
Shazia Sadiq
Pnina Soffer
Hagen Völzer (Eds.)

 123

LN
CS

 8
65

9

12th International Conference, BPM 2014
Haifa, Israel, September 7–11, 2014
Proceedings

Business Process
Management

Lecture Notes in Computer Science 8659
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Shazia Sadiq
Pnina Soffer
Hagen Völzer (Eds.)

Business Process
Management

12th International Conference, BPM 2014
Haifa, Israel, September 7-11, 2014
Proceedings

13

Volume Editors

Shazia Sadiq
The University of Queensland
School of Information Technology and Electrical Engineering
St. Lucia, QLD, Australia
E-mail: shazia@itee.uq.edu.au

Pnina Soffer
University of Haifa
Information Systems Department
Haifa, Israel
E-mail: spnina@is.haifa.ac.il

Hagen Völzer
IBM Research - Zurich
Rueschlikon, Switzerland
E-mail: hvo@zurich.ibm.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-10171-2 e-ISBN 978-3-319-10172-9
DOI 10.1007/978-3-319-10172-9
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014946018

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 12th International Conference on Business Process Management (BPM
2014) was held in Haifa, Israel, during September 7-11, 2014. BPM 2014 was
jointly organized by the University of Haifa and IBM Research – Haifa.

Over the past decade, the conference has built its reputation by showcasing
leading-edge research of the highest quality together with talks, tutorials, and
discussions by the most renowned thought leaders and innovators in the field.
The BPM conference series embraces the diversity and richness of the BPM field
and serves as a melting pot for experts from a mix of disciplines, including com-
puter science, information systems management, services science, and technology
management.

Given the increasing span of BPM, this year the conference opened up to a
number of new topics that add to existing areas of interest and relevance to BPM
research and industry. Recognizing the interdisciplinary nature of BPM, eight
high-level topic areas were indicated in the call for papers, while specific topics
were classified by topic areas. The topic areas were human-centric BPM, man-
agement issues and empirical studies, management of process execution data,
non-traditional BPM scenarios, process architecture and platforms, process flex-
ibility and evolution, process modeling and theory, and process model manage-
ment. Each topic was assigned two expert senior Program Committee members
as topic champions. The topic champions promoted the topics and lead the re-
view process of papers submitted for their topics.

In response to the call for papers, 123 papers were submitted for review.
Each paper was evaluated by at least three Program Committee members, with
the senior Program Committee member providing an additional review in most
cases. We accepted 21 regular papers (17% acceptance rate) and 10 short papers.

The conference program consisted of six research paper presentation sessions,
two short paper sessions, and one industry paper session. The conference program
was greatly enhanced by three outstanding keynote speakers. Rob High, IBM
Fellow, Vice President, and Chief Technology Officer, Watson Solutions, IBM
Software Group. Prior to joining Watson Solutions, Rob championed an open
industry architectural definition of the principles of business and IT alignment
enabled by SOA and business process optimization, which has had far-reaching
impact within and beyond IBM. Keith Swenson, Vice President of Research and
Development at Fujitsu North America and Chief Software Architect for the
Interstage family of products. As a speaker, author, and contributor to many
workflow and BPM standards, Keith is known for having been a pioneer in
collaboration software and Web services, and is the current chairman of the
Workflow Management Coalition. Yuval Shahar, professor and previous chair of
the Information Systems Engineering Department of Ben-Gurion University, and
a leading authority on medical informatics. His work on temporal abstraction

VI Preface

of clinical time-oriented data is well known and is at the core of the query and
interpretation module of Stanford University’s EON system for guideline-based
medical care and a backbone for many research projects.

BPM 2014 also hosted ten workshops, which contributed significantly to the
overall program by attracting additional participants and increasing the oppor-
tunities for discussion and intellectual exchange within and beyond the area of
BPM. We would like to thank BPM Workshop Chairs Fabiana Fournier and
Jan Mendling and all the respective workshop organizers for their outstanding
commitment toward ensuring the success of the workshops. We are thankful
to General Co-chairs Avigdor Gal and Mor Peleg, who led the organization of
BPM 2014. Many thanks to Opher Etzion and Hajo Reijers for their efforts in
attracting high-quality industry papers and further contributions in the review
process. Demo Chairs Lior Limonad and Barbara Weber, Tutorial and Panel
Chair Marcello La Rosa and Doctoral Consortium Chairs Dirk Fahland and Ste-
fanie Rinderle-Ma all made an outstanding contribution to BPM 2014 in their
respective roles, for which we are most grateful. Last but not least, we would
like to thank Matthias Weidlich for his timely and innovative help with confer-
ence publicity and Tsvi Kuflik and Nilly Schnapp for their tireless efforts in the
conference organization.

We are particularly thankful to the senior Program Committee, who em-
braced the role of topic champions this year, and made a concerted and authentic
effort to promote and support high-quality research papers within and across the
topics. We thank all the Program Committee members and external reviewers
for their insightful reviews and discussions.

We also thank the conference sponsors Bizagi (platinum), IBM, and Haifa
municipality (gold), Signavio (silver), and PNMSoft (bronze) for their valuable
support, the BPM Steering Committee for their guidance, and Springer, the
BPM proceedings’ publisher, for their continued support of the BPM conference.

Lastly, we would like to congratulate the authors of all submitted and ac-
cepted papers for their high-quality work, and thank them for choosing BPM
as their outlet for publication. The BPM conference series remains the premier
forum for researchers and practitioners in the growing field of BPM and we look
forward to seeing your work presented in this conference in future years as well.

September 2014 Shazia Sadiq
Pnina Soffer

Hagen Völzer

Organization

BPM 2014 was organized in Haifa, Israel, by the University of Haifa and IBM
Research - Haifa

General Chair

Avigdor Gal Technion – Israel Institute of Technology, Israel
Mor Peleg University of Haifa, Israel

Program Chairs

Shazia Sadiq The University of Queensland, Australia
Pnina Soffer University of Haifa, Israel
Hagen Völzer IBM Research – Zurich, Switzerland

Local Organization Chairs

Tsvi Kuflik University of Haifa, Israel
Nilly Schnapp University of Haifa, Israel

Industry Chairs

Opher Etzion Max Stern Academic College of Yezreel Valley,
Israel

Hajo Reijers Eindhoven University of Technology,
The Netherlands

Workshop Chairs

Fabiana Fournier IBM Haifa Research Lab, Israel
Jan Mendling Vienna University of Economics and Business,

Austria

Doctoral Consortium Chairs

Dirk Fahland Eindhoven University of Technology,
The Netherlands

Stefanie Rinderle-Ma University of Vienna, Austria

VIII Organization

Demo Chairs

Lior Limonad IBM Haifa Research Lab, Israel
Barbara Weber University of Innsbruck, Austria

Publicity Chair

Matthias Weidlich Imperial College London, UK

Tutorial and Panel Chair

Marcello La Rosa Queensland University of Technology, Australia

Program Committee

Rafael Accorsi University of Freiburg, Germany
Boualem Benatallah University of New South Wales, Australia
Christoph Bussler Tropo Inc., USA
Fabio Casati University of Trento, Italy
Francisco Curbera IBM Software Group, USA
Krzysztof Czarnecki University of Waterloo, Canada
Peter Dadam University of Ulm, Germany
Florian Daniel University of Trento, Italy
Jörg Desel FernUniversität Hagen, Germany
Alin Deutsch University of California San Diego, USA
Remco Dijkman Eindhoven University of Technology,

The Netherlands
Marlon Dumas University of Tartu, Estonia
Schahram Dustdar TU Wien, Austria
Johann Eder University of Klagenfurt, Austria
Dirk Fahland Technische Universiteit Eindhoven,

The Netherlands
Marcelo Fantinato University of São Paulo - USP, Brazil
Kathrin Figl Vienna University of Economics and Business

(WU), Austria
Hans-Georg Fill University of Vienna, Austria
Piero Fraternali Politecnico di Milano, Italy
Avigdor Gal Technion, Israel
Luciano Garćıa-Bañuelos University of Tartu, Estonia
Christian Gerth University of Paderborn, Germany
Claude Godart Université de Lorraine/Loria Laboratory,

France
Thomas Hildebrandt IT University of Copenhagen, Denmark
Richard Hull IBM T.J. Watson Research Center, USA

Organization IX

Marta Indulska The University of Queensland, Australia
Sonja Kabicher-Fuchs University of Vienna, Austria
Leonid Kalinichenko Russian Academy of Science, Russia
Gerti Kappel Vienna University of Technology, Austria
Dimka Karastoyanova University of Stuttgart, Germany
Rania Khalaf IBM T.J. Watson Research Center, USA
Ekkart Kindler Technical University of Denmark
Marite Kirikova Riga Technical University, Latvia
Agnes Koschmider Karlsruhe Institute of Technology, Germany
John Krogstie IDI, Norwegian University of Science

and Technology
Akhil Kumar Penn State University, USA
Jochen Küster Fachhochschule Bielefeld, Germany
Geetika Lakshmanan IBM T.J. Watson Research Center, USA
Frank Leymann University of Stuttgart, Germany
Lior Limonad IBM Research - Haifa, Israel
Chengfei Liu Swinburne University of Technology, Australia
Niels Lohmann Universität Rostock, Germany
Peter Loos IWi at DFKI, Saarland University, Germany
Heiko Ludwig IBM Research, Almaden, USA
Massimo Mecella Sapienza Università di Roma, Italy
Jan Mendling Wirtschaftsuniversität Wien, Austria
Hamid Motahari IBM Research, Almaden, USA
Bela Mutschler University of Applied Sciences

Ravensburg-Weingarten, Germany
John Mylopoulos University of Toronto, Canada
Selmin Nurcan Université de Paris 1 Panthéon - Sorbonne,

France
Markus Nüttgens Universität Hamburg, Germany
Andreas Oberweis Universität Karlsruhe, Germany
Hervé Panetto CRAN, University of Lorraine, CNRS, France
Oscar Pastor Lopez Valencia University of Technology, Spain
Artem Polyvyanyy Queensland University of Technology, Australia
Frank Puhlmann Bosch Software Innovations GmbH, Germany
Manfred Reichert University of Ulm, Germany
Hajo A. Reijers Eindhoven University of Technology,

The Netherlands
Stefanie Rinderle-Ma University of Vienna, Austria
Michael Rosemann Queensland University of Technology, Australia
Domenico Sacca’ University of Calabria, Italy
Shazia Sadiq The University of Queensland, Australia
Erich Schikuta University of Vienna, Austria
Heiko Schuldt University of Basel, Switzerland
Sergey Smirnov Hasso Plattner Institute/ SAP Labs, Italy
Pnina Soffer University of Haifa, Israel

X Organization

Minseok Song Ulsan National Institute of Science and
Technology, Korea

Mark Strembeck Vienna University of Economics and BA,
Institute of Information Systems, New Media
Lab, Austria

Harald Störrle Danmarks Tekniske Universitet, Denmark
Jianwen Su University of California at Santa Barbara, USA
Stefan Tai Karlsruhe Institute of Technology, Germany
Samir Tata TELECOM SudParis; CNRS UMR Samovar,

France
Arthur ter Hofstede Queensland University of Technology, Australia
Farouk Toumani Limos, Blaise Pascal University,

Clermont-Ferrand, France
Alberto Trombetta Insubria University, Italy
Aphrodite Tsalgatidou National and Kapodistrian University

of Athens, Greece
Roman Vacuĺın IBM Research, Thomas J. Watson Research

Center, USA
Wil van der Aalst Eindhoven University of Technology,

The Netherlands
Boudewijn van Dongen Eindhoven University of Technology,

The Netherlands
Irene Vanderfeesten Technische Universiteit Eindhoven,

The Netherlands
Hagen Völzer IBM Research - Zurich, Switzerland
Jianmin Wang School of Software, Tsinghua University, China
Barbara Weber University of Innsbruck, Austria
Matthias Weidlich Technion - Israel Institute of Technology
Lijie Wen School of Software, Tsinghua University, China
Mathias Weske HPI, University of Potsdam, Germany
Michael Westergaard Eindhoven University of Technology,

The Netherlands
Petia Wohed DSV, SU/KTH, Sweden
Karsten Wolf Universität Rostock, Germany
Liang Zhang Fudan University, China
Xiaohui Zhao Unitec Institute of Technology, New Zealand
Michael zur Muehlen Stevens Institute of Technology, USA

Additional Reviewers

Athanasopoulos, George
Aubry, Alexis
Bergenthum, Robin
Binz, Tobias
Bislimovska, Bojana

Bokermann, Dennis
Böttcher, Boris
Debois, Søren
Fazal-Baqaie, Masud
Fehling, Christoph

Organization XI

Furfaro, Angelo
Garcia, Andres
Garro, Alfredo
Guo, Jianmei
Guzzo, Antonella
Görlach, Katharina
Hahn, Michael
Harten, Clemens
Heindorf, Stefan
Herzberg, Nico
Hewelt, Marcin
Hipp, Markus
Irgang, Thomas
Janiesch, Christian
Kaufmann, Christian
Khovalko, Oleh
Koutrouli, Eleni
Lezoche, Mario
Liu, Rong
Loures, Eduardo
Mach, Werner
Marrella, Andrea
Masciari, Elio
Mayrhofer, Dieter
Meis, Benjamin
Michelberger, Bernd

Milani, Fredrik P.
Pichler, Christian
Pittl, Benedikt
Pontieri, Luigi
Pufahl, Luise
Rembert, Aubrey
Rodriguez, Carlos
Rogge-Solti, Andreas
Russo, Alessandro
Schlömer, Inga
Serra, Edoardo
Skouradaki, Marigianna
Slaats, Tijs
Steyskal, Simon
Sun, Yutian
Suriadi, Suriadi
Tranquillini, Stefano
Tsagkani, Christina
Ul Haq, Irfan
Weiß, Andreas
Werner, Michael
Wimmer, Manuel
Wittern, Erik
Yahya, Bernardo Nugroho
Yongchareon, Sira
Yu, Jian

Table of Contents

Declarative Processes

Monitoring Business Metaconstraints Based on LTL and LDL for Finite
Traces . 1

Giuseppe De Giacomo, Riccardo De Masellis, Marco Grasso,
Fabrizio Maria Maggi, and Marco Montali

Hierarchical Declarative Modelling with Refinement and
Sub-processes . 18

Søren Debois, Thomas Hildebrandt, and Tijs Slaats

Discovering Target-Branched Declare Constraints . 34
Claudio Di Ciccio, Fabrizio Maria Maggi, and Jan Mendling

User-Centered Process Approaches

Crowd-Based Mining of Reusable Process Model Patterns 51
Carlos Rodŕıguez, Florian Daniel, and Fabio Casati

A Recommender System for Process Discovery . 67
Joel Ribeiro, Josep Carmona, Mustafa Mısır, and Michele Sebag

Listen to Me: Improving Process Model Matching through User
Feedback . 84

Christopher Klinkmüller, Henrik Leopold, Ingo Weber,
Jan Mendling, and André Ludwig

Process Discovery

Beyond Tasks and Gateways: Discovering BPMN Models with
Subprocesses, Boundary Events and Activity Markers 101

Raffaele Conforti, Marlon Dumas, Luciano Garćıa-Bañuelos, and
Marcello La Rosa

A Genetic Algorithm for Process Discovery Guided by Completeness,
Precision and Simplicity . 118

Borja Vázquez-Barreiros, Manuel Mucientes, and Manuel Lama

Constructs Competition Miner: Process Control-Flow Discovery of
BP-Domain Constructs . 134

David Redlich, Thomas Molka, Wasif Gilani, Gordon Blair, and
Awais Rashid

XIV Table of Contents

Integrative BPM

Chopping Down Trees vs. Sharpening the Axe – Balancing the
Development of BPM Capabilities with Process Improvement 151

Martin Lehnert, Alexander Linhart, and Maximilian Röglinger

Implicit BPM: A Business Process Platform for Transparent Workflow
Weaving . 168

Rubén Mondéjar, Pedro Garćıa-López, Carles Pairot, and
Enric Brull

Modeling Concepts for Internal Controls in Business Processes – An
Empirically Grounded Extension of BPMN . 184

Martin Schultz and Michael Radloff

Resource and Time Management in BPM

Mining Resource Scheduling Protocols . 200
Arik Senderovich, Matthias Weidlich, Avigdor Gal, and
Avishai Mandelbaum

Dealing with Changes of Time-Aware Processes . 217
Andreas Lanz and Manfred Reichert

Temporal Anomaly Detection in Business Processes 234
Andreas Rogge-Solti and Gjergji Kasneci

Process Analytics

A General Framework for Correlating Business Process
Characteristics . 250

Massimiliano de Leoni, Wil M.P. van der Aalst, and Marcus Dees

Behavioral Comparison of Process Models Based on Canonically
Reduced Event Structures . 267

Abel Armas-Cervantes, Paolo Baldan, Marlon Dumas, and
Luciano Garćıa-Bañuelos

Where Did I Go Wrong? Explaining Errors in Business Process
Models . 283

Niels Lohmann and Dirk Fahland

Industry Papers

User-Friendly Property Specification and Process Verification – A Case
Study with Vehicle-Commissioning Processes . 301

Richard Mrasek, Jutta Mülle, Klemens Böhm, Michael Becker, and
Christian Allmann

Table of Contents XV

Analysis of Operational Data for Expertise Aware Staffing 317
Renuka Sindhgatta, Gaargi Banerjee Dasgupta, and Aditya Ghose

From a Family of State-Centric PAIS to a Configurable and
Parameterized Business Process Architecture . 333

Andreas Rulle and Juliane Siegeris

Short Papers: Process Enabled Environments

DRain: An Engine for Quality-of-Result Driven Process-Based Data
Analytics . 349

Aitor Murguzur, Johannes M. Schleicher, Hong-Linh Truong,
Salvador Trujillo, and Schahram Dustdar

Use Your Best Device! Enabling Device Changes at Runtime 357
Dennis Bokermann, Christian Gerth, and Gregor Engels

Specifying Flexible Human Behavior in Interaction-Intensive Process
Environments . 366

Christoph Dorn, Schahram Dustdar, and Leon J. Osterweil

Separating Execution and Data Management: A Key to Business-
Process-as-a-Service (BPaaS) . 374

Yutian Sun, Jianwen Su, and Jian Yang

Assessing the Need for Visibility of Business Processes – A Process
Visibility Fit Framework . 383

Enrico Graupner, Martin Berner, Alexander Maedche, and
Harshavardhan Jegadeesan

Short Papers: Discovery and Monitoring

The Automated Discovery of Hybrid Processes . 392
Fabrizio Maria Maggi, Tijs Slaats, and Hajo A. Reijers

Declarative Process Mining: Reducing Discovered Models Complexity
by Pre-Processing Event Logs . 400

Pedro H. Piccoli Richetti, Fernanda Araujo Baião, and
Flávia Maria Santoro

SECPI: Searching for Explanations for Clustered Process Instances 408
Jochen De Weerdt and Seppe vanden Broucke

Business Monitoring Framework for Process Discovery with Real-Life
Logs . 416

Mari Abe and Michiharu Kudo

XVI Table of Contents

Predictive Task Monitoring for Business Processes 424
Cristina Cabanillas, Claudio Di Ciccio, Jan Mendling, and
Anne Baumgrass

Author Index . 433

Monitoring Business Metaconstraints
Based on LTL and LDL for Finite Traces

Giuseppe De Giacomo1, Riccardo De Masellis1, Marco Grasso1,
Fabrizio Maria Maggi2, and Marco Montali3

1 Sapienza Università di Roma, Via Ariosto, 25, 00185 Rome, Italy
(degiacomo,demasellis)@dis.uniroma1.it

2 University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
f.m.maggi@ut.ee

3 Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
montali@inf.unibz.it

Abstract. Runtime monitoring is one of the central tasks to provide operational
decision support to running business processes, and check on-the-fly whether they
comply with constraints and rules. We study runtime monitoring of properties
expressed in LTL on finite traces (LTLf) and its extension LDLf . LDLf is a pow-
erful logic that captures all monadic second order logic on finite traces, which
is obtained by combining regular expressions with LTLf , adopting the syntax of
propositional dynamic logic (PDL). Interestingly, in spite of its greater expressiv-
ity, LDLf has exactly the same computational complexity of LTLf . We show that
LDLf is able to capture, in the logic itself, not only the constraints to be moni-
tored, but also the de-facto standard RV-LTL monitors. This makes it possible to
declaratively capture monitoring metaconstraints, i.e., constraints about the evo-
lution of other constraints, and check them by relying on usual logical services
for temporal logics instead of ad-hoc algorithms. This, in turn, enables to flex-
ibly monitor constraints depending on the monitoring state of other constraints,
e.g., “compensation” constraints that are only checked when others are detected
to be violated. In addition, we devise a direct translation of LDLf formulas into
nondeterministic automata, avoiding to detour to Büchi automata or alternating
automata, and we use it to implement a monitoring plug-in for the PROM suite.

Keywords: Formal methods, runtime verification, declarative business pro-
cesses, operational decision support, process monitoring, temporal logics.

1 Introduction

Runtime monitoring is one of the central tasks to provide operational decision support
[21] to running business processes, and check on-the-fly whether they comply with
constraints and rules. In order to provide well-founded and provably correct runtime
monitoring techniques, this area is usually rooted into that of verification, the branch of
formal analysis aiming at checking whether a system meets some property of interest.
Being the system dynamic, properties are usually expressed by making use of modal
operators accounting for the time.

Among all the temporal logics used in verification, Linear-time Temporal Logic
(LTL) is particularly suited for monitoring, as an actual system execution is indeed lin-
ear. However, the LTL semantics is given in terms of infinite traces, hence monitoring

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 1–17, 2014.
c© Springer International Publishing Switzerland 2014

2 G. De Giacomo et al.

must check whether the current trace is a prefix of an infinite trace, that will never be
completed [7,2]. In several context, and in particular often in BPM, we can assume that
the trace of the system is in fact finite [18]. For this reason, finite-trace variant of the LTL

have been introduced. Here we use the logic LTLf (LTL on finite traces), investigated
in detail in [4], and at the base of one of the main declarative process modeling ap-
proaches: DECLARE [18,16,11]. Following [11], monitoring in LTLf amounts to check
whether the current execution belongs to the set of admissible prefixes for the traces
of a given LTLf formula ϕ. To achieve such a task, ϕ is usually first translated into a
finite-state automaton for ϕ, which recognizes all those finite executions that satisfy ϕ.

Despite the presence of previous operational decision support techniques to monitor-
ing LTLf constraints over finite traces [11,12], two main challenges have not yet been
tackled in a systematic way. First of all, several alternative semantics have been pro-
posed to make LTL suitable for runtime verification (such as the de-facto standard RV
monitor conditions [2]), but no comprehensive technique based on finite-state automata
is available to accommodate them. On the one hand, runtime verification for such log-
ics typically considers finite partial traces whose continuation is however infinite [2],
with the consequence that the corresponding techniques detour to Büchi automata for
building the monitors. On the other hand, the incorporation of such semantics in the
BPM setting (where also continuations are finite) has only been tackled so far with ef-
fective but ad-hoc techniques (cf. the “coloring” of automata in [11] to support the RV
conditions), without a corresponding formal underpinning.

A second, key challenge is the incorporation of advanced forms of monitoring, where
some constraints become of interest only in specific, critical circumstances (such as the
violation of other constraints). This is the basis for supporting monitoring of compensa-
tion constraints and the so-called contrary-to-duty obligations [20], i.e., obligations that
are put in place only when other obligations have not been fulfilled. While this feature
is considered to be a fundamental compliance monitoring functionality [10], it is still
an open challenge, without any systematic approach able to support it at the level of the
constraint specification language.

In this paper, we attack these two challenges by studying runtime monitoring of prop-
erties expressed in LTLf and in its extension LDLf [4]. LDLf is a powerful logic that
captures all monadic second order logic on finite traces, which is obtained by combin-
ing regular expressions with LTLf , adopting the syntax of propositional dynamic logic
(PDL). Interestingly, in spite of its greater expressivity, LDLf has exactly the same com-
putational complexity of LTLf . We show that LDLf is able to capture, in the logic itself,
not only the usual LDLf constraints to be monitored, but also the de-facto standard RV
conditions. Indeed given an LDLf formula ϕ, we show how to construct the LDLf for-
mulas that captures whether prefixes of ϕ satisfy the various RV conditions. This, in
turn, makes it possible to declaratively capture monitoring metaconstraints, and check
them by relying on usual logical services instead of ad-hoc algorithms. Metaconstraints
provide a well-founded, declarative basis to specify and monitor constraints depending
on the monitoring state of other constraints, such as “compensation” constraints that are
only checked when others are violated.

Interestingly, in doing so we devise a direct translation of LDLf (and hence of LTLf)
formulas into nondeterministic automata, which avoid the usual detour to Büchi au-
tomata. The technique is grounded on alternating automata (AFW), but it actually avoids
also their introduction all together, and directly produces a standard non-deterministic

Monitoring Business Metaconstraints Based on LTL and LDL for Finite Traces 3

finite-state automaton (NFA). Notably, such technique has been implemented and
embedded into a monitoring plug-in for the PROM, which supports the check of LDLf
constraints and metaconstraints.

2 LTLf and LDLf

In this paper we will adopt the standard LTL and its variant LDL interpreted on finite
runs.

LTL on finite traces, called LTLf [4], has exactly the same syntax as LTL on infi-
nite traces [19]. Namely, given a set of P of propositional symbols, LTLf formulas are
obtained through the following:

ϕ ::= φ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ◦ϕ | •ϕ | �ϕ | �ϕ | ϕ1 U ϕ2

where φ is a propositional formuala over P , ◦ is the next operator,• is weak next, �
is eventually, � is always, U is until.

It is known that LTLf is as expressive as First Order Logic over finite traces, so
strictly less expressive than regular expressons which in turn are as expressive as
Monadic Second Order logic over finite traces. On the other hand, regular expressions
are a too low level formalism for expressing temporal specifications, since, for example,
they miss a direct construct for negation and for conjunction [4].

To overcome this difficulties, in [4] Linear Dynamic Logic of Finite Traces, or LDLf ,
has been proposed. This logic is as natural as LTLf but with the full expressive power
of Monadic Second Order logic over finite traces. LDLf is obtained by merging LTLf
with regular expression through the syntax of the well-know logic of programs PDL,
Propositional Dynamic Logic, [8,9] but adopting a semantics based on finite traces.
This logic is an adaptation of LDL, introduced in [22], which, like LTL, is interpreted
over infinite traces.

Formally, LDLf formulas are built as follows:

ϕ ::= φ | tt | ff | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∧ ϕ2 | 〈ρ〉ϕ | [ρ]ϕ
ρ ::= φ | ϕ? | ρ1 + ρ2 | ρ1; ρ2 | ρ∗

where φ is a propositional formula over P ; tt and ff denote respectively the true and the
false LDLf formula (not to be confused with the propositional formula true and false);
ρ denotes path expressions, which are regular expressions over propositional formulasφ
with the addition of the test construct ϕ? typical of PDL; and ϕ stand for LDLf formulas
built by applying boolean connectives and the modal connectives 〈ρ〉ϕ and [ρ]ϕ. In fact
[ρ]ϕ ≡ ¬〈ρ〉¬ϕ.

Intuitively, 〈ρ〉ϕ states that, from the current step in the trace, there exists an exe-
cution satisfying the regular expression ρ such that its last step satisfies ϕ. While [ρ]ϕ
states that, from the current step, all executions satisfying the regular expression ρ are
such that their last step satisfies ϕ. Tests are used to insert into the execution path checks
for satisfaction of additional LDLf formulas.

As for LTLf , the semantics of LDLf is given in terms of finite traces denoting a finite,
possibly empty, sequence of consecutive steps in the trace, i.e., finite words π over the
alphabet of 2P , containing all possible propositional interpretations of the propositional
symbols in P . We denote by n the length of the trace, and by π(i) the i-th step in the

4 G. De Giacomo et al.

trace. If i > n, then π(i) is undefined. We denote by π(i, j) the segment of the trace π
starting at i-th step end ending at the j-th step (included). If i or j are out of range wrt
the trace then π(i, j) is undefined, except π(i, i) = ε (i.e., the empty trace).

The semantics of LDLf is as follows: an LDLf formulaϕ is true at a step i, in symbols
π, i |= ϕ, as follows:

– π, i |= tt
– π, i �|= ff
– π, i |= φ iff 1 ≤ i ≤ n and π(i) |= φ (φ propositional).
– π, i |= ¬ϕ iff π, i �|= ϕ.
– π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2.
– π, i |= ϕ1 ∨ ϕ2 iff π, i |= ϕ1 or π, i |= ϕ2.
– π, i |= 〈ρ〉ϕ iff for some j we have π(i, j) ∈ L(ρ) and π, j |= ϕ.
– π, i |= [ρ]ϕ iff for all j such that π(i, j) ∈ L(ρ) we have π, j |= ϕ.

The relation π(i, j) ∈ L(ρ) is defined inductively as follows:
– π(i, j) ∈ L(φ) if j = i+ 1 ≤ n and π(i) |= φ (φ propositional)
– π(i, j) ∈ L(ϕ?) if j = i and π, i |= ϕ
– π(i, j) ∈ L(ρ1 + ρ2) if π(i, j) ∈ L(ρ1) or π(i, j) ∈ L(ρ2)
– π(i, j) ∈ L(ρ1; ρ2) if exists k s.t. π(i, k) ∈ L(ρ1) and π(k, j) ∈ L(ρ2)
– π(i, j) ∈ L(ρ∗) if j = i or exists k s.t. π(i, k) ∈ L(ρ) and π(k, j) ∈ L(ρ∗)
Observe that for i > n , hence e.g., for π = ε we get:

– π, i |= tt
– π, i �|= ff
– π, i �|= φ (φ propositional).
– π, i |= ¬ϕ iff π, i �|= ϕ.
– π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2.
– π, i |= ϕ1 ∨ ϕ2 iff π, i |= ϕ1 or π, i |= ϕ2.
– π, i |= 〈ρ〉ϕ iff π(i, i) ∈ L(ρ) and π, i |= ϕ.
– π, i |= [ρ]ϕ iff π(i, i) ∈ L(ρ) implies π, i |= ϕ.

The relation π(i, i) ∈ L(ρ) with i > n is defined inductively as follows:
– π(i, i) �∈ L(φ) (φ propositional)
– π(i, i) ∈ L(ϕ?) if π, i |= ϕ
– π(i, i) ∈ L(ρ1 + ρ2) if π(i, i) ∈ L(ρ1) or π(i, i) ∈ L(ρ2)
– π(i, i) ∈ L(ρ1; ρ2) if π(i, i) ∈ L(ρ1) and π(i, i) ∈ L(ρ2)
– π(i, i) ∈ L(ρ∗)
Notice we have the usual boolean equivalences such as ϕ1 ∨ ϕ2 ≡ ¬ϕ1 ∧ ¬ϕ2,

furthermore we have that: φ ≡ 〈φ〉tt , and [ρ]ϕ ≡ ¬〈ρ〉¬ϕ. It is also convenient to
introduce the following abbreviations:

– end = [true?]ff that denotes that the traces is been completed (the remaining trace
is ε the empty one)

– last = 〈true〉end , which denotes the last step of the trace.
It easy to encode LTLf into LDLf : it suffice to observe that we can express the various

LTLf operators by recursively applying the following translations:
– ◦ϕ translates to 〈true〉ϕ;
– •ϕ translates to ¬〈true〉¬ϕ = [true]ϕ (notice that •a is translated into

[true][¬a]ff , since a is equivalent to 〈a〉tt);
– �ϕ translates to 〈true∗〉ϕ;
– �ϕ translates to [true∗]ϕ (notice that �a is translated into [true∗][¬a]ff);
– ϕ1 U ϕ2 translates to 〈(ϕ1?; true)

∗〉ϕ2.

Monitoring Business Metaconstraints Based on LTL and LDL for Finite Traces 5

It is also easy to encode regular expressions, used as a specification formalism for
traces into LDLf : ρ translates to 〈ρ〉end .

We say that a trace satisfies an LTLf or LDLf formula ϕ, written π |= ϕ if π, 1 |= ϕ.
(Note that if π is the empty trace, and hence 1 is out of range, still the notion of π, 1 |= ϕ
is well defined). Also sometimes we denote by L(ϕ) the set of traces that satisfy ϕ:
L(ϕ) = {π | π |= ϕ}.

3 LDLf Automaton

We can associate with each LDLf formula ϕ an NFA Aϕ (exponential in the size of
the formula) that accepts exactly those traces that make ϕ true. Here, we provide a
simple direct algorithm for computing the NFA corresponding to an LDLf formula. The
correctness of the algorithm is based on the fact that (i) we can associate each LDLf
formula ϕ with a polynomial alternating automaton on words (AFW) Aϕ which accepts
exactly the traces that make ϕ true [4], and (ii) every AFW can be transformed into an
NFA, see, e.g., [4]. However, to formulate the algorithm we do not need these notions,
but we can work directly on the LDLf formula. In order to proceed with the construction
of the AFW Aϕ, we put LDLf formulas ϕ in negation normal form nnf (ϕ) by exploiting
equivalences and pushing negation inside as much as possible, until is eliminated except
in propositional formulas. Note that computing nnf (ϕ) can be done in linear time. In
other words, wlog, we consider as syntax for LDLf the one in the previous section but
without negation. Then we define an auxiliary function δ that takes an LDLf formula ψ
(in negation normal form) and a propositional interpretation Π for P (including last),
or a special symbol ε, returning a positive boolean formula whose atoms are (quoted) ψ
subformulas.

δ("tt", Π) = true

δ("ff ", Π) = false

δ("φ", Π) =

{
true if Π |= φ
false if Π �|= φ

(φ propositional)

δ("ϕ1 ∧ ϕ2", Π) = δ("ϕ1", Π) ∧ δ("ϕ2", Π)

δ("ϕ1 ∨ ϕ2", Π) = δ("ϕ1", Π) ∨ δ("ϕ2", Π)

δ("〈φ〉ϕ", Π) =

⎧⎨
⎩
"ϕ" if last �∈ Π and Π |= φ (φ propositional)
δ("ϕ", ε) if last ∈ Π and Π |= φ
false if Π �|= φ

δ("〈ψ?〉ϕ", Π) = δ("ψ", Π) ∧ δ("ϕ", Π)

δ("〈ρ1 + ρ2〉ϕ", Π) = δ("〈ρ1〉ϕ", Π) ∨ δ("〈ρ2〉ϕ", Π)

δ("〈ρ1; ρ2〉ϕ", Π) = δ("〈ρ1〉〈ρ2〉ϕ", Π)

δ("〈ρ∗〉ϕ", Π) =

{
δ("ϕ", Π) if ρ is test-only
δ("ϕ", Π) ∨ δ("〈ρ〉〈ρ∗〉ϕ", Π) o/w

δ("[φ]ϕ", Π) =

⎧⎨
⎩
"ϕ" if last �∈ Π and Π |= φ (φ propositional)
δ("ϕ", ε) if last ∈ Π and Π |= φ (φ propositional)
true if Π �|= φ

δ("[ψ?]ϕ", Π) = δ("nnf (¬ψ)", Π) ∨ δ("ϕ", Π)

6 G. De Giacomo et al.

1: algorithm LDLf2NFA ()
2: input LTLf formula ϕ
3: output NFA Aϕ = (2P ,S , {s0}, �, {sf})
4: s0 ← {"ϕ"} � single initial state
5: sf ← ∅ � single final state
6: S ← {s0, sf}, �← ∅
7: while (S or � change) do
8: if (q ∈ S and q′ |= ∧

("ψ"∈q) δ("ψ", Θ)) then
9: S ← S ∪ {q′} � update set of states

10: �← � ∪ {(q,Θ, q′)} � update transition relation

Fig. 1. NFA construction

δ("[ρ1 + ρ2]ϕ", Π) = δ("[ρ1]ϕ", Π) ∧ δ("[ρ2]ϕ", Π)

δ("[ρ1; ρ2]ϕ", Π) = δ("[ρ1][ρ2]ϕ", Π)

δ("[ρ∗]ϕ", Π) =

{
δ("ϕ", Π) if ρ is test-only
δ("ϕ", Π) ∧ δ("[ρ][ρ∗]ϕ", Π) o/w

where δ("ϕ", ε), i.e., the interpretation of LDLf formula in the case the (remaining
fragment of the) trace is empty, is defined as follows:

δ("tt", ε) = true

δ("ff ", ε) = false

δ("φ", ε) = false (φ propositional)

δ("ϕ1 ∧ ϕ2", ε) = δ("ϕ1", ε) ∧ δ("ϕ2", ε)

δ("ϕ1 ∨ ϕ2", ε) = δ("ϕ1", ε) ∨ δ("ϕ2", ε)

δ("〈φ〉ϕ", ε) = false (φ propositional)

δ("〈ψ?〉ϕ", ε) = δ("ψ", ε) ∧ δ("ϕ", ε)

δ("〈ρ1 + ρ2〉ϕ", ε) = δ("〈ρ1〉ϕ", ε) ∨ δ("〈ρ2〉ϕ", ε)
δ("〈ρ1; ρ2〉ϕ", ε) = δ("〈ρ1〉〈ρ2〉ϕ", ε)

δ("〈ρ∗〉ϕ", ε) = δ("ϕ", ε)

δ("[φ]ϕ", ε) = true (φ propositional)

δ("[ψ?]ϕ", ε) = δ("nnf (¬ψ)", ε) ∨ δ("ϕ", ε)

δ("[ρ1 + ρ2]ϕ", ε) = δ("[ρ1]ϕ", ε) ∧ δ("[ρ2]ϕ", ε)

δ("[ρ1; ρ2]ϕ", ε) = δ("[ρ1][ρ2]ϕ", ε)

δ("[ρ∗]ϕ", ε) = δ("ϕ", ε)

Notice also that for φ propositional, δ("φ", Π) = δ("〈φ〉tt", Π) and δ("φ", ε) =
δ("〈φ〉tt", ε), as a consequence of the equivalence φ ≡ 〈φ〉tt .
Using the auxiliary function δ we can build the NFA Aϕ of an LDLf formula ϕ in
a forward fashion as described in Figure 1), where: states of Aϕ are sets of atoms
(recall that each atom is quoted ϕ subformulas) to be interpreted as a conjunction;
the empty conjunction ∅ stands for true; Θ is either a propositional interpretation
Π over P or the empty trace ε (this gives rise to epsilon transition either to true or

Monitoring Business Metaconstraints Based on LTL and LDL for Finite Traces 7

false) and q′ is a set of quoted subformulas of ϕ that denotes a minimal interpreta-
tion such that q′ |= ∧

("ψ"∈q) δ("ψ", Θ). (Note: we do not need to get all q such that
q′ |= ∧

("ψ"∈q) δ("ψ", Θ), but only the minimal ones.) Notice that trivially we have
(∅, a, ∅) ∈ � for every a ∈ Σ.

The algorithm LDLf 2NFA terminates in at most exponential number of steps, and
generates a set of states S whose size is at most exponential in the size of ϕ.

Theorem 1. Let ϕ be an LDLf formula and Aϕ the NFA constructed as above. Then
π |= ϕ iff π ∈ L(Aϕ) for every finite trace π.

Proof (sketch). Given a LDLf formula ϕ, δ grounded on the subformulas of ϕ becomes
the transition function of the AFW, with initial state "ϕ" and no final states, correspond-
ing to ϕ [4]. Then LDLf2NFA essentially transforms the AFW into a NFA. �

Notice that above we have assumed to have a special proposition last ∈ P . If we
want to remove such an assumption, we can easily transform the obtained automaton
Aϕ = (2P ,S, {"ϕ"}, �, {∅}) into the new automaton

A′ϕ = (2P−{last},S ∪ {ended}, {"ϕ"}, �′, {∅, ended})

where: (q,Π ′, q′) ∈ �′ iff (q,Π ′, q′) ∈ �, or (q,Π ′∪{last}, true) ∈ � and q′ = ended.
It is easy to see that the NFA obtained can be built on-the-fly while checking for

nonemptiness, hence we have:

Theorem 2. Satisfiability of an LDLf formula can be checked in PSPACE by nonempti-
ness of Aϕ (or A′ϕ).

Considering that it is known that satisfiability in LDLf is a PSPACE-complete problem,
we can conclude that the proposed construction is optimal wrt computational complex-
ity for satisfiability, as well as for validity and logical implication which are linearly
reducible to satisfiability in LDLf (see [4] for details).

4 Run-time Monitoring

From an high-level perspective, the monitoring problem amounts to observe an evolving
system execution and to report the violation or satisfaction of properties of interest at
the earliest possible time. As the system progresses, its execution trace increases, and at
each step the monitor checks whether the trace seen so far conforms to the properties, by
considering that the execution can still continue. This evolving aspect has a significant
impact on the monitoring output: at each step, indeed, the outcome may have a degree
of uncertainty due to the fact that future executions are yet unknown.

Several variant of monitoring semantics have been proposed (see [2] for a survey).
In this paper we adopt the semantics in [11], which is basically the finite-trace variant
of the RV semantics in [2]: given a LTLf or LDLf formula ϕ, when the system evolves,
the monitor returns one among the following truth values:

– [ϕ]RV = temp true, meaning that the current execution trace temporarily satisfies
ϕ, i.e., it is currently compliant with ϕ, but a possible system future prosecution
may lead to falsify ϕ;

8 G. De Giacomo et al.

– [ϕ]RV = temp false , meaning that the current trace temporarily falsify ϕ, i.e., ϕ is
not current compliant with ϕ, but a possible system future prosecution may lead to
satisfy ϕ;

– [ϕ]RV = true, meaning that the current trace satisfies ϕ and it will always do, no
matter how it proceeds;

– [ϕ]RV = false , meaning that the current trace falsifies ϕ and it will always do, no
matter how it proceeds.

The first two conditions are unstable because they may change into any other value as
the system progresses. This reflects the general unpredictability of system possible ex-
ecutions. Conversely, the other two truth values are stable since, once outputted, they
will not change anymore. Observe that a stable truth value can be reached in two dif-
ferent situations: (i) when the system execution terminates; (ii) when the formula that
is being monitored can be fully evaluated by observing a partial trace only. The first
case is indeed trivial, as when the execution ends, there are no possible future evolu-
tions and hence it is enough to evaluate the finite (and now complete) trace seen so far
according to the LDLf semantics. In the second case, instead, it is irrelevant whether
the systems continues its execution or not, since some LDLf properties, such as even-
tualities or safety properties, can be fully evaluated as soon as something happens, e.g.,
when the eventuality is verified or the safety requirement is violated. Notice also that
when a stable value is outputted, the monitoring analysis can be stopped.

From a more theoretical viewpoint, given an LDLf property ϕ, the monitor looks at
the trace seen so far, assesses if it is a prefix of a complete trace not yet completed, and
categorizes it according to its potential for satisfying or violating ϕ in the future. We
call a prefix possibly good for an LDLf formulaϕ if there exists an extension of it which
satisfies ϕ. More precisely, given an LDLf formula ϕ, we define the set of possibly good
prefixes for L(ϕ) as the set

Lposs good(ϕ) = {π | ∃π′.ππ′ ∈ L(ϕ)} (1)

Prefixes for which every possible extension satisfies ϕ are instead called necessarily
good. More precisely, given an LDLf formula ϕ, we define the set of necessarily good
prefixes for L(ϕ) as the set

Lnec good(ϕ) = {π | ∀π′.ππ′ ∈ L(ϕ)}. (2)

The set of necessarily bad prefixes Lnec bad(ϕ) can be defined analogously as

Lnec bad(ϕ) = {π | ∀π′.ππ′ �∈ L(ϕ)}. (3)

Observe that the necessarily bad prefixes for ϕ are the necessarily good prefixes for ¬ϕ,
i.e., Lnec bad(ϕ) = Lnec good(¬ϕ).

Using this language theoretic notions, we can provide a precise characterization of
the semantics four standard monitoring evaluation functions [11].

Proposition 1. Let ϕ be an LDLf formula and π a trace. Then:
– π |= [ϕ]RV = temp true iff π ∈ L(ϕ) \ Lnec good(ϕ);
– π |= [ϕ]RV = temp false iff π ∈ L(¬ϕ) \ Lnec bad(ϕ);
– π |= [ϕ]RV = true iff π ∈ Lnec good(ϕ);
– π |= [ϕ]RV = false iff π ∈ Lnec bad(ϕ).

Monitoring Business Metaconstraints Based on LTL and LDL for Finite Traces 9

Proof (sketch). Immediate from the definitions in [11] and the language theoretic defi-
nitions above. �

We close this section by exploiting the language theoretic notions to better under-
stand the relationships between the various kinds of prefixes. We start by observing
that, the set of all finite words over the alphabet 2P is the union of the language of ϕ
and its complement L(ϕ) ∪ L(¬ϕ) = (2P)∗. Also, any language and its complement
are disjoint L(ϕ) ∩ L(¬ϕ) = ∅.

Since from the definition of possibly good prefixes we have L(ϕ) ⊆ Lposs good(ϕ)
and L(¬ϕ) ⊆ Lposs good(¬ϕ), we also have that Lposs good(ϕ) ∪ Lposs good(¬ϕ) =
(2P)∗. Also from the definition it is easy to see that Lposs good(ϕ)∩Lposs good(¬ϕ) =
{π | ∃π′.ππ′ ∈ L(ϕ) ∧ ∃π′′.ππ′′ ∈ L(¬ϕ)} meaning that the set of possibly good
prefixes for ϕ and the set of possibly good prefixes for ¬ϕ do intersect, and in such
an intersection are paths that can be extended to satisfy ϕ but can also be extended to
satisfy ¬ϕ. It is also easy to see that L(ϕ) = Lposs good(ϕ) \ L(¬ϕ).

Turning to necessarily good prefixes and necessarily bad prefixes, it is easy to see that
Lnec good(ϕ) = Lposs good(ϕ) \Lposs good(¬ϕ), that Lnec bad(ϕ) = Lposs good(¬ϕ) \
Lposs good(ϕ), and also that ⊆ L(ϕ) and Lnec good(ϕ) �⊆ L(¬ϕ).

Interestingly, necessarily good, necessarily bad, possibly good prefixes partition all
finite traces. Namely

Proposition 2. The set of all traces (2P)∗ can be partitioned into

Lnec good(ϕ) Lposs good(ϕ) ∩ Lposs good(¬ϕ) Lnec bad(ϕ)

such that Lnec good(ϕ) ∪ (Lposs good(ϕ) ∩ Lposs good(¬ϕ)) ∪ Lnec bad(ϕ) = (2P)∗

Lnec good(ϕ) ∩ (Lposs good(ϕ) ∩ Lposs good(¬ϕ)) ∩ Lnec bad(ϕ) = ∅.

Proof (sketch). Follows from the definitions of the necessarily good, necessarily bad,
possibly good prefixes of L(ϕ) and L(¬ϕ). �

5 Runtime Monitors in LDLf

As discussed in the previous section the core issue in monitoring is prefix recogni-
tion. LTLf is not expressive enough to talk about prefixes of its own formulas. Roughly
speaking, given a LTLf formula, the language of its possibly good prefixes cannot be
in general described as an LTLf formula. For such a reason, building a monitor usually
requires direct manipulation of the automaton for the formula.

LDLf instead can capture any nondeterministic automata as a formula, and it has the
capability of expressing properties on prefixes. We can exploit such an extra expressiv-
ity to capture the monitoring condition in a direct and elegant way. We start by showing
how to construct formulas representing (the language of) prefixes of other formulas,
and then we exploit them in the context of monitoring.

More precisely, given an LDLf formula ϕ, it is possible to express the language
Lpossgood(ϕ) with an LDLf formula ϕ′. Such a formula is obtained in two steps.

Lemma 1. Given a LDLf formula ϕ, there exists a regular expression prefϕ such that
L(prefϕ) = Lposs good(ϕ).

10 G. De Giacomo et al.

Proof (sketch). The proof is constructive. We can build the NFA A for ϕ following
the procedure described in Section 3. We then set as final all states of A from which
there exists a path to a final state. This new finite state machine Aposs good(ϕ) is such
that L(Aposs good(ϕ)) = Lposs good(ϕ). Since NFA are exactly as expressive as regular
expressions, we can translate Aposs good(ϕ) to a regular expression prefϕ. �

Given that LDLf is as expressive as regular expression (cf. [4]), we can translate
prefϕ into an equivalent LDLf formula, as the following states.

Theorem 3. Given a LDLf formula ϕ,

π ∈ Lposs good(ϕ) iff π |= 〈prefϕ〉end
π ∈ Lnec good(ϕ) iff π |= 〈prefϕ〉end ∧ ¬〈pref¬ϕ〉end

Proof (sketch). Any regular expression ρ, and hence any regular language, can be
captured in LDLf as 〈ρ〉end . Hence the language Lposs good(ϕ) can be captured
by 〈prefϕ〉end and the language Lnec good(ϕ) which is equivalent Lposs good(ϕ) \
Lposs good(¬ϕ) can be captured by 〈prefϕ〉end ∧ ¬〈pref¬ϕ〉end . �

In other words, given a LDLf formulaϕ, formulaϕ′ = 〈prefϕ〉end is a LDLf formula
such that L(ϕ′) = Lposs good(ϕ). Similarly for Lnec good(ϕ).

Exploiting this result, and the results in Proposition 1, we reduce runtime monitoring
to the standard evaluation of LDLf formulas over a (partial) trace. Formally:

Theorem 4. Let π be a (typically partial) trace. The following equivalences hold:
– π |= [ϕ]RV = temp true iff π |= ϕ ∧ 〈pref¬ϕ〉end ;
– π |= [ϕ]RV = temp false iff π |= ¬ϕ ∧ 〈prefϕ〉end ;
– π |= [ϕ]RV = true iff 〈prefϕ〉end ∧ ¬〈pref¬ϕ〉end ;
– π |= [ϕ]RV = false iff 〈pref¬ϕ〉end ∧ ¬〈prefϕ〉end .

Proof (sketch). Follows from Proposition 1 and Theorem 3 using the language theoretic
equivalences discussed in Secton 4. �

6 Monitoring Declare Constraints and Metaconstraints

We now ground our monitoring approach to the case of DECLARE monitoring. DE-
CLARE1 is a language and framework for the declarative, constraint-based modelling
of processes and services. A thorough treatment of constraint-based processes can be
found in [17,14]. As a modelling language, DECLARE takes a complementary approach
to that of classical, imperative process modeling, in which all allowed control-flows
among tasks must be explicitly represented, and every other execution trace is implicitly
considered as forbidden. Instead of this procedural and “closed” approach, DECLARE

has a declarative, “open” flavor: the agents responsible for the process execution can
freely choose how to perform the involved tasks, provided that the resulting execution
trace complies with the modeled business constraints. This is the reason why, along-
side traditional control-flow constraints such as sequence (called in DECLARE chain
succession), DECLARE supports a plethora of peculiar constraints that do not impose
specific temporal orderings, or that explicitly account with negative information, i.e.,
prohibition of task execution.

1 http://www.win.tue.nl/declare/

http://www.win.tue.nl/declare/

Monitoring Business Metaconstraints Based on LTL and LDL for Finite Traces 11

Given a set P of tasks, a DECLARE model is a set C of LTLf (and hence LDLf)
constraints over P , used to restrict the allowed execution traces. Among all possible
LTLf constraints, some specific patterns have been singled out as particularly meaning-
ful for expressing DECLARE processes, taking inspiration from [6]. Such patterns are
grouped into four families: (i) existence (unary) constraints, stating that the target task
must/cannot be executed (a certain amount of times); (ii) choice (binary) constraints,
modeling choice of execution; (iii) relation (binary) constraints, modeling that when-
ever the source task is executed, then the target task must also be executed (possibly with
additional requirements); (iv) negation (binary) constraints, modeling that whenever the
source task is executed, then the target task is prohibited (possibly with additional re-
strictions). Table 1 reports some of these patterns.

Example 1. Consider a fragment of a purchase order process, where we consider three
key business constraints. First, an order can be closed at most once. In DECLARE, this
can be tackled with a absence 2 constraint, visually and formally represented as:

0..1

close order ϕclose = ¬�(close order ∧◦�close order)

Second, an order can be canceled only until it is closed. This can be captured by a
negation succession constraint, which states that after the order is closed, it
cannot be canceled anymore:

close order •−−�•‖ cancel order ϕcanc = �(close order→¬�cancel order)

Finally, after the order is closed, it becomes possible to do supplementary payments,
for various reasons (e.g., to speed up the delivery of the order).

close order −−−�• pay suppl ϕpay = (¬pay supplU close order) ∨ ¬�close order

Beside modeling and enactment of constraint-based processes, previous works have
also focused on runtime verification of DECLARE models. A family of DECLARE mon-
itoring approaches rely on the original LTLf formalization of DECLARE, and employ
corresponding automata-based techniques to track running process instances and check
whether they satisfy the modeled constraints or not [11,12]. Such techniques have been
in particular used for:

– monitoring single DECLARE constraints so as to provide a fine-grained feedback;
this is done by adopting the RV semantics for LTLf , and tracking the evolution each
constraint through the four RV truth values.

– Monitoring the global DECLARE model by considering all its constraints together
(i.e., constructing a DFA for the conjunction of all constraints); this is important for
computing the early detection of violations, i.e., violations that cannot be explicitly
found in the execution trace collected so far, but that cannot be avoided in the future.

We now discuss how LDLf can be adopted for monitoring DECLARE constraints,
with a twofold advantage. First, as shown in Section 5, LDLf is able to encode the RV
semantics directly into the logic, without the need of introducing ad-hoc modifications
in the corresponding standard logical services. Second, beside being able to reconstruct
all the aforementioned monitoring techniques, our approach also provides a declarative,
well-founded basis for monitoring metaconstraints, i.e., constraints that involve both the
execution of tasks and the monitoring outcome obtained by checking other constraints.

12 G. De Giacomo et al.

Monitoring Declare Constraints with LDLf . Since LDLf includes LTLf , DECLARE

constraints can be directly encoded in LDLf using their standard formalization [18,16].
Thanks to the translation into NFAs discussed in Section 3 (and, if needed, their deter-
minization into corresponding DFAs), the obtained automaton can then be used to check
whether a (partial) finite trace satisfies this constraint or not. This is not very effective,
as the approach does not support the detection of fine-grained truth values as those of
RV. By relying on Theorem 4, however, we can reuse the same technique, this time
supporting all RV. In fact, by formalizing the good prefixes of each DECLARE pattern,
we can immediately construct the four LDLf formulas that embed the different RV truth
values, and check the current trace over each of the corresponding automata. Table 1
reports the good prefix characterization of some of the DECLARE patterns; it can be
seamlessly extended to all other patterns as well.

Example 2. Let us consider the absence 2 constraintϕclose in Example 1. Following
Table 1, its good prefix characterization is prefϕclose

= o∗ + (o∗; close order; o∗),
where o is a shortcut for all the tasks involved in the purchase order process but close
order. This can be used to construct the four formulas mentioned in Theorem 4, which
in turn provide the basis to produce, e.g., the following result:

start do “close order” do “pay suppl.” do “close order”
0..1

close order temp true false

Observe that this baseline approach can be extended along a number of directions.
For example, as shown in Table 1, the majority of DECLARE patterns does not cover
all the four RV truth values. This is the case, e.g., of absence 2, which can never be
evaluated to true (since it is always possible to continue the execution so as to perform
a twice), nor to temp false (the only way of violating the constraint is to perform a
twice, and in this case it is not possible to “repair” to the violation anymore). This
information can be used to restrict the generation of the automata only to those cases
that are relevant to the constraint. Furthermore, it is possible to reconstruct exactly the
approach in [11], where every state in the DFAs corresponding to the constraints to be
monitored, is enriched with a “color” accounting for one of the four RV truth values.
To do so, we have simply to combine the four DFAs generated for each constraint. This
is possible because such DFAs are generated from formulas built on top of the good
prefix characterization of the original formula, and hence they all produce the same
automaton, but with different final states. In fact, this observation provides a formal
justification to the correctness of the approach in [11].

Metaconstraints. Thanks to the ability of LDLf to directly encode into the logic DE-
CLARE constraints but also their RV monitoring states, we can formalize metacon-
straints that relate the RV truth values of different constraints. Intuitively, such metacon-
straints allow one to capture that we become interested in monitoring some constraint
only when other constraints are evaluated to be in a certain RV truth value. This, in
turn, provides the basis to declaratively capture two classes of properties that are of
central importance in the context of runtime verification:

– Compensation constraints, that is, constraints that should be enforced by the agents
executing the process in the case other constraints are violated, i.e., are evaluated

Monitoring Business Metaconstraints Based on LTL and LDL for Finite Traces 13

Table 1. Some DECLARE constraints, together with their prefix characterization, minimal bad
prefix charaterization, and possible RV states; for each constraint, o is a shortcut for “other tasks”,
i.e., tasks not involved in the constraint itself.

NAME NOTATION pref POSSIBLE RV STATES

E
X

IS
T

E
N

C
E

Existence
1..∗
a (a+ o)∗ temp false, true

Absence 2
0..1

a o∗ + (o∗; a; o∗) temp true , false

C
H

O
IC

E Choice a −− ♦−− b (a+ b+ o)∗ temp false, true

Exclusive Choice a −− �−− b (a+ o)∗ + (b+ o)∗ temp false, temp true , false

R
E

L
A

T
IO

N

Resp. existence a •−−−− b (a+ b+ o)∗ temp true , temp false , true

Coexistence a •−−−• b (a+ b+ o)∗ temp true , temp false , true

Response a •−−−� b (a+ b+ o)∗ temp true , temp false

Precedence a −−−�• b o∗; (a; (a+ b+ o)∗)∗ temp true , true , false

Succession a •−−�• b o∗; (a; (a+ b+ o)∗)∗ temp true , temp false , false

N
E

G
A

T
IO

N Not Coexistence a •−−−•‖ b (a+ o)∗ + (b+ o)∗ temp true , false

Neg. Succession a •−−�•‖ b (b+ o)∗; (a+ o)∗ temp true , false

to be false . Previous works have been tackled this issue through ad-hoc techniques,
with no declarative counterpart [11,12].

– Recovery mechanisms resembling contrary-to-duty obligations in legal reasoning
[20], i.e., obligations that are put in place only when other obligations are not met.

Technically, a generic form for metaconstraints is the pattern Φpre → Ψexp, where:
– Φpre is a boolean formula, whose atoms are membership assertions of the involved

constraints to the RV truth values;
– Ψexp is a boolean formula whose atoms are the constraints to be enforced when
Φpre evaluates to true.

This pattern can be used, for example, to state that whenever constraints c1 and c2 are
permanently violated, then either constraint c3 or c4 have to be enforced. Observe that
the metaconstraint so constructed is a standard LDLf formula. Hence, we can reapply
Theorem 4 to it, getting four LDLf formulas that can be used to track the evolution of
the metaconstraint among the four RV values.

Example 3. Consider the DECLARE constraints of Example 1. We want to enhance it
with a compensation constraint stating that whenever ϕcanc is violated (i.e., the order
is canceled after it has been closed), then a supplement payment must be issued. This
can be easily captured in LDLf as follows. First of all, we model the compensation con-
straint, which corresponds, in this case, to a standard existence constraint over the
pay supplement task. Let ϕdopay denote the LDLf formalization of such a compen-
sation constraint. Second, we capture the intended compensation behavior by using the
following LDLf metaconstraint:

{[ϕcanc]RV = false}→ ϕdopay

14 G. De Giacomo et al.

which, leveraging Theorem 4, corresponds to the standard LDLf formula:

(〈pref¬ϕcanc
〉end ∧ ¬〈prefϕcanc

〉end)→ ϕdopay

A limitation of this form of metaconstraint is that the right-hand part Ψexp is monitored
from the beginning of the trace. This is acceptable in many cases. E.g., in Example 1, it
is ok if the user already paid a supplement before the order cancelation caused constraint
ϕcanc to be violated. In other situations, however, this is not satisfactory, because we
would like to enforce the compensating behavior only after Φpre evaluates to true, e.g.,
after the violation of a given constraint has been detected. In general, we can extend the
aforementioned metaconstraint pattern as follows: Φpre→ [ρ]Ψexp, where ρ is a regular
expression denoting the paths after which Ψexp is expected to be enforced.

By constructing ρ as the regular expression accounting for the paths that make Φpre
true, we can then exploit this improved metaconstraint to express that Ψexp is expected
to become true after all prefixes of the current trace that made Φpre true.

Example 4. We modify the compensation constraint of Example 3, so as to reflect that
when a closed order is canceled (i.e., ϕcanc is violated), then a supplement must be paid
afterwards. This is captured by the following metaconstraint:

{[ϕcanc]RV = false}→ [re{[ϕcanc]RV =false}]ϕdopay

where re{[ϕcanc]=false} denotes the regular expression for the language L({[ϕcanc] =
false}) = L(〈pref¬ϕcanc

〉end ∧ ¬〈prefϕcanc
〉end). This regular expression describes

all paths containing a violation for constraint ϕcanc.

7 Implementation

The entire approach has been implemented as an operational decision support (OS)
provider for the PROM 6 process mining framework2. PROM 6 provides a generic OS
environment [23] that supports the interaction between an external workflow manage-
ment system at runtime (producing events) and PROM. In particular, it provides an OS
service that receives a stream of events from the external world, updates and orches-
trates the registered OS providers implementing different types of online analysis to be
applied on the stream, and reports the produced results back to the external world.

At the back-end of the plug-in, there is a software module specifically dedicated
to the construction and manipulation of NFAs from LDLf formulas, concretely imple-
menting the technique presented in Section 3. To manipulate regular expressions and
automata, we used the fast, well-known library dk.brics.automaton [13].

Figure 2 shows a graphical representation of the evolution of constraints described in
Example 1 and 4 of Section 6 when monitored using our operational support provider.
Events are displayed on the horizontal axis, while the vertical axis shows the three
constraints expressed as LDLf formulas, where the literals f , g and d respectively stand
for tasks close order, cancel order, and pay supplement. Note that after the violation
of the negation succession constraint a compensation meta-constraint is triggered to
enforce that pay supplement is required to occur after the violation.

2 http://www.promtools.org/prom6/

http://www.promtools.org/prom6/

Monitoring Business Metaconstraints Based on LTL and LDL for Finite Traces 15

Fig. 2. Screenshot of our operational support provider’s output.

8 Conclusion

We have proposed an effective approach for monitoring dynamic (business) constraints
on finite traces that represent the executions of running process instances. Our contri-
bution can be seen as an extension of the declarative process specification approach at
the basis of DECLARE, in which we tackle the monitoring problem with a more pow-
erful temporal logic: LDLf , i.e., Monadic Second Order logic over finite traces, instead
of LTLf , i.e., First Order logic over finite traces. Notably, this declarative approach to
monitoring seamlessly supports the specification and monitoring of metaconstraints,
i.e., constraints that do not only predicate about the dynamics of task executions, but
also about the truth values of other constraints. We have grounded this approach on
DECLARE itself, showing how to declaratively specify compensation constraints.

The next step will be to incorporate recovery mechanisms into the approach, in par-
ticular providing a formal underpinning to the ad-hoc recovery mechanisms studied in
[11]. Furthermore, we intend to extend our approach to data-aware business constraints
[1,5], mixing temporal operators with first-order queries over the data attached to the
monitored events. This setting has been studied using the Event Calculus [15], also con-
sidering some specific forms of compensation in DECLARE [3]. However, the resulting
approach can only query the partial trace accumulated so far, and not reason upon its
possible future continuations, as automata-based techniques are able to do. To extend
the approach presented here to the case of data-aware business constraints, we will
build on recent, interesting decidability results for the static verification of data-aware
business processes against sophisticated variants of first-order temporal logics [1].

16 G. De Giacomo et al.

Acknowledgments. This research has been partially supported by the EU IP project
Optique: Scalable End-user Access to Big Data, grant agreement n. FP7-318338, and
by the Sapienza Award 2013 “SPIRITLETS: Spiritlet-based smart spaces”.

References

1. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification
of relational data-centric dynamic systems with external services. In: 32nd ACM SIGACT
SIGMOD SIGART Symp. on Principles of Database Systems, PODS (2013)

2. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification.
Logic and Computation (2010)

3. Chesani, F., Mello, P., Montali, M., Torroni, P.: Verification of choreographies during execu-
tion using the reactive event calculus. In: Bruni, R., Wolf, K. (eds.) WS-FM 2008. LNCS,
vol. 5387, pp. 55–72. Springer, Heidelberg (2009)

4. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces.
In: 23rd Int. Joint Conf. on Artificial Intelligence (IJCAI). AAAI (2013)

5. De Masellis, R., Maggi, F.M., Montali, M.: Monitoring data-aware business constraints with
finite state automata. In: Int. Conf. on Software and System Proc. (ICSSP). ACM (2014)

6. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: Boehm, B.W., Garlan, D., Kramer, J. (eds.) Proc. of the 1999 International
Conf. on Software Engineering (ICSE). ACM Press (1999)

7. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.: Reasoning
with temporal logic on truncated paths. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003)

8. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Journal of
Computer and System Science (1979)

9. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
10. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.: A framework for

the systematic comparison and evaluation of compliance monitoring approaches. In: Proc. of
the 17th IEEE Int. Enterprise Distributed Object Computing Conf. (EDOC). IEEE (2013)

11. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitoring business
constraints with linear temporal logic: An approach based on colored automata. In: Rinderle-
Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 132–147. Springer,
Heidelberg (2011)

12. Maggi, F.M., Westergaard, M., Montali, M., van der Aalst, W.M.P.: Runtime verification of
LTL-based declarative process models. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS,
vol. 7186, pp. 131–146. Springer, Heidelberg (2012)

13. Møller, A.: dk.brics.automaton – finite-state automata and regular expressions for Java (2010)
14. Montali, M.: Specification and Verification of Declarative Open Interaction Models. LNBIP,

vol. 56. Springer, Heidelberg (2010)
15. Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.: Monitoring business

constraints with the event calculus. ACM TIST (2013)
16. Montali, M., Pesic, M., van der Aalst, W.M.P., Chesani, F., Mello, P., Storari, S.: Declarative

specification and verification of service choreographies. ACM Trans. on the Web (2010)
17. Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Controls to Users.

PhD thesis, Beta Research School for Operations Management and Logistics, Eindhoven
(2008)

18. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes
management. In: Eder, J., Dustdar, S. (eds.) BPM 2006 Workshops. LNCS, vol. 4103,
pp. 169–180. Springer, Heidelberg (2006)

Monitoring Business Metaconstraints Based on LTL and LDL for Finite Traces 17

19. Pnueli, A.: The temporal logic of programs. In: 18th Ann. Symp. on Foundations of Com-
puter Science (FOCS). IEEE (1977)

20. Prakken, H., Sergot, M.J.: Contrary-to-duty obligations. Studia Logica (1996)
21. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Busi-

ness Processes. Springer (2011)
22. Vardi, M.: The rise and fall of linear time logic. In: 2nd Int. Symp. on Games, Automata,

Logics and Formal Verification (2011)
23. Westergaard, M., Maggi, F.M.: Modeling and verification of a protocol for operational sup-

port using coloured petri nets. In: Kristensen, L.M., Petrucci, L. (eds.) PETRI NETS 2011.
LNCS, vol. 6709, pp. 169–188. Springer, Heidelberg (2011)

Hierarchical Declarative Modelling with

Refinement and Sub-processes

Søren Debois1, Thomas Hildebrandt1, and Tijs Slaats1,2

1 IT University of Copenhagen, Rued Langgaardsvej 7, 2300 Copenhagen, Denmark
{debois,hilde,tslaats}@itu.dk

2 Exformatics A/S, Lautrupsgade 13, 2100 Copenhagen, Denmark

Abstract. We present a new declarative model with composition and
hierarchical definition of processes, featuring (a) incremental refinement,
(b) adaptation of processes, and (c) dynamic creation of sub-processes.
The approach is motivated and exemplified by a recent case manage-
ment solution delivered by our industry partner Exformatics A/S. The
approach is achieved by extending the Dynamic Condition Response
(DCR) graph model with interfaces and composition along those inter-
faces. Both refinement and sub-processes are then constructed in terms of
that composition. Sub-processes take the form of hierarchical (complex)
events, which dynamically instantiate sub-processes. The extensions are
realised and supported by a prototype simulation tool.

1 Introduction

Business process design technologies today are predominantly based on flow-
oriented process notations such as the Business Process Model and Notation
(BPMN) standard [18], which imperatively describes how a process should pro-
ceed from start to end. Often, business processes are required to be compliant
with regulations and constraints given by busines polices, standards and laws.
E.g., a customer must be informed about alternatives and risks before getting a
loan in a bank, or a decision on a grant application cannot be made before the
deadline for submissions of applications has been reached.

Since the flow-oriented notations only captures how to fulfill the compliance
rules, the description and verification of compliance rules require other notations
and techniques. This leaves the process designers with three modelling tasks:
To describe the compliance rules, to describe the process, and to verify that
the process is compliant to the rules. Typically, compliance rules are described
declaratively using a variant of temporal logic such as Linear-time Temporal
Logic (LTL) [21]. Compliance can then be verified during execution using run-
time verification techniques [12] and, if the flow-diagrams are based on a formal
model, also at design time [6]. In most industrial design tools, the flow-diagrams
are however not based on a formal model, and consequently, design time verifi-
cation is not supported. This means that the process designers have to figure out
manually how to interpret the constraints, and compliance is then subsequently

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 18–33, 2014.
c© Springer International Publishing Switzerland 2014

Hierarchical Declarative Modelling with Refinement and Sub-processes 19

verified informally and approved by, e.g., a lawyer. At best, a formal run-time
or post-execution verification is performed against the execution log.

In these situations there is a high risk that processes become either non-
compliant or over-constrained by design, to faciliate manual verification. Over-
constrained processes, however, rarely fits reality or are simply not suitable for
knowledge-intensive processes. A way to avoid these problems is to use the
declarative approach (also) for the process design. Several declarative process
modelling notations and techniques have been proposed in the last decade, in-
cluding DECLARE [2,1], CLIMB [13], GSM [11] and Dynamic Condition Re-
sponse (DCR) graphs [8,14]. However, sometimes the declarative approach makes
it less clear from the end-user, how a process will proceed from start to end. Even
with a graphical notation (as in DECLARE, GSM and DCR graphs), it may be
difficult to comprehend the interactions between different constraints.

The DCR graph process modelling notation stands out by supporting a simple
and efficient run-time execution, which mitigates the complexity of comprehend-
ing the constraints and allows for run-time adaptation [15], while still being more
expressive than (propositional) LTL (and thus DECLARE), in that it allows to
describe every union of a regular and an ω-regular language [3,16,14].

DCR Graphs were conceived as both a generalization of event structures [22]
and a formalization and generalization of the Process Matrix [17] invented by
Danish company Resultmaker. Since its inception, the DCR Graph notation
and theory have been developed further in collaboration with Exformatics A/S,
a Danish provider of case, document and knowledge management systems. A ver-
sion of DCR graphs with a simple notion of nesting [9], an additional milestone
relation, and support for data now forms the core their workflow engine [20,7].
However, DCR graph models as currently implemented become difficult to com-
prehend and present at a certain size. They seem to lack encapsulation, mod-
ularity and hierarchy; the key techniques to make large models comprehensible
in both imperative [19] and declarative settings [23]. Also, practical modelling
efforts by Exformatics A/S has revealed that DCR graphs emphatically needs a
notion of “dynamically created” or “instantiated” sub-process.

In the present paper, we seek to remedy these shortcomings of DCR graphs.
Our contributions are as follows.

1. We introduce refinement-by-composition for DCR graphs.

2. We add to DCR graphs a notion of dynamically spawned sub-process, defining
Hi-DCR graphs.

3. We demonstrate the use of both incremental process design using an example
exctracted from a recent case management solution delivered by Exformatics
A/S to a Danish funding agency.

4. We provide a publicly available Hi-DCR graph tool.

The tool allows simulation, model-checking of the finite fragment, automatic
visualisation and more. The compositions and refinements presented in examples
were not made by hand, they were executed by the tool; all DCR diagrams in
this paper has been generated by it, and all examples are fully executable by it.

20 S. Debois, T. Hildebrandt, and T. Slaats

Hi-DCR graphs are fully formalised; we prove both soundness of refinement—
that refinement cannot accidentally remove constraints of the extant model—as
well as Hi-DCR being strictly more expressive than ω-regular languages.

1.1 Related Work

Hierarchy for declarative languages was studied in [23], where the authors add
complex activities to DECLARE [2,1]. The authors make a compelling case that
hierarchy is a necessity for constructing understandable declarative models. Our
industry partner’s experiences fully supports this thesis; this is in part what has
led to our investigation of sub-processes.

A complex activity is one which contains a nested DECLARE model governing
when that activity may complete. The nested model starts when the complex
activity opens, and the complex activity conversely may only close once the
nested model completes. Otherwise, there is no interaction between the nested
model and the parent model. In the present paper, a sub-process may interact
with its parent process: there can be multiple ways to start the sub-process, it
can have different observable outcomes, and it is allowed to interact with other
activities in the parent process.

Questions about concurrency are left open by [23]: the authors do not report
a formal semantics, and the paper has no examples of interleavings of complex
activities. In the present approach, sub-process executions are naturally inter-
leaved with other events and even other instances of the same sub-process; we
shall see this in examples.

We believe it is straightforward to formalize complex activities of [23] in Hi-
DCR Graphs: Use Hi-DCR relations to allow only a single start and end event
for each sub-process, and cut off interaction between sub- and super-process by
choosing only empty interfaces.

The Guard-Stage-Milestone (GSM) approach [11] to business modelling pro-
vides a data-centric notation with declarative flavour. The notation consists of
stages, which in turn have guards, controlling when and how the stage may start,
and milestones, controlling when and how a stage may close. Stages can con-
tain sub-stages, giving GSM an inherent hierarchy. Where GSM is data-centric,
the present formalism is event-based. Nonetheless, the sub-processes of Hi-DCR
graphs are strongly reminiscent of GSM stages, with Hi-DCR interface events
assuming the rôle of guards and milestones. In future work, we plan to further
investigate the similarities between GSM and Hi-DCR Graphs, in the hope of
providing a formal connection between them.

2 DCR Graphs

In this section, we recall DCR graphs as introduced in [8,14] and introduce
our running example. The example is based on a workflow of a Danish funding
agency; our industry partner, Exformatics A/S, has implemented system sup-
port for this workflow using the basic DCR graphs of this Section [20]. While

Hierarchical Declarative Modelling with Refinement and Sub-processes 21

vindicating DCR graphs as a flexible and practical modelling tool, that work
also highlighted the potential need for refinement and sub-processes, which we
introduce in the following Sections. One key idea will be the development of
models by refinement : start from a very abstract model, then successively refine
it until it becomes suitably concrete. In this section, we introduce DCR graphs
alongside such a very abstract model.

As the name suggests, DCR graphs are graphs, and we tend to represent them
visually, as in Fig. 1. This figure depicts a highly abstracted model of the funding
agency workflow. Events (boxes) with labels (the text inside them) are related
to other events by various arrows. In this model there are only four events: the
beginning of the application round Start round; receiving an application (Receive
application); the deadline for application submission occurring (Application dead-
line); and finally the board meeting (Board meeting), at which the board of the
funding institution decide which applications warrant grants and which do not.

(Accepting)

Application deadline

Receive application
%

Board meeting

Start round

Fig. 1. A basic DCR graph

Relations between these events govern
their relative order of occurrence. When not
constrained by any relations, events can hap-
pen in any order and any number of times.

The condition relation, e →• e′, seen be-
tween Start round and Receive application in-
dicates that the former must occur before the
latter: we do not receive applications before
the round has started. In the initial state of
the DCR graph, Start round have yet to hap-
pen, and so Receive application cannot exe-
cute; hence it has been greyed out in the visual representation. The notation
and semantics of this relation is similar to the precedence constraint in DE-
CLARE [2,1].

Between Receive application and Board meeting we have a response relation,
e •→ e′. This indicates that if Receive application happens, then Board meeting
must subsequently happen. This does not necessarily mean that each occurrence
of the former is followed by a unique occurrence of the latter; it’s quite all right to
receive seven applications, have a board meeting, receive five more applications,
then have a final board meeting. If Receive application has been executed without
a following Board meeting, we say that Board meeting is pending.

Finally, between the Application deadline and Receive application events we
have an exclusion relation, e →% e′. Once the Application deadline event occurs,
the Receive application event becomes excluded, which means that it is from
then on considered irrelevant for the rest of the workflow. While excluded, it
cannot execute; any response obligations on it are considered void; and if it
is a condition for some other event, that condition is disregarded. Dual to the
exclusion relation is the inclusion relation. It is not exemplified in this DCR
graph, but its meaning is straightforward: it re-includes an event in the workflow.
DCR graph have also a fifth and final relation, the milestone relation e →� e′;
we will postpone explaining that until we use it in the next Section.

22 S. Debois, T. Hildebrandt, and T. Slaats

(Accepting)

Application deadline

Receive application
%

Board meeting

Start round

1. Initial state. 2. After executing Start
round.

3. . . .Receive application.

4. . . .Receive application
(again)

5. . . .Application deadline 6. . . .Board meeting

Fig. 2. Execution of the DCR graph of Fig. 1

A key advantage of DCR graphs is that the graph directly represents the
state of execution. There is no distinction between design-time and run-time.
We will illustrate this by example: in Fig. 2 we have a finite execution of Fig. 1.
In the upper-left corner, (1) is the initial state, the DCR graph presented in
Fig. 1. The Start round event executes, taking us to (2). We can observe events
having been executed in the state of the graph: executed events have little check-
marks next to them, so in (2), Start round has such a check-mark. Also, with
Start round executed, the condition for Receive application is fulfilled; it is now
executable and thus no longer greyed out. We execute it to get to (3). Because
there is a response from Receive application to Board meeting, that execution puts
a pending response on Board meeting. This is indicated in (3) by the red text
and the exclamation mark.

We execute Receive application to get to (4). This execution brings no change to
the graph, which already had Receive application marked as previously executed,
and already had a response on Board meeting. So we execute Application deadline,
getting to (5). Because of the exclusion relation from that to Receive application,
the latter becomes excluded, indicated by its box being dotted in (5). Even
though excluded events cannot be executed, we do not grey them out; the dotted
box is enough. Finally, we execute Board meeting to get to (6). This of course
fulfils the pending response, which disappears: the text of Board meeting goes
back to black, and the exclamation mark disappears.

A DCR graph is accepting if it has no included pending responses. (An infinite
run is accepting if every incurred response is eventually executed or excluded.)
The acceptance state of the graph is indicated in the lower-right corner of each
graph. That indication is technically superfluous: the graph will be accepting

Hierarchical Declarative Modelling with Refinement and Sub-processes 23

exactly if it has no red labels/labels with exclamation marks. For large graphs,
it can be convenient to have the single indicator anyway.

3 Hierarchy and Refinement

We now come to the core contributions of this paper. We present a notion of
“refinement” of DCR graphs, defined in terms of a more primitive notion of
“composition” of DCR graphs. Refinement is always achieved by composing an
abstract DCR Graph with a refinement DCR Graph, which introduces new events
and/or add additional constraints.

3.1 Refinement

We wish to refine our model to express in greater detail the decision mechanics
of the board. We will model board meetings by the DCR graph in Fig. 3. The
results of an application round must be gathered in a report. This report is
updated and approved repeatedly during the application round. This gives rise
to two new events: Update report and Approve report.

(Accepting)

Approve report

Board meeting

Update report

Fig. 3. Expanded model
of the Board meeting

Applications are discussed over the course of several
board meetings and the results of the board meetings
must be worked into the report. To allow the secretary
to work efficiently she is not required to formally up-
date the report after every single board meeting, but
she may combine the outcomes of several of them in
a single update. This constraint is represented by the
response relation from Board meeting to Update report.

While there are such pending changes to the report,
it can of course not be approved. This is modelled using
a milestone relation Update report →� Approve report.
This relation means that while Update report is pend-
ing, Approve report can not execute.

Note that this model does not preclude the board from re-approving a report
that has not been updated. While not a particularly sensible thing to do, it is
not against the rules, and as such should be permitted by the model.

Now, we wish to add these new details about board meetings to our original
abstract model of Fig. 1; that is, we wish to refine Fig. 1 by Fig. 3. We do so by
composing them: we fuse together events that are the same in both graphs. In
this case only Board meeting. The result can be seen in Fig. 4. (The dashed box
in that figure has no semantic ramifications; it is there are simply to make the
graph easier to understand. See also [23].)

It is of course important that such a refinement does not accidentally re-
move constraints of the original model. Because of the inclusion and exclusion
relations, that might happen, e.g., inclusions in the refining model might cause
events excluded in the abstract one to be suddenly allowed. We shall prove in
Theorem 4.10 that, roughly, when the two models agree on when fused events

24 S. Debois, T. Hildebrandt, and T. Slaats

are included or excluded, the composition will not admit new behaviour; in this
case we call it a refinement. In the present case, the only fused event is Board
meeting, which has no inclusions or exclusions going into it in either model, so
this composition is really a refinement.

(Accepting)

Approve report

Board meeting

Update report

Application deadline

Receive application
%

Start round

Fig. 4. Refinement of Fig. 1 by Fig.3

Refinement-as-composition in conjunc-
tion with DCR graphs having no dis-
tinction between design-time and run-
time means that we can refine a run-
ning model. Suppose, for instance, that
we have deployed our initial abstract
model of Fig. 1, and have reached state
(5) in Fig. 2 when it is decided that
compliance with the board meeting re-
port procedure of Fig. 3 must be en-
forced. We may add in these new con-
straints by refining the running model
(Fig. 2, part 5) with the new constraints
(Fig. 3). Doing so yields the new DCR
graph seen in Fig. 5. Note how the
pending state of the fused Board meet-
ing event is preserved. And again, by
virtue of the refinement Theorem 4.10,

we can be assured that all constraints on execution of the original model is still
preserved in this new refined one.

3.2 Subprocesses

Refinement gives us a disciplined method for extending models with new com-
ponents; thus it gives us a hierarchical notion of process design. However, it
does not fully capture the notion of sub-processes in traditional business mod-
elling notations. Here, a sub-processes is a complex activity in the model that
has underlying behaviour which is instantiated when the sub-process is started
and closed when the sub-process ends. Such sub-processes can both be single-
instance, meaning that only one instance of the sub-process will be active at any
time, or multi-instance, meaning that multiple instances of the sub-processes can
execute concurrently.

To enable modelling such sub-processes we extend DCR graphs to Hi-DCR
graphs. In these, we may associate with an event an entire other Hi-DCR graph
which, when the event fires, is composed onto the current graph. We exemplify
Hi-DCR Graphs by adding to our funding agency model a more detailed de-
scription of the process for an individual application. As many applications may
be received and evaluated at the same time, we need a notion of sub-processes
(and in particular multi-instance sub-processes) to fully capture this behaviour.

An application must receive some number of reviews, with at least one from a
lawyer. The reviews are collected in a review report. Based on the review report,

Hierarchical Declarative Modelling with Refinement and Sub-processes 25

the application is accepted or rejected and the round report is updated with this
decision. It is not uncommon that the decision on an application is reverted,
changing an “accept” to a “reject” or vice versa, and this may even happen
several times as discussions progress. Of course, each change in the decision
requires an update to the round report. Finally, each applications cannot remain
in limbo and must always eventually be either accepted or rejected.

Fig. 5. Refinement of Fig. 2 part 5 by Fig. 3

The DCR graph in Fig. 6
models this process. At the
top is Lawyer review and Other
review. Of these two only
Lawyer review is a condition
for Review report, with the
effect that we cannot write
the review report unless we
have at least a review from a
lawyer.

After the Review report is
completed, the reviewers may
Accept or Reject the applica-
tion; as mentioned, there is no
restriction that these events
happen only once. However,
each new verdict requires Up-
date report because of the re-
sponse relation from Accept
and Reject to Update report.

Fig. 6. The per-application sub-
process

Finally we need to model the fact that
either Accept or Reject needs to occur at
least once, similar to the choice construct
in DECLARE. Hi-DCR graphs contain
no construct directly analogue to choice;
but fortunately, there is a straightforward
way—a DCR graph idiom, if you will—to
achieve the intended semantics. We explic-
itly model the fact that a decision is needed
as an event Decision. We make this event a
condition of itself, meaning that it cannot
possibly be executed. We also make it ini-
tially included and pending, so that once
the application is started, a decision needs
to eventually be made. Finally we let both
Accept and Reject exclude Decision, indicat-
ing that these two both represents a valid decision. Once Decision becomes ex-
cluded, it no longer prevents the larger graph from achieving an accepting state.

26 S. Debois, T. Hildebrandt, and T. Slaats

Now, we wish the entire sub process of Fig. 6 to be instantiated once per
application. In Hi-DCR graphs this is achieved by associating with the event
Receive application in Fig. 5 the entire application processing DCR graph of
Fig. 6. After executing Receive application a new copy of the application DCR
Graph is composed with the main DCR Graph, and we get the DCR graph of
Fig. 7.

Observe that once again, the common event Update report has been fused be-
tween the two DCR graphs. So far, this should be unsurprising: it is a straight-
forward application of the composition mechanism of DCR graphs. The key
difference is that a Hi-DCR graphs is equipped also with a partitioning of its
events into interface events (indicated by boxes with rounded corners in Fig. 6)
and local events (indicated by boxes with non-rounded corners). This parti-
tioning has the effect that under composition, only interface events are fused,
whereas local events are not, even if their labelling overlap. The effect of these
interfaces and local events will be apparent if we consider what happens when
Receive application executes a second time; refer to Fig. 8. Here, we see that the
second application process has fused its interface event Update report, but has
duplicated its remaining events, which are all local. This has the following two
important consequences:

Fig. 7. Updated model with one spawned subprocess

1. Each application process is represented separately.
2. Approve report effectively synchronises decisions: whenever the decision on

any application is changed, the report needs to be updated.

Connecting local and interface event is a highly expressive mechanism. For in-
stance, if we want to have a review report ready for every application before the

Hierarchical Declarative Modelling with Refinement and Sub-processes 27

Fig. 8. After spawning a second subprocess in Fig. 7

board meeting commences, it is enough to have, in the sub-process definition
in Fig. 6 a condition from the local event Review report to a new interface event
Board meeting.

4 Foundations

In this section, we review the formal theory of DCR graphs, then formally in-
troduce their refinement and their generalisation to Hi-DCR graphs.

We distinguish between events and labels. In a single workflow, the same
label may occur multiple times. For instance, the label “Review report” occurs
twice in Fig. 8. We accommodate such multiplicity by considering events (the
boxes), as distinct from their label (the text in the boxes). When the distinction
between events and labels does not matter, we use the words interchangeably.
For instance, in Fig. 1 and 3 we speak of “the event Board meeting”, since the
label Board meeting uniquely identifies an event. To simplify the presentation we
will let the labelling of events remain implicit in the formal definitions.

Definition 4.1 (DCR Graph [8]). A DCR graph is a tuple (E,R,M) where

– E is a finite set of (labelled) events, the nodes of the graph.
– R is the edges of the graph. Edges are partioned into five kinds, named and

drawn as follows: The conditions (→•), responses (•→), milestones (→�),
inclusions (→+), and exclusions (→%).

– M is the marking of the graph. This is a triple (Ex,Re, In) of sets of events,
respectively the previously executed (Ex), the currently pending (Re), and the
currently included (In) events.

When G is a DCR graph, we write, e.g., E(G) for the set of events of G, as well
as, e.g., Ex(G) for the executed events in the marking of G.

28 S. Debois, T. Hildebrandt, and T. Slaats

Notation. For a binary relation → ⊆ X × Y we write “→ Z” for the set
{x ∈ X | ∃z ∈ Z. x → z}, and similarly for “Z →”. For singletons we usually
omit the curly braces, writing →e rather than →{e}.

With the definition of DCR graphs and notation in place, we define the dy-
namic semantics of a DCR graph. First, the notion of an event being enabled,
ready to execute.

Definition 4.2 (Enabled events). Let G = (E,R,M) be a DCR graph, with
marking M = (Ex,Re, In). We say that an event e ∈ E is enabled and write
e ∈ enabled(G) iff (a) e ∈ In, (b) In ∩ (→•e) ⊆ Ex, and (c) In ∩ (→�e) ⊆ E\Re.
That is, enabled events (a) are included, (b) their included conditions already
executed, and (c) have no included milestones with an unfulfilled responses.

Definition 4.3 (Execution). Let G = (E,R,M) be a DCR graph with marking
M = (Ex,Re, In). Suppose e ∈ enabled(G). We may execute e obtaining the
resulting DCR graph (E,R,M′) with M′ = (Ex′,Re′, In′) defined as follows.

1. Ex′ = Ex ∪ e
2. Re′ = (Re \ e) ∪ (e•→)
3. In′ = (In \ (e→%)) ∪ (e→+)

That is, to execute an event e one must: (1) add e to the set Ex of executed
events. (2) Update the currently required responses Re by first removing e, then
adding any responses required by e. (3) Update the currently included events by
first removing all those excluded by e, then adding all those included by e.

Definition 4.4 (Transitions, runs, traces). Let G be a DCR graph. If e ∈
enabled(G) and executing e in G yields H, we say that G has transition on e to
H and write G −→e H. A run of G is a (finite or infinite) sequence of DCR
graphs Gi and events ei such that: G = G0 −→e0 G1 −→e1 . . .
A trace of G is a sequence of labels of events ei associated with a run of G. We
write runs(G) and traces(G) for the set of runs and traces of G, respectively

Not every run or trace represents an acceptable execution of the graph: We need
also that every response requested is eventually fulfilled or excluded.

Definition 4.5 (Acceptance). A run G0 −→e0 G1 −→e1 . . . is accepting iff
for all n with e ∈ In(Gn) ∩ Re(Gn) there exists m ≥ n s.t. either em = e, or
e
∈ In(Gm). A trace is accepting iff it has an underlying run which is.

Acceptance tells us which workflows a DCR graph accepts, its language.

Definition 4.6 (Language). The language of a DCR graph G is the set of its
accepting traces. We write lang(G) for the language of G.

We now know enough to formalise the first DCR graph we saw.

Example 4.7. The DCR graph of Fig. 1 and 2 has events a, s, r, b labelled Ap-
plication deadline (a), Start round (s), Receive application (r), and Board meet-
ing (b). It has relation R given by →%= {(a, r)}, →+= ∅, →•= {s, r}, •→=
{r, b} and →�= ∅. We can find a run of this DCR graph in Fig. 2: B1 −→s

B2 −→r B3 −→r B4 −→a B5 −→b B6

Here, B1, B2 are accepting, whereas B3–B5 have b pending and so are not.

Hierarchical Declarative Modelling with Refinement and Sub-processes 29

4.1 Composition and Interfaces

Composition of DCR graphs was originally introduced in [10].

Definition 4.8 (Composition of DCR graphs). The composition G | H of
DCR graphs G and H is defined by taking the union of all components.
Formally: G | H = (E ∪ E′,R ∪ R′, (Ex ∪ Ex′,Re ∪ Re′, In ∪ In′))
The empty or zero DCR graph, 0, is the unique DCR graph with no events.

Composition does not in itself give “refinement” in the classical sense: in
DCR graphs, even if G,H share events and labels, the language of G | H might
actually be larger than either G or H . The following definition helps narrow
down what are “good” compositions.

Notation. The projection of a sequence σ to a set E is obtained by removing
every element of σ not in E. For instance, the projection of σ = AABCABC to
E = {A,C} is σ|E = AACAC. We lift projection to sets of sequences pointwise.

Definition 4.9 (Refinement). H refines G iff
(
lang(G | H)

)|E(G) ⊆ lang(G).

To help establish refinements, we have the following theorem, which states
that a DCR graph G is refined by a DCR-graph H if they have no shared event
which may be included or excluded unilaterally by H .

Theorem 4.10. H refines G if in H shared labels are associated only with
shared events, and for all f ∈ E(G) ∩ E(H) and e ∈ E(H) we have that:

1. If e →%H f then also e →%G f, 3. Ex(H) ∩ E(G) ⊆ Ex(G),

2. if e →+H f then also e →+G f, 4. In(H) ∩ E(G) ⊆ In(G).

Conditions (1) and (2) mean that H cannot unilaterally include or exclude
shared events; conditions (3) and (4) that the marking of H does not change the
inclusion- or execution-state of shared events.

Example 4.11. As an example, taking G to be the DCR graphs of Fig. 1 and H
to be the one of Fig. 3, then both G,H fulfil the criteria of Theorem 4.10. Thus,
we can be sure that when we compose them to obtain G | H in Fig. 4, their
local behaviour is preserved: the valid execution orders of Application deadline,
Start round, Receive application, and Board meeting in Fig. 4 are all also valid
according to Fig. 1.

4.2 Hi-DCR graphs

Towards DCR-graphs with sub-processes, we need first DCR graphs with inter-
faces, i-DCR graphs.

Definition 4.12 (i-DCR graph). An i-DCR graph is a tuple G = (E,R,M, I)
such that (E,R,M) is a DCR graph and I ⊆ E. Events L = E \ I are local events.
An i-DCR graph inherits notions of enabled events, execution, and zero from its
underlying DCR-graph.

30 S. Debois, T. Hildebrandt, and T. Slaats

We note that once we can speak of execution, we have using Definitions 4.4, 4.5,
and 4.6 also definitions of transistions, runs, traces, acceptance, and language.

The point of the interface I is to allow us to choose which events should fuse
with similar events in composition, and which should be considered private. To
avoid fusing of private events, we must sometimes employ renamings.

Definition 4.13 (Freshness, compatibility). If G,H are i-DCR graphs we
say an that G is fresh for H iff L(G)∩E(H) = ∅. We say that they are compatible
iff they are both fresh for the other. We say that G,H are equivalent if they are
structurally identical up to the choice of local events.

The composition of i-DCR graphs guarantees that local events of compatible
graphs do not overlap.

Definition 4.14 (i-DCR composition). The composition G | H of i-DCR
graphs G,H is defined as for DCR graphs, taking interfaces of the combined
graph to be I(G) \ L(H) ∪ I(H) \ L(G).

For compatible i-DCR graphs, this definition is equivalent to taking simply I∪ I′.

Definition 4.15 (Hi-DCR). A Hi-DCR graph is a tuple G = (E,R,M, I, S)
where S is a map taking events to Hi-DCR graphs and (E,R,M, I) is the under-
lying i-DCR graph G|ι of G. An event e of G is enabled in G iff it is in G|ι.

Note that if one wants an event e to not spawn any sub-process, one simply
maps it to sub-process definition to zero, i.e., takes S(e) = 0.

Definition 4.16 (Hi-DCR execution). Suppose e is an event of the Hi-DCR
graph G, that e ∈ enabled(G) and that S(e) = H. Then to execute e in G:

1. Pick some H ′ equivalent to H but fresh for G.
2. Execute e in G | H ′ (considered a DCR graph) to obtain H.

That is, if G | H ′ = (E,R,M, I, S), we execute e in (E,R,M) obtaining (E,R,M′),
then declare the execution of e in G | H ′ to be (E,R,M′, I, S).

Example 4.17. The notion of i-DCR graph and the definition of Hi-DCR graph
execution explains formally why the event Approve decisions is not duplicated
when a subprocess is spawned between Fig. 7 and 8: it is an interface event, and
so is fused in the composition that happens when new sub-processes are spawned.
The event Review report in the sub-process, on the other hand, is duplicated: It
is local, and because execution of Hi-DCR graphs choose fresh names for local
events during spawning, it is duplicated.

Theorem 4.18. Hi-DCR graphs are strictly more expressive then DCR Graphs
and therefore also strictly more expressive then ω-regular languages.

Proof. Hi-DCR graphs conservatively extend DCR graphs, which are known to
express exactly ω-regular languages [14]. But in Fig. 8, every time we execute
Receive application we are will execute at least one Accept or Reject. This requires
counting Receive application which is impossible for ω-regular languages.

Hierarchical Declarative Modelling with Refinement and Sub-processes 31

5 Implementation

For experimentation, we have implemented a prototype tool for working with
Hi-DCR graphs. This tool features a simulation engine capable of executing
transitions, and of dynamic re-configuration using both unconstrained composi-
tion (Definition 4.8) and refinement (Definition 4.9). For finite-state graphs, the
tool can do also basic model-checking tasks, such as finding a path to dead-lock,
termination, acceptance, or some event being enabled. Whereas in the other sec-
tions of this paper, we represented DCR graphs graphically, as figures produced
by the tool, the tool inputs a textual representation. As an example of that rep-
resentation, consider again Fig. 6. Its equivalent textual representation is below.

"Other review" 1

"Lawyer review" 2

-->* "Review report" 3

-->* ("Accept" "Reject") 4

-->% !"Decision" 5

"Decision" -->* "Decision" 6

("Accept" "Reject") -->% "Decision" 7

("Accept" "Reject") 8

*--> "Update report" 9

10

/("Other review" "Lawyer review" 11

"Review report" 12

"Accept" "Reject" "Decision") 13

All events are interface events
by default; local events are spec-
ified by prefixing them with a
slash ‘/’ (line 11-13). Events can
also be prefixed ‘+’, ‘%’, and ‘!’,
(line 5) indicating that they are
initially included, excluded, re-
spectively pending. For conve-
nience, the language allows both
chaining of events and relations
(line 2–5) as well as relating
multiple things (line 7).

The tool uses Graphviz [5]
to automatically produce dia-
grams. The diagrams in the present paper were all so generated. The tool is
implemented in F# and runs on the major platforms. The executable and source
code can be found at [4].

6 Conclusion

In this paper we first demonstrated how DCR Graphs can be used for incremen-
tal, declarative design of processes, by introducing a notion of compositional re-
finement that guarantees language inclusion (with respect to the labels of events
present in the original process) and thus preserves compliance for accepting
executions. We then used these techniques to introduce Hi-DCR Graphs, a con-
servative extension of DCR graphs, which allows events to spawn sub-processes.
The extensions have been presented and motivated using as an example an ab-
straction of a real-world case supplied by our industry partner, Exformatics
A/S. We provided a formal semantics for Hi-DCR Graphs and demonstrated
by example that they are more expressive then ω-regular languages. Finally we
reported on a prototype implementation of Hi-DCR Graphs which supports a
programming-like syntax, automatic visualisation, simulation, and rudimentary
model-checking.

32 S. Debois, T. Hildebrandt, and T. Slaats

6.1 Future Work

While the notion of refinement introduced in the present paper preserves com-
pliance for accepting executions, it may in fact introduce errors such as livelocks
and deadlocks. The simplest example would be to refine a process with a DCR
graph containing a single, included (local) event having itself as condition and
being initiatlly required as response. In [15] it is shown how adaptations can
be verified for safety and liveness, by relying on the map from DCR Graphs
to Büchi-automata [16], which is further mapped to Promela and verified in the
SPIN model-checker. However, as demonstrated in [15], this approach is not very
efficient. We are therefore currently investigating techniques for more efficient
verification of DCR Graphs in the presense of adaptations.

Aswasmentioned in the relatedwork section thedevelopmentofHi-DCRGraphs
brings us closer to the GSM notation, and we plan to use this work in the future as
a basis for formal mappings between GSM and DCR Graphs models.

The question of the precise expressive power of Hi-DCR graph remains open.
We conjecture that they are Turing-equivalent. This points to another relevant
question, namely how to constrain Hi-DCR graphs to allow safety and liveness
guarantees. An obvious possible constraint would be to bound the number times
each sub-process can be spawned by a constant. Because of the formalization of
spawning based on composition, it follows that this constrains the model to the
expressiveness of standard DCR Graphs, that is, to Büchi-automata.

Formal expressive power aside, in practice many idiomatic constructs, like the
“disjunctive responses” used in Fig. 8 could be formalised as derived constructs
in their own right, potentially making them more accessible to end-users, much
like DECLARE is formalised in terms of LTL. Similarly, other questions regard-
ing the usability of the approach will be investigated in future studies through
empirical investigations undertaken in cooperation with our industrial partners
and end-users.

Acknowledgments. We gratefully acknowledge fruitful discussions with Rik
Eshuis. The work is supported by grant VELUX 33295, 2014-2017 and the Dan-
ish Agency for Science, Technology and Innovation.

References

1. van der Aalst, W.M.P., Pesic, M., Schonenberg, H., Westergaard, M., Maggi, F.M.:
Declare. Webpage (2010), http://www.win.tue.nl/declare/

2. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a truly declarative service
flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006)

3. Carbone, M., Hildebrandt, T., Perrone, G., Wasowski, A.: Refinement for transition
systems with responses. In: FIT. EPTCS, vol. 87, pp. 48–55 (2012)

4. Debois, S.: DCR exploration tool v.6. IT University of Copenhagen (2014),
http://www.itu.dk/research/models/wiki/index.php/DCR_Exploration_Tool

5. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz - open
source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001.
LNCS, vol. 2265, pp. 483–484. Springer, Heidelberg (2002),
http://dx.doi.org/10.1007/3-540-45848-4_57

http://www.win.tue.nl/declare/
http://www.itu.dk/research/models/wiki/index.php/DCR_Exploration_Tool
http://dx.doi.org/10.1007/3-540-45848-4_57

Hierarchical Declarative Modelling with Refinement and Sub-processes 33

6. Groefsema, H., Bucur, D.: A survey of formal business process verification: From
soundness to variability. In: Proceedings of the Third International Symposium on
Business Modeling and Software Design, pp. 198–203 (2013),
http://www.cs.rug.nl/ds/uploads/pubs/groefsema-bmsd.pdf

7. Hildebrandt, T., Marquard, M., Mukkamala, R.R., Slaats, T.: Dynamic condi-
tion response graphs for trustworthy adaptive case management. In: Demey, Y.T.,
Panetto, H. (eds.) OTM 2013 Workshops. LNCS, vol. 8186, pp. 166–171. Springer,
Heidelberg (2013)

8. Hildebrandt, T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: PLACES. EPTCS, vol. 69,
pp. 59–73 (2010)

9. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Nested dynamic condition response
graphs. In: Arbab, F., Sirjani, M. (eds.) FSEN 2011. LNCS, vol. 7141, pp. 343–350.
Springer, Heidelberg (2012)

10. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Safe distribution of declarative pro-
cesses. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041,
pp. 237–252. Springer, Heidelberg (2011)

11. Hull, R., et al.: Introducing the guard-stage-milestone approach for specifying busi-
ness entity lifecycles (Invited talk). In: Bravetti, M. (ed.) WS-FM 2010. LNCS,
vol. 6551, pp. 1–24. Springer, Heidelberg (2011)

12. Maggi, F.M., Westergaard, M., Montali, M., van der Aalst, W.M.P.: Runtime ver-
ification of LTL-based declarative process models. In: Khurshid, S., Sen, K. (eds.)
RV 2011. LNCS, vol. 7186, pp. 131–146. Springer, Heidelberg (2012)

13. Montali, M.: Specification and Verification of Declarative Open Interaction Models.
LNBIP, vol. 56. Springer, Heidelberg (2010)

14. Mukkamala, R.R.: A Formal Model For Declarative Workflows: Dynamic Condition
Response Graphs. Ph.D. thesis, IT University of Copenhagen (June 2012)

15. Mukkamala, R.R., Hildebrandt, T., Slaats, T.: Towards trustworthy adaptive case
management with dynamic condition response graphs. In: EDOC, pp. 127–136.
IEEE (2013)

16. Mukkamala, R.R., Hildebrandt, T.: From dynamic condition response structures
to büchi automata. In: TASE, pp. 187–190. IEEE Computer Society (2010)

17. Mukkamala, R.R., Hildebrandt, T., Tøth, J.B.: The resultmaker online consul-
tant: From declarative workflow management in practice to ltl. In: EDOCW,
pp. 135–142. IEEE Computer Society (2008)

18. Object Management Group BPMN Technical Committee: Business Process Model
and Notation, version 2.0, http://www.omg.org/spec/BPMN/2.0/PDF

19. Reijers, H., Mendling, J., Dijkman, R.: On the usefulness of subprocesses in busi-
ness process models. BPM Reports 1003, Eindhoven (2010)

20. Slaats, T., Mukkamala, R.R., Hildebrandt, T., Marquard, M.: Exformatics declar-
ative case management workflows as DCR graphs. In: Daniel, F., Wang, J., Weber,
B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 339–354. Springer, Heidelberg (2013)

21. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996)

22. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
APN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)

23. Zugal, S., Soffer, P., Pinggera, J., Weber, B.: Expressiveness and understandability
considerations of hierarchy in declarative business process models. In: Bider, I.,
Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Wrycza, S.
(eds.) BPMDS 2012 and EMMSAD 2012. LNBIP, vol. 113, pp. 167–181. Springer,
Heidelberg (2012)

http://www.cs.rug.nl/ds/uploads/pubs/groefsema-bmsd.pdf
http://www.omg.org/spec/BPMN/2.0/PDF

Discovering

Target-Branched Declare Constraints

Claudio Di Ciccio1, Fabrizio Maria Maggi2, and Jan Mendling1

1 Vienna University of Business and Economics, Austria
{claudio.di.ciccio,jan.mendling}@wu.ac.at

2 University of Tartu, Estonia
f.m.maggi@ut.ee

Abstract. Process discovery is the task of generating models from event
logs. Mining processes that operate in an environment of high variabil-
ity is an ongoing research challenge because various algorithms tend to
produce spaghetti-like models. This is particularly the case when pro-
cedural models are generated. A promising direction to tackle this chal-
lenge is the usage of declarative process modelling languages like Declare,
which summarise complex behaviour in a compact set of behavioural con-
straints. However, Declare constraints with branching are expensive to
be calculated.In addition, it is often the case that hundreds of branching
Declare constraints are valid for the same log, thus making, again, the
discovery results unreadable. In this paper, we address these problems
from a theoretical angle. More specifically, we define the class of Target-
Branched Declare constraints and investigate the formal properties it
exhibits. Furthermore, we present a technique for the efficient discovery
of compact Target-Branched Declare models. We discuss the merits of
our work through an evaluation based on a prototypical implementation
using both artificial and real-world event logs.

Keywords: Process Mining, Discovery, Declarative Processes.

1 Introduction

Process discovery is the important initial step of business process management
that aims at arriving at an as-is model of an investigated process [8]. Due to this
step being difficult and time-consuming, various techniques have been proposed
to automatically discover a process model from event logs. These log data are
often generated from information systems that support parts or the entirety of
a process. The result is typically presented as a Petri net or a similar kind of
flow chart and the automatic discovery is referred to as process mining.

While process mining has proven to be a power technique for structured and
standardised processes, there is an ongoing debate on how processes with a high
degree of variability can be effectively mined. One approach to this problem is
to generate a declarative process model, which rather shows the constraints of
behaviour instead of the available execution sequences. The resulting models

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 34–50, 2014.
© Springer International Publishing Switzerland 2014

Discovering Target-Branched Declare Constraints 35

are represented in languages like Declare. In many cases they provide a way
to represent complex, unstructured behaviour in a compact way, which would
look overly complex in a spaghetti-like Petri net. However, simple branching
statements like “if you do a, you will do eventually either b or c” cannot be
easily mined for Declare models.

In this paper, we address the problem of mining Declare branching constraints.
We define the class of Target-Branched Declare and devise efficient mining al-
gorithms for it. The key idea is to exploit dominance relationships, which help
to drastically prune the search space. We present formal proofs to demonstrate
its merits. A prototypical implementation is used for performance analysis, em-
phasising feasibility and efficiency for our approach.

Against this background, this paper is structured as follows. Section 2 intro-
duces the essential concepts of Declare. Section 3 provides the formal foundations
for mining Target-Branched constraints. Section 4 defines the construction of a
knowledge base from which the final constraint set is built. Section 5 describes
the performance evaluation. Section 6 investigates our contribution in the light of
related work. Section 7 concludes the paper with an outlook on future research.

2 Background on Mining Declarative Process Models

One of the challenges in process mining is the compact presentation of the mined
behaviour. It has been observed that procedural models such as Petri nets tend
to become overly complex for flexible processes that are situated in a dynamic
environment. Therefore, it has been argued to rather utilise declarative models
in such a context, in order to facilitate better understanding of the mined process
by humans [9,22].

One of the most frequently used declarative languages is Declare introduced
by Pesic and van der Aalst in [26]. Instead of explicitly specifying the sequence
of events, Declare consists of a set of constraints that are applied to activities.
Constraints, in turn, are based on templates that define parametrised classes of
properties. Templates have a graphical representation and their semantics can be
formalised using formal logics [21,7], the main one being Linear Temporal Logic
over finite traces (LTLf). In this way, analysts work with the graphical repre-
sentation of templates, while the underlying formulas remain hidden. Table 1
summarises important Declare templates. For a complete specification see [26].
Here, we indicate template parameters with x or y symbols and real activities
in their instantiations with a, b or c letters.

The formulas shown in Table 1 can be readily formulated using natural
language. The RespondedExistence template specifies that if x occurs, then y
should also occur (either before or after x). The Response template specifies
that when x occurs, then y should eventually occur after x. The Precedence
template indicates that y should occur only if x has occurred before. The tem-
plates AlternateResponse and AlternatePrecedence strengthen the Response and
Precedence templates respectively by specifying that activities must alternate
without repetitions in between. Even stronger ordering relations are specified by

36 C. Di Ciccio, F.M. Maggi, and J. Mendling

Table 1. Graphical notation and LTLf formalisation of some Declare templates

Template Formalisation Notation

RespondedExistence�x, y� �x� �y x ����� y

Response�x, y� ��x� �y� x ����� y

Precedence�x, y� �yW x x ����� y

AlternateResponse�x, y� ��x����xU y�� x ����� y

AlternatePrecedence�x, y� ��yW x� ���y ����yW x�� x ����� y

ChainResponse�x, y� ��x��y� x �������� y

ChainPrecedence�x, y� ���y � x� x �������� y

templates ChainResponse and ChainPrecedence . These templates require that
the occurrences of the two activities (x and y) are next to each other.

In order to illustrate semantics, consider the Response constraint ��a� �b�.
This constraint indicates that if a occurs, b must eventually follow. Therefore,
this constraint is satisfied for traces such as t1 = �a, a, b, c�, t2 � �b, b, c, d�, and
t3 � �a, b, c, b�, but not for t4 � �a, b, a, c� because, in this case, the second
instance of a is not followed by a b.

An activation of a constraint in a trace is an event whose occurrence imposes
some obligations on other target events in the same trace. E.g., a is an activation
and b is a target for the Response constraint ��a� �b�, because the execution
of a forces b to be executed eventually. When a trace is compliant with respect
to a constraint, every activation of it leads to a fulfillment. Consider, again, the
Response constraint ��a � �b�. In trace t1, the constraint is activated and
fulfilled twice, whereas, in t3, the same constraint is activated and fulfilled only
once. On the other hand, when a trace is not compliant, an activation of it can
lead to a fulfillment but also at least to one activation violation. In trace t4,
the Response constraint ��a� �b� is activated twice: the first activation leads
to a fulfillment (eventually b occurs) and the second activation to a violation (b
does not occur subsequently). An algorithm to check fulfillments and violations
is presented in [2]. To judge the relevance of constraints, we adopt support and
confidence from data mining [1]. The support of a Declare constraint in an event
log is defined as the fraction of activations of the constraint that lead to a
fulfillment. The confidence of a Declare constraint is the product between the
support of the rule and the support of the activation, i.e., the percentage of
traces in which the activation occurs.

In spite of its advantages, one of the conceptual limitations of mining De-
clare constraints at this stage is the lack of support for branching. Branching as
supported in the synthesis approach for behavioural profiles [28,24] and for the
alpha algorithm [25] try to explicit mine for statements like “if you do a, you
will (eventually) do either b or c”. Such exclusiveness statements are typically
used in experiments on process model understanding, see [18], because of their
practical importance. Therefore, we investigate how Declare can be enriched

Discovering Target-Branched Declare Constraints 37

with branching constraints in such a way that mining can still be conducted
efficiently.

3 Target-Branched Declare

In this section, we define Target-Branched Declare (TBDeclare). It extends De-
clare such that the target is not a single activity but a set. This means that
Response�a, �b, c�� is a TBDeclare constraint stating that “if a occurs, b or c
must eventually follow”. In TBDeclare, a constraint template maps to a LTLf
formula, and a constraint is its interpretation over a log (see Table 2). The mod-
els of a constraint are therefore traces that comply with the formula. We consider
the class of TBDeclare for the reason that it exhibits interesting properties. First,
we prove that a property of set-dominance holds. Then, we discuss implications
of this for support. These properties will be exploited in the mining algorithm.

