
Hierarchical Declarative Modelling with

Refinement and Sub-processes

Søren Debois1, Thomas Hildebrandt1, and Tijs Slaats1,2

1 IT University of Copenhagen, Rued Langgaardsvej 7, 2300 Copenhagen, Denmark
{debois,hilde,tslaats}@itu.dk

2 Exformatics A/S, Lautrupsgade 13, 2100 Copenhagen, Denmark

Abstract. We present a new declarative model with composition and
hierarchical definition of processes, featuring (a) incremental refinement,
(b) adaptation of processes, and (c) dynamic creation of sub-processes.
The approach is motivated and exemplified by a recent case manage-
ment solution delivered by our industry partner Exformatics A/S. The
approach is achieved by extending the Dynamic Condition Response
(DCR) graph model with interfaces and composition along those inter-
faces. Both refinement and sub-processes are then constructed in terms of
that composition. Sub-processes take the form of hierarchical (complex)
events, which dynamically instantiate sub-processes. The extensions are
realised and supported by a prototype simulation tool.

1 Introduction

Business process design technologies today are predominantly based on flow-
oriented process notations such as the Business Process Model and Notation
(BPMN) standard [18], which imperatively describes how a process should pro-
ceed from start to end. Often, business processes are required to be compliant
with regulations and constraints given by busines polices, standards and laws.
E.g., a customer must be informed about alternatives and risks before getting a
loan in a bank, or a decision on a grant application cannot be made before the
deadline for submissions of applications has been reached.

Since the flow-oriented notations only captures how to fulfill the compliance
rules, the description and verification of compliance rules require other notations
and techniques. This leaves the process designers with three modelling tasks:
To describe the compliance rules, to describe the process, and to verify that
the process is compliant to the rules. Typically, compliance rules are described
declaratively using a variant of temporal logic such as Linear-time Temporal
Logic (LTL) [21]. Compliance can then be verified during execution using run-
time verification techniques [12] and, if the flow-diagrams are based on a formal
model, also at design time [6]. In most industrial design tools, the flow-diagrams
are however not based on a formal model, and consequently, design time verifi-
cation is not supported. This means that the process designers have to figure out
manually how to interpret the constraints, and compliance is then subsequently

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 18–33, 2014.
c© Springer International Publishing Switzerland 2014

Hierarchical Declarative Modelling with Refinement and Sub-processes 19

verified informally and approved by, e.g., a lawyer. At best, a formal run-time
or post-execution verification is performed against the execution log.

In these situations there is a high risk that processes become either non-
compliant or over-constrained by design, to faciliate manual verification. Over-
constrained processes, however, rarely fits reality or are simply not suitable for
knowledge-intensive processes. A way to avoid these problems is to use the
declarative approach (also) for the process design. Several declarative process
modelling notations and techniques have been proposed in the last decade, in-
cluding DECLARE [2,1], CLIMB [13], GSM [11] and Dynamic Condition Re-
sponse (DCR) graphs [8,14]. However, sometimes the declarative approach makes
it less clear from the end-user, how a process will proceed from start to end. Even
with a graphical notation (as in DECLARE, GSM and DCR graphs), it may be
difficult to comprehend the interactions between different constraints.

The DCR graph process modelling notation stands out by supporting a simple
and efficient run-time execution, which mitigates the complexity of comprehend-
ing the constraints and allows for run-time adaptation [15], while still being more
expressive than (propositional) LTL (and thus DECLARE), in that it allows to
describe every union of a regular and an ω-regular language [3,16,14].

DCR Graphs were conceived as both a generalization of event structures [22]
and a formalization and generalization of the Process Matrix [17] invented by
Danish company Resultmaker. Since its inception, the DCR Graph notation
and theory have been developed further in collaboration with Exformatics A/S,
a Danish provider of case, document and knowledge management systems. A ver-
sion of DCR graphs with a simple notion of nesting [9], an additional milestone
relation, and support for data now forms the core their workflow engine [20,7].
However, DCR graph models as currently implemented become difficult to com-
prehend and present at a certain size. They seem to lack encapsulation, mod-
ularity and hierarchy; the key techniques to make large models comprehensible
in both imperative [19] and declarative settings [23]. Also, practical modelling
efforts by Exformatics A/S has revealed that DCR graphs emphatically needs a
notion of “dynamically created” or “instantiated” sub-process.

In the present paper, we seek to remedy these shortcomings of DCR graphs.
Our contributions are as follows.

1. We introduce refinement-by-composition for DCR graphs.

2. We add to DCR graphs a notion of dynamically spawned sub-process, defining
Hi-DCR graphs.

3. We demonstrate the use of both incremental process design using an example
exctracted from a recent case management solution delivered by Exformatics
A/S to a Danish funding agency.

4. We provide a publicly available Hi-DCR graph tool.

The tool allows simulation, model-checking of the finite fragment, automatic
visualisation and more. The compositions and refinements presented in examples
were not made by hand, they were executed by the tool; all DCR diagrams in
this paper has been generated by it, and all examples are fully executable by it.

