guillermin, N.: A coprocessor for secure and high speed modular arithmetic, Cryp-
tology ePrint Archive, report 2011/354 (2011). http://eprint.iacr.org/

25. Perin, G., Imbert, L., Torres, L., Maurine, P.: Electromagnetic analysis on RSA
algorithm based on RNS. In: Proceedings of 16th Euromicro Conference on Digital
System Design (DSD), pp. 345–352. IEEE, September 2013

26. Lopez, L., Dahab, R.: Fast multiplication on elliptic curves over GF (2m) without
precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES’99. LNCS, vol. 1717, pp.
316–327. Springer, Heidelberg (1999)

27. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography,
Springer Professional Computing (2004)

28. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, Boston
(2001)

http://eprint.iacr.org/

On the Optimal Pre-processing for Non-profiling
Differential Power Analysis

Suvadeep Hajra(B) and Debdeep Mukhopadhyay

Department of Computer Science and Engineering,
Indian Institute of Technology Kharagpur, Kharagpur, India

{suvadeep.hajra,debdeep.mukhopadhyay}@gmail.com

Abstract. Differential Power Analysis (DPA) is often preceded by var-
ious noise reduction techniques. Digital Signal Processing (DSP) and
Principal Component Analysis (PCA) have found their numerous appli-
cations in this area. However, most of them either require explicit
profiling/semi-profiling step or depend on some heuristically chosen para-
meters. In this paper, we propose optimal pre-processing of power traces
in non-profiling setup using an optimum linear filter and an approximate
optimum linear filter. We have also empirically evaluated the proposed
filters in several noisy scenarios which show significant improvements in
the results of Correlation Power Analysis (CPA) over the existing pre-
processing techniques. We have further investigated the optimality of the
one proposed pre-processing technique by comparing it with a profiling
attack.

1 Introduction

The success rate of the DPA [1,2] attacks is largely influenced by the noise
present in the power traces. Thus, in many of the existing works, various pre-
processing techniques have been introduced to reduce the amount of noise in the
power traces. Most of these pre-processing techniques are inspired by well-known
Digital Signal Processing (DSP) techniques.

First use of DSP in power analysis attack has been reported in [3] where
matched filter was used to increase the Signal-to-Noise Ratio (SNR) of the power
traces. In [4], comb filter has been used to attack a device protected with random
process interrupts. Subsequently, Fast Fourier Transform (FFT) has been intro-
duced as a new domain for performing power analysis attack in [5,6]. Later,
several works have been published which employed various frequency domain
filters like low-pass filter, band-pass filter or band-stop filter [7–9] for reducing
noise in the power traces. However, those filters are only useful when there is less
overlapping of signal and noise in the frequency domain. In [10,11], Principal
Component Analysis (PCA) has been used for reducing noise in non-profiling
DPA attacks. The authors of [11] have further noticed that PCA performs sub-
optimally for noisy traces.

Though these techniques are useful for some specific applications, they are
mostly heuristic in nature. Moreover, optimality of these techniques have been
c© Springer International Publishing Switzerland 2014
E. Prouff (Ed.): COSADE 2014, LNCS 8622, pp. 161–178, 2014.
DOI: 10.1007/978-3-319-10175-0 12

162 S. Hajra and D. Mukhopadhyay

rarely studied. Recently in [12], linear Finite Impulse Response (FIR) filter has
been used for the optimal pre-processing of power traces. However, their method
requires a semi-profiling setup. In this paper, we try to find an optimal linear
filter in a non-profiling setup. In signal processing, matched filters are widely
used for optimizing the SNR of a noisy signal. We explore the applicability of
matched filter for optimal pre-processing of the power traces.

In DSP, matched filter is used to maximize the SNR of a noisy signal. Design-
ing a matched filter for the traces affected by non-white noise requires to know
the autocorrelation function of the noise, thus is not feasible in non-profiling
DPA attacks. In this paper, we propose an optimum linear filter which also
maximizes the SNR of the power traces. Besides, when the power traces follow
the multivariate leakage model introduced (for Xilinx Virtex-5 FPGA) in [13],
the proposed filter can be derived without knowing the secret key. Thus, it can
be applicable to non-profiling DPA also. We have further proposed an approx-
imation of the proposed filter to make it computationally more efficient. The
approximate optimum filter is also more resistant to the estimation error which
can be significantly high when the number of power traces used in the attack
are less. Pre-processing using the proposed filters have been experimentally ver-
ified on various noisy scenarios. The results show significant improvements in
the performance of CPA using the introduced pre-processing techniques over
the existing ones. We have further verified the optimality of one proposed pre-
processing technique by comparing its results with profiling Stochastic attack.

Rest of the paper is organized as follows. Section 2 describes the background
of DPA along with the necessary notations used in the work. In Sect. 3, the mul-
tivariate leakage model for Xilinx Virtex-5 FPGA has been described. Section 4
derives an expression for the impulse response of the optimum linear filter. The
proposed optimum linear filter has been further approximated to make it robust
against estimation error and computationally efficient. In Sect. 5, the improve-
ments in the performance of CPA using the proposed filtering techniques are
experimentally verified for various noisy scenarios. Section 6 verifies the opti-
mality of one proposed pre-processing technique. Finally, conclusion has been
drawn in Sect. 7.

2 Preliminaries

2.1 Notations

For the rest of the paper, we will use a calligraphic letter like X to denote a finite
set. The corresponding capital and small letter, X and x, are used to denote a
random variable over the set and a particular element of it respectively. E[X],
σX and V ar(X) are used to denote mean, standard deviation and variance of
the random variable X respectively. We also denote by Cov(X,Y) the covariance
between the random variables X and Y . The vector {x0, · · · , xk} is denoted by
{xi}0≤i≤k. Alternatively, it is also denoted by a letter in bold face like x. For
convenience, sometimes we use μX to denote the mean of the random variable
X. Gaussian distribution with mean m and standard deviation σ is represented

On the Optimal Pre-processing for Non-profiling Differential Power Analysis 163

by N(m,σ). x′ and X′ respectively denote the transpose of the vector x and
matrix X.

2.2 Differential Power Analysis

In [14], Standaert et al. has formalized the notion of side-channel key recovery
attack. However in this paper, we will only consider standard non-profiling DPA.
It can be described by the following steps:

1. An intermediate key-dependent variable S = Fk∗(X) is identified as the target
of the attack. The variable k∗ is a small part of the correct key commonly
referred to as subkey and Fk∗ : X → S is a function of a known part x ∈ X
of the plaintext which is determined by both the algorithm and the correct
subkey k∗.

2. The attacker executes the Device Under Attack repeatedly, say q times, for
different plaintexts. At the end, the attacker collects q measurement curves or
power traces {l0, · · · , lq−1} for the plaintext vector {x0, · · · , xq−1}. Depend-
ing upon the measurement setup, each power trace lj is a vector of T power
measurements i.e. {lj0, · · · , ljT−1} where ljt is the power measurement for the
tth time instant or sample point and T is the total number of sample points
measured during each encryption. Let us denote the leakage by the vector of
random variables L = {L0, · · · , LT−1} whose tth element Lt represents the
leakage of sample point t for 0 ≤ t < T .

3. The collection of traces is followed by an optional pre-processing step such as
trace compression, filtering, averaging etc.

4. For all possible key guess k ∈ K, the target intermediate variable Sk is pre-
dicted using Sk = Fk(X) for each value of X from the vector {x0, · · · , xq−1}.

5. Next, the attacker chooses a suitable prediction model Ψ : S → R depending
on the hardware leakage behavior of the device and computes the predicted
leakage Pk for key guess k as Pk = Ψ(Sk). For CMOS device, Hamming weight
and Hamming distance are commonly used as the prediction model.

6. For each key guess k, a statistical tool D, commonly known as distinguisher,
is employed to detect the dependency between the predicted leakage Pk and
actual leakage L. In univariate DPA attacks, the distinguisher D is applied on
the leakage of a single time instant t∗ which is referred to as point of interest.
In most of the practical DPA attacks, the point of interest t∗ is not known
before hand. Thus, D is applied on each of the sample points independently
and the best result is chosen among those.

7. At the end of Step 6, a vector D = {dk}k∈K = {D(Pk,L)}k∈K is gener-
ated. The attack is said to be sound if for enough number of traces k∗ =
argmaxk∈Kdk holds with some non-negligible probability.

Throughout the literature, many distinguishers such as Difference of Mean
(DoM [1]), Partition Power Analysis (PPA [15]), Correlation Power Analysis
(CPA [16]) have been introduced. Among those, CPA is one of the widely used
DPA attack which uses Pearson’s correlation coefficient as the distinguisher to

164 S. Hajra and D. Mukhopadhyay

detect the linearity between the leakages of some sample points with the pre-
dicted leakage for the correct key Pk∗ . Interestingly, [17] has shown that most of
the univariate DPA attacks can be expressed as CPA using a different prediction
model. Thus, in this paper, all the experimental verification has been done with
respect to CPA.

In practice, a large number of sample points may contain information about
the target S. In noisy scenarios, the SNR of the power traces can be increased sig-
nificantly by accumulating the signal energy over the sample points. Let leakages
of two sample points, Lt1 and Lt2 , follow Lt1 = Ψ(S)+N1 and Lt2 = Ψ(S)+N2

where N1 and N2 are the independent Gaussian noises with variance σ2. Then
by taking the average of the two leakages, one can reduce the noise variance
of the resultant leakage to σ2/2, thus can double the effective SNR. However,
such kinds of leakage combining may not always lead to higher SNR. In profiling
attacks, leakage can be combined in an optimal way since it can compute the
distribution of the leakages using the secret key. In this paper, our objective is to
optimally extract information from multiple sample points by combining their
leakages in a non-profiling setup where the secret key is not known.

3 Extending the Leakage Model over Multiple Time
Samples

It is common in the literature to assume a linear relationship of the leakage to the
Hamming weight of the target (in Hamming weight model) or to the Hamming
distance between the target and a known value (in Hamming distance model)
[16,18,19]. In other words, the leakage of some sample point Lt∗ is assumed to
follow:

Lt∗ = aΨ(S) +N = aP +N (1)

where a is some real, P = Ψ(S) and N be a random variable representing
Gaussian noise. Recently, [13] has extended this relationship for all the leakages
of a window of sample points as

Lt = atP +Nt, t0 ≤ t < t0 + τ

where at belongs to the set of real numbers. They have further incorporated the
algorithmic noise into the above equation as:

Lt = at(P + U + c) +Nt = at(I + c) +Nt, t0 ≤ t < t0 + τ (2)

where U represents the leakage due to the algorithmic noise, c be the leakage due
to key scheduling algorithm and control bits. The random variable I = P+U and
τ -dimensional random variable N = {Nt0 , · · · , Nt0+τ−1} follows a multivariate
Gaussian distribution with zero mean vector and covariance matrix ΣN. The
time window {t0, · · · , t0+τ−1} is broadly determined by the clock cycle in which
the target operation is being performed (please refer to the next paragraph). We
denote this time window by {0, · · · , τ−1} and in the rest of the paper, the power
traces are referred by the leakages of this time window only.

On the Optimal Pre-processing for Non-profiling Differential Power Analysis 165

 500 1000 1500 2000 2500

S
ca

le
d

C
oe

ffi
ci

en
t

Sample Point

Selected Window

elcyC kcolC tegraTelcyC kcolC suoiverP

ICV
Trace

Fig. 1. The dashed line plots a trace for the last two clock cycles of an AES encryption.
The solid line is the plot for ICV computed for the two rounds using 1, 000 traces. The
figure shows higher peak in the ICV curve for the target clock cycle.

Selection of the Time Window. The model is valid only in the clock cycle
in which the target operation is being performed (called the target clock cycle).
In [20], the authors suggested to use Inter-Class Variance (ICV), V ar(E[Lt|X]),
for the selection of correct time-window in collision attack. Recently in [21],
Normalized Inter-Class Variance (NICV) has been introduced as a metric for
window selection. NICV takes the ratio of Inter-Class Variance, V ar(E[Lt|X]),
and the leakage variance, V ar(Lt), to determine the relevant sample points. We
have found better result using ICV. Figure 1 shows the ICV computed at each
of the sample points of the last two rounds of an AES encryptions using 1000
traces. For the target clock cycle, ICV shows a higher peak. Once the target clock
cycle has been identified using the ICV, an window of sample points around the
peaks of the target clock cycle can be selected as the target window.

In the next subsection, we provide the experimental validation of Eq. (2) in
our setup.

3.1 Experimental Validation

To validate Eq. (2), we first classify all the traces according to the values of I
which has been computed using the correct key. Then we estimate the deter-
ministic leakage di = {E[Lt|I = i]}t0≤t<t0+τ for all i ∈ I by computing
the mean leakage curve of each class. Lastly, we verify the linear equation
E[Lt|I = i] − E[Lt|I = 0] = at · i for all i ∈ I \ {0} and t0 ≤ t < t0 + τ using
linear regression. However, we do not know the values of at, t0 ≤ t < t0 + τ .
Thus, we start with correlating di1 and di2 for all i1, i2 ∈ I and then use the
high correlation among those to estimate a = {at}t0≤t<t0+τ .

We implemented an iterative structure of 32 parallel 10 × 4 S-boxes using
distributed ROM in the setup described in Appendix A. All of the S-boxes were
connected to the same input to increase the SNR of the power traces by the
synchronous computations of the S-boxes. It should be noted that though the
duplication of a single S-box increases the SNR of all the sample points, their
relative SNR remains same. We collected 1, 600 power traces each having 200
sample points with random inputs. The values of the target variable S is taken to
be the output of the S-box. We have also considered the Hamming distance model

166 S. Hajra and D. Mukhopadhyay

 0

 0.004

 0.008

 0.012

 0 50 100 150 200

D
et

er
m

is
tic

 L
ea

ka
ge

 o
f H

D
 C

la
ss

es

Sample Point

d0

d1

d2

d3

d4

Fig. 2. Mean Leakage for the five Hamming distance classes.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 0.002 0.004 0.006 0.008 0.01

d
- 1 vs. a
d
- 2 vs. a
d
- 3 vs. a
d
- 4 vs. a

Fig. 3. Scatter Plots of d̄1, d̄2, d̄3 and d̄4 against a.

i.e. Ψ(s) is taken to be the Hamming distance between s and the least significant
4 bit of the S-box input for all s ∈ S. Since all the parallel S-boxes have the
same input and the output, the algorithmic noise U is zero i.e. I = P = Ψ(S).

The classification involves partitioning all the 1, 600 traces into five HD
classes for I = 0 to 4. Figure 2 shows the deterministic leakage curve di =
{E[Lt|I = i]}t0≤t<t0+τ for 0 ≤ i ≤ 4 i.e. for each of the five classes. It is seen
in the figure that the deterministic leakage for different HD classes i.e. different
values of I are following almost same pattern. However, the non-zero leakage
for HD class 0 is caused by the switching activities of the control bits and the
DC power consumption which is also present in the leakages of all other classes.
To remove this factor, we computed absolute deterministic leakage curves as
d̄i = di − d0 = {E[Lt|I = i] − E[Lt|I = 0]}t0+τ−1

t=t0 = {at · i}t0+τ−1
t=t0 (from

Eq. (2)) for i = 1, · · · , 4. Table 1 shows the correlation between d̄i1 and d̄i2 for
all i1, i2 ∈ I \ {0}. The values of these correlations are close to one which ensure

On the Optimal Pre-processing for Non-profiling Differential Power Analysis 167

Table 1. Pearson’s correlation between absolute deterministic leakage curves of differ-
ent pairs of HD classes.

Correlation d̄1 d̄2 d̄3 d̄4

d̄1 1 0.9991 0.9981 0.9978

d̄2 0.9991 1 0.9995 0.9992

d̄3 0.9981 0.9995 1 0.9997

Table 2. Relations of d̄1, d̄2, d̄3 and d̄4 with a = {at}τ−1
t=0 .

Variable Obtained relation Expected relation

E[Lt|I = 1] − E[Lt|I = 0] at × 1.23 − 1.60 × 10−5 at × 1

E[Lt|I = 2] − E[Lt|I = 0] at × 2.17 − 7.26 × 10−8 at × 2

E[Lt|I = 3] − E[Lt|I = 0] at × 2.95 − 1.41 × 10−6 at × 3

E[Lt|I = 4] − E[Lt|I = 0] at × 3.65 − 1.75 × 10−5 at × 4

that all of these vectors follow linear relations with a common vector namely
a = {at0 , · · · , at0+τ−1}. We estimate a by

∑4
i=1 d̄i

∑4
i=1 i

.

Next, we plot the vectors d̄i for all i ∈ I \ {0} against the estimated a. The
plot is shown in Fig. 3. The figure shows the linear relationships of d̄i’s with the
estimated a. So, we have further used linear regression to find the closest linear
models of the relation between each of d̄1, d̄2, d̄3 and d̄4 and the estimated
a = {at}τ−1

t=0 . The relations obtained using linear regression are sufficiently close
to the expected relation which are shown in Table 2. This provides an evidence
of the validity of Eq. (2).

4 Optimum Linear Filter

A linear Finite Impulse Response (FIR) filter of order ν is defined by the impulse
response represented by the vector {h0, · · · , hν−1}. The response fout(t) of the
filter for the input signal fin(t) is given by the convolution of the input signal with
the impulse response, i.e. fout(t) =

∑ν−1
j=0 hjfin(t− j). The input signal fin(t) is

a time-shifted version of a known signal fs(t) corrupted by some additive noise.
The filter coefficients are derived to maximize the SNR of the output signal
fout(t). Thus, it detects the presence of the known signal fs(t) in the input
signal fin(t) by maximizing the output signal fout(t) at some time index. The
time index is later used to find the shifted position of the known signal fs(t) in
the input signal fin(t). Such a filter is called matched filter.

In side-channel attack, a trace following Eq. (2) can be represented as l =
{l0, · · · , lτ−1} = {a0(i+c)+n0, · · · , aτ−1(i+c)+nτ−1}where i and {n0, · · · , nτ−1}
be the instants of the random variables I and N = {N0, · · · , Nτ−1} respectively.
Thus, it is a sum of deterministic signal {a0(i + c), · · · , aτ−1(i + c)} and the
noise {n0, · · · , nτ−1}. Consequently, a matched filter with impulse response

168 S. Hajra and D. Mukhopadhyay

h = {h0, · · · , hτ−1} can be used to maximize the SNR of the trace by integrating
energy of the signal (deterministic leakage) over time. Since there is no time shift of
the deterministic signal {a0(i+c), · · · , aτ−1(i+c)} in the trace l, we do not need to
compute the time shift in this application. Consequently, it is enough to compute
the impulse response of the matched filter at t = τ − 1 given by

∑τ−1
j=0 hj l(τ−j−1).

However for convenience, we re-write this expression using inner product form

lo =
τ−1∑

t=0

htlt = h′l (3)

Since l = {l0, · · · , lτ−1} = {a0(i+c)+n0, · · · , aτ−1(i+c)+nτ−1}, we re-write
Eq. (3) as

lo =
τ−1∑

t=0

(htat · (i+ c) + htnt) = (i+ c)h′a + h′n (4)

where a = {a0, · · · , aτ−1} and n = {n0, · · · , nτ−1}. Without loss of generality,
we assume that the output leakage is centered to zero with respect to its mean
over all the traces i.e.

l̃o = h′(l− E[L]) (5)
= (i− E[I])h′a + h′n

= ĩh′a + h′n (6)

where ĩ = i− E[I].
Our goal is to derive an expression for h. To start with, we formally define

Signal to Noise Ratio (SNR) of the output leakage as the ratio of the power
of the deterministic leakage and the average power of the noise in the centered
output leakage l̃o:

SNR =
|̃ih′a|2
E[|h′n|2] = ĩ2 × |h′a|2

E[(h′n)(h′n)′]
= ĩ2 × |h

′a|2
h′ΣNh

(7)

Recall that ΣN is the τ ×τ covariance matrix of the multivariate Gaussian noise
N = {N0, · · · , Nτ−1}.

It should be noted that by taking the expectation of the SNR of the output
leakage over all traces, we get the ‘global’ SNR of the output leakage as the
ratio of the variance of its deterministic part (signal) and the variance of noise –
which is equivalent to the definition of SNR given in Sect. 4.3.2 of [2]. We need
to select h such that it maximizes the SNR of every traces, thus the global SNR.
The global SNR, in turn, increases the success rate of the DPA attacks [2].

Since without the correct key, one cannot separate the deterministic leakage
from noise, the proper estimation of ΣN is not possible in non-profiling DPA.
Thus, we define Signal Ratio (SR) of the output leakage as the ratio of the power
of the deterministic part and the average power of the centered output leakage l̃o:

SR =
|̃ih′a|2
E[|l̃o|2]

On the Optimal Pre-processing for Non-profiling Differential Power Analysis 169

We simplify the above definition as:

SR =
ĩ2|h′a|2

E[|h′(l− E[L])|2] , using Eq. (5)

= ĩ2 × |h′a|2
h′E[(l− E[L])′(l− E[L])]h

= ĩ2 × |h
′a|2

h′ΣLh
(8)

= ĩ2 × |h′a|2
h′ΣDh + h′ΣNh

= ĩ2 × |h′a|2
V ar(I)|h′a|2 + h′ΣNh

(9)

where ΣL and ΣD are the covariance matrices of the total leakage and the
deterministic leakage respectively. The last step follows because Cov(at1(I +
c), at2(I + c)) = at1at2V ar(I). Our objective is to find h such that SNR of the
output leakage is maximum. Interestingly, both the SNR and the SR reaches
their maximum simultaneously. It is stated in the following lemma.

Lemma 1. The SNR of the output leakage lo reaches its maximum value if and
only if the SR of the leakage also reaches its maximum.

Proof. If ĩ = 0, the statement is trivially true. Let us assume ĩ �= 0. From Eq. (9),

SR =
1

V ar(I)

ĩ2
+ h′ΣNh

ĩ2|h′a|2
=

1
c1 + 1

SNR

where c1 = V ar(I)

ĩ2
. We can rewrite the above equation as, 1

SR = c1 + 1
SNR . Since

c1 is constant for a given trace, the conclusion follows.

We now maximize the SR of the output signal lo instead of the SNR. Lemma 2
provides an expression for the impulse response of a filter which maximizes the
SR of lo.

Lemma 2. The impulse response of the linear filter which maximizes the SR of
the output leakage lo can be given by Σ−1

L a.

The proof of Lemma 2 is given in Appendix C. We now state and prove our final
result in Theorem 1. Before that let us denote by μL the mean leakage vector
E[L] = {E[L0], · · · , E[Lτ−1]}.
Theorem 1. Let the leakage L follows Eq. (2). The linear FIR filter with impulse
response hopt = Σ−1

L μL maximizes the SNR of the output signal lo = h′
optl.

Proof. If we let hopt = Σ−1
L a, according to Lemma 2, hopt optimizes the SR of

lo. Thus, according to Lemma 1, hopt also optimizes the SNR of lo. Taking the
expectation on both sides of Eq. (2) we get,

μL = (E[I] + c)a,
or, a = μL/(E[I] + c).

170 S. Hajra and D. Mukhopadhyay

Putting this value of a into hopt = Σ−1
L a, we get hopt = Σ−1

L μL/(E[I]+c). Since
a constant factor in the impulse response of a filter does not have any affect on
the SNR of the output, by neglecting the constant factor, we get hopt = Σ−1

L μL.
Thus, the impulse response of an optimum linear filter can be computed

using the expression Σ−1
L μL. It should be noted that neither ΣL nor μL requires

the knowledge of the correct key to estimate. Hence, the filter can be useful in
non-profiling DPA also.

Elimination of the Matrix Inversion. Computation of Σ−1
L μL involves

the computation of the inverse of a τ × τ matrix which has a computational
complexity O(τ3). Moreover, the inverse operation is highly susceptible to the
error in the estimation of the covariance matrix. To avoid this operation, we
note that the diagonal elements ct,t of the matrix ΣL = (ct1,t2) are the vari-
ance of the leakage Lt and the off-diagonal elements ct1,t2 , where t1 �= t2, are
the covariance between Lt1 and Lt2 . Let us approximate the leakage covari-
ance matrix ΣL by setting all of its off-diagonal elements to zero. Then, the
approximated covariance Σ̃L will be a diagonal matrix having the diagonal ele-
ments {c0,0, · · · , cτ−1,τ−1} = {σ2

L0
, · · · , σ2

Lτ−1
}. Thus the impulse response of an

approximate optimum linear filter can be given by

happr = Σ̃−1
L μL = {μL0

σ2
L0

, · · · , μLτ−1

σ2
Lτ−1

} (10)

Estimation of happr is also computationally more efficient. The estimation of
the mean and the variance of the leakages of τ sample points requires O(qτ)
operation which is the lower bound for any pre-processing technique.

Computing in a New Basis. When the leakages of different sample points
are significantly correlated, the approximation of Eq. (10) becomes less accurate.
To avoid this, the leakage L = {L0, · · · , Lτ−1} can be transformed into a new
basis system L̃ = {L̃0, · · · , L̃τ−1} by some linear transformation such that the
leakage components along two different axes L̃t1 and L̃t2 become uncorrelated.
The basis of eigenvectors of the covariance matrix is the best choice for this as
the components along different eigenvectors are independent to each other. The
standard way of converting a data sample into the basis of eigenvectors (referred
to as Principal Components) is known as Principal Component Analysis which
has been studied in several side channel context such as in [10,11,22]. However,
it is a computationally intensive process.

Other alternative is to use Discrete Fourier Transform (DFT) to convert the
leakage samples to a new orthonormal basis (frequency domain). DFT of the
trace l is given by the complex coefficient vector l̃ = {l̃0, · · · , l̃τ−1} where

l̃j =
τ−1∑

t=0

lt · e−ı2πjt/τ =
τ−1∑

t=0

lt · (cos2πjt
τ
− ı · sin2πjt

τ
)

Here ı represents the imaginary unit. DFT of a trace of size τ can be achieved
using O(τ logτ) operation. In frequency domain, the distinguisher is applied on

On the Optimal Pre-processing for Non-profiling Differential Power Analysis 171

CPA in Time Domain
OF in Time Domain

AOF in Time Domain

CPA on PCs
AOF on PCs

CPA in Freq Domain

AOF in Freq Domain

 1

 2

 4

 8

 16

 32

 64

 128

 3 6 9 12 15 18 21 24 27 30

Number of Traces / 100

(a) Original Traces.

 1

 2

 4

 8

 16

 32

 64

 128

 3 6 9 12 15 18 21 24 27 30

Number of Traces / 100

(b) Original Traces + Uncorrelated Noise.

 1

 2

 4

 8

 16

 32

 64

 128

 3 6 9 12 15 18 21 24 27 30

Number of Traces / 100

(c) Original Traces + Correlated Noise.

 1

 2

 4

 8

 16

 32

 64

 128

 3 6 9 12 15 18 21 24 27 30

Number of Traces / 100

(d) Original Traces + Correlated Noise +
Uncorrelated Noise.

Fig. 4. Plots of the average guessing entropy with respect to increasing number of
power traces. The double arrow depicts the difference between the number of required
traces for CPA on the output of frequency domain AOF and the CPA on unfiltered
traces to bring the average guessing entropy below 4.

the absolute value of the complex coefficients l̃j [6,12]. We do not use it since the
absolute operation is not a linear operation. Rather, we keep both the real part
(cosine coefficient) and the imaginary part (sine coefficient) as separate sample
points. Since, both the real and the imaginary part are obtained using linear
transformations and the linear transformation does not destroy the statistical
property of the power traces, the resulting DFT traces also follow Eq. (2). More-
over, even if there exist significant correlations among sample points in time
dimension, we can assume that the covariance matrix of the sample points in
frequency domain as a sparse matrix. Hence, we can apply the approximate opti-
mum filter given by Eq. (10) in this domain to optimally pre-process the power
traces.

172 S. Hajra and D. Mukhopadhyay

5 Experimental Results

Experimental evaluation has been done over 120, 000 power traces of AES encryp-
tions divided into 40 sets of 3, 000 traces. The cipher is implemented using par-
allel iterative hardware architecture on SASEBO-GII using the setup described
in Appendix A. The S-boxes are implemented using on-chip distributed ROM of
Virtex-5 Xilinx FPGA.

In addition to the original traces, the pre-processing techniques have been
experimentally evaluated in the presence of uncorrelated noise (white noise)
which may be caused by the quantization error of the measurement setup, ther-
mal noise etc. as well as correlated noise which may be caused by the verti-
cal misalignment of power traces. Here, we show the results for four scenarios:
(a) on the original traces, (b) in the presence of high uncorrelated noise by adding
independent Gaussian noise at each sample point with a standard deviation of
four times the average standard deviation of the traces, (c) in the presence of
correlated noise by adding a constant Gaussian noise to each sample points with
a variance of half the average trace variance, and (d) in the presence of both the
independent and the constant Gaussian noise.

For all the four scenarios, we performed (1) CPA on all the sample points
(classical CPA [16]) and (2) CPA after pre-processing the traces using approxi-
mate optimum filter (AOF) given by Eq. (10). We performed both the attacks in
the three domains namely the time domain, the eigenvector domain i.e. on the
PCs, and the frequency domain i.e. on the DFT transformed traces (see Sect. 4).
Additionally, we performed CPA after applying the optimum filter (OF) in time
domain. Figure 4 depicts the average guessing entropy of the attacks in all four
scenarios. Average guessing entropy of an attack is computed by the average of
the guessing entropies [14] of all the 16 subkeys corresponding to each S-box.

From Fig. 4, we note the following points:

1. CPA on all sample points performs badly compared to its performance on
the filtered traces with an exception in scenario (c) where it performs slightly
better on PCs than on the output of AOF in time domain.

2. AOF in time domain performs better in the scenarios where there is no added
correlated noise i.e. in scenarios (a) and (b), but performs worse in scenarios
(c) and (d) where leakages of different sample points have significant positive
correlation.

3. The above inefficiency of AOF in the presence of correlated noise is circum-
vented by transforming the traces into frequency domain where the correla-
tions among the leakages in different sample points get sparsed making the
approximation in Eq. (10) more accurate. Thus, AOF in frequency domain
performs better in all the four scenarios.

4. OF in time domain performs badly for lesser number of traces which is mainly
due to the erroneous estimation of the covariance matrix ΣL. However as the
trace size increases, its performance improves rapidly. The performance of
AOF on PCs are quite similar to the performance of OF in time domain.

On the Optimal Pre-processing for Non-profiling Differential Power Analysis 173

In summary, the observations indicate that the best attack methodology
reduces the number of power traces significantly which are required to decrease
the average guessing entropy. For the various noise characteristics experimented,
the reduction varies from 59% to more than 75% compared to CPA on unfil-
tered traces to reduce the guessing entropy below a constant value, say 4. These
observations further substantiates better utilization of information contained in
the multiple time instants of the power traces by the proposed pre-processing
techniques. Comparisons with some more attacks are given in Appendix B.

6 Optimality of the Pre-processing Techniques

In this section, our objective is to verify how close the performance of CPA
using AOF in frequency domain to the performance of an optimal multivariate
attack. As an optimal attack, we choose profiling Stochastic attack since it can
“learn” quickly using relatively smaller number of traces [23]. Profiling Stochastic
attack [24] is a three step process: (1) the deterministic part of the leakage is
approximated in a chosen vector space, (2) the multivariate density of the noise
is estimated, and (3) the key is extracted from a different set of power traces.

In the first step, the vector space is chosen to capture the relation between
the deterministic leakage and the bits of the target S. A lower dimensional vec-
tor space can only capture a simplified relation, thus performs worse in the key
extraction step. However, it requires less number of traces and less computa-
tional effort to estimate the relation. On the other hand, a higher dimensional
model can capture the relation between the deterministic leakage and the bits
of the target S in more details at the cost of more computational effort and
more number of traces in step (1) [24]. However, in this work, we do not try to
evaluate how much efficiency can be increased by perfecting the model. Rather,
our objective is to find how much information gain is possible by combining
the leakages of multiple sample points. Thus, we have chosen the 2-dimensional
vector space of Hamming distance model (see Sect. 3.3 of [24]). In step (3), two
alternative ways for extracting the correct key have been discussed in [24] namely
maximum likelihood principal and minimum principal. However, we have chosen
the maximum likelihood principal since it yields better result [24].

For performing the Stochastic attack, we have chosen the same set of 120, 000
power traces for all the three steps. It should be noted that it is common in
literature to use different sets of traces for profiling steps i.e. for steps
(1) & (2) and key extraction step i.e. for step (3). Use of the same set of traces in
the key extraction step as in the profiling steps and the knowledge of the correct
key gives a slightly optimistic view of the results. Figure 5 depicts the results
of Stochastic attack applied on the time domain traces along with the results
of CPA on the output of AOF in frequency domain. The figure shows that the
performances of CPA on the output of AOF in frequency domain are very close
to that of Stochastic attack in all the four scenarios (see Sect. 5).

174 S. Hajra and D. Mukhopadhyay

 1

 2

 4

 8

 16

 32

 64

 128

 3 6 9 12 15 18 21 24 27 30

A
ve

ra
ge

 G
ue

ss
in

g
E

nt
ro

py

Number of Traces / 100

Stochastic HD in (a)
AOF in Freq domain in (a)

Stochastic HD in (b)
AOF in Freq domain in (b)

Stochastic HD in (c)
AOF in Freq domain in (c)

Stochastic HD in (d)
AOF in Freq domain in (d)

Fig. 5. Average guessing entropy of Stochastic attack with HD model and CPA on the
output of AOF in frequency domain in all the four scenarios.

7 Conclusion

In this paper, we have derived the impulse response of the optimum linear filter
which optimizes the SNR of the power traces for non-profiling DPA attacks.
The derivation is based on recently introduced multivariate leakage model for
Virtex-5 FPGA device. The proposed filter has been further approximated to
improve the computational complexity and robustness against estimation error
for lesser number of power traces. The experimental results reveal significant
improvements of CPA using the proposed pre-processing techniques over the
existing techniques in various noisy scenarios. We have further evaluated the
optimality of the one proposed method by comparing it with profiling Stochastic
attack.

Acknowledgements. We thank Shivam Bhasin of TELECOM-ParisTech, France for
pointing out the window selection methods using NICV. This research work is partially
funded by Department of Information Technology, India.

A Experimental Setup and Pre-processing

For all the experiments, we have used standard side-channel evaluation board
SASEBO-GII [25] which consists of a cryptographic FPGA device: Virtex-5
XC5VLX50. The cryptographic FPGA is driven by a clock frequency of 2 MHz.
During the encryption process, voltage drops across VCC and GND of Virtex-5
are captured by Tektronix MSO 4034B Oscilloscope at the rate of 2.5 GS/s i.e.
1, 250 samples per clock period.

The traces acquired using the above setup are already horizontally aligned.
However, they are not vertically aligned. The vertical alignment of the traces are

On the Optimal Pre-processing for Non-profiling Differential Power Analysis 175

 1

 2

 4

 8

 16

 32

 64

 128

 256

 3 6 9 12 15 18 21 24 27 30

A
ve

ra
ge

 G
ue

ss
in

g
E

nt
ro

py

Number of Traces / 100

AOF in Freq Domain
Scalar Product in Time Domain

Avg in Time Domain
Var in Time Domain
Avg in Freq Domain
Var in Freq Domain

CPA after Wavelet Tr.

(a) Original Traces.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 3 6 9 12 15 18 21 24 27 30

A
ve

ra
ge

 G
ue

ss
in

g
E

nt
ro

py

Number of Traces / 100

AOF in Freq Domain
Scalar Product in Time Domain

Avg in Time Domain
Var in Time Domain
Avg in Freq Domain
Var in Freq Domain

CPA after Wavelet Tr.

(b) Original Traces + Uncorrelated
Noise.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 3 6 9 12 15 18 21 24 27 30

A
ve

ra
ge

 G
ue

ss
in

g
E

nt
ro

py

Number of Traces / 100

AOF in Freq Domain
Scalar Product in Time Domain

Avg in Time Domain
Var in Time Domain
Avg in Freq Domain
Var in Freq Domain

CPA after Wavelet Tr.

(c) Original Traces + Correlated Noise.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 3 6 9 12 15 18 21 24 27 30

A
ve

ra
ge

 G
ue

ss
in

g
E

nt
ro

py

Number of Traces / 100

AOF in Freq Domain
Scalar Product in Time Domain

Avg in Time Domain
Var in Time Domain
Avg in Freq Domain
Var in Freq Domain

CPA after Wavelet Tr.

(d) Original Traces + Correlated Noise
+ Uncorrelated Noise.

Fig. 6. Plots of the average guessing entropy of some more attacks in the four noisy
scenarios.

performed by subtracting the DC bias from each sample point of the traces. The
DC bias of each trace is computed by averaging the leakages of a window taken
from a region when no computation is going on. This step is also necessary since
the derived impulse response of the proposed filters is sensitive to the absolute
value of mean leakages.

For mounting the attacks, we selected a window of 300 sample points around
the last round register update. After transforming into a different domain, vari-
ance of some of the sample points may become very close to zero in the new
domain. As a result, while applying AOF in this new domain, the weights (which
are mean/variance of the sample points) of those sample points may become very
high even if their mean leakages are very less. In other words, due to very low
variance, some low SNR sample points may get very high weight. We solved
this problem by setting the weight of a sample point having variance less than
a fraction of 1/2000 of the maximum variance to zero.

176 S. Hajra and D. Mukhopadhyay

B Results of Other Attacks

The performances of some more attacks have been compared. The results are
shown Fig. 6 for all the four scenarios (see Sect. 5). Scalar Product is introduced
in [13] where CPA is first performed on each of the sample points independently
and then the final outputs are computed by taking the weighted sum of the
outputs of CPA over all the sample points. In Avg, the traces are pre-processed
by taking the absolute average the leakages over all the sample points and then
CPA is applied on the average values. In Var [26], CPA is performed on the
variance of the traces.

C Proof of Lemma 2

A formal proof of the theorem can be found in [27]. However, we will follow the
proof of [28]. In Eq. (8), SR is given as,

SR = ĩ2 × |h
′a|2

h′ΣLh

The term ĩ2 in the RHS of the above expression does not have any influence
when we maximize SR. Thus by neglecting it, we re-write the above expression
as

SR =
|h′a|2
h′ΣLh

Now, if ΣL is not invertible, a subset of the τ sample points of size rank(ΣL)
can be chosen such that the covariance matrix of the chosen sample points is
invertible and all the computations can be carried out in this lower dimension.
Thus, without loss of generality, we assume ΣL is positive definite. Thus, the
above expression of SR can be written as

SR =
|(Σ1/2

L h)′(Σ−1/2
L a)|2

(Σ1/2
L h)′(Σ1/2

L h)

Using the Cauchy-Schwarz inequality on the numerator of the RHS of the above
expression, the SR is upper bounded by

SR ≤ [(Σ1/2
L h)′(Σ1/2

L h)][(Σ−1/2
L a)′(Σ−1/2

L a)]

(Σ1/2
L h)′(Σ1/2

L h)

= a′Σ−1
L a

And, this upper bound is achieved when Σ1/2
L h = αΣ−1/2

L a or h = αΣ−1
L a for

some normalization factor α. Setting the value of α to one, we complete the
proof.