Table 2. LTLf semantics for Target-Branched Declare constraints, given an activity
x and a set of activities Y � �yi�i � 0�

TBDeclare template LTLf semantics

RespondedExistence�x, Y � �x� �
�

yi�Y
yi

Response�x, Y � �

�
x� �

�
yi�Y

yi

�

AlternateResponse�x, Y � �

�
x�©

�
�x U �

yi�Y
yi

��

ChainResponse�x, Y � �

�
x�©�

yi�Y
yi

�

Precedence�Y, x� �xW �
yi�Y

yi

AlternatePrecedence�Y, x� Precedence�Y, x� �� �x� ©Precedence�Y, x��

ChainPrecedence�Y, x� �

�
©x�

��
yi�Y

yi

��

3.1 Set-Dominance

In this subsection, we identify that the inclusion property of two branching sets
translates into the inclusion of their fulfilment of a constraint template.

Lemma 1. Given a task x in the process alphabet Σ, two non-empty sets of
tasks Y and Y 	 such that Y 	 Y 	 	 Σ, and a TBDeclare constraint template C,
then C�x, Y �
� C�x, Y 	�.
Proof (sketch). In the base case, Y � Y 	 � �y1, . . . , yn�. Therefore, C�x, Y � �
C�x, Y 	�.

If Y 	 � Y
�
�yn
1�, with yn
1 Y , the demonstration proceeds by proving

the statement for each constraint template.
RespondedExistence�x, Y 	� � �x� � �

�n
i�1 yi � yn
1�. Recalling that, given

two non-negated literals ϕ and ψ:

38 C. Di Ciccio, F.M. Maggi, and J. Mendling

(a) ϕ� ψ � �ϕ� ψ, and
(b) ��ϕ� ψ� � �ϕ��ψ,

we have that RespondedExistence�x, Y 	� � ��x �
�n
i�1 �yi � �yn
1. Conse-

quently, RespondedExistence�x, Y 	� � RespondedExistence�x, Y � � yn
1. Given
a formula Φ and a non-negated literal ψ, Φ
� Φ � ψ. Therefore, Lemma 1 for
RespondedExistence is proven. The argument for the other templates has been
established in a similar way, which is here omitted for space reasons. ��

3.2 Support Monotone Non-decrement w.r.t. Set-Dominance

Given a constraint C and a log L, the support function S �C,L� returns the
number of cases in which the constraint is verified (C
L) over the number of cases
in which the constraint is activated along the log (CTL):

S �C,L� � C
L
CTL

Theorem 1 describes the monotonic non-decreasing trend of support for con-
straints with respect to set-containment of the target set of activities.

Theorem 1. Given a task a in the process alphabet Σ, two non-empty sets of
tasks Y and Y 	 such that Y 	 Y 	 	 Σ, a log L and a TBDeclare constraint
template C, then S �C�x, Y �, L� � S �C�x, Y 	�, L�.
Proof. In the following, we name the number of cases in which C�x, Y � and
C�x, Y 	� are verified as, resp., C
L and C 	
L . In the light of Lemma 1, if Y 	 Y 	

then C�x, Y �
� C�x, Y 	�. Therefore, due to the definition of model for a constraint
w.r.t. a log, we have C
L � C 	
L . Since a is the activation for both constraints,
the cases in which they are activated are the same, accounting to CTL . As a

consequence,
C�L
CT

L

�
C��L
CT

L

. ��

4 Discovery

This section describes MINERful for Target-Branched Declare (TB-MINERful),
a three step algorithm for: (i) building a knowledge base, which keeps statistics
on task occurrences; (ii) querying the knowledge base for support and confidence
of constraints; (iii) pruning constraints not having sufficient support and confi-
dence. The input of the algorithm is a log L based on a log alphabet Σ. Three
thresholds can be specified: (i) branching factor, limiting the size of the activity
sets for discovered constraints, (ii) support, and (iii) confidence.

4.1 The Knowledge Base

The first step is the construction of a knowledge base keeping statistics on task
occurrences in the log. It consists of 9 functions listed below along with a semi-
formal definition. We indicate parameters for constraints as x, y, z. Y , Z are

Discovering Target-Branched Declare Constraints 39

set-parameters. Consider, e.g., a set of activities Σ � �a, b, c, d� (log alphabet).
While a, b, c, d refers to activity instantiations, a possible instantiation of Y is
�b, c�. As example log we use L � ��a, a, b, a, c, a�, �a, a, b, a, c, a, d��.

–
�
γ0 �x� counts the traces where x did not occur. For instance,

�
γ0 �a� � 0 for

L, because a occurs in every trace.
�
γ0 �d� � 1 instead.

– Γ �x� counts the occurrences of x. Therefore, Γ �a� � 8 in L.

–

δ0 �x, Y � counts the occurrences of x with no following y � Y in the traces.

In the example, e.g.,

δ0 �a, �d�� � 4,

δ0 �a, �b�� � 4, and

δ0 �a, �b, c�� � 2.

–
�

δ0 �x, Y � counts the occurrences of x with no preceding y � Y in the traces.

Thus, e.g.,
�

δ0 �a, �d�� � 8,
�

δ0 �a, �b�� � 4, and
�

δ0 �a, �b, c�� � 4.

–
�

δ0 �x, Y � counts the occurrences of x with no y � Y in the traces. Therefore,
�

δ0 �a, �d�� � 1, and
�

δ0 �a, �b, d�� � 0 in L.

–
�

δ1 �x, y� counts the occurrences of x having y as the next event. Hence,
�

δ1 �a, b� � 2,
�

δ1 �a, d� � 1.

–
�

δ1 �x, y� counts the occurrences of x having y as the preceding event. In L,
�

δ1 �a, b� � 2 and
�

δ1 �a, d� � 0.

–
�

β �x, Y � counts how many times x repeats until the first y � Y . If no y � Y
appears in the trace, the count is not further considered. In the example,
�

β �a, �b�� � 2,
�

β �a, �c�� � 4,
�

β �a, �b, c�� � 2, and
�

β �a, �b, d�� � 3.

–
�

β �x, Y � is similar to
�

β �x, Y � , but reading the trace contrariwise. Thus,
�

β �a, �b�� � 2,
�

β �a, �c�� � 0,
�

β �a, �b, c�� � 0, and
�

β �a, �b, d�� � 2.
Next, we discuss how this knowledge base is built based on an input log.

4.2 Building the Knowledge Base

Here, we define an algorithm for building the knowledge base, which requires
one run over the traces to update it. This makes the algorithm linear w.r.t. the
number of traces and their length.

For evaluating

δ0 �x, Y �, the technique executes two steps for each string. As
a first step, it computes for every activity y � Σ��x� the value to accumulate in

δ0 �x, y�, i.e., Nδ0x,y . We will also refer to Nδ0x,y as a pairwise counter. Table 2a

shows how this is achieved for �a, a, b, a, c, a�. Nδ0x,y is incremented by 1 every

time x is read, while parsing the trace. When y is read, Nδ0x,y is reset to 0.
The � symbol indicates this operation (“flush”). At the end of the trace, the
value stored in Nδ0x,y reports the occurrences of x after which no y occurred.
Pairwise counters do not take into account the relation of x with sets of activities,
though. On the other hand, computing a value for each Y � P �Σ��a�� would
be impractical. Therefore, we build differential cumulative set-counters, ΔNδ0x,Y . If

40 C. Di Ciccio, F.M. Maggi, and J. Mendling

Table 3. Computation of Nδ0a,� and ΔN
δ0
a,�, given a sample trace: �a, a, b, a, c, a�

(a) Computation of ΔNδ0a,�

Trace

a a b a c a

N
δ0
a,b 1 2 � 1 2

Nδ0a,c 1 2 3 � 1

N
δ0
a,d 1 2 3 4

(b) Computation of ΔNδ0a,�, given the values of Nδ0a,�

N
δ0
a,� ΔN

δ0
a,�

N
δ0
a,b � 1
 Nδ0a,c � 1 N

δ0
a,d � 1
 � ΔN

δ0
a,�b,c,d�

� 1

1 1
 � ΔN
δ0
a,�b, d�

� 1

2 � ΔN
δ0
a,� d�

� 2

Y 	 Z, ΔNδ0x,Z reports the number of times in which none of its elements occurred

in the trace after x. ΔNδ0x,Y reports only the difference between (i) the number of

times in which no y � Y occurred, and (ii) ΔNδ0x,Z . Therefore, in �a, a, b, a, c, a�,

we have that ΔNδ0a,�b,c,d� � 1, ΔNδ0a,�b,d� � 1, and ΔNδ0a,�d� � 2. Passing from pairwise

counters to differential cumulative set-counters is a linear operation: Table 2b

sketches the technique. From this data structure,

δ0 �x, Y � can be extracted as
follows:

δ0 �x, Y � �
�
Z�Y

ΔNδ0x,Z

Table 4 shows the extraction for the example trace. It is straightforward to
see that the differential accumulation (ΔNδ0x,Y) allows for keeping fewer values
in memory (3 in the example) than the possible entries for the knowledge base

(

δ0 �x, Y �, which amounts to 6). Every time a new trace is parsed, Nδ0x,y is reset
to 0 for each x, y � Σ. At the end of the analysis of every subsequent trace,

values for a new structure ΔN
δ
�

0

x,Y are calculated. Thereupon, they are added to
the preceding results. It might happen that a new Z set was not considered in

ΔNδ0x,� for previous traces, but a new ΔN
δ
�

0

a,Z is computed. In such case, ΔNδ0x,Z is

considered as 0 by the default and the new value in ΔN
δ
�

0

x,Z is added. This technique

extends to the computation of
�

δ0 �x, Y � and
�

δ0 �x, Y � with slight modifications.
The values of the remaining functions are also determined in a similar way.
However, the detailed descriptions are here omitted for the sake of space.

4.3 Querying the Knowledge Base

Once the knowledge base is built, the support of constraints can be calculated.
Table 5 lists the functions adopted to this extent, for each TBDeclare constraint.
All queries build upon a Laplacian concept of probability with support being
computed as the number of supporting cases divided by the total number of
cases. In particular, the total number of cases is the count of occurrences of

Discovering Target-Branched Declare Constraints 41

Table 4. Computation of
�

δ0 �a, 	
 , given ΔN
δ0
a,�

ΔN
δ0
a,� �

�

δ0 �a, � �

�b, c, d� � 1 �
�

δ0 �a, �b, c, d�� �
�

δ0 �a, �c, d�� �
�

δ0 �a, �c�� � 1

�b, d� � 1 �
�

δ0 �a, �b, d�� �
�

δ0 �a, �b�� � 2

� d� � 2 �
�

δ0 �a, �d�� � 4

Table 5. Target-Branched Declare constraints and support functions

TBDeclare constraint Support

RespondedExistence �x, Y
 1�
�
δ0�x,Y �
Γ �x�

Response�x, Y
 1�
�
δ0�x,Y �
Γ �x�

AlternateResponse�x, Y
 1�
�
δ0�x,Y ��

�

β �x,Y �
Γ �x�

ChainResponse�x, Y

�

y�Y

	
δ1�x,y�

Γ �x�

Precedence�Y, x
 1�

δ0�x,Y �
Γ �x�

AlternatePrecedence �Y, x
 1�

δ0�x,Y ��

�

β �x,Y �
Γ �x�

ChainPrecedence�Y, x

�

y�Y

�
δ1�x,y�

Γ �x�

the activation in the log, Γ �x�. For ChainResponse�x, Y �, supporting cases are

those occurrences of a immediately followed by some y � Y , i.e.,
�

δ1 �x, y�. Sup-
porting cases can be summed up because if x is followed by a given y � Y in
a trace, it cannot be immediately followed by any other event z � Y . In other
words, the two cases are mutually exclusive. However, this assumption does not
hold true, e.g., for Response�x, Y �. Therefore, we consider the non-supporting

cases, when x is not followed by any of the y � Y , i.e.,

δ0 �x, Y �. We get that
P �E� � 1 � P �E� with P �E� being the probability of E and E its negation.

Hence, the support of Response�x, Y � is 1 �
�

δ0�x,Y �
Γ �x� . Likewise, the support of

RespondedExistence�x, Y � is computed on the basis of the non-supporting cases.
The support of AlternateResponse�x, Y � is then based on the cases when ei-

ther (i) x is not followed by any y � Y (
�

δ0 �x, Y �), or (ii) x occurs more

than once before the first occurrence of y � Y (
�

β �x, Y �). The two conditions
are mutually exclusive. Therefore, it is appropriate to sum them up. Similar
considerations lead to the definition of support functions for Precedence�Y, x�,
AlternatePrecedence�Y, x� and ChainPrecedence�Y, x�.

42 C. Di Ciccio, F.M. Maggi, and J. Mendling

Confidence is computed as the constraint’s support multiplied by the frac-
tion of traces where the activation occurs. Therefore, given a TBDeclare con-
straint C�x, Y �, a log L, and the support function S �C�x, Y �, L�, the confidence
of C�x, Y � w.r.t. L, L �C�x, Y �, L�, is defined as

L �C�x, Y �, L� � S �C�x, Y �, L� �
�
1�

�
γ0 �x�

Γ �x�

�

4.4 Pruning the Returned Constraints

The power-set of activities in the log alphabet amounts to 2�Σ��1. Therefore, if
we name the number of TBDeclare constraint templates as N , up to N � 2�Σ��1

constraints can potentially hold true. When a maximum limit to the cardinality
of the set is imposed, the number is reduced to

Σ
 �N �

min �ρ , �Σ��1��
i�1

�

Σ
 � 1

i

�

However, even with branching factor set to 3 and
Σ
 � 10, already 3087 con-
straints have to be evaluated. A model including such a number of constraints
would be hardly comprehensible for humans [18,26]. In order to reduce this num-
ber, we adopt pruning based on set-dominance and on hierarchy subsumption.

Pruning Based on Set-Dominance. The idea of this pruning approach is
that if, e.g., Response�a, �b, c�� and Response�a, �b, c, d�� have the same support,
the first is more informative than the second. Indeed, stating that “if a is exe-
cuted then either b or c would eventually follow”, implies that also “either b, c or d
would eventually follow”. In general terms, the support of TBDeclare constraints
that are instantiations of the same template and share the activation increases
according to the set-containment relation of target activities (see Theorem 1). To
this end, the mining algorithm distributes the discovered constraints, along with
their computed support, on a structure like the Hasse Diagram of Figure 1. This
is a Direct-Acyclic Graph, such that a breadth-first search can be implemented.
For each constraint, the pruning technique visits the nodes, from the biggest in
size to the smallest. For instance, it can start from Response�a, �b, c, d, e��, i.e.,
the sink node, if the branching factor is equal to the size of the log alphabet.
Given the current node, it checks whether in one of the parent nodes a constraint
is stored (i.e., Response�a, �b, c, d��, Response�a, �b, c, e��, Response�a, �b, d, e��,
Response�a, �c, d, e��) with greater or equal support. If so, it marks the current
as redundant, and proceeds the visit towards the parent nodes that are not al-
ready marked as redundant. Otherwise, it marks all the ancestors as redundant.
The parsing ends when either (i) the visit reaches the root node, or (ii) no
parent, which is not already marked as redundant, is available for the visit.

Discovering Target-Branched Declare Constraints 43

��

�b� �c� �d� �e�

�b, c� �b, d� �b, e� �c, d� �c, e� �d, e�

�b, c, d� �b, c, e� �b, d, e� �c, d, e�

�b, c, d, e�

Rspn’edExist.�a , b�
Response�a , b�

Precedence�b , a�
. . .

Rspn’edExist.�a , �b, c��
Response�a , �b, c��

Precedence��b, c� , a�
. . .

Rspn’edExist.�a , �b, c, d��
Response�a , �b, c, d��

Precedence��b, c, d� , a�
. . .

Rspn’edExist.�a , �b, c, d, e��
Response�a , �b, c, d, e��

Precedence��b, c, d, e� , a�
. . .

ρ � 1

ρ � 2

ρ � 3

ρ � 4

Fig. 1. A Hasse Diagram representing the Partial Order set containment relation.
Containing sets are at the head of connecting arcs, contained sets are at the tail.

RespondedExistencex, Y �

Responsex, Y �

AlternateResponsex, Y �

ChainResponsex, Y �

PrecedenceY, x�

AlternatePrecedenceY, x�

ChainPrecedenceY, x�

Fig. 2. Diagram showing the
subsumption hierarchy relation. Con-
straints that are subsumed are at the
tail.

Pruning Based on Hierarchy
Subsumption. As investigated in
[7,23,13], Declare constraints are not
independent, but partially form a
subsumption hierarchy. We consider
a constraint C�x, Y � subsumed by
another constraint C	�x, Y � when
all the traces that comply with
C�x, Y � also comply with C	�x, Y �.
Response�x, Y �, e.g., is subsumed by
RespondedExistence�x, Y �. Figure 2
depicts the subsumption hierarchy for
TBDeclare constraints. It follows that
a subsumed constraint always has a support which is less than or equal
to the subsuming one. This pruning technique aims at keeping those con-
straints that are the most restrictive, among the most supported. There-
fore, it labels as redundant every constraint C which is at the same time
(i) subsumed by another constraint C 	, and (ii) having a lower support
than C 	. Therefore, if, e.g, given a log L, S �RespondedExistence�x, Y �, L� �
S �Response�x, Y �, L�, then Response�x, Y � is marked as redundant. However, if
S �RespondedExistence�x, Y �, L� � S �Response�x, Y �, L�, then Response�x, Y �
is preferred. This is due to the fact that more restrictive constraints hold more
information than the less restrictive ones. The pruning approach is based on
the monotone non-decrement of support (cf. Figure 2). It operates as follows.
Starting from the root of the hierarchy tree, if a constraint has a support equal
to one of the children, it is marked as redundant and the visit proceeds with the
children. If a child has a support which is lower than the parent, it is marked as
redundant. All its children will be automatically marked as redundant as well,
as they cannot have a higher support.
Both pruning techniques complement one another in reducing the constraint set.

44 C. Di Ciccio, F.M. Maggi, and J. Mendling

100

10000

5 8 11 14
Number of activities

N
u
m

b
e
r

o
f
co

n
st

ra
in

ts
 [
lo

g
]

(a) Number of discovered
constraints as function of
the log alphabet size

100

10000

2 4 6 8
Branching factor

(b) Number of discovered
constraints as function of
the branching factor

10

100

1000

0.85 0.90 0.95 1.00
Support threshold

Pruning phase
0) No pruning
1) Set−containment (SC)
2) SC + Hierarchy (H)
3) SC + H + Support threshold
No pruning, above support th.

(c) Number of discovered
constraints as function of
the branching factor

Fig. 3. Effectiveness tests performed on synthetic logs

5 Experiments and Evaluation

In this section, we investigate the efficiency and effectiveness of our approach.
Section 5.1 shows results obtained by applying the proposed technique on syn-
thetic logs. Section 5.2 demonstrates the effectiveness of our approach for event
logs from a loan application process of a Dutch financial institute. All experi-
ments were run on a server machine equipped with Intel Xeon CPU E5-2650 v2
2.60GHz, using 1 64-bit CPU core and 32GB main memory quota.

5.1 Evaluation Based on Simulation

To test the effectiveness and the efficiency of our approach, we have defined a
simple Declare model including the following constraints:

– ChainPrecedence(�a,b�, c)

– ChainPrecedence(�a,b,d�, c)

– AlternateResponse(a, �b,c�)

– RespondedExistence�a, �b,c,d,e��

– Response�a, �b,c��

– Precedence(�a,b,c,d�, e)

and we have simulated it to generate a compliant event log as described in [7].
In our experiments, we focus on different characteristics of the discovery task
including average length of the traces, number of traces, and number of activities.
Moreover, we consider characteristics of the discovered model including minimum
support and maximum number of branches. In our experiments, we have run the
algorithm varying the value of one variable at a time. The remaining variables
were fixed and corresponding to 4 and 25 for resp. minimum and maximum trace
length, 10,000 for log size, 8 for log alphabet size, 1.0 for support threshold, and
3 for branching factor.

Effectiveness: First, we demonstrate the effectiveness of our approach by inves-
tigating the reduction effect of the proposed pruning techniques. In particular,

Discovering Target-Branched Declare Constraints 45

we analyse the trend of the variable “number of discovered constraints” as a
function of log alphabet size, branching factor, and support threshold.

Figure 3a shows the trend (in logarithmic scale) of the number of discov-
ered constraints by varying the log alphabet size. Different curves refer to
different configurations of the miner: without any pruning (diamonds); with
set-containment-based pruning (crosses); with set-containment- and hierarchy-
based pruning (asterisks); with set-containment- and hierarchy-based pruning,
along with support threshold (points); with support threshold only (triangles).
This plot provides evidence that as the number of activities in the log alphabet
increases, the number of discovered constraints increases as well. However, we
discover a lower increase of constraints as we proceed further in the sequence
of pruning techniques. Moreover, there is a significant difference between the
number of discovered constraints with filtering based on the minimum support
threshold, and based on the pruning techniques presented in this paper. This
improvement yields a reduction ratio of 84% (100.3 v. 15.2, on average).

Figure 3b shows the trend (in logarithmic scale) of the number of discov-
ered constraints by varying the branching factor. Here, the trend of the num-
ber of discovered constraints is different for different configurations. Without
pruning, or with the simple filtering by minimum support threshold, the num-
ber of discovered constraints increases as the number of branches increases. On
the other hand, when we apply the set-dominance- and hierarchy-based prun-
ing techniques, the number of discovered constraints increases up to a branch-
ing value of 3. After this value, the number of constraints decreases. When we
apply all the proposed pruning techniques together the number of constraints
eventually increases. In addition, the number of constraints obtained by apply-
ing set-dominance and subsumption hierarchy converges to the number of con-
straints discovered when all the pruning techniques are applied together. The
difference between the number of discovered constraint with support threshold
and the number after using the pruning techniques presented in this paper is
quantified (branching factor of 8) in a reduction ratio of 88% (46.2 v. 5.2, on
average).

The plot in Figure 3c confirms that for any threshold between 0.85 and 1.0,
the number of constraints discovered by applying all the pruning techniques is
lower than the one obtained by applying the support-threshold filtering. The
reduction ratio is indeed 93% (331.8 v. 22, on average), when the threshold is
set to 1.0.

Efficiency: Second, we focus on time efficiency of our approach. We observe
that efficiency strongly depends on the template. In particular, the “alternate”
templates are less performative. Figure 4a shows this by plotting the computa-
tion time as function of the log alphabet size (in logarithmic scale). When the
alternate templates are included in the evaluation, the computation time grows
exponentially with the growth of the alphabet size.

As a next step, we therefore exclude the alternate templates and get the com-
putation time as a function of log alphabet size (Figure 4b), log size (Figure 5a),
and average trace size (Figure 5b). Figure 4b shows the trend (in logarithmic

46 C. Di Ciccio, F.M. Maggi, and J. Mendling

1e+05

1e+07

5 8 11 14
Activities

C
o
m

p
u
ta

tio
n
 t
im

e
 [
lo

g
 m

se
c]

Computation

●●
W/ Alternate cns.
W/o Alternate cns.

(a) Efficiency test results, including and
excluding alternate templates in the
evaluation

1e+03

1e+04

1e+05

5 10 15 20 25 30
Activities

C
o
m

p
u
ta

tio
n
 t
im

e
 [
lo

g
 m

se
c]

Computation

●●●
●●●

KB
Querying
Total

(b) Efficiency test results, w.r.t. the dif-
ferent phase of the algorithm

Fig. 4. Efficiency tests performed on synthetic logs, considering computation time as
function of the log alphabet size

scale) of the computation time by varying the log alphabet size. Different curves
refer to the computation time for (i) the knowledge base construction, (ii) the
querying on the knowledge base, and (iii) to the total computation time. Notice
that there is a break point when the log alphabet is composed of 12 activities
in which the query time becomes higher than the knowledge base construction
time. Figure 5a shows the trend (in logarithmic scale) of the computation time
by varying the log size, whereas Figure 5b depicts the trend (in logarithmic
scale) of the computation time by varying the average trace size. In both cases
the query clearly outperforms the knowledge base construction time.

5.2 Evaluation Based on Real Data

We have evaluated the applicability of our approach using real-world event logs
provided for the BPI challenge 2012 [27]. The event log pertains to an application
process for personal loans or overdrafts of a Dutch bank. It contains 262,200
events distributed across 24 different possible event names and includes 13,087
cases.

In this case, it is possible to prune the list of discovered constraints in order to
obtain a compact set of constraint, which is understandable for human analysts.
By applying the miner with a support equal to 1, confidence equal to 0.85, and
branching factor 5, we obtain the following 11 constraints:

ChainResponse(A SUBMITTED, A PARTLYSUBMITTED)

ChainPrecedence(A SUBMITTED, A PARTLYSUBMITTED)

Response�A SUBMITTED, �A PREACCEPTED,A DECLINED,A CANCELLED��

Response�A SUBMITTED, �A PREACCEPTED,A DECLINED,W Afhandelen leads��

Discovering Target-Branched Declare Constraints 47

0

10000

20000

30000

0 25000 50000 75000 100000
Traces

C
o
m

p
u
ta

tio
n
 t
im

e
 [
m

se
c]

Computation

●●●
●●●

KB
Querying
Total

(a) Computation time as function of the
log size

2500

5000

7500

5.0 7.5 10.0
Avg. events read per trace

C
o
m

p
u
ta

tio
n
 t
im

e
 [
m

se
c]

Computation
KB
Querying
Total

(b) Computation time as function of the
average trace size

Fig. 5. Efficiency tests performed on synthetic logs

Response�A SUBMITTED, �W Completeren aanvraag,A DECLINED,A CANCELLED��

Response�A SUBMITTED, �W Completeren aanvraag,A DECLINED,W Afhandelen leads��

RespondedExistence�A PARTLYSUBMITTED, �A SUBMITTED��

Response�A PARTLYSUBMITTED, �A PREACCEPTED,A DECLINED,A CANCELLED��

Response�A PARTLYSUBMITTED, �A PREACCEPTED,A DECLINED,W Afhandelen leads��

ChainResponse(A PARTLYSUBMITTED, �A PREACCEPTED,A DECLINED,W Afhandelen leads,W Beoordelen fraude�)

Response�A PARTLYSUBMITTED, �W Completeren aanvraag,A DECLINED,A CANCELLED��

Response�A PARTLYSUBMITTED, �W Completeren aanvraag,A DECLINED,W Afhandelen leads��

These results have been derived with a computation time of 7.2 sec for the
construction of the knowledge base, and 25.98 min for constraint mining.

6 Related Work

Several analysis tools for Declare are available in the literature. Some of them
have been implemented as plug-ins of the process mining tool ProM [12].

Some approaches focus on the run-time monitoring of compliance specifica-
tions defined through Declare. For example, in [16,11], the authors propose a
technique for monitoring Declare models based on finite state automata. In [29],
the authors define Timed Declare, an extension of Declare that relies on timed
automata. In [19], the EC is used for defining a data-aware semantics for De-
clare. In [20], the authors propose an approach for monitoring data-aware Declare
constraints at run-time based on this semantics. This approach also allows the
verification of metric temporal constraints.

Other works [10,3,5,7,17,15,14] focus on the discovery of Declare models. The
algorithms proposed in [5,17,15] are suitable for discovering standard Declare

48 C. Di Ciccio, F.M. Maggi, and J. Mendling

models, also for highly flexible processes [6,4], but cannot be used for dealing
with Target-Branched Declare. From this perspective, the approaches proposed
in [10,3] are more flexible and allow for the specification of rules that go beyond
the traditional Declare templates. However, these approaches can be hardly used
in real-world settings since they are based on supervised learning techniques
requiring negative examples. In the work proposed in [14], a first-order variant
of LTL is used to specify a limited version of data-aware patterns. Such extended
patterns are used as the target language for a process discovery algorithm, which
produces data-aware Declare constraints from raw event logs. Also in this case
Target-Branched Declare is not supported.

7 Conclusion

In this paper, we have defined the class of Target-Branched Declare, which ex-
hibits interesting properties in terms of set-dominance. We exploit these prop-
erties for the definition of an efficient mining approach. Furthermore, we specify
pruning rules in order to arrive at a compact rule set. Our technique is evalu-
ated for efficiency and effectiveness using simulated data and the case of the BPI
2012 challenge. In future research, we aim to investigate potential for improving
efficiency. We also plan to extend our technique towards the coverage of data, in
order to discern which condition leads to a specific choice.

References

1. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large
Databases. In: VLDB, pp. 487–499. Morgan Kaufmann (1994)

2. Burattin, A., Maggi, F.M., van der Aalst, W.M.P., Sperduti, A.: Techniques for a
Posteriori Analysis of Declarative Processes. In: EDOC, pp. 41–50 (2012)

3. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploit-
ing Inductive Logic Programming Techniques for Declarative Process Mining. In:
Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC II. LNCS, vol. 5460, pp. 278–295.
Springer, Heidelberg (2009)

4. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-Intensive Processes: An Overview
of Contemporary Approaches. In: KiBP, pp. 33–47 (2012)

5. Di Ciccio, C., Mecella, M.: Mining Constraints for Artful Processes. In: Abramow-
icz, W., Kriksciuniene, D., Sakalauskas, V. (eds.) BIS 2012. LNBIP, vol. 117,
pp. 11–23. Springer, Heidelberg (2012)

6. Di Ciccio, C., Mecella, M.: Mining Artful Processes from Knowledge Workers’
Emails. IEEE Internet Computing 17(5), 10–20 (2013)

7. Di Ciccio, C., Mecella, M.: A Two-Step Fast Algorithm for the Automated Discov-
ery of Declarative Workflows. In: CIDM, pp. 135–142 (2013)

8. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer (2013)

9. Fahland, D., Lübke, D., Mendling, J., Reijers, H., Weber, B., Weidlich, M., Zugal,
S.: Declarative versus Imperative Process Modeling Languages: The Issue of Un-
derstandability. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R.,
Soffer, P., Ukor, R. (eds.) Enterprise, Business-Process and Information Systems
Modeling. LNBIP, vol. 29, pp. 353–366. Springer, Heidelberg (2009)

Discovering Target-Branched Declare Constraints 49

10. Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying Inductive Logic Program-
ming to Process Mining. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.)
ILP 2007. LNCS (LNAI), vol. 4894, pp. 132–146. Springer, Heidelberg (2008)

11. Maggi, F.M., Westergaard, M., Montali, M., van der Aalst, W.M.P.: Runtime Ver-
ification of LTL-Based Declarative Process Models. In: Khurshid, S., Sen, K. (eds.)
RV 2011. LNCS, vol. 7186, pp. 131–146. Springer, Heidelberg (2012)

12. Maggi, F.M.: Declarative Process Mining with the Declare Component of ProM.
In: BPM (Demos). CEUR, vol. 1021 (2013)

13. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: A Knowledge-Based Inte-
grated Approach for Discovering and Repairing Declare Maps. In: Salinesi, C., Nor-
rie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 433–448. Springer,
Heidelberg (2013)

14. Maggi, F.M., Dumas, M., Garćıa-Bañuelos, L., Montali, M.: Discovering Data-
Aware Declarative Process Models from Event Logs. In: Daniel, F., Wang, J.,
Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 81–96. Springer, Heidelberg
(2013)

15. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient Discovery of Under-
standable Declarative Process Models from Event Logs. In: Ralyté, J., Franch, X.,
Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285.
Springer, Heidelberg (2012)

16. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitoring
Business Constraints with Linear Temporal Logic: An Approach Based on Colored
Automata. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS,
vol. 6896, pp. 132–147. Springer, Heidelberg (2011)

17. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-Guided Discovery of Declar-
ative Process Models. In: CIDM, pp. 192–199. IEEE (2011)

18. Mendling, J., Strembeck, M., Recker, J.: Factors of Process Model Comprehension
- Findings from a Series of Experiments. Decision Support Systems 53(1), 195–206
(2012)

19. Montali, M., Chesani, F., Maggi, F.M., Mello, P.: Towards Data-Aware Constraints
in Declare. In: SAC, pp. 1391–1396 (2013)

20. Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.: Moni-
toring Business Constraints with the Event Calculus. ACM TIST 5(1), 17 (2013)

21. Montali, M., Pesic, M., van der Aalst, W.M.P.: Federico Chesani, Paola Mello, and
Sergio Storari. Declarative Specification and Verification of Service Choreographies.
ACM Transactions on the Web 4(1) (2010)

22. Reijers, H.A., Slaats, T., Stahl, C.: Declarative Modeling–An Academic Dream or
the Future for BPM? In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS,
vol. 8094, pp. 307–322. Springer, Heidelberg (2013)

23. Schunselaar, D.M.M., Maggi, F.M., Sidorova, N.: Patterns for a Log-Based
Strengthening of Declarative Compliance Models. In: Derrick, J., Gnesi, S., Latella,
D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 327–342. Springer, Heidel-
berg (2012)

24. Smirnov, S., Weidlich, M., Mendling, J.: Business Process Model Abstraction Based
on Synthesis from Well-Structured Behavioral Profiles. Int. J. Cooperative Inf.
Syst. 21(1), 55–83 (2012)

25. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow Mining: Discovering
Process Models from Event Logs. IEEE TKDE 16(9), 1128–1142 (2004)

50 C. Di Ciccio, F.M. Maggi, and J. Mendling

26. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative Workflows: Bal-
ancing between Flexibility and Support. CSRD 23(2), 99–113 (2009)

27. van Dongen, B.F.: BPI Challenge 2012 (2012)
28. Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Weske, M.: Process Com-

pliance Analysis Based on Behavioural Profiles. Inf. Syst. 36(7), 1009–1025 (2011)
29. Westergaard, M., Maggi, F.M.: Looking into the Future: Using Timed Automata

to Provide A Priori Advice about Timed Declarative Process Models. In: Meers-
man, R., et al. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 250–267. Springer,
Heidelberg (2012)

Crowd-Based Mining

of Reusable Process Model Patterns

Carlos Rodŕıguez, Florian Daniel, and Fabio Casati

University of Trento,
Via Sommarive 9, I-38123, Povo (TN), Italy

{crodriguez,daniel,casati}@disi.unitn.it

Abstract. Process mining is a domain where computers undoubtedly
outperform humans. It is a mathematically complex and computationally
demanding problem, and event logs are at too low a level of abstraction
to be intelligible in large scale to humans. We demonstrate that if instead
the data to mine from are models (not logs), datasets are small (in the
order of dozens rather than thousands or millions), and the knowledge to
be discovered is complex (reusable model patterns), humans outperform
computers. We design, implement, run, and test a crowd-based pattern
mining approach and demonstrate its viability compared to automated
mining. We specifically mine mashup model patterns (we use them to
provide interactive recommendations inside a mashup tool) and explain
the analogies with mining business process models. The problem is rel-
evant in that reusable model patterns encode valuable modeling and
domain knowledge, such as best practices or organizational conventions,
from which modelers can learn and benefit when designing own models.

Keywords: Model patterns, Pattern mining, Crowdsourcing, Mashups.

1 Introduction

Designing good business processes, i.e., modeling processes, is a non-trivial task.
It typically requires not only fluency in the chosen modeling language, but also
intimate knowledge of the target domain and of the common practices, conven-
tions and procedures followed by the various actors operating in the given domain.
These requirements do not apply to business processes only.We find them over and
over again in all those contexts that leverage on model-driven formalisms for the
implementation of process-oriented systems. This is, for instance, the case of data
mashups, which are commonly based on graphical data flowparadigms, such as the
one proposed by Yahoo! Pipes (http://pipes.yahoo.com).

In order to ease the modeling of this kind of data mashups (so-called pipes),
in a previous work, we developed an extension of Pipes that interactively rec-
ommends mashup model patterns while the developer is modeling a pipe. A
click on a recommended pattern automatically weaves the pattern into the par-
tial pipe in the modeling canvas. Patterns are mined from a repository of freely
accessible pipes models [11]. We mined patterns from a dataset of 997 pipes

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 51–66, 2014.
c© Springer International Publishing Switzerland 2014

http://pipes.yahoo.com

52 C. Rodŕıguez, F. Daniel, and F. Casati

Fig. 1. A Yahoo!
Pipes data mash-
up model pattern
for plotting news
on a map. The
mashup logic is
expressed as data
flow diagram.

taken from the “most popular” category, assuming that popular pipes are more
likely to be functioning and useful. Before their use, patterns were checked by
a mashup expert assuring their meaningfulness and reusability (e.g., see Figure
1 for an example of a good pattern). The extension is called Baya [13], and our
user studies demonstrate that recommending model patterns has the potential
to significantly lower development times in model-driven environments [12].

The approach however suffers from problems that are common to pattern
mining algorithms: identifying support threshold values, managing large num-
bers of produced patterns, coping with noise (useless patterns), giving meaning
to patterns, and the cold start problem. Inspired by the recent advent of crowd-
sourcing [6], the intuition emerged that it might be possible to attack these
problems with the help of the crowd, that is, by involving humans in the mining
process. The intuition stems from the observation that pure statistical support
does not always imply interestingness [2], and that human experts are anyway
the ultimate responsibles for deciding about the suitability or not of patterns.

In this paper, we report on the results of this investigation and demonstrate
that crowd-based pattern mining can indeed be successfully used to identify
meaningful model patterns. We describe our crowd-based mining algorithm, the
adopted software/crowd stack, and demonstrate the effectiveness of the approach
by comparing its performance with that of the algorithm adopted in Baya. We
also show how our results and lessons learned are applicable to and impact the
mining of model patterns from business process models.

2 Background and Problem Statement

2.1 Reference Process Models: Data Mashups

Mashups are composite web applications that are developed by integrating
data, application logic, and pieces of user interfaces [1]. Data mashups are a
special type of mashups that specifically focuses on the integration and process-
ing of data sources available on the Web. Typical data sources are RSS or Atom

Crowd-Based Mining of Reusable Process Model Patterns 53

feeds, plain XML- or JSON-encoded static resources, or more complex SOAP or
RESTful web services. Data mashup tools are IDEs for data mashup develop-
ment. They provide a set of data processing operators, e.g., filters or split and
join operators, and the possibility to interactively configure data sources and
operators (we collectively call them components).

In this paper, we specifically focus on the data mashup tool Yahoo! Pipes and
our pattern recommender Baya [13]. The components and mashups supported
by these tools can be modeled as follows: Let CL be a library of components
of the form c = 〈name, IP, IF,OP, emb〉, where name identifies the component
(e.g., RSS feed or Filter), IP is the set of input ports for data flow connectors,
IF is the set of input fields for the configuration of the component, OP is the set
of output ports, and emb ∈ {yes, no} tells whether the component allows for the
embedding of other components or not (e.g., to model loops). We distinguish
three classes of components: Source components fetch data from the Web or
collect user inputs at runtime. They don’t have input ports: IP = ∅. Data
processing components consume data in input and produce processed data in
output: IP, OP �= ∅. A sink component (the Pipe Output component) indicates
the end of the data processing logic and publishes the output of the mashup, e.g.,
using JSON. The sink has neither input fields nor output ports: IF,OP = ∅.

A data mashup (a pipe) can thus be modeled as m = 〈name,C,E,DF, V A〉,
where name uniquely identifies the mashup, C is the set of integrated compo-
nents, E ⊆ C ×C represents component embeddings, DF ⊆ (∪iOPi)× (∪jIPj)
is the set of data flow connectors propagating data from output to input ports,
and V A ⊆ (∪kIFk) × STRING assigns character string values to input fields.
Generic strings are interpreted as constants, strings starting with “item.” are
used to map input data attributes to input fields (see Figure 1).

A pipe is considered correct, if it (i) contains at least one source component,
(ii) contains a set of data processing components (the set may be empty), (iii)
contains exactly one sink component, (iv) is connected (in the sense of graph
connectivity), and (v) has value assignments for each mandatory input field.

Amashup model pattern can thus be seen as a tuplemp = 〈name, desc, tag,
C,E,DF, V A〉, with name, desc and tag naming, describing and tagging the
pattern, and C,E,DF, V A being as defined above, however with relaxed cor-
rectness criteria: a pattern is correct if it (i) contains at least two components,
(ii) is connected, and (iii) has value assignments for each mandatory input field.

2.2 Crowdsourcing

Crowdsourcing (CS) is the outsourcing of a unit of work to a crowd of people
via an open call for contributions [6]. A worker is a member of the crowd (a
human) that performs work, and a crowdsourcer is the organization, company
or individual that crowdsources work. The crowdsourced work typically comes in
the form of a crowd task, i.e., a unit of work that requires human intelligence
and that a machine cannot solve in useful time or not solve at all. Examples
of crowd tasks are annotating images with tags or descriptions, translating text
from one language into another, or designing a logo.

54 C. Rodŕıguez, F. Daniel, and F. Casati

A crowdsourcing platform is an online software infrastructure that pro-
vides access to a crowd of workers and can be used by crowdsourcers to
crowdsource work. Multiple CS platforms exist, which all implement a spe-
cific CS model : The marketplace model caters for crowd tasks with fixed
rewards for workers and clear acceptance criteria by the crowdsourcer. The
model particularly suits micro-tasks like annotating images and is, for ex-
ample, adopted by Amazon Mechanical Turk (https://www.mturk.com) and
CrowdFlower (http://crowdflower.com). The contest model caters for tasks
with fixed rewards but unclear acceptance criteria; workers compete with
their solutions for the reward, and the crowdsourcer decides who wins. The
model suits creative tasks like designing a logo and is, e.g., adopted by
99designs (http://99designs.com). The auction model caters for tasks with
rewards to be negotiated but clear acceptance criteria. The model suits
creative tasks like programming software and is, e.g., adopted by Freelancer
(http://www.freelancer.com).

For the purpose of this paper, we specifically leverage on micro-tasks in mar-
ketplace CS platforms. Crowdsourcing a task in this context involves the follow-
ing steps: The crowdsourcer publishes a description of the task to be performed,
which the crowd can inspect and possibly express interest for. In this step, the
crowdsourcer also defines the reward workers will get for performing the task and
how many answers he would like to collect from the crowd. Not everybody of the
crowd may, however, be eligible to perform a given task, either because the task
requires specific capabilities (e.g., language skills) or because the workers should
satisfy given properties (e.g., only female workers). Deciding which workers are
allowed to perform a task is commonly called pre-selection, and it may be done
either by the crowdsourcer manually or by the platform automatically (e.g., via
questionnaires). Once workers are enabled to perform a task, the platform creates
as many task instances as necessary to collect the expected number of answers.
Upon completion of a task instance (or a set thereof), the crowdsourcer may
inspect the collected answers and validate the respective correctness or quality.
Work that is not of sufficient quality is not useful, and the crowdsourcer rewards
only work that passes the possible check. Finally, the crowdsourcer may need to
integrate collected results into an aggregated outcome of the overall CS process.

2.3 Problem Statement and Hypotheses

This paper aims to understand whether it is possible to crowdsource the min-
ing of mashup model patterns of type mp from a dataset of mashup models
M = {ml} with l ∈ {1...|M |} and |M | being “small” in terms of dataset sizes
required by conventional data mining algorithms (dozens rather than thousands
or millions). Specifically, the work aims to check the following hypotheses:

Hypothesis 1 (Effectiveness). It is possible to mine reusable mashup model
patterns from mashup models by crowdsourcing the identification of patterns.

Hypothesis 2 (Value). Model patterns identified by the crowd contain more
domain knowledge than automatically mined patterns.

https://www.mturk.com
http://crowdflower.com
http://99designs.com
http://www.freelancer.com

Crowd-Based Mining of Reusable Process Model Patterns 55

Hypothesis 3 (Applicability). Crowd-based pattern mining outperforms ma-
chine-based pattern mining for small datasets.

It is important to note that the above hypotheses and this paper as a whole
use the term “mining” with its generic meaning of “discovering knowledge,”
which does not necessarily require machine learning.

3 Crowd-Based Pattern Mining

The core assumptions underlying this research are that (i) we have access to
a repository of mashup models (the dataset) of limited size, like in the case of a
cold start of a modeling environment; (ii) the identification of patterns can be
crowdsourced as micro-tasks via maketplace-based CS platforms; and (iii) the
interestingness of patterns as judged subjectively by workers has similar value as
that expressed via minimum support thresholds of automated mining algorithms.

3.1 Requirements

Crowdsourcing the mining of mashup model patterns under these assumptions
asks for the fulfillment of a set of requirements:

R1: Workers must pass a qualification test, so as to guarantee a minimum level
of familiarity with the chosen mashup modeling formalism.

R2: Mashup models m must be represented in a form that is easily intelligible
to workers and that allows them to conveniently express patterns mp.

R3: It must be possible to input a name, a description and a list of tags for an
identified pattern, as well as other qualitative feedback.

R4: To prevent cheating (a common problem in CS) as much as possible, all
inputs must be checked for formal correctness.

R5: The crowdsourced pattern mining algorithm should make use of redundancy
to guarantee that each mashup model is adequately taken into account.

R6: Workers must be rewarded for their work.
R7: Collected patterns must be integrated and homogenized, and repeated pat-

terns must be merged into a set of patterns MP .
R8: Collected patterns must undergo a quality check, so as to assure the

reusability and meaningfulness of identified patterns.

Given a set of crowd-mined patternsMP , accepting or rejecting our hypotheses
then further requires comparing the quality ofMP with that of patterns that are
mined automatically (we use for this purpose our algorithm described in [11]).

3.2 Approach

Figure 2 provides an overview of our approach to crowdsource the mining of
mashup model patterns using CrowdFlower (http://www.crowdflower.com) as
the crowdsourcing platform. Starting from the left-hand side of the figure, the

http://www.crowdflower.com

56 C. Rodŕıguez, F. Daniel, and F. Casati

Web server

Model
repository

Pattern
repository

Pattern selector page

CS platform n

CS platform 1

CS meta-platform
...

Crowdsourcer Crowdsourcer

Crowd
works on

deploys tasks
operates

works on

posts task

posts task

links

links

gets models

submits
patterns

Fig. 2. Approach to crowd-based pattern mining with CrowdFower

crowdsourcer deploys the task on CrowdFlower. Doing this requires the creation
of the forms to collect data from the crowd, the uploading of the dataset that
contains the units of work (i.e., the mashup models), the preparation of the
qualification tests (R1), among other tasks that are specific to CrowdFlower.
Once the tasks are deployed, CrowdFlower posts them to third-party platforms
such as Amazon Mechanical Turk and MinuteWorkers where the crowd can
actually perform the requested work. Each mashup model is configured to be
shown to at least three workers, in order to guarantee that each model gets
properly inspected (R5), and a monetary reward is set for each pattern provided
by the crowd (R6). We will discuss more about this last aspect in Section 4.

Each task points to an external Pattern Selector page where the crowd can se-
lect patterns from the mashups in the dataset. The Pattern Selector page consists
in a standard web application implemented in Java, HTML, CSS and Javascript,
which displays the image of a pipe in its original representation (screen shot)
and allows the worker to define patterns on top (R2). In addition, the worker
can provide a name, a description and a list of tags that describe the pattern
(R3). All inputs provided by the worker are validated, e.g., to check that the
worker indeed selects a pattern within the mashup (R4).

The web application for the Pattern Selector page is hosted on a web server
operated by the crowdsourcer. The web server hosts a model repository where
the mashup models are stored and from where the Pattern Selector page gets
the models. It also hosts a pattern repository where the patterns selected by the
crowd are submitted and stored for further analysis, which includes the filtering,
validation and integration of the collected patterns (R7 and R8)

3.3 Algorithm

Algorithm 1 (we call it the Crowd algorithm) illustrates a generic algorithm that
brings together human and machine computation for the mining of patterns from
mashup models. The algorithm receives as input:

Crowd-Based Mining of Reusable Process Model Patterns 57

Algorithm 1. Crowd
Data: input dataset IN , pattern mining tasks PMT , data partitioning strategy DPE, data

partition size DPS, answers per partition APP , per-task reward rw, time alloted ta
Result: set MP of mashup model patterns 〈name, desc, tag, C,E,DF, V A〉

1 IN = initializeDataset(IN);

2 DP = partitionInputDataset(IN,DPE,DPS);

3 T = mapDataPartitionsToTasks(DP , PMT , APP);

4 distributeTasksToCrowd(T, rw, ta);

5 rawPatterns = collectPatternsFromCrowd();

6 MP = filterResults(rawPatterns);

7 return MP ;

– The dataset IN of mashup models from which to identify patterns,
– The design of the parameterized pattern mining task PMT to be executed

by the crowd (the parameters tell which mashup model(s) to work on),
– The data partitioning strategy DPE telling how to split IN into sub-sets to

be fed as input to PMT ,
– The data partition size DPS specifying the expected size of the input datasets,
– The number of answers APP to be collected per data partition,
– The per-task reward rw to be paid to workers, and
– The time allotted ta to execute a task.

The algorithm consists of seven main steps. First, it initializes the input
dataset IN (line 1) and transforms it into a format that is suitable for the
crowdsourcing of pattern mining tasks (we discuss this step in the next subsec-
tion). Then, it takes the initialized input dataset IN and partitions it according
to parameters DPE and DPS (line 2). In our case, DPE uses a random selec-
tion of mashup models, DPS = 1 and APP = 3. Next, the algorithm maps the
created partitions of mashup models to the tasks PMT (line 3) and distributes
the tasks to the workers of the crowd (line 4). Once tasks are deployed on the
crowdsourcing platform, it starts collecting results from the crowd until the ex-
pected number of answers per model are obtained or the allotted time of the task
expires (line 5). Finally, it filters the patterns according to predefined quality
criteria (line 6), so as to keep only patterns of sufficient quality (we provide more
details of this last step in Section 4).

Note that the core of the approach, i.e., the identification of patterns, is not
performed by the algorithm itself but delegated to the crowd as described next.

3.4 Task design

In order to make sure that only people that are also knowledgeable in Yahoo!
Pipes perform our tasks, we include a set of five multiple choice, pre-selection
questions such as “Which of the following components can be embedded into a
loop?” and “What is the maximum number of Pipe Output modules permitted
in each pipe?” In order for a worker to be paid, he/she must correctly answer
these questions, for which we already know the answers (so-called gold data).

58 C. Rodŕıguez, F. Daniel, and F. Casati

Name and description of pipe
sources from Yahoo! Pipes

The pipe model to be analyzed by the worker. The model is a clickable image
map that allows the worker to define a pattern by selecting its components.

Additional input fields for the specification of pattern name, description and meta-data

Unselected
component

Selected
component

Fig. 3. Task design for the selection, description and rating of mashup model patterns

Another core decision when crowdsourcing a task is the UI used to inter-
act with workers. In general, all crowdsourcing platforms available today allow
a crowdsourcer to design form-based user interfaces directly inside the crowd-
sourcing platform. For the crowdsourcing of simple tasks, such as the annotation
of images or the translation of a piece of text, this is sufficient to collect useful
feedback. In more complex crowdsourcing tasks, such as our problem of iden-
tifying patterns inside mashup models, textual, form-based UIs are not enough
and a dedicated, purposefully designed graphical UI is needed. The task that
workers can perform through this UI corresponds to the implementation of the
collectPatternsFromCrowd() function in Algorithm 1, i.e., the actual mining.

In order to make workers feel comfortable with the selection of patterns inside
pipes models, we wanted the representation of the pipes to be as close as possible
to what real pipes look like. In other words, we did not want to create an abstract
or simplified representation of pipes models (e.g., a graph or textual description)
and, instead, wanted to keep the full and realistic expressive power of the original
representation. We therefore decided to work with screen shots of real pipes
models, on top of which workers are able to select components of the pipe and
to construct patterns by simply clicking on the respective components. Figure
3 shows a screen shot of the resulting GUI for selecting patterns, in which we
show a pipe with a total of 9 components, of which 5 have been selected by the
worker to form a pattern (see the green-shaded components).

As shown in the figure, next to selecting a pattern, the worker must also
provide information about the pattern such as the name, description and list of
tags (at least 3 tags). In addition, the worker may also rank the pattern regarding

Crowd-Based Mining of Reusable Process Model Patterns 59

to how often he/she has already seen or used the pattern before, and to how
useful he/she thinks the pattern is.

4 Evaluation and Comparison

To study the described Crowd algorithm, we performed a set of experiments with
CrowdFlower and compared the results with those obtained by running our orig-
inal automated pattern mining algorithm [11] with different minimum support
levels and dataset sizes. We refer to this latter as to the Machine algorithm.

4.1 Evaluation Metrics

While for automated mining it is clear by design how the output of an algorithm
looks like, this is not as clear if the identification of patterns is delegated to the
crowd. As described earlier, it is very common that workers cheat and, hence,
do not provide meaningful data. To filter out those patterns that we can instead
reasonably trust, we define a set of minimum criteria for crowd-mined patterns:
a good mashup pattern is a pattern that consists of at least two modules and
where the modules are connected, the name and description of the pattern are not
empty, and the description and the actual pattern structure match semantically.
The first three criteria we enforce automatically in the pattern identification UI
illustrated in Figure 3. Whether the description and pattern structure match
semantically, i.e., whether the description really tells what the pattern does, is
assessed manually by experts (us). The result of this analysis is a Boolean: either
a pattern is considered good (and it passes the filter) or it is considered bad (and
it fails the filter). Note that with “good” we do not yet assert anything about
the actual value of a pattern; this can only be assessed with modelers using the
pattern in practice. The same expert-based filter is usually also applied to the
outputs of automated mining algorithms and does not introduce an additional
subjective bias compared to automated mining scenarios.

In order to compare the performance of the two algorithms and test our
hypotheses, we use three metrics to compare the sets of patterns they produce in
output: the number of patterns found gives an indication of the effectiveness
of the algorithms in finding patterns; the average pattern size, computed
as the average number of components of the patterns in the respective output
sets, serves as an indicator of how complex and informative identified patterns
are; and the distribution of pattern sizes shows how diverse the identified
patterns are in terms of complexity and information load.

4.2 Experiment Design and Dataset

The Crowd algorithm is implemented as outlined in Algorithm 1 using the
popular CS platform CrowdFlower. Running the algorithm is a joint manual and
automated effort: our Pattern Selector application takes care of initializing the
dataset (the pipes models), partition it, and map partitions to tasks at runtime.

60 C. Rodŕıguez, F. Daniel, and F. Casati

The actual tasks are deployed manually on CrowdFlower and executed by the
crowd. Filtering out good patterns is again done manually. For each pipe, we
request at least 3 judgments, estimated a maximum of 300 sec. per task, and
rewarded USD 0.10 per task.

The Machine algorithm is based on a frequent sub-graph mining algorithm
described in [11] and implemented in Java. The core parameter used to fine-tune
the algorithm is the minimum support that the mined sub-graphs must satisfy;
we therefore use this variable to test and report on different test settings.

The dataset used to feed both algorithms consists of 997 pipes (with 11.1
components and 11.0 connectors on average) randomly selected from the “most
popular” pipes category of Yahoo! Pipes’ online repository. We opted for this
category because, being popular, the pipes contained there are more likely to be
functional and useful. The pipes are represented in JSON. The dataset used for
the Crowd algorithm consists in a selection of 40 pipes out of the 997 (which
represents a small dataset in conventional data mining). The selection of these
pipes was performed manually, in order to assure that the selected pipes are
indeed runnable and meaningful. In addition to the JSON representation of these
40 pipes, we also collected the screen shots of each pipe through the Yahoo! Pipes
editor. The JSON representation is used in the automated input validators; the
screen shots are used to collect patterns from the crowd as explained earlier.

For our comparison, we run Machine with datasets of 997 (big dataset) and
40 pipes (small dataset). We use Machine997 and Machine40 to refer to the
former and the latter setting, respectively. We run Crowd only with 40 pipes
and, for consistency, refer to this setting as to Crowd40.

4.3 Results and Interpretation

42 patterns
retained

326 crowd
task instances
started

174 patterns
submitted

Fig. 4. Task in-
stances and pat-
terns in Crowd40

Figure 4 summarizes the task instances created and the pat-
terns collected by running Crowd40 . The crowd started a to-
tal of 326 task instances in CrowdFlower, while it submitted
only 174 patterns through our Pattern Selector application.
This means that a total of 152 task instances were abandoned
without completion. Out of the 174 patterns submitted, only
42 patterns satisfied our criteria for good mashup patterns.
These data testify a significant level of noise produced by
workers who, in the aim of finishing tasks as quickly as pos-
sible and getting paid, apparently selected random fragments
of pipes and provided meaningless descriptions. The cost of
this run was USD 17.56, including administrative costs.

The charts in Figures 5–7 report on the numbers of patterns, average pattern
sizes and the distribution of pattern sizes obtained by running Machine997 and
Machine40 with different minimum relative support levels supmin. The bars in
gray are the results of the Machine algorithm; the black bars represent the
results of Crowd40. For comparison, we placed Crowd40 at a support level of
supmin = 0.025, which corresponds to 1/40 = 0.025, in that we ask workers to
identify patterns from a single pipe without the need for any additional support.

Crowd-Based Mining of Reusable Process Model Patterns 61

(a) Machine997(gray) compared to Crowd40 (black) (b) Machine40 (gray) compared to Crowd40 (black)

N
um

be
r

of
 p

at
te

rn
s

fo
un

d

Minimum support

N
um

be
r

of
 p

at
te

rn
s

fo
un

d

Minimum support

Fig. 5. Number of patterns produced by the two automated mining algorithms under
varying minimum support levels. For comparison, the charts also report the number of
pattern produced by the crowd-based mining algorithm (in black).

(a) Machine997(gray) compared to Crowd40 (black) (b) Machine40 (gray) compared to Crowd40 (black)

A
ve

ra
ge

 p
at

te
rn

 s
iz

e

A
ve

ra
ge

 p
at

te
rn

 s
iz

e

Minimum support Minimum support

Fig. 6. Average size of the patterns produced by the two automated mining algorithms
under varying minimum support levels. For comparison, the charts also report the
average size of patterns produced by the crowd-based mining algorithm (in black).

H1 (Effectiveness). Figure 5(a) illustrates the number of patterns found by
Machine997. The number quickly increases for Machine997 as we go from high
support values to low values, reaching almost 500 patterns with supmin = 0.01.
Figure 5(b) shows the results obtained with Machine40. The lowest support
value for Machine40 is supmin = 0.05, which corresponds to an absolute support
of 2 in the dataset. It is important to note that only very low support values
produce a useful number of patterns. In both figures, the black bar represents
the 42 patterns identified by Crowd40 .

The two figures show the typical problem of automated pattern mining algo-
rithms: only few patterns for high support levels (which are needed, as support
is the only criterion expressing significance), too low support levels required to
produce useful output sizes with small datasets (our goal), and an explosion
of the output size with large datasets. As illustrated in Figure 4, Crowd40 is
instead able to produce a number of patterns in output that is similar to the
size of the dataset in input. Notice also that, while Figure 5 reports on all
the patterns found by Machine, the data for Crowd40 include only good pat-
terns. This means that not only Crowd40 is able to find patterns, but it is also
able to find practically meaningful patterns. We thus accept Hypothesis 1 and

62 C. Rodŕıguez, F. Daniel, and F. Casati

(a) Machine997 with 44 patterns in
output and support of 0.05

(c) Crowd40 with 42 patterns(b) Machine40 with 35 patterns in
output and support of 0.05

F
re

qu
en

cy

Pattern size (number of components) Pattern size (number of components) Pattern size (number of components)

Fig. 7. Size distribution of the patterns by the three algorithms. To ease the compari-
son, the histograms of Machine997 and Machine40 refer to the run with the minimum
support level that produced an output dataset close to the one produced by Crowd40.

conclude that with Crowd40 it is possible to mine reusable mashup model pat-
terns by crowdsourcing the identification of patterns.

H2 (Value). Figure 6 shows the average pattern sizes of Machine997 and
Machine40 compared to that of Crowd40 . In both settings, the average pat-
tern size obtained with Crowd40 clearly exceeds the one that can be achieved
with Machine, even for very low support values (0.01). With Figure 7, we look
more specifically into how these patterns look like by comparing those runs of
Machine997 and Machine40 with Crowd40 that produce a similar number of
patterns in output. In both settings this happens for supmin = 0.05 and pro-
duced 44 and 35 patterns, respectively. Figures 7(a) and (b) show that automat-
ically mined patterns are generally small (sizes range from 2–4), with a strong
prevalence of the most simple and näıve patterns (size 2).

Figure 7(c), instead, shows that the results obtained with Crowd40 present a
much higher diversity in the pattern sizes, with a more homogeneous distribution
and even very complex patterns of sizes that go up to 11 and 15 components.
Crowd40 is thus able to collect patterns that contain more complex logics and
that are more informative, and thus, possibly contain more domain knowledge.
These patterns also come with a characterizing name, description and list of tags.
These annotations not only enrich the value of a pattern with semantics but also
augment the domain knowledge encoded in the pattern and its reusability. We
thus accept Hypothesis 2 and conclude that patterns mined with Crowd40 contain
more domain knowledge than the automatically mined patterns.

H3 (Applicability). The above assessment of the effectiveness and value of
Crowd40 shows that crowd-based pattern mining outperforms machine-based
mining for small datasets, that is, we accept Hypothesis 3. For large datasets,
automated mining still represents a viable solution, but for small datasets crowd-
based ming is not only applicable but also more effective. With a cost per pattern
of USD 0.42 and a running time of approximately 6 hours, crowd-based mining
proves to be a very competitive alternative to hiring a domain expert, which
would be the alternative to attack a cold start in our small dataset scenario.

Crowd-Based Mining of Reusable Process Model Patterns 63

5 Discussion and Analogy with BPM

Regarding the above results, we performed a set of additional experiments to
analyze the robustness of Crowd40 along two dimensions: reward and task
design. We did not notice any reduction of the number of tasks instantiated by
the crowd or the number of patterns collected if we lowered the reward from
USD 0.10 down to USD 0.05. We essentially got the same response as described
in Figure 4, which indicates that we could have gotten the same results also for
less money without any loss of quality. Instead, we noticed that there is a very
strong sensitivity regarding the task design, but only on the number of patterns
that can be collected, not on the number of task instances. Concretely, we tried
to introduce a minimum level of support (at least 2 times in 3, respectively,
10 pipes shown to the worker). The result was only a strong reduction of the
number of patterns submitted. The lesson learned is thus to keep the task as
simple as possible, that is, to apply the KISS (Keep It Simple, Stupid) principle,
and to concentrate the effort instead on the validation of collected data.

There are two key aspects when designing a CS task: input validation and
intuitiveness. We have seen that it is strongly advised to check all inputs for
formal validity (e.g., no empty strings), otherwise workers may just skip in-
puts or input fake content (e.g., a white space). As for the intuitiveness, we
considered collecting patterns via textual input (e.g., the list of component names
in the pattern) or via abstract data flow graphs (automatically constructed from
the JSON representation of pipes), but in the end we opted for the screen shots.
This has proven to be the representation workers are most familiar with; in fact,
screen shots do not introduce any additional abstraction.

In order to filter out workers that had some minimum knowledge of Pipes,
we performed a pre-selection in the form of gold data. Yet, our questions were
too tough in our first tests, and we had to lower our expectations. Interestingly,
however, this did not affect much the quality of the patterns (but workers that
did not pass the test, did not get paid). We also noticed a natural selection
phenomenon: the majority of patterns was submitted by only few workers. We
assume these were workers with good knowledge in Pipes that simply liked this
kind of modeling tasks and, therefore, submitted patterns not only for the sake
of the reward but also for personal satisfaction. We believe that, with the right
quality criteria in place, the pre-selection could be omitted, and the “experts”
(and good patterns) emerge automatically, at the cost/speed of simple CS tasks.

As for the quality of patterns, we carefully analyzed each of the 42 patterns
identified by the crowd and conclude with confidence that all patterns that sat-
isfy our criteria for good patterns are indeed meaningful. Particularly important
in this respect are the additional annotations (name, description, tags) that
equip the patterns with semantics. It is important to notice that assessing the
quality of patterns is non-trivial in general and that the annotations do not only
allow one to grasp better the meaning and purpose of patterns; they also allow
one to tell serious workers and cheaters apart, which increases quality.

In this paper, we specifically focus on mashup model patterns, as we use them
to provide interactive recommendations in Baya. Yet, the approach and findings

64 C. Rodŕıguez, F. Daniel, and F. Casati

are general enough to be applicable almost straightway also to business process
models. A business process (BP) is commonly modeled as P = 〈N,E, type〉, with
N being the set of nodes (events, gateways, activities), E being the set of control
flow connectors, and type assigning control flow constructs to gateway nodes.
Our definition of mashups is not dissimilar: m = 〈name,C,E,DF, V A〉. The
components C correspond to N , and the data flow connectors DF correspond
to E. These are the constructs that most characterize a pattern. In fact, our
task design requires workers only to mark components to identify a pattern
(connectors, embeddings and value assignments are included automatically). If
applied to BP models, this is equivalent to ask workers to mark tasks.

Our mashup model is further data flow based, while BP models are typically
control flow based (e.g., BPMN or YAWL) and contain control flow constructs
(gateways). If identifying patterns with the crowd, the question is whether gate-
ways should be marked explicitly, or whether they are included automatically
(as in the current task design). In our case, for a set of components to form a
pattern it is enough that they are connected. In the case of BP patterns, this may
no longer be enough. Commonly, BP fragments are considered most reusable if
they are well structured, i.e., if they have a single entry and a single exit point
(SESE). It could thus be sensible to allow workers to select only valid SESE
fragments, although this is not a strict requirement.

As for the comparison of Crowd40 with Machine997 and Machine40, it is im-
portant to note that the automated mining algorithm would very likely produce
worse results if used with BP models. In fact, mashup models are particularly
suited to automated mining: the components they use are selected from a pre-
defined, limited set of component types (e.g., several dozens). Similarities can
thus be identified relatively easily, which increases the support of patterns. BP
models, instead, are more flexible in their “components” (the tasks): task labels
are free text, and identifying “types” of tasks is a hard problem in itself [7]. For
instance, the tasks “Pay bill”, “Pay” and “Send money” can all be seen as in-
stances of a common task type “Payment.” This, in turn, means that the value
of Crowd40 could be even more evident when mining BP models.

6 Related Work

Crowdsourcing has been applied so far in a variety of related areas. In the
specific context of machine learning, Sheng et al. [14] collect training labels for
data items from the crowd to feed supervised induction algorithms. In the same
context, von Ahn et al. [17] propose an interactive game that requires multiple
players to agree on labels for images, enhancing the quality of labels. In [10],
Sheng et al. propose CrowdMine, a game that leverages on the crowd to identify
graphical patterns used to verify and debug software specifications.

In the context of BPM, the term “patterns” is commonly associated with the
workflow patterns by van der Aalst et al. [16]. Initially, the focus of these pat-
terns was on control flow structures, but then the idea evolved and included all
the aspects (control flow, data flow, resources, exception handling) that charac-
terize workflow languages (http://www.workflowpatterns.com). The proposed

http://www.workflowpatterns.com

Crowd-Based Mining of Reusable Process Model Patterns 65

patterns are an analytical approach to assess the strengths and weaknesses of
workflow languages, more than an instrument to assist developers while model-
ing, although Gschwind et al. [4] also explored this idea.

The automated identification of process models or fragments thereof is com-
monly approached via process mining, more specifically process discovery [15].
Process discovery aims to derive model patterns from event logs, differently from
the problem we address in this paper, which aims to find patterns in a set of
process models. The main assumptions of process discovery techniques are: (i)
each process instance can be identified as pertaining to a process, (ii) each event
in the log can be identified as pertaining to a process instance, (iii) each event
in the log corresponds to an activity in the process, (iv) each event in the log
contains the necessary information to determine precedence relationships. De-
rived process models thus represent patterns of the dynamics of a single process
and generally do not have cross-process validity. Examples of process discovery
algorithms are the α-algorithm [15], Heuristic miner [18], and Fuzzy mining [5].

Only few works focus on mining patterns from process models. Lau et al. [8]
propose to use frequent sub-graph and association rules discovery algorithms to
discover frequent sub-graphs (patterns) to provide modeling recommendations.
Li et. al [9] mine process model variants created from a given reference process
model, in order to identify a new, generic reference model that covers and rep-
resents all these variants better. The approach uses a heuristic search algorithm
that minimizes the average distance (in terms of change operations on models)
between the model and its variants. Greco et al. [3] mine workflow models (rep-
resented as state charts) using two graph mining algorithms, c-find and w-find,
which specifically deal with the structure of workflow models.

We would have liked to compare the performance of our Crowd algorithm also
with that of the above algorithms, yet this would have required either adapting
them to our mashup model or adapting Crowd to process models. We were not
able to do this in time. However, the works by Lau et al. [8] and Greco et al. [3] are
very close to our Machine algorithm: they share the same underlying frequent
sub-graph mining technique. We therefore expect a very similar performance.
The two algorithms also advocate the use of a support-based notion of patterns
and thus present the same problems as the one studied in Section 4.

7 Conclusion

Mining model patterns from a dataset of mashup or process models is a hard
task. In this paper, we presented a crowd-based pattern mining approach that
advances the state of the art with three contributions: we demonstrate that it is
possible to crowdsource a task as complex as the mining of model patterns, that
patterns identified by the crowd are rich of domain knowledge, and that crowd-
based mining particularly excels with small datasets. We further explained how
the Crowd algorithm can be adapted to mine patterns from BP models. To the
best of our knowledge, this is the first investigation in this direction.

In our future work, we would like to study how crowdsourcing can be leveraged
on for big datasets, e.g., by using pattern similarity metrics and the notion of

66 C. Rodŕıguez, F. Daniel, and F. Casati

support, and how the quality of patterns on the reward given. We also intend
to adapt the Crowd algorithm to BPMN, to compare it with other BPMN-
oriented approaches in literature [8,3], and to study if the crowd can also be
used for quality assessment (to automate the complete pattern mining process).

References

1. Daniel, F., Matera, M.: Mashups: Concepts, Models and Architectures. Springer
(2014)

2. Geng, L., Hamilton, H.: Interestingness measures for data mining: A survey. ACM
Computing Surveys 38(3), 9 (2006)

3. Greco, G., Guzzo, A., Manco, G., Sacca, D.: Mining and reasoning on workflows.
IEEE Transactions on Knowledge and Data Engineering 17(4), 519–534 (2005)

4. Gschwind, T., Koehler, J., Wong, J.: Applying Patterns during Business Process
Modeling. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS,
vol. 5240, pp. 4–19. Springer, Heidelberg (2008)

5. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplifi-
cation based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

6. Howe, J.: Crowdsourcing: Why the Power of the Crowd Is Driving the Future of
Business, 1st edn. Crown Publishing Group, New York (2008)

7. Klinkmüller, C., Weber, I., Mendling, J., Leopold, H., Ludwig, A.: Increasing Recall
of Process Model Matching by Improved Activity Label Matching. In: Daniel, F.,
Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 211–218. Springer,
Heidelberg (2013)

8. Lau, J.M., Iochpe, C., Thom, L., Reichert, M.: Discovery and analysis of activity
pattern cooccurrences in business process models. In: ICEIS (2009)

9. Li, C., Reichert, M., Wombacher, A.: Discovering reference models by mining pro-
cess variants using a heuristic approach. In: Dayal, U., Eder, J., Koehler, J., Reijers,
H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 344–362. Springer, Heidelberg (2009)

10. Li, W., Seshia, S.A., Jha, S.: CrowdMine: towards crowdsourced human-assisted
verification. In: DAC, pp. 1250–1251. IEEE (2012)

11. Rodŕıguez, C., Chowdhury, S.R., Daniel, F., Nezhad, H.R.M., Casati, F.: Assisted
Mashup Development: On the Discovery and Recommendation of Mashup Com-
position Knowledge. In: Web Services Foundations, pp. 683–708 (2014)

12. Roy Chowdhury, S., Daniel, F., Casati, F.: Recommendation and Weaving of
Reusable Mashup Model Patterns for Assisted Development. ACM Trans. Internet
Techn. (2014) (in print)

13. Roy Chowdhury, S., Rodŕıguez, C., Daniel, F., Casati, F.: Baya: assisted mashup
development as a service. In: WWW Companion, pp. 409–412. ACM (2012)

14. Sheng, V.S., Provost, F., Ipeirotis, P.G.: Get another label? improving data quality
anddataminingusingmultiple,noisy labelers. In:SIGKDD,pp.614–622.ACM(2008)

15. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discover-
ing process models from event logs. IEEE Transactions on Knowledge and Data
Engineering 16(9), 1128–1142 (2004)

16. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

17. Von Ahn, L., Dabbish, L.: Labeling images with a computer game. In: SIGCHI,
pp. 319–326. ACM (2004)

18. Weijters, A., van der Aalst, W.M.P., De Medeiros, A.A.: Process mining with the
heuristics miner-algorithm. TU Eindhoven, Tech. Rep. WP, 166 (2006)

A Recommender System for Process Discovery

Joel Ribeiro1, Josep Carmona1, Mustafa Mısır2, and Michele Sebag2

1 Universitat Politècnica de Catalunya, Spain
{jribeiro,jcarmona}@lsi.upc.edu

2 TAO, INRIA Saclay - CNRS - LRI, Universite Paris Sud XI, Orsay, France
{mustafa.misir,michele.sebag}@lri.fr

Abstract. Over the last decade, several algorithms for process discovery
and process conformance have been proposed. Still, it is well-accepted
that there is no dominant algorithm in any of these two disciplines, and
then it is often difficult to apply them successfully. Most of these al-
gorithms need a close-to expert knowledge in order to be applied sat-
isfactorily. In this paper, we present a recommender system that uses
portfolio-based algorithm selection strategies to face the following prob-
lems: to find the best discovery algorithm for the data at hand, and
to allow bridging the gap between general users and process mining al-
gorithms. Experiments performed with the developed tool witness the
usefulness of the approach for a variety of instances.

Keywords: ProcessMining,RecommenderSystems,AlgorithmSelection.

1 Introduction

The ability of monitoring process executions within information systems yields
large-scale event log files. These files can be processed using the so-called process
mining approaches, at the crossroad of business intelligence and data mining
techniques. Process mining is positioning as the perfect candidate to support
information systems in the big data era.

Process mining is defined as the extraction of valuable information from event
logs, aimed at strategic insight into the business processes [13]. Process mining
mainly includes process discovery, conformance checking and enhancement. Dis-
covery techniques aim at the behavioral modeling of the business process under-
lying the event logs. Conformance techniques check the compatibility of a process
model with regard to a set of event logs. Enhancement techniques enrich a process
model based on additional process information available in the event log.

This paper focuses on process discovery, acknowledged to be the most chal-
lenging issue in process mining. While several algorithms have been proposed for
process discovery (e.g., the reader can find a complete summary in [13]), there
is no algorithm dominating all other algorithms. Furthermore, these algorithms
are built on different formalisms (e.g., Petri nets, BPMN, EPC, Causal nets).

The selection of the process discovery algorithm and formalism most appro-
priate to (a set of) event logs is left to the user, hindering the deployment of the
process mining approach in two ways. On the one hand, inexperienced users can

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 67–83, 2014.
c© Springer International Publishing Switzerland 2014

68 J. Ribeiro et al.

Fitness:
Precision: ±

Generalization:
Simplicity: +

Mining Time: +

Accepted
In Progress

Accepted
Wait

Queued
Awaiting

Assignment
Accepted
Assigned

Completed
Closed

Fitness: +
Precision: ±

Generalization:
Simplicity:

Mining Time: ±

Accepted
In Progress

Accepted
Wait

Queued
Awaiting

Assignment

Accepted
Assigned

Completed
ClosedFitness: +

Precision:
Generalization: ±

Simplicity: +
Mining Time: ±

Accepted
Assigned

Queued
Awaiting

Assignment

Completed
Closed

Accepted
Wait

Accepted
In Progress

R1 R2

R3

Fig. 1. The process discovery problem: three discovered models for a given log. R1 is
a Causal net discovered by the Flexible Heuristic Miner (FHM), while R2 and R3 are
Petri nets, discovered by the Alpha and Inductive miners, respectively. These control-
flow algorithms are available in the ProM 6 framework [16].

hardly get the best of an algorithm portfolio. On the other hand, experienced
users might have to manually inspect the event log to select the appropriate
algorithm, along a tedious, time-consuming and error-prone procedure. Figure 1
illustrates the problem: three different models were discovered by three different
techniques using the same log. Each model is annotated with a set of generic
quality measurements (+: good, ±: average, −: poor; for an overview of quality
measures see Section 3.3). Depending on the measurements in consideration, one
model may be preferred with respect to the others. If all measurements were con-
sidered, the technique presented in this paper would recommend model R1 (i.e.,
recommend the FHM). However, if only fitness and precision were considered,
model R3 (Inductive miner) would be recommended by our technique.

The contribution of the paper is an integrated process discovery framework
achieving algorithm selection based on machine learning techniques. Formally,
this framework elaborates on the Algorithm Recommender System (ARS) ap-
proach [5], based on using a dataset that reports the results of some algorithms
in the portfolio on a set of problem instances; its generality is witnessed as it
has been applied successfully in domains such as Constraint Satisfaction and
Optimization.

ARS is integrated within a framework to evaluate process discovery algo-
rithms [14]. We have developed a server-client architecture along the training-test
principle used in machine learning. The server achieves lifelong learning, contin-
uously running process discovery experiments to enrich its database reporting

A Recommender System for Process Discovery 69

the performances of algorithms on case studies (event logs). This database is
exploited using ARS, continuously increasing the system knowledge. This knowl-
edge is then disseminated to the clients, that use it to predict the best algorithm
on their current event log. The client is implemented as a ProM [16] plugin
(Nightly Build version)1, named RS4PD under the Recommendation package. Ex-
periments using real-life and artificial logs confirm the merits of the proposed
approach.

The remainder of this paper is organized as follows. Section 2 presents back-
ground and discusses related work. Section 3 presents an overview of the recom-
mender system; its implementation is detailed in Section 4. Section 5 provides an
experimental validation of the approach. Section 6 contains a preliminary study
about the selection of parameters for discovery algorithms, while Section 7 con-
cludes the paper with some discussion and perspectives for further research.

2 Related Work

Over the last decade, recommender systems became present in a significant num-
ber of applications of information systems [2]. In spite of this, few attempts have
been done on recommending process mining algorithms. In this paper, the main
goal is to build a system for recommending process discovery algorithms. The
proposed recommender system requires the combination of three different disci-
plines. We overview them now in the following subsections.

2.1 Evaluation of Process Discovery Algorithms

Control-flow discovery algorithms focus on finding the causality of activities
within a process, e.g., order, conflict, concurrency, iteration, among others. Sev-
eral approaches can be found in the literature [13]. These algorithms (or the
resulting models) can be evaluated using conformance techniques [10], which
may reveal mismatches between observed and modeled behavior. Rozinat et al.
[9] identified the need of developing a methodology to benchmark process mining
algorithms. A conceptual framework was then proposed to evaluate and compare
process models. Weber et al. [18] proposed a methodology for assessing the per-
formance of process mining algorithms. This approach assumes the generation
of event logs from reference models for applying conformance analysis. Also as-
suming the existence of reference models, Wang et al. [17] proposed a framework
for evaluating process mining algorithms based on the behavioral and structural
similarities between reference and mined process models. In this approach, the
information gathered from the evaluation (i.e., the similarities between process
models) is then used to support a recommender system for process mining al-
gorithms. A different evaluation approach for analyzing the quality of process
models was introduced by vanden Broucke et al. [14]. In this approach, several
conformance checking metrics can be computed over an event log and a process
model in an integrated environment.

1 http://www.promtools.org/prom6/nightly/

http://www.promtools.org/prom6/nightly/

70 J. Ribeiro et al.

2.2 Collaborative Filtering

Due to a large number of choices regarding an item, it is hard to determine
possible personal choices without checking the available options throughly. Rec-
ommender systems are automated methods to efficiently perform this task. One
way to do it is by using item or user related content data given beforehand. This
sub-field of recommender systems is studied as content-based filtering methods.
Instead of directly using such data, it is possible to employ users’ earlier prefer-
ences on items. In this way, finding users with similar taste or items with similar
user preferences is practical to make user-item predictions. Collaborative filtering
is the field approaching the recommendation problems from this perspective [12].
The underlying motivation is that if some users share similar preference charac-
teristics on a set of commonly known items, it is likely that these users will have
similar taste on other items.

Algorithm Recommender System (ARS) [5] is an algorithm portfolio selection
tool that uses collaborative filtering. ARS takes the user-item matrix idea into
an instance-algorithm matrix indicating the performance of each algorithm on
each instance. The Algorithm Selection Problem [8] has been targeted in different
areas such as Constraint Satisfaction and Optimization. The methods developed
on these contexts using algorithm selection, like SATZilla [20] and CPHydra [7],
need a full performance dataset showing how well a set of algorithms performed
on a set of problem instances. Besides that some of these methods were designed
in a way that they can only be used for the problems with a specific performance
criterion, such as runtime. Unlike these existing methods, ARS does not require
a full performance matrix, thanks to collaborative filtering. In addition, ARS
has a generic structure that can be used as a black-box method, thus it can be
used for any algorithm selection task as the one we have in this paper. This is
provided by using a rank-based input scheme. In particular, the performance
database involves relative performance, i.e., ranks of tested algorithms on each
instance.

2.3 Information Retrieval

Information Retrieval (IR) is a discipline that considers finding information that
best satisfies some given criteria (e.g., keywords) on documents. Among the many
techniques available, top-k queries is a technique used in the framework proposed
in this paper. These queries can be defined as the search of the k most relevant
(or interesting) entries in a multidimensional dataset. The first algorithms for
efficient top-k queries are the so-called threshold algorithms [4]. Considered the
reference algorithms in the subdomain, threshold algorithms rely on sequential
and random accesses to information to compute the exact top-k results. Using
an index-based approach to access information, Akbarinia et al. proposed two
algorithms [1] that exploit the position of the entries in the dataset to compute
the exact top-k results. From these algorithms, the BPA2 algorithm is used in
this study for retrieving the top-k discovery techniques, due to its efficiency.

A Recommender System for Process Discovery 71

3 Overall Framework

A recommender system for process discovery can follow the same strategy as the
portfolio-based algorithm selection [20]. Basically, this selection relies on a set
(portfolio) of algorithms, which are executed over a repository of input objects
(e.g., datasets or problems). Information about the executions (e.g., performance
or results) is used to identify the best algorithms with regard to specific input
objects. By characterizing these objects as sets of features, it is possible to build
a prediction model that associates a ranking of algorithms with features. So,
the prediction of the best-performing algorithms on a given input object can
be achieved by first extracting the features of that object and then using the
prediction model to compute the ranking of algorithms. This approach can be
used to build a recommender system for process discovery, with event logs as
input objects and discovery techniques as algorithms.

Repository

Process Models

Event Logs

Experiment Results

Process
Discovery

Conformance
Checking

Management
Tools

Control-Flow
Miners

Conformance
Checkers

Fig. 2. Outline of the evaluation framework

Figure 2 presents a framework for evaluating process discovery techniques,
which can be used to support a recommender system. The Process Discovery and
the Conformance Checking nodes represent the execution of a process mining
experiment. These experiments can be defined as follows.

Discovery experiment: consists of executing a control-flow algorithm on an
event log in order to produce a process model. The mined model as well as
information about the algorithm performance are stored in the repository.

Conformance experiment: consists of computing a conformance measure-
ment on a process model and the event log used to mine that model. The
experiments results are stored in the repository.

The Management Tools allow (i) the execution of discovery and conformance
experiments and (ii) the management of the repository as well as the collection
of discovery and conformance techniques (i.e., the control-flow miners and the
conformance checkers). The execution of an experiment is selected randomly.

72 J. Ribeiro et al.

Repository

Process Models Event Logs
Experiment

Results

Recommender System

Features
Extraction

Results
Retrieval

Ranking
Computation

Features
Extraction

Feature Extractors

Rankings

Ranking
Prediction

Top-k
Control-Flow

Miners
Log

Features

Predictions

O
ut

pu
t

In
pu

t

Training Recommending

Prediction
Models

f(x)

Features

Model
Training

Fig. 3. Overview of the recommender system

Applying this strategy, the insertion of event logs, control-flow miners, and con-
formance checkers can be done at any moment.

Figure 3 presents an overview of our recommender system. As depicted, the
recommender system includes two functionalities: training and recommending.
The training function generates the necessary knowledge from the experiment
results to build prediction models. This can be achieved as follows.

i. The experiment results are retrieved from the repository.
ii. For each event log and measurement (performance or conformance) in the

results, the ranking of discovery techniques is computed. A ranking of tech-
niques must contain all control-flow miners used in the experiments. In the
case a ranking is incomplete (i.e., there is not enough experiment results to
compute a complete ranking), a machine learning algorithm (e.g., SVM or
Neural Networks) is applied to predict the missing ranking values [5].

iii. The features of the log are extracted for each event log in the results.
iv. For each measurement in the results, the corresponding prediction model is

trained using the rankings of discovery techniques and the features of the
logs.

The recommending function uses the prediction models to obtain the top-k best-
performing discovery techniques for an event log. This can be achieved as follows.

a. The features of the given event log are extracted.
b. For each prediction model, the ranking of techniques with respect to a mea-

surement is predicted using the extracted features.
c. All the predicted rankings are combined into a final ranking.
d. The top-k techniques are retrieved from the final ranking.

A Recommender System for Process Discovery 73

The following sections describe in detail the key elements used in the training
and recommending parts of the proposed system.

3.1 Features

A feature is a numerical function defined on event logs. A set of features therefore
induces a (semi-)distance on event logs. In practice, a feature can be defined as a
specific characteristic of the event log. By characterizing two logs as two sets of
features, it is possible to assess whether or not the logs are different with regard
to those features. This means that the execution of discovery techniques and the
corresponding results can be associated to features of logs. Importantly, these
associations can be used to identify which techniques perform better over logs
characterized by specific features. A feature can be defined under one of three
different scopes: trace, event, and flow.

Trace features: focus on characteristics of sequences of events. The average
trace length is an example of a trace feature.

Event features: focus on characteristics of single events. The number of dis-
tinct events in the log is an example of an event feature.

Flow features: focus on characteristics of causal dependencies (i.e., pairs of
consecutive events in the same trace). The number of one-length loops in
the log is an example of a flow feature.

A challenge for building a recommender system for process discovery is the
definition or selection of a representative set of features, supporting the algorithm
selection. A representative set of features is described in Section 4; the validation,
extension and improvement of the feature set is left for further study.

3.2 Techniques

A (discovery) technique consists of a control-flow algorithm for process discovery.2

As in the portfolio-based algorithm selection, a set of techniques can be executed
over a repository of event logs. The information gathered from the execution can
be used to analyze which techniques perform best with regard to the performance
of discovery techniques and the quality of their results. Remark that different tech-
niquesmay produce different types of processmodels (e.g., the ILPminer produces
a Petri net, while the FHM mines a Causal net). Since the conformance checking
algorithms used in this study work only on Petri nets, a model conversion may be
necessary in order to enable the results of a technique to be evaluated.

3.3 Measures

A measure can be defined as a measurement that evaluates the performance of
discovery techniques and the quality of their results. By evaluating the execution

2 Remark that other process discovery perspectives such as the resource, the time, and
the data perspectives are not considered in the present work. The integration of these
perspectives in the recommender system is identified as future work.

74 J. Ribeiro et al.

of two discovery techniques over the same log (as well as the produced results),
it is possible to identify which technique performs better with regard to some
measures. The recommender system proposed in this paper considers either a
particular measure (aiming at identifying the best algorithm with regard to this
measure), or an aggregation of these measures using an information retrieval
algorithm (cf. Section 3.4). Together with the characteristics of the logs (i.e.,
the sets of features), this information can be used to build prediction models
for supporting a recommendation system. A measure can be categorized as fol-
lows [13].

Performance measure: quantifies a discovery algorithm in terms of execution
on a specific event log. The runtime is an example of a performance measure.

Simplicity measure: quantifies the results of a discovery algorithm (i.e., the
process model mined from a specific event log) in terms of readability and
comprehension. The number of elements in the model is an example of a
simplicity measure.

Fitness measure: quantifies how much behavior described in the log complies
with the behavior represented in the process model. The fitness is 100% if
the model can describe every trace in the log.

Precision measure: quantifies how much behavior represented in the process
model is described in the log. The precision is 100% if the log contains every
possible trace represented in the model.

Generalization measure: quantifies the degree of abstraction beyond observed
behavior, i.e., a general model will accept not only traces in the log, but some
others that generalize these.

3.4 Recommending the Top-k Best-Performing Techniques

The recommendation of the top-k best-performing techniques for a specific event
log is based on a set of ranking predictions. A ranking prediction identifies the
techniques that are expected to perform better with regard to a specific measure.
This information is computed using prediction models (i.e., functions that map
a set of features to a ranking of techniques), which are built using the results of
discovery and conformance experiments. The top-k best-performing techniques
are then determined by a final ranking in which one or more ranking predictions
are taken into account. The selection of the top-k techniques from the final
ranking can be seen as a typical information retrieval problem.

4 Implementation

The implementation of the recommender system proposed in this paper is based
on a server-client architecture. The main function of the server is to generate
knowledge about the performance of techniques on different event logs. The
server includes also both the evaluation framework and the repository, which
support the training function of the recommender system. The training function
as well as the evaluation framework are implemented as a package in the CoBeFra

A Recommender System for Process Discovery 75

framework [15], while the repository is supported by a transactional database.
The main function of the client is based on the knowledge generated in the server,
and consists of predicting (recommending) the best-performing techniques for a
given event log. This function is implemented as a ProM plugin (available in
ProM 6).

As depicted in Figure 2, the evaluation framework relies on a collection of dis-
covery and conformance algorithms. The current portfolio consists of 9 discovery
techniques, which can be evaluated using 8 conformance checking algorithms. Ta-
ble 1 presents the initial collection of techniques of the recommender system. The
conformance checking algorithms are used to assess the quality of the results of
the techniques (i.e., the measures as defined in Section 3.3). Table 2 presents the
initial set of measures that can be assessed in the recommender system. Remark
that performance measures are generated in the discovery experiments, while all
the other measures are computed in conformance experiments.

Table 1. Portfolio of control-flow algo-
rithms. These algorithms are available
in the ProM 6 framework [16].

Technique Result

Alpha Miner Petri Net
Flexible Heuristics Miner Causal Net

Flower Miner Petri Net
Fuzzy Miner Fuzzy Model

Heuristics Miner Causal Net
Inductive Miner Petri Net

ILP Miner Petri Net
Passage Miner Petri Net

TS Miner Transition System

Table 2. Set of measures. The confor-
mance checking algorithms that support
these measures are available in CoBe-
Fra [15]

Category Measure

Performance Runtime
Used Memory

Simplicity Elements in the Model
Node Arc Degree
Cut Vertices

Fitness Token-Based Fitness
Negative Event Recall

Precision ETC Precision
Negative Event Precision

Generalization Neg. Event Generalization

As depicted in Figure 3, both training and recommending functions rely on
a set of feature extractors. A feature extractor consists of a relatively simple
function that can be used to compute specific features of event logs. An initial
collection of 12 extractors was implemented and integrated in the system. Ta-
ble 3 describes the set of features that can be computed using these extractors.
Remarkably, experiments presented in Section 5 suggest that, although simple,
these features are very effective in the characterization of event logs.

To enable flexibility and extensionality, any technique, measure, or feature
can be added to (or removed from) the system at any moment, even when
some experiment is being executed. The modification (addition or removal of
techniques, measures, or features) will have effect in the succeeding iteration of
the training.

76 J. Ribeiro et al.

4.1 Evaluation Framework

The evaluation framework is implemented as a package of the CoBeFra frame-
work and supported by a MySQL database management system (DBMS). The
different functionalities of the framework can be described as follows.

Table 3. The set of features. The causal matrix consists of the counting of direct
successors for each pair of events in the log.

Scope Feature Description

Trace Distinct Traces The number of distinct traces in the log.
Trace Total Traces The number of traces in the log.
Trace Trace Length The average length of all traces in the log.
Trace Repetitions Intra Trace The average number of event repetitions intra trace.
Event Distinct Events The number of distinct events in the log.
Event Total Events The number of events in the log.
Event Start Events The number of distinct start events in the log.
Event End Events The number of distinct end events in the log.
Flow Entropy The average of the proportion of direct successors and

predecessors counts between two events in the log.
Flow Concurrency Based on the dependency measures of [19], the

percentage of concurrent relations in the causal matrix.
Flow Density The percentage of non-zero values in the causal matrix.
Flow Length-One Loops The number of length-one loops in the causal matrix.

Management function: controls the repository as well as the collection of
discovery and conformance algorithms. The repository consists of a database
storing information about event logs, process models, and experiments. The
discovery and conformance algorithms consist of executables (e.g., ProM
plugins) that can be used for process discovery or conformance checking.

Execution function: executes a single evaluationby selecting randomlyanevent
log, a control-flow algorithm (i.e., a technique), and a conformance algorithm
from the repository and the collection of algorithms. An evaluation starts with
either executing a discovery experiment in order to mine a processmodel using
the selected discovery technique on the selected log or, if this discovery experi-
ment was executed in a previous evaluation, retrieving this processmodel from
the database. The execution of a discovery experiment consists of running the
selected control-flowalgorithmon the selected log inwhich a processmodel and
the performance measures (cf. Table 2) are computed. Both mined model and
measures are stored in the database.3 The evaluation then continues with the

3 Only Petri net models are stored in the repository. If the result of a discovery exper-
iment is not a Petri net then a conversion is necessary. For some model formalisms
such as Causal nets, this can be achieved by invoking some ProM plugins. For other
formalisms like Fuzzy models, no model will stored in the repository. This means that
only performance measures can be computed for these cases.

A Recommender System for Process Discovery 77

execution of the conformance experiment (if possible), which consists of run-
ning the selected conformance algorithm on the selected log and mined model.
As a result, a measure is computed and stored in the database.

4.2 Recommender System

Training. The system’s training function is implemented as a Java applica-
tion. Invoked by a trigger (e.g., every Friday), this application retrieves all the
information about the experiments by querying the database. Then, the set of
event logs referred in the query results is retrieved from the repository. For each
log in the set, it is extracted the set of features (cf. Table 3) that characterizes
the log. Next, the entries of the query results are grouped by measure. For each
measure and log, a list of experiments results is created, ordered by the result
value (e.g., the runtime).4 This list is then used to build a ranking of techniques.
A matrix containing the rankings of the measure is finally built. Each column of
the matrix represents a technique, while each row refers to the log from which
the ranking was computed. Next, the matrix completion of the ARS algorithm
[5] is applied on the matrix to predict eventual unknown values. The matrix as
well as the sets of features of the logs described in the matrix can then be used
to build a model for predicting the ranking of techniques from a set of features.

Recommending. The system’s recommending function is implemented as a
ProM plugin (cf. Figure 4). Invoked in the ProM framework, this plugin takes
an event log as input and produces a recommendation of the best-performing
discovery techniques for the given log. The recommendation is based on the
knowledge produced by the system’s training function. First, the given log is
characterized as a set of features. Then, using these features and for each mea-
sure, it is applied the prediction function of the ARS algorithm [5] on the matrices
generated in the training. As a result, a list of predicted rankings is returned,
where each entry represents the expected best-performing techniques for a spe-
cific measure. The recommendation is based on a final ranking combining all the
predicted rankings. The combined score of a technique t ∈ T is defined by

score(t) =
∑
m∈M

wm × rank(t,m),

where m ∈ M is a measure, wm is the weight ofm, and rank(t,m) is the position
of t in the predicted ranking of m. Giving a list of prediction rankings and the
weights of each measure, the top-k entries of the final ranking can be efficiently
computed by applying the BPA2 algorithm [1].

5 Experiments

A set of experiments was conducted in order to evaluate the recommender system
proposed in this paper. Using the implemented evaluation framework and recom-

4 For performance and simplicity measures, the list follows an ascending order. For the
other measures, the list follows a descending order. One-element lists are discarded
once that they do not hold enough comparative information.

78 J. Ribeiro et al.

Fig. 4. RS4PD: the client as a ProM plugin. Top-left panel shows the features computed
for the uploaded event log. Bottom-left panel allows the user to provide weights to each
one of measures. Right panel shows the recommendation.

mender system, we first executed a number of experiments over a set of event logs
in order to build the system’s prediction models. For these experiments, 130 event
logs (112 synthetic and 18 real life) were collected from several sources5 and up-
loaded into the repository. As described in Section 4, the portfolio consisted of 9
discovery techniques (cf. Table 1), which can be evaluated using 8 conformance
checking algorithms. These conformance algorithms were used to compute the
non-performancemeasures of Table 2. Remark that the performancemeasures are
computed during the execution of the discovery experiments. The set of feature
extractors used in the experiments is described in Table 3. The system’s evalua-
tion started with the continuous execution of experiments during one week. As a
result, 1129 discovery experiments were executed, from which 882 process models
were generated. In total, 5475 measures were computed.

Using the prediction models built from the experiments, we then used a set of
testing event logs in order to compare the accuracy of the system’s recommen-
dations. The testing dataset consists of 13 event logs from the 3TU repository6

and the testing dataset of [19]. From these logs, 4 are the real life logs used in
the Business Process Intelligence (BPI) workshop challenges of 2012 and 2013.
For each of the testing event logs, we executed all the possible discovery and
conformance experiments. Then, using the system’s recommending function, we
computed the top-9 best-performing techniques for each measure. The accuracy
of the recommendation is defined by the matching of the predicted technique
with the actual best-performing technique measured in the experiments.7 The

5 Several process mining groups were invited to share their event logs.
6 http://data.3tu.nl/repository/collection:event_logs
7 Remark that, unlike rank correlations such as Spearman’s or Kendall’s, this accuracy
measurement does not consider the worst-performing techniques in the rankings,
which are unlikely to be taken into account by the user.

http://data.3tu.nl/repository/collection:event_logs

A Recommender System for Process Discovery 79

accuracy is 1 if the predicted best-performing technique matches the measured
best-performing technique. The accuracy is 0 if the predicted best-performing
technique matches the measured worst-performing technique. An accuracy value
between 0 and 1 is defined by the min-max normalization of the measure value
of the predicted best-performing technique, where min and max are the val-
ues of the measured worst- and best-performing techniques. The results of the
assessment of the system’s accuracy are shown in the figures bellow.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fitness Generalization Performance Precision Simplicity

Real Life Synthetic

The figure on the right presents
the average accuracy of the prediction
of the best-performing technique for
each measure category, discriminated
by event log type. These results show
that the system’s accuracy varies from
0.67 (for precision measures on real
life logs) to 1.0 (for fitness measures).
Considering both all measures and all
event log types, the global system’s
accuracy is 0.854.

0

0.2

0.4

0.6

0.8

1

R1 R2 R3 R4 S1 S2 S3 S4 S5 S6 S7 S8 S9

(a) All measures.

0

0.2

0.4

0.6

0.8

1

R1 R2 R3 R4 S1 S2 S3 S4 S5 S6 S7 S8 S9

(b) Performance.

0

0.2

0.4

0.6

0.8

1

R1 R2 R3 R4 S1 S2 S3 S4 S5 S6 S7 S8 S9

(c) Fitness.

0

0.2

0.4

0.6

0.8

1

R1 R2 R3 R4 S1 S2 S3 S4 S5 S6 S7 S8 S9

(d) Precision.

0

0.2

0.4

0.6

0.8

1

R1 R2 R3 R4 S1 S2 S3 S4 S5 S6 S7 S8 S9

(e) Generalization.

0

0.2

0.4

0.6

0.8

1

R1 R2 R3 R4 S1 S2 S3 S4 S5 S6 S7 S8 S9

(f) Simplicity.

Fig. 5. Average accuracy of the system’s recommendation for each event log

Figure 5 presents the average accuracy of the system’s recommendation for
each event log. The average accuracy of the prediction of the best-performing
technique (i.e., the top-1 technique) is represented by the bars; these accuracy
values are discriminated by event log type (dark gray bars represent real life logs,
while synthetic logs are identified by the light gray bars). The average accuracy
of the prediction of the best-performing technique taking into account the top-3
techniques is represented by the lines. The accuracy values for these cases are
defined by the best matching between these three techniques and the actual
best-performing technique measured in the experiments (i.e., one of the top-3
techniques should be the actual best-performing technique). Figure 5a shows the

80 J. Ribeiro et al.

global system’s accuracy, while the remaining figures show the system’s accuracy
for each measure category. These results show that for some logs the recommen-
dation of a specific measure may not be accurate (e.g., precision measures on
logs R1 and S9). Nevertheless, the global system’s accuracy varies from 0.612
and 1.0. Taking into account the top-3 techniques instead of the top-1, the lower
bound of this accuracy interval increases to 0.898. Considering both all mea-
sures and all logs, the global system’s accuracy considering the top-3 techniques
is 0.963.

The results of this evaluation study show that RS4PD can effectively be used to
recommend discovery techniques. The results suggest that the system is highly
accurate for most of the event logs. However, there are cases for which the system
does not perform so well. This situation can be explained either (i) by the fact
the logs are not effectively characterized by the current set of features or (ii) by
the lack of experiments on logs characterized by specific features. Eventually, this
can be solved by adding other feature extractors to the system. Also, increasing
the number of event logs in the system’s repository should enhance the quality
of the prediction models and, thus, the system’s accuracy.

6 Parameters Setting

The selection of parameters for discovery algorithms is considered one of the
most challenging issues of this work. The current implementation of the RS4PD

simply takes into account the default parameters of discovery algorithms when
running the experiments (if there are some). However, it is acknowledged that
this is a limitation of the recommender system and some approaches were al-
ready considered for improving the current work. One simple approach is the
instantiation of different versions of the same technique with different values for
its parameters, and consider each version as a different algorithm in the recom-
mender system. One of the challenges of this approach is (still) the selection of
a good set of instantiations that effectively covers the parameter space. Also,
considering multiple instances imply a higher number of experiments to support
the recommender system. Another approach is the parameter optimization in
which parameter space is searched in order to find the best parameters setting
with respect to a specific quality measure. The main challenge of this approach is
to select a robust strategy to search the parameter space. Traditional strategies
such as genetic algorithms have proven to be effective in optimization problems,
but they are usually computationally costly. A third approach, which may also
be used to facilitate the parameter optimization, is known as sensibility analysis
and consists of assessing the influence of the inputs of a mathematical model
(or system) on the model’s output. This information may help on understanding
the relationship between the inputs and the output of the model, or identifying
redundant inputs in specific contexts. Sensibility methods range from variance-
based methods to screening techniques. One of the advantages of screening is
that it requires a relatively low number of evaluations when compared to other
approaches.

A Recommender System for Process Discovery 81

Screening experiments based on the Elementary Effect (EE) method [6,3]
can be applied to identify non-influential parameters of control-flow algorithms,
which usually are computationally costly for estimating other sensitivity analysis
measures (e.g., variance-based measures). Rather than quantifying the exact
importance of parameters, the EE method provides insight into the contribution
of parameters to the results quality.

One of the most efficient EE methods is based on Sobol’s quasi-random num-
bers [11] and a radial OAT strategy [3].8 The main idea is to analyze the pa-
rameter space by performing experiments and assessing the impact of changing
parameters with respect to the results quality. A Sobol’s quasi-random generator
is used to determine a uniformly distributed set of points in the parameter space.
Radial OAT experiments [3] are executed over the generated points to measure
the impact of the parameters. This information can be used either (i) to guide
the users of the RS4PD on the parameters setup by prioritizing the parameters to
be tunned, or (ii) as a first step towards parameter optimization in the RS4PD.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Fi
tn

es
s

Pr
ec

is
io

n

G
en

er
al

iz
at

io
n

Si
m

pl
ic

ity

Fi
tn

es
s

Pr
ec

is
io

n

G
en

er
al

iz
at

io
n

Si
m

pl
ic

ity

Synthetic Real Life

Others

P3

P2

P1

The figure on the right presents the
results of a preliminary study about the
impact of the parameters of the FHM.
Using the testing dataset described in
Section 5, several radial OAT experi-
ments were executed to measure the im-
pact of the FHM’s parameters on the
four quality measures. The results sug-
gest that, although the FHM has seven
parameters, it mainly relies on three pa-
rameters: dependency threshold (P1), relative-to-best threshold (P2), and all
tasks-connected heuristic (P3). For more structured logs (the synthetic logs),
the quality of the process model depends mainly on P1 and P2. For less struc-
tured logs (i.e., real-life), other parameters may be needed for improving the
quality of the process model.

7 Conclusions and Future Work

This paper describes a recommender system for process discovery using portfolio-
based algorithm selection techniques. To the best of our knowledge, it is the first
attempt to incorporate machine learning and information retrieval techniques for
recommending process discovery algorithms. Also, the approach is very general
and allows for the easy incorporation of new techniques, measurements and log
features. Due to its continuous learning principle that makes the system to be
decoupled in a server-client architecture, the initial promising results obtained
are expected to be even better when a larger training set will be available.

As future work, besides the ideas presented in Section 6, several lines will be
pursued. First, research is required to improve and extend the current log fea-
tures. Second, the incorporation of other discovery and conformance techniques

8 OAT stands for One (factor) At a Time.

82 J. Ribeiro et al.

will be considered. Third, the encapsulation of the presented recommender sys-
tem as a pure discovery plugin will be considered, to deliver the user of navigating
through the results and thus simplifying the discovery task. Fourth, the incorpo-
ration of user-feedback into the training loop will be considered (e.g., usefulness
of results or user goals), to improve the usage of the provided recommendations.
This feedback may also be used to qualitatively assess the recommender system.

References

1. Akbarinia, R., Pacitti, E., Valduriez, P.: Best Position Algorithms for Top-k
Queries. In: Proceedings of the 33rd International Conference on Very Large Data
Bases, VLDB 2007, pp. 495–506 (2007)

2. Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender Systems
Survey. Knowledge-Based Systems 46, 109–132 (2013)

3. Campolongo, F., Saltelli, A., Cariboni, J.: From Screening to Quantitative Sensi-
tivity Analysis. A Unified Approach. Computer Physics Communications 182(4),
978–988 (2011)

4. Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algorithms for Middleware.
In: Proceedings of the Twentieth Symposium on Principles of Database Systems,
PODS 2001, pp. 102–113. ACM, New York (2001)

5. Mısır, M., Sebag, M.: Algorithm Selection as a Collaborative Filtering Problem.
Technical report, INRIA (2013)

6. Morris, M.D.: Factorial Sampling Plans for Preliminary Computational Experi-
ments. Technometrics 33(2), 161–174 (1991)

7. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using Case-
Based Reasoning in an Algorithm Portfolio for Constraint Solving. In: Irish Con-
ference on Artificial Intelligence and Cognitive Science (2008)

8. Rice, J.R.: The Algorithm Selection Problem. Adv. in Computers 15, 65–118 (1976)
9. Rozinat, A., de Medeiros, A.K.A., Günther, C.W., Weijters, A.J.M.M., van der

Aalst, W.M.P.: Towards an Evaluation Framework for Process Mining Algorithms.
Technical Report 224, Eindhoven University of Technology (2006)

10. Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Processes Based on
Monitoring Real Behavior. Information Systems 33(1), 64–95 (2008)

11. Sobol, I.M.: Uniformly Distributed Sequences With an Additional Uniform Prop-
erty. USSR Computational Mathematics and Mathematical Physics 16(5), 236–242
(1976)

12. Su, X., Khoshgoftaar, T.M.: A Survey of Collaborative Filtering Techniques. Ad-
vances in Artificial Intelligence (2009)

13. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, Berlin (2011)

14. van den Broucke, S., Delvaux, C., Freitas, J., Rogova, T., Vanthienen, J., Baesens,
B.: Uncovering the Relationship between Event Log Characteristics and Process
Discovery Techniques. In: Proceedings of the 9th Workshop on Business Process
Intelligence, BPI 2013 (2013)

15. van den Broucke, S., Weerdt, J.D., Baesens, B., Vanthienen, J.: A Comprehensive
Benchmarking Framework (CoBeFra) for conformance analysis between procedural
process models and event logs in ProM. In: IEEE Symposium on Computational
Intelligence and Data Mining, Grand Copthorne Hotel, Singapore. IEEE (2013)

16. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.:
ProM 6: The Process Mining Toolkit. In: Demo at the 8th International Conference
on Business Process Management. CEUR-WS, vol. 615, pp. 34–39 (2010)

A Recommender System for Process Discovery 83

17. Wang, J., Wong, R.K., Ding, J., Guo, Q., Wen, L.: On Recommendation of Process
Mining Algorithms. In: 2012 IEEE 19th International Conference on Web Services
(ICWS), pp. 311–318 (2012)

18. Weber, P., Bordbar, B., Tino, P., Majeed, B.: A Framework for Comparing Process
Mining Algorithms. In: IEEE GCC Conference and Exhibition, pp. 625–628 (2011)

19. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible Heuristics Miner (FHM). In: Pro-
ceedings of the IEEE Symposium on Computational Intelligence and Data Mining,
CIDM 2011, Paris, France. IEEE (2011)

20. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-Based Al-
gorithm Selection for SAT. J. of Artif. Intelligence Research 32(1), 565–606 (2008)

Listen to Me: Improving Process Model

Matching through User Feedback

Christopher Klinkmüller1, Henrik Leopold2, Ingo Weber3,4,
Jan Mendling2, and André Ludwig1

1 Information Systems Institute, University of Leipzig, Leipzig, Germany�

{klinkmueller,ludwig}@wifa.uni-leipzig.de
2 Wirtschaftsuniversität Wien, Augasse 2-6, A-1090 Vienna, Austria

{henrik.leopold,jan.mendling}@wu.ac.at
3 Software Systems Research Group, NICTA, Sydney, Australia��

ingo.weber@nicta.com.au
4 School of Computer Science & Engineering,
University of New South Wales, Australia

Abstract. Many use cases in business process management rely on the
identification of correspondences between process models. However, the
sparse information in process models makes matching a fundamentally
hard problem. Consequently, existing approaches yield a matching qual-
ity which is too low to be useful in practice. Therefore, we investigate
incorporating user feedback to improve matching quality. To this end,
we examine which information is suitable for feedback analysis. On this
basis, we design an approach that performs matching in an iterative,
mixed-initiative approach: we determine correspondences between two
models automatically, let the user correct them, and analyze this input
to adapt the matching algorithm. Then, we continue with matching the
next two models, and so forth. This approach improves the matching
quality, as showcased by a comparative evaluation. From this study, we
also derive strategies on how to maximize the quality while limiting the
additional effort required from the user.

Keywords: BPM, process similarity, process model matching.

1 Introduction

More and more organizations use process models as a tool for managing their
operations. Typical use cases for process models range from process documen-
tation to enactment through a workflow system. Once a repository of process
models reaches a certain size, there are several important use cases which re-
quire the comparison of process models. Examples include validating a technical

� The work presented in this paper was partly funded by the German Federal Min-
istry of Education and Research under the projects LSEM (BMBF 03IPT504X) and
LogiLeit (BMBF 03IPT504A).

�� NICTA is funded by the Australian Government through the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence
Program.

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 84–100, 2014.
c© Springer International Publishing Switzerland 2014

Listen to Me: Improving Process Model Matching through User Feedback 85

implementation of a business process against a business-centered specification
[2], process model search [6,13,10], or identifying clones in process models [7].

The demand for techniques that are capable of comparing process models has
led to the development of a variety of process model matchers. These match-
ers, e.g. [24,14,11], are usually designed for universal applicability. That is, they
are based on common matching metrics used to assess pairs of activities and
define classification rules which are believed to provide meaningful indications
of similarity for activities in any pair of process models. However, the insuffi-
cient accuracy of these approaches [3] suggests that the assumption of universal
applicability is too strict, and might hinder effective application in practice.

For this reason, we seize the idea of an adaptive matcher. A related idea
was discussed in [23] where characteristics of a certain process model collec-
tion are analyzed to select well-suited matchers for the collection. In contrast
to this approach, we devise an iterative, mixed-initiative approach that utilizes
user feedback to constantly adapt the matching algorithm. It works by presenting
automatically determined correspondences between two models to the user, and
asking her to add missing and remove incorrect ones. The matching algorithm
is then adjusted by analyzing the feedback and the next model pair is matched.

The contributions of this paper are threefold. First, we investigate which in-
formation in process models can reliably be used for feedback analysis. For this
purpose, we derive indicators from the literature which provide information on
whether activities correspond or not and assess their correlation to the classes
of corresponding and non-corresponding activity pairs. The results also offer in-
sights into the challenges that process model matching faces. Second, based on
this analysis we introduce an approach that integrates user feedback to improve
the matching quality. Third, we perform a comparative evaluation and, based
on the results, derive strategies to minimize the user workload while maximizing
the quality improvements.