20 S. Debois, T. Hildebrandt, and T. Slaats

Hi-DCR graphs are fully formalised; we prove both soundness of refinement—
that refinement cannot accidentally remove constraints of the extant model—as
well as Hi-DCR being strictly more expressive than ω-regular languages.

1.1 Related Work

Hierarchy for declarative languages was studied in [23], where the authors add
complex activities to DECLARE [2,1]. The authors make a compelling case that
hierarchy is a necessity for constructing understandable declarative models. Our
industry partner’s experiences fully supports this thesis; this is in part what has
led to our investigation of sub-processes.

A complex activity is one which contains a nested DECLARE model governing
when that activity may complete. The nested model starts when the complex
activity opens, and the complex activity conversely may only close once the
nested model completes. Otherwise, there is no interaction between the nested
model and the parent model. In the present paper, a sub-process may interact
with its parent process: there can be multiple ways to start the sub-process, it
can have different observable outcomes, and it is allowed to interact with other
activities in the parent process.

Questions about concurrency are left open by [23]: the authors do not report
a formal semantics, and the paper has no examples of interleavings of complex
activities. In the present approach, sub-process executions are naturally inter-
leaved with other events and even other instances of the same sub-process; we
shall see this in examples.

We believe it is straightforward to formalize complex activities of [23] in Hi-
DCR Graphs: Use Hi-DCR relations to allow only a single start and end event
for each sub-process, and cut off interaction between sub- and super-process by
choosing only empty interfaces.

The Guard-Stage-Milestone (GSM) approach [11] to business modelling pro-
vides a data-centric notation with declarative flavour. The notation consists of
stages, which in turn have guards, controlling when and how the stage may start,
and milestones, controlling when and how a stage may close. Stages can con-
tain sub-stages, giving GSM an inherent hierarchy. Where GSM is data-centric,
the present formalism is event-based. Nonetheless, the sub-processes of Hi-DCR
graphs are strongly reminiscent of GSM stages, with Hi-DCR interface events
assuming the rôle of guards and milestones. In future work, we plan to further
investigate the similarities between GSM and Hi-DCR Graphs, in the hope of
providing a formal connection between them.

2 DCR Graphs

In this section, we recall DCR graphs as introduced in [8,14] and introduce
our running example. The example is based on a workflow of a Danish funding
agency; our industry partner, Exformatics A/S, has implemented system sup-
port for this workflow using the basic DCR graphs of this Section [20]. While

Hierarchical Declarative Modelling with Refinement and Sub-processes 21

vindicating DCR graphs as a flexible and practical modelling tool, that work
also highlighted the potential need for refinement and sub-processes, which we
introduce in the following Sections. One key idea will be the development of
models by refinement : start from a very abstract model, then successively refine
it until it becomes suitably concrete. In this section, we introduce DCR graphs
alongside such a very abstract model.

As the name suggests, DCR graphs are graphs, and we tend to represent them
visually, as in Fig. 1. This figure depicts a highly abstracted model of the funding
agency workflow. Events (boxes) with labels (the text inside them) are related
to other events by various arrows. In this model there are only four events: the
beginning of the application round Start round; receiving an application (Receive
application); the deadline for application submission occurring (Application dead-
line); and finally the board meeting (Board meeting), at which the board of the
funding institution decide which applications warrant grants and which do not.

(Accepting)

Application deadline

Receive application
%

Board meeting

Start round

Fig. 1. A basic DCR graph

Relations between these events govern
their relative order of occurrence. When not
constrained by any relations, events can hap-
pen in any order and any number of times.

The condition relation, e →• e′, seen be-
tween Start round and Receive application in-
dicates that the former must occur before the
latter: we do not receive applications before
the round has started. In the initial state of
the DCR graph, Start round have yet to hap-
pen, and so Receive application cannot exe-
cute; hence it has been greyed out in the visual representation. The notation
and semantics of this relation is similar to the precedence constraint in DE-
CLARE [2,1].

Between Receive application and Board meeting we have a response relation,
e •→ e′. This indicates that if Receive application happens, then Board meeting
must subsequently happen. This does not necessarily mean that each occurrence
of the former is followed by a unique occurrence of the latter; it’s quite all right to
receive seven applications, have a board meeting, receive five more applications,
then have a final board meeting. If Receive application has been executed without
a following Board meeting, we say that Board meeting is pending.

Finally, between the Application deadline and Receive application events we
have an exclusion relation, e →% e′. Once the Application deadline event occurs,
the Receive application event becomes excluded, which means that it is from
then on considered irrelevant for the rest of the workflow. While excluded, it
cannot execute; any response obligations on it are considered void; and if it
is a condition for some other event, that condition is disregarded. Dual to the
exclusion relation is the inclusion relation. It is not exemplified in this DCR
graph, but its meaning is straightforward: it re-includes an event in the workflow.
DCR graph have also a fifth and final relation, the milestone relation e →� e′;
we will postpone explaining that until we use it in the next Section.