On the Optimal Pre-processing for Non-profiling Differential Power Analysis 177

References

1. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

2. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smart Cards. Springer, New York (2007)

3. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Investigations of power analysis
attacks on smartcards. In: USENIX Workshop on Smartcard Technology, pp. 151–
162 (1999)

4. Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence
of hardware countermeasures. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 252–263. Springer, Heidelberg (2000)

5. Rechberger, C., Oswald, E.: Practical template attacks. In: Lim, C.H., Yung, M.
(eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005)

6. Gebotys, C.H., Ho, S., Tiu, C.C.: EM analysis of Rijndael and ECC on a Wireless
Java-based PDA. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
250–264. Springer, Heidelberg (2005)

7. Plos, T., Hutter, M., Feldhofer, M.: On comparing side-channel preprocessing tech-
niques for attacking RFID devices. In: Youm, H.Y., Yung, M. (eds.) WISA 2009.
LNCS, vol. 5932, pp. 163–177. Springer, Heidelberg (2009)

8. Barenghi, A., Pelosi, G., Teglia, Y.: Improving first order differential power attacks
through digital signal processing. In: Makarevich, O.B., Elçi, A., Orgun, M.A.,
Huss, S.A., Babenko, L.K., Chefranov, A.G., Varadharajan, V. (eds.) SIN, pp.
124–133. ACM, New York (2010)

9. Kasper, T., Oswald, D., Paar, C.: Side-channel analysis of cryptographic RFIDs
with analog demodulation. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol.
7055, pp. 61–77. Springer, Heidelberg (2012)

10. Souissi, Y., Nassar, M., Guilley, S., Danger, J.-L., Flament, F.: First principal
components analysis: a new side channel distinguisher. In: Rhee, K.-H., Nyang,
D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 407–419. Springer, Heidelberg (2011)

11. Batina, L., Hogenboom, J., van Woudenberg, J.G.J.: Getting more from PCA:
first results of using principal component analysis for extensive power analysis.
In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 383–397. Springer,
Heidelberg (2012)

12. Oswald, D., Paar, C.: Improving side-channel analysis with optimal linear trans-
forms. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 219–233. Springer,
Heidelberg (2013)

13. Hajra, S., Mukhopadhyay, D.: Pushing the limit of non-profiling DPA using multi-
variate leakage model. Cryptology ePrint Archive, Report 2013/849 (2013). http://
eprint.iacr.org/

14. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

15. Le, T.-H., Clédière, J., Canovas, C., Robisson, B., Servière, C., Lacoume, J.-L.: A
proposition for correlation power analysis enhancement. In: Goubin, L., Matsui,
M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 174–186. Springer, Heidelberg (2006)

16. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

http://eprint.iacr.org/
http://eprint.iacr.org/

178 S. Hajra and D. Mukhopadhyay

17. Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks
and leakage modeling. J. Cryptogr. Eng. 1(2), 123–144 (2011)

18. Akkar, M.-L., Bévan, R., Dischamp, P., Moyart, D.: Power analysis, what is now
possible. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, p. 489.
Springer, Heidelberg (2000)

19. Coron, J.-S., Naccache, D., Kocher, P.C.: Statistics and secret leakage. ACM Trans.
Embed. Comput. Syst. 3(3), 492–508 (2004)

20. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis col-
lision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol.
6225, pp. 125–139. Springer, Heidelberg (2010)

21. Bhasin, S., Danger, J.-L., Guilley, S., Najm, Z.: NICV: normalized inter-class
variance for detection of side-channel leakage. Cryptology ePrint Archive, Report
2013/717 (2013). http://eprint.iacr.org/

22. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks
in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1–14. Springer, Heidelberg (2006)

23. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006)

24. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005)

25. Katashita, T., Satoh, A., Sugawara, T., Homma, N., Aoki, T.: Development of
side-channel attack standard evaluation environment. In: European Conference on
Circuit Theory and Design 2009, ECCTD 2009, pp. 403–408 (2009)

26. Tian, Q., Huss, S.A.: Power amount analysis: an efficient means to reveal the secrets
in cryptosystems. Int. J. Cyber-Secur. Digit. Forensics 1(2), 99–114 (2012)

27. Sills, J., Kamen, E.: Time-varying matched filters. Circuits Syst. Sign. Process.
15(5), 609–630 (1996). http://dx.doi.org/10.1007/BF01188985 [Online]

28. Wikipedia: Matched filter – Wikipedia, The Free Encyclopedia (2013). http://en.
wikipedia.org/wiki/. Accessed 20 December 2013 [Online]

http://eprint.iacr.org/
http://dx.doi.org/10.1007/BF01188985
http://en.wikipedia.org/wiki/
http://en.wikipedia.org/wiki/

Template Attacks on Different Devices

Omar Choudary and Markus G. Kuhn(B)

Computer Laboratory, University of Cambridge, Cambridge, UK
{omar.choudary,markus.kuhn}@cl.cam.ac.uk

Abstract. Template attacks remain a most powerful side-channel tech-
nique to eavesdrop on tamper-resistant hardware. They use a profiling
step to compute the parameters of a multivariate normal distribution
from a training device and an attack step in which the parameters
obtained during profiling are used to infer some secret value (e.g. cryp-
tographic key) on a target device. Evaluations using the same device for
both profiling and attack can miss practical problems that appear when
using different devices. Recent studies showed that variability caused by
the use of either different devices or different acquisition campaigns on
the same device can have a strong impact on the performance of tem-
plate attacks. In this paper, we explore further the effects that lead to
this decrease of performance, using four different Atmel XMEGA 256
A3U 8-bit devices. We show that a main difference between devices is a
DC offset and we show that this appears even if we use the same device
in different acquisition campaigns. We then explore several variants of
the template attack to compensate for these differences. Our results show
that a careful choice of compression method and parameters is the key
to improving the performance of these attacks across different devices.
In particular we show how to maximise the performance of template
attacks when using Fisher’s Linear Discriminant Analysis or Principal
Component Analysis. Overall, we can reduce the entropy of an unknown
8-bit value below 1.5 bits even when using different devices.

Keywords: Side-channel attacks · Template attacks · Multivariate
analysis

1 Introduction

Side-channel attacks are powerful tools for inferring secret algorithms or data
(passwords, cryptographic keys, etc.) processed inside tamper-resistant hard-
ware, if an attacker can monitor a channel leaking such information, most notably
the power-supply current and unintended electromagnetic emissions.

One of the most powerful side-channel attacks is the template attack [2],
which consists of a profiling step to compute some parameters (the templates)
on a training device and an attack step in which the templates are used to infer
some secret data on a target device (Sect. 2). However, most previous studies
[2,5,8,10,17] used the same device (and possibly acquisition campaign) for the
c© Springer International Publishing Switzerland 2014
E. Prouff (Ed.): COSADE 2014, LNCS 8622, pp. 179–198, 2014.
DOI: 10.1007/978-3-319-10175-0 13

180 O. Choudary and M.G. Kuhn

profiling and attack phases. Only recently, Renauld et al. [12] performed an
extensive study on 20 different devices, showing that the template attack may
not work at all when the profiling and attack steps are performed on different
devices; Elaabid et al. [14] showed that acquisition campaigns on the same device,
but conducted at different times, also lead to worse template-attack results; and
Lomné et al. [16] evaluated this scenario using electromagnetic leakage.

In this paper, we explore further the causes that make template attacks
perform worse across different devices. For this purpose, we evaluate the template
attacks with four different Atmel XMEGA 256 A3U 8-bit devices, using different
compression methods and parameters.

We show that, for our experiments, a main difference across devices and
acquisition campaigns is a DC offset, and this difference decreases very much
the performance of template attacks (Sect. 4). To compensate for differences
between devices or campaigns we evaluate several variants of the template attack
(Sect. 5). One of them needs multiple profiling devices, but can improve signifi-
cantly the performance of template attacks when using sample selection as the
compression method (Sect. 5.3). However, based on detailed analysis of Fisher’s
Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA),
we explain how to use these compression techniques to maximise the performance
of template attacks on different devices, even when profiling on a single device
(Sect. 5.4).

Overall, our results show that a good choice of compression method and
parameters can dramatically improve template attacks across different devices
or acquisition campaigns. Previous studies [12,14] may have missed this by eval-
uating only one compression method.

2 Template Attacks

To implement a template attack, we need physical access to a pair of devices
of the same model, which we refer to as the profiling and the attacked device.
We wish to infer some secret value k� ∈ S, processed by the attacked device at
some point. For an 8-bit microcontroller, S = {0, . . . , 255} might be the set of
possible byte values manipulated by a particular machine instruction.

We assume that we determined the approximate moments of time when the
secret value k� is manipulated and we are able to record signal traces (e.g.,
supply current or electromagnetic waveforms) around these moments. We refer
to these traces as leakage vectors. Let {t1, . . . , tmr} be the set of time samples
and xr ∈ R

mr
be the random vector from which leakage traces are drawn.

During the profiling phase we record np leakage vectors xr
ki ∈ R

mr
from the

profiling device for each possible value k ∈ S, and combine these as row vectors
xr

ki
′ in the leakage matrix Xr

k ∈ R
np×mr

.1

Typically, the raw leakage vectors xr
ki provided by the data acquisition device

contain a very large number mr of samples (random variables), due to high sam-
pling rates used. Therefore, we might compress them before further processing,
1 Throughout this paper x′ is the transpose of x.

Template Attacks on Different Devices 181

either by selecting only a subset of m � mr of those samples, or by applying
some other data-dimensionality reduction method, such as Principal Component
Analysis (PCA) or Fisher’s Linear Discriminant Analysis (LDA).

We refer to such compressed leakage vectors as xki ∈ R
m and combine all of

these as rows into the compressed leakage matrix Xk ∈ R
np×m . (Without any

such compression step, we would have Xk = Xr
k and m = mr.)

Using Xk we can compute the template parameters x̄k ∈ R
m and Sk ∈

R
m×m for each possible value k ∈ S as

x̄k =
1
np

np∑

i=1

xki, Sk =
1

np − 1

np∑

i=1

(xki − x̄k)(xki − x̄k)′
, (1)

where the sample mean x̄k and the sample covariance matrix Sk are the estimates
of the true mean μk and true covariance Σk. Note that

np∑

i=1

(xki − x̄k)(xki − x̄k)′ = X̃′
kX̃k, (2)

where X̃k is Xk with x̄′
k subtracted from each row, and the latter form allows

fast vectorised computation of the covariance matrices in (1).
In our experiments we observed that the particular covariance matrices Sk

are very similar and seem to be independent of the candidate k. In this case, as
explained in a previous paper [17], we can use a pooled covariance matrix

Spooled =
1

|S|(np − 1)

∑

k∈S

np∑

i=1

(xki − x̄k)(xki − x̄k)′
, (3)

to obtain a much better estimate of the true covariance matrix Σ.
In the attack phase, we try to infer the secret value k� ∈ S processed by the

attacked device. We obtain na leakage vectors xi ∈ R
m from the attacked device,

using the same recording technique and compression method as in the profiling
phase, resulting in the leakage matrix Xk� ∈ R

na×m . Then, using Spooled, we
can compute a linear discriminant score [17], namely

djoint
LINEAR(k | Xk�) = x̄′

kS
−1
pooled

(
∑

xi∈Xk�

xi

)

− na

2
x̄′

kS
−1
pooledx̄k, (4)

for each k ∈ S, and try all k ∈ S on the attacked device, in order of decreasing
score (optimized brute-force search, e.g. for a password or cryptographic key),
until we find the correct k�.

2.1 Guessing Entropy

In this work we are interested in evaluating the overall practical success of the
template attacks when using different devices. For this purpose we use the guess-
ing entropy, which estimates the (logarithmic) average cost of an optimized

182 O. Choudary and M.G. Kuhn

brute-force search. The guessing entropy gives the expected number of bits of
uncertainty remaining about the target value k�, by averaging the results of the
attack over all k� ∈ S. The lower the guessing entropy, the more successful the
attack has been and the less effort remains to search for the correct k�. We com-
pute the guessing entropy g as shown in our previous work [17]. For all the results
shown in this paper, we compute the guessing entropy on 10 random selections
of traces Xk� and plot the average guessing entropy over these 10 iterations.

2.2 Compression Methods

Previously [17], we provided a detailed comparison of the most common compres-
sion methods: sample selection (1ppc, 3ppc, 20ppc, allap), Principal Component
Analysis (PCA) and Fisher’s Linear Discriminant Analysis (LDA), which we
summarise here. For the sample selection methods 1ppc, 3ppc, 20ppc and allap,
we first compute a signal-strength estimate s(t) for each sample j ∈ {1, . . . ,mr},
by summing the absolute differences2 between the mean vectors x̄r

k, and then
select the 1 sample per clock cycle (1ppc, 6 ≤ m ≤ 10), 3 samples per clock
cycle (3ppc , 18 ≤ m ≤ 30), 20 samples per clock cycle (20ppc, 75 ≤ m ≤ 79)
or the 5 % samples (allap, m = 125) having the largest s(t). For PCA, we
first combine the first m eigenvectors uj ∈ R

mr
of the between-groups matrix

B =
∑

k∈S(x̄r
k − x̄r)(x̄r

k − x̄r)′
, where x̄r = 1

|S|
∑

k∈S x̄r
k, into the matrix of

eigenvectors U = [u1, . . . ,um], and then we project the raw leakage matri-
ces Xr

k into a lower-dimensional space as Xk = Xr
kU. For LDA, we use the

matrix B and the pooled covariance Spooled from (3), computed from the uncom-
pressed traces xr

i, and combine the eigenvectors aj ∈ R
mr

of S−1
pooledB into the

matrix A = [a1, . . . ,am]. Then, we use the diagonal matrix Q ∈ R
m×m , with

Qjj = (aj
′Spooledaj)− 1

2 , to scale the matrix of eigenvectors A and use U = AQ
to project the raw leakage matrices as Xk = Xr

kU. In this case, the compressed
covariances Sk ∈ R

m×m and Spooled ∈ R
m×m reduce to the identity matrix I,

resulting in more efficient template attacks.
For most of the results shown in Sects. 4 and 5, we used PCA and LDA with

m = 4, based on the elbow rule (visual inspection of eigenvalues) derived from
a standard implementation of PCA and LDA. However, as we will then show in
Sect. 5.4, a careful choice of m is the key to good results.

2.3 Standard Method

Using the definitions from the previous sections, we can define the following
standard method for implementing template attacks.

Method 1 (Standard)

1. Obtain the np leakage traces in Xk from the profiling device, for each k.
2. Compute the template parameters (x̄k,Spooled) using (1) and (3).
3. Obtain the leakage traces Xk� from the attacked device.
4. Compute the guessing entropy as described in Sect. 2.1.
2 The SNR signal-strength estimate generally provided similar results (omitted here).

Template Attacks on Different Devices 183

3 Evaluation Setup

For our experimental research we produced four custom PCBs (named Alpha,
Beta, Gamma and Delta) for the unprotected 8-bit Atmel XMEGA 256 A3U
microcontroller. The current consumption across all CPU ground pins is mea-
sured through a single 10-ohm resistor. We powered the devices from a battery
via a 3.3 V linear regulator and supplied a 1 MHz sine wave clock signal. We used
a Tektronix TDS 7054 8-bit oscilloscope with P6243 active probe, at 250 MS/s,
with 500 MHz bandwidth in SAMPLE mode. Devices Alpha and Beta used a
CPU with week batch ID 1145, while Gamma and Delta had 1230.

For the analysis presented in this paper we run five acquisition campaigns:
one for each of the devices, which we call Alpha, Beta, Gamma and Delta (i.e.
the same name as the device), and another one at a later time for Beta, which we
call Beta Bis. For all the acquisition campaigns we used the settings described
above. Then, for each campaign and each candidate value k ∈ {0, . . . , 255} we
recorded 3072 traces xr

ki (i.e., 786 432 traces per acquisition campaign), which we
randomly divided into a training set (for the profiling phase) and an evaluation
set (for the attack phase). Each acquisition campaign took about 2 h. We note a
very important detail for our experiments: instead of acquiring all the traces per
k sequentially (i.e. first the 3072 traces for k = 0, then 3072 traces for k = 1, and
so on), we used random permutations of all the 256 values k and acquired 256
traces at a time (corresponding to a random permutation of all the 256 values
k), for a total of 3072 iterations. This method distributes equally any external
noise (e.g. due to temperature variation) across the traces of all the values k.
As a result, the covariances Sk will be similar and the mean vectors x̄k will be
affected in the same manner so they will not be dependent on factors such as
low-frequency temperature variation.

For all the results shown in this paper we used np = 1000 traces xr
ki per

candidate k during the profiling phase. Each trace contains mr = 2500 sam-
ples, recorded while the target microcontroller executed the same sequence of
instructions loaded from the same addresses: a MOV instruction, followed by
several LOAD instructions. All the LOAD instructions require two clock cycles
to transfer a value from RAM into a register, using indirect addressing. In all
the experiments our goal was to determine the success of the template attacks in
recovering the byte k processed by the second LOAD instruction. All the other
instructions were processing the value zero, meaning that in our traces none of
the variability should be caused by variable data in other nearby instructions
that may be processed concurrently in various pipeline stages. This approach,
also used in other studies [8,13,17], provides a general setting for the evaluation
of the template attacks. Specific algorithm attacks (e.g. on the S-box output of
a block cipher such as AES) may be mounted on top of this.

4 Ideal vs Real Scenario

Most publications on template attacks [2,5,8,10,17] used the same device (and
most probably the same acquisition campaign) for the profiling and attack phase

184 O. Choudary and M.G. Kuhn

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

G
ue

ss
in

g
en

tr
op

y
(b

its
)

LDA, m=4
PCA, m=4
sample, 1ppc
sample, 3ppc
sample, 20ppc
sample, allap

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

G
ue

ss
in

g
en

tr
op

y
(b

its
)

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

G
ue

ss
in

g
en

tr
op

y
(b

its
)

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

G
ue

ss
in

g
en

tr
op

y
(b

its
)

LDA, m=4
PCA, m=4
sample, 1ppc
sample, 3ppc
sample, 20ppc
sample, allap

Fig. 1. Template attacks using Method 1 in different scenarios. Top-left (ideal):
using same device and acquisition campaign (Beta) for profiling and attack. Top-right:
using Alpha for profiling and Beta for attack. Bottom-left: arithmetic average of guess-
ing entropy over all combinations of different pairs of devices for profile and attack.
Bottom-right: using same device (Beta) but different acquisition campaigns for profile
(Beta) and attack (Beta Bis).

in their evaluation. The results of the standard Method 1 in this ideal case, where
we used the same acquisition data for profiling and attack (but disjoint sets of
traces), are shown in Fig. 1 (top-left). We can see that most compression methods
perform very well for large na, while for smaller na LDA is generally the best.
This is in line with our previous results [17].

However, in a more realistic scenario, an attacker who wants to infer some
secret data from a target device may be forced to use a different device for
profiling. Indeed, there are situations where we could use non-profiled attacks,
such as DPA [1], CPA [3], or MIA [9], to infer secret data using a single device
(e.g. by targeting values that represent a known relationship between key and
plaintext). But these methods cannot be used in more general situations where
we want to infer a single secret data value that does not depend on any other
values, which is the setting of our experiments. In such cases the template attacks
or the stochastic approach [4] might be the only viable side-channel attack.3

Moreover, the template attacks are expected to perform better than the other
3 In our setting we cannot use the non-profiled stochastic method (termed on-the-fly

attacks by Renauld et al. [12]) either, because our attacker only has data dependent
on the target secret value.

Template Attacks on Different Devices 185

attacks when provided with enough profiling data [11]. Therefore, we would like
to use template attacks also with different devices for profiling and attack.

As we show in Fig. 1 (top-right), the efficacy of template attacks using the
standard Method 1 drops dramatically when using different devices for the pro-
filing and attack steps. This was also observed by Renauld et al. [12], by testing
the success of template attacks on 20 different devices with 65 nm CMOS transis-
tor technology. Moreover, Elaabid et al. [14] mentioned that even if the profiling
and attack steps are performed on the same device but on different acquisi-
tion campaigns we will also observe weak success of the template attacks. In
Fig. 1 (bottom-right) we confirm that indeed, even when using the same device
but different acquisition campaigns (same acquisition settings), we get results
as bad or even worse as when using different devices. In Sect. 5, we offer an
explanation for why LDA can perform well across different devices.

4.1 Causes of Trouble

In order to explore the causes that lead to worse attack performance on different
acquisition campaigns, we start by looking at two measures of standard deviation
(std), that we call std devices and std data.

Let x̄
(i)
kj be the mean value of sample j ∈ {1, . . . ,m} for the candidate

k ∈ S on the campaign i ∈ {1, . . . , nc}, x̄(i)
j = 1

|S|
∑

k∈S x̄
(i)
kj , zk(j) = [(x̄(1)

kj −
x̄

(1)
j), . . . , (x̄(nc)

kj − x̄
(nc)
j)] = [z(1)

k (j), . . . , z(nc)
k (j)] and z̄k(j) = 1

nc

∑nc
i=1 z

(i)
k (j).

Then,

std devices(j) =
1
|S|

∑

k∈S

√
√
√
√

1
nc − 1

nc∑

i=1

(z(i)
k (j)− z̄k(j))

2
, (5)

and

std data(j) =
1
nc

nc∑

i=1

√

1
|S| − 1

∑

k∈S
(x̄(i)

kj − x̄(i)
j)

2
. (6)

We show these values in Fig. 2. The results on the left plot are from the four
campaigns on different devices, while the results on the right plot are from the
two campaigns on the device Beta. We can observe that both plots are very
similar, which suggests that the differences between campaigns are not entirely
due to different devices being used, but largely due to different sources of noise
(e.g., temperature, interference, etc.) that may affect in a particular manner each
acquisition campaign. Using a similar type of plots, Renauld et al. [12, Fig. 1]
observed a much stronger difference, attributed to physical variability. Their
observed differences are not evident in our experiments, possibly because our
devices use a larger transistor size (around 0.12 µm)4.

4 See http://www.avrfreaks.net/?name=PNphpBB2&file=viewtopic&p=976590

http://www.avrfreaks.net/?name=PNphpBB2&file=viewtopic&p=976590

186 O. Choudary and M.G. Kuhn

850 900 950

0

Sample index

std devices
std data
clock

850 900 950

0

Sample index

std devices
std data
clock

Fig. 2. std devices(j) and std data(j), along with clock signal for a selection of samples
around the first clock cycle of our target LOAD instruction. Left: using the 4 campaigns
on different devices. Right: using Beta and Beta Bis.

850 878 884 900 950
−0.3

−0.2

−0.1

0

0.1

0.2

Sample index

M
ill

ia
m

ps

Alpha
Beta
Beta bis
Gamma
Delta
Beta + ci
Beta − ci
SNR of Beta

Fig. 3. Overall mean vectors x̄ for all campaigns, from which the overall mean vector of
Beta was subtracted. Beta+ci and Beta−ci represent the confidence region (α = 0.05)
for the overall mean vector of Beta. SNR of Beta is the Signal-to-Noise signal strength
estimate of Beta (rescaled). Samples at first clock cycle of target LOAD instruction.

4.2 How It Differs

Next we look at how the overall power consumption differs between acquisition
campaigns. In Fig. 3, we show the overall mean vectors x̄ = 1

|S|
∑

k∈S x̄k for
each campaign, from which we removed the overall mean vector of Beta (hence
the vector for Beta is 0). From this figure we see that all overall mean vectors x̄
(except the one for Beta) are far outside the confidence region of Beta (α = 0.05).
Moreover, we see that the overall mean vector x̄ for Beta Bis is the most distant
from the overall mean vector of Beta. This confirms our previous assumption
that the main difference between acquisition campaigns is caused by campaign-
dependent factors, such as temperature drift, environmental noise, etc. and not
necessarily by the use of different devices. A similar observation was made by
Elaabid et al. [14], however they used different setups for the different campaigns
on the same devices. In our study we have used the exact same setup for the
acquisition of data, while replacing only the tested device (evaluation board).

Template Attacks on Different Devices 187

It is clear from Fig. 3 that a main difference between the different campaigns is
an overall offset. We see that this is also the case over the samples corresponding
to the highest SNR. If we now look at the distributions of our data, as shown
in Fig. 4 for Alpha and Beta, we observe that the distributions are very similar
(in particular the ordering of the different candidates k is generally the same)
but differ mainly by an overall offset. This suggests that, for our experiments,
this offset is the main reason why template attacks perform badly when using
different campaigns for the profiling and attack steps.

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
0

0.5

1

1.5

2

2.5

Milliamps

0
1
2
3
4
5
6
7
8
9

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
0

0.5

1

1.5

2

2.5

Milliamps

0
1
2
3
4
5
6
7
8
9

Fig. 4. Normal distribution at sample index j = 884 based on the template parameters
(x̄k,Spooled) for k ∈ {0, 1, . . . , 9}. Left: on Alpha. Right: on Beta.

4.3 Misalignment

We also mention that in some circumstances the recorded traces might be mis-
aligned, e.g. due to lack of a good trigger signal, or random delays introduced by
some countermeasure. In such cases, we should first apply a resynchronisation
method, such as those proposed by Homma et al. [7]. In our experiments we
used a very stable trigger, as shown by the exact alignments of sharp peaks in
Fig. 3.

5 Improved Attacks on Different Devices

In this section, we explore ways to improve the success of template attacks when
using different devices (or different campaigns), in particular by dealing with
the campaign-specific offset noted in Sect. 4. We assume that the attacker can
profile well a particular device or set of devices, i.e. can get a large number np

of traces for each candidate k, but needs to attack a different device for which
he only has access to a set of na traces for a particular unknown target value
k�. Unless otherwise mentioned, in the following evaluations we considered all
possible combinations of the campaigns Alpha, Beta, Gamma and Delta, always
ensuring that the campaign of one device is only used in either the profiling or
attack phases, but not in both.

188 O. Choudary and M.G. Kuhn

5.1 Profiling on Multiple Devices

Renauld et al. [12] proposed to accumulate the sample means x̄k and vari-
ances Sjj (where S can be either Sk or Spooled) of each sample xj across
multiple devices in order to make the templates more robust against differ-
ences between different devices. That is, for each candidate k and sample j,
and given the sample means x̄k and covariances S from nc training devices,
they compute the robust sample means x̄(robust)

kj = 1
nc

(x̄(1)
kj + . . . + x̄

(nc)
kj) (i.e.

an average over the sample means of each device), and the robust variance as

S
(robust)
jj = S

(1)
jj + 1

nc−1

nc∑

i=1

(x̄(i)
kj − x̄(robust)

kj)
2

(i.e. they add the variance of one

device with the variance of the noise-free sample mean across devices, using
simulated univariate noise for each device). However, this approach does not
consider the correlation between samples or the differences between the covari-
ances of different devices. Therefore, we instead use the following method, where
we use the traces from all available campaigns.

Method 2 (Robust Templates from Multiple Devices)

1. Obtain the leakage traces X(i)
k from each profiling device i ∈ {1, . . . , nc}, for

each k.
2. Pull together the leakage traces of each candidate k from all nc devices into

an overall leakage matrix X(robust)
k ∈ R

npnc×m composed as

X(robust)
k

′
= [X(1)

k

′
, . . . ,X(nc)

k

′
]. (7)

3. Compute the template parameters (x̄k,Spooled) using (1) and (3) on X(robust)
k .

4. Obtain the leakage traces Xk� from the attacked device.
5. Compute the guessing entropy as described in Sect. 2.1.

In our evaluation of Method 2, we used the data from the campaigns on
the four devices (Alpha, Beta, Gamma, Delta), by profiling on three devices and
attacking the fourth. The results are shown in Fig. 5. We can see that, on average,
all the compression methods perform better than using Method 1 (Figs. 1 and 5,
bottom-left). This is because, with Method 2, the pooled covariance Spooled cap-
tures noise from many different devices, allowing more variability in the attack
traces. However, the additional noise from different devices also has the negative
effect of increasing the variability of each leakage sample [12, Fig. 4]. As a result,
we can see that for the attacks on Beta, LDA performs better when we profile on
a single device (Alpha) than when we use three devices (Figs. 1 and 5, top-right).

5.2 Compensating for the Offset

In Sect. 4.2 we showed that a main difference between acquisition campaigns
(and devices) is a constant offset between the overall mean vector x̄. Therefore,
we expect that a template attack that removes this offset should provide better

Template Attacks on Different Devices 189

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

G
ue

ss
in

g
en

tr
op

y
(b

its
)

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

G
ue

ss
in

g
en

tr
op

y
(b

its
)

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

G
ue

ss
in

g
en

tr
op

y
(b

its
)

LDA, m=4
PCA, m=4
sample, 1ppc
sample, 3ppc
sample, 20ppc
sample, allap

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

G
ue

ss
in

g
en

tr
op

y
(b

its
)

Fig. 5. Results of Method 2, profiling on three devices and attacking the fourth one.
Top-left: attack on Alpha; top-right: attack on Beta; bottom-left: arithmetic average
of guessing entropy over all four combinations; bottom-right: attack on Delta.

results. Elaabid et al. [14] have shown that, indeed, if we replace each trace from
each campaign by the difference between itself and the overall mean x̄ of that
campaign (they refer to this process as normalisation, and this process may also
include division by the overall standard deviation), we can obtain results very
similar to those in the ideal case (profiling and attack on the same campaign).
However, this approach does not work straight away in a more realistic scenario
in which the attacker only has access to a limited number of traces from the target
device for a particular target value k�, and hence he cannot compute the overall
mean x̄ of the campaign. Nevertheless, if the difference between campaigns is
mainly a constant overall offset (as we showed in Sect. 4.2), then an attacker
may still use the subset of available attack traces Xk� to improve the template
attack. The method we propose is the following.

Method 3 (Adapt for the Offset)

1. Obtain the raw leakage traces Xr
k from the profiling device, for each k.

2. Compress the raw leakage traces Xr
k to obtain Xk, for each k.

3. Compute the template parameters (x̄k,Spooled) using (1) and (3) on Xk.
4. Compute the overall mean vector x̄r(profile) = 1

|S|
∑

k x̄r
k from Xr

k.

190 O. Choudary and M.G. Kuhn

5. Compute the constant offset c(profile) = offset(x̄r(profile)) ∈ R.5
6. Obtain the leakage traces Xk� from the attacked device.
7. Compute the offset c(attack) = offset(xr) ∈ R from each raw attack trace xr

(row of Xr
k�). As in step 5, for our data we used the median of xr.

8. Replace each trace xr (row of Xr
k�) by xr(robust) = xr−1r·(c(attack)−c(profile)),

where 1r = [1, 1, . . . , 1] ∈ R
mr

.
9. Apply the compression method to each of the modified attack traces xr(robust),

obtaining the robust attack leakage matrix X(robust)
k� .

10. Compute the guessing entropy as described in Sect. 2.1 using X(robust)
k� .

Note that instead of Method 3 we could also compensate for the offset (c(attack)−
c(profile)) in the template parameters (x̄k,Spooled), but that would require much
more computation, especially if we want to evaluate the expected success of an
attacker using this method with an arbitrary number of attack traces, as we
do in this paper. Note also that in our evaluation, each additional attack trace
improves the offset difference estimation of the attacker: the use of the linear
discriminant from (4) in our evaluation implies that, as we get more attack
traces, we are basically averaging the differences (c(attack)−c(profile)), thus getting
a better estimate of this difference.

In Fig. 6 we show the results of Method 3. We can see that, on average, we
get a similar pattern as with Method 2, but slightly worse results. For the best
case (top-right), LDA is now achieving less than 1 bit of entropy at na = 1000,
thus approaching the results on the ideal scenario. On the other hand, we also
see that for the worst case (top-left) we get very bad results, where even using
LDA with na = 1000 doesn’t provide any real improvement. This large difference
between the best and worst cases can be explained by looking at Fig. 3. There
we see that the difference between the overall means x̄ of Alpha and Beta is
constant across the regions of high SNR (e.g. around samples 878 and 884),
while the difference between Beta and Delta varies around these samples. This
suggests that, in general, there is more than a simple DC offset involved between
different campaigns and therefore this offset compensation method alone is not
likely to be helpful.

We could also try to use a high-pass filter, but note that a simple DC block
has a non-local effect, i.e. a far-away bump in the trace not related to k can affect
the leakage samples that matter most. Another possibility, to deal with the low-
frequency offset, might be to use electromagnetic leakage, as this leakage is not
affected by low-frequency components, so it may provide better results [16].

5.3 Profiling on Multiple Devices and Compensating for the Offset

If an attacker can use multiple devices during profiling, and since compensating
for the offset may help where this offset is the main difference between campaigns,
a possible option is to combine the previous methods. This leads to the following.
5 We used the median value of x̄r(profile) as the offset, since it provides a very good

approximation with our data. However, when using a higher clock frequency, the
median can become very noisy, so we might have to find more robust methods.

Template Attacks on Different Devices 191

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

G
ue

ss
in

g
en

tr
op

y
(b

its
)

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

G
ue

ss
in

g
en

tr
op

y
(b

its
)

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

G
ue

ss
in

g
en

tr
op

y
(b

its
)

LDA, m=4
PCA, m=4
sample, 1ppc
sample, 3ppc
sample, 20ppc
sample, allap

Fig. 6. Results of Method 3, profiling on one device and attacking a different device.
Top-left: worst case (profiling on Beta, attack on Delta); top-right: best case (profiling
on Alpha, attack on Beta); bottom-left: average over all possible 12 combinations using
campaigns Alpha, Beta, Gamma, Delta.

Method 4 (Robust Templates and Adapt for the Offset)

1. Obtain the overall raw leakage matrix Xr(robust)
k using Steps (1, 2) of Method 2.

2. Use Method 3 with Xr(robust)
k instead of Xr

k.

The results from Method 4 are shown in Fig. 7. We can see that using this
method the sample selections (in particular 20ppc, allap) perform much better
than using the previous methods, and in most cases even better than LDA. This
can be explained as follows: the profiling on multiple devices allows the estima-
tion of a more robust covariance matrix (which helps both the sample selection
methods and LDA), while the offset compensation helps more the sample selec-
tion methods than LDA. We also notice that PCA still performs poorly, which
was somewhat expected since the standard PCA compression method does not
take advantage of the robust covariance matrix. In the following sections, we
show how to improve template attacks when using LDA or PCA.

5.4 Efficient Use of LDA and PCA

In the previous sections, we showed that LDA did not benefit much from pro-
filing on different devices or adapting the attack traces for a DC offset. In fact,

192 O. Choudary and M.G. Kuhn

100 101 102 103
0

1

2

3

4

5

6

G
ue

ss
in

g
en

tro
py

 (b
its

)

100 101 102 103
0

1

2

3

4

5

6

G
ue

ss
in

g
en

tro
py

 (b
its

)

100 101 102 103
0

1

2

3

4

5

6

G
ue

ss
in

g
en

tro
py

 (b
its

)

LDA, m=4
PCA, m=4
sample, 1ppc
sample, 3ppc
sample, 20ppc
sample, allap

100 101 102 103
0

1

2

3

4

5

6

G
ue

ss
in

g
en

tro
py

 (b
its

)

Fig. 7. Results of Method 4, profiling three devices and attacking the fourth one. Top-
left: attack on Alpha; top-right: attack on Beta; bottom-left: average over all 4 combi-
nations; bottom-right: attack on Delta.

using the standard Method 1, LDA was already able to provide good results
across different devices (see Fig. 1). To understand why this happens, we need
to look at the implementation of LDA, summarised in Sect. 2.2. There we can
see that LDA takes into consideration the raw pooled covariance Spooled. Also,
as we explained in Sect. 3, we acquired traces for random permutations of all
values k at a time and our acquisition campaigns took a few hours to com-
plete. Therefore, the pooled covariance Spooled of a given campaign contains
information about the different noise sources that have influenced the current
consumption of our microcontrollers over the acquisition period. But one of the
major sources of low-frequency noise is temperature variation (which can affect
the CPU, the voltage regulator of our boards, the voltage reference of the oscil-
loscope, our measurement resistor; see also the study by Heuser et al. [15]),
and we expect this temperature variation to be similar within a campaign as
it is across campaigns, if each acquisition campaign takes several hours. As a
result, the temperature variation captured by the covariance matrix Spooled of
one campaign should be similar across different campaigns. However, the mean
vectors x̄k across different campaigns can be different due to different DC offsets
(even if the overall temperature variation is similar), and this is why the sample
selection methods (e.g. 20ppc, allap) perform poorly across different campaigns.
Nevertheless, the LDA algorithm is able to remove the DC component and use
only the rest of the trace for the attack. This, combined with the fact that with

Template Attacks on Different Devices 193

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40
−10

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40
−10

0

10

20

30

40

50

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

0 5 10 15 20
10

3

10
4

10
5

10
6

10
7

0 5 10 15 20
10

9

10
10

10
11

10
12

10
13

10
14

LDA (S−1
pooledB) PCA (B) Spooled

eigenvector index

sample index

D
C

co
m

p
o
n
en

t

Fig. 8. Top: DC components of eigenvectors of LDA (S−1
pooledB), PCA (B) and Spooled.

Middle: First six eigenvectors of LDA (S−1
pooledB), PCA (B) and Spooled. Bottom: eigen-

values (log y axis) of LDA and PCA.

LDA we no longer need a covariance matrix after compression, allows LDA to
filter out temperature variations and other noise sources that are similar across
campaigns, and provide good results even across different devices.

In order to show how LDA and PCA deal with the DC offset, we show in
Fig. 8 (top) the DC components (mean) of the LDA and PCA eigenvectors. For
LDA we can see that there is a peak at the fifth DC component, which shows
that our choice of m = 4 avoided the component with largest DC offset by
chance. For PCA we can see a similar peak, also for the fifth component, and
again our choice m = 4 avoided this component. However, for PCA this turned
out to be bad, because PCA does use a covariance matrix after projection and
therefore it would benefit from getting knowledge of the temperature variation
from the samples. This temperature variation will be given by the eigenvector
with a high DC offset and therefore we expect that adding this eigenvector
may provide better results. We also show in Fig. 8 the first six eigenvectors of
LDA (S−1

pooledB), PCA (B) and Spooled, along with the first 20 eigenvalues of
LDA and PCA. The fifth eigenvector of PCA clearly contains a DC offset, while

194 O. Choudary and M.G. Kuhn

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6
G

ue
ss

in
g

en
tr

op
y

(b
its

)

LDA, m=4
PCA, m=4
sample, 1ppc
sample, 3ppc
sample, 20ppc
sample, allap
LDA, m=3
LDA, m=5
LDA, m=6
LDA, m=40
PCA, m=5
PCA, m=6
PCA, m=40

LDA m = 3, m = 4

PCA m = 4

100 101 102 103
0

1

2

3

4

5

6

G
ue

ss
in

g
en

tro
py

 (b
its

)

LDA, m=4
LDA, m=5
PCA, m=4
PCA, m=5

Fig. 9. Template attack on different campaigns (profiling on Alpha, attack on Beta).
Left: using various compressions with Method 1. Right: using PCA and LDA with
Method 5.

this is not obvious in LDA. Also, we see that the division by Spooled in LDA has
removed much of the noise found in the PCA eigenvectors, and it appears that
LDA has reduced the number of components extracting most information from
four (in PCA) down to three.

To confirm the above observations, we show in Fig. 9 (left) the results of
template attacks when using PCA and LDA with different values of m. We see
that for LDA there is a great gap between using m = 4 and m = 5, no gap
between m = 3 and m = 4, while the gap between m = 5 and m = 40 is very
small. This confirms our previous observation that with LDA we should ignore
the eigenvector containing a strong DC coefficient. Also, we see that for PCA
there is a huge gap between usingm = 4 andm = 5 (in the opposite sense as with
LDA), but the gap between m = 5 and m = 40 is negligible. Therefore, PCA
can work well across devices if we include the eigenvectors containing the DC
offset information. These results provide an important lesson for implementing
template attacks across different devices or campaigns: the choice of components
should consider the DC offset contribution of each eigenvector. This suggests that
previous studies may have missed important information, by using only sample
selections with one to three samples [12] or only the first PCA component [14].

5.5 Add DC Offset Variation to PCA

Renauld et al. [12] mentioned that “physical variability makes the application of
PCA irrelevant, as it cannot distinguish between inter-plaintext and inter-chip
variances”. While it is true that the standard PCA approach [6] is not aimed
at distinguishing between the two types of variance, we showed in Sect. 5.4 that
PCA can actually provide good results if we select the eigenvectors carefully.
Starting from this observation, we can try to enhance the PCA algorithm by
deliberately adding DC noise, in the hope of concentrating the DC sensitivity
in one of the first eigenvectors, thereby making the other eigenvectors less DC
sensitive (as all eigenvectors are orthogonal).

Template Attacks on Different Devices 195

0 5 10 15 20 25 30 35 40
−35

−30

−25

−20

−15

−10

−5

0

5

0 5 10 15 20 25 30 35 40
−50

−40

−30

−20

−10

0

10

0 500 1000 1500 2000 2500

u1
u2
u3
u4
u5
u6

0 500 1000 1500 2000 2500

u1
u2
u3
u4
u5
u6

LDA (S−1
pooledB) PCA (B)

eigenvector index

sample index

D
C

co
m

p
o
n
en

t

Fig. 10. Top: DC components of eigenvectors of LDA (S−1
pooledB) and PCA (B) after

using Method 5. Bottom: First six eigenvectors of LDA (S−1
pooledB) and PCA (B).

Method 5 (Add Random Offsets to the Matrix B – PCA and LDA only)

1. Obtain the raw leakage traces Xr
k from the profiling device, for each k.

2. Obtain the raw pooled covariance matrix Spooled ∈ R
mr×mr

.
3. Pick a random offset ck for each mean vector x̄k.6

4. Compute the between-groups matrix as
B =

∑

k∈S(x̄r
k − x̄r + 1r · ck)(x̄r

k − x̄r + 1r · ck)′.
5. Use PCA (uses B only) or LDA (uses both B and Spooled) to compress the

raw leakage traces and obtain Xk for each k.
6. Compute the template parameters (x̄k,Spooled) using (1) and (3).
7. Obtain the compressed leakage traces Xk� from the attacked device.
8. Compute the guessing entropy as described in Sect. 2.1.

The results of this method are shown in Fig. 9 (right). We see that now PCA
provides good results even with m = 4. However, in this case LDA gives bad
results with m = 4. In Fig. 10 we show the eigenvectors from LDA and PCA,
along with their DC component. We can see that, by using this method, we
managed to push the eigenvector having the strongest DC component first, and
this was useful for PCA. However, LDA does not benefit from including a noise
eigenvector into B, so we propose this method only for use with PCA.
6 We have chosen ck uniformly from the interval [−u, u], where u is the absolute

average offset between the overall mean vectors shown in Fig. 3.

196 O. Choudary and M.G. Kuhn

6 Conclusions

In this paper, we explored the efficacy of template attacks when using different
devices for the profiling and attack steps.

We observed that, for our Atmel XMEGA 256 A3U 8-bit microcontroller
and particular setup, the campaign-dependent parameters (temperature, envi-
ronmental noise, etc.) appear to be the dominant factors in differences between
campaign data, not the inter-device variability. These differences rendered the
standard template attack useless for all common compression methods except
Fisher’s Linear Discriminant Analysis (LDA). To improve the performance of
the attack across different devices, we explored several variants of the template
attack, that compensate for a DC offset in the attack phase, or profile across
multiple devices. By combining these options, we can improve the results of tem-
plate attacks. However, these methods did not provide a great advantage when
using Principal Component Analysis (PCA) or LDA.