The rest of the paper is organized as follows. Section 2 defines process model
matching and introduces the state of the art. Section 3 provides an overview of
correspondence indicators derived from related research and investigates their
potential for user feedback analysis. Based on this survey, Section 4 defines our
approach that incorporates feedback. Section 5 evaluates the approach using
simulated feedback from gold standards. Finally, Section 6 concludes the paper.

2 Foundations: Problem Illustration and Related Work

This section introduces the problem of process model matching in Section 2.1
and reviews the state of the art in Section 2.2.

2.1 Problem Illustration

In accordance with ontology matching [8], process model matching is the pro-
cess of identifying an alignment between two process models. In this paper, a
process model is regarded as a business process graph as defined in [4]: a process

86 C. Klinkmüller et al.

model consists of labeled nodes of different types and directed edges connecting
them. While the edges define the control flow of the process, the nodes express
activities, gateways, etc. This abstract notion of process models permits the ap-
plication of our work to different notations like Petri nets, Event-driven Process
Chains (EPCs) or Business Process Model and Notation (BPMN).

Definition 1 (Process model, Set of activities). Let L be a set of labels
and T be a set of types. A process model p is a tuple (N,E, λ, τ), in which:

– N is the set of nodes;
– E ⊆ N ×N is the set of edges;
– λ : N → L is a function that maps nodes to labels; and
– τ : N → T is a function that assigns types to nodes.

For a given process model p = (N,E, λ, τ) the set A = {a|a ∈ N ∧ τ(a) =
activity} is called the set of activities, where we require ∀a ∈ A, n ∈ N :
|{n|(a, n) ∈ E)}| ≤ 1 and |{n|(n, a) ∈ E)}| ≤ 1. Furthermore, we require that
there only exists one start (∃n ∈ N, ∀ni ∈ N : (ni, n) /∈ E) and one end node
(∃n ∈ N, ∀ni ∈ N : (n, ni) /∈ E).

Given two process models p1, p2 and their activity sets A1, A2, an alignment
is a set of correspondences, i.e. activity pairs (a1, a2) with a1 ∈ A1 and a2 ∈ A2

that represent similar functionality. Correspondences between sets of activities
(A∗1, A

∗
2) with A∗1 ⊆ A1 and A∗2 ⊆ A2 are expressed as sets of correspondences

between all activity pairs in A∗1, A∗2: {(a∗1, a∗2)|(a∗1 ∈ A∗1 ∧ a∗2 ∈ A∗2)}.
Fig. 1 shows an alignment between two university admission process models

which will be used as a running example throughout the paper. Both processes
represent the scenario of receiving, evaluating, and deciding about an applica-
tion. Hence, activities from one process related to one of these tasks are matched
with activities dealing with the same task in the other process. While α2 and β2

constitute a one-to-one correspondence, β6 is not matched. Moreover, there are
two complex correspondences: a one-to-many correspondence formed by α1, β1

and β2 and a many-to-many correspondence comprised of α3, α4, α5, β4 and β5.
Applying a matcher to automatically determine alignments will only be useful

if it is of high quality, i.e. if it meets the user’s expectations. This will be the

Process A

Check
Application

Documents
Complete?

Documents
in Time?

Is Student
Qualified?

Reject
Student

Accept
Student

Archive
Documents

Evaluate
Application

Prepare
notification

Publish
notification

Register
applicant

Process B

α1 α2 α3

α4

α5

β1

β2

β3

β4

β5

β6

Fig. 1. An example for a process model alignment

Listen to Me: Improving Process Model Matching through User Feedback 87

case when the number of correctly identified correspondences (true positives) is
high. Consequently, as few correspondences as possible should be missed (false
negatives), while the results of a good matcher also contain few erroneous cor-
respondences (false positives).

2.2 Related Work

The foundations for research in process model matching can be found in various
works on schema and ontology matching [1,8] as well as in research on process
model similarity. Such process similarity techniques exploit different sources of
information such as text [5,12], model structure [9,4], or execution semantics
[13,26]. An overview is provided in [5].

Approaches for process model matching typically derive attributes of activity
pairs from these techniques and aggregate these attributes in a predefined static
classifier in different ways (see e.g. [24,14,11]). In [23], the idea of a more dy-
namic assembly of matchers is discussed. Therefore, matchers are allocated to
properties of process model pairs. By evaluating these properties within a model
collection, appropriate matchers are selected and composed.

However, up until now there is no automated technique for process match-
ing available that achieves results comparable to those in the field of ontology
matching. In fact, a comparison of techniques developed by different researchers
revealed that the best matcher achieved an f-measure of 0.45 on the test data
sets [3]. This calls for improving precision and recall of existing techniques. To
this end, we investigate suitable matching indicators and user feedback.

3 Information for User Feedback Analysis

The goal of analyzing user feedback is to find models that can predict user deci-
sions with high success. Therefore, indicators whose values are highly correlated
to the decisions, i.e., whether activity pairs correspond or not, are needed [19].
For example, label similarity is seen as a good indicator: activity pairs with a
high similarity tend to correspond; pairs with a low similarity tend to not corre-
spond. As various information sources, e.g. structure and execution semantics,
can be considered, we systematically identify suitable indicators in a two-step
approach: we first present indicators from the literature and own prior work
(Section 3.1) and investigate their potential for feedback analysis (Section 3.2).

3.1 Indicator Definitions

Matching approaches rely on various characteristics of activities to judge whether
they correspond. From analyzing related work, especially the approaches evalu-
ated in the matching contest 2013 [3], we identified five categories: position and
neighborhood based on the model structure, label specificity and label semantics
referring to the labels, and execution semantics. Thereby, some approaches rely
on a certain modeling notation or do not explicitly define the characteristics.

88 C. Klinkmüller et al.

In order to be able to assess if these characteristics can be used for feedback
analysis, we present indicators adapted to our process model definition.

To this end, we define indicators as similarity functions from the set of activity
pairs (A1, A2) to the interval [0, 1] : a value of 0 indicates total dissimilarity, a
value of 1 identity, and values in between a degree of similarity. Most of the
presented indicators utilize an attribute function at : A → R≥0, which returns
a value measured with regard to a certain activity property. Those indicators
are referred to as attribute indicators. Given an activity pair, they indicate the
similarity of these activities with regard to a certain attribute.

Definition 2 (Attribute indicator). Let A1, A2 be two sets of activities and
a1 ∈ A1, a2 ∈ A2 be two activities. The attribute indicator iat is then defined as:

iat(a1, a2) =

⎧⎨
⎩

0 max
a∈A1

(at(a)) = 0 ∨ max
a∈A2

(at(a)) = 0

1− | at(a1)
max
a∈A1

(at(a)) − at(a2)
max
a∈A2

(at(a)) | else

In the following, we describe various attributes with regard to the general
attribute indicator and define other indicators for each of the five categories.

Position. Process models might represent the same abstract process. In such
cases, it is more likely for activities at similar positions to correspond than for
activities whose positions differ. This idea is pursued in the Triple-S approach,
which takes the relative position of nodes in the process models as a similarity
indicator [3]. According to our definition, each process model has one start and
one end node. Thus, we view these nodes as anchors and consider the distances
to these nodes, i.e. the smallest number of activities on paths from a node to the
start or end node, as attributes to define the attribute indicators σstartpos , σendpos .

The position of an activity can also be defined with reference to the Refined
Process Structure Tree (RPST) [23,24]. The RPST is a hierarchical representa-
tion of a process model consisting of single-entry-single-exit fragments [20]. Each
RPST fragment belongs to one of four structured classes: trivial fragments (T)
consist of two nodes connected with a single edge; a Bond (B) represents a set of
fragments sharing two common nodes; polygons (P) capture sequences of other
fragments; in case a fragment cannot be classified as trivial, bond, or polygon,
it is categorized as a rigid (R). Fig. 2 presents the RPST of the Process A.

The idea is to view the depth of the non-trivial fragments that contain the
activity as an attribute for the position of the model structure (σrpstpos), i.e., the
deeper an activity is located in the RPST the more decision points need to be

P1

P2 B1

P4P3Check
Application

Evaluate
Application

Prepare
notification

Publish
notification

Register
applicant

P4P1

α1 α2 α3

α4

α5
P2 P3

T1 T2 T3 T4 T5

T7

T6

T8

T9 T1 T2 T3 T4

T5 T7T6 T8

T9

B1

Fig. 2. The fragments of the admission process of university A and the RPST

Listen to Me: Improving Process Model Matching through User Feedback 89

Table 1. Attribute indicators for an activity pair from the running example

α1 max
a∈AA

β1 max
a∈AB

(α1, β1) α1 max
a∈AA

β1 max
a∈AB

(α1, β1)

σstart
pos 0 3 0 3 1.00 σ|label| 2 2 2 3 0.67

σend
pos 3 3 3 3 1.00 σ� 4 4 4 4 1.00

σrpst
pos 2 3 3 3 0.67 σ+ 0 0 0 1 0.00

σmodel
neigh 1 3 2 4 0.83 σ‖ 0 1 1 1 0.00

σrpst
neigh 2 2 0 0 0.00

passed to get to the activity. Activities have at most one incoming and at most
one outgoing edge. Thus, they cannot be an entry or exit node of a non-trivial
fragment and the trivial fragments they belong to have the same depth.

Table 1 illustrates the position indicators for (α1, β1) from the running ex-
ample. Both activities have a distance to the start event of 0. As the structure
of both processes is similar they also have the same distance to the end node.
Thus, both attribute indicators are 1. As activity β1 is located in a parallel block
and α1 is not, their RPST positions differ leading to an indicator value of 0.67.

Neighborhood. Whereas the position attributes consider the global location
of activities in a model, we next consider the local structure. In this regard, the
Triple-S approach [3] considers the ratios of incoming and outgoing edges. As
our definition requires activities to have at most one incoming and at most one
outgoing edge, these ratios would not provide much information. Instead, we
define the structural neighborhood indicator (σmodelneigh) based on the undirected
version of the process model. We count the activities that are connected to an
activity by at least one sequence of distinct edges not containing any activities.

We also consider the RPST for comparing the local structure of activities and
define the RPST neighborhood indicator (σrpstneigh). Therefore, we determine the
trivial fragments an activity is part of and count their sibling fragments.

Table 1 also shows examples for the neighborhood indicators. α1 has one
structural neighbor (α2) and in Process A, α3 has the most neighbors (α2, α4,
α5). Similarly, β1 has two neighbors (β2, β3) and the maximum is four neighbors
for β3 (β1, β2, β4, β5). Thus, the structural neighborhood of both activities is
similar (0.83). The RPST neighborhood indicator is 0, because for each activity
in Process B there are two trivial fragments forming a polygon. As each of these
polygons does not comprise any further fragments, all activities in Process B
have an RPST neighborhood size of 0.

Label Specificity. According to an analysis of matching challenges in [11], label
specificity (i.e., one label containing more detailed information than another)
had a big impact on the correct identification of correspondences. Thus, we
assume activities with a similar specificity to correspond more likely than those
with different specificities. An attribute indicator in this regard is defined upon
the label length (σ|label|), i.e., the more words a label contains, the more specific
information it provides. It is considered for matcher selection in [23] and for label
pruning in [11]. The label length is defined as the number of individual words

90 C. Klinkmüller et al.

in a label without common stop words like “the”, “if”, and “to”. The individual
words of an activity label are returned by the function Ω : L → P(W). Table 1
shows that |Ω(α1)| = |Ω(β1)| = 2. Moreover, the maximum label length in
Process A is 2. In Process B β3 (“Is student qualified”) has the longest label of
length 3 whereas β2 (“Documents in Time?”) consists of two individual words,
because “in” is a stop word. Thus, the label length indicator is 0.67.

We further assume frequently occurring words to be more specific than less
frequently occurring words. This idea is also pursued for label pruning in [11].
Thus, we rely on the term frequency which is well known in information retrieval.
It is defined as the number of occurrences of a certain word in a document. On
the one hand, we take the union of all activity labels in the model collection as
a document and define the function tfcoll : W → [0, 1] to return the number of
a word’s occurrences in the model collection divided by the maximum number
determined for a word in the collection. On the other hand, we define tf2p :
W → [0, 1] by using all activity labels in the examined model pair to create the
document. Based thereon, we define the term frequency indicators σcolltf and σ2p

tf .

Definition 3 (Term frequency indicators). Let a1, a2 be two activities.
Then, the term frequency indicators σcolltf and σ2p

tf are defined as:

σcolltf (a1, a2) = 1− | 1
|Ω(a1)| ∗

∑
ω∈Ω(a1)

tfcoll(ω)− 1
|Ω(a2)| ∗

∑
ω∈Ω(a2)

tfcoll(ω)|

σ2p
tf (a1, a2) = 1− | 1

|Ω(a1)| ∗
∑

ω∈Ω(a1)

tf2p(ω)− 1
|Ω(a2)| ∗

∑
ω∈Ω(a2)

tf2p(ω)|

Table 2 illustrates the model pair based indicator. “Documents” occurs most
often in the pair. Thus, the term frequencies are yielded by dividing the occur-
rence values with 3. As the average term frequency of α1 (“Check Application”)
is 0.50 and for β2 (“Documents Complete?”) it is 0.67, the indicator yields 0.83.

Label Semantics. Every matching approach relies on the calculation of label
similarities as an indicator to which degree activities constitute the same func-
tionality. Prior research has shown that the basic bag-of-words similarity [11]
yields good results [3]. It calculates a symmetric similarity score σ.ω : W2 →
[0..1] for each pair of individual words (ω1, ω2) with ω1 ∈ Ω(a1) and ω2 ∈ Ω(a2).
Based thereon, it is then defined as the mean of the maximum similarity score
each individual word has with any of the individual words from the other label.

Definition 4 (Basic bag-of-words similarity). Let a1, a2 be two activities.
The basic bag-of-word similarity σ.λ is then defined as:

σ.λ(a1, a2) =

∑

ω1∈Ω(a1)

max
ω2∈Ω(a2)

(σ.ω(ω1,ω2))+
∑

ω2∈Ω(a2)

max
ω1∈Ω(a1)

(σ.ω(ω1,ω2))

|Ω(a1)|+|Ω(a2)|

Table 3 illustrates the computation of the basic bag-of-words similarity for
α1 (“Check Application”) and β2 (“Documents complete?”). To compute the
similarity of a pair of words, we relied on the maximum of the Levenshtein
similarity [15] and the Lin similarity [16]. This measure sees high values in both,
syntax (Levenshtein) and semantics (Lin), as evidence for similarity.

Listen to Me: Improving Process Model Matching through User Feedback 91

Table 2. Word occurrences and term frequencies in the admission processes

check application documents complete
occurrences 1 2 3 1
term frequency 0.33 0.67 1.00 0.33

Table 3. Example for the basic bag-of-words similarity

documents complete max
check 0.78 0.25 0.78
application 0.11 0.18 0.18
max 0.78 0.25 σ.λ = 0.50

Behavior. Lastly, there are approaches that account for the behavioral context
of activities within a process model. Such behavioral attributes are proposed
as indicators for matcher selection [23], considered for probabilistic match opti-
mization [14] and also implemented in the ICoP framework [21]. The idea is that
corresponding activity pairs show similar characteristics during process execu-
tion, whereas non-corresponding pairs do not. Therefore, we rely on the notion
of behavioral profiles [22] which comprise three relations between activities in
a process model defined upon the set of all possible execution sequences. Two
activities are in strict order (a1 � a2) if a2 is executed after a1 in all execution
sequences. They are exclusive (a1 + a2) if no sequence contains both activities.
Lastly, they are interleaving (a1 ‖ a2) if there are sequences in which a1 occurs
before a2 and there are sequences in which a2 occurs before a1. For each type
of relation, we count the number of relations the given activity participates in.
Based on these counts, we define the attribute indicators σ�, σ+ and σ‖ which
are illustrated in Table 1, too. While α1 and β1 have an identical number of
strict order relations (their execution can be followed by the execution of up
to four activities), they do not share similar characteristics with regard to the
other behavioral attributes. On the one hand, there are no exclusive activities in
Process A at all. Thus, the maximum in Process A and the according attribute
indicator yield a value of 0. On the other hand, there is one interleaving relation
in each process (α4 ‖ α5 and β1 ‖ β2). As β1 is part of one of these relations and
α1 not, the according indicator is 0.

3.2 Applicability Assessment

We now use these indicators to analyze whether the information sources are
suitable to derive models that can predict a user’s decisions. Thus, we examine
whether there is a correlation between an indicator’s values and the classes.

As the suitability of an indicator cannot be predicted in general, it must be
estimated with regard to particular data sets (i.e., process collections) for which
the set of correspondences is known (i.e., a gold standard of correspondences
exists). To this end, we used the two process collections and respective gold
standards from the matching contest in 2013 [3]: processes on birth certificates
and university admission. More precisely, we took the set of all corresponding and

92 C. Klinkmüller et al.

Table 4. p-values of the Kolmogorov–Smirnov test for the birth certificate (gray rows)
and the university admission (white rows) data sets

σstart
pos σend

pos σrpst
pos σmodel

neigh σrpst
neigh σ|label| σcoll

tf σ2p
tf σ.λ σ� σ+ σ‖

0.001 0.010 0.967 0.054 0.010 0.581 0.000 0.111 0.000 0.000 0.111 0.211
0.000 0.367 0.155 0.286 0.468 0.210 0.016 0.699 0.000 0.001 0.864 0.393

the set of all non-corresponding activity pairs for both data sets as representative
samples for both classes. At this point, it should be noted that some of the process
models in the university admission data set are not sound, which is a necessary
prerequisite for computing the behavior attributes. Thus, we only considered the
sound university admission models for these attributes.

To assess the correlation of classes and indicator values, we first examined the
distributions of indicator values within both classes. The rationale is that classes
can only be assigned to value ranges if the values are distributed differently
across the classes. Therefore, we randomly drew 100 activity pairs from each
class per attribute. The reason is that the number of non-corresponding activity
pairs is roughly 30 times as high as the number of corresponding pairs in both
data sets, which would distort our analysis. Next, we conducted a two-sided
Kolmogorov-Smirnov [17] test at a significance level of 0.01 with these samples.
The neutral hypothesis of this test is that the examined distributions are equal
and will be rejected if the yielded p-value is lower than the significance level.
Table 4 summarizes the p-values yielded for each attribute. Bold values highlight
p-values that are below the significance level.

As can be seen from the table, there are only three attributes (σstartpos , σ.λ, and
σ�) for which the null hypothesis is rejected in both cases. From this analysis,
these three attributes seem suitable for classification, but we will also consider
σcolltf as its p-values only marginally infringe the test conditions.

We further substantiated our analysis by investigating how well each class
can be assigned to a value range of an indicator. Therefore, we measured the
information gain [19], a well established measure from statistics, as an indicator
for the entropy of class assignments within subsets of activity pairs with regard
to all pairs. More precisely, we calculated the values of all activity pairs for each
of the four attributes (σstartpos , σ.λ, σcolltf , σ�). We then determined two subsets of
pairs with regard to one of the attributes and to a threshold. For all pairs in the
first subset the attribute value is smaller than the threshold, whereas the values
of pairs in the second subset are larger. We considered all possible separations of
activity pairs that satisfied this rule and chose the separation with the highest
information gain for each attribute. The rationale is that the respective subsets
constitute the best separation of corresponding and non-corresponding pairs with

Table 5. Information gains for the selected attributes for the birth certificate (gray
rows) and the university admission (white rows).

σ.λ σcoll
tf σ� σstart

pos

0.056 0.023 0.016 0.005
0.027 0.010 0.007 0.002

Listen to Me: Improving Process Model Matching through User Feedback 93

σ.λ σcolltf σstartpos

Fig. 3. Box plots for corresponding (c) and non-corresponding (n) activity pairs rep-
resenting three indicators for the birth certificate (upper row) and the university ad-
mission (lower row) data sets.

regard to the considered attribute. As can be seen from Table 5, σ.λ yields the
highest and σstartpos the lowest information gain, σcolltf and σ� are in between. To
convey a better intuition for this measure, Fig. 3 shows the distribution of the
relative value frequencies for σ.λ and σstartpos as well as for σcolltf as a representative
for the indicators with medium information gains.

According to these box plots a threshold at about 0.4 would yield a good
classifier for σ.λ as many corresponding and only a few non-corresponding activ-
ity pairs have values larger than this threshold. For the other indicators, whose
distributions differ only slightly, there is no threshold which would classify that
well. Thus, we only consider label similarity in terms of σ.λ for user feedback
analysis and introduce a mixed-initiative approach which aims at increasing the
applicability of σ.λ for separating activity pairs in the next section.

4 Word Similarity Adaptation

The incorporation of user feedback opens the opportunity to analyze the user’s
decisions and adjust the matching process accordingly. Here, we rely on correc-
tions made by the user to proposed alignments. Therefore, we let the user select
a pair of process models and automatically determine an alignment. Presenting
it to the user, she is asked to remove incorrect and add missing correspondences.
These corrections are passed to the algorithm which examines the feedback and
adapts its classification mechanism. Afterwards, the next matching process can
be started by the user. Fig. 4 illustrates this basic approach.

As outlined in Section 3, we only consider the basic bag-of-words similarity
σ.λ for correspondence identification. Given a predefined threshold we classify
all activity pairs with a basic bag-of-words similarity score higher than or equal
to the threshold as correspondences.

Although our analysis shows this indicator to have the most desirable pro-
perties, there will still be false positives and false negatives leading to an unsat-
isfactory matching quality [3]. Hence, it is the goal of the feedback analysis to
understand why mistakes were done and how they could have been avoided.

With regard to the matching process, a false positive was suggested because
the similarity of the activity pair was estimated too high, i.e., it should have
been lower than the threshold. In case of a false negative, it is the other way

94 C. Klinkmüller et al.

Select
Model Pair

Determine
Alignment

Correct
Alignment

Analyze
User Feedback

U
se

r
A

lg
or

ith
m

Fig. 4. Basic mixed-initiative approach to learning

around, i.e., the similarity should have been higher than the threshold. The
main reasons for such wrong assessments do not directly originate in the ba-
sic bag-of-words similarity, but in the underlying word similarity measure σ.ω.
Those measures are either syntactic, not considering word meaning, or semantic
being based on external sources of knowledge like lexical databases or corpora
[18]. As the creation of such databases or corpora incurs huge manual effort,
matchers usually rely on universal ones. In both cases, i.e. syntactic matching or
semantic matching using universal corpora, the word similarity measures do not
sufficiently account for domain-specific information, e.g., technical vocabulary
or abbreviations, and thus introduce errors.

Consequently, when the user feedback indicates a misclassification of an activ-
ity pair, our learning approach checks which pairs of words contributed to that
misclassification. According to the definition of the basic bag-of-words similar-
ity, a word pair contributes to an activity pair classification each time it yields
the highest similarity score for one word in the respective activity labels. There-
fore, in order to adjust the word similarities to the domain characteristics of
the considered process model collection, we decrease the similarity of a pair of
words whenever it contributed to a false positive, and increase the similarity for
a false negative. We do so by defining two counting functions: γfp : (ω1, ω2) → N

returns the number of counted false positive contributions for a word pair, and
γfn : (ω1, ω2) → N analogously for false negative contributions. Based on these
counters, we introduce a word similarity correction term.

Definition 5 (Word similarity correction). Let ω1, ω2 be two words. Fur-
thermore, let ρfp, ρfn ∈ R be two predefined learning rates. The correction func-
tion δ : W2 → R is then defined as:

δ(ω1, ω2) := ρfp × γfp(ω1, ω2) + ρfn × γfn(ω1, ω2)

Note that the counts are multiplied with learning rates; together with the
threshold these are the control parameters of the approach.

Given this correction term and an ordinary word similarity measure σ.ωo, we
introduce the adaptive word similarity σ.ωα.

Definition 6 (Adaptive word similarity). Let ω1, ω2 be two words. Further-
more, let δ : W2 → R be a function that returns a correction value for a word
pair. The adapting word similarity function σ.ωα : W2 → [0..1] is then defined as:

σ.ωα(ω1, ω2) :=

⎧⎨
⎩

1 σ.ωo(ω1, ω2) + δ(ω1, ω2) > 1
0 σ.ωo(ω1, ω2) + δ(ω1, ω2) < 0
σ.ωo(ω1, ω2) + δ(ω1, ω2) else

Listen to Me: Improving Process Model Matching through User Feedback 95

Since σ.ωo(ω1, ω2) + δ(ω1, ω2) might return a value outside the interval [0, 1],
but any σ.ω function is expected to stay within these bounds, we enforce the
bounds as per the first and second case in the above definition. We then use
σ.ωα as σ.ω in the basic bag-of-words similarity when determining the alignment
between two process models.

To illustrate this approach, we refer to Table 3, which outlines the compu-
tation of σ.λ for (α1, β1). In previous work [11], we found that a threshold
above 0.6 yields good results. In this case, the (α1, β1) will be classified as non-
corresponding. Collecting user feedback, this will be revealed as a wrong clas-
sification. Thus, the false negative counter will be increased by 2 for (“check”,
“documents”) as this word pair yielded the highest value for both words and
by one for (“check”, “complete”) and for (“application”, “complete”). Having
ρfp set to 0.1, the adaptive word similarity will now roughly be 0.6. Thus, an
activity pair with the labels of α1 and β1 will now be classified as corresponding.

5 Evaluation

This section has two objectives. First, we analyze if our mixed-initiative approach
improves the results of existing matchers with regard to the amount of missing
and incorrect correspondences. Second, we aim to derive strategies to minimize
the amount of user feedback required to achieve a high matching quality.

Experiment Setup. Our evaluation utilizes the birth certificate and the univer-
sity admission data sets from the matching competition [3]. The gold standards
serve a dual purpose here: (i) assessing the matching quality and (ii) simulating
user feedback. Therefore, going through a sequence of model pairs, we first deter-
mine an alignment for the current pair and assess the quality of this alignment.
That is, we determine the number of true positives (TP), false positives (FP)
and false negatives (FN) given the gold standard. We then calculate the stan-
dard measures of precision (P) (TP/(TP + FP)), recall (R) (TP/(TP + FN)),
and f-measure as their harmonic mean (F) (2× P ×R/(P +R)). Next, we pass
the sets of false positives and false negatives to the algorithm which adapts the
word similarities accordingly. Then, we move on to the next pair. The average
(AVG) and the standard deviation (STD) of all measures and model pairs are
used to assess the approach’s quality. These are calculated either as a running
statistics during learning, or as an overall quality indicator after all model pairs
have been matched and the respective feedback has been considered.

We sampled the space of possible threshold values over the interval [0,1] in
steps of 0.05 as well as the space of possible false positive and false negative
learning rates over the interval [0,0.2] in steps of 0.01. Moreover, we randomly
generated different model pair sequences in order to check the influence of the
model pair order on the quality. We used the maximum of the Levenshtein [15]
and the Lin [16] similarities as the ordinary similarity measure.

Matching Results. Table 6 compares the results of our mixed-initiative ap-
proach to a baseline comprised of the best results from the matching competition

96 C. Klinkmüller et al.

Table 6. Best results from matching contest and for word similarity adaptation

Birth Certificate University Admission
Precision Recall F-Measure Precision Recall F-Measure

Approach AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD

Baseline .68 .19 .33 .22 .45 .18 .56 .23 .32 .28 .41 .20
Adaptive .73 .15 .67 .24 .69 .18 .60 .20 .56 .25 .58 .21

0

0,2

0,4

0,6

0,8

1 6 11 16 21 26 31 36A
ve

ra
ge

 f-
m

ea
su

re

Number of iterations

Birth Certificate

high medium low baseline

0,15

0,35

0,55

0,75

1 6 11 16 21 26 31 36A
ve

ra
ge

 f-
m

ea
su

re

Number of iterations

University Admission

high medium low baseline

Fig. 5. Running average f-measure after ith iteration

[3], i.e., the RefMod-Mine/NSCM results for the birth certificate and the bag-
of-words similarity with label pruning for the university admission data set. The
results for the mixed-initiative approach were determined for collecting user feed-
back over all model pairs. We observed an increase of the f-measure by 0.24 for
the birth certificate and by 0.17 for the university admission data set. While the
precision remained stable, there was a dramatic improvement in the recall.

Deriving strategies. To derive strategies for minimizing the user workload, we
first investigated if the order in which process model pairs are considered had
impact on the overall quality. For this purpose, we determined the quality of the
basic bag-of-words similarity for each model pair. Then, we split the model pairs
for each data set into three equal-sized classes, i.e., model pairs with a high,
a medium, and a low f-measure. We generated three sequences (high, medium,
and low) where each sequence starts with 12 model pairs of the respective class,
randomly ordered, followed by the remaining 24 model pairs, also in random
order. Fig. 5 shows the running average f-measure after the ith iteration for all
three sequences per data set. The results suggest that the order only has a small
impact on the final quality, since the average f-measures converge to roughly the
same value as the number of iterations increases. However, the running average
can be misleading: if we start learning with pairs that are already matched well
before learning (as in the high case), how much can we learn from them? To
examine this aspect, we ran a different experiment, where learning is stopped
after the ith iteration, and the f-measure over all pairs is computed. The results
are shown in Fig. 6, left. Looking at the data, one might hypothesize that here
the user workload per model pair is lower in the high case than for the other

Listen to Me: Improving Process Model Matching through User Feedback 97

0,4

0,5

0,6

0,7

1 6 11 16 21 26 31 36

A
ve

ra
ge

 f-
m

ea
su

re

Learning stopped after ith iteration

Birth Certificate

high medium low

0

100

200

300

400

1 6 11 16 21 26 31 36

Ef
fo

rt
(n

um
be

r o
f c

ha
ng

es
)

Learning stopped after ith iteration

Birth Certificate

high medium low

0,4

0,45

0,5

0,55

0,6

1 6 11 16 21 26 31 36

A
ve

ra
ge

 f-
m

ea
su

re

Learning stopped after ith iteration

University Admission

high medium low

0
100
200
300
400
500

1 6 11 16 21 26 31 36

Ef
fo

rt
(n

um
be

r o
f c

ha
ng

es
)

Learning stopped after ith iteration

University Admission

high medium low

Fig. 6. Overall average f-measure over all 36 model pairs and the user workload after
learning for i iterations

sequences. Thus, we also counted the number of changes a user has to do until
learning is stopped. These effort indicators are shown in Fig. 6, right.

First of all, it can be seen that – regardless of the order – the amount of cor-
rections is roughly growing linearly without big differences across the sequences.
Furthermore, the f-measure curves for all three sequences approach each other
with a growing number of iterations used to learn. When learning is stopped
early, the best results are yielded for the low and the medium sequences: feed-
back on models has a larger impact if matching quality is low beforehand. Finally,
regardless of the order, 2/3rds of the improvements are obtained from analyzing
about half the model pairs (i = 16). In practice it is not possible to sort model
pairs with regard to the f-measure upfront. But as feedback collection is progress-
ing, the relative improvements can be measured. As soon as the improvements
from additional feedback level off, analyzing can be stopped.

Discussion. The evaluation shows that the incorporation of user feedback leads
to strong improvements compared to the top matchers of the matching compe-
tition [3]. When feedback is collected for all model pairs, the f-measure increases
by 41% and 53% for the two data sets. Even when reducing the workload by only
collecting feedback for half of the model pairs, big improvements are obtained.

The main concern about experiments on process model matching relates to
external validity, i.e., in how far the results of our study can be generalized
[25]. In this regard, the size of the two data sets restricts the validity of both,

98 C. Klinkmüller et al.

the indicator assessment and the evaluation. Furthermore, the processes in each
data set represent the same abstract process. Hence, some structural and be-
havioral characteristics might be underrepresented, limiting the significance of
the indicator assessment. This problem also has implications on the evaluation
of the word similarity adaptation, as the processes only cover a small number of
tasks from both domains and a rather limited vocabulary used to describe them.
Thus, words might tend to occur more often than in other model collections
and feedback might be collected for the same word pair more often than usual.
This limits the generalization of the quality improvements and of the strategies
to minimize the user’s efforts. Lastly, the indicator assessment does not allow
for a general judgment on the sources of information, as there might exist other
indicators which better exploit these sources. Therefore, enlarging the data sets
by including data sets whose characteristics differ from the once considered in
this paper and considering more indicators are important steps in future work.

6 Conclusions and Future Work

In this paper, we investigated user feedback as a means for improving the quality
of process model matching. Thus, we first reviewed sources of information from
the literature and assessed their potential for feedback analysis based on derived
correspondence indicators. This assessment indicated that only the label based
similarity of activities can reliably be applied to decide whether an activity pair
corresponds or not. In a next step, we designed a mixed-initiative approach
that adapts the word similarity scores based on user feedback. We evaluated
our approach with regard to established benchmarking samples and showed that
user feedback can substantially improve the matching quality. Furthermore, we
investigated strategies to reduce the user workload while maximizing its benefit.

In future research, we plan to investigate further strategies for decreasing the
user workload while maximizing the matching quality. This comprises guidelines
for choosing model pairs (or activity pairs) the user needs to provide feedback
on. Another direction we plan to pursue is the extension of our approach to
better account for semantic relations and co-occurrences of words within labels.

References

1. Bellahense, Z., Bonifati, A., Rahm, E.: Schema Matching and Mapping. Springer,
Heidelberg (2011)

2. Branco, M.C., Troya, J., Czarnecki, K., Küster, J., Völzer, H.: Matching business
process workflows across abstraction levels. In: France, R.B., Kazmeier, J., Breu,
R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 626–641. Springer,
Heidelberg (2012)

3. Cayoglu, U., Dijkman, R., Dumas, M., Fettke, P., Garćıa-Bañuelos, L., Hake, P.,
Klinkmüller, C., Leopold, H., Ludwig, A., Loos, P., Mendling, J., Oberweis, A.,
Schoknecht, A., Sheetrit, E., Thaler, T., Ullrich, M., Weber, I., Weidlich, M.: The
process model matching contest 2013. In: PMC-MR (2013)

Listen to Me: Improving Process Model Matching through User Feedback 99

4. Dijkman, R., Dumas, M., Garćıa-Bañuelos, L.: Graph matching algorithms for busi-
ness process model similarity search. In: Dayal, U., Eder, J., Koehler, J., Reijers,
H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009)

5. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of
business process models: Metrics and evaluation. Inf. Syst. 36(2), 498–516 (2011)

6. Dumas, M., Garćıa-Bañuelos, L., Dijkman, R.M.: Similarity search of business
process models. IEEE Data Eng. Bull. 32(3), 23–28 (2009)

7. Ekanayake, C.C., Dumas, M., Garćıa-Bañuelos, L., La Rosa, M., ter Hofstede,
A.H.M.: Approximate clone detection in repositories of business process models.
In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 302–318.
Springer, Heidelberg (2012)

8. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Berlin (2013)
9. Grigori, D., Corrales, J.C., Bouzeghoub, M.: Behavioral Matchmaking for Service

Retrieval. In: IEEE ICWS, pp. 145–152 (2006)
10. Jin, T., Wang, J., Rosa, M.L., ter Hofstede, A.H., Wen, L.: Efficient querying of

large process model repositories. Computers in Industry 64(1), 41–49 (2013)
11. Klinkmüller, C., Weber, I., Mendling, J., Leopold, H., Ludwig, A.: Increasing recall

of process model matching by improved activity label matching. In: Daniel, F.,
Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 211–218. Springer,
Heidelberg (2013)

12. Koschmider, A., Blanchard, E.: User assistance for business process model decom-
position. In: IEEE RCIS, pp. 445–454 (2007)

13. Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity – A proper metric.
In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896,
pp. 166–181. Springer, Heidelberg (2011)

14. Leopold, H., Niepert, M., Weidlich, M., Mendling, J., Dijkman, R., Stuckenschmidt,
H.: Probabilistic optimization of semantic process model matching. In: Barros, A.,
Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 319–334. Springer,
Heidelberg (2012)

15. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and re-
versals. Soviet Physics Doklady 10(8), 707–710 (1966)

16. Lin, D.: An information-theoretic definition of similarity. In: ICML, pp. 296–304
(1998)

17. Massey, F.J.: The kolmogorov-smirnov test for goodness of fit. Journal of the Amer-
ican Statistical Association 46(253), 68–78 (1951)

18. Navigli, R.: Word sense disambiguation: A survey. ACM Comput. Surv. 41(2),
10:1–10:69 (2009)

19. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining, 1st edn.
Addison-Wesley Longman Publishing Co., Inc., Boston (2005)

20. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data
Knowl. Eng. 68(9), 793–818 (2009)

21. Weidlich, M., Dijkman, R., Mendling, J.: The iCoP framework: Identification of
correspondences between process models. In: Pernici, B. (ed.) CAiSE 2010. LNCS,
vol. 6051, pp. 483–498. Springer, Heidelberg (2010)

22. Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based
on behavioral profiles of process models. IEEE Trans. Softw. Eng. 37(3), 410–429
(2011)

23. Weidlich, M., Sagi, T., Leopold, H., Gal, A., Mendling, J.: Predicting the quality
of process model matching. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013.
LNCS, vol. 8094, pp. 203–210. Springer, Heidelberg (2013)

100 C. Klinkmüller et al.

24. Weidlich, M., Sheetrit, E., Branco, M.C., Gal, A.: Matching business process mod-
els using positional passage-based language models. In: Ng, W., Storey, V.C., Tru-
jillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 130–137. Springer, Heidelberg
(2013)

25. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering: An Introduction. Kluwer Academic Publishers
(2000)

26. Zha, H., Wang, J., Wen, L., Wang, C., Sun, J.: A workflow net similarity measure
based on transition adjacency relations. Computers in Industry 61(5), 463–471
(2010)

Beyond Tasks and Gateways:
Discovering BPMN Models with Subprocesses,

Boundary Events and Activity Markers

Raffaele Conforti1, Marlon Dumas2,
Luciano Garcı́a-Bañuelos2, and Marcello La Rosa1,3

1 Queensland University of Technology, Australia
{raffaele.conforti,m.larosa}@qut.edu.au

2 University of Tartu, Estonia
{marlon.dumas,luciano.garcia}@ut.ee

3 NICTA Queensland Lab, Australia

Abstract. Existing techniques for automated discovery of process models from
event logs generally produce flat process models. Thus, they fail to exploit the no-
tion of subprocess, as well as error handling and repetition constructs provided by
contemporary process modeling notations, such as the Business Process Model
and Notation (BPMN). This paper presents a technique for automated discov-
ery of BPMN models containing subprocesses, interrupting and non-interrupting
boundary events and activity markers. The technique analyzes dependencies be-
tween data attributes attached to events in order to identify subprocesses and to
extract their associated logs. Parent process and subprocess models are then dis-
covered using existing techniques for flat process model discovery. Finally, the
resulting models and logs are heuristically analyzed in order to identify boundary
events and markers. A validation with one synthetic and two real-life logs shows
that process models derived using the proposed technique are more accurate and
less complex than those derived with flat process discovery techniques.

1 Introduction

Process mining is a family of techniques to extract knowledge of business processes
from event logs [19]. It encompasses, among others, techniques for automated discov-
ery of process models. A range of such techniques exist that strike various tradeoffs be-
tween accuracy and understandability of discovered models. However, the bulk of these
techniques generate flat process models. When contextualized to the standard Business
Process Model and Notation (BPMN), they produce BPMN models consisting purely
of tasks and gateways. In doing so, they fail to exploit BPMN’s constructs for modular
modeling, most notably subprocesses and associated markers and boundary events.

This paper presents an automated process discovery technique that generates BPMN
models with subprocesses, interrupting and non-interrupting boundary events, event
subprocesses, and loop and multi-instance activity markers. An example of a BPMN
model discovered using the implementation of the proposed technique in the ProM
framework is shown at the top of Figure 1. At the bottom is shown a flat BPMN model
obtained from the Petri net discovered from the same log using the InductiveMiner [11].

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 101–117, 2014.
c© Springer International Publishing Switzerland 2014

102 R. Conforti et al.

Fig. 1. BPMN model obtained with and without applying the proposed technique on a synthetic
log of an order-to-cash process (using InductiveMiner to generate flat models).

The technique takes as input a set of event records, each including a timestamp, an
event type (indicating the task that generated the event), and a set of attribute-value
pairs. Such logs can be extracted from appropriately instrumented information sys-
tems [19]. For example, we validated the technique using logs with these characteristics
from an insurance claims system and a grant management system, while [15] discusses
a log with similar characteristics from an Enterprise Resource Planning (ERP) system.

The technique analyzes dependencies between event attributes to identify subpro-
cesses. Next, it splits the log into parent and subprocess logs and applies existing discov-
ery techniques to each log to produce flat models. Finally, the resulting models and logs
are analyzed heuristically to identify boundary events, event subprocesses and markers.

The technique has been validated on real-life and synthetic logs. The validation
shows that, when combined with existing flat process discovery methods, the technique
produces more accurate and less complex models than the corresponding flat models.

The paper is structured as follows. Section 2 discusses techniques for automated
process discovery. Section 3 outlines the subprocess identification procedure while Sec-
tion 4 presents heuristics to identify boundary events, event subprocesses and markers.
Section 5 discusses the validation and Section 6 concludes and discusses future work.

Beyond Tasks and Gateways: Discovering BPMN Models 103

2 Background and Related Work

This section provides an overview of techniques for discovery of flat and hierarchical
process models, and criteria for evaluation of such techniques used later in the paper.

2.1 Automated Discovery of Flat Process Models

Various techniques for discovering flat process models from event logs have been pro-
posed [19]. The α-algorithm [20] infers ordering relations between pairs of events in the
log (direct follows, causality, conflict and concurrency), from which it constructs a Petri
net. The α-algorithm is sensitive to noise, infrequent or incomplete behavior and can-
not handle complex routing constructs. Weijters et al. [25] propose the Heuristics Miner,
which extracts not only dependencies but also the frequency of each dependency. These
data are used to construct a graph of events, where edges are added based on frequency
heuristics. Types of splits and joins in the event graph are determined based on the fre-
quency of events associated with those splits and joins. This information can be used
to convert the output of the Heuristics Miner into a Petri net. The Heuristics Miner is
robust to noise due to the use of frequency thresholds. Van der Werf et al. [21] propose a
discovery method where relations observed in the logs are translated to an Integer Lin-
ear Programming (ILP) problem. Finally, the InductiveMiner [11] aims at discovering
Petri nets that are as block-structured as possible and can reproduce all traces in the log.

Only few techniques discover process models in high-level languages such as BPMN
or Event-Driven Process Chains (EPCs). ProM’s Heuristics Miner can produce flat
EPCs from Heuristic nets, by applying transformation rules similar to those used when
transforming a Heuristic net to a Petri net. A similar idea is implemented in the Fodina
Heuristics Miner [22], which produces flat BPMN models. Apart from these, the bulk
of process discovery methods produce Petri nets. Favre et al. [7] characterize a family
of (free-choice) Petri nets that can be bidirectionally transformed into BPMN models.
By leveraging this transformation, it is possible to produce flat BPMN models from
discovery techniques that produce (free-choice) Petri nets.

Automated process discovery techniques can be evaluated along four dimensions:
fitness (recall), appropriateness (precision), generalization and complexity [19]. Fitness
measures to what extent the traces in a log can be parsed by a model. Several fitness
measures have been proposed. For example, alignment-based fitness [1] measures the
alignment of events in a trace with activities in the closest execution of the model, while
the continuous parsing measure counts the number of missing activations when replay-
ing traces against a heuristic net. Improved Continuous Semantics (ICS) fitness [4] op-
timizes the continuous parsing measure by trading off correctness for performance.

Appropriateness (herein called precision) measures the additional behavior allowed
by a discovered model not found in the log. A model with low precision is one that
parses a proportionally large number of traces that are not in the log. Precision can be
measured in different ways. Negative event precision [23] works by artificially introduc-
ing inexistent (negative) events to enhance the log so that it contains both real (positive)
and fake (negative) traces. Precision is defined in terms of the number of negative traces
parsed by the model. Alternatively, ETC [14] works by generating a prefix automaton
from the log and replaying each trace against the process model and the automaton si-
multaneously. ETC precision is defined in terms of the additional behavior (“escaping”
edges) allowed by the model and not by the automaton.

104 R. Conforti et al.

Generalization captures how well the discovered model generalizes the behavior
found in the log. For example, if a model discovered using 90% of traces in the log
can parse the remaining 10% of traces in the logs, the model generalizes well the log.

Finally, process model complexity can be measured in terms of size (number of
nodes and/or edges) or using structural complexity metrics proposed in the litera-
ture [13]. Empirical studies [13,2,17] have shown that, in addition to size, the following
structural complexity metrics are correlated with understandability and error-proness:

– Avg. Connector Degree (ACD): avg. number of nodes a connector is connected to.
– Control-Flow Complexity (CFC): sum of all connectors weighted by their potential

combinations of states after a split.
– Coefficient of Network Connectivity (CNC): ratio between arcs and nodes.
– Density: ratio between the actual number of arcs and the maximum possible number

of arcs in any model with the same number of nodes.

An extensive experimental evaluation [24] of automated process discovery tech-
niques has shown that the Heuristics Miner provides the most accurate results, where
accuracy is computed as the tradeoff between precision and recall. Further, this method
scales up to large real-life logs. The ILP miner achieves high recall – at the expense of
a penalty on precision – but it does not scale to large logs due to memory requirements.

2.2 Automated Discovery of Hierarchical Process Models

Although the bulk of automated process discovery techniques produce flat models,
one exception is the two-phase mining approach [12], which discovers process models
decomposed into sub-processes, each subprocess corresponding to a recurrent motif
observed in the traces. The two-phase approach starts by applying pattern detection
techniques on the event log in order to uncover tandem arrays (corresponding to loops)
and maximal repeats (maximal common subsequence of activities across process in-
stances). The idea is that occurrences of these patterns correspond to “footprints” left in
the log by the presence of a subprocess. Once patterns are identified, their significance
is measured based on their frequency. The most significant patterns are selected for
subprocess extraction. For each selected pattern, all occurrences are extracted to pro-
duce subprocess logs. Each occurrence is then replaced by an abstract activity, which
corresponds to a subprocess invocation in the parent process. This procedure leads to
one parent process log and a separate log per subprocess. A process model can then
be discovered separately for the parent process and for each subprocess. The procedure
can be repeated recursively to produce process-subprocess hierarchies of longer depth.

A shortcoming of the two-phase approach is that it cannot identify subprocesses with
(interrupting) boundary events, as these events cause the subprocess execution to be in-
terrupted and thus the subprocess instance traces do not show up neither as tandem
arrays nor maximal repeats. Secondly, in case multiple subprocess instances are exe-
cuted in parallel, the two-phase approach mixes together in the same subprocess trace,
events of multiple subprocess instances spawned by a given parent process instance.
For example, if a parent process instance spawns three subprocess instances with traces
t1 = [a1,b1,c1,d1], t2 = [a2,c2,b2], and t3 = [a3,b3,c3], the two-phase approach may put
all events of t1, t2 and t3 in the same trace, e.g. [a1,a2,b1,c1,a3,c2, . . .]. When the result-
ing subprocess traces are given as input to a process discovery algorithm, the output is a

Beyond Tasks and Gateways: Discovering BPMN Models 105

model where almost every task has a self-loop and concurrency is confused with loops.
For example, given a log of a grant management system introduced later, the two-phase
approach combined with Heuristics Miner produces the subprocess model depicted in
Figure 2(a), whereas the subprocess model discovered using the Heuristics Miner after
segregating the subprocess instances is depicted in Figure 2(b).

a b

c

d e f

(a) Two-phase mining approach

a b

c

d

e

f

(b) Two-phase mining with manual sub-
process instance separation

Fig. 2. Sample subprocess model discovered using the two-phase mining approach

Another related technique [10] discovers Petri nets with cancellation regions. A can-
cellation region is a set P of places, where a given cancellation transition may fire,
such that this transition firing leads to the removal of all tokens in P. The output is a
reset net: a Petri net with reset arcs that remove tokens from their input place if any
token is present. Cancellation regions are akin to BPMN subprocesses with interrupt-
ing events. However, generating BPMN models with subprocesses from reset nets is
impossible in the general case, as cancellation regions may have arbitrary topologies,
whereas BPMN subprocesses have a block-structured topology. Moreover, the reset
nets produced by [10] may contain non-free-choice constructs that cannot be mapped
to BPMN [7]. Finally, the technique in [10] does not scale up to logs with hundreds or
thousands of traces due to the fact that it relies on analysis of the full state space.

Other techniques for discovering hierarchical collections of process models, e.g. [8],
are geared towards discovering processes at different levels of generalization. They pro-
duce process hierarchies where a parent-child relation indicates that the child process is
a more detailed version of the parent process (i.e. specialization relations). This body of
work is orthogonal to ours, as we seek to discover part-of (parent-subprocess) relations.

The SMD technique [6] discovers hierarchies of process models related via special-
ization but also part-of relations. However, SMD only extracts subprocesses that occur
in identical or almost identical form in two different specializations of a process.

Another related work is that of Popova et al. [16], which discovers process models
decomposed into artifacts, where an artifact corresponds to the lifecycle of a business
object in the process (e.g. a purchase order or invoice). This technique identifies artifacts
in the event log by means of functional dependency and inclusion dependency discovery
techniques. In this paper, we take this idea as starting point and adapt it to identify
process hierarchies and then apply heuristics to identify boundary events and markers.

3 Identifying Subprocesses

In this section we outline a technique to extract a hierarchy of process models from an
event log consisting of a set of traces. Each trace is a sequence of events, where an event
consists of an event type, a timestamp and a number of attribute-value pairs. Formally:

Definition 1 (Event (record)). Let {A1, . . . ,An} be a set of attribute names and
{D1, . . . ,Dn} a set of attribute domains where Di is the set of possible values of Ai

for 1 ≤ i ≤ n. An event e = (et,τ,v1, . . . ,vk) consists of

106 R. Conforti et al.

1. et ∈ Σ is the event type to which e belongs, where Σ is the set of all event types
2. τ ∈ Ω is the event timestamp, where Ω is the set of all timestamps,
3. for all 1 ≤ i ≤ k vi = (Ai,di) is an attribute-value pair where Ai is an attribute name

and di ∈ Di is an attribute value.

Definition 2 (Log). A trace tr = e1 . . .en is a sequence of events sorted by timestamp. A
log L is a set of traces. The set of events EL of L is the union of events in all traces of L.

The proposed technique is designed to identify logs of subprocesses such that:

1. There is an attribute (or combination of attributes) that uniquely identifies the trace
of the subprocess to which each event belongs. In other words, all events in a trace
of a discovered subprocess share the same value for the attribute(s) in question.

2. In every subprocess instance trace, there is at least an event of a certain type with an
attribute (or combination thereof) uniquely identifying the parent process instance.

These conditions match closely the notions of key and foreign key in relational
databases. Thus, we use relational algebra concepts [18]. A table T ⊆ D1 × . . .×Dm

is a relation over domains Di and has a schema S (T) = (A1, . . . ,Am) defining for
each column 1 ≤ i ≤ m an attribute name Ai. The domain of an attribute may con-
tain a “null” value ⊥. The set of timestamps Ω does not contain ⊥. For a given tu-
ple t = (d1, . . . ,dm) ∈ T and column 1 ≤ i ≤ m, we write t.Ai to refer to di. Given
a tuple t = (d1, . . . ,dm) ∈ T and a set of attributes {Ai1 , . . . ,Aik} ⊆ S (T), we define
t[Ai1 , . . . ,Aik] = (t.Ai1 , . . . , t.Aik) Given a table T , a key of T is a minimal set of attributes
{K1, . . .Kj} such that ∀t, t ′ ∈ T t[K1, . . .Kj] �= t ′[K1, . . .Kj] (no duplicate values on the
key). A primary key is a key of a table designated as such. Finally, a foreign key link-
ing table T1 to T2 is a pair of sets of attributes ({FK1, . . . ,FKj},{PK1, . . . ,PKj}) such
that {FK1, . . . ,FKj} ⊆ S (T1), {PK1, . . . ,PKj} is primary key of T2 and ∀t ∈ T1∃t ′ ∈
T2 t[FK1, . . . ,FKj] = t ′[PK1, . . . ,PKj]. The latter condition is an inclusion dependency.

Given the above, we seek to split a log into sub-logs based on process instance iden-
tifiers (keys) and subprocess-parent references (foreign keys). This is achieved by split-
ting event types into clusters based on keys, linking these clusters hierarchically via
foreign keys, extracting one sub-log per node in the hierarchy, and deriving a process
hierarchy mirroring the cluster hierarchy (Figure 3). Below we outline each step in turn.

Event
log

Compute Event
Type Clusters

Project Log
over Event

Type Clusters

Compute Event
Type Cluster

Hierarchy

Discover
Models from

Projected Logs

Process
Model

Hierarchy

Fig. 3. Procedure to extract a process model hierarchy from an event log

Compute event type clusters We start by splitting the event types appearing in the log
into clusters such that all event types in a cluster (seen as tables consisting of event
records) share a common key K. The intuition of the technique is that the key K shared
by all event types in a cluster is an identifying attribute for all events in a subprocess.
In other words, the set of instances of event types in a cluster that have a given value
for K (e.g. K = v for a fixed v), will form one trace of the (sub-)process in question. For
example, in an order-to-cash process, all event types that have POID (Purchase Order
Identifier) as primary key, will form the event type cluster corresponding to the root

Beyond Tasks and Gateways: Discovering BPMN Models 107

process. A given trace of this root process will consist of instances of event types in
this cluster that share a given POID value (e.g. all events with POID = 122 for a trace).
Meanwhile, event types that share LIID (Line Item Identifier) as primary key will form
the event type cluster corresponding to a subprocess dealing with individual line items
(say a “Handle Line Item” subprocess). A trace of this subprocess will consist of events
of a trace of the parent process that share a given value of LIID (e.g. LIID = “122-3”).1

To find keys of an event type et, we build a table consisting of all events of type et.
The columns are attributes appearing in the attribute-value pairs of events of type et.

Definition 3 (Event type table). Let et be an event type and {e1, . . . ,en} the set of
events of type et in log L, i.e. ei = (et,τi,vi1 , . . . ,vim) where vi j = (A j,di j) and A j is an
attribute for ei. The event type table for et in L is a table ET ⊆ (D1∪{⊥})× . . .×(Dm∪
{⊥})with schema S (ET) = (A1, . . . ,Ak) s.t. there exists an entry t =(d1, . . . ,dm)∈ET
iff there exists an event e∈ ET where e= (et,τ,(A1,d1), . . . ,(Ak,dk)) s.t. di ∈ Di∪{⊥}.

Events of a type et may have different attributes. Thus, the schema of the event type
table consists of the union of all attributes that appear in events of this type in the log.
Therefore there may be null values for some attributes of some events.

For each event type table, we seek to identify its key(s), meaning the attributes that
may identify to which process instance a given event belongs to. To detect keys in event
type tables, we use the TANE [9] algorithm for discovery of functional dependencies
from tables. This algorithm finds all candidate keys, including composite keys. Given
that an event type may have multiple keys, we need to select a primary one. Two options
are available. The first is based on user input: The user is given the set of candidate keys
discovered for each event type and designates one as primary – and in doing so chooses
the subprocesses to be extracted. Alternatively, for full automation, the lexicographi-
cally smallest candidate key of an event type is selected as the primary key pk(ET),
which may lead to event types not being grouped the way a user would have done so.

All event tables sharing a common primary key are grouped into an event type
cluster. In other words, an event type cluster ETC is a maximal set of event types
ETC = {ET1, . . . ,ETk} such that pk(ET1) = pk(ET2) = pk(ETk).

Compute event type cluster hierarchy We now seek to relate pairs of event clusters
via foreign keys. The idea is that if an event type ET2 has a foreign key pointing to a
primary key of ET1, every instance of an event type in ET2 can be uniquely related to
one instance of each event type in ET1, in the same way that every subprocess instance
can be uniquely related to one parent process instance.

With scalability in mind, we use the SPIDER algorithm [3] to discover inclusion
dependencies across event type tables. SPIDER identifies all inclusion dependencies
between a set of tables, while we specifically seek dependencies corresponding to for-
eign keys relating one event type cluster to another. Thus we only retain dependencies
involving the primary key of an event type table in a cluster corresponding to a parent
process, and attributes in tables of a second cluster corresponding to a subprocess. The
output is a set of candidate parent process-subprocess relations as follows.

Definition 4 (Candidate process-subprocess relation between clusters). Given a log
L, and two event type clusters ETC1 and ETC2, a tuple (ETC1,P,ETC2,F) is a can-
didate parent-subprocess relation if and only if:

1 It may happen alternatively that the key of the “Handle Line Item” subprocess is (POID,LIID).

108 R. Conforti et al.

1. P = pk(ETC1) and ∀ET2 ∈ ETC2,∃ET1 ∈ ETC1 : ET2[F] ⊆ ET1[P] where
ET1[P] is the relational algebra projection of ET1 over attributes in P and simi-
lar for ET2[F]. In other words, ETC1 and ETC2 are related, if every table in ETC2

has an inclusion dependency to the primary key of a table in ETC1 so that every
tuple in ETC2 is related to a tuple in ETC1.

2. ∀tr ∈ L∀e2 ∈ tr : e2.et ∈ ETC2 ⇒∃e1 ∈ tr : e1.et ∈ ETC1∧e1[P] = e2[F]∧e1.τ <
e2.τ . This condition ensures that the direction of the relation is from the parent
process to the subprocess by exploiting the fact that the first event of a subprocess
instance must be preceded by at least one event of the parent process instance.

The candidate process-subprocess relations between clusters induces a directed
acyclic graph. We extract a directed minimum spanning forest of this graph by ex-
tracting a directed minimum spanning tree from each weakly connected component of
the graph. We turn the forest into a tree by merging all root clusters in the forest into a
single root cluster. This leads us to a hierarchy of event clusters. The root cluster in this
hierarchy consists of event types of the root process. The children of the root are event
type clusters of second-level (sub-)processes, and so on.

Project logs over event type clusters We now seek to produce a set of logs related hier-
archically so that each log corresponds to a process in the envisaged process hierarchy.
The log hierarchy will reflect one by one the event cluster hierarchy, meaning that each
event type cluster is mapped to log. Thus, all we have to do is to define a function that
maps each event type cluster to a log. This function is called log projection.

Given an event type cluster ETC, we project the log on this cluster by abstracting
every trace in such a way that all events that are not instances of types in ETC are
deleted, and markers are introduced to denote the first and last event of the log of a
child cluster of ETC. Each of these child clusters corresponds to a subprocess and thus
the markers denote the start and the end of a subprocess invocation.

Definition 5 (Projection of a trace over an event type cluster). Given a log
L = {tr1, . . . trn}, an event cluster ETC, and the set of children cluster of ETC
children(ETC) = {ETC1, . . .ETCn}, the projection of L over ETC is the log LETC =
{tr′1, . . . tr

′
n} where tr′k is the log obtained by replacing every event in trk that is also

first event of a trace in the projected child log LETCi by an identical event but with type
StartETCi (start of cluster ETCi), replacing every event in trk that is also last event of a
trace in the projected child log LETCi by an identical event but with type EndETCi (end
of cluster ETCi), and then removing from trk all other events of a type not in ETC.

This recursive definition has a fix-point because the relation between clusters is a
tree. We can thus first compute the projection of logs over the leaves of this tree and
then move upwards in the tree to compute projected logs of parent trace clusters.

Generate process model hierarchy Given the hierarchy of projected logs, we generate a
hierarchy of process models isomorphic to the hierarchy of logs, by applying a process
discovery algorithm to each log. For this step we can use any process discovery method
that produces a flat process model (e.g. the Heuristics Miner). In the case of a process
with subprocesses, the resulting process model will contain tasks corresponding to the
subprocess start and end markers introduced in Definition 5.

Complexity The complexity of the first step of the procedure is determined by that of
TANE, which is in the size of the relation times a factor exponential on the number of

Beyond Tasks and Gateways: Discovering BPMN Models 109

attributes [9]. This translates to O(|EL| ·2a) where a is the number of attributes and |EL|
is the number of events in the log. The second step’s complexity is dominated by that
of SPIDER, which is O(a ·mlogm) where m is the maximum number of distinct values
of any attribute [3]. If we upper-bound m by |EL|, this becomes O(a · |EL|log|EL|). In
this step, we also determine the direction of each primary-foreign key dependency. This
requires one pass through the log for each discovered dependency, thus a complexity
in O(|EL| · k) where k is the number of discovered dependencies. If we define N as the
number of event type clusters, k < N2, this complexity becomes O(|EL| ·N2). The third
step requires one pass through the log for each event type cluster, hence O(|EL| ·N),
which is dominated by the previous step’s complexity. The final step is that of process
discovery. The complexity here depends on the chosen process discovery method and
we thus leave it out of this analysis. Hence, the complexity of subprocess identification
is O(|EL| ·2a + a · |EL|log|EL|+ |EL| ·N2), not counting the process discovery step.

4 Identifying Boundary Events, Event Subprocesses and Markers

This section presents heuristics to refactor a BPMN model by i) identifying interrupting
boundary events, ii) assigning these events a type, iii) extracting event subprocesses, and
iv) assigning loop and multi-instance markers to subprocesses and tasks. The overall
refactoring procedure is given in Algorithm 1, which recursively traverses the process
models hierarchy starting from the root model. This algorithm requires the root model,
the set of all models PS, the original log L and the logs for all process models LS, plus
parameters to set the tolerance of the heuristics as discussed later.

For each activity a of p that invokes a subprocess s (line 2), we check if the sub-
process is in a self loop and if so we mark s with the appropriate marker and remove
the loop structure (line 1 – refactoring operations are omitted for simplicity). We then
check if the subprocess is triggered by an interrupting boundary event (line 1), in which
case the subprocess is an exception flow of the parent process. If so, we attach an in-
terrupting boundary event to the border of the parent process and connect the boundary
event to the subprocess via an exception flow. Then we identify the type of boundary
event, which can either be timer or message (line 1). Next, we check if the subprocess
is an event subprocess (line 1). Finally, we check if the subprocess is multi-instance
(line 1), in which case we discover from the log the minimum and maximum number
of instances. If activity a does not point to a subprocess (i.e. it is a task), we check if
this is a loop (line 16) or multi-instance task (line 17), so that this task can be marked
accordingly. Each of these constructs is identified via a dedicated heuristic.

Identify interrupting boundary events Algorithm 2 checks if subprocess s of p is trig-
gered by an interrupting event. It takes as input an activity as corresponding to the in-
vocation of subprocess s. We check that there exists a path in p from as to an end event
of p without traversing any activity or AND gateway (line 2). We count the number of
traces in the log of p where there is an occurrence of as (line 2), and the number of those
traces where as is the last event. If the latter number is at least equal to the former, we
tag the subprocess as “triggered by an interrupting event” (line 2). The heuristic uses
threshold tvint . If tvint = 0, we require all traces containing as to finish with as to tag s
as triggered by an interrupting event, while if tvint = 1, the path condition is sufficient.

Identify interrupting boundary timer events Algorithm 3 detects if a subprocess s of p
is triggered by a timer boundary event. We first extract from the log of p all traces t

110 R. Conforti et al.

Algorithm 1. UpdateModel
input: Process model p, set of all process models PS, original log L, set of all process logs

LS, tolerance values tvint and tvtimer, percentages pvtimer and pvMI
foreach Activity a in p do1

if there exists a process s in PS such that label(a) = Starts then2

s := updateModel(s, PS, L, LS, tvint , tvtimer, pvtimer, pvMI);3

Lp := getLog(p, LS);4

if s is in a self loop then mark s as Loop;5

if isInterruptingEvent(a, p, Lp, tvint) then6

set s as exception flow of p via new interrupting event ei;7

if isTimerInterruptingEvent(a, Lp, tvtimer, pvtimer) then mark ei as Timer;8

else mark ei as Message;9

else if isEventSubprocess(a, p) then mark s as EventSubprocess of p;10

if isMultiInstance(s, L, pvMI) then11

mark s as MI;12

sLB := discoverMILowerBound(s, L);13

sUB := discoverMIUpperBound(s, L);14

else15

if a is in a self loop then mark a as Loop;16

if isMultiInstance(a, L, pvMI) then17

mark s as MI;18

aLB := discoverMILowerBound(a, L);19

aUB := discoverMIUpperBound(a, L);20

return p21

containing executions of as (line 3). For each of these traces we compute the average
time difference between the occurrence of as and that of the first event of the trace (lines
4-9). We then count the number of traces where this difference is equal to the average
difference, modulo an error determined by the product of the average difference and
tolerance value tvtimer (line 3). If the number of traces that satisfy this condition is
greater than or equal to the number of traces containing an execution of as, we tag
subprocess s as triggered by an interrupting boundary timer event (line 3). The heuristic
can be adjusted using a percentage threshold pvtimer to allow for noise.

Identify event subprocesses A subprocess s of p is identified as an event subprocess if
it satisfies two requirements: i) it needs to be repeatable (i.e. it has either been marked
with a loop marker, or it is part of a while-do construct), and ii) can be executed in
parallel with the rest of the parent process (either via an OR or an AND block).

Identify multi-instance activities Algorithm 4 checks if a subprocess s of p is multi-
instance. We start by retrieving all traces of p that contain invocations to subprocess
s (line 4). Among them, we identify those where there are at least two instances of
subprocess s executed in parallel (lines 6-7). As per Def. 5, an instance of s is delimited
by events of types Starts and Ends sharing the same (PK,FK). Two instances of s are in
parallel if they share the same FK and overlap in the log. If the number of traces with
parallel instances is at least equal to a predefined percentage pvMI of the total number of
traces containing an instance of s, we tag s as multi-instance. Finally, we set the lower
(upper) bound of instances of a multi-instance subprocess to be equal to the minimum

Beyond Tasks and Gateways: Discovering BPMN Models 111

Algorithm 2. isInterruptingEvent
input: Activity as, process model p, log Lp, tolerance tvint

if there exists a path in p from as to an end event of p without activities and AND1

gateways then
#BoundaryEvents := 0;2

#Traces := 0;3

foreach trace tr in Lp do4

if there exists an event e1 in tr such that e1.et = label(as) then5

if there not exists an event e2 in tr such that e2.et �= label(as) and6

e2.τ ≥ e1.τ then #BoundaryEvents := #BoundaryEvents+1;
#Traces := #Traces+1;7

if #BoundaryEvents ≥ #Traces · (1− tvint) then return true8

return false9

Algorithm 3. isTimerInterruptingEvent
input: Activity as, log Lp, tolerance tvtimer, percentage pvtimer
#TimerEvents := 0;1

timeDifftot := 0;2

timeDifferences :=∅;3

foreach trace tr in Lp do4

if there exists an event e1 in tr such that e1.et = label(as) then5

e2 := first event of tr;6

timeDifftot := timeDifftot +(e1.τ −e2.τ);7

timeDifferences := timeDifferences∪{(e1.τ −e2.τ)};8

timeDiffavg := timeDifftot/ |timeDifferences|;9

foreach diff ∈ timeDifferences do10

if timeDiffavg− timeDiffavg · tvtimer ≤ diff ≤ timeDiffavg+ timeDiffavg · tvtimer then11

#TimerEvents := #TimerEvents+1;

return #TimerEvents ≥ |timeDifferences| ·pvtimer12

(maximum) number of instances that are executed among all traces containing at least
one invocation to s. Note that e[PK] is the projection of event e over the primary key of
e.et and e[FK] is the projection of e over the event type of the parent cluster of e.et.

Complexity Each heuristic used in Algorithm 1 requires one pass through the log and
for each trace, one scan through the trace, hence a complexity in O(|EL|). The heuristics
are invoked for each process model, thus the complexity of Algorithm 1 is O(p · |EL|),
where p is the number of process models. This complexity is dominated by that of
subprocess identification.

5 Validation

We implemented the technique as a ProM plugin called BPMNMiner. We also imple-
mented utility plugins to: (i) measure model complexity; (ii) convert Petri nets to BPMN
to compare models produced by flat discovery methods with those produced by BPMN

112 R. Conforti et al.

Algorithm 4. isMultiInstance
input: Subprocess s, original log L, percentage pvMI
if s is Loop then1

#TracesMI := 0;2

#Traces := 0;3

foreach trace tr in L do4

if there exists an event e in tr such that e.et = Starts then5

if there exist two events e1,e2 in t such that e1.et = Starts, e2.et = Starts,6

e1[PK] �= e2[PK] and e1[FK] = e2[FK] then
if there exists an event e3 in tr such that e3.et = Ends, e3[PK] = e1[PK],7

e3[FK] = e1[FK], e1.τ ≤ e2.τ < e3.τ then
#TracesMI := #TracesMI + 1;8

#Traces := #Traces + 1;9

return #TracesMI ≥ #Traces ·pvMI;10

return false11

Miner (adapted from the Petri Net to EPCs converter in ProM 5.2); (iii) convert BPMN
models to Petri nets to compute accuracy (based on [5]); and (iv) simplify the final
BPMN model by removing trivial gateways and turning single-activity subprocesses
into tasks.2 Using this implementation, we conducted tests to assess the benefits of the
technique in terms of accuracy and complexity of discovered process models.

5.1 Datasets

We used two real-life logs and one artificial log. The first log comes from a system
for handling project applications in the Belgian research funding agency IWT (here-
after called FRIS), specifically for the applied biomedical research funding program
(2009-12). This process exhibits two multi-instance subprocesses, one for handling re-
views (each proposal is reviewed by at least five reviewers), the other for handling the
disbursement of the grant, which is divided into installments. The second log (called
Commercial) comes from a large Australian insurance company and records an extract
of the instances of a commercial insurance claims handling process executed in 2012.
This process contains a non-interrupting event subprocess to handle customer inquires,
since these can arrive at any time while handling a claim, and three loop tasks to receive
incoming correspondence, to process additional information, and to provide updates to
the customer. Finally, the third log (called Artificial) is generated synthetically using
CPN Tools,3 based on a model of an order-to-cash process that has one example of
each BPMN construct supported by our technique (loop marker, multi-instance marker,
interrupting and non-interrupting boundary event and event subprocess). Table 1 shows
the characteristics of the datasets, which differ widely in terms of number of traces,
events and duplication ratio (i.e. the ratio between events and event types).

2 All plugins, the artificial log and the experimental results are in the BPMN Miner package of
the ProM 6 nightly-build – http://processmining.org

3 http://cpntools.org

http://processmining.org
http://cpntools.org

Beyond Tasks and Gateways: Discovering BPMN Models 113

Table 1. Characteristics of event logs used for the validation

Log Traces Events Event types Duplication ratio
FRIS 121 1,472 13 113
Commercial 896 12,437 9 1,382
Artificial 3,000 32,896 13 2,530

5.2 Setup

We measured accuracy and complexity of the models produced by BPMN Miner on
top of five process discovery methods, and compared them to the same measures on
the corresponding model produced by the flat discovery method alone. We selected the
following flat discovery methods: Heuristics Miner (abbreviated as H) and ILP (I) as
they provide the best results in terms of accuracy according to [24]; the InductiveMiner
(N) as an example of a method intended to discover block-structured models with high
fitness; Fodina Heuristics Miner, which generates flat BPMN models natively; and the
α-algorithm, as an example of a method suffering from low accuracy, according to [24].

Following [24], we measured accuracy in terms of F-score – the harmonic mean of
recall (fitness – f) and precision (appropriateness – a), i.e. 2 f ·a

f+a . We measured com-
plexity using size, CFC, ACD, CNC and density, as justified in Section 2.

We computed fitness using ProM’s Alignment-based Conformance Analysis plugin,
and appropriateness using the Negative event precision measure in the CoBeFra tool.4

The choice of these two particular measures is purely based on the scalability of the
respective implementations. These measures operate on a Petri net. We used the map-
ping in [5] to convert the BPMN models produced by BPMN Miner and by Fodina to
Petri nets. For this conversion, we treated BPMN multi-instance activities as loop ac-
tivities, since based on our tests, the alignment-based plugin could not handle the com-
binatorial explosion resulting from expanding all possible states of the multi-instance
activities.We set all tolerance parameters of Algorithm 1 to zero.

5.3 Results

Table 2 shows the results of the measurements. We observe that BPMN Miner con-
sistency produces BPMN models that are more accurate and less complex than the
corresponding flat models. The only exception is made by BPMNI on the artificial log.
This model has a lower F-score than the one produced by the baseline ILP, despite im-
proving on complexity. This is attributable to the fact that the artificial log exhibits a
high number of concurrent events, which ILP turns into interleaving transitions in the
discovered model (one for each concurrent event in the log). After subprocess identi-
fication, BPMN Miner replaces this structure with a set of interleaving subprocesses
(each grouping two or more events), which penalizes both fitness and appropriateness.

In spite of the α-algorithm generally producing the least accurate models, we observe
that BPMNA produces results comparable to those achieved using BPMN Miner on top
of other discovery methods. In other words, BPMN Miner thins off differences between
the baseline methods. This is attributable to the fact that, after subprocess extraction,
the discovery of ordering relations between events is done on smaller sets of event types
(those within the boundaries of a subprocess). In doing so, behavioral errors also tend
to get fixed.

4 http://processmining.be/cobefra

http://processmining.be/cobefra

114 R. Conforti et al.

Table 2. Models’ accuracy and complexity before and after applying BPMN Miner

Log Method Accuracy Complexity
Fitness Appropr. F-score Size CFC ACD CNC Density

FRIS A 0.855 0.129 0.224 33 25 3.888 1.484 0.046
BPMNA 0.917 0.523 0.666 32 21 3.4 1.25 0.040
F 0.929 0.354 0.512 35 85 8.5 2.828 0.083
BPMNF 0.917 0.644 0.756 26 10 3.142 1.115 0.044
I 0.919 0.364 0.521 47 48 4.312 1.765 0.038
BPMNI 0.987 0.426 0.595 42 34 3.652 1.428 0.034
H 0.567 0.569 0.567 31 26 3.25 1.290 0.043
BPMNH 0.960 0.658 0.780 24 7 3.2 1.083 0.047
N 1 0.442 0.613 45 81 3.866 1.6 0.036
BPMNN 0.977 0.525 0.682 39 28 3 1.230 0.032

Commercial A 0.7035 0.285 0.405 19 16 3.5 1.263 0.070
BPMNA 1 0.382 0.552 23 11 3.5 1.173 0.053
F 0.928 0.398 0.557 26 29 4 1.538 0.061
BPMNF 0.982 0.407 0.575 37 35 3.909 1.540 0.042
I 1 0.221 0.361 41 54 5.133 2.121 0.053
BPMNI 0.913 0.264 0.409 34 31 4.105 1.558 0.047
H 0.3995 0.349 0.372 35 32 3.083 1.342 0.039
BPMNH 0.935 0.425 0.584 17 2 4 1 0.062
N 1 0.448 0.618 25 21 4.571 1.680 0.070
BPMNN 1 0.466 0.635 23 14 4 1.260 0.057

Artificial A na 0.208 na 38 47 3.636 1.447 0.039
BPMNA 0.654 0.222 0.331 33 11 3 1 0.031
F na 0.295 na 46 53 3.677 1.543 0.034
BPMNF 0.813 0.413 0.548 47 31 3.3 1.212 0.026
I 0.969 0.331 0.493 74 130 7.068 2.982 0.040
BPMNI 0.870 0.160 0.270 37 21 4.2 1.216 0.033
H na 0.290 na 49 47 3.17 1.387 0.028
BPMNH 0.908 0.470 0.619 33 6 3 0.909 0.028
N 1 0.182 0.307 50 120 3.828 1.62 0.033
BPMNN 1 0.362 0.531 45 18 3 1.022 0.023

This is the case in three instances reported in our tests (A, F and H on Artificial
which have “na” for fitness in Table 2), where the alignment-based fitness could not be
computed because these flat models contained dead (unreachable) tasks and were not
easy sound (i.e. did not have an execution sequence that completes by marking the end
event with one token). An example of a fragment of such a model discovered by the
Heuristics Miner alone is given in Figure 4(a). In these cases, the use of BPMN Miner
resulted in simpler models without dead transitions, cf. Figure 4(b).

We also remark that, while density is inversely correlated with size (smaller models
tend to be denser) [13], BPMN Miner produces smaller and less dense process models
than those obtained by the flat process discovery methods. This is because it replaces
gateway structures with subprocesses leading to less arcs, as evidenced by smaller ACD.

In summary, we obtained the best BPMN models using Heuristics Miner as the base-
line method across all three logs. BPMNH achieved the highest accuracy and lowest

5 Over-approximation, as the fitness can only be computed on a fraction of the traces in the log.

Beyond Tasks and Gateways: Discovering BPMN Models 115

S2B

S2AA

S1C B

S6A

(a) Heuristics Miner

S2BS2AA B
S6A

S3A

S5A

(b) BPMN Miner after Heuristics Miner

Fig. 4. Behavioral error in a discovered flat model not present in the hierarchical one

complexity on FRIS and Artificial, while on Commercial it achieved the second highest
accuracy (with the highest being BPMNN) and the lowest complexity.

We conducted our tests on an Intel Xeon 2.93GHz with 16GB RAM, running Win-
dows Server 2008R2 and JVM 7 with 10GB of heap space. Time performance ranged
from a few seconds for small logs with few subprocesses (e.g., 4sec for BPMNA on
FRIS) to several minutes for the large log (max. 34.8min for BPMNH on Artificial while
H on Artificial took 14.2sec). The bulk of time is spent in subprocesses identification,
while the time required for identifying boundary events and markers is negligible.

6 Conclusion

We have shown that the proposed technique leads to process models that are not only
more modular, but also more accurate and less complex than those obtained with tradi-
tional flat process discovery techniques. This is a step forward towards the development
of methods for discovery of modular and rich business process models from event logs.
Naturally, the proposal has its limitations. First, it requires logs with data attributes, such
that the set of attributes includes keys to identify (sub)process instances, and foreign
keys to identify relations between parent and child processes. One can think of subpro-
cesses where this condition does not hold, for example when subprocesses are used not
to encapsulate activities pertaining to a business entity (with its own key) but rather to
refactor block-structured fragments with loops – without there being a key associated to
the loop body – or to refactor fragments shared across multiple process models. Thus,
a potential avenue to enhance the technique is to combine it with the two-phase mining
approach [12] and shared subprocess extraction techniques as in SMD [6].

Secondly, it is assumed that data is of sufficient quality to discover the relevant func-
tional and inclusion dependencies. In this respect, more noise-tolerant techniques for
functional and inclusion dependency discovery could be employed, but the extent of
required noise-tolerance needs to be evaluated against relevant datasets.

A direction for future work is to apply the technique on larger collections of logs, for
example logs extracted from ERP systems, where there may be multiple keys for every
entity associated with a process and associations may be more complex. A validation
of the produced process models with actual users is also needed to assess usefulness.

Acknowledgments. We thank Anna Kalenkova for her BPMN ProM interface and
Pieter De Leenheer for enabling access to the FRIS dataset. This work is partly funded
by the EU FP7 Program (ACSI Project) and the Estonian Research Council. NICTA
is funded by the Australian Department of Broadband, Communications and the Dig-
ital Economy and the Australian Research Council via the ICT Centre of Excellence
program.

116 R. Conforti et al.

References

1. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance checking using cost-
based fitness analysis. In: Proc. of EDOC. IEEE (2011)

2. Rolón, E., Cardoso, J., Garcı́a, F., Ruiz, F., Piattini, M.: Analysis and validation of control-
flow complexity measures with BPMN process models. In: Halpin, T., Krogstie, J., Nurcan,
S., Proper, E., Schmidt, R., Soffer, P., Ukor, R. (eds.) BPMDS 2009 and EMMSAD 2009.
LNBIP, vol. 29, pp. 58–70. Springer, Heidelberg (2009)

3. Bauckmann, J., Leser, U., Naumann, F.: Efficient and exact computation of inclusion depen-
dencies for data integration. Technical Report 34, Hasso-Plattner-Institute (2010)

4. Alves de Medeiros, A.K.: Genetic Process Mining. PhD thesis, Eindhoven University of
Technology (2006)

5. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models
in bpmn. Information & Software Technology 50(12) (2008)

6. Ekanayake, C.C., Dumas, M., Garcı́a-Bañuelos, L., La Rosa, M.: Slice, mine and dice:
Complexity-aware automated discovery of business process models. In: Daniel, F., Wang,
J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 49–64. Springer, Heidelberg (2013)

7. Favre, C., Fahland, D., Völzer, H.: The relationship between workflow graphs and free-choice
workflow nets. Information Systems (in press, 2014)

8. Greco, G., Guzzo, A., Pontieri, L.: Mining taxonomies of process models. Data Knowl.
Eng. 67(1) (2008)

9. Huhtala, Y., Kärkkäinen, J., Porkka, P., Toivonen, H.: TANE: An efficient algorithm for dis-
covering functional and approximate dependencies. Computer Journal 42(2) (1999)

10. Kalenkova, A., Lomazova, I.A.: Discovery of cancellation regions within process mining
techniques. In: Proc. of CS&P Workshop. CEUR Workshop Proceedings, vol. 1032, CEUR-
WS.org (2013)

11. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process
models from event logs - A constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI
NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013)

12. Li, J., Bose, R.P.J.C., van der Aalst, W.M.P.: Mining context-dependent and interactive busi-
ness process maps using execution patterns. In: zur Muehlen, M., Su, J. (eds.) BPM 2010
Workshops. LNBIP, vol. 66, pp. 109–121. Springer, Heidelberg (2011)

13. Mendling, J., Reijers, H.A., Cardoso, J.: What Makes Process Models Understandable? In:
Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 48–63.
Springer, Heidelberg (2007)

14. Muñoz-Gama, J., Carmona, J.: A fresh look at precision in process conformance. In: Hull, R.,
Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 211–226. Springer, Heidelberg
(2010)

15. Nooijen, E.H.J., van Dongen, B.F., Fahland, D.: Automatic discovery of data-centric and
artifact-centric processes. In: La Rosa, M., Soffer, P. (eds.) BPM 2012 Workshops. LNBIP,
vol. 132, pp. 316–327. Springer, Heidelberg (2013)

16. Popova, V., Fahland, D., Dumas, M.: Artifact lifecycle discovery. CoRR abs/1303.2554
(2013)

17. Reijers, H.A., Mendling, J.: A study into the factors that influence the understandability of
business process models. IEEE T. Syst. Man Cy. A 41(3) (2011)

18. Silberschatz, A., Korth, H.F., Sudarshan, S.: Database System Concepts, 4th edn. McGraw-
Hill Book Company (2001)

19. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer (2011)

20. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process
models from event logs. IEEE Trans. Knowl. Data Eng. 16(9) (2004)

21. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discov-
ery using integer linear programming. Fundam. Inform. 94(3-4) (2009)

Beyond Tasks and Gateways: Discovering BPMN Models 117

22. vanden Broucke, S.K.L.M., De Weerdt, J., Vanthienen, J., Baesens, B.: Fodina: a robust and
flexible heuristic process discovery technique,
http://www.processmining.be/fodina/ (last accessed: March 27, 2014)

23. vanden Broucke, S.K.L.M., De Weerdt, J., Baesens, B., Vanthienen, J.: Improved artificial
negative event generation to enhance process event logs. In: Ralyté, J., Franch, X., Brinkkem-
per, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 254–269. Springer, Heidelberg
(2012)

24. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional quality
assessment of state-of-the-art process discovery algorithms using real-life event logs. Inf.
Syst. 37(7) (2012)

25. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible Heuristics Miner (FHM). In: Proc. of CIDM.
IEEE (2011)

http://www.processmining.be/fodina/

A Genetic Algorithm for Process

Discovery Guided by Completeness,
Precision and Simplicity

Borja Vázquez-Barreiros, Manuel Mucientes, and Manuel Lama

Centro de Investigación en Tecnolox́ıas da Información (CiTIUS)
University of Santiago de Compostela, Spain

{borja.vazquez,manuel.mucientes,manuel.lama}@usc.es

Abstract. Several process discovery algorithms have been presented in
the last years. These approaches look for complete, precise and simple
models. Nevertheless, none of the current proposals obtains a good in-
tegration between the three objectives and, therefore, the mined models
have differences with the real models. In this paper we present a genetic
algorithm (ProDiGen) with a hierarchical fitness function that takes into
account completeness, precision and simplicity. Moreover, ProDiGen uses
crossover and mutation operators that focus the search on those parts
of the model that generate errors during the processing of the log. The
proposal has been validated with 21 different logs. Furthermore, we have
compared our approach with two of the state of the art algorithms.

Keywords: Process mining, process discovery, Petri nets, genetic
mining.

1 Introduction

In the last decade a great effort has been made for developing technologies to
automate the execution of processes in different application domains such as in-
dustry, education or medicine [3]. In this context, a process is understood as a col-
lection of tasks —or activities— with coordination requirements among them [8].
These tasks are performed by a set of actors to achieve the purpose of the process.
Typically, these processes have a detailed description, i.e., there is a design of the
process where its activities and the actors participating in these steps are clearly
described. However, even in this situation there might be differences between what
is actually happening and what is predefined in the process.

Based on this, Process Mining (PM) techniques are needed to get informa-
tion about what is really happening in the execution of a process, and not what
the people think it is happening [9]. Typically, these techniques use the log files
that collect information about the events detected and stored by the informa-
tion system in which the process has been executed. While PM techniques can
be classified in different groups —process discovery, conformance checking or
enhancement— this paper focuses its attention into the process discovery prob-
lem, i.e, the control-flow discovery, which aims to retrieve the process model that

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 118–133, 2014.
c© Springer International Publishing Switzerland 2014

ProDiGen 119

represents the behavior recorded in an event log. These algorithms are used to
discover the underlying process that has been followed by users to achieve an
objective.

There has been a lot of work on process discovery [9,13,10,1,12,2,4]. Although
some mining techniques use a specific target model for control flow discovery
[4], most of the process discovery algorithms are based on Petri nets. These
algorithms can be classified depending on the type of technique they applied.
Thus abstraction-based algorithms [9,13], in general, retrieves simple models but
with poor completeness. Other approaches, based on heuristics [12], although
being robust to noise, do not guarantee optimal results in terms of completeness,
as they focus on the main behavior of the log —also, they cannot handle all the
common structures at once. Within the search-based algorithms, some techniques
guarantee sound models [1] —not guaranteeing always the complete model as a
solution—, and others can tackle all the different main behavior at once [2], but
leaving simplicity aside. Other techniques, based on theory of regions, despite
guaranteeing complete models [10], cannot handle noise and all the different
pattern constructs. Summarizing, very valuable results have been achieved, but
it is necessary to deep in the development of algorithms that guide its search
towards complete, precise and simple models.

In this paper we present ProDiGen1 (Process Discovery through a Genetic al-
gorithm), a process discovery algorithm that guides its search towards complete,
precise and simple models. The algorithm uses a hierarchical fitness function
that takes into account completeness, precision and simplicity —with new def-
initions for both precision and simplicity— and uses heuristics to optimize the
genetic operators: (i) a crossover operator that selects the crossover point from
a Probability Density Function (PDF) generated from the errors of the mined
model, and (ii) a mutation operator guided by the causal dependencies of the
log. The proposal has been tested using 21 unbalanced logs, i.e, logs with many
different traces and different frequencies. Furthermore, we have compared our
approach with two of the state of the art process mining techniques, using a
collection of conformance checking metrics.

The remainder of this paper is structured as follows. Sec. 2 presents the pro-
posed genetic algorithm for process discovery. Sec. 3 shows the obtained results
with the 21 logs and, finally, Sec. 4 points out the conclusions.

2 ProDiGen: Process Discovery through a Genetic
Algorithm

The proposal of this paper (ProDiGen) is inspired by Genetic Miner [2], albeit
there are several differences between them (Tab. 1). Although ProDiGen still
codifies each individual2 of the population3 using the causal matrix representa-
tion [2], almost all of the mains steps of the genetic algorithm (GA) have been

1 http://tec.citius.usc.es/SoftLearn/ProDiGen.html
2 A candidate solution, i.e., a mined model.
3 A collection of candidate solutions.

http://tec.citius.usc.es/SoftLearn/ProDiGen.html

120 B. Vázquez-Barreiros, M. Mucientes, and M. Lama

Table 1. Differences between ProDiGen and Genetic Miner

Fitness The fitness is hierarchical and takes into account the completeness,
precision and simplicity of the mined model.

Precision Definition of a new method to measure the precision of a model.
Simplicity Definition of a new method to measure the simplicity of a model.
Initialization The solution of the Heuristics Miner is incorporated to the initial

population as well.
Selection Prodigen uses the binary tournament selection as selection mecha-

nism.
Crossover The crossover operator is guided by a Probability Density Function

(PDF) generated from the errors of the mined model.
Mutation The mutation operator is guided by the causal dependencies of the

log.
Replacement Steady-state approach, with a reinitialization criterium based on

the improvement of the population.

Algorithm 1. ProDiGen

Initialize population1

Evaluate population2

t = 1, timesRun = initialTimesRun, restarts = 03

while t ≤ maxGenerations && restarts < maxRestarts do4

Selection5

Crossover6

Mutation7

Evaluate new individuals8

Replace population9

t = t+ 110

if bestInd (t) == bestInd (t− 1) then11

timesRun = timesRun− 112

if none of the individuals of the population have been replaced then13

timesRun = timesRun− 114

if timesRun < 0 then15

Reinitialize population16

Evaluate population17

timesRun = initialTimesRun, restarts = restarts + 118

modified. More specifically, one of the major changes takes place in the evaluation
of the population, where completeness, precision and simplicity are considered
in a hierarchical way. ProDiGen also defines (i) a new metric to measure the
precision of each individual, and (ii) a new method to measure the simplicity of
the model. Furthermore, we introduce heuristics to guide the genetic operators,
focusing the search on those parts of the mined model that have errors and, also,
reducing the search space to those models that are supported by the information
in the log.

ProDiGen 121

Algorithm 1 describes how ProDiGen works. The first three steps correspond
to an initialization, where t represents the number of iterations, timesRun is
used to detect situations in which the search gets stuck, and restarts counts the
number of reinitializations. The evolution cycle of the algorithm starts at Alg.
1:4. This part will be repeated until the stopping criterion is fulfilled. The mains
steps of the iterative part are the selection of the individuals, the crossover and
mutation operations to generate new individuals, their evaluation, the replace-
ment of the population, and the analysis of the population to detect blockages
in the search process. All these steps are described in detail in the next sections.

2.1 Initialization

In ProDiGen, each individual codifies a workflow using a causal matrix repre-
sentation [2]. A causal matrix can map any Petri net in terms of dependency
relations —which tasks enable the execution of other tasks— as it represents the
input and output dependencies of each activity of the model.

ProDiGen uses the same heuristics —based on the causality relations between
tasks— described in [2] to generate the initial population. Moreover, we also add
to the initial population the solution mined with the Heuristics Miner approach
[12]. With this process, the dependency relations are captured using the Heuris-
tics Miner and then, with ProDiGen, the different inputs and outputs bindings
are optimized. We have empirically concluded that adding the Heuristics Miner
solution to the initial population does not modify the model mined with ProDi-
Gen. Nevertheless, the inclusion of this individual in the initial population speeds
up the iteration at which the best individual is found: instead of relying only on
randomly initialized individuals, ProDiGen also uses the dependency relations
mined by Heuristics Miner.

2.2 Evaluation

The individuals of the population are evaluated taking into account complete-
ness, precision and simplicity, combined in a hierarchical fitness function.

Completeness. We use the definition of completeness (Cf) described in [2],
which takes into account the number of correctly parsed tasks 4, but also punishes
the number of missing and not consumed tokens of the Petri net encoded in the
individual —each missing or not consumed token represents a failure.

Precision. A model is precise when it reproduces the event traces of the log,
not allowing for too much extra behavior, i.e, behavior that does not exist in
the log. Our definition of precision considers all the activities that are enabled
—tasks for which their input conditions are met when reproducing the log—
while an individual parses the event traces of the log:

4 If a task from an individual does not have the proper input arcs, that task will be
incorrectly fired when reproducing the log, as its input conditions are not fulfilled.

122 B. Vázquez-Barreiros, M. Mucientes, and M. Lama

Pf (L, CM) =
1

allEnabledActivities (L, CM)
(1)

where allEnabledActivities is the sum of enabled activities after firing each ac-
tivity of the log L by an individual CM . The idea behind this definition is to
punish those individuals that enable too many activities during the parsing of
the log, as they activate several paths that allow for extra behavior. Contrary to
[2], ProDiGen does not consider the rest of the population in order to compute
the precision of each individual, which can evolve regardless the precision of the
rest of the population.

(a) Mined model with needless
branches.

E D

B

C

A

(b) Simplest mined model.

Fig. 1. Two possible solutions with the same completeness and precision

Simplicity. Completeness and precision give, by their own, a good indicator of
how good is a mined model, but do not guarantee to find the simplest model.
Hence, the third dimension of the fitness is simplicity. Although, there are several
metrics that measure the complexity of a directed graph [6], there is no metric
to measure the simplicity of a causal matrix. Instead of converting the causal
matrix to a Petri net each time we want to measure the complexity of the
model, we opted to define a new complexity metric for causal matrices. The new
metric measures the complexity of a mined model based on the number of causal
relations of an individual:

Sf (CM) =
1∑

t∈CM
(∑

Φ∈I(t) |Φ|+
∑
Ψ∈O(t) |Ψ |

) (2)

where t is a task of the causal matrix CM, Φ is an element of the input function of
t —I(t)—, and Ψ is an element of the output function of t —O(t)—. Therefore,
the simplicity counts the number of causal relations of the model using the
cardinality of the input and output subsets of the causal matrix.

ProDiGen 123

To illustrate the relevance of simplicity to mine the correct model, lets assume
a simple example with three different traces:<< A,B,C,D >3,< A,C,B,D >2,
< A,E,D >4>. Fig. 1 shows two mined models that have the same completeness
and precision: (i) both can parse all the traces, i.e., Cf = 1.0; and (ii) they enable
exactly the same number of tasks during the parsing (50), thus Pf = 1/50.
However, the model in Fig. 1a has a Sf = 1/16, while the model in Fig. 1b has
a Sf = 1/14 and, therefore, the second one is a better model5.

Fitness. ProDiGen uses a hierarchical fitness function that establishes priorities
among these three objectives:

F(a) > F(b) ⇐⇒ {Cf (a) > Cf (b)} ∨ {Cf (a) = Cf (b) ∧ Pf (a) > Pf (b)} (3)

∨ {Cf (a) = Cf (b) ∧ Pf (a) = Pf (b) ∧ Sf (a) > Sf (b)}

where F (a), Cf (a), Pf (a) and Sf (a), are respectively the fitness, completeness,
precision and simplicity of a process model a. The advantage of using this hier-
archical fitness function over a weighted fitness function is that, during the first
stage of the evolutionary process, the GA focuses the search on those individuals
that are complete. Once these individuals become representative in the popula-
tion, the second level of the hierarchy takes the control, modifying the models
that are complete in order to improve their precision. Finally, in the third stage,
the fitness function guides the GA to improve the simplicity of those models that
are both complete and precise.

2.3 Selection

ProdDiGen uses the binary tournament selection as selection mechanism. In a
n-tournament selection, n individuals are randomly picked from the population
—with replacement— and the best of them is selected. In this case, n = 2
—binary tournament selection.

2.4 Crossover

As the process models are represented through causal matrices, and the size of
the causal matrix increases with the number of activities in the log, the num-
ber of possible crossover points could be really large —increasing significantly
the search space. Thereby, we have noticed that picking the crossover point at
random produces a poor performance of the crossover operator, as most of the
offspring have a fitness lower than their parents after the crossover operation
—the selected task of the individual to be crossed can be a correctly fired one.

5 The difference between these two solutions —in terms of simplicity— is caused by the
output function of the task A: the causal matrix of the model in Fig. 1a has O(A) =
{{BE}, {DC}, {C E}}, which increases its complexity by 6. On the other hand, the
causal matrix of the model in Fig. 1b has O(A) = {{BE}, {C E}}, increasing the
complexity by 4.

124 B. Vázquez-Barreiros, M. Mucientes, and M. Lama

ProDiGen makes the selection of the activity that is going to be crossed using
a non uniform Probability Density Function (PDF). This PDF assigns a null
probability of being selected to those activities that have been correctly fired
during the parsing of the traces in the log. On the other hand, those activities
that were incorrectly fired receive a uniform probability —inversely proportional
to the number of incorrectly parsed activities— of being crossed.

Algorithm 2. Crossover operator

r ← getRandomNumber() ; // returns a random number between [0,1)1

if r < crossoverRate then2

incorrectlyFiredActivities ← ∅3

if fitness(parent1) >= fitness(parent2) then4

incorrectlyFiredActivities ← set of incorrectly fired activities of parent15

else6

incorrectlyFiredActivities ← set of incorrectly fired activities of parent27

if incorrectlyFiredActivities �= ∅ then8

crossoverPoint ← randomly select an activity t from9

incorrectlyFiredActivities

else10

crossoverPoint ← randomly select an activity t from the bag of all11

possible tasks in the log

offspring1, offspring2 ← doCrossover(parent1, parent2, crossoverPoint)12

Repair offspring1 and offspring213

The selection of the crossover point is summarized in Alg. 2. By incorrectly
fired activities we mean (i) activities that need extra tokens in their inputs to be
fired, i.e, tasks that do not have the correct input arcs, and (ii) activities that
have left tokens in their outputs after the parsing of the traces, i.e, tasks that do
not have the correct output arcs. Therefore, during the evaluation process, the
algorithm keeps track of the tasks with missing or extra tokens, and generates a
bag of incorrectlyFiredActivities for each individual. Thereby, the crossover point
is selected from the set of incorrectlyFiredActivities of the fittest parent (Alg.
2:4). Note that if the set of incorrectlyFiredActivities of the fittest individual is
empty (Alg. 2:8), i.e, it has a completeness equal to 1, the crossover point is
randomly chosen from the bag of all the possible tasks in the log (Alg. 2:11).
After the crossover point is selected, the crossover is performed as defined in [2].
Thus, the crossover operator combines —by adding or merging subsets— the
inputs for the selected task t of both parents, in order to generate the new inputs
for t in the offspring. Finally this process is repeated for the output functions.
As the input and output (I/O) functions of the crossover task can change by
adding/removing causal dependencies, there may be inconsistencies between the
I/O function of the crossover point and the rest of I/O functions of the individual
— for example, a task t may have an output dependency with t’, but t’ does not

ProDiGen 125

have the input dependency with t. Thereby, after each crossover, the individual
has to be repaired (Alg. 2:13) to avoid these discrepancies between the input
and output sets of the tasks. The repair process works as follows. For each task
t’ that was eliminated from O(t), the process checks if t’ ∈ O(t) —notice that
t’ can be in several subsets of O(t). If that is false, t has to be eliminated form
I(t’). This process is repeated also for the input sets. On the other hand, when
a task t’ is added to O(t), the process checks if t ∈ I(t’). If that is false, then t
is added to I(t). A similar process is done for the inputs of t.

2.5 Mutation

The mutation operator modifies the population by (i) adding new material —new
relations— to the individuals; (ii) removing causal relations; or (iii) reorganizing
an input/output function, for instance, converting an AND-join into an OR-join.

Although ProDiGen uses the three mutation actions defined in [2], there are
four major differences between our mutation operator and the one defined in
Genetic Miner: (i) the individual is iteratively mutated until it is different from
its parent —a mutation could generate an individual equal to its parent due to
an useless mutation, for example, redistributing an empty set; (ii) only one task
is affected by the mutation operator; (iii) individuals are always forced to mutate
—the mutation probability is 1; and (iv) the task t′ added to the I/O set of a
task t must belong to the set of tasks that have an input/output dependency
with t. The major goal of these modifications is to avoid duplicate individuals
within the same population, or at least to minimize the duplicates. With these
modifications, we have a more diverse population.

The mutation operator is summarized in Alg. 3. It uses two sets for the addi-
tion of a new task: outputDependencies(t) and inputDependencies(t). ProDiGen
uses these sets to reduce the set of tasks that are appropriate to be inserted in an
I/O set, preventing the inclusion of a new task t’ that never appears in a trace
of t within the log. A first approach could be to include in the dependencies
sets those tasks that have a dependency with t as calculated in the initialization
phase. However, if we only take into account these dependencies, there will be
not enough new material to discover all the different constructs. Therefore, in-
putDependencies(t) will be the set of tasks appearing before t in any trace of the
log and, in the same way, outputDependencies(t) will be the set of activities that
appear after t in any trace of the log. In this way, the mutation operator focuses
only on those regions of the search space that represent information contained
in the log. As a result, the success of the mutation operator increases, finding
better offspring. Again, as the mutation operator can add or remove a task from
an I/O set of a task t, there may be inconsistencies within the causal dependen-
cies of the individual. Therefore, after each mutation the individual has to be
repaired (Alg. 3:15), following the same strategy described in Sec 2.4.

126 B. Vázquez-Barreiros, M. Mucientes, and M. Lama

Algorithm 3. Mutation operator

while the individual does not change do1

Randomly choose one task t in the individual2

mutationType← getRandomNumber() ; // returns a random number3

between [0,1)

if mutationType < 1/3 then4

Randomly select a task t’ from inputDependencies(t)5

if getRandomNumber() < 1/2 then6

Randomly choose one subset X ∈ I(t) and add the task t’ to X7

else8

Create a new subset X, add the task t’ to X, and add X to I(t)9

else if mutationType < 2/3 then10

Randomly choose one subset X ∈ I(t) and remove a task t’ from X,11

where t’ ∈ X. If X is empty after this operation, exclude X from I(t)

else12

Randomly redistribute the elements from I(t)13

Repeat from line 3, but using O(t) instead of I(t) and14

outputDependencies(t) instead of inputDependencies(t)
Repair the individual15

2.6 Replacement

At each iteration, ProDiGen generates N offspring —being N the size of the
population— as follows. Tournament selection randomly picks two parents from
the current population. These individuals are modified by the genetic opera-
tors, creating two new individuals. This process is repeated until N offspring
are generated. At this point, the parent population —current population— and
the offspring population are joined and sorted —using the fitness. Finally the re-
placement operator selects the N best individuals. In order to maintain a diverse
population, those repeated individuals are placed at the bottom of the ranking
—keeping one representative in the original ranking position.

2.7 Reinitialization

A reinitialization takes place when the value of timesRun goes under 0 (Alg.
1:15), which indicates that the search process was not improving in the last
iterations. This situation is detected in two ways. The first one (Alg. 1:11) is
when the new population of an iteration has no new individuals —in comparison
with the initial population of that iteration. The second indicator (Alg. 1:13)
is the fact that the best individual does not improve. Each time that one of
these situations is detected, timesRun decreases. The initial population after
a reinitialization is generated in the same way as in the initialization stage.
Moreover, ProDiGen also includes in the new population a mutation of the

ProDiGen 127

Table 2. Process models used in the experimentation

Activity structures Log content

Model #
Ta
sk
s

Se
qu
en
ce

Ch
oi
ce

Pa
ra
lle
lis
m

Le
ng
th
-O
ne

Lo
op

Le
ng
th
-T
wo

Lo
op

Ar
bi
tr
ar
y
Lo
op

St
ru
ct
ur
ed

Lo
op

In
vi
sib
le
ta
sk
s

Un
ba
la
nc
ed

AN
D
-jo
in
/s
pl
it

#
tr
ac
es

#
ev
en
ts

g2 [2] 22 � � � � � � 300 4501
g3 [2] 29 � � � � � � 300 14599
g4 [2] 29 � � � � � 300 5975
g5 [2] 20 � � � � � 300 6172
g6 [2] 23 � � � � � 300 5419
g7 [2] 29 � � � � � 300 14451
g8 [2] 30 � � � � � � � 300 5133
g9 [2] 26 � � � � � � 300 5679
g10 [2] 23 � � � � � 300 4117
g12 [2] 26 � � � � � � 300 4841
g13 [2] 22 � � � � � � � 300 5007
g14 [2] 24 � � � � � � 300 11340
g15 [2] 25 � � � � � 300 3978
g19 [2] 23 � � � � � � 300 4107
g20 [2] 21 � � � � � � 300 6193
g21 [2] 22 � � � � 300 3882
g22 [2] 24 � � � � � � 300 3095
g23 [2] 25 � � � � � 300 9654
g24 [2] 21 � � � � � � 300 4130
g25 [2] 20 � � � � � 300 6312
EMT [1] 7 � � � � 100 790

best individual of the last iteration. The maximum number of reinitializations
is limited, and when it reaches the threshold (maxRestarts) ProDiGen ends.

3 Experimentation

This section describes (i) the validation of ProDiGen with 21 different logs us-
ing several conformance checking metrics, and (ii) the comparison of ProDiGen
performance with two well-known state of the art process mining techniques:
Heuristics Miner [12] and Genetic Miner [2].

3.1 Logs

ProDiGen has been validated with 21 different logs from [2] and [1]. Tab. 2
summarizes the structural complexity of these models ranging from 7 to 30

128 B. Vázquez-Barreiros, M. Mucientes, and M. Lama

tasks. Some of the models used in the experimentation contain unbalanced AND-
split/join points, i.e, there is not a one-to-one relation between the AND-split
points and the AND-join points. Moreover, all the logs are imbalanced, i.e., they
contain traces with very different frequencies. Thereby, with this experiment
we can check whether the algorithm overfits or underfits the data due to the
unbalanced frequencies of the traces in the log.

3.2 Metrics

The performance of ProDiGen over the different logs has been measured with
two different sets of metrics: (i) metrics based on the original model; and (ii)
metrics based on the event log.

Metrics Based on the Original Model. To compare the original and the
mined models, we use the metrics defined in [2]:

– To quantify the behavior similarity between the original model and the mined
one we use the metrics Behavioral precision (Bp) and Behavioral recall (Br),
which detect, respectively, if the mined model can process traces that cannot
be parsed by the original model, and if the original model can parse traces
that cannot be processed in the mined model. The mined model is as precise
as the original one if Bp = 1 and Br = 1: the closer the values of Bp and Br
to 1, the higher the similarity between the original and the mined models.

– On the other hand, to measure the similarity from the structural point of
view of the mined model with respect to the original one, we use the metrics
Structural precision (S p) and Structural recall (S r). They check, respectively,
if there are causality relations of the mined model that are not defined in the
original model, and if there are causality relations of the original model that
are not defined in the mined model. When the original model has connections
that do not appear in the mined model, Sr will take a value smaller than 1,
and, in the same way, when the mined model has connections that do not
appear in the original model, Sp will take a value lower than 1.

Metrics Based on the Log. Additionally to the four previously described
metrics, we also use three metrics that do not require the original model as
input:

– To measure the completeness we use the proper completion measure [5],
which is the fraction of properly completed process instances. Proper com-
pletion (C) takes a value of 1 if the mined model can process all the traces
without having missing tokens or tokens left behind.

– The precision is evaluated with the alignment precision (P) defined in [7],
which, takes a value of 1 if all the behavior allowed by the model is observed
in the log.

– Finally, for the simplicity (S) we use:

S =
1

1 + S′
(4)

ProDiGen 129

where S′ is the weighted P/T average arc degree defined in [6]. The higher
the value of S, the higher the simplicity. To measure these three metrics we
used the tool CoBeFra [11].

Table 3. Results for the 21 logs

Logs

g2 g3 g4 g5 g6 g7 g8 g9 g1
0

g1
2

g1
3

g1
4

g1
5

g1
9

g2
0

g2
1

g2
2

g2
3

g2
4

g2
5

E
M
T

ProDiGen

Model

metrics

Bp 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.96 1.0

Br 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 1.0
Sp 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.91 1.0
Sr 1.0 1.0 0.97 1.0 1.0 1.0 0.94 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.98 0.91 1.0

Log

metrics

C 1.0 1.0 0.78 1.0 1.0 1.0 0.52 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.98 1.0
P 0.90.82 0.98 0.980.95 0.88 0.86 0.92 0.890.97 0.93 0.93 0.860.92 0.78 0.91 0.9 0.58 0.89 0.74 0.87
S 0.3 0.3 0.31 0.310.31 0.32 0.28 0.31 0.3 0.31 0.3 0.31 0.25 0.3 0.29 0.31 0.3 0.3 0.29 0.31 0.27

GM

Model

metrics

Bp 1.00.61 0.78 1.0 1.0 1.0 0.84 0.96 0.99 1.0 0.98 0.61 0.8 0.98 1.0 1.0 0.970.57 0.83 0.81 1.0
Br 1.00.97 0.97 1.0 1.0 1.0 1.0 1.0 0.97 1.0 0.99 1.0 0.97 0.9 1.0 1.0 1.0 0.88 0.88 0.96 0.83
Sp 1.00.81 0.81 1.0 1.0 1.0 1.0 0.97 0.9 1.0 0.95 0.95 0.880.95 1.0 1.0 0.850.76 0.75 0.76 0.85
Sr 1.00.81 0.81 1.0 1.0 1.0 0.94 0.98 0.92 1.0 0.94 0.94 0.870.89 1.0 1.0 0.850.74 0.75 0.74 0.85

Log

metrics

C 1.00.31 0.59 1.0 1.0 1.0 0.26 0.48 0.48 1.0 0.75 1.0 0.15 0.2 1.0 1.0 0.43 0.2 0.72 0.41 0.3
P 0.90.42 0.98 0.980.95 0.88 0.0 0.94 0.910.97 0.96 0.74 0.0 0.0 0.78 0.91 0.86 0.0 0.88 0.49 0.81
S 0.30.31 0.3 0.310.31 0.32 0.26 0.3 0.290.31 0.3 0.31 0.240.29 0.29 0.31 0.3 0.28 0.3 0.28 0.3

HM

Model

metrics

Bp 1.0 1.0 0.94 1.0 0.9 0.97 0.87 1.0 0.96 1.0 1.0 0.97 0.960.97 1.0 1.0 0.99 0.6 0.92 0.76 0.81

Br 1.00.98 0.92 1.0 0.98 0.97 0.99 0.98 0.95 1.0 1.0 0.97 0.98 1.0 1.0 1.0 0.99 1.0 0.88 0.94 0.96
Sp 1.00.97 0.96 1.0 0.93 0.97 0.95 1.0 0.96 1.0 1.0 0.96 1.0 1.0 1.0 1.0 0.970.91 0.89 0.85 0.76

Sr 1.00.97 0.86 1.0 0.97 1.0 0.86 1.0 0.96 1.0 1.0 0.92 0.86 0.9 1.0 1.0 0.910.94 0.81 0.85 0.74

Log

metrics

C 1.0 1.0 0.78 1.0 0.66 1.0 0.52 0.74 0.78 1.0 1.0 0.91 0.870.85 1.0 1.0 0.9 0.0 0.93 0.23 0.37
P 0.90.83 0.99 0.980.93 0.9 0.86 0.93 0.9 0.97 0.93 0.92 0.870.93 0.78 0.91 0.9 0.0 0.86 0.71 0.85
S 0.3 0.3 0.32 0.310.31 0.31 0.28 0.31 0.3 0.31 0.3 0.32 0.26 0.3 0.29 0.31 0.3 0.29 0.29 0.3 0.29

3.3 Results

Within this scenario, we have conducted an experimentation comparing ProDi-
Gen with two of the state of the art most popular algorithms: Genetic Miner [2]
and Heuristics Miner [12].

The values that have been used for the parameters of ProDiGen are: max-
Generations = 1,000, initialTimesRun = 35, population size = 100, crossover
probability = 0.8 andmaxRestarts = 5. For the Genetic Miner (GM), we selected
the parameters indicated by the authors in [2]: maxGenerations = 5,000, pop-
ulation size = 10, crossover probability = 0.8, mutation probability 0.2, elitism
rate = 0.2, selection type = tournament 5. For the Heuristics Miner (HM), we
used the default parameters established in ProM 6.3 with the option mine long
distance dependencies enabled.

Table 3 shows the results on the 21 logs. ProDiGen mines the same model as
the original model in 17 of the logs —the values of the four model metrics are 1—
while in the other four logs the mined model is very similar to the correct one.
The difficulties in these 4 logs arise when (i) mining logs with parallel constructs
with more than two branches and with two or more tasks in each branch, and
(ii) when mining logs that came from models with unbalanced AND-join/split
points. These type of patterns are even more difficult to mine considering that
not all the possible combinations admitted by the original model are represented
in the log, and not all the traces have the same frequency. Therefore, ProDiGen
tries to better fit the most frequent behavior of the log, overfitting the data

130 B. Vázquez-Barreiros, M. Mucientes, and M. Lama

(a) Original model.