22 S. Debois, T. Hildebrandt, and T. Slaats

(Accepting)

Application deadline

Receive application
%

Board meeting

Start round

1. Initial state. 2. After executing Start
round.

3. . . .Receive application.

4. . . .Receive application
(again)

5. . . .Application deadline 6. . . .Board meeting

Fig. 2. Execution of the DCR graph of Fig. 1

A key advantage of DCR graphs is that the graph directly represents the
state of execution. There is no distinction between design-time and run-time.
We will illustrate this by example: in Fig. 2 we have a finite execution of Fig. 1.
In the upper-left corner, (1) is the initial state, the DCR graph presented in
Fig. 1. The Start round event executes, taking us to (2). We can observe events
having been executed in the state of the graph: executed events have little check-
marks next to them, so in (2), Start round has such a check-mark. Also, with
Start round executed, the condition for Receive application is fulfilled; it is now
executable and thus no longer greyed out. We execute it to get to (3). Because
there is a response from Receive application to Board meeting, that execution puts
a pending response on Board meeting. This is indicated in (3) by the red text
and the exclamation mark.

We execute Receive application to get to (4). This execution brings no change to
the graph, which already had Receive application marked as previously executed,
and already had a response on Board meeting. So we execute Application deadline,
getting to (5). Because of the exclusion relation from that to Receive application,
the latter becomes excluded, indicated by its box being dotted in (5). Even
though excluded events cannot be executed, we do not grey them out; the dotted
box is enough. Finally, we execute Board meeting to get to (6). This of course
fulfils the pending response, which disappears: the text of Board meeting goes
back to black, and the exclamation mark disappears.

A DCR graph is accepting if it has no included pending responses. (An infinite
run is accepting if every incurred response is eventually executed or excluded.)
The acceptance state of the graph is indicated in the lower-right corner of each
graph. That indication is technically superfluous: the graph will be accepting

Hierarchical Declarative Modelling with Refinement and Sub-processes 23

exactly if it has no red labels/labels with exclamation marks. For large graphs,
it can be convenient to have the single indicator anyway.

3 Hierarchy and Refinement

We now come to the core contributions of this paper. We present a notion of
“refinement” of DCR graphs, defined in terms of a more primitive notion of
“composition” of DCR graphs. Refinement is always achieved by composing an
abstract DCR Graph with a refinement DCR Graph, which introduces new events
and/or add additional constraints.

3.1 Refinement

We wish to refine our model to express in greater detail the decision mechanics
of the board. We will model board meetings by the DCR graph in Fig. 3. The
results of an application round must be gathered in a report. This report is
updated and approved repeatedly during the application round. This gives rise
to two new events: Update report and Approve report.

(Accepting)

Approve report

Board meeting

Update report

Fig. 3. Expanded model
of the Board meeting

Applications are discussed over the course of several
board meetings and the results of the board meetings
must be worked into the report. To allow the secretary
to work efficiently she is not required to formally up-
date the report after every single board meeting, but
she may combine the outcomes of several of them in
a single update. This constraint is represented by the
response relation from Board meeting to Update report.

While there are such pending changes to the report,
it can of course not be approved. This is modelled using
a milestone relation Update report →� Approve report.
This relation means that while Update report is pend-
ing, Approve report can not execute.

Note that this model does not preclude the board from re-approving a report
that has not been updated. While not a particularly sensible thing to do, it is
not against the rules, and as such should be permitted by the model.

Now, we wish to add these new details about board meetings to our original
abstract model of Fig. 1; that is, we wish to refine Fig. 1 by Fig. 3. We do so by
composing them: we fuse together events that are the same in both graphs. In
this case only Board meeting. The result can be seen in Fig. 4. (The dashed box
in that figure has no semantic ramifications; it is there are simply to make the
graph easier to understand. See also [23].)

It is of course important that such a refinement does not accidentally re-
move constraints of the original model. Because of the inclusion and exclusion
relations, that might happen, e.g., inclusions in the refining model might cause
events excluded in the abstract one to be suddenly allowed. We shall prove in
Theorem 4.10 that, roughly, when the two models agree on when fused events

24 S. Debois, T. Hildebrandt, and T. Slaats

are included or excluded, the composition will not admit new behaviour; in this
case we call it a refinement. In the present case, the only fused event is Board
meeting, which has no inclusions or exclusions going into it in either model, so
this composition is really a refinement.

(Accepting)

Approve report

Board meeting

Update report

Application deadline

Receive application
%

Start round

Fig. 4. Refinement of Fig. 1 by Fig.3

Refinement-as-composition in conjunc-
tion with DCR graphs having no dis-
tinction between design-time and run-
time means that we can refine a run-
ning model. Suppose, for instance, that
we have deployed our initial abstract
model of Fig. 1, and have reached state
(5) in Fig. 2 when it is decided that
compliance with the board meeting re-
port procedure of Fig. 3 must be en-
forced. We may add in these new con-
straints by refining the running model
(Fig. 2, part 5) with the new constraints
(Fig. 3). Doing so yields the new DCR
graph seen in Fig. 5. Note how the
pending state of the fused Board meet-
ing event is preserved. And again, by
virtue of the refinement Theorem 4.10,

we can be assured that all constraints on execution of the original model is still
preserved in this new refined one.