Based on detailed analysis of LDA, we offered an explanation why this com-
pression method works well across different devices: LDA is able to compensate
temperature variation captured by the pooled covariance matrix and this tem-
perature variation is similar across campaigns. From this analysis, we were able
to provide guidance for an efficient use of both LDA and PCA across differ-
ent devices or campaigns: for LDA we should ignore the eigenvectors starting
with the one having the strongest DC contribution, while for PCA we should
choose enough components to include at least the one with the strongest DC con-
tribution. Based on these observations we also proposed a method to enhance
the PCA algorithm such that the eigenvector with the strongest DC contribu-
tion corresponds to the largest eigenvalue and this allows PCA to provide good
results across different devices even when using a small number of eigenvectors.

Our results show that the choice of compression method and parameters (e.g.
choice of eigenvectors for PCA and LDA) has a strong impact on the success
of template attacks across different devices, a fact that was not evidenced in
previous studies. As a guideline, when using sample selection we should use a
large number of samples, profile on multiple devices and adapt for a DC offset,
but with LDA and PCA we may use the standard template attack and perform
the profiling on a single device, if we select the eigenvectors according to their
DC component. Overall, LDA seems the best compression method when using
template attacks across different devices, but it requires to invert a possibly large
covariance matrix, which might not be possible with a small number of profiling
traces. In such cases, PCA might be a better alternative.

We conclude that with a careful choice of compression method we can obtain
template attacks that are efficient also across different devices, reducing the
guessing entropy of an unknown 8-bit value below 1.5 bits.

Data and Code Availability: In the interest of reproducible research we make
available our data and related MATLAB scripts at:

http://www.cl.cam.ac.uk/research/security/datasets/grizzly/

http://www.cl.cam.ac.uk/research/security/datasets/grizzly/

Template Attacks on Different Devices 197

Acknowledgement. Omar Choudary is a recipient of the Google Europe Fellowship
in Mobile Security, and this research is supported in part by this Google Fellowship. The
opinions expressed in this paper do not represent the views of Google unless otherwise
explicitly stated.

References

1. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

2. Chari, S., Rao, J., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar,
C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

4. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005)

5. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006)

6. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks
in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1–14. Springer, Heidelberg (2006)

7. Homma, N., Nagashima, S., Imai, Y., Aoki, T., Satoh, A.: High-resolution side-
channel attack using phase-based waveform matching. In: Goubin, L., Matsui, M.
(eds.) CHES 2006. LNCS, vol. 4249, pp. 187–200. Springer, Heidelberg (2006)

8. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008)

9. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008)

10. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

11. Standaert, F.-X., Koeune, F., Schindler, W.: How to compare profiled side-channel
attacks? In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 485–498. Springer, Heidelberg (2009)

12. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A
formal study of power variability issues and side-channel attacks for nanoscale
devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–
128. Springer, Heidelberg (2011)

13. Oswald, D., Paar, C.: Breaking Mifare DESFire MF3ICD40: Power analysis and
templates in the real world. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 207–222. Springer, Heidelberg (2011)

14. Elaabid, M.A., Guilley, S.: Portability of templates. J. Crypt. Eng. 2(1), 63–74
(2012)

198 O. Choudary and M.G. Kuhn

15. Heuser, A., Kasper, M., Schindler, W., Stöttinger, M.: A new difference method
for side-channel analysis with high-dimensional leakage models. In: Dunkelman, O.
(ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 365–382. Springer, Heidelberg (2012)

16. Lomné, V., Prouff, E., Roche, T.: Behind the scene of side channel attacks. In:
Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 506–
525. Springer, Heidelberg (2013)

17. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Zürich (2014)

Using the Joint Distributions of a Cryptographic
Function in Side Channel Analysis

Yanis Linge1,2(B), Cécile Dumas1, and Sophie Lambert-Lacroix2

1 CEA-LETI/MINATEC, 17 Rue des Martyrs,
38054 Grenoble Cedex 9, France

yanis.linge@st.com, cecile.dumas@cea.fr
2 UJF-Grenoble 1/CNRS/UPMF/TIMC-IMAG UMR 5525,

38041 Grenoble, France
Sophie.Lambert@imag.fr

Abstract. The Side Channel Analysis is now a classic way to retrieve
a secret key in the smart-card world. Unfortunately, most of the ensu-
ing attacks require the plaintext or the ciphertext used by the embed-
ded algorithm. In this article, we present a new method for exploiting
the leakage of a device without this constraint. Our attack is based on
a study of the leakage distribution of internal data of a cryptographic
function and can be performed not only at the beginning or the end
of the algorithm, but also at every instant that involves the secret key.
This paper focuses on the distribution study and the resulting attack. We
also propose a way to proceed in a noisy context using smart distances.
We validate our proposition by practical results on an AES128 software
implemented on a ATMega2561 and on the DPAContest v4 [32].

Keywords: AES software · Power analysis · Side-channel attacks ·
Smart-card · Statistical attack · DPAContest V4

1 Introduction

The original work on Side Channel Analysis was done by Kocher in the early
90s [14]. He introduced two new attacks: the Simple Power Analysis (SPA)
and the Differential Power Analysis (DPA). In 2004, Brier et al. [4] formal-
ized the DPA and provided a statistical way to compare the leakage model and
the power traces thanks to the Pearson correlation factor. Today, side channel
attacks gather many methods to attack a device from its power consumption or
electromagnetic radiations, such as high order techniques in presence of a mask-
ing countermeasure [13,17–19], collision attacks [3,7,29], Algebraic Side Channel
Attacks [21,22,26–28], etc.

Side Channel Attacks are generally based on statistical properties and tend
to compare two random variable groups. The first one is represented by all the
points of the acquired traces, while the second one depends on the underlying
cryptographic function. For example, the Correlation Power Analysis (CPA) [4]
c© Springer International Publishing Switzerland 2014
E. Prouff (Ed.): COSADE 2014, LNCS 8622, pp. 199–213, 2014.
DOI: 10.1007/978-3-319-10175-0 14

200 Y. Linge et al.

consists in the correlation between the device leakage at one instant and the
possible value of one intermediate data. For the attack achievement, this value
must be computable, i.e. it only depends on some few key bits and it is obtained
from the plaintext (or the ciphertext). When neither is known, the acquired trace
can not be connected to any cryptographic algorithm data.

The two random variable groups may only be studied independently. It was
interesting to us to assume that we do not have any prior knowledge of the plain-
text and the ciphertext. In fact, many smart-card applications use cryptographic
functions without outputting the plaintext and ciphertext. In this case no inter-
nal data can be guessed, even partially, and a classic attack like CPA is not
conceivable. Today, a cryptographic algorithm is implemented on a smart-card
in a secure way. Many methods exist for masking the data and restricting the
leakage [1,9,12,20,25]. However, it may happen for speed reason that counter-
measures are only present at the beginning and the end of the implementation,
but not in the middle. It is also possible that no protection is positioned pre-
cisely because the plaintext and the ciphertext are not outputted by the chip. For
example, the GENERATE AC command of the EMV application [33] computes
an Application Cryptogram using the algorithm CBC-MAC. A usual way for
ensuring the security of this cryptographic scheme against Side Channel Analy-
sis is to protect the first DES of the first block and the last DES of the final
Triple-DES.

Nevertheless, the acquired traces contain some leakage information and we
presume that it is correlated to the data computed by the device. A trace com-
prises many instants that reflect the chip activity during the algorithm execution.
Each instant may be considered as a real random variable. The variance of these
variables tells us that some instants are noisier or linked to the variation of the
input data.

Failing to associate one trace to its corresponding algorithm guessing value,
we can still study separately the various instants and the different algorithm
values that involve a part of the key. This forms the main idea of our proposition.
We propose to extract some properties from the algorithm and from the trace
and to compare them.

Section 2 presents theoretical aspects by considering the data variations in the
cryptographic algorithm. Section 3 discusses how to relate them to the acquired
signals and Sect. 4 provides the last needed tools. In Sect. 5, we develop the
complete attack. Experiments illustrate the attack’s efficiency and its interest in
Sect. 6 before the conclusion.

2 Study of the Variations in a Cryptographic Algorithm

An algorithm may be decomposed in small functions that mostly use a part of
the secret key.

Using the Joint Distributions of a Cryptographic Function 201

We will denote by g one of these functions and by k� the involved part of the
secret key, named subkey.

g : A×K −→ B

(a, k) �−→ b = g(a, k)

We propose to study how the output b varies when the input a is uniformly
distributed in A. More precisely, we are interested in the leakage caused by a
and b. Let’s denote by L(z) the leakage induced by the handling of the data z,
as Rivain did in his thesis [23]. L(z) is comprised of the leakage function ϕ and
the leakage noise B.

We consider the random variables ϕ(a) and {ϕ(g(a, k))}k∈K and the joint
probability distributions {(ϕ(a), ϕ(g(a, k)))}k∈K . We denote for each subkey k
the joint probability distribution by S(g, k) = {pi,j |i∈{0, . . . , n}, j∈{0, . . . ,m}}
where pi,j is the probability that ϕ(a) = i and ϕ(g(a, k)) = j.

For calculating the distribution of the subkey k, we compute ϕ(a) and
ϕ(g(a, k)) for each a in A. Then by counting the occurrence of the values i = ϕ(a)
and j = ϕ(g(a, k)), we obtain the probability for (ϕ(a), ϕ(g(a, k))) to be equal
to (i, j).

As ϕ(g(a, k)) depends on k, each distribution also depends on the subkey
value k. If we get the distribution for an unknown subkey k� and if each subkey
k matches with a unique distribution1, we are able to guess the value of k� by
comparing the distributions; for example, if we consider that g is defined by:

g : {0, 1} × {0, 1} −→ {0, 1}
(a, k) �−→ b = a⊕ k

and ϕ by:

ϕ : {0, 1} −→ {0, 1}
a �−→ a

If k = 0, ϕ(a) = ϕ(g(a, k)). If k = 1, ϕ(a) = 1− ϕ(g(a, k)) mod 2.
The distributions S(g, 0) and S(g, 1) are drawn in Table 1. These two distrib-

utions are definitely different. So given any distribution, we are able to determine
what subkey k was used to produce it.

Table 1. Joint distribution of (a, b = a⊕ k) in Z/2Z

k = 0 k = 1
ϕ(a) 0 1

ϕ(b)
0 1/2 0
1 0 1/2

ϕ(a) 0 1
ϕ(b)

0 0 1/2
1 1/2 0

1 This property is true for most cryptographic functions like DES S-boxes or AES
SubBytes.

202 Y. Linge et al.

We have computed the theoretical distributions for several functions that
involve a part of the key, like the exclusive-or between bytes, the DES
S-boxes [31] and the AES SubBytes function [8]. All present some differences,
even if the non linear functions present more differences. As the distributions of
a function do not depend on a device, they may be pre-computed for different
targeted functions (g) and for different leakage functions (ϕ).

If the distributions are easily distinguished, that means the function g could
be a good choice for an attack. However, an attacker will face two problems.

First, he must be able to get a distribution that will be compared to the
theoretical ones, knowing he has access only to some traces. We suppose that he
can acquire many traces he wants and that the trace number is sufficient for a
uniform distribution of the input g function. This assumption is not restrictive
because the cryptographic functions generally try to achieve this property. For
obtaining a relevant distribution, the attacker needs also to locate the instants
corresponding to the handling of the variables a and b. As the traces contain some
information but also noise, he will only be able to estimate the frequency of the
couple (ϕ(a) = i, ϕ(b) = j) denoted fi,j . We name Sd = {fi,j |i ∈ {0, . . . , n}, j ∈
{0, . . . ,m}} the estimated distribution of the device. A solution for getting it is
proposed in the next section.

The second problem the attacker faces is the need for a method to compare
two distributions:

– S(g, k), which is theoretical. It is issued from the preliminary study and
depends on the function g and a key guess k.

– Sd, which is estimated. It is computed from the traces and related to the
device.

Section 4 examines the existing distances and selects the most promising ones
for comparing S(g, k) and Sd.

For the rest of this article, we consider that the function ϕ(z) represents the
Hamming weight of z, i.e. the number of 1 in binary representation. The function
g is composed of the AES operations: AddRoundKey followed by SubBytes, i.e.
the data a represents a state byte before the AddRoundKey and the data b a
state byte after the SubBytes. Notice that other ϕ models and other g functions
could be studied.

3 How to Estimate the Distribution of the Device

We suggest here a method to first identify the suitable instants and then estimate
the Hamming weight values that they represent. These instants, named points
of interest, are denoted by PoI.

To determine the most interesting instants of our traces, we used the variance.
The higher the variance, the more favorable the instant, because it represents
either the maximal variability of the noise or the maximal variability of some
data spend by the algorithm. Determining the PoI is an important part of our
proposal. In some other cases, the attacker may need more advanced techniques

Using the Joint Distributions of a Cryptographic Function 203

like in [2,10,11], but this simple way is initially sufficient and does not requiert
any prior knowledge on the leakage.

After selecting some PoI, we have to decide from their amplitude value what
the corresponding Hamming weight value is.

In [26], Renauld and Standaert used a Bayesian template described in [6]
to retrieve the Hamming weight of the targeted variables. Template attacks are
very efficient at obtaining a good approximation of the Hamming weight of the
data. However, they require complete access to a device similar to the targeted
one.

We suggest here a method that does not recognize the exact Hamming weight
value, but allows a reasonable estimation for a low time and memory complexity
by using the only traces of the targeted device. The estimation we present is
close to the value of the Hamming weight of the targeted data.

Let Y (t) be a set of M measured values corresponding to the same instant
t of M traces. We sort this set in an ascending order. As we suppose that the
data values of the cryptographic algorithm are uniform, this implies a particular
distribution of the Hamming weight values. If n is the maximal Hamming weight

value, among the M elements,
M × Cp

n

2n
elements have a Hamming weight p. The

elements of Y (t) are classified knowing this distribution. The maximal Hamming
weight value is assigned to the highest elements of the set Y (t) and the minimal
Hamming weight value to the smallest one.

For example, if 100 values represent the leakage of two bits, we associate the
Hamming weight of:

- 2 for the
100× C2

2

22
= 25 greater elements

- 1 for the
100× C1

2

22
= 50 following elements

- 0 to the
100× C0

2

22
= 25 smaller elements

Indeed, the way to classify the elements depends on the leakage quality. This
method is effective if the noise is low. So by reducing the noise, for example
thanks to the cumulant of order 4 [15], the estimation will be better. Using
this simple method, we obtain an approximation of the Hamming weight of the
targeted variable. Further, one error in the ranking generally gives a Hamming
weight close to the real one. Some random mistakes may occur and perturb the
estimated distribution. In this case, more traces will be necessary for obtaining
an estimated distribution close to the theoretical distribution corresponding to
the true key. We also can choose to sort the M elements in fewer groups by
reducing ϕ. For example, ϕ may represent the most significant bit, i.e. ϕ(z) = 0
if the higher significant bit is zero, 1 otherwise. This implies fewer errors, but the
function ϕ is less precise and the theoretical distributions will be more similar.
This technique has a low complexity in time and memory but only gives an
estimation. This method can be easily replaced by method based on clustering
and machine learning [16].

204 Y. Linge et al.

Since we have a way to approximate the Hamming weight of the input and
the output of the AES SubBytes, we can compute an estimated distribution Sd.
We need now explain how to compare two distributions.

4 How to Compare Two Distributions

To confront the theoretical distribution S(g, k) and an estimated distribution
Sd, the first idea is to use the well-known χ2 distance between them defined as:

χ2(S(g, k), Sd) =
i=n∑

i=0

j=m
∑

j=0

δ(pi,j , fi,j) (1)

The distance between pi,j and fi,j is defined by:

δ(pi,j , fi,j) =

⎧

⎪⎨

⎪⎩

(pi,j−fi,j)
2

pi,j
, pi,j �= 0

0, pi,j = fi,j

∞, pi,j = 0 �= fi,j

(2)

Unfortunately, this distance does not allow errors in the estimated distribu-
tion Sd. Indeed, a theoretical distribution generally presents a lot of zero values
pi,j , so a small mistake in the estimated Hamming weight can cause a non-zero
value for the corresponding fi,j . Thus the distance between Sd and S(g, k�) will
be infinite with only one error.

So we need to find another distance. In [5], Cha proposes a comprehensive
study of different distances between two distributions. We have tested all the 65
distances presented in this article by using the theoretical distributions based on
the Hamming weight leakage and the AES SubBytes function.

When trying to match a distribution that is well estimated to the theoretical
ones, most distances give similar results and return the good subkey with few
samples. But if the device distribution is not well estimated because of the pres-
ence of errors for some samples, some distances give better results than others.
We simulated 50% erroneous samples2 to obtain biased device distributions and
tried all the distances to compare each estimated distribution to the theoretical
ones. We kept the four following best distances, that are those that on average
lead to a successful attack.

– The distance based on the Inner Product defined by:

dIP (S(g, k), Sd) = 1−
i=n∑

i=0

j=m
∑

j=0

pi,j .fi,j (3)

– The distance based on the Harmonic Mean defined by:

dHM (S(g, k), Sd) =

{

1− 2.
∑i=n

i=0

∑j=m
j=0

pi,j .fi,j

pi,j+fi,j
, pi,j + fi,j �= 0

0, pi,j + fi,j = 0
(4)

2 An erroneous sample is obtained by adding a white noise to the true value.

Using the Joint Distributions of a Cryptographic Function 205

– The χ2 Pearson distance

dχ2
P
(S(g, k), Sd) =

⎧

⎪⎨

⎪⎩

∑i=n
i=0

∑j=m
j=0

(pi,j−fi,j)
2

fi,j
, fi,j �= 0

0, fi,j = pi,j

∞, fi,j = 0 �= pi,j

(5)

– The distance of Kullback-Leiber

dKL(S(g, k), Sd) =

{∑i=n
i=0

∑j=m
j=0 pi,j .ln(pi,j

fi,j
), fi,j �= 0

0, fi,j = 0
(6)

With the study of the distributions of two variables related to the crypto-
graphic algorithm, the method presented in Sect. 3 for estimating an equivalent
distribution related to the device and the distances introduced here, we are now
able to establish an attack in order to retrieve the subkey k�.

5 The Proposed Attack

Our attack consists of four phases. First, we get the pre-computed theoretical
distributions that are not device dependent. This part is described in Algorithm 1.

Algorithm 1. Computation of the theoretical distributions.
1: procedure Computation of S(g, k)(g : K ×A→ B , N = |K|)
2: for k ∈ K do
3: S(g, k)← 0 � S(g, k) ∈ {0 . . . n} × {0 . . . m}
4: for a ∈ A do
5: S(g, k)(ϕ(a), ϕ(g(a, k)))← S(g, k)(ϕ(a), ϕ(g(a, k))) + 1

|A|
6: end for
7: end for
8: return S(g, k)
9: end procedure

In the second step, we detect some PoI thanks to the variance criteria.
We denote the found PoI by ta ∈ Ta for the input of our function g and by tb ∈ Tb

for the output. The third step consists of extracting the estimated Hamming
weights of each Y (ta) and each Y (tb) and computing several estimated distribu-
tions Sd(ta, tb) for each ta ∈ Ta and tb ∈ Tb with the method described in Sect. 3.
Finally, we compute all the distances between the theoretical distributions and
the different estimated distributions. The secret subkey for the couple of PoI
(ta, tb) will be given by:

k� = argmin
k∈K

(d(S(g, k), Sd(ta, tb)))

We name the number of samples M , the number of possible keys N = |K|. We
describe our attack in Algorithm 2.

206 Y. Linge et al.

Algorithm 2. Our proposal Attack
1: procedure Attack(M estimated Hamming weight pairs (ai, bi))
2: g : K ×A→ B , N = |K|
3: for k ∈ K do
4: S(g, k)← 0 � S(g, k) ∈ {0 . . . n} × {0 . . . m}
5: for a ∈ A do � Compute the theoretical distributions
6: S(g, k)(ϕ(a), ϕ(g(a, k)))← S(g, k)(ϕ(a), ϕ(g(a, k))) + 1

|A|
7: end for
8: end for
9: Sd ← 0 � Sd ∈ {0 . . . n} x {0 . . . m}

10: for i from 0 to M − 1 do � Compute the estimated distribution
11: Sd(ai, bi)← Sd(ai, bi) + 1

M

12: end for
13: key ← 0
14: for k ∈ K do � Compare the estimated distribution to the theoretical

distributions
15: if d(S(g, k), Sd) < d(S(g, key), Sd) then
16: key ← k
17: end if
18: end for
19: return key
20: end procedure

Our algorithm complexity is:

- First step: one multiplication and N · |A| additions for the computation of the
theoretical distributions.

- Second step: one multiplication and M additions for the computation of the
estimated distribution.

- Third step: N · n ·m multiplications and 1 +N · n ·m additions to compute
N distances based on the Inner Product.

We notice that the complexity in time and memory of the attack is low. The
first step is performed once and for all. The cost of the attack depends on the
sample number for the second step and on the key number for the last step.

6 Experimentations

6.1 Unprotected Software Implementation on ATMega2561

To validate our Hamming weight estimation and our attack, we have targeted a
software AES on an ATMega2561. For this implementation, the internal repre-
sentation of the data is based on eight bits. The system is not very vulnerable
and the acquired traces are a bit noisy.

First, we need to ensure that our methodology for estimating the Hamming
weight gives good results. We have acquired 1,000 samples on our device. The
different AES steps can be distinguished on the traces (see Fig. 1). We consider

Using the Joint Distributions of a Cryptographic Function 207

Table 2. Percentage of good Hamming weight estimations for the input of the targeted
function for all the state bytes.

PoI 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
SB region : 0 24% 21% 28% 18% 78% 22% 24% 29% 23% 24% 29% 24% 23% 21% 24% 25%
SB region : 1 21% 19% 20% 27% 24% 21% 25% 24% 26% 21% 29% 22% 24% 24% 28% 23%
SB region : 2 25% 24% 21% 27% 22% 29% 81% 26% 31% 21% 24% 28% 27% 29% 26% 24%
SB region : 3 22% 23% 24% 68% 21% 27% 23% 25% 23% 31% 25% 21% 23% 25% 21% 22%

the nine instants with a variance greater than 10 times the average variance (see
Fig. 2 that is synchronized with Fig. 1.).

As some PoI are poorly located regarding the region of the trace identified
as the function AddRoundKey followed by SubBytes, we are able to identify
some unusable PoI. For example, one of the PoI is localized at the beginning
of the trace. Four PoI are situated in the SubBytes (SB) region and may there-
fore correspond to the input of the targeted function. The four remaining PoI
are positioned in the MixColumn (MC) region and may be associated with the
output of the SubBytes function.

Fig. 1. Electromagnetic emanation signal from an ATMega2561 during the execution
of the first round of an AES128 software implementation.

Fig. 2. Variance obtained for 1,000 electromagnetic emanation signals from an
ATMega2561 during the execution of the first round of an AES128 software imple-
mentation.

For validating the Hamming weight estimation method we compare the esti-
mated values to the theoretical ones. Table 2 (resp. Table 3) presents the per-
centage of good Hamming weight estimations for the four PoI in the SubBytes
region (resp. in the MixColumn region) for all the state bytes.

As the implementation handles byte by byte, one PoI corresponds to, at
most, one state byte. So the estimator shall associate many correct Hamming
weight values to, at most, one state byte. For the other state bytes, the number

208 Y. Linge et al.

Table 3. Percentage of good Hamming weight estimations for the output of the tar-
geted function for all the state bytes.

PoI 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MC region : 0 18% 21% 25% 27% 22% 24% 27% 29% 23% 22% 28% 20% 23% 21% 28% 29%
MC region : 1 25% 24% 21% 27% 22% 29% 73% 26% 31% 21% 24% 28% 27% 29% 26% 24%
MC region : 2 23% 25% 28% 75% 25% 25% 24% 28% 21% 24% 21% 24% 22% 24% 29% 23%
MC region : 3 24% 21% 28% 18% 64% 22% 24% 29% 23% 24% 29% 24% 23% 21% 24% 25%

of correct Hamming weight values is close to a random estimation. For example,
we can remark that the first PoI in SubBytes region shall represent the state
byte 4 before AddroundKey. Thus the estimator gives us a good approximation
of six bytes, each one corresponding to one PoI.

We conclude that our estimator gives good results, at least for the trace
instants where the variance is high. Thus an attacker could directly use the
variance criteria and the identification of the trace blocks to choose the PoI. Of
course, he does not have the means to verify the estimation method because he
does not know the key value.

Finally, we have to validate the proposed attack. Luckily, the chosen PoI
give Hamming weight values that correspond to the same state byte before and
after the targeted function. So we expect to find the bytes 3, 4 and 6 of the
subkey. Four PoI have been considered by region, so 4 × 4 = 16 pairs (ta, tb)
have to be tested. The whole attack has been performed in a few seconds. In
Table 4, we present the results of our attack for all pairs regarding the distance
of the Inner Product. The pairs are sorted by the minimal distance to the true
theoretical distribution. As only four PoI are selected in each region, we keep
the four subkeys with a lower distance. As expected, we retrieve three bytes of
the key and a wrong one.

It is important to notice that every recorded key byte reduces the crypto-
graphic security. Here an attacker must still guess the position of the recovered
bytes and the missing bytes, knowing that he may get a wrong byte. So he would
like to retrieve more key bytes. For that we propose to get more PoI by consider-
ing for each region the 50 instants with the highest variance. As the PoI number
rises, the time required for the attack increases too. We need a few minutes to
obtain the results showed in Table 5 where the 16 first ones are ranked regarding
the distance based on the Inner Product. Ten key bytes are the real ones so we
have still 10! · 26·8 ≈ 270 keys to test. This number may seem huge, but it is
possible to perform again our attack at another round and then combine the
results. More, we can attribute some probability to each possible key bytes and
then use the algorithm proposed in [30] to retrieve the most probable key.

Notice that if we consider an ineffective PoI the minimal distance between
the theoretical distributions and the distribution of the device will be huge. So
PoI can easily be discriminated by this way.

We have also performed the attack by using the other distances of Cha’s
article [5]. This leads to worse results and validates the choice of the Inner
Product distance.

Using the Joint Distributions of a Cryptographic Function 209

Table 4. Attack results for the 4× 4 chosen PoI.

PoI in SB region PoI in MC region Byte value Distance True?

2 1 54 0.0036051 �
3 2 31 0.0036711 �
0 3 61 0.0037023 �
3 3 224 0.0037423 X

0 0 200 0.0037556 X

2 3 234 0.0037823 X

2 0 39 0.0037883 X

1 3 154 0.0037976 X

3 0 55 0.0037986 X

0 2 216 0.0038011 X

1 1 159 0.0038514 X

2 2 206 0.0038786 X

1 2 21 0.0038983 X

3 1 218 0.0039113 X

0 1 257 0.0039115 X

1 0 197 0.0039612 X

Table 5. The top 16 attack results for the 50 PoI with the higher variance for each
region.

PoI in SB region PoI in MC region Byte value Distance True?

8 23 31 0.035180 �
42 18 23 0.035773 �
33 45 54 0.035813 �
1 8 228 0.035867 �
16 49 191 0.035941 �
12 38 138 0.035977 X

11 21 61 0.035996 �
48 20 224 0.036023 X

5 19 61 0.036023 �
28 12 207 0.036051 �
13 33 25 0.036094 X

21 42 39 0.036121 X

9 34 197 0.036137 X

25 47 198 0.036137 �
38 15 109 0.036187 X

17 31 145 0.036203 �

210 Y. Linge et al.

The targeted implementation is eight bits, but it is also possible to attack
a 16-bit implementation. This implies computing more distributions that are
larger, but their computation can be performed in less than a half hour.

More, if the implementation provides a data masking countermeasure, our
proposal can still be effective by targeting the several AddRoundKey operations.

6.2 DPAContest V4 [32]

In the 2013 summer, the DPAContest version 4 [32] has been released. It provides
100,000 samples corresponding to the first round and the beginning of the second
round of an AES-256 software. As only the beginning of the second round is
available, we will focus only on the subkey used in the first round.

The proposed implementation is protected by using a countermeasure called
RSM [24]. The RSM is a masking countermeasure that uses an unique 16-byte
mask that is randomly rotated by an offset between 0 and 15 at each execution.
So the AES is computed with 16 different random masks. First we have classed
the traces obtained by the same mask offset by using the redundancy of the
offset thanks to a pattern detection by autocorrelation. This classification does
not need to be very accurate because our methodology is resilient to distribution
errors. Then we only consider one class of traces: about six thousand samples
corresponding to the computation with a same, but unknown, mask offset j.

The SubBytes function in the AES is replaced by sixteen masked sboxes:

SB(X ⊕Mi+j mod 16 ⊕K)⊕Mi+1+j mod 16

where M0 . . .M15 are the bytes of the mask and i is the sbox number. As the
value of the 16-byte mask is known, this function contains two unknowns values:
the secret byte subkey K and also the value i+ j.

We decide to retrieve these two values together by using our method. If the
offset j is fixed, the knowledge of i + j is an advantage as it gives the relative
position between the finding bytes. This hugely reduces the number of remaining
keys in the exhaustive search.

As previously we have selected 1,000 PoI by using the variance. But this
time we use four distances:

– Inner Product
– Harmonic mean
– Pearson χ2

– Kullback-Leiber

These four distances will give different results, but we expect that the good
key byte will has a good rank for each distance. The idea is to compute the
top 16 attack results for each distance and each pair of PoI. Then we keep only
the results for each pair that appear for all distances. Finally the first 16 most
frequent values are proposed for the subkey. We found 7 ordered bytes of the
secret subkey. It is important to notice that here we only have 7 · 29·8 ≈ 275

remaining subkeys.

Using the Joint Distributions of a Cryptographic Function 211

We have applied the same attack on another class of traces by considering
the other offset values and compared the different results. The same bytes of the
subkey have been obtained. More secret key bytes could be retrieved with the
acquisition of the AES next rounds.

7 Conclusion

We propose a promising Side Channel Attack based on the joint distributions of
a cryptographic function. The great advantage is that it is not necessary to know
the plaintext or the ciphertext. First, we have investigated the way the internal
data varies between them and noticed that the joint distribution of two data
sets highly depends on the secret key used by the algorithm. In parallel, we have
proposed to deduce the real joint distribution from the acquired traces thanks
to a simple Hamming weight estimator based on the statistical variance and the
particular repartition of random variables. In order to compare this estimated
distribution with the theoretical ones, we have tried several distances and chosen
the more favorable to build an attack. In the ideal case where the Hamming
weight estimation is always correct, our proposed attack is very effective and the
true key is found with fewer than 30 samples. In the real world, the acquired
signals are noisy and the estimator is not perfect. But, with more samples the
attack still remains successful, even with 50% of estimation error.

Indeed, we have validated both the estimation method and the key recovery
by applying our attack on two sets of acquisition. The first one contains 1,000
traces issued from an AES128 software implementation into an ATMega2561.
The results show that 10 disordered key bytes can be retrieved without any
knowledge of the plaintext or the ciphertext. The second one comes from the
DPAContest v4. Here we found 7 ordered bytes of the key.

The software context is well adapted to estimate the joint distribution of two
internal data sets because few bits are processed at the same time. Attacking
a hardware implementation in this manner remains a challenge, as it involves a
huge bit number. This represents an easy way to protect a cryptographic algo-
rithm. However, our attack may be also relevant for non-cryptographic opera-
tions like masking or reverse engineering.

Acknowledgements. We would like to thank Victor Lomné for providing us traces
and suggestions. We are also grateful to Thomas Roche and Christophe Giraud for
their reviews and helpful comments.

References

1. Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against
some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol.
2162, pp. 309–318. Springer, Heidelberg (2001)

2. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks
in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1–14. Springer, Heidelberg (2006)

212 Y. Linge et al.

3. Bogdanov, A.: Improved side-channel collision attacks on AES. In: Adams, C., Miri,
A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 84–95. Springer, Heidelberg
(2007)

4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

5. Cha, S.-H.: Comprehensive survey on distance/similarity measures between prob-
ability density functions. Int. J. Math. Models Methods Appl. Sci. 1(4), 300–307
(2007)

6. Chari, S., Rao, J., Rohatgi, P.: Template attack. In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003)

7. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Improved collision-
correlation power analysis on first order protected AES. In: Preneel, B., Takagi, T.
(eds.) CHES 2011. LNCS, vol. 6917, pp. 49–62. Springer, Heidelberg (2011)

8. Daemen, J., Rijmen, V.: AES proposal: Rijndael (1998)
9. Debraize, B.: Efficient and provably secure methods for switching from arithmetic

to boolean masking. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol.
7428, pp. 107–121. Springer, Heidelberg (2012)

10. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis - a
generic side-channel distinguisher. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)

11. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006)

12. Goubin, L., Patarin, J.: DES and differential power analysis - The duplication
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999)

13. Joye, M., Paillier, P., Schoenmakers, B.: On second-order differential power analy-
sis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 293–308.
Springer, Heidelberg (2005)

14. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

15. Le, T.-H., Clédière, J., Servière, C., Lacoume, J.-L.: Noise reduction in side channel
attack using fourth-order cumulant. IEEE Trans. Inf. Forensics Secur. 2(4), 710–
720 (2007)

16. Lerman, L., Medeiros, S.F., Veshchikov, N., Meuter, C., Bontempi, G., Markowitch,
O.: Semi-supervised template attack. In: Prouff, E. (ed.) COSADE 2013. LNCS,
vol. 7864, pp. 184–199. Springer, Heidelberg (2013)

17. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attack - Revealing the Secret
of Smart Cards. Springer, Heidelberg (2007)

18. Messerges, T.S.: Using second-order power analysis to attack DPA resistant soft-
ware. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000)

19. Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical second-order DPA
attacks for masked smart card implementations of block ciphers. In: Pointcheval,
D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Heidelberg (2006)

20. Oswald, E., Mangard, S., Pramstaller, N.: Secure and efficient masking of AES - A
mission impossible? Cryptology ePrint Archive, Report 2004/134. http://eprint.
iacr.org/2004/134

http://eprint.iacr.org/2004/134
http://eprint.iacr.org/2004/134

Using the Joint Distributions of a Cryptographic Function 213

21. Oren, Y., Kirschbaum, M., Popp, T., Wool, A.: Algebraic side-channel analysis in
the presence of errors. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 428–442. Springer, Heidelberg (2010)

22. Oren, Y., Wool, A.: Tolerant algebraic side-channel analysis of AES. Cryptology
ePrint Archive, report 2012/092. http://eprint.iacr.org/2012/092

23. Rivain, M.: On the physical security of cryptographic implementations. Ph.D. the-
sis, University of Luxembourg (2009)

24. Nassar, M., Souissi, Y., Guilley, S., Danger, J.-L.: RSM: a small and fast coun-
termeasure for AES, secure against 1st and 2nd-order zero-offset SCAs. In: DATE
2012, 1173–1178 (2012)

25. Rivain, M., Prouff, E., Doget, J.: Higher-order masking and shuffling for software
implementations of block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS,
vol. 5747, pp. 171–188. Springer, Heidelberg (2009)

26. Renauld, M., Standaert. F-X.: Algebraic side-channel attacks. Cryptology ePrint
Archive, report 2009/279. http://eprint.iacr.org/2009/279

27. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel
attacks on the AES: why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009)

28. Saied Emam Mohamed, M., Bulygin, S., Zohner, M., Heuser, A., Walter, M.:
Improved algebraic side-channel attack on AES. Cryptology ePrint Archive, report
2012/084. http://eprint.iacr.org/2012/084

29. Schramm, K., Wollinger, T., Paar, C.: A new class of collision attacks and its
application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–
222. Springer, Heidelberg (2003)

30. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013)

31. Federal Information Processing. Data Encryption Standard. Standards Publication
46-1 National Technical Information Service, U.S. Dept. of Commerce (1977)

32. DPA contest v4. http://www.dpacontest.org/v4/
33. EMVCo EMV Integrated Circuit Card Specifications for Payment Systems, Book

2, Security and Key Management, Version 4.3, November 2011

http://eprint.iacr.org/2012/092
http://eprint.iacr.org/2009/279
http://eprint.iacr.org/2012/084
http://www.dpacontest.org/v4/

A Multiple-Fault Injection Attack by Adaptive
Timing Control Under Black-Box Conditions

and a Countermeasure

Sho Endo1(B), Naofumi Homma1, Yu-ichi Hayashi1, Junko Takahashi2,
Hitoshi Fuji2, and Takafumi Aoki1

1 Graduate School of Information Sciences, Tohoku University,
6-6-05, Aramaki Aza Aoba, Aoba-ku, Sendai-shi 980-8579, Japan

endo@aoki.ecei.tohoku.ac.jp
2 NTT Secure Platform Laboratories, Nippon Telegraph and Telephone Corporation,

3-9-11, Midori-cho, Musashino-shi, Tokyo 180-8585, Japan

Abstract. This paper proposes a multiple-fault injection attack based
on adaptive control of fault injection timing in embedded microproces-
sors. The proposed method can be conducted under the black-box con-
dition that the detailed cryptographic software running on the target
device is not known to attackers. In addition, the proposed method
is non-invasive, without the depackaging required in previous works,
since such adaptive fault injection is performed by precisely generat-
ing a clock glitch. In this paper, we demonstrate the validity of the
proposed method through an experiment on Advanced Encryption Stan-
dard (AES) software with a typical recalculation-based countermeasure
on an 8-bit microprocessor. We first describe the proposed method to
inject two kinds of faults, designed to obtain a faulty output available for
differential fault analysis and to avoid a conditional branch for the coun-
termeasure, respectively. We then show an experimental result that the
faulty output can be obtained by circumventing countermeasure without
using information from the detailed instruction sequence. Furthermore,
we proposed a countermeasure against our attack, which prevents the
attackers from calling the output routine through skipping the branch
or branch test instruction.

Keywords: Embedded processors · Cryptographic software · Fault
injection attacks

1 Introduction

Fault injection attacks are attracting much attention in the field of cryptographic
hardware and embedded systems. The attackers first inject faults into crypto-
graphic operations to obtain faulty ciphertexts and then estimate a secret key
from several faulty ciphertexts. After the first publication focusing on public-key
cryptosystems [5], fault injection attacks were extended to symmetric-key cryp-
tosystems [4]. Since then, many variations of fault attacks and countermeasures
c© Springer International Publishing Switzerland 2014
E. Prouff (Ed.): COSADE 2014, LNCS 8622, pp. 214–228, 2014.
DOI: 10.1007/978-3-319-10175-0 15

A Multiple-Fault Injection Attack by Adaptive Timing Control 215

have been presented, and new variants are still being proposed [2,7,15]. Differen-
tial fault analysis (DFA) [4] extracts the secret key from the difference between
correct and faulty outputs. In DFA, we assume that temporal faults are injected
into some bits (or bytes) during a short time and the faulty values are propa-
gated through subsequent operations or hardware logics without any additional
faults. Ineffective fault analysis (IFA) [7] injects faults into specific operations
and deduces the secret key from the observation whether the output changes or
not.

A typical countermeasure against such fault injection attacks is to cancel the
output (i.e., the ciphertext) when faults are detected because many fault injec-
tion attacks require faulty ciphertexts. Recalculation is commonly used in fault
detection methods. The recalculation methods include duplicate or redundant
calculations [2,17], which repeat the same cryptographic operation several times,
and error-detection calculations, which calculate an inverse, error-detection code,
or checksum after the cryptographic operation [6,12]. Such countermeasures with
recalculation often assume that the attacker can inject faults once during the tar-
get cryptographic process. Hence, these countermeasures are potentially vulner-
able to multiple-fault injection attacks, which can inject several faults during the
cryptographic process. Indeed, such multiple-fault injection attacks have been
successfully applied to RSA-CRT software in [11,19]. The attackers defeated
the recalculation-based countermeasure and obtained the faulty ciphertexts, as
described in the literature.

However, previous multiple-fault injection attacks have assumed that the
attackers know the details of the target software. More precisely, the attackers
must know the execution timing of the assembler instruction sequence for the
target software. In [11], the attacker injects faults by inducing a decreased voltage
twice, at the times of encryption and recalculation, to obtain a faulty ciphertext.
That method assumes that the attacker knows in advance how to time both
injections. In [19], the attacker injects faults by laser pulses at the times of
encryption and conditional branching following recalculation. The attack also
assumes that the attacker can modify the software running on the microcontroller
to generate a trigger signal that will precisely indicate the execution timing of
the branch instruction. As described above, the previous attacks can be applied
only when the attacker knows the target instruction sequence in some way. To
the best of our knowledge, the possibility of multiple-fault instruction attacks
under black-box conditions, in which the attackers do not know the execution
timing of the target software (i.e., the assembler instruction sequence), are not
well studied in literature.