(b) Mined model.

Fig. 2. Detail of the original and mined models for log g24

when dealing with these constructs. We now discuss the details of the models
incorrectly mined by ProDiGen:

– The results for log g24 (Fig. 2) show that the mined model is almost equal
to the original one, except the only one relation between two tasks (tasks in
grey, Fig. 2b). If we process the log with the original model (Fig. 2b) we can
check that the missing relation is never used and, hence, it is impossible to
mine that relation with the information of the log.

– The mined model for log g8 (Fig. 3) has a behavioral precision and recall
equal to 1, i.e., the mined model can parse all the traces from the log and
allows the same behavior as the original one with respect to the information
contained in the log. However, the model is not complete because it can-
not tackle the output dependencies of the tasks timeout and return-contract,
considering them as final tasks —Fig. 3a shows the original output depen-
dencies of these tasks. This results in a incomplete mined model, because
all the traces involving these two tasks will have an extra token at the end
of the parsing. The main problem with this log is that these two tasks are
involved in the unbalanced AND-join/split, which cannot be correctly mined
by ProDiGen.

– For log g25 the behavioral recall and precision are close to 1. This means
that, even when the model is not as precise as the original, it does not allow
for more extra behavior than the original one with respect to the log. Despite
this model does not have an unbalanced AND-join/split point, it has many
interleaving situations, which make very difficult to properly mine the correct
relations of the different branches of the parallel construct.

ProDiGen 131

– The mined model for log g4 has again a behavioral precision and recall of
1, showing that it expresses the same behavior as the original model with
respect to the log. The main problem when mining this log is that ProDiGen
cannot find the complete model because it discovers an extra final task due
to the unbalanced AND-join/split point —the same problem as in log g8.

(a) Original model. (b) Mined model.

Fig. 3. Detail of the original and mined models for log g8

Table 3 also shows the results of the other algorithms. The main problem of
GM is that it finds solutions with too many silent transitions6 generating models
with low precision and simplicity. On the other hand, HM focuses its search on
the main behavior of the log —finding solutions with high levels of simplicity.
Hence, it cannot find the original model on those logs that came from models
with many interleaving situations, as it tries to better fit the most frequent
behavior recorded in the log —as the logs are unbalanced, not all the possible
relations have the same frequency.

Comparing the results of the three algorithms: ProDiGen correctly mines, i.e,
finds the original model, the 81% (17 out of 21) of the cases; GM finds the original
model in the 33% (7 out of 21) of the logs; and HM finds the original model in
the 28% (6 out of 21) of the logs. Moreover, Table 3 also shows information
about which algorithm retrieves better results for each metric —highlighted in
grey. On those logs where ProDiGen did not find the original model —logs g4,
g8, g24 and g25— it still obtains the best solution of the three algorithms.

6 A silent transition is a type of activity used for routing purposes only, as it does not
correspond to any activity in the log.

132 B. Vázquez-Barreiros, M. Mucientes, and M. Lama

Based on this experimentation, we can conclude that using a hierarchical
fitness function based on completeness, precision and simplicity, shows a great
performance when mining unbalanced logs. Moreover, the inclusion of heuristics
in the genetic operators also improves the results, as ProDiGen focuses the search
over those regions that represent the behavior of the log.

4 Conclusions

We have presented ProDiGen, a genetic algorithm for process mining that can
tackle all the different constructs at once, and obtains models that are complete,
precise, and simple, while being robust to infrequent behavior and unbalanced
logs. ProDiGen uses a new hierarchical fitness function that includes new defini-
tions for precision and simplicity. Moreover, the proposal uses genetic operators
that focus the search on specific parts of the model: (i) the crossover operator
selects the crossover point based on the errors of the mined model; and (ii) the
mutation operator is guided by the causal dependencies of the log. ProDiGen
has been validated with 21 different models with all kind of workflow patterns
and unbalanced logs. Results conclude that ProDiGen mine in most of the cases
the original model, or a very similar, simple, and precise model that represents
almost all the behavior of the log. Furthermore, ProDiGen has been compared
with two of the state of the art algorithms, showing a better performance, and
finding models that are complete, precise and simple.

Acknowledgment. This work was supported by the Spanish Ministry of
Economy and Competitiveness under the project TIN2011-22935 and by the
European Regional Development Fund (ERDF/FEDER) under the project
CN2012/151 of the Galician Ministry of Education.

References

1. Buijs, J., van Dongen, B., van der Aalst, W.M.P.: Quality dimensions in process
discovery: The importance of fitness, precision, generalization and simplicity. In-
ternational Journal of Cooperative Information Systems 23(01) (2014)

2. de Medeiros, A.: Genetic Process Mining. PhD thesis, Technische Universiteit Eind-
hoven (2006)

3. Dumas, M., ter Hofstede, A., van der Aalst, W.M.P.: Process-aware informa-
tion systems: bridging people and software through process technology. Wiley-
Interscience (2005)

4. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplifi-
cation based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

5. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Information Systems 33(1), 64–95 (2008)

6. Sánchez-González, L., Garćıa, F., Mendling, J., Ruiz, F., Piattini, M.: Prediction of
business process model quality based on structural metrics. In: Parsons, J., Saeki,
M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 458–463.
Springer, Heidelberg (2010)

ProDiGen 133

7. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying history on
process models for conformance checking and performance analysis. Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge Discovery 2(2), 182–192 (2012)

8. van der Aalst, W.M.P., Ter Hofstede, A.H., Kiepuszewski, B., Barros, A.P.: Work-
flow patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

9. van der Aalst, W.M.P., Weijters, A., Maruster, L.: Workflow mining: Discover-
ing process models from event logs. IEEE Transactions on Knowledge and Data
Engineering 16(9), 1128–1142 (2004)

10. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Pro-
cess discovery using integer linear programming. In: van Hee, K.M., Valk, R. (eds.)
PETRI NETS 2008. LNCS, vol. 5062, pp. 368–387. Springer, Heidelberg (2008)

11. vanden Broucke, S., Weerdt, J.D., Vanthienen, J., Baesens, B.: A comprehensive
benchmarking framework (CoBeFra) for conformance analysis between procedural
process models and event logs in ProM. In: 2013 IEEE Symposium on Computa-
tional Intelligence and Data Mining (CIDM), pp. 254–261. IEEE (2013)

12. Weijters, A., van der Aalst, W.M.P., de Medeiros, A.: Process mining with the
heuristics miner-algorithm. Technische Universiteit Eindhoven 166 (2006)

13. Wen, L., Wang, J., Sun, J.: Mining invisible tasks from event logs. In: Dong, G., Lin,
X., Wang, W., Yang, Y., Yu, J.X. (eds.) APWeb/WAIM 2007. LNCS, vol. 4505,
pp. 358–365. Springer, Heidelberg (2007)

Constructs CompetitionMiner: Process

Control-FlowDiscovery of BP-Domain Constructs

David Redlich1,2, Thomas Molka1,3, Wasif Gilani1,
Gordon Blair2, and Awais Rashid2

1 SAP Research Center Belfast, United Kingdom
{david.redlich,thomas.molka,wasif.gilani}@sap.com

2 Lancaster University, United Kingdom
{gordon,marash}@comp.lancs.ac.uk

3 University of Manchester, United Kingdom

Abstract. Process Discovery techniques help a business analyst to un-
derstand the actual processes deployed in an organization, i.e. based on
a log of events, the actual activity workflow is discovered. In most cases
their results conform to general purpose representations like Petri nets
or Causal nets which are preferred by academic scholars but difficult
to comprehend for business analysts. In this paper we propose an al-
gorithm that follows a top-down approach to directly mine a process
model which consists of common BP-domain constructs and represents
the main behaviour of the process. The algorithm is designed so it can
deal with noise and not-supported behaviour. This is achieved by let-
ting the different supported constructs compete with each other for the
most suitable solution from top to bottom using ”soft” constraints and
behaviour approximations. The key parts of the algorithm are formally
described and evaluation results are presented and discussed.

Keywords: business process models, business process management,
process discovery.

1 Introduction

Due to increasing competition modern organizations need to continuously adapt
and improve their business functions. At the heart of these organizations are
business processes (BPs) which define the flow of work that needs to be exe-
cuted to achieve their business goals. Discovering and understanding the actual
workflow of the deployed processes from a log of events is the purpose of Process
Discovery techniques. This enables further analysis, e.g. identifying bottle necks,
thus helping to improve the deployed business processes and increase the overall
performance and competitiveness of the whole business.

However, there is a noticeable difference between business process specifica-
tions at design-time and the representations of business processes discovered at
run-time. Whereas prominent standards for business process models, e.g. BPMN
and EPC, are BP-domain-specific, the results of Process Discovery algorithms
conform to BP-independent representations like Petri nets as discovered by the
alpha-algorithm [11], or Causal nets as discovered by the HeuristicsMiner [10].

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 134–150, 2014.
c© Springer International Publishing Switzerland 2014

CCM: Control-Flow Discovery of BP-Domain Constructs 135

For a business analyst, the interpretation of these general purpose languages for
decision making is a difficult task, because (1) these are of a different represen-
tation than what he is familiar with and (2) the mapping between the process
modelled at design-time and the discovered process model at run-time can be
difficult to establish since they both conform to different languages. One solu-
tion to bridge this discrepancy are transformations from and to different possible
representations for business processes. A second solution is to directly mine a
model conforming to a BP-domain language. This enables the business analyst
to formulate requirements directly for the result representation

In this paper we propose an algorithm that follows a top-down approach to
discover a business process model which consists of a predefined set of common
BP-domain constructs like Sequence, Choice, Loop, Parallelism, etc. and repre-
sents the main behaviour of the process according to the requirements of the
business analyst. This is achieved by assuming the process is of a nested struc-
ture and letting the different constructs compete with each other on each level
for the most suitable solution from top to bottom. The competition aspect of the
Constructs Competition Miner (CCM) makes it especially suitable for process
logs with conflicting or exceptional behaviour.

The remainder of this paper provides a definition of business process elements
and event logs (Section 2), a discussion of related work (Section 3), a formal
description of the CCM (Section 4), as well as its evaluation (Section 5), and an
outlook of future work (Section 6).

2 Process Models and Event Logs

Many different standards for business process models exist. In industry Business
Process Model and Notation (BPMN) [7] is a prominent example, in research Yet
Another Workflow Language (YAWL) [12] is the most established one. In our
work, we focus on a general set of control-flow elements that are supported by
the most common standards. These elements include a start and an end event,
activities (i.e. process steps), parallel gateways (AND-Split/Join), and exclusive
gateways (XOR-Split/Join) (see [7,12]). In Figure 1, an example process con-
taining all considered elements is shown. Formally, we define the control-flow of
a business process as follows:

Definition 1. A business process model is a tuple BP = (A,S, J, Es, Ee, C)
where A is a finite set of activities, S a finite set of splits, J a finite set of joins,
Es a finite set of start events, Ee a finite set of end events, and C ⊆ F × F the
path connection relation, with F = A ∪ S ∪ J ∪ Es ∪ Ee, such that

– C = {(c1, c2) ∈ F × F | c1 �= c2 ∧ c1 /∈ Ee ∧ c2 /∈ Es},
– ∀a ∈ A ∪ J ∪ Es : |{(a, b) ∈ C | b ∈ F}| = 1,
– ∀a ∈ A ∪ S ∪ Ee : |{(b, a) ∈ C | b ∈ F}| = 1,
– ∀a ∈ J : |{(b, a) ∈ C | b ∈ F}| ≥ 2,
– ∀a ∈ S : |{(a, b) ∈ C | b ∈ F}| ≥ 2, and
– all elements e ∈ F in the graph (F,C) are on a path from a start event

a ∈ Es to an end event b ∈ Ee.

136 D. Redlich et al.

Start
Event

AND
Split

End
Event

XOR
Split

AND
Join

b d

a

XOR
Split

XOR
Joinc

XOR
Split f

gXOR
Split

XOR
Join

XOR
Join

Legend Start/End
Event

Activity XOR
Split/ Join

AND
Split/Join

XOR
Join

XOR
Join

AND
Split

AND
Join

e

h

XOR
Split

XOR
Join

XOR
Split

Fig. 1. Example business process with all element types included

A block-structured BP model is a refinement of Definition 1. It is additionally
required that the process is hierarchically structured, i.e. every split element
is mapped to exactly one join and vice-versa, both representing either a single
entry or a single exit point of a non-sequence BP construct, e.g. Choice, Parallel,
etc. A very similar representation is the process tree, which is defined based on
Petri nets/workflow nets in [5].

A computer-aided execution of a business process is recorded in an event log
containing transaction details for each event. In this paper we only focus on
a minimal set of event features necessary for the discovery of the control-flow.
Every event needs to have a reference to its process instance, e.g. via identifier,
and to the corresponding activity, e.g. via unique name. All resulting events of a
single process instance execution are captured in a trace. Accordingly, an event
is represented by a pair (t, a) where t links to the trace and a to the activity.
Since two traces are assumed to be independent from each other only the order
of the activities within a trace is of interest.

Definition 2. Let A be a finite set of activities then σ ∈ A∗ is a trace1 and L ⊆
A∗ is an event log, more specifically L is a multi-set (bag)2 of traces (sequences of
activities). A finite sequence over A of length n is a mapping σ : {0, 1, ..., n−1} →
A and is represented in the following by a string, i.e. σ = [a0, a1, ..., an−1] where
ai = σ(i) for 0 ≤ i < n. |σ| = n denotes the length of the sequence.

Traces only consisting of the activity order are called simple traces and event
logs only consisting of simple traces are called simple event logs [13]. An example
of a simple event log for the business process in Figure 1 is3

1 A∗ is the set of finite sequences of elements of A.
2 Since L is a multi-set each trace can be contained more than once - see [13].
3 The power values denote the respective occurrences of the traces in the log, e.g. trace
[b, a] occurs 4 times in the log.

CCM: Control-Flow Discovery of BP-Domain Constructs 137

L1 = {[b, a]4, [a, b, d, e]5, [b, a, e, d]4, [b, a, c, a, b, c, b, a, d, e, e, d]6,
[g, g]2, [f, h]3, [f, f, h, f, g, h, g, f, h]8, [g, h, f]2} (1)

3 State of the Art

Process discovery is concerned with extracting a business process model from an
event log without using any a-priori information [13]. Generally, process discov-
ery is an umbrella term comprising the discovery of all perspectives of a business
process, however, in this paper we focus on the discovery of only the control-
flow perspective. Usually, the goal of business process standards like BPMN or
EPC is to provide a means to build design-time models, and focus on aspects
like interoperability, or being a basis for reliable communication between differ-
ent stakeholders [2]. However, a process model extracted via process discovery
instead reflects the actual business process at run-time. Since it is not known be-
forehand which standard the process to be mined conforms to, process discovery
approaches are usually creating models conforming to general purpose represen-
tations, e.g. Petri nets [8], Causal nets [10]. A large number of process discovery
algorithms exist, each with its own respective strengths and weaknesses. Many
of them have in common that at first a footprint of the log is created based on
which the process is then constructed. In all cases known to the authors, the
footprint is represented by a direct neighbours matrix containing information
about the local relations between the activities, e.g. for the BP of Figure 1: c
can only appear after a or b. In this section we want to briefly discuss discovery
algorithms that are close to the CCM in concept or purpose.

A few discovery algorithms exist that discover blocked-structured processes:
(1) A number of genetic process discovery algorithms restrict the search space to
block-structured process models, thus creating structured process trees, e.g. [1].
However, these are non-deterministic and can not guarantee to find a suitable
model in finite run-time. (2) Another approach that is conceptually similar to the
CCM is proposed in [5], the Inductive Miner (IM). Here a top-down approach is
followed to discover block-structured Petri nets. The original algorithm evaluates
constraints based on local relationships between activities in order to identify
the representing construct. Furthermore, the IM has been extended in order to
deal with noise [6]. (3) A third option to create block-structured processes from
a log is the discovery of an arbitrary Petri net followed by a transformation into
a block-structured process as shown in [9].

Different approaches exist to deal with noise or logs that do not conform to
the target process language: (1) a simple technique is to pre-filter the log and
remove non-frequent traces. This technique may improve the readability of a
general purpose target language like Petri net but is not always applicable for a
restricted target language since it could still contain non-expressible behaviour.
(2) The fuzzy miner [4] works on a similar principal. Based on correlations and
significance it reduces the ”exact” model to a simplified model that still sup-
ports the main behaviour of the process. (3) A very prominent process discovery

138 D. Redlich et al.

algorithm is the HeuristicsMiner which mines a causal net that can be trans-
formed into a more common process representation [10]. Similar to our approach,
the footprint used in the HeuristicsMiner is not based on absolute relations be-
tween activities but on relative relation values. By increasing certain thresholds
a simplification can be achieved.

4 Constructs Competition Miner

In this section we describe the specifics of the Constructs Competition Miner.
The motivation to develop a discovery algorithm, which makes different BP
constructs compete with each other for the best solution, is derived from the
challenge that logs often contain noise or even have frequent but conflicting be-
haviour. This cannot be expressed by common BP constructs without allowing
duplicated activities. In uncertain cases the algorithm should look for the best
solution which can support most of the behaviour, i.e. sequence, choice, paral-
lelism, or loop or a combinations of these. Another important part of the CCM is
that it is not based on local relationships like direct neighbours but rather mines
the process structure from global relationships between any two activities, e.g.
which activities eventually follow one another in a trace. This approach has the
benefit of avoiding a state-space explosion for logs of strongly connected BPs
and will be of further benefit for the competition algorithm.

The CCM works in recursive divide-and-conquer fashion. First, a footprint
over all activities A from the event log is created. Based on this the suitability
between any two activities x, y ∈ A with regards to each available construct is
calculated. The suitability calculation is based on evaluating ”soft” constraints
for the global activity relations captured in the footprint, e.g. activity x is even-
tually followed by y. The goal of the subsequent competition algorithm is to find
the best combination of (1) the construct type, e.g. Sequence, Choice, or Loop,
and (2) the best two subsets Afirst and Asecond of A with Afirst ∪ Asecond = A
and Afirst ∩ Asecond = {}, that best accommodates all corresponding x, y-pair
relations. If it is decided which construct to apply, the corresponding BP struc-
ture is created, e.g. AND-split and -join if the winning construct was Parallelism.
Via a recursive call the two subsets Afirst and Asecond are then analysed in the
same way as described before, i.e. a footprint for the subset is created, construct
suitability calculated, etc. Note that every supported construct has to split the
set in two non-empty subsets. This recursion continues until the set cannot be
divided any more, i.e. the set consists of a single activity, in which case this
recursively called method successfully returns after creating the construct for
the single activity. The block-structured process is completely constructed if the
method call at the top of the recursion returns successfully.

4.1 Footprint

The CCM creates multiple footprints during its execution. At the begin-
ning the overall footprint for all occurring activities has to be created.

CCM: Control-Flow Discovery of BP-Domain Constructs 139

Start
Event

AND
Split

End
Event

AND
Join d

a

c

AND
Split

AND
Join

bXOR
Join

XOR
Split

Fig. 2. Example business process with two nested parallel constructs

As the algorithm continues in its divide-and-conquer fashion, new activ-
ity subsets are built for each of which a new footprint has to be cre-
ated, e.g. for A = {a, b, c, d, e} : (a, b, c, d, e) → ((a, b, c), (d, e)) →
(((a), (b, c)), ((d), (e))) → (((a), ((b), (c))), ((d), (e)))4 nine different footprints for
sets {a, b, c, d, e}, {a, b, c}, {d, e}, {b, c}, {a}, {b}, {c}, {d}, {e} need to be created.
For reasons motivated earlier we focus on global relations between the different
activities (e.g. in how many traces will x be followed at some later point in the
trace by activity y) and occurrence information about single activities (e.g. how
many times does activity x appear in the log). The set of activities the footprint
is to be calculated for is denoted by Am ⊆ A. Furthermore, if the elements of
Am are encompassed by one or more parallelism constructs, two more sets need
to be specified:

– Ai ⊂ A is the set of activities that are to be ignored, i.e. the occurrence of
these activities do neither directly nor indirectly interfere with the occurrence
of the activities in Am and are to be ignored (e.g. from a distant parallel
path).

– At ⊂ A is the set of activities that are to be tolerated, i.e. the occurrence of
these activities do not directly interfere with the occurrence of the activities
in Am but indicate that the enclosing parallelism construct has been entered
(e.g. from a local parallel path).

Note that Am, Ai, At are disjoint sets of activities. Ai, At are empty if the ac-
tivities in Am are not on a parallel path. To distinguish between the different
activity sets consider the process in Figure 2. If we want to create the footprint
for the top path with activity b, the three sets would be configured in the follow-
ing way: Am = {b}, Ai = {a}, At = {c}, because a is on a distant parallel path
and c on a local parallel path in relation to b. The distinction between Ai and
At is that elements in Ai are truly independent from the elements in Am, but
elements in At trigger the path in which elements of Am reside as well. This is
important to identify if a parallel path is optional like in our example where b
does not appear in every trace.

To enable the CCM to discover the process from top till bottom we require
the notion of a sub-trace which later on helps in determining the footprint for a
subset Am of all the activities A in a log:

4 (,) denote the nested blocks that emerge while splitting the sets recursively.

140 D. Redlich et al.

Definition 3. Let σ ∈ A∗ be a trace, Am, Ai, At ⊆ A disjoint sets of activities,
and Ar = A\(Am ∪Ai ∪At) the set of activities in A but not in Am, Ai, or At.
Then λ ∈ A∗m is a sub-trace of σ (λ �Am

Ai,At
σ) iff there is i, j ∈ {0, 1, ..., |σ| − 1}

and i < j such that

– i = 0 ∨ σ(i − 1) ∈ Ar and j = |σ| − 1 ∨ σ(j + 1) ∈ Ar and
– ∃l∈{i,i+1,...,j}σ(l) ∈ (Am ∪ Ai) and
– ∀l∈{i,i+1,...,j}σ(l) ∈ (Am ∪ Ai ∪At) and
– (|λ| = 0)∨

(|λ| = 1 ∧ ∃l∈{i,i+1,...,j}(σ(l) = λ(0) ∧ ∀n∈{i,i+1,...,j},n�=lσ(n) /∈ Am))∨
(|λ| > 1∧ ∀k∈{0,1,...,|λ|−2}∃l,n∈{i,i+1,...,j},l<n(σ(l) = λ(k) ∧ σ(n) = λ(k + 1)∧

∀p∈{l+1,l+2,...,n−1}σ(p) /∈ Am)).

If we consider again the example in Figure 2 and a corresponding trace σ =

[b, c, a, b, d] then λ = [b, c, a, b, d] is a sub-trace of σ for �{a,b,c,d}{},{} , λ = [b, c, b, d]

is a sub-trace of σ for �{b,c,d}{},{a} , and λ = [b, b] is a sub-trace of σ for �{b}{a},{c}.
If we instead consider the trace σ = [c, a, d] then only the empty trace λ = []

represents the sub-sequence of σ for �{b}{a},{c} because a appeared and indicated

that the top path has been enabled as well but exited without any occurrence
of b. Note, that σ �A{},{} σ, i.e. if the set of activities that are to be monitored is
the set of all activities in the trace then the trace itself is the sub-trace. Also, in
the case of a loop behaviour contained in a trace, the original trace may produce
more than one sub-trace for a subset of activities that reside in the loop, e.g. for
trace σ = [b, a, c, a, b, c, b, a, d, e, e, d] from L1 on page 137, the following three

sequences are sub-traces of σ for �{a,b}{},{}: [b, a], [a, b], and again [b, a].

The purpose of the definition of a sub-trace is that we can later on discover
the best suited BP control-flow construct for the complete traces but also sub-
traces corresponding to a subset of all involved activities. In order to build the
footprint for sub-traces we furthermore introduce the following notations:

Definition 4. Let L ⊆ A∗ be an event log over A, Am, Ai, At ⊆ A disjoint
sets of activities specifying the scope of the notations, and ΛL,Am

Ai,At
= {λ | λ ∈

A∗m ∧ λ �Am

Ai,At
σ ∧ σ ∈ L} be a multi-set of all sub-traces in L specified by

Am, Ai, and At. Let activity x ∈ Am, then is:

1. OnceL,Am

Ai,At
(x) = {λ ∈ ΛL,Am

Ai,At
| ∃i∈{0,1,...|λ|−1}λ(i) = x},

2. SumL,Am

Ai,At
(x) = {(λ, l) | λ ∈ ΛL,Am

Ai,At
∧ λ(l) = x},

3. StartL,Am

Ai,At
(x) = {λ ∈ ΛL,Am

Ai,At
| λ(0) = x}.

Let x, y ∈ Am, then is:

1. x >L,Am

Ai,At
y iff a sub-trace λ ∈ ΛL,Am

Ai,At
and i, j ∈ {0, 1, ..., |λ| − 1} and i < j

exists such that λ(i) = x and λ(j) = y and ∀k∈{0,1,...,j−1}λ(k) �= y,

2. x >>L,Am

Ai,At
y iff a sub-trace λ ∈ ΛL,Am

Ai,At
and i, j ∈ {0, 1, ..., |λ| − 1} and i < j

exists such that λ(i) = x and λ(j) = y,
3. |x >L,Am

Ai,At
y| the number of occurrences of x >L,Am

Ai,At
y in L,

4. |x >>L,Am

Ai,At
y| the number of occurrences of x >>L,Am

Ai,At
y in L.

CCM: Control-Flow Discovery of BP-Domain Constructs 141

For Am = A = {a, b, c, d} consider the following log L2 = {[a, b, c, d]2,
[b, a, c, b, d]1}:

– |OnceL,Am

Ai,At
(x)| determines how many of the sub-traces contained x, e.g.

|Once
L2,{a,b,c,d}
{},{} (b)| = 3 (twice from [a, b, c, d]2 and once from [b, a, c, b, d]1);

– |SumL,Am

Ai,At
(x)| represents how many x were in all sub-traces, e.g.

|SumL2,{a,b,c,d}
{},{} (b)| = 4 (2 from [a, b, c, d]2 + 2 from [b, a, c, b, d]1);

– |StartL,Am

Ai,At
(x)| tells us how many times the sub-trace started with x, e.g.

|StartL2,{a,b,c,d}
{},{} (b)| = 1 (only [b, a, c, b, d]1 started with b)

– |x >L,Am

Ai,At
y| determines the amount of sub-traces in which x at some point

appeared before the first occurrence of y, e.g.

|a >
L2,{a,b,c,d}
{},{} b| = 2 (only in [a, b, c, d]2 a appears before the first b)

– |x >>L,Am

Ai,At
y| determines the amount of sub-traces in which x is occurring

at some point before any y, e.g.

|a >>
L2,{a,b,c,d}
{},{} b| = 3 (twice from [a, b, c, d]2 and once from [b, a, c, b, d]1).

With the help of these absolute values the footprint can now be calculated
by putting them in relation to the number of all sub-traces. Then based on
these values the CCM performs a construct analysis which in turn enables the
execution of the competition between these constructs.

Definition 5. Let L ⊆ A∗ be an event log over A, Am, Ai, At ⊆ A disjoint
sets of activities specifying the scope of the footprint, |ΛL,Am

Ai,At
| be the number of

sub-traces in L specified by Am, Ai, and At. Let x ∈ Am:

– The occurrence once value OonL,Am

Ai,At
(x) and the occurrence overall value

OovL,Am

Ai,At
(x) are calculated as follows:

OonL,Am

Ai,At
(x) =

|OnceL,Am

Ai,At
(x)|

|ΛL,Am

Ai,At
| OovL,Am

Ai,At
(x) =

|SumL,Am

Ai,At
(x)|

|ΛL,Am

Ai,At
| (2)

– The first element value FelL,Am

Ai,At
(x) is calculated with the following equa-

tion:

FelL,Am

Ai,At
(x) =

|StartL,Am

Ai,At
(x)|

|ΛL,Am

Ai,At
| (3)

Let x, y ∈ Am then is the appears before first value x�L,Am

Ai,At
y and the appears

before value x��L,Am

Ai,At
y calculated as follows:

x�L,Am

Ai,At
y =

|x >L,Am

Ai,At
y|

|ΛL,Am

Ai,At
| x��L,Am

Ai,At
y =

|x >>L,Am

Ai,At
y|

|ΛL,Am

Ai,At
| (4)

142 D. Redlich et al.

All values of OonL,Am

Ai,At
, FelL,Am

Ai,At
, �L,Am

Ai,At
, and ��L,Am

Ai,At
will be ≥ 0 and ≤ 1

since each of their relation can occur at most once per sub-trace. However, the

values of OovL,Am

Ai,At
(x) can become greater than 1 if activity x occurs on average

more than once per sub-trace. The complete footprint consisting of Oon, Oov,
Fel, �, and �� is in this paper displayed as labelled vectors for the values of
Oon, Oov, and Fel and as labelled matrices for the values of � and ��. If we
now consider again log L1 from page 137 then its complete footprint FPL1,A

{},{} for
Am = A = {a, b, c, d, e, f, g, h} is:

Oon
L1,A

{},{}(x) :
(

a b c d e f g h

0.56 0.56 0.18 0.44 0.44 0.38 0.35 0.44

)

Oov
L1 ,A

{},{}(x) :
(

a b c d e f g h

0.91 0.91 0.35 0.62 0.62 1.09 0.65 0.85

)

Fel
L1,A
{},{}(x) :

(
a b c d e f g h

0.15 0.41 0.00 0.00 0.00 0.32 0.12 0.00

)

x � �L1,A

{},{}y : x �L1,A

{},{} y :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a b c d e f g h

a 0.18 0.32 0.18 0.44 0.44 0 0 0

b 0.41 0.18 0.18 0.44 0.44 0 0 0

c 0.18 0.18 0.18 0.18 0.18 0 0 0

d 0 0 0 0.18 0.32 0 0 0

e 0 0 0 0.29 0.18 0 0 0

f 0 0 0 0 0 0.24 0.24 0.32

g 0 0 0 0 0 0.29 0.29 0.29

h 0 0 0 0 0 0.29 0.24 0.24

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a b c d e f g h

a 0 0.15 0.18 0.44 0.44 0 0 0

b 0.41 0 0.18 0.44 0.44 0 0 0

c 0 0 0 0.18 0.18 0 0 0

d 0 0 0 0 0.32 0 0 0

e 0 0 0 0.18 0 0 0 0

f 0 0 0 0 0 0 0.24 0.32

g 0 0 0 0 0 0.06 0 0.06

h 0 0 0 0 0 0.06 0.24 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Definition 6. Let L ⊆ A∗ be an event log over A, Am, Ai, At ⊆ A disjoint sets
of activities specifying the scope of the footprint FP, then is

FPL,Am

Ai,At
= (OonL,Am

Ai,At
,OovL,Am

Ai,At
,FelL,Am

Ai,At
,�L,Am

Ai,At
,��L,Am

Ai,At
) (5)

4.2 Suitability of Supported BP-Constructs

If we consider the footprint from page 142 we can already identify that the
activity sets {a, b, c, d, e} and {f, g, h} are in a Choice construct because all
values between the two sets in the �� matrix are 0.5 We can additionally see in
the ��matrix that {a, b, c} and {d, e} are in a Sequence construct because d and
e are never followed by a, b, or c, but a, b, and c can be followed by d or e. The
CCM works similarly to how we identified a Decision and a Sequence construct in
the example footprint: Based on the footprint FPL,Am

Ai,At
, the algorithm identifies

the BP construct that best describes the footprint with the help of constraints.
The construct which fulfills its respective constraints best will be chosen to be
part of the BP model.

As an example, the constraint for the Choice construct (i.e. two activities be-
ing mutually exclusive) requires the appears-before values between the respective

5 i.e. none the of activities {f, g, h} ever follows or is followed by any of the activities
{a, b, c, d, e} in a trace.

CCM: Control-Flow Discovery of BP-Domain Constructs 143

activities to be ”equal to 0”. However, in order to handle noise well, the CCM
uses the following definition of equality for checking the fulfilment of constraints:

Definition 7. Let v be the actual value, t be the target value, p be the maximum
penalty for a not fulfilled unequal relation, tt the tolerance which determines the
maximum difference so that v and t are still considered equal, and v, t, p, tt ∈ R

+:

(v � t) =

{
p ∗ (2∗tt

|v−t|+tt − 1)2 if |v − t| < tt
0 else

(v ∼= t) =

{
0 if |v − t| < tt

|v − t|2 else

(6)

Note: Since the analysis in the remainder of this section is based on one spe-
cific footprint FPL,Am

Ai,At
, if not otherwise stated we will denote FPL,Am

Ai,At
,OonL,Am

Ai,At
,

OovL,Am

Ai,At
,FelL,Am

Ai,At
,�L,Am

Ai,At
, and ��L,Am

Ai,At
simply as FP ,Oon,Oov ,Fel ,�, and

�� for the remainder of this section to support the readability.

Construct Suitability for a Single Activity: If a footprint consists of only one
activity, i.e. |Am| = 1, no competition between constructs is necessary. Instead,
the correct construct is identified based on the values in the footprint. Four
different constructs for a single activity x ∈ Am exist6:

– Normal : if (Fel(x) ∼= 1) = 0 and (x��x ∼= 0) = 0 then x is a simple activity.
– Optional : if (Fel(x) ∼= 1) > 0 and (x � �x ∼= 0) = 0 then x is an optional

activity, i.e. x may also be skipped.
– Loopover : if (Fel(x) ∼= 1) = 0 and (x � �x ∼= 0) > 0 then x is a looping

activity, i.e. x can repeatedly occur after itself (”short loop”).
– Loopback : if (Fel(x) ∼= 1) > 0 and (x � �x ∼= 0) > 0 then x is an optional

looping activity, i.e. x may be skipped but can also repeatedly occur.

Construct Suitability for Multiple Activities: If a footprint FP consists of more
than one activity, i.e. |Am| > 1, a preliminary analysis is carried out to identify
the suitability of any two activities x, y ∈ Am with regards to each available
construct, e.g. activities x and y are in a very strong Parallelism relation but
less strong in a Sequence relation. The calculation of this construct’s suitability
is again based on constraints. If a constraint is not fulfilled there will be a penalty
depending on the ”level” of the constraint7 and how strong it has failed.

The first step of the suitability analysis is to identify if the construct repre-
sented by the FP is optional, i.e. an optional path exists that allows to bypass
this construct. If this is the case the FP needs to be normalized, i.e. removal of
the overall optional behaviour. For this purpose it is calculated if and to what
extent the FP also recorded empty (sub-)traces, i.e. relative occurrence of an
empty (sub-)trace: opFP = 1 − ∑

x∈Am
Fel(x). The influence of these empty

6 > is in this case the common greater relation, not the one specified in Definition 4.
7 The levels of constraints will be discussed later in this section.

144 D. Redlich et al.

Fig. 3. Supported Business Process Constructs

traces is removed from the FP by multiplying every value of Oon,Oov ,Fel ,�,
and �� with 1

1−op .
Additionally, the following values are calculated for each x ∈ Am and each

x, y ∈ Am pair:

Definition 8. Let x ∈ Am be an activity recorded in FP then is the repetition

of x in FP denoted rep(x) = Oov(x)−Oon(x)
Oov(x) .

Definition 9. Let x, y ∈ Am be activities recorded in FP then is (1) the per-
centage of (sub-)traces in which both x and y appear: oc(x, y) = x � y + y � x,
(2) the maximum possible occurrence of x and y appearing in the same trace:
moc(x, y) = min(Oon(x),Oon(y)), and (3) the combined occurrence of x and y:
coc(x, y) = Oon(x) ∗Oon(y).

The algorithm supports the identification of the BP constructs shown in Fig-
ure 3. For each construct a set of constraints have been formulated to determine
to which degree a construct represents the global relation between any two ac-
tivities. In Table 1 the constraints for each construct are listed, sorted by the
constraint level. We distinguish between different levels/severities of constraints
to highlight the importance of their fulfilment: (1) Strict: Constraints of this
type can be seen as ”iff” requirements on the construct and are thus required to
be fulfilled for a construct to apply, e.g. every activity in a Loop construct has to
occur at least once repeatedly in a trace, otherwise the observed construct cannot
be a Loop. Penalties originating from the failure of constraints of this type have
a strong influence on the suitability of a construct relation; (2) Log-Complete:
A log-complete constraint is fulfilled when all variants are represented in the log,
i.e. the log is complete. If the log is incomplete constraints of this type may fail.
This is why penalties originating from the failure of log-complete constraints
have a medium influence on the suitability of a construct relation; (3) Indica-
tion: An indication constraint represents default behaviour of the construct but
may not be fulfilled even in a complete log. Indication constraints are basically

CCM: Control-Flow Discovery of BP-Domain Constructs 145

Table 1. Supported BP-constructs and their constraints sorted by constraint level

Construct Strict Log-Complete Indication

Choice x ��y ∼= 0, - -
y ��x ∼= 0

Sequence x ��y � 0, - -
y ��x ∼= 0,

x ��y ∼= x� y

Parallel - x � y � 0, x ��y ∼=
y � x � 0, (x� y +min(rep(x), rep(y)))

coc(x, y) ∼= oc(x, y) ∗(moc(x, y)− x� y)

Loop rep(x) � 0, x ��y ∼= coc(x, y), -
rep(y) � 0 y ��x ∼= coc(x, y)

Loopover- rep(x) � 0, x ��y ∼= coc(x, y), -
Sequence rep(y) � 0 y ��x � coc(x, y),

x��y � y � �x
Loopover- rep(x) � 0, x � y � 0, x ��y ∼=
Parallel rep(y) � 0 y � x � 0, (x� y ∗Oon(y) +Oov(y)−Oon(y))

coc(x, y) ∼= oc(x, y) /Oov(y)

Loopover- rep(x) � 0, x � y � 0, x��y ∼= y ��x,
Choice rep(y) � 0, y � x � 0 coc(x, y) ∼= max(0,
(Flower) coc(x, y) � 1 Oon(y) +Oon(y)− 1)

not constraints in the common sense but rather approximations of default be-
haviour in order to distinguish between two very similar constructs, e.g. Parallel
and Loopover-Parallel. Penalties originating from the failure of constraints of
this type have a low influence on the overall suitability.

Based on the constraints listed in Table 1 and their respective constraint
level the suitability of each construct for any activity pair x, y ∈ Am, x �= y is
calculated. Exemplary, we show how values for the constructs Choice Ch(x, y)
and Sequence Ch(x, y) are calculated (ws ∈ R is the weight of Strict constraints):

(1) Ch(x, y) = ws ∗ 1
2 ∗ (x ��y ∼= 0+ y ��x ∼= 0),

(2) Se(x, y) = ws ∗ 1
3 ∗ (x��y � 0 + y ��x ∼= 0 + x��y ∼= x� y).

The values for the other constructs are similarly calculated, with wlc, wi ∈ R fur-
ther specifying the weights for Log-Complete and Indication constraints, respec-

tively. Let us now consider again FPL1,A
{},{} on page 142: The resulting suitability

matrices Ch and Se for ws = 0.6 are:

Ch(x, y) : Se(x, y) :

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a b c d e f g h

a − 0.26 0.6 0.3 0.3 0 0 0

b 0.26 − 0.6 0.3 0.3 0 0 0

c 0.6 0.6 − 0.3 0.3 0 0 0

d 0.3 0.3 0.3 − 0.29 0 0 0

e 0.3 0.3 0.3 0.29 − 0 0 0

f 0 0 0 0 0 − 0.34 0.39

g 0 0 0 0 0 0.34 − 0.34

h 0 0 0 0 0 0.39 0.34 −

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a b c d e f g h

a − 0.13 0.2 0 0 0.2 0.2 0.2

b 0.07 − 0.2 0 0 0.2 0.2 0.2

c 0.4 0.4 − 0 0 0.2 0.2 0.2

d 0.4 0.4 0.4 − 0.09 0.2 0.2 0.2

e 0.4 0.4 0.4 0.14 − 0.2 0.2 0.2

f 0.2 0.2 0.2 0.2 0.2 − 0.14 0.12

g 0.2 0.2 0.2 0.2 0.2 0.18 − 0.18

h 0.2 0.2 0.2 0.2 0.2 0.22 0.22 −

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

146 D. Redlich et al.

4.3 Competition Algorithm

The goal of the competition algorithm is to find the best combination of (1) the
construct type, e.g. Sequence, Choice, or Loop, and (2) the best two subsetsAfirst

and Asecond of A with Afirst ∪ Asecond = A and Afirst ∩ Asecond = {}, that best
accommodates all corresponding x, y-pair relations. We will show the principal
of operation of the competition algorithm for the Choice construct, i.e. for the
explanation the construct is fixed and the two subsets Afirst and Asecond have
to be determined. A naive solution would be to create and compare all possible
split ups. With regards to the execution time of the CCM, this is not desirable
since we would have to check all 2|A| − 1 possible split ups. Instead we want
to take advantage of the fact that our relations, in this case only Ch, represent
the global relation of x and y. That means it is irrelevant for the calculation
of the penalty what the relations between the elements in the same set are
(either Afirst and Asecond). In Algorithm 1 is presented how the competition
algorithm works if we only consider Ch to be part of the competition. Note
that the priority queue is ordered firstly by the penalty value and secondly
by how even the split up is (since we want to split as evenly as possible to
quickly reduce the number of activities). For Ch from the example log with
Am = A = {a, b, c, d, e, f, g, h} the algorithm functions as follows: in first step an
”empty” combination tuple (Afirst , Asecond , Aleft , p) is inserted into the priority
queue with (1) Afirst and Asecond , the both disjunct sets of activities - empty
at the beginning; (2) the set of the activities Aleft which contains the activities
that still have to be assigned to either the first or second set - Aleft = A =
{a, b, c, d, e, f, g, h}; (3) the current penalty p = 0. With this one element in
the priority queue the while-loop is entered. There, the tuple with the highest
priority (the one that was just inserted) is removed from the queue and further
processed. That means in our case an activity is removed from Aleft and assigned
to x. Now, two more tuples are created, one with x in Afirst and one with x in
Asecond . According to the set x was inserted into, all Ch values from x to elements
from the other set are checked and the average of these is added to the respective
penalty value p. Both newly created tuples are then inserted into the priority
queue. This continues until the best combination tuple has no activities left,
i.e. Aleft = {}. In Figure 4 the different created combinations for our example
are shown: the light grey combinations are still in the queue when the algorithm
terminates, the grey combinations are already processed and the number next to
them represents the order in which they were processed; the black combination
is the winner of the competition algorithm.

More BP Constructs can enter the competition by three simple modifications
of the algorithm: (1) the tuple in the priority queue also has to contain the
construct type, e.g. Choice, Loopover-Sequence,etc. (2) adding one ”empty” tu-
ple per construct to the priority queue before the while loop is entered; (3) The
penalty calculation then has to be carried out on the relation matrix correspond-
ing to the currently processed construct type.

CCM: Control-Flow Discovery of BP-Domain Constructs 147

Algorithm 1: Competition Algorithm for the Choice Construct
Data: A, Ch
Result: Afirst , Asecond

1 begin
2 PriorityQueue openCases ← {};
3 openCases.add(({}, {}, A, .0));
4 while true do
5 (Afirst , Asecond , Aleft , p)← openCases.poll();

6 if Aleft = {} then return(Afirst , Asecond) ;

7 x ← Aleft .poll();

8 if |Aleft | > 0 ∨ |Asecond | > 0 then

9 Anew ← Afirst ∪ {x};
10 pnew ← 0;
11 foreach y ∈ Asecond do pnew ← pnew + Ch(x, y) ;
12 if pnew > 0 then pnew ← pnew/|Asecond | + p ;
13 else pnew ← p ;
14 openCases.add((Anew , Asecond , Aleft , pnew));

15 end
16 if |Aleft | > 0 ∨ |Afirst | > 0 then

17 Anew ← Asecond ∪ {x};
18 pnew ← 0;
19 foreach y ∈ Afirst do pnew ← pnew + Ch(y, x) ;

20 if pnew > 0 then pnew ← pnew/|Afirst | + p ;

21 else pnew ← p ;
22 openCases.add((Afirst , Anew , Aleft , pnew));

23 end

24 end

25 end

({},{},{a,b,..h},0)

({a},{},{b,c,..h},0)

({a},{b},{c,..h},0.26)

({a,b},{},{c,..h},0)

({a,b},{c},{d,..h},0.6)

({a,b,c},{},{d,..h},0)

({},{a},{b,c,..h},0)

({a,b,c},{d},{e,..h},0.3)

({a,b,c,d},{},{e,..h},0)

({a,b,c,d},{e},{f,g,h},0.3)

({a,b,c,d,e},{},{f,g,h},0)

({a,b,c,d,e},{f},{g,h},0)

({a,b,c,d,e,f},{},{g,h},0)

({a,b,c,d,e},{f,g},{h},0)

({a,b,c,d,e,g},{f},{h},0.34)

({a,b,c,d,e},{f,g,h},{},0)

({a,b,c,d,e,h},{f,g},{},0.36)

1.

2.

3.

4.

5.

6.

7.

8.

9.

Fig. 4. Competition Algorithm: Traversing to the best split up

5 Evaluation

In this section we evaluate the CCM - first qualitatively and later in comparison
to other miners. We have carried out a number of conceptual process rediscover
tests, for which we created 67 example processes, each consisting of a small
number of activities nested in a combination of BP constructs. These conceptual
processes were simulated to produce a corresponding log, which in turn was
analysed with the CCM. The tolerance of the CCM was set to tt = 0.001 and
the unequal penalty to p = 1.0 (see Definition 7). The CCM rediscovered all but
4 of the conceptual processes or found a model with equivalent behaviour. The
not successfully rediscovered models were variations of the Loopover-Parallel
construct that had at least one loop in the parallel paths.

In the second part of the evaluation, we carried out an analysis of the CCM’s
performance in comparison to other similar algorithms with the help of the ProM
framework [15]. Implementations of the HeuristicsMiner (HM), state-of-the-art

148 D. Redlich et al.

HN2PNHM

IM

CCM

Pre-
Process

Log

FM

PT2PN
BSBP2PT

(Fitness)
PN-Replay

Precision,
Generalization,

Simplicity

Fig. 5. Experimental Workflow

version of the Inductive Miner (IM), and the Flower Miner (FM) are readily
available in the nightly build of ProM and were used to benchmark the quality
of the models discovered by the CCM. The experimental setup is conceptually
shown in Figure 5: (1) The logs were filtered so that only events with the lifecycle
”complete” are considered. These logs are available in the XES-format. (2) In
a second step each individual miner discovers the process in its representation
language using its default settings, i.e. HM creates a heuristic net, IM creates
a process tree, CCM creates a block-structured BP, and FM directly creates a
Petri net. (3) In Figure 5 the different transformations from the originally mined
language to a Petri net representation are shown. Note, that a transformation
has been implemented to translate the block-structured BP into process trees
in order to enable an analysis of the CCM results with the ProM framework.
(4) The Petri net representation of each mined model is then analysed with the
help of the PNetReplayer package, an implementation of the approach in [14].
With the help of this plugin, three different quality measures are calculated that
represent the conformance of the (filtered) log to the discovered model8: trace
fitness ftf - a measure how well the traces in the log can be replayed by the Petri
net, precision fpr - a measure how closely the behaviour in the log is represented
by the Petri net, and generalization fg - a measure that shows to what level a
generalization of the log behaviour was achieved [13]. Additionally, all places,
transitions, and arcs of the discovered Petri nets are counted and accumulated
to a simplicity measure fs. The following 10 logs have been used for evaluation:
(1) L1 (8 activities, 34 traces, 204 events): log on page 137 (BP model in
Figure 1),
(2) EX5 (14, 100, 1498): example log of a reviewing process9,
(3) REP (8, 1104, 7733): example log of a repair process9,
(4) BE1 (20, 8204, 189242), (5) BE2 (20, 8206, 132235), (6) BE3 (20, 8194,
239318), (7) BE4 (20, 8153, 253784), (8) BE5 (20, 8190, 151604): large logs of
strongly nested BPs - artificially generated by a process simulation tool,
(9) DF (18, 100, 3354): an incomplete real-life log of an eHealth process [3], and
(10) FLA (10, 13087, 60849): a large real-life log from the finance sector10.

8 Using ”Prefixed based A* Cost-based fitness” algorithm with maximum explored
states = 200000.

9 Exercise5 (EX5) and repairExample (REP) are example logs from the ProM website.
10 Log from the BPI Challenge of 2012 (http://www.win.tue.nl/bpi/2012/challenge)

filtered for events that start with ”A”, e.g. ”A APPROVED”, ”A DECLINED”,
etc.

http://www.win.tue.nl/bpi/2012/challenge

CCM: Control-Flow Discovery of BP-Domain Constructs 149

Table 2. Conformance results of the different discovery algorithms

Log Trace Fitness ftf Precision fpr Generalization fg Simplicity fs
HM IM FM CCM HM IM FM CCM HM IM FM CCM HM IM FM CCM

L1 0.679 0.863 1.0 1.0 0.532 0.529 0.224 0.550 0.638 0.422 0.949 0.654 86 91 33 81
EX5 0.985 0.935 1.0 1.0 0.495 0.560 0.120 0.529 0.931 0.996 0.999 0.998 155 102 51 80
REP 1.0 1.0 1.0 1.0 0.905 0.955 0.209 0.955 0.998 0.999 0.999 0.999 72 46 33 49
BE1 0.991 1.0 1.0 1.0 0.838 0.814 0.081 0.818 0.999 0.999 1.0 0.999 192 132 69 122
BE2 0.924 0.981 1.0 0.998 0.737 0.594 0.087 0.621 1.0 1.0 1.0 1.0 196 156 69 146
BE3 0.822 0.983 1.0 0.999 0.891 0.443 0.073 0.525 1.0 1.0 1.0 1.0 178 149 69 139
BE4 0.876 1.0 1.0 1.0 0.707 0.406 0.067 0.608 1.0 1.0 1.0 1.0 193 173 69 149
BE5 0.942 0.991 1.0 0.822 0.590 0.668 0.089 0.711 1.0 1.0 1.0 1.0 206 181 69 167
DF 1.0 0.911 1.0 0.970 0.563 0.559 0.060 0.588 0.914 0.906 0.982 0.832 177 136 63 121
FLA 0.974 1.0 1.0 1.0 0.920 0.695 0.227 0.727 0.925 0.825 0.988 0.818 98 62 39 65

The results of the different discovery algorithms applied to the investigated
logs are shown in Table 2. Note, that all algorithms were executed using default
settings, i.e. choosing other parameters may result in different results. However,
in order to provide comparable results also the parameters for the CCM were
fixed to tt = 0.001 and p = 1.0 for all runs. Compared with HM and IM the
CCM scores a generally high trace fitness for the considered logs (always higher
than 0.95) with the exception of BE5 for which a trace fitness of only 0.822 was
determined. The precision values of the models discovered by CCM are mostly
between the respective values scored by HM and IM but always above 0.5 -
as expected FM always scores the lowest for precision. Positive exceptions are
L1, BE5, and DF for which CCM scores the highest precision. In terms of the
generalization measure, the CCM scores are average in comparison to HM and
IM: yielding a high result for the log L1 but low results for DF and FLA. Very
positive results are achieved if the simplicity measure is considered: the CCM
mostly discovers a model consisting of the lowest number of elements (excluding
FM): far smaller than the HM models and slightly smaller than the IM models.
Generally, it seems that the CCM tends to favour trace fitness, generalization,
and simplicity for the cost of a lower precision.

6 Conclusion

This paper introduces and describes the key parts of the Constructs Competi-
tion Miner. The main aspects of the miner are: (1) direct discovery of a block-
structured BP model conforming to a BP-domain language, (2) handling of
noise due to the relative footprint and the relative constraint interpretation -
if conflicting behaviour appears the best suitable construct is chosen, (3) usage
of the divide-and-conquer principal to avoid overly complicated models, and (4)
usage of global relations between activities to identify BP constructs. The eval-
uation results showed that the CCM approach is able to discover processes of a
similar or sometimes even higher quality than other state of the art approaches
(e.g. IM, HM). However, the following points are considered to be future work:

150 D. Redlich et al.

– The Loopover-Parallel construct is not always correctly identified - finding
a better constraint could improve the results of the CCM.

– Creating constraints for additional constructs, e.g. OR-Split and -join.
– Adapting the CCM for application on an event stream to continuously mon-

itor a live BP execution, i.e. detection of change over time.

References

1. Buijs, J., Van Dongen, B., Van Der Aalst, W.: A genetic algorithm for discovering
process trees. In: Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)

2. Dehnert, J., Van Der Aalst, W.: Bridging The Gap Between Business Models And
Workflow Specifications. Int. J. Cooperative Inf. Syst. 13, 289–332 (2004)

3. Galushka, M., Gilani, W.: DrugFusion - Retrieval Knowledge Management for Pre-
diction of Adverse Drug Events. In: Abramowicz, W., Kokkinaki, A. (eds.) BIS
2014. LNBIP, vol. 176, pp. 13–24. Springer, Heidelberg (2014)

4. Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining – Adaptive Process Simplifi-
cation Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

5. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering Block-Structured
Process Models from Event Logs - A Constructive Approach. In: Colom, J.-M.,
Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Hei-
delberg (2013)

6. Leemans, S., Fahland, D., Van Der Aalst, W.: Discovering Block-Structured Pro-
cess Models from Event Logs Containing Infrequent Behaviour, In: Business Pro-
cess Management Workshops 2013, LNBIP, pp. 66–78, Springer (2013)

7. OMG Inc: Business Process Model and Notation (BPMN) Specification 2.0 (2011),
http://www.omg.org/spec/BPMN/2.0/PDF (formal January 03, 2011)

8. Petri, C.A.: Kommunikation mit Automaten. PhD thesis. Rheinisch-Westfälisches
Institut f. instrumentelle Mathematik (1962)

9. Polyvyanyy, A., Garćıa-Bañuelos, L., Fahland, D., Weske, M.: Maximal Structuring
of Acyclic Process Models. The Computer Journal 57(1), 12–35 (2014)

10. Weijters, A., Van Der Aalst, W., Alves de Medeiros, A.: Process Mining with
the Heuristics Miner-algorithm. BETA Working Paper Series, WP 166, Eindhoven
University of Technology (2006)

11. Van Der Aalst, W., Weijters, A., Maruster, L.: Workflow Mining: Discovering Pro-
cess Models from Event Logs. IEEE Transactions on Knowledge and Data Engi-
neering 16(9), 1128–1142 (2004)

12. Van Der Aalst, W., Ter Hofstede, A.: YAWL: Yet Another Workflow Language
(2003)

13. Van Der Aalst, W.: Process Mining - Discovery, Conformance and Enhancement
of Business Processes. Springer (2011)

14. Van Der Aalst, W., Adriansyah, A., Van Dongen, B.: Replaying history on process
models for conformance checking and performance analysis. WIREs Data Mining
and Knowledge Discovery 2(2), 182–192 (2012)

15. Van Dongen, B., De Medeiros, A., Verbeek, H., Weijters, A., Van Der Aalst, W.:
The ProM framework: A new era in process mining tool support. Applications and
Theory of Petri Nets 2005, pp. 1105–1116 (2005)

http://www.omg.org/spec/BPMN/2.0/PDF

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 151–167, 2014.
© Springer International Publishing Switzerland 2014

Chopping Down Trees vs. Sharpening the Axe –
Balancing the Development of BPM Capabilities

with Process Improvement

Martin Lehnert, Alexander Linhart, and Maximilian Röglinger

University of Augsburg, FIM Research Center, Augsburg, Germany
{martin.lehnert,alexander.linhart,
maximilian.roeglinger}@fim-rc.de

Abstract. The management and improvement of business processes is an ever-
green topic of organizational design. With many techniques and tools for
process modeling, execution, and improvement being available, research pays
progressively more attention to the organizational impact of business process
management (BPM) and the development of BPM capabilities. Despite know-
ledge about the capabilities required for successful BPM, there is a lack of
guidance on how these BPM capabilities should be developed and balanced
with the improvement of individual business processes. As a first step to ad-
dress this research gap, we propose a decision model that enables valuating and
selecting BPM roadmaps, i.e., portfolios of scheduled projects with different ef-
fects on business processes and BPM capabilities. The decision model is
grounded in the literature related to project portfolio selection, process perfor-
mance measurement, and value-based management. We also provide an exten-
sive demonstration example to illustrate how the decision model can be applied.

Keywords: Business Process Management Capabilities, Process Improvement,
Value-based Decision-Making.

1 Introduction

Process orientation is a widely adopted paradigm of organizational design and a rec-
ognized source of corporate performance [1, 2]. As a result, business process man-
agement (BPM) receives constant attention from industry and academia [3, 4]. As
many techniques and tools for process modeling, execution, and improvement are
available [5], BPM research is shifting its focus toward the organizational impact of
BPM and the development of BPM capabilities [6]. This shift makes emerge novel
research questions at the intersection of traditional BPM research and BPM research
focused on capability development. In this paper, we investigate one of these novel
research questions from a project management perspective, namely how the develop-
ment of BPM capabilities should be balanced with the improvement of individual
business processes.

152 M. Lehnert, A. Linhart, and M. Röglinger

The BPM literature contains many process improvement approaches [7, 8]. Most
improvement approaches, by nature, take on a single-process perspective and neglect
how to balance the improvement of a single process with the improvement of other
processes or the development of BPM capabilities. From a capability perspective,
recent research analyzed which capabilities are necessary for successful BPM. For
instance, Rosemann and vom Brocke [9] proposed a framework of six factors (e.g.,
people, information technology, methods, culture, and governance) each of which is
supported by a set of capability areas (e.g., process design, process education, or
process improvement planning). A similar framework is authored by van Looy et al.
[10]. Jurisch et al. [11] identified which capabilities an organization needs to succeed
in process change. Though compiling and structuring BPM capabilities, no approach
indicates how these capabilities should be developed. The literature related to the
BPM capability areas “process improvement planning” and “process program and
project planning” provides no guidance either. A tool that is supposed to provide
guidance are process and BPM maturity models [12]. While process maturity models
deal with the condition of processes in general or distinct process types, BPM maturi-
ty models focus on BPM capabilities [9]. However, maturity models are criticized for
adhering to a one-size-fits-all approach, i.e., they typically support a single path of
maturation that has to be traversed completely and irreversibly without any possibility
for customization [6]. Moreover, maturity models are not suited for decision-making
purposes [12]. Other authors take on a project management perspective by using
project portfolio selection (PPS) techniques [13]. As process improvement and the
development of BPM capabilities are achieved via projects, a project management
perspective promises to be a sensible option for balancing both endeavors and for
providing more flexible guidance than maturity models do. However, existing quan-
titative approaches based on PPS only deal with areas of BPM that have nothing to do
with BPM capabilities.

The preceding analysis reveals the following research gap: First, organizations re-
quire more guidance on how they should develop BPM capabilities. Second, they lack
approaches that assist with balancing the development of BPM capabilities and the
improvement of individual business processes. From a project management perspec-
tive, this research gap refers to a PPS and a project scheduling problem. Therefore,
our research question is as follows: Which projects should an organization implement
and in which order should it implement these projects to balance the development of
BPM capabilities with the improvement of individual business processes?

As a first step to answer this question, we propose a decision model for valuating
and selecting BPM roadmaps in line with economic principles. A BPM roadmap is a
portfolio of scheduled projects with different effects on business processes and BPM
capabilities. Thereby, a BPM roadmap indicates which process- or BPM-level
projects need to be implemented in which order. As the decision model shows charac-
teristics of a model and a method, we adopt a design science research approach [14].
In line with existing reference processes [15], we cover the following phases of de-
sign science research: identification of and motivation for the research problem, ob-
jectives of a solution, design and development, and evaluation. In the design and

 Chopping Down Trees vs. Sharpening the Axe 153

development as well as in the evaluation phase, several industry partners were involved,
i.e., an IT service provider, a financial service provider, and an IT consultancy.

The paper is organized as follows: As the decision model is located at the intersec-
tion of BPM and project management, we sketch the foundations of BPM, process
performance measurement, PPS, and value-based management as theoretical back-
ground in section 2. We also derive requirements that a solution to the research ques-
tion should meet (objectives of a solution). In section 3, we propose the decision
model (design and development). In section 4, we report on the evaluation steps con-
ducted so far, particularly on a demonstration example that builds on a prototypical
implementation of the decision model and uses the case of an IT service provider
(evaluation). We conclude by summing up key results, limitations, and pointing to
future research.

2 Theoretical Background and Requirements

2.1 Business Process Management and Process Performance Measurement

BPM is “the art and science of overseeing how work is performed in an organization
to ensure consistent outcomes and to take advantage of improvement opportunities”
[3]. Therefore, BPM combines knowledge from information technology and man-
agement sciences [5]. From a lifecycle perspective, BPM includes the identification,
definition, modeling, implementation and execution, monitoring and control as well
as continuous improvement of processes [3]. BPM deals with all processes of an or-
ganization and, thus, constitutes an infrastructure for efficient work [16].

BPM is closely related to capability development, a field that builds on the re-
source-based view and dynamic capability theory. According to the resource-based
view, capabilities refer to the ability to perform a coordinated set of tasks for achiev-
ing a particular result [17]. From a dynamic capability theory perspective, capabilities
split into operational and dynamic capabilities [18]. Operational capabilities refer to
the basic functioning of an organization [19]. Dynamic capabilities help integrate,
build, and reconfigure operational capabilities to increase their fit with the environ-
ment as well as their effectiveness and efficiency [20]. Processes and their execution
are equated with operational capabilities, whereas BPM is treated as a dynamic
capability [21].

As for the BPM lifecycle stages monitoring and control as well as improvement,
performance indicators are essential for assessing the performance of a process and
the effects of redesign projects [3]. Process performance indicators can be grouped
according to the Devil’s Quadrangle, a framework that consists of the dimensions
time, cost, quality, and flexibility [22]. The Devil’s Quadrangle earned its name from
the fact that improving one dimension has a weakening effect on at least one other
dimension [22]. Thereby, it discloses the trade-offs that have to be resolved during
process improvement [22]. To apply the Devil’s Quadrangle, its dimensions must be
operationalized by performance indicators that account for the peculiarities of the
context at hand [3]. As for time, a common indicator is the cycle time, i.e., the time

154 M. Lehnert, A. Linhart, and M. Röglinger

for handling a process instance end-to-end [23]. Typical cost indicators are turnover,
yield, or revenue. Quality splits into internal and external quality that can be measured
in terms of error rates and customer satisfaction, respectively. Flexibility can be
measured via waiting or set-up times [24]. Although there are further non-monetary
performance dimensions, we focus on the dimensions of the Devil’s Quadrangle. We
derive the following requirements:

(R.1) Capability development: To determine an optimal BPM roadmap, (a) there must
be projects that affect an organization’s operational capabilities, i.e., its business
processes, and projects that help develop BPM as a dynamic capability. Moreover, (b)
there must be projects that influence a single business process and projects that affect
multiple business processes.

(R.2) Process performance measurement: To evaluate the projects contained in a
BPM roadmap, (a) the performance of all processes has to be measured according to
typical performance dimensions such as those from the Devil’s Quadrangle. (b)
It must be possible to operationalize each dimension by one or more performance
indicators.

2.2 Project Portfolio Selection

PPS is the activity “involved in selecting a portfolio, from available project proposals
[…], that meets the organization’s stated objectives in a desirable manner without
exceeding available resources or violating other constraints” [25]. The PPS process
includes five stages: pre-screening, individual project analysis, screening, optimal
portfolio selection, and portfolio adjustment [25]. In the pre-screening stage, projects
are checked with respect to whether they align with the organization’s strategy and/or
are mandatory. During individual project analysis, each project is evaluated stand-
alone regarding pre-defined criteria. In the screening stage, all projects are eliminated
that do not satisfy the pre-defined criteria. The optimal portfolio selection stage de-
termines the project portfolio that meets pre-defined criteria best. This requires a deci-
sion model that integrates all criteria and considers interactions among projects [26].
Finally, decision makers may adjust the optimal portfolio based on their knowledge
and experience.

Considering interactions among projects is a challenging, but necessary require-
ment for making reasonable PPS decisions [27]. The current literature focuses on
interactions among information technology/information systems (IT/IS) projects as
IT/IS projects typically involve higher-order interactions between three or more pro-
jects, whereas, in the capital budgeting or R&D context, mostly interactions between
two projects are considered [28]. Higher-order interactions among IT/IS projects can
be classified according to three dimensions, i.e., inter-temporal vs. intra-temporal,
deterministic vs. stochastic, and scheduling vs. no scheduling [26]. Intra-temporal
interactions affect the planning of single portfolios, whereas inter-temporal interac-
tions influence today’s decision-making based on potential follow-up projects [29].
Inter-temporal interactions result from effects that depend on the sequence in which
projects are implemented [30]. Interactions are deterministic if all parameters are

 Chopping Down Trees vs. Sharpening the Axe 155

assumed to be known with certainty or were estimated as a single value. If parameters
are uncertain and follow some probability distribution, interactions are considered as
stochastic [31]. Scheduling interactions occur if projects may start at different points.
Otherwise, there are no scheduling interactions. Against this background, we derive
the following requirement:

(R.3) Project portfolio selection: To determine an optimal BPM roadmap, it is neces-
sary (a) to consider only projects that affect processes or BPM capabilities and align
with corporate strategy, (b) to evaluate these projects stand-alone prior to portfolio
selection, (c) to consider interactions among these projects.

2.3 Value-Based Management

Value-based management, as a substantiation and extension of the shareholder value
concept, sets the maximizing of the long-term, sustainable company value as the pri-
mary objective for all business activities [32]. The company value is determined
based on future cash flows [33]. Value-based management can only be claimed to be
implemented if all business activities and decisions on all management levels are
aligned with the objective of maximizing the company value. Therefore, companies
must not only be able to quantify the company value on the aggregate level, but also
the value contribution of individual activities or decisions.

There is a set of objective functions that are used for making decisions in line with
value-based management [34]. In case of certainty, decisions can be based on the net
present value (NPV) of the future cash flows [35]. In case of risk with risk-neutral
decision makers, decisions can be made based on the expected NPV. If the decision
makers are risk-averse, decision alternatives can be valuated using the certainty
equivalent method or a risk-adjusted interest rate [36]. To comply with value-based
management, decisions must be based on cash flows, consider risks, and incorporate
the time value of money [34]. This leads to the following requirement:

(R.4) Value-based management: The optimal BPM roadmap is the roadmap with the
highest value contribution. To determine the value contribution of a BPM roadmap,
one has to account (a) for the cash flow effects of the BPM roadmap, (b) the decision
makers’ risk attitude, and (c) the time value of money.

3 Decision Model

3.1 General Setting and Basic Assumptions

We consider an organization with multiple business processes. The output of each
process is of value to the organization’s customers. The demand for each process
output depends on quality and time, not on the price. Each performance dimension
can be operationalized in terms of case-specific indicators. The organization aims to
select the optimal BPM roadmap, i.e., the roadmap with the highest value contribu-
tion, from a set of pre-defined project candidates. It thus determines which project

156 M. Lehnert, A. Linhart, and M. Röglinger

candidates should be implemented in which order. The project candidates have been
checked for appropriate strategic fit in the pre-screening stage of the PPS process. To
unambiguously analyze inter-temporal interactions among projects and processes,
only one project can be implemented per period. All projects can be finished within
one period such that their effects become manifest at the beginning of the next period.
In this context, periods can also be quite short (e.g., quarters or months). When select-
ing the optimal BPM roadmap, the organization also has to set the relevant planning
horizon. If the number of project candidates exceeds the planning horizon, the organi-
zation has to make a PPS and a project scheduling decision at the same time. Other-
wise, there is only a scheduling decision. Due to the inter-temporal interactions
among projects and processes, the absolute effect of a project depends on the projects
that have been implemented in prior periods, a phenomenon that is referred to as path
dependence [37]. As a result, implementing the same projects in different sequences
leads to different absolute effects of each project and to BPM roadmaps with different
value contributions. As it is very complex and costly to estimate ex ante the absolute
effects of each project candidate considering all possible sequences of implementation
[38], we assume that the effects have been assessed in terms of relative numbers inde-
pendent from other projects during the individual project analysis stage of the PPS
process. This setting translates into the following assumptions:

(A.1) Each process from the set of processes under investigation has a distinct
quality , and time , for each period of the planning horizon

. The sales price for the output of process is constant.

(A.2) The demand , , , for the output of process is deterministic and
depends on the quality , and time , . The demands for different outputs are inde-
pendent. The customers’ sensitivity toward quality and time is constant throughout
the planning horizon.

(A.3) One project can be implemented per period. All projects can be finished within
one period.

(A.4) The effects of all project candidates have been determined in the individual
project analysis stage of the PPS process. These effects are expressed in terms of rela-
tive numbers and independent from other projects.

To identify the BPM roadmap with the highest value contribution, all roadmap
candidates must be evaluated. The value contribution of a BPM roadmap is measured
in terms of its , i.e., the sum of all discounted periodic cash flows using a risk-
adjusted interest rate . For each period of the planning horizon, the periodic cash
flows split into investment outflows for implementing the respective project
of the roadmap and into operating cash flow from executing the organization’s business
processes. For a specific period and process, the operating cash flow results from
the demand that realizes for the quality and time of the process in that period as
well as from a contribution margin, which in turn depends on the price of the

 Chopping Down Trees vs. Sharpening the Axe 157

process output and the respective periodic operating outflows , . The invest-

ment outflows are assumed to be due at the beginning of each period. The operating
cash flow is due at the end of each period. This leads to the following objective
function:

max : 1 , , , · ,1| |
 (1)

The remainder of this section is structured along Figure 1, which illustrates how
the project archetypes used in our decision model affect the organization’s business
processes and BPM capabilities as well as the components of the objective function.
For increased readability, Figure 1 focuses on one process and a single period.

3.2 Project Archetypes and Their Effects

We distinguish two project archetypes, i.e., process-level and BPM-level projects.
Thereby, we deliberately abstract from the large number of projects that may occur in
real-world settings as we aim to analyze project effects in general. Process-level
projects help develop the organization’s operational capabilities by improving a par-
ticular business process [19]. BPM-level projects aim at building up BPM as a special
dynamic capability that reflects the ability to change existing processes [21]. Due to
this effect on dynamic capabilities, BPM-level projects have two different effects on
the organization’s operational capabilities. Both effects may occur separately or si-
multaneously, depending on the concrete project at hand. First, BPM-level projects
can directly affect operational capabilities as from the next period. In contrast to
process-level projects and in line with the infrastructure character of BPM, BPM-level
projects influence all business processes [16]. Second, BPM-level projects can affect
operational capabilities indirectly by facilitating the implementation of process-level
projects in the future.

Process-level projects improve a distinct business process in terms of quality, time,
and operating outflows – a value-based substitute for cost – as dimensions of the De-
vil’s Quadrangle [3]. Flexibility is covered indirectly via reduced waiting or set-up
times [24]. Depending on the project at hand, each dimension may be influenced posi-
tively or negatively or remain unchanged. This allows for covering many different
effect constellations. For instance, there are projects that improve the quality of a
process, while increasing time with potentially no effect on the operating outflows.
Other projects reduce the operating outflows while leaving quality and time un-
changed. In addition, all process-level projects cause investment outflows. An exam-
ple is the hiring of additional workers in the claim settlement process of an insurance
company. This project increases the operating outflows of the claim settlement
process, reduces the average cycle time, and increases quality in terms of fewer mis-
takes and undetected cases of fraud. Moreover, consider the adoption of a workflow
management system for the claim settlement process. This project reduces the average
cycle time due to enhanced resource allocation and increases quality in terms of cus-
tomer satisfaction. The project also increases the operating outflows of the process
due to higher maintenance effort.

158 M. Lehnert, A. Linhart, and M. Röglinger

Fig. 1. Effects among projects and processes

BPM-level projects that only have a direct effect on the organization’s operational
capabilities make all business processes under investigation more cost-efficient [20],
e.g., due to a better process culture and awareness. As an example, consider extensive
process manager trainings that increase the coordination among processes and ensure
an end-to-end mindset. As a result, the operating outflows are likely to drop despite
additional periodic training effort. BPM-level projects that only have an indirect ef-
fect on operational capabilities make it easier to implement process-level projects.
This effect becomes manifest in reduced investment outflows of future process-level
projects. That is, implementing such BPM-level projects without subsequent process-
level projects only causes investment outflows. As an example, consider training em-
ployees in business process reengineering (BPR) methods [39] or process redesign
patterns [22]. Based on such trainings, employees are able to implement future
process-level projects more easily. Analogous examples that relate to the BPM suc-
cess factor IT are the adoption of a process modeling or simulation tool. Finally, there
are BPM-level projects that combine the direct and indirect effect on operational ca-
pabilities. Such projects do not only help implement future process-level projects, but
also make all business processes under investigation more cost-efficient as from the
next period. Consider, for example, Six Sigma trainings. On the one hand, Six Sigma
provides many tools that facilitate process improvement. On the other hand, as an
approach to continuous process improvement, Six Sigma sensitizes people to looking
for more efficient ways of conducting their daily work. What is common to all
BPM-level projects is that they cause investment outflows. We make the following
assumptions:

(A.5) Process-level projects enhance the organization’s operational capabilities by
improving a single process in terms of time, quality, and operating outflows. Consi-
dering a distinct project , denotes the project’s relative effect on quality, the

(?)

Quality

Project layer Valuation layer

(0/-)

(+)

Contribution
margin

Operating
outflows

Investment
outflows

Process-level
project

BPM-level
project

Time

Demand

Price Periodic
cash flow

(-)

(+)

(-)

Degeneration
effect

Process layer

Operating
cash flow

(+)

(-)

Legend:
(+) = Increase of the input variable increases the output variable
(-) = Increase of the input variable decreases the output variable
(0/-) = Decreasing or neutral effect
(?) = Increasing, decreasing, or neutral effect

Solid line = direct effect
Dashed line = indirect effect

 Chopping Down Trees vs. Sharpening the Axe 159

relative effect on time, and the relative of effect on the operating outflows.
Process-level projects also cause investment outflows .

(A.6) BPM-level projects enhance operational capabilities directly and/or indirectly.
As for the direct effect, denotes a project’s relative effect on the operating out-
flows of all business processes under investigation. As for the indirect effect,
denotes the relative effect on the investment outflows of all process-level projects im-
plemented in future periods. BPM-level projects cause investment outflows .

3.3 Integrating the Project Effects into the Objective Function

With the knowledge about the project archetypes and their effects, we operationalize
the objective function (Equation 1). For each period of the planning horizon, we de-
termine the quality, time, and investment outflows as well as the operating outflows
of all business processes.

The investment outflows in period depend on which process- or BPM-level
project is scheduled for that period (Equation 2). As one project can be implemented per
period and each project is finished within one period (A.3), there is a one-to-one rela-
tionship between periods and projects. Thus, the index refers to exactly one project.
We use the index to denote the project that is scheduled for period in the BPM
roadmap under investigation. If a BPM-level project is scheduled for period , the
investment outflows in that period equal as the investment outflows of BPM-level
projects are independent of other projects. If a process-level project is scheduled for
period , the investment outflows do not only depend on , but also on the indirect
effects 0; 1 of all BPM-level projects that have been implemented until period 1 (A.6). The set of these BPM-level projects is denoted by , . In our
model, the effects are linked multiplicatively due to their relative character (A.4).
The combination of multiplicatively linked effects and the discounting of periodic cash
effects allows for incorporating inter-temporal interactions. If no project is scheduled for
period , a case that only occurs if the planning horizon exceeds the number of projects
in the BPM roadmap, the investment outflows in that period are zero.

· ,0
if a BPM-level project is scheduled for y

 if a process-level project is scheduled for y

if no project is scheduled for y

 (2)

The operating outflows , of business process in period depend on the

BPM-level and the process-level projects that have been implemented until period 1 (Equation 3). Therefore, the set of previously implemented BPM-level
projects, , , and the set of previously implemented process-level projects
with an effect on business process , , , , have to be considered. Thereby, the
effect belongs to process-level projects, whereas refers to the direct cost-
efficiency effects of BPM-level projects. As process-level projects may have a posi-
tive, negative, or neutral effect on the operating outflows, can take values from

160 M. Lehnert, A. Linhart, and M. Röglinger

the interval 0; ∞ where 1 denotes a neutral effect. As BPM-level projects
only reduce the operating outflows (A.6), the effect can take values from the in-
terval 0; 1 . As all project effects are relative, we also need the operating outflows of
business process at the decision point (0) to calibrate the height of the operat-
ing outflows. The operating outflows at the decision point can be reasonably assumed
to be known as we consider existing business processes [34].

, , · , , · , (3)

The quality , of business process in period depends on the quality of this
process at the decision point (0) and on all previously implemented process-level
projects that focus on this process (Equation 4). For the quality of process at the
decision point, the same argumentation holds true as for the operating outflows. The
relative effect of a process-level project on quality is denoted by . This effect takes
values from the interval 0; ∞ as process level-projects may have a positive, nega-
tive, or neutral effect on quality. Like all other effects, quality effects are linked mul-
tiplicatively. Quality usually has an upper boundary [3]. For example, an error rate
ranges from 0 to 100 % or a customer satisfaction index may have maximum of 10.
To account for this property, we incorporated an upper quality boundary .
Against this backdrop, it may be the case that investment outflows are wasted if a
process-level project with a high quality effect is implemented when the quality of a
process is already very close to its upper boundary. In line with the quality manage-
ment literature, one has to continuously invest to maintain a once-achieved quality
level. That is, whenever the organization conducts a BPM-level project or a process-
level project that focuses on another process, the quality of process drops. We
therefore integrated a process-specific degeneration effect that takes values from
the interval 0; 1 . The degeneration effect penalizes if the organization focuses too
much on a distinct process or on building up BPM. The exponent of the degeneration
effect in Equation (4) indicates the number of periods in which, up to the current pe-
riod , the organization did not conduct process-level projects that focus on process .
The extent of the degeneration effect depends on different process characteristics
(e.g., complexity, or employee fluctuation).

, min , · , , · , , ; (4)

Time and quality can be treated similarly. The difference is that time has no upper
boundary and another polarity than quality. The time , of business process in
period depends on the time of the process at the decision point (0) and on all
previously implemented process-level projects that focus on this process (Equation 5).
The relative time effect of a process-level project is denoted by . This effect takes
values from the interval 0; ∞ as process level-projects may have a positive, nega-
tive, or neutral effect on time. Analogous to quality, we incorporated a degeneration

 Chopping Down Trees vs. Sharpening the Axe 161

effect that occurs in all periods where the organization does not conduct process-
level projects that focus on process . As time has a different polarity than quality, the
degeneration effect takes values from the interval 1; ∞ .

, , · , , · , , (5)

Having operationalized the objective function using the effects of process-level and
BPM-level projects, the decision model can now be employed to valuate and compare
roadmaps in terms of their value contribution to identify the optimal BPM roadmap.

4 Evaluation

To evaluate the decision model, we discuss its characteristics against the requirements
from the literature. We also built a prototype and provide a demonstration example
using the case of an IT service provider. Finally, we are currently applying the decision
model in an industry project. We will report on the insights in our future research.

4.1 Feature Comparison

Regarding feature comparison, the characteristics of our decision model are compared
with the requirements we derived from the literature in section 2 (Table 1).

Table 1. Results of feature comparison

RQ Features of the model

(R.1) The decision model builds on process-level projects, which affect only one business process, and
BPM-level projects, which affect all business processes under consideration (R.1b). Process-level
projects enhance an organization’s operational capabilities, whereas BPM-level projects build up
BPM as a dynamic capability. They affect operational capabilities directly by making all business
processes more cost-efficient and/or indirectly by facilitating the implementation of process-level
projects in the future (R.1a).

(R.2) The decision model aligns with the Devil’s Quadrangle. It directly accounts for the performance
dimensions time, quality, and cost, and indirectly for flexibility (R.2a). As value-based substitutes
for cost, the decision model relies on operating cash outflows and investment outflows. Each
dimension can be operationalized via different performance indicators (R.2b).

(R.3) We consider a set of pre-defined project candidates. We assume that, in the pre-screening stage of
the PPS process, all project candidates were checked for appropriate strategic fit (R.3a) and that, in
the individual project analysis stage, the relative effects all of project candidates have been deter-
mined as single values independent from other projects (R.3b). The absolute effects of a project
depend on the projects that have been implemented in prior periods. Thus, we consider determinis-
tic, scheduling, and inter-temporal interactions among projects (R.3c).

(R.4) The value contribution of a BPM roadmap is based on its NPV, an appropriate quantity in case of
deterministic interactions. The NPV considers all cash effects that result from process- and BPM-
level projects as well as from process execution (R.4a). We account for the decision makers’ risk
attitude using a risk-adjusted interest rate (R.4b). As BPM roadmaps comprise multiple projects
implemented at different points in time, we also consider a multi-period planning horizon. The
risk-adjusted interest rate also accounts for the time value of money (R.4c).

162 M. Lehnert, A. Linhart, and M. Röglinger

The requirements that represent the capability development and the process perfor-
mance measurement perspectives are met to the full extent. The requirements that
account for the PPS and the value-based management perspectives are covered partly.
The resulting need for future research is outlined in the conclusion.

4.2 Demonstration Example

For the demonstration example, we consider three service processes that an IT service
provider offers to its customers. The demand for a distinct service depends on its quality
and time. For the service provider, a planning period lasts one quarter. The interest rate
is 2.5% per quarter. The first service is an incident management service that includes the
operation of a ticket system and the provision of required service staff. Costumers pay a
fixed service fee per ticket. The number of tickets has been identified as a main driver of
the service’s operational outflows. The quality of this service is measured as the fraction
of tickets that is resolved to the customers’ satisfaction. Time is operationalized as the
average time for reacting upon a ticket. The second service is the operation of an Enter-
prise Resource Planning (ERP) system. Costumers pay a fixed license fee per quarter.
The quality of the ERP service is expressed as the availability of the ERP system. Time
is operationalized as the time necessary to implement minor changes in the ERP system
or to conduct related customization. The third service is a backup service. Customers
pay a fixed remuneration per license related to their average memory requirements. The
perceived quality of this service depends on the agreed service level of the backup ser-
vice, i.e., the number of backups per period and the number of periods for which back-
ups are stored. For this service, time such as recovery time is not relevant from the
customers’ point of view.

We consider the three IT service processes just introduced (Table 2) and five dif-
ferent projects (Tables 3 and 4), thereof three BPM-level and two process-level
projects. The projects and their effects used in this demonstration example were de-
rived from projects that were implemented at those industry partners with which we
discussed the decision model. Overall, we calculate four scenarios. For each project,
we estimated the effects for an optimistic (opt.) and a pessimistic (pess.) scenario. We
also consider two planning horizons, i.e., three and eight periods. As for the short
planning horizon, the service provider has to solve a PPS and a project scheduling
problem. As for the long planning horizon, the service provider has to solve a project
scheduling problem. A planning horizon of eight periods leads to 120 different BPM
roadmaps to be evaluated, whereas a planning horizon of three periods leads to 60
different BPM roadmaps.

Table 2. IT service processes considered in the demonstration example

 Name , , , ,

1 Incident management service 95 % 60 min 2.50 € 1 € 10.00 % 11,000 · ln

2 Operation of an ERP system 91 % 30 d 1,500 € 1,300 € 5.00 % 200 · ln

3 Backup service 80 % - 220 € 150 € 5.00 % 1,200 · ln

 Chopping Down Trees vs. Sharpening the Axe 163

Table 3. BPM-level projects considered in the demonstration example

 Name Services
influenced

pess. opt. pess. opt.

1 Training in BPR methods All 25,000 € - - 0.95 0.8
2 Development of a process perfor-

mance measurement system
All 100,000 € 0.95 0.85 - -

3 Training in Six Sigma All 35,000 € 0.99 0.9 0.95 0.8

Table 4. Process-level projects considered in the demonstration example

 Name
pess. opt. pess. opt. pess. opt.

4 Update ticket system 1 110,000 € 0.90 0.70 1.0 1.1 1.3 1.1

5 Increase backup frequency 3 35,000 € - - 1.1 1.3 1.2 0.9

The results of all scenarios are shown in Table 5. For each scenario, we list the
indices of the included projects and the NPVs for the optimal and the worst BPM road-
maps (Table 5a and 5b). In each scenario, the NPV of the optimal BPM roadmap differs
a lot from the NPV of the worst BPM roadmap. For example, in the optimistic scenario
with a long planning horizon, the NPV of the optimal BPM roadmap is 1,584,657 € (25
%) higher than the NPV of the worst BPM roadmap. This result corroborates the propo-
sition that the concrete set of projects and the inter-temporal interactions implied by the
sequence of implementation greatly affect the value contribution.

Apart from the differences in the planning horizon, the projects included in the op-
timal BPM roadmap and their sequence of implementation are very similar for all
scenarios. In three scenarios, the first projects are the projects 2, 3, and 1, i.e., the
BPM-level projects. In the fourth scenario, the first two projects are again projects 2
and 3. Project 1 is scheduled for period 4. Though appearing counter-intuitive at first
sight, this result is reasonable from the short-term perspective as the projects 2 and 3
influence all processes and, in the case at hand, outperform the process-level projects.
Project 1 is implemented in period 3, i.e., the last period of the short planning horizon,
because it is much cheaper than the process-level projects. The same argumentation
holds true for the long planning horizon. In the pessimistic case, the projects 4 and 5,
which are scheduled for period 4 and 5, benefit from the indirect effects caused by
projects 1 and 3. In the optimistic scenario, project 5 is scheduled for period 3 because
it is rather cheap and has a comparatively strong effect on the quality and the operat-
ing outflows of the backup service. In fact, the demand for the backup service is very
sensitive toward quality improvements, a circumstance that makes it reasonable from
an economic perspective to implement project 5 two periods earlier than in the pessi-
mistic case where its effects are much worse. It is also sensible to implement project 4
the last. The reason is that the quality of the incident management service already is
very close to the upper boundary. Thus, project 4 is not fully effective. In addition,
with all demand functions having diminishing marginal returns, quality improvements
for the incident management service are less effective than for the backup service.

164 M. Lehnert, A. Linhart, and M. Röglinger

Table 5. Results of the demonstration example

5 periods 3 periods 5 periods 3 periods

O
pt

im
is

ti
c

Projects: 2, 3, 5, 1, 4
NPV: 7,892,429 €

Projects: 2, 3, 1
NPV: 2,579,570 €

O
pt

im
is

ti
c

Projects: 4, 1, 5, 3, 2
NPV: 6,307,772 €

Projects: 4, 1, 2
NPV: 1,689,518 €

P
es

si
m

is
ti

c

Projects: 2, 3, 1, 4, 5
NPV: 4,828,230 €

Projects: 2, 3, 1
NPV: 1,998,147 €

P
es

si
m

is
ti

c

Projects: 5, 4, 1, 3, 2
NPV: 3,805,124 €

Projects: 5, 4, 2
NPV: 1,393,421 €

(a) Optimal BPM roadmaps (b) Worst BPM roadmaps

5 Conclusion and Outlook

Located at the intersection of traditional BPM research and BPM research that focus-
es on capability development, we investigated the question which projects an organi-
zation should implement and in which order it should implement these projects to
develop BPM capabilities in a way that is balanced with the improvement of individ-
ual business processes. To answer this question, we proposed a decision model that
valuates BPM roadmaps, i.e., portfolios of scheduled projects with different effects on
processes and BPM capabilities, and selects the roadmap with the highest value con-
tribution in a given planning horizon. The value contribution of a BPM roadmap is
expressed in terms of its net present value. The decision model supports two project
archetypes, namely process-level and BPM-level projects. Process-level projects help
develop an organization’s operational capabilities by improving a single process in
terms of the dimensions of the Devil’s Quadrangle (e.g., time, quality, and cost).
BPM-level projects build up BPM as a dynamic capability. They affect an organiza-
tion’s operational capabilities directly by making all business processes more cost-
efficient and/or indirectly by facilitating the implementation of process-level projects
in the future. As for the evaluation, we discussed the decision model both with indus-
try partners and with respect to the requirements from the literature. We also built
a prototype and presented a demonstration example that was also discussed with
industry partners.

As the decision model does not meet all requirements derived from the literature to
the full extent, it is beset with limitations that may stimulate future research. First,
some assumptions of the decision model simplify reality. For example, only one
project can be implemented per period. Though being made to analyze the interac-
tions among processes and projects more clearly in a first step, it is worthwhile to
relax this assumption in the future. If more than one project can be implemented per
period, it is necessary to account for intra-temporal interactions. In its current version,
the decision model copes with simple intra-temporal interactions (e.g., budget restric-
tions or mandatory projects), but not with complex ones (e.g., input-output
interactions). The decision model is also based on the assumption of deterministic
interactions (e.g., regarding customer demands). Although the risk-adjusted discount
rate used for calculating the value contribution of BPM roadmaps implicitly accounts

 Chopping Down Trees vs. Sharpening the Axe 165

for risks, future research should put more emphasis on stochastic interactions as for
example the integration of risks with respective probabilities. Due to the interactions
among projects and processes, we assumed that the absolute project effects depend on
the previously implemented projects from the BPM roadmap. Thus, project effects
were expressed in relative numbers and linked multiplicatively to determine the peri-
odic cash effects. In practice, however, the effects of some projects may be indepen-
dent of the previously implemented projects, a circumstance that would make an
additive linking necessary. Therefore, the decision model should be extended corres-
pondingly.

Second, although we were able to discuss the demonstration example with industry
partners, the decision model would benefit from additional case studies. This would
help gain more experience with estimating the needed parameters, which is a main
difficulty of applying mathematical models. Case studies may also provide further
insights into the behavior of the decision model and, for example complemented by
additional experiments, serve as foundation for general recommendations for action.
To efficiently determine the optimal BPM roadmap in settings of real-world complex-
ity, further research should also search the quantitative project portfolio selection and
project scheduling literature for suitable heuristic approaches that avoid the computa-
tional expensiveness of exhaustive enumeration.

References

1. Kohlbacher, M., Reijers, H.: The effects of process-oriented organizational design on firm
performance. Bus. Proc. Manage. J. 19, 245–262 (2013)

2. Skrinjar, R., Bosilj-Vuksic, V., Indihar-Stemberger, M.: The impact of business process
orientation on financial and non-financial performance. Bus. Proc. Manage. J. 14, 738–754
(2008)

3. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business Process
Management. Springer, Heidelberg (2013)

4. vom Brocke, J., Becker, J., Braccini, A.M., et al.: Current and future issues in BPM re-
search: a European perspective from the ERCIS meeting 2010. CAIS 28, 393–414 (2011)

5. van der Aalst, W.M.P.: Business Process Management: A Comprehensive Survey. ISRN
Software Eng., vol. 2013 (2013)

6. Niehaves, B., Poeppelbuss, J., Plattfaut, R., Becker, J.: BPM Capability Development–A
Matter of Contingencies. Bus. Proc. Manage. J. 20, 90–106 (2014)

7. Sidorova, A., Isik, O.: Business process research: a cross-disciplinary review. Bus. Proc.
Manage. J. 16, 566–597 (2010)

8. Vergidis, K., Tiwari, A., Majeed, B.: Business Process Analysis and Optimization: Beyond
Reengineering. IEEE Transactions on Systems, Man, and Cybernetics - Part C: Applica-
tions and Reviews 38, 69–82 (2008)

9. Rosemann, M.: vom Brocke, J.: The Six Core Elements of Business Process Management.
In: Handbook on Business Process Management I. Springer, Berlin (2010)

10. van Looy, A., de Backer, M., Poels, G.: Defining Business Process Maturity: A Journey
towards Excellence. Total Qual. Manage. 22, 1119–1137 (2011)

11. Jurisch, M.C., Palka, W., Wolf, P., Krcmar, H.: Which Capabilities Matter For Successful
Business Process Change? Bus. Proc. Manage. J. 20, 47–67 (2014)

166 M. Lehnert, A. Linhart, and M. Röglinger

12. Röglinger, M., Pöppelbuß, J., Becker, J.: Maturity Models in Business Process Manage-
ment. Bus. Proc. Manage. J. 18, 328–346 (2012)

13. Darmani, A., Hanafizadeh, P.: Business process portfolio selection in re-engineering
projects. Bus. Proc. Manage. J. 19, 892–916 (2013)

14. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Systems
Research. MIS Quart. 28, 75–105 (2004)

15. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A Design Science Research
Methodology for Information Systems Research. J. Manage. Inf. Syst. 24, 45–77 (2008)

16. Harmon, P.: Business Process Change, 2nd edn. Morgan Kaufmann, Burlington (2010)
17. Helfat, C.E., Peteraf, M.A.: The Dynamic Resource-based View: Capability Lifecycles.

Strategic Manage. J. 24, 997–1010 (2003)
18. Pavlou, P.A., El Sawy, O.A.: Understanding the Elusive Black Box of Dynamic Capabili-

ties. Decision Sci. 42, 239–273 (2011)
19. Winter, S.G.: Understanding Dynamic Capabilities. Strategic Manage. J. 24, 991–995

(2003)
20. Kim, G., Shin, B., Kim, K.K., Lee, H.G.: IT capabilities, process-oriented dynamic capa-

bilities, and firm financial performance. J. Association Inf. Syst. 12, 487–517 (2011)
21. Ortbach, K., Plattfaut, R., Pöppelbuß, J., Niehaves, B.: A Dynamic Capability-based

Framework for Business Process Management: Theorizing and Empirical Application. In:
Proceedings of the Hawaii International Conference on System Sciences, Hawaii Interna-
tional Conference on System Sciences, pp. 4287–4296 (2012)

22. Reijers, H.A., Liman Mansar, S.: Best practices in business process redesign: an overview
and qualitative evaluation of successful redesign heuristics. Omega 33, 283–306 (2005)

23. Heckl, D., Moormann, J.: Process performance management. In: Handbook on Business
Process Management 2. Springer, Berlin (2010)

24. Neuhuber, L.C.N., Krause, F., Roeglinger, M.: Flexibilization Of Service Processes: To-
ward An Economic Optimization Model. In: Proceedings of the 21st European Conference
on Information Systems (ECIS 2013), Paper 66 (2013)

25. Archer, N.P., Ghasemzadeh, F.: An integrated framework for project portfolio selection.
Int. J. Project Manage. 17, 207–216 (1999)

26. Kundisch, D., Meier, C.: IT/IS Project Portfolio Selection in the Presence of Project Inte-
ractions – Review and Synthesis of the Literature. In: Wirtschaftinformatik Proceedings
2011, Paper 64, pp. 477–486 (2011)

27. Lee, J.W., Kim, S.H.: An integrated approach for interdependent information system
project selection. Int. J. Project Manage. 19, 111–118 (2001)

28. Fox, G.E., Baker, N.R., Bryant, J.L.: Economic Models for R and D Project Selection in
the Presence of Project Interactions. Manage. Sci. 30, 890–902 (1984)

29. Gear, T.E., Cowie, G.C.: A note on modeling project interdependence in research and de-
velopment. Decision Sci. 11, 738–748 (1980)

30. Bardhan, I., Bagchi, S., Sougstad, R.: Prioritizing a portfolio of information technology
investment projects. Manage. Inf. Syst. 21, 33–60 (2004)

31. Medaglia, A.L., Graves, S.B., Ringuest, J.L.: A multiobjective evolutionary approach for
linearly constrained project selection under uncertainty. Eur. J. Oper. Res. 179, 869–894
(2007)

32. Koller, T., Goedhart, M., Wessels, D.: Valuation: Measuring and Managing the Value of
Companies. John Wiley, New Jersey (2010)

33. Rappaport, A.: Creating Shareholder Value: The New Standard for Business Performance.
Free Press, New York (1986)

 Chopping Down Trees vs. Sharpening the Axe 167

34. Buhl, H.U., Röglinger, M., Stöckl, S., Braunwarth, K.: Value Orientation in Process Man-
agement - Research Gap and Contribution to Economically Well-founded Decisions in
Process Management. Bus. Inf. Syst. Eng. 3, 163–172 (2011)

35. Martin, J.D., Petty, W.J., Wallace, J.S.: Value-Based Management with Corporate Social
Responsibility. Oxford University Press, Inc., New York (2009)

36. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer, New York
(2010)

37. Pierson, P.: Not just what, but when: Timing and sequence in political processes. Studies
in American Political Development 14, 72–92 (2000)

38. Project Management Institute: A Guide to the Project Management Body of Knowledge.
Project Management Institute, Newton Square (2008)

39. Hammer, M., Champy, J.: Reengineering the corporation: a manifesto for business revolu-
tion. Nicholas Brealey, London (1993)

Implicit BPM: A Business Process Platform

for Transparent Workflow Weaving

Rubén Mondéjar1,2, Pedro Garćıa-López1, Carles Pairot1,2, and Enric Brull2

1 Department of Computer Engineering and Maths,
Universitat Rovira i Virgili, Tarragona, Spain

{ruben.mondejar,pedro.garcia,carles.pairot}@urv.cat
2 Diputació de Tarragona, Spain

enric.brull@dipta.cat

Abstract. The integration of business processes into existing applications
involves considerable development efforts and costs for IT departments.
This precludes the pervasive implementation of BPM in organizations
where important applications remain isolated from the existing workflows.

In this paper, we introduce a novel concept, Workflow Weaving, based
on non-intrusive techniques, which achieves transparent integration of
business processes into organizational applications. This concept relies
on BPM standards, Aspect Oriented Programming, and Web patterns
to transparently weave business models among current web applications.
A prototype platform is presented, which includes our design of a dis-
tributed architecture, and a natural and expressive DSL.

Keywords: Workflow Weaving, Implicit BPM, Distributed Platform,
Aspect-Orientation, MVC Architecture.

1 Introduction

There is an increasing demand from organizations to integrate business processes
into existing applications. Many of these applications remain apart from the
company workflows because they were designed as isolated systems without clear
interoperation interfaces. In most cases, the cost of this integration is very high
because it implies detailed knowledge of the existing applications, and ad-hoc
modifications to provide the required connection with workflow engines. This
cost makes it very difficult to adopt BPM strategies in these organizations.

These workflows should provide a way of describing the order of execution and
the dependent relationships between the activities of running processes in het-
erogeneous applications. However, if these processes span existing applications
in the organization, their integration implies a costly plumbing and connection
development work in every piece of software.

In order to reduce this cost, we introduce a novel concept, namely Workflow
Weaving, based on non-intrusive techniques, which achieves transparent inte-
gration of business processes into existing web applications. We mainly employ

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 168–183, 2014.
c© Springer International Publishing Switzerland 2014

Implicit BPM: A Platform for Transparent Workflow Weaving 169

Aspect-Oriented Programming (AOP) [1] to transparently intercept existing web
applications and connect them to the workflow system. The novelty of our ap-
proach is that we intercept the Model-View-Controller (MVC [2]) pattern in key
points in order to avoid a detailed knowledge of the target applications. The
MVC pattern enables us to perform black-box [3] wrapping interception and to
avoid costly clear-box interception models. The only natural assumption is that
any of the intercepted applications must be of an MVC web type.

To simplify application integration, we also provide a Domain Specific Lan-
guage (DSL [4]) that transparently performs Workflow Weaving. This weaving
defines the mechanisms to intercept applications and to inject BPM logic into
them. Thus, IT technicians do not need to learn AOP since the simple DSL
is responsible for enabling the required interceptors in MVC applications. The
major contributions of our approach are:

– Transparent introspection and interception of web applications, which ben-
efit from the decoupled nature of the most extended pattern for developing
modern web applications (MVC).

– A natural and expressive DSL that performs Workflow Weaving by injecting
AOP interceptors into web applications. This approach considerably simpli-
fies the integration of business processes into existing applications.

– The design and implementation of a distributed and implicit BPM platform,
which enables distributed process weaving and management.

The rest of the article is structured as follows. Section 2 shortly introduces the
state-of-the-art in BPM integration and implicit techniques fields. In Section 3 we
give an overview of our Workflow Weaving technique proposal and its features.
In Section 4 we introduce our platform design and implementation. Related work
is presented in Section 5, and in Section 6 we draw some conclusions.

2 Background

In this section, we explore relevant background in this area. Firstly, we discuss
different topics in the scenarios of BPM integration, including important issues
like explicit solutions and support for legacy applications. Secondly, we explore
existent techniques to provide transparency and integration concerns.

2.1 BPM Integration

Building systems from the ground up is no longer an acceptable business practice
and it is certainly not cost effective. In this setting, Business Process Manage-
ment (BPM) [5,6] is seen as a mechanism for integrating systems and a way of
developing new applications.

Actual BPM solutions are well-known and explicit approaches to implement
workflows on top of software applications applicable to a certain business. That
approach traditionally supports the separation of the business process from the
core application, but presents important drawbacks. Some of these disadvantages

170 R. Mondéjar et al.

include the accommodation of transversal business processes into applications,
the combination of different design and execution environments, and the fact
of dealing with legacy applications. For these reasons, BPM is in many cases
perceived as being expensive and really complex to deploy.

Unanticipated business processes that need to be modelled and incorporated
into any operating applications are a common requirement [7,8,9] to accom-
modate any change in policies, regulations, etc. In addition, business processes
should also be easily reused among a variety of applications between the same or-
ganization. Such requirements are usually deemed to be painful because existing
solutions use explicit techniques.

Since business processes are designed by business analysts, these need to be
defined and understood by stakeholders, and they are not typically adept in
application development [10]. In this line, the business process must be defined
using a high-level domain language, thus hiding technical concerns. As a conse-
quence, business processes are implemented combining standard software engi-
neering approaches, such as object-oriented programming languages (e.g. Java),
description languages (e.g. XML), and high-level domain languages (e.g. BPMN).

Finally, another important issue is how to deal with existing legacy appli-
cations. Since understanding existing legacy code through reengineering is a
challenging task that may consume a lot of resources. Some recent works [11]
propose to rewrite them using BPM. Unfortunately, building systems from the
ground up can also represent an enormous cost. As an alternative [12] presents
a reengineering tool to identify business rules contained in legacy source code.
But as authors explain, reengineering using BPM is not easy to apply, because
there are no tools that help developers understand the legacy system behaviour.

2.2 Implicit Techniques

Different approaches are taken on implicit middleware [13], like generic wrapping
techniques which are normally more intrusive, as well as ad-hoc interception
solutions [14] provided by a specific platform in an explicit way.

However, in order to solve transparency or genericity limitations, we can use
powerful interception solutions like AOP, which is an established paradigm. In-
deed, it enables describing and separating crosscutting system concerns in a
modular and highly reusable manner. AOP supports switching on and off new
behaviours at a specific point of program execution, while maintaining the sys-
tem well modularized.

AOP applies to support flexibility and adaptability of applications/services by
allowing to switch on and off orthogonal functions, allowing less interdependence
and more transparency. The interception is performed in a join point (a point in
the execution flow), and defined inside a pointcut (a set of join points). Whenever
the application execution reaches one pointcut, an advice (namely a callback)
associated with it is executed. The aspect is a module encapsulating pointcuts
and advices. It specifies the new functionality to be included and the place in
the execution of the original code where this functionality is to be inserted.

Implicit BPM: A Platform for Transparent Workflow Weaving 171

In this setting, a weaver is the AOP mechanism that combines code encapsu-
lated in aspects with the original code. There are different weaving mechanisms
that can be classified as static or dynamic. Dynamic weaving enables the inter-
changeability or deactivation of aspects during program execution, while static
weaving disallows such capability, i.e. once defined, aspects cannot be deacti-
vated or exchanged.

Finally, we can distinguish between clear-box and black-box approaches [3] to
AOP. Clear-box approaches to AOP examine the program internals and source
code, producing a combination of program and aspects. Black-box approaches
shroud components with aspect wrappers in strategic points avoiding a detailed
knowledge of the code internals. Obviously, clear-box or white-box approaches
to interception imply more cost and they are more difficult to apply in real
settings. Black-box or wrapper-based techniques [15] can considerably simplify
the distributed interception [16] of existing systems.

3 Workflow Weaving

Commonly, software applications are developed to automate and to make efficient
business processes, which are previouslymodelled by analysts. Their requirements
are functional and represent activities that the organization is currently trying to
achieve. However, once applications are finally released, functional requirements
inevitably and naturally change in a major or minor degree, evolving to their
clients desires and thus improving their functionalities.

In this section, we introduce a novel technique named WorkflowWeaving, that
enables integration of business processes, represented by BPMNmodels, like true
crosscutting concerns into corporate web applications. Such technique allows in-
tegrating business processes with heterogeneous web applications transparently.
In this setting, transparent means that our solution must avoid access, modifi-
cation and detailed knowledge of the source code of the existing applications.
The major requirements of our so-called transparent integration are:

– A generic code interception of modern web applications using a black-box
solution (Section 3.2). In addition, it must provide introspection capabilities
that offer information about models, controllers, and views in the existing
web applications to be integrated.

– An easy management and deployment of interceptor code. This requires code
injection using a common interface (Section 3.3), where IT technicians are
unaware of the application code.

– A high-level domain language and interpreter (Section 3.4) simplifying the
integration of business processes and web applications. This avoids knowl-
edge of the underlying interception framework (AOP).

The rest of the section explains how the Workflow Weaving technique deals
with each of these requirements itemized above.

172 R. Mondéjar et al.

3.1 Use Case

Clear examples of real application requirements, are authentication portals or
payment gateways, which use web redirections to change the navigation rules
and other behaviours of the system.

In Figure 1 we present a use case based on two applications within the same
organization: an e-commerce Pet Store application, and a generic Accounting
application. The Pet Store is a classic sample application from the Java EE Plat-
form, used to show its features. We have also implemented a generic Accounting
application that manages the books, and the customers of an enterprise.

Moreover, a business analyst has designed and modelled a Purchase Workflow
in this scenario, limiting itself to a standard BPMN 2.0 design tool. Note that
since this is a simple example, the represented tasks are user tasks, although
they can be of another type, because our plaftorm provides a full support of
BPMN 2.0 activities.

Both applications are implemented on a MVC framework, and their compo-
nents are: models, consisting of persisted domain objects, controllers, formed
by a set of action to command interactions, and view pages, which communicate
directly with the end-users. For their graphical representation, we use the UML
notation [17] that illustrates interactions among the MVC components of a web
application. In addition, the UML notation has the following basic rules: view
pages can only interact with controllers, model objects can only interact with
controllers, and controllers can interact with any component.

Pet Store (MVC Application, UML)

Save
Purchase

1 Accounting (MVC Application, UML) 2

3

Handle
Purchase

Register
Customer

Book
Balance

Payment?

customer?

init completed

done

verified

wrong
regular

new

Success
Page

Item Book

Customer

List
Page

Show
Page

shopping
cart

Order

manage

books

Purchase Workflow (Business Process Model, BPMN 2.0)

A
B

C

D

E

model

interact
with

Task

start

end

gateway

flow

It

O d

B k

C t

action
controller

view i

ShowHome
 Page
H

Main
Page Show

Page
Show

List
Page
List

Create
Customer
C

Edit
Book

Find
Item
Find

Confirm
Cart

Confirm

Process
Order

P

trigger
render

find
sets in

 perform

perform

Before Instead of After

List

cancelled

Fig. 1. Workflow Weaving Use Case

Implicit BPM: A Platform for Transparent Workflow Weaving 173

Lastly, to interrelate the different diagrams, we use dashed arrows to indicate
the existent Workflow Weaving among the business process and the application.
Note that each arrow has a tag describing the associated action, and there are
three different arrow shapes depending on the interception type: before, instead
of, and after.

In Figure 1 we have highlighted the most important spots where Workflow
Weaving occurs:

(A) in the PetStore application, instead of the Process action from the Order
controller, the init event of the Purchase Workflow is triggered.

(B) After the Save Purchase task is completed, the execution returns to the
application to render the Success Page view.

Later on, the Purchase Workflow continues its natural execution, until we
arrive to the Book Balance task. This means that some other participant has
claimed and completed the Handle Purchase task.

(C) Once the payment is verified, the execution flow moves to the Accounting
application. Particularly, before the Book Balance task is started, the process
looks up the customer model by its National Identification Number (NIN) and
sets the result into the exists boolean attribute of this task.

(D) After the Book Balance task is completed, the weaver performs the Edit
action from the Book controller.

(E) Lastly, after the Register Customer task, the weaver performs the Create
action from the Customer controller.

As seen on the example, the Workflow Weaving technique defines the whole
behaviour of the system when the process is running. In the next section, we
present how our technique can crosscut MVC applications transparently, pro-
viding a true black-box solution.

3.2 MVC Pattern

Web development has changed significantly over the past few years. It has not
been long since deploying a web project simply involved uploading static HTML,
CSS and JavaScript files to a web server. Nowadays, web application develop-
ment using web frameworks has become the de facto work environment. Fur-
thermore, current frameworks (e.g. Grails [18]) follow common fundamentals
and best practise principles like reutilization (i.e. DRY - Don’t Repeat Yourself)
or productivity (e.g., conventions over configurations, and scaffolding).

Furthermore, the most important of the common features on modern web
frameworks is the whole adoption of the MVC pattern. Although MVC was
originally developed for desktop computing, it has been widely adopted as an
architecture for web applications in all major programming languages. As a
result, new MVC frameworks have appeared that provide structure and guidance
when developing these applications.

In this work, we mainly focus on MVC based applications, which are mainly
those based on modern web frameworks. This restriction allows us to provide
a real black-box solution. Thus, even though the entirety of legacy applications

174 R. Mondéjar et al.

AOP
Facilities

XPI

Interception

Workflow Weaver [DSL]

View

Model Controller

View
Selection

State Changes

State
Changes
Notifications

State
Query

MVC

Workflow Weaver [DSL]

Reflection
Capabilities

eflectio

F
F

A B

C C

B A D E D E

Introspection

Metadata

Fig. 2. Black-Box Diagram for the MVC Pattern

may not be included, they can be refactored following some guidelines, like those
presented in other works [2].

In our case, we introduce a solution that follows a black-box model injecting
code in strategic points of the web application framework. Thanks to the MVC
standard pattern, which is used extensively in web frameworks, we are able to
intercept models, views and controllers in a transparent and decoupled way.
Thus, as we have shown in Figure 2, the MVC pattern enables the use of AOP
facilities to intercept code (in points A, B, and C), and to use reflection and
introspection techniques to obtain the necessary information (in points D, E,
and F).

Indeed, reflection is a well-known self-management technique for providing
mechanisms to inspect a system structure and behaviour. Furthermore, the MVC
pattern presents a clear facade, standard naming conventions, and inheritance
rules to easily perform automatic introspection of the application. In this case, we
benefit from this advantage to extract the declared model and attributes (A), the
enabled controllers and actions (B), and the deployed views and navigation rules
(C) among all of them. Additionally, the workflow weaver also injects new code
to add or remove calculated fields to domain classes (D), to change the current
behaviour of the controller actions (E), or inject code in compiled versions of the
page views (F).

Accordingly, our solution benefits from the MVC pattern to become a generic
solution that fulfils the black-box requirement. Furthermore, the limitation of
Workflow Weaving to MVC based web applications is not a big constraint, given
that MVC is the most common architecture pattern.

3.3 Crosscutting Interfaces

Crosscut Programming Interfaces (XPI) [19] are explicit, abstract interfaces that
provide a clear separation between the interceptor logic and the AOP language or

Implicit BPM: A Platform for Transparent Workflow Weaving 175

1: public abstract aspect MvcXpi {
2: public pointcut inController(): within(∗..∗Controller);
3: public pointcut controllerAction(): inController() &&execution(@Action public ∗ ∗.∗(..));
4: public pointcut inModel(): within(∗.persistence .Entity);
5: public pointcut saveMethod(): inModel() &&execution(public Object save(..));
6: //MoreCRUDMethods (...)
7: public pointcut inView(): within(∗..gsp ∗ gsp);
8: }

Fig. 3. XPI Example for a MVC Framework

implementation. It allows for their separate and parallel evolution and produces
a better correspondence between programs and designs.

In our scenario, each modern web framework uses different implementations
and mechanisms to instantiate domain classes, inject controllers, handle the data
layer, represent the views, among others. In fact, each of them presents differ-
ent approaches to implement the MVC pattern and its entities, using different
paradigms like object-oriented inheritance, XML configuration, or code annota-
tions.

The idea of the XPI is to create a contract between the platform and the
intercepted system. Therefore, the XPI establishes a binding with the MVC
Framework which states the pointcuts definition; and it also establishes another
binding with the interception platform, namely the advice method definitions.
As a result, if the platform uses different XPIs without modifying the advice
method definitions, each application is able to be implemented in any MVC
framework.