3.2 Subprocesses

Refinement gives us a disciplined method for extending models with new com-
ponents; thus it gives us a hierarchical notion of process design. However, it
does not fully capture the notion of sub-processes in traditional business mod-
elling notations. Here, a sub-processes is a complex activity in the model that
has underlying behaviour which is instantiated when the sub-process is started
and closed when the sub-process ends. Such sub-processes can both be single-
instance, meaning that only one instance of the sub-process will be active at any
time, or multi-instance, meaning that multiple instances of the sub-processes can
execute concurrently.

To enable modelling such sub-processes we extend DCR graphs to Hi-DCR
graphs. In these, we may associate with an event an entire other Hi-DCR graph
which, when the event fires, is composed onto the current graph. We exemplify
Hi-DCR Graphs by adding to our funding agency model a more detailed de-
scription of the process for an individual application. As many applications may
be received and evaluated at the same time, we need a notion of sub-processes
(and in particular multi-instance sub-processes) to fully capture this behaviour.

An application must receive some number of reviews, with at least one from a
lawyer. The reviews are collected in a review report. Based on the review report,

Hierarchical Declarative Modelling with Refinement and Sub-processes 25

the application is accepted or rejected and the round report is updated with this
decision. It is not uncommon that the decision on an application is reverted,
changing an “accept” to a “reject” or vice versa, and this may even happen
several times as discussions progress. Of course, each change in the decision
requires an update to the round report. Finally, each applications cannot remain
in limbo and must always eventually be either accepted or rejected.

Fig. 5. Refinement of Fig. 2 part 5 by Fig. 3

The DCR graph in Fig. 6
models this process. At the
top is Lawyer review and Other
review. Of these two only
Lawyer review is a condition
for Review report, with the
effect that we cannot write
the review report unless we
have at least a review from a
lawyer.

After the Review report is
completed, the reviewers may
Accept or Reject the applica-
tion; as mentioned, there is no
restriction that these events
happen only once. However,
each new verdict requires Up-
date report because of the re-
sponse relation from Accept
and Reject to Update report.

Fig. 6. The per-application sub-
process

Finally we need to model the fact that
either Accept or Reject needs to occur at
least once, similar to the choice construct
in DECLARE. Hi-DCR graphs contain
no construct directly analogue to choice;
but fortunately, there is a straightforward
way—a DCR graph idiom, if you will—to
achieve the intended semantics. We explic-
itly model the fact that a decision is needed
as an event Decision. We make this event a
condition of itself, meaning that it cannot
possibly be executed. We also make it ini-
tially included and pending, so that once
the application is started, a decision needs
to eventually be made. Finally we let both
Accept and Reject exclude Decision, indicat-
ing that these two both represents a valid decision. Once Decision becomes ex-
cluded, it no longer prevents the larger graph from achieving an accepting state.

26 S. Debois, T. Hildebrandt, and T. Slaats

Now, we wish the entire sub process of Fig. 6 to be instantiated once per
application. In Hi-DCR graphs this is achieved by associating with the event
Receive application in Fig. 5 the entire application processing DCR graph of
Fig. 6. After executing Receive application a new copy of the application DCR
Graph is composed with the main DCR Graph, and we get the DCR graph of
Fig. 7.

Observe that once again, the common event Update report has been fused be-
tween the two DCR graphs. So far, this should be unsurprising: it is a straight-
forward application of the composition mechanism of DCR graphs. The key
difference is that a Hi-DCR graphs is equipped also with a partitioning of its
events into interface events (indicated by boxes with rounded corners in Fig. 6)
and local events (indicated by boxes with non-rounded corners). This parti-
tioning has the effect that under composition, only interface events are fused,
whereas local events are not, even if their labelling overlap. The effect of these
interfaces and local events will be apparent if we consider what happens when
Receive application executes a second time; refer to Fig. 8. Here, we see that the
second application process has fused its interface event Update report, but has
duplicated its remaining events, which are all local. This has the following two
important consequences:

Fig. 7. Updated model with one spawned subprocess

1. Each application process is represented separately.
2. Approve report effectively synchronises decisions: whenever the decision on

any application is changed, the report needs to be updated.

Connecting local and interface event is a highly expressive mechanism. For in-
stance, if we want to have a review report ready for every application before the

Hierarchical Declarative Modelling with Refinement and Sub-processes 27

Fig. 8. After spawning a second subprocess in Fig. 7

board meeting commences, it is enough to have, in the sub-process definition
in Fig. 6 a condition from the local event Review report to a new interface event
Board meeting.