In this paper, we propose multiple-fault injection attacks based on adap-
tive control of fault injection timing. The attackers can adapt the fault-injection
timings from just the output of the cryptographic software. Such adaptation
requires a precise and brief fault injection into a specific clock cycle without
disturbing any other clock cycles. In this paper, we implement such fault injec-
tions by introducing clock glitches for our attack. These clock glitches can induce
faults with higher reproducibility in a non-invasive manner than can other fault

216 S. Endo et al.

injection methods such as introducing a power glitch. The proposed method is a
combination of simple search algorithms, but the total number of fault injection
trials required for the attack c is at most 3cp, where cp is the cycle counts of the
cryptographic operations. This paper also demonstrates, through an experiment
on Advanced Encryption Standard (AES) software with a recalculation-based
countermeasure, that the proposed attack can obtain faulty ciphertexts available
for DFA in a black-box setting. The rest of this paper is organized as follows.
Section 2 describes related works. Section 3 presents the concept of the proposed
attack and its application to cryptographic software with a recalculation-based
countermeasure. Section 4 shows an experiment of the proposed attack on a spe-
cific piece of AES software. Section 5 shows a software countermeasure against
the proposed attack. Section 6 concludes our paper.

2 Related Works

Many papers have reported that an instruction skip was observed when a fault
was injected during a cryptographic process in experiments on various microcon-
trollers [3,9,14,18]. In previous works, such instruction skips were observed on
8-bit AVR microprocessors when a fault was injected by a power glitch [18] or by
an electromagnetic pulse [9]. Such instruction skips were also observed on 32-bit
ARM processors, induced by a laser pulse [2,19] or an electromagnetic pulse [14].
The attackers obtain faults caused by these instruction skips and exploit them
for fault injection attacks, such as DFA.

The effects of multiple fault injections have also been studied in DFA pro-
posals. A previous work [16] presented the effect of multiple faults in the DFA
on AES. Another work [13] described a generic fault model that covers all the
faults that could happen on the AES execution. Note that these papers do not
cover the effect of multiple faults in a program flow, which is exploited to defeat
countermeasures in the proposed attack.

Many countermeasures have also been presented [2] to thwart the fault injec-
tion attacks described above. In particular, software countermeasures are usu-
ally applied to embedded microcontrollers because hardware countermeasures
are often unavailable on low-cost microcontrollers. Among such software coun-
termeasures, recalculation is one of the most typical. The countermeasure is
roughly classified into two types: those that perform the same cryptographic
operations repeatedly [3], and those that perform a different operation, such
as an inverse or checksum operation, after the cryptographic operation [6,17].
Both types ultimately compare or check two or more computation results to
detect faults. The former countermeasures can be defeated when the same fault
is injected into all repeated operations. However, the latter countermeasures are
resistant to the above attack because it is hard to inject two or more faults that
will pass the final check. However, these countermeasures can be defeated if a
fault is injected into the final check.

There are some recalculation schemes for the above countermeasures. A typ-
ical scheme is to perform recalculation after the cryptographic process to be

A Multiple-Fault Injection Attack by Adaptive Timing Control 217

Fig. 1. Basic procedure of proposed attack.

protected [2]. We focus on countermeasures based on the recalculation scheme
as follows. Duplication of instructions is also presented in [3]. That scheme is
immune to any single fault injection attack because of the duplicated instruc-
tions. However, this kind of countermeasure is defeated if a multiple-fault injec-
tion attack skips all duplicated instructions.

Another countermeasure [8] is to insert a random delay time before and
after the cryptographic operation. This prevents attackers from determining the
timing of a specific cryptographic operation needed for fault injections. The
application of our attack to such countermeasures is discussed in the following
section.

3 A Multiple-Fault Injection Attack Based on Adaptive
Fault Injection

This section presents a multiple-fault injection attack that can be applied to
cryptographic software with a typical recalculation-based countermeasure, such
as in [2], under a black-box condition. In the proposed attack, we change the
injection timing cycle by cycle and determine the appropriate timing from the
resulting outputs. We start injecting faults when the cryptographic process
starts.

3.1 Proposed Attack

The black-box condition considered here is that we do not know the details of
cryptographic software implemented in an embedded processor. On the other

218 S. Endo et al.

Algorithm 1. Encryption with Recalculation (EncWithRecal)
Input: Plaintext P
Output: Ciphertext C
1: C ← Encryption(P)
2: P2 ← Decryption(C)
3: if P = P2 then
4: return C
5: end if
6: return Error signal

Algorithm 2. Activating the countermeasure
Input: Random plaintext P , cycle count of cryptographic operation cp

Output: Correct ciphertext C, position of preliminary fault pp

1: C ← EncWithErrorDetection(P) # Correct ciphertext
2: for pp = 0 to cp do
3: SetPreliminaryFaultPosition(pp)
4: Cf ← EncWithErrorDetection(P)
5: if Error signal is observed then
6: return pp

7: end if
8: end for

hand, our attack assumes that we know the following information: (i) crypto-
graphic algorithm, (ii) the fact that the cryptographic algorithm is implemented
in software, and (iii) presence of a countermeasure based on recalculation. Also,
we assume that we can observe the execution timing of the cryptographic oper-
ation in some way (e.g., from a communication signal). Note here that we do
not need the detailed information about the cryptographic operation such as the
execution timing of a specific cryptographic operation.

Figure 1 shows the basic concept of the proposed attack, which consists of
three steps. Let Fault A and Fault B be the faults to be injected into the soft-
ware (i.e., the assembly instruction sequence) for the ciphertext production and
the countermeasure, respectively. Step I searches for the injection timing for the
preliminary fault, which will activate the countermeasure. We first set the injec-
tion timing of preliminary fault pp to be zero and then inject a fault at time pp.
The value of pp is incremented after each injection.

We assume here that the countermeasure returns an error signal when the
fault is detected [19]. Step I is ended when the error signal is obtained. Step II
looks for an appropriate injection timing for Fault B, namely pB , while continuing
to inject the preliminary fault. We can obtain a faulty ciphertext when a fault
skips a critical instruction (e.g., a conditional branch instruction). Step II is
ended when pB is obtained. Step III looks for an appropriate injection timing
for Fault A, namely pA, while continuing to inject Fault B. We use the timing of
the preliminary fault as a starting point for examining the injection timing for
Fault A. Note that the original timing for the preliminary fault does not always

A Multiple-Fault Injection Attack by Adaptive Timing Control 219

Algorithm 3. Injecting a fault to circumvent the countermeasure
Input: Random plaintext P , correct ciphertext C, cycle count of cryptographic oper-

ation cp, position of preliminary fault pp

Output: Position of Fault B pB

1: SetPreliminaryFaultPosition(pp)
2: for pB = cp to pp do
3: SetFaultBPosition(pB)
4: Cf ← EncWithErrorDetection(P)
5: if Cf �= C and Error signal is not observed then
6: return pB

7: end if
8: end for

Algorithm 4. Obtaining an faulty ciphertext for attacks
Input: Random plaintext P , correct ciphertext C, cycle count of cryptographic oper-

ation cp, position of preliminary fault pp

Output: Position of Fault B pB , faulty ciphertext for attacks Cf

1: SetFaultBPosition(pB)
2: for pA = pp to cp do # Glitch position
3: SetFaultAPosition(pA)
4: Cf ← EncWithErrorDetection(P)
5: d← Cf ⊕ C
6: if d has four non-zero bytes then
7: return Cf

8: end if
9: end for

provide a faulty ciphertext suitable for attacks such as DFA. Step III ends when
a suitable faulty ciphertext is obtained.

Typical algorithms for Steps I, II, and III are shown below. In this paper,
we focus on a recalculation-based countermeasure, such as the one shown in
Algorithm 1. Steps I, II, and III are implemented in Algorithms 2, 3, and 4,
respectively. cp is the cycle count of the entire cryptographic process. First, we
use Algorithm 2 to discern the injection timing for the preliminary fault. The
timing pp is examined in the range of 0 ≤ pp ≤ cp. Algorithm 2 ends when an
error signal is obtained.

Next, we run Algorithm 3 to determine the timing for Fault B pB . We examine
the timing of pB from the end of the instruction sequence while injecting the
preliminary fault at the timing pp. Algorithm 3 ends when a faulty ciphertext
is obtained. Note again that the faulty ciphertext obtained after Step II is not
always suitable for attacks because the preliminary fault is not always injected
at the timing that is specified by the attack algorithms the attacker use.

Finally, we run Algorithm4 to obtain a faulty ciphertext that can be used
for DFA. We examine the timing of pA for Fault A in the range from pp to cp.
Algorithm 4 ends when a suitable faulty ciphertext is obtained. For example,
Piret’s DFA [15] requires a single-byte fault at the output of the 8th round of

220 S. Endo et al.

(a) Block diagram.

(b) SASEBO-W board.

Fig. 2. Experimental environment.

the AES process. In this case, the output ciphertexts include a four-byte error.
Therefore, Step III can end when any faulty ciphertext containing a four-byte
error is obtained. In an 8-bit processor, we can inject one-byte fault easily by
skipping a instruction such as XOR in AddRoundKey.

The cost of the proposed attack depends on the number of fault injections
c that is required for the observation of a faulty ciphertext available for DFA.
c is described as c = pp + (pB − cp) + pA. c < 3cp since all of pA, pB , and pp

are smaller than cp. In modern microprocessors, cp would be at most 100000
cycles, therefore c would be less than 300000 cycles. The trial number is much
smaller than that of a brute force search for a 128-bit key. Note that the proposed
method can be conducted automatically without any reverse engineering.

The timing of fault injection is independent of input data. Therefore, once
we find the appropriate timings of fault injections, we can obtain any number
of faulty ciphertexts using different plaintexts. Also, c is constant for any input
data.

4 Experiment

4.1 Overview

This section describes an experiment in which the proposed attack was used
against a piece of AES software with a recalculation-based countermeasure.

A Multiple-Fault Injection Attack by Adaptive Timing Control 221

Table 1. Experimental conditions

Cryptographic algorithm 128-bit AES with re-calculation-based countermeasure
(Written from scratch)

Microcontroller ATmega163 (8-bit)

Compiler GCC 4.3.3 (optimized by -Os)

FPGA Xilinx XC6SLX150

Glitch width 54 ns

Plaintext (00112233445566778899aabbccddeeff)16

Secret key (000102030405060708090a0b0c0d0e0f)16

Algorithm 5. AES Encryption with Recalculation(AESEncWithRecal)
Input: Plaintext P
Output: Ciphertext C
1: C ← AESEncryption(P)
2: P2 ← AESDecryption(C)
3: r1 ← 1
4: if P = P2 then
5: r1 ← 0
6: end if
7: return r1

Figure 2 shows the experimental environment implemented on the Side-channel
Attack Standard Evaluation Board SASEBO-W. An on-chip glitchy-clock gen-
erator [10], shown in Fig. 2(a), was implemented on the FPGA, and the clock
signals with glitches were fed into the smart card. Table 1 shows the experimen-
tal conditions. The microcontroller ATmega163 on the smart card ran a 128-bit
AES program equipped with the recalculation shown in Algorithm1. This pro-
gram was written by the authors from scratch. The program was written in the
C language and compiled with the GCC 4.3.3 compiler. In this experiment, we
used Algorithms 2, 3, and 4 for Steps I, II, and III, respectively, of the proposed
method. Algorithm 4 ended when a faulty ciphertext with a four-byte error,
suitable for Piret’s DFA, was obtained.

4.2 Fault Injection with Glitchy-Clock Generator

Figure 3 shows an image of the clock signal generated by the glitchy-clock gen-
erator. The glitchy clock cycle is inserted in the clock signal with the aim of
causing a setup time violation fault. The glitch width w represents the width
between the first and the second rising edges in the glitchy clock cycle. The
resulting fault varies with w because the number of affected paths increases as w
decreases. The glitch setup time s represents the width between the first rising
and falling edge in the cycle, which does not affect the type of injected fault but
should be configured to be shorter than w.

222 S. Endo et al.

Fig. 3. Glitchy-clock signal.

Fig. 4. Block diagram of glitchy-clock generator.

Figure 4 shows a block diagram of the glitch generator. It consists of a counter
and two delay locked loop (DLL) circuits in the digital clock managers (DCMs)
available on Xilinx FPGAs. In Fig. 4, the selection signal is given by the counter
output and the clock signal with different phases. We can program the DCMs
and control the phase-shift parameters θw and θs, which correspond to w and s,
respectively. Phase-shift parameters for DLLs can be controlled from an external
PC through a series of communication interfaces (a FIFO interface and a USB
I/F device) on Fig. 2. We can adjust the parameters of the glitch in increments
of about 0.020 ns on the SASEBO-W. Also, we can generate clock glitches with
high reproducibility. The jitter of w was below 0.2 ns, with the specific value
depending on the specifications of the DLLs.

A Multiple-Fault Injection Attack by Adaptive Timing Control 223

(a) Overview. (b)Magnified view of glitchy cycle.

Fig. 5. Waveform of the clock signal.

Code 1: Main function.
1: LBL_MAIN:

2: CALL AESEncWithRecal

3: TST r1 ;Stores 1 in Z when r1=0

4: BRNE LBL_FAIL ;Jumps when Z=0

5: CALL SendData

6: JMP LBL_FINISH

7: LBL_FAIL:

8: CALL SendError

9: LBL_FINISH:

In this experiment, w was adjusted to 54 ns so that an instruction would be
affected by the clock glitch. Figure 5 shows the screenshot from the oscilloscope
during the experiment. In Fig. 5(a), the bottom signal is the trigger signal of
the fault injection. Figure 5(b) shows the magnified view of the glitchy clock
cycle. Thus, the glitchy clock generator is satisfied with the condition that the
proposed method requires a precise fault injection clock by clock. According to
the above generator specification, the proposed attack can be applied to targets
with clock frequency of more than 100 MHz.

4.3 Experimental Results

Code 1 shows the main function of the program used in this experiment. AES-
EncWithRecal, SendData, and SendError indicate respectively (i) the functions
to perform encryption, recalculation, and comparison between the ciphertext
and the recalculated value; (ii) to output a ciphertext; and (iii) to output an
error signal. Algorithm 5 shows the AESEncWithRecal function. This function
corresponds to Algorithm 1 in lines 1 to 3, but it returns the ciphertext and the
result of comparison between P and P2. In AESEncWithRecal, the value ‘0’ is
stored on the register r1 when the plaintext and the results of the recalculation

224 S. Endo et al.

Table 2. Experimental results

Step Starting position Final position Number of trials

Step I pp = 0 pp = 3 4

Step II pB = 30530 pB = 30527 4

Step III pA = 3 pA = 9996 9994

Total 10002

Code 2: AddRoundKey.
(a) Code in C language.

add_round_key(void)

{

u8_t i;

for (i=0; i<16;i++){

s[i] ^= k[i];

}

}

(b) Assembly code com-
piled with GCC 4.3.3.

1: LDS r26, 0x0000

2: LDS r27, 0x0000

3: LDI r30, 0x00

4: LDI r31, 0x00

5: LD r24, X

6: LD r25, Z+

7: EOR r24, r25

8: ST X+, r24

9: LDI r24, 0x00

10: CPI r30, 0x00

11: CPC r31, r24

12: BRNE .+0

13: RET

Code 3: Example of
instruction duplication.

1: LBL_MAIN:

2: CALL AESEncWithRecal

3: TST r1

4: BRNE LBL_FAIL

5: BRNE LBL_FAIL

6: CALL SendData

7: JMP LBL_FINISH

8: LBL_FAIL:

9: CALL SendError

10: LBL_FINISH:

are consistent, and ‘1’ is stored otherwise. Next, the test (TST) instruction in
line 3 examines register r1. Test instruction stores ‘1’ in the register Z (called
Zero Flag) when the register r1 has ‘0’ and ‘1’ otherwise. Then, the branch
(BRNE) instruction is executed. If Z holds 1 (so r1 holds 0) the instruction
“CALL SendData” in line 5 is executed because the program does not jump to
LBL FAIL. In contrast, if Z holds 0 (so r1 holds 1), which means that a fault
has been detected, the program jumps to LBL FAIL and an error signal is sent.
However, when a fault is injected during the execution of the BRNE instruction
in line 4, the instruction “CALL SendData” is executed regardless of the value
of register r1 because the BRNE instruction is skipped.

Table 2 shows the number of trials needed to complete the proposed attack.
Here, we observed in advance that the cycle count of cryptographic operation
cp was 30527. We performed 10002 fault injection trials in total and obtained a
ciphertext with a four-byte error, suitable for Piret’s attack. In this experiment,
Fault A was injected into the AddRoundKey function at the 8th round. Code 2(a)
presents the AddRoundKey code used in this experiment, where the variables k
and s denote the round key and the intermediate value, respectively. Code 2(b)
shows the assembly code obtained by compiling Code 2(a). The fault was injected

A Multiple-Fault Injection Attack by Adaptive Timing Control 225

into the load (LD) instruction in line 5. Fault B was injected into the branch
instruction in line 4 of Code 1.

4.4 Applications of Proposed Attack

The proposed attack has the potential to defeat various countermeasures in
addition to the countermeasure shown in Algorithm1. First, we describe the
application of our attack to another recalculation-based countermeasure that
performs the same cryptographic operation twice. We assume that two cryp-
tographic operations are performed by the same function in the program. In
this case, the same algorithms as above can be applied to the countermeasure
without any change. In addition, we can obtain a faulty ciphertext in a different
manner. After finding the timing pp for the preliminary fault by Algorithm2, we
search for the timing for Fault B by Algorithm3 from pp. We can obtain a faulty
ciphertext when Fault B is injected into the instruction corresponding to the
instruction providing the preliminary fault. Let ci be the elapsed time between
the preliminary fault and Fault B. To obtain a faulty ciphertext for DFA, we
change the timings of two fault injections while keeping the interval ci.

The proposed attack also has the potential to defeat countermeasures based
on instruction duplication. Code 3 shows an example of Code 2 equipped with
this kind of countermeasure. The attacker cannot inject a fault even when the
branch instruction in line 4 is skipped because the same instruction in line 5 is
executed instead of the skipped instruction [14]. However, the countermeasure is
defeated when both instructions in lines 4 and 5 are skipped. This is feasible if
we search for the timing for the preliminary fault and the interval between the
preliminary fault and Fault B at the same time. Note that the number of fault
injection trials is O(n2), where n is the length of code. We finally obtain a faulty
ciphertext when we chose a correct timing and interval.

A random delay countermeasure [8] is also potentially vulnerable to the pro-
posed attack. This countermeasure generates a random number and feeds it to
a loop counter. In this case, the attacker can target the branch instruction at
the end of the loop. If the branch instruction is skipped, the delay time becomes
constant. The attacker can find that the countermeasure was disabled by mea-
suring the execution time. After the countermeasure has been disabled, we can
apply the proposed method shown above.

The proposed attack can also be combined with side-channel attacks, such as
power analysis attacks. For example, a masking countermeasure can be disabled
when a fault is injected into the generation or addition of a random number.

5 Countermeasure

This section describes a software countermeasure against the proposed attack.
First, we consider a countermeasure against the skipping of branch instruc-
tions. Code 4 shows code immune to the skipping of branch instructions. In
this code, the program counter moves to the error handling routine when the

226 S. Endo et al.

Code 4: Countermeasure by
default fail.

1: JMP LBL_MAIN

2: LBL_SUCCESS:

3: CALL SendData

4: JMP LBL_FINISH

5: LBL_MAIN:

6: CALL AESEncWithRecal

7: TST r1

8: BREQ LBL_SUCCESS

9: LBL_FAIL:

10: CALL SendError

11: LBL_FINISH:

Code 5: Proposed countermeasure.

1: JMP LBL_MAIN

2: LBL_SUCCESS:

3: CALL SendData

4: JMP LBL_FINISH

5: LBL_TEST:

6: TST r1

7: BREQ LBL_SUCCESS;jumps when Z=1

8: JMP LBL_FAIL

9: LBL_MAIN:

10: CALL AESEncWithRecal

11: CLZ ;Stores 0 in Z

12: BRNE LBL_TEST ;Go to LBL_TEST when Z=0

13: LBL_FAIL:

14: CALL SendError

15: LBL_FINISH:

branch instruction in line 8 is skipped. Such a scheme is called “default fail” [20].
In addition, in Code 4, the call of the output routine (“CALL SendData” in line
3) is located before the encryption, which prevents the attacker from skipping
all the instructions between the encryption and the output routine.

However, another piece of vulnerability still remains in Code 4. The Zero Flag
(Z) is not updated when the TST instruction in line 7 is skipped. In this case,
the branch instruction might jump to the label LBL SUCCESS regardless of the
value of r1 because the value of Z depends on the last instruction to update the
value of Z. To prevent this attack, we should initialize Z and check whether Z
is the correct value before executing the test instruction. Code 5 presents the
proposed countermeasure. After the encryption, we first set Z to be the value
that does not satisfy the branch condition in line 7. In Code 5, Z is initialized
as 0. Then, the program checks Z and jumps only when the value of Z is 0. The
branch instruction at line 11 does not jump to the label LBL TEST if Z is 1.
Therefore, the value of Z (i.e., 0) is guaranteed at line 6. The program does not
jump to LBL SUCCESS when the test instruction is skipped or when the value
of Z is 0. The proposed countermeasure can be implemented in many processor
architectures, because many architectures have branch and flag manipulation
instructions. Furthermore, if the architectures support some specific instruc-
tions, a more efficient countermeasure might be possible. For example, the CBZ
instruction is available on the ARM architecture [1]. The instruction performs
atomic testing and branching. In Code 4, by replacing the test instruction and
the branch instruction with the CBZ instruction, we can prevent the attacker
from skipping the test instruction by itself.

A Multiple-Fault Injection Attack by Adaptive Timing Control 227

6 Conclusion

This paper proposed a multiple-fault injection attack based on adaptive control
of fault injection timing in embedded microprocessors. The proposed method can
be conducted under the black-box condition that the details of the cryptographic
software running on the target device are not known to attackers. In addition, the
proposed method is non-invasive, without the depackaging required in previous
works, since such adaptive fault injection is performed by precisely generating a
clock glitch. In this paper, we demonstrated the validity of the proposed method
through an experiment on AES software with a typical recalculation-based coun-
termeasure on an 8-bit microprocessor. We first described the proposed method
to inject two kinds of faults, designed to obtain a faulty output suitable for
differential fault analysis and to avoid a conditional branch for the countermea-
sure. We then showed experimentally that a faulty output can be obtained from
the software without using information on the detailed instruction sequence.
Furthermore, we proposed a countermeasure against our attack. This counter-
measure prevents the attackers calling the output routine by skipping a branch
or branch test instruction.

Future work should include further applications of the proposed attack to
other processors that have larger and different instruction sets, such as ARM.
Also, a more sophisticated searching method would reduce the cost of the pro-
posed attack. As a countermeasure for the proposed attack, we are developing a
compiler that implements the proposed countermeasure automatically.

References

1. ARMv8 instruction set overview (2012). https://silver.arm.com/download/ARM
and AMBA Architecture/AR100-DA-70501-r0p0-00eac5/ARMv8 ISA PRD03-
GENC-010197-30-0.pdf

2. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006)

3. Barenghi, A., Breveglieri, L., Koren, I., Pelosi, G., Regazzoni, F.: Countermeasures
against fault attacks on software implemented AES: effectiveness and cost. In:
Proceedings of the 5th Workshop on Embedded Systems Security (WESS), pp.
7:1–7:10, October 2010

4. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer,
Heidelberg (1997)

5. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 37–51. Springer, Heidelberg (1997)

6. Ciet, M., Joye, M.: Practical fault countermeasures for Chinese remaindering based
RSA. In: FDTC 2005, pp. 124–131, September 2005

7. Clavier, C.: Secret external encodings do not prevent transient fault analysis. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 181–194.
Springer, Heidelberg (2007)

https://silver.arm.com/download/ARM_and_AMBA_Architecture/AR100-DA-70501-r0p0-00eac5/ARMv8_ISA_PRD03-GENC-010197-30-0.pdf
https://silver.arm.com/download/ARM_and_AMBA_Architecture/AR100-DA-70501-r0p0-00eac5/ARMv8_ISA_PRD03-GENC-010197-30-0.pdf
https://silver.arm.com/download/ARM_and_AMBA_Architecture/AR100-DA-70501-r0p0-00eac5/ARMv8_ISA_PRD03-GENC-010197-30-0.pdf

228 S. Endo et al.

8. Coron, J.-S., Kizhvatov, I.: Analysis and improvement of the random delay coun-
termeasure of CHES 2009. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 95–109. Springer, Heidelberg (2010)

9. Dehbaoui, A., Dutertre, J.M., Robisson, B., Tria, A.: Electromagnetic transient
faults injection on a hardware and a software implementations of AES. In: FDTC
2012, pp. 7–15, September 2012

10. Endo, S., Hayashi, Y.i., Homma, N., Aoki, T., Katashita, T., Hori, Y., Sakiyama,
K., Nagata, M., Danger, J.L., Le, T.H., Bazargan-Sabet, P.: Measurement of side-
channel information from cryptographic devices on security evaluation platform:
demonstration of SPACES project. In: Proceedings of SICE Annual Conference,
pp. 313–316, August 2012

11. Kim, C.H., Quisquater, J.-J.: Fault attacks for CRT based RSA: new attacks, new
results, and new countermeasures. In: Sauveron, D., Markantonakis, K., Bilas, A.,
Quisquater, J.-J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 215–228. Springer,
Heidelberg (2007)

12. Medwed, M., Schmidt, J.M.: A continuous fault countermeasure for AES providing
a constant error detection rate. In: FDTC 2010, pp. 66–71, August 2010

13. Moradi, A., Shalmani, M.T.M., Salmasizadeh, M.: A generalized method of differ-
ential fault attack against AES cryptosystem. In: Goubin, L., Matsui, M. (eds.)
CHES 2006. LNCS, vol. 4249, pp. 91–100. Springer, Heidelberg (2006)

14. Moro, N., Dehbaoui, A., Heydemann, K., Robisson, B., Encrenaz, E.: Electromag-
netic fault injection: towards a fault model on a 32-bit microcontroller. In: FDTC
2013, pp. 77–88, August 2013

15. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and Khazad. In: Walter, C.D., Koç, Ç.K., Paar,
C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003)

16. Saha, D., Mukhopadhyay, D., RoyChowdhury, D.: A diagonal fault attack on
the advanced encryption standard. Cryptology ePrint Archive, Report 2009/581,
November 2009

17. Satoh, A., Sugawara, T., Homma, N., Aoki, T.: High-performance concurrent error
detection scheme for AES hardware. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 100–112. Springer, Heidelberg (2008)

18. Schmidt, J.M., Christoph, H.: A practical fault attack on square and multiply. In:
FDTC 2008, pp. 53–58, October 2008

19. Trichina, E., Korkikyan, R.: Multi fault laser attacks on protected CRT-RSA. In:
FDTC 2010, pp. 75–86, August 2010

20. Witteman, M.: Secure application programming in the presence of side
channel attacks (2013). https://www.riscure.com/benzine/documents/Paper Side
Channel Patterns.pdf

https://www.riscure.com/benzine/documents/Paper_Side_Channel_Patterns.pdf
https://www.riscure.com/benzine/documents/Paper_Side_Channel_Patterns.pdf

Adjusting Laser Injections for Fully
Controlled Faults

Franck Courbon1,2(B), Philippe Loubet-Moundi1, Jacques J.A. Fournier3,
and Assia Tria3

1 GEMALTO, Security Labs, La Ciotat, France
{franck.courbon,philippe.loubet-moundi}@gemalto.com

2 Ecole des Mines de Saint-Etienne, CMP-GC/LSAS, Gardanne, France
franck.courbon@mines-stetienne.fr

3 CEA, CEA Tech Region, DPACA/LSAS, Gardanne, France
{jacques.j.a.fournier,assia.tria}@cea.fr

Abstract. Hardware characterizations of integrated circuits have been
evolving rapidly with the advent of more precise, sophisticated and cost-
efficient tools. In this paper we describe how the fine tuning of a laser
source has been used to characterize, set and reset the state of registers
in a 90 nm chip. By adjusting the incident laser beam’s location, it is
possible to choose to switch any register value from ‘0’ to ‘1’ or vice-
versa by targeting the PMOS side or the NMOS side. Plus, we show how
to clear a register by selecting a laser beam’s power. With the help of
imaging techniques, we are able to explain the underlying phenomenon
and provide a direct link between the laser mapping and the physical
gate structure. Thus, we correlate the localization of laser fault injec-
tions with implementations of the PMOS and NMOS areas in the silicon
substrate. This illustrates to what extent laser beams can be used to
monitor the bits stored within registers, with adverse consequences in
terms of security evaluation of integrated circuits.

Keywords: Laser fault injection · Registers attacks · Bit set and reset ·
Fault model

1 Introduction

Several attacks can be performed on integrated circuits to bypass security mech-
anisms or access sensitive data. Those attacks are usually classified into four
categories: logical attacks where the attacker exploits a weak software imple-
mentation [3]; side-channel attacks where power or electromagnetic or timing
based information are used to learn about the data manipulated by a given
device (SPA [16], DPA [12] and CPA [4]); invasive attacks where the device is
physically and irreversibly modified [1]; and fault attacks where external per-
turbations are used to induce faults during the execution of a given sensitive
program or on the sensitive data being manipulated [2,20]. This last kind of

c© Springer International Publishing Switzerland 2014
E. Prouff (Ed.): COSADE 2014, LNCS 8622, pp. 229–242, 2014.
DOI: 10.1007/978-3-319-10175-0 16

230 F. Courbon et al.

attack can be performed using several means like a flash light, laser beam, elec-
tromagnetic pulse [5], voltage or clock glitches.

In this paper we focus on the use of a laser beam as a security characterization
tool for Integrated Circuits (IC): with such means, precise and localized effects
can be induced into the device without damaging the latter (usually a simple
decapsulation of the chip is enough) at relatively low costs (≈ 20Keuros), thanks
to the decreasing costs of laser sources. We describe how the precise use of a laser
beam can be used to characterize, set and reset the state of registers in a 90 nm
IC. We correlate laser faults injection results with physical implementations
of the PMOS and NMOS. The explanation for the observed phenomenon is
obtained by the use of imaging techniques.

The paper is organized as follows. We first introduce some of the hardware
design concepts used in the paper as well as some background information on
laser-based fault injection techniques. Then we describe the experimental set-up
used, the device under test (DUT) and the methodology applied. The monitoring
of registers using laser-based fault injections is then depicted: we describe the
tests performed and show the overlay between the laser fault-based mapping
and the register’s physical implementation. We then discuss about our findings
relative to recent publications, we describe limitations and future work before
concluding on how such techniques can have adverse consequences in terms of
security.

2 Hardware Design Aspects

2.1 IC Physical Layers

Integrated circuits are made out of silicon wafers. The different manufacturing
steps are performed on only one side of the wafer usually called the active side,
top side or front side. For our laser fault injections, we will use the other side,
called the backside, which can be thinned and polished. Either way, the final
wafer thickness is relatively high - 100 times - compared to the active layer. This
parameter must be considered for setting up the laser.

The active layer is made, from bottom to top, of P or N doped silicon regions
to constitute a transistor’s drain and source. A polysilicon layer is used to make
transistor gates with minimal dimensioning. Then, the first metal layer is used
to connect the different transistors to build a logic gate. Those gates are linked
together by interconnection or supplied by power routing lines. All metal layers
are separated by insulation layers. Finally, a passive layer protects the chip from
corrosion or packaging or handling stresses.

2.2 Logic Gate Consideration

Integrated circuits are made up of elementary functional gate structures also
called standard cells. During the place and route phase of the circuit’s design
the arrangement of standard cells is optimized to reach the best compromise

Adjusting Laser Injections for Fully Controlled Faults 231

between area, timing and power constraints. In a typical secure product, basic
blocks - i.e. CPU, coprocessors, logic functions - are scrambled and are part of
the synthesized logic. Depending on the chip complexity, several thousands to
millions of logic gates are implemented. The smallest gate is the inverter which is
composed of two transistors (as we are in Complementary MOS circuit design).
The number of transistors used in other, more complex, logic gates can be ten
times larger. Basic gates function are NOT, AND, NOR, XOR, NAND and few
others like flip-flops or latches. Even if the number of logic functions provided is
relatively small, the number of basic gates available in the standard cell library
could be more than 10 times larger, depending on the number of inputs (i.e.
NAND2, NAND3), the amount of current driven or on the presence of optional
reset or clock signals. It is possible to temporarily store a single bit of data in a
register which can be either a latch or a flip-flop. A latch output is constantly
affected by its input as long as the enable signal is set. On the other hand, a flip-
flop updates its value only at a rising or falling edge of the enable signal which
usually is the clock signal. This article only deals with flip-flops even if it could
be extended to any CMOS based logic gate or to volatile storage structures.

2.3 Register Hardware Structure

Storing bits within the synthesized logic requires several transistors: about 20
to 30 transistors are needed to build a single flip-flop. We focus in this paper
on bistable flip-flops that are standard cells implemented within the synthesized
logic in order to store temporary values or to speed up the data access. They
are widely used in core processor unit or in cryptographic coprocessors.

The structure of flip-flops depends on their types; i.e. D type or E type
(enable) and if there is a synchronous reset input or an asynchronous one. Typi-
cally, for a 90 nm technology a flip-flop size is of the order of 15µm2 and becomes
bigger when an enable and a reset signal are implemented. Flip-flops such as
other memory elements require specific timing requirements including set up
and hold times on data and minimum pulse widths on clock inputs [11].

The flip-flop considered here is of D-type with an asynchronous reset from
which any edge-triggered type storage element can be designed with a few extra
gates. For performance, layout density and energy efficiency, gates are always
designed and optimized at the transistor level. Their implementation requires
several stages: inverting input buffer, two types of latches, possibly an output
multiplexer, output buffers, clock preparation and asynchronous reset signal.

A basic D flip-flop layout is given in Fig. 1; we acknowledge that this type
of gate is more complex that those studied in previous works [17]. This flip-flop
contains 24 transistors and a theoretical study of a laser beam’s effect over such
a gate would require dedicated and custom tools to be able to run significant
simulations.

232 F. Courbon et al.

Fig. 1. A flip-flop layout

3 Laser Beam Injection

3.1 Laser/Matter Interaction in CMOS Circuits

Within a single flip-flop logic gate, several pairs of NMOS and PMOS transistors
are implemented. Implanting P-type dopants into some N-type base material, or
vice versa, create PN junctions. Those junctions are sensitive to a photoelectric
effect when exposed to a laser beam [8]. This induced photocurrent may switch
a transistor’s state thus affecting the output of a logic gate. Hériveaux et al. [9]
gave an attempt to try to simulate and analyze the behaviour of an inverter gate
under the stress of a laser beam. Moreover, previous practical works based on an
inverter [17] showed that when the input is ‘1’, the drain of the NMOS ‘becomes
the sensitive’ part and when the input is ‘0’ the drain of the PMOS ‘becomes the
sensitive’ one. Moreover, depending on the type of targeted MOS transistors the
required power to switch a transistor is more or less important [18]. Measure-
ments made by Sarafianos et al. [18] give a difference of photocurrent 6 times
higher for a specific NMOS junction (N+/P-sub, large ellipse) than for a PMOS
one (P+/N-well, small ellipse) in 90 nm technology and for a given process.

In [19], the author also notes that the N-well/P-sub junction (present only
for PMOS transistors as seen in Fig. 2) despite having the largest surface, creates

Fig. 2. NMOS, PMOS and generated photocurrent

Adjusting Laser Injections for Fully Controlled Faults 233

a small photocurrent. Furthermore, as our shoot duration is superior to tens of
ns, we use the model given for a shoot duration over 8ns and in this model, even
if pnp associations are present, currents created with parasite bipolar junction
transistors are neglected. Without any knowledge of our flip-flop layout, based
on these previous works, we can guess that a bit initialized at ‘1’ would be more
sensitive to a laser beam. Indeed, as PMOS transistors are connected to the
upper rail voltage and NMOS ones to the lower rail voltage, reaching a ‘0’ value
might be performed through the switching of the state of one or several NMOS
transistors.

3.2 Laser Based Fault Attacks

The laser bench used to perform faults in integrated circuits evaluation is char-
acterized by:

– High spatial precision
– Local effect area
– Accurate timing
– High fault repeatability
– Multiple faults capability

Thus, using laser fault injections, several types of attacks are feasible against
cryptographic operations: such as safe error attacks where the attacker can guess
for example key value by observing the output after a single bit modification
[14,15]; algorithm modification attacks [6] where the attacker can change a single
bit of a register and reduce, for instance, the number of rounds performed in a
cryptographic algorithm; and differential fault attacks [7] where an attacker can
exploit fault injections to guess a key. This paper deals with the laser effect over
a complex logic gate.

4 Experimental Set-up

4.1 Device Under Test and Methodology

In our experiments, we use a recent IC microcontroller with a technology node
of 90 nm. We focus our investigations onto the synthesized logic of the sample
covering about a fourth of the global integrated circuit’s size. Due to dense metal
routing on the top side of the chip, we decided to use backside analysis in order
to ensure that a uniform laser power reaches the active layer. Thus, the DUT’s
backside is opened and then placed under the microscope which focuses the
laser beam through the substrate. The DUT is monitored and we perform the
following experimental operations:

– A. Load data register.
– B. Perform laser shoot.
– C. Read back register value.
– D. Move XY stage and perform A/B/C repeatedly.

234 F. Courbon et al.

Using an open sample, we only read a unique register value. The resulting
output file is a matrix of the faulted XY positions which displays only the faults
injected into this single register.

4.2 Laser Platform

The laser test platform is composed of a microscope with different focusing
capabilities, a laser cavity, an electrically controlled XYZ stage, an oscilloscope,
a device under test (DUT) and electronic boards to drive the different equipments
and to precisely synchronize them together. The set up must be well defined in
terms of:

– Pulse shape and characteristics such as wavelength, energy, duration.
– Pulse repeatability.
– Spatial localization on the chip.
– Temporal localization in the process (not really applicable for static registers

approach though).

Our platform enables us to measure the power reaching the integrated cir-
cuit’s backside. We measured this for each input command value applied to our
laser source. This output power can vary from few mW to 800mW peak and we
can set the pulse duration as short as tens of ns. According to power measure-
ments and oscilloscope signal observations, we can measure the energy reaching
the backside surface of the die.

E = Ppeak ∗ΔT
E(Joules) = Ppeak(W) ∗ΔT (s)

We use a 1064 nm laser wavelength that enables us to obtain a trade-off
in terms of photoelectric effect and substrate absorption [10]. The optical absorp-
tion of a laser beam in the silicon depends on the substrate doping concentra-
tion and the wavelength used. Our set up has a spatial precision of the order
of the μm.

5 Monitoring Register Bits Using a Laser Beam

In the rest of this paper, we assume that timing constraints are not an issue as
we perturb a static register which stores the programmed data during the entire
execution of our process. The hardware design of those registers does not include
a dynamic return to the previous value so we can fault a register at any time,
and then read the value back. Within the following subsections we describe how
to find a register location over the entire DUT (Sect. 5.1), how a localized laser
beam can control the bit value (Sect. 5.2), how the bit value can be obtained with
a laser mapping (Sect. 5.3) and how a power controlled laser beam can clear a
register value (Sect. 5.4).

Adjusting Laser Injections for Fully Controlled Faults 235

5.1 Finding the Area of Interest

The entire synthesized logic block is scanned with a large step (around 25µm)
and a large beam spot (around 10µm). This allows finding the bits of interest
over the entire chip. Some bits are missing as we attack with a large scanning
step. We also obtain multiple-bit faults with such energy and spot sizes. How-
ever, once a register bit is found, chances are high of finding all the others nearby,
even if the synthesized logic scrambles the structure. The precision of our experi-
mental set-up is the key point for the success of our experiments. After empirical
tests, we found a set up for a hundred percent faults injection success rate by
applying an energy of tens of nJ on the backside of the circuit. With these laser
parameters, no particular alarm is triggered by the chip.

For the rest of our experiments, we limit the area of interest to the area where
some bits of the register have been revealed. This area becomes the new region
to scan. Thus, the next figures only display a small part of the integrated circuit.
This is less time consuming, more attacks can be performed with different sets of
parameters. After finding this area of interest, we then use a smaller step (around
1µm) and a smaller laser spot size (around 2µm). We increase the magnification
with a 50× objective and we target an area of 30 × 38µm2. The laser scans
are performed with an X and Y step of 1µm. We hence have 30 × 38 = 1140
positions to analyze.

5.2 Controlling the Modification of a Register by Localization

A flip-flop is usually implemented using a large number of transistors and there
are only two values that can be stored in a flip-flop logic gate, a ‘1’ or a ‘0’.

Over the reduced scan area defined in (Sect. 5.1), only 8 bits are implemented,
and for the first scan on the left of Fig. 3, we set the register value with ‘00000000’
before scanning the 30 × 38µm2. As the registers are all programmed with a
‘0’ value, we are only able to detect when the laser shoot switches the output
value to ‘1’. As naming convention we talk about ‘reset’ or ‘bit reset’ when the

Fig. 3. ‘0’ to ‘1’ bits faults, ‘1’ to ‘0’ bits faults, ‘1’ to ‘0’ and ‘0’ to ‘1’

236 F. Courbon et al.

value switches from ‘1’ to ‘0’ and ‘set’ or ‘bit set’ when the value switches from
‘0’ to ‘1’. In the figures to come, the grey or black squares represent a bit switch
whereas white pixels are used when no error is recorded. For the middle part
of Fig. 3, inversely we set the initial register bits with ‘1’s. It gives us another
mapping on which we see the positions where the laser beam switches a bit to
‘0’. Both mappings put together give the “superposed representation” on the
rightmost picture of the figure.