For instance, in Figure 3, we present a crosscutting interface for intercepting
each action method, and the persistence model CRUD methods. This example
intercepts a specific MVC framework (i.e., Grails [18]) where Controllers fol-
low a name convention (e.g., CartController) and Model domain classes (e.g.,
Cart) use inheritance from a persistence entity class. Therefore, with a simple
but effective variation in the pointcut definition, for instance, intercepting those
Controllers marked with a common annotation (e.g., @Controller), we obtain
an XPI suitable to intercept another MVC framework.

In addition to this introspection solution, we also need to use the previously
explained reflection capabilities to properly extract the system metadata. Thus,
we extend this API with the methods to obtain each instance living in the system:
models, controllers, among others. For this purpose, we implement interception
methods that store these object instances, at model construction and controller
injection time.

As a conclusion, we can state that although each MVC implementation re-
quires its own pointcuts, the XPI allows us to maintain the necessary separation
between our solution and the framework particularities. Note that this kind of
solution allows the platform to intercept at the same time different applications
implemented with different MVC frameworks. Therefore, our proposal benefits
from the XPI approach to be the abstracted solution that fulfils the second
requirement of this section.

176 R. Mondéjar et al.

1: dsl =name ’{’ {weaver} ’}’ ;
2: weaver = in application ’: ’ {act ’ , ’ behaviour} ’; ’ ;
3: application =name ;
4 act = when variable element [from controller] ;
5: when=Before | Instead of | After ;
6: element = action | view | event | task | attribute | flow ;
7: controller =name ;
8: behaviour = connector variable element [from controller] [by variable] [{another}] ;
9: connector =perform | find | save | render | trigger | start | sets in ;

10: another =and behaviour ;
11: name= { all characters− ’”’ } ;
12: variable = ’”’ , name , ’”’ ;
13: all characters = ? all visible characters ? ;

Fig. 4. Reduced DSL Grammar

3.4 DSL

It is well known that AOP paradigm has not been adopted by developers and
organizations due to its inherent complexity [20]. On the other hand, a Domain
Specific Language (DSL) is a reduced language whose main aim is to represent
constructions for a given domain. To begin with, a simple and understandable
human readable language is required. Thereby, if we are able to provide an
adequate DSL, end IT technicians do not need to deal with the underlying AOP
facilities.

For our approach, we propose a DSL specification (Figure 4), which provides
the way to formalize an abstract descriptor for the Workflow Weaving tech-
nique. Basically, this DSL specifies the Workflow Weaving behaviours, and all
the interactions among each element in the system (i.e., applications and process
model).

The definition of each dsl starts with the name, which obviously has to be
unique in the system once it is deployed, and needs to be the same as the class
name (e.g., weaver.PurchaseProcess).We continue with the workflow-weaver list.
Each workflow weaver determines the target application, and its collection of
events, as well as their related behaviours.

In line 4 (Figure 4), the act construction is defined, thus establishing when
(past, present or future) and how (i.e., basically which is the involved element) it
is produced in the specified application. Finally, if it is an action, we can specify
from which controller it comes from. Moreover, in this DSL we specify each
behaviour bound to an act, and it is defined in a similar manner. The connector
introduces the action that we want to execute (e.g., render), and the element
that will receive it.

Indeed, connectors are the major hook points that bind business processes and
MVC web applications. In this line, we have defined a basic set of connectors
that allow IT technicians to start an event or trigger a task from a business
processes, access or modify (find or save) domain objects from the model,
render view pages, and perform action methods of a controller.

In Figure 5 we show an example of DSL based on the use case described in
Section 3.1. This DSL example defines a Workflow Weaving among the Purchase

Implicit BPM: A Platform for Transparent Workflow Weaving 177

1: PurchaseWorkflow {
2: in PetStore :
3: Instead of ”process” action from Order, trigger ”init” event;
4: After ”Save Purchase” task, render ”success” view;
5: in Accounting :
6: Before ”Book Balance” task, find ”customer” by ”nin” and sets in ”exists” attribute;
7: After ”Book Balance” task, perform ”update” action from Book;
8: After ”Register Customer” task, perform ”create” action from Customer;
9: }

Fig. 5. Purchase Workflow DSL Example

process and the PetStore and Accounting applications. As we can see, each work-
flow weaver is defined simply by following the dotted arrows and the model de-
signed by the business analyst.

Lastly, although this DSL grammar is flexible enough for basic model inter-
actions, in the future we will extend it for executing new actions or accordingly
capturing other events with platform implementation functionalities.

Indeed, this use case example demonstrates the usability and expressiveness of
our approach. We have shown that our proposal builds a DSL solution including
a high-level domain language, which considerably abstracts the use of AOP.
Therefore, the main benefit is that the IT department does not need experts in
the AOP field.

4 Implicit BPM Approach

In order to materialize the Workflow Weaving technique we have implemented
the Implicit BPM approach. We have designed it as a simple, decoupled, and
distributed platform. In this section, we introduce our Implicit BPM platform
architecture and its life-cycle.

4.1 Architecture

The Implicit BPM platform has already been implemented as a distributed archi-
tecture, which consists of two separate parts: the Front-End and the Back-End
systems. Both parts of the platform are connected via web standard mechanisms
for flexibility and extensibility reasons, as well as due to the suitability of the
web paradigm for exposing and consuming remote services.

We can see a diagram of our architecture proposal in Figure 6, where grey
coloured components are either newly implemented or extended for our approach
and are discussed as follows.

Front-End Side: is where organizational applications are deployed and where
they run on servers in a distributed way. In fact, this system provides the inter-
ception and reflection components in our MVC black-box solution (as we have
shown in Figure 2).

178 R. Mondéjar et al.

Back-End

Weaver
Proxies

Front-End

Application

MVC
Framework

Reflection
Capabilities

AOP
Facilities

Server

Platform Manager A

Replicated
Back-Ends

Add-on Instance DSL
Interpreter

BPMN
Parser

Workflow
Engine

Weaver
Repository

Workflow
Database

Weaver
Coordinator

4

2

5 6
8 B

7

1
9

3

Fig. 6. Implict BPM Platform Architecture

Reflection Capabilities: include all the introspection functionalities. Specif-
ically, this reflective approach retrieves meta-data from the MVC application,
for example, the relationship between each model, controller, and view.

Weaver Proxies: live in a container that provides inserting (i.e., deploy-
ment) and installing (i.e., activation) them into the distributed and registered
applications. In the deployment phase, the weaver proxy is sent to the Front-End
container in the same host where the targeted application is running. Whenever
the weaver proxy is needed, it has to be loaded from the container (i.e., serialized
class) into the application.

AOP Facilities: support and use interceptors intensively, and strictly follow
the XPI defined for this purpose. Algorithm 1 shows a workflow weaver example,
which is responsible to render a view from a task, after a specific action is
performed.

Algorithm 1. renderTaskV iew
Advice: afterAction /* Pointcut */
Input: resp /* Response */
Output: resp /* Response */

1: acts← proxy.getActs()
2: action← joinPoint.thisMethodName()
3: if action ∈ act.getActions() then
4: act← proxy.getAct(action)
5: behaviours← proxy.getBehaviours(action)
6: for beh ∈ behaviours do
7: if beh.connector = render then
8: attrs← backEnd.getTaskAttrs(act.task)
9: resp← proxy.render(attrs)
10: end if
11: end for
12: end if
13: return(resp)

Implicit BPM: A Platform for Transparent Workflow Weaving 179

For this purpose, this algorithm intercepts a specified action of a controller,
and changes the application behaviour just following the enabled DSL instruc-
tions. In addition, it is able to recover the application metadata from the local
proxy, and the model information (e.g. task attributes) from remote Back-End
instances. We can see an example of this algorithm injection in our use case
(Figure 1, Point B) and its DSL code (Figure 5, Line 4) where the Front-End
detects the act After ’Save Purchase’ task, and consequently execute the be-
haviour render ’success’ view.

This way, each activated workflow weaver is converted to an AOP interceptor
and is loaded in the proper proxy instance. With the XPI, the dynamic and
decoupled techniques of the Weaver Proxy produce an important benefit we
already explained in the previous section: it supports runtime reconfiguration,
although the underlying weaver, from the AOP facilities, does not.

Back-End Side: supports the infrastructure of the system and provides de-
ployment, management, and execution capabilities.

BPMN Parser: transforms the uploaded BPMN 2.0 XML file into a Work-
flow Engine component. Previously, it verifies the correcteness of the model and
it saves the necessary data into the platform to allow future Workflow Weavers
to be integrated.

DSL Interpreter: is included in the Back-End to allow developers to write
accurate DSL codes. It takes advantage of the remote MVC instrospection to
facilitate the creation and edition of the Workflow Weaver. Using the commu-
nication system, it remotely retrieves all the necessary information from the
Front-End reflection capabilities.

Platform Manager: controls, coordinates and consolidates the BPMN mod-
els, DSL codes, and registered applications. As a first layer of functionality for
the Back-End, administrators are able to deploy models and classes, and man-
age the registered applications. Finally, it also provides reporting features for
the business analysts.

Weaver Coordinator: is responsible for handling the state of each dis-
tributed workflow weaver in the platform. In addition, it periodically receives
information about the deployed and activated weavers to perform monitoring
tasks into the platform.

Weaver Repository: is capable of storing wokflow-weavers remotely. These
weavers need to scatter the DSL parts and link them to each business process,
which was previously deployed into the Workflow Engine.

Replicated Back-Ends: extend scalability features on this platform side. Ap-
plication instances are duplicated, since they are mirror images of each other,
and running on multiple servers of the organization.

Communication Bus: uses the standard HTTP protocol to expose all the
services between the Front-End and the Back-End systems, mainly via REST
technology.

180 R. Mondéjar et al.

4.2 Platform Life Cycle

Figure 6 shows the platform life cycle. First of all, enabling the Front-End
Add-on an any application automatically registers it (1) into the Back-End
(A) instance. Once an application is redeployed, the same process is executed
in order to detect possible updates, for instance, a simple modification in the
application deployed URL. Using remote reflection capabilities, the platform is
able to retrieve all the needed information, as the application name, the operat-
ing URL, the main domain class (i.e., process instance binding) and the MVC
structure and navigation rules.

Later on, in order to perform a new deployment, an administrator user needs: a
DSL code class (2), and the relatedBPMN model (3) exported from a workflow
designer. The Platform Manager (4) checks the consistency and coherency be-
tween the deployed files, and determines if it can be formally introduced into
the system. If it is successfully installed, the generated classes go to the underly-
ing systems (5-6), saving them in their supported Database and Repository,
respectively.

The Workflow Engine (5) is wrapped by the Back-End system and it is
used like a set of services which are exposed in a distributed fashion. There-
fore, the engine is completely decoupled from the platform, and it could be eas-
ily switched by another BPM compliance implementation (e.g., Activiti[21] or
Camunda[22]). In this scenario, tasks are executed within targeted applications,
even the service tasks, that have to reference and use code from its corresponding
application. Other types of activities, like manual tasks, do not have any special
requirements.

Next, the Weaver Coordinator (6) controls all remote instances. Following
the example in Figure 6, the Back-End (B) instance directly (7) deploys, and
later injects the specified weaver proxies using the remote AOP Facilities (8).

In the end, these Weaver Proxies live in each application and they fol-
lows the instructions from the deployed DSL. To perform these rules, Weaver
Proxies use the necessary AOP mechanisms implemented into the Front-End
Add-on (e.g., Algorithm 1), as a black-box solution.

Finally, since the black-box mechanisms are linked to the XPI contract, they
can use Reflection Capabilities (9) to return gathered feedback information
(1) to any Back-End instance. This information is sent to the Weaver Co-
ordinator (6) for monitoring purposes, as well as for reporting tasks to the
Platform Manager (4).

5 Related Work

Previous works in literature [7,8,9] used AOP interception techniques to inte-
grate applications with BPM platforms or external rule engines. For example,
[7] proposed hybrid aspects for integrating object-oriented programming appli-
cations and rule-based reasoning. However, this approach relies on the in-depth
knowledge of the targeted application to deploy the appropriate interceptors and
pointcuts. The adoption of DSLs to simplify the implementation of interceptors

Implicit BPM: A Platform for Transparent Workflow Weaving 181

have been also proposed in the past [9]. The main disadvantage of these DSLs
is that to successfully apply them: they need to know the business classes, re-
lationships among them, the semantics of their methods, and the interactions
among instances.

Another related work is [23], where authors propose an AOP approach to
separate out the base workflow from addition workflows, which can be weaved
into the base when additional features are selected. Again, these works require
detailed knowledge of the application that must be intercepted.

Interception approaches for standards such as BPEL have also been proposed
before. AO4BPEL [24] and BPEL’n’aspects [25], are specific aspect-oriented lan-
guage extensions. Each implementation is based on a modified BPEL engine,
which checks at all potential join points, if an aspect has specified it in its point-
cut. This allows easy and dynamic weaving of BPEL aspects with the drawback
of less performance. As we plan to implement generic AOP mechanisms, we will
not change the workflow engine but perform weaving on model level prior to
workflow execution.

The major difference between all aforementioned previous works is that they
follow a clear-box AOP interception model that requires in-depth knowledge of
the application that must be intercepted. This clear-box model clearly compli-
cates the adoption of these approaches and reduces their potential uses. In our
case, we follow a black-box approach that intercepts code in strategic points us-
ing AOP facilities and following a common XPI for MVC frameworks. Thanks to
the MVC standard pattern used extensively in web frameworks, we are able to
interrogate and manipulate models, views and controllers transparently to the
internal code of each application.

As stated before, reengineering legacy applications using BPM [12] is not
easy to apply, because there are no tools that help the developers understand
the legacy system behaviour. The introspection and wrapping capabilities on
top of the MVC pattern enable us to perform black-box interception of any web
application using this pattern. This considerably simplifies the integration of
Web applications with BPM platforms using our DSL. The users of our DSL
do not need to study the code of the existing application, and can thus weave
business processes in legacy applications.

We propose the first approach of a distributed platform that interconnects
different MVC based applications, and which allows business analysts to observe,
proceduralize, and model each process in a holistic way.

6 Conclusions

We outline the importance of integrating business processes into existing ap-
plications. Nevertheless, rewriting legacy applications or reengineering them for
BPM integration involves important development costs and in-depth knowledge
of the targeted applications.

In this paper we present a novel solution (Implicit BPM) for integrating busi-
ness processes into existing core applications as if they were a whole system.

182 R. Mondéjar et al.

We introduce a new concept, namely Workflow Weaving, based on non-intrusive
techniques, which achieves this kind of integration transparently.

The novelty of our approach is to use black-box AOP techniques that bene-
fit from the MVC web pattern to weave processes in a more transparent way.
Previous approaches in literature used clear-box models, which require detailed
knowledge of the legacy application. In our previous works [16,26] based on the
same underlying distributed AOP principles, we have accurately evaluated that
this kind of approach does not impose an additional overhead.

We also provide a natural and easy to use DSL that considerably simpli-
fies the workflow weaving process, while at the same time hiding the under-
lying AOP complexity. Our prototype implementation is freely available at
http://implicit-bpm.sf.net, under a LGPL license. This prototype makes
use of the following well-known and widespread technologies: Groovy, Activ-
iti, AspectJ, and Grails. This implementation includes the Front-End Add-on,
which includes the MVC weaver, the Back-End system, which contains the DSL
interpreter, and the Platform Manager, as well as the mentioned use case appli-
cations.

Cloud computing will enable organizations to bypass expensive BPM En-
terprise products and start using open BPM platform solutions into their own
private clouds. For these, we have designed and implemented our approach to
be perfectly suitable for easy deployment and operation into a Cloud. In a close
future, we are going to combine our platform with a private PaaS Cloud, like
CloudSNAP [26].

Acknowledgments. We thank the BPM chairs and the three anonymous re-
viewers for their constructive comments, which helped us to improve this work.
In addition, we also want to thank to Manuel Bertran for his many helpful review
and suggestions.

This work has been partially funded by the EU in the context of the project
CloudSpaces: Open Service Platform for the Next Generation of Personal Clouds
(FP7- 317555).

References

1. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,
Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

2. Ping, Y., Kontogiannis, K., Lau, T.C.: Transforming legacy web applications to
the mvc architecture. In: STEP, Washington, USA, pp. 133–142 (2003)

3. Elrad, T., Filman, R.E., Bader, A.: Aspect-oriented programming: Introduction.
Communications of the ACM 44, 29–32 (2001)

4. Dinkelaker, T., Eichberg, M., Mezini, M.: An Architecture for Composing Embed-
ded Domain-specific Languages. In: AOSD, pp. 49–60 (2010)

5. Jablonski, S.: A Software Architecture for Workflow Management Systems. In:
DESA, pp. 739–744. IEEE Computer Society (1998)

http://implicit-bpm.sf.net

Implicit BPM: A Platform for Transparent Workflow Weaving 183

6. Knuplesch, D., Reichert, M., Fdhila, W., Rinderle-Ma, S.: On enabling compliance
of cross-organizational business processes. In: Daniel, F., Wang, J., Weber, B. (eds.)
BPM 2013. LNCS, vol. 8094, pp. 146–154. Springer, Heidelberg (2013)

7. D’Hondt, M., Jonckers, V.: Hybrid Aspects for Weaving Object-oriented Function-
ality and Rule-based knowledge. In: AOSD, pp. 132–140 (2004)

8. Cibran, M., D’hondt, M.: High-Level Specification of Business Rules and Their
Crosscutting Connections. In: AOSD (2006)

9. Hnatkowska, B., Kasprzyk, K.: Integration of application business logic and busi-
ness rules with DSL and AOP. In: Szmuc, T., Szpyrka, M., Zendulka, J. (eds.)
CEE-SET 2009. LNCS, vol. 7054, pp. 30–39. Springer, Heidelberg (2012)

10. Geiger, M., Wirtz, G.: Detecting Interoperability and Correctness Issues in BPMN
2.0 Process Models. ZEUS, Rostock, Germany (2013)

11. do Nascimento, G.S., Iochpe, C., Thom, L.H., Reichert, M.: A Method for Rewrit-
ing Legacy Systems using Business Process Management Technology. In: ICEIS
(3), pp. 57–62 (2009)

12. do Nascimento, G.S., Iochpe, C., Thom, L., Kalsing, A.C., Moreira, Á.: Identifying
Business Rules to Legacy Systems Reengineering Based on BPM and SOA. In:
ICCSA, pp. 67–82 (2011)

13. Patel, S.R., Gerald, B., Micah, S.: Mastering Enterprise JavaBeans 3.0. John Wiley
& Sons, Inc., New York (2006)

14. Schmidt, D., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture, Patterns for Concurrent and Networked Objects, vol. 2. John Wiley
& Sons (2000)

15. Mondéjar, R., Garćıa-López, P., Fernández-Casado, E., Pairot, C.: TaKo: Provid-
ing transparent collaboration on single-user applications. Computer Languages,
Systems & Structures 38, 108–121 (2012)

16. Mondejar, R., Garcia-Lopez, P., Pairot, C., Pamies-Juarez, L.: Damon: a Dis-
tributed AOP Middleware for Large-Scale Scenarios. Information and Software
Technology 54, 317–330 (2012)

17. Rosenberg, D., Scott, K., Matter, F.: Use Case Driven Object Modeling with UML:
A Practical Approach (1999)

18. Rocher, G.K., Brown, J., Laforge, G.: The Definitive Guide to Grails. Springer
(2009)

19. Griswold, W.G., Sullivan, K., Song, Y., Shonle, M., Tewari, N.: Modular Software
Design with Crosscutting Interfaces. IEEE Software 23, 51–60 (2006)

20. Hohenstein, U.D.C., Jäger, M.C.: Using aspect-orientation in industrial projects:
Appreciated or damned? In: AOSD, pp. 213–222 (2009)

21. Rademakers, T.: Activiti in Action: Executable business processes in BPMN 2.0.
Manning Publications Co. (2012)

22. Freund, J., Rücker, B.: Real-Life BPMN: Using BPMN 2.0 to Analyze, Improve,
and Automate Processes in Your Company (2012)

23. Elsner, C.: Towards separation of concerns in model transformation workflows. In:
EA, pp. 81–88 (2008)

24. Charfi, A., Mezini, M.: Ao4bpel: An aspect-oriented extension to BPEL. World
Wide Web 10, 309–344 (2007)

25. Sonntag, M., Karastoyanova, D.: Compensation of adapted service orchestration
logic in bPEL’n’Aspects. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM
2011. LNCS, vol. 6896, pp. 413–428. Springer, Heidelberg (2011)

26. Mondéjar, R., Garćıa-López, P., Pairot, C., Pamies-Juarez, L.: CloudSNAP: A
transparent infrastructure for decentralized web deployment using distributed in-
terception. Future Generation Computer Systems 29, 370–380 (2013)

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 184–199, 2014.
© Springer International Publishing Switzerland 2014

Modeling Concepts for Internal Controls in Business
Processes – An Empirically Grounded Extension

of BPMN

Martin Schultz1,* and Michael Radloff2

1 University of Applied Sciences Wedel, Germany
msz@fh-wedel.de

2 University of Hamburg, Germany
michael.radloff@wiso.uni-hamburg.de

Abstract. With the increasing number and complexity of legal obligations, en-
suring business process compliance presents a major challenge for today’s or-
ganizations. In this regard, implementing a set of control means and regularly
auditing their effectiveness are suitable measures to ensure a compliant design
and enactment of a business process. However, common business process mod-
eling languages (PML) do not provide appropriate concepts to comprehensively
model such control means. Not surprisingly, common PMLs are not widely
used in the audit domain. To address this gap, this paper presents an extension
of a PML with modeling concepts for process-integrated control means. As it is
based on previous empirical research with auditors, the extension especially
considers their requirements. The results of a laboratory experiment with 78
participants demonstrate that the extension supports auditors to gain a more
comprehensive understanding of internal controls in a process model compared
to current audit practice.

Keywords: Process Modeling Language Extension, Business Process Com-
pliance, Process Audits, BPMN extensibility mechanism, Empirical BPM
research.

1 Introduction

Assuring compliance of business processes to internal and external regulations
presents a major challenge for today’s organizations. The rules and regulations have
increased in number and complexity over the last years due to a series of financial
scandals (Parmalat 2003, Satyam 2009, Olympus 2011). They stem from diverse
sources ranging from voluntary norms or standards (e.g. ISO 38500, COBIT) to poli-
cies imposed by active legislation (Sarbanes-Oxley Act, 8th EU directive, Basel I-III)
[1]. To ensure a compliant state of their business processes organizations implement
and maintain a multitude of different measures collectively referred to as the internal

* Corresponding author.

 Modeling Concepts for Internal Controls in Business Processes 185

control system (ICS). When it comes to auditing the compliance of a business
process, internal and external auditors put their focus on the ICS. All control means
that are embedded in a process are thoroughly reviewed for their design effectiveness
(Is the control means effectively designed to mitigate potential risks?) and their oper-
ating effectiveness (Was the control means effectively enacted throughout the time
period under audit?). Accordingly, for a comprehensive process assessment, auditors
have to collect a large amount of information from diverse sources and various orga-
nizational levels [2]. For documenting this information auditors rely on several fun-
damentally different formats ranging from flexible, less structured narratives over
structured aids like control matrices to graphical formats such as flowcharts [3, 4].
Audit standards do not impose binding policies regarding the documentation of
processes and related audit-relevant concepts although the format significantly influ-
ences the effectiveness and efficiency of an audit [5, 6]. Prior research found that for
several audit tasks diagrams lead to higher audit effectiveness than narratives as well
as that more elaborate flowchart representations facilitate the audit of business
processes [5, 7]. Moreover, empirical research results indicate that auditors would
benefit from an integrated representation of the ICS and business process models [8,
9]. However, comprehensive surveys revealed that methods for annotating, and en-
hancing business process models with compliance/ audit modeling elements are one
of the main open issues on the research agenda for business process compliance [10,
11]. Not surprisingly, surveys among auditors show that common process modeling
languages (PML)1 are not widely used in current audit practice [4, 12]. This indicates
that common PMLs do not sufficiently meet auditors’ requirements for annotating
audit-relevant concepts in process models [6, 11, 12].

To close this gap, this paper presents an approach for extending activity-based
PMLs with modeling elements for control means. For illustrating the approach, the
widely used business process modeling and notation 2.0 (BPMN) is used [13]. The
existing BPMN meta-model is extended and notation elements are introduced to pro-
vide appropriate means for enriching process models with control means. For con-
structing the extension, we apply the approach outlined in [14] which recommends
involving prospective users and subject-matter experts in such a conceptual modeling
task. Accordingly, the presented extension is based on thorough empirical research
work in the audit domain, especially focusing on auditors’ conceptualization and re-
presentation of control means in the context of business process audits. The aim of the
extension is to facilitate the creation, interpretation, and analysis of process models
from an audit respectively from an internal controls perspective. The utility of the
designed extension is evaluated with a laboratory experiment with 78 participants
knowledgeable in process modeling and internal controls.

The remainder of this paper is structured as follows. The next section elaborates on
related research regarding business process compliance (BPC) and on the conceptua-
lization and representation of audit-relevant concepts in the context of business
process audits. Section 3 outlines the applied research method. Section 4 presents a

1 In this paper we use the acronym “PML” to refer to common/ generic business process

modeling languages.

186 M. Schultz and M. Radloff

detailed description of the proposed PML extension. The results of the evaluation are
summarized in section 5. The paper closes with a discussion (section 6) followed by
the conclusion along with implications for future research work in section 7.

2 Related Research and Empirical Results

To gain an understanding of a domain, key terms and concepts need to be recon-
structed [15]. A key term for the topic at hand is internal control. Internal control is
broadly defined as a process designed to provide reasonable assurance regarding the
achievement of three objectives: 1) effectiveness and efficiency of an entity’s opera-
tions; 2) reliability of internal and external financial and non-financial reporting; and
3) compliance with applicable laws and regulations [16]. The ICS consists of inte-
grated elements such as people, organizational structures, policies, processes, and
procedures [15, 17]. Key elements are control objective and control means. A control
objective describes a desired state of an organization/ process. Control means are
recommended courses of action to ensure that a control objective is achieved [15].
They are either directly related to a process (process-integrated control means, e.g.
invoice approval, reconciliation of invoice and goods receipt) or are independently
performed from a particular process (process-independent control means, e.g. internal
audit) [18, 19].

A few seminal research endeavors have been dedicated to conceptualize internal
controls-related concepts and their link to business processes. Rosemann and zur
Muehlen [20] are one of first authors who consider the concept risk in process model-
ing. They link risk to a conceptual model of business processes. The conceptual mod-
el outlined in [21] comprises the concepts risk, significant account, control objective,
control, and recovery action. Karagiannis et al. [22] consider risk, control objective,
control and account as domain specific concepts. These are linked to BP elements
(information system, process activity, organizational unit). Control objective, control
and risk are also set in relation in [23]. Similarly, Strecker et al. [15] stress control
objective and control means as main concepts to describe an ICS. Sadiq et al. [24] use
the concepts control objective, internal control, risk, process control flow, process
task, and property to ontologically align the compliance domain with process model-
ing. Schumm et al. [25] and Turetken et al. [26] present a conceptual model that fo-
cuses on compliance requirements. A compliance requirement stems from a com-
pliance source, is associated to a compliance risk and can be assessed by a com-
pliance request. It can be addressed by a control that is formally expressible as a
compliance rule and refers to an abstract compliance target. Spies and Tabet [27]
present a comprehensive conceptual model for a risk and control taxonomy (GRC-
XML) which includes risk, control objective, control activity, regulation, and policy
as key modeling elements for the domain.

To complement these research results with empirical evidence, we derived relevant
modeling concepts for process audits by a series of expert interviews (17 interviews)

 Modeling Concepts for Internal Controls in Business Processes 187

and a subsequent online survey (370 respondents) [8, 28]. 12 modeling concepts were
identified: 1) process control flow, 2) information systems, 3) organization, 4) data,
5) Audit/ control objectives, 6) control (means), 7) risk, 8) audit results, 9) standards
& regulations, 10) financial statements, 11) materiality, and 12) business objectives.2
The results are largely in line with prior research and underline the common under-
standing among auditors of concepts that need to be considered for process audits.
Based on these results, we have constructed a conceptual model for BPC that reflects
this audit perspective [29].

Especially for control means diverse characteristics are discussed in audit practice
and academia, underlining the wide range of measures available to achieve a particu-
lar control objective [15]. Essential attributes for control means are timing (preventive
or detective), nature (manual or automated), and frequency (time period a control
means has to occur, e.g. daily, monthly) [30]. However, in the context of business
processes, the term control means is subject to terminological ambiguity [15]. Audit
standards distinguish between organizational control means and procedural control
means [31]. The former are measures that are integrated in the organizational struc-
ture of an organization e.g. restricted access, segregation of duties (SoD), and en-
forcement of approval levels. These means refer to requirements that can be easily
expressed as a formal (business/ compliance) rule for a process and/ or process activi-
ty [29]. The latter are measures that are directly integrated in the sequence of opera-
tions e.g. check for completeness or validity [31]. They represent a target/actual
performance comparison enacted as an activity in a process [32].

Our empirical analyses reveal that auditors conceptualize control means mainly as
procedural control means [8]. 14 out of 17 experts in our interviews state that control
means should be directly integrated into process models as a special activity to facili-
tates the assessment of processes from an ICS perspective [9]. Hence, although there
are semantic differences, for audit purposes control means can be represented as an
atomic activity in a process model [33, 34]. However, surveys among auditors reveal
that flowcharts and PMLs are only used by a minority of the auditors. When graphi-
cally documenting a process, auditors rather rely on firm specific languages or office
software instead of PMLs [12]. Narratives and structured aids like control matrices
are still the prevalent formats [4]. In this regard, audit standards do not impose bind-
ing guidelines although seminal research results demonstrate that documentation for-
mats significantly influence auditors’ effectiveness (e.g. increased identification of
missing control means and design weaknesses) [5–7, 19, 35, 36]. One explanation for
the low dissemination of process modeling/ flowcharts in the audit domain is that
existing PMLs do not fully cover relevant concepts of the ICS and thereby not suffi-
ciently meet auditors’ requirements [6, 7, 11, 12]. Against this background, the objec-
tive of this research is to provide a suitable method for modeling control means in
business processes which contributes to a more efficient and effective enactment of
process audits. In accordance with our empirical results, the extension focusses on
procedural control means.

2 For a description of each audit concept, the concept map, and the methodological details of

the expert interviews and the online survey please refer to the respective papers [8, 28].

188 M. Schultz and M. Radloff

3 Research Approach

The research presented in this paper follows the design science approach [37, 38]. The
designed artefact is an extension to BPMN, a widely used, activity-oriented PML. The
BPMN meta-model and the notation are extended to provide suitable modeling con-
cepts for control means. In earlier work we applied a multi-method research approach
by combining a qualitative (expert interviews) and a quantitative (online survey) re-
search method to rigorously derive requirements for such an extension for the audit
domain. In this paper, the applied research method is conceptual modeling. In accor-
dance to the approach outlined by Ahlemann and Gastl [14], we base our model con-
struction on requirements derived from prospective users and subject-matter experts.
The relevance of the artefact stems from the fact that methods for annotating process
models with compliance modeling elements are still lacking [11].

There is a consensus in literature that evaluating a designed artefact is an essential
step in design science [39]. We choose a 1 x 2 between-group laboratory experiment
for evaluating the BPMN extension. Thereby, we focus on the stakeholders’ percep-
tion of the BPMN extension regarding understandability and appropriateness [40].
The aim is to scrutinize all propositions regarding acceptance of stakeholders (audi-
tors) [14]. Details on the experimental design are outlined in section 5.

4 BPMN+C – A BPMN Extension for Internal Controls

To provide appropriate modeling elements for a particular domain, there are generally
two options: 1) developing a new domain specific modeling language (DSML) or 2)
extending an existing common modeling language. We opt for the later approach as a
large number of concepts that have been identified as relevant for a process audits
(process control flow, process activity, data, organizational resources, information
systems) are already well-considered in existing common PMLs [41]. BPMN 2.0 is
chosen as illustration for two reasons: 1) BPMN provides a standardized meta-model
with an extensibility mechanism. 2) In terms of dissemination, BPMN is one of the
fastest spreading PMLs worldwide [42, 43]. The latter is especially important in the
audit domain which is highly regulated by international audit standards.

The next section presents requirements for the BPMN extension. Subsequently, the
extension is outlined on two levels: 1) the semantics of the extension is illustrated in
terms of a conceptual model that links domain-specific concepts to the concepts of
BPMN (section 4.2). 2) The extension to the notation of the underlying PML is pre-
sented in section 4.3. Section 4.4 demonstrates the applicability of the extension by
means of an example.

4.1 Requirements for the PML Extension BPMN+C

Based on related research and our empirical research work four requirements are de-
rived that guide the design and implementation of the BPMN extension for control
means, subsequently named as ‘BPMN+C’. Primary sources for the requirements
were seminal research work on modeling languages for audit/ compliance purposes
(req. 1, 2, and 4) [15, 29, 44, 45], our empirical research work in the audit domain
(req. 1, 2) [8, 12, 28], and the BPMN specification (req. 3 and 4) [13].

 Modeling Concepts for Internal Controls in Business Processes 189

• Requirement 1 – Domain specific modeling elements: The extension should pro-
vide appropriate modeling elements for all concepts that have been indicated as re-
levant by subject-matter experts. These modeling elements and their relations
should be in line with the conceptualization of prospective users. The extension
should establish a clear conceptual link between modeling elements of the audit
domain and the business process modeling domain and provide a machine-readable
format to enable an automated processing of audit information in process models.

• Requirement 2 – Multiplicity of control means: The extension should reflect the
various types and distinct characteristics of control means that are commonly used
in the audit domain.

• Requirement 3 – Downward compatibility of extended models: The extension
should not alter or contradict the semantics and notation of the underlying PML.
An extended process model should be convertible into a process model that only
uses the PML standard elements (with a loss of domain specific elements).

• Requirement 4 – Perceptibility of control means in process models: The exten-
sion should enhance the perceptibility of control means in a process model. The
model users should be able to identify and evaluate represented control means with
low effort. This requires unique notation elements for control means which are in
accordance with symbolic elements of the audit domain. Thereby, the basic look-
and-feel of the underlying PML should be taken into account as far as possible.

4.2 BPMN Meta-model Extension

The main challenge for extending BPMN 2.0 is a lack of methodical support for con-
structing an extension model that complies to the extensibility mechanism of the
BPMN specification [46]. Referring to this, Stroppi et al. [46] provide a method to
transform a conceptual domain model to a BPMN conform extension model with the
help of mapping rules and automated model transformations. This method is applied
for this research work. Fig. 1 outlines our proposed conceptual domain model as
UML-class diagram. The classes of the BPMN 2.0 meta-model - highlighted in grey -
are an excerpt of the BPMN specification. These BPMN classes are associated to
further classes. For reasons of clarity, these are omitted in our model. The BPMN
specification describes the semantics of these elements in detail [13].

Our extension comprises the classes ProceduralControlMeans, AuditResult, Risk,
and ControlObjective. These classes represent all control means-related domain con-
cepts that are identified as relevant by the domain experts (Req. 1). The core element
of this extension is the class ProceduralControlMeans. It provides a set of attributes
that represent relevant characteristics for control means (Req. 2). The frequency of the
control means, declared by the correspondent property with the enumeration Fre-
quencyType, describes the time frame in which the control means should be executed.
The timing of the control means is declared by the correspondent property with the
enumeration TimingType. It describes whether a control means is “preventive” or
“detective”. The property recommendedAction defines an action that should be per-
formed to enact the control means. The property nature is declared with the enumera-
tion NatureType and defines whether a control means is “manual” or “automated”.

Our extension is solely linked (via composition) to the BPMN class Activity (Req.
1). According to BPMN 2.0, an activity is work that is performed within a business

190 M. Schultz and M. Radloff

process and can be atomic or compound [13]. Accordingly, linking the extension for
control means to Activity is in line with the conceptualization of auditors (Req.2). By
means of this composition, a BPMN Activity can inherit the attributes of Procedural-
ControlMeans and is thereby extended. Also, BPMN Tasks are atomic activities in the
process flow and allow specifying a resource, interface or rule set for the task execu-
tion. As BPMN class Task inherits from BPMN Activity they also can be extended
with the control means attributes. In our extension, the different BPMN Task types are
used to represent the nature of a control means. The mapping between NatureType
and BPMN Task types is as follows: For automated control means BPMN ScriptTask
or BusinessRuleTask are used as they are not require human performer to be executed.
Manual control means are represented as UserTask or ManualTask as they involve a
human performer and cannot be executed without a human performer.

Fig. 1. Domain Model for the BPMN extension

The classes AuditResult, Risk, and ControlObjective are further elements of the audit
domain. In our extension, they are included in order to establish references between a
specific control means and these concepts. They are solely considered from the control
means perspective (e.g. risk is also associated to other BPM concepts). The complete
semantics for these concepts is not in the scope of this particular extension.

The conceptual model describes the desired semantics for the BPMN extension.
Based on this domain model a transformed model for the BPMN extensibility me-
chanism is created. The BPMN extensibility mechanism is described in two represen-
tations: the MetaObject Facility (MOF) meta-model and an XML schema. The BPMN
classes shown in the domain model in Fig. 1 are part of the MOF meta-model. This
may not be altered by the extension, but contains classes for the extensibility mechan-
ism. The XML schema enables an interchange of BPMN models between modeling
tools. Hence, to add the attributes in a technical implementation, we generate a XML
schema definition (XSD) which is linked to the BPMN 2.0 XSD. The generation is
based on the ‘BPMN+X’ UML profile and rule set provided in [46]. The method
creates an UML (BPMN+X) extension model, transforms this into an XML schema
extension model (model-to-model transformation) and into an XML schema docu-
ment (model-to-code transformation) [46]. The ‘BPMN+X’ model for our extension

 Modeling Concepts for Internal Controls in Business Processes 191

and excerpts of the corresponding XSD are illustrated in Fig. 2. The BPMN+X model
is enhanced with stereotypes. The ExtensionDefinition stereotype describes a contain-
er and corresponds to the respective class in the MOF extensibility mechanism. The
ExtensionElement stereotype is defined in the BPMN-X UML profile and matches the
ExtensionAttributeValue class of the MOF extensibility mechanism. This allows illu-
strating the various elements as class objects for the next transformation step. Finally,
we generate the XSD with the BPMN+X model transformation. This XSD conforms
to the BPMN 2.0 extensibility mechanism (Req. 3). Thereby, the execution semantics
of BPMN 2.0 standard is not altered and a machine-readable format for model inter-
change is provided (Req. 1). Depending on the underlying PML, the behavior of con-
trol means can be further specified, e.g. in BPMN the multi-instance concept can be
used to model a batch processing of many business transactions in one control means.

Fig. 2. Extension Model and generated XML Schema

4.3 BPMN Notation Extension

For visualizing the extended modeling elements in a process model, we propose a
corresponding extension of the notation (Req. 4). To describe process models as dia-
grams, BPMN provides a schema for diagram interchange (BPMN:DI) which is
meant to facilitate interchange between modeling tools. This schema allows specify-
ing the visual attributes of a process model in its XML representation. In this regard,
the BPMN specification provides neither guidelines for the graphical representation
of extension elements nor an extensibility mechanism for new notation elements. The
notation has to be implemented separately to the semantics in a modeling tool [46]. In
general, the notation of an extension must not alter the BPMN notation and should be
as close as possible to it (look and feel) [13]. Our notation extends the shapes of the
BPMN Activity respectively the BPMN Task and adds an icon to the shape as shown

192 M. Schultz and M. Radloff

in Fig. 3. The extended modeling element – the ProceduralControlMeans – is
represented by a lens icon in the bottom middle anchor of the shape. In this area the
BPMN defines three types of markers for activities: a marker for loop, multi-instance
characteristics, and compensation. In the same place, we add a lens icon as marker
for control means. Detective control means are denoted by a single lens whereas for
preventive control means a lens encircled by a shield icon is chosen. A similar design
for both icons shall facilitate the perceptibility of control means in a process model.

Fig. 3. Notation for the BPMN+C Extension

For task types, the BPMN specification defines individual icons positioned in the
upper left corner of the activity shape. As our extension maps control means to specif-
ic task types based on the nature of the control means, these icons are also used for
our extension, e.g. in Fig. 3 the right shape shows a manual detective control means.

4.4 Application Example

As an application example, Fig. 4 depicts a BPMN 2.0 process model that applies the
presented extension. This process model is also used in the laboratory experiment to
introduce the extension of the BPMN notation to the participants (cf. section 5).

Fig. 4. Sample Process as BPMN model and XML description

Pu
rc
ha
se

 Modeling Concepts for Internal Controls in Business Processes 193

In the example, the BPMN user task ‘reconcile received goods with order’ is ex-
tended with all attributes from class ProceduralControlMeans. As illustration, we
also add elements for the referenced ControlObjective, Risk, and AuditResult. To
outline the semantics of the extension, the process model is also described as an XML
document. We have enhanced a given standard BPMN process model with the model-
ing elements of our extension. In Fig. 4 these are highlighted in separate boxes.

5 Evaluation

5.1 Experimental Design

In a design science research project, the evaluation step tries to observe and measure
how well the designed artifact supports a solution for the addressed problem [47]. For
the evaluation of the BPMN extension a 1 x 2 between-group experiment is designed.
The two groups receive the same information of a fictitious organization on a pur-
chase-to-pay business process and related control means. One group obtains informa-
tion on control means (controls matrix) separately from the process models (group
BPMN). The other group has access to process models that are enhanced with con-
trols-related information based on the previously presented BPMN extension (group
BPMN+C). The provided information has three levels of complexity in terms of
process model size and number of control means. By doing so, the external validity of
the experiment is increased [48]. The data provided to both groups is designed to be
equivalent regarding the informational content [49]. Thus, a transformation of one
presentation into the other is possible without loss of information [50].

In process audits there are two main tasks that are related to processes models: 1)
model creation and 2) model interpretation. In this evaluation step we focus on model
interpretation. For evaluating the quality of model interpretation two perspectives are
discussed in academia: interpretational fidelity (how faithfully does the interpretation
of the model supports the reader to comprehend the domain semantics included in the
model?) and interpretational efficiency (what resources are required for interpreting
the model?) [51, 52]. In similar studies interpretational fidelity is measured by using
tasks and questions to test how well a model user comprehends the content of a given
model (comprehension task performance) [52, 53]. To operationalize interpretational
efficiency the time is measured that a model user needs to complete comprehension
tasks and questions (comprehension task efficiency) [50, 52, 53]. In our experiment
following hypothesis are tested:

• H1: Comprehension task efficiency is positively affected by using the BPMN ex-
tension for representing control means in process models.

• H2: Comprehension task performance is positively affected by using the BPMN
extension for representing control means in process models.

The study is implemented as an online accessible experiment using the Qualtrics re-
search suite [54]. Participants are recruited through two channels: 1) master students
in information systems are asked for voluntary participation. Due to the master curri-
culum, the invited students are knowledgeable in process modeling and have a basic
understanding of internal control. 2) By utilizing social networks for business profes-
sionals (e.g. XING) and large audit associations (e.g. DIIR, ISACA), internal and
external auditors as well as process analysts were invited to participate.

194 M. Schultz and M. Radloff

In the experiment, the participants have to complete five steps. They first arrive at a
landing page which explains the nature of the experiment and introduces the respon-
sible institution (step 1). After the questions referring to demographic characteristics,
process modeling knowledge, and ICS knowledge (step 2), a short overview of rele-
vant BPMN standard elements (task types, gateways) is provided. Following this, the
participants are randomly assigned to one of the groups (BPMN, BPMN+C) and the
elements and notation of the BPMN+C extension are only introduced to the corres-
ponding group. Hereinafter, detailed instructions on the experiment structure and
tasks are given to both groups (step 3). Subsequently, three process models (model 1:
3 activities, 3 events; model 2: 10 activities, 7 events; model 3: 11 activities, 4 events,
3 gateways) are consecutively presented to the participants (step 4). As first task for
each model, the participants are asked to identify control means by clicking them in
the model (controls identification task). As second task, the participants have to an-
swer multiple choice questions referring to the process control flow and embedded
control means (model 1: 4, model 2: 9, model 3: 15 questions). Finally, the experi-
ment offers an opportunity to evaluate the experiment (step 5).

5.2 Results of the Experiment

In total 78 participants passed the experiment (BPMN = 39 and BPMN+C = 39). 13
students and 65 professional participated (BPMN: 9/30, BPMN+C: 4/35). Based on
ten questions, the average self-reported process modeling knowledge on a five-point
Likert scale (1 – very poor, 5 – very good) is 3,27 for group BPMN and 3,05 for
group BPMN+C. Chi-square tests/ t-tests confirmed that in terms of demographic
characteristics (age, education, employment status, working experience, and self-
reported process modeling knowledge) the participants are equally represented in both
groups and that the results are not biased by the distribution of the participants. Only
for the characteristic “gender” there is an unequal distribution (in total: 58 male/20
female, BPMN: 34/5, BPMN+C: 24/15). However, there are no significant differenc-
es for the measured variables for male and female participants.

In order to test our hypothesis we conduct a two independent sample t-test (two-
tailed) to compare the means of both groups (BPMN, BPMN+C) regarding five
variables. For comprehension task efficiency the time is measured (in seconds) the
participants need to conduct the controls identification task (Duration - Controls Iden-
tification) and to answer the comprehension questions (Duration - Questions). Com-
prehension task performance is operationalized by the number of correctly identified
control means (Correctly Identified Controls), the number of correctly answered ques-
tions (Correct Answers), and a score for the perceived ease of understanding derived
from five questions with a five-point Likert scale (Perceived Ease of Understanding).

All variables are added up for all three models. Table 1 summarizes the t-test re-
sults. The results demonstrate that participants of the group with the extended process
models (BPMN+C) require significantly less time to identify the nine control means
embedded in the three process models (p<0.001, mean(BPMN) = 99.88 sec.,
mean(BPMN+C) = 57.88 sec.). Regarding the time for answering the comprehension
questions the mean for the BPMN+C group is lower, but the difference is not signifi-
cant (p=0.417, mean(BPMN) = 521.07 sec., mean(BPMN+C) = 483.82 sec.). In
summary, the results of both variables (Duration - Controls Identification, Duration -
Questions) support hypothesis H1.

 Modeling Concepts for Internal Controls in Business Processes 195

For comprehension task performance the results of the three defined variables (Cor-
rectly Identified Controls, Correct Answers, Perceived Ease of Understanding) are
varying. Participants of the BPMN+C group are more accurate in identifying control
means in the process models. At the same time, they answer slightly less comprehen-
sion questions correctly. Regarding the perceived ease of understanding the means of
both groups only differ marginally. For all three variables the differences between the
groups are insignificant. These results are contrary to hypothesis H2 as we expected
an improved comprehension task performance.

Table 1. Two-Sample T-Test Results for the Groups BPMN (n=39) and BPMN+C (n=39)3

 BPMN BPMN+C

 Mean SD Mean SD t(95) Sig.
Comprehension Task Efficiency
Duration - Controls Identification (sec.) 99.88 47.72 57.88 27.05 4.509 0.000
Duration - Questions (sec.) 521.07 186.95 483.82 185.95 0.817 0.417

Comprehension Task Performance
Correctly Identified Controls (0-9) 8.54 1.19 8.79 0.80 -1.117 0.268
Correct Answers (0-28) 23.05 2.65 22.64 3.26 0.610 0.544
Perceived Ease of Understanding (5-25) 19.29 3.32 19.40 3.66 -0.137 0.892

6 Discussion

The experimental results indicate that the BPMN extension has a positive effect on
comprehension task efficiency with regard to the representation and the assessment of
control means in process models. One potential interpretation is that the integrated
documentation of control means and process control flow reduces the cognitive load
for model interpretation and thereby increases interpretational efficiency and lastly
the efficiency of process audits. With respect to interpretational fidelity the experi-
mental results are inconclusive as no significant differences between the groups could
be found for comprehension task effectiveness. One potential explanation is that the
information and questions provided to both groups allow both groups to gain a rela-
tively high score for effectiveness (approx. 23 from 28). Potentially more complex
process models would have led to more significant results. Furthermore, we noticed
noteworthy differences regarding different types of questions (process-control flow-
related, control means-related, combined). Both aspects require further investigations.

Besides the evaluation results, it is worth to take a closer look on some conceptual
and technical aspects. As it is designed in accordance to empirically derived require-
ments, we believe that the presented extension meet auditors’ needs for process au-
dits. However, by including further stakeholder groups like (e.g. compliance manag-
ers, process owners) valuable new insights may potentially be derived. In terms of
generalizability it can be noted that the extension is instantiated as XSD for BPMN.
However, as it is only based on one conceptual link between the PML meta-model
(activity) and the extension definition (ProceduralControlMeans) it is also applicable

3 IBM SPSS Statistics Version 21.0.0.0 is used as statistical analysis software.

196 M. Schultz and M. Radloff

for other activity- or activity/event-oriented PMLs (e.g. event driven process chains,
EPC). In addition, the system-independent data format for information on process-
integrated control means allows an alignment with related initiatives in the domain
(e.g. GRC XML a schema for sharing and communicating risk and control related
information [55]). At the same time, the XML format enables an automated
processing of information on control means within process audits. On a broader level
the presented extension might contribute to a reconfiguration of complex audit tasks
(e.g. process audits) that are largely a matter of auditor’s professional judgment in
current audit practice [56]. By providing relevant information in a machine-readable
format, selected audit task types are reconfigurable to types that can be approached by
automated audit procedures which enables a broader software support for auditors.

7 Conclusion and Further Research

Today’s organizations have to comply with an ever-increasing number of regulatory
requirements in their daily operation. Accordingly, in recent years practitioners and
researchers have been paying more attention to management and auditing business
process compliance. Nevertheless, recent research results show that methods for an-
notating, and enhancing business process models with compliance/ audit modeling
elements are still lacking [10, 11]. To address this gap, the paper presented an exten-
sion to a common activity-oriented PML that enables an integrated representation of
business processes and embedded control means. As illustration, BPMN was ex-
tended with domain specific modeling elements and their characteristics that were
determined as relevant through previous empirical research work in the audit domain.
A laboratory experiment with 78 participants showed that the extension increases
interpretational efficiency compared to a separated documentation of process models
and control means as it is applied in current audit practice.

However, not only the evaluation results point to several opportunities for further
fruitful research directions. Besides control means there are further relevant concepts
that need to be considered for a comprehensive process audit. Such a comprehensive
modeling method that facilitates an efficient and effective processing of audit-relevant
information in the context of process audits remains on our research agenda. Further-
more, in this evaluation we focused on model interpretation. The effects of the
extension on process model creation also need to be evaluated. We also plan further
statistical analysis of the experiment data to gain more insights on the impact of par-
ticipants’ characteristics on the effectiveness of the BPMN extension. In addition, in
current audit practice complex audit assignments such as process audits are to a large
extent subject to professional judgment [56]. More structured and automated solutions
might have a positive impact on the effectiveness of auditors’ decisions. In this re-
gard, we believe that the presented extension along with the XML representation of
audit relevant information is a useful step towards more comprehensive software solu-
tions for process audits. In the long run, not only auditors would benefit from in-
creased audit effectiveness and efficiency but all stakeholders of the global economy.

 Modeling Concepts for Internal Controls in Business Processes 197

References

1. Ghanavati, S., Amyot, D., Peyton, L.: A systematic review of goal-oriented requirements
management frameworks for business process compliance. In: 2011 Fourth International
Workshop on Requirements Engineering and Law (RELAW), pp. 25–34 (2011)

2. Maijoor, S.: The Internal Control Explosion. International Journal of Auditing 4, 101–109
(2000)

3. Purvis, S.E.C.: The effect of audit documentation format on data collection. Accounting,
Organizations and Society 14, 551–563 (1989)

4. Bierstaker, J., Janvrin, D., Jordan Lowe, D.: An Examination of Factors Associated with
the Type and Number of Internal Control Documentation Formats. Advances in Account-
ing 23, 31–48 (2007)

5. Bryant, S., Murthy, U., Wheeler, P.: The Effects of Cognitive Style and Feedback Type on
Performance in an Internal Control Task. Behavioral Research in Accounting 21, 37–58
(2009)

6. Carnaghan, C.: Business process modeling approaches in the context of process level audit
risk assessment: An analysis and comparison. International Journal of Accounting Infor-
mation Systems 7, 170–204 (2006)

7. Alencar, P., Boritz, J.E., Carnaghan, C.: Business Modeling to Improve Auditor Risk As-
sessment: An Investigation of Alternative Representations. In: Proceedings of the 14th
Annual International Symposium on Audit Research, ISAR, Los Angeles, CA (2008)

8. Schultz, M., Müller-Wickop, N., Nüttgens, M.: Key Information Requirements for Process
Audits - an Expert Perspective. EMISA, pp. 137–150 (2012)

9. Mueller-Wickop, N., Schultz, M., Nuettgens, M.: Modeling Concepts for Process Audits -
An Empirically Grounded Extension of BPMN. In: Proceedings of the 21st European Con-
ference on Information Systems (ECIS), Utrecht, The Netherlands (2013)

10. Abdullah, S.N., Indulska, M., Sadiq, S.: A study of compliance management in informa-
tion systems research. In: 17th European Conference on Information Systems, pp. 1–10
(2009)

11. Sadiq, S.: A Roadmap for Research in Business Process Compliance. In: Abramowicz, W.,
Maciaszek, L., Węcel, K. (eds.) BIS Workshops 2011 and BIS 2011. LNBIP, vol. 97,
pp. 1–4. Springer, Heidelberg (2011)

12. Schultz, M., Mueller-Wickop, N.: Towards Auditors’ Preferences on Documentation For-
mats in Business Process Audits. In: Modellierung 2014, Vienna, Austria (2014)

13. OMG (Object Management Group): Business Process Model and Notation (BPMN) - ver-
sion 2.0 (2011)

14. Ahlemann, F., Gastl, H.: Process model for an empirically grounded reference model con-
struction. In: Fettke, P., Loos, P. (eds.) Reference Modeling for Business Systems Analy-
sis, pp. 77–97. IGI Global, Hershey (2007)

15. Strecker, S., Heise, D., Frank, U.: Prolegomena of a modelling method in support of audit
risk assessment. Enterprise Modelling and Information Systems Architectures: An Interna-
tional Journal 6, 5–24 (2011)

16. COSO: Internal Control - Integrated Framework (2013), http://www.coso.org
17. Gelinas, U.: Business processes and information technology. Thomson/South-Western,

Mason Ohio (2004)
18. Elder, R.J., Beasley, M.S., Arens, A.A.: Auditing and assurance services: an integrated ap-

proach. Pearson, Boston (2010)
19. IFAC: ISA 315 (Revised), Identifying and Assessing the Risks of Material Misstatement

through Understanding the Entity and Its Environment (2012)

198 M. Schultz and M. Radloff

20. Rosemann, M., Zur Muehlen, M.: Integrating Risks in Business Process Models. In: ACIS
2005 Proceedings (2005)

21. Namiri, K., Stojanovic, N.: Towards A Formal Framework for Business Process Com-
pliance. Multikonferenz Wirtschaftsinformatik 2008, 259 (2008)

22. Karagiannis, D.: A Business process Based Modelling Extension for Regulatory Com-
pliance. Multikonferenz Wirtschaftsinformatik. pp. 1159–1173 (2008)

23. Lu, R., Sadiq, S.K., Governatori, G.: Compliance Aware Business Process Design. In: ter
Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS,
vol. 4928, pp. 120–131. Springer, Heidelberg (2008)

24. Sadiq, W., Governatori, G., Namiri, K.: Modeling Control Objectives for Business Process
Compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 149–164. Springer, Heidelberg (2007)

25. Schumm, D., Turetken, O., Kokash, N., Elgammal, A., Leymann, F., van den Heuvel, W.-
J.: Business Process Compliance through Reusable Units of Compliant Processes. In: Da-
niel, F., Facca, F.M. (eds.) ICWE 2010. LNCS, vol. 6385, pp. 325–337. Springer, Heidel-
berg (2010)

26. Turetken, O., Elgammal, A., van den Heuvel, W.-J., Papazoglou, M.: Enforcing Com-
pliance on Business Processes through the Use of Patterns. In: ECIS 2011, Helsinki (2011)

27. Spies, M., Tabet, S.: Emerging Standards and Protocols for Governance, Risk, and Com-
pliance Management. In: Kajan, E., Dorloff, F.-D., Bedini, I. (eds.) Handbook of Research
on E-Business Standards and Protocols: Documents, Data and Advanced Web Technolo-
gies, pp. 768–790. IGI Global, Hershey (2012)

28. Mueller-Wickop, N., Schultz, M., Peris, M.: Towards Key Concepts for Process Audits –
A Multi-Method Research Approach. In: Proceedings of the 10th International Conference
on En-terprise Systems, Accounting and Logistics, Utrecht, The Netherlands, pp. 70–92
(2013)

29. Schultz, M.: Towards an Empirically Grounded Conceptual Model for Business Process
Compliance. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217,
pp. 138–145. Springer, Heidelberg (2013)

30. Gehrke, N.: The ERP Auditlab - A Prototypical Framework for Evaluating Enterprise Re-
source Planning System Assurance. In: 43rd Hawaii International Conference on System
Sciences (HICSS), pp.1–9 (2010)

31. IDW: 261 Feststellung und Beurteilung von Fehlerrisiken und Reaktionen des Absch-
lussprüfers auf die beurteilten Fehlerrisiken (2009)

32. Sackmann, S., Hofmann, M., Kühnel, S.: Return on Controls Invest. HMD - Praxis Wirt-
schaftsinform, 289 (2013)

33. Kittel, K.: Recommendation System for Integrating Controls in Business Process Models
34. Krishnan, R., Peters, J., Padman, R., Kaplan, D.: On Data Reliability Assessment in Ac-

counting Information Systems. Information Systems Research 16, 307–326 (2005)
35. Bierstaker, J.L., Thibodeau, J.C.: The effect of format and experience on internal control

evaluation. Managerial Auditing Journal 21, 877–891 (2006)
36. Bierstaker, J.L., Hunton, J.E., Thibodeau, J.C.: Do Client-Prepared Internal Control Docu-

mentation and Business Process Flowcharts Help or Hinder an Auditor’s Ability to Identi-
fy Missing Controls? AUDITING: A Journal of Practice & Theory 28, 79–94 (2009)

37. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems re-
search. MIS Quarterly 28, 75–105 (2004)

38. Österle, H., Becker, J., Frank, U., Hess, T., Karagiannis, D., Krcmar, H., Loos, P., Mer-
tens, P., Oberweis, A., Sinz, E.J.: Memorandum on design-oriented information systems
research. European Journal of Information Systems 20, 7–10 (2010)

 Modeling Concepts for Internal Controls in Business Processes 199

39. Peffers, K., Rothenberger, M., Tuunanen, T., Vaezi, R.: Design science research evalua-
tion. In: Peffers, K., Rothenberger, M., Kuechler, B. (eds.) DESRIST 2012. LNCS,
vol. 7286, pp. 398–410. Springer, Heidelberg (2012)

40. Frank, U.: Evaluation of Reference Models. In: Fettke, P., Loos, P. (eds.) Reference Mod-
eling for Business Systems Analysis, pp. 118–140. IGI Global, Hershey (2007)

41. Rosemann, M., Recker, J.C., Flender, C.: Contextualisation of business processes. Interna-
tional Journal of Business Process Integration and Management 3, 47–60 (2008)

42. Recker, J.: Opportunities and constraints: the current struggle with BPMN. Business
Process Management Journal 16, 181–201 (2010)

43. Muehlen, M.z., Recker, J.: How much language is enough? Theoretical and practical use
of the business process modeling notation. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE
2008. LNCS, vol. 5074, pp. 465–479. Springer, Heidelberg (2008)

44. Elgammal, A., Turetken, O., van den Heuvel, W.-J., Papazoglou, M.: On the Formal Spe-
cification of Regulatory Compliance: A Comparative Analysis. In: Maximilien, E.M., Ros-
si, G., Yuan, S.-T., Ludwig, H., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6568,
pp. 27–38. Springer, Heidelberg (2011)

45. Kharbili, M.E., de Medeiros, A.K.A., Stein, S., Aalst, W.M.P.: van der: Business Process
Compliance Checking: Current State and Future Challenges. In: MoBIS, pp. 107–113
(2008)

46. Stroppi, L.J.R., Chiotti, O., Villarreal, P.D.: Extending BPMN 2.0: Method and Tool Sup-
port. In: Dijkman, R., Hofstetter, J., Koehler, J. (eds.) BPMN 2011. LNBIP, vol. 95,
pp. 59–73. Springer, Heidelberg (2011)

47. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A Design Science Research
Methodology for Information Systems Research. Journal of Management Information Sys-
tems 24, 45–77 (2007)

48. Bodart, F., Patel, A., Sim, M.: Ron Weber: Should Optional Properties Be Used in Con-
ceptual Modelling? A Theory and Three Empirical Tests. Information Systems Re-
search 12, 384–405 (2001)

49. Larkin, J.H., Simon, H.A.: Why a Diagram is (Sometimes) Worth Ten Thousand Words.
Cognitive Science 11, 65–100 (1987)

50. Van Der Heijden, H.: Effects of diagram format and user numeracy on understanding cash
flow data. In: 37th Annual Congress of the European Accounting Association, Tallinn
(2014)

51. Burton-Jones, A., Meso, P.: The Effects of Decomposition Quality and Multiple Forms of
Information on Novices’ Understanding of a Domain from a Conceptual Model. Journal of
the Association for Information Systems 9, 748–802 (2008)

52. Recker, J.: Empirical investigation of the usefulness of Gateway constructs in process
models. Eur. J. Inf. Syst. 22, 673–689 (2013)

53. Mendling, J., Strembeck, M., Recker, J.: Factors of process model comprehension—
Findings from a series of experiments. Decision Support Systems 53, 195–206 (2012)

54. Qualtrics: Qualtrics Research Suite, Provo, Utah, USA (2013)
55. OCEG: GRC-XML Spec and Schema (2013),

http://www.oceg.org/resources/grc-xml/
56. Manson, S., McCartney, S., Sherer, M., Wallace, W.A.: Audit Automation in the UK and

the US: A Comparative Study. International Journal of Auditing 2, 233–246 (1998)

Mining Resource Scheduling Protocols

Arik Senderovich1, Matthias Weidlich2, Avigdor Gal1, and Avishai Mandelbaum1

1 Technion – Israel Institute of Technology, Israel
{sariks@tx,avigal@ie,avim}@ie.technion.ac.il

2 Imperial College London
m.weidlich@imperial.ac.uk

Abstract. In service processes, as found in the telecommunications, financial, or
healthcare sector, customers compete for the scarce capacity of service providers.
For such processes, performance analysis is important and it often targets the
time that customers are delayed prior to service. However, this wait time can-
not be fully explained by the load imposed on service providers. Indeed, it also
depends on resource scheduling protocols, which determine the order of activi-
ties that a service provider decides to follow when serving customers. This work
focuses on automatically learning resource decisions from events. We hypoth-
esize that queueing information serves as an essential element in mining such
protocols and hence, we utilize the queueing perspective of customers in the min-
ing process. We propose two types of mining techniques: advanced classification
methods from data mining that include queueing information in their explanatory
features and heuristics that originate in queueing theory. Empirical evaluation
shows that incorporating the queueing perspective into mining of scheduling pro-
tocols improves predictive power.

1 Introduction

Service processes can be viewed as a special case of business processes, in which ser-
vice consumers (aka customers) compete for the scarce capacity of service providers [1].
Service processes can be found, for instance, in the telecommunications, financial, or
medical sectors. The handling of customers by a call center or the treatment of patients
in an emergency department at a hospital are examples of a service process.

Service processes often face high volumes of service requests, which are subject to
large variations over time and high level of uncertainty in the amount of incoming de-
mand [2]. Therefore, in order to assure successful operation of a service process (e.g.
limit the time that customers wait for service), one must set an adequate level of resource
capacity. Operational analysis, that is based on Queueing Theory [3,4], is common prac-
tice for setting capacity levels that would accommodate the time-varying and random
demand. Given that service processes are often supported by information systems, event
logs recorded during process execution can be exploited for such performance-driven
analyses. Various techniques for operational process mining addressed the prediction
of wait times based on characteristics of service requests [5,6]. Recently, it was argued
that the load imposed on service providers is essential for performance prediction. To
account for delays in processing that stem from queueing of customers, queueing mod-
els and related predictors can be constructed from event data [7].

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 200–216, 2014.
c© Springer International Publishing Switzerland 2014

Mining Resource Scheduling Protocols 201

In this work, we start with the observation that delays in processing cannot be fully
explained by the process load. Rather, delays also originate from service providers. In
fact, service providers play a symmetric role in their influence on process performance,
when compared to customers. Service providers follow resource scheduling protocols
that define the order of activities followed when serving customers. Knowledge of these
protocols allows for predicting the next task of a service provider, out of a set of feasi-
ble tasks, thereby providing a more complete performance analysis and improving the
accuracy of wait time prediction.

Following the theme of operational process mining, this paper sets out to mine
scheduling protocols of service providers from recorded event data. We hypothesize
that queueing information serves as an essential element in mining such protocols and
hence, one must utilize the queueing perspective of customers in the mining process. We
consider two approaches for mining of resource scheduling protocols. First, we show
how data mining methods can be employed when queueing information is considered as
part of the explanatory features. Second, we present heuristics that originate in queue-
ing theory and do not require historical data in their application. Both techniques are
evaluated empirically using real-world logs of a large Israeli telecommunication com-
pany. The data covers three months of operation of a service process, with up to 50,000
requests per day. Our results indicate that queueing heuristics, as well as decision trees
and random forests, are superior to other methods. Since queueing heuristics are intu-
itive and can be facilitated online (without a preliminary learning phase), we argue that
these are less time-and-resource consuming than data mining methods.

To conclude, this paper makes the following contributions:
– It puts forward the duality of service consumers and service providers, to reach to

a more holistic analysis of the performance of service processes. Resource schedul-
ing protocols at the side of the provider are identified as a major influencing factor.

– It provides a set of mining techniques to extract resource scheduling protocols from
event data, recorded during process execution. Those techniques vary in the degree
with which they incorporate the queueing perspective of customers.

– It reports on a comprehensive evaluation of the proposed techniques using real-
world logs. In particular, we show that simple techniques that include basic queue-
ing information are competitive with respect to advanced data mining techniques
that require an offline learning phase.

The remainder of the paper is structured as follows. The next section provides further
background on service processes and possible causes for delays. Section 3 introduces
our model. Section 4 presents algorithms for mining various types of protocols from
event data. We evaluated our approach with real-world data in Section 5. Section 6
reviews our contributions in the light of related work, before we conclude in Section 7.

2 Background

Service Processes as Interacting Processes. Service processes show some inherent
duality in the sense that both service consumers and providers execute certain activities
to reach a goal. Hence, it is natural to view service processes as a choreography [8], i.e.,
two interacting processes. An example of this view is given by the BPMN [9] model

202 A. Senderovich et al.

C
a
ll

 C
e

n
tr

e

V
o

ic
e

 R
e

sp
o

n
se

 U
n

it

Handle
Select ion of
Customer
Options

Close
case

Agent
request

A
g

e
n

t

Provide
Service to
Customer

C
u

st
o

m
e

r

Dial Call Centre

Select Options
in Voice

Response Unit
(VRU)

Close
case

Request
agent

Be Serviced by
Agent

Issue
open

Abandonment

Abandonment

Fig. 1. A call center process modeled as interacting consumer and provider processes

in Fig. 1. It shows a simple call center process in which a customer dials in and first
interacts with a Voice Response Unit (VRU). If customers cannot solve their inquiry
using the VRU, they are referred to a call center agent. Then, to handle the customer
inquiry, multiple iterations with agents may be required.

The model in Fig. 1 highlights the interaction of service consumer and provider
processes. However, it focuses only on the activities executed by the service provider
that are specifically required to handle a single request of a service consumer. The model
neglects the fact that resources at the side of the service provider, i.e., the agent in our
example, also follow an explicit process when handling requests of service consumers.
This perspective of our example is highlighted in Fig. 2, which depicts how an agent
chooses a customer who waits for being served, serves the customer, and then repeats
the whole procedure until the shift is finished.

Delays in Service Processes. The various illustrated perspectives on a service process
are important when assessing its performance in general, and investigating the causes
of delays in processing in particular. Since service consumers typically compete for the
scarce capacity of service providers, clearly, unavailability of resources at the service
provider is a first cause of delays. In this case, customers are queued and served later
when resources become available. The process of the agent in Fig. 2, however, also
highlights that there is a particular activity that refers to the choice of the customer to
be served. Consequently, the selection strategy applied by an agent is a second cause
for delays in processing. Even in case agents are available to handle customer requests,
a particular request may be delayed because of this selection strategy.

Resource Scheduling Protocols. Strategies for the selection of resources, commonly
referred as scheduling protocols, can be grounded on various aspects. Examples include
the properties that relate to the processing state of the service provider (e.g., how long
a provider was busy or idle), attributes of the process instances (e.g., scheduling based

Mining Resource Scheduling Protocols 203

C
a
ll

 C
e

n
tr

e
 A

g
e

n
t

Pick
Customer

Provide
Service to
Customer

Abandonment

Finished
shift

Fig. 2. Process from the perspective of an agent

Low-priority
Customers

Regular
Customers

VIP Customers

1

V

Cu
st

om
er

 A
rr

iv
al

s

2

Regular
Agents

Senior
Agents

Fig. 3. Queueing perspective for
types of customers and agents

on types of customers and service providers), or global context (e.g., scheduling that
differs on working days and holidays).

For our example, the call center service process, scheduling based on attributes of
process instances is illustrated in Fig. 3. Here, customers are assumed to fall in one
out of three groups, ‘low-priority’, ‘regular’, or ‘VIP’. Customers of either type end up
in a separate queue. Agents, in turn, are classified based on their experience, so that
agents are ‘regular’ or ‘senior’. In our example, regular agents may serve low-priority
or regular customers, whereas senior agents serve regular or VIP customers. This cre-
ates a queueing system that is referred to have a W -architecture; see [10]. For this set-
ting, different scheduling protocols may be implemented. As an example, senior agents
could always prefer VIP customers and select regular customers only if the VIP queue
is empty. A different protocol could define that senior agents prefer VIP customers,
but also select the first customer in the regular queue if they waited for more than 15
minutes, and the VIP queue contains at most 2 customers that waited for less than 2
minutes.

These examples illustrate that deriving resource scheduling protocols from process
execution data is valuable to achieve more holistic performance analysis. In this work,
we hypothesize that queueing information is particularly useful in extracting such
protocols.

3 Service Logs and the Protocol Mining Problem

In order to learn allocation of resources to customers from event data, Section 3.1 first
defines our model of the service log (S-Log). A service log is an event log (c.f. [11,
Ch. 4]) that consists of service events and paths that are related to either the customers
or the resources of a service process. We then define the problem of mining resource
scheduling protocols in Section 3.2. We also provide a brief overview of how to assess
the quality of mined protocols in terms of their prediction error.

3.1 Service Logs

For service logs (S-Logs), we present two instantiations that reflect the duality of service
processes. The first log contains events that come from the customer’s perspective and

204 A. Senderovich et al.

include, e.g., the entry of a queue, the start of service, and abandonment. The second
log consists of resource related events, e.g., the start of service, initiation of back-office
work, and the start of a work break. Clearly, both types of event data are required for
mining resource protocols: customer log provides us with queueing information, while
the resource log presents the decisions about resource allocations.

As a first step to define an S-Log, we make the following assumptions:
– Service entities (e.g. customers, resources) go through service paths that consist of

service events.
– Service events and paths must have unique identifiers (events and paths cannot have

the same identifier).
– Service events have attributes.
Below, we first define the essential concepts of service logs, i.e., service events (or

events for short) and service paths (or paths), and relate events to their attributes.

Definition 1 (Service event, Service path). Denote by S the set of all possible service
events, i.e. unique event identifiers. Let S∗ be the set of all finite sequences over S. We
define Π ⊆ S∗ as the set of all feasible service paths, i.e. finite sequences of service
events. We require that each service event appears at most once in some path.

According to this definition, a path p ∈ Π is a finite sequence (p1, . . . , pn) of length
n of events, such that pi ∈ S, i = 1, ..., n. It is worth to mention that, in the literature,
paths are often referred to as cases. In this work, we wish to capture resource paths as
well as customer paths, hence the extension of cases to paths.

Service events are associated with attributes, e.g., timestamps, service activities, ser-
vice locations, and resources. We model such an attribute as a function that assigns an
attribute value to a service event. A set of such attribute functions, in turn, defines the
schema (aka structure) of a set of service events.

Definition 2 (Attribute function, Event schema). Let A be the domain of an event
attribute. Then, the attribute function α : S → A assigns values of this domain to
service events. A finite set {α1, . . . , αn} of attribute functions is called an event schema.

For example, α may be the attribute function for service activities, i.e., the domain of
the function is defined as {service start, service end}. A specific service event s ∈ S
then either indicates the start (α(s) = service start) or end of service (α(s) = service
end).

Using the introduced concepts, we define the general notion of an S-Log.

Definition 3 (S-Log). A service log (S-Log) is a tuple (S,G, αS) where,
– S ⊆ S is the set of observed service events.
– G ⊆ Π is the set of observed service paths.
– αS is the event schema.

The notion of a service log generalizes the functional definition of an event log as pre-
sented in [12]. Further, it allows for capturing the duality of service processes, which
is reflected in events that stem from the customer’s perspective and events that relate to
the resources at the service provider. Below, we define service logs of customers and
resources as they are recorded in service processes that show a W -architecture, as our

Mining Resource Scheduling Protocols 205

example in Figure 3. Either type of log follows the generic structure of a service log,
but comes with different event schemas, i.e., different sets of attribute functions.

Customer Log. Recording the behavior of a customer includes information on the time
at which an event was observed, the type of the customer, and the type of the executed
activity. The latter may refer to the start of queueing, abandonment, the start of service,
or the end of service.

Definition 4 (Customer S-Log). A customer service log is a service log (S,G, {τ, η, ε}),
where

– τ : S → N
+ is a timestamp attribute function.

– η : S → N
+ ∪ {⊥} is a customer type attribute function, with ⊥ being the null

value.
– ε : S → E = {qEntry, qAbandon, sStart, sEnd} is an activity attribute function.

Note that a customer service log does not contain information on the identity of partic-
ular customers since this information is not expected to be relevant for the operational
analysis of service processes. Instead, only the activities performed by a particular type
of customer at a certain point in time will be used for extracting queueing information.

Resource Log. The recording of the behavior of a resource captures different informa-
tion compared to a customer. In addition to the time at which an event was observed,
it includes information on the type of a customer served, the type of the resource (i.e.,
a skill group), the state of a resource, and the start and end of a particular state. In the
remainder, we consider four specific resource states: (1) serving a customer, (2) ready
to serve a customer (online, waiting for a customer to arrive), (3) performing offline
back-office work and (4) idle (e.g. on a break). For each of these states, an event may
signal the start or end of the respective state.

Definition 5 (Resource S-Log). A resource service log is a service log (S,G, {τ, η, σ,
φ, δ}), where

– τ : S → N
+ is a timestamp attribute function.

– η : S → N
+ ∪ {⊥} is a customer type attribute function.

– σ : S → N
+ is a skill group attribute function.

– φ : S → A = {Serving, Ready, Back-Office, Idle} is a state attribute function.
– δ : S → T = {Start, End} is a state transaction attribute function.

We observe that information on timestamps and customer types is included in both,
customer and resource logs. However, the reference of a customer type in resource-
related events is reasonable only if the resource is actually serving a customer. As a
convention, therefore, we assume that η(s) =⊥ if φ(s) �= Serving for all s ∈ S of a
resource log (S,G, {τ, η, σ, φ, δ}).

3.2 Problem Statement

We aim at mining resource scheduling protocols. These protocols determine how to al-
locate resource types to queues of customers, i.e., how to select a certain customer type.
Let D be the set of customer types and, therefore, possible resource allocations. For the

206 A. Senderovich et al.

W -architecture in Figure 3, these allocations would be given as D = {Low, Regular,
VIP}. Further, we write X ∈ R

p to refer to a random vector of features (explanatory
variables) of dimension p, which is used as the basis of allocation. The random variable
that is the real allocation of a resource is denoted by D ∈ D. Using these notions, we
are ready to define the problem addressed in this paper.

Problem 1 (Mining Resource-Scheduling Protocols). The problem of mining resource
scheduling protocols is to provide a protocol-function from the features vector space into
the decision set, π : Rp → D, such that π minimizes the expected prediction error with
respect to some loss function L(D, π(X)).

We choose to represent the loss function as a K ×K matrix L with K being the cardi-
nality of D. The matrix will be zero in the diagonal and non-negative elsewhere, with
L(k, l), corresponding to the cost of (mis)classifying decision k ∈ D as l ∈ D. In the
present first-time analysis, we use a 0 − 1 loss function, i.e. L(k, l) = 1 holds if the
classification is incorrect and L(k, l) = 0 otherwise.

The problem statement requires minimization of the expected prediction error w.r.t.
the loss function. In general, the expected prediction error can be written as follows:

EPE = E[L(D, π(X))] = EX
∑
d∈D

L(d, π(X)) · P (D = d|X), (1)

with the first expectation taken over the joint distribution of (D,X). That is, the ex-
pected value for the loss function is the expectation of a particular allocation given
its probability under the random feature vector. Given a particular realization x of the
random feature vector X , and a loss matrix of 0 − 1, the protocol that minimizes the
expected prediction error is given as,

π(x) = argmax
d∈D

P (D = d|X = x). (2)

In other words, the best protocol for solving Problem 1 is the one that maximizes the
posterior probability of decision D conditioned on a realization of the feature vector,
namely x [13, Ch. 2.4]. As we outline in the remainder of this paper, data mining tech-
niques can be used in an attempt to maximize this posterior probability.

4 Discovery of Resource Scheduling Protocols

The goal of resource scheduling protocols is tightly coupled with Quality-of-Service
(QoS) that an organization aims to provide. For service processes, two types of QoS are
of particular importance: (1) qualitative QoS, e.g. to which extent a customer receives
the service that they requested, and (2) operational QoS, e.g. to which extent a customer
was not delayed for too long. For illustration of the trade-off between the two types of
QoS, consider again the W -architecture shown in Fig. 3. In order to increase operational
QoS, regular agents are scheduled to VIP customers, thus inflicting the qualitative QoS.
On the other hand, to provide better qualitative QoS, senior agents are often scheduled
to serve regular customers.

Mining Resource Scheduling Protocols 207

Considering the above, we hypothesize that scheduling of resources, especially in
service processes, is related to both the skill of the agent, i.e. the qualitative abilities of
the resource, as well as the system load that has a direct influence on operational QoS.
As discussed in [7], system load can be measured by queue-length or by waiting time of
the most delayed customer (the head-of-line, or HOL for short). Based on these insights,
our techniques for solving Problem 1 consider four levels of queueing information: (1)
no queueing information; (2) lengths of queues of customers; (3) waiting time of the
HOL in the customer queues; and lastly (4) a combination of the previous two levels.

Below, we first show how the two service logs, capturing a service process from
the perspective of customers and resources respectively, are used to extract allocation
decisions, i.e., the moment in time when a resource was allocated to a customer (Sec-
tion 4.1). Each decision is associated with a vector of features including the skill of the
currently allocated resource and the relevant queueing information at the moment of
the allocation. Based on that information, we first apply advanced classification meth-
ods from data mining to solve Problem 1 (Section 4.2). Our second approach does not
require any historical data, but relies on queueing heuristics that originate from opti-
mal control theory for queues operating under heavy-traffic scenarios (Section 4.3). It
uses information that is easily observable in service processes, such as the number of
customers in each queue.

4.1 Mining Queueing Information from Service Logs

To mine allocation decisions that are associated with queueing information, we extract
information on queue lengths and longest waiting time from a customer service log. Let
q(t) = (qd1(t), . . . , qdn(t)) be a vector of queue lengths at time t, where d1, . . . , dn ∈
D are allocation decisions (or customer types, respectively). Given a customer service

log (S,G, {τ, η, ε}) and time t, queue length qdi(t) is estimated by q̂di(t) as follows:

q̂di(t) = |{(g1, . . . , gm) ∈ G | ε(gm) = qEntry ∧ τ(gm) ≤ t ∧ η(gm) = di}| . (3)

Similarly, we denote by h(t) = (hd1(t), . . . , hdn(t)) the vector of the longest waiting
customers in each queue (the delays of the HOL), with d1, . . . , dn ∈ D being alloca-
tion decisions. For a customer service log (S,G, {τ, η, ε}) and time t, this vector can
estimated from the customer log in a similar manner:

ĥdi(t) = min
s∈{s∈S | ε(s)=qEntry ∧ η(s)=di ∧ ∃ (g1,...,s)∈G}

t− τ(s), (4)

Next, we mine allocation decisions from the resource perspective by identifying times-
tamps in which the resource switched their state to Serving. Given a resource service
log (S,G, {τ, η, σ, φ, δ}), the set of allocation decisions is given by

V = {s ∈ S | φ(s) = Serving ∧ δ(s) = Start}. (5)

Finally, we derive a set of explanatory feature vectors, denote by X , for the set of
allocation decisions as follows:

X = {x = (s, σ(s), qd1(t), ..., qdn(t), hd1(t), ..., hdn(t)) | s ∈ V ∧ t = τ(s)}. (6)

The vector elements correspond to the skill group of the allocated resource and the
queueing information at the time of allocation (queue-lengths and HOL waiting times).

208 A. Senderovich et al.

4.2 Data Mining Classifiers

We consider four data mining techniques that are suitable to solve Problem 1 as a clas-
sification problem. Namely, we use Linear Discriminant Analysis (LDA), Multinomial
Logistic Regression (MLR), decision trees and random forests. These methods provide
us with a protocol-function π such that the decision obtained by applying π to a feature
vector,π(x) = d, will have the maximal posterior probability among all other posteriors
(see Section 3). Below, we briefly describe these data mining methods and then exem-
plify mining of resource scheduling protocols with one of the algorithms, i.e., decision
trees.

Linear Classifiers: LDA and MLR. The LDA method constructs a discriminant func-
tion δd(x) that, given a vector of features x, selects the most probable decision, see
Equation (2). The posterior probability P (D = d|X = x) of the decision to select
allocation d given feature vector x is rewritten following Bayes theorem:

P (D = d|X = x) =
fd(x) · P (D = d)∑
l∈D fl(x) · P (D = l)

, (7)

with fd(x) = P (X = x|D = d) and P (D = d) being the prior of decision d. LDA
assumes that for d ∈ D the density, fd(x), comes from a Gaussian distribution and
that all classes d ∈ D have a common covariance matrix. From these assumptions,
the discriminant function δd(x) of decision d is linear in x and depends on the prior
distribution over the classes P (D = d) and the parameters of the Gaussian distribution.
Therefore, given a feature vector x, the LDA algorithm ‘plugs’ the vector into δd(x) for
each class d and selects the decision with the highest discriminant function.

Similarly to LDA, the MLR method attempts to model a logic transformation of the
posterior probabilities P (D = d|X = x) by linear functions in x. However, unlike the
LDA, the MLR ensures that these functions sum up to 1 and stay in the range of [0, 1].
Generally, the MLR requires more data observations for accuracy, while the LDA is
less robust to outliers. Hence, both models can potentially be valuable (see [13, Ch 4]).

Tree-Based Classifiers: Decision Trees and Random Forests. Classification (deci-
sion) trees attempt to find m regions R1, . . . , Rm in the feature space (Rp) that would
best explain the observed outcomes [13, Ch. 9.2]. Decision trees enjoy a low bias, yet
suffer from a high variance. In order to handle the large variance of decision trees, the
random forests algorithm, which has become popular and is considered state-of-the-art
in data mining, was introduced by Breiman [14]. The idea is to grow a number of de-
correlated decision trees (a forest) and to average on the result, thus reducing variance.

Exemplifying Protocol Mining with Decision Trees. To demonstrate the application
and relevance of data mining methods for discovery of resource scheduling protocols,
we present a data-based illustration of the method based on decision trees. To this end,
we consider real-world data from an Israeli telecommunication company (further de-
tails on the data are given when presenting the comparative evaluation of the proposed
methods). This company operates a service process that follows the W -architecture as
discussed in Section 2 and illustrated in Fig. 3 with the aforementioned three types of
customers (low-priority, regular, VIP). For this setting, Fig. 4 presents the histogram

Mining Resource Scheduling Protocols 209

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40

Re
la

tiv
e

fr
eq

ue
nc

ie
s

%

Time (seconds)

Delays of VIP customers

Fig. 4. Histogram of delays for VIP customers, who had to wait for service

of delays for VIP customers, who had to wait prior to being served. We observe that a
large proportion of customers experienced a 6 seconds delay. This is an indication of a
protocol that causes VIP customers to enter service after a 6 seconds delay.

Applying the outlined approach for this data set leads to the result depicted in Fig. 5.
In the graphical representation of the tree, queues (customer types or scheduling deci-
sions, respectively) are denoted by Q1, Q2 and Q3, corresponding to low-priority, reg-
ular and VIP customers. The skill groups of agents are 1 and 2, i.e., regular and senior
agents. HOL Q i represents the waiting time of the longest delayed customer in queue
Qi. Then, the protocol grounded in the decision tree reads as follows:
(1) If no information is available, the best prediction is Q2, since this relates to the

allocation of the most common customer type. In terms of posterior probabilities,
we have P (D|X) = P (D) (prior of D), since no feature vector is present.

(2) If the agent has skill 1 (regular agent), then the best prediction is Q1, since the
majority of customers that are allocated to this group stem from the low-priority
customer queue. Otherwise, if the skill points to a senior agent, the best prediction
is Q2 based on similar considerations. Note that the first two levels of the tree do
not rely on any queueing information.

(3) The second level of the tree does consider queueing information. For regular agents,
the prediction is based on the fact whether there are waiting regular customers (Q2),
which should be served first. If this is not the case, prediction is based on HOL
waiting times. For senior agents, the prediction is simple. They are allocated to VIP
customers that wait 6 seconds or longer (the relevant node is emphasized in Fig. 5).
This is exactly the phenomena that is observed in the histogram in Fig. 4.

This example illustrates how the method learns scheduling protocols from event data
that are based on features of the resources and queueing information.

4.3 Queueing Heuristics

A complementary approach to the extraction of resource scheduling protocols from
historical data, using data mining techniques, is the prediction of scheduling decisions
based on queueing heuristics. Here we consider two such heuristics.

210 A. Senderovich et al.

Fig. 5. Decision tree that is constructed from service logs

The first heuristic is based on the length of the queues at the time of the allocation
decision. That is, given a time t, a set of feasible allocation decisions F ⊆ D for a
resource (not every type of agent may have the skill to serve every queue), and the
observed queue-length vector q(t) = (qd1(t), . . . , qdn(t)), the predicted allocation de-
cision is defined as

d = argmax
f∈F

qf (t). (8)

We refer to this heuristic as Longest-Queue-First (LQF). This scheduling protocol
has its roots in queueing control theory in heavy-traffic scenarios, and is a special case
of the Fixed-Queue-Ratio rule proposed in [15]. If there are multiple queues of the
same lengths (including the case in which q(t) = 0 for every component), the more
probable queue in terms of prior probability, is favored. For our running example and
the aforementioned data set, this would allocate regular customers to senior agents and
low-priority customers to regular agents.

The second heuristic follows a similar idea, but predicts the allocation to the queue
with the most delayed head-of-line customer. Given a time t and the head-of-line vector
h(t), the predicted allocation decision is defined as

d = argmax
f∈F

hf (t). (9)

We refer to this heuristic as Most-Delayed-First (MDF). It can be shown that this heuris-
tic is equivalent up to a constant (asymptotically in heavy-traffic) to the LQF heuris-
tic [16]. Note that both types of heuristics ignore the priorities that exist between the
three queues. We later discuss that this has to be seen as one of their limitations.

Mining Resource Scheduling Protocols 211

5 Evaluation

We evaluate our methods using a large-scale real-world data set. We first provide details
on the data and experimental setup. Then, we report and discuss the prediction results.

Data Description. The data for our experiments stems from a call center of an Israeli
telecommunication company and is gathered and stored in the Technion laboratory for
Service Enterprise Engineering (SEELab)1. The call center processes up to 50,000 ser-
vice requests a day, routes requests according to various resource skills, and simultane-
ously queues requests across multiple sites. The center is operated with around 600-800
agent positions on weekdays and 200-400 agent positions on weekends. Further, several
types of services are provided; the most common are Private, Business, Technical and
Content Internet. In this paper, we focus on the Private service, which handles requests
with low, regular and VIP priorities. For our empirical evaluation we selected three
months of data to serve as our service logs, from January 1, 2008 to March 31, 2008.
The data features the events of a customer service log as well as those of a resource
service log.

Experimental Setup. The controlled variable in our experiments is the method we ap-
ply to mine a scheduling protocol. As outlined in Section 4, our methods can be divided
into: (1) data mining techniques that are based on feature vectors that may depend on
queueing information and (2) queueing heuristics that rely on control theory in heavy-
traffic. The uncontrolled (responding) variable in the experiments is the misclassifica-
tion rate, i.e., the proportion of incorrect predictions out of total number of predictions.
Since we consider the 0 − 1 loss function, the misclassification rate is essentially an
estimator of the expected prediction error (EPE).

The experiments consist of four scenarios that correspond to four levels of queueing
information. Scenario I is our baseline scenario, for which the feature vector includes
only the skill group of the resource without further queueing information. Scenario II
considers queue lengths of the three queues (low-priority, regular and VIP) as additional
features. In Scenario III, the queue length is replaced by the waiting time of the head-
of-line (HOL) for each queue. Lastly, Scenario IV includes all the above, namely, skill,
queue-length and HOL waiting time.

To run the experiments, we first derived the allocation decisions and feature vectors are
described in Section 4. For each experiment iteration, we randomly divided the allocation
decisions into two subsets: a training set (75% of the data set) and a test set (25%), which
is common practice when performing statistical model assessment [13, Ch. 8]. During
each iteration the controlled variables were altered, while the misclassification rate was
measured. We repeated the process of dividing the data set and running the experiment for
10 times. We used the implementations of LDA, MLR, decision trees and random forests
provided by R2. For the decision tree algorithm we used the cross-entropy method. For
random forests, in order to limit the complexity of the algorithm, we relied on 10 trees,
a node size of 50, and disabled recalculations of the proximity matrix.

1 http://ie.technion.ac.il/Labs/Serveng
2 http://www.r-project.org/

http://ie.technion.ac.il/Labs/Serveng
http://www.r-project.org/

212 A. Senderovich et al.

Fig. 6. Misclassification rates of the discovered protocols

Results. The results of our experiments are depicted in Fig. 6, which plots the achieved
misclassification rate for the six methods: four data mining methods (LDA, MLR, deci-
sion trees and random forests) and two queueing heuristics (Longest-Queue-First (LQF)
and Most-Delayed-First (MDF)). For each of the data mining methods, we have four re-
sults, one for each type of queueing information (i.e., skill, queue-length, head-of-line,
all).

We observe that for the baseline scenario, when the only available information is the
skill group of the resource, all data mining algorithms yield the same misclassification
rate (of 37%). In Scenarios II-IV, where queueing information is introduced, LDA does
not improve beyond the baseline scenario. MLR improves by 8% when queue-length is
considered in the prediction. However, this is generally inferior compared to decision
trees, random forests, and the Longest-Queue-First heuristic that scored 17%, 16% and
19% misclassification rate, respectively. Considering the influence of the HOL waiting
time, none of the linear classifiers (LDA and MLR) improves, whereas decision trees,
random forests, and the Most-Delayed-First heuristic achieve 16%, 14% and 21% mis-
classification. Decision trees and random forests further improve slightly when all types
of queueing information is considered.

Discussion. First and foremost, we observe that the linear data mining techniques yield
comparably high misclassification rate values. This can be explained by their strong
assumptions. For instance, the LDA assumes Gaussian densities of the feature vector
conditioned on decisions. As a consequence, the linear methods impose a low compu-
tational effort and, when the respective assumptions hold true, provide a precise classi-
fication [13, Ch. 4]. However, due to their assumptions, the methods are not applicable
to any scenario and, thus, lead to poor performance for our data set.

In contrast, decision trees and random forests do not impose assumptions on the fea-
ture vector and therefore, are more robust to various distributions of these vectors. On
the downside, tree methods are based on greedy algorithms, which renders it unlikely
that they converge to an optimal splitting of the feature vector space. Despite this short-
coming, the tree-based techniques yield the best prediction results in our comparative
analysis. In addition, they also allow for decrypting complex scheduling protocols from
event data as we exemplified it in Section 4.

Mining Resource Scheduling Protocols 213

Queueing heuristics perform surprisingly well, although their underlying assump-
tion do not hold throughout large portions of the data: the call center is not constantly
in heavy-traffic and the three queues do not have the same priorities. The biggest advan-
tage of queueing heuristics is their simplicity; to apply them, one does not need to learn
from data or use sophisticated black-box techniques. The information that they require
is readily available in any service operation environment, so that they can be easily pro-
grammed into any recommendation system. However, our results also indicate that the
misclassification rate is not on the level of tree-based methods.

Our results raise the question whether queueing heuristics can be improved, for in-
stance, by incorporating priorities between the various queues. Instead of selecting the
longest queue first, or the customer from the most delayed queue, we may consider
attaching weights to each of the queues. Suppose that a queue-length vector, q(t) =
(qd1(t), . . . , qdn(t)), receives corresponding weights, w1, . . . , wn with

∑n
1 wi = 1.

Then, with F as the set of feasible allocation decisions at time t, the predicted deci-
sion could be defined as:

d = argmax
f∈F

qf (t) · wf . (10)

In fact, this protocol corresponds to the heavy-traffic rule of Fixed-Queue-Ratio
(FQR) [15]. The downside of such an extension is that it requires a learning phase for
w1, . . . , wn, which would inflict the aforementioned advantage of queueing heuristics.

6 Related Work

The work presented in this paper fits under the umbrella of context-aware, operational
process mining. Process mining research has seen a remarkable surge lately, providing
techniques for the discovery of process-related models from event data, see [11] for a
broad overview. Recently, the importance of context information for process mining was
highlighted [17]. Our work follows this line by arguing that the most narrow scope, i.e.,
the context of process instances, is not sufficient for operational analysis of a process.
The behavior of resources and allocation protocols as mined in our work are part of the
broader process context, beyond single instances.

Operational process mining refers to the creation of models for quantitative anal-
ysis. Here, evaluation of temporal properties has received considerable attention, for
example, the prediction of processing delays or completion times for running cases by
constructing simulation models from event data. In [18], time prediction is grounded on
a Coloured Petri net comprising resource and timing information. Other work enriches
such predictions with stochastic information [12]. Time prediction based on abstrac-
tions of states and state transitions was developed in [5]. It has been argued though, that
realistic time prediction requires modeling resource utilization appropriately [19,20].
In [19], the authors used regression analysis to show that speed of service is indeed
affected by the workload. To take such context-factors into account, time prediction
based on abstractions of states and state transitions was recently extended to consider
context information such as system load [6]. We argue that, for service processes, con-
sideration of the system load is not sufficient to explain all delays of processing. Our

214 A. Senderovich et al.

work highlights the importance of the interplay of customers and resources for perfor-
mance analysis, and the relevance of queueing information and scheduling protocols in
particular.

The application of decision trees to extract resource scheduling rules was also dis-
cussed by Li and Olafsson [26], yet only applied to simulated event logs. In contrast,
our experiments were conducted on a real-world data set and used a variety of statis-
tical learning and queue mining techniques that go beyond decision trees, which are
considered state-of-the-art in mining of scheduling rules.

Further, the duality between a decision problems in processes and classification prob-
lems was leveraged for mining of branching conditions [22,23] (falling into the process
instance context). Our work relies on similar techniques, but exploits queueing informa-
tion and works on the broader context of processes to discover protocols.

Despite its importance for performance analysis, only few works analyze behavior of
resources. In [21, Ch .2], resource (aka server) networks were defined as directed graphs
that depict resource-flow through service activities or customer queues, which can be
used to estimate resource absenteeism rates. These rates, in turn, allow for long and
short-term workforce planning in service processes. Our work supports this approach
by discovering scheduling protocols from event data.

The presented queueing heuristics are grounded in queueing control theory for heavy-
traffic scenarios, cf., [16,15]. Given a certain structure of queues and service providers,
control theory gives rise to protocols that are provable optimal as the demand reaches
system capacity. The two presented heuristics are particularly inspired by delay predic-
tors that do not assume steady-state, but work on wait time information of the current
snapshot of a system [24,25]. We follow the same idea when exploiting only the current
state of queues instead of historical data.

7 Conclusion

In this paper, we argued that for performance analysis of service processes and estima-
tion of processing delays, it is crucial to understand the resource scheduling protocols
that match customers with service providers. Given that in many cases, service pro-
cesses are supported by information systems that track the execution of activities by
customers as well as the behavior of resources, we advocate the discovery of such pro-
tocols from event data. Following the hypothesis that queueing information serves as
an essential element in mining scheduling protocols, we presented two specific types
of mining techniques. First, we showed how classification methods from data mining
can be used when including queueing information in their explanatory features. Second,
we proposed heuristics that originate in queueing theory and exploit solely the current
state of a system. We tested both types of techniques using a large real-world data set
from the telecommunications sector. Our results indicate that data mining with decision
trees and random forests is able to derive predictors for scheduling decisions with up to
88% precision. In addition, queueing heuristics also perform well reaching levels of up
to 81% precision. We conclude that high prediction precision can be achieved already
with online methods that do not require a preliminary learning phase on historic data.

As part of future work, we aim at developing and evaluating queueing heuristics
that are enriched by a small set of features extracted from historical data and, therefore,

Mining Resource Scheduling Protocols 215

allow for a different trade-off of prediction effort and precision. Also, such heuristics
should be extended symmetrically to the customer’s perspective: upon the arrival of a
customer service request, the presence of a set of free resources of various types implies
the need to take a routing decision.

References

1. Fitzsimmons, J.A., Fitzsimmons, M.J.: Service Management: Operations, Strategy, Informa-
tion technology. McGraw-Hill/Irwin, Boston (2004)

2. Gans, N., Koole, G., Mandelbaum, A.: Telephone call centers: Tutorial, review, and research
prospects. Manufacturing & Service Operations Management 5(2), 79–141 (2003)

3. Buzacott, J.A., Shanthikumar, J.G.: Stochastic Models of Manufacturing Systems. Prentice
Hall, Englewood Cliffs (1993)

4. Hall, R.W.: Queueing Methods: For Services and Manufacturing. Prentice Hall, Englewood
Cliffs (1991)

5. van der Aalst, W.M., Schonenberg, M., Song, M.: Time prediction based on process mining.
Information Systems 36(2), 450–475 (2011)

6. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting
business process performances. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S.,
Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012,
Part I. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012)

7. Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining – predicting delays
in service processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos,
Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 42–57. Springer,
Heidelberg (2014)

8. Decker, G., Weske, M.: Interaction-centric modeling of process choreographies. Inf.
Syst. 36(2), 292–312 (2011)

9. Object Management Group: Business Process Model and Notation (BPMN) 2.0 (2011)
10. Garnett, O., Mandelbaum, A.: An introduction to skills-based routing and its operational

complexities. Teaching Notes (2000)
11. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business

Processes. Springer (2011)
12. Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic

petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.)
ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013)

13. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer Series
in Statistics. Springer New York Inc., New York (2001)

14. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
15. Gurvich, I., Whitt, W.: Service-level differentiation in many-server service systems via queue-

ratio routing. Operations Research 58(2), 316–328 (2010)
16. Gurvich, I., Whitt, W.: Scheduling flexible servers with convex delay costs in many-server

service systems. Manufacturing & Service Operations Management 11(2), 237–253 (2009)
17. van der Aalst, W., Dustdar, S.: Process mining put into context. IEEE Internet Comput-

ing 16(1), 82–86 (2012)
18. van der Aalst, W., Nakatumba, J., Rozinat, A., Russell, N.: Business process simulation: How

to get it right. BPM Center Report BPM-08-07, BPMcenter. org (2008)
19. Nakatumba, J., van der Aalst, W.M.P.: Analyzing resource behavior using process mining.

In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 69–80.
Springer, Heidelberg (2010)

216 A. Senderovich et al.

20. Nakatumba, J.: Resource-Aware Business Process Management: Analysis and Support. PhD
thesis, Technische Universiteit Eindhoven, Eindhoven (12 (2013)

21. Senderovich, A.: Multi-Level Workforce Planning in Call Centers. Master’s thesis, Technion
(2012)

22. Rozinat, A., van der Aalst, W.M.P.: Decision mining in prom. In: Dustdar, S., Fiadeiro, J.L.,
Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer, Heidelberg (2006)

23. de Leoni, M., Dumas, M., Garcı́a-Bañuelos, L.: Discovering branching conditions from busi-
ness process execution logs. In: Cortellessa, V., Varró, D. (eds.) FASE 2013 (ETAPS 2013).
LNCS, vol. 7793, pp. 114–129. Springer, Heidelberg (2013)

24. Whitt, W.: Predicting queueing delays. Management Science 45(6), 870–888 (1999)
25. Ibrahim, R., Whitt, W.: Real-time delay estimation based on delay history. Manufacturing

and Service Operations Management 11(3), 397–415 (2009)
26. Li, X., Olafsson, S.: Discovering dispatching rules using data mining. Journal of Schedul-

ing 8(6), 515–527 (2005)

Dealing with Changes of Time-Aware Processes�

Andreas Lanz and Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Germany
{andreas.lanz,manfred.reichert}@uni-ulm.de

Abstract. The proper handling of temporal process constraints is
crucial in many application domains. Contemporary process-aware infor-
mation systems (PAIS), however, lack a sophisticated support of time-
aware processes. As a particular challenge, the execution of time-aware
processes needs to be flexible as time can neither be slowed down nor
stopped. Hence, it should be possible to dynamically adapt time-aware
process instances to cope with unforeseen events. In turn, when applying
such dynamic changes, it must be re-ensured that the resulting pro-
cess instances are temporally consistent; i.e., they still can be completed
without violating any of their temporal constraints. This paper presents
the ATAPIS framework which extends well established process change
operations with temporal constraints. In particular, it provides pre- and
post-conditions for these operations that guarantee for the temporal con-
sistency of the changed process instances. Furthermore, we analyze the
effects a change has on the temporal properties of a process instance.
In this context, we provide a means to significantly reduce the complex-
ity when applying multiple change operations. Respective optimizations
will be crucial to properly support the temporal perspective in adaptive
PAIS.

1 Introduction

Time is a crucial factor regarding the proper support of business processes [10].
Moreover, in many application areas (e.g., patient treatment, automotive engi-
neering), the handling of temporal constraints is vital in order to successfully
execute and complete processes [3,4,10]. However, contemporary process-aware
information systems (PAIS) lack a comprehensive support of such time-aware
processes [10]. To remedy this drawback, the proper integration of temporal
constraints with both the design and run-time components of a PAIS has been
identified as a key challenge [3,4,7]. Our ATAPIS framework aims to provide
comprehensive support for the specification, execution and monitoring of time-
aware processes in adaptive PAIS.

As a prerequisite for robust process execution in PAISs, the executable process
models must be sound [12]. Moreover, in the context of time-aware process mod-
els, i.e., process models enriched with temporal constraints, the consistency of the
� A more complete and formally rigor version of this work is described in a technical

report [8].

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 217–233, 2014.
c© Springer International Publishing Switzerland 2014

218 A. Lanz and M. Reichert

temporal constraints must be ensured [1,4,7]. Checking consistency of time-aware
process models at design time has been extensively studied in literature [1,3,5].
By contrast, only little attention has been paid to the proper run-time support
of time-aware processes [7]. During run time, the temporal consistency of process
instances needs to be continuously monitored and re-checked to avoid constraint
violations. Particularly, note that activity durations and deadlines are specific to
the executed process instance and only become known at run time [7].

As a particular challenge, temporal constraints cannot be considered in isola-
tion, but might interact with each other. Hence, complex algorithms are required
for checking the temporal consistency of a process model [7,15]. At run time,
however, respective calculations should be reduced to a minimum to ensure scal-
ability of the PAIS [7]. Otherwise, no run-time support of time-aware processes
will be possible at the presence of a large number of process instances.

As another challenge, time can neither be slowed down nor stopped. Accord-
ingly, time-aware processes need to be flexible to cope with unforeseen events
or delays during run time [14]. For example, it is common that deadlines are
re-scheduled or temporal constraints are dynamically modified in order to suc-
cessfully complete a process instance being in trouble. Moreover, in certain sce-
narios the instances of time-aware processes must be structurally changed (e.g.,
by moving, deleting or inserting activities) to be able to meet a particular dead-
line. In the context of such dynamic process changes, we must re-ensure that the
resulting process instances are sound and temporally consistent. While soundness
has been extensively studied in literature [13,12], this work shows how temporal
consistency of a time-aware process instance can be efficiently ensured in the
context of dynamic changes. Furthermore, we analyse the effects, changes have
on the temporal constraints of the respective process instance. In particular,
we show how the results of this analysis can be utilized to significantly reduce
the complexity when applying multiple change operations. For example, the lat-
ter becomes crucial in the context of process evolution, where a possibly large
set of process instances needs to be migrated on-the-fly to a changed process
model [12].

The remainder of the paper is organized as follows: Sect. 2 considers existing
proposals relevant for our work. Sect. 3 provides background information on
time-aware processes and defines the notion of temporal consistency. Sect. 4 first
introduces the set of change operations we consider, followed by an in-depth
discussion on how these change operations work in the context of time-aware
processes. Sect. 5 analyzes the impact a change has on the temporal constraints
of a process and proposes useful optimizations. Sect. 6 evaluates the proposed
approach. Finally, Sect. 7 concludes with a summary and outlook.

2 Related Work

In literature, there exists considerable work on managing temporal constraints for
business processes [1,3,5,7,11]. The focus of these approaches is on design-time is-
sues like the modeling and verification of time-aware processes. By contrast, only

Dealing with Changes of Time-Aware Processes 219

Table 1. Process Time Patterns TP1 – TP10 [10]

Category I: Durations and Time Lags

TP1 Time Lags between two Activities
TP2 Durations
TP3 Time Lags between Events

Category II: Restricting Execution Times

TP4 Fixed Date Elements
TP5 Schedule Restricted Elements
TP6 Time-based Restrictions
TP7 Validity Period

Category III: Variability

TP8 Time-dependent Variability
Category IV: Recurrent Process Elements

TP9 Cyclic Elements
TP10 Periodicity

few approaches consider run-time issues of time-aware processes [4,7]. In particu-
lar, none of the latter considers dynamic changes in this context.

Most approaches dealing with the verification of time-aware processes use a
specifically tailored time model to check for the temporal consistency of process
models. This becomes necessary since the interdependencies between the various
temporal constraints of a process model can be quite complex and cannot be
suitably captured in the respective process model. A specific conceptual model
for temporal constraints is defined in [11]. In turn, [4,5] use an extended version
of the Critical Path Method known from project planning. Simple Temporal
Networks (STN) are used as basic formalism in [1], whereas [7] uses Conditional
Simple Temporal Networks with Uncertainty for checking the controllability of
process models, i.e., a more restrictive form of temporal consistency. This paper
relies on Conditional Simple Temporal Networks (CSTN), an extension of STN
that allows for the proper handling of exclusive choices [15].

In [10], we presented 10 empirically evidenced time patterns (TP), that rep-
resent temporal constraints of time-aware processes (cf. Tab. 1). In particular,
time patterns facilitate the comparison of existing approaches based on a uni-
versal set of notions with well-defined semantics [9]. Moreover, [9,10] elaborated
the need for a proper run-time support of time-aware processes.

Dynamic process changes were extensively studied in the past. Particularly,
there exists considerable work on ensuring structural and behavioural soundness
in the context of dynamic process changes [13]. A survey of approaches enabling
dynamic changes is provided in [12]. To the best of our knowledge, [14] is the
only work considering dynamic changes in the context of time-aware processes.
As opposed to our work, however, [14] only provides a high level discussion of the
different aspects to be considered when changing time-aware process instances,
temporal consistency being one of them.

3 Basic Notions

This section provides basic notions. First, it defines a set of elements for modeling
time-aware processes. Second, it introduces the notion of temporal consistency.

3.1 Time-Aware Processes

For each business process exhibiting temporal constraints, a time-aware process
schema needs tobedefined (cf.Fig. 1). In ourwork, a process schemacorresponds to
a process model ; i.e., a directed graph, that comprises a set of nodes—representing

220 A. Lanz and M. Reichert

A

Activity

Data object

d

AND-Block

XOR-Block

Control Edge

Data Edge

A

B

D

C

E

H

F

G

Process Schema S

[5, 25]

LE

S [30, 120] S

d

E [5, 60] S

[5, 25]

[5, 25]

[5, 25]

[5, 40] [10, 25]

[10, 25] [60, 120]

Process Duration: [90, 200]

Fixed Date Element

Activity Duration

Date value for
Fixed Date Element G

Time Lag between two Activities

Time Lag between two Activities

Fig. 1. Core Concepts of a Time-Aware Process Model

activities and control connectors (e.g., Start-/End-nodes,XORsplits, orANDjoins)
—as well as a set of control edges linking these nodes and specifying precedence re-
lations between them. We assume that processmodels arewell structured [12], e.g.,
sequences and branchings are specified in terms of nested single-entry single-exit
(SESE) blocks. Fig. 1 depicts an example of a well structured process model with
the grey areas indicating respective blocks. Each process model contains a unique
start and end node, and may be composed of control flow patterns like sequence,
parallel split (ANDsplit), synchronization (ANDjoin), exclusive choice (XORsplit),
and simple merge (XORjoin) (cf. Fig. 1).

At run time, process instances may be created and executed according to the
defined process model. We assume that a process instance is logically represented
by a clone of the respective process model augmented with instance-specific
information. If a process model contains XOR-blocks, uncertainty is introduced
since not all instances perform exactly the same set of activities. The concept of
execution path allows us to identify which activities and control connectors are
actually performed during the execution of a particular process instance.

We base our ATAPIS framework on the time patterns (TP) (cf. Sect. 2). Specif-
ically, we focus on the patterns being most relevant in practice [10]. In detail:

An activity duration (TP2) defines the minimum and maximum time span
[dmin, dmax] (0 ≤ dmin ≤ dmax) allowed for executing a particular activity (or
node, in general). We assume that each activity has an assigned duration. Since
control connectors are automatically executed, we may assume a fixed duration
for them (e.g., [0, 1]). In turn, a process duration [dmin, dmax] represents the
time span allowed for executing a process instance.

Time lags between two activities (TP1) restrict the time span allowed be-
tween the starting and/or ending instants of two arbitrary activities of a process
model [10]. In Fig. 1, a time lag is visualized through a dashed edge between the
source and target activity. The label of the edge specifies the constraint accord-
ing to the following template: 〈IS〉[tmin, tmax]〈IT 〉 (−∞ ≤ tmin ≤ tmax ≤ ∞);
〈IS〉, 〈IT 〉 ∈ {S,E} mark the instant (i.e., starting or ending) of the source and
target activity the time lag applies to. In turn, [tmin, tmax] represents the range
allowed for the time span between instants 〈IS〉 and 〈IT 〉. Finally, note that a con-
trol edge implicitly represents an E[0,∞]S time lag between the two activities.

Fixed date elements (TP4) allow restricting activity execution in relation
to a specific date (e.g., a deadline). Generally, the value of a fixed date element
is specific to a process instance. Fig. 1 visualizes a fixed date element through
a clock symbol attached to the activity. Thereby, label 〈D〉 ∈ {ES , LS, EE , LE}

Dealing with Changes of Time-Aware Processes 221

represents the activity’s earliest start date (ES), latest start date (LS), earliest
completion date (EE), or latest completion date (LE).

Fig. 1 shows an example of a process model exhibiting temporal constraints.
Note that, although some of the symbols used for visualizing the temporal con-
straints resemble BPMN timer events, their semantics is quite different and
should not be mixed up.