4 Foundations

In this section, we review the formal theory of DCR graphs, then formally in-
troduce their refinement and their generalisation to Hi-DCR graphs.

We distinguish between events and labels. In a single workflow, the same
label may occur multiple times. For instance, the label “Review report” occurs
twice in Fig. 8. We accommodate such multiplicity by considering events (the
boxes), as distinct from their label (the text in the boxes). When the distinction
between events and labels does not matter, we use the words interchangeably.
For instance, in Fig. 1 and 3 we speak of “the event Board meeting”, since the
label Board meeting uniquely identifies an event. To simplify the presentation we
will let the labelling of events remain implicit in the formal definitions.

Definition 4.1 (DCR Graph [8]). A DCR graph is a tuple (E,R,M) where

– E is a finite set of (labelled) events, the nodes of the graph.
– R is the edges of the graph. Edges are partioned into five kinds, named and

drawn as follows: The conditions (→•), responses (•→), milestones (→�),
inclusions (→+), and exclusions (→%).

– M is the marking of the graph. This is a triple (Ex,Re, In) of sets of events,
respectively the previously executed (Ex), the currently pending (Re), and the
currently included (In) events.

When G is a DCR graph, we write, e.g., E(G) for the set of events of G, as well
as, e.g., Ex(G) for the executed events in the marking of G.

28 S. Debois, T. Hildebrandt, and T. Slaats

Notation. For a binary relation → ⊆ X × Y we write “→ Z” for the set
{x ∈ X | ∃z ∈ Z. x → z}, and similarly for “Z →”. For singletons we usually
omit the curly braces, writing →e rather than →{e}.

With the definition of DCR graphs and notation in place, we define the dy-
namic semantics of a DCR graph. First, the notion of an event being enabled,
ready to execute.

Definition 4.2 (Enabled events). Let G = (E,R,M) be a DCR graph, with
marking M = (Ex,Re, In). We say that an event e ∈ E is enabled and write
e ∈ enabled(G) iff (a) e ∈ In, (b) In ∩ (→•e) ⊆ Ex, and (c) In ∩ (→�e) ⊆ E\Re.
That is, enabled events (a) are included, (b) their included conditions already
executed, and (c) have no included milestones with an unfulfilled responses.

Definition 4.3 (Execution). Let G = (E,R,M) be a DCR graph with marking
M = (Ex,Re, In). Suppose e ∈ enabled(G). We may execute e obtaining the
resulting DCR graph (E,R,M′) with M′ = (Ex′,Re′, In′) defined as follows.

1. Ex′ = Ex ∪ e
2. Re′ = (Re \ e) ∪ (e•→)
3. In′ = (In \ (e→%)) ∪ (e→+)

That is, to execute an event e one must: (1) add e to the set Ex of executed
events. (2) Update the currently required responses Re by first removing e, then
adding any responses required by e. (3) Update the currently included events by
first removing all those excluded by e, then adding all those included by e.

Definition 4.4 (Transitions, runs, traces). Let G be a DCR graph. If e ∈
enabled(G) and executing e in G yields H, we say that G has transition on e to
H and write G −→e H. A run of G is a (finite or infinite) sequence of DCR
graphs Gi and events ei such that: G = G0 −→e0 G1 −→e1 . . .
A trace of G is a sequence of labels of events ei associated with a run of G. We
write runs(G) and traces(G) for the set of runs and traces of G, respectively

Not every run or trace represents an acceptable execution of the graph: We need
also that every response requested is eventually fulfilled or excluded.

Definition 4.5 (Acceptance). A run G0 −→e0 G1 −→e1 . . . is accepting iff
for all n with e ∈ In(Gn) ∩ Re(Gn) there exists m ≥ n s.t. either em = e, or
e
∈ In(Gm). A trace is accepting iff it has an underlying run which is.

Acceptance tells us which workflows a DCR graph accepts, its language.

Definition 4.6 (Language). The language of a DCR graph G is the set of its
accepting traces. We write lang(G) for the language of G.

We now know enough to formalise the first DCR graph we saw.

Example 4.7. The DCR graph of Fig. 1 and 2 has events a, s, r, b labelled Ap-
plication deadline (a), Start round (s), Receive application (r), and Board meet-
ing (b). It has relation R given by →%= {(a, r)}, →+= ∅, →•= {s, r}, •→=
{r, b} and →�= ∅. We can find a run of this DCR graph in Fig. 2: B1 −→s

B2 −→r B3 −→r B4 −→a B5 −→b B6

Here, B1, B2 are accepting, whereas B3–B5 have b pending and so are not.

Hierarchical Declarative Modelling with Refinement and Sub-processes 29

4.1 Composition and Interfaces

Composition of DCR graphs was originally introduced in [10].

Definition 4.8 (Composition of DCR graphs). The composition G | H of
DCR graphs G and H is defined by taking the union of all components.
Formally: G | H = (E ∪ E′,R ∪ R′, (Ex ∪ Ex′,Re ∪ Re′, In ∪ In′))
The empty or zero DCR graph, 0, is the unique DCR graph with no events.