We thus localize characteristic patterns: for each bit set in Fig. 3 for instance,
we get a specific location where the laser could be applied to change the bit value.
8 distinguishable locations are found, one for each of the 8 register bits. With
the second mapping we get the same status to have bit reset. However with the
third part of the image we can say that bit set or bit reset sensitive areas are
distinct areas. As another result, if we assume that the same logic gate is used for
all the bits, we also get some information about pattern rotation. For instance
if bit number 1 has a reference rotation, then bit number 3 is mirrored. We thus
suppose the flip-flop gate physical implantation to be mirrored. For each of those
eight logic gates, using one laser shoot targeting the right sensitive positions, we
can exactly control the stored value at the logic gate output.

In Fig. 4, we show that half of the bits present over this area have their bit
set sensitive part on the left side of the reset sensitive part. This gives some
information about the orientation of each logic gate.

Fig. 4. Logic gates orientation

5.3 Differentiating Register Bit Values with Laser Mapping

Figure 5 shows the mapping of faulted values that were observed for ‘4’ different
initial settings of the 8-bit register. In the upper left picture, the register is
programmed with all zeros. In the upper right picture, all ones are written before
performing the laser scanning. The pattern ‘11110000’ is written in the case of
the lower left picture and in the lower right one, ‘00001111’ is programmed in
the register.

Adjusting Laser Injections for Fully Controlled Faults 237

Fig. 5. Laser fault injection mappings at 39nJ with different initial values; top-left:
‘00000000’, top-right: ‘11111111’, bottom-left: ‘11110000’, bottom-right: ‘00001111’

We observe that the bit set and bit reset have different sensitivities. The
observation of the location where the faults occurred gives direct information
about the initial value of the bit. In our tests the “larger” sensitive areas corre-
spond to an initial state at ‘0’ and the “smaller ones” are representative of an
initial state of ‘1’.

5.4 Controlled Register Clearing with Energy Selection

We observed that the laser location can be tuned to change in a controlled way
the stored value in a register flip-flop. So, another test campaign was conducted
to find if other laser parameters can be used to increase our capabilities to change
registers’ contents in a controlled way. Therefore, we set the initial register value
to ‘00001111’ and consecutively change the laser exposure time and the laser
beam power, resulting in a successively decreasing the energy. If we look at the
pictures from the left to the right in Fig. 6, the energy hitting the chip’s backside
is successively 32nJ , 13nJ and 10nJ .

Figure 6 shows that a careful control (an energy high enough to perturb a type
of transistors without perturbing the other type of transistors) of the injected

Fig. 6. Pertubation of the register initialized at ‘00001111’ with different energies; left:
32nJ , middle: 13nJ , right: 10nJ

238 F. Courbon et al.

energy only allows to reset bits and to let bit initialized at ‘0’ unchanged. The
contents can be controlled very precisely with this set up. Using a large spot size
and adequate energy, an attacker could clear all the bits of the flip-flops present
under the laser beam.

A sensitivity map is drawn from the experiments done, it well illustrates
obtained effects depending on the level of energy applied. Obviously, Table 1 is
valid over this given circuit and for the spot size and wavelength used.

Table 1. Observed effect depending on level of energy hitting the circuit backside

Case 1 2 3 4 5

number

Energy
level

Few nJ 10nJ 13nJ 32nJ Over several
tens of nJ

Bit reset Not all bits
switched

All bits
switched
at a given
location

All bits
switched
at a given
location

All bits
switched at
a given
location,
different of
bit set zone

All bits
switched
but no
more
sub-gate
spatial
resolution

Bit set No bit set No bit set Not all bits
switched

All bits
switched at
a given
location,
different of
bit reset
zone

All bits
switched
but no
more
sub-gate
spatial
resolution

6 Correlating Fault Attacks and Transistors
Implementation

The effects depicted in the previous sections are linked to the underlying hard-
ware implementation. Based on the results of the different laser injection effects
obtained on the chip, we decided to implement an invasive approach on a second
identical sample. For that purpose, the chip is first depackaged with nitric acid.
Then, the device is dipped into a hydrofluoric acid bath, and then rinsed with
water to remove all metal and oxide layers. The chip is dried before performing
scanning electron microscopy (SEM) image acquisition. Figure 7 is the “bulk”
level picture of the area scanned during our laser tests. ‘8’ columns of logic
gates are visible and the P-well or N-well active areas - representative of CMOS
process - of each column can be easily distinguished. In the same picture, a logic
gate is highlighted by a black rectangle whereas the white circle gives an idea of

Adjusting Laser Injections for Fully Controlled Faults 239

the size of the laser spot used (≈ 2µm). In CMOS circuits the output current
of PMOS or NMOS transistors can be approximated by I ≈ μp,n ∗W/L where
μ is the mobility of the carriers, W and L respectively the width and length of
the transistor gate. L is fixed by the technology node. This output current must
be balanced. So, this is partially realized by adjusting the W parameter. The
mobility μp of the hole carriers is smaller than that of the electrons μn. So, the
width of the gate of PMOS transistors must be larger. On the SEM image, this
property is used to clearly identify PMOS or NMOS location.

Fig. 7. N and P-well implementation, single gate and spot size representation

If the laser fail map is overlaid with the SEM image (Fig. 8), we can directly
see that the relative locations of the bit set (white squares) or bit reset areas
(black squares) within a gate are respectively over the PMOS area and the NMOS
area. In addition, for the energy of laser shoot, the sensitive area is larger when
the bit is initially programmed at ‘1’ (bit reset, black squares). For the flip-flop
gate used in the analyzed register, shooting with the laser on the NMOS will
reset the bit whereas shooting on the PMOS will set the bit from ‘0’ to ‘1’.

Fig. 8. Laser faults mapping overlaid on Scanning Electron Microscope image

240 F. Courbon et al.

7 Discussion and Future Work

Comparison to SRAM fault model and generated junction photocurrent: The
work of Roscian et al. [17] targeted a SRAM memory element with a valid bit
set and bit reset model. In their work the experimental results are in line with
the electrical simulations performed. In our work we target a more complex gate
where the layout of the flip-flop and the logic gate transistors schematic were
not available. Moreover, we showed a strong dependency between laser fault
injection behavior and PMOS or NMOS areas. In addition, we also validated
this model on a more recent technology - 90 nm vs 0.25µm - used in current
standard smart card devices.

In [18], Sarafianos et al. observed a difference between the generated pho-
tocurrents over an NMOS pn junction and those over a PMOS pn junction.
This result is also confirmed by our results as NMOS transistors reveal a higher
sensitivity.

Limitations and future works: As the internal design of the gate studied was
unknown and as our laser spot size was not capable of targeting a single transistor
it is impossible to validate this experimental result with electrical simulations.
For example, the number of transistors disturbed by the laser effect is unknown.
The contribution of each disturbed transistor to the final flip-flop switching is
missing. This knowledge is very significant for a designer who wants to make
a standard cell more resistant against laser attacks. The future work will be to
reproduce the same experiments on a device where all the data of the standard
cell used for bit storage registers are available. Simulations and deeper fault
modeling at transistor and gate level would also be possible.

Threats and countermeasures: Our experiments reveal a threat introduced by the
capability of controlling the values of registers bits with a proper laser set up. As
an evolution of the work of Leveugle et al. [13], and from an attackers point of view,
bit set, bit reset or register reset could now be considered as really practicable
fault models, even on very recent semiconductor technologies. We can reasonably
think that state of the art cryptographic implementations are protected against
safe errors or DFA but vulnerabilities introduced on other sensitive registers
must be carefully analyzed. If no existing hardware countermeasures - such as
hardware redundancy - are provided by the device to protect against registers
modifications, the software must monitor those registers’ integrity frequently. For
example, randomly check of register coherence could be performed before and
after sensitive operations. This may imply significant performances loss though.

8 Conclusion

We present in this paper the realization of practical laser tests performed on
a 90 nm device. Our initial target was to analyze the effect of the laser beam
on flip-flops of a register and to reach the limits provided by our equipment.

Adjusting Laser Injections for Fully Controlled Faults 241

We highlight that a reliable fault injection requires to perfectly monitor the laser
beam positioning, the laser beam size and the laser pulse parameters. With the
correct set up, it is possible to control with a 100% success rate the fault injection
effect on a single bit: ‘0’ to ‘1’ or ‘1’ to ‘0’. We also succeed in tuning our laser
parameters to only reset the register bits initialized at ‘1’ whereas register bits
with initial value at ‘0’ are left unchanged. Finally, we correlate the laser fault
mapping with the physical image of the area under test. With this observation,
we are able to explain that the difference of sensitivity is due to the nature of the
active area (PMOS or NMOS) exposed within the standard cell. This latest result
shows the interest for security characterization to use laser beam sizes smaller
than the logical gate’s width. The fault models usually used in cryptographic
attacks - e.g. safe errors, register reset - are validated by the present study. High
injection rates with fine tuned laser beam increase the requirements of strong
software or hardware counter measures against fully controlled faults.

Acknowledgment. We gratefully acknowledge technical support and knowledge shar-
ing of Pascal Moitrel. We also would like to thank Francis Olivier for proofreading this
paper.

References

1. Anderson, R., Kuhn, M.: Low cost attacks on tamper resistant devices (1997)
2. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s

apprentice guide to fault attacks. IACR Cryptology ePrint Archive, p. 100 (2004)
3. Bond, M., Choudary, O., Murdoch, S.J., Skorobogatov, S.P., Anderson, R.J.: Chip

and skim: cloning emv cards with the pre-play attack. CoRR (2012)
4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.

In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

5. Dehbaoui, A., Dutertre, J.M., Robisson, B., Tria, A.: Electromagnetic transient
faults injection on a hardware and a software implementations of aes. In: FDTC,
pp. 7–15 (2012)

6. Dutertre, J.M., Mirbaha, A.P., Naccache, D., Ribotta, A.L., Tria, A., Vaschalde,
T.: Fault round modification analysis of the advanced encryption standard. In:
2012 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), pp. 140–145 (2012)

7. Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES
2005. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005)

8. Habing, D.: The use of lasers to simulate radiation-induced transients in semicon-
ductor devices and circuits. IEEE Trans. Nucl. Sci. 12(5), 91–100 (1965)

9. Hériveaux, L., Clédière, J., Anceau, S.: Electrical modeling of the effect of photo-
electric laser fault injection on bulk cmos design. In: ISTFA 2013 (2013)

10. Johnston, A.: Charge generation and collection in p-n junctions excited with pulsed
infrared lasers. IEEE Trans. Nucl. Sci. 40(6), 1694–1702 (1993)

11. Kaeslin, H.: Digital Integrated Circuit Design: From VLSI Architectures to CMOS
Fabrication, 1st edn. Cambridge University Press, New York (2008)

12. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

242 F. Courbon et al.

13. Leveugle, R., Ammari, A., Maingot, V., Teyssou, E., Moitrel, P., Mourtel, C.,
Feyt, N., Rigaud, J.B., Tria, A.: Experimental evaluation of protections against
laser-induced faults and consequences on fault modeling. In: Proceedings of the
Conference on Design, Automation and Test in Europe, DATE 2007, pp. 1587–
1592. EDA Consortium, San Jose (2007)

14. Loubet-Moundi, P., Vigilant, D., Olivier, F.: Static fault attacks on hardware des
registers. IACR Cryptology ePrint Archive 2011, 531 (2011)

15. Marc Joye, P.P., Yen, S.M.: Secure evaluation of modular functions (2001)
16. Mayer-Sommer, R.: Smartly analyzing the simplicity and the power of simple power

analysis on smartcards. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965,
pp. 78–92. Springer, Heidelberg (2000)

17. Roscian, C., Sarafianos, A., Dutertre, J.M., Tria, A.: Fault model analysis of laser-
induced faults in sram memory cells. In: 2013 Workshop on Fault Diagnosis and
Tolerance in Cryptography (FDTC), pp. 89–98 (2013)

18. Sarafianos, A., Roscian, C., Dutertre, J.M., Lisart, M., Tria, A.: Electrical modeling
of the photoelectric effect induced by a pulsed laser applied to an SRAM cell.
Microelectronics Reliability 53(9–11), 1300–1305 (2013). (european Symposium
on Reliability of Electron Devices, Failure Physics and Analysis)

19. Sarafianos, A.: Injection de fautes par impulsion laser dans des circuits sécurisés.
These, Ecole Nationale Supérieure des Mines de Saint-Etienne (2013)

20. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski Jr.,
B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003)

ChipWhisperer: An Open-Source Platform
for Hardware Embedded Security Research

Colin O’Flynn(B) and Zhizhang (David) Chen

Dalhousie University, Halifax, Canada
{coflynn,z.chen}@dal.ca

Abstract. This paper introduces a complete side channel analysis
toolbox, inclusive of the analog capture hardware, target device, cap-
ture software, and analysis software. The highly modular design allows
use of the hardware and software with a variety of existing systems. The
hardware uses a synchronous capture method which greatly reduces the
required sample rate, while also reducing the data storage requirement,
and improving synchronization of traces. The synchronous nature of the
hardware lends itself to fault injection, and a module to generate glitches
of programmable width is also provided. The entire design (hardware and
software) is open-source, and maintained in a publicly available repos-
itory. Several long example capture traces are provided for researchers
looking to evaluate standard cryptographic implementations.

Keywords: Side-channel analysis · Acquisition · Synchronization · FPGA

1 Introduction

The introduction of Differential Power Analysis (DPA) [1] spurned interest in
the vulnerabilities of embedded systems previously thought to be secure. The
difficulty in comparing results of attacks on different platforms was realized early
on, and the SASEBO board aimed to provide a standard platform for attacking
[2]. Likewise it was realized that for new entrants into the world of side-channel
attacks, having available code and algorithms was a useful starting point such
as the OpenSCA toolbox [3], and the DPA Book [4]. Despite this, there is still
considerable progress to be made. A researcher looking to replicate existing
work, even if that work uses a board such as the SASEBO/SAKURA board,
needs to purchase an oscilloscope, interface the oscilloscope to the computer,
and (re)implement the attack.

Work into making a complete platform has already been presented, for exam-
ple the GIAnT system, which even uses the same FPGA board as this work
[5,6] (and with additional details in [7]). This work was developed in parallel to
these systems, and the two systems use different architectures and design lan-
guages. The ChipWhisperer system presented in this work is a more modular
design, and has more extensive publicly available code for the computer control.
Certain features do differ between them: the GIAnT system has a high-speed
c© Springer International Publishing Switzerland 2014
E. Prouff (Ed.): COSADE 2014, LNCS 8622, pp. 243–260, 2014.
DOI: 10.1007/978-3-319-10175-0 17

244 C. O’Flynn and Z.(D.) Chen

Digital-to-Analog Converter (DAC) for fault injections of adjustable magnitude,
something missing on the current ChipWhisperer hardware.

This work presents a side-channel attack platform which integrates all
required elements: target device, measurement equipment, capture software, and
attack software. This work has benefits for almost any user: students have a
low-cost laboratory, researchers have an environment which can be duplicated
around the world, and embedded engineers have a method of easily testing pub-
lished research on their own systems. The entire design (both hardware and soft-
ware) is open-source, encouraging future development from users. Versions of the
project are designed to work with existing hardware, such as the SAKURA-G
and SASEBO-W board which researchers may already have access to. Modules
to control standard oscilloscopes such as PicScopes and VISA-connected devices
are also present, encouraging the use of the ChipWhisperer software with existing
measurement labs.

Beyond side-channel attacks, the hardware lends itself to glitch and fault
attacks. The device runs synchronous to the device under test (DUT), greatly
simplifying the introduction of faults on certain clock cycles. A simple glitch
generation module is included for inserting glitches at specific offsets from the
clock edge.

2 Hardware

The hardware consists of both the hardware design and the FPGA code. The
system is designed to work with several different FPGA boards, all based on
the Spartan 6 FPGA. A ‘reference’ FPGA board is also provided based on a
commercially-available FPGA module, shown in Fig. 1. This has a ZTEX FPGA
Module with a Spartan 6 LX25 FPGA, however these modules are available in
sizes from the LX9 – LX150. Researchers interested in implementing more logic
inside the control FPGA may simply switch the ZTEX module for a larger one.

This board provides several features specific to side-channel analysis: two
headers for mounting ADC or DAC boards, an AVR programmer, voltage-level
translators for the target device, clock inputs, power for a differential probe and
Low Noise Amplifier (LNA), external Phase Locked Loop (PLL) for clock recov-
ery, and extension connectors for future improvements such as fault injection
hardware. This board will be referred to as the ChipWhisperer Capture Rev2.

2.1 Modular FPGA Design

The blocks within the FPGA are designed around a central ‘register control’
module, as shown in Fig. 3. The design greatly simplifies the addition of new
modules: only one small section of the design needs to be modified to insert the
bus connections, otherwise the new module can live independently of the rest of
the system.

The modular design allows customizing of which modules to include of inter-
est to the researcher; including for example only the clock glitching module if it
is desired to work with fault attacks and use a smaller FPGA.

ChipWhisperer: An Open-Source Platform 245

Fig. 1. The reference implementation runs on a ZTEX Spartan 6 LX25 FPGA Module,
with an OpenADC as the analog front-end. The completed board is referred to as the
ChipWhisperer Capture Rev2.

Fig. 2. The complete system, including the FPGA board from Fig. 1 which is mounted
in an enclosure, a laptop computer, and the example capture board from Fig. 8. The
system can also use a breakout board to connect other embedded hardware targets.

2.2 Capture and Clock Control

If the underlying objective is to measure data on the clock edges of the system
clock, sampling at the clock rate of the system is sufficient, provided such samples
occur at the correct moment (i.e. on the clock edge). This sampling technique
is called synchronous sampling, where the sample clock is synchronized to the
device clock; the application of synchronous sampling to side-channel analysis
was first described in Sect. 5.2 of [8]. Hardware to perform synchronous sam-
pling called the OpenADC was described in [9], where the SASEBO-GII board
was attacked, and this demonstrated how sampling at 96 MS/s synchronously
achieved similar results to sampling at 2 GS/s asynchronously. The OpenADC
is used as the basis for this work.

246 C. O’Flynn and Z.(D.) Chen

Fig. 3. The base design consists of several blocks connected via a internal bus in the
FPGA, shown in the blue box (Color figure online).

The analog front-end used here is the OpenADC [9], which provides a −5 dB
to 55 dB gain, simplifying measurement of low-level signals. Additionally designs
for a differential probe and Low Noise Amplifier (LNA) are provided, an example
shown in Fig. 4.

Fig. 4. Beyond capture hardware, design for a differential probe and H–Field probe
with LNA are available.

For the synchronous sampling to work, the device must be able to lock onto
the system clock. If the clock is readily available as a digital signal (e.g. from
the crystal oscillator on the DUT), it can be fed into the FPGA directly, where
internally it can be multiplied if desired. If the clock is not available, such as
in the case of internal RC oscillators, an external PLL can be used with clock
recovery logic to recover the clock [10]. Finally an asynchronous clock is available,
although due to the limited sample-rate in this platform will have very poor
performance compared to synchronous capture [9] (Fig. 5).

ChipWhisperer: An Open-Source Platform 247

Fig. 5. Clock Routing in ChipWhisperer capture hardware.

2.3 Target Control and Triggering

The FPGA provides some basic IO blocks for driving standard devices. This
includes a UART, a Smart Card interface, and Universal Serial IO device, which
can be controlled from the computer. Note the target device can be driven by an
existing connection instead; the FPGA-based IO blocks are provided simply as
a convenience to allow a single USB connection to provide both communications
and target control.

Several triggering options are provided. The most basic allows standard trig-
gering: triggering on the rising edge of a digital line for example. This is suitable
when analyzing devices which the researcher has programmed, and is able to
insert a suitable trigger event into. For more realistic examples, two additional
triggering blocks are provided. The first is a digital pattern match, which looks
for a specific sequence of transitions on an IO line. This is implemented as a state
machine, where it moves through to the next state only if the IO line remains
in the expected state for the ‘allowed’ amount of time. If the IO line fails to
match the expected state transition, the state machine resets. This system is
specifically designed for triggering on communications protocols, for example by
waiting on a response byte. The final triggering system looks for an analog pat-
tern in the waveform, using a Sum of Absolute Difference (SAD) criteria, which
is frequently used in video compression, and fast FPGA implementions exist for
[11]. Here the system continuously compares the incoming waveform to a known
pattern: when the SAD criteria falls below some threshold, the system triggers
the capture.

All of these triggering options feature a pretrigger ability. The capture buffer
is continuously filled, meaning that the trigger can occur after the actual cryp-
tographic operation has occurred. The limit is simply the size of the capture
buffer, which is primarily dependent on the size of the chosen FPGA.

The trigger out signal can be dynamically routed to an external pin. This
allows triggering of external equipment with this advanced trigger source.

2.4 Glitch Generation

A clock glitch module is also present in the system. Using two adjustable delay
lines built into the FPGA, it can insert glitches into a ‘target clock’: the ‘target
clock’ either coming from the device under test or generated by the FPGA itself.

248 C. O’Flynn and Z.(D.) Chen

The glitch width can be adjusted from about 3 nS to 100 nS (maximum width
limited to 50 % of clock period or 100 nS, whichever is smaller) and the offset
from the clock edge is adjustable from −50 % to +50 % of the clock period. The
specific resolution of the glitch and offset varies for the target clock frequency,
but is always smaller than 100 pS. Figure 6 shows an example of a glitch inserted
into the output clock, although the glitch itself can be output separately from
the clock for driving modules such as optical or electromagnetic fault injection.
This method is the same as described in [12], although with improved resolution
on the glitch width and location. The minimum glitch width is limited by the
FPGA IO-pin speed: using a faster IO-standard (e.g. LVDS) allows a smaller
minimum glitch width if required.

The use of the special Digital Clock Manager (DCM) blocks along with par-
tial reconfiguration (discussed next) allow this extremely fine-grained control
over glitch width. This is an improvement on previously proposed glitch genera-
tion methods where the ‘coarse’ width control comes from a higher-speed clock,
which generally limits glitch ‘coarse’ control to a multiple of this clock speed
(often 4–10 nS) [7].

Fig. 6. Inserting a glitch into a 7.37 MHz clock coming from a target device.

2.5 Partial Reconfiguration

The clock generation and glitch generation modules both use the Digital Clock
Manager (DCM) blocks within the FPGA. These blocks have limited support for
run-time configuration of parameters such as phase delay and frequency gener-
ation, and for maximum performance the configuration must be fixed at design
time. The Xilinx-provided run-time adjustment can shift the phase only by about
±5 nS in 30 pS increments (exact values vary with operating conditions).

ChipWhisperer: An Open-Source Platform 249

To allow adjustments over a wider phase range, a partial reconfiguration
interface is provided. This interface allows changes to the FPGA configuration
while the system is operating. This is specifically used to reconfigure the DCM
blocks for a variety of parameters which are fixed at the implementation stage.
This partial reconfiguration requires that appropriate ‘bitstream difference’ files
are generated by the FPGA tools for every possible setting of the desired para-
meter, e.g. the DCM phase delay attribute. Due to the opaque nature of the
FPGA tools there is no simple mapping between parameter changes and a spe-
cific portion of the bitstream.

To generate these bitstream difference files, Xilinx’s FPGA Editor tool is used
to modify the Native Circuit Description (NCD) file for the design. A script
generates versions of the NCD file with every possible setting of the desired
attribute, e.g. for the DCM block with a fixed phase value of −255 to +255.
These NCD files are converted into bitstream difference files with the Xilinx
bitgen utility. Setting the desired DCM fixed phase offset means loading the
appropriate bitstream difference file1.

2.6 Implementation on Other Boards

This entire system is implemented as generic FPGA blocks. Whilst a reference
platform is provided, it can be used on any FPGA platform. For example this
system can be programmed into the control FPGA provided in the SAKURA-G
or SASEBO-W platform. Figure 7 shows a photo of the SAKURA-G board with

Fig. 7. The modular design allows easy implementation on other hardware, such as the
SAKURA-G board. A Spartan 6 LX75 FPGA is used for a cryptographic algorithm,
and the LX9 FPGA is used for control of the FPGA along with capturing of power
traces. This replaces both the ‘ChipWhisperer Capture Rev2’ hardware box and the
‘Target Device’, meaning the entire side-channel analysis system is present on the
SAKURA-G board.

1 See the ChipWhisperer sources for details, with additional information in the June
2014 issue of Circuit Cellar and at programmablelogicinpractice.com/?p=143.

http://programmablelogicinpractice.com/?p=143

250 C. O’Flynn and Z.(D.) Chen

an OpenADC mounted. This system allows implementation of a cryptographic
algorithm in the main FPGA on the SAKURA-G, while the control FPGA
serves to actually perform the measurements. Any of the available blocks can
be inserted into this system, for example adding clock glitch generation into the
control FPGA for the SASEBO-W.

2.7 Generic Device Under Test Board

For demonstration of basic attacks, a generic target board is provided. This
board provides several target options: a 28-pin AVR socket, an XMEGA device,
and a Smart Card socket. The board also has two LNAs built onto it, along with
several clock options. Jumpers can select which target is connected, measure-
ment mode (high-side or low-side shunt), connect the AVR programmer from
the ChipWhisperer Capture Rev2, and allows an external Smart Card reader
to be connected to the smart card socket by way of a feed-through smart card
PCB. The target board is shown in Fig. 8.

The choice of a 28-pin AVR socket allows the board to accept many simi-
lar AVR devices. Attacks targeting recent processes can use the AtMega328P
or AtMega48A. Attacks looking to test older devices may use an older Mega8
device2. Note that many ‘Smart Card’ attacks are tested on a AtMega163 card,

Fig. 8. The Multi-Target board provides a simple platform for testing various attacks
and cryptographic implementations.

2 While the Mega8 is an older device, recently bought ones may be produced on
newer processes. If looking for a device produced on older IC process, one will need
to confirm the production date via the date code.

ChipWhisperer: An Open-Source Platform 251

which contains an AtMega163 die from Atmel. Existing code targeting the
AtMega163 can be ported to work on a 28-pin AVR, avoiding the need to find
outdated Mega163 cards, and also using a more recent semiconductor process.

3 Software Architecture

The software is implemented in entirely in Python. Python was chosen for a
variety of reasons: it is natively cross-platform, provides a simple GUI through
PySide, can easily interface to other languages including C/C++ and MATLAB,
provides high performance using Cython, and has a large collection of modules
which provide functionality such as cryptographic functions, plotting, numeric
computations, low-level IO, and smart card interfaces. In addition the choice
of an interpreted language such as Python enables considerably more advanced
scripting options. This section will only briefly outline the software architecture,
full documentation is kept using the Sphinx system3, which combines documen-
tation built into the Python source with additional files. This documentation is
linked from www.ChipWhisperer.com, or available directly at www.newae.com/
sidechannel/cwdocs/.

The project is split into two programs. One program captures the power
traces and saves them, the other perform side-channel analysis algorithms (e.g.
CPA). The decision to split the project into two programs was done to allow
use of only part of this project by other researchers. For example researchers
with existing attack code can still use the capture program, for example saving
the data to a MATLAB workspace. Or researchers with existing traces can load
them into the analysis program without using the capture portion.

Both capture and analysis software share a common base class; this class
defines methods of modifying parameters, saving and restoring projects, using
trace files, and plotting data. In addition support for a special ‘scripting’ system
is provided. This ‘scripting’ language allows execution of either the capture or
analysis software from another Python application, which forms the ‘script’.
This design is especially powerful since it allows the script to call any function
within the entire program, and does not require the definition of specific scripting
commands. As an example, when adding a new FPGA module, it requires the
addition of the appropriate driver module to the capture software. However by
using the scripting interface, it is possible to simply send raw commands to this
module, which allow testing and debugging it before the complete driver has
been written. When options are changed using the GUI, the GUI also shows
how to accomplish the same operation with a script. Thus a user can simply
setup appropriate options from the GUI, and then save these script commands
to recreate the configuration. Listing 1.1 in Appendix A shows an example of
such a script.

The graph windows allow transformations to be performed on the data, such
as switching from time-domain to frequency-domain through an FFT, filtering
and smoothing, and exporting data in the graph.
3 sphinx-doc.org

www.ChipWhisperer.com
www.newae.com/sidechannel/cwdocs/
www.newae.com/sidechannel/cwdocs/
http://sphinx-doc.org

252 C. O’Flynn and Z.(D.) Chen

3.1 Trace Management

The trace management module is common to both the capture and analysis
software, which provides a method of mapping traces from different formats
into a continuous block of trace data. The default storage method used by the
software uses the Python NumPY library’s native save and load commands.
Alternatives which store the traces to a MySQL server, and saving the traces to
the same format used by the DPAContestv3 tools are also provided.

Fig. 9. The Capture GUI provides an interface to the capture hardware, target device,
and storage media.

4 Capture Software

The capture GUI (Fig. 9) is ideal for initial experimentations with a new system,
such as trying different ADC settings or different trigger settings. For repeat-
able captures it is desirable to instead script the setup, which sets appropriate
values to various parameters. In addition this script can perform actions such
as saving the target data to a different format (e.g. a MATLAB workspace),
or used for automatically performing captures under different target conditions
(e.g. selecting an algorithm with and without countermeasures).

The script can either run the entire capture program, or simply configure
part of the window. Several example scripts are provided, which can be loaded
in an already-running ChipWhisperer-Capture application. See Listing 1.1 in
Appendix A for an example script.

ChipWhisperer: An Open-Source Platform 253

For debug purposes, a monitor window shows the input and output results
of the cryptographic operation being performed on the target. This window also
displays what the expected result would be for a known key. This can be quickly
used to confirm a device under test is operating as expected, and the encryption
key was correctly loaded into the device.

4.1 Capture Performance

The capture performance demonstrates how quickly traces can be captured with
the default system. The measurements are taken on two different computers: a
Windows 7 based Intel i5-2540M laptop, and a Linux based AMD A10-5800K
desktop. Captures are averaged over 10,000 traces. The ‘Target Connection’
indicates how the device under test (e.g. the cryptographic target, not the Chip-
Whisperer capture) connects to the computer. The ‘FPGA-x’ mode means one
of the ChipWhisperer IO blocks are being used.

For high-speedUSB targets (ChipWhispererRev2, SAKURA-G, SASEBO-W)
the capture speed is primarily limited by USB latency in the host computer stack.
Note the AVR target shows both 3000 and 20000 points per trace; the resulting
speed change is much less than the 6x increase in data size would suggest. Tar-
gets connected to the computer directly run much faster, as the IO blocks in the
ChipWhisperer tend to required severalUSBtransactions, each transaction adding
latency from the USB stack. This suggests that there is considerable room for speed
improvements by streamlining transactions to reduce this latency.

In addition to the OpenADC capture hardware, three standard oscilloscopes
are shown for comparison. The capture software can be programmed to support
other oscilloscopes with minimal changes (Table 1).

5 Analysis Software

The analysis software uses the same project and trace management system used
by the capture software. Moving a project over simply means saving the project
in the capture software, and opening it in the analysis software. Alternatively,
traces can be manually imported, either if they come from an external source or
if you wish to combine traces from several different captures into a single analysis
run. In addition this manual mode is used for configuring database operation; in
this mode the analysis software can read traces from a MySQL database, which
allows analysis to occur while the capture is still ongoing.

When traces are loaded, a single trace is plotted in time. A number of traces
can be overlaid on each other, which is useful to confirm the synchronization of
traces. If traces are incorrectly synchronized, one of the preprocessing modules
(described next) can be used to resynchronize the traces.

5.1 Preprocessing

Several basic preprocessing modules are provided, which operate on the data
before passing through to the attack. Three types of resynchronization are imple-
mented: a sum-of-errors minimizer, peak detect, and cross-correlation. These

254 C. O’Flynn and Z.(D.) Chen

Table 1. Traces/Second for various targets and capture hardware. Points/Trace varies
by target, and indicates number of points stored in each trace to attack the target.
The ‘—’ indicates lack of supported driver for the host OS.

Capture hardware Attack target Target Points/ Traces/Second

connection Trace

Win7 Linux

ChipWhisperer Rev2 SASEBO-GII USB 100 14.8 28.3

ChipWhisperer Rev2 AVR, 38400 Baud FPGA-Serial 3000 11.3 3.91

ChipWhisperer Rev2 AVR, 38400 Baud FPGA-Serial 20000 7.04 3.78

ChipWhisperer Rev2 AVR, 38400 Baud USB-Serial 3000 18.2 18.9

ChipWhisperer Rev2 SmartCard PS/SC Reader 3000 7.40 6.62

SAKURA-G SAKURA-G Integrated 400 6.67 7.18

SASEBO-W SmartCard FPGA-USI 3000 0.271 0.279

SASEBO-W SmartCard FPGA-SmartCard 3000 1.49 1.52

Agilent MSO54831D SASEBO-GII USB 1500 8.01 —

PicoScope 6403D SASEBO-GII USB 1500 12.1 43.6

PicoScope 6403D SAKURA-G USB 1500 15.4 29.6

PicoScope 5444B AVR, 38400 Baud USB-Serial 12000 16.4 5.63

Fig. 10. The Analyzer GUI runs a given attack on the stored traces.

methods provide very simple sliding resynchronization, which works well with
the synchronous capture methodology of the ChipWhisperer Capture hardware.
In addition a simple low-pass filter is also provided. Any of the preprocessing
modules can be chained together in an arbitrary order, and additional modules
can trivially be added to the system.

ChipWhisperer: An Open-Source Platform 255

The waveform display window shows the results after the preprocessing chain.
This could be used to confirm that traces are properly resynchronized in the time
domain before continuing on to the attack.

5.2 Attack Implementation

The attack module is designed to simplify how new attacks are added to the
system. The cryptographic model, leakage model, and attack algorithm are all
separate modules. This greatly simplifies changes and increases reuse: if a new
attack is added, it can pull in the existing cryptographic model and leakage
model modules to automatically work with both software and hardware AES
implementations. If a new cryptographic model is added such as DES for exam-
ple, it should work with the existing CPA attack.

The main attack implemented currently is a CPA attack. Figure 11 shows
the data flow within the attack system. Data coming from the ‘Trace Container’
may also have had preprocessing applied, or a certain window of data may be
selected instead of the entire trace range. The correlation calculation has several
modules that can be loaded, for example selecting between a version that takes
advantage of the fast NumPy library, and a version compiled in C using Cython.
The ‘correlation calculation’ may actually implement more advanced algorithms,
an example is the Bayesian calculation given in [13] is also implemented. The
results are stored in the ‘Attack Statistics’, which stores results after a given
number of traces, and also calculates metrics such as Partial Guessing Entropy
(PGE) at the current state [14].

The number of traces to use in the attack is also configurable, and allows for
looping the attack several times over different sections of the traces. If 100,000
traces are present in the project for example, one could perform the attack with

Fig. 11. In the CPA attack module, the cryptographic model, hardware model, and
statistics update are all separate. This allows simple selecting of Hamming-Weight
(HW) or Hamming-Distance (HD) models for example, or selecting the AES round to
attack.

256 C. O’Flynn and Z.(D.) Chen

1000 traces, and repeat it 100 times. When final metrics are calculated, the
system can average the results of all 100 attacks.

Correlation Power Analysis. The basic equation for a Correlation Power
Analysis (CPA) attack, where ri,j is the correlation coefficient at point j for
hypothesis i, td,j is power measurement of trace number d at point j, and hd,i

is the hypothetical power consumption of hypothesis i for trace number d, with
a total of D traces is given in Eq. 1. This basic formula does not allow online
calculation, where new traces are easily added without recalculation of the entire
sum. Instead the form shown in Eq. 2 is used [15]. This form lends itself to online
calculation, where when a new trace is added the sums are updated and the new
correlation coefficient calculated.

The online update is used during calculation of attack statistics, where it
is desired to track the attack results as new traces are added. As a practical
matter, note the denominator of either Eq. 1 or 2 may have numeric stability
problems due to cancellation in either of the two terms. Forms given in [16] may
result in more stable calculations, however experimental results shown that for
measurements of real systems the numerical stability is not an issue.

ri,j =
∑D

d=1

[(

hd,i − hi

) (

td,j − tj
)]

√
∑D

d=1

(

hd,i − hi

)2 ∑D
d=1

(

td,j − tj
)2

(1)

ri,j =
D

∑D
d=1 hd,itd,j − ∑D

d=1 hd,i

∑D
d=1 td,j

√
((

∑D
d=1 hd,i

)2

− D
∑D

d=1 h2
d,i

)((
∑D

d=1 td,j

)2

− D
∑D

d=1 t2d,j

) (2)

5.3 Results Display

The output of the attack is stored in a ‘Results Container’ type. Generally the
assumption is that the output of the attack container will contain a metric for
each hypothesis of the subkey, at each point in time. The metric can be sorted
to give the most likely subkey hypothesis.

The results display module can plot the value of the attack output for each
point in time, for each of the hypothetical keys. If the correct key is known,
this is plotted in a separate color as in Fig. 10. In addition if the correct key
is known additional metrics can be calculated, such as the Partial Guessing
Entropy (PGE). As previous mentioned this PGE will be averaged over many
trials when available.

6 Example Results

This section demonstrates some example results of the platform. Two example
devices will be tested: the first is the AtMega328P microcontroller, which is a
reasonably recent AVR microcontroller from Atmel. The system is loaded with

ChipWhisperer: An Open-Source Platform 257

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

50

100

150

200

250

Trace Number

A
ve

ra
ge

 P
G

E
 (

22
 T

ria
ls

)

Average Partial Guessing Entropy (PGE) via ChipWhisperer

Subkey 0
Subkey 1
Subkey 2
Subkey 3
Subkey 4
Subkey 5
Subkey 6
Subkey 7
Subkey 8
Subkey 9
Subkey 10
Subkey 11
Subkey 12
Subkey 13
Subkey 14
Subkey 15

Fig. 12. Partial Guessing Entropy (PGE) of SASEBO-GII running at 24 MHz. No
smoothing has been applied.

0 5 10 15 20 25
0

50

100

150

200

250

Trace Number

A
ve

ra
ge

 P
G

E
 (

20
0

T
ria

ls
)

Average Partial Guessing Entropy (PGE) with ChipWhisperer Capture Rev2

Subkey 0
Subkey 1
Subkey 2
Subkey 3
Subkey 4
Subkey 5
Subkey 6
Subkey 7
Subkey 8
Subkey 9
Subkey 10
Subkey 11
Subkey 12
Subkey 13
Subkey 14
Subkey 15

Fig. 13. Partial Guessing Entropy (PGE) of CPA attack against AES-128 running on
AVR Microcontroller. Traces recorded with ChipWhisperer Capture Rev2 hardware at
29.5 MS/s synchronous to device clock. No smoothing has been applied, graph comes
from ChipWhisperer Analyzer software.

basic code which performs encryptions when requested over a serial protocol,
and returns the encryption result. The Partial Guessing Entropy (PGE) of the
CPA attack is shown in Fig. 13 using the ChipWhisperer Capture Rev2 hardware
(i.e. as in Fig. 2). As a comparison Fig. 14 shows the PGE of the same attack
where traces have been recorded with a normal oscilloscope.

This device can also be targeted for glitch attacks. When the AVR was run-
ning at 7.3728 MHz, glitches were inserted into the clock with the following spec-
ifications: glitch width of 15.2 % (20.6 nS), glitch offset of −17.0 % (−23.1 nS).
The glitch was XOR’d with the clock, and repeated on 200 consecutive clock
edges. The objective was simply to cause the embedded system to skip authen-
tication code, which was successfully accomplished.

258 C. O’Flynn and Z.(D.) Chen

0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

Trace Number

A
ve

ra
ge

 P
G

E
 (

50
 T

ria
ls

)

Average Partial Guessing Entropy (PGE) with Oscilloscope

Subkey 0
Subkey 1
Subkey 2
Subkey 3
Subkey 4
Subkey 5
Subkey 6
Subkey 7
Subkey 8
Subkey 9
Subkey 10
Subkey 11
Subkey 12
Subkey 13
Subkey 14
Subkey 15

Fig. 14. Partial Guessing Entropy (PGE) of CPA attack against AES-128 running on
AVR Microcontroller. Traces recorded with PicoScope 6403D at 312 MS/s (as with any
oscilloscope, this sampling is done asynchronous to device clock). No smoothing has
been applied, graph comes from ChipWhisperer Analyzer software.

A second example uses the SASEBO-GII board running at 24 MHz, with
the AES core loaded from the ‘DPA Contest V3’, and the results plotted in
Fig. 12. Comparison to previously published results from the SASEBO-GII board
indicate the ChipWhisperer system is performing as expected [9].

7 Conclusion and Future Work

This work has demonstrated a embedded security analysis platform, which is
completely self-contained and requires no additional hardware or software besides
a standard computer. The design is extremely modular and allows users to use
only a portion of the design; for example using a normal oscilloscope with this
system, taking advantage of the advanced triggering mechanisms or the clock
glitching capability without using the analog capture hardware.

All design material including source code and hardware design files are main-
tained in a GIT repository at www.ChipWhisperer.com. A wiki is used to main-
tain documentation, and contributions to either documentation or design are
welcome. For users interested in the analysis algorithms, large example cap-
tures are available as well: a set of 500,000 traces of AES-128 executed on an
AtMega328P microcontroller along with 500,000 traces from the SASEBO-GII.
Example traces from other hardware is also available, and community submis-
sions are welcomed.