3.2 Temporal Consistency of Time-Aware Processes

A time-aware process model is executed by performing its activities and control
connectors, while obeying a set of temporal constraints. We denote a process
model as temporally consistent if it is possible to perform all execution paths
without violating the temporal constraints involved. Temporal consistency of
a time-aware process model (and its instances) constitutes a fundamental pre-
requisite for its robust and error-free execution [1,4]. For any PAIS supporting
time-aware processes, therefore, a crucial task is to check temporal consistency of
the process model at design time as well as to monitor and re-check correspond-
ing instances during run time. This is particularly challenging since temporal
constraints might interact with each other resulting in complex interdepend-
cies (e.g., a future deadline might restrict the duration of some or all preceding
activities).

Whether a time-aware process model is temporally consistent can be checked
by mapping it to a conditional simple temporal network (CSTN)—a problem
known from artificial intelligence [6]. In ATAPIS, we use CSTN since it allows
us to exploit and reuse checking algorithms for a well founded model representing
temporal constraints. Finally, CSTN allows capturing the complex interdepen-
dencies between constraints, which cannot be captured in process models.

Definition 1 (Conditional Simple Temporal Network). A Conditional
Simple Temporal Network (CSTN) is a 6-tuple 〈T , C, L,OT ,O, P 〉, where:
– T is a set of real-valued variables, called time-points;
– P is a finite set of propositional letters (or propositions);
– L : T → P ∗ is a function assigning a label to each time-point in T ; a label is

any (possibly empty) conjunction of (positive or negative) letters from P .1
– C is a set of labeled simple temporal constraints (constraint in the following);

each constraint cXY ∈ C has the form cXY = 〈[x, y]XY , β〉, where X,Y ∈ T ,
−∞ ≤ x ≤ y ≤ ∞, and β ∈ P ∗ is a label.

– OT ⊆ T is a set of observation time-points;
– O : P → OT is a bijection that associates a unique observation time-point

to each propositional letter from P .

Time-points represent instantaneous events that may be, for example, associ-
ated with the start / end of activities. In turn, at observation time-points a
decision regarding possible execution paths is made. More formally, when exe-
cuting observation time-point P , the truth-value of the associated proposition
1 In the following we use small Greek letters α, β, . . . to denote arbitrary labels. The

empty label is denoted by �.

222 A. Lanz and M. Reichert

AS AE

FS FE

GS GE

DS DE

HS HE

ES EE

BS BE

CS CE

PS PE

Time Model M

Z

ANDsplit G HA

B

C
ANDjoin

XORsplit
p?

XORjoin D

‹[5, 25], ›

‹[5, 40], › ‹[10, 25], ›

‹[0, 1], › ‹[0, 1], › ‹[60, 120], ›‹[10, 25], ›

‹[0, 1], ›

‹[5, 25], p›

‹[5, 25], ¬p›

‹[0, 1], › ‹[5, 25], ›

‹[0, 1], p›

‹[0
, 1], ¬

p›

‹[5, 60], ›

‹[90, 200], ◊›

‹[0, ∞], ›

‹[30, 120], p›

‹[0, ∞], p
›

‹[0, ∞], ¬p›

E F

Time-PointObservation
Time-Point

Activity Mapping
Temporal Constraint

Fig. 2. CSTN Representation of the Process Model from Fig. 1

(i.e., O−1(P)) is determined. A constraint cXY = 〈[x, y]XY , β〉 expresses that
the time span between time-points X and Y must be at least x and at most y,
i.e., Y −X ∈ [x, y]. The label attached to each time-point (constraint) indicates
possible executions of the CSTN, i.e., a particular time-point (constraint) will be
only considered if the corresponding label is satisfiable in the respective instance.
Fig. 2 depicts the CSTN corresponding to the process model from Fig. 1.

The solution to a CSTN can be defined as follows [6]:

Definition 2 (Scenario and Solution). Given a CSTN S = 〈T , C, L,OT ,O,
P 〉, a scenario over set P is a function sP : P → {true, false} that assigns a
truth-value to each proposition in P .

A solution for CSTN S under scenario sP then corresponds to a complete set
of assignments to all time-points X ∈ T with sP (L(X)) = true, which satisfies
all constraints 〈[x, y]XY , β〉 ∈ C for which sP (β) = true holds.

We denote the CSTN corresponding to a time-aware process model as its time
model. The required mapping can roughly be described as follows [7]: First, the
control flow of the process model is mapped to a CSTN. Particularly, each con-
trol flow element implicitly represents a temporal constraint. Each activity, AND-
split, ANDjoin, and XORjoin ni is represented as a pair of time-points NiS and
NiE , corresponding to the starting / ending instant of the respective node. In turn,
for an XORsplit, the ending instant (i.e., NiE) is represented by an observation
time-point. Next, a constraint 〈[dmin, dmax]NiSNiE ,�〉 is added between NiS and
NiE representing the duration [dmin, dmax] of the node. Further, for any control
edge between nodes ni and nj, a constraint 〈[0,∞]NiENjS ,�〉 is added between
the time-points representing the ending instant of ni and starting instant of nj .
If the source of the edge is an XORsplit, in addition, the label of the constraint is
augmented by proposition p = O−1(P). The latter represents the decision made
at the corresponding observation time-point P, i.e., the label of the constraint
〈[0,∞]NiENjS , β〉 belonging to the “true”-branch is set to βp and the one of the
“false”-branch to β¬p.2 Further, the labels of all constraints and time-points cor-
responding to activities, connectors and control edges in the XOR-block are aug-
mented by either p or ¬p depending on the branch they belong to.

2 Note that this can be easily extended to consider more than two branches, but for the
sake of simplicity, we only consider two branches in this paper.

Dealing with Changes of Time-Aware Processes 223

Next, temporal constraints aremapped to theCSTN.A time lag 〈IS〉[tmin, tmax]
〈IT 〉 corresponds to a constraint 〈[tmin, tmax]Ni〈IS〉Nj〈IT 〉

, L(Ni〈IS〉)∧L(Nj〈IT 〉)〉
between the two time-points representing the respective instants of nodes ni and
nj . In turn, afixed date element is initially representedas a constraint 〈[0,∞]ZN〈D〉 ,
L(N〈D〉)〉 with Z being a special time-point representing time “0”. During run time,
value [0,∞] of the constraint will be updated according to the actual fixed date
chosen. Finally, process duration [dmin, dmax] is represented as constraint 〈[dmin,
dmax]N0SNkE

,�〉 between the time-points representing the starting instant N0S of
the first and the ending instant NkE of the last node of the process.

As example consider Fig. 2. Note that the labels of the constraints representing
the XOR-block are either set to p or ¬p. For the sake of readability, all edges
without annotation are assumed to have bounds 〈[0,∞],�〉.

Based on Def. 2, we formally define the notion of temporal consistency for
time-aware process models.

Definition 3 (Temporal Consistency). A CSTN 〈T , C, L,OT ,O, P 〉 is called
weakly consistent iff for each scenario sP at least one solution exists [15].

A time-aware process model is denoted as temporally consistent iff the corre-
sponding time model (i.e., its CSTN representation) is weakly consistent.

When executing a time-aware process model, temporal consistency of the re-
spective instances needs to be continuously monitored and re-checked. For this
purpose, the minimal network of a CSTN must be determined.

Definition 4 (Minimal Network). The minimal network of a CSTN S =
〈T , C, L,OT ,O, P 〉 is the unique CSTN M = 〈T , C′, L,OT ,O, P 〉 having the
same set of solutions as S and each value allowed by any constraint c ∈ C′ being
part of at least one solution of S.

For any CSTN S a minimal network exists iff S is weakly consistent. In particular,
such a minimal network provides a restricted set of constraints: As long as the
value of each time-point is consistent with all constraints referring to it, we can
guarantee that the entire CSTN is weakly consistent. Besides explicit constraints
c ∈ C we obtain when mapping the process model to the CSTN, the minimal
network contains implicit constraints between any pair of time-points that may
occur in the same execution path. Note that these implicit constraints represent
the effects the explicit constraints have on the overall CSTN (i.e., they represent
interdependencies between explicit constraints). The implicit constraints are de-
rived from the explicit ones when determining the minimal network. How to
determine the minimal network is described in [15].

When executing a process instance, the minimal network of the time model
created at design time is cloned. This instance time model is then kept up-
to-date with the actual temporal state of the process instance (e.g., deadline,
activity start and completion times). Further, it is used to monitor and re-
check temporal consistency of the instance [7]. Cloning the time model becomes
necessary as the temporal state of each process instance is unique; i.e., no two
instances have exactly the same instance time model.

224 A. Lanz and M. Reichert

4 Change Operations for Time-Aware Processes

Standard change patterns adapting process instances without temporal con-
straints have been extensively studied in literature [12]. This section dis-
cusses how respective change operations may be transferred to time-aware
processes. Sect. 4.1 presents the change operations applicable to time-aware pro-
cesses. Sect. 4.2 then provides an in-depth discussion of these operations and
shows how they can be extended to ensure temporal consistency of a changed
process instance.

4.1 Basic Change Operations

When changing a process instance or—more generally—its process model, sound-
ness must be ensured. To achieve this, ATAPIS abstracts from low-level change
primitives (e.g., adding an edge or node) to higher-level change operations with
well-defined pre- and post-conditions (e.g., inserting a node serially between two
succeeding nodes) [12]. Applied to a sound process model, such a high-level
change operation guarantees that the modified process model is structurally
and behaviourally sound as well [12]. The upper part of Tab. 2 shows selected
change operations required for structurally modifying a process instance. Note
that respective operations may be combined to realize more complex change
patterns [12] (e.g., move activity). ATAPIS extends the set of structural change
operations by change operations that allow modifying the temporal constraints of
a process model, e.g., inserting a time lag (see the bottom of Tab. 2). Altogether,
the operations allow changing a time-aware process instance, while guaranteeing
soundness of the corresponding process model. Due to lack of space, this paper
restricts itself to insert operations. A detailed presentation of delete operations
is provided in a technical report [8].

4.2 Applying Change Operations to Time-Aware Processes

When modifying the model of a time-aware process instance, it must be en-
sured that the resulting process instance is temporally consistent. This section
defines basic criteria ensuring that the application of a change operation does
not result in a temporally inconsistent process instance. We further analyze the
local impact a particular change operation has on the temporal properties of the
respective process model, i.e., its temporal constraints.

When applying a change operation to a process instance, state-specific pre- and
post-conditions must be met [12]. Although these are not explicitly considered in
this paper, they apply to time-aware processes as well. Furthermore, any time-
related, instance-specific data (e.g., activity start and completion times) is main-
tained in the corresponding instance time model (cf. Sect. 3.2), i.e., it is sufficient
to only consider the current instance time model of the process instance.
Inserting an Activity Serially. InsertSerial(n1, n2, nnew, [dmin, dmax]) is the
first change operation we consider. It allows inserting node nnew with duration
[dmin, dmax] between directly succeeding nodes n1 and n2 (cf. Fig. 3). Regarding

Dealing with Changes of Time-Aware Processes 225

Table 2. Basic Change Operations

Operation Informal Description

Control Flow Changes
InsertSerial(n1, n2, nnew,

[dmin, dmax])
Inserts node nnew with duration [dmin, dmax] between directly
succeeding nodes n1 and n2.

InsertPar(n1, n2, nnew,
[dmin, dmax])

Inserts node nnew with duration [dmin, dmax] in parallel to the
SESE block defined by n1 and n2.

InsertCond(n1, n2, nnew,
[dmin, dmax], c)

Inserts node nnew with duration [dmin, dmax] and condition c as
well as an XOR block between succeeding nodes n1 and n2.

DeleteActivity(n) Deletes activity n.†

Temporal Constraints Changes
InsertT imeLag(n1, n2, typetl,

[tmin, tmax])
Inserts a time lag [tmin, tmax] between nodes n1 and n2. Thereby,
typetl ∈ {start-start, start-end, end-start, end-end} describes
whether the time lag is inserted between the start of the two
activities, the start of n1 and the end of n2, the end of n1 and
the start of n2, or the end of the two activities.

InsertFDE(n, typefde) Adds a fixed date element of type typefde ∈ {ES, LS , EE, LE}
to node n.

DeleteT imeLag(n1 , n2, typetl) Deletes the time lag of type typetl between nodes n1 and n2.†

DeleteFDE(n, typefde) Deletes a fixed date element of type typefde from node n.†

† Delete operations are not considered in this paper, but are discussed in a technical report [8].

<[max{cmin,dmin}, cmax], β>
<[dmin,dmax], β>

<[0, cmax-dmin], β> <[0, cmax-dmin], β>AS AE XS XE BS BE
<..., β> <..., β>

<[cmin, cmax], β>

<..., β> <..., β>AS AE BS BE

dmin ≤ tmax

A X
[dmin,dmax] BA

X
[dmin,dmax]

B

E [tmin, tmax] S E [tmin, tmax] S

A

X
[dmin,dmax]

B

InsertSerial(A, B, X,
[dmin,dmax])

E [tmin, tmax] S

Process Model

Time Model

Fig. 3. Change Operation Insert Serial

the temporal properties of the resulting process model, the insertion of nnew

might first and foremost increase the minimum time distance between n1 and
n2 to dmin. By contrast, the maximum distance between the two nodes is not
affected by the change as the newly added control connectors do not constrain it.
Accordingly, if for the instance time model the minimum duration dmin is com-
pliant with any implicit or explicit constraint 〈[cmin, cmax]N1EN2S , β〉 between
the ending instant of n1 and the starting instant of n2 (i.e., dmin ≤ cmax), the
node insertion will not affect temporal consistency of the process instance.3 Re-
member that each value of each constraint in the instance time model is part of
at least one solution (cf. Def. 4), i.e., one viable execution of the process model.
After adding the node to the process instance, the mapping of this node and
the control edges must be added to the instance time model as well. Further,
the instance time model must be locally adapted to properly reflect the changes.
In particular, the constraint between the ending instant of n1 and the starting
instant of n2 must be updated to [max{cmin, dmin}, cmax] in order to consider
the new minimum distance between the two nodes (cf. Fig. 3), i.e., certain values

3 Note that any implicit constraint 〈[cmin, cmax]N1EN2S , β〉 is always at least as re-
strictive as any explicit time lag E[tmin, tmax]S between n1 and n2.

226 A. Lanz and M. Reichert

InsertSerial(n1,n2,nnew, [dmin, dmax])*
Pre succ(n1) = n2, ∀〈[cmin, cmax]N1EN2S

, β〉 ∈ C : cmax ≥ dmin
Init γ = L(N1E) ∧ L(N2S)

Post // Update process model:
. . .
// Add mapping to instance time model:
AddTimePoint(NnewS, γ), AddTimePoint(NnewE, γ),
AddConstraint(NnewS, NnewE, [dmin, dmax], γ),
AddConstraint(N1E, NnewS, [0,∞], γ), AddConstraint(NnewE,N2S, [0,∞], γ),
// Adapt instance time model:
∀〈[cmin, cmax]N1EN2S

, β〉 ∈ C : UpdateConstraint(N1E,NnewS, [0, cmax − dmin], β),
UpdateConstraint(NnewE,N2S, [0, cmax − dmin], β),
UpdateConstraint(N1E,N2S, [max{cmin, dmin}, cmax)], β)

*The complete version of the algorithm is provided in [8].

Algorithm 1. InsertSerial

<[max{cmin,dmin}, tmax], β c>

<[cmin, cmax], β ¬c>

<[cmin, cmax], β ¬c>

<[dmin,dmax], β c><[0, cmax-dmin], β c> <[0, cmax-dmin], β c>

AS AE

XS XE

BS BE

GsS GsE GjS GjE<[cmin, cmax], β>

AS AE BS BE

dmin ≤ tmax

A

X
[dmin,dmax]

B

E [tmin, tmax] S

c
¬cGs Gj

A

X
[dmin,dmax]

B

InsertCond(A, B, X, [dmin,dmax])

E [tmin, tmax] S

Process Model

Time Model

Fig. 4. Change Operation Insert Conditional

permitted by the old constraint might no longer be part of any solution. It fur-
ther becomes evident that the constraints corresponding to the two newly added
control edges must be initialized to [0, cmax − dmin] (cf. Fig. 3). Algorithm 1
defines the pre- and post-conditions for applying change operation InsertSerial
to a process instance.

The changes applied to the instance time model need to be propagated to all
other constraints in order to remove values no longer contributing to any solution.
Note that this must be accomplished before performing any other change or
resuming the execution of the process instance. Practically, this means that the
minimality of the changed instance time model needs to be restored. This may be
achieved by applying the same algorithm as the one initially used for determining
the minimal time model (cf. Sect. 3.2).

Inserting an Activity in Parallel. From a temporal point of view, change
operation InsertPar (cf. Tab. 2) is similar to InsertSerial. Node nnew (together
with ANDsplit and ANDjoin nodes) is inserted “serially” between nodes n1 and
n2—the temporal effects of the enclosed SESE block are already considered in the
implicit constraint between n1 and n2. A detailed discussion is provided in [8].

Inserting an Activity Conditionally. Change operation InsertCond(n1, n2,
nnew, [dmin, dmax], c) inserts node nnew conditionally between succeeding nodes
n1 and n2. This change is accomplished by first inserting XORsplit gs and
XORjoin gj sequentially between n1 and n2 and then nnew conditionally between
gs and gj (cf. Fig. 4). The transition conditions of the control edges linking gs
and its successors are set to c and ¬c, respectively. When adding XORsplit gs
and condition c/¬c to the process model, a set of additional execution paths

Dealing with Changes of Time-Aware Processes 227

InsertCond(n1, n2,nnew, [dmin,dmax], c)*
Pre succ(n1) = n2, ∀〈[cmin, cmax]N1EN2S

, β〉 ∈ C : cmax ≥ dmin
Init γ = L(N1E) ∧ L(N2S)

Post // Update process model:
. . .
// Add mapping to instance time model:
AddTimePoint(GsS, γ), AddObservationT imePoint(GsE, c, γ),
AddConstraint(GsS,GsE, [0, 1], γ),
AddTimePoint(NnewS, γ), AddTimePoint(NnewE, γc),
AddConstraint(NnewS,NnewE, [dmin, dmax], γc),
. . .
AddConstraint(GsE,GjS, [0,∞], γ¬c),
// Adapt instance time model:
. . .
∀〈[cmin, cmax]N1EN2S

, β〉 ∈ C : UpdateConstraint(N1E,N2S, [cmin, cmax], β¬c),
AddConstraint(N1E,N2S, [max{cmin, dmin}, cmax], βc)

*The complete version of the algorithm is provided in [8].

Algorithm 2. InsertCond

<[max(cmin,tmin), min(cmax,tmax)], β>

AS AE BS BE

<[cmin, cmax], β>

AS AE BS BE

tmin ≤ cmax
tmax ≥ cmin

A B

E [tmin, tmax] SInsertTimeLag(A, B, start-start,
 [tmin,tmax])

A B
E [tmin, tmax] S

Process Model

Time Model

Fig. 5. Change Operation Insert Time Lag

results; i.e., each execution path of the old process model, which contains n1 and
n2, can now be mapped to two execution paths: one with c = false (i.e., ¬c)
representing the previous execution path and one with c = true representing the
new path containing nnew between n1 and n2. Hence, for any execution path
containing nnew, InsertCond has similar effects as InsertSerial. In turn, any
execution path not containing nnew remains unchanged (except for the added
XORsplit and XORjoin, that constitute silent nodes). Altogether, for InsertCond
similar pre-conditions as for InsertSerial hold (cf. Algorithm 1).

In the context of a process instance change, the corresponding instance time
model needs to be adapted by adding the mappings of the inserted elements as
shown in Fig. 4. Note that this results in a new observation time-point GsE and
proposition c to the instance time model (cf. Sect. 3.2). Accordingly, the labels of
the temporal constraints representing nnew and the two control edges connecting
it with gs and gj must be set to βc with β being the label of the original con-
straint between N1E and N2S . In turn, the label of the constraint corresponding
to the control edge between gs and gj must be set to β¬c. Finally, the constraint
between the ending instant of n1 and the starting one of n2 needs to be up-
dated: The label of the original constraint must be augmented by proposition
¬c resulting in constraint 〈[cmin, cmax]N1EN2S , β¬c〉. Further, another constraint
〈[max{cmin, dmin}, cmax]N1EN2S , βc〉 containing proposition c must be added be-
tween the two time-points. The latter corresponds to the case nnew is executed
between the two nodes. Algorithm 2 defines the pre- and post-conditions of In-
sertCond. When applying this operation, again the minimality of the adapted
instance time model must be restored. This is required before performing any
other change or resuming the execution of the process instance.

Inserting a Time Lag. Operation InsertTimeLag(n1, n2, typetl, [tmin, tmax])
allows adding a time lag between activities n1 and n2.The instants the time lag

228 A. Lanz and M. Reichert

InsertTimeLag(n1,n2, typetl, [tmin, tmax])

Pre 〈IS〉 =

{
S typetl = start-*
E typetl = end-* , 〈IT 〉 =

{
S typetl = *-start
E typetl = *-end

(L(N1〈IS〉) ∧ L(N2〈IT 〉)) is satisfiable
∀〈[cmin, cmax]N1〈IS〉N2〈IT 〉

, β〉 ∈ C : cmin ≤ tmax ∧ tmin ≤ cmax

Post // Update process model:
AddTimeLag(n1 , n2, 〈IS〉[tmin, tmax]〈IT 〉)
// Add mapping to instance time model:
AddConstraint(N1〈IS〉, N2〈IT 〉, [tmin, tmax], L(N1E) ∧ L(N2S))

// Adapt instance time model:
∀〈[cmin, cmax]N1EN2S

, β〉 ∈ C :

UpdateConstraint(N1〈IS 〉, N2〈IT 〉, [max{cmin, tmin},min{cmax, tmax}], β)

Algorithm 3. InsertTimeLag

refers to are specified by parameter typetl. Adding a time lag is only possible if
there exists at least one execution path containing both nodes [9]. The instance
time model is then adapted by adding a constraint 〈[tmin, tmax]N1〈IS〉N2〈IT 〉

,

β〉 between the time-points representing the respective instants (start vs.
end) of the two nodes. Basically, this updates each implicit constraint 〈[cmin,
cmax]N1〈IS〉N2〈IT 〉

, β〉. Note that this is only possible if the resulting constraint
[max{cmin, tmin},min{cmax, tmax}] in the adapted instance time model still per-
mits at least one value, i.e., it allows for at least one possible solution. Accord-
ingly, in order to apply the operation it must hold cmin ≤ tmax ∧ tmin ≤ cmax.
Algorithm 3 defines the pre- and post-conditions. After updating the temporal
constraints, minimality of the adapted instance time model must be restored.

Inserting a Fixed Date Element. Inserting a fixed date element (i.e., opera-
tion InsertFDE) is equivalent to adding a time lag between the special time-point
Z (indicating time “0”) and the respective instant of the node (cf. Sect. 3.2) [8].

5 Analyzing the Effects of Change Operations

When changing a time-aware process instance both the process model and the
instance time model must be updated. In this context, the minimality of the
instance time model must be restored after each change operation. Only then
it can be ensured that another change within the same change transaction may
be applied without violating temporal consistency of the process instance. How-
ever, calculating the minimal network of a CSTN is expensive regarding com-
putation time, i.e., its complexity is O(n32k) with n being the number of time-
points and k the number of observation time-points in the CSTN. Consequently,
there might be significant delays when applying multiple change operations to
large time-aware process instances. This becomes even more pressing in the con-
text of process schema evolution [12] when migrating a potentially large set
of process instances to a new schema version (i.e., process model). Hence, the
maximum effect a particular change has on the instance time model must be
estimated. Based on this estimation, it becomes possible to decide whether an-
other change operation may be applied without need to restore minimality of
the instance time model first.

Dealing with Changes of Time-Aware Processes 229

When applying the change operations from Sect. 4.2 to the respective instance
time model, two types of changes result: adding a temporal constraint or making
an existing one more restrictive. Hence, it is sufficient to consider the effects a
basic change has on a minimal time model. Regarding changes that make an
existing constraint more restrictive, Theorem 1 shows how their maximum effects
can be estimated.

Theorem 1 (Restricting a constraint in a minimal network). Let M =
〈T , CM , L,OT ,O, P 〉 be a minimal CSTN and M∗ = 〈T , CM∗ , L, OT ,O, P 〉
the CSTN derived from M by replacing constraint cAB = 〈[x, y]AB, β〉 ∈ CM
with the more restrictive constraint c∗AB = 〈[x + σ, y − ρ]AB, β〉; σ, ρ ≥ 0; i.e.,
C∗M = CM \ cAB ∪ {c∗AB}.

Then: For the minimal network N = 〈T , CN , L,OT ,O, P 〉 of M∗ it holds: for
any constraint c′XY = 〈[x′, y′]XY , γ〉 ∈ CN the lower bound is increased by at
most δ = max{σ, ρ} and the upper bound is decreased by at most δ compared to
the original constraint cXY = 〈[x, y]XY , γ〉 ∈ CM . Formally:

∀〈[x, y]XY , γ〉 ∈ CM , 〈[x′, y′]XY , γ〉 ∈ CN : (x ≤ x′ ≤ x+ δ) ∧ (y ≥ y′ ≥ y − δ)

A proof of Theorem 1 can be found in [8]. Assume that due to a change a con-
straint [x, y]XY in the time model is restricted to [x∗, y∗]XY = [x+ ρ, y − σ]XY

and afterwards minimality of the time model is restored. Theorem 1 now states
that any constraint [u, v]UV in the original time model is restricted to at most
[u′, v′]UV = [u+ δ, v − δ]UV with δ = max{ρ, σ} in the new time model.

Reconsider operation InsertSerial. Assume that the instance time model is
adapted as described by Algorithm 1. The next step would be to restore minimal-
ity of this instance time model. First of all, note that the constraints introduced
by the newly added activity and control edges do not affect the other constraints
when restoring minimality. By construction, their effects are already incorpo-
rated in the constraint between time-points N1E and N2S , which is updated in
the context of the operation (cf. Algorithm 1; see [2] for details). The only change
having an effect on the resulting instance time model is the one restricting con-
straint [cmin, cmax] between N1E and N2S to [max{cmin, dmin}, cmax]. Note that
if the constraint is not changed (i.e., dmin ≤ cmin), the existing constraints of
the instance time model also need not be changed. Otherwise, the lower bound
of the constraint is increased by δ = dmin − cmin. Theorem 1 implies that the
upper and lower bound of any other constraint in the new instance time model
will be restricted by at most δ as well. Thus we are able to approximate the
maximum difference between the new instance time model and the original one.

From this we can conclude that when applying another insert operation, it will
be sufficient to verify that any precondition referring to a constraint 〈[x, y]XY , β〉
of the instance time model is satisfied for the respective approximated constraint
〈[x + δ, y − δ]XY , β〉 as well. In this case, the insert operation may be applied
without violating the temporal consistency of the process instance. In particular,
and this is a fundamental advantage of ATAPIS, we need not restore minimality
of the modified instance time model prior to the application of the operation. By
contrast, if the precondition is not met for the approximated constraint, it might

230 A. Lanz and M. Reichert

Process Instance

Instance Time Model

Process Instance

Instance Time Model

[11, 20]

[0, 7]
[6, 8]

[3, 5]

AS AE

BS BE

[10, 15]DS DE

[7, 14]
[3, 5]CS CE

[5, 7]FS FE[0, 10]

[0, 7] [0, 7]

[0, 10]

[0, 7]

A
[6, 8]

X
[4, 9]

B
[3, 5]

D
[10, 15]

C
[3, 5]

F
[5, 7]

InsertSerial(A, ANDsplit, X, [4, 9])

E [10, 20] S

ANDsplit ANDjoin
E [7, 15] S

δ = 0
[11, 20]

[4, 7]

[6, 8]

[3, 7]

AS AE
[4, 7]XS XE

BS BE

[10, 15]DS DE

[7, 14]
[3, 5]CS CE

[5, 7]FS FE[0, 10]

[0, 7] [0, 7]

[0, 10]

[0, 7][0, 3] [0, 3]

A
[6, 8]

B
[3, 5]

D
[10, 15]

C
[3, 5]

F
[5, 7]

Y
[9, 15]

InsertSerial(B, C, Y, [9, 15])

E [10, 20] S

E [7, 15] S
ANDsplit ANDjoin

X
[4, 9]

4 ≤ 7

δ = 4

9 ≤ 14 - δ = 10

[11, 20]

[4, 7]

[6, 8]

[3, 5]

AS AE
[4, 7]XS XE

BS BE

[10, 15]DS DE

[9, 14]

[3, 5]CS CE
[5, 7]FS FE[0, 10]

[0, 7] [0, 7]

[0, 10]

[0, 9][0, 3] [0, 3]
[9, 15]YS YE

[0, 5] [0, 5]

[19, 20]

[4, 5]

[6, 8]

[3, 4]

AS AE
[4, 5]XS XE

BS BE

[10, 15]DS DE

[9, 10]

[3, 4]CS CE
[5, 7]FS FE[0, 6]

[0, 1] [0, 1]

[0, 6]

[0, 1][0, 1] [0, 1]
[9, 10]YS YE

[0, 1] [0, 1]

A
[6, 8]

B
[3, 5]

D
[10, 15]

C
[3, 5]

F
[5, 7]

Z
[5, 8]

InsertSerial(D, ANDjoin, Z, [5, 8])
E [10, 20] S

E [7, 15] S

ANDsplit ANDjoin
X

[4, 9]

Y
[9, 15]

δ = 4+2

δ = 0 restore minimality

[19, 20]

[4, 5]

[6, 8]

[3, 4]

AS AE
[4, 5]XS XE

BS BE

[10, 15]DS DE
[5, 8]ZS ZE

[9, 10]

[3, 4]CS CE
[5, 7]FS FE[0, 6]

[0, 1] [0, 1]

[0, 1]

[0, 1][0, 1] [0, 1]
[9, 10]YS YE

[0, 1] [0, 1]

[0, 1]

[5, 6]

restore minimality

done!

A
[6, 8]

B
[3, 5]

D
[10, 15]

C
[3, 5]

F
[5, 7]

E [10, 20] S

E [7, 15] S

ANDsplit ANDjoin
X

[4, 9]

Y
[9, 15]

Z
[5, 8]

5 ≤ 10 - δ = 4 δ = 5

5 ≤ 6
9 ≤ 10

a
b

c

e

d

*Note that for sake of compactness only relevant constraints and no labels are shown for the instance time models.

Fig. 6. Applying Multiple Change Operations to a Process Model

still be possible to apply the change without violating temporal consistency. In
this case, however, minimality of the modified instance time model must be first
restored before deciding whether the change may be applied.

Similar rules apply to all other insert operations. Regarding InsertCond (cf.
Algorithm 2), in particular, the change relevant to the instance time model
is the one restricting the constraint between time-points N1E and N2S to
[max{cmin, dmin}, cmax], i.e., the impact on the other constraints is at most
δ = max{0, dmin − cmin}. Finally, for InsertTimeLag, the maximum impact cor-
responds to δ = max{0, tmin − cmin, tmax − cmax} (cf. Algorithm 3).

Based on these observations it becomes possible to apply a sequence of change
operations to a process instance within the same transaction without need to
restore minimality of the instance time model after each change. If a sequence
of change operations op1, . . . , opn with impacts δ1, . . . , δn shall be applied to a
process instance, it will be sufficient to consider the aggregated impact of the
previously applied operations. Practically speaking, for operation opi, approxi-
mated constraint [x+

∑i−1
j=1 δj , y−

∑i−1
j=1 δj]XY needs to be considered to determine

whether the operation may be applied. Note that this will significantly reduce
complexity when applying multiple change operations. However, the actual sav-
ings depend on the strictness of the constraints of the time-aware process model;
if the latter is “heavily” constrained, only few change operations can be applied
without need to restore minimality of the instance time model. In turn, if the
constraints are “weak”, multiple change operations may be applied at once, with-
out having to restore minimality of the instance time model between changes.

We illustrate our approach along the example from Fig. 6. It depicts a process
instance and corresponding instance time model to which a series of three change
operations a©- c© shall be applied. First, activity X with duration [4, 9] shall be

Dealing with Changes of Time-Aware Processes 231

inserted between A and ANDsplit (Fig. 6 a©). This is possible without violating
the temporal consistency of the process instance since the minimum duration
of X is lower than the maximum time distance between A and ANDsplit (i.e.,
4 ≤ 7). After performing the change, the value used for approximating the
instance time model becomes δ = 4− 0 = 4. Next, Y shall be inserted between B
and C (Fig. 6 b©). Again this is possible since the minimum duration is lower than
the approximated maximum time distance (i.e., 9 ≤ 14 − δ = 10). Afterwards
δ is increased to δ = 4 + (9 − 7) = 6. However, inserting Z with duration
[5, 8] between D and ANDjoin (Fig. 6 c©) is then not possible based on the
approximated instance time model as the precondition of the respective change
operation cannot be met (i.e., 5 �≤ 10−δ = 4). Hence, minimality of the instance
time model must be restored (Fig. 6 d©). Afterwards, inserting Z becomes possible
as for the new instance time model the precondition of the operation is met.
Finally, minimality of the last instance time model must be restored (Fig. 6 e©).

6 Proof of Concept

The presented approach was implemented as a proof-of-concept prototype in our
ATAPIS Toolset, which is based on the AristaFlow BPM Suite [12]. This pro-
totype enables users to create time-aware process models and to automatically
generate respective time models based on CSTN. Further, the presented change
operations may be applied to both process models and corresponding instances.
Particularly, they are based on AristaFlow’s well-founded set of change opera-
tions [12]. Overall, the prototype demonstrates the applicability of our approach.

Fig. 7. Screenshot of the Prototype (based on the AristaFlow BPM Suite)

232 A. Lanz and M. Reichert

The screenshot from Fig. 7 shows the ATAPIS Toolset4: at the top, a process
model from the healthcare domain comprising several temporal constraints is
shown. At the bottom, the automatically generated time model and its min-
imal network are depicted. Finally, the right side displays the available set
of change operations. Whether a particular change operation may be applied
is decided by checking both structural and temporal preconditions. When ap-
plying an operation to the process model (i.e., schema or instance) all three
models are updated simultaneously as described in Sect. 4.1. A first simula-
tion based on our prototype shows a significantly improved performance of our
approximation-based approach for applying multiple change operations com-
pared to the “classical approach” [8].

7 Conclusion

Time constitutes a fundamental concept for the operational support of business
processes in PAISs. In business, where missed deadlines and violations of tem-
poral constraints might cause significant problems, it is crucial for enterprises
to be able to efficiently control and monitor these temporal constraints during
run time. Since process execution does not always stick to the plan, enterprises
must be further able to flexibly react to deviations in a time-aware process in-
stance without affecting other properties of the instance. This paper considered
dynamic changes of time-aware process instances. First, we defined change oper-
ations for time-aware processes. Second, we specified pre- and post-conditions for
these operations, which ensure that changed process instances remain temporally
consistent. Third, we analyzed the effects respective change operations have on
the temporal constraints of the process instance. Fourth, we approximated the
resulting temporal properties of the entire process instance. In particular, this
allows us to significantly reduce the complexity of the required time calculations
in the context of subsequent changes. In order to demonstrate the feasibility of
the presented approach, a powerful proof-of-concept prototype was implemented.

We are currently investigating the pre- and post-conditions as well as the
impact of more complex change patterns (e.g., move). We further will examine
how the presented results can be applied to evolve time-aware processes and
migrate a large set of process instances to a new process model. Finally, we are
integrating advanced time-management capabilities into the AristaFlow BPM
Suite to obtain a fully-fledged time- and process-aware information system.

References

1. Bettini, C., Wang, X.S., Jajodia, S.: Temporal reasoning in workflow systems.
Distrib. Para. Dat. 11(3), 269–306 (2002)

2. Chen, J., Yang, Y.: Temporal dependency based checkpoint selection for dynamic
verification of temporal constraints in scientific workflow systems. ACM Trans. on
Soft Eng. and Methodol. 20(3), 9:1–9:23 (2011)

4 A screencast demonstrating the toolset is available at dbis.info/atapis

http://dbis.info/atapis

Dealing with Changes of Time-Aware Processes 233

3. Combi, C., Gozzi, M., Posenato, R., Pozzi, G.: Conceptual modeling of flexible
temporal workflows. TAAS 7(2),19:1–19:29 (2012)

4. Eder, J., Euthimios, P., Pozewaunig, H., Rabinovich, M.: Time management in
workflow systems. In: Proc. BIS 1999, pp. 265–280 (1999)

5. Ede, J., Gruber, W., Panagos, E.: Temporal modeling of workflows with conditional
execution paths. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS,
vol. 1873, pp. 243–253. Springer, Heidelberg (2000)

6. Hunsberger, L., Posenato, R., Combi, C.: The dynamic controllability of conditional
STNs with uncertainty. In: Proc. PlanEx 2012 (2012)

7. Lanz, A., Posenato, R., Combi, C., Reichert, M.: Controllability of time-aware
processes at run time. In: Proc. CoopIS 2013, pp. 39–56 (2013)

8. Lanz, A., Reichert, M.: Process change operations for time-aware processes. Tech.
Rep. UIB-2014-01, University of Ulm (2014),
http://dbis.eprints.uni-ulm.de/1027/

9. Lanz, A., Reichert, M., Weber, B.: A formal semantics of time patterns for process-
aware information systems. Tech. Rep. UIB-2013-02, University of Ulm (2013)

10. Lanz, A., Weber, B., Reichert, M.: Time patterns for process-aware information
systems. Req. Eng. 19(2), 113–141 (2014)

11. Marjanovic, O., Orlowska, M.E.: On modeling and verification of temporal con-
straints in production workflows. Knowl. and Inf. Syst. 1(2), 157–192 (1999)

12. Reichert, M., Weber, B.: Enabling Flexibility in Process-aware Information Sys-
tems: Challenges, Methods, Technologies. Springer (2012)

13. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems: A survey. Data & Knowl. Eng. 50(1), 9–34 (2004)

14. Sadiq, S.W., Marjanovic, O., Orlowska, M.E.: Managing change and time in dy-
namic workflow processes. Int’l J. Coop. Inf. Syst. 9(1-2), 93–116 (2000)

15. Tsamardinos, I., Vidal, T., Pollack, M.: CTP: A new constraint-based formalism
for conditional, temporal planning. Constraints 8(4), 365–388 (2003)

http://dbis.eprints.uni-ulm.de/1027/

Temporal Anomaly Detection in Business Processes�

Andreas Rogge-Solti1 and Gjergji Kasneci2

1 Vienna University of Economics and Business, Austria
andreas.rogge-solti@wu.ac.at

2 Hasso Plattner Institute, University of Potsdam, Germany
gjergji.kasneci@hpi.uni-potsdam.de

Abstract. The analysis of business processes is often challenging not only be-
cause of intricate dependencies between process activities but also because of
various sources of faults within the activities. The automated detection of poten-
tial business process anomalies could immensely help business analysts and other
process participants detect and understand the causes of process errors.

This work focuses on temporal anomalies, i.e., anomalies concerning the run-
time of activities within a process. To detect such anomalies, we propose a
Bayesian model that can be automatically inferred form the Petri net represen-
tation of a business process. Probabilistic inference on the above model allows
the detection of non-obvious and interdependent temporal anomalies.

Keywords: outlier detection, documentation, statistical method, Bayesian
networks.

1 Introduction

Business process management is the key to aligning a company’s business with the
needs of clients. It aims at continuously improving business processes and enabling
companies to act more effectively and efficiently. The optimization of business pro-
cesses often reveals opportunities for technological integration and innovation [21].
Despite these positive aspects, business processes are often complex by containing in-
tricate dependencies between business activities. Moreover, the activities are enacted in
a distributed fashion and in environments where faults can occur [22]. Thus the analysis
of business processes is a highly challenging task [11], even for experts.

Automated mining of process patterns out of event data can reveal important insights
into business processes [2]. However, the performance of process mining algorithms is
highly dependent on the quality of event logs [3], which in turn are also crucial for
documentation purposes [17]. Most data mining algorithms build on the unrealistic as-
sumption that the recorded training data is valid and representative of the data expected
to be encountered in the future. In process mining such an assumption makes sense only
if documentation correctness is guaranteed. Most work on documentation correctness
deals with only structural aspects, i.e., with the order of execution of activities [18,4,7].

� This work was partially supported by the European Union’s Seventh Framework Programme
(FP7/2007-2013) grant 612052 (SERAMIS).

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 234–249, 2014.
c© Springer International Publishing Switzerland 2014

Temporal Anomaly Detection in Business Processes 235

This work proposes a novel approach to detect temporal outliers in activity dura-
tions. Outliers can have various causes; they can be obvious, e.g., in case of non-typical
measurement or execution errors [10], and they can be hidden, e.g., in case of latent
or propagated errors that do not reveal themselves as such during the execution. Often,
however, it is sufficient to detect potential anomalies and not the exact errors. When
presented with such anomalies, expert analysts or other process participants can dig
deeper into the problem and fix any present error. Hence, detecting potential anomalies
can immensely simplify the task of finding potential errors in business processes [5].

The focus of this work is on temporal anomalies, where a group of interdependent
activities has a non-typical runtime or delay pattern. Note that this is different from the
detection of delay for a single activity, as a group of activities may still show a regu-
lar overall runtime, even if the single activities have anomalous delays. Hence we go
beyond the detection of delay for single activities and are generally interested in implau-
sible delay patterns within a group of activities. Our goal is to detect such anomalies
from event traces and to extrapolate from the investigation of delay for single activities
to the detection of temporal anomalies in the entire case.

The main achievements of this work are:
– An extensive analysis of general properties of temporal anomalies based on event

logs and the formalism of stochastic Petri Nets
– A principled formalization of temporal anomalies based on approximate distribu-

tions of activity durations
– A probabilistic approach for reliably detecting temporal anomalies in sequences of

consecutive activities by analyzing the corresponding event logs
– An extensive evaluation of the approach based on synthetic as well as real-world

datasets with labeled error occurrences.

The remainder of the paper is organized as follows. Section 2 introduces the main con-
cepts this work builds on. Section 3 gives an overview of related work and sets the con-
text for the achievements presented in this paper. The approach for temporal anomaly
detection is presented in Section 4. An extensive experimental evaluation of the ap-
proach is presented in Section 5, before concluding in Section 6.

2 Preliminaries

Understanding the business processes of an organization can be facilitated by business
process models. We assume that a business process model is available and accurately
describes the behavior of a process. There exist many competing modeling languages
for business processes, of which we abstract by relying on the Petri net [15] representa-
tion of the models [12], which are able to capture the most important workflow-patterns
used in different languages. We define Petri nets according to the original definition [15]
as follows.

Definition 1 (Petri Net). A Petri net is a tuple PN = (P, T, F) where:
– P is a set of places.
– T is a set of transitions.
– F ⊆ (P × T) ∪ (T × P) is a set of connecting arcs representing flow relations.

236 A. Rogge-Solti and G. Kasneci

We also define paths in Petri nets as follows. Let F+ denote the transitive closure
over F, then a path exists between any two nodes l, n ∈ (P ∪ T), iff (l, n) ∈ F+. We
assume that the models are sound workflow nets [1], i.e., that they have a dedicated
start place pi and an end place po, each node lies on a path between pi and po, there
are no deadlocks, and whenever a marking with po > 0 is reached, all other places
p ∈ {P \ po} are empty, i.e., the process is properly terminated. We do not put further
restrictions on the supported model class and explicitly also support non-structured and
non-free-choice parts in the models.

During execution of single instances of business processes, information regarding
the state and progress of these process instances are recorded in various information
systems. For example, a logistics service provider tracks the position of its transport
means, or a financial institute tracks the status of customer loan requests. We assume
that the progress information for each case is available and collected in event logs [2].
Therefore, we use the established notion of event logs that contain executed traces.

Definition 2 (Event Log). An event log over a set of activities A and time domain TD
is defined as LA,TD = (E,C, α, β, γ,�), where:

– E is a finite set of events.
– C is a finite set of cases (process instances).
– α : E → A is a function assigning each event to an activity.
– β : E → C is a surjective function assigning each event to a case.
– γ : E → TD is a function assigning each event to a timestamp.
– �⊆ E × E is the succession relation, which imposes a total ordering on the events

in E.

We require that the time of occurrence is recorded for event entries in an event log. For
example, in a hospital, where nurses record the timestamps of certain treatment steps
in a spreadsheet, we can derive an event log of that spreadsheet, where each case is
associated to a row in the spreadsheet and each activity corresponds to a column.

In previous work, we have provided an algorithm to enrich PN models with statistical
execution information in event logs [16]. The statistical information that we learn from
historical executions is associated with transitions that capture decision probabilities,
and with transitions that capture process activities and their corresponding durations.
We revisit the definition of the enriched stochastic model [16].

Definition 3 (Generally Distributed Transition Stochastic Petri Net). A generally
distributed transition stochastic Petri net (GDT_SPN) is a tuple:
GDT_SPN = (P, T,W, F,D), where (P, T, F) is the basic underlying Petri net. Addi-
tionally:

– The set of transitions T = Ti ∪ Tt is partitioned into immediate transitions Ti and
timed transitions Tt.

– W : Ti → IR+ assigns probabilistic weights to the immediate transitions.
– D : Tt → D is an assignment of arbitrary probability density functions D to timed

transitions, reflecting the duration of each corresponding activity.

Probability density functions represent the relative number of occurrences of obser-
vations in a continuous domain. In most real business processes, analytical expressions

Temporal Anomaly Detection in Business Processes 237

for probability density functions will not be available, and we resort to density estima-
tion techniques [19]. For example, kernel density estimation techniques as described by
Parzen [13] are a popular method to approximate the real distribution of values.

Once we extracted the stochastic properties of past executions, we can check whether
new traces match the regular and expected behavior, or if they are outliers and deviate
from the stochastic model. We are interested in finding temporal anomalies to assist
business analysts in root-cause analysis of outliers. Further, we aim at separation of
outliers that can occur and are expected during execution from measurement errors,
e.g., when in the above example a nurse enters a wrong time for an activity by mistake.

The idea of this paper is to exploit knowledge that is encoded in the process model
for this task. The problem that we encounter, if we only have an event log that traces
the execution of activities, is that it is not made explicit, which activities are dependent
on which predecessors, because of possible parallel execution and interleaving events.
Therefore, we extract structural information from the GDT_SPN model—in fact, the
underlying PN model already contains this information.

To ease the discussion of temporal outlier detection in the main section, we introduce
the concepts of control flow and temporal dependence.

Definition 4 (Control-flow Dependence). Let t1, t2 ∈ T be two transitions. A control-
flow dependence exists between t1 and t2, iff there is a path between t1 and t2.

We further define temporal dependencies on a process instance level. That is, we
want to identify the transitions that are immediately enabled after the current activity
finished. We therefore replay the cases from the event log, as proposed in [18,4], and
additionally keep track of the global clock during replay [16].

Definition 5 (Temporal Dependence, Direct Dependence). Let t1, t2 ∈ Tt be two tran-
sitions of a GDT_SPN model. There is a temporal dependence in a case between t1 and
t2, iff the timestamp of termination of t1 is equal to the global clock, when t2 becomes
enabled. That is, there is no other timed transition firing between the firing of t1, and
the enabling of t2.

A direct dependence between t1, and t2 exists, iff there is a temporal dependence
between t1, and t2 and there is a control-flow dependence between t1, and t2.

For notational convenience, we define the dependence relation dep : A × A on the
corresponding process activities of the model that contains all pairs of activities, of
which the timed transitions in the model are in a direct dependence in a case. This sim-
ple definition of dep works well for process models without loop constructs. If there
exist loops in a process model, there could be a direct dependence between a transition
and itself (in the next iteration), and likewise the corresponding activity would be in a
self-dependence. Therefore, we will use the dependence relationship depa on individ-
ual instances of activities, instead of on the activity model. It is straightforward to see
that we can enumerate multiple instances of the same activity and thus limit the direct
dependencies of an activity instance to the activity instances that follow directly. Note
that the number of the set of activities that directly depends on an activity is in most
cases 1, unless there is a parallel split after the activity. In the latter case, the number of
directly dependent activities equals the number of parallel branches in the process that

238 A. Rogge-Solti and G. Kasneci

are triggered with the termination of the activity. Also note that if we restrict our atten-
tion to activity instances in executed process instances, an activity instance followed by
an exclusive choice between several alternative branches in the control flow still only
has 1 activity with which it is in a direct dependence. Latter is the first activity on the
path that was chosen.

Given different instances of activities and the dependence relation depa, one can rep-
resent their duration dependencies by means of a Bayesian network. In such a network,
nodes represent duration variables that follow an estimated prior distribution that is en-
coded in the GDT_SPN model, or they represent points of occurrence of events, such
as the termination of an activity. It is straight-forward to see that such a network can be
directly derived from an instantiation of the activity model, which in turn can be created
during replay of each case of the event log. Later on, we will show that because of the
simple structure of this Bayesian network, effectively we only need a window-based
analysis of the events and their direct dependencies in the event log.

Definition 6 (Bayesian Network). Let {X1, . . . , Xk} be a set of random variables. A
Bayesian network BN is a directed acyclic graph (N, F), where

– N = {n1, . . . , nk} is the set of nodes assigned each to a random variable X1, . . . , Xk.
– F ⊂ N × N is the set of directed edges.

Let (ni, n j) ∈ F be an edge from parent node ni to child node n j. The edge reflects a
conditional dependence between the corresponding random variables Xi and X j.

Each random variable is independent from its predecessors given the values of its
parents. Let πi denote the set of parents of Xi. A Bayesian network is fully defined by the
probability distributions of the nodes ni as P(Xi | πi) and the conditional dependence
relations encoded in the graph. Then, the joint probability distribution of the whole
network factorizes according to the chain rule as P(X1, . . . , XN) =

∏N
i=1 P(Xi | πi).

Although nodes are most commonly used for capturing random behavior, it is not
difficult to introduce deterministic nodes in a Bayesian network. A node in a Bayesian
network can be assigned a single value with probability 1 or a (deterministic) function
of the values of the parent nodes. For the purposes of this paper, we limit our attention
to the most common workflow structures: sequence, exclusive choice, parallelization
and synchronization of control flow. Because exclusive choices are removed during ex-
ecution, two deterministic constructs are sufficient to capture the dependencies between
durations of activity instances and timestamps of events: we need the sum operation to
capture sequential dependencies and the max operation to model the synchronization
of parallel activities. Latter two nodes deterministically assign probability 1 to the sum
(resp. max) of the parent variables’ values and probability zero to other values.

An example model from a hospital process shall serve to illustrate this point. Fig-
ure 1 shows a scenario, where a patient arrives at the operating room (tA) and is then
treated with antibiotics (tB), while the induction of anaesthesia (tC) is conducted in par-
allel. After both these activities are completed, the surgery tD can be performed. In
this example, depending on the current case, the direct dependence relation is depa =

{(a, b), (a, c), (b, d)}, if activity b takes longer than c, or depa = {(a, b), (a, c), (c, d)} in
the other case. Note that the faster of the parallel activities has no temporal dependence
to activity d, and is thus not included in the dependence relation.

Temporal Anomaly Detection in Business Processes 239

Fig. 1. Surgery example GDT_SPN model depicting dependencies between activity durations in
a process model with sequence and parallel split and merge constructs.

(a) Bayesian model (b) Simplified Bayesian model

Fig. 2. Bayesian network models for the surgery example depicted in Figure 1. If we know that
eB happens after eC in case (b), we can simplify the dependencies by removing the max node and
the dependence from eC to eD, and only maintain the dependence between eB and eD.

The resulting Bayesian model is shown in Figure 2a. The process is started at a
certain point in time, which can be aligned to zero in the model. The duration of activity
a is modeled as Adur, and influences the value of eA that captures the observed timestamp
of the corresponding termination event. Latter is the last activity before the control flow
is split into two parallel branches. For each, we add the corresponding activity duration
to the resulting events. Then, the maximum of the parallel branches is selected by the
deterministic max node join and the final event eD is the sum of latter and the duration
of activity d captured in Ddur.

Given the dependency relation depa, we can further simplify the Bayesian network,
as shown in Figure 2b. In this example, the max node is resolved due to the knowledge
that the branch with activity b finished after the branch with activity c. The depen-
dency from eC to eD can be removed as well. Note that in general it is not always the
case that there will be a single transition in the model for a process activity. If there is
more information available about the activity lifecycle of an activity [21] (e.g., if we
know when the activity has been enabled, started, and completed), the model can more
accurately capture the different phases. Therefore, an extension by replacing a single
timed transitions by a sub-net that captures fine grained activity lifecycle transitions is
possible.

3 Related Work

The problem of anomaly detection is to identify data that does not conform to the gen-
eral behavior or the model of the data. Different flavors of the general problem are also

240 A. Rogge-Solti and G. Kasneci

known as outlier analysis, novelty detection, and noise removal. The problem is rele-
vant, because most data that is gathered in real settings is noisy, i.e., contains outliers or
errors. Various methods (e.g., classification, clustering, statistical approaches, informa-
tion theoretic approaches) are used for anomaly detection [10]. We refer the interested
reader to the survey by Chandola et al. [5] for an overview of different approaches to
the problem, and to the text book by Han and Kamber [10] for details on classification
and clustering approaches. For this paper, we limit the discussion to statistical methods
of outlier detection as well as proposed anomaly detection techniques in the domain of
business processes.

Statistical outlier detection is often based on hypothesis tests, that is, on the ques-
tion whether it is very unlikely to observe a random sample that is as extreme as
the actual observation [9]. This method can also be applied in combination with non-
parametric methods, as proposed by Yeung and Chow [23]. They use a non-parametric
approach and sample from the likelihood distribution of a kernel density estimate to
check whether new data is from the same distribution. We shall describe the approach
by Yeung and Chow in more detail in the main section, as our work builds on the same
idea.

Much attention has been devoted to the detection of structural anomalies in process
event logs [18,4,7], which affect the performance of process mining algorithms [2].
Sometimes, these anomalies are considered harmful, i.e., if they violate compliance
rules [8]. Techniques range from algorithmic replay [18], to cost-based fitness analy-
sis [4] that is able to guarantee to find an optimal solution to the alignment of model
and log based on distinct costs for not synchronized parts.

Cook et al. integrate time boundaries into conformance checking by using a formal
timed model of a system [6]. They assume that a timed model is already present and
specified, and consider time boundaries instead of probability density functions, while
we strive to detect anomalies that differ from usual behavior and also want to distinguish
measurement errors from regular outliers. Hao et al. analyze business impact of business
data on key performance indicators and visualize them either in aggregated or single
views in the model [11]. In contrast, our work leverages information encoded in the
structure of the model to find related variables and to detect outliers in continuous space.

4 Anomaly Detection in Business Processes

The approach presented in this section builds on intuitive assumptions derived from
practical observations. For example, we assume that anomalous event durations are rare
when compared to normal execution times. Moreover, we assume that the actual (i.e.,
typical) activity durations are independent; the observed duration of an activity, on the
other hand, depends only on its actual (i.e., typical) duration and the observed dura-
tion of the preceding activity. Another important assumption is that the whole process
itself is in a so-called "steady state", that is, we do not consider trends or seasonal-
ity in the model. Finally, we assume that all events are collected in an event log that
contains both information about the activity as well as the point in time of occurrence.
In practice, such logs are maintained for most business process routines. In [16], it
was shown that these kinds of logs can be directly used to infer probabilistic models of

Temporal Anomaly Detection in Business Processes 241

business processes, for example GDT_SPN models. We assume that a GDT_SPN model
is enriched from a plain Petri net representation of a business process model.

4.1 Detection of Outliers

Most work on detecting deviations from specified control flow only focuses on struc-
tural deviations, e.g., whether the activities were performed in the correct order, or
whether activities were skipped [18,4,7]. In this work, we would like to go one step
further and also consider the execution time of activities to detect cases that do not con-
form with the expected duration. The latter is encoded in form of statistical information
that is encoded in the probability density function of timed transitions in GDT_SPN.
First, let us recall a simple procedure to detect outliers.

A common rule to find outliers in normally distributed data is to compute the z-score
of an observation (z = x−μ

σ , i.e., the deviation about the mean normalized in units of
standard deviations) and classify an observation as an outlier iff |z| > 3. This simple
method depends on the assumption that the data is normally distributed, which is often
not the case.

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

time t

pr
ob

ab
ili

ty
 d

en
si

ty

outliers outliers

(a) 1% outliers in a normal distribution

0 2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

time t

pr
ob

ab
ili

ty
 d

en
si

ty

outliers outliers outliers

(b) 1% outliers in a non-parametric kernel den-
sity distribution

Fig. 3. Classification of 1 percent outliers. The areas containing the most unlikely 1 percent are
highlighted as outliers.

To gain more flexibility and to not depend on measures in units of standard deviation,
it is also possible to specify the threshold for outliers in terms of percentage of the
observations. Let us assume we want to find the most extreme 1 percent of a normally
distributed observations. Then the we can compute the theoretical 0.5 percent quantile,
and the 99.5 percent quantile of the normal distribution and if the observed value falls in
the region below the 0.5 percent quantile (or equivalently falls above the 99.5 percent
quantile), we classify the observation as an outlier. Figure 3a depicts the region of 1
percent of the most unlikely values in a normal distribution with a mean of 5 and a
standard deviation of 1. Note that this more flexible test that is based on lower and
upper quantiles is only valid for symmetric probability distributions, like the normal
distribution.

242 A. Rogge-Solti and G. Kasneci

In reality, the assumption of normally distributed values durations is often inappro-
priate. When dealing with real data, simple parametric models might not be able to
capture the probability distributions in sufficient detail. The observations could belong
to distinct classes with different behavior (e.g., due to differences in processing speed),
which can result in two modes in the probability density function. An example is de-
picted in Figure 3b, where two peaks in the data are observable at t = 3 and t = 7. Note
that in such cases, the z-value is not suitable any more, and we rely on more robust
classification methods, as described by Yeung and Chow [23].

The main idea for the outlier detection is based on a hypothesis test that tries to
identify the probability that an observation x is from a particular modelM. Therefore,
the distribution L(y) = log P(y | M) of the log-likelihoods of random samples y from the
modelM is computed. This can be done by sampling and approximating the probability
density function of the log-likelihood of each sample point. The log-likelihood of the
event that x was generated by the same modelM is L(x) = log P(x | M). The hypothesis
that needs to be tested is whether L(x) is drawn from the same distribution of log-
likelihoods as L(y), i.e., P(L(y) ≤ L(x)) > ψ for a threshold parameter 0 < ψ < 1. The
null hypothesis is rejected if the probability is not greater than ψ, implying that x is an
outlier with respect toM.

This method is general and is also applicable for multidimensional data, but we will
restrict our focus to the one and two dimensional case. In our approach, this method
is the key to identifying temporal anomalies in single activity durations. Depending
on the domain, business analysts can use the approach with suitably chosen thresholds
according to the expected error rate. Subsequently, on a case-to-case basis, the analysts
can browse through the suggested outliers and decide whether they are actual outliers
or mere measurement errors. In the following, we present the details of our approach.

4.2 Detection of Measurement Errors

We want to differentiate single measurement errors from benign outliers. Therefore,
we exploit the knowledge that measurement errors only affect a single event, while an
outlier also affects the succeeding events. For example, an extraordinary delay in a task
is unlikely to be regained immediately by the next task, but rather also cause a delay in
the latter. This means that if there is a measurement error in a single activity, usually
two activities are affected: the activity, of which the event is describing the completion
time, as well as the following activity that is enabled immediately afterwards. We expect
that a positive measurement error that indicates a long duration to yield a negative error
(too short duration) for the following activity. Figure 4 highlights the difference between
single outlier detection and measurement error detection. In Fig. 4a a measurement error
can happen for a single activity, where we can only hint at the error by identifying it as
an outlier. On the other side, we see two dependent activity durations in Fig. 4b, where
we can be more certain that a measurement error occurred, if the data point is better
explained by the diagonal error model that shows a high negative correlation between
the durations.

A typical assumption when designing an outlier detection model is that outliers will
not follow the distribution of the benign data points. However, when dealing with
the detection of anomalous sequences of data points, e.g., consecutive durations of

Temporal Anomaly Detection in Business Processes 243

0.00

0.05

0.10

0.15

0.20

0 5 10 15 20
Duration of A

pr
ob

ab
ili

ty
 d

en
si

ty

Source

error

regular

(a) duration of a single activity

0

3

6

9

5 10 15
Duration of A

D
ur

at
io

n
of

 B Source

error

regular

(b) joint duration density of subsequent activi-
ties

Fig. 4. Expected behavior (solid black curve) and measurement errors (dotted red curve) in the
univariate (single activity) and the bivariate case (two directly depending activities).

activities, the problem is that an anomalous sequence may look benign (e.g., anomalous
durations may add up to expected runtimes) until the single data points are analyzed in
detail. This problem is related to Simpson’s paradox [20], where the signal obtained
from an aggregated set of data points coming from at least two different distributions
can be corrupted, in the sense that it would hide the signal that one might have ob-
tained by analyzing the data points grouped by their distributions. In [14], Pearl defined
a set of specific conditions, i.e., precise criteria for selecting a set of “confounding vari-
ables” – that yield correct causal relationships if included in the analysis – to avoid
Simpson’s paradox. Basically, Pearl advocates the analysis of variable dependencies
and their representation by means of Bayesian networks; with probabilistic inference
on the networks yielding unbiased signals from the data. We follow this recipe and
model a sequence of activity durations as a Bayesian network that is directly derived
from the depa relation that we introduced in Section 2 for each case.

Basically, our Bayesian network contains activity duration variables (e.g., Adur), and
timestamps of events (e.g., eA), see Section 2.For every pair of dependent activity in-
stances (a, b) ∈ depa, we examine their durations Adur, and Bdur. Thereby, we reason
about the probability of an error having occurred at that pair. More specifically, we com-
pare the bivariate distribution of P(Adur, Bdur | error) with P(Adur, Bdur | no_error) and
their marginalized versions (including an error), i.e., P(Adur | error) =

∫

Bdur
P(Adur, Bdur |

error), and P(Bdur | error) =
∫

Adur
P(Adur, Bdur | error), to identify certain error patterns

in consecutive events. Specifically, we are interested in the relative likelihood of each of
the above conditionals (i.e., relative to the sum of the likelihoods of the four available
models). This allows us to select the most plausible model that might have generated
Adur and Bdur.

The simplicity of the above approach allows us to effectively move a window of
size 2 over directly dependent events (which must not be direct neighbors in the log)
and analyze the plausibility of their joint runtime as well as their durations in separation.
The dependencies gathered from the GDT_SPN model are leveraged to find successors

244 A. Rogge-Solti and G. Kasneci

start B C D

start B C’ D

E

E

B) benign,outlier

C) outlier,outlier

D) outlier,benign

A

A

A) benign, benign

measurement
error at event C

real
occurrences

measured
occurrences
(event log)

pairwise
duration
windows

A) benign B) benign C) outlier D) outlier E) benign
single

duration
windows

E) benign, -

Fig. 5. Window-based measurement error detection approach. First row shows original events,
where the timestamp of event C has been corrupted due to an error. By this example error, the
duration of C and D are affected. The approach that uses a single duration window has difficulties
localizing the error and will usually yield too many false positives. Pairwise comparison of subse-
quent durations can pinpoint the error location, i.e., if both durations are erroneous and negatively
correlated.

of the current event. When the current activity is the last in a dependency chain (i.e.,
last activity in the process, or last activity in a “fast” parallel branch, where the next
activity is not waiting for the fast branch, but for the slow one), we cannot exploit further
information to identify outliers as errors. In such cases, we fall back to outlier detection,
as described in Section 4.1. If there exists a direct dependency between to the activity
and another (i.e., the two activity instances are contained in depa), we distinguish 4
cases and probabilistically infer the most plausible one. The four cases are:

benign, benign neither the duration of current event nor the duration of its successor
are outliers.

benign, outlier the duration of the successor is an outlier, but not the duration of the
current event.

outlier, outlier both durations are outliers and the outliers are strongly correlated neg-
atively. This indicates a measurement error at the current event.

outlier, benign the duration of the current event is an outlier, but not the duration of its
successor.

When an activity instance effectively starts multiple activities in parallel (i.e., is con-
tained more than once in depa), we simply compute the weighted average of the activity
pairs, where by default the weights are distributed evenly. Domain experts could set the
weights according to the reliability of single activities error rate.

The most plausible case is decided, based on the likelihood ratios, as described
above. Figure 5 gives an overview of this window-based error detection approach. It
shows that considering only single activity durations in isolation cannot distinguish be-
tween an error of the current activity caused by a local measurement error, or a previous

Temporal Anomaly Detection in Business Processes 245

measurement error. The figure also depicts the four cases that we try to distinguish in
the pairwise duration window approach.

5 Evaluation

We implemented the anomaly detection mechanism as a plug-in to the process mining
framework ProM1. Figure 6 shows the graphical user interface of the plug-in. The plug-
in allows the user to select a GDT_SPN model and an event log to identify the outliers
in a case by case fashion. The cases are ordered by the number of outliers per case and
by their outlier scores, such that business process analysts ideally only have to scan the
top of the list for outliers. In the center of the screen, the model is presented, while the
analyst can select individual activities and see the corresponding duration distributions
with the current duration marked as a vertical line (top right). Additionally, the log-
likelihood distribution of the duration is shown to visually judge the probability that
such a value—or a more extreme one—arises assuming that the distribution model in
the GDT_SPN model is correct.

Fig. 6. User interface to the outlier detection plug-in in ProM

To also evaluate our approach with real data, we analyze the accuracy to detect mea-
surement errors in the event log of a Dutch hospital. We depicted the surgery process
model in Figure 7. The event log contains 1310 cases. Each event describes the progress
of an individual patient. The timestamps are recorded for events. The log contains er-
rors of missing events and also imprecisions in documentations (e.g., the timestamps
are sometimes rounded to 5-minutes). Our assumption is that we can detect deviations
from the control flow with conformance checking techniques [18,4,7], and therefore
limit our evaluation to the subset of 570 structurally fitting cases. The 570 cases contain
6399 events, which are assigned a timestamp each.

1 See StochasticNet package in http://www.promtools.org

http://www.promtools.org

246 A. Rogge-Solti and G. Kasneci

Fig. 7. Surgery model of a Dutch hospital. Most activities are in a sequential relationship.

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

only structure
likelihood ratio A
likelihood ratio A,B (independent)
likelihood ratio A,B (linear dep.)

(a) Results for all events

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

only structure
likelihood ratio A
likelihood ratio A,B (independent)
likelihood ratio A,B (linear dep.)

(b) Results for events without structural anoma-
lies

Fig. 8. Receiver operating characteristic (also ROC curve) for identifying inserted errors

We cannot be sure from the dataset alone, which outliers are due to measurement er-
rors, and therefore perform a controlled experiment. We insert manual errors according
to a Gaussian normal distribution with mean=0, sd=1/3 of the average process dura-
tion. We perform a 10-fold cross validation, to make sure that the duration distributions
do not contain the original values. In the evaluation phase, we apply our approach to
identify these errors. As described in the previous section, the approach should be able
to identify errors based on the probability density of the original distribution. Further-
more, it should be able to identify many errors as obvious outliers, as a measurement
error often causes a change in the ordering of events, i.e., leading to structural errors.
Finally, some errors should not be detectable, because they may be very low or even 0.
Other errors will be detected depending on the density region that they fall into. Here,
chances are better, if their value becomes an outlier according to the error distribution.

Temporal Anomaly Detection in Business Processes 247

Figure 8 shows the different receiver operating characteristic (ROC) curves for dif-
ferent prediction models:

– The solid line (in red) represents a model that predicts an error based on the likeli-
hood that A is erroneous in two consecutive events A, B. This model ignores B and
corresponds to a single-window approach.

– The dashed line (in blue) corresponds to model that predicts an error based on the
likelihood that A is erroneous and B is erroneous, independently of each other.

– The dotted line (in green) stands for a model that predicts based on the likelihood
that both A and B are erroneous, when linear dependency is assumed.

– The baseline model can predict only structural anomalies
The plot in Figure 8a, is computed from all events (with and without structural

anomalies). In Figure 8b, events with structural anomalies are excluded. As it can be
seen, the model that assumes a linear relationship between the errors of A and B (e.g., a
positive error in one event is a negative error in the following event) performs best. This
model achieves an astounding area under the curve (AUC) of 97.5%, when applied to
all events (i.e., with and without structural anomalies, see plot on the left).

The next predictor with satisfactory performance is the one that assumes indepen-
dence between A and B given the possibility of an error. This model corresponds to a
Naive Bayes prediction model. Despite its good performance its ROC curve is consis-
tently below the more advanced predictor that takes dependencies into account.

The single duration window model that is based on the likelihood ratio of A being
erroneous is already quite good, but it cannot distinguish between the error being caused
locally or by a neighbor event.

Finally, the baseline predictor recognizes that two (or more) activities have been
swapped in order, but it cannot determine which one is causing the error. This high-
lights once again the need for more advanced methods that solve this issue by using tim-
ing information and reasonable dependency assumptions. In this sense, the suggested
method is a considerable improvement over state-of-the art techniques in conformance
checking.

Note that the assumption of a normally distributed error turns out to be quite rea-
sonable, because the variance is quite high, i.e., ∼ 60 minutes (which on average corre-

Table 1. Areas under the curve (AUC) for Figure 8. The AUC is a prediction quality measure
that represents the ranking accuracy with respect to a specific scoring function. An ideal ranking
(i.e., with AUC = 100%) would rank all positives on top of all negatives, thus enabling a clear
separation between the two classes. As it can be seen, the score corresponding to the likelihood
ratio of A and B, when they are assumed to be linearly dependent, yields the highest ranking
accuracy. Moreover, when applied to all events (i.e., with and without structural anomalies, see
plot on the left), the same method achieves an astounding AUC of 97.5%.

All events Without structural anomalies
only structure 0.8953294 0.4823185
likelihood ratio A 0.9337065 0.6960063
likelihood ratio A,B (independent) 0.9671142 0.7490936
likelihood ratio A,B (linear dep.) 0.9753948 0.8122718

248 A. Rogge-Solti and G. Kasneci

sponds to one third of the entire process duration). Furthermore, in the boundary of an
activity, if the Gaussian representing its duration is flat enough to resemble a uniform
distribution from the previous event to the successor event, the reasoning remains sound
from a probabilistic perspective. Therefore, we do not expect major differences when
using a uniform error distribution instead of a Gaussian.

We conducted further experiments with different kinds of distributions, of which we
only present condensed insights due to space restrictions. The exponential distribution
has only one tail, which makes detection of measurement errors more difficult than in
the normally distributed case, where it is possible to detect positive as well as negative
measurement errors. The general insight is that the stronger the signal-to-noise ratio
becomes, the easier it is to detect measurement errors. For example, we can detect all
measurement errors > 0, if the timed model is deterministic. It is almost impossible,
however, to detect measurement errors of a uniformly distributed activity. Fortunately,
real processes are seldom so extreme and when manual process activities are conducted,
these activities tend to be rather normally or log-normally distributed.

6 Conclusion

In this work we focused on temporal aspects of anomalies in business processes. Pre-
liminary evaluation on synthetic and real process data shows that the suggested method
reliably detects temporal anomalies. Furthermore, it is capable of identifying single
measurement errors by exploiting knowledge encoded in the process model. In the ex-
perimental evaluation, a large share of inserted errors were detected, even in real process
data. The application of our approach to resources should be relatively straight-forward,
but standard outlier detection techniques already yield good results [11]. The method is
implemented in the open source framework ProM.

We expect the experimental findings to generalize to sensor-based measurements
with corresponding changes in the assumed delay distributions. For example, in the
case of sensors, an exponential distribution of delays might be more meaningful. How-
ever, an exact investigation of the impact of such distributions on the reliability of the
suggested method is part of our future work. Other points on our future work agenda are
the comparison of the method with other machine learning techniques and its extension
to detect multiple erroneous events.

References

1. Wil, M.P.: van der Aalst. Verification of Workflow Nets. In: Azéma, P., Balbo, G. (eds.)
ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

2. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer (2011)

3. van der Aalst, W., et al.: Process Mining Manifesto. In: Daniel, F., Barkaoui, K., Dustdar,
S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg
(2012)

4. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Conformance Checking Using
Cost-Based Fitness Analysis. In: EDOC 2011, pp. 55–64. IEEE (2011)

Temporal Anomaly Detection in Business Processes 249

5. Chandola, V., Banerjee, A., Kumar, V.: Anomaly Detection: A Survey. ACM Comput.
Surv. 41(3), 1–58 (2009)

6. Cook, J.E., He, C., Ma, C.: Measuring Behavioral Correspondence to a Timed Concurrent
Model. In: ICSM 2001, pp. 332–341. IEEE (2001)

7. de Lima Bezerra, F., Wainer, J.: Algorithms for Anomaly Detection of Traces in Logs of
Process Aware Information Systems. Inf. Syst. 38(1), 33–44 (2013)

8. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance Checking between Business Processes
and Business Contracts. In: EDOC 2006, pp. 221–232 (2006)

9. Grubbs, F.E.: Procedures for Detecting Outlying Observations in Samples. Technomet-
rics 11(1), 1–21 (1969)

10. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann
(2006)

11. Hao, M.C., Keim, D.A., Dayal, U., Schneidewind, J.: Business Process Impact Visualization
and Anomaly Detection. Information Visualization 5(1), 15–27 (2006)

12. Lohmann, N., Verbeek, E., Dijkman, R.: Petri Net Transformations for Business Processes –
A Survey. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other
Models of Concurrency II. LNCS, vol. 5460, pp. 46–63. Springer, Heidelberg (2009)

13. Parzen, E.: On Estimation of a Probability Density Function and Mode. The Annals of Math-
ematical Statistics 33(3), 1065–1076 (1962)

14. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, New
York (2000)

15. Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Technische Hochschule Darmstadt
(1962)

16. Rogge-Solti, A., van der Aalst, W.M.P., Weske, M.: Discovering Stochastic Petri Nets with
Arbitrary Delay Distributions From Event Logs. In: Lohmann, N., Song, M., Wohed, P.
(eds.) BPM 2013 International Workshops. LNBIP, vol. 171, pp. 15–27. Springer, Heidel-
berg (2014)

17. Rogge-Solti, A., Mans, R.S., van der Aalst, W.M.P., Weske, M.: Improving Documentation
by Repairing Event Logs. In: Grabis, J., Kirikova, M. (eds.) PoEM 2013. LNBIP, vol. 165,
pp. 129–144. Springer, Heidelberg (2013)

18. Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Processes Based on Monitor-
ing Real Behavior. Inf. Syst. 33(1), 64–95 (2008)

19. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall,
London (1996)

20. Simpson, E.H.: The Interpretation of Interaction in Contingency Tables. Journal of the Royal
Statistical Society, Series B, 238–241 (1951)

21. Weske, M.: Business Process Management: Concepts, Languages, Architectures, 2nd edn.
Springer (2012)

22. Wombacher, A., Iacob, M.-E.: Estimating the Processing Time of Process Instances in Semi-
structured Processes–A Case Study. In: 2012 IEEE Ninth International Conference on Ser-
vices Computing (SCC), pp. 368–375. IEEE (2012)

23. Yeung, D.-Y., Chow, C.: Parzen-Window Network Intrusion Detectors. In: ICPR 2002, vol. 4,
pp. 385–388. IEEE (2002)

A General Framework for Correlating
Business Process Characteristics

Massimiliano de Leoni1,2�, Wil M.P. van der Aalst2, and Marcus Dees3

1 University of Padua, Padua, Italy
2 Eindhoven University of Technology, Eindhoven, The Netherlands

3 Uitvoeringsinstituut Werknemersverzekeringen (UWV), The Netherlands
{m.d.leoni,w.m.p.v.d.aalst}@tue.nl,marcus.dees@uwv.nl

Abstract. Process discovery techniques make it possible to automatically derive
process models from event data. However, often one is not only interested in dis-
covering the control-flow but also in answering questions like “What do the cases
that are late have in common?”, “What characterizes the workers that skip this
check activity?”, and “Do people work faster if they have more work?”, etc. Such
questions can be answered by combining process mining with classification (e.g.,
decision tree analysis). Several authors have proposed ad-hoc solutions for spe-
cific questions, e.g., there is work on predicting the remaining processing time
and recommending activities to minimize particular risks. However, as shown in
this paper, it is possible to unify these ideas and provide a general framework
for deriving and correlating process characteristics. First, we show how the de-
sired process characteristics can be derived and linked to events. Then, we show
that we can derive the selected dependent characteristic from a set of indepen-
dent characteristics for a selected set of events. This can be done for any process
characteristic one can think of. The approach is highly generic and implemented
as plug-in for the ProM framework. Its applicability is demonstrated by using
it to answer to a wide range of questions put forward by the UWV (the Dutch
Employee Insurance Agency).

1 Introduction

The interest in process mining is fueled by the rapid growth of event data available for
analysis. Moreover, there is increasing pressure to make Business Process Management
(BPM) more “evidence based”, i.e., process improvements and innovations are more
and more driven by facts. Process mining often starts with process discovery, i.e., au-
tomatically learning process models based on raw event data. Once there is a process
model (discovered or made by hand), the events can be replayed on the model to check
conformance and to uncover bottlenecks in the process. However, such analyses are
often only the starting point for providing initial insights. When discovering a bottle-
neck or frequent deviation, one would like to understand why it exists. This requires the
correlation of different process characteristics. These characteristics can be based on
the control-flow (e.g., the next activity going to be performed), the data-flow (e.g., the

� The work of Dr. de Leoni is supported by the Eurostars - Eureka project PROMPT (E!6696).

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 250–266, 2014.
c© Springer International Publishing Switzerland 2014

A General Framework for Correlating Business Process Characteristics 251

Fig. 1. The general framework proposed in this paper: based on an analysis use case the event log
is preprocessed and used as input for classification. Based on the analysis result, the use case can
be adapted to gather additional insights.

amount of money involved), the time perspective (e.g., the activity duration or the re-
maining time to the end of the process), the organization perspective (e.g., the resource
going to perform a particular activity), or, in case a normative process model exists, the
conformance perspective (e.g., the skipping of a mandatory activity).

The study of these characteristics and how they influence each other is of crucial im-
portance when an organization aims to improve and redesign its own processes. Many
authors have proposed techniques to relate specific characteristics in an ad-hoc manner.
For example, several approaches have been proposed to predict the remaining process-
ing time of a case depending on characteristics of the partial trace executed [1,2,3].
Other approaches are only targeted to correlating certain predefined characteristics to
the process outcome [4,5,6] or the violations of business rules [7].

These problems are specific instances of a more general problem, which is concerned
with relating any process or event characteristic to other characteristics associated
with single events or the entire process. This paper proposes a framework to solve the
more general correlation problem and provides a very powerful tool that unifies the ad-
hoc approaches described in literature. This is achieved by providing (1) a broad and
extendable set of characteristics related to time, routing, ordering, resource allocation,
workload, and deviations, and (2) a generic framework where any characteristic (de-
pendent variable) can be explained in term of correlations with any set of other charac-
teristics (independent variables), For instance, the involvement of a particular resource
or routing decision can be related to the elapsed time, but also the other way around:
the elapsed time can be related to resource behavior or routing.

252 M. de Leoni, W.M.P. van der Aalst, and M. Dees

Figure 1 illustrates the framework proposed in this paper. Starting point is an event
log. For each process instance (i.e., case) there is a trace, i.e., a sequence of events.
Events have different characteristics. Mandatory characteristics are activity and times-
tamp. Other standard characteristics are the resource used to perform the activity, trans-
actional information (start, complete, suspend, resume, etc.), and costs. However, any
other characteristics can be associated to an activity (e.g., the age of a patient or size of an
order). Characteristics are attached to events as name-value pairs:
(name of characteristic, value). Event characteristics can be also concerned with the
context of the event, case, process, or organization. The process context is acknowledged
to be very important to find correlations with process and event characteristics [8,9,10].

For instance, it is possible to add case-related contextual information, such as the
remaining flow time or the elapsed time since the process instance started. Also prop-
erties of the resource executing the event (e.g., workload of the resource) can be added.
We can also add the next activity as a characteristic of an event. One can even add con-
formance checking results and external context such as weather information to events
as characteristics. The ultimate goal of our framework is to mine decision trees that ex-
plain the value of one characteristic, the dependent characteristic, in terms of the other
characteristics, the independent characteristics.

In addition to decision trees, many other machine-learning techniques exist and some
have already been applied in BPM, such as Bayesian Networks [11], Case-Based Rea-
soning [12] and Markov Models [3]. These are certainly valuable but they are only able
to make correlations for single instances of interest or to return significant examples of
relevant instances. Conversely, we aim to aggregate knowledge extracted from the event
logs and return it as decision rules. Association rules [8] could have been an alternative,
but decision trees have the advantage of clearly highlighting the characteristics that are
most discriminating. Regression analysis [13] would be only applicable to find numer-
ical correlations and, hence, it could not be employed if the dependent characteristic is
nominal or boolean.

The approach is fully supported by a new package that has been added to the open-
source process mining framework ProM.4 The evaluation of our approach is based on a
case study involving UWV, a Dutch governmental institute in charge of supplying ben-
efits. In particular, we have employed the approach to answer process-related questions
that were relevant for the institution. The results were extremely positive: we could
answer the UWV’s questions regarding the causes of observed problems (e.g., recla-
mations of customers). For some problems, we could show surprising root causes. For
other problems, we could only show that some suspected correlations were not present.

Section 2 presents the framework and highlights that several well-studied problems
are specific instances of the more general problem considered in this paper. Section 3
shows the application of our framework and implementation in the context of UWV.
Finally, Section 4 concludes the paper.

2 The Framework

The main input of our framework is an event log.

4 The FeaturePrediction package, see http://www.promtools.org.

http://www.promtools.org

A General Framework for Correlating Business Process Characteristics 253

Definition 1 (Events, Traces and Log). Let C and U be the universe of characteristics
and the universe of possible values respectively. An event e is an assignment of values
to characteristics, i.e. e ∈ C → U . In the remainder E = C → U is the universe of
events. A trace T ∈ E∗ is a sequence of events. Let T = E∗ be the universe of traces.
An event log L is a multi-set of traces, i.e. L ∈ B(T)

For each characteristic c ∈ C, type(c) ⊆ U denotes the set of possible values. We use
a special value ⊥ for any characteristic c which an event e is not assigning a value to,
i.e. e(c) = ⊥ if c �∈ dom(e). Typically, an event refers to an activity that is performed
within a certain case by a resource at a given timestamp. In our framework, these are
merely treated as any event characteristics: Activity, Case, Resource, Timestamp, re-
spectively. The occurrence of an event, i.e. the execution of an activity, can assign new
values to any subset of characteristics.

Our framework aims to support so-called analysis use cases.

Definition 2 (Analysis Use Case). An analysis use case is a triple (Cd, cr, F) consist-
ing of

– a dependent characteristic cr ∈ C \ Cd,
– a set Cd ⊂ C of independent characteristics,
– an event-selection filter F ⊆ E , which characterizes the events that are retained for

the analysis.

The output of an analysis use case is a decision tree. Decision trees classify instances
(in our case events) by sorting them down in a tree from the root to some leaf node. Each
non-leaf node specifies a test of some attribute (in our case, an independent character-
istic) and each branch descending from that node corresponds to a range of possible
values for this attribute. Each leaf node is associated to a value of a class attribute (in
our case, the dependent characteristic). A path from root to a leaf represents a classifica-
tion rule. There exist many algorithms to build a decision tree starting from a training set
[13]. Our framework is agnostic with respect to specific algorithms used for decision-
tree learning. In our implementation we rely on the C4.5 algorithm, which can handle
continuous attributes efficiently and is good at pruning the final decision tree [13]. How-
ever, any other classification algorithm could have been used. In the remainder, given a
set of instances (i.e. events) I ∈ 2(C→U), a set Cd ⊂ C of independent variables (i.e.,
the independent characteristics) and a dependent variable cr ∈ C \ Cd, the procedure to
train a decision tree is denoted as generateTree(I, Cd, cr).

Algorithm 1 describes our approach to build a decision tree based on an event log
and an analysis use case. The input consists of an event log and an analysis use case.
At the end, set I contains all instances that are used to train the decision tree. This set
is populated with every event e of the log that is not filtered out by the event-selection
filter F .

If the dependent characteristic cr is defined over a continuous domain, value e(cr) is
discretized before event e is added to the instance set I. Decision trees do not support
continuous class variables. Therefore, continuous characteristics need to be discretized
to be used as dependent. In the algorithm, the procedure of discretization is abstracted
as a function discretize(val, c, L, n) that, given a characteristic c, a value val ∈ type(c),
the set of values observed in an event log L, and a number n of discretization intervals,

254 M. de Leoni, W.M.P. van der Aalst, and M. Dees

Algorithm 1: Generate Decision Tree
Input: Event Log L ∈ B(T), An analysis use case (Cd, cr, F), the number n of

discretization intervals.
Result: Decision Tree

I ← ∅

foreach T ∈ L do
foreach e ∈ L do

if e ∈ F then
if type(cr) is continuous then

e(cr)← discretize(e(cr), cr, L, n)
end
I ← I ∪ {e}

end
end

end
generateT ree(I,Cd, cr)

returns a value over a discrete domain. Literature provides several ways to discretize
dependent variables. While our approach can use any discretization technique, our im-
plementation provides two specific ones: equal-width binning and equal-frequency bin-
ning [14]. Given a number n of intervals, the former divides the set of possible values
type(c) into n equal-width intervals, assigning a discrete value to each of them. Contin-
uous values are transformed into discrete values according to the intervals they fall into.
The equal-frequency binning approach tries to transform values more evenly: intervals
are of different sizes, choosing them such that (roughly) the same number of observed
values falls into each one.

As mentioned before, for many analysis use cases we need dependent or independent
characteristics that are not readily available in the event log. Similarly, using business
domain knowledge, an analyst may want to verify a reasonable hypothesis of the ex-
istence of a correlation to a given set of independent characteristics, which may not
be explicitly available in the event log. However, values for many interesting charac-
teristics can easily be derived from the event data in the event log. In some cases we
will even derive characteristics from information sources outside the event log (weather
information, stock index, etc.).

We provide a powerful framework to manipulate event logs and obtain a new event
log that suits the specific analysis use case, e.g. events are enriched with additional
characteristics.

Definition 3 (Trace and Log Manipulation). Let T be the universe of traces and event
logs and let L ∈ B(T) be an event log. A trace manipulation is a function δL ∈ T → T .

In the remainder, given a trace-manipulation function δL, we also allow δL to be applied
to an entire log L, thus returning a new log obtained by applying the trace-manipulation
function to all traces in L.

Table 1 shows a taxonomy of trace manipulations, grouping them by the process per-
spective that they take into account. All manipulations shown have been implemented

A General Framework for Correlating Business Process Characteristics 255

Table 1. A Taxonomy of Trace Manipulations currently available in the operationalization

Perspective Trace Manipulations
Control-flow Number of Executions of Activity a, Next Activity in the Trace, Previous

Activity in Trace.
Resource Workload per Resource, Total Workload.
Time Time Elapsed since the Start of the Case, Remaining Time Until the End of

Case, Activity Duration.
Data-flow Latest Recorded Value of Characteristic c Before Current Event e, Latest

Recorded Value of Characteristic c After Event e, Case-Level Abstraction.
Conformance Trace Fitness, Number of Not Allowed Executions of Activity a Thus Far

(moves on log in alignment), Number of Missing Executions of Activity a
Thus Far (moves on model in alignment), Number of Correct Executions of
Activity a Thus Far (synchronous moves), Satisfaction of Formula F Consid-
ering the Prefix Trace Until Current Event e.

in ProM; the generality of the framework also makes it easy to add new manipulations.
Due to space limitations, we can only discuss some of them:

– Next Activity in the Trace. It augments each event with an extra attribute that
contains the name of the next activity in the trace (or ⊥ for the last event)

– Latest Recorded Value of Characteristic c Before Current Event e. It enriches
each event e with the latest value assigned to characteristic c before e in the trace.

– Latest Recorded Value of Characteristic c After Current Event e. It enriches
each event e with the latest value assigned to characteristic c after e in the trace.
It differs from the manipulation Latest Recorded Value of Characteristic c Before
Current Event e in that the value is taken after the execution of e. If e does not write
a value for c, the value before and after e coincides.

– Case-Level Abstraction. This replaces all the events the trace with two events,
the case-start and case-complete event. The case-start event is associated with the
same values of the characteristics as the first event of the trace. The case-end event
is associated with the last recorded values for all characteristics. For both events,
the value of the Activity characteristic is overwritten with value “Case”.

– Workload per Resource. It associates each event e with the work-load for the
resource that has triggered the event, i.e. the number of activities under execution
by e(Resource), at the time the event occurred.

– Total Workload. It associates events with the number of activities being executed
at the time the event occurred.

– Activity Duration. Each (complete) event is associated with a (integer-typed) char-
acteristic that indicates the duration of completing the activity associated with the
event.

The last three characteristics in the list require an analysis of the entire log, i.e., the
scope is not limited to a single trace. This is the reason why trace-manipulation function
δL(T) depends not just on trace T but also L.

Indeed, the values to associate with each event can be derived by replaying the event
log and counting the number of activities being executed in each moment in time. It is

256 M. de Leoni, W.M.P. van der Aalst, and M. Dees

Table 2. Fragment of a hospital’s event log with four traces. The gray columns have been added
after applying two of the trace manipulations in Table 1: Next Activity in the Trace and Time
Elapsed since the Start of the Case. NextActivityInTrace and ElapsedTime are the
names of the characteristics that are added as result of these manipulations.

Case Timestamp Activity Resource Cost NextActivityInTrace ElapsedTime

1 1-12-2011:11.00 Preoperative Screening Giuseppe 350 Laparoscopic Gastrectomy 0 days
1 2-12-2011:15.00 Laparoscopic Gastrectomy Simon 500 Nursing 1.16 days
1 2-12-2011:16.00 Nursing Clare 250 Laparoscopic Gastrectomy 1.20 days
1 3-12-2011:13.00 Laparoscopic Gastrectomy Paul 500 Nursing 2.08 days
1 3-12-2011:15.00 Nursing Andrew 250 First Hospital Admission 2.16 days
1 4-12-2011:9.00 First Hospital Admission Victor 90 ⊥ 3.92 days
2 7-12-2011:10.00 First Hospital Admission Jane 90 Laparoscopic Gastrectomy 0 days
2 8-12-2011:13.00 Laparoscopic Gastrectomy Giulia 500 Nursing 1.08 days
2 9-12-2011:16.00 Nursing Paul 250 ⊥ 2.16
3 6-12-2011:14.00 First Hospital Admission Gianluca 90 Preoperative Screening 0 days
3 8-12-2011:13.00 Preoperative Screening Robert 350 Preoperative Screening 1.96 days
3 10-12-2011:16.00 Preoperative Screening Giuseppe 350 Laparoscopic Gastrectomy 4.08 days
3 13-12-2011:11.00 Laparoscopic Gastrectomy Simon 500 First Hospital Admission 6.88 days
3 13-12-2011:16.00 First Hospital Admission Jane 90 ⊥ 7.02 days
4 7-12-2011:15.00 First Hospital Admission Carol 90 Preoperative Screening 0 days
4 9-12-2011:7.00 Preoperative Screening Susanne 350 Laparoscopic Gastrectomy 0.66 days
4 13-12-2011:11.00 Laparoscopic Gastrectomy Simon 500 Nursing 5.84 days
4 13-12-2011:13.00 Nursing Clare 250 Nursing 5.92 days
4 13-12-2011:19.00 Nursing Vivianne 250 ⊥ 6.16 days

Table 3. The results after applying the Case-Level Manipulation to the event log shown in Table 2

Case Timestamp Activity Resource Cost NextActivityInTrace ElapsedTime

1 1-12-2011:11.00 Case Giuseppe 350 Laparoscopic Gastrectomy 0 days
1 4-12-2011:9.00 Case Victor 90 ⊥ 3.92 days
2 7-12-2011:10.00 Case Jane 90 Laparoscopic Gastrectomy 0 days
2 9-12-2011:16.00 Case Paul 250 ⊥ 2.16 days
3 6-12-2011:14.00 Case Gianluca 90 Preoperative Screening 0 days
3 13-12-2011:16.00 Case Jane 90 ⊥ 7.02 days
4 7-12-2011:15.00 Case Carol 90 Preoperative Screening 0 days
4 13-12-2011:19.00 Case Vivianne 250 ⊥ 6.16 days

not necessary that the event log records the starting and completion of each activity.
Although that would be preferred as the workload would be calculated exactly, we
have implemented algorithms that can estimate the workload by only using the activity
completion events. In our implementation, we estimate the start time of activities as
proposed in [15]: assuming no waiting time, the start time of an activity is the latest
between the time of completion of the previous activity within the same process instance
and the time of completion of the previous activity by the same resource (possibly in a
different process instance).

Tables 2 and 3 illustrate the application of some of the manipulation functions of
Table 1 to a fragment of an event log. In general, when multiple trace-manipulation
functions are applied, the order of application may be important. Table 3 shows the
result of the application of the case-level abstraction manipulation after applying Next
Activity in the Trace and Time Elapsed since the Start of the Case. If case-level abstrac-
tion was applied before the other two, the final result would be different: characteristic
Next Activity in the Trace would be given either value “Case” or ⊥.

A General Framework for Correlating Business Process Characteristics 257

Table 1 also illustrates a number of trace manipulations that require additional
sources/inputs, such as a process model, declarative or procedural, or a (temporal)
logical formula F :

– Trace Fitness. Given a process model, it augments each event with a continuous
value between 0 and 1, denoting the level of the fitness of the model and the trace to
which the event belongs. Values 1 and 0 denote perfect and extremely poor fitness,
respectively.

– Number of Not Allowed Executions of Activity a Thus Far, Number of Miss-
ing Executions of Activity a Thus Far, and Number of Correct Executions of
Activity a Thus Far. These manipulations augment each event with an integer
characteristic that denotes the number of “moves on logs” (occurs in reality but
disallowed according to the model), “moves on model” (should have occurred ac-
cording to the model but did not), and “synchronous moves” (model and reality
agree) respectively in the prefix until the current event.

– Satisfaction of Formula F Considering the Prefix Trace Until Current Event
e. It augments each event with a boolean value that states whether a given formula
F was satisfied after the event occurred.

The third manipulation in the above list builds on the ProM operationalization of the
technique described in [16]. Here Linear Temporal Logic (LTL) is used to specify F .
The others rely on the ProM implementation of the techniques discussed in [17,18],
which are concerned with finding an alignment of traces in the log with, respectively,
procedural and declarative process models.

Tables 4 and 5 show how six examples of correlation problems can be formulated
as analysis use cases. In the tables, the original log denotes the log before any trace
manipulation. Trace manipulations are applied in the exact order as they are enumerated
in the list. As the examples show, prediction problems are, in fact, correlation problems.
When a correlation is observed in the past, one can predict that the same correlation is
going to be observed for future process instances, as well.

For most of the problems shown in Tables 4 and 5, research work has already been
conducted, yielding ad-hoc solutions. Our framework attempts to solve the more general
problem, i.e., finding any type of correlation among arbitrary process characteristics at
any level (event, case, process, resource, etc.). By solving the more general problems,
we can support existing analyses but also many more.

Some of the analysis use cases in Tables 4 and 5 have been used as intermediate
results to solve other problems. For instance, Ghattas et al. [4] uses the answer to Prob-
lem #2 as information to drive how to redesign the process to improve the process’
outcomes. Similarly, the solutions of Problems #1 and #4 are used in [7] and [6], re-
spectively, as input to provide a run-time support to suggest the next activities to work
on.

3 Evaluation with a Real-Life Case Study

This section illustrates how our framework can be used to help UWV. UWV (Employee
Insurance Agency) is an autonomous administrative authority to implement employee

258 M. de Leoni, W.M.P. van der Aalst, and M. Dees

Table 4. Five example analysis use cases illustrating the generic nature of the framework pre-
sented.

Problem #1: Run-time predictions of violations of formula F.
Description: The aim is to predict, given the current status of the process instances, the next activities to work on to
maximize the chances of achieving certain business goals expressed as formula F . In [7], an ad-hoc solution is proposed
for this problem where formulas are expressed in LTL.
Dependent Characteristic: Satisfaction of Formula F Considering the Prefix Trace Until Current Event.
Independent Characteristics: For each characteristic c of the original event log, the Latest Recorded Value of c Before
the Current Event; Activity Name; the resource name.
Event Filter: Every event is retained.
Trace Manipulation: Satisfaction of Formula F Considering the Prefix Trace Until Current Event; for each characteristic
c of the original event log, the Latest Recorded Value of c Before the Current Event.

Problem #2: Prediction of the outcomes of the executions of process instances.
Description: The aim is to predict the outcome of a case. Predictions are computed using a set of complete process
instances that are recorded in the event log. The last event of each trace is associated with a characteristic Outcome to
which it is assigned a numeric value that indicates the quality of the outcome. The prediction is done at case level: one
instance for learning is created for each trace in the event log. The outcome of the entire trace is predicted rather than of
single activities. In [4], an ad-hoc solution is proposed for this problem.
Dependent Characteristic: Outcome
Independent Characteristics: Each characteristic c of the original event log, except Outcome.
Event Filter: Every case-complete event is retained.
Trace Manipulation: Case-level Abstraction.

Problem #3: Mining of decisions that determine the activity to execute after the execution of an activity a.
Description: The purpose is to predict the conditions that discriminate which activity is executed after a given activity a.
Predictions are computed using a set of complete process instances that are recorded in the event log. In particular, only
the events referring to activity a are used. In [19], an ad-hoc solution is proposed for this problem.
Dependent Characteristic: Next Activity In the Trace.
Independent Characteristics: For each characteristic c of the original event log, the Latest Recorded Value of c After the
Current Event.
Event Filter: Every event e for activity a is retained, i.e. every event e such that e(Activity) = a.
Trace Manipulation: For each characteristic c of the original event log, the Latest Recorded Value of c After the Current
Event; Next Activity In the Trace.

Problem #4: Prediction of faults during business process executions.
Description: The purpose is to predict whether or not a running instance is going to complete with a fault. If completed
with a fault, its magnitude is also predicted. Predictions are computed using a set of complete process instances that are
recorded in the event log. If a fault has occurred for a given completed instance, the first event of the corresponding trace
is associated with a characteristic Fault to which a value is assigned that indicates the magnitude. If no fault is occurred,
the first event is associated with a characteristic Fault to which a value 0 is assigned. In [6], an ad-hoc solution is proposed
for this problem.
Dependent Characteristic: The value of Fault after the Current Event.
Independent Characteristics: For each characteristic c of the original event log besides Fault, the Latest Recorded Value
of cAfter the Current Event; for each activity a, the Number of Executions of a; Elapsed Time Since the Start of the Case;
Activity Name; Resource Name.
Event Filter: Every event is retained.
Trace Manipulation: For each characteristic c of the original event log, the Latest Recorded Value of c After the Current
Event; for each activity a, the Number of Executions of Activity a; the Elapsed Time since the Start of the Case.

Problem #5: Prediction of the executor of a certain activity a.
Description: The purpose is to mine the conditions that determine which resource is going to work on a given activity a
at a certain moment during the process execution.
Dependent Characteristic: Resource Name
Independent Characteristics: Potentially, any characteristic of the original event log as well as any characteristic with
which events can be augmented. Every characteristic can be relevant for this prediction.
Event Filter: Every event for activity a is retained, i.e. every event e such that e(Activity) = a.
Trace Manipulation: Depending on the scenario, any manipulation but Case-Level abstraction can be relevant.

A General Framework for Correlating Business Process Characteristics 259

Table 5. An additional analysis use case illustrating the generic nature of the framework
presented

Problem #6: Prediction of the Remaining Time to the end of process instances.
Description: The purpose is to predict the remaining time until the end of process instances on the basis of the current
state, which consists of the number of executions of each process activity and the current values of process variables. It is
similar to [2] when a multi-set abstraction is used, with, additionally, the current values of process variables are also taken
into account.
Dependent Characteristic: Remaining Time Until The End of the Case.
Independent Characteristics: For each process activity a, the number of executions of activity a; for each characteristic
c of the original event log, the Latest Recorded Value of c After the Current Event.
Event Filter: Every event is retained.
Trace Manipulation: For each characteristic c of the original event log, the Latest Recorded Value of c After the Current
Event; for each process activity a, the Number of Executions of Activity a; the Remaining Time Until the End of the Case.

insurances and provide labor market and data services. One of the core tasks of UWV is
ensuring that benefits are provided quickly and correctly when a Dutch resident, here-
after customer, cannot immediately find a new job after ceasing the previous. UWV is
facing various undesired process executions and is interested in discovering the root-
causes of a variety of problems identified by UWV’s management. In these analysis use
cases, we are looking at the process to deal with requests of unemployment benefits.
An instance of this process starts when a customer applies. Subsequently, checks are
performed to verify the entitlement conditions. If the checks are positive, the instance
is being executed for the entire period in which the customer receives the monetary
benefits, which are paid in monthly installments. Entitled customers receive as many
monthly installments as the number of years for which they were working. Therefore,
an instance can potentially be executed for more than one year. During the entire period,
customers must comply with certain duties, otherwise a customer is sanctioned and a
reclamation is opened. When a reclamation occurs, this directly impacts the customer,
who will receive lower benefits than expected or has to return part of the benefits. It also
has negative impact from UWV’s viewpoint, as this tends to consume lots of resources
and time. Therefore, UWV is interested to know the root causes of opening reclama-
tions to reduce their number. If the root causes are known, UWV can predict when a
reclamation is likely going to be opened and, hence, it can enact appropriate actions
to prevent it beforehand. In order to discover the root causes, UWV formulated four
questions:

Q1 Are customer characteristics linked to the occurrence of reclamations? And if so,
which characteristics are most prominent?

Q2 Are characteristics concerned with how process instances are executed linked to
the occurrence of reclamations? And if any, which characteristics matter most?

Q3 If the prescribed process flow is not followed, will this influence whether or not a
reclamation occurs?

Q4 When an instance of the unemployment-benefit payment process is being handled,
is there any characteristic that may trigger whether a reclamation is going to occur?

Table 6 enumerates some of the analysis use cases that have been performed to answer
the questions above. The analyses have been performed using a UWV’s event log con-
taining 2232 process instances and 77551 events. Since the original event log contains

260 M. de Leoni, W.M.P. van der Aalst, and M. Dees

Table 6. Some of the analysis use cases analyzed to provide an answer to the correlation problems
raised by UWV

U1. Are customer characteristics linked to the occurrence of reclamations?
Description: We aim to correlate the number of executions of activity Reclamation to the customer characteristics. We are
interested in all decision-tree paths that lead to a number of executions of activity Reclamation greater than 0.
Dependent Characteristic: Number of Executions of Activity Reclamation.
Independent Characteristics: All characteristics of the events in the original log that refer to customers properties.
Event Filter: Every case-complete event is retained.
Trace Manipulation: Number of executions of Activity Reclamation; Case-Level Abstraction

U2. Are characteristics concerned with how process instances are executed linked to the occurrence of reclamations?
– Iteration 1
Description: We aim to correlate the number of execution of activity Reclamation to process characteristics, the number
of executions of all activities and the elapsed time, i.e., the time to complete a process instance. We are interested in all
decision-tree paths that lead to a number of executions of activity Reclamation greater than 0.
Dependent Characteristic: Number of Executions of Activity Reclamation.
Independent Characteristics: For each process activity a besides Reclamation, Number of Executions of a; Time Elapsed
Since the Start of the Case; all characteristics of the events of the original log that refer to the outcomes of process instances;
Timestamp.
Event Filter: Every case-complete event is retained.
Trace Manipulation: For each process activity a, Number of Executions of a; Time Elapsed Since the Start of the Case;
Case-Level Abstraction.

U3. Are characteristics concerned with how process instances are executed linked to the occurrence of reclamations?
– Iteration 9
Description: We aim to correlate the number of execution of activity Reclamation to process characteristics and the number
of executions of most of activities. We are interested in all decision-tree paths that lead to a number of executions of activity
Reclamation greater than 0.
Dependent Characteristic: Number of executions of activity Reclamation.
Independent Characteristics: For each process activity a besides Reclamation and Call Contact door HH deskundige,
Number of Executions of a; All characteristics of the events in the original log that refer to the outcomes of process instances,
besides Soort Vaststelling and 49 more.
Event Filter: Every case-complete event is retained.
Trace Manipulation: For each process activity a, Number of Executions of a; Case-Level Abstraction.

U4. If the prescribed process flow is not followed, will this influence whether or not a reclamation occurs?
Description: We aim to correlate the number of execution of activity Reclamation to process characteristics, the number
of executions of most of activities as well as to the deviations wrt. the prescribed process model. We are interested in all
decision-tree paths that lead to a number of executions of activity Reclamation greater than 0.
Dependent Characteristic: Number of executions of activity Reclamation.
Independent Characteristics: Trace Fitness; for each process activity a besides Reclamation, the Number of Not-Allowed
Executions of a, the Number of Missing Executions of a and the Number of Correct Executions of a; Number of Executions
of Activity Reclamation.
Event Filter: Every event is retained.
Trace Manipulation: Trace Fitness; for each process activity a, the Number of Not-Allowed Executions of a Thus Far, the
Number of Missing Executions of a Thus Far and the Number of Correct Executions of a Thus Far; Number of Executions
of Activity Reclamation.

U5. When an instance of the unemployment-benefit payment process is handled, is there any characteristic that may
trigger whether a reclamation is going to occur?
Description: We aim to predict when a reclamation is going to follow any process activity. For this purpose, we predict
which activity is going to follow any process activity and, then, we focus on those paths leading to predicting reclamation as
next activity in trace.
Dependent Characteristic: Next Activity in Trace.
Independent Characteristics: For each process activity a besides Call Contact door HH deskundige, the Number of Exe-
cutions of a; All characteristics of the events in the original log that refer to the outcomes of process instances
Event Filter: Every event is retained.
Trace Manipulation: For each process activity a, Number of Executions of a; Next Activity in the Trace.

A General Framework for Correlating Business Process Characteristics 261

Fig. 2. A screenshot of the framework’s implementation in ProM that shows the decision tree
used to answer question Q1

more than 100 characteristics, it is not possible to punctually detail single characteristics
that have been included or excluded from the analyses. The remainder of this section
details how the analysis use cases have been used to answer the four questions above.

Question Q1. To answer this question, we performed the use case U1 in Table 6. The
results of performing this analysis are represented through the decision tree in Figure 2.
In particular, the screenshot refers to our implementation in ProM. The implementation
allows the end user to configure a number of parameters, such as the level of decision-
tree pruning, the minimum number of instances per leaf or the discretization method.
In this way, the user can try several configurations, thus, e.g., balancing between over-
and under-fitting. In particular, the screenshot refers to the configuration in which the
minimum number of instances per leaf is set to 100 and the number of executions of
Reclamation is discretized as two values: (0.0,0.0) and (0.0,5.0). When the
number of executions of Reclamation is 0, this is shown as (0.0,0.0); conversely,
any value greater than 0 for the number of executions is discretized as (0.0,5.0).
The use cases U2, U3, U4 also use the number of executions of Reclamation as depen-
dent characteristic. We used the same discretization for those use cases, as well.

Looking at the tree in Figure 2, some business rules seem to be derived. For in-
stance, if the customer is a recurrent customer (WW IND HERLEV ING > 0), a
reclamation occurs, i.e. the leaf is labelled as (0.0,5.0).5 If this correlation really
held, it would be quite unexpected: recurrent customers tend to disregard their duties.
Nonetheless, the label is also annotated with 318.0/126.0, which indicates that a

5 Customers are recurrent if they apply for monetary benefits multiple times because they find
multiple temporary jobs and, hence, they become unemployed multiple times.

262 M. de Leoni, W.M.P. van der Aalst, and M. Dees

Fig. 3. The decision tree used to answer question Q2

reclamation is not opened for 126 out of the 318 recurrent customers (39%). Though
not very strong, a correlation seems to exist between being recurrent customers and
incurring in reclamations. Further investigation is certainly needed; perhaps, additional
customer’s characteristics might be needed to better discriminate but they are currently
not present in the event log used for analysis.

Question Q2. Firstly, we performed the analysis use case U2. We obtained a decision
tree that showed correlations between the number of reclamations and certain charac-
teristics that are judged as trivial by UWV. For instance, there was a correlation of
the number of reclamations with (1.) the method of payment of the benefit install-
ments to customers and (2.) the number of executions of activity Call Contact door
HH deskundige, which is executed to push customers to perform their duties. Being
these correlations considered trivial by UWV, the respective characteristics should be
left out of the analysis. So, we excluded these characteristics from the set of indepen-
dent characteristics and repeated the analysis. We refined the use case analysis multiple
times by removing more and more independent characteristics. After 9 iterations, we
performed an analysis use case that led to satisfactory results. This use case is denoted
as U3 in Table 6. The results of performing this analysis are represented through the
decision tree in Figure 3, which classifies 77% of the instances correctly.

This tree illustrates interesting correlation rules. Reclamations are usually not opened
in those process instances in which (1.) UWV never informs (or has to inform) a cus-
tomer about changes in his/her benefits (the number of executions of Brief Uitkering
gewijzigd WW is 0), (2.) UWV’s employees do not hand over work to each other (the
number of executions of Brief Interne Memo is 0) and (3.) either of the following con-
ditions holds:

– No letter is sent to the customers (the number of executions of Brief van UWV aan
Klant is 0);

– At least one letter is sent but UWV never calls the customer (the number of exe-
cutions of Call Telefoonnotitie is equal to 0) and, also, the number of months for
which the customer is entitled to receive a benefit is more than 12.

A General Framework for Correlating Business Process Characteristics 263

Fig. 4. The decision tree used to answer question Q3

From this analysis, we can conclude that UWV should reduce the hand-over of work.
Moreover, it should pay more attention to customers when their situation changes, e.g.
they find a new job. When customers find a job, they start having a monetary income,
again. The problem seems to be related to the customers who often do not provide
information about the new job on time. In these cases, their benefits are not stopped
or reduced when they should. Consequently, a reclamation needs to be opened because
these customers need to return the amount that was overpaid to them. Conversely, if a
customer has already received benefits for 12 months, it is unlikely that a reclamation
is going to occur. This can be motivated quite clearly and it is again related to the
presence of changes of the customer’s job situation. If benefits are received for more
than 12 months, the customer has not found a job in latest 12 months and, thus, it is
probably going to be hard for him to find one. So, UWV does not have to pay much
attention to customers entitled to long benefits when they aim to limit the number of
reclamations.

Question Q3. The answer to this question is given by performing the analysis use case
U4. This use case relies on a process model that describes the normal execution flow.
This model was designed by hand, using knowledge of the UWV domain. The results of
performing U4 is represented by the decision tree in Figure 4. Trace Fitness is measured
as a value between 0 and 1 (see [17]). Values 1 and 0, respectively, denote perfect and
poor fitness between the expected behaviour, represented by the process model, and
the actual behaviour, which is recorded in the event log. Analyzing the decision tree, a
correlation is clear between trace fitness and the number of reclamations. 610 out of the
826 process executions (nearly 70%) with fitness higher than 0.89 do not comprise any
reclamation. Therefore, it seems crucial for UWV to make the best to follow the normal
flow, although this is often made difficult by a hasty behavior of customers. This rule
seems quite reliable and is also confirmed by the fact that 70% of the executions with
fitness lower than 0.83 incur in reclamations.

The decision tree contains an intermediate node labelled MREAL for IKF van Klant
aan UWV. This characteristic refers to the number of missing executions of activity
IKF van Klant aan UWV. This activity is executed in a process instance every time

264 M. de Leoni, W.M.P. van der Aalst, and M. Dees

that UWV receives a declaration form from the customer. UWV requests customers
to send a form every month to declare whether or not their condition has changed in
the last month, e.g. they found a job. The decision tree states that, when an execution
deviates moderately, i.e. the fitness is roughly between 0.83 and 0.89, a reclamation
is still unlikely being opened if the customer forgets to send the declaration form for
less than 3 months (not necessarily in a row). Please note that, since traces are quite
long, considering how fitness is computed, a difference of 0.06 in fitness can be quite
remarkable. This rule is quite reliable since it holds in 79% of cases. Therefore, it is
worthwhile for UWV to enact appropriate actions (such as calling by phone) to increase
the chances that customers send the declaration form every month.