Composition does not in itself give “refinement” in the classical sense: in
DCR graphs, even if G,H share events and labels, the language of G | H might
actually be larger than either G or H . The following definition helps narrow
down what are “good” compositions.

Notation. The projection of a sequence σ to a set E is obtained by removing
every element of σ not in E. For instance, the projection of σ = AABCABC to
E = {A,C} is σ|E = AACAC. We lift projection to sets of sequences pointwise.

Definition 4.9 (Refinement). H refines G iff
(
lang(G | H)

)|E(G) ⊆ lang(G).

To help establish refinements, we have the following theorem, which states
that a DCR graph G is refined by a DCR-graph H if they have no shared event
which may be included or excluded unilaterally by H .

Theorem 4.10. H refines G if in H shared labels are associated only with
shared events, and for all f ∈ E(G) ∩ E(H) and e ∈ E(H) we have that:

1. If e →%H f then also e →%G f, 3. Ex(H) ∩ E(G) ⊆ Ex(G),

2. if e →+H f then also e →+G f, 4. In(H) ∩ E(G) ⊆ In(G).

Conditions (1) and (2) mean that H cannot unilaterally include or exclude
shared events; conditions (3) and (4) that the marking of H does not change the
inclusion- or execution-state of shared events.

Example 4.11. As an example, taking G to be the DCR graphs of Fig. 1 and H
to be the one of Fig. 3, then both G,H fulfil the criteria of Theorem 4.10. Thus,
we can be sure that when we compose them to obtain G | H in Fig. 4, their
local behaviour is preserved: the valid execution orders of Application deadline,
Start round, Receive application, and Board meeting in Fig. 4 are all also valid
according to Fig. 1.

4.2 Hi-DCR graphs

Towards DCR-graphs with sub-processes, we need first DCR graphs with inter-
faces, i-DCR graphs.

Definition 4.12 (i-DCR graph). An i-DCR graph is a tuple G = (E,R,M, I)
such that (E,R,M) is a DCR graph and I ⊆ E. Events L = E \ I are local events.
An i-DCR graph inherits notions of enabled events, execution, and zero from its
underlying DCR-graph.

30 S. Debois, T. Hildebrandt, and T. Slaats

We note that once we can speak of execution, we have using Definitions 4.4, 4.5,
and 4.6 also definitions of transistions, runs, traces, acceptance, and language.

The point of the interface I is to allow us to choose which events should fuse
with similar events in composition, and which should be considered private. To
avoid fusing of private events, we must sometimes employ renamings.

Definition 4.13 (Freshness, compatibility). If G,H are i-DCR graphs we
say an that G is fresh for H iff L(G)∩E(H) = ∅. We say that they are compatible
iff they are both fresh for the other. We say that G,H are equivalent if they are
structurally identical up to the choice of local events.

The composition of i-DCR graphs guarantees that local events of compatible
graphs do not overlap.

Definition 4.14 (i-DCR composition). The composition G | H of i-DCR
graphs G,H is defined as for DCR graphs, taking interfaces of the combined
graph to be I(G) \ L(H) ∪ I(H) \ L(G).

For compatible i-DCR graphs, this definition is equivalent to taking simply I∪ I′.

Definition 4.15 (Hi-DCR). A Hi-DCR graph is a tuple G = (E,R,M, I, S)
where S is a map taking events to Hi-DCR graphs and (E,R,M, I) is the under-
lying i-DCR graph G|ι of G. An event e of G is enabled in G iff it is in G|ι.

Note that if one wants an event e to not spawn any sub-process, one simply
maps it to sub-process definition to zero, i.e., takes S(e) = 0.

Definition 4.16 (Hi-DCR execution). Suppose e is an event of the Hi-DCR
graph G, that e ∈ enabled(G) and that S(e) = H. Then to execute e in G:

1. Pick some H ′ equivalent to H but fresh for G.
2. Execute e in G | H ′ (considered a DCR graph) to obtain H.

That is, if G | H ′ = (E,R,M, I, S), we execute e in (E,R,M) obtaining (E,R,M′),
then declare the execution of e in G | H ′ to be (E,R,M′, I, S).

Example 4.17. The notion of i-DCR graph and the definition of Hi-DCR graph
execution explains formally why the event Approve decisions is not duplicated
when a subprocess is spawned between Fig. 7 and 8: it is an interface event, and
so is fused in the composition that happens when new sub-processes are spawned.
The event Review report in the sub-process, on the other hand, is duplicated: It
is local, and because execution of Hi-DCR graphs choose fresh names for local
events during spawning, it is duplicated.

Theorem 4.18. Hi-DCR graphs are strictly more expressive then DCR Graphs
and therefore also strictly more expressive then ω-regular languages.