Acknowledgments. Thanks to Akashi Satoh for donation of the SAKURA-G used
in this work, and Akashi Satoh and Pankaj Rohatgi for donation of the SASEBO-GII
and SASEBO-W also used in this work. Thanks to COSADE 2014 reviewers for many
insightful comments on initial revision of this papers.

www.ChipWhisperer.com

ChipWhisperer: An Open-Source Platform 259

Appendix A: Script Example

Listing 1.1. Example user script for running automated capture and saving traces to
MATLAB file

1 l s t = [

2 # Clock Routing Setup

3 [’CW Extra ’ , ’CW Extra Se t t i n g s ’ , ’ Clock Source ’ ,

4 ’ Target IO−IN ’] ,

5 [’OpenADC ’ , ’ Clock Setup ’ , ’ADC Clock ’ , ’ Source ’ ,

6 ’EXTCLK x4 v ia DCM’] ,

7 # Sample Length/ Of f s e t Setup

8 [’OpenADC ’ , ’ Tr igger Setup ’ , ’ Total Samples ’ , 3000] ,

9 [’OpenADC ’ , ’ Tr igger Setup ’ , ’ O f f s e t ’ , 1500] ,

10 # Low Noise Ampl i f i e r Gain Se t t i ng

11 [’OpenADC ’ , ’Gain Se t t i ng ’ , ’ S e t t i ng ’ , 4 5] ,

12 # Ris ing Edge Tr igger

13 [’OpenADC ’ , ’ Tr igger Setup ’ , ’Mode ’ , ’ r i s i n g edge ’] ,

14 # Fina l s tep : make DCMs r e l o c k in case they l o s t sync

15 [’OpenADC ’ , ’ Clock Setup ’ , ’ Relock DCMs ’ , None] ,]

16

17 # cap va r i ab l e conta in s i n s t anc e o f ChipWhispererCapture ()

18

19 # Download a l l hardware setup parameters

20 f o r cmd in l s texample : cap . setParameter (cmd)

21

22 # Set number o f t r a c e s

23 cap . setParameter ([’ Generic S e t t i n g s ’ , ’ Acqu i s i t i on Se t t i n g s ’ ,

24 ’Number o f Traces ’ , 7 5])

25

26 # Capture a few t r a c e s i n i t i a l l y (not saved)

27 cap . capture1 ()

28 # pe () i s a macro which p r o c e s s e s any queued events i t must

29 # be c a l l e d when i n t e r a c t i n g with the low− l e v e l API d i r e c t l y .

30 pe ()

31 cap . capture1 ()

32 pe ()

33

34 # Star t capture p roce s s o f 75 t race s , save to memory

35 wr i t e r = cap . captureM ()

36

37 # Save f i l e s to MATLAB workspace f i l e i n s t ead o f nat ive format

38 s i o . savemat (’ s ca data . mat ’ , { ’ powertrace ’ : w r i t e r . t race s ,

39 ’ t e x t i n ’ : w r i t e r . t ex t in s ,

40 ’ t extout ’ : w r i t e r . t extouts ,

41 ’ knownkey ’ : w r i t e r . knownkey })

260 C. O’Flynn and Z.(D.) Chen

References

1. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

2. Satoh, A.: Side-channel Attack Standard Evaluation Board (SASEBO) (2011).
http://www.morita-tech.co.jp/SASEBO/en/index.html

3. Oswald, E.: OpenSCA: a matlab-based open source framework for side-channel
attacks (2009). http://opensca.sourceforge.net/

4. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Advances in information security. Springer, New York (2008)

5. Oswald, D., Kasper, T., Markhoff, S., Paar, C.: FPGA-based Implementation
Attacks with GIAnT. In: 9th CrypArchi Workschop, Bochum, November 2011

6. Oswald, D.: Implementation attacks: from theory to practice. Ph.D. thesis, Ruhr
University Bochum, September 2013

7. Kasper, T., Oswald, D., Paar, C.: A versatile framework for implementation attacks
on cryptographic RFIDs and embedded devices. In: Gavrilova, M.L., Tan, C.J.K.,
Moreno, E.D. (eds.) Transactions on Computational Science X. LNCS, vol. 6340,
pp. 100–130. Springer, Heidelberg (2010)

8. Messerges, T.: Power analysis attacks and countermeasures for cryptographic algo-
rithms. Ph.D. thesis, University of Illinois at Chicago (2000)

9. O’Flynn, C., Chen, Z.: A case study of side-channel analysis using decoupling
capacitor power measurement with the OpenADC. In: Garcia-Alfaro, J., Cuppens,
F., Cuppens-Boulahia, N., Miri, A., Tawbi, N. (eds.) FPS 2012. LNCS, vol. 7743,
pp. 341–356. Springer, Heidelberg (2013)

10. O’Flynn, C., Chen, Z.D.: Synchronous Sampling and Clock Recovery of Inter-
nal Oscillators for Side Channel Analysis. Cryptology ePrint Archive, Report
2013/294.

11. Olivares, J., Hormigo, J., Villalba, J., Benavides, I.: Minimum sum of absolute
differences implementation in a single FPGA device. In: Becker, J., Platzner, M.,
Vernalde, S. (eds.) FPL 2004. LNCS, vol. 3203, pp. 986–990. Springer, Heidelberg
(2004)

12. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box charac-
terization of the effects of clock glitches on 8-bit MCUs. In: Proceedings of the
2011 Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC ’11, pp.
105–114. IEEE Computer Society, Washington, DC (2011)

13. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013)

14. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

15. Brier, E., Clavier, C., Olivier, F.: Correlation Power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

16. Chan, T.F., Golub, G.H., Leveque, R.J.: Algorithms for computing the sample
variance: analysis and recommendations. Am. Stat. 37(3), 242–247 (1983)

http://www.morita-tech.co.jp/SASEBO/en/index.html
http://opensca.sourceforge.net/

Verifying Software Integrity in Embedded
Systems: A Side Channel Approach

Mehari Msgna1(B), Konstantinos Markantonakis1, David Naccache2,
and Keith Mayes1

1 Smart Card Centre, Information Security Group, Royal Holloway,
University of London, Egham TW20 0EX, UK

{mehari.msgna.2011,k.markantonakis,k.mayes}@rhul.ac.uk
2 Département D’informatique, École Normale Supérieure,

45 Rue D’Ulm, 75230 Paris Cedex 05, France
david.naccache@ens.fr

Abstract. In the last few decades embedded processors have invaded
the modern lifestyle. Embedded systems have hardware and software
components. Assuring the integrity of the software is very important as
it is the component that controls what the hardware does through its
instructions. Although there exist a number of software integrity ver-
ification techniques, they often fail to work in embedded environment.
One main reason is, the memory read protection, frequently implemented
in today’s microprocessors, that prevent the verifier from reading out the
necessary software parts. In this paper we show that side channel leakage
(power consumption) can be used to verify the integrity of the software
component without prior knowledge of the software code. Our approach
uses instruction-level power consumption templates to extract informa-
tion about executed instructions by the processor. Then this information
together with pre-computed signatures are used to verify the integrity
of the executed application using RSA signature screening algorithm.
The instruction-level templates are constructed ahead of time using few
authentic reference processors.

Keywords: Side channel leakage ·Power analysis ·Templates ·Principal
components analysis · RSA signature screening · Application integrity

1 Introduction

Commercial and economic conditions have forced electronic device manufactur-
ers to outsource their components production to countries with cheaper
infrastructure cost. While this significantly reduces the total production cost,
it also makes it much easier for an attacker to compromise the supply chain
for components used in critical business and military applications, and replace
them with defective components. This threat to the electronic components sup-
ply chain is already a cause for alarm in some countries [1,2]. For this reason,

c© Springer International Publishing Switzerland 2014
E. Prouff (Ed.): COSADE 2014, LNCS 8622, pp. 261–280, 2014.
DOI: 10.1007/978-3-319-10175-0 18

262 M. Msgna et al.

some governments have been subsidizing few high-cost local foundries for produc-
ing components used in military applications [3]. However, this is not affordable
solution for most of the developing countries.

According to [4], defective components incident has increased from 3,868 in
2005 to 9,356 in 2008. Such electronic components have at least the following
ramifications; (a) original component providers incur an irrecoverable loss due to
the sale of often cheaper counterfeit components, (b) low performance of defec-
tive products (that are often of lower quality and/or cheaper older generations of
a chip family) affects the overall efficiency of the integrated systems that uninten-
tionally uses them; this could in turn harm the reputation of authentic providers,
(c) unreliability of defective devices could render the integrated systems that
unknowingly use the parts unreliable; this potentially affects the performance
of weapons, airplanes, cars or other crucial applications [5], and (d) untrusted
defective components may have intentional malware or some backdoor for spying
information, remotely controlling critical objects and leaking secret information.
These ramifications and their growing presence in the market makes them impor-
tant problem to address.

So far many methods have been proposed to verify the integrity of desktop
software. These methods often fail to work in embedded environment. The main
reason being the memory read protection implemented by most of today’s micro-
controllers. However, in the real world these processors leak information about
their internal state unintentionally. As an example, we can consider a game of
poker, where everyone plays by the same functional rules and keeps their cards
well concealed. If a novice player looks worried or excited when he receives his
cards, then he leaks information about his hand to the other players. An expe-
rienced player may manipulate his reaction (block his emotions/expressions or
fake them) to fool the other players. However, if other physiological reactions
(such as heart beat, blood pressure, respiratory rate and electro-dermal activ-
ity) of the players are measured then even an expert player’s deception can be
detected. Of course, measuring such physiological reactions need more sophisti-
cated instruments, like Polygraph [6], than reading someone’s facial reaction.

Embedded processors do not have emotions or physiological reactions but
as electronic devices they have a varying electric current flowing through them.
This current may potentially give away information about the internal (data
dependent) state in the form of variations in power consumption or electro-
magnetic emission which can be recorded and analysed. This leakage can be
used to adequately detect changes in the underlying hardware or the applica-
tions. For instance in [7], a gate-level passive hardware characterisation of an
IC was proposed to identify defective ICs. The authors use the negative bias
temperature instability model proposed in [8] to calculate the original charac-
teristics of aged ICs. In another proposal [9], power consumption of a device was
proposed for detecting hardware Trojans implanted in electronic components.
Process variation noise modeling (constructed using genuine ICs) is used for
detecting Trojan circuits through statistical analysis. In this paper we present
an approach that uses the power consumption of a processor to detect changes in

Verifying Software Integrity in Embedded Systems 263

the original design of the applications. The verifying device uses the processor’s
instruction-level power consumption templates to extract executed instructions
from its power consumption waveform. Then verifies the application using RSA
signature screening algorithm [10].

The rest of the paper is structured as follows. Section 2 briefly provides back-
ground information on side channel leakage and RSA signature screening algo-
rithm. Section 3 presents our proposed methodology. Sections 4 and 5 discuss our
experimental results and its practical application area. Finally, Sect. 6 concludes
the paper.

2 Background

In this section we briefly discuss the background information on side channel
leakage and RSA signature screening.

2.1 Side Channel Leakage

Side channel leakage is information revealed by a device about its internal
processing state while running a certain task. In the context of cryptography,
side channel leakage has been used to retrieve cryptographic secret information
from target devices. Side channel leakage such as timing [11–13], power con-
sumption [14,15] and electromagnetic emission [16–18] have been used to attack
the implementations of cryptographic algorithms including AES [19], DES [20]
and RSA [21].

Smart cards and other electronic devices have transistors that turn on and
off causing current transients. The instantaneous electric current that the device
consumes depends on how many transistors that the executed instructions and
data turn on and off. This difference in the electric current is then reflected in the
power consumption of the device. The power consumption can then be recorded
and analysed to extract secret information from the target device [22]. Besides
extracting cryptographic keys, side channel leakage has also been used to reverse
engineer embedded device applications [23–25]. This is done by constructing a
power consumption template of the target device using an identical reference
device. Then the templates are used to recognise executed instructions from the
target device’s power consumption waveform.

Apart from key extraction and reverse engineering, side channel information
can also be used by device manufacturers and application developers to counter
attacks and design advanced applications. Instruction-level power consumption
model of an embedded device has been used to design low-power consuming
applications for mobile embedded devices where batteries are the main power
source [26,27]. In [28], the authors discuss, theoretically, how side channel leakage
can be used to fingerprint a smart card platform and then use it later to detect
cloned cards. However, this paper is a high-level and do not discuss in detail
how the platform fingerprint is constructed and how a cloned card is detected.
George et al. [29], demonstrated the Hamming weight of executed instructions

264 M. Msgna et al.

can create a unique power consumption fingerprint which may be enough to
verify the originality of a software program.

2.2 RSA Signature Screening

Digital signatures are used to verify the authenticity and integrity of a block
of message. RSA [21] is one of the popular digital signature algorithms. The
verification of n RSA signatures involve the verification of n signatures sequen-
tially. In a hash-and-sign scheme the process of verifying n signatures involves
the generation of n hash values and n public key encryptions with respect to
the issuer’s public key. A known method of improving the performance of such
a system is to verify a batch of signatures at the same time. In [10], the authors
discuss a method that verifies if a batch of messages were signed by the correct
authority without verifying the individual signatures. This process is called the
RSA signature screening. The RSA signature screening works as follows: given
a batch of message and signature pairs

{{M1, S1}.....{Mn, Sn}},
where Si (computed as Si = Md

i mod N) is the signature of a message
Mi with respect to some private key (N, d). We assume that the signatures
were generated using the hash-and-sign scheme, then this batch of signatures is
verified using the computation in the Eq. (1) with respect to the corresponding
public key (N, e).

(Πn
i=1Si)e = Πn

i=1 H (Mi) mod N (1)

However, as discussed in [30], RSA signature screening can be bypassed if
a message Mi appears more than e − 1 times even though it was never signed
before. This can be an issue if the value of e is significantly small. The good
news is that, the problem can be easily solved by choosing a large value of the
public key component e.

3 Embedded Software Integrity Verification

An embedded system have hardware and software components. The software
part controls what the hardware does by using the underlying hardware’s (the
processor’s) executable instructions. Therefore, ensuring the integrity of the soft-
ware is vital for the security of the entire system. Figure 1, elaborates the block
diagram of our proposed software integrity verification method.

The first step in our verification is the construction of instruction-level side
channel templates using few identical processors. During verification, the verify-
ing device records the processor’s power consumption waveform while executing
the application and extracts the executed instructions by matching it against
the pre-constructed templates (as described in Sect. 3.2). The extracted infor-
mation together with the pre-computed signatures are then used to verify the

Verifying Software Integrity in Embedded Systems 265

Fig. 1. Software integrity verification block diagram

integrity of the software component using RSA signature screening algorithm as
explained in Sect. 3.3.

As shown in the diagram (Fig. 1), the embedded system has the embedded
parameter calculator (EP-C), embedded processor and the application package
which includes the application executable and the basic block signatures. The
EP-C is a special module that calculates the product of two large numbers. It can
be implemented in hardware or software; although, hardware would be prefer-
able for performance reasons. The embedded processor is the core that executes
the software component of the embedded system (application executable). After
the execution of every basic block the EP-C updates its parameter (EP) by
multiplying it with the basic block’s signature. A basic block is a sequence of
instructions with a single entry and a single exit point.

The verifying device has the templates, the instruction classifier, the verifier
parameter calculator (VP-C) and the software integrity verifier. The templates
are constructed ahead of time using identical processors and then installed into
the verifying device’s non-volatile memory. How these templates are installed into
the verifying device is beyond the scope of this paper. The instruction classifier
uses these templates to extract the executed instructions from the processor’s
power consumption waveform (W). The power consumption waveform is mea-
sured as a voltage drop across a shunt resistor connecting the embedded proces-
sor’s ground and the verifying device’s ground voltage. The VP-C uses the output

266 M. Msgna et al.

of the classifier to compute the verifying device’s parameter. Finally, the software
integrity verifier uses the output of the EP-C and VP-C to verify the software
using RSA signature screening algorithm as explained in Sect. 3.3. Details of the
template construction, instruction classification and software integrity verifica-
tion processes are discussed in Sects. 3.1, 3.2 and 3.3 respectively.

3.1 Instruction-Level Template Construction

The power consumption template of an instruction is constructed by analysing
the power intake of identical reference processors while executing the target
instructions repeatedly. This is achieved by running simple training programs
on the reference processors and recording their power consumption.

To build the templates let us consider anN L-dimensional observations of the
processor’s power consumption {x}. Each of these N L-dimensional observations
belong to one of the K instructions Ik, where 1 ≤ k ≤ K, running under different
conditions (states). Each of the observations have L sample points. Having such
observations the template for each instruction would be represented by the power
consumption waveforms of the processor that belong to the instruction. The
processor’s instruction-level templates (τ) are illustrated in Eq. 2.

τ = {{x}I1 , {x}I2 , · · · , {x}Ik
, · · · , {x}IK

} (2)

Practically each observation xn may have too many closely correlated sam-
ple points and the instruction classification may be too time consuming. This
problem can be solved by projecting xn onto a lower subspace vector. In such a
case a smaller number of samples of xn are chosen to create a well-conditioned
template and make the instruction classification more reliable. In the standard
literature and in the context of side channel analysis several methods have been
proposed [31–33]. In this paper we have used the Principal Components Analysis
to reduce the dimensionality of the observations.

Principal Components Analysis (PCA). PCA [34] is a technique that
searches for vectors that best describes the underlying original data. This is
achieved by projecting the data orthogonally onto a lower dimensional subspace.
Now let us consider again the N L-dimensional observations ({x}) and their
global covariance matrix (σ). The covariance matrix of the kth instruction (σk)
is computed as shown Eq. 3.

σk =
1
N

N∑

n=1,k∈{1,··· ,K}
(xn − μk)(xn − μk)T (3)

where μk is the mean of the kth instruction’s observations and is computed as
shown in Eq. 4.

μk =
1
N

N∑

n=1,{x}∈Ik

xn (4)

Verifying Software Integrity in Embedded Systems 267

A lower dimensional subspace in this Euclidean space can be defined by a
D-dimensional unit vector −→u1. The projection of each observation, xn, onto that
subspace is given by −→u1

T ·xn. Now if we stack up all the observations into a matrix
we will have an observation matrix of N ×L, where L is the number of samples
in each observation. The projection of each row of the matrix is represented as
UT · X, where U is a matrix of eigenvectors of the covariance matrix σ. Now
the projection of the observations into a D-dimensional subspace, where D < L,
that maximises the projected variance is given by D eigenvectors [35] −→u1, . . . ,

−→ud

with the D largest eigenvalues λ1, . . . , λd.

3.2 Instruction Classification

Once the templates are constructed, the next phase is recognising executed
instructions from target processor’s power consumption waveform. To do that
the verifying device records the power consumption waveform of the processor
while it executes the application at run-time and match it against the templates.
Given the templates, τ , we will use k-Nearest Neighbors Algorithm (kNN) to
classify the instructions.

The k-Nearest Neighbors Algorithm (kNN) is a non-parametric lazy super-
vised learning algorithm. The “non-parametric” means the learning algorithm
does not make assumptions about the data and “lazy” means data generaliza-
tion (training) is not needed. In a supervised learning the training data D is
an ordered pair 〈x, y〉 , where x is an instance and y is its class label. The goal
of the classifier is to predict a class for a given instance x

′
. In kNN, the train-

ing phase simply stores the templates alongside with their class labels. During
classification, the classifier computes the distance between the instance x

′
and

all template observations {x}Ik
, ∀k ∈ {1, · · · ,K}. Then it keeps the k closest

observations, where k ≥ 1. The class that is most common among these obser-
vations is assigned to the instance x

′
. In this algorithm there are two major

design choices to be made; (a) the value of k, for example, if only two classes
exist k = 3 is used to avoid ties, and (b) the distance function. The most com-
mon distance function used in kNN is the Euclidean distance function [36,37].
Given two instances x and x

′
the Euclidean distance, de is computed as shown

in Eq. (5).

de(x, x
′
) = ‖x− x′‖ =

√

(x1 − x′
1)2 + · · ·+ (xm − x′

m)2 =

√
√
√
√

m∑

i=1

(xi − x′
i)2 (5)

where m is the number of points in the instances. Some of the other distance
functions are Correlation and Cosine learning distance functions.

3.3 Software Integrity Verification

At this point we assume that we have (on the verifying device) the power con-
sumption templates of the processor’s instructions. We also assume that we have

268 M. Msgna et al.

a function, O, implemented on the verifying device that returns a list of the exe-
cuted instructions from the power waveform W .

O(W, τ) = {Ins1, Ins2, · · · , Insn} (6)

During development, the application is divided into basic blocks and that
each basic block is signed with the developer’s RSA private key. Then these
basic blocks together with their signatures are installed in the processor’s non-
volatile memory. Let Sn and On be the signature and the list of instructions
of the nth basic block respectively. During runtime, when the application exe-
cution starts, the processor and the verifying device create their own screening
parameter and initialise them to the value “1”. As the execution commences
the processor updates its parameter by multiplying it with the signature of the
executed basic block. At the same time the verifying device updates its parame-
ter by multiplying it with the hash of the executed basic block’s instructions.
At the end of the execution the processor’s parameter, EP , and verifying device’s
parameter, V P , will look like as shown in Eq. (7).

EP = Πn∈BBSn and V P = Πn∈BBH(On) (7)

where BB is a list of the application’s basic blocks. Once the execution ends,
the processor sends its updated screening parameter to the verifying device.
Then the verifying device verifies the integrity of the executed application using
the RSA Signature Screening algorithm as shown in Eq. (8) with respect to the
developer’s public key (N, e).

f(EP, V P, (N, e)) =

{

1, if (EP)e = V P mod N

0, otherwise
(8)

If the result of Eq. (8) is “1”, the integrity of the software part that is executed
is still intact. Otherwise, the software is regarded as compromised (modified by
an unauthorised entity).

4 Experimental Results

To implement the techniques discussed above we selected ATMega163 processor.
The ATMega163 is a Complementary Metal-Oxide-Silicon (CMOS) 8-bit micro-
controller based on an AVR architecture, and it has 130 instructions. These
instructions are used to transfer data from one location to another, perform
arithmetic or logic operations and interface the processor with the external envi-
ronment. Since our main objective here is to provide a proof-of-concept imple-
mentation of the proposed method we selected 39 instructions to simplify our
experiment. During the instruction selection process we considered the following
criteria; redundancy and usage of instructions. The redundancy refers to more
than one instruction performing similar operation; for example in ATMega163
the instructions LD Rd, Z and LDD Rd, Z+q perform indirect load operation.

Verifying Software Integrity in Embedded Systems 269

So, in our experiment we only use LD. Besides the redundancy, we also tried to
choose the most commonly used instructions by analyzing several source codes.
We created a source code base by using publicly available source codes from
various web sites [38,39]. We have also included our own implementation of
cryptographic algorithms and general purpose applications in the analysis. The
selected instructions are listed in AppendixA.

To construct a reliable template for each instruction we attempted to remove
all other factors that influence the power consumption apart from the instruc-
tion itself. Such factors can be the initial values of source and destination reg-
isters/memory cells, data processed by the instruction and, intrinsic or ambient
noise introduced by the measurement setup. To remove the influence of the source
and destination registers/memory cells we selected a random source and desti-
nation before we executed the selected instructions and we initialised them with
random values. As per the data processed, we have generated random data for
each execution of the target instruction. To minimise the influence of the ambi-
ent noise introduced in the measurement, all equipments are properly warmed
up beforehand so that it is all running at a uniform temperature throughout the
power trace collection phase. This requires keeping the environment in the lab-
oratory at constant temperature for few hours beforehand and running few test
measurements to be discarded before the actual power trace collection begins.
To minimise the effect of noise introduced by the reference card on the templates
we used 5, the same model, reference cards throughout the experiment.

The power consumption is captured via a voltage drop across a shunt resistor
connecting the ground pin of the ATMega163 processor and the ground pin of the
voltage source. The processor is running at a 4 MHz clock cycle and is powered by
a +5 V supply from the reader. The measurements are performed using a LeCroy
WaveRunner 6100A [40] oscilloscope capable of measuring traces at a rate of 5
billion samples per second (5 GS/s). The samples have 8-bit accuracy within a
pre-selected range. The shunt resistor is connected with the oscilloscope using a
special cable, a probe, which was a Pomona 6069A [41], a 1.2 m co-axial cable
with a 250 MHz bandwidth, 10MΩ input resistance and 10 pf input capacitance.
All measurements are sampled at a rate of 500 MS/s. The same measurement
setup is used throughout the experiment.

4.1 Instruction-Level Template Construction

To build templates for the selected instructions, we generated several training
code snippets for the selected device. We executed these specifically generated
training codes while varying the data processed, registers/memory cells used by
the instructions and their initial values. For each instruction executed the data
processed is randomly generated and sent to the processor at runtime. If the
target instruction operates on registers, they are randomly selected and their
initial values are also randomly generated. The registers are then initialised to
these random values prior to being accessed. On the other hand if the instruction
operates on memory cells, their location is randomly generated and initialised
to random values.

270 M. Msgna et al.

Fig. 2. Power consumption waveform of selected ATmega163’s one clock cycle instruc-
tions (NOP, MOV, ADD and SUB).

For instructions that need multiple clock cycles, each clock cycle is treated
as consecutive instructions. Hence, more than one template is created for these
instructions. For each of the conditional branching instructions, templates are
created for both conditions. When the condition is false the branching instruc-
tions only need one clock cycle; however, when it is true they need two clock
cycles. Therefore, for each conditional branching instruction we created three
templates. As mentioned earlier the processor is driven by a 4 MHz clock signal.
That means each clock cycle lasts for 250 ns and the power consumption trace
is represented by 125 sample points.

Fig. 3. Power consumption waveform of selected ATmega163’s two clock cycle instruc-
tions (MUL, ST and LD).

In Figs. 2 and 3 we have shown plots of the power consumption waveforms
generated by one and two clock cycle instructions respectively for selected
instructions. As shown in both the plots, some instructions (for instance NOP
and SUB) generate sufficiently different waveforms to recognise them success-
fully. However, others generate similar waveforms which makes it more difficult
to recognise them from their power waveform. So, in order to recognise each
instruction from a given waveform we have to create a well-conditioned tem-
plate. This means that we have to maximise the variance across templates as
much as possible. For each of the instructions we collected 3000 observations
(traces) and 2500 of them are used in constructing the templates. The remain-
ing 500 are used in the classification phase. Including the multiple templates for

Verifying Software Integrity in Embedded Systems 271

the multi-clock cycle instructions and the conditional branching instructions we
generated a total of 76 templates.

Principal Components Analysis (PCA). When performing PCA, the new
dimensionality D of the subspace has to be chosen carefully. On the one hand, if
D is too small, too much of variance of the original data may get lost and with
it important information about the observation. On the other hand, if D is too
large, the templates may contain cross-correlated samples and becomes less reli-
able. In Fig. 4, we plotted the variance accounted for each principal components
of instructions NOP, MOV, CLR and ADD.

Fig. 4. Overall variance of the original data accounted for the first 15 principal com-
ponents of the instructions NOP, MOV, CLR and ADD.

As shown in Fig. 4, for the instruction MOV, the first 4 components accounted
for 37.598 %, the first 10 for 44.163 % and the first 15 for 48.3387 % of the
overall variance of the original data. For the instruction CLR 59.796 %, 64.089 %
and 66.648 % of the original variance is accounted for the first 4, 10 and 15
components respectively. So, when choosing the new dimensionality, D, we have
to decide how much variance of the original data that we are willing to lose.

4.2 Instruction Classification

As discussed in Sect. 3.2, k-Nearest Neighbor have two major design decision
criteria that need to be made. The first criteria is the number of neighbor obser-
vations, k, participating in the decision making. To understand the effect of k in
our work, we started with k = 1 and the classification rate result is presented in
Fig. 5. In this work the original observations are reduced by using PCA. Using
the reduced dimensions we achieved a 100 % classification rate after only using
the first 13 dimensions.

In order to see the effect of k on the classification rate, we repeated the
experiment for k = {5, 10, 15, 20} and the result was exactly the same. The
second criteria is the distance function used to compute the closeness between
the test observation and the template observations. In our work we tested the

272 M. Msgna et al.

Fig. 5. Instruction recognition rate using K-Nearest Neighbours Algorithm for k = 1
after applying the dimensionality reduction techniques.

Fig. 6. Recognition rate result of K-Nearest Neighbors Algorithm with different dis-
tance functions for k = 1 after applying the PCA.

classification using three different distance functions. These are the Euclidean,
Correlation and Cosine distance function. The result is plotted in Fig. 6.

As shown in the graph, the classification result is exactly the same for all three
distance functions apart from the minor differences for dimensions 1 ≤ D ≤ 12.
After the 13th dimension , that is D ≥ 13, they all reached a 100 % of classifi-
cation rate. Finally, it may be worth mentioning that apart from the kNN , we
have also experimented with several other classifiers. These algorithms include
Self-Organizing Maps [42], Support Vector Machines [43], Linear Vector Quanti-
zation [44], Naive Bayes Classifiers [45] and Multivariate Gaussian Distribution
[46]. However, their results were not satisfactory and we stopped pursuing them.

4.3 Software Integrity Verification

To test the verification technique explained in Sect. 3.3, we generated a pair of
RSA keys. Normally it is recommended to use large prime numbers in order to
be secure against factorization attacks. However, our aim here is to show that
side channel leakage can be used to verify the integrity of embedded applications.
Therefore, we generated the key pairs using small prime numbers. We selected
the prime numbers to be q = 23 and p = 59. Using CrypTool [47] we generated

Verifying Software Integrity in Embedded Systems 273

the public and private key to be (N = 1357, e = 3) and (N = 1357, d = 851)
respectively. For this experiment we also implemented an application that verifies
a four digit PIN value. The reference PIN is stored in the non-volatile memory
of the processor and the PIN that needs to be verified is sent from a terminal
(PC). Once the processor receives the PIN, it compares it with the reference
PIN digit by digit.

Before signing the basic blocks of our application we generated a hash (fixed)
value on the immutable part of the basic block instructions. For example, in
ATMega163 instructions have two parts the Opcode and the Operand. The
Opcode is always static and the Operand depends on the arguments (parameters).
In the RSA hash-and-sign scheme, standard hash algorithms such as SHA-1 [48]
and MD5 [49] are used to generate the hash value. However, since our exper-
iment was not about attacking hash algorithms we used a simple XOR of the
immutable parts for simplicity.

Fig. 7. Power consumption of the processor when executing PIN checking application
with embedded processor parameter update in between the basic blocks.

In Fig. 7, the plot sections labelled as “BB” are when the processor executes
the basic blocks and the sections labelled as “EP” belong to the processor’s
parameter update operation. To test our technique, we changed some of the
instructions of the application after the signatures were generated and ran it. In
our first trial we replaced two consecutive MOV instructions with MOVW. They
both accomplish the same task, but generate different waveforms. Secondly we
changed the compare instruction CP to CPC in the first two basic blocks. The
PIN still gets verified correctly, but the waveform was not quite the same and
we detected that using our proposed method. Finally we replaced the branching
statement BRNE with BREQ and ran it. As expected Eq. (8) returned “0”,
which means the integrity of the application is violated, for all three cases. We
have also implemented the same function in PIC16F876 microcontroller and run
the verification process using the templates built for ATMega163. Again as we
expected it, the instruction classification function did not produce the correct
instructions. As a result the verification function returned “0”.

274 M. Msgna et al.

5 Practical Application Area

Embedded system developers buy different components from different countries
and put them together before deploying them in operation. In a big system,
each component is designed to perform certain function. In such a system it
is vital to verify the integrity of each component before putting them together
as one defective component can jeopardise the entire system. In this kind of
situation our proposed technique can be used to verify the integrity embedded
applications.

At the heart of our technique is the construction of reliable templates and suc-
cessful classification of executed instructions. However, manufacturers of embed-
ded processors will protect their products from side channel attacks by using side
channel protection (SCP) techniques. The SCP techniques tend to obscure the
leakage of the target device. So, the obvious question here is, how would the
proposed method work against processors with side channel attack protection?

SCPs can be software (such as masking [50], shuffling of the instructions [51]
or inserting random delays [52]) or hardware. The software SCP try to hide data
processed by the instructions. Throughout our experiment we did not target the
data, in fact we tried to avoid the dependency of the power consumption on
the data processed. Therefore, the software SCPs will not affect our proposed
verification method. As for the hardware protection, we assume the SCP has
two operational modes; switched on and off. Based on the above assumption,
the verifier switches off all protections and verifies the integrity of the software.
If the software is still intact he switches on all protections and integrates the
component into the real-time system; otherwise, reports it as defective.

6 Conclusion

This paper has explored the unconventional idea of permitting side channel leak-
age from an electronic component, before it is deployed in real-time operation,
for the purposes of useful analysis and application code integrity verification. We
conducted an experiment on an AVR architecture microcontroller, ATMega163.
In our work we acheived a 100 % of classification rate using k nearest neighbors
algorithm for executed instructions. As the verification process is only performed
once after acquiring the components (but before deploying them in operation)
our method will not affect the performance of the chip once deployed into oper-
ation. Furthermore, special equipments are not required to support the compo-
nents in real-time operation. Therefore, the technique can be used for forensic
analysis of electronic components, application integrity verification and counter-
feit components detection purposes.

Verifying Software Integrity in Embedded Systems 275

Appendix

A Selected AVR Instructions

Out of the 130 instructions supported by ATMega163 microcontroller we have
selected 39 instructions for our experiment. In Table 1 we present the notations
use in Table 2.

Table 1. Notations used in Table 2

Notation Description Notation Description

Rd Destination register C Carry flag

Rr Source register K Constant data

X, Y, Z Indirect address registers
(X = R27 : R26, Y = R29 : R28, Z =
R31 : R30)

k Constant address

Pt I/O Port address

In Table 2, the first column is the list of selected instructions followed by their
description. The third column is the operation that the instructions accomplish
when executed. The forth column is the number of clock cycles that the instruc-
tions take to be executed.

Table 2. AVR’s 39 instructions selected for the experiment.

Instruction Description Operation Clock cycles

mov Rd, Rr Move a byte between
registers

Rd ← Rr 1

movw Rd, Rr Move a word between
registers

Rd+1 : Rd ← Rr+1 : Rr 1

ldi Rd, K Load immediate into
register

Rd ← K, 0 ≤ d ≤ 31, 1

ld Rd, P Load indirect Rd ← (P) 2

P ∈ {X, Y, Z}, 0 ≤ d ≤ 31

ld Rd, P+ Load indirect with Rd ← (P), P ← P + 1 2

post-increment P ∈ {X, Y, Z}, 0 ≤ d ≤ 31

ld Rd,−P Load indirect with P ← P − 1, Rd ← (P) 2

pre-decrement P ∈ {X, Y, Z}, 0 ≤ d ≤ 31

lds Rd, k Load direct from Rd ← (k) 2

SRAM 0 ≤ d ≤ 31, 0 ≤ k ≤ 65535

276 M. Msgna et al.

Table 2. (Continued)

Instruction Description Operation Clock cycles

st P, Rr Store indirect (P)← Rr 2

P ∈ {X, Y, Z}, 0 ≤ r ≤ 31

st P+, Rr Store indirect with (P)← Rr, P ← P + 1 2

post-increment P ∈ {X, Y, Z}, 0 ≤ r ≤ 31

st −P, Rr Store indirect with P ← P − 1, (P)← Rr 2

pre-decrement P ∈ {X, Y, Z}, 0 ≤ r ≤ 31

sts k, Rr Store direct into (k)← Rd 2

SRAM 0 ≤ r ≤ 31, 0 ≤ k ≤ 65535

lpm Rd, P Load program memory Rd ← (P) 3

0 ≤ d ≤ 31, P ∈ {Z, Z+}
spm Store program memory 4

in Rd, Pt In port (Pt)← Rd 1

out Pt, Rr Out port Rr ← (Pt) 1

push Rr Push register on stack STACK ← Rd 2

pop Rd Pop register from stack Rd ← STACK 2

nop Rd, Rr Do nothing 1

add Rd, Rr Add two registers Rd ← Rd + Rr 1

adc Rd, Rr Add two registers with
carry

Rd ← Rd + Rr + C 1

adiw Rd, K Add register with
immediate word

Rd+1 : Rd ← Rd+1 : Rd + K 2

sub Rd, Rr Subtract two registers Rd ← Rd −Rr 1

sbc Rd, Rr Subtract two registers
with carry

Rd ← Rd −Rr − C 1

sbiw Rd, K Subtract immediate
from a word stored
in consecutive
registers

Rd+1 : Rd ← Rd+1 : Rd −K 2

mul Rd, Rr Multiply two registers Rd ← Rd ×Rr 2

eor Rd, Rr Exclusive or two
registers

Rd ← Rd ⊕Rr 1

inc Rd Increment a register Rd ← Rd + 1 1

dec Rd Decrement a register Rd ← Rd − 1 1

clr Rd Clear a register Rd ← Rd ⊕Rd 1

cpi Rd, K Compare immediate
with a value stored
in the given register

Rd −K 1

Verifying Software Integrity in Embedded Systems 277

Table 2. (Continued)

Instruction Description Operation Clock cycles

cp Rd, Rr Compare two registers Rd −Rr 1

cpc Rd, Rr Compare two registers with
carry

Rd −Rr − C 1

rjmp k Relative jump PC ← PC + k + 1 2

jmp k Direct jump PC ← k 3

rcall k Relative subroutine call PC ← PC + k + 1 3

call k Direct subroutine call PC ← k 4

ret k Subroutine return PC ← STACK 4

breq k Branch if equal if (Z = 1) then 1/2

PC ← PC + k + 1

brne k Branch if not equal if (Z = 0) then 1/2

PC ← PC + k + 1

brcs k Branch if carry is set if (C = 1) then 1/2

PC ← PC + k + 1

brcc k Branch if carry is clear if (C = 0) then 1/2

PC ← PC + k + 1

brbc b, k Branch if flag is clear if (SREG(b) = 0) then 1/2

PC ← PC + k + 1

brbs b, k Branch if flag is set if (SREG(b) = 1) then 1/2

PC ← PC + k + 1

References

1. Defense Advanced Research Projects Agency: Darpa baa06-40, a trust for inte-
grated circuits, Visited, May 2013. https://www.fbo.gov/index?s=opportunity&
mode=form&id=db4ea611cad3764814b6937fcab2180a&tab=core& cview=1

2. Lieberman, J.I.: The national security aspects of the global migration of the
U.S. semiconductor industry, Visited, May 2013. http://www.fas.org/irp/congress/
2003 cr/s060503.html

3. Defense Science Board Task Force: High performance microchip supply, Visited,
May 2013. http://www.acq.osd.mil/dsb/reports/ADA435563.pdf

4. U.S. Department of Commerce: Defense industrial base assessment: counterfeit
electronics. Technical report, Bureau of Industry and Security, Office of Tech-
nology Evaluation, January 2010. http://www.bis.doc.gov/defenseindustrialbase-
programs/osies/defmarketresearchrpts/final counterfeit electronics report.pdf

5. Koushanfar, F., Sadeghi, A.-R., Seudie, H.: EDA for secure and dependable
cybercars: challenges and opportunities. In: 2012 49th ACM/EDAC/IEEE Design
Automation Conference (DAC), pp. 220–228 (2012)

6. Larson, J.: The Cardio-pneumo-psychogram in deception. J. Exp. Psychol. 6(6),
420–454 (1923). http://books.google.co.uk/books?id=b6appwAACAAJ

https://www.fbo.gov/index?s=opportunity&mode=form&id=db4ea611cad3764814b6937fcab2180a&tab=core&_cview=1
https://www.fbo.gov/index?s=opportunity&mode=form&id=db4ea611cad3764814b6937fcab2180a&tab=core&_cview=1
http://www.fas.org/irp/congress/2003_cr/s060503.html
http://www.fas.org/irp/congress/2003_cr/s060503.html
http://www.acq.osd.mil/dsb/reports/ADA435563.pdf
http://www.bis.doc.gov/defenseindustrialbaseprograms/osies/defmarketresearchrpts/final_counterfeit_electronics_report.pdf
http://www.bis.doc.gov/defenseindustrialbaseprograms/osies/defmarketresearchrpts/final_counterfeit_electronics_report.pdf
http://books.google.co.uk/books?id=b6appwAACAAJ

278 M. Msgna et al.

7. Wei, S., Nahapetian, A., Potkonjak, M.: Robust passive hardware metering. In:
International Conference on Computer-Aided Design (ICCAD), 7–10 November
2011, pp. 802–809. IEEE (2011)

8. Chakravarthi, S., Krishnan, A.T., Reddy, V., Machala, C.F., Krishnan, S.: A com-
prehensive framework for predictive modeling of negative bias temperature insta-
bility. In: 2004 IEEE International Reliability Physics Symposium Proceedings
42nd Annual, pp. 273–282 (2004)

9. Agrawal, D., Baktir, S., Karakoyunlu, D., Rohatgi, P., Sunar, B.: Trojan detection
using IC fingerprinting. In: IEEE Symposium on Security and Privacy 2007, SP
’07, pp. 296–310 (2007)

10. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponenti-
ation and digital signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol.
1403, pp. 236–250. Springer, Heidelberg (1998)

11. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

12. Dhem, J.-F., Koeune, F., Leroux, P.-A., Mestré, P., Quisquater, J.-J.,
Willems, J.-L.: A practical implementation of the timing attack. In: Schneier,
B., Quisquater, J.-J. (eds.) CARDIS 1998. LNCS, vol. 1820. Springer, Heidelberg
(2000)

13. Arnaud, C., Fouque, P.-A.: Timing attack against protected RSA-CRT implemen-
tation used in PolarSSL. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp.
18–33. Springer, Heidelberg (2013)

14. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, p. 388. Springer, Heidelberg (1999)

15. Popp, T., Mangard, S., Oswald, E.: Power analysis attacks and countermeasures.
IEEE Des. Test Comput. 24(6), 535–543 (2007)

16. Heyszl, J., Mangard, S., Heinz, B., Stumpf, F., Sigl, G.: Localized electromagnetic
analysis of cryptographic implementations. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 231–244. Springer, Heidelberg (2012)

17. Gu, K., Wu, L., Li, X., Zhang, X.: Design and implementation of an electromagnetic
analysis system for smart cards. In: Wang, Y., Cheung, Y., Guo, P., Wei, P., (eds)
CIS, Sanya, Hainan, China, 3–4 December 2011, pp. 653–656. IEEE (2011)

18. Van Eck, W., Laborato, N.: Electromagnetic radiation from video display units:
an eavesdropping risk? Comput. Secur. 4, 269–286 (1985)

19. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, New York (2002)

20. Tuchman, W.: A brief history of the data encryption standard. In: Denning, D.,
Denning, P. (eds.) Internet Besieged, pp. 275–280. ACM Press, New York (1998)

21. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

22. Oswald, D., Paar, C.: Breaking mifare DESFire MF3ICD40: power analysis and
templates in the real world. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 207–222. Springer, Heidelberg (2011)

23. Vermoen, D., Witteman, M., Gaydadjiev, G.N.: Reverse engineering Java Card
applets using power analysis. In: Sauveron, D., Markantonakis, K., Bilas, A.,
Quisquater, J.-J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 138–149. Springer,
Heidelberg (2007)

24. Eisenbarth, T., Paar, C., Weghenkel, B.: Building a side channel based disassem-
bler. Trans. Comput. Sci. 6340, 78–99 (2010)

Verifying Software Integrity in Embedded Systems 279

25. Clavier, C.: Side channel analysis for reverse engineering (SCARE) - an improved
attack against a secret A3/A8 GSM algorithm. IACR Cryptology ePrint Archive
2004:49 (2004)

26. Lee, S., Ermedahl, A., Min, S.L., Chang, N.: An accurate instruction-level energy
consumption model for embedded RISC processors. In: Hong, S., Pande, S., (eds.)
LCTES/OM, Snowbird, Utah, USA, 22–23 June 2001, pp. 1–10. ACM (2001)

27. Kavvadias, N., Neofotistos, P., Nikolaidis, S., Kosmatopoulos, C.A., Laopoulos, T.:
Measurements analysis of the software-related power consumption in microproces-
sors. IEEE Trans. Instrum. Measur. 53(4), 1106–1112 (2004)

28. Mayes, K., Markantonakis, K., Chen, C.: Smart card platform-fingerprinting.
Advanced Card Technology, pp. 78–82 (2006)

29. Becker, G.T., Strobel, D., Paar, C., Burleson, W.: Detecting software theft in
embedded systems: a side-channel approach. IEEE Trans. Inf. Forensics Secur.
7(4), 1144–1154 (2012)

30. Coron, J.-S., Naccache, D.: On the security of RSA screening. In: Imai, H., Zheng,
Y. (eds.) PKC 1999. LNCS, vol. 1560, p. 197. Springer, Heidelberg (1999)

31. Bishop, C.M., Nasrabadi, N.M.: Pattern recognition and machine learning. J. Elec-
tron. Imaging 16(4), 049901 (2007)

32. Rechberger, C., Oswald, E.: Practical template attacks. In: Lim, C.H., Yung, M.
(eds.) WISA 2004. LNCS, vol. 3325, pp. 440–456. Springer, Heidelberg (2005)

33. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008)

34. Berrendero, J.R., Justel, A., Svarc, M.: Principal components for multivariate func-
tional data. Comput. Stat. Data Anal. 55(9), 2619–2634 (2011)

35. Strang, G.: Introduction to Linear Algebra, vol. 3. Wellesley-Cambridge Press,
Wellesley (2003)

36. Wang, L., Zhang, Y., Feng, J.: On the Euclidean distance of images. IEEE Trans.
Pattern Anal. Mach. Intell. 27(8), 1334–1339 (2005)

37. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Heidelberg (2009)
38. Web site: Tutorial for learning assembly language for the AVR-Single-Chip-

Processors, Visited, October 2013. http://www.avr-asm-tutorial.net/avr en/
39. Web site: AVR freaks, Visited, October 2013. http://www.avrfreaks.net/
40. Teledyne LeCroy: Teledyne LeCroy website, Visited, February 2013. http://www.

teledynelecroy.com
41. Pomona Electronics: 6069A scope probe, website, Visited, October 2012. www.

pomonaelectronics.com/pdf/d4550b-sp150b 6 01.pdf
42. Kohenen, T.: Self-organized formation of topologically correct feature maps. Biol.