Question Q4. The answer to this question is given by performing the analysis use
case U5. We built a decision tree for this use case by limiting the minimal number of
instances per leaf to 50. We are interested in tree paths that lead to Reclamation as
next activity in the trace. Unfortunately, the F-measure for Reclamation was very low
(0.349), which indicates that it is not possible to reliably estimate if a reclamation is
going to occur at a certain moment of the execution of a process instance. We also
tried to reduce the limit of the minimum number of instances per leaf. Unfortunately,
the resulting decision tree was not valuable since it overfitted the instance sets: the
majority of the leaves were associated to less than 1% of the total number of instances.
Conversely, the decision tree with 50 as minimum number of instance per leaf could
be useful to predict when a payment is sent out to a customer: the F score for the
payment activity is nearly 0.735. Unfortunately, finding this correlation does not answer
question Q4.

4 Conclusion

Process mining is not just about discovering the control-flow or diagnosing deviations.
It is crucial that certain phenomena can be explained, e.g., “Why are these cases delayed
at this point?”, “Why do these deviations take place?”, “What kind of cases are more
costly due to following this undesirable route?”, and “Why is the distribution of work
so unbalanced”. Although numerous analysis approaches have been proposed for spe-
cific questions, a generic framework for correlating business process characteristics was
missing. In this paper, we presented such a framework and its implementation in ProM.
By defining an analysis use case composed of three elements (one dependent charac-
teristic, multiple independent characteristics and a filter), we can create a classification
problem. The resulting decision tree aims to describe the dependent characteristic in
terms of the independent characteristics. The approach has been evaluated using a case
study within the UWV.

Future work aims at making a more extensive taxonomy of analysis use cases. In
this paper only a few examples were mentioned. Moreover, we would like to support
the user in selecting the right use case using a questionnaire-based approach. This can
be done by building on the current framework and implementation. Regarding improv-
ing the correlation accuracy, we also plan to investigate random decision forests, where
several decision trees are built in multiple steps. We also acknowledge the limitations

A General Framework for Correlating Business Process Characteristics 265

of our framework when the dependent characteristic is numerical. The results are not
very “stable”: a small change in how the characteristic is discretized may have large
repercussions on the resulting decision tree. We also plan to investigate solutions to
overcome this problem.

References

1. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting
business process performances. In: Meersman, R., Panetto, H., Dillon, T., Rinderle-Ma, S.,
Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012,
Part I. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012)

2. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process
mining. Information Systems 36(2), 450–475 (2011)

3. Lakshmanan, G., Shamsi, D., Doganata, Y., Unuvar, M., Khalaf, R.: A markov prediction
model for data-driven semi-structured business processes. Knowledge and Information Sys-
tems, 1–30 (2013)

4. Ghattas, J., Soffer, P., Peleg, M.: Improving business process decision making based on past
experience. Decision Support Systems 59, 93–107 (2014)

5. Kim, A., Obregon, J., Jung, J.Y.: Constructing decision trees from process logs for performer
recommendation. In: van der Aalst, W. (ed.) BPM 2013 International Workshops. LNCS,
vol. 171, pp. 224–236. Springer, Heidelberg (2014)

6. Conforti, R., de Leoni, M., La Rosa, M., van der Aalst, W.M.P.: Supporting risk-informed
decisions during business process execution. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.)
CAiSE 2013. LNCS, vol. 7908, pp. 116–132. Springer, Heidelberg (2013)

7. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of
business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y.,
Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer,
Heidelberg (2014)

8. Dohmen, A., Moormann, J.: Identifying Drivers of Inefficiency in Business Processes: A
DEA and Data Mining Perspective. In: Bider, I., Halpin, T., Krogstie, J., Nurcan, S., Proper,
E., Schmidt, R., Ukor, R. (eds.) BPMDS 2010 and EMMSAD 2010. LNBIP, vol. 50,
pp. 120–132. Springer, Heidelberg (2010)

9. Zeng, L., Lingenfelder, C., Lei, H., Chang, H.: Event-driven quality of service predic-
tion. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,
pp. 147–161. Springer, Heidelberg (2008)

10. van der Aalst, W.M.P., Dustdar, S.: Process mining put into context. IEEE Internet Comput-
ing 16(1), 82–86 (2012)

11. Sutrisnowati, R.A., Bae, H., Park, J., Ha, B.H.: Learning bayesian network from event
logs using mutual information test. In: Proceedings of the 6th International Conference on
Service-Oriented Computing and Applications (SOCA), pp. 356–360 (2013)

12. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological varia-
tions, and system approaches. AI Communication 7(1), 39–59 (1994)

13. Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill, Inc., New York (1997)
14. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of contin-

uous features. In: Proceedings of the Twelfth International Conference on Machine Learning
(ICML 1995), pp. 194–202. Morgan Kaufmann (1995)

15. Nakatumba, J.: Resource-Aware Business Process Management: Analysis and Support. PhD
thesis, Eindhoven University of Technology (2014) ISBN: 978-90-386-3472-2

266 M. de Leoni, W.M.P. van der Aalst, and M. Dees

16. van der Aalst, W.M.P., de Beer, H.T., van Dongen, B.F.: Process mining and verification of
properties: An approach based on temporal logic. In: Meersman, R., Tari, Z. (eds.) OTM
2005. LNCS, vol. 3760, pp. 130–147. Springer, Heidelberg (2005)

17. de Leoni, M., van der Aalst, W.M.P.: Aligning event logs and process models for multi-
perspective conformance checking: An approach based on integer linear programming. In:
Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 113–129. Springer,
Heidelberg (2013)

18. de Leoni, M., Maggi, F.M., van der Aalst, W.M.P.: An alignment-based framework to check
the conformance of declarative process models and to preprocess event-log data. Information
Systems (to appear, 2014), doi: 10.1016/j.is.2013.12.005

19. Rozinat, A., van der Aalst, W.M.P.: Decision Mining in Prom. In: Dustdar, S., Fiadeiro, J.L.,
Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer, Heidelberg (2006)

Behavioral Comparison of Process Models

Based on Canonically Reduced Event Structures

Abel Armas-Cervantes1, Paolo Baldan2,
Marlon Dumas1, and Luciano Garćıa-Bañuelos1

1 Institute of Computer Science, University of Tartu, Estonia
{abel.armas,marlon.dumas,luciano.garcia}@ut.ee

2 Department of Mathematics, University of Padova, Italy
baldan@math.unipd.it

Abstract. We address the problem of diagnosing behavioral differences
between pairs of business process models. Specifically, given two process
models, we seek to determine if they are behaviorally equivalent, and if
not, we seek to describe their differences in terms of behavioral relations
captured in one model but not in the other. The proposed solution is
based on a translation from process models to Asymmetric Event Struc-
tures (AES). A näıve version of this translation suffers from two lim-
itations. First, it produces redundant difference diagnostic statements
because an AES may contain unnecessary event duplication. Second, it
is not applicable to process models with cycles. To tackle the first limita-
tion, we propose a technique to reduce event duplication in an AES while
preserving canonicity. For the second limitation, we propose a notion of
unfolding that captures all possible causes of each event in a cycle. From
there we derive an AES where repeated events are distinguished from
non-repeated ones and that allows us to diagnose differences in terms of
repetition and causal relations in one model but not in the other.

1 Introduction

Comparing models of business process variants is a basic operation when manag-
ing collections of process models [1]. In some cases, syntactic matching of nodes
or edges are sufficient to understand differences between two variants. However,
two variants may be syntactically different and still be behaviorally equivalent
or they may be very similar syntactically but quite different behaviorally, as
changes in a few gateways or edges may entail significant behavioral differences.

This paper presents a technique to compare business processes in terms of
behavioral relations between tasks. The technique diagnoses differences in the
form of binary behavioral relations (e.g., causality and conflict) that hold in one
model but not in the other. For example, given the models in Fig. 11 we seek to
describe their differences via statements of the form: “In model M1, after Prepare
transportation quote it is possible to execute either Arrange delivery appointment

1 Based on an order fulfillment process presented in [2].

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 267–282, 2014.
© Springer International Publishing Switzerland 2014

268 A. Armas-Cervantes et al.

Prepare
transp.
quote

Arrange
pickup
appt.

Produce
ship.
notice

Arrange
delivery

appt.

(a) M1

Prepare
transp.
quote

Arrange
pickup
appt.

Produce
ship.
notice

Arrange
delivery

appt.

Arrange
delivery

appt.

Arrange
pickup
appt.

(b) M2

Fig. 1. Variants of business process models

and Produce shipment notice, or only Produce shipment notice; whereas in M2

after Prepare transportation quote, Arrange delivery appointment is followed by
Produce shipment notice”. The diagnosis also considers cyclic behavior, e.g. “In
model M1, activity Arrange delivery appointment can be executed many times in
a run; whereas in M2 it is executed only once”.

The key idea of the proposal is to compare abstract representations of the
process models based on binary behavioral relations. If two process models have
isomorphic abstract representations, then they are behaviorally equivalent and
otherwise we can use error-correcting graph matching to diagnose the differences.
To this end, we adopt a well-known model of concurrency known as event struc-
tures [3], where computations are represented via events (activity occurrences)
and behavioral relations between events. There are different types of event struc-
tures comprising different relations, such as Prime Event Structures [3] (PESs)
and Asymmetric Event Structures [4] (AESs). For the purpose of comparison,
more compact representations are desirable as they lead to more concise diag-
nosis of relations existing in one process and not in the other. In this respect,
AESs are more compact than PESs and in prior work [5], we proposed a behavior-
preserving folding of AESs. However, the work in [5] shows that in some cases
multiple non-isomorphic AESs exist that represent the same behavior.

The contributions of the paper are threefold: (i) we extend our work in [5], by
proposing a deterministic order on the folding of AESs that produces a canonical
represention of the behavior of a given process model, (ii) we extend our approach
to support the differencing of process models with cycles, and (iii) we propose
an approach to verbalize differences. For the sake of presentation, we assume
that the input process are represented as Petri nets. Transformations from other
process modeling notations (e.g. BPMN) to Petri nets are given elsewhere [6].

The paper is structured as follows, Section 2 discusses related work. Section 3
provides definitions of notions used in the rest of the paper. The proposed tech-
niques are presented in Section 4. Finally Section 5 summarizes the contributions
and discusses future work.

2 Related Work

Approaches for process model comparison can be divided into those based on
node label similarity, process structure similarity and behavior similarity [1]. In

Behavioral Comparison of Process Models 269

this paper we focus on behavioral similarity. Nevertheless, we acknowledge that
node label similarity plays an important role in the alignment of nodes (e.g.,
tasks) across the process models being compared. In our work, we assume that
such an alignment is given, i.e. for each node label in one model we are given
the corresponding (“equivalent”) node label in the other model.

There are many equivalence notions for concurrent systems [7], ranging from
trace equivalence (processes are equivalent if they have the same set of traces) to
bisimulation equivalence, to finer equivalences which preserve some concurrency
features of computations (two models are equivalent if they have same sets of
runs taking into account concurrency between events). Few methods have been
proposed to diagnose differences between processes based on various notions of
equivalence. The paper [8] presents a technique to derive equations in a process
algebra characterizing the differences between two Labeled Transition Systems
(LTSs). The use of a process algebra makes the feedback difficult to grasp for
end users (process analysts in our context) and the technique relies on a notion
of equivalence that does not take into account the concurrent structure in the
process (a process model with concurrency and its sequential simulation are
equivalent). In [9], a method for assessing dissimilarity of LTSs in terms of “edit”
operations is presented. However, such feedback on LTSs does not tell the analyst
what relations exist in one model that do not exist in the other. Also, it is
based on a notion of equivalence that does take concurrency into account. The
same remarks apply to [10], which presents a method for diagnosing differences
between pairs of process models using standard automata theory. In addition,
in [10] the set of reported differences is not guaranteed to be complete.

Behavioral Profiles (BP) [11] and Causal Behavior Profiles [12] are two ap-
proaches to represent processes using binary relations. They abstract a process
using a n × n matrix, where n is the number of tasks in the process. Each cell
contains one out of three relations: strict order, exclusive order or interleaving;
plus an additional co-occurrence relation in the case of causal behavioral profiles.
Both techniques are incomplete as they mishandle several types of constructs,
e.g., task skipping (silent transitions), duplicate tasks, and cycles. In this case,
two processes can have identical BPs despite not being behaviorally equivalent.

Alpha relations [13] are another representation of processes using binary be-
havioral relations (direct causality, conflict and concurrency), proposed in the
context of process mining. Alpha causality is not transitive (i.e. causality has a
localized scope) making alpha relations unsuitable for behavior comparison [14].
Moreover, alpha relations cannot capture so-called “short loops” and hidden
tasks (including task skipping). Relation sets [15] are a generalization of alpha
relations. Instead of one matrix, the authors use k matrices (with a variable k).
In each matrix, causality is computed with a different look-ahead. It is shown
that 1-lookahead matrices induce trace equivalence for a restricted family of
Petri nets. The authors claim that using k matrices improves accuracy. But it is
unclear how human-readable diagnostics of behavioral differences could be ex-
tracted from two sets of k matrices and it is unclear to what notion of equivalence
would the diagnostics correspond.

270 A. Armas-Cervantes et al.

3 Preliminaries

This section introduces some fundamental notions on Petri nets, branching pro-
cesses and event structures that will be used in subsequent parts of the paper.

3.1 Petri Nets

Definition 1 (Petri net, Net system). A tuple N = (P,T,F) is a Petri net,
where P is a set of places, T is a set of transitions, with P ∩ T = ∅, and
F ⊆ (P × T) ∪ (T × P) is a set of arcs. A marking M ∶ P → �0 is a function
that associates each place p ∈ P with a natural number (viz., place tokens). A net
system S = (N,M0) is a Petri net N = (P,T,F) with an initial marking M0.

Places and transitions are conjointly referred to as nodes. We write ●y = {x ∈

P ∪ T ∣ (x, y) ∈ F} and y● = {z ∈ P ∪ T ∣ (y, z) ∈ F} to denote the preset and
postset of node y, respectively. F + and F ∗ denote the irreflexive and reflexive
transitive closure of F , respectively.

τ

τ

τ

τ

Fig. 2. N2 of Fig. 1(b)

The semantics of a net system is defined in
terms of markings. A marking M enables a
transition t if ∀p ∈ ●t ∶ M(p) > 0, denoted as
(N,M)[t⟩. Moreover, the occurrence of t leads
to a new marking M ′, with M ′

(p) =M(p) − 1
if p ∈ ●t∖t●, M ′

(p) =M(p)+1 if p ∈ t●∖●t, and
M ′

(p) =M(p) otherwise. We use M
t

�→M ′ to
denote the occurrence of t. The marking Mn is
said to be reachable from M if there exists a
sequence of transitions σ = t1t2 . . . tn such that
M

t1
�→ M1

t2
�→ . . .

tn
�→ Mn. The set of all the

markings reachable from a marking M is de-
noted [M⟩. A marking M of a net is n-safe if M(p) ≤ n for every place p. A net
system N is said n-safe if all its reachable markings are n-safe. In the following
we restrict ourselves to 1-safe net systems. Hence, we identify the marking M
with the set {p ∈ P ∣ M(p) = 1}.

A labeled Petri net N = (P,T,F,λ) has a function λ ∶ P ∪ T → Λ ∪ {τ} that
associates a node with a label. A transition x is said to be observable if λ(x) ≠ τ ,
otherwise x is silent. A labeled net system S = (N,M0, λ) is similarly defined.
An example of a labeled net system is shown in Fig. 2, the transitions display
their corresponding label inside the rectangle if they are observable.

3.2 Deterministic and Branching Processes

The partial order semantics of a net system can be formulated in terms of runs or,
more precisely, prefixes of runs that are referred to as deterministic processes2

2 Here and in the rest of this section, the term process refers to a control-flow abstrac-
tion of a business process based on a partial order semantics.

Behavioral Comparison of Process Models 271

[16]. A process can be represented as an acyclic net with no branching nor
merging places, i.e., ∀p ∈ P ∶ ∣●p∣ ≤ 1 ∧ ∣p●∣ ≤ 1. Alternatively, all runs can be
accommodated in a single tree-like structure, called branching process [3], which
can contain branching places and explicitly represents three behavior relations:
causality, concurrency and conflict defined as follows.

Definition 2 (Behavior relations). Let N = (P,T,F) be a Petri net and
x, y ∈ P ∪ T two nodes in N .
– x and y are in causal relation, denoted x <N y, iff (x, y) ∈ F +. The inverse

causal relation is denoted >N . By ≤N we denote the reflexive causal relation.
– x and y are in conflict, denoted x #N y, iff there exist two transitions t, t′ ∈ T

such that t and t′ are distinct, ●t∩●t′ ≠ ∅, and (t, x), (t′, y) ∈ F ∗. If x #N x
then x is said to be in self-conflict.

– x and y are concurrent, denoted as x ∥N y, iff neither x <N y, nor y <N x,
nor x #N y.

We can now provide a formal definition for branching process.

Definition 3 (Branching process). Let S = (P,T,F,M0) be a net system.
The branching process U(S) = (B,E,G,ρ) of S is the net (B,E,G) defined by
the inductive rules in Fig. 3. The rules also define the function ρ ∶ B∪E → P ∪T
that maps each node in the branching process U(S) to a node in S. We write
�(B) as a shorthand for ⋃b∈B∪E ρ(b).

p ∈M0

b = ⟨∅, p⟩ ∈ B ρ(b) = p

t ∈ T B′ ⊆ B B′2 ⊆ ∥β �(B′) = ●t

e = ⟨B′, t⟩ ∈ E ρ(e) = t

e = ⟨B′, t⟩ ∈ E t● = {p1, . . . , pn}

bi = ⟨t′, pi⟩ ∈ B ρ(bi) = pi

Fig. 3. Branching process, inductive rules

In a branching process U(S) =

(B,E,G,ρ), B represents the set of
conditions (places) and E the set of
events (transitions). Let β = U(S) be
a branching process, thus Min(β) de-
notes the set of minimal elements of
B ∪ E with respect to the transitive
closure of G. Henceforth,Min(β) cor-
responds to the set of places in the ini-
tial marking of S, i.e., �(Min(β)) =

M0. A co-set is a set of conditions
B′ ⊆ B such that for all b, b′ ∈ B′ it
holds b ∥ b′. A cut is a maximal co-
set w.r.t. set inclusion.

Fig. 4. U(N2) (Fig. 1(b))

One characteristic of a branching
process is that it does not contain
merging conditions. As a result, some
nodes in the net system need to be
represented more than once in the
branching process. For example, the
branching process in Fig. 4 contains
multiple instances of b, c and d, which
come from a single transition in the
net system shown in Fig. 2.

272 A. Armas-Cervantes et al.

Definition 4 (Configuration and deterministic process). Let β =

(B,E,G,ρ) be a branching process.
– A configuration C of β is a set of events, C ⊆ E, which is

i) causally closed, i.e., ∀e′ ∈ E,e ∈ C ∶ e′ ≤β e⇒ e′ ∈ C, and
ii) conflict free, i.e., ∀e, e′ ∈ C, ¬(e #β e′).
We denote by Conf(β) the set of configurations of the branching process β,
whereas MaxConf(β) refers to the maximal configurations w.r.t. set inclu-
sion.

– A local configuration of an event e ∈ E is denoted as ⌊e⌋ = {e′ ∣ e′ ≤ e}, such
that it is unique for any event e ∈ E. In the same vein, by ⌊e) we denote the
set of strict causes of an event e ∈ E, i.e., ⌊e) = ⌊e⌋/{e}

– A deterministic process π = (Bπ,Eπ ,Gπ, ρ) is the net induced by a configu-
ration C, where Bπ = ⋃

c∈C
(●c∪c●), Eπ = C, and Gπ = G∩(Bπ×Eπ∪Eπ×Bπ).

A cut for a configuration C of a branching process β = U(S) is defined as
Cut(C) = (Min(β)∪ ⋃

c∈C
c●)/(⋃

c∈C
●c); whereas �(Cut(C)) is a reachable marking

in S, denoted byMark(C), i.e,Mark(C) ∈ [M0⟩. Let C and C′ be configurations
of β, such that C ⊂ C′, and let π and π′ be their corresponding deterministic
branching processes. If X = C′ ∖C, then we write π′ = π⊕X and we say that π′

is an extension of π.
Throughout this paper, we use visible-pomset equivalence [17] as the notion

of behavioral equivalence. A pomset is a tuple ⟨X,≤ ∣X⟩, where X is a set of
events and ≤ ∣X is the projection of the causal relation over X . We use XΛ

= {e ∈
X ∣ λ(e) ≠ τ} to denote the restriction of X to observable events. With abuse
of notation, we write XΛ to denote the restriction of the pomset induced by X ,
restricted to observable behavior, and it is called the visible pomset underlying
X . Moreover, we denote by Conf (�)Λ the set of visible pomsets underlying its
configurations, i.e., Conf (β)Λ = {CΛ ∶ C ∈ Conf (β)}.

A function f is an isomorphism between pomset p and pomset q, iff it is a
label-preserving order-isomorphism, i.e., f ∶ Ep → Eq is a bijection, λp = λq ○ f ,
and e <p e′ ⇔ f(e) <q f(e′) for all e, e′ ∈ Ep. Armed with the concepts above,
we can now formally define visible-pomset equivalence:

Definition 5 (Visible-pomset equivalence [17]). Let β and β′ be the branch-
ing processes of the net systems N and N ′. Then N visible-pomset approximates
N ′, written N ⊑pt N

′, iff every visible-pomset XΛ
∈ Conf(β)Λ is isomorphic with

at least one visible-pomset Y Λ
∈ Conf(β′)Λ. Moreover, N and N ′ are visible

pomset equivalent, denoted �1 ≡vp �2, iff each is ⊑vp to the other.

3.3 Event Structures

This section introduces two variants of event structures, which are the corner-
stones of our comparison technique, prime and asymmetric event structures.

Definition 6 (Prime Event Structure [3]). Let S = (N,M0) be a net system,
where N = (P,T,F,λN), and β = (B,E,G,ρ) be its branching process. The

Behavioral Comparison of Process Models 273

labeled Prime Event Structure (PES) of β is defined as � = ⟨E, ≤�, #�, λ�⟩,
where ≤� = ≤β ∩ E2 and #� =#β∩E

2. Finally, λ� = λN ○ρ is a labeling function
that associates each event e ∈ E with the label of its corresponding transition
t ∈ T , i.e., ρ(e) = t⇒ λξ(e) = λN(t).

The conflict relation #� is hereditary w.r.t. ≤�, i.e. e#�e
′
∧e′ ≤� e′′ ⇒ e#�e

′′

for all e, e′, e′′ ∈ E.

a

b c

c d b d

d d

#

#

Fig. 5. PES �̄

As stated before, we focus only on observable behav-
ior. Therefore, we use �̄ to denote a PES with observable
events, that is, with all its invisible events being abstracted
away. Figure 5 shows the PES with all the observable be-
havior of the net system N2 from Fig. 2. In this graphical
representation, solid arrows represent causality, and anno-
tated dotted lines represent conflict. It is common practice
not to include transitive relations in the graphical repre-
sentation of a PES, for the sake of readability.

The set of configurations of a PES � coincides with the
set of configurations of its originative branching process.
We will denote this set as Conf(�).

We now turn our attention to Asymmetric Event Struc-
tures (AESs).

Definition 7 (Asymmetric Event Structure [4]). An AES is a triplet � =

⟨E,≤,↗⟩, where E represents the set of events, ≤ is the causality relation and ↗

is the asymmetric conflict relation. Moreover, for all e, e′, e′′ ∈ E the following
holds: (1) ⌊e⌋ = {e′ ∣ e′ ≤ e} is finite, (2) e < e′ ⇒ e ↗ e′, (3) if e ↗ e′ and
e′ < e′′ then e↗ e′′, (4) ↗ ∣⌊e⌋ is acyclic, (5) if ↗ ∣⌊e⌋∪⌊e′⌋ is cyclic then e↗ e′.
Finally, let Ψ� = (<,↗) denote the behavior relations of �.

This type of event structure replaces the conflict relation in PESs with an
asymmetric relation. Graphically, causality is represented by a solid arrow and
asymmetric conflict with a dashed arrow. Intuitively, the statement a ↗ b has
two interpretations: (i) the occurrence of b prevents the occurrence of a, or
(ii) a precedes b in all computations where both events occur. By (ii), asymmetric
conflict can be seen as a form of weak causality. Interestingly, asymmetric conflict
is also hereditary w.r.t. causality. As for PESs, two events are said concurrent
when they are neither in causal nor in asymmetric conflict relation.

a b

c

Fig. 6. �0

In the case of PESs, the set inclusion relation defines a order
over configurations referred to as configuration extension. This
does not apply to the case of AESs. Consider the AES presented
in Fig. 6. Note that {a, b, c} is an extension of {a, b}, but it is not
an extension of {a, c}, because the occurrence of c prevents that
of b. Formally, a configuration of � = ⟨E,≤,↗, λ⟩ is a set of events
C ⊆ E such that 1) for any e ∈ C, ⌊e⌋ ⊆ C (causal closedness)
2) ↗ ∣C is acyclic (conflict free). Moreover, if C1,C2 ∈ Conf (�)
are cofigurations, we say that C2 extends C1, written C1 ⊑ C2, if

274 A. Armas-Cervantes et al.

C1 ⊆ C2 and for all e ∈ C1, e′ ∈ C2 ∖C1, ¬(e
′
↗ e). The set of all

configurations of � is denoted by Conf (�).

b c′

c b′

(a) �1

b c′

c

(b) �2

b c′

b′

(c) �3

Fig. 7. Equivalent AESs

The AES formalism is more expres-
sive than PESs and it can provide
a more compact representation for a
given set of configurations. In fact,
any PES can be seen as a special case
of an AES [4] where the conflict rela-
tion is replaced with asymmetric con-
flict relations in both directions. Con-
sider the AES shown in Fig. 7. �1 can
be seen as the direct translation of a
PES, hence requiring duplication. �2

and �3 are smaller, but still visible-pomset equivalent, versions of �1. Observe
that there is no smaller AES representation for the same behavior and, in that
sense, both �2 and �3 are minimal.

In [5], we introduced a technique for behavior-preserving minimization of
AESs. Moreover, we found that the technique may lead to different represen-
tations for the same behavior, depending on the order on which the folding
operation is applied on the input AES. For instance, �2 (Fig. 7(b)) comes after
folding events b and b′, whereas �3 (Fig. 7(c)) comes after folding events c and
c′. In the next section, we will address the problem of canonical folding of AESs.

4 Comparison of Process Models

This section describes our approach to process model differencing with Asymmet-
ric Event Structures. The first part addresses the problem of the non-canonicity
of the folding of an AES by leveraging the notion of canonical labelling of graphs.
The second part extends the method to support the comparison of process mod-
els with cycles. Finally, the section presents a differencing operator and an ap-
proach to verbalizing the differences found while comparing pairs of processes.
The proofs are available at [18].

4.1 Canonicity

Any reliable comparison method requires that its input is provided in a canon-
ical representation. In our context, if we consider that the folding operation is
behavior preserving, we would like that the AESs obtained from two isomorphic
PESs are also isomorphic. As shown in Fig. 7, this not always the case. In order
to address this problem, we leverage some concepts from graph theory.

Our solution to the problem of non-canonicity relies on the concept of canoni-
cal labelling of a graph [19], that is an approach to deciding graph isomorphism.
We say that Canon(G) is a function that maps a graph G to a canonical label.
In this way, if graphs G and H are given, we expect Canon(G) = Canon(H) to
hold iff H and G are isomorphic. If we use the string representation of the adja-
cency matrix of a graph, then a canonical label for a graph G can be determined

Behavioral Comparison of Process Models 275

by computing all permutations of its adjacency matrix and selecting the largest
lexicographical exemplar among them3. Clearly, this näıve approach is computa-
tionally expensive, but state-of-the-art software implement several heuristics to
compute canonical labels in a reasonable time. In our context, we are interested
in the order of the vertices associated to the adjacency matrix of the canonical ex-
emplar. Formally, let G = (V,A) be a graph, where V is the set of vertices and A
the set of arcs. Moreover, letM(G) be the adjacency matrix ofG, γ = (0,1, ...∣V ∣)
be an order over the set of vertices, and STR(M(G)γ) be the string linear repre-
sentation of the adjacency matrix G given the order γ. Then the canonical label
of G is the string induced by order γ̂, s.t., STR(M(G)γ̂) ≥lex STR(M(G)γπ)
holds for every possible permutation γπ of γ.

In our implementation, we use nauty (http://pallini.di.uniroma1.it/)
for computing the graph canonical label and, more precisely, the order on the
vertices of the canonical exemplar. Nauty and other similar tools work on graphs
with unlabeled edges. To overcome this limitation, we adapted a transformation
introduced in [20]. Briefly, this transformation maps a fully labeled graph (both
nodes and edges carry a label) into a node-labeled graph and has been proved
to be isomorphism preserving. The reader is referred to [20] to get more details
about this transformation. By leveraging this result and the notion of canonical
label of a graph we can now establish an order on the folding that yields a
minimal and canonical AES for a PES.

Intuitively, the folding starts with an AES that is isomorphic to the PES of
a business process. Thus, we carry the order γ̂ computed over the nauty graph
of the PES. In every iteration we select a set of events that can be merged
without changing the behavior of the AES. We use �/X to denote the folding of
a combinable set of eventsX on an AES �. In [5] we show that the folding defines
a morphism f ∶ AES → AES that preserves visible-pomset equivalence. In this
context, since there might be multiple candidate sets of events for folding, we use
γ̂ for establishing a total order on the folding operations. For space restriction,
we do not include the details on how the whole set of combinable sets of events
is computed and refer the reader to [5] for a full description. Therefore, we will
assume that the combinable sets of events are given.

Definition 8 (Deterministic folding). Let � = ⟨E,≤,↗, λ⟩ be an AES, and
γ̂ ∶ E → �0 be the canonical order of events given by nauty. Let X,Y ⊆ E be
combinable sets of events. Then the precedence of X over Y in a determinis-
tic folding is defined by the following conditions, listed in decreasing relevance:
(i) λ(e) >lex λ(e′) where e′ ∈ Y and e ∈ X, or (ii) λ(e) =lex λ(e′) ∧ ∣X ∣ > ∣Y ∣, or
(iii) λ(e) =lex λ(e′) ∧ ∣X ∣ = ∣Y ∣ ∧ γ̂(X) >lex γ̂(Y). Hence, �

/X = ⟨E
/X ,≤

/X ,↗
/X

, λ/X⟩ is a folding of �, s.t. eX ∈ E/X is the event representing X ⊆ E, and the
canonical labeling function is γ̂�

/X
= γ̂[eX ↦ Ran(γ̂) + 1]. Finally, f(�)+

/X de-
notes the folding induced by γ̂ that cannot be further minimized, i.e., the minimal
canonical folding.

3 Some authors prefer the smallest lexicographic string.

http://pallini.di.uniroma1.it/

276 A. Armas-Cervantes et al.

a

b c

c d b d

d d

0

1

2

3

4

5

6

7

8

(a) �4

a

c

b

c d d d

d

0

9

3

4

5

6 7 8

(b) f(�4)/{b,b}

a

c

b

c d

d

(c) f(�4)
+

/X

Fig. 8. Canonical labeling and folding

Figure 8 illustrates the canonical folding of �4, which corresponds to the PES
�̄ in Fig. 5. �4 shows the order γ̂ assigned by nauty. The combinable sets of
events in �4 are {{b(1), b(2)},{c(3), c(4)},{d(5), d(6)},{d(7), d(8)}}, and from
Definition 8 we know that {b(1), b(2)} takes precedence over the others. The
folding of {b(1), b(2)} is depicted in Fig. 8(b). Note that a fresh event b is added,
replacing the set {b(1), b(2)}, and the value 9 is associated to this event in γ̂.
The values added to γ̂ are monotonically increased. Finally, Fig. 8(c) depicts the
minimal and canonical AES. In this particular case, it was necessary to keep two
events with label c and two with label d to preserve the behavior. The following
proposition shows that the folding of an AES is canonical.

Proposition 1. Let �1 = ⟨E1,≤1,↗1, λ1⟩ and �2 = ⟨E2,≤1,↗2, λ2⟩ be two iso-
morphic AESs and, γ̂1 ∶ E1 → �0 and γ̂2 ∶ E2 → �0 be the canonical order for E1

and E2, correspondingly. Then the deterministic folding of �1 and �2 produces
a canonical AES, such that f(�1)

+

X is isomorphic to f(�2)
+

X .

4.2 Finite Representation of Cyclic Behavior

A fundamental problem with cyclic process models is that their branching pro-
cesses may easily get unboundedly large. Engelfriet [16] showed that every Petri
net has a unique maximal branching process up to isomorphism, the so-called
unfolding of the net. McMillan [21] and then Esparza et al. [22] introduced so-
phisticated strategies for truncating the unfolding to a finite level, thus getting
what is referred to as the complete unfolding prefix (CP). Later, the authors
in [23] introduced a framework to generalize previous work and to defined the
notion of canonical unfolding prefixes. Our own work relies on such a framework.
In the following we restrict ourselves to Petri nets without duplicate tasks.

Consider the net system N1 and the complete unfolding prefix β1 presented in
Fig. 9. Note that both b1 and b4 correspond to the place p1 in N1. To compute
the complete unfolding prefix, we start applying the inductive rules described in
Fig. 3. In this case, however, it is possible to stop unfolding once we reach b2
and b4 because any addition to the prefix would duplicate information already
represented there. For this reason, events b and c are called cutoff events. Al-
though it has been proved that the complete unfolding prefix represents all the

Behavioral Comparison of Process Models 277

(a) N1

(b) β1 (c) β2

Fig. 9. Petri net and two different unfoldings

behavior of the original net system [22], this prefix does not explicitly contain
the information that we require to diagnose the behavioral differences of business
processes. For instance, the fact that c causally precedes b and d is not explicitly
represented in the prefix. Therefore, we require a larger prefix of the branching
process that makes explicit all the causal relations. In the case of the net system
N1 in Fig. 9(a) the required unfolding prefix is β2, (Fig. 9(c)).

In order to compute a unfolding prefix as the one required for comparison
of process models, we define new criteria to identify cutoff events. To this end,
we use the notion cutting context introduced in [23]. The cutting context is
formally defined as the tuple Θ = (≈,⊲,C) where ≈ is an equivalence relation
over configurations, ⊲ is a total order over configurations, and C is the set of
configurations used at the time of the computation of the unfolding prefix. E.g.,
the cutting context used in McMillan [21] is ΘMcMillan = (≈mark,⊲size,Cloc),
where ≈mark equates two configurations when they produce the same marking,
⊲size is the total order induced by the size of configurations, and Cloc = {⌊e⌋ ∣ e ∈
E} is the set of local configurations. Note that, the complete unfolding prefix
β1 can also be computed by using McMillan’s cutting context. In fact, if we
consider the local configurations ⌊c⌋ = {a, τ, c} and ⌊a⌋ = {a}, then one can easily
check that Mark(⌊a⌋) =Mark(⌊c⌋) = {p1}. Moreover, since ∣⌊a⌋∣ < ∣⌊c⌋∣, then one
should conclude that event c is a cutoff event. The cutting context in Esparza et
al. [22], denoted ΘERV = (≈mark,⊲slf ,Cloc), differs from that in [21] only for the
definition of the partial order ⊲slf , which is refined by considering action labels
thus leading to more cut-offs and smaller prefixes (see [22] for details). For our
purposes, consider a cutting context which is a modification of ΘERV with a
refined equivalence relation over configurations.

Definition 9 (≈Pred). Let β = (B,E,G,ρ) be a branching process. A pair of
configurations C1,C2 ∈ Conf(β) are equivalent, represented as C1 ≈Pred C2, iff
eMark(C1) = eMark(C2), where
– eCut(C) = {⟨b, ⌊●b⌋⟩ ∣ b ∈ Cut(C)}, and
– eMark(C) = {⟨ρ(b), ρ(⌊●b⌋)⟩ ∣ ⟨b, ⌊●b⌋⟩ ∈ eCut(C)}.

278 A. Armas-Cervantes et al.

We define our cutting context as ΘPred = (≈Pred,⊲slf ,Cloc). Khomenko et
al. [23] also offers a framework for showing that the unfolding prefix generated
by a cutting context ensures canonicity, finiteness and completeness. To this
end, we need to prove that the equivalence ≈Pred and the adequate order ⊲slf
are preserved by finite configuration extensions. Esparza et al [22] showed that
this property holds for ⊲slf . The following proposition shows that the property
also holds for ≈Pred.

Proposition 2. Let β = (B,E,G,ρ) be the branching process of a net system
S = (N,M0) and C,C′ ∈ Conf(β) be a pair of configurations, s.t. that C ≈Pred
C′. Therefore, for every suffix V of C, there exists a finite suffix V ′ of C′ s.t.:

C′ ⊕ V ′ ≈Pred C ⊕ V

The following proposition shows that the canonical unfolding prefix con-
structed with ΘPred contains all the causal relations that would be exhibited
in the (possibly infinite) unfolding of a business process with cycles.

Proposition 3 (Completeness of transitive causal relation). Let β =

(B,E,G,ρ) be the full branching process of a net system S = (N,M0), ΘPred =
(≈Pred,⊲slf ,Cloc) be the cutting context and βΘ = (B′,E′,G′, ρΘ) be the CP
unfolding constructed by ΘPred. Finally, let E

′′

Θ be the set of cut-offs computed by
the cutting context. Then, the unfolding prefix βΘ contains the distinct transitive
causal dependencies, such that for any pair of events e1, e2 ∈ E ∶ e1 < e2 then

∃e′1, e
′

2 ∈ E
′
∶ e′1 < e′2, where ρ(e1) = ρΘ(e

′

1) and ρ(e2) = ρΘ(e
′

2).

(a) N3

(b) N4

Fig. 10. Sample net systems

Unfortunately, the cutting context ΘPred does
not always produce a prefix that is canonical for
business process comparison. For instance, the two
net systems presented in Figure 10 are visible-
pomset equivalent. However, the presence of silent
transitions leads to unfolding prefixes with larger
duplication in case of N4. In the current form, the
behavior-preserving folding technique that we rely
on will not merge causally related events, e.g. as in
the unfolding of N4, because it prevents cycles in
the AES. The problem of computing a canonical
folding of such cycles is left as future work.

Repetitions. We now show how to identify the
repetitive behavior, given the canonical unfolding
prefix induced by ΘPred. Intuitively, we can say
that a transition t in a net system is part of repetitive behavior iff there exists
at least one configuration on which two events associated to transition t occur
in causal relation. This intuition is captured in the following definition:

Behavioral Comparison of Process Models 279

Definition 10 (Repetitive behavior). Let β = (B,E,G,ρ) be the unfolding
prefix induced by ΘPred for a net N = (P,T,F,λ). The repetitive behavior of N
is defined as R = {ρ(e1) ∣ ∃C ∈ Conf(β). e1, e2 ∈ C ∧ ∧ ρ(e1) = ρ(e2)∧e1 < e2}.

It can be easily checked that the sets {e0, e1, e4}, {e0, e2, e6} and {e0, e2, e5,
e11, e14} are configurations in the unfolding prefix β2 from Fig. 9(c). From the
discussion above, we can conclude that b is part of repetitive behavior, in spite
of the fact that there is a configuration that contains a single event carrying the
label b. Moreover, we can also see that there exist at least one configuration on
which no event labeled b occurs. This means that the task b will be observed
zero or more times. In general, tasks participating in repetitive behavior can
be observed either “0 or more times” (denoted as “∗”) or “1 or more times”
(denoted as “+”). We will use the marker “0” for tasks that do not participate
in repetitive behavior. The following definition captures the intuition above.

Definition 11 (Partitions of repetitive behavior). Let β = (B,E,G,ρ) be
the unfolding prefix induced by ΘPred for net system S = (N,M0). The constant
behavior K is defined as K = �(⋂MaxConf(β)). Therefore, the partitions of
repetitive behavior are defined as:
– 0 = {e ∣ e ∈ E ∧ ρ(e) ∉ R}

– + = {e ∣ e ∈ E ∧ ρ(e) ∈ R ∩K}

– ∗ = {e ∣ e ∈ E ∧ ρ(e) ∈ R ∧ e ∉ +}

4.3 Comparison

a

c′

b

c d′

d

(a) �5

a

c′

b

c d′

d

(b) �6

Fig. 11. Foldings and optimal matching (hinted
by the position) of the AESs of to processes in
the running example

The comparison of process mod-
els happens on a subset of events,
with the remaining events be-
ing discarded. We keep all the
events which carry labels that
are present in both process mod-
els. Moreover, since a single task
may have multiple events as-
sociated, we compute an opti-
mal matching, with well-known
methods [1], on the set of events
from both process models and
discard the subset of events that
does not make part of the match-
ing. As discussed before, if two
AESs are isomorphic then they
must be diagnosed as behaviorally equivalent. In this work we adopt visible
pomset equivalence [17]4. It is only when two AESs are not isomorphic that we
have to diagnose the differences. Once the optimal matching is computed, the

4 Due to the presence of silent transitions, we use a weaker notion of equivalence than
the one adopted in [5].

280 A. Armas-Cervantes et al.

comparison of business processes happens in three stages: (1) diagnosis over the
set of events in the optimal matching, (2) diagnosis on repetitive behavior, and
(3) diagnosis on the set of unmatched events.

The diagnostic of the differences of behavior can be represented in a square
matrix of order n, where n is the number of events in the optimal matching. To
this end, we define the following differencing operator.

Definition 12 (Symmetric difference of AES behavior relations). Let
�1 = (E1, ≤1, ↗1, λ1) and �2 = (E2, ≤2, ↗2, λ2) be labeled event structures,
and let Ψ�1 and Ψ�2 be their corresponding behavior relations. Let I ∶ E′1 → E′2
is the mapping function from �1 to �2 given by the graph matching algorithm,
such that E′1 ⊆ E1 and E′2 ⊆ E2.

Let (e1, e2), (e
′

1, e
′

2) ∈ I be event matchings. The symmetric difference of Ψ�1

and Ψ�2 , denoted Ψ�1 △ Ψ�2 , is defined as follows:
Ψ�1 △ Ψ�2 [(e1, e2), (e

′

1, e
′

2)] =

{

⋅ if Ψ�1[e1, e
′

1] = Ψ�2[e2, e
′

2]

(Ψ�1[e1, e
′

1], Ψ�2[e2, e
′

2]) if Ψ�1[e1, e
′

1] ≠ Ψ�2[e2, e
′

2]

a b c c′ d d′

a

b . (∗, 0)

c . . (∗, 0) . (#,↗) .

c′ . . . (∗, 0) . (↗,<)

d

d′

Fig. 12. Ψ�5 △ Ψ�6

Figure 11 shows the AESs of
the sample process models in
Fig. 1, projected to the subset
of events (and behavior relations)
in the optimal matching. Fig-
ure 12, in turn, shows the sym-
metric differencing of �5 and �6.
Since cycles of asymmetric con-
flict hint a sort of symmetric con-
flict, in the matrix we prefer to
use symmetric conflict to high-
light this subtle difference, e.g.,
Ψ�5 △ Ψ�5[(c, d), (c, d)] = (#,↗).

Given the intuitive interpretation of the behavior relations represented in
an AES, it is possible to use the following statements to describe the eventual
differences in behavior:
– Causality: “task a occurs before task b”.
– Asymmetric conflict: “task a can occur before task b, or a can be skipped”.
– Conflict: “task a and task b are mutually exclusive”.
– Concurrency: “task a and task b occur in parallel”.

Similarly, for repetitive activities, we say:
– 0: “it is not repeated any time”,
– +: “activitiy a can occur 1 or more times”, and
– ∗: “activity a can occur 0 or more times”.
It is often the case that the feedback requires further information to under-

stand the context on which a behavior difference arises. One possibility would
be to present the set of runs on which a particular event occurs. However, the
amount of information might be overwhelming. Therefore, we include in the

Behavioral Comparison of Process Models 281

feedback only the set of events that are in direct causal relation with the event
giving rise to the difference. Based on the above considerations, the following are
examples of verbalization for differences encountered from the matrix in Fig. 12:
– c,d = (#,↗): In model 1, there is a state after the execution of c where d

and c are mutually exclusive; whereas in model 2, there is a state after the
execution of b where c can occur before d, or c can be skipped

– c′,d′ = (↗,<): In model 1, there is a state after the execution of a where c
can occur before d, or c can be skipped; whereas in model 2, there is a state
after the execution of a where c precedes d

– b(∗,0): Task b may occur many times in model 1; whereas in model 2, it is
not repeated any time

– c(∗,0): Task c may occur many times in model 1; whereas in model 2, it is
not repeated any time

In the case of tasks with repetitive behavior, one event is randomly chosen
and the feedback is generated with respect to this event (note that the feedback
from other instances would be the same). In the last step, we need to produce
the feedback for the set of unmatched events. In this case, we also include the
set of direct causally preceding events to give a context in the feedback. For the
running example, the feedback would be:
– There is an occurrence of b after c in model 1 but not in model 2
– There is an occurrence of c after b in model 1 but not in model 2

5 Conclusions and Future Work

We present a method for comparing business process models based on behavioral
relations, specifically those supported by AES. The contributions of the paper
are threefold. First, we propose a method to calculate a canonically reduced AES
from an acyclic Petri net. Second, we propose a technique to compute a finite rep-
resentation for repetitive behavior that preserves casual dependencies, although
the latter representation is not canonical as in the acyclic case. Finally, we pro-
pose a verbalization technique to generate difference diagnostics between process
models. The presented techniques are implemented in a prototype tool available
at https://code.google.com/p/fdes/. This tool takes pairs of process models
captured in BPMN notation as input and produces a textual diagnostic of their
differences.

As avenues for future research, we want fine tune the techniques to improve
scalability of the tool. We also foresee an empirical study to assess the usability
of the diagnostics produced by our tool. Finally, we aim at investigating further
the problem of comparison of process models with cycles.

References

1. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of
business process models: Metrics and evaluation. Inf. Sys. 36(2), 498–516 (2011)

2. La Rosa, M., Clemens, S., ter Hofstede, A.H.M., Russell, N.: Appendix A. The
Order Fulfillment Process Model. In: Modern Business Process Automation 2010
(2010)

https://code.google.com/p/fdes/

282 A. Armas-Cervantes et al.

3. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri Nets, Event Structures and Domains,
Part I. Theoretical Computer Science 13, 85–108 (1981)

4. Baldan, P., Corradini, A., Montanari, U.: Contextual Petri Nets, Asymmetric Event
Structures, and Processes. Information and Computation 171, 1–49 (2001)

5. Armas, A., Baldan, P., Garćıa-Bañuelos, L.: Reduction of event structures under
hp-bisimulation. Technical report, http://arxiv.org/abs/1403.7181

6. Polyvyany, A., Garćıa-Bañuelos, L., Dumas, M.: Structuring acyclic process mod-
els. Information Systems 37(6), 518–538 (2012)

7. van Glabbeek, R., Goltz, U.: Refinement of actions and equivalence notions for
concurrent systems. Acta Informatica 37, 229–327 (2001)

8. Cleaveland, R.: On automatically explaining bisimulation inequivalence. In: Clarke,
E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 364–372. Springer, Hei-
delberg (1991)

9. Sokolsky, O., Kannan, S., Lee, I.: Simulation-Based Graph Similarity. In: Her-
manns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 426–440.
Springer, Heidelberg (2006)

10. Dijkman, R.: Diagnosing Differences between Business Process Models. In: Dumas,
M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 261–277.
Springer, Heidelberg (2008)

11. Weidlich, M., Mendling, J., Weske, M.: Efficient Consistency Measurement Based
on Behavioral Profiles of Process Models. IEEE TSE 37(3), 410–429 (2011)

12. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Causal Behavioural Pro-
files. Fundamenta Informaticae 113(3-4), 399–435 (2011)

13. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering
process models from event logs. IEEE TKDE 16(9), 1128–1142 (2004)

14. Badouel, E.: On the α-Reconstructibility of Workflow Nets. In: Haddad, S.,
Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 128–147. Springer,
Heidelberg (2012)

15. Weidlich, M., van der Werf, J.M.: On Profiles and Footprints – Relational Semantics
for Petri Nets. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS,
vol. 7347, pp. 148–167. Springer, Heidelberg (2012)

16. Engelfriet, J.: Branching processes of Petri nets. Acta Informatica 28, 575–591
(1991)

17. van Glabbeek, R., Goltz, U.: Equivalence notions for concurrent systems and re-
finement of actions.. In: Kreczmar, A., Mirkowska, G. (eds.) MFCS 1989. LNCS,
vol. 379, pp. 237–248. Springer, Heidelberg (1989)

18. Armas, A., Baldan, P., Dumas, M., Garćıa-Bañuelos, L.: Behavioral comparison of
process models based on canonically reduced event structures. Technical report It
is, available at, http://math.ut.ee/~abela

19. McKay, B.D.: Practical graph isomorphism. Department of Computer Science,
Vanderbilt University (1981)

20. Kant, G.: Using canonical forms for isomorphism reduction in graph-based model
checking. Technical report, CTIT University of Twente, Enschede (July 2010)

21. McMillan, K.L., Probst, D.K.: A Technique of State Space Search Based on Un-
folding. Formal Methods in System Design 6(1), 45–65 (1995)

22. Esparza, J., Römer, S., Vogler, W.: An Improvement of McMillan’s Unfolding Al-
gorithm. Formal Methods in System Design 30(2), 285–310 (2002)

23. Khomenko, W.V., Koutny, M., Vogler: Canonical prefixes of Petri net unfoldings.
Acta Informatica 40(2), 95–118 (2003)

http://arxiv.org/abs/1403.7181
http://math.ut.ee/~abela

Where Did I Go Wrong?
Explaining Errors in Business Process Models

Niels Lohmann1 and Dirk Fahland2

1 Universität Rostock, Institut für Informatik, 18051 Rostock, Germany
2 Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

niels.lohmann@uni-rostock.de,d.fahland@tue.nl

Abstract. Business process modeling is still a challenging task —
especially since more and more aspects are added to the models, such as data
lifecycles, security constraints, or compliance rules. At the same time, formal
methods allow for a detection of errors in the early modeling phase. Detected
errors are usually explained with a path from the initial to the error state. These
paths can grow unmanageably and make the understanding and fixing of errors
very time consuming. This paper addresses this issue and proposes a novel ex-
planation of errors: Instead of listing the actions on the path to the error, only the
decisions that lead to it are reported and highlighted in the original model. Fur-
thermore, we exploit concurrency to create a compact artifact to explain errors.

1 Introduction

Business process modeling is a sophisticated task and received a lot of attention in the
past decades. With the advent of domain-specific languages and a growing scientific
community, the act of creating and managing business process models has become a
discipline on its own. Despite all efforts, design flaws may still occur. This can have
different impacts, ranging from syntactically incorrect models, which are harder to un-
derstand, up to catastrophic faults and down times in the execution that yield to a loss of
money or a legal aftermath. Consequently, a large branch of research focuses in the de-
tection, correction, and avoidance of errors in business process models. Whereas plain
control flow analysis is now well understood, other aspects such as data, business rules,
or security may introduce more subtle flaws that are harder to detect.

The most prominent property of business process models is soundness [1], which
combines several desirable properties such as proper termination and the absence of
deadlocks, livelocks, and dead code. For this fundamental “sanity check”, more and
more sophisticated techniques and tools have been introduced in the last years. Recent
experiments [2] suggest that soundness checks for industrial business process models
can be conducted within microseconds. This allows for a tight integration of verification
steps into the process of modeling.

Staying with the soundness property, we can classify existing approaches into three
classes: (1) Some approaches exploit certain structural constraints of the business process
model, for instance by focussing on workflow graphs that only consist of AND/XOR-
gateways, for instance [3]. (2) Other approaches rely on the definition of soundness which

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 283–300, 2014.
c© Springer International Publishing Switzerland 2014

284 N. Lohmann and D. Fahland

can be defined in terms of standard Petri net properties such as boundedness, liveness, or
the existence of place invariants [4]. The two mentioned approaches are domain-specific
in the sense that they exploit the fact that they investigate business process models. In
contrast, (3) general purpose verification tools (usually called model checkers [5,6]) can
check all kinds of properties as long as they can be expressed in terms of temporal logics.
As this is the case for soundness, these tools are also applicable for the verification of
business process models.

By nature, only domain-specific approaches may exploit the special nature of busi-
ness process models and their correctness criteria are best suited for corresponding ver-
ification tasks — in particular, since the approaches are specially tailored to the need of
the modelers. In contrast, general purpose verification tools are not “aware” of the back-
ground of the property or the model under investigation and hence may only produce
results of limited value. At the same time, the ongoing evolution of business process
modeling languages, the growing number of aspects that need to be covered by a busi-
ness process model, or the trend toward executable business process models, makes
state-of-the-art business process model verification a moving target. As a consequence,
specific approaches may become inapplicable for novel demands, leaving only general
purpose approaches as stable tools for the future.

Goal. This paper tries to improve the applicability of general purpose approaches to
business process models. We thereby try to combine the advantages of a vast set of sup-
ported correctness criteria (and hence, the flexibility to keep up with the fast evolution
of novel modeling languages and correctness criteria) with the domain-specific diag-
nosis results of existing business process verification tools. This paper thereby can be
seen as a follow-up to the reports for Fahland et al. [2] where comprehensive diagnosis
results where only reported for domain-specific approaches, in particular [3].

Problem description. In principle, a model checker takes a formal model (e.g., a Petri
net) and a formal description of the property to check (usually described by temporal
logics) as input and tries to proof the property by an exhaustive investigation of the
model’s states. In case the property is violated (e.g., a deadlocking state is detected), a
path to this error state is reported [5,6]. The path contains all actions of the model that
need to be executed to reach the error state from the initial state. Due to this operational
nature of paths, the scenario that led to the error can be simulated. It is furthermore
possible to explain the scenario in terms of the original model; that is, to map the states
of the Petri net back to events of a BPMN model.

Unfortunately, the size of the paths correlates with the size of the model and paths
of industrial models can thus be very long and hardly understandable. Furthermore, the
path can contain a lot of irrelevant or diverting information that makes the compre-
hension of the error very difficult. For instance, the path usually contains actions that
only “set up” the process (e.g., initializations and login procedures). These inevitable
actions are certainly necessary to be able to reach the error state, but are usually not the
cause of it. Another aspect that makes paths hard to understand is the fact that business
process models may span several components where activities are executed in parallel.
On the path, these originally unordered activities are reported in a fixed — and possibly
arbitrary — order which may yield confusion due to unintuitive error descriptions.

Where Did I Go Wrong? 285

Contribution. To solve the mentioned problems, this paper makes four contributions.
First, we shorten paths by focussing on the choices made rather than on each individ-
ual action. Second, we perform additional verification steps to further reduce the path.
Third, we exploit the concurrency of the model to undo the aforementioned arbitrary or-
dering and to express concurrent parts of the error independently of each other. Fourth,
we take the investigated property into account to remove aspects of the part which are ir-
relevant to the detected error. We shall use a large case study as experimental evaluation
of our proposed approach.

Organization. The next section introduces the basic concepts we build our approach
on, including Petri nets as formal model and a brief introduction to model checking.
Section 3 introduces a novel representation of paths by focussing on the made choices.
In Sect. 4, we discuss how the path can be further shortened by performing additional
verification steps. The combination of paths and concurrency is described in Sect. 5.
Section 6 demonstrations how the size of the resulting artifacts can be further reduced.
All reduction steps are evaluated by experimental results with more than 1,000 indus-
trial business process models. Finally, Sect. 7 summarizes the results and concludes the
paper.

2 Preliminaries

2.1 Petri Nets

Business process modeling languages are usually semiformal and hence are not directly
applicable to a mathematically rigorous proof of correctness criteria. However, the op-
erational semantics can be captured in formalisms such as Petri nets or process calculi.
With the advent of executable languages such as WS-BPEL 2.0 or BPMN 2.0, such a
formalization became much easier, because a precise execution semantics yielded more
careful language specifications.

Our framework is based on Petri nets [7] and is hence not tied to a specific busi-
ness process modeling language. In fact, for most of today’s languages from industry
or academia (including BPMN, WS-BPEL, UML activity diagrams, YAWL, or EPC),
translations into Petri nets exists [8]. We chose Petri nets as formalism for two reasons:
First, it is a graphical formalism that closely resembles languages such as BPMN and
allows to easily translate findings from the original model into the Petri net model, and
vice versa. Second, concurrency (i.e., the independent and yet parallel execution of ac-
tions) can be expressed naturally in terms of Petri nets. This is especially helpful as the
behavior of a Petri net can be expressed by a set of distributed runs, an artifact we shall
use in Sect. 5–6 of this paper.

Intuitively, a Petri net is a directed graph, consisting of active components called
transitions (depicted as squares) which model actions and decisions of business pro-
cesses and passive components called places (depicted as circles) which model loca-
tions of resources such as documents, messages, or the current control flow. The flow
of resources is modeled by arcs between places and transitions, and vice versa. A state
of a Petri net is expressed by a distribution of tokens (depicted by black dots) on the
places (called a marking) which models the current presence of the respective resource.
Formally:

286 N. Lohmann and D. Fahland

F1

J1

M1

M2

(a) business process model from [2]

p1

p2 p3

p4

p5

p6 p7

p8

p9

p10

p11 p12

p13

t1

t2

t3

t4 t5

t6

t7

t8 t9 t10

t11

t12

t13

t14 p14

(b) Petri net model

Fig. 1. A business process model (a) and its translation into a Petri net (b)

Definition 1 (Petri net). A Petri net is a tuple N = [P, T, F,m0] where P is fi-
nite a set of places, T is finite a set of transitions (T ∩ P �= ∅), a flow relation
F ⊆ (P × T) ∪ (T × P), and an initial marking m0 : P → IN.

Example. Figure 1(a) depicts a small business process model from [2] which contains
two subtle control flow errors: a lack of synchronization and a local deadlock. Its trans-
lation into a Petri net is shown in Fig. 1(b). As we see, the structure is very similar to
the original model. The concrete mapping from the models from [2] into Petri nets is
described in [9].

The initial marking m0 defines an initial distribution of tokens on the places. The
marking can change by firing transitions.

Definition 2 (Firing rule). Let N = [P, T, F,m0] be a Petri net, t ∈ T be a transition,
and m : P → IN be a marking of N . Transition t is activated in m (denoted m

t−→) iff
m(p) > 0 for all p ∈ •t. An activated transition can fire, yielding a new marking m′

(denoted m
t−→ m′) with

m′(p) =

⎧⎪⎨
⎪⎩
m(p) + 1, iff p ∈ t• \ •t,
m(p)− 1, iff p ∈ •t \ t•,
m(p), otherwise.

Thereby, let for a node x ∈ P ∪ T be •x = {y | [y, x] ∈ F} the preset of x and
x• = {y | [x, y] ∈ F} be the postset of x.

The behavior of a Petri net is defined by the reachability graph which has all reach-
able markings as nodes, m0 as initial node, and a t-labeled edge between node m and

Where Did I Go Wrong? 287

m′ iff m
t−→ m′. The reachability graph is a very versatile tool when investigating the

behavior of Petri net models as all interesting properties of Petri nets can be checked
using this reachability graph. This includes the most prominent correctness criteria for
business process models such as soundness.

2.2 Model Checking

Model checking [5,6] is an approach to proof that a system satisfied a given correctness
criterion; for instance soundness, the absence of a deadlocking state, the presence of a
sound process configuration, correct data life cycles, or compliance to business rules.
In contrast to theorem provers, which sometimes need the manual inputs, or testing,
which can only proof the existence of errors, but never their absence, model checking
is an automated and complete way to investigate systems.

In this paper, we assume that the model under investigation is given as a Petri net.
The correctness criterion is typically motivated by the domain of the original model
(i.e., a business process). For an automated check, this correctness criterion needs to be
expressed in terms of a temporal logics. Temporal logics extend classical propositional
logics by temporal operators that express the relationships of propositions (i.e., that
a state B is reached after state A is reached) and path quantifiers that express whether
some or all successors of a state need to satisfy a property. The most prominent temporal
logics used in model checking is CTL∗. We refrain from a formal definition, as we shall
concentrate on the evaluation of errors in incorrect systems rather than in the correctness
criteria and their formalization themselves. Detailed introductions provide [5,6].

For the remainder of the paper, we assume the existence of a model checking tool that
takes a Petri net N and a temporal logical formula ϕ as input. If the formula is satisfied
by the Petri net (e.g., if the Petri net is sound), this is reported as “yes” to the modeler.
In case the formula is violated (e.g., a deadlocking marking m is found), this is reported
as “no” to the modeler. In addition, a path π = t1 · · · tn is given to the modeler which
explains how m is reachable from the initial marking m0; that is, m0

t1−→ · · · tn−→ m.
Depending on the nature of the formula ϕ, the marking reached by the reported path
either is a proof that the formula is not satisfied by the behavior of the Petri net N and is
called a counterexample or marking itself is the proof that the formula is satisfied (e.g.,
if ϕ expresses the reachability of that marking m) and is called a witness. In this paper,
we do not distinguish the semantics of the marking m and always refer to m as goal
marking.

Example (cont.). The business process from Fig. 1(a) has a lack of synchronization.
This can be detected by checking the Petri net from Fig. 1(b). The following path π
describes how a marking m can be reached which puts two tokens on place p6.

π = t1 t2 t9 t10 t11 t12 t14 t8 t2 t3 t4 t5 m = {p6 	→ 2}
The path contains 12 transitions. In the remainder of this paper, we use this path to
exemplify the proposed reductions.

It is worthwhile to mention that model checking suffers a devastating worst case
complexity due to the well-known state explosion problem which yields reachability

288 N. Lohmann and D. Fahland

graphs with exponential blow-ups compared to the size of the Petri nets. However, even
industrial business process models can be model checked in few microseconds, be-
cause heuristics that fight the state space explosion proved to be very effective in this
domain [2].

3 Representing Paths by Made Choices

3.1 The Problem: Long Paths = Big Problems

In the remainder of the paper, we focus on the following problem:

Given a path π to a goal marking m of a Petri net model N , how can the reason for
the error modeled by m be briefly and comprehensively explained to the modeler
of N?

Apparently, π describes how the goal marking m can be reached from the initial
marking m0 of N . Consequently, reporting the transitions of π together with the in-
termediated markings to the modeler should help to understand the reasons m was
reached. Unfortunately, this approach is futile in case π contains dozens of transitions.
The reasons for such long paths are:

Detours: Model checkers usually investigate the markings of a Petri net in a depth first
search. As a result, the reported paths do not need to be optimal and may contain
some transitions that model “detours” in the reachability graph that do not con-
tribute in the actual reaching of the goal marking. Note that breadth-first approaches
are not applicable to many classes of formulae.

Interleaving of concurrent transitions: A marking of N may activate two transitions
t1 and t2 which are not mutually exclusive. That is, firing either transition first
does not disable the other one. A typical reason for this is that t1 and t2 do not
share any resources. Consequently, the order in which t1 and t2 occur on the path
π is arbitrary. If each transition belongs to different components of the underlying
business process model, then these arbitrary interleaving of the transitions may be
irritating to the modeler if she tries to understand the path π. In the example path,
transition t11 and t12 are concurrent and the reported order in path π (t11 before
t12) is arbitrary.

Indisputable parts: Though the path π is an actual proof that the goal marking m can
be reached in N , not every transition on the path is an actual cause of m. In the
example process, any path will begin with firing t1 and hence does not need to be
reported to the modeler as reason for an error.

3.2 The Solution: Don’t Report the Obvious

To tackle the problem of long paths with redundant or unhelpful information, we shall
exploit two aspects to shorten paths in the remainder of this chapter: progress and
conflicts.

Where Did I Go Wrong? 289

Progress is the assumption that the model never “gets stuck” in case a transition is
activated. That is, if a marking activates one or more transitions, then this marking is
eventually left by firing on of these transitions. Progress is a natural assumption for
business process models in which the execution of tasks also cannot be postponed in-
definitely. Though the actual occurrence of message or timer events cannot be precisely
predicted, the respective states are always assumed to be eventually left by the modeled
actions.

A conflict is a situation in which there exist more than one possible continuations.
In terms of Petri nets, it is a marking in which two transitions t1 and t2 are enabled,
but after firing either of them, the other transition is disabled. This situation is dual to
concurrent transitions (see above) that do not disable each other. A detailed discussion
of these aspects can be found in [7].

The combination of these aspects brings us to the following intuitive observation:
Only the conflicts on the path π carry information on how to reach the goal mark-
ings. Any other marking m on the path between the initial and the goal marking either
(1) enables no transition: Then this must be the goal marking itself, because it has no
successor marking. Alternatively, (2) marking m enables exactly one transition: Then
this transition is eventually fired due to the assumption of progress. Consequently, this
transition does not need to be reported to the modeler as its firing was already deter-
mined by the previous transition on π thad lead to m. Finally, (3) marking m enables
several concurrent transitions. These transitions may fire independently, and if all of
them are on π, then the exact order is arbitrary.

In the remainder of this section, we shall give a formal definition of conflicts and
sketch an algorithm to reduce paths based on these conflicts. Finally, we shall report
on experimental results applying this algorithm to thousands of business processes. We
shall first formalize a conflict:

Definition 3 (Conflict marking, conflict transition). Let m be a marking with m
t1−→

and m
t2−→. Marking m is a conflict marking and t1 and t2 are conflict transitions iff

(1) m
t1−→ m1, (2) m

t2−→ m2, and (3) m1 � t2−→ or m2 � t1−→.

The above definition relies on markings. However, conflict transitions can be ap-
proximated using the structure of the Petri net. Intuitively, transitions may be conflict
transitions if they share a place in their presets. Desel and Esparza [10] extended this
observation toward a decomposition of a Petri net into its conflict clusters.

Definition 4 (Conflict cluster). Let x ∈ P ∪ T be a node of a Petri net. The conflict
cluster of x, denoted [x] is the minimal set of nodes such that: (1) x ∈ [x]. (2) If p ∈ P
and p ∈ [x], then p• ⊆ [x]. (3) If t ∈ T and t ∈ [x], then •t ⊆ [x].

The conflict clusters of a Petri net can be determined by a union-find-algorithm with
effectively constant amortized time complexity.

Note that free-choice Petri nets [10] have the following property: If one transition
in a conflict cluster is activated in a marking m, then m activates all transitions of that
conflict cluster. That is, an additional check is not required. However, not all aspects
of business process models can be formalized using free-choice Petri nets, for instance
errors, complex gateways, or timeouts. To this end, we decided not to constrain our

290 N. Lohmann and D. Fahland

approach to this class of Petri nets, but to make it applicable to arbitrary Petri nets.
However, checking whether a transition is activated given a concrete marking has linear
complexity in the size of the net and can usually be assumed to be constant as transitions
hardly have all places in their preset, but only a very small subset.

Now we can reduce the path π as follows:

1. Calculate the conflict clusters of N .
2. For each transition t of π activated by a marking m reached by a (possibly empty)

prefix of π: Report t as part of the reduced path if and only if t is a conflict transi-
tion; that is, if and only if {t′ ∈ T | t′ ∈ [t] ∧ m

t′−→} �= {t}.

We discuss the implementation of this algorithm in Sect. 7.

Example (cont.). The conflict clusters with more than one transition of our running
example are shaded gray in Fig. 1(b): transitions t3 and t9, as well as t13 and t14 are
conflicting. Consequently, we can reduce the path π as follows:

πreduced = t9 t14 t3 m = {p6 	→ 2}

The firing of all other transitions is clear from the context from the intermediate mark-
ings and the assumption of progress. Note that the transition names need to be translated
back into the terms of the original model. A different representation of πreduced could
be: “After (1) decision D1: No, (2) decision D2: No, and (3) decision D1: Yes, a lack of
synchronization occurs after after merge M2.”

3.3 Experimental Results

To evaluate the path reduction algorithm, we applied it to a large collection of industrial
process models created by IBM customers using the IBM WebSphere Business Modeler.
The models were first presented in a report by Fahland et al. [2], where the 1386 process
models were checked for soundness using different approaches. As one general-purpose
model checker, LoLA [11], took part in this investigation, the process models were also
translated into Petri nets.1 The models are partitioned into five libraries (A, B1, B2, B3,
C) and stem from different business areas, ranging from financial services, automotive,
telecommunications, construction, supply chain, health care, and customer relationship
management.

Soundness. Using these models, we repeated the soundness checks to created paths
for those Petri nets with unsound behavior. In the original report [2], each Petri net was
checked twice to proof soundness: once for weak termination (i.e., whether the final
marking is reachable from every reachable marking) to rule out local deadlocks and
once for unsafe markings (i.e., whether a marking m is reachable with m(p) > 1 for a
place p) to rule out lack of synchronization.

1 The original models and their Petri net translations are available for download at
http://service-technology.org/soundness.

http://service-technology.org/soundness

Where Did I Go Wrong? 291

Table 1. Paths from the checks for local deadlocks

library A B1 B2 B3 C

avg. path length before / after 17.51 / 1.83 17.52 / 2.11 16.06 / 1.54 20.34 / 1.67 13.40 / 2.30
max. path length before / after 53 / 8 66 / 7 56 / 6 54 / 5 21 / 3
sum of path lengths before / after 1699 / 178 1419 / 171 1349 / 129 1688 / 139 134 / 23

reduction 89.52 % 87.95 % 90.44 % 91.77 % 82.84 %

Table 2. Paths from the checks for lack of synchronization

library A B1 B2 B3 C

avg. path length before / after 30.83 / 3.17 10.47 / 0.66 12.16 / 0.68 11.50 / 0.59 51.00 / 7.57
max. path length before / after 89 / 13 52 / 7 100 / 8 103 / 14 120 / 17
sum of path lengths before / after 1079 / 111 1047 / 66 1459 / 82 1507 / 77 357 / 53

reduction 89.71 % 93.70 % 94.38 % 94.89 % 85.15 %

Table 3. Paths from the checks for noninterference

library A B1 B2 B3 C

avg. path length before / after 12.06 / 2.79 13.82 / 2.55 18.13 / 2.33 14.27 / 2.55 11.27 / 2.33
max. path length before / after 44 / 7 70 / 7 95 / 7 95 / 7 27 / 3
sum of path lengths before / after 19699 / 4557 5707 / 1054 13835 / 1777 17494 / 3130 169 / 35

reduction 76.87 % 81.53 % 87.16 % 82.11 % 79.29 %

From the 1386 models, 642 control-flow errors were found — 355 Petri nets were
not weakly terminating and 393 Petri nets contained unsafe markings.2 Consequently,
we could apply our reduction to 748 paths.

Table 1 summarizes the results from the reduction of the paths for Petri nets with
local deadlocks. We list, for each library, the average path length, the maximal path
length, and the sum of all path lengths for the respective library — once before and
once after the reduction. The numbers suggest that the reduction is very effective: The
average path length could be reduced from 13–20 transitions to 1.5–2.3 transitions. This
means a reduction of 82–91 %.

Table 2 reports similar results for Petri nets with a lack of synchronization. In sum-
mary, the longest path for a soundness violation contains at most 17 transitions, com-
pared to 120 before the reduction.

Information Flow Security. Furthermore, the same business process models were used
in a recent report [12] on information flow security. In this case study, noninterfer-
ence [13] was verified. This correctness criterion ensures that decisions from a secure
domain cannot be reproduced by investigating public runtime information of the busi-
ness process. To perform this check, each business process model needed to be checked
several times: For each participant (i.e., swimlane of the process), one check is required.
In that case study, 4050 errors were reported, yielding 4050 paths to investigate.3

2 24 Petri nets had both kind of errors and hence failed both checks.
3 The original models were not designed with noninterference in mind. However, the authors of

[12] decided to use the processes from [2] as case study to investigate their algorithms.

292 N. Lohmann and D. Fahland

Table 3 summarizes the reduction results for the paths. Again, we can report a re-
duction between 76–87 %. The maximal reduced path of the whole case study consists
only of 7 transitions, whereas it was 95 transitions before the reduction. On average,
not more than 2.79 transitions are reported per detected error.

The experiments report promising results. Though the reduced paths consist of Petri
net transitions, they can be easily translated back into the nomenclature of the original
model. For each model translated from the IBM WebSphere Business Modeler into a
Petri net, a file was created that maps the Petri net nodes to a construct of the original
model, see [9]. Consequently, conflict transitions can be easily linked to the respective
gateways.

4 Further Reduction: Remove Spurious Conflicts

4.1 Motivation and Formalization

In the previous section, we showed how paths to errors in business process models
can be reduced by only reporting conflict transitions. This reduction decided, for each
marking that activates a transition, whether conflicting transitions are also activated.
This check is local in the sense that it is not checked whether those transitions that were
not taken in the decisions actually could have avoided the next conflict transition on the
path.

We can formalize this idea as follows:

Definition 5 (Spurious conflict). Let π = t1 · · · tn be a reduced path and, for 0 ≤
i < n be mi the marking that is reached from m0 by firing the first i transitions of π.
In marking mi, transition ti is a spurious conflict iff, for all t ∈ [ti] ∩ T with t �= ti
and mi

t−→ holds: mi
t−→ m′i and for all paths beginning with m′i, marking mi+1 is

eventually reached, activating the next conflict transition ti+1 on π.

Intuitively, a transition ti on a reduced path π is a spurious conflict iff every transi-
tion t in conflict to ti eventually reaches the marking mi+1 which enables the next tran-
sition ti+1 on path π. In this case, choosing any transition from the conflict cluster [ti]
will eventually enable the next conflict on the path to the goal state. Consequently, re-
porting the spurious conflict ti is of little help to the modeler to understand the error
itself.

The check for spurious transitions defined above can be straightforwardly be imple-
mented using a model checker.4 We integrated this check as postprocessing step after
reducing the paths as described in the previous section. Note that executing a model
checker can be very time and memory consuming. However, even if a check is not fin-
ished with a reasonable amount of resources, we just failed to proof whether a conflict
is spurious and can continue with the investigation of the next transition. That said, the
postpocessing can be aborted at any time — any intermediate result is still correct.

4 We check whether N with initial marking m′
i satisfies the CTL formula ϕ = AFmi+1.

Where Did I Go Wrong? 293

Table 4. Reduced paths from the checks for local deadlocks

library A B1 B2 B3 C

avg. path length before / after 1.84 / 0.91 2.11 / 0.67 1.54 / 0.57 1.67 / 0.41 2.30 / 0.90
max. path length before / after 8 / 2 7 / 1 6 / 1 5 / 1 3 / 1
sum of path lengths before / after 178 / 88 171 / 54 129 / 49 139 / 34 23 / 10

reduction 50.56 % 68.42 % 62.79 % 75.54 % 60.87 %
aborted checks 1 0 0 0 0

Table 5. Reduced paths from the checks for lack of synchronization

library A B1 B2 B3 C

avg. path length before / after 3.17 / 0.86 0.66 / 0.17 0.68 / 0.14 0.59 / 0.09 7.57 / 1.00
max. path length before / after 13 / 2 7 / 2 8 / 2 14 / 2 17 / 2
sum of path lengths before / after 111 / 30 66 / 17 82 / 17 72 / 12 53 / 7

reduction 72.97 % 54.55 % 79.27 % 84.42 % 86.79 %
aborted checks 1 4 0 0 4

Table 6. Reduced paths from the checks for noninterference

library A B1 B2 B3 C

avg. path length before / after 2.79 / 0.99 2.55 / 0.75 2.33 / 0.55 2.55 / 0.63 2.33 / 0.40
max. path length before / after 7 / 2 7 / 2 7 / 2 7 / 2 3 / 1
sum of path lengths before / after 4557 / 1614 1054 / 310 1777 / 423 3130 / 772 35 / 6

reduction 64.58 % 70.59 % 76.20 % 75.34 % 82.86 %
aborted checks 12 4 4 7 0

4.2 Experimental Results

We applied the reduction of spurious conflicts to the case studies described in the pre-
vious section. Table 4.2–5 summarize the results. In all three experiments, the paths
could be further reduced by 50–86%. Now, in all experiments, at most two transitions
are reported as to reach the error. All other transitions are either nonconflicting or are
spurious conflicts for which any resolution eventually reaches the next conflict on the
path. Note that in some cases, the check for spurious conflicts has been aborted after
more than 2 GB of memory were consumed. In these cases, the conflict was kept in the
path and the check proceeded with the next conflict.

5 Combining Paths and Concurrency

5.1 Motivation and Formalization

So far, we focused on reducing paths by removing any transitions whose firing provides
no information to the modeler on why the goal state was actually reached. Thereby,
we could exploit the Petri net structure to calculate conflict clusters to identify possible
conflict transitions. This allowed for a quick check whether a transition is actually a
conflict.

However, we still considered paths as a sequences of transitions leading to the goal
state. As discussed earlier, this sequence may be an arbitrary linearization of originally

294 N. Lohmann and D. Fahland

concurrent behavior. Therefore, communicating paths to the modeler — for instance by
means of animation or simulation — still uses this arbitrary and hence unintuitive or-
dering. This may be especially confusing if the underlying process spans several com-
ponents (e.g., participants of a choreography or lanes) and the path constantly switches
between actions of different components.

To this end, this section aims at exploiting the concurrency of the Petri net model and
to use it to reorganize paths. We thereby try to undo the arbitrary ordering and to provide
partially-ordered paths, called distributed runs in the literature [7]. As sketched earlier,
two transitions t1 and t2 may fire concurrently in a marking if they do not disable each
other; that is, any ordering of t1 and t2 are possible. The definition of Petri nets further
ensure that firing any order of concurrent transitions yield the same marking. This has
one interesting effect: by depicting concurrent transitions as concurrent (i.e., unordered),
a distributed run implicitly expresses all possible orderings of these transitions.

Before we continue, we formalize the concept of a distributed run. The underlying
structure of such a distributed run is a causal net:

Definition 6 (Causal net). A causal net is a Petri net C = [P, T, F] without initial
marking such that (1) for each place p holds: |•p| ≤ 1 and |p•| ≤ 1, (2) the transitive
closure F+ of the flow relation F is irreflexive, and (3) any node has only finitely many
predecessors with respect to F+.

Intuitively, a causal net is (1) conflict free and begins and ends with places, (2) is
acyclic, and (3) the prefix of any element is finite. A causal net does not have an initial
marking — its places with empty preset represent initially marked places. This becomes
clear in the definition of a distributed run of a Petri net N , defined as follows:

Definition 7 (Distributed run). Let N = [PN , TN , FN ,m0] be a Petri net, C =
[PC , TC , FC] be a causal net, and β ⊆ (PC ×PN)∪ (TC ×TN) be a mapping. Further
assume, without any loss of generality, that m0(p) ≤ 1 for all p ∈ PN . The pair [C, β]
is a distributed run of N iff: (1) for all pC ∈ PC with •pC = ∅ holds: m0(β(pC)) = 1
and (2) for each tC ∈ TC with β(tC) = tN holds: β bijectively maps •tC to •tN and
t•C to t•N .

A distributed run is a causal net C whose nodes are mapped to those of a Petri net,
such that (1) those places of C without predecessors map to the initially marked places
of N and (2) the preset and postset of a transition of C bijectively maps to the preset
and postset of the respective transition of N .

5.2 Translating Paths into Distributed Runs

Intuitively, we can translate a path into a distributed run by copying fired transitions
with their preset and postset to the distributed run and “glue” those places representing
resources created by one transition and consumed by another transition.

In more detail, a path π of a Petri net N can be translated into a distributed run [C, β]
as follows: First, add, for each initially marked place pN of N , a place pC to PC and
define β(pC) = pN . Then, for each firing m

tN−−→ m′ in π, (1) add a transition tC to
TC and define β(tC) = tN , (2) for each place pN ∈ •tN , find a place pC of C with

Where Did I Go Wrong? 295

p1 t1 p2 t2 p3 t9 p9 t10
p11 t12 p12 t14 p14 t8 p2 t2 p3 t3 p4 t4 p5 t5 p6

p10 t11 p6

Fig. 2. The path π as a distributed run with highlighted conflict transitions

β(pC) = pN and p•C = ∅ and add an arc [pC , tC] to FC , and (3) for each place pN ∈ t•N
add a place pC to PC and define β(pC) = pN and add an arc [tC , pC] to FC .

As paths are acyclic, the created distributed run is finite by definition. Furthermore,
paths are conflict-free (i.e., every intermediate marking has exactly one successor) such
that the created Petri net structure is indeed a causal net.

The translation into a distributed run now allows for a reasoning of the relationship
between occurrences of transitions on the path. We distinguish two cases: On the one
hand, if there is a directed path between t1 and t2, then β(t1) was fired causally before
β(t2). On the other hand, β(t1) and β(t2) were fired concurrently, if there exists neither
a path from t1 to t2 nor from t2 to t1. In this case, the order on path π was arbitrary and
should not be reported as such to the modeler.

Example (cont.). Figure 2 depicts path π as distributed run. Note that the cycle in the
model is unfolded, yielding two copies of transition t2. Two places p6 without succes-
sors model the target marking {p6 	→ 2}. Furthermore, note transition t11 is displayed
concurrently to all transitions following t10.

5.3 Applying the Conflict Reduction to Distributed Runs

We implemented the translation of paths into distributed runs. This construction algo-
rithm only works for unreduced paths, because it requires that all intermediate markings
are used to create places in the underlying causal net. Therefore, the reduction reported
in Sect. 3–4 are not directly applicable.

To combine the advantages of both approaches — that is, reducing paths by remov-
ing nonconflicting transitions on the one hand and not ordering concurrent transitions
on the other hand — we exploit the two relationships (causal order and concurrency)
from above and create an artifact (called reduced distributed run5) with the following
properties:

1. For each initially marked place of N , it contains a place with empty preset and the
respective labeling.

2. For each place marked by the goal marking reached by π, it contains a place with
empty postset and the respective labeling.

3. For each conflict transition (i.e., transitions that were not removed by the reductions
in Sect. 3–4), it contains a transition with the respective labeling.

4. For each transition consuming a token from the initial marking or producing a token
to the goal marking, it contains a transition with the respective labeling and the
respective arcs to the places in the preset and postset.

5 In fact, the described artifact is not a distributed run. Though it shares properties of distributed
runs, we decided to stick to the name as it is most intuitive.

296 N. Lohmann and D. Fahland

p1 t1 t9 t10
t14 t3 t5 p6

t11 p6

Fig. 3. The reduced path π as a reduced distributed run with highlighted conflict transitions

F1

J1

M1

M2

1
2

3

D1=No

D2=No

D1=Yes

Fig. 4. Mapping back the reduced distributed run to the original process model

5. For each two transitions t1 and t2, add a dashed arc [t1, t2] if we can derive from
the distributed run that t1 is causally before t2.

6. Transitively reduce the dashed arcs; that is, remove all dashed arcs [t1, t3] for which
there exists arcs [t1, t2] and [t2, t3].

As reduced distributed runs have more or less the same size as the reduced paths, we
refrain from a detailed discussion of a case study.

Example (cont.). An example is depicted in Fig. 3. It explains how the initial marking
{p1 	→ 1} is transformed into the goal marking {p6 	→ 2}. In case a transition con-
sumes from the initial marking or produces to the goal marking, it is reported explicitly.
Furthermore, the resolved conflicts on the original path π are reported, and their causal
order is depicted by dashed arcs. Figure 4 further depicts an example how the informa-
tion of a reduced distributed run can be used for a visualization of a path in a concrete
business process model.

6 Cropping Distributed Runs

This section introduces a further reduction for distributed runs, that can be combined to
reduced distributed runs as described in the previous section. We shall first concentrate
on unreduced distributed runs.

When a path π is translated into a distributed run, it is a precise description on
how the initial marking is translated into the target marking. However, usually only
a parametrized description of the target marking is given to the model checker, for in-
stance a formula expressing “Find a marking m such that m(p) > 1 for a any place p.”
in case of checking the absence of lack of synchronization. In case a goal marking m
is found that does mark a place with more than one token, then m usually also marks
other places of the Petri net. These places are, however, not relevant to the proof that

Where Did I Go Wrong? 297

unsafe markings are reachable in the Petri net. Therefore, it would be of more value
if the distributed run could be “cropped” such that it only contains those places and
transitions in the prefix of the unsafe places.

As each node of a causal net only has finitely many predecessors, the cropped prefix
of a set of nodes is well-defined. Any other nodes that are not on this prefix can be re-
moved. The result is still a causal net, but violates the definition of a distributed run. For
the sake of a uniform nomenclature, we refer to this artifact as cropped distributed run.
Note that reduced distributed runs can be cropped as well, producing cropped reduced
distributed runs.

Which places are used to crop the distributed run depends on the property under
investigation. We gave a straightforward example for the check for lack of synchro-
nization. For the noninterference check, the marking of a specific goal place signals
a security flaw — consequently, this place can be used to crop the distributed run. For
local deadlocks, this choice is not straightforward, because the final marking of the
Petri net is actually unreachable in the reported goal marking. A starting point to crop
distributed runs is subject of future research.

7 Concluding Remarks

7.1 Summary

In this paper, we investigated how the output of model checking tools — usually a path
from the initial state to a state modeling an error — can be briefly and comprehensively
explained to the modeler. We presented four reductions — each focussing on a different
aspect of the problem:

1. In Sect. 3, we removed all transitions whose firing is totally determined by the
current marking, because there are no activated conflict transitions. As a result, we
explain errors not by the complete path from the initial to the goal state, but only
explain which choices on the way lead to the goal state.

2. In Sect. 4, we further removed those choices where any continuation eventually
reaches the next choice on the path. This postprocessing step required additional
verification runs which can be stopped at any time without jeopardizing correct-
ness. Though the reduction seems technical, it is actually very effective in the in-
vestigated case study.

3. The underlying concurrency of the model was exploited in Sect. 5. There, we create
a distributed run from the path in which concurrent transitions are not any more
artificially ordered. We further demonstrated how distributed runs can be combined
with the previous reductions.

4. A final reduction is presented in Sect. 6: The verification problem usually concen-
trates on few places of the Petri net. Distributed runs allow to remove all aspects
that are irrelevant to the goal marking.

All reported reductions were implemented in a tool Pathify which bases on the
Petri Net API [14] to calculate conflict clusters and can process Petri nets and paths
from the LoLA model checking tool [11]. The tool, together with the Petri nets from the
case studies can be downloaded from http://www.pirat.ly/25wg2.

http://www.pirat.ly/25wg2

298 N. Lohmann and D. Fahland

Note that our approach heavily relies on Petri nets and their concise semantics, a nat-
ural expression of concurrency and conflict relation, efficient algorithms, and a notion
of distributed runs. These features are not available by other formalisms or modeling
languages. At the same time, we are not bound to a specific input modeling language as
most business process modeling languages can be translated into Petri nets.

7.2 Related Work

The analysis and verification of business process models is a broad field of research.
Consequently, there exists a variety of domain-specific approaches (e.g., the decompo-
sition of workflow graphs into SESE regions to check soundness [3]). However, we are
not aware of other approaches that postprocess error information from general purpose
model checkers to explain these errors to the modelers. In particular, most approaches
consider only a subset of the modeling language’s features (e.g., BPMN without fault
handling). In contrast, our presented approach is applicable to any verification approach
that produces witness paths.

Related to the presentation of error information is the automated correction of flawed
business process models [15,16]. These approaches use similarity metrics to find a cor-
rect business process model which maximally resembles the flawed model. These ap-
proaches have the benefit of avoiding lengthy manual correction steps altogether.

Back annotation of execution sequences. The problem studied in this paper is similar
to model-based analysis in Software Engineering which is the problem of translating
a (high-level) domain model (of a generic software system) into a formal model and
analyzing for various properties and problems [17]. Also there, the open problem is to
make the analysis result obtained on the formal level understandable by a domain ex-
pert [18]. One generic approach to relate traces of the formal model to model elements
of the domain model is back annotation [19]. Here, the model transformation from do-
main model to formal model is reversed to translate steps of the formal model to steps
or elements of the domain model. However, mismatches in granularity and semantics
complicate the translation from one to another, requiring customized solution for each
case. The technique proposed in this paper is orthogonal: rather than trying to trans-
late entire traces, we have shown that the diagnostic information of the formal trace
can be reduced to an essential minimum which is easier to map. Though a systematic
integration with the back annotation approach is left open here.

This paper considered traces generated by verification and validation tools from
given models. Process mining considers traces recording the actual process execution.
Here, conformance checking is the problem of detecting how and where traces deviate
from process models [20]. Deviations can be highlighted on the traces and the pro-
cess model directly [21]. Also, branching processes of Petri nets can be used to greatly
simplify process models in process discovery [22]. It is an open question whether the
reduction techniques presented in this paper can used to improve the diagnostic infor-
mation in conformance checking and results in process mining.

Where Did I Go Wrong? 299

7.3 Future Work

In this paper, we focused on reducing paths to error states and neglected the retrans-
lation into the original business process model. Visualizations such as Fig. 4, possibly
enriched with animations, need to be automatized and evaluated by business process
modelers. Here, understandability criteria [23] could be of great value. However, this
was out of scope of this paper which aimed at evaluating the idea of using conflicts to
reduce paths with three experimental setups checking different correctness criteria with
thousands of industrial business process models.

Beside better visualizations, also the investigation of further correctness criteria is
a direction of future work. In particular the cropping of distributed runs appears to
be a promising approach to help the modeler focus on the original causes of an error.
Another aspect of this investigation is a better localization of errors — in particular, any
behavior where the avoidance of an error is still possible should be left out, allowing to
better spot the action or decision in the model that makes the error inevitable.

We see in this paper a first step toward a diagnosis framework which uses general
purpose verification tools to verify business process models. As motivated in the in-
troduction, domain-specific approaches are very closely coupled to the structure or the
property under investigation, but may become inapplicable for future developments. In
contrast, the modularization (a translation into Petri nets as frontend, a general purpose
model checking tool as middleware, and a diagnosis framework as backend) may be
more flexible when it comes to novel business process languages and properties.

References

1. van der Aalst, W.M.P.: The application of Petri nets to workflow management. Journal of
Circuits, Systems and Computers 8(1), 21–66 (1998)

2. Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: In-
stantaneous soundness checking of industrial business process models. In: Dayal, U., Eder,
J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 278–293. Springer,
Heidelberg (2009)

3. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analysis
for business process models through SESE decomposition. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer, Heidelberg (2007)

4. Verbeek, H.M.W., Basten, T., van der Aalst, W.M.P.: Diagnosing workflow processes using
Woflan. Comput. J. 44(4), 246–279 (2001)

5. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
6. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)
7. Reisig, W.: Petri Nets. EATCS Monographs on Theoretical Computer Science edn. Springer

(1985)
8. Lohmann, N., Verbeek, E., Dijkman, R.: Petri net transformations for business processes –

A survey. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other
Models of Concurrency II. LNCS, vol. 5460, pp. 46–63. Springer, Heidelberg (2009)

9. Fahland, D.: Translating UML2 activity diagrams to Petri nets. Informatik-Berichte 226,
Humboldt-Universität zu Berlin, Berlin, Germany (2008)

10. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press (1995)
11. Wolf, K.: Generating petri net state spaces. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007.

LNCS, vol. 4546, pp. 29–42. Springer, Heidelberg (2007)

300 N. Lohmann and D. Fahland

12. Accorsi, R., Lehmann, A.: Automatic information flow analysis of business process mod-
els. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 172–187.
Springer, Heidelberg (2012)

13. Busi, N., Gorrieri, R.: Structural non-interference in elementary and trace nets. Mathematical
Structures in Computer Science 19(6), 1065–1090 (2009)

14. Lohmann, N., Mennicke, S., Sura, C.: The Petri Net API: A collection of Petri net-related
functions. In: AWPN, CEUR Workshop Proceedings 643, CEUR-WS.org, pp. 148–155
(2010)

15. Lohmann, N.: Correcting deadlocking service choreographies using a simulation-based
graph edit distance. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS,
vol. 5240, pp. 132–147. Springer, Heidelberg (2008)

16. Gambini, M., La Rosa, M., Migliorini, S., ter Hofstede, A.: Automated error correction
of business process models. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011.
LNCS, vol. 6896, pp. 148–165. Springer, Heidelberg (2011)

17. Bondavalli, A., Cin, M.D., Latella, D., Majzik, I., Pataricza, A., Savoia, G.: Dependability
analysis in the early phases of uml-based system design. Comput. Syst. Sci. Eng. 16(5),
265–275 (2001)

18. Csertán, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., Varró, D.: VIATRA - visual auto-
mated transformations for formal verification and validation of uml models. In: ASE 2002,
pp. 267–270. IEEE Computer Society (2002)

19. Hegedüs, Á., Bergmann, G., Ráth, I., Varró, D.: Back-annotation of simulation traces with
change-driven model transformations. In: SEFM 2010, pp. 145–155. IEEE Computer Society
(2010)

20. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer (2011)

21. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process mod-
els for conformance checking and performance analysis. Wiley Interdisc. Rew.: Data Mining
and Knowledge Discovery 2(2), 182–192 (2012)

22. Fahland, D., van der Aalst, W.M.P.: Simplifying discovered process models in a controlled
manner. Inf. Syst. 38(4), 585–605 (2013)

23. Mendling, J., Reijers, H.A., Cardoso, J.: What makes process models understandable? In:
Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 48–63.
Springer, Heidelberg (2007)

User-Friendly Property Specification and

Process Verification – A Case Study with
Vehicle-Commissioning Processes

Richard Mrasek1, Jutta Mülle1, Klemens Böhm1,
Michael Becker2, and Christian Allmann2

1 Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
{richard.mrasek,jutta.muelle,klemens.boehm}@kit.edu

2 AUDI AG, 85045 Ingolstadt, Germany
{christian.allmann,michael1.becker}@audi.de

Abstract. Testing in the automotive industry is supposed to guarantee
that vehicles are shipped without any flaw. Respective processes are com-
plex, due to the variety of components and electronic devices in modern
vehicles. To achieve error-free processes, their formal analysis is required.
Specifying and maintaining properties the processes must satisfy in a
user-friendly way is a core requirement on any verification system. We
have observed that there are few pattern properties that testing processes
adhere to, and we describe these patterns. They depend on the context
of the processes, e.g., the components of the vehicle or testing stations.
We have developed a framework that instantiates the property patterns
at verification time and then verifies the process against these instances.
Our empirical evaluation with the industrial partner has shown that our
framework does detect property violations in processes. From expert in-
terviews we conclude that our framework is user-friendly and well suited
to operate in a real production environment.

1 Introduction

The systematic testing and configuration of complex products, e.g., vehicles, is
an important step of any production process. To this end, certain tasks need
to be executed, automatically or with the help of a human. So-called commis-
sioning tasks test a component or put it into service, e.g., configure the software
[33]. Workflows called commissioning processes describe the arrangement of these
tasks. Domain experts of the industrial partner develop the commissioning pro-
cesses. Workflow management systems (WfMS) in the production domain that
plan and coordinate the testing and end-of-line manufacturing are referred to as
diagnostic frameworks.

Our overall goal is to verify if a given commissioning process is correct. In
contrast to validation that ensures if a process meets the needs of a stakeholder,
verification checks if a process fulfills the required properties. To this end, one
must specify which properties the process must fulfill. We have collected such
properties in cooperation with domain experts by analyzing existing processes,

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 301–316, 2014.
c© Springer International Publishing Switzerland 2014

302 R. Mrasek et al.

and by closely observing these experts when designing processes. To illustrate,
if a process uses more connections than available, the process must halt, i.e.,
process execution time is unnecessarily long. A common definition of correctness
of a process is that it observes all properties required. Properties typically are
formulated as property rules, similarly to compliance rules [16][18]. For example,
a property rule states that before executing Task X another Task Y has to be
executed.

Verification itself is a process that consists of several phases, namely specify-
ing the properties of the commissioning process, verifying them, and presenting
the results to the users. Our concern is the design and realization of a framework
supporting users throughout this entire process. This gives way to the following
questions. First, how must processes as well as the properties be specified to
facilitate the deployment of verification techniques? Second, how to utilize do-
main information to support the users specifying the formal properties? Finally,
how user-friendly are respective solutions? To verify process models given in a
formal representation like Petri nets against properties, there already exist effi-
cient model checking approaches [25][26]. However, deriving and specifying the
properties the model must satisfy is a separate issue. A core question is what a
user-friendly framework for process verification should look like.

Designing such a framework gives way to several challenges: First, the knowl-
edge on which characteristics a process should fulfill is typically distributed
among several employees in different departments. Often a documentation is
missing, and properties merely exist in the minds of the process modelers. Sec-
ond, the properties frequently are context-sensitive, i.e., only hold in specific
contexts of a commissioning process. For example, some tasks need different
protocols to communicate with control units for testing at different factories.
Due to this context-sensitiveness, the number of properties is very large, but
with many variants with only small differences. This causes maintenance prob-
lems [15]. Third, to apply an automatic verification technique, like model check-
ing, it is necessary to specify the properties in a formal language such as a
temporal logic [23]. With vehicle-commissioning processes as well as in other do-
mains, see, e.g., [10], [20], specifying the properties in this way is error-prone and
generally infeasible for domain experts. To allow for an automatic verification,
the process must be formalized in a notation that allows to directly construct
its state space. To this end, it must be easy to let the properties refer to the
processes modeled. Fourth, evaluating an approach such as the one envisioned
is difficult. One issue is that the evaluation criteria must be specified.

We have addressed these challenges based on the real-world use case of vehicle-
commissioning processes. More specifically, we make the following contributions:
We have analyzed which properties occur for vehicle commissioning processes
and the respective context information. We have observed that there are few
patterns these properties adhere to. We propose to explicitly represent these
patterns, rather than each individual property. Next, we develop a model of the
context knowledge regarding vehicle-commissioning processes. Here context is
the components of a vehicle, their relationships and the constraints which the

User-Friendly Property Specification and Process Verification 303

Model
checker

Configure Property
Pattern

Database of

Context
Knowledge Property

Pattern
Pattern

Instances

Transform
OTX2PetriNet

Commissioning
Process Petri net

Verification Visualize
Result

Commissioning
Process

Annotated
Process

(1) (2) (3) (4)

Fig. 1. Steps of the Verification Framework

vehicle currently tested and configured must fulfill. We let a relational database
manage the context information. To populate it, we use several sources, e.g.,
information on the vehicle components from production planning, constraints
from existing commissioning processes, and information provided by the process
designers themselves. Our framework uses this information to generate process-
specific instances of the property patterns, transforms the process to a Petri
net, and verifies it against these properties, see Figure 1. Our evaluation has
shown that the framework does detect rule violations in actual real-world com-
missioning processes. Further, we have evaluated whether our model of the con-
text together with the rules is expressive enough for our domain, in two steps.
First, we have evaluated whether our framework can indeed find property vi-
olations in real-world commissioning processes. Second, we have evaluated the
non-functional requirements on our framework by means of expert interviews, as
part of an established test. Our evaluation is one of only few studies that collect
feedback from domain experts systematically. We conclude that our framework
is operational, sufficiently general and usable in a real production environment.

Section 2 describes our scenario commissioning processes. Section 3 introduces
our notation. Section 4 explains how to specify the properties required, and
Section 5 says how to verify them. Section 6 describes our framework. Section 7
features our evaluation. Section 8 reviews related work, Section 9 concludes.

2 Scenario and Requirements

Commissioning processes describe the end-of-line manufacturing and testing of
vehicles. This includes, say, to check for each vehicle produced if all its Electronic
Control Units (ECU) are integrated correctly and to put the ECUs into service.
To check an ECU, several tasks have to be executed. There typically are hundreds
of tasks for each vehicle. For example, for an executive-car series there are more
than 1650 tasks in 13 processes altogether, and it is necessary to check each of
them. Most, but not all tasks communicate with at least one ECU. For instance,
a human task tests if the light in the glove compartment functions correctly. This
task does not need to communicate with an ECU. Diagnostic Frameworks, i.e.,
respective workflow management systems, execute the commissioning processes

304 R. Mrasek et al.

at several specific physical stations in the factory called process places. For each
vehicle project and each process place, at least one process exists.

Example 1. A vehicle of the executive-car series (M3) is tested at the process
place VP2, next to other places. To this end, the Diagnostic Framework exe-
cutes the process (M3 VP2). The Diagnostic Framework activates tasks that an
ECU executes automatically, otherwise the task is allocated to a worker. One
task checks if the injection system works properly. For this purpose the task
communicates with the ECU of the engine of the automobile.

Our framework should be able to detect property violations in commissioning
processes. Additionally to this functional criteria, the framework must meet the
needs of the process developers in practice: The number of false positives, i.e., the
number of reported violations that are not problematic, and the number of false
negatives, i.e., the number of undetected rule violations in the processes, should
be small. The framework should be general enough to be used in another factory.
The handling of the framework should be intuitive and not require the help of
a technical person – we have categorized these non-functional requirements into
three categories, namely quality, generality and usability.

3 Notation

In this section we introduce the notations used in this paper, i.e., CTL (Compu-
tation Tree Logic) as the language to specify properties. Our framework aims to
verify whether commissioning processes given fulfill certain rules regarding the
commissioning of vehicles, i.e., properties. We transform our processes to Petri
nets because their execution semantics is unambiguously defined, and established
verification techniques for Petri nets exist. We use CTL because it can express
general properties, and efficient model checking algorithms for CTL exist. For
a more detailed introduction, see the standard literature, e.g., [2] and [8]. CTL
is a temporal logic to specify properties. Model checking algorithms exist to
efficiently verify CTL properties [7]. The CTL syntax is as follows:

Definition 1 (Computation Tree Logic:). Every atomic proposition p ∈
AP is a CTL formula. If φ1 and φ2 are CTL formulas then ¬φ1, φ1 ∨ φ2,
φ1 ∧ φ2, AXφ1, EXφ1, AGφ1, EGφ1, AFφ1, EFφ1, A[φ1 U φ2], E[φ1 U φ2] are
CTL formulas.

In our domain, AP is a state M of a Petri net. The operators always occur in
pairs: a path operator (A or E) and a temporal operator (X,G,F or U). A means
that the formula holds in all succeeding execution paths, E means that at least
one execution path exists. X means that the formula holds in the next state, G
means that it holds in all succeeding states, F means that it holds in at least one
succeeding state, and [φ1 U φ2] means that φ1 holds until φ2 is reached.

4 Property Specification

Our overall goal is to develop a verification framework for vehicle commissioning
processes which is easy to use, easily adaptable to new vehicle variants and

User-Friendly Property Specification and Process Verification 305

adequate for flexible commissioning process execution. Before verification takes
place, it is usually required to specify the properties for a process. To support
this step, we have collected so-called property patterns together with engineers
who develop diagnostic programs, see Section 4.1. As part of the verification,
our framework determines the context of the process first. For instance, the
context consists of the process place, the vehicle project and the list of tasks and
ECUs used. This concrete process context is used to query a database for the
information required to dynamically generate instances of the property patterns.
Section 4.2 identifies recurring characteristics of such patterns and proposes a
respective database representation. Section 4.3 says how to use the patterns to
generate process-specific instances of the patterns.

4.1 Properties and Property Patterns for Commissioning Processes

We have identified typical properties of commissioning processes and character-
istics of processes, as follows.

P1 Syntactical Correctness: The commissioning process must be syntacti-
cally correct and comply with the naming conventions of the company for tasks.

P2 Resources of the ECUs: Some ECUs require specific resources at the
process place for their testing. When a task requires a resource not available at
the current process place the process is blocked.

P3 Connections of the ECUs: Each ECU opens a connection to one of two
transport protocols supported (UDS or KWP2000). Each transport protocol
can handle a certain number of open connections, in our environment 10 at the
same time. In total, 14 connections altogether can be open at the same time. To
avoid blocking of a process, the process must not open more connections. Table
1 shows the respective property patterns.

P4 Task Conditions: Some tasks depend on the occurrence of other tasks
in the process, e.g., they cannot run in parallel or need to occur in a certain
sequential order. Table 1 contains the different property patterns for commis-
sioning processes. They are the result of a comprehensive survey of ours to detect
all dependencies that are conceivable.

P5 ECU Conditions: Additionally to the conditions on tasks, conditions spe-
cific to certain ECUs exist, see Table 1. These conditions hold for any task that
communicates with the respective ECU.

Given this list, we conclude that for some properties a model-checking approach
is feasible, while for others an algorithmic approach is more efficient. Properties
that refer to structural constraints like the occurrence and arrangement of tasks
can be expressed in temporal logic and thus call for a model-checking verifica-
tion. Violations of those properties can result in undesirable characteristics of
the process execution, subsequently referred to as major disturbance. An exam-
ple is that it may block the execution of the process. This holds for properties
P3, P4 and P5. Our approach is to define patterns for these properties. Table 1

306 R. Mrasek et al.

Table 1. Property Patterns for Task and ECU Conditions

Prop. Name Description CTL

P3.1 Maximal UDS
Connections

The number of connections to UDS
should not exceed 10.

AG(UDS ≤ 10)

P3.2 Maximal KWP-
2000 Connections

The number of connections to
KWP2000 should not exceed 10.

AG(KWP2000
≤ 10)

P3.3 Maximal Connec-
tions

The number of connections UDS and
KWP2000 should not exceed 14.

AG((UDS+
KWP2000) ≤ 14)

P4.1 Sequential before If a task A is in the process, a task B
has to occur before A.

A [(run-A = 0)
W (run-B > 0)]

P4.2 Optional Sequen-
tial before

If both A and B occur in the commis-
sioning process, B has to occur before
A. B can completely be missing.

A [(run-A = 0) ∨
AG (run-B = 0))
W (run-B > 0)]

P4.3 Sequential after The occurrence of task A leads to the
occurrence of task B.

AG ((run-A > 0) →
AF (run-B > 0))

P4.4 Non-Parallel Tasks A and B are not allowed to oc-
cur in parallel.

AG (¬((run-A > 0)
∧ (run-B > 0)))

P5.1 Restricted access Only one task at the same time can
access/test each ECU C.

AG (C ≤ 1)

P5.3 Non-Parallel Some ECU C must never be tested in
parallel with an ECU C2.

AG (¬((C > 0)
∧(C2> 0)))

P5.4 Close Connection Task close-C must close the connec-
tion to an ECU C.

AG ((C > 0)→
AF (close-C > 0))

shows the patterns and the respective CTL formulas. The atomic propositions
are inequations referring to states of a Petri net. For instance, (run-A > 0)
refers to all states where the place run-A contains more than zero tokens, i.e., A
is currently running. We use the term minor disturbance accordingly. This holds
for properties P1 and P2. They are on a representational level, i.e., the syntax
and the environment of the processes. Examples are violations of conventions
or deviation from best practice or from guidelines. We use a syntax check and
a query-based verification to check these properties, see Data Reconciliation in
Section 5.

4.2 Database of Context Knowledge

Our goal is to generate properties for checking commissioning processes automat-
ically, based on the information collected a priori. To this end, we have developed
a model of the context knowledge on commissioning processes in the automo-
tive industry which supports generating the properties. We then have designed
a relational database to manage this context information. The rationale is that
the context information is represented in a user-friendly manner. The database

User-Friendly Property Specification and Process Verification 307

Factory

Assembly Line

Process Place

Resource

ECU

Vehicle Project

Vehicle Options

Task

Temporal Rule

Factories and LocationsVehicle ComponentTasks

1

n

1

n

1

n

nn

n

1

n

n

n

nn

n

n

n

n

n

n

n n

Fig. 2. Excerpt of the Database Schema for Context Knowledge

needs to fulfill the following requirements:
DB-R1 Representing Contextual Information: The database should con-
tain the contextual information of the commissioning processes. First, the prop-
erties of the processes depend on the vehicle, i.e., on the components built into it
which have to be tested, mostly ECUs. The type of the vehicle and its concrete
configuration determine the ECUs required. Second, the properties of the pro-
cesses depend on the process places the component is tested at. The assembly
lines for testing and configuring consist of these places. They vary in different
factories. Third, there exist dependencies between the commissioning tasks, see
Subsection 4.1.

DB-R2 User-Friendly Specification of the Properties: Engineers should
be able to specify the properties in a comfortable way. To this end, the structure
of the database should support the perspective of these experts and not require
extensive experience with formal modeling.

DB-R3 Use of Existing Documents and Information: Defining the prop-
erties should use as much information from previous steps of the production life
cycle as is available. Information on the vehicle and its components which have
to be tested arises during the production design and production planning. The
database should contain this information.

Figure 2 shows an excerpt of our database model illustrating the overall struc-
ture, see [27] for more details. Our model consists of three parts, in line with
DB-R2. One part comprises the vehicle components (e.g., the ECUs), including
variants of the component configurations, so-called options of the vehicle. The
product planning step delivers such information, which we use to populate the
respective part of the database, cf. DB-R3. Another part contains the commis-
sioning task objects, dependencies between tasks, and constraints on the tasks,
specified as CTL formulas. A third part describes the assembly lines with process
places and resources available there. Dependencies between the parts complete

308 R. Mrasek et al.

the model, e.g., the resources required to perform a testing task. The structure
of the context knowledge given as database model allows to define and maintain
the context in a form expert users are familiar with, cf. DB-R1, DB-R2.

4.3 Pattern Instances

As part of the verification, our framework determines the context of the process
first. It is used to query the database for the information required to dynamically
generate instances of the property patterns of Table 1.

Example 2. The process to be verified contains the ECUs = [GWA, KEL, FBE].
For the process place VP2 and vehicle series M3, an ECU dependency exists
that KEL and FBE must not be used in parallel. For Property Pattern P5.3 our
framework generates the following property: AG(¬((KEL>0) ∧ (FBE>0))).

The dynamic generation of properties from the database has several benefits
compared to their direct specification in, say, CTL. First, for a process given we
only consider the properties relevant for it. Second, the maintenance of the prop-
erties is simplified. For example, if a new ECU is available for a process place,
one only needs to add the information into the database, i.e., to Relation ECU.
With a direct specification in turn, one might have to specify several hundred
properties. The database stores the contextual knowledge in a centralized and
non-redundant form, instead of managing all properties specified in CTL. For
example, the Pattern “A leads to B” has a few hundred instances. If, for exam-
ple, the need to change the pattern to “The first occurrence of A leads to B”
arose, updating would be avoided. Third, domain experts only need to specify
properties in CTL when there is a new property type, so the number of these
error-prone and complicated tasks is reduced.

5 Verification

We now describe the architecture of our verification framework and how it ver-
ifies if a commissioning process fulfills a set of property instances. The indus-
trial partner uses several different process notations, depending on the factory
and vehicle project. OTX is an ISO-Standard [13] that is planned as a vendor-
independent standard for commissioning processes. A preprocessing step trans-
forms a process file in another format into OTX (Figure 3.1). Next, the context
information regarding the process place and the vehicle project are extracted

Transform
to OTX

(optional)
Query the
database

Data re-
conciliation

Generate
Petri net

Generate
CTL-

formulae

Model
checking

(1) (2) (3) (4) (5) (6)

Fig. 3. The Verification Steps

User-Friendly Property Specification and Process Verification 309

In

start

run-A
C-A P-A

complete

Out

a) Task
In

. . .

Out

b) Parallel
In

. . .

Out

c) Branch
In

. . .

Out

d) Sequence

Fig. 4. The Templates for a Task (a), a Parallel-Node (b), a Branch-Node (c) and a
Sequence-Node (d).

from the commissioning process (Figure 3.2). Not all properties can be veri-
fied with one paradigm. Therefore, our program consists of two modules: the
Data-Reconciliation (Figure 3.3) and the Model Checker (Figure 3.4 to 3.6).
In the past, researchers have developed efficient tools for model checking with
Petri nets [24][14]. Hence, model checking in the narrow sense of the word is
not a topic of this article. Our framework contains an established framework for
model checking [24].

5.1 Data Reconciliation

First, our framework tests the syntactical correctness of the OTX process. To
do so, the module validates the commissioning process against the XML schema
of OTX. Additionally, we check for each task if it complies with the naming
conventions of the company. Then, the module checks if the resources are avail-
able at the process place of the commissioning process (P2). To this end, our
framework queries the database to evaluate if the resources at the process place
match the resources used in the process.

5.2 Model Checking

Model Checking is the problem of finding all states s such that the state machine
M has a given property φ in s. The commissioning processes are given in OTX,
a block-based language [17] similar to WS-BPEL [33]. OTX does not allow for a
direct construction of the state space. Therefore, we transform the OTX process
model into a Petri net and can then analyze its state space.