Proof. Hi-DCR graphs conservatively extend DCR graphs, which are known to
express exactly ω-regular languages [14]. But in Fig. 8, every time we execute
Receive application we are will execute at least one Accept or Reject. This requires
counting Receive application which is impossible for ω-regular languages.

Hierarchical Declarative Modelling with Refinement and Sub-processes 31

5 Implementation

For experimentation, we have implemented a prototype tool for working with
Hi-DCR graphs. This tool features a simulation engine capable of executing
transitions, and of dynamic re-configuration using both unconstrained composi-
tion (Definition 4.8) and refinement (Definition 4.9). For finite-state graphs, the
tool can do also basic model-checking tasks, such as finding a path to dead-lock,
termination, acceptance, or some event being enabled. Whereas in the other sec-
tions of this paper, we represented DCR graphs graphically, as figures produced
by the tool, the tool inputs a textual representation. As an example of that rep-
resentation, consider again Fig. 6. Its equivalent textual representation is below.

"Other review" 1

"Lawyer review" 2

-->* "Review report" 3

-->* ("Accept" "Reject") 4

-->% !"Decision" 5

"Decision" -->* "Decision" 6

("Accept" "Reject") -->% "Decision" 7

("Accept" "Reject") 8

*--> "Update report" 9

10

/("Other review" "Lawyer review" 11

"Review report" 12

"Accept" "Reject" "Decision") 13

All events are interface events
by default; local events are spec-
ified by prefixing them with a
slash ‘/’ (line 11-13). Events can
also be prefixed ‘+’, ‘%’, and ‘!’,
(line 5) indicating that they are
initially included, excluded, re-
spectively pending. For conve-
nience, the language allows both
chaining of events and relations
(line 2–5) as well as relating
multiple things (line 7).

The tool uses Graphviz [5]
to automatically produce dia-
grams. The diagrams in the present paper were all so generated. The tool is
implemented in F# and runs on the major platforms. The executable and source
code can be found at [4].

6 Conclusion

In this paper we first demonstrated how DCR Graphs can be used for incremen-
tal, declarative design of processes, by introducing a notion of compositional re-
finement that guarantees language inclusion (with respect to the labels of events
present in the original process) and thus preserves compliance for accepting
executions. We then used these techniques to introduce Hi-DCR Graphs, a con-
servative extension of DCR graphs, which allows events to spawn sub-processes.
The extensions have been presented and motivated using as an example an ab-
straction of a real-world case supplied by our industry partner, Exformatics
A/S. We provided a formal semantics for Hi-DCR Graphs and demonstrated
by example that they are more expressive then ω-regular languages. Finally we
reported on a prototype implementation of Hi-DCR Graphs which supports a
programming-like syntax, automatic visualisation, simulation, and rudimentary
model-checking.

32 S. Debois, T. Hildebrandt, and T. Slaats

6.1 Future Work

While the notion of refinement introduced in the present paper preserves com-
pliance for accepting executions, it may in fact introduce errors such as livelocks
and deadlocks. The simplest example would be to refine a process with a DCR
graph containing a single, included (local) event having itself as condition and
being initiatlly required as response. In [15] it is shown how adaptations can
be verified for safety and liveness, by relying on the map from DCR Graphs
to Büchi-automata [16], which is further mapped to Promela and verified in the
SPIN model-checker. However, as demonstrated in [15], this approach is not very
efficient. We are therefore currently investigating techniques for more efficient
verification of DCR Graphs in the presense of adaptations.

Aswasmentioned in the relatedwork section thedevelopmentofHi-DCRGraphs
brings us closer to the GSM notation, and we plan to use this work in the future as
a basis for formal mappings between GSM and DCR Graphs models.

The question of the precise expressive power of Hi-DCR graph remains open.
We conjecture that they are Turing-equivalent. This points to another relevant
question, namely how to constrain Hi-DCR graphs to allow safety and liveness
guarantees. An obvious possible constraint would be to bound the number times
each sub-process can be spawned by a constant. Because of the formalization of
spawning based on composition, it follows that this constrains the model to the
expressiveness of standard DCR Graphs, that is, to Büchi-automata.

Formal expressive power aside, in practice many idiomatic constructs, like the
“disjunctive responses” used in Fig. 8 could be formalised as derived constructs
in their own right, potentially making them more accessible to end-users, much
like DECLARE is formalised in terms of LTL. Similarly, other questions regard-
ing the usability of the approach will be investigated in future studies through
empirical investigations undertaken in cooperation with our industrial partners
and end-users.

Acknowledgments. We gratefully acknowledge fruitful discussions with Rik
Eshuis. The work is supported by grant VELUX 33295, 2014-2017 and the Dan-
ish Agency for Science, Technology and Innovation.