Cybern. 43(1), 59–69 (1982)
43. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297

(1995)
44. Kohenen, T.: Learning vector quantization. In: Self-Organizing Maps. Springer,

Heidelberg (2001)
45. Rish, I.: An empirical study of the Naive Bayes classifier. IJCAI 2001 Workshop

on Empirical Methods in Artificial Intelligence 3(22): 41–46 (2001)
46. Gut, A.: An Intermediate Course in Probability, 2nd edn. Springer, New York

(2009). (Department of Mathematics, Uppsala University, Sweden)
47. Deutsche Bank AG and Contributors: Cryptool 1-4-31, Downloaded, May 2013.

http://www.cryptool.org/en/jct-downloads-en

http://www.avr-asm-tutorial.net/avr_en/
http://www.avrfreaks.net/
http://www.teledynelecroy.com
http://www.teledynelecroy.com
www.pomonaelectronics.com/pdf/d4550b-sp150b_6_01.pdf
www.pomonaelectronics.com/pdf/d4550b-sp150b_6_01.pdf
http://www.cryptool.org/en/jct-downloads-en

280 M. Msgna et al.

48. National Institute of Standards and Technology: FIPS 180–2, secure hash stan-
dard, federal information processing standard (FIPS), publication 180–2. Technical
report, Department Of Commerce (1995)

49. Rivest, R.: RFC 1321: The MD5 message-digest algorithm, April 1992
50. Coron, J.-S., Goubin, L.: On Boolean and arithmetic masking against differential

power analysis. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, p.
231. Springer, Heidelberg (2000)

51. Bo, Y., Xiangyu, L., Cong, C.: An AES chip with DPA resistance using hardware-
based random order execution. J. Semicond. 33(6), 065009-8 (2012)

52. Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence
of hardware countermeasures. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS,
vol. 1965, p. 252. Springer, Heidelberg (2000)

Studying Leakages on an Embedded Biometric
System Using Side Channel Analysis

Maël Berthier1, Yves Bocktaels1, Julien Bringer1(B), Hervé Chabanne1,2,
Taoufik Chouta2, Jean-Luc Danger2, Mélanie Favre1, and Tarik Graba2

1 Morpho, Issy-les-Moulineaux, France
julien.bringer@morpho.com

2 Télécom ParisTech Identity and Security Alliance
(The Morpho and Télécom ParisTech Research Center), Paris, France

Abstract. This paper addresses the potential information leakages of
a fingerprint comparison algorithm embedded as a hardware implemen-
tation. Such solution aims at comparing a reference fingerprint with a
freshly acquired one completely inside an embedded system (e.g. ASIC,
smart card, FPGA). The same way as for cryptographic operations
within a cryptoprocessor, we consider the reference fingerprint template
as a sensitive data that one may try to retrieve by attacking the chip. On
one hand, we show that we can find relevant information by the means
of Side Channel Analysis (SCA) that may help to retrieve the reference
fingerprint. On the other hand, we illustrate that reconstructing the fin-
gerprint remains not trivial and we give some simple countermeasures to
protect further the comparison algorithm.

Keywords: Side channel analysis · Fingerprint · Hardware biometric
coprocessor · Biometric comparison · Hill climbing

1 Introduction

Biometric authentication, particularly using fingerprints, is commonly used to
uniquely identify individuals. Compared to the well know What I know (pass-
word) and What I have (token), the Who I am (biometrics) offers an inherent
security. However, biometric data are personal data and their usage in authenti-
cation systems requires to take care of privacy issues. Compared to a database,
the use of a personal device as a smart card to store the reference template
is a way to protect it and thus be compliant to user privacy. An even better
approach is the Match-On-Card (MOC) principle as it performs the compari-
son1 inside the smart card [7,10,12,19]. The demand for such devices is growing.
At Fingerprint Verification Competition (FVC) of 2004 [3], a new competition
category was added to evaluate performances of authentications under resource
constraints: a 1.41 GHz working frequency, a maximum of 4 MB RAM usage
1 The comparison algorithm is often also called a matching algorithm.

c© Springer International Publishing Switzerland 2014
E. Prouff (Ed.): COSADE 2014, LNCS 8622, pp. 281–298, 2014.
DOI: 10.1007/978-3-319-10175-0 19

282 M. Berthier et al.

and matching execution time limited to 0.3 s. Even with this restrictions, the
available resources on these platforms are far better than what we can find in a
common smart card used for authentication (around 30 MHz frequency and 5 KB
RAM in [7]). Recently, to overcome the limited resources of a smart card when
a comparison algorithm is implemented in software, [9] introduced the design
of a hardware implementation of a fingerprint comparison algorithm in order
to define a biometric coprocessor, similarly to what had been done years ago
for cryptographic coprocessors to speed up cryptographic operations. Note that
some other embedded implementations for small devices have been proposed
earlier (see for instance [21]), but we focus on the work presented in [9] as it is
based on a classical fingerprint comparison algorithm.

A parallel to embedded cryptographic implementations on electronic chips
can thus be done by evaluating the information leakages of the biometric compar-
ison algorithm. The so called Side Channel Analysis (SCA) consists in passively
exploiting leaked information. Since Kocher presented the first timing analysis
to extract the private key of RSA asymmetric ciphering algorithm [14], a lot
of other vulnerabilities were studied mainly related to power consumption [15]
and electromagnetic emanations [17]. In this work we want to take advantage
of leakages on something else than cryptographic operations, namely biometric
comparison. These leakages have not the same consequences than for cryptogra-
phy: while the knowledge of a secret is targeted in the latter, in biometrics it’s
authentication that is sought, like, for instance, in PIN comparison.

Concerning the security of biometric matching systems, authors of [18] iden-
tified 8 points of vulnerability that an attacker may exploit. In fact, a generic
biometric system can be divided into four main modules (see Fig. 1): the sensor
taking a raw image of the fingerprint, the extractor that performs pre-processing
and features extraction, the matcher that calculates the similarity between two
biometric templates, leading to a similarity score, and the database that contains
the reference template. The embedded comparison approach, or Match-On-Card,
only considers the matcher and the reference fingerprint template.

Finger Sensor Feature extractor Matcher Final score

Database

1 2
3

4
5

6

7

8

Fig. 1. Modules of a generic biometric system

Specific attention has also been paid to Hill Climbing attacks [16,22]. These
algorithms produce synthetic templates iteratively adapted to the score they
produce. We can as well cite a timing analysis on fingerprint matching [11] where
authors show that there can be a correlation between execution time and score.

Studying Leakages on an Embedded Biometric System 283

There is a mention of SCA on Match-On-Card in [6] but, to our knowledge, this
has not been studied much further. The ThumbPod project [21] has designed
an FPGA implementation (cf. for instance [20,23]) that resists to side channel
leakage thanks to dual rail techniques but the biometric algorithm used [24] is
not a standard one contrary to the one used in [9] and the study made was
not specific to the biometric leakages. Note again that side-channel analysis on
biometric comparison has been hardly studied in the literature and so have the
countermeasures, that is why our analysis could rely on simpler ones compared
to what is known today for attacking protected cryptographic implementations.

In this paper we present methods based on the simple analysis of power con-
sumption during the matching process within an embedded system to recover
some sensitive information. Then, we go further in our analysis of the leakage
by presenting a template based attack that permits to retrieve, under some
conditions, the hidden comparison score. All in one, this enables to launch an
improved hill climbing algorithm to approach the reference fingerprint template.
We illustrate our work on the hardware biometric comparison solution described
in [9]. We present also some simple countermeasures to strengthen the embed-
ded matcher against these information leakages. Our main goal is to highlight
how hardware biometric solutions like [9], that rely on state-of-the-art minutiae-
based fingerprint comparison techniques, could be improved to lead to a secure
biometric coprocessor, thus avoiding sensitive leakages.

The article is structured as follows. In Sect. 2, we give some general infor-
mation about fingerprint biometrics and the studied Match-On-Card algorithm
and about its hardware implementation. Section 3 presents our observations com-
ing from Side Channel Analysis while Sect. 4 presents a template attack on the
matching score. Section 5 deals with the exploitation of the leakages mainly based
on a hill climbing strategy. Finally, we give some countermeasures in Sect. 6.

2 Biometric Matching System

2.1 Fingerprint Biometrics

Fingerprints are one of the most used biometrics. The matching process is com-
monly based on the similarity analysis of some specific points called minutiae,
extracted from a fingerprint image. Minutiae are discontinuity points on the ridge
flows (ridge ending and ridge bifurcation). The INCITS 378 and the ISO 19794-2
[4] standards specify a compact template format based on minutiae for limited
resource systems. Each fingerprint can be represented as a set of 3-dimensional
minutiae points, where a single minutia point is described as an oriented 2D
point {x(8 bits), y(8 bits), θ(6 bits)}. The angle θ is the ridge ending or bifur-
cation orientation. Fingerprint comparison algorithms aim at best superimpose
both minutiae sets and measure their similarity. In what follows we consider that
the sensitive data that we are aiming to retrieve from the embedded system is a
set of standard minutiae points S = ({(x0, y0, θ0)}, . . . , {xn, yn, θn}).

284 M. Berthier et al.

2.2 The Studied Fingerprint Matching Module

In [9], the authors propose a hardware module to achieve an embedded biomet-
ric comparison (hardware MOC), with the goal to define a biometric coproces-
sor, the aim being to speed up operations as do cryptographic coprocessors.
The corresponding algorithm has two main steps called registration and pairing.
Registration phase aims at retrieving best rotation and translation that make
overlap reference and input minutiae sets. After applying this affine transforma-
tion to the input set, pairing uses a Gaussian scoring method to evaluate more
accurately the similarity between both sets.

The coprocessor is composed of three modules (Transformation, Votes and
Pairing). It uses a Read Only Memory (ROM) to store the reference minutiae
and has a private volatile memory for all the processing steps. For our study we
have used a SASEBO GII board [1] that is specially designed for the study of
side channels and that includes a Virtex-5 LX30 FPGA on which the coprocessor
was embedded.

Compared to the main related works on biometric comparison with hardware
implementations, two important properties of [9]’s implementation are that it
relies on a biometric algorithm working simply with a standard compact fin-
gerprint template [4] and that is very close to the best performing algorithms
with respect to biometric error rates. For instance, with FVC2000 DB2 dataset
(cf. [2]), it achieves 1.50 % of false reject rate at 10−3 of false acceptance rate.
The speed of one comparison is also sufficiently good (less than 0.5 s) to enable
efficient side channel captures.

First Phase of a Fingerprint Comparison: Registration. Registration
(also called alignment) consists in the construction of a histogram of all possible
affine transformations (Δx,Δy,Δθ) by overlapping each input minutia with each
reference minutia. The most voted parameter triplet is considered to be optimal.
However, the number of possible transformations is too big to store the whole
histogram in a smart card. Its construction is thus adapted by dividing the
research space in many small subspaces and votes are only done with respect to
the processed subspace. This allows to reduce the size of the embedded memory
to the size of a subspace: the same memory is used for all subspace histograms.
These sub-histograms are calculated in an increasing rotation angle (Δθ) from
Δθmin

to Δθmax
and their memory is completely reset between each subset. The

most voted (Δx,Δy,Δθ) triplet is updated on the fly in an internal register.
The drawback of this optimization is the need to test all possible affine trans-

formations for each subspace even if the result is not within the processed sub-
space borders. To improve the processing time, the sub-histogram construction
is not done on the whole reference minutiae set. For each minutia of the input
set, only minutiae of the reference set, such that the difference in orientation
angles (Δθ) belongs to the subspace, are tested. To optimize the research of
these particular reference minutiae, the reference set is sorted offline regarding
the minutiae angle. A mapping array is added, called set access, with the orien-
tation angle as key, to point directly to the first and last minutiae (noted Fθi and

Studying Leakages on an Embedded Biometric System 285

Lθi) with this particular orientation angle. A special NONE value is used if no
reference minutia has this orientation angle. Figure 2 and Algorithm 1 describe
the iterative registration process. mref denotes a minutia of the reference finger-
print and min a minutia of the input fingerprint (the fingerprint that has been
submitted to the embedded comparison module).

0
1
2

Voting

Δ{θ max−1}

Δ{θ min}
Δ{θ min+1}

Single minutiae
input set

Reference minutiae
set

Selecting a subset

@ begin @ end

Set Access

63

{Δx, Δy}

NONENONE

calculations

Δ{θ i}

Δθ i

Fig. 2. Sub-histogram construction using a memory mapping array

foreach Δθi ∈ [Δθmin , Δθmax] do
foreach subspace do

foreach min ∈ input set do
Read (Fθi , Lθi) = set access(Δθi + θmin)
if Fθi �= NONE and Lθi �= NONE then

Calculate Δx and Δy parameters
Fill subspace histogram memory with votes
Update best {Δθ, Δx, Δy} if greater triplet is voted

else
Continue // No processing activity

end

end

end
Erase subspace memory

end

Algorithm 1. Subspaces histogram built during registration phase

Second Phase of the Fingerprint Comparison: Pairing. In the pairing
phase the affine transformation found during registration is applied on the input
set. Then a similarity measure is used to associate pairs of input and reference
minutiae: each input set point is iteratively compared to all the points of the
reference set. If close enough, the reference minutia resulting in the highest pair-
ing score is paired with the processed input minutia. Pairing phase is therefore
data dependent, the number of input and reference minutiae is directly related
to the duration of this step. Algorithm2 illustrates the pairing process after the
affine transformation has been applied.

286 M. Berthier et al.

foreach min ∈ input set do
max 3D score = 0
pair[min] = {none,0}
foreach mref ∈ reference set do

pairscore = Gauss(Distθ, DistX , DistY)
if max 3D score � pairscore then

max 3D score = pairscore

pair[min] = {mref , pairscore }
else

Continue // No processing activity

end

end

end
Compute final score using local scores in pair

Algorithm 2. Pairing phase

The Final Score Computation and Decision. After the pairing, the final
matching score is computed by summing all the individual pairing scores. The
final decision is then taken by comparing a normalized value of the score with a
predefined threshold ScoreTh.

The normalization of the score is necessary because the two minutiae sets
could have very different sizes leading to erroneous results. In the studied imple-
mentation, the computation of the final score is done as follows:

finalScore =
∑sizein

i=0 pair[i]
Max(sizein, sizeref)

(1)

Where sizein and sizeref are respectively the number of minutiae in the input
and reference sets.

Note that this approach in three steps for fingerprint comparison is quite
classical. Consequently our side-channel analysis and associated results discussed
in the remaining of the paper can probably be also adapted to other comparison
algorithms that rely on the standard minutiae representation.

2.3 Assumptions on the Matching System

The studied biometric matching system structure is compliant to the one pic-
tured in Fig. 1 but we can additionally make the following assumptions2 on it, in
order to simplify the study, as we aim to define recommendations for designing
a secure biometric hardware coprocessor:

– We have full control of the inputs;
– There is no protection of the implementation:
• There are no side channel countermeasures;
• There is no retry counter (i.e. any number of attempts is possible).

2 Note that the scope here is not to discuss the security of any existing Match-On-Card
products.

Studying Leakages on an Embedded Biometric System 287

All these points will greatly help us to study the information leakages of the
design.

3 Information Leakage

The studied biometric hardware module behaves as follows. The private reference
fingerprint template is stored in the module and the input fingerprint template is
sent directly to the matcher. This means that the attacker has a complete control
on the submitted fingerprint (the one sent as input to the module). During the
matching execution, both reference and submitted fingerprint are manipulated,
generating secret dependent variations on power consumption.

As an analogy with usual side channel analysis on cryptographic processes,
we will study here the impact of manipulating a secret data (reference fingerprint
is used here instead of the secret key for classical side channel analysis) and a
chosen data (a chosen fingerprint sent to the comparison algorithm is used here
instead of a plain text message for classical side channel analysis). However there
are several differences:

The size of the secrets space, for example on an AES (Advanced Encryption
Standard) is 2128, with a 128-bit key. For our fingerprint comparison scenario,
each minutia is represented on 22 bits (8 bits for x and y, and 6 bits for the angle),
which means that with an average minutiae number of 20, the average secrets
space size is upper bounded by 2440.

On the other hand, a single bit difference on the secret key in cryptography
directly leads to a rejection while an error on fingerprint acquisition is allowed
(more or less minutiae, slight shift on position or angle of a minutia. . .). Thus
the attacker may gain an interesting advantage by adapting the submitted fin-
gerprints during an attack.

In the sequel we use Simple Power Analysis (SPA) in order to identify some
patterns in power consumption which give information about what is executed
on the target chip. As usual, this is made by measuring current that flows from
the power supply to the attacked device.

3.1 SPA on Pairing Phase

In the second part of the matching execution, each minutia of the reference
fingerprint is compared with all the transformed input fingerprint minutiae. On
Fig. 3, we can see that the pairing phase is composed of Sizein similar patterns
that correspond to the iterations of the pairing loop. If we zoom on a single loop
iteration, we can identify Sizeref + 1 steps. For each input minutia (the outer
loop), there are Sizeref accesses to reference minutiae plus one access to the
input minutia access. A simple count gives the size of the reference minutiae set.

3.2 SPA on Registration Phase

As we can see from the Algorithm 1, there is a difference of process activity if
the set access value for a specific angle is NONE or not.

288 M. Berthier et al.

Fig. 3. Information leakage on pairing step

Since we have full control on the input fingerprint, we tried to submit a single
minutia as a fingerprint input to reveal some activity which only depends on the
reference fingerprint. The coordinates of the single minutia are not important,
but we set the angle value at 0, to start from the first angle. For each computed
transformation, if all the corresponding differences in orientation angles Δθi are
out of bounds (i.e. [θin − 1, θin + 1]), there will be a noticeable difference in
power consumption due to the process activity inequality. This difference can be
seen on the power consumption trace of the registration part (Fig. 4). The angle
values of the reference fingerprint minutiae were distributed as follows:

|19 20 20 20 22 23 23 24 25 26 26 27 27 27 28 28 28 30 30 31 31 32 32 34
|50 53 53 54 54 55|62 (2)

We can see some drops in the power consumption which correspond to the
angle area where there is no minutiae matching in the reference fingerprint (red
lines in (2) vs. red markers in Fig. 4). This is due to the affine transformation of
the input fingerprint (single minutia) that does not match with a reference one.

We then tried to analyze the dependence between the angle of the submitted
fingerprint minutia and these drops on the trace. We processed several match-
ings with an increasing angle value and kept the trace for each match. Figure 5
shows the traces of 3 different matchings with an increasing angle value (not
consecutive).

The drops are shifted to the left when we start the registration with a higher
angle value. Increasing the angle of the input minutia from i to i+ 1 will cause

Studying Leakages on an Embedded Biometric System 289

Fig. 4. Power consumption during registration with a single minutia input fingerprint
(color figure online)

Fig. 5. Shifting drops in power consumption with 3 increasing input minutia angle
values

a shift in the starting reference minutia from the angle i − 1 to i. This means
that we can get the number of minutiae for each angle value by increasing the
angle value of the input minutia.

As we can see in Fig. 6, there is a strong dependence between the number of
minutiae for a chosen angle in the reference fingerprint and the drops shift in
power consumption. By observing the drops delay between two consecutive angle
values of input minutia for each possible angle value, we are able to get the dis-
tribution of the reference fingerprint minutiae angles (the number of minutiae
concerned by the ith angle value among the total number of minutiae). There are
only 64 matchings to perform.

4 Side Channel Attack on the Comparison Score

A traditional approach to enhance privacy is to hide the score that can be
exploited by Hill Climbing attacks in favor of a boolean answer. Therefore, we
investigate side channels in order to retrieve the score when not directly available
and thus we are able to climb back to the reference minutiae set.

290 M. Berthier et al.

Fig. 6. Comparison between the number of minutiae neighbors in reference fingerprint
and the value of drop shift

4.1 Introduction to Template Attack Combined with PCA

Template Attack. Template attack is a powerful statistical tool that is based
on the leakage profiling of a similar device, which allows to retrieve the secret
with less traces than differential attacks, or where these last ones simply fail [8].
Thus it is assumed that the adversary is in possession of an open similar device
on which the learning can be done. Thus a state/operation Si is character-
ized by computing its template TSi

= {μSi
, CovSi

} consisting of the mean and
the covariance matrix of the leakage traces respectively. In order to decrease
the learning stage complexity, the computation is restricted to relevant leakage
points as it will be discussed further in Sect. 4.2.

Therefrom, when another similar device is attacked, the adversary aims to
reveal an unknown Sx by computing the maximum likelihood. Computation of
the likelihood is done as the following:

p(L|S = Si) =
T∏

j=1

p(Lj |μSi
, CovSi

), where (3)

p(Lj |μSi
, CovSi

) =
1

√

(2π)N |Cov| × e
− 1

2 (Lj−μSi
)T Cov−1(Lj−μSi

). (4)

Where i ∈ {1, . . . , λ}, with λ the total number of possible states. T is the set
of leakage traces L each one of N samples.

Projection on Principal Components. Computation magnitude of the max-
imum likelihood increases according to the number of used samples in leak-
age traces, which may result in significant resources loads. Inversion of the
covariance matrix can also be one of the barriers prohibiting a direct computa-
tion of the likelihood. This may be due to the potential linearity between neigh-
bour samples. Therefrom the adversary can consider the Principal Component
Analysis [13] in order to keep only relevant informations (i.e., with maximum

Studying Leakages on an Embedded Biometric System 291

variance). This operation is done by projecting templates and leakage traces
into low dimensional subspaces. Computation of the principal components and
projection matrices is out of the scope of this paper (see [5]). Thus, in our attack
we use PCA to avoid covariance matrix issues.

4.2 Profiling and Attacking the Score Computation

The Hardware Implementation. For our analysis we focused on profiling the
score register consumption. The score computation stated in Eq. 1 is processed
as follows: first, the register that will hold the final score is used to accumu-
late all local scores. In fact, this accumulation requires a 22-bit register and
consists of the computation of the division nominator. Second, the accumulated
scores are normalized by the maxPairs denominator (see Sect. 2.2) by using a
restoring division. This technique is a naive Euclidean approach that processes
successive subtractions and comparisons, and outputs one quotient bit at each
clock cycle. The binary version of this approach relies on successive left shifts of
the nominator register which allows to reuse this register to store the quotient
bits successively in the LSB. Thus, at the first clock cycle of this computation
the score MSB is output and so on. Interestingly, the restoring division is one of
the standard implementation that is adopted by many processors and hardware
designers.

The Learning Phase. To perform the learning phase 10k traces were used. As
the target register is an LFSR, we assume the Hamming distance between two
consecutively computed bits as the leakage model. This results in two classes for
each of the 22 bits. In practice, in order to determine relevant leakage moments,
we compute the correlation coefficient between the ith bit model over all samples.
Figure 7a shows the correlation traces for the 16 LSB, in order of computation.
In fact, it turns out that the first 6 MSBs of the acquisition campaign have an
unbalanced parity of 0 and 1 (more than 90% equal to 0). Hence, for a proof of
concept, we consider that profiling and attacking remaining bits is sufficient.

The Attack Phase. The success rate metric is a simple statistical tool giving
the average of successful attacks on different sets of traces of different sizes.
In other words, it allows to determine the average of what an adversary can
achieve or expect with a certain amount of traces. For our attack, the amount of
traces to reach a success rate of 80 %, varies according to the targeted bit from a
single trace to 34 traces (the LSB need less traces). This is due to the low SNR
consequence of the intrinsic and ambient noise. Indeed, the activity leaked by
one register bit is low relatively to the rest of the device activity. In Fig. 7b we
plot the success rate with 100 attack retries on independent sets of traces.

5 Exploitation

We emphasized in the previous sections different information that are observed
through side channel from the comparison algorithm execution. We will explain
here an advanced strategy to exploit those information.

292 M. Berthier et al.

(a) Localization of relevant samples (b) Success rate of the template attack

Fig. 7. The proling and the attack results

5.1 Hill Climbing Attack

One of the possible attacks on a biometric system is to reach a positive veri-
fication using synthetic input minutiae sets rather than using the genuine user
fingerprint. A brute-force attack is very hard unless the verification system has
a significant discrimination error rate (false acceptance rate). This is due to the
amount of minutiae points in a fingerprint template (≈20–100) which results in
a possibility space of 22200 ((2(8+8+6))100) in the worst case. Note that, in this
rough estimation, we consider that the attacker has no knowledge on fingerprint
geometry and will take into account the whole possibility space. Fingerprints
with minutiae at the edges or with identical minutiae are hence considered.

A more efficient strategy exists: Authors of [22] used the Hill Climbing (HC)
heuristic to find modifications that increase the comparison score between syn-
thetic minutiae sets and the targeted reference set. It considers a starting set
of minutiae points which is iteratively modified and sent back to the matcher
module for score evaluation. An applied modification is kept only when the score
increases. Possible modifications on a minutiae set are:

1. Randomly translate or rotate a randomly selected minutia;
2. Add a minutia;
3. Replace a randomly selected minutia;
4. Delete a randomly selected minutia.

The heuristic stops when the synthetic set reaches the matcher validation
score for which sets are considered as sufficiently close to reference data. Thus,
the attack on the matcher combined with this private reference fingerprint tem-
plate is considered as a success.

Of course, the HC approach assumes that the attacker has a direct access
to the matcher input (i.e. the attacker is able to choose the input fingerprint)
and that the matching score is known (not only the binary OK/NOK result).
The first condition is verified in our case following the assumptions explained in

Studying Leakages on an Embedded Biometric System 293

Sect. 2.3. And we explained in the previous section how to retrieve the matching
score, thus we assume below that the score could be known.

5.2 Hill Climbing Improvement

In the previous description of Hill Climbing, the added and modified minutiae are
randomly chosen. This means that there are 222 = 256 × 256 × 64 possibilities
each time we have to add or modify a single minutia. Our study on power
consumption, as discussed in Sect. 3, gave some interesting information about
the reference fingerprint template: the number of minutiae per angle. The most
important information here is to have the distribution of the minutiae among
the 64 angles.

A simple way to use this knowledge is to pick a minutia according to a
distribution table. This distribution table, containing an associated probability
for each angle, is created thanks to the shift timings values from the previous
study. For each angle (64 matching executions) we store the time shift value
among the total of all the 64 time shifts (which correspond to the registration
step time).

To evaluate the improvement, we compared 3 different levels of Hill Climbing:

– Without optimization: new minutiae are picked randomly (equivalent to the
HC in [22] with a single initial guess).

– List mode: new minutiae are picked from a list of existing angles, but there is
no associated probability.

– Distribution mode: new minutiae are picked from a distribution table, with
probabilities deduced from side channel analysis and thus approximately cor-
responding to those of the reference fingerprint template.

Figure 8 shows the result of these 3 modes on 4 times averaged Hill Climbing.
It describes the score (vertical scale) among the matching iterations (horizontal
scale). The horizontal line depicts the score threshold above which the synthe-
sized fingerprint is accepted as corresponding to the reference one.

The distribution mode reaches the threshold score with 4000 iterations
instead of 8000 iterations for the two other modes. To achieve this improve-
ment, only 64 matching executions are necessary.

It has to be recalled (see Sect. 4.2) that the extraction of the score using the
profiled attack, needs roughly 34 traces at each iteration. This gives an idea of
the total number of traces needed to construct an approximation of the reference
fingerprint data.

Keeping the assumptions from Sect. 2.3 verified, we are able to succeed a Hill
Climbing with half the matching iterations otherwise needed. This improvement
is possible thanks to the information leaked via side channel while executing
biometric comparisons. We bet that deeper analysis of the side channel leakage
would probably lead to further improvement. This means that some specific
countermeasures have to be implemented to protect the biometric comparison
coprocessor from that kind of leakages.

294 M. Berthier et al.

Fig. 8. Hill Climbing result for 3 modes, each replayed and averaged 4 times

6 Countermeasures

In previous sections we presented an approach that may allow an adversary
to break through the simple countermeasure of hiding the score in order to
perform the HC again. We also showed how it can be possible to reduce the HC
needed iterations by a further exploitation of side channels. In this section, we
will describe one countermeasure for each threat previously identified. Many of
them require random numbers, which could be assumed coming from a random
generator from the smart card in which the biometric coprocessor is attached to.

6.1 Protecting the Score Computation

Manipulation of the comparison score, whether by normalization (our case) or
other approaches may leak sensitive information leading to its recovery. As stated
in Sect. 2.2, in order to produce a binary answer, normalization of the accumu-
lated score is followed by a comparison to acceptance threshold ScoreTh. This
operation can be expressed in a different way in manner to avoid normalization.
Thus the accumulated score is compared to a dynamically adjusted threshold.
This approach avoids the usage of a register which makes the combinatorial path
the main source of leakage. The answer computation is thus:

Here, the number of minutiae in the reference set sizeref is not considered
as a sensitive information. Thus, even if the decision is made in two cycles (i.e.
DyScoreTh is stored in a register) and the adversary succeeds in retrieving
sizeref , this last one is of a low entropy.

Studying Leakages on an Embedded Biometric System 295

AccuScore =
∑sizein

i=0 pair[i]
DyScoreTh = ScoreTh ×Max(sizein, sizeref)
if DyScoreTh � AccuScore then

Answer = 1
else

Answer = 0
end

Algorithm 3. Hiding score computation

6.2 Randomization of the Registration Phase by Masking

A first method to protect the information leakage during the registration part
is to start the registration from a randomly chosen rotation angle instead of
going systematically from Δθmin

to Δθmax
. This random offset value has to be

different for each fingerprint comparison to avoid the correlation between the
processing order and the orientation of the input minutiae. The same result can
be obtained by applying on the reference fingerprint a randomly chosen pre-
translation-rotation. This countermeasure would solve the incremental minutia
angle parse threat, but would not be efficient enough because reference minutiae
are still parsed in a sorted angle order. On average, 400 attempts of matching
with a same single minutia will give the 64 angles distribution, with a 90 %
success rate. In this case, the probability of obtaining the original minutiae parse
sequence is 1/64.

A better countermeasure is to completely randomize the processing sequence
regarding the orientation angle. An efficient way to achieve this is to use a
randomly generated mask to change the sequence order. There are 64 rotation
angles to test, thus a log2(64)-bit length vector rot a is used to iterate through
the sequence Δθmin

..Δθmax
. rot a⊕mask will give a random permutation of the

original sequence. As the angle parse order is changed (and not only the angle
start value), the drops on which we measure the time shift are split and other
may appear. In that way, the angles distribution of the reference fingerprint is
impossible to retrieve. The hardware cost of such a countermeasure is very small,
and the probability of obtaining the original minutiae parse sequence is increased
to 1/64!.

6.3 Input Fingerprint Requirements

The observation of the angles distribution of the reference minutiae is eased by
the fact that we are allowed to send and match a single minutia fingerprint, or
a fingerprint with several occurrences of the same minutia repeated. An either
simple countermeasure would be to disable matching if the submitted fingerprint
does not fulfill some basic requirements like:

– A minimum and maximum number of minutiae.
– No duplicated minutiae.

296 M. Berthier et al.

6.4 Random Additional Cycles During Pairing Phase

The pairing phase leaks some information about the reference fingerprint minu-
tiae number. This information alone is not enough to improve a Hill Climbing
attack, but it can still be protected with a low cost countermeasure.

As we have seen on Fig. 3, it is easy to count the number of cycles inside
a reference minutia loop, and hence get the minutiae number of the reference
fingerprint. Adding a random number of extra cycles per reference minutia loop
would break this leakage and create a random delay effect on the whole pairing
step. The idea is to choose a single random value Rng FP which will be common
to all reference minutiae loops, and an additional one Rng minui, different for
each loop.

For instance, if Rng FP is chosen with a maximum of 20 % of the reference
minutiae number (Rng FP ∈ [0; 0.2 ∗ sizeref]), and Rng minui are chosen with
max of 10 %, the average global extra computation time on pairing step will be
15 %. This is a low cost countermeasure as the pairing step represents less than
10 % of the whole matching process.

7 Conclusion

In this paper, we analyzed, for the first time, the potential information leakages
of a hardware biometric comparison module that relies on state of the art fin-
gerprint comparison techniques. We pointed out that we can find out relevant
information of the private reference fingerprint template by the means of side
channel analysis. These informations, together with a template attack to retrieve
the value of the comparison score, enable us to mount an improved hill climbing
attack to approach the reference template. This shows the need to protect the
implementation. Fortunately, there are some simple countermeasures that can
be used to thwart the information leakages. Our future work will thus cover
the design study of a secure biometric coprocessor by including such kind of
countermeasures.

Acknowledgment. This work has been partially funded by the French ANR project
BMOS and by the European FP7 BEAT project (SEC-2011-284989). The authors
would like to thank the other BMOS partners, especially Thibault Porteboeuf from
Secure-IC, for their help on the FPGA prototype.

References

1. http://www.rcis.aist.go.jp/special/SASEBO/SASEBO-GII-en.html
2. Fingerprint Verification Competition. http://biolab.csr.unibo.it/FVCOnGoing/
3. Fingerprint Verification Competition (2004). http://bias.csr.unibo.it/fvc2004/
4. Iso/iec 19794-2 information technology - biometric data interchange formats - part

2: Finger minutiae data

http://www.rcis.aist.go.jp/special/SASEBO/SASEBO-GII-en.html
http://biolab.csr.unibo.it/FVCOnGoing/
http://bias.csr.unibo.it/fvc2004/

Studying Leakages on an Embedded Biometric System 297

5. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks
in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1–14. Springer, Heidelberg (2006)

6. Barral, C., Vaudenay, S.: A protection scheme for moc-enabled smart cards. In:
2006 Biometrics Symposium: Special Session on Research at the Biometric Con-
sortium Conference, pp. 1–6. IEEE (2006)

7. Bistarelli, S., Santini, F., Vaccarelli, A.: An asymmetric fingerprint matching algo-
rithm for java card TM. Pattern Anal. Appl. 9(4), 359–376 (2006)

8. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar,
C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)

9. Chouta, T., Danger, J.-L., Sauvage, L., Graba, T.: A small and high-performance
coprocessor for fingerprint match-on-card. In: DSD, pp. 915–922. IEEE (2012)

10. Cucinotta, T., Brigo, R., Di Natale, M.: Hybrid fingerprint matching on program-
mable smart cards. In: Katsikas, S.K., López, J., Pernul, G. (eds.) TrustBus 2004.
LNCS, vol. 3184, pp. 232–241. Springer, Heidelberg (2004)

11. Galbally, J., Carballo, S., Fierrez, J., Ortega-Garcia, J.: Vulnerability assessment
of fingerprint matching based on time analysis. In: Fierrez, J., Ortega-Garcia,
J., Esposito, A., Drygajlo, A., Faundez-Zanuy, M. (eds.) BioID MultiComm2009.
LNCS, vol. 5707, pp. 285–292. Springer, Heidelberg (2009)

12. Govan, M., Buggy, T.: A computationally efficient fingerprint matching algorithm
for implementation on smartcards. In: First IEEE International Conference on
Biometrics: Theory, Applications, and Systems, 2007, BTAS 2007, pp. 1–6. IEEE
(2007)

13. Jolliffe, I.: Principal Component Analysis. Wiley Online Library, New York (2005)
14. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,

and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

15. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

16. Martinez-Diaz, M., Fierrez-Aguilar, J., Alonso-Fernandez, F., Ortega-Garcia, V.,
Siguenza, J.: Hill-climbing and brute-force attacks on biometric systems: a case
study in match-on-card fingerprint verification. In: Proceedings 2006 40th Annual
IEEE International Carnahan Conferences Security Technology, pp. 151–159. IEEE
(2006)

17. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): measures and
counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)

18. Ratha, N.K., Connell, J.H., Bolle, R.M.: An analysis of minutiae matching
strength. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp.
223–228. Springer, Heidelberg (2001)

19. Reisman, J., Uludag, U., Ross, A.: Secure fingerprint matching with external reg-
istration. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol.
3546, pp. 720–729. Springer, Heidelberg (2005)

20. Tiri, K., Hwang, D., Hodjat, A., Lai, B.-C., Yang, S., Schaumont, P., Verbauwhede,
I.: AES-based cryptographic and biometric security coprocessor IC in 0.18- µm
CMOS resistant to side-channel power analysis attacks. In: 2005 Symposium on
VLSI Circuits 2005. Digest of Technical Papers, pp. 216–219 (2005)

21. UCLA. Thumbpod: a next generation biometrically secure wireless embedded sys-
tem. http://www.emsec.ee.ucla.edu/thumbpod

http://www.emsec.ee.ucla.edu/thumbpod

298 M. Berthier et al.

22. Uludag, U., Jain, A.K.: Attacks on biometric systems: a case study in fingerprints.
In: Delp, E.J., Wong, P.W. (eds.) Security, Steganography, and Watermarking of
Multimedia Contents. Proceedings of SPIE, vol. 5306, pp. 622–633. SPIE (2004)

23. Yang, S., Sakiyama, K., Verbauwhede, I.: Efficient and secure fingerprint verifi-
cation for embedded devices. EURASIP J. Adv. Signal Process. 2006(1), 058263
(2006)

24. Yang, S., Verbauwhede, I.: Automatic secure fingerprint verification system based
on fuzzy vault scheme. In: IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP 2005), pp. 609–612 (2005)

On the Security of RSM - Presenting 5
First- and Second-Order Attacks

Sebastian Kutzner1,2(B) and Axel Poschmann1,2

1 Physical Analysis and Cryptographic Engineering,
Temasek Laboratories@NTU, Singapore, Singapore

{skutzner,aposchmann}@ntu.edu.sg
2 School of Physical and Mathematical Sciences, Division of Mathematical Sciences,

Nanyang Technological University, Singapore, Singapore

Abstract. Lightweight cryptography and efficient implementations,
including efficient countermeasures against side-channel analysis, are of
great importance for embedded devices, and, consequently, a lot of
progress has been done in this area in recent years. In 2012, the RSM
masking scheme [15] was introduced as an efficient countermeasure
against side-channel attacks on AES. RSM has no time penalty, only
reasonable area overhead, uses only 4 bit of entropy, and is deemed to be
secure against univariate first- and second-order attacks. In this paper we
first review the original practical security evaluation and discuss some
shortcomings. We then reveal a weakness in the set of masks used in
RSM, i.e., we found that certain pairs of masks have a constant differ-
ence. This weakness is subsequently exploited to mount five different side-
channel attacks against RSM: a univariate first-order CPA enabled by
simple pre-processing and a variant of a first-order correlation-enhanced
collision attack, both on a smart card implementation, and a univariate
second-order CPA as well as two first- and second-order collision attacks
against an FPGA implementation. All five attacks show how such a vul-
nerability in the mask set can undermine the security of the scheme and
therefore highlight the importance of carefully choosing the masks.