References

1. van der Aalst, W.M.P., Pesic, M., Schonenberg, H., Westergaard, M., Maggi, F.M.:
Declare. Webpage (2010), http://www.win.tue.nl/declare/

2. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a truly declarative service
flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006)

3. Carbone, M., Hildebrandt, T., Perrone, G., Wasowski, A.: Refinement for transition
systems with responses. In: FIT. EPTCS, vol. 87, pp. 48–55 (2012)

4. Debois, S.: DCR exploration tool v.6. IT University of Copenhagen (2014),
http://www.itu.dk/research/models/wiki/index.php/DCR_Exploration_Tool

5. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz - open
source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001.
LNCS, vol. 2265, pp. 483–484. Springer, Heidelberg (2002),
http://dx.doi.org/10.1007/3-540-45848-4_57

http://www.win.tue.nl/declare/
http://www.itu.dk/research/models/wiki/index.php/DCR_Exploration_Tool
http://dx.doi.org/10.1007/3-540-45848-4_57

Hierarchical Declarative Modelling with Refinement and Sub-processes 33

6. Groefsema, H., Bucur, D.: A survey of formal business process verification: From
soundness to variability. In: Proceedings of the Third International Symposium on
Business Modeling and Software Design, pp. 198–203 (2013),
http://www.cs.rug.nl/ds/uploads/pubs/groefsema-bmsd.pdf

7. Hildebrandt, T., Marquard, M., Mukkamala, R.R., Slaats, T.: Dynamic condi-
tion response graphs for trustworthy adaptive case management. In: Demey, Y.T.,
Panetto, H. (eds.) OTM 2013 Workshops. LNCS, vol. 8186, pp. 166–171. Springer,
Heidelberg (2013)

8. Hildebrandt, T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: PLACES. EPTCS, vol. 69,
pp. 59–73 (2010)

9. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Nested dynamic condition response
graphs. In: Arbab, F., Sirjani, M. (eds.) FSEN 2011. LNCS, vol. 7141, pp. 343–350.
Springer, Heidelberg (2012)

10. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Safe distribution of declarative pro-
cesses. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041,
pp. 237–252. Springer, Heidelberg (2011)

11. Hull, R., et al.: Introducing the guard-stage-milestone approach for specifying busi-
ness entity lifecycles (Invited talk). In: Bravetti, M. (ed.) WS-FM 2010. LNCS,
vol. 6551, pp. 1–24. Springer, Heidelberg (2011)

12. Maggi, F.M., Westergaard, M., Montali, M., van der Aalst, W.M.P.: Runtime ver-
ification of LTL-based declarative process models. In: Khurshid, S., Sen, K. (eds.)
RV 2011. LNCS, vol. 7186, pp. 131–146. Springer, Heidelberg (2012)

13. Montali, M.: Specification and Verification of Declarative Open Interaction Models.
LNBIP, vol. 56. Springer, Heidelberg (2010)

14. Mukkamala, R.R.: A Formal Model For Declarative Workflows: Dynamic Condition
Response Graphs. Ph.D. thesis, IT University of Copenhagen (June 2012)

15. Mukkamala, R.R., Hildebrandt, T., Slaats, T.: Towards trustworthy adaptive case
management with dynamic condition response graphs. In: EDOC, pp. 127–136.
IEEE (2013)

16. Mukkamala, R.R., Hildebrandt, T.: From dynamic condition response structures
to büchi automata. In: TASE, pp. 187–190. IEEE Computer Society (2010)

17. Mukkamala, R.R., Hildebrandt, T., Tøth, J.B.: The resultmaker online consul-
tant: From declarative workflow management in practice to ltl. In: EDOCW,
pp. 135–142. IEEE Computer Society (2008)

18. Object Management Group BPMN Technical Committee: Business Process Model
and Notation, version 2.0, http://www.omg.org/spec/BPMN/2.0/PDF

19. Reijers, H., Mendling, J., Dijkman, R.: On the usefulness of subprocesses in busi-
ness process models. BPM Reports 1003, Eindhoven (2010)

20. Slaats, T., Mukkamala, R.R., Hildebrandt, T., Marquard, M.: Exformatics declar-
ative case management workflows as DCR graphs. In: Daniel, F., Wang, J., Weber,
B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 339–354. Springer, Heidelberg (2013)

21. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996)

22. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
APN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)

23. Zugal, S., Soffer, P., Pinggera, J., Weber, B.: Expressiveness and understandability
considerations of hierarchy in declarative business process models. In: Bider, I.,
Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Wrycza, S.
(eds.) BPMDS 2012 and EMMSAD 2012. LNBIP, vol. 113, pp. 167–181. Springer,
Heidelberg (2012)

http://www.cs.rug.nl/ds/uploads/pubs/groefsema-bmsd.pdf
http://www.omg.org/spec/BPMN/2.0/PDF

	Hierarchical Declarative Modelling with
Refinement and Sub-processes

	1 Introduction
	1.1 Related Work

	2 DCR Graphs
	3 Hierarchy and Refinement
	3.1 Refinement
	3.2 Subprocesses

	4 Foundations
	4.1 Composition and Interfaces
	4.2 Hi-DCR graphs

	5 Implementation
	6 Conclusion
	6.1 Future Work

	References