Keywords: Side-channel analysis · RSM · Smart card · FPGA · CPA ·
First-order attack · Second-order attack · Collision

1 Introduction

Embedded devices are already ubiquitous, and an ongoing trend is to inter-
connect them both to private as well as public networks, i.e., the Internet. At
the same time, new services and revenue models are developed for the changed
IT landscape, and one example is the so-called industrial Internet. Therefore,
privacy, confidentiality and authenticity are of great concern, which can be
effectively achieved by using modern cryptographic algorithms. However, even
security-enabled devices implementing proper cryptographic algorithms can be
easily broken by power analysis attacks [9]. Power analysis exploits the fact that
c© Springer International Publishing Switzerland 2014
E. Prouff (Ed.): COSADE 2014, LNCS 8622, pp. 299–312, 2014.
DOI: 10.1007/978-3-319-10175-0 20

300 S. Kutzner and A. Poschmann

the power consumption of a device is correlated to the processed values, which
enables an adversary to gain additional information about the inner workings
of the cryptographic algorithms, and eventually leads to a security breach, e.g.,
extraction of the secret key.

Since the introduction of side-channel attacks, there is an ever ongoing arms
race between attackers and defenders. A wide variety of different countermea-
sures have been proposed, e.g., hiding and masking, which aim at breaking the
link between the observable side-channel and the processed data. The main prob-
lem usually is that most of the countermeasures cause a high overhead regarding
memory and processing time, which are particularly scarce resources for embed-
ded devices. Thus lightweight countermeasures are of particular interest for these
devices and plenty of research was conducted in this field, e.g., [16].

At DATE 2012 the RSM [15] scheme was introduced as a very lightweight
masking countermeasure against side-channel attacks targeting AES. It causes no
timing overhead and only reasonable memory overhead, and is provably secure
against first- and second-order univariate attacks. Furthermore, and probably
more important, it only requires 4 bit of randomness for each encryption while
other schemes require random bits equal to (or multiples of) their state size.
It should be noted here that generating random numbers is very expensive and
time consuming on embedded devices, thus recent research aims at reducing the
randomness needed, e.g., [8].

RSM uses 4 bits of randomness to determine the initial rotation of 16 fixed
and publicly known masks. It is noteworthy to point out that the security of the
RSM scheme is solely based on the secrecy of this initial value. In our first attack
we show how, with simple pre-processing, encryptions using the same initial
value can be filtered which enables a subsequent first-order correlation power
analysis (CPA) [3] attack. This attack is conducted on the RSM implementation
taken from the DPA contest v4 [7]. Our remaining attacks exploit a weakness
we found in the fixed masks, i.e., certain combinations of these masks have
a constant difference. We show how this property can be exploited to mount
different attacks on both smart card as well as FPGA implementations and
undermine the security of the scheme.

The remainder of this paper is organized as follows. In Sect. 2 the RSM
scheme is introduced and its original security evaluation and the selected masks
(and their shortcomings) are discussed. Subsequently, in Sect. 3 our measure-
ment setup is described. Then two attacks on smart card implementations of
RSM (Sect. 4) and three attacks on FPGA implementations of RSM (Sect. 5)
are presented. Finally, we conclude the paper in Sect. 6.

2 The RSM Countermeasure

This section briefly recalls the RSM countermeasure before we discuss the origi-
nal security evaluation in more detail. Finally, we describe some important obser-
vations regarding several mask sets in RSM.

On the Security of RSM 301

2.1 Introduction to RSM

Rotating S-box Masking (RSM) is a boolean masking scheme for AES and was
introduced in [15]. It is very efficient since it does not introduce a timing overhead
and only causes a small area overhead. Furthermore, it only needs 4 bit of entropy
per encryption, which define the so-called starting rotation offset.

16 masked S-boxes have to be pre-calculated once, based on 16 8-bit base
masks mi (yielding a 128-bit mask M = {m0, ...,m15}), which are fixed through-
out the lifetime of the device and are public information (see Sect. 2.3). The
masked S-boxes fulfill the following property:

Si(xi ⊕ ki ⊕mi) = SAES(xi ⊕ ki)⊕m(i+1)%16, ∀i ∈ {0, 15} (1)

Furthermore, 16 128-bit constants CSRMCi are needed to correct the masked
state after each linear layer, i.e., ShiftRows and MixColumns. The constants ful-
fill the following property:

CSRMCi = (M >>> i)⊕ ShiftRows(MixColumns(M >>> i)), ∀i ∈ {0, 15}
(2)

where >>> means byte-wise rotation. Since the last round has no MixColumns,
16 more constants CSRi have to be calculated as in Formula 2, but without the
MixColumns operation.

The encryption works as follows:

1. Choose random starting rotation index j ∈R {0, 15}
2. Mask plaintext P with M >>> j and perform AddRoundKey
3. Do ten times:

(a) For every byte i ∈ {0, 15} calculate Sj+i(pi ⊕mj+i ⊕ ki,r) = SAES(pi ⊕
ki,r)⊕mj+i+1, i.e., the output is now masked with M >>> (j +1) mean-
ing every output byte is masked with the mask byte mj+i+1 succeeding
the input mask byte mj+i

1.
(b) Perform ShiftRows, MixColumns and AddRoundKey on the masked state.
(c) Xor with CSRMCj to compensate for linear layer, such that the state is

again masked with M >>> (j + 1).
(d) j = j + 1.

4. Perform final SubBytes, ShiftRows and AddRoundKey.
5. Xor final constant CSRj which automatically unmasks the state.

2.2 Discussion About Original Security Evaluation

In this section we discuss the original security evaluation of the RSM scheme
presented in [15], which was implemented on an FPGA as described in [2]. It is
well known that the number of traces required to successfully break any imple-
mentation by side-channel analysis depends on the Signal-to-Noise-Ratio (SNR)

1 All operations are %16.

302 S. Kutzner and A. Poschmann

of the recorded power/EM traces. It is thus greatly dependent on both the leak-
age characteristics of the target device and the measurement setup. While the
former part can be normalized to a certain degree –e.g. by using the same imple-
mentation on a similar target device– the latter is a particular challenge due
to a great range of varying experimental parameters. Most notably are envi-
ronmental conditions (temperature, humidity), cleanliness of the power supply,
pre-processing techniques (alignment, low-pass filters) amongst others. All these
factors can have a great influence on the SNR, and thus the number of traces
required. As a consequence, it is common practice in security evaluations to take
a worst-case scenario assumption, which means for the designer of a counter-
measure to record many more times traces than one assumes (or better, shows)
are required.

It was shown in e.g., [10,14], that a few million traces are needed to exploit
remaining first-order or second-order leakage. Taking these numbers into con-
sideration, it seems that the 150,000 measurements taken during the original
security evaluation in [15] may be too few to reliably prove the security of RSM.
Furthermore, the authors may have chosen a non-optimal model for their secu-
rity evaluation. When conducting an attack with known masks and targeting
the Hamming distance between subsequent S-box inputs as proposed in [15], we
were not able to mount a successful attack. The reason might be that the BRAM
address register, which is used as state register in this implementation [2], does
not have enough load and hence does not cause enough leakage to be exploitable
[1]. Instead, the output latch of the BRAM should be targeted.

Figure 1 shows the result of a CPA (with known masks) targeting the Ham-
ming distance between the initial latch value of the BRAM after a reset and
the S-box output of the first round. As one can see, the correct key hypothesis
yields the highest correlation, therefore successfully verifying our updated attack
model and our setup.

To re-verify the security of the RSM scheme, we repeated the original security
analysis, i.e., a first- and second-order CPA on 10 million traces, targeting the
output latch as described above. As expected, both attacks fail, see Fig. 2. We
also performed a mutual information analysis, which in theory (and verified
in simulations) is able to break RSM. Nevertheless, 10 million traces were not
enough to identify the correct key which confirms the statement that RSM has
very little leakage in general.

Fig. 1. CPA with known masks

On the Security of RSM 303

(a) Result of First-Order CPA (b) Result of Second-Order CPA

Fig. 2. Results of CPA attacks

2.3 Mask Properties

The following are the base masks which are used in the DPA contest v4 and in
the original FPGA implementation in [15].

[0x00, 0x0f, 0x36, 0x39, 0x53, 0x5c, 0x65, 0x6a, 0x95, 0x9a, 0xa3, 0xac, 0xc6, 0xc9, 0xf0, 0xff] (3)

In the original paper a SAT solver was used to generate this mask set with the
goal to minimize leakage. The authors do not mention if the mask set has to fulfill
certain properties, but when looking at the 16 masks it can be seen that 14 of
the 16 masks have a Hamming weight of 4 and the Hamming distance between
them is 4 as well. We are guessing that these masks follow a so-called binary
constant weight code, and it can be seen in [4] that it is indeed only possible to
find 14 values which fulfill these properties for n = 8, d = 4 and w = 4. However,
looking at other masks provided by the authors and [5], we were not able to find
a corresponding code or special properties. Hence, the question remains what
general properties a mask set has to fulfill to minimize leakage, in particular
second-order leakage.

In this paper we focus on the original mask set. By calculating the pair-wise
differences between each base mask, we found the following special property
which is true for all mask values (0 ≤ i ≤ 7):

mi = mi+8 ⊕ 0x95 (4)

This constant difference may have been overlooked, and we will show in the
next sections how to exploit this property to mount successful attacks against
the RSM scheme. We also analyzed three other mask sets, two of which also
showed a constant difference of 0x8d and 0xff , respectively. The third did not
show this weakness but certain distances between mask pairs showed a clear bias
towards certain mask differences. These biases might be exploitable as well, but
will not be the topic of this paper.

3 Experimental Setup

We used two measurement setups for our analyses. Our smart card measurements
were obtained using an Infineon raw SC reader and an AVR FunCard hosting

304 S. Kutzner and A. Poschmann

an ATmega163 microcontroller. This is the same platform used to record the
traces for the DPA contest v4. Our FPGA measurements were obtained from
a SASEBO G-II evaluation platform. The SASEBO G-II hosts two FPGAs,
i.e., a control FPGA (Xilinx XC3S400A-4FTG256, Spartan-3A series) and a
cryptographic FPGA (Xilinx XC5VLX50-1FFG324, Virtex-5 series) which is
decoupled from the rest of the board in order to minimize electronic noise from
the surrounding components. It was supplied with a voltage of 1 V by an external
stabilized power supply as well as with a 2 MHz clock derived from the 24 MHz
on-board clock oscillator. The power consumption is measured in the VDD line
by using a current probe. All power traces are collected with a LeCroy WR610Zi-
s-32 oscilloscope at a sampling rate of 1 GS/s. Figure 3 shows two sample traces
of the smart card and FPGA implementation, respectively.

(a) Whole encryption on an FPGA (b) First round on a smart card

Fig. 3. Sample side-channel traces of RSM

4 Attacking a Smart Card Implementation of RSM

In this section we present two attacks on the smart card implementation of RSM.
We used the smart card implementation of RSM which can be downloaded from
the DPA contest v4 homepage [7]. We programmed the unmodified hex-file on
a FunCard with an Atmel ATmega 163 micro-processor, which is the suggested
platform. We repeated the measurements with our own setup since the publicly
available traces omitted the index update j = (j + 1)%16, although it belongs
to the round function (see step 3d in previous section) and is the target of one
of our attacks.

4.1 Univariate First-Order CPA Attack Using Pre-processing

Our first (profiled) attack targets the smart card implementation and actually
does not yet exploit the constant mask difference we presented before. Instead,
this attack uses simple pre-processing to filter out traces using the same initial
rotation offset, which, as explained before, is key for the security and must be
random in every encryption and kept secret.

On the Security of RSM 305

As explained in Sect. 2.3 the masks are rotated by one position after every
round, therefore the rotation index must be updated to keep track of the rotation.
This is done in the software implementation by the following line of code:

j[0] = (j[0] + 1)%16; (5)

where j[0] is the current rotation index.
We know that in CMOS logic the power consumption is highly dependent

on the Hamming weight of the processed value [13], i.e., processing a value
with Hamming weight 0 will have a distinguishable power consumption from
processing Hamming weight 4. Furthermore, Hamming weight 0 and 4 uniquely
determine the processed values, i.e., 0 and 15 (since the rotation index is only 4
bit). For our attack we tried to identify if the Hamming weight of the updated
rotation index after the first round equals 0, which in return means that the
initial rotation index was j[0]=15. Note that if the initial rotation index is
known, all masks are uniquely determined.

Figure 4 shows two average traces of the first encryption round recorded dur-
ing profiling (i.e., we know all j[0]), one representing the group of traces when
the starting index j[0]=15 and the other j[0]!=15. The bottom trace shows
the difference and one can clearly identify a peak around sample 98,000, where
we assume the index update takes place. For all measurements we integrated
over all samples in this particular clock cycle and applied the k-means clus-
tering algorithm [12]. The k-means clustering algorithm takes n measurements,
tries to group them into k groups and returns the best thresholds to distinguish
between these groups. Since we have five Hamming weights here, i.e., 0− 4, we
chose k = 5.

Fig. 4. Two average traces and their difference

306 S. Kutzner and A. Poschmann

To filter out traces we used the threshold given by the k-means clustering
algorithm to identify the processing of Hamming weight 0, i.e., j[0]=15. All
filtered traces were then used in a standard first-order CPA attack targeting
the Hamming weight of the S-box output. Although some false-positives were
included in the CPA, only 90 traces were needed for the key recovery, c.f. Fig. 5.
As we can see, there are two clear correlation peaks which correspond to the
S-box calculation itself and loading the S-box output from memory again to
perform the following ShiftRows operation. Note that since we only use roughly
every 16th trace because of the filtering process, we need approximately 1,500
measurements in total to mount this attack.

Fig. 5. CPA on pre-processed traces

4.2 First-Order Correlation-Enhanced Collision Attack

This attack exploits the fact that two S-boxes with distance 8 in the first round
use masks with a constant difference, as described in the previous section. We
know that

Si(xi ⊕ ki ⊕mi)⊕ Si+8(xi+8 ⊕ ki+8 ⊕mi+8) = (6)
SAES(xi ⊕ ki)⊕ SAES(xi+8 ⊕ ki+8)⊕ 0x95 (7)

Therefore we know that if

SAES(xi ⊕ ki) = SAES(xi+8 ⊕ ki+8)⊕ 0x95 (8)

then also the following is true

Si(xi ⊕ ki ⊕mi) = Si+8(xi+8 ⊕ ki+8 ⊕mi+8) (9)

and hence we know we have a collision regarding the S-box output.

On the Security of RSM 307

In a standard correlation-enhanced collision attack [14] one averages multiple
traces corresponding to the same plaintext byte. Here we cannot do this since the
masks are different in every measurement and averaging would actually destroy
all information. Therefore, all measurements have to be compared individually.
The attack is similar to [6] and works as follows:

1. For every measurement n and key hypotheses ki and ki+8 check if SAES(xi,n⊕
ki) = SAES(xi+8,n ⊕ ki+8) ⊕ 0x95 and save the measurement in a group
corresponding to its key hypotheses, resulting in 216 different groups.

2. Then, for every group, calculate the correlation between the power consump-
tions of two time instances over all measurements. Note that we know the
distance between these time instances corresponding to the calculation of Si

and Si+8 since single S-box look-ups are clearly identifiable in the power trace.
Therefore, we only have to compare every sample s with sample s+distance.

3. If the key hypotheses are correct and the two time instances correspond to
the time instances where Si and Si+8 were processed, we will get a high
correlation.

Analyzing some averaged power traces (by visual inspection) we determined
the distance between the calculation of two S-boxes with distance 8, i.e., 11287
samples. Figure 6 shows the result of our attack targeting S0 and S8, and we
can clearly identify a correlation peak for the correct key hypothesis (plotted
in black) at sample 53841. We used the same traces as in the last section, i.e.,
taken with the implementation from the DPA contest v4. Note that this attack
is deemed to be a first-order attack, since we neither combine samples from
our measurements (we only compare) nor pre-process them in any way, e.g., by
squaring.

5 Attacking an FPGA Implementation of RSM

In this section we present three attacks on the FPGA implementation of RSM.
The FPGA implementation is the original implementation of the RSM scheme
taken from [15] and implemented following the idea of [2].2

5.1 Univariate Second-Order CPA Attack

In this attack we will show how to exploit the constant mask difference to mount
a univariate second-order attack.

Based on our findings in Sect. 2.3 we know the following holds true for some
intermediate value I(ki, ki+8):

I(ki, ki+8) = Si(xi ⊕ ki ⊕mi)⊕ Si+8(xi+8 ⊕ ki+8 ⊕mi+8)
= SAES(xi ⊕ ki)⊕mi+1 ⊕ SAES(xi+8 ⊕ ki+8)⊕mi+8+1

= SAES(xi ⊕ ki)⊕ SAES(xi+8 ⊕ ki+8)⊕ 0x95

2 We would like to thank the authors for providing the implementation.

308 S. Kutzner and A. Poschmann

Fig. 6. Correlation-enhanced collision attack on the first round

which an attacker can calculate without knowing the masks. Hence, as power
model, the attacker calculates the Hamming distance between the S-box outputs
(with the distance of the two S-boxes being 8) and the previous register values
and XORs them together with the constant 0x95. Using this model an attacker
has to test 216 key hypotheses. Since the two S-boxes are processed in parallel
the power consumption can be estimated by the sum of their individual power
consumptions. However, the XOR between two variables does not correlate with
the sum of their power consumptions, but as shown in [17], it is possible to
mount a CPA on the XOR of two in parallel processed variables if the power
traces are squared beforehand, i.e., by exploiting the variances.

Figure 7 depicts the results of the univariate second-order attack exploit-
ing the constant mask difference analyzing 10,000,000 traces. The correct key
hypothesis can be clearly distinguished around sampling point 2000. Approxi-
mately 1,500,000 traces are needed until the correct key hypothesis yields the
highest correlation.

5.2 Two More Collision Attacks

In this section we present two different collision attacks. In contrary to the
other attacks we were only able to verify them in simulations and simplified
measurements so far, due to their complexity. Nevertheless, we believe that both
attacks are interesting and might be applied in real-world scenarios in the future.

The first collision attack exploits the fact that we are able to force collision
between two S-boxes in the first round. We know that if

pi+8 = S−1
AES(SAES(pi ⊕ ki)⊕ 0x95)⊕ ki+8 (10)

this will result in a collision between Si and Si+8. We observed that the
power consumption over multiple measurements shows a higher variance if two

On the Security of RSM 309

Fig. 7. Univariate second-order CPA exploiting constant mask difference

S-boxes always collide than if they have random outputs. A similar observation
was made in [11]. Based on key hypotheses for ki and ki+8 an attacker can
build groups of traces which (supposedly) collide (verifying Eq. 10) in every
measurement and calculate the variances of these groups for every point in time.
The highest variance indicates the correct key. Figure 8 shows the result of a
simulated attack with the keys ki = 0x12 and ki+8 = 0x24. For the simulation
we estimated the power consumption of in parallel processed masked S-boxes
by calculating the sum of the individual Hamming weights of the S-box outputs
(Hamming distance can be used accordingly), and added Gaussian noise. As
one can see the variance of the measurements corresponding to the correct key
hypotheses (0x1224 = 4644) is clearly the highest.

In our last attack we try to exploit collisions between the first and last round.
We know that the masks are rotated by one in every round, hence, for example,
S0 in the first round uses the same output mask as S7 in the last round. Given a
plaintext p and a ciphertext c, where pi and ci are the ith nibble of the plaintext
and ciphertext, respectively, and ki,j is the ith nibble of the subkey in the jth

round, we need to check if

SAES(p0 ⊕ k0,0) = c11 ⊕ k11,10 (11)

For the correct key hypotheses the side-channel measurements of the S-box
outputs of round 1 and round 10 will always collide, and hence will have a similar
power consumption. Note that for this attack an adversary has to know input
and output of an encryption while for classical attacks either input or output is
sufficient.

However, such collisions do not happen very often with random plaintexts.
Therefore, an adversary has to precompute sets of plaintexts, given a hypothesis
for k0,0 and k11,10, which fulfill Eq. 11, and perform side-channel measurements

310 S. Kutzner and A. Poschmann

Fig. 8. Forced collisions attack on first round

Fig. 9. Collision attack between first and last round

with every one of these precomputed sets. Since this process takes a lot of time,
we were only able to build 4 different sets, one with the correct hypothesis and
three with wrong hypotheses (instead of 216 sets), and measured 1,000,000 traces
for each set. As before, since the masks are chosen randomly and therefore every
S-box has a different output mask in every measurement, we are not able to
average multiple traces with the same plaintext or ciphertext as it is done in a
classical correlation-enhanced collision attack. Instead, we have to compare the
S-box outputs for every trace individually, similar to [6].

Figure 9 shows the result of our (shortened) attack. The 4 plots represent
the correlation between the power consumptions of the two clock cycles where
the S-box outputs in round 1 and round 10 are calculated, with the black plot
representing the set taken with the correct key. The correct key should yield the
highest correlation since then the S-boxes always collide, and as can be seen,
this is indeed the case. It should be noted that although the (here simplified)

On the Security of RSM 311

attack works, it might be too costly to generate 216 sets of plaintexts and take
1,000,000 measurements for every set.

6 Conclusion

In this paper we re-evaluated the security analysis of the RSM scheme presented
in [15]. We showed that the attack model used in the original evaluation was not
optimal, therefore presented an updated model, repeated the security analysis
and confirmed that RSM is indeed secure against classical univariate first- and
second-order attacks.

Second, we found a constant difference between base masks with certain
distance. Based on this vulnerability we presented five different attacks, two
on the smart card implementation used in the DPA contest v4 and three on
the original FPGA implementation, which can undermine the security of RSM.
These attacks have shown that the base masks have to be very carefully chosen.
Two of three other analyzed sets showed the same vulnerability, while the third
showed a clear bias towards certain differences.

Future research will investigate if this bias can be exploited as well. Another
interesting task will be the definition of special properties to minimize leakage
while circumventing constant differences or biases, i.e., the generation of secure
mask sets.

Acknowledgments. The authors would like to thank Thomas Peyrin and Ivica
Nikolic for the fruitful discussions and Marc Stöttinger for the pointer to the k-means
algorithm. We would also like to thank the reviewers for their valuable comments which
greatly helped to improve this paper.

References

1. Bhasin, S., Guilley, S., Heuser, A., Danger, J.L.: From cryptography to hardware:
analyzing and protecting embedded xilinx bram for cryptographic applications. J.
Cryptographic Eng., 1–13 (2013)

2. Bhasin, S., He, W., Guilley, S., Danger, J.L.: Exploiting fpga block memories for
protected cryptographic implementations. In: 2013 8th International Workshop on
Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC), pp. 1–8.
IEEE (2013)

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004)

4. Brouwer, A.E., Shearer, J.B., Sloane, N.J., Smith, W.D.: A new table of constant
weight codes. IEEE Trans. Inf. Theor. 36(6), 1334–1380 (1990)

5. Carlet, C., Guilley, S.: Side-channel indistinguishability. In: Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security and
Privacy, p. 9. ACM (2013)

6. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Improved collision-
correlation power analysis on first order protected AES. In: Preneel, B., Takagi, T.
(eds.) CHES 2011. LNCS, vol. 6917, pp. 49–62. Springer, Heidelberg (2011)

312 S. Kutzner and A. Poschmann

7. Digital Electronic Systems research group: DPA Contest v4 (2013). http://www.
dpacontest.org/v4/

8. Guilley, S., Bhasin, S., Najm, Z., Danger, J.L.: A low-entropy first-degree secure
provable masking scheme for resource-constrained devices (2013)

9. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

10. Kutzner, S., Nguyen, P.H., Poschmann, A., Wang, H.: On 3-share threshold imple-
mentations for 4-bit s-boxes. IACR Cryptology ePrint Archive 2012, 509 (2012)

11. Li, Y., Sakiyama, K., Batina, L., Nakatsu, D., Ohta, K.: Power variance analysis
breaks a masked asic implementation of AES. In: Proceedings of the Conference
on Design, Automation and Test in Europe, pp. 1059–1064. European Design and
Automation Association (2010)

12. MacQueen, J., et al.: Some methods for classification and analysis of multivariate
observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, California, USA, vol. 1, p. 14 (1967)

13. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks: Revealing the secrets
of smart cards, vol. 31. Springer (2007)

14. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis col-
lision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol.
6225, pp. 125–139. Springer, Heidelberg (2010)

15. Nassar, M., Souissi, Y., Guilley, S., Danger, J.L.: RSM: a small and fast counter-
measure for AES, secure against 1st and 2nd-order Zero-Offset SCAs. In: Design,
Automation & Test in Europe Conference & Exhibition (DATE) 2012, pp. 1173–
1178. IEEE (2012)

16. Poschmann, A., Moradi, A., Khoo, K., Lim, C.W., Wang, H., Ling, S.: Side-channel
resistant crypto for less than 2,300 ge. J. Cryptology 24(2), 322–345 (2011)

17. Waddle, J., Wagner, D.: Towards efficient second-order power analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004)

http://www.dpacontest.org/v4/
http://www.dpacontest.org/v4/

Author Index

Agoyan, Michel 82
Aoki, Takafumi 214

Banciu, Valentina 29
Battistello, Alberto 69
Berthier, Maël 281
Bettale, Luk 129
Bocktaels, Yves 281
Bringer, Julien 281

Carbone, Mathieu 82
Chabanne, Hervé 281
Chen, Zhizhang (David) 243
Choudary, Omar 179
Chouta, Taoufik 281
Courbon, Franck 229

Danger, Jean-Luc 281
Dottax, Emmanuelle 129
Ducharme, Gilles R. 82
Dumas, Cécile 199
Durvaux, François 112

Endo, Sho 214

Favre, Mélanie 281
Fournier, Jacques J.A. 229
Fuji, Hitoshi 214

Genelle, Laurie 129
Gierlichs, Benedikt 1, 98
Giraud, Christophe 56
Graba, Tarik 281
Guilley, Sylvain 9
Gustin, Ludovic-Henri 112

Hajra, Suvadeep 161
Hayashi, Yu-ichi 214
Heuser, Annelie 9
Homma, Naofumi 214

Imbert, Laurent 144

Joye, Marc 41

Karroumi, Mohamed 41
Kerckhof, Stéphanie 112
Kuhn, Markus G. 179
Kutzner, Sebastian 299

Lambert-Lacroix, Sophie 199
Linge, Yanis 199
Loubet-Moundi, Philippe 229

Markantonakis, Konstantinos 261
Maurine, Philippe 82, 144
Mayes, Keith 261
Msgna, Mehari 261
Mukhopadhyay, Debdeep 161

Naccache, David 261

O’Flynn, Colin 243
Ordas, Sébastien 82
Oswald, Elisabeth 29

Perin, Guilherme 144
Piret, Gilles 129
Poschmann, Axel 299

Reparaz, Oscar 1, 98
Richard, Benjamin 41
Rioul, Olivier 9

Standaert, François-Xavier 112

Takahashi, Junko 214
Teglia, Yannick 82
Tiran, Sébastien 82
Tria, Assia 229
Torres, Lionel 144

Verbauwhede, Ingrid 1, 98
Verleysen, Michel 112

	Preface
	Organization
	Contents
	A Note on the Use of Margins to Compare Distinguishers
	1 Introduction
	2 Two Distinguishers
	2.1 Description
	2.2 Properties
	2.3 Margins for D1 and D2

	3 Discussion
	3.1 The Shape of the Margins Is Also Different
	3.2 Objection: D2 is Pathologic
	3.3 What is Left to Compare Distinguishers?

	4 Conclusion
	References

	A Theoretical Study of Kolmogorov-Smirnov Distinguishers
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Conditions
	2.3 Multi-bit vs One-bit Leakage Models

	3 Study of Theoretical KS Distinguishers
	3.1 A Note on DPA/CPA
	3.2 KS Side-Channel Distinguishers
	3.3 Noise Factorization
	3.4 Proof of Soundness
	3.5 Simple Closed-Form Expression
	3.6 Discussion about the Closed-Forms of DPA and (i)KSA

	4 Confusion Coefficient Versus Cryptanalytical Metrics
	4.1 Relationship between (k,k) and Differential Metrics
	4.2 Relationship to Closed-Form Expressions
	4.3 Practical Evaluation
	4.4 Research of SCA-aware S-Boxes

	5 Conclusions and Perspectives
	References

	Pragmatism vs. Elegance: Comparing Two Approaches to Simple Power Attacks on AES
	1 Introduction
	2 A Brief Recap of AES
	2.1 AES Encryption Round
	2.2 AES Key Schedule
	2.3 Further Implementation Aspects

	3 Pragmatic Attack on AES
	3.1 Attack Results

	4 Elegant Attack on AES
	4.1 Solver-Specific Requirements
	4.2 Attack Results

	5 Conclusion
	A More Experimental Results
	References

	Addition with Blinded Operands
	1 Introduction
	2 Notation
	3 Boolean Masking and Addition
	3.1 Basic Algorithm
	3.2 DPA-Resistant Addition

	4 Security Analysis
	5 Application to XTEA
	5.1 XTEA Overview
	5.2 Preventing First-Order DPA
	5.3 Performance Analysis

	6 Further Results
	6.1 Other Applications
	6.2 Addition over the Integers
	6.3 Subtraction

	7 Conclusion
	A Optimized Variant of Goubin's Method
	References

	On the Use of RSA Public Exponent to Improve Implementation Efficiency and Side-Channel Resistance
	1 Introduction
	2 State-of-the-Art Secure CRT-RSA Implementation
	2.1 RSA Presentation
	2.2 SCA Countermeasures
	2.3 FI Countermeasures
	2.4 Summary

	3 A New Approach
	3.1 Generic Description
	3.2 A Free Message Blinding Method

	4 Conclusion
	A CRT-RSA Key Generation Algorithms
	References

	Common Points on Elliptic Curves: The Achilles' Heel of Fault Attack Countermeasures
	1 Introduction
	2 Embedded Elliptic Curve Cryptography
	2.1 Elliptic Curves
	2.2 Fault Attacks on ECC

	3 Our New Fault Attack
	3.1 Common Points
	3.2 Fault Attack Using Common Points
	3.3 Simulations

	4 Countermeasures
	4.1 Initial and Final Checks
	4.2 Combined Curve
	4.3 Point Blinding

	5 Conclusion
	References

	On Adaptive Bandwidth Selection for Efficient MIA
	1 Introduction
	2 Side Channel Analysis: An Overview
	2.1 Device Observation
	2.2 Device Activity Modeling
	2.3 Estimation of

	3 Estimating a PDF
	4 Setting the Tuning Parameters of KDE-MIA: Bandwidth and Query Points
	5 Experimental Results
	5.1 ABS-MIA Efficiency
	5.2 ABS-MIA Genericity
	5.3 ABS-MIA Computational Burden
	5.4 ABS-MIA: Global Success Rate for the DPAContestV2

	6 Conclusions
	A Appendix
	References

	Generic DPA Attacks: Curse or Blessing?
	1 Introduction
	2 Previous Work
	2.1 Notation
	2.2 Original MIA
	2.3 Issues with Injective Targets

	3 Practical Relevance of the Bit Drop Trick
	3.1 Dropping One Bit
	3.2 Dropping More than One Bit

	4 Non-injective Targets on AES
	4.1 Suitable Targets
	4.2 Practical Results
	4.3 Different Leakage Behaviours

	5 Discussion
	5.1 Arbitrary Leakage Model and Bus Encryption
	5.2 Arbitrary Leakage Model and Absorbing Next Round Keys
	5.3 What Happens if MixColumns Leaks in Parallel?

	6 Conclusion
	References

	Support Vector Machines for Improved IP Detection with Soft Physical Hash Functions
	1 Introduction
	2 Background
	2.1 IP Detection Infrastructure
	2.2 Support Vector Machines

	3 Specification of the IP Detection Infrastructure
	4 Case Studies
	4.1 Standalone FPGA Designs
	4.2 Re-Synthesized FPGA Designs
	4.3 Parasitic IP Running in Parallel
	4.4 Advanced Detection Scenario

	5 Conclusion
	A Stand-Alone FPGA Designs: Complete Results
	References

	Collision-Correlation Attack Against a First-Order Masking Scheme for MAC Based on SHA-3
	1 Introduction
	2 Collision-Correlation SCA
	3 Side-Channel Analysis of KECCAK
	3.1 Introduction to KECCAK
	3.2 Side-Channel Analysis of KECCAK

	4 A Collision-Correlation Attack on Masked Keyed KECCAK
	4.1 Attack Principle
	4.2 Algebraic Collision Attack
	4.3 Collision Detection

	5 Experiments
	6 Conclusion
	A Comparison with Second-Order DSCA
	References

	Attacking Randomized Exponentiations Using Unsupervised Learning
	1 Introduction
	2 The Randomized Exponentiation and the Device Under Test
	3 Unsupervised Learning and the Clustering Algorithms
	4 The Unsupervised Attack
	4.1 Phase 1: Trace Pre-processings
	4.2 Phase 2: Finding the Points of Interest
	4.3 Phase 3: Cluster Classification
	4.4 Phase 4: Exponent Recovery

	5 Obtaining the Private Key from Randomized Exponents
	6 Countermeasures
	7 Conclusions
	References

	On the Optimal Pre-processing for Non-profiling Differential Power Analysis
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Differential Power Analysis

	3 Extending the Leakage Model over Multiple Time Samples
	3.1 Experimental Validation

	4 Optimum Linear Filter
	5 Experimental Results
	6 Optimality of the Pre-processing Techniques
	7 Conclusion
	A Experimental Setup and Pre-processing
	B Results of Other Attacks
	C Proof of Lemma 2
	References

	Template Attacks on Different Devices
	1 Introduction
	2 Template Attacks
	2.1 Guessing Entropy
	2.2 Compression Methods
	2.3 Standard Method

	3 Evaluation Setup
	4 Ideal vs Real Scenario
	4.1 Causes of Trouble
	4.2 How It Differs
	4.3 Misalignment

	5 Improved Attacks on Different Devices
	5.1 Profiling on Multiple Devices
	5.2 Compensating for the Offset
	5.3 Profiling on Multiple Devices and Compensating for the Offset
	5.4 Efficient Use of LDA and PCA
	5.5 Add DC Offset Variation to PCA

	6 Conclusions
	References

	Using the Joint Distributions of a Cryptographic Function in Side Channel Analysis
	1 Introduction
	2 Study of the Variations in a Cryptographic Algorithm
	3 How to Estimate the Distribution of the Device
	4 How to Compare Two Distributions
	5 The Proposed Attack
	6 Experimentations
	6.1 Unprotected Software Implementation on ATMega2561
	6.2 DPAContest V4 [32]

	7 Conclusion
	References

	A Multiple-Fault Injection Attack by Adaptive Timing Control Under Black-Box Conditions and a Countermeasure
	1 Introduction
	2 Related Works
	3 A Multiple-Fault Injection Attack Based on Adaptive Fault Injection
	3.1 Proposed Attack

	4 Experiment
	4.1 Overview
	4.2 Fault Injection with Glitchy-Clock Generator
	4.3 Experimental Results
	4.4 Applications of Proposed Attack

	5 Countermeasure
	6 Conclusion
	References

	Adjusting Laser Injections for Fully Controlled Faults
	1 Introduction
	2 Hardware Design Aspects
	2.1 IC Physical Layers
	2.2 Logic Gate Consideration
	2.3 Register Hardware Structure

	3 Laser Beam Injection
	3.1 Laser/Matter Interaction in CMOS Circuits
	3.2 Laser Based Fault Attacks

	4 Experimental Set-up
	4.1 Device Under Test and Methodology
	4.2 Laser Platform

	5 Monitoring Register Bits Using a Laser Beam
	5.1 Finding the Area of Interest
	5.2 Controlling the Modification of a Register by Localization
	5.3 Differentiating Register Bit Values with Laser Mapping
	5.4 Controlled Register Clearing with Energy Selection

	6 Correlating Fault Attacks and Transistors Implementation
	7 Discussion and Future Work
	8 Conclusion
	References

	ChipWhisperer: An Open-Source Platform for Hardware Embedded Security Research
	1 Introduction
	2 Hardware
	2.1 Modular FPGA Design
	2.2 Capture and Clock Control
	2.3 Target Control and Triggering
	2.4 Glitch Generation
	2.5 Partial Reconfiguration
	2.6 Implementation on Other Boards
	2.7 Generic Device Under Test Board

	3 Software Architecture
	3.1 Trace Management

	4 Capture Software
	4.1 Capture Performance

	5 Analysis Software
	5.1 Preprocessing
	5.2 Attack Implementation
	5.3 Results Display

	6 Example Results
	7 Conclusion and Future Work
	References

	Verifying Software Integrity in Embedded Systems: A Side Channel Approach
	1 Introduction
	2 Background
	2.1 Side Channel Leakage
	2.2 RSA Signature Screening

	3 Embedded Software Integrity Verification
	3.1 Instruction-Level Template Construction
	3.2 Instruction Classification
	3.3 Software Integrity Verification

	4 Experimental Results
	4.1 Instruction-Level Template Construction
	4.2 Instruction Classification
	4.3 Software Integrity Verification

	5 Practical Application Area
	6 Conclusion
	A Selected AVR Instructions
	References

	Studying Leakages on an Embedded Biometric System Using Side Channel Analysis
	1 Introduction
	2 Biometric Matching System
	2.1 Fingerprint Biometrics
	2.2 The Studied Fingerprint Matching Module
	2.3 Assumptions on the Matching System

	3 Information Leakage
	3.1 SPA on Pairing Phase
	3.2 SPA on Registration Phase

	4 Side Channel Attack on the Comparison Score
	4.1 Introduction to Template Attack Combined with PCA
	4.2 Profiling and Attacking the Score Computation

	5 Exploitation
	5.1 Hill Climbing Attack
	5.2 Hill Climbing Improvement

	6 Countermeasures
	6.1 Protecting the Score Computation
	6.2 Randomization of the Registration Phase by Masking
	6.3 Input Fingerprint Requirements
	6.4 Random Additional Cycles During Pairing Phase

	7 Conclusion
	References

	On the Security of RSM - Presenting 5 First- and Second-Order Attacks
	1 Introduction
	2 The RSM Countermeasure
	2.1 Introduction to RSM
	2.2 Discussion About Original Security Evaluation
	2.3 Mask Properties

	3 Experimental Setup
	4 Attacking a Smart Card Implementation of RSM
	4.1 Univariate First-Order CPA Attack Using Pre-processing
	4.2 First-Order Correlation-Enhanced Collision Attack

	5 Attacking an FPGA Implementation of RSM
	5.1 Univariate Second-Order CPA Attack
	5.2 Two More Collision Attacks

	6 Conclusion
	References

	Author Index