Transformation: OTX describes the process as tree structure (cf. RPST [31]).
Each leaf node corresponds to a task, and each inner node represents a control

310 R. Mrasek et al.

Fig. 5. Screenshot of the Verification Framework

structure, e.g., parallel execution, exclusive execution or sequential execution of
the child nodes. For each type of nodes we define a template. A template is a Petri
net with an input In and an output place Out. Figure 4 shows the templates for a
task, a parallel node, a branch node and a sequence node. The control structure
nodes have specific regions, where to include the child elements (dotted boxes in
Figure 4). To transform the OTX process, we parse the process tree in a breadth-
first manner and include for each node the respective Petri net template into the
net. Our approach is similar to the one of [12] and [29]. Figure 4 a) shows the
Petri net template for a task, i.e., a commissioning routine. The place In marks
that Task A is activated and ready for execution. If a task execution starts, the
transition start fires and creates a token in each of the places run-A, C-A and
P-A. run-A represents the actual execution of the task. C-A is the place of the
ECU A communicates with, and P-A gives the bus protocol that A uses, either
UDS or KWP2000 [33]. Several tasks use the same place for C-A and P-A.

Verification: For model checking we have included the LoLA-Framework [24]
into our framework. It generates the state space for the Petri net and uses a
model-checking algorithm to verify the properties. Note that our framework is
not specifically tailored to this concrete model checker. We do not foresee any
major difficulties when including other frameworks for state-space generation or
model checking.

6 Implementation

We have implemented concepts described so far in our framework called AAAFT
(Automatic Arrangement of Working Steps in Production and Testing). The
database for context knowledge is a MySQL database. We also have implemented
a graphical front-end that can load an OTX process, visualize it, verify the
process and highlight any task that relates to the violations detected.

User-Friendly Property Specification and Process Verification 311

Example 3. Figure 5 shows a screenshot of our framework. The program has
loaded an OTX process and has verified it against the database. Dark (red)
boxes highlight tasks that cause a rule violation, e.g., the component IEL is not
closed at the end of the process. On the left-hand side, the framework lists the
violations detected.

7 Empirical Evaluation

In Subsection 7.1 we say how we have evaluated that our framework can identify
rule violations in real processes. Additionally to this criterion we want to evaluate
that the framework does meet the requirements of the process developers in
practice, see Subsection 7.2.

7.1 Functional Evaluation

We have used our prototype to verify 60 commissioning processes, newly gen-
erated or modified ones, before their execution. These processes refer to four
vehicle series: the middle class car M1, the upper-middle class car M2, the ex-
ecutive car M3, and the sports car M4. They are executed at 34 stations. We
have discussed the verification results and have categorized the processes into
three categories: correct, with minor process disturbance and with major process
disturbance. Figure 6 shows the number of processes in the three categories for
each vehicle series. Most of the minor disturbances result from incorrect labels
of tasks and missing values in the database. For few processes, the verification
framework has reported false positives, due to the fact that we do not consider
guard conditions. These false positives have also been categorized as minor. In a
significant share of the processes (≈ 23%), we could detect a major disturbance.

M1 M2 M3 M4
0

10

20

30

Vehicle Series

N
o.

of
P

ro
ce

ss
es

M1 M2 M3 M4

No. of Processes 13 17 25 5

Correct 3 3 0 0
Minor Disturbance 9 8 18 5
Major Disturbance 1 6 7 0

Correct
Minor
Major

Legend:

Fig. 6. Process Disturbances Found in the Evaluated Processes

312 R. Mrasek et al.

7.2 Expert Interviews

To evaluate our approach we have held semi-structured expert interviews. We
aim to test the three characteristics: process quality, generality and usability, as
explained next. The interview guide is available on our website:
http://dbis.ipd.kit.edu/2027.php.

Process Quality: Has the framework increased the quality of the commission-
ing processes? This criterion includes the change in the development time of
processes, the number of false positives and the number of false negatives.

Generality: Can the framework be used in a different context within the com-
pany? For instance, is the framework general enough to be used in another
factory? We have also asked how well the framework can be integrated into the
tool chain.

Usability: Can the framework be used in an intuitive way? Is the help of a
technical person needed to use the framework? For usability we have used the
Standard System Usability Test (SUS) [5]. SUS is a 10 item test that is scored
on a 5-point scale of strength of agreement or disagreement. The SUS has the
advantage that it is technology-agnostic, i.e, it can be used in different applica-
tion domains. Due to its wide usage, a meta-test and guidelines exist to interpret
the results [5].

Participants: Participants in our study are domain experts, i.e., employees who
have developed commissioning processes. We have limited our interviews to ex-
perts who had used our framework intensively and had enough expertise to give
feedback. We have been able to gain four experts who met these requirements for
a qualitative interview. Their experience in developing commissioning processes
range between 1 and 14 years, with an average of 7 years.

Results and Discussion: Figure 7 shows the results of our qualified interviews.
The experts do not think that our framework will influence the development time
negatively. The number of false positives and false negatives are acceptable but

Process Quality Generality Usability

Process
Quality

Time Red.

str. disagree

disagree

neutral

agree

strong agree

False
Positi

ve

False
Negative

very few

few

neutral

often

very often

Differen
t Contex

t

Integration

str. disagree

disagree

neutral

agree

strong agree

SUS Score
0

50

100

Fig. 7. Results of the Empirical Evaluation

http://dbis.ipd.kit.edu/2027.php

User-Friendly Property Specification and Process Verification 313

should be improved. Our framework detected slightly more false positives than
false negatives. The experts saw a great potential of our framework to be used
in other testing environments as well. The rating of how well the framework can
be integrated into the tool chains varies between the experts. The SUS score (a
measure for the usability) ranges between 65 and 85 with an average of 71.67.
This is slightly above the average (69.69) and median (70.91) of reported studies
using the SUS score [5]. All experts see great potential in improving the quality
of the commissioning processes by means of our framework.

Conclusion: The evaluation has shown that the experts deem our framework
very useful and with high potential to enhance process quality. A minor issue is
that they have criticized the amount of information presented by our framework.
To this end, we plan to have two modes. A debug mode that presents detailed
information on the model checking process, and a normal mode that only shows
the information required by the domain experts. To improve usability further,
the experts had suggested presenting the results in more than one language.
Some experts doubt that our framework can be easily integrated into the tool
chain. To this end, we currently are reimplementing it in C#. The framework
currently is implemented in Java.

8 Related Work

Related work includes the user-friendly specification of properties, their man-
agement and the property-specific verification of processes.

Specification: The direct specification of properties in a formalism like CTL is
error-prone and not feasible for a user without experience in formal specification.
To this end, different approaches have been developed. Most business processes
are modeled in a graph-based modeling language like BPMN [32], YAWL [3] or
Petri nets [1]. [6] extends the BPMN notation with new elements that directly
represent LTL operators. BPMN-Q [4] extends BPMN with new edge types that
represent sequential ordering between tasks. Compliance Rule Graphs [20] al-
low a specification of requirements in a graph-based formal language. Another
approach is the use of specification patterns. [10] introduces the property pat-
terns to specify concurrent systems. [28] extends the pattern system to PROPEL
(PROPerty ELucidation) to cover variations of the property patterns. [9] uses a
question tree to allow specifying PROPEL patterns. In our domain, only a few
different property patterns exist. Dependent on the context, many instances are
generated. Because of the small number of patterns but many similar instances,
we have not found any of the approaches to be very helpful in our specific case.

Management of Properties: [30] builds an ontology for the domain of com-
pliance management. However, it is not sufficient to capture the domain-specific
information needed for the instantiation of our patterns. Managing compliance
properties includes allocating the properties to the business processes. [15] al-
locates the compliance properties to the processes using potentially relevant

314 R. Mrasek et al.

activities. We in turn dynamically generate only the properties relevant for the
commissioning processusing the context knowledge directly before verification.

Verification: We aim to check if a business process complies with the properties
given. [22] uses an approach that checks if the event log L (a set of execution
traces) complies with properties. In our case, there exist violations of properties
that are not related to an event during process execution. For example, we do
not see how to recognize a violation of a non-parallel property from the log of a
process. Further, we use model checking to verify the processes. Most high-level
process languages lack the direct construction of the state space required for
model checking. To this end, a transformation to a formal language like Petri
nets is required. [19] gives an overview of transformations from BPMN, YAWL
andWS-BPEL to Petri nets. Our approach is similar to [12]. [21] empirically eval-
uates different approaches for soundness verification. The criteria include error
rates, process size and verification time. [11] evaluates three techniques (Partial-
Order-Reduction, Woflan and SESE-Decomposition) to verify the soundness of
over 700 industrial processes. Our verification technique is more general than
just verifying soundness as in [21] and [11]. It is however interesting to see that
some insights at an abstract level are similar to ours. In particular, the size of the
processes correlates with the number of rule violations, and a significant share
of processes in industrial settings contains rule violations.

9 Conclusions

To avoid property violations in commissioning processes, a framework to verify
if a process is correct clearly is helpful. With verification, an important step is
specifying which properties a process must fulfill. Given that verification algo-
rithms already exist, a core question is how to arrive at a user-friendly framework
for process verification that supports collecting and maintaining the properties.

We have analyzed which properties vehicle commissioning processes in the
automotive industry must fulfill and have identified the context information rel-
evant for verification. An important insight has been that there exist only a
few types of properties, but the number of properties may be very large. Thus,
an important design decision has been to develop a database with contextual
information and to focus on property patterns covering all properties relevant
for vehicle-commissioning processes. Consequently, we have proposed a trans-
formation of patterns to properties tailored to a certain process model. Our
framework then verifies these properties on the commissioning processes. An
interview-based evaluation together with domain experts has shown that the
framework does enhance the process quality. Ongoing work addresses an even
tighter integration of the framework and its database into the tool chain.

References

1. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
Journal of Circuits, Systems and Computers (1998)

User-Friendly Property Specification and Process Verification 315

2. van der Aalst, W.M.P., van Hee, K.: Workflow Management: Models, Methods,
and Systems. MIT Press (2004)

3. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Lan-
guage. Information Systems (2005)

4. Awad, A., Decker, G., Weske, M.: Efficient Compliance Checking Using BPMN-Q
and Temporal Logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008.
LNCS, vol. 5240, pp. 326–341. Springer, Heidelberg (2008)

5. Bangor, A., Kortum, P.T., Miller, J.T.: An Empirical Evaluation of the System
Usability Scale. International Journal of Human-Computer Interaction (2008)

6. Brambilla, M., Deutsch, A., Sui, L., Vianu, V.: The Role of Visual Tools in
a Web Application Design and Verification Framework: A Visual Notation for
LTL Formulae. In: Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579,
pp. 557–568. Springer, Heidelberg (2005)

7. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications. ACM Trans. Program.
Lang. Syst. (1986)

8. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press (1999)
9. Cobleigh, R.L., Avrunin, G.S., Clarke, L.A.: User Guidance for Creating Precise

and Accessible Property Specifications. In: ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (2006)

10. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property Specification Patterns for
Finite-State Verification. In: 2nd Workshop on Formal Methods in Software Prac-
tice (1998)

11. Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H., Wolf,
K.: Instantaneous Soundness Checking of Industrial Business Process Models. In:
Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701,
pp. 278–293. Springer, Heidelberg (2009)

12. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri Nets. In: van der
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS,
vol. 3649, pp. 220–235. Springer, Heidelberg (2005)

13. ISO, Geneva, Switzerland: Road vehicles – Open Test sequence eXchange format
(OTX). ISO 13209 (2012)

14. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. International Journal on Soft-
ware Tools for Technology Transfer (2007)

15. Rinderle-Ma, S., Kabicher, S., Ly, L.T.: Activity-oriented clustering techniques
in large process and compliance rule repositories. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM Workshops 2011, Part II. LNBIP, vol. 100, pp. 14–25.
Springer, Heidelberg (2012)

16. Knuplesch, D., Ly, L.T., Rinderle-Ma, S., Pfeifer, H., Dadam, P.: On Enabling
Data-Aware Compliance Checking of Business Process Models. In: Parsons, J.,
Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412,
pp. 332–346. Springer, Heidelberg (2010)

17. Kopp, O., et al.: The Difference Between Graph-Based and Block-Structured Busi-
ness Process Modelling Languages. Enterprise Modelling and Information Systems
Architecture (2009)

18. Liu, Y., Muller, S., Xu, K.: A Static Compliance-Checking Framework for Business
Process Models. IBM Systems Journal (2007)

19. Lohmann, N., Verbeek, E., Dijkman, R.: Petri Net Transformations for Business
Processes–a Survey. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions

316 R. Mrasek et al.

on Petri Nets and Other Models of Concurrency II. LNCS, vol. 5460, pp. 46–63.
Springer, Heidelberg (2009)

20. Ly, L.T., Knuplesch, D., Rinderle-Ma, S., Göser, K., Pfeifer, H., Reichert, M.,
Dadam, P.: SeaFlows Toolset – Compliance Verification Made Easy for Process-
Aware Information Systems. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010.
LNBIP, vol. 72, pp. 76–91. Springer, Heidelberg (2011)

21. Mendling, J.: Empirical Studies in Process Model Verification. In: Jensen, K., van
der Aalst, W.M.P. (eds.) Transactions on Petri Nets and Other Models of Concur-
rency II. LNCS, vol. 5460, pp. 208–224. Springer, Heidelberg (2009)

22. Ramezani Taghiabadi, E., Fahland, D., van Dongen, B.F., van der Aalst, W.M.P.:
Diagnostic Information for Compliance Checking of Temporal Compliance Re-
quirements. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS,
vol. 7908, pp. 304–320. Springer, Heidelberg (2013)

23. Schlingloff, H., Martens, A., Schmidt, K.: Modeling and Model Checking Web
Services. Electronic Notes in Theoretical Computer Science (2005)

24. Schmidt, K.: LoLA A Low Level Analyser. In: Nielsen, M., Simpson, D. (eds.)
ICATPN 2000. LNCS, vol. 1825, p. 465. Springer, Heidelberg (2000)

25. Schmidt, K.: Stubborn Sets for Standard Properties. In: Donatelli, S., Kleijn, J.
(eds.) ICATPN 1999. LNCS, vol. 1639, pp. 46–65. Springer, Heidelberg (1999)

26. Schmidt, K.: Stubborn Sets for Model Checking the EF/AG Fragment of CTL.
Fundamenta Informaticae (2000)

27. Schneider, T.: Specification of Testing Workflows for Vehicles and Validation of
Manually Created Testing Processes. Master’s thesis, Karlsruhe Institute of Tech-
nology (May 2012) (in German)

28. Smith, R.L., et al.: PROPEL: An Approach Supporting Property Elucidation. In:
Conference on Software Engineering (2002)

29. Stahl, C.: A Petri Net Semantics for BPEL, Technical Report 188. Humboldt-
Universität zu Berlin (2005)

30. Syed Abdullah, N., Sadiq, S., Indulska, M.: A Compliance Management Ontol-
ogy: Developing Shared Understanding through Models. In: Ralyté, J., Franch, X.,
Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 429–444.
Springer, Heidelberg (2012)

31. Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. In:
Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240,
pp. 100–115. Springer, Heidelberg (2008)

32. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., Russell,
N.: On the Suitability of BPMN for Business Process Modelling. In: Dustdar,
S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 161–176.
Springer, Heidelberg (2006)

33. Zimmermann, W., Schmidgall, R.: Bussysteme in der Fahrzeugtechnik – Protokolle,
Standards und Softwarearchitektur. Vieweg + Teubner (2010)

Analysis of Operational Data for Expertise

Aware Staffing

Renuka Sindhgatta1,2, Gaargi Banerjee Dasgupta1, and Aditya Ghose2

1 IBM India-Research, Bangalore, India
2 University of Wollongong, New South Wales, Australia

{renuka.sr,gdasgupt}@in.ibm.com,aditya.ghose@uow.edu.au

Abstract. Knowledge intensive business services such as IT Services,
rely on the expertise of the knowledge workers for performing the activ-
ities involved in the delivery of services. The activities performed could
range from performing simple, repetitive tasks to resolving more complex
situations. The expertise of the task force can also vary from novices who
cost less to advanced skill workers and experts who are more expensive.
Staffing of service systems relies largely on the assumptions underly-
ing the operational productivity of the workers. Research independently
points to the impact of factors such as complexity of work and expertise
of the worker on worker productivity. In this paper, we examine the im-
pact of complexity of work, priority or importance of work and expertise
of the worker together, on the operational productivity of the worker.
For our empirical analysis, we use the data from real-life engagement in
the IT service management domain. Our finding, on the basis of the data
indicates, not surprisingly, that experts are more suitable for complex or
high priority work with strict service levels. In the same setting, when
experts are given simpler tasks of lower priority, they tend to not per-
form better than their less experienced counterparts. The operational
productivity measure of experts and novices is further used as an in-
put to a discrete event simulation based optimization framework that
model real-life service system to arrive at an optimal staffing. Our work
demonstrates that data driven techniques, similar to the one presented
here is useful for making more accurate staffing decisions by understand-
ing worker efficiency derived from the analysis of operational data.

Keywords: operational productivity, experience and expertise, IT inci-
dent management.

1 Introduction

A key characteristic of Knowledge Intensive Business Services (KIBS)[20] is its
reliance on the knowledge of workers for delivering services to customers. The
quality and cost of the service delivered depends on the expertise of the workers
involved. In IT infrastructure management services (a specific class of KIBS),
there are several processes defined to ensure smooth operation and management
of the customer’s infrastructure. For example. the Service Desk which serves as

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 317–332, 2014.
c© Springer International Publishing Switzerland 2014

318 R. Sindhgatta, G.B. Dasgupta, and A. Ghose

a contact between service providers and customers and Incident Management
to quickly restore normal service operations in the event of failure (Office of
Government Commerce 2007). Apart from being process intensive, the opera-
tions tend to be resource intensive as well. Hence, it is important to evaluate the
efficiency of resources and optimally staff the teams delivering services. In this
paper we describe the analysis of data collected within an organization (IBM)
to gain insights into various factors that impact the productivity of the work-
ers. These insights influence the staffing decisions of a complex service delivery
system.

We focus on the IT Incident Management Process where the failures or events
are reported in by customers as Service Requests (SR). The service organization
managing the processes is the service provider, and has a team of service workers
(SW) who deliver the services. The time taken (completion time) to restore the
service or resolve a SR is a critical performance metric, and hence is closely
monitored within the IT Management Process. Typically the contracts specifies
a minimal percentage of SR (i.e X%) in a month that must be resolved within
a target completion time (i.e. Y hrs). On a breach of the terms in the contract,
the provider is liable to pay penalties. Hence keeping completion times within
contractual target times is the most critical performance metric of this incident
management process. Several factors affect completion times in an IT incident
management system. The completion time of a SR depends on the (a)queue
waiting time in the system and the (b)service time of the worker (time required
to do complete a single unit of work). The queue waiting time in turn depends
on the amount of work that exists in the system and the resources available for
doing that work. In case of an under-staffed system, all workers are busy and the
queue waiting times are higher. This leads to overall higher completion times.
The service time of the worker on the other hand is independent of the amount
of work in the system, and depends on factors such as the worker expertise and
the type of request. In this paper we focus on the factors impacting the service
time of the worker and their impact on the optimal staffing of the system .

The service time of a worker is known to depend on the expertise of a worker
gained through experience [16],[22]. Prior studies also indicate the service times
vary with work complexity. Complex work requires more time than simple work
[10]. In this paper, we additionally evaluate the impact of work priority (impor-
tance of work) and analyze the service time of the workers in the context of the
three factors: i.e., on (a) complexity of work (b) the minimum expertise level
of the worker required for a work and (c) importance or priority of the work.
We observe that, while experts have lower service time than novices for complex
work and important work, they tend to have the same efficiency as novices for
less important work. We use the insights gained to make informed skill-based
staffing decisions within the incident management process. A simulation model
closely models behavior of experts and novices for varying work complexity and
priority. A search based optimizer uses the simulation model to arrive at an
optimal staffing.

Analysis of Operational Data for Expertise Aware Staffing 319

This work demonstrates that data-driven techniques similar to the ones pre-
sented here can be useful in identifying policies governing the optimal matching
of service worker to service requests. Our intent here is not to suggest that
the specific findings about the correlation between service worker and request
profiles should work in all organizational settings and in all instances. Indeed,
the validity of these specific findings is restricted to the specific organizational
context. These might potentially not hold even in other parts of the same organi-
zation. However, the results presented may serve as the basis for methodological
guidelines on how data-driven analysis can lead to more effective allocations of
workers to tasks.

Rest of the paper is organized as follows: In section 2, we present background
on IT incident management process. Section 3 presents details of our data and
the model used to simulate and arrive at optimal staffing. Section 4 presents the
actual analysis of service times along the dimensions and presents insights that
can adopted by staffing solutions. Section 5 summarizes the threats to validity.
Section 6 presents related work and section 7 concludes the paper.

2 IT Incident Management Process

This section provides an overview of the IT incident management process of
the service system under study. We define commonly used concepts of a service
system supporting the incident management process.

Figure 1 illustrates an incident management process. A problem or issue faced
by a customer or a business user is reported as an incident into an incident
management system. The dispatcher reviews the incident and evaluates the
complexity and priority of the incident. The dispatcher further identifies a

Fig. 1. IT Incident Management Process

320 R. Sindhgatta, G.B. Dasgupta, and A. Ghose

service worker suitable for resolving the incident. This task is based on specific
rules and policies and hence is a rule based activity. In the IT service system
under study, workers are broadly categorized into two distinct classes Experts
or experienced service workers and novices or less experienced service workers.
If an incident is complex, an expert service worker is assigned the incident and if
the incident is simple, a novice service worker is given the incident. An alternate
dispatching policy applies when none of the novice workers are free i.e. all are
busy resolving other incidents. In such a scenario, a simple ticket is asssigned to a
free expert worker. The worker assigned to the incident, resolves the incident.
Once an incident is resolved, the business user validates and confirms the service
provided by the worker and closes incident.

2.1 Concepts in the Service System

We define the key concepts underpinning the service system below:

Incident or Service Request Incidents or service requests constitute inputs
to the service system and are handled by service workers. Each incident is
characterized by its complexity and priority.

Complexity The complexity of an incident is indicative of the ”level of diffi-
culty”. A finite set of complexities levels X are defined. A complexity level
is associated with each incident.

Priority The priority of an incident indicates the urgency and impact of an
incident. A finite set of priorities levels P are defined. A priority level is
associated with each incident. A higher value of priority indicates that the
incident is important and needs faster resolution.

Work Arrivals The arrival pattern of service requests is captured for finite set
of time intervals T (e.g. hours of a week). That is, the arrival rate distribution
is estimated for each of the time intervals in T , where the arrival rate is
assumed to follow a stationary Poisson arrival process within these time
intervals (one hour time periods) [11] [2].

Service Time Service time refers to the time taken by the service worker to
handle the incident. This refers to the time interval between the time a
service worker picks up the incident and the time the service worker resolves
the incident. In the Figure 1, the service time is the time spent in the activity
”Resolve Incident”.

Completion Time Completion time of an incident refers to the time elapsed
between the generation of the incident by the customer and the completion
of the process of handling the incident. The completion time includes the
time an incident waits in the queue for it to be dispatched by the dispatcher
to a service worker.

Expertise Expertise of a service worker is based on skill gained through ex-
perience. Service workers are categorized into a finite set of expertise levels
L.
A mapping β : X → L is a map from the complexity of work to the minimum
expertise of service worker required to support an incident. This mapping

Analysis of Operational Data for Expertise Aware Staffing 321

is used by the dispatcher to evaluate the complexity and decided the exper-
tise of the SW capable of working on the incident. An expert is capable of
resolving service request or incidents of all complexities.

Service Level Agreements Service levels are a measure of quality or out-
come of service. SLA are given for each customer and priority pair as γip =
(αip, rip), αip, rip ⊂ R is a map from each customer-priority pair to a pair
of real numbers representing the SR completion time deadline (time) and
the percentage of all the SRs that must be completed within this deadline
in a month. For example, γCustomer1,P1 =< 4, 95 > , denotes that 95% of
all SRs from Customer1 with priority P1 in a month be completed within
4 hours.i.e. completion time of 95% of the requests of the Customer1 ≤ 4
hours.

2.2 Service System Model for Staffing

There are several complexities involved in modeling a service system as described
by the authors in [9]. First, the incidents or service requests are differentiated
by their complexities and priorities with request arrival rates varying over hours
and days of the week. Second, the service levels vary for each customer and
priority of the incident. Finally, the service times of the workers is dependent
on multiple factors that we would evaluate through the empirical study in this
paper. Due to these inherent complexities, we use a simulation based modeling
and optimization framework to determine optimal staffing levels. For simplicity,
in our optimization model, we consider a service system supporting one customer.
It can be easily extended to support multiple customers by considering different
service levels and different volume of requests per customer. The optimization
model defined in [9] has been adopted for arriving at the number of workers at
each expertise level to meet the service level agreements at minimal costs. We
describe the optimization model in brief:

– p, the set of priorities of a service request ; p := {1, 2, . . . , P}

– x, the set of complexities c := {1, 2, . . . , X}

– l , the set of expertise levels; l := {1, 2, . . . , L}

– nl, the set of workers with expertise level l

– nl, the upper bound on the number of workers with expertise level l

– nl, the lower bound on the number of workers with expertise level l

– cl is the cost of a service worker with expertise level l

– vtpx is the volume of requests in the period t with priority p and complexity x

322 R. Sindhgatta, G.B. Dasgupta, and A. Ghose

– spxl is the service time for a request with priority p, complexity x and as-
signed to worker of expertise l

– βxl is valued 1 if request of complexity x can be addressed by an expertise
level l and 0 otherwise

– αp is the target attainment for priority p during a measurement time
– rp is the target resolution time for a request of priority p.

Objective Function and Constraints. The objective of the staffing solution
is to minimize the cost of the service system as defined:

minimize
∑
l∈L

nlcl (1)

such that,
fp(v

t
px, spxl, βxl, nl, rp) ≤ αp (2)

nl ≤ nl ≤ nl (3)

Equation (1) is the staffing cost of the solution. Equation (2) is the constraint
indicating service level agreements must be satisfied. The function fp is com-
puted by the simulation model which indicates if the attainment level αp is met.
Equation (3) is the restrictions set on the minimum and maximum staffing levels
set for the solution.

The simulation model uses discrete event simulation to generate service re-
quest of defined priorities and complexities. The service time of the workers are
based on their expertise levels, priority and complexity of the work. The out-
come of the simulation model is the service level attainment considering all the
factors described in function fp.

3 Data Setting and Parameters

In this section we look at various factors that impact the service time of a worker.
We further present the parameters used in our model to evaluate the impact of
these factors on the staffing of the system.

3.1 Setting

We study the data collected from three teams within the organization (IBM). All
the three teams were involved in managing incidents of the operating systems
(OS) domain -i.e manage OS of servers of customers. The data on service time
(worker productivity) was collected for a period of three weeks using time and
motion study. There were a total of 60 workers across the three teams. Service
time data from approximately 4000 incidents was analyzed. For each incident,
we extract the complexity, priority, expertise of the assigned worker and the
service time.

Analysis of Operational Data for Expertise Aware Staffing 323

Dependent Variable. We examine service time as the dependent variable.
Service Time is used to evaluate productivity of a worker. As indicated in earlier
studies [10], service time follows a log normal distribution as seen in Figure 2.
The mean service time is 40.33 minutes and the standard deviation is 37.29.

Fig. 2. Service Time Distribution

Independent Variables. Complexity of incident, priority of incident and ex-
pertise of the worker are chosen as the independent variables.

Expertise The expertise of the workers in the team is based on the experience
of the workers - novice with < 2 years experience, experts with > 2 years,< 7
years experience. Of the 60 workers, 20 are novices and 40 are experts. We
refer to an expert having a High expertise and novice having Low expertise.

Complexity The complexity is determined by the dispatcher. Incidents range
from handling password reset requests (simple) to verifying security compli-
ance of a server (complex). We have two levels of complexity - Simple and
Complex. Simple work can be assigned to novices or experts. We observe
50% of the simple incidents get resolved by experts. While it is not prefer-
able to assign complex work to novices, in the data collected across teams,
we observe 10% of the complex incidents assigned to novices.

Priority Priority of an incident determines its urgency and importance. There
are 4 levels of priority - Very High(VH), High(H), Medium (M) and Low (L).
VH priority incidents are rare and are always treated as exceptions. The low
priority incidents also form a small percentage and since their service levels
are relaxed, these incidents rarely need to get assigned to a higher skilled
worker. i.e. a simple work is assigned to a novices even if they are busy
as they have relaxed target time. Hence, in our study, we focus High and
Medium priority tickets.

3.2 Model Parameters

Based on the evaluation of complexities, priorities and expertise in the dataset,
the parameters used in our simulation model are as follows:

324 R. Sindhgatta, G.B. Dasgupta, and A. Ghose

– The finite set of time intervals for arriving work, denoted by T, contains one
element for each hour of week. Hence, |T | = 168. Each time interval is one
hour long.

– Priority Levels P : Two levels of priority are considered P = {High,
Medium}, where High > Medium.

– Expertise Levels L : Two different levels of expertise simulated L = {Low,
High}, where, High > Low.

– Complexity Levels X : Two different levels of complexity are considered
X = {Complex, Simple} where, Complex > Simple

– Cost: The cost of a worker depends on the expertise. We consider the cost
of an expert to be 50% higher than the cost of a novice.

Table 1 shows the distribution of requests based on the priority, the service level
target times and the percentage target levels that are used in the model.

Table 1. Work Distribution and Service Level Target times and Percentages

Priority of
Incident

Percentage
Distribution

Service Level Target
Times (minutes)

% Meeting Target
Time

VeryHigh 2 240 95
High 20 480 95
Medium 75 720 90
Low 3 1440 90

3.3 Implementation

Our implementation of the IT incident Management process model is built using
the AnyLogic simulation software [25] [5] which supports discrete event simula-
tion technique. It also provides optimization package that uses intelligent search
procedures in scatter search combined with Tabu search metaheuristics [19][14].
We simulate up to 40 weeks of simulation runs. Measurements are taken at end
of each week. No measurements are recorded during the warm up period of first
four weeks. In steady state the parameters that are measured include:

– SLA measurements at each priority level
– Completion times of work in minutes (includes queue waiting times and

service times)
– Resource utilization (captures the busy-time of a resource)
– Number of resources that is an indication of cost

For all the above parameters the observation means and confidence intervals
are reported. Whenever confidence intervals are wider, the number of weeks in
simulation is increased and reported values in the paper are within confidence
intervals.The simulation model further, does not dispatch a high complexity work
to a novice. We arrive at all our results where an expert can do a simple work
but a novice doesn’t do a complex work in line with the real-life dispatching
policy.

Analysis of Operational Data for Expertise Aware Staffing 325

4 Empirical Study: Service Time Analysis and Impact on
Staffing Solution

4.1 Impact of Work Complexity on Service Time

A commonly used approach in practice is to profile the service time of workers
based on the complexity of requests assigned [10]. Figure 3 shows the difference
in means of service time and their confidence intervals, with complexity of the
request. Statistical techniques such as ANOVA [23], can be used to analyze the
variance in the mean of a dependent variable (service time) due to one or more
independent variables (here the complexity). However, ANOVA assumes that
the data follows Gaussian distribution and has equal variances across means.
We verify the homogeneity of variance through Levene’s test. The verification of
Levene’s test for homogeneity of variances fails. Hence, we use non-parametric
counterpart test (Kruskal-Wallis test) to compare variance of means across com-
plexities. The Kruskal-Wallis test [23] for analysis of variance by ranks across
the two levels of complexity yields a statistically significant difference (K=44.1,
p < 0.001). The results of the Kruskal-Wallis test indicate a significant impact of
work complexity on service time. The dispatching policy also indicates that com-
plex work requires an expert to work on it while simple work can be resolved by
novices or experts. We observe that, in this setting: Complex work takes more
time to resolve as compared to simple work. Percentage distribution of simple
and complex work forms an important input for arriving at the distribution of
experts and less experienced workers.

The service time variance with work complexity is used by the model and
the staffing of experts and novices is determined for varying distribution of work
complexities. Figure 4 shows the results obtained. As the distribution of complex
work increases from 20% to 40% of the workload, the number of workers increases
from 4 experts (of total 9 workers) and 7 experts (of the total 11 workers).

Fig. 3. Summary statistics of Service Time Variance with Work Complexity

4.2 Impact of Work Complexity and Expertise of Worker on
Service Time

Expertise has a significant impact on the efficiency or productivity of a worker
[22]. In our study, we evaluate the variance in service time along the dimen-
sions of the expertise of the worker resolving the request. The Kruskal-Wallis

326 R. Sindhgatta, G.B. Dasgupta, and A. Ghose

Fig. 4. Staffing of Experts and Novices considering Service Time variance with work
complexity

Fig. 5. Summary statistics of Service time variance with work complexity and worker
Expertise

test statistics for variance in means of service time across the levels of expertise
fails to show statistical significance (p = 0.403). We attribute this anomaly to
the fact, that less experienced workers do not work on complex incidents (only
experts are assigned complex incidents). As complex incidents having higher
service time, the overall impact of expertise on service time is not evident. We
further evaluate the variance in service time considering expertise for low com-
plexity work. The variance in service time means for varying expertise yields a
statistically significant difference (K=33.2 ,p < 0.001).

Figure 5 shows the variance in service time considering both expertise and
complexity of work. Service workers with low expertise level rarely work on
complex tickets (as indicated by N=151 of 1964 incidents). However, we observe
significant variance in service time means for low complexity work (Means of 43.7
and 34.1 for Low and High expertise of worker respectively).

When the service times derived by analysis of the dimensions of expertise
and complexity is used into the simulation model with the staffing results ob-
tained in section 4.1, only 85% of low priority incidents meet the service level
required. Hence, the staffing derived in section 4.1 (service time variance with
only complexity as a dimension) is lower than what is required for meeting the
target service levels. We model the variance in service time accounting for ex-
pertise and complexity of work to derive an optimal staffing. Figure 6 indicates
the staffing numbers for novice and experts when using the dimensions of com-
plexity and expertise for service time variance. The staffing solution indicates a
higher number of novices. This is because, in this setting, analysis of service time

Analysis of Operational Data for Expertise Aware Staffing 327

Fig. 6. Staffing of Experts and Novices considering service time variance with work
complexity and worker expertise

considering expertise only indicates that, the service time of low complexity work
is low when experts work on it. Novices take sufficiently longer time to work on
low complexity work. Hence, more number of novices are required to meet the
service levels.

4.3 Impact of Work Complexity, Priority and Expertise of Worker
on Service Time

Prior work on staffing considers priority of work as an important factor for mod-
eling service time variance [9]. We evaluate the impact of all the three factors
on service time (worker expertise and work priority for simple and complex inci-
dents). Figure 7 shows the mean service times and the results of Kruskal-Wallis
test for different complexities, expertise and priority of the workers. The first
four rows show the service times for low complexity requests. Here, less experi-
enced workers have the same service time irrespective of the priority. Experienced
workers, tend to have better efficiencies only for high priority tickets. We observe
that in our study setting, the operational efficiency of experts for simple work
varies with the importance of work (indicated by priority). It can also been seen
that for less important work, experts take as much time as less experienced work-
ers. This could be attributed to several factors e.g. expert’s attention on high
priority work, mentoring novices, lower motivation to do less important work,
etc. An in-depth analysis of these factors and evaluation through a survey would
be needed to understand the variance in expert’s efficiency.

The last four rows in Figure 7 depict the service times for high complexity
work. Here, the less experienced workers take longer time. The operational effi-
ciency of experts does not change with the importance of work. The study data
indicates that: when the complexity of work matches the minimum skill of the
worker, there is no improvement in the operational efficiency irrespective of the
importance of work. The staffing obtained in section 4.2 when used in the simu-
lation model accounting for service time mean variances with work complexity,
worker expertise and work priority results in a target service level attainment
86% for low severity work. Hence, the staffing solution in section 4.2 under esti-
mates the number of workers required to meet the service levels.

328 R. Sindhgatta, G.B. Dasgupta, and A. Ghose

Fig. 7. Service Time Variance with Work complexity , worker expertise and priority

Fig. 8. Staffing of Experts and Novices considering Service Time variance with work
complexity, expertise and priority

We use the results of our analysis to determine the staffing of experts and
novices. We see that the number of experts reduces as the staffing solution
converges at a larger number of novices in this model.

4.4 Observations and Dispatching Recommendations

The efficiency of service workers influences the optimal staffing in terms of cost
and quality (adherence to service levels). By evaluating the service time of the
worker across various dimensions of expertise, complexity and priority, our sim-
ulation and optimization framework reflects the behavior of experts and novices
and provides the staffing in the face of these three factors. In section 4.1 when
the service time is only based on complexity of work, the model arrives at a
specific number of experts (4 and 7 experts as compared to 5 and 4 novices
with varying work complexity distribution respectively) as low complexity work
indicates lower service time. When the service time is analyzed in the context

Analysis of Operational Data for Expertise Aware Staffing 329

of the expertise and complexity (section 4.2), the number of novices increases as
they take longer time to complete simple requests. The number of experts also
increase (5 and 8 experts as compared to 5 and 5 novices respectively) as the
experts are found to have better efficiency for simple work. When we further
evaluate the experts efficiency in the context of priority (section 4.3), the model
further converges with a solution of having lower number of experts (4 and 7) as
they perform better than novices for specific case of higher priority work. The
number of novices increases in the final solution as they are preferred for all
simple and low priority work.

These observations can be used to improve the dispatching policies or rules
that are evaluated by a dispatcher when assigning tickets to service workers.
As the complex work can only be assigned to experts and the behavior of the
experts does not change for complex work, there is no change in the dispatching
rule for assigning complex work. However, simple work can have new dispatching
rules as indicated in Table 2. Existing dispatching policies in teams primarily
evaluate the availability of a service worker. Hence, the rules in the first column
check first for the availability of a novice and then dispatch to either a novice or
an expert. We recommend that the priority of the incident is also evaluated. If
the priority of the incident is high, then an expert can work on it faster and work
towards meeting the service levels. If the priority of the ticket is lower, then it
should largely be handled by a novice to reduce the cost of the service system
as novices and experts have similar service times. These dispatching rules are
indicated in the second column of the Table 2.

Table 2. Dispatching Policies for Simple or Low complexity work

Existing Policy in Teams Recommended Policy in Teams

if (novice isAvailable) → assign to novice if (incident priority isHigh) and if(expert
isAvailable) → assign to expert

if (not novice isAvailable) and if (expert
isAvailable) → assign to expert

if (incident priority isHigh) and if(not ex-
pert isAvailable) and if (novice isAvail-
able) → assign to novice

if (not novice isAvailable) and if (not ex-
pert isAvailable) → wait in queue

if (incident priority isLow) and if (novice
isAvailable) → assign to novice

if (incident priority isLow) and if(not
novice isAvailable) and if (expert isAvail-
able) → wait in queue

if (incident priority isLow) and if(not
novice isAvailable) and if (not expert
isAvailable) → wait in queue

if (incident priority isHigh) and if(not
expert isAvailable) and if (not novice
isAvailable) → wait in queue

330 R. Sindhgatta, G.B. Dasgupta, and A. Ghose

5 Threats to Validity

In this section, we identify the limitation of our study with respect of construct
validity, internal validity and external validity.

Construct Validity denotes that the variables are measured correctly. The
dependent and the independent variables used in this study have been evaluated
by earlier studies described in the Related Work section. However, we realize that
the independent variables - expertise levels and work complexity measures can
vary across studies. Expertise levels is based on the organization’s categorization
of its resources. Similarly, categorization of work complexity is relative to type
of work being handled and the domain. In our study, this threat is mitigated
by considering data from one organization and evaluating teams doing the same
type of work i.e IT service management for operating systems.

Internal Validity is established for a study if it is free from systematic errors
and biases. We have accessed development data from three teams for a period
of 3 weeks. During this measurement interval, issues that can affect internal
validity such as mortality (that is, subjects withdrawing from a study during
data collection) and maturation (that is, subjects changing their characteristics
during the study outside the parameters of the study) did not arise. Thus, we
believe the extent of this threat to validity is limited.

External Validity concerns the generalization of the results from our study.
We have studied the impact of various factors on the operational efficiency of
workers based on data collected from approximately 4000 incidents. While in-
sights can be drawn from our study, we do not claim that these results can be
generalized in all instances. These results might not hold even in other parts
of the same organization. However, the results serve as the basis of using data
driven approach for evaluating worker productivity leading to more effective
allocation of service workers to service requests.

6 Related Work

In this section, we situate our work within prior research on team and organiza-
tional learning theories, resource planning and service delivery modeling. There
has been a significant body of work focused on teams and their learnings. About
two decades back researchers[26,12] studied the effects of organizational struc-
ture (i.e. hierarchy, team etc.) on metrics like problem solving, cost, competition
and drive for innovation and also the effect [7] of learning and turnover on dif-
ferent structures. Carley’s [6] theory of group stability postulates a relationship
between individual’s current knowledge and her behavior. This work builds on
previous work to postulate the relationship between individual’s current knowl-
edge, the importance of work and her behavior.

Learning has also been looked at in the context of human resource planning
[4], [3], where there is a need to forecast the future skill mix and levels required,

Analysis of Operational Data for Expertise Aware Staffing 331

as well as in context of dynamic environments like call centers[13], where both
and learning and turnover are captured to solve the long and medium term
staffing problem. In the domain of learning, Guadagnoli et. al [15] formulate a
challenge point framework for motor learning where the learning is maximized
at an optimal challenge point. According to authors, how much an individual
learns when challenged, depends on the skill level of the performer and the task
complexity. Jaber et. al present the learning and forgetting models ([18,17,21,24])
for the manufacturing domain. These theories can be applied to service delivery
principles as well [8]. Diao et.al present the first detailed model of a complex
delivery system. However in this case, the service times are not profiled based on
worker expertise. In [1] authors discuss how teams can be formed in accordance
with one of the following service delivery models: (a) Customer focused (b)
Business Function focused and (c) Technology-focused. Here authors hint that
the choice of the delivery model organization should be based on multiple factors
one of which is the expertise or skill of knowledge workers. To the best of our
knowledge, in the setting of an IT service delivery system this is the first work
that attempts to draw insights on the dependency of a worker’s efficiency on her
skill, work complexity and priority.

7 Conclusion

In this paper, we have evaluated the operational productivity of service work-
ers on multiple factors such as complexity of work, priority or importance of
work and expertise of the worker. The analysis of service times is further used
to evaluate the staffing solution required to meet the cost and quality require-
ments of the service system. We observe that, in our operational settings, the
behavior of experts varies with the importance of work. The insights gained
from our study offer implications for dispatching or ticket assignment policies
that consider behavior of experts and novices. We demonstrate that data-driven
techniques similar to ours can serve as the basis for methodological guidelines
and provide effective dispatching and staffing policies required to meet the con-
tractual service levels (quality) of the service system.

References

1. Agarwal, S., Sindhgatta, R., Dasgupta, G.B.: Does one-size-fit-all suffice for service
delivery clients? In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013.
LNCS, vol. 8274, pp. 177–191. Springer, Heidelberg (2013)

2. Banerjee, D., Dasgupta, G.B., Desai, N.: Simulation-based evaluation of dispatch-
ing policies in service systems. In: Winter Simulation Conference, pp. 779–791
(2011)

3. Bordoloi, S.: A control rule for recruitment planning in engineering consultancy.
Journal of Productivity Analysis 26(2), 147–163 (2006)

4. Bordoloi, S.K., Matsuo, H.: Human resource planning in knowledge-intensive op-
erations: A model for learning with stochastic turnover. European Journal of Op-
erational Research 130(1), 169–189 (2001)

332 R. Sindhgatta, G.B. Dasgupta, and A. Ghose

5. Borshchev, A.: The Big Book of Simulation Modeling. Multimethod Modeling with
AnyLogic 6. Kluwer (2013)

6. Carley, K.: A Theory of Group Stability. American Sociological Review 56, 331–354
(1991)

7. Carley, K.M.: Organizational learning and personnel turnover. Organization Sci-
ence 3, 20–46 (1992)

8. Dasgupta, G.B., Sindhgatta, R., Agarwal, S.: Behavioral analysis of service delivery
models. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS,
vol. 8274, pp. 652–666. Springer, Heidelberg (2013)

9. Diao, Y., Heching, A.: Staffing optimization in complex service delivery systems.
In: CNSM, pp. 1–9 (2011)

10. Diao, Y., Heching, A.: Analysis of operational data to improve performance in
service delivery systems. In: CNSM, pp. 302–308 (2012)

11. Diao, Y., Heching, A., Northcutt, D.M., Stark, G.: Modeling a complex global
service delivery system. In: Winter Simulation Conference, pp. 690–702 (2011)

12. Roberts, K.H., Jablin, F.M., Putnam, L.L., Porter, L.W. (eds.): Handbook of Or-
ganizational Communication: An Interdisciplinary Perspective. Sage (1986)

13. Gans, N., Zhou, Y.-P.: Managing learning and turnover in employee staffing. Oper.
Res. 50(6) (2002)

14. Glover, F., Laguna, M.: TABU search. Kluwer (1999)
15. Guadagnoli, M.A., Lee, T.D.: Challenge point: a framework for conceptualizing the

effects of various practice conditions in motor learning. Journal of Motor Behav-
ior 36(2), 212–224 (2004)

16. Huckman, R.S., Pisano, G.P.: The firm specificity of individual performance: Evi-
dence from cardiac surgery. In: Management Science, pp. 473–488 (2006)

17. Jaber, M.Y., Kher, H.V., Davis, D.J.: Countering forgetting through training and
deployment. International Journal of Production Economics 85, 33–46 (2003)

18. Jaber, M.Y., Sikstrom, S.: A numerical comparison of three potential learning and
forgetting models. International Journal of Production Economics 92(3) (2004)

19. Mart́ı, R., Laguna, M., Glover, F.: Principles of scatter search. European Journal
of Operational Research 169(2), 359–372 (2006)

20. Miles, I., Kastrinos, N., Flanagan, K., Bilderbeek, R., Den Hertog, P., Huntink, W.,
Bouman, M.: Knowledge-intensive business services, vol. (15). EIMS Publication
(1995)

21. Nembhard, D.A., Uzumeri, M.V.: Experiential learning and forgetting for manual
and cognitive tasks. International Journal of Industrial Ergonomics 25, 315–326
(2000)

22. Newell, A., Rosenbloom, P.S.: Mechanisms of skill acquisition and the law of prac-
tice, pp. 81–135. MIT Press (1993)

23. Siegel, S., Castellan, N.J.: Nonparametric statistics for the behavioral sciences, 2nd
edn. McGraw–Hill, Inc. (1988)

24. Sikstrom, S., Jaber, M.Y.: The power integration diffusion (pid) model for produc-
tion breaks. Journal of Experimental Psychology 8, 118–126 (2002)

25. XJ Technologies (2011), http://www.xjtek.com
26. Williamson, O.E.: The economics of organization: The transaction cost approach.

American Journal of Sociology (1981)

http://www.xjtek.com

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 333–348, 2014.
© Springer International Publishing Switzerland 2014

From a Family of State-Centric PAIS to a Configurable
and Parameterized Business Process Architecture

Andreas Rulle1 and Juliane Siegeris2

1 Nexoma GmbH, Paderborn
andreas.rulle@nexoma.de

2 HTW Berlin University of Applied Sciences
juliane.Siegeris@htw-Berlin.de

Abstract. The paper presents a solution to model and refine processes of long-
living business objects. The proposed BPMN model describes the life-cycle of
one business object, covering the passed states, the events that invoke state
changes and the acitivities that are triggered to perform operations on the object
which as a result lead to new states.

Starting from that state-centric operational design model a configurable
business process architecture is derived that is controlled by a state automaton
and runs on a BPMS that supports BMPN 2.0. Architectural rules are provided
to ensure the behavioral correctness of this architecture. The solution emerged
from an industrial use case at the transition between two generations of a family
of Process Aware Information Systems (PAIS). As a proof of concept
the architecture of a platform for the management of delivery times for a
wholesaler is described.

Keywords: state-centric process modeling within BPMN 2.0, software product
line, PAIS, configurable business process architecture, governance of long-
living objects, use cases for BPM.

1 Overview

There are different paradigms in modeling processes. The process can be seen as ac-
tivity or state driven. In the first paradigm activities have to be accomplished in a
certain order to reach a business goal. In the state driven way of thinking, the trigger-
ing order of the transitions depends on the current state and the occurrence of events.
The application domain of product master data management (MDM) is concerned
with the life-cycle of product data. Within this area the state-centered thinking is quite
natural: not a specific goal is headed for, but depending on certain events the product
data is maintained through-out a, possibly very long, life-cycle.

In the here described stetting, the legacy architecture of the Process Aware Infor-
mation Systems (PAIS) has been replaced. The new process architecture is based on
BPMN 2.0 in order to make use of state of the art open source technology for
the execution support. Another request in order to increase competitiveness in a

334 A. Rulle and J. Siegeris

globalized market was the realization of a software product line (SPL). The solution
should allow the configuration of processes at design- and the parameterization of
processes at run-time.

The problem: the master data management domain is inherently state-centered. The
business logic of the objects are so far described and supported with state automata.
Hence the following questions had to be answered:

• What is an adequate methodology to analyze and model processes in a domain
that has inherently state-centered business objects?

• What is the best alternative to model state-centric information in BPMN 2.0
diagrams?

• How can configurable models be designed that can be enacted on a BPMN 2.0
enabled BMPS?

• How can the behavioral correctness of a business process architecture be made
plausible if for example a set of 39 processes can be configured and even
parameterized at runtime to dynamically call each other?

These challenges appeared within the application domain of product master data
management. Therefore chapter 2 starts with a short introduction to the use case of
MDM. It also shows the role of state-centric processes (SCP) during the redesign of a
software product line that builds instances of master data management systems
(MDMS). In chapter 3 different alternatives for modeling state-based information
have been evaluated. From the results a suitable and compact notation, a so-called
state-centric operational model (SCOM), was derived. This representation minimizes
the artifacts to represent state information and allows to model industry sized but still
comprehensible models. To achieve a configurable architecture these operational
models are refined to an executable business process architecture whose processes are
controlled by a state automaton that is externally realized. The behavioral correctness1
of this state-centric business process architecture has been made plausible by the ap-
plication of business process patterns. The derivation of the new process architecture
and its description can be found in chapter 4. Chapter 5 gives a short summary of
related work on configurable models and on SPLs for business process management.
In chapter 6 we argue in that the whole engineering process makes a contribution to
the BPM use case catalog of van der Aalst, cf. [21, Ch. 4], adding a special refinement
use case that defines a business process architecture as an output. The paper is
concluded by a resume in chapter 7. The Fig. 1 shows the relationship between the
central concepts of this paper.

Fig. 1. Concepts for state-centric business processes

1 See chapter 4 for a brief characterization of the term behavioral correctness.

 From a Family of State-Centric PAIS 335

The practical applicability of this solution is shown by the description of a delivery
time management portal that has been released by the software product line.

2 Introduction of the Product Data MDM Use Case2

Dumas points out that “Master Data Management (MDM) methods provide guidance
for managing and governing data across application and organizational boundaries”,
see [12, p. 20]. In product MDM an electronic catalog comprises structured informa-
tion such as prices and product dimensions, semi-structured texts and logical refer-
ences to media files. A supplier might produce such catalogs for different groups of
products, countries and in different languages. In this paper the grouping of such
product descriptions is denoted as an assortment. It is not uncommon that an assort-
ment of a wholesaler contains 250,000 product descriptions, the corresponding XML-
file is larger than 1 GB and the media files comprise 25 GB or much more. Since the
data of assortments can be rather large, a component suite that efficiently handles
common MDM tasks is needed.

The international master data server (MDS) for a sector of industry, see the sample
MDS in Fig. 2, has more than 130 suppliers and about 800 assortments with more
than one million product descriptions. It delivers its data to several thousands of
business customers. Based on these electronic product data the business customers
issue electronic orders that are processed by the suppliers. To minimize the
transactional costs of these orders the high quality of the product data is a key success
factor. Therefore about 400 audits automatically test the products data und the media
files. Human data editors receive delta reports for updates of syntactically correct
assortments and manually check the quality of the product data. If the changes for the
products have been approved in a staging area then these products are taken over to
the shared area and transformed to the output formats and delivered to the customers.
The “taking over” of staging area changes of an assortment into the shared area can be
decomposed into different smaller steps like “selection of the released product
descriptions” or “check the resulting shared area assortment”.

A master data management system assists the data editorial in operating of an
MDS. As can be seen from the short description the considered MDS has Person-to-
Application (P2A) and Application-to-Application (A2A) processes. It is a key cha-
racteristic of an assortment in an MDS that it usually has a long lifetime. Many of the
assortments in the sample MDS in Fig. 2 live there for more than 9 years, that is since
the sample MDS has been updated with MDMS-2. These assortments are “essentially
permanent”, c. f. [p. 507 in 6]. An MDS for a sector of industry is a strategic invest-
ment and it is therefore indispensable that it is based on stable theoretical concepts
and a solid technological basis. Fig. 2 shows the influence of academic research and
technological trends on two generations of the concrete MDMS.

2 We would like to thank the anonymous reviewers for their invaluable hints to improve this

paper as a whole and especially this chapter.

336 A. Rulle and J. Siegeris

Fig. 2. Influence of academia and technology on the evolution of the product family

The described sample MDS was realized with the second generation of the
MDMS, see MDMS-2 in Fig. 2. An A2A-process like “taking over” is there described
in a proprietary DSL and enacted on a special purpose processor for this DSL. The
domain specific components are triggered by the tasks within the A2A-processes.
MDMS-2 has a state controller that triggers the P2A- und A2A-processes, see Fig. 3.
This state controller was realized as a J2EE application, see [7]. The workflow in the
controller is implemented by a hard-coded state automaton for each instance of an
MDS. The design for the interoperation of the state controller and the DSL-processor
was influenced by the idea of workflow interoperability, c.f. [p. 157 in 10]. This MDS
can be characterized as PAIS.

Fig. 3. Architecture of MDMS-2

Besides the strength of the architecture – for example a rollback to earlier states of
the assortments - there are weaknesses. Among them are the hard coded state automa-
ton and the hard-coded tasks that trigger the DSL-processes. The auxiliary processes
that prepare and post-process the process invocations are hard-coded as well.

The state controller in MDMS-2 implements what we call a state-centric process: it
interprets a state automaton and triggers application specific operations accordingly,
c.f. Fig. 3.

 From a Family of State-Centric PAIS 337

We want to emphasize that the business logic of an assortment is inherently state-
centric3. For example it is not a good idea to make a fresh import into an assortment
after the human data editorial has approved the changes and before these approved
changes are transferred to the shared area. A state-centric workflow makes the states
that are part of the business logic a first class citizen. It also supports the idea to sepa-
rate different concerns, the trigger and their order on the one side (realized in the state
controller) and the invoked operations (in Fig. 3 the DSL-processes) on the other. The
tasks that perform the state transitions can easily be identified and designed. This
separation allows the configuration at design time and the parameterization of the
architecture at run-time if the state information within the workflow is specified
declaratively, for example in a state transition table.

In the rest of this chapter, we will explain the concept of a state-centric process, its
derivation and the benefit in detail.

The MOVE-architecture, see Fig. 2 and [8] and [9], analyzes inter-organizational
processes to identify business objects 4 . The central role of the business objects
in inter-organizational business processes is highlighted by the meta-model in
[9, p. 135]. All the latter modeling is centric on their handling5.

The business objects of an MDS are the assortments. For an MDS there can be dif-
ferent input and output business objects with different definitions like EDIFACT and
BMEcat. It turns out to be a good choice for an MDS for a sector of industry to define
a master business object where all input business objects are mapped onto, audits are
checked on and output business objects are generated from. The state automaton in
Fig. 3 represents the states and state transitions of this master business object over its
entire life-cycle. It is this concept of a master business object that makes a state-
centric process for an MDS quite effective. This motivates the following informal
definition of a state-centric process.

Definition: A state-centric process spans the life-cycle of one business object. It de-
scribes the states of the business object, the events that invoke state changes and the
operations that transfer the business object into its subsequent states.

Table 1 sets state-centric processes as they are used in this paper informally in rela-
tion to data-centric concepts as described in [6]. The comparison points out that an
SCP shares common features with a data-centric process but that there are important
differences.

3 An objection might be that the steps from an input into the MDS to the output form a chain of

activities (CA). But only one CA may operate on an assortment concurrently. Therefore at
least two states (CA-running, CA-not-running) and a state controller that maintains these
states is needed.

4 The concept „Informationsobjekt“, see [9, p. 140], has been translated to the term business
object.

5 For the definition of a message diagram for business objects see [9, pp. 144-146]. In MDMS-
2 the MDM-components for handling the assortments, see Fig. 3, are generated from XML
representations of the master business object. In MDMS-3 a master business object is defined
by an XML schema.

338 A. Rulle and J. Siegeris

Table 1. An SCP and aspects of a data-centric process

 SCP in an MDMS Data-centric processes
Central concept business object business artifact
Whole life-cycle covered? yes yes
Representation of states in a SCOM in a life-cycle model
Definition of processes graphically in BPMN 2.0 declarative

Looking at the SCPs of various applications it can be stated that sectors of indus-

tries differ according to business objects and their structure and the specific audits that
check the quality of the data. Still they share common functionality in managing the
assortments, which makes it attractive under re-use aspects to view the different ap-
plications as a product family, sharing technical components and even processes. A
product family is a set of items that have common aspects and predicted variability,
see [3, p. 2], and the SEI defines in [4]: “A software product line is a set of software-
intensive systems that share a common, managed set of features satisfying the specific
needs of a particular market segment or mission and that are developed from a com-
mon set of core assets in a prescribed way.” In this paper we use the SCP as the cen-
tral concept to define an SPL for an MDMS.

Now we consider architectural alternatives to enact the state controller and the op-
erations of an SCP on a BPMN 2.0 enabled BPMS. A naïve approach would be to
model the state controller of the SCP as one process with one of the alternatives of
chapter 3 and the operations as sub-processes of this state controller. But in the con-
text of long-living business objects this would result in one long-running process per
one long-living object.

Process evolution and process migration for long-living processes is a well-known
topic that is for example discussed in depth in [11, Ch. 9]. Especially if the PAIS does
not support automatic instance migration then the uncontrolled instance migration, see
[11, Sec. 9.2.3.1], often needs manual intervention, is costly and error-prone, [11,
Sec. 9.2.3.1].

Even if business objects in an MDS would not be essentially permanent this naïve
approach could not have been chosen because it does not meet the requirement of a
configurable state controller. Chapter 5 clarifies why the option to configure a confi-
gurable model (BPM use case ConCM) was not attractive for MDMS-3.

Therefore to meet a central design requirement and for practical reasons in
MDMS-3 an SCP for a (long-living) business object is refined to an external state
automaton on the technical level, see chapter 4. The question how to technically
realize state information seems to be similar to that for business rules. Even complex
business rules could be expressed in executable BPMN but for practical reasons they
are better specified in an external business rules engine. Throughout the rest of the
paper the examples are taken from a solution that was released by the software
product line for MDMS-3. The delivery times of the wholesaler UDO BÄR6 are

6 See www.udobaer.com. [accessed: March 15, 2014].

 From a Family of State-Centric PAIS 339

managed by a web portal. By using this portal the wholesaler can review the delivery
times for the products of its assortments and the suppliers can maintain them. The
verified delivery time information is distributed via a soap web service. In the next
chapter 3 we search for the best option to model an SCP on the design level. Since we
have already made the decision to refine the states to a transition table of a state
automaton this investigation can focus on the complete representation of the states
and transitions of the state automaton and the readability of the model for the large
number of states that describe the business logic of an MDS for an industrial solution.

3 Modeling of an SCP in BPMN

In this section we discuss and evaluate options of the modeling of states and events in
operational BPMN diagrams. In a recent workshop7 of the BPM offensive Berlin the
representation of states within BPMN has been addressed and a consolidation of the
workshop results is summarized in Table 2.

This table lists different possibilities for representing state information in BPMN
2.0 diagrams. The collection is likely to be complete as it was the result of an inten-
sive discussion between several BPMN-experts, which was afterwards ensured
through an investigation of the OMG-Specification [14].

Table 2. Main alternatives for modeling state /event information in BPMN

ID

BPMN element used
to depict state

BPMN element used
to model events

Literature

A1

Data objects with state
information

- [13, Fig. 152], [17, p.
32]

A2

Conditional event BPMN 2.0 Spec. [14,
p.251—254]

A3

- Catching event, e.g.
following an event
based gateway

See pattern “deferred
choice” [16, pp. 17–18]

A4

Edge-labels of XOR-
gateway

- BPMN 2.0 Spec. [14, p.
290]

A5

Activities/Sub-
processes

Consecutive XOR
gateways for different
events

[2, pp. 48–50, 85–98]

A6

Activities/Sub-
processes

Attached interrupting
events

[17, pp. 83–106, pp. 119–
144], [14, pp. 254-257]

7 See [1] for the introductory talk.

340 A. Rulle and J. Siegeris

Alternative A1 is a good choice if several example states in a process model shall
be depicted. Different business objects with their state information can be integrated
into the sequence flow by directional data associations. Since the state in this alterna-
tive is a textual remark at the business object it is not obvious how to map events that
leave the states. Alternative A2 and A3 allow for the integration of state respectively
event information into a BPMN model. The interpretation here is that the flow is
paused until the event occurs respectively the condition becomes true. By using alter-
native A4 state information can be integrated into decisions in the process model.
This alternative is often used in combination with A1 in order to express the choice
made upon some preceding status evaluation. In alternative A5 the state is modeled
with the help of an activity/sub-process. The choice of activities that are possible
within that state are modeled with a subsequent XOR-gateway. This alternative al-
lows a systematic transformation of UML state automata into BPMN diagrams, see
[2]. A6 is a variant of A5. The modeled content is the same, but the description is
shortened as attached events avoid gateways for modeling different alternatives.

These alternatives have been evaluated in order to find a suitable modeling for
state-centric processes. According to its definition such a process model should:
describe the possible states of the business object, depict the events that invoke state
changes and line this up with the activities that are operated on the business objects
leading to a new state. Additionally it should be a notation that remains
understandable also for industry sized examples.

As result, alternative A6 was chosen. The summarized arguments are:
The state-centric processes mainly cope with one object. It would inflate the model

unnecessarily if we would use A1 and attach the same data object to every task within
the process, depicting the actual state. This alternative is more suitable if different
objects are used. A2 and A3 are not considered either, as the splitting of the flow due
to alternative state changes would make the use of gateways compelling and again
inflate the model. A4 allows selecting an alternative on the base of a state. Still it is
not possible (i) to identify the current state of a business object and (ii) it is not
obvious how to map events that leave the states. (i.e. various gateways could be
labeled with the same state). Modeling alternative A6 is preferred to A5 as fewer
elements are needed and as a rule of thumb the clarity of the resulting model is
improved if less model elements are used to express it.

Fig. 4 describes (a part of) the main business process of the delivery time portal for
the wholesaler with the help of the chosen alternative. Here, states are modeled by
activities. For a better distinction, they have been color-coded and a capital S and a
number precede the label. The attached catching events model the events that are
possible in the state. Their occurrence trigger application specific operations on the
business object, here modeled via the subsequent sub-processes. In the case when
only one event leaves the state the attached event is replaced by a normal sequence
flow leaving the activity. This further reduces the number of model constructs. After
an assortment of a supplier has been created in the delivery time portal, it can be
updated. The new version of the assortment with the contained delivery data is
checked by mandatory audits and quality audits. If both categories of audits are
fulfilled then that version of the assortment is taken over into the delivery time

 From a Family of State-Centric PAIS 341

information of the wholesaler and the assortment is set to the state “S5: up to date”. If
the quality audits fail then the result is manually reviewed and the update is released
or not. If the reviewer does not release the update or the mandatory audits fail, then
the supplier has to maintain the delivery time information of the assortment and the
process continues with the checking of the mandatory audits after this maintenance
has been completed.

Fig. 4. The state-centric operational model for the wholesaler example using A6

Such a model, describing the life-cycle of a business object in a state-centric man-
ner, is called a state-centric operational model (SCOM). A SCOM is a restricted
BPMN model. Except for the source and the sink no other than the described ele-
ments, namely state representing activities with boundary events and application spe-
cific sub-processes are allowed. Some structural restrictions furthermore suggest:

• that all elements are on a path from the source to the sink, whereas
• any path starts and ends with a state representing activity and
• state representing activities and application specific processes alternate.

The derived model is quite simple and therefore remains comprehensible also for
larger numbers of states. The complexity is hidden within the application specific sub-
processes and the realization of the state representing activities. For the application
specific processes the full expressive power of BPMN can be used within the refine-
ment-level. The state representing activities specify the state controller, see chapter 2,
and are refined to the transition table of the state automaton on the executional level.

4 Configuration and Parameterization of the Business Process
Architecture

To incorporate the advancing maturity of the BPM as a discipline, see [5], namely to
use existing open source solutions for the execution support, the MDMS-3 was
designed with the following main objectives.

342 A. Rulle and J. Siegeris

Target audience: light weight solutions also suitable for small and medium
businesses

Modeling notation: BPMN 2.0
Database Technology: native XML database (BaseX) for the efficient handling of

large data sets within the component suite8.
Requirements: Cloud-ready P2A and A2A, open source components,

executable BPMN 2.0, reuse of shared functionality, sup-
port for long-living objects

The goal is to derive an architecture which supports the process defined in the design
model. Some other impositions to the architecture of the MDMS-3 came in by the
management and the technical division:

From a management perspective it is required that the architecture can be adjusted
easily to serve the needs of different sectors of industry, thus supports the reuse of
components and processes. Here the idea of the product family comes in. The tech-
nical division also focused on state of the art technology and support through open
source software. During the design phases of the MDMS-3 the following architectural
decisions have been made9:

• (D1) The processes are enacted on a BPMN 2.0 enabled BPMS.
• (D2) The SCP shall be the central concept of the MDMS-3.
• (D3) The state of the assortments is maintained in an external representation,

working like a state automaton.
• (D4) The auxiliary processes in the state controller must be configurable.
• (D5) Long-running processes must be avoided.

Within the architecture the distinction between the application specific processes and
the state representing processes is remained. The implementation of the application
specific processes is done by a corresponding set P-A of executable processes.

This set can be subdivided into the disjunctive sets of asynchronously started main
processes (P-A-M), actually performing the tasks on the assortments and auxiliary
processes for the pre- and post-processing/error handling (P-A-AUX). The auxiliary
processes (P-A-AUX) are started as a call-activity by the standard processes (P-C).

The information modeled by the state processes is implemented by a state automa-
ton and a set of controlling processes (P-C) that interpret the automaton. The state
automaton is saved in a database holding the information of the current state as well
as the list of possible state changes and triggered application processes. The controller
processes evaluate this table and trigger the application specific processes according-
ly. Therefore the state automaton determines the order in which the application specif-
ic processes are invoked.

In order to achieve a homogenous environment both controller processes (P-C) and
the application specific processes (P-A) are realized by executable BPMN 2.0

8 For the benefits of the BaseX database in the component suite of MDMS-3 see
http://basex.org/customers/nexoma/. [accessed: June 04, 2014].

9 The reverse engineering of MDMS-2 and the decisions for MDMS-3 have been done by Mr.
Redder, Nexoma GmbH, see www.nexoma.de. [accessed: March 17, 2014].

 From a Family of State-Centric PAIS 343

processes in MDMS-3. This comes along with the advantage that existing software,
namely open-source software, can be used to support the process execution at run-
time. Fig. 5 shows the state controller and application processes for a part of the state-
centric operational model of Fig. 2. It demonstrates how the two application specific
tasks “update assortment” and “check mandatory audits” are technically realized. An
instance of the controlling process “ReadState” reads the current state and checks
whether an automatic state transition is possible. It then triggers the processes for the
preparation of the update of the assortment and the update itself. The instance of
another controlling process “Workflow Response” evaluates the result of the update,
triggers the post processing and then triggers an instance of the process “SetState”.
This process sets the state “S2: assortment updated”. A new instance of “ReadState”
then again reads the new state and triggers the checking of the mandatory audits. If
for example the state “S5: up to date” has been reached, “ReadState” notices that no
automatic state transition is possible and ends. There is no running process for this
assortment until the web portal calls a rest web service that triggers a new instance of
the process “ReadState”. This web service call corresponds to the event “updated” or
“deleted” in the SCOM, see Fig. 2.

Fig. 5. Process interactions in the state-centric business process architecture

The application specific set of processes (P-A) for the delivery time portal contains
36 processes. Each of these processes has a short lifetime and performs a specific
contribution to the assortment handling.

This shows the decoupling of the long lifetimes of the assortments from the life-
times of the processes that are handling them although the SCP as a whole spans the
total lifetime of the business object. The process evolution can be administered by the
usual increasing of the process version number. Since the processes have a short
lifetime, an uncontrolled process migration is avoided.

344 A. Rulle and J. Siegeris

To minimize the data dependencies among the processes an extensible hash map is
used as data interface between the processes. This improves the flexibility and varia-
bility of the process architecture.

In their paper “Business Process Architecture: Use and Correctness”, see [19], Eid-
Sabbagh et al. formally define a business process architecture and the concept of be-
havioral correctness. Based on a formalization of the interdependencies of processes
they present structural patterns and anti-patterns for the design and analysis of process
architectures. A process architecture is defined to be correct if it is free from dead-
locks, livelocks, dead events and lost triggers of flow objects, see [19, p. 6] for the
definition of these terms.

To achieve the behavioral correctness of the MDMS-3 process architecture the
following restrictions are imposed on the application specific processes.

• (R1) Processes in (P-A) shall not be the source of information flow to other
processes.

• (R2) Processes in (P-A) shall not be the sink of information flow from other
processes.

• (R3) Processes in (P-A-AUX) may not trigger other processes.
• (R4) Processes in (P-A-M) do only trigger the process “Workflow Response”.
• (R5) Only the process “ReadState” may trigger a process of (P-A-M).
• (R6) Only the process “ReadState” and the “Workflow Response” may trigger a

process of (P-A-Aux).

The rules (R1) to (R6) guarantee that only the patterns 1 and 2 of [19, p. 73] are
used and the anti-patterns of [19, p. 76] are avoided. This directly follows from the
subsequent observations. The rule (R3) ensures that the processes of (P-A-AUX) are
plain “sinks” of the process architecture. The rules (R1) and (R2) form a “flow bar-
rier” around each of the P-A processes and result in their flow isolation from the rest
of the business process architecture. And the rules (R4), (R5) and (R6) ensure that all
the process instances for the processes in (P-A-M) and (P-C) are executed in a linear
chain of processes.

In a strict mathematical sense the conformance to pattern 1 and 2 in itself does not
proof the correctness of the architecture, but from a practical point of view it makes it
plausible that the process interactions are harmless, i.e. do not lead to a deadlock. This
paper interprets the pattern catalog of [19] as an interface between industrial software
engineering and academia. The formal proof for the following hypothesis is left open
for academic research: “If only patterns 1 and 2 are used as process interaction pat-
terns and no anti-pattern is present, then the process architecture is correct”.

Benefits of the Proposed and Validated Architecture

1. Reuse: The controller processes P-C are stable, in a way that the product family of
different applications that are realized with MDMS-3 share the same set of control
processes. The application specific processes describe cohesive services in a compact
manner and can be used and re-assembled like building blocks to serve different
applications.

 From a Family of State-Centric PAIS 345

2. Runtime changes: Modifications to the state automata influence the process
execution at runtime. Changing the state automata other (or even new) application
specific processes can be invoked. Thus by using the external state automaton a
parameterization of the process execution is gained.
3. Separation of Concerns: As can be seen from Fig. 5 the state controller handles
the life-cycle of the business objects. It does provide the necessary context for the
designer of an application specific process. So they can focus on a single operation
between two states of the business object.
4. Governing of long-living objects: Instances of the application specific processes
are invoked only if a state change has taken place and a state transition is possible.
Long-living processes are avoided.

Fig. 6 uses ArchiMate, see [18], to give an overview on the variation points of the
software product line and the project steps that concretize them.

Fig. 6. The state-centric business process architecture and its SPL variation points

5 Related Work

Neglecting the long-living objects, it is possible to refine the model in Fig. 4 to a
model that can be enacted on a BPMN 2.0 compliant BPMS. Since the operations of
Fig. 4 are quite common for an MDS one might consider designing a configurable
model and then adapt the configurable model to meet the particular demands of a
specific customer of an MDS.

346 A. Rulle and J. Siegeris

Under an SPL perspective the adaption points of a configurable process model can
be interpreted as the variation points of the SPL. A systematic literature review for the
use of SPLs for BPM is given in [15] and a survey for business variability modeling is
presented in [23] by La Rosa et al. In that survey the different identified approaches
are evaluated by a set of characteristics. Two of them are the process modeling lan-
guage and the question if the customized models are executable. The authors con-
clude: “Configurable Workflows approach is in essence the only approach to support
customization of executable models (in YAWL, BPEL and SAP Workflow), down to
the level of producing models that can be deployed in a BPMS”, see [23, p. 46].

Therefore it follows from that study that there is a shortage of variability modeling
approaches that enforce the “correctness of individualized models”10 and can be ex-
ecuted on a BPMN 2.0 enabled BPMS.

To illustrate this point the work of Barat and Kulkarni, see [22], that is mentioned
in both surveys and uses BMPN is briefly considered. As a general purpose solution
for business process families they developed a rich process component abstraction
that allows the definition of variation points. They mention a “prototype implementa-
tion”, see [22, p. 38] and they do not remark that it is BPMN 2.0 conform. Therefore
their methodology does not meet crucial restrictions that were set for MDMS-3.

Within this paper we do not design configurable models but a configurable process
architecture. The variation points of the SPL do not activate or deactivate model ele-
ments within one model but they trigger process instances of standard BPMN 2.0
processes. Our major concern is therefore not the correctness of a single P-A model –
those models are quite simple - but the behavioral correctness of the resulting process
architecture. For this purpose the architectural rules (R1)-(R6) have been defined.

6 BPM Use Cases

In his note to the call for papers for “process architectures and platforms” of the
BPM-2014 van der Aalst classifies that topic area by the use cases enact model
(EnM), adapt while running (AdaWR) and monitor (Mon), see [20].

If the monitoring of the processes indicates that changes within the process orches-
tration are necessary, then the execution of the processes can be adapted with changes
to the state automaton of the state-centric process architecture and/or the redefinition
of the application specific processes.

The output of the refinement step in this paper, see Fig. 6, does not really result in
a single model but has as output

• the set of the P-A-Models and
• the technical state automaton that controls the business process architecture.

Each of the BPM use cases of van der Aalst in [21, Ch. 4] has a transition from the
left (starting point) to the right side (achieved result). A look on the right side of those
transition shows that none of the use cases mentioned there results in more than one

10 See [23, p. 46].

 From a Family of State-Centric PAIS 347

model and of course none of these right sides contains a technical state automata.
Therefore the solution in this paper, a process architecture that is controlled by a state
automaton, can motivate an extension of the use case catalog by a special refinement
use case that defines a business process architecture as an output.

7 Conclusion

Master data management systems are probably not first associations that come into
mind when one thinks of BPM and BPMS. But the ongoing proliferation of multi-
channel commerce increases the importance of high quality product master data. The
usage of a BPMS as the core of a master data management system on the one hand
brings business process engines to new application areas and stakeholders in contact
with BPMN 2.0 who have hardly heard of it before. On the other hand do state-centric
long-living business objects and comparable small budgets demand fresh and innova-
tive approaches. Since long-living business objects also occur in other application
domains like insurances and banks, the approach to enact them using the proposed
architecture may be promising.

This paper has demonstrated that recent trends in business process architecture re-
search form a solid foundation for a state-centric business process architecture and for
a software production line that is based on BPMN 2.0.

References

1. Hubl, K.: Model driven configuration, http://www.bpmb.de/images/Hubl.pdf
(accessed: February 8, 2014)

2. Borschert, K.: Model-Driven Configuration of Standard Processes, Berlin (November 13,
2012)

3. Weiss, D.M.: Software product-line engineering: a family-based software development
process. Addison-Wesley, Reading (1999)

4. SEI, A Framework for Software Product Line Practice, Version 5.0,
http://www.sei.cmu.edu/productlines/
frame_report/what.is.a.PL.htm (accessed: February 22, 2014)

5. van der Aalst, W.M.P.: A Decade of Business Process Management Conferences: Personal
Reflections on a Developing Discipline. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM
2012. LNCS, vol. 7481, pp. 1–16. Springer, Heidelberg (2012)

6. Bhattacharya, K., Hull, R., Su, J.: A Data-Centric Design Methodology for Business Proc-
ess. In: van der Aalst, W.M.P., Cardoso, J. (eds.) Research on Business Process Modeling.
Information Science Reference, Hershey (2009)

7. Java Platform, Enterprise Edition (Java EE) | Oracle Technology Network | Oracle,
http://www.oracle.com/technetwork/java/
javaee/overview/index.html (accessed: February 08, 2014)

8. Fischer, J., Hammer, G., Kern, U., Rulle, A., Städler, M., Steffen, T.: Verbundprojekt
MOVE - Modellierung einer verteilten Architektur für die Entwicklung unternehmen-
sübergreifender Informationssysteme und ihre Validierung im Handelsbereich. In:
Statusseminar des BMBF Softwaretechnologie, Berlin, März 23-24, pp. 109–142 (1998)

348 A. Rulle and J. Siegeris

9. Steffen, T.: Modellierungsmethode zur Integration zwischenbetrieblicher Informations-
flüsse. Tenea Verlag, Berlin (2002)

10. van der Aalst, W.M.P., van Hee, K.M.: Workflow management models, methods, and sys-
tems. MIT Press, Cambridge (2002)

11. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Systems
Challenges, Methods, Technologies. Springer, Heidelberg (2012)

12. Dumas, M.: On the Convergence of Data and Process Engineering. In: Eder, J., Bielikova,
M., Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 19–26. Springer, Heidelberg
(2011)

13. Allweyer, T.: BPMN 2.0: Introduction to the Standard for Business Process Modeling.
Books on Demand, Norderstedt (2010)

14. O. M. G. Specification, Business Process Model and Notation (BPMN) Version 2.0.
(2011)

15. dos Santos Rocha, R., Fantinato, M.: The use of software product lines for business proc-
ess management: A systematic literature review. Inf. Softw. Technol., 55(8),
1355–1373 (2013)

16. White, S.A.: Process Modeling Notations and Workflow Patterns,
http://www.omg.org/bpmn/Documents/Notations_and_Workflow
_Patterns.pdf (accessed: December 13, 2013)

17. Silver, B.: BPMN method and style. Cody-Cassidy Press, Aptos (2009)
18. Lankhorst, M. (ed.): Enterprise architecture at work: modelling, communication and analy-

sis, 3rd edn. Springer, Heidelberg (2013)
19. Eid-Sabbagh, R.-H., Dijkman, R., Weske, M.: Business process architecture: Use and cor-

rectness. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481,
pp. 65–81. Springer, Heidelberg (2012)

20. van der Aalst, W.M.P.: Plumbers needed! — BPM 2014,
http://bpm2014.haifa.ac.il/Topic_Areas/
process-architectures-and-platforms/plumbers-needed (accessed:
February 08, 2014)

21. van der Aalst, W.M.P.: Business Process Management: A Comprehensive Survey. In:
ISRN Software Engineering, vol. 2013, Article ID 507984, 37 pages (2013),
http://dx.doi.org/10.1155/2013/507984

22. Barat, S., Kulkarni, V.: A component abstraction for business processes. Int. J. Business
Process Integration and Management 6(1), 29–40 (2012)

23. Rosa, M.L., van der Aalst, W.M.P., Dumas, M., Milani, F.: Business Process Variability
Modeling: A Survey. QUT ePrints (2013)

DRain: An Engine for Quality-of-Result Driven

Process-Based Data Analytics

Aitor Murguzur1, Johannes M. Schleicher2, Hong-Linh Truong2,
Salvador Trujillo1, and Schahram Dustdar2

1 Software Production Area, IK4-Ikerlan Research Center, Spain
{amurguzur,strujillo}@ikerlan.es

2 Distributed System Group, Vienna University of Technology, Austria
{j.schleicher,truong,dustdar}@infosys.tuwien.ac.at

Abstract. The analysis of massive amounts of diverse data provided
by large cities, combined with the requirements from multiple domain
experts and users, is becoming a challenging trend. Although current
process-based solutions rise in data awareness, there is less coverage
of approaches dealing with the Quality-of-Result (QoR) to assist data
analytics in distributed data-intensive environments. In this paper, we
present the fundamental building blocks of a framework for enabling
process selection and configuration through user-defined QoR at runtime.
These building blocks form the basis to support modeling, execution and
configuration of data-aware process variants in order to perform analyt-
ics. They can be integrated with different underlying APIs, promoting
abstraction, QoR-driven data interaction and configuration. Finally, we
carry out a preliminary evaluation on the URBEM scenario, conclud-
ing that our framework spends little time on QoR-driven selection and
configuration of data-aware processes.

Keywords: Data-aware Processes, Runtime Configuration, Data Ana-
lytics, Smart Cities.

1 Introduction

The emergence of the smart city paradigm has created a plethora of new chal-
lenges for ICT [1]. Specifically, the analysis of large volumes of diverse data
(referred to as Big Data) provided by large cities, combined with disperse re-
quirements from multiple domain experts and stakeholders is becoming challeng-
ing [2]. For instance, the task of urban planning in the smart city context needs
to collect data from all areas of significance ranging from energy consumption,
construction and mobility systems to sociological factors, to just name a few.

Although workflows have been used to compose and execute a series of com-
putational or data manipulation steps, such as scientific workflows [3,4], a few
discussions have been focused on the utilization of runtime mechanisms to se-
lect and configure data-aware processes based on user-defined Quality-of-Result
(QoR) to perform distributed data analytics. This is required in our URBEM1

1 http://urbem.tuwien.ac.at/

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 349–356, 2014.
c© Springer International Publishing Switzerland 2014

http://urbem.tuwien.ac.at/

350 A. Murguzur et al.

process
knowledge

Processes

Services

Data

Visualization

Intent definition

[result]

intent QoR
[intent+QoR]

[raw data, intent-specific data]

[raw data]

QoR

QoR

QoR

[raw data]
(DRi)

Di
sk

Data API Domain API

[intent-specific data]
(PSi)

Process modeler

Industry stakeholder
(User)

intent +
Quality-of-ResultDomain expert

configuration
knowledge

Fig. 1. Artifacts and interactions in process-based data analytics

scenario where large sets of data-aware process variants interact with data ser-
vices, each with particular quality constraints. Hence, due to the high variability
of data-aware analytics processes and data endpoints, it is crucial to provide
means of quality-driven process selection and customization at runtime.

1.1 Motivation, Contributions and Paper Structure

In process-based data analytics the data needed to actually execute process
activities is much broader than the typical process-related data (see Fig. 1). Al-
though raw data (e.g. data from Data APIs) can be relevant to several artifacts,
such as services and process activities, it is not bound to any specific intent and
thus represents general information. On the other hand, the results of remote
analytics processes and available services can be offered as intent-specific data,
exposing the expected result as Data as a Service (DaaS).

Services include computational models (e.g. MATLAB model) from domain
experts which are required by activities in a process execution. An data-aware
analytics process, referred to as Workflow as a Service (WFaaS), represents a
particular intent for an industry stakeholder. Such process logic is represented
in form of process models (e.g. BPMN2, BPEL), which stands for a particular
analytics type, consisting of a number of activities to be executed. Hence, process
instances are created on user intent request which may indicate a desired QoR.

In this scenario and due to the high variability of related processes and data
variety, we need to defer WFaaS selection and configuration to runtime, where
process variants are customized and executed based on QoR. This would reduce
the complexity of managing large sets of process variants, as well as binding suit-
able data endpoints and processes ensuring required QoR for analytics. However,
although a number of approaches have been focused on data analytics processes,
such as scientific workflows [3,4], Quality-of-Service (QoS) based service selection
[5,6], and process variant re-configuration [7,8,9], none of them are capable of
selecting and configuring data-aware process variants based on QoR at runtime.

An Engine for Quality-of-Result Driven Process-Based Data Analytics 351

In this paper, we therefore present some of the fundamental building blocks of
a framework (called DRain) for QoR-driven selection and configuration of data-
aware processes. The main contributions (C) are: C1 - we propose an approach
and a prototype framework to select, configure and execute data-aware analytics
processes at runtime; and C2 - we demonstrate through an evaluation on a
real example from URBEM that our framework spends little time for selecting
analytics processes and data endpoints, as well as configuring variation points
(DRi activities) based on data from the data realm.

The rest of the paper is structured as follows: In Section 2 related work is
summarized. We present the overall architecture and detail individual framework
building blocks in Section 3. Section 4 evaluates the functionality and usefulness
of the presented approach by encoding a realistic example in URBEM. Lastly,
we conclude the paper and present the direction of future work in Section 5.

2 Related Work

Alternative approaches have been focused on employing workflows for data an-
alytics, such as in scientific workflows [3,4], but without considering QoR, a
term originally coined for data analytics [10], or Quality-of-Service (QoS) to
drive process selection and configuration. The term QoS is mainly used in the
area of service composition. In this light, the Discorso framework [5] facilitates
late binding of services by the subsequent selection of applicable Web services
based on supervision rules and QoS constrains at runtime. Canfora et al. [6] pro-
vide a QoS-aware composite service binding and re-binding approach based on
Genetic Algorithms. These latter provide useful methods for QoS-based service
(re-)binding; however, they are focused on service selection, rather than enabling
process configuration at runtime through QoR-driven data interactions.

On the other hand, process re-configuration [7,8,9] capabilities have been pro-
moted by other authors. For instance, the CEVICHE framework [7] enables
BPEL process schema level re-configuration by means of monitoring QoS (ser-
vice availability and service performance). In a similar vein, Xiao et al. [8] present
a constraint-based framework to enable re-configuration (changing relationships
among fragments through constraints) and adaptation through adaptation poli-
cies to select fragments at runtime. Additionally, in [9] autonomic mechanisms
are used to guide the self-adaptation of service compositions according to context
changes and variability specification. With respect to the mentioned work, we
are not focused on re-configuration, otherwise our approach defers QoR-driven
process selection and configuration to runtime.

Last but not least, process configuration abstractions have also been proved
by other authors. For instance, a requirements-driven approach [11] enables
the configuration of BPEL processes based on quality constraints. Similarly, a
questionnaire-driven approach [12] enables a step-wise configuration of reference
processes at design-time. However, to the best of our knowledge, no framework
is capable of customizing QoR-driven data-aware process variants at runtime.

352 A. Murguzur et al.

Domain
expert

Industry
stakeholder

Process
modeler

Base Models +
Fragments

Computational and
Data Models

Intent and Quality of
Result (IQoRM)

Models

NoSQL

RDBS
Domain Model

Variability
Model

P
ro

ce
ss

S

el
ec

ti
o

n

S
er

vi
ce

 (
S

el
M

)

P
ro

ce
ss

In

te
ra

ct
io

n

S
er

vi
ce

(D

R
i,

A
d

aW
R

)

P
ro

ce
ss

E

n
g

in
e

S
er

vi
ce

 (
E

n
M

)

Visualization
API

Data Realm
API

event-based

RESTful

[data layer] [conceptual layer] [execution layer]

(modeling) (selection, execution, processing and configuration)

Fig. 2. The DRain framework overview

3 DRain Building Blocks

The DRain framework (see Fig. 2) allows for modeling, configuration, processing
and execution of data-aware analytics processes based on user-defined QoR.

3.1 Modeling

Base Models and Fragments. In order to correspond to different user-defined
QoR needs (e.g. time and cost constraints), the process modeler may create base
models and fragments using BPMN2 elements (e.g. Service Tasks for invoking
available computational model services) and custom variation points (the so-
called DRi activities). In essence, a base model represents the commonality shared
by a process family and variation points that are subjected to change. Variation
points identify specific parts in a base model where data interaction and fragment
selection occur (in DRi activities). A process fragment, or fragment for short,
describes a particular configuration option for each variation point within a
base model. For a more detailed discussion of our foundations regarding process
variability modeling, we refer to our previous work [13].

IQoRM. The Intent and Quality of Result Model (IQoRM) is reflected through
an UML diagram, containing intents representing user requests, constraints
(QoR) representing user restrictions and analytics scope (see Fig. 3). Those
abstractions are used to construct a data analytics task and its strategy, and
thus represent constraints for the desired behavior. The analytics range is lim-
ited by the Scope class, which delimits the range of an analytics Intent.
For example, a user might want to perform the analysis: “determine the en-
ergy consumption for the specific district X” (X can be any district of the
city). In this case, “energy consumption” is the desired intent which contains
“for the specific district X” as a delimiter. Two sub-classes are differentiated:
ConfigurationScope which demarcates between different configuration alter-
natives (e.g. the value variable may determine selection (SelM), configuration
(ConCM), discovery (DiscM) or composition (CompM) alternatives, as distinguished

An Engine for Quality-of-Result Driven Process-Based Data Analytics 353

+id
+name

Intent

Scope

QualityOfResult
+id
+name

Constraint

Time Cost DataQuality

+value

Condition

ProcessSelector

1*

ExecutionTime ResponseTime

+value

Availability

+level

Accuracy

+name
+value

ConfigurationScope

+name
+value

InteractionScope

Fig. 3. IQoRM model

by [14]), and InteractionScope for limiting available data endpoints (e.g. the
value variable delimits the range of data endpoints, such as check ALL available
resources from the data realm). Such parameters delimit data interactions dur-
ing a base model execution which considers both interaction and configuration
scopes, i.e., data endpoints that should be considered for a particular function.

QualityOfResult can determine not only the selection of a particular analyt-
ics process, but also the binding of inherent data endpoints. A Constraint is a
basic aspect of our framework which represents some condition, restriction or as-
sertion related to the analytics artifacts. It includes a set of Conditions that are
atomic formulae or implications (see the code snippet below) for driving process
selection and customization. Conditions (lessThan, greaterThan, inBetween)
may be applied to different constraint types. In Fig. 3, three constraints are
considered: (i) Time for the entire time that a process, computational service
or data service takes for execution (ExecutionTime) and its network channel
to ping (ResponseTime), (ii) Cost which represents the cumulative expected
cost of performing action, and (iii) DataQuality to exhibit the Availability

(refers to the availability of data) and Accuracy (refers to the level of provided
data values confidence) of provided data endpoints. In a simplified version, we
consider {True,False} for the former, and {Green,Orange,Red} for the lat-
ter. Once intent, scope and QoR are specified, ProcessSelector initializes the
search algorithm for finding a relevant analytics process.

Excerpt of a QoR condition

quality.addResponseTime (new ResponseTime ("responseTime ",

Condition .lessThan (400)));

3.2 Selection, Execution, Processing and Configuration

SelM. In DRain, the domain model is defined using ontologies. This type of rep-
resentation has been widely accepted as a conducive method for domain model-
ing (knowledge vocabulary) and reasoning, with low impact on scalability and

354 A. Murguzur et al.

performance. Our domain model defines six types of primitive classes which in-
clude several individuals and object/data properties as follow: (i) Intent individ-
uals with hasIntentName data property mapped to the name parameter in Fig. 3,
(ii) Scope individuals with hasConfigurationScope and hasInteractionScope data
properties, (iii) Time , Cost and DataQuality subclasses of QualityOfResult
class, (iv) BaseModel and Fragment as subclasses of Process individuals,
(v) DataEndpoint individuals which contain hasURI, hasServiceName and has-
DataModel data properties, and (vi) ConfigurationModel individuals with has-
FileName property to point a particular variability model. Hence, the process
selection service is capable of retrieving base models (WFaaS) for a given petition.
The first suitable base model that meets user-defined QoR is then instantiated.

EnM, DRi, AdaWR.Once an analytics process (base model) execution reaches
a DRi activity, the process engine follows several steps. If there is no fragment
assignment for the current DRi activity execution, this activity throws an event
to select a suitable fragment based on context data. Such selection requires two
types of processing. In the first interaction task, the event coming from a DRi

execution is triggered by the process interaction service to find a single data end-
point URI that satisfies pre-established QoR constraints (by running a SPARQL
query). Data collected from a REST resource (in JSON) is mapped to a data
model object (by a hasDataModel data property) to automatically perform the
base model instance configuration. For the latter, the context values gathered
from the REST service are mapped to placed attributes in a variability model, in
order to get a preferred fragment choice considering pre-established constraints
and fragments for each variation point. Once a suitable fragment is resolved us-
ing a Solver, DRain signals the particular DRi activity execution which executes
the preferred fragment and then continues its control-flow.

We adopt feature models [15] to model all configuration options for each
analytics base model and surrounding DRi activities (i.e. variation points) in a
variability model. The mapping between a domain model and a variability model
is realized by naming compounds as follows: (i) feature names are mapped to
BaseModel and Fragment individuals hasProcessKey data property, (ii) variation
point features are linked to hasServiceName data property of a DataEndpoint in-
dividual, and (iii) variability model attributes are related to data model variables
from each DataEndpoint. The latter relation correlates data model variable/-
value pairs with feature model attributes.

4 Evaluation

In the following, we briefly describe the evaluation scenario in URBEM and
present the results of the evaluation runs on DRain. The DRain framework was
developed in Java and Clojure based on open source technologies.

Provided Models. For the evaluation, we created 30 base model variants (indi-
viduals) with different time and cost QoR constraints for an energy consumption
intent in URBEM. This analytics process consists of four DRi activities (vari-
ation points) and two service tasks. Each DRi activity contained 2 fragment

An Engine for Quality-of-Result Driven Process-Based Data Analytics 355

25

5 6

34

2 1 1 2
2.87 2.79 2.975 3.31

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5

Ti
m

e
in

 m
s

DRi activity

Time for fragment configuration (TAdaWR)

Max of Time

Min of Time

Avg of Time

0

1

2

3

4

5

6

7

8

1 11

21

31

41

51

61

71

81

91

10
1

11
1

12
1

13
1

14
1

15
1

16
1

17
1

18
1

19
1

Ti
m

e
in

 m
s

Intent request

Time for base model retrieval (TSelM)

Time for each base
model selection

Min: 4ms
Max: 7ms
Avg: 5.135ms

662

1023

908

603

147 145 146 145

198.07 181.84 179.705 176.46

0

200

400

600

800

1000

1200

0 1 2 3 4 5

Ti
m

e
in

 m
s

DRi activity

Time for data endpoint retrieval and processing (TDRi)

Max of Time

Min of Time

Avg of Time

(a) Metric 1: TSelM (b) Metric 2: TDRi (c) Metric 3 : TAdaWR

Fig. 4. Evaluation results

alternatives, providing each distinct data quality (availability and accuracy), so
we get 24 = 16 variant customizations for the outlined base model. Moreover, we
created 24 data endpoints with different QoR and five data values were parsed
in a configuration model in each data interaction.

Metrics. In order to obtain a reliable evaluation, we processed the base model
200 times and evaluated the results against three performance-related metrics:

– Time for base model retrieval (TSelM): This metric measures the time re-
quired for intent-driven and QoR-based base model searching.

– Time for data endpoint retrieval (TDRi): This metric defines the timespan
from DRi activity initialization to the moment when the process interaction
service finds a suitable data endpoint for the given QoR and invoked the
particular REST resource to collect data.

– Time for fragment solving (TAdaWR): This metrics measures the time re-
quired to establish context values and find a suitable fragment once data is
gathered from a REST resource.

Results. The results of our evaluation in terms of the average of all evaluation
runs are provided as graphics in Fig 4.2 Overall, we can state that our engine op-
erates with little impact on performance, and slightly affects the execution time
required by each analytics process instance. This allows for QoR-driven selection
and configuration of data-aware analytics processes that involve a considerable
number of variants and data endpoints (i.e. 30 and 24 respectively in the eval-
uation), offering greater flexibility and abstraction. As shown in Fig. 4 (a), the
difference between the minimum and maximum time required for a base model re-
trieval (TSelM) based on a user-defined QoR is about 3ms. In a similar vein, the
average time for data endpoint selection and processing (TDRi) is reasonable at
184.019ms, considering both sequential, such as BuildingSpecification and
EnergyDemand, and parallel activities, such as ElectricalGridUtilisationand
ThermalGridUtilisation (check supplement file). Finally, it is also important to
note the overall average time required to complete the runtime configuration, e.g.,
for (TAdaWR) an average time of 2.986ms is necessary for putting five context val-
ues in the variability model to set a particular fragment for a given DRi.

2 All datasets, a detailed description of the example and additional files are available
at: https://github.com/amurguzur/drain

https://github.com/amurguzur/drain

356 A. Murguzur et al.

5 Conclusion and Future Work
In this paper, we presented the main building blocks of a framework (DRain) to
automatically perform a Quality-of-Result (QoR) driven selection and configu-
ration of data-aware processes. Specifically, our approach enables abstractions
to select relevant analytic processes (exposed as WFaaS) and data endpoints
based on user-defined QoR, and provides flexibility in terms of runtime process
variants configuration. A preliminary evaluation concluded that our framework
is capable of high-performance selection, processing and configuration of data-
aware processes in subsequent QoR-driven data interactions. For future work, we
plan to extend the associated framework and test it against industrial case stud-
ies, and adapt the QoR model for a more domain-specific environment. Further,
we will explore ranking and selection algorithms/dimensions using QoR.

References
1. Naphade, M., Banavar, G., Harrison, C., Paraszczak, J., Morris, R.: Smarter cities

and their innovation challenges. Computer 44(6), 32–39 (2011)
2. Khan, Z., Kiani, A.A.,, S.L.: Cloud based big data analytics for smart future cities.

In: UCC Workshops (2013)
3. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., Mock, S.: Kepler:

an extensible system for design and execution of scientific workflows. In: SSDBM,
pp. 423–424 (2004)

4. Hauder, M., Gil, Y., Liu, Y.: A framework for efficient data analytics through
automatic configuration and customization of scientific workflows. In: e-Science,
pp. 379–386 (2011)

5. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE
Transactions on Software Engineering 33(6), 369–384 (2007)

6. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: A framework for qos-aware
binding and re-binding of composite web services. J. Syst. Softw. 81(10) (2008)

7. Hermosillo, G., Seinturier, L., Duchien, L.: Using complex event processing for
dynamic business process adaptation. In: SCC, pp. 466–473 (2010)

8. Xiao, Z., Cao, D., You, C., Mei, H.: Towards a constraint-based framework for
dynamic business process adaptation. In: SCC, pp. 685–692 (2011)

9. Alférez, G., Pelechano, V., Mazo, R., Salinesi, C., Diaz, D.: Dynamic adaptation
of service compositions with variability models. In: JSS (2013)

10. Truong, H.L., Dustdar, S.: Principles of software-defined elastic systems for big
data analytics. In: MIE, pp. 10–14 (2014)

11. Lapouchnian, A., Yu, Y., Mylopoulos, J.: Requirements-driven design and config-
uration management of business processes. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 246–261. Springer, Heidelberg (2007)

12. La Rosa, M., Lux, J., Seidel, S., Dumas, M., ter Hofstede, A.H.M.: Questionnaire-
driven configuration of reference process models. In: Krogstie, J., Opdahl, A.L., Sin-
dre, G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 424–438. Springer,
Heidelberg (2007)

13. Murguzur, A., De Carlos, X., Trujillo, S., Sagardui, G.: Context-aware staged con-
figuration of process variants@Runtime. In: Jarke, M., Mylopoulos, J., Quix, C.,
Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014.
LNCS, vol. 8484, pp. 241–255. Springer, Heidelberg (2014)

14. van der Aalst, W.M.P.: Business process management: A comprehensive survey.
ISRN Software Engineering, 37 (2013)

15. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink, H.,
Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

Use Your Best Device!

Enabling Device Changes at Runtime

Dennis Bokermann, Christian Gerth, and Gregor Engels

Department of Computer Science, University of Paderborn, Germany
{dennis.bokermann,gerth,engels}@uni-paderborn.de

http://is.uni-paderborn.de

Abstract. The usage of different computing devices, like desktop com-
puters or smartphones, in our everyday lifes increases continuously. More-
over, smart watches and other wearables are ready to accompany us in
our daily habits. As a consequence, applications are developed for a va-
riety of different computing devices, in order to give users the freedom
to choose a device that really fits their current situation. If this situation
changes, a different device may become more suitable than the chosen
one. In most cases, applications do not support changing the executing
device at runtime, since this is usually not considered at design time and
would require the transferal of the current state. In this paper, we present
an approach to define device changes for process-driven applications.
To this extent, we enrich process models with deployment information,
which allows specifying where it should be possible to change the device
while keeping the application’s state. Additionally, we have adapted a
process engine to support the execution of these enriched process mod-
els. Thereby, we take a further step towards human-centric BPM that
enables users to use their most suitable device.

1 Introduction

In addition to classic desktop computers, other computing devices like smart-
phones and tablets entered our everyday lifes. Upcoming technologies such as
smart TVs, smart watches, or other wearables will probably increase the comput-
ing device diversity and density even more. Consequently, most applications are
no longer exclusively available for desktop computers. Instead software vendors
provide their applications for a variety of devices.

Depending on their current situation, users choose different devices to use an
application. Thereby, the suitability of a device depends on various factors, e.g.
a study conducted by Dearman et al. [3] shows that users assign different roles
to different devices, such as work computer or private phone. Furthermore, the
suitability depends on environmental aspects, like the current location, and on
installed software as well as available hardware and peripheral equipment.

Throughout this paper, we use the process of buying a train ticket as an
example for an application, which is provided for different devices. Thereby,
we focus on two types of computing devices: smartphones and ticket vending

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 357–365, 2014.
c© Springer International Publishing Switzerland 2014

http://is.uni-paderborn.de

358 D. Bokermann, C. Gerth, and G. Engels

machines (TVMs). When buying a ticket at a TVM, the ticket has to be paid in
cash and it is printed afterwards. In contrast to that, smartphones do not allow
cash payment instead the ticket must be paid online. Moreover, a digital ticket
is provided because smartphones usually do not have printer access.

In most cases, changing the device at runtime is not possible because device
changes are not considered while the application is developed. Thus, users are
forced to stick to a single device. Consequently, by choosing a device users are
already limiting the available options. This leads to the fact that users wait
until the most suited device for the primary objective is available [5], e.g. if a
user wants a printed ticket and the smartphone has no printer access, the user
is forced to wait until a TVM is available. Alternatively, if a user starts the
process on a smartphone, the current state is lost when changing to a TVM.
Consequently, the user has to start again from the beginning and redo already
completed steps, like searching for a connection.

Enabling users to change a device and keep the current application state, con-
stitutes a step forward and would result in more flexible applications. Instead of
being limited to the capabilities of a single device, users could switch to another
device to overcome these limitations. In case of our example, a user should be
able to search for an appropriate connection and select the ticket options on
the smartphone, and afterwards, may continue on the TVM to pay and print
the ticket. We call such an application a cross-device application (CDA), since
it enables users to change devices while keeping the state. In order to enable
such device changes at runtime, several key challenges must be overcome. For
instance, possible device changes must be specifiable at design time. This in-
cludes that it must be specifiable which part of an application is executed by
which device, since not all device have the same capabilities. For these purposes,
a description of the available types of devices and their properties is required be-
cause concrete devices are usually not known at design time. To actually perform
device changes at runtime, it must be explained how to preserve an application’s
state. Aside from this, device changes introduce new kinds of exceptions, which
must be considered at design time, e.g. the failure of a device change.

In this paper, we address the specification of process-driven CDAs. For this
purpose, we enrich process models with deployment information, so that device
changes can be specified while designing a process. To define deployment infor-
mation, we build an ontology which describes available device types and their
properties. This information is linked to process models to specify which devices
are capable of executing certain parts of a process. Afterwards, it can be speci-
fied at which points a process supports device changes. By presenting the basic
ideas for a process engine, which supports our approach, we take a major step
to enable device changes at runtime.

The remainder of this paper is structured as follows: In Section 2, we ex-
plain how to describe device types and their properties. Section 3 explains our
approach to enrich process models with deployment information. Subsequently,
Section 4 discusses related work. Finally, Section 5 concludes the paper and gives
an outlook on future work.

Use Your Best Device! Enabling Device Changes at Runtime 359

2 Device Modeling

As a prerequisite for the specification of process-driven CDAs, it is necessary to
have knowledge about the devices, which are present at runtime. This section ex-
plains the specification of a device ontology, which describes the available types
of devices and their properties. At runtime, this ontology is used to manage
information about concrete device. The device ontology can be used to enrich
multiple process models with deployment information, since it is defined inde-
pendently from a concrete process model.

In case of our example, we focus on two device types: TVM and smartphones.
Furthermore, we consider properties of these device types, i.e. functional prop-
erties like printer access or non-functional properties like mobility. These device
types and properties can be specified in terms of an ontology using the Web
Ontology Language (OWL)1. Based on OWL, we define semantic information
like sub class relations of device types. This is used later on to infer additional
knowledge about devices and their interrelations. For our example, we only pre-
define classes for device types and their properties. However, the further content
of the ontology is up to the application developer.

The device ontology cannot only be used for the specification of CDAs, it
can also serve as basis for managing device information at runtime. For this
purpose, the ontology is extended by adding instances of the device types and
properties, which represent concrete devices. For instance, a concrete smartphone
is represented by an instance of the type smartphone and information about the
smartphone’s properties is stored, e.g. if it has printer access or not. For the
management of the ontology at runtime, we developed a component where de-
vices can register themselves automatically, so that information about them is
added to the ontology dynamically. After registration, a device must propagate
property changes to the component to keep this information up-to-date. For the
implementation of such a component, we use the Resource Description Frame-
work (RDF)2 as serialization format for our ontology and use the Apache Jena
framework3 to store, manipulate, and query the ontology. The component can
be embedded into an existing application or deployed independently as a service.

3 Enabling Device Changes

In this section, we consider the specification of process-driven CDAs. To this
extent, we use the device ontology introduced in the previous section, to enrich
process models with deployment information. Thereby, we specify where certain
devices are required and when device changes are possible. Moreover, we explain
how this can be used to enable device changes at runtime.

When building process-driven CDAs, we have to define which part of the
process shall be executed by which device. Therefore, we define device require-
ments for parts of a process. In the following, we focus on doing this for single

1 www.w3.org/TR/owl-ref/
2 www.w3.org/TR/rdf-primer/
3 jena.apache.org

\protect \protect \protect \edef OT1{OT1}\let \enc@update \relax \protect \edef cmr{cmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \OT1/cmr/m/n/6 {\OT1/cmr/m/n/9 }\OT1/cmr/m/n/6 \size@update \enc@update \ignorespaces \relax \protect \relax \protect \edef cmr{cmtt}\protect \xdef \OT1/cmr/m/n/6 {\OT1/cmr/m/n/9 }\OT1/cmr/m/n/6 \size@update \enc@update http://w3.org/TR/owl-ref/
http://w3.org/TR/rdf-primer
http://jena.apache.org

360 D. Bokermann, C. Gerth, and G. Engels

tasks, however, we also support the definition of device requirements for arbi-
trary sub parts of a process, reaching from a single task to the entire process.
Figure 1 shows the process to buy a train ticket considering the capabilities
of smartphones and TVMs. The process is modeled using the Business Process
Model and Notation (BPMN)4. The device requirements are visualized by icons
attached to the tasks of the process model, e.g. a printer icon is attached to
the task “Print Ticket”. First, the user has to search for the connection, which
requires a device with internet access. Both types of devices, smartphones and
TVMs, fulfill this requirement. Next, the user has to select the ticket options
and a payment method. Cash payment is offered by devices, which have a cash
module, e.g. a TVM. Online payment also requires internet access. This would
also be the case smartphones as well as for TVMs. However, we do not want to
allow online payment at TVMs because of privacy concerns. Thus, we define for
the task “Pay Online” that internet access is required and that it should be a
private device. To get a printed ticket, a device with printer access is required
and a digital ticket is only useful on mobile devices.

Device Requirements

Search
Connection

Select Ticket
Options

Print TicketPay Cash

Store and
Display Digital

Ticket
Pay Online

Payment
Method?

Ticket
Form?

Task Can Be Restarted

$

$
Internet Access

Cash Module

Printer Access

Private Device

Mobile Device

&

Task's State is Transferable

Fig. 1. Process to Purchase a Train Ticket with Deployment Information

For documentation purposes, it would suffice to describe device requirements
informally. However, we want to automatically determine, which devices meet the
requirements at runtime. Consequently, we need a formal and executable form to
specify device requirements. To this extent, we propose mapping device require-
ments to the device types and properties of the device ontology using SPARQL5,
a querying language for the RDF. We define a special form of SPARQL query
called Device Selection Expression (DSE), which retrieves a device list from the
device ontology at runtime. The selection criteria of such a DSE can be refined,
so that only devices which meet the requirements are returned. As a result, an
empty DSE, one where the selection criteria is not refined, returns all available
devices. The Apache Jena framework allows evaluating SPARQL queries on RDF
ontologies. By focusing on device properties for the specifications of DSEs, we
can easily consider other device types, which offer these properties. For instance,
we could add desktop computers to our device ontology, which properties include
that is a private device and might have internet as well as printer access.

4 www.omg.org/spec/BPMN/2.0/
5 www.w3.org/TR/rdf-sparql-query/

http://www.omg.org/spec/BPMN/2.0/
http://w3.org/TR/rdf-sparql-query

Use Your Best Device! Enabling Device Changes at Runtime 361

By assigning device requirements to tasks, we already define necessary device
changes. Essentially, every time when the execution of a process instance reaches
a new task, it must be checked if the current device meets the requirements of the
upcoming task. If this is not the case, it becomes necessary to change to another
device. For instance in our example, if the current device is a smartphone and
cash payment is selected, it is necessary to change to a TVM. Additionally, it is
also possible to have optional device changes, where a user might want to change
the device even though the current device is capable of continuing the process
execution. An example for such an optional device change would be if a user
searches for connection on his smartphone but wants to change to a TVM to
select the ticket options.

Enabling device changes at runtime requires keeping the applications state
while the device is changed. If no tasks are active, the complete state of a process-
driven CDAs is described by the process’ instance. Thus, device changes can be
performed by transferring the process instance to another device like in [11]. Al-
ternatively, a process-driven CDA can be executed centrally and just the tasks
are executed by end-user devices. Thus, device changes are managed by dele-
gating tasks to different devices, while the process instance is not exchanged
between devices. For our implementation, we chose the latter approach, since it
allows excluding problems raised by transferring process instances [11].

In addition, if device changes happen while tasks are active, the internal states
of the currently active tasks must be considered, too. Consequently, it must be
specified what happens to the internal state of a task, when the device is changed.
For this purpose, we differentiate between three types of tasks regarding device
changes: continuous, restartable and transferable. Since the BPMN normally does
not consider device changes, tasks are expected to run until completion. We
consider this to be the default case and call these tasks continuous. Also, we do
not allow device changes during the execution of these tasks. In our example,
the task “Print Ticket” is continuous because the internal state is represented
by the physical ticket, which is being printed. This cannot be transferred, and
thus, we forbid device changes for this task. For restartable tasks, the internal
state of a task is either discarded or reverted if a device change is invoked.
On the new device the task starts again from the beginning. To indicate this
behavior we use the rewind symbol (), e.g. the payment tasks in Figure 1 are
restartable because a payment is either completed or not done at all. In case of
transferable tasks, a task’s state is serialized and transferred to a new device, so
that it can continue the execution. The playpause symbol () marks transferable
tasks. In case of our example, the task “Search Connection” is declared to be
transferable. During a device change information like the date of travel or the
destination could be transferred to the new device.

The transferal of a task’s state requires a serialization format for the inter-
nal state, which is understood by all implementations of a task. To this extent,
we propose to proceed similar to defining web services using the Web Service
Description Language (WDSL)6. There, a serialization format for the input and

6 www.w3.org/TR/wsdl/

http://w3.org/TR/wsdl

362 D. Bokermann, C. Gerth, and G. Engels

output parameters is defined. We propose to similarly define a serialization for-
mat for the internal states of a task. If a task is suspended, the current state is
serialized to the predefined format, and every implementation of the task, which
understands the format, must be able to continue the execution based on the
serialized state. For instance, such a serialization format for the task “Search
Connection” of our example in Figure 1 could describe already entered input
values, like origin and destination, and the position inside the internal state
space. The creation of such a serialization format will be further addressed in
future work.

In our current approach and prototype, we support device changes between
tasks (i.e. no task is active) or during the execution of restartable and transferable
tasks. In addition, we support the specification of allowed and forbidden device
changes. For instance in our example, we want to allow device changes from
a TVM to a smartphone and the other way around. Moreover, a user should
be able to change between different smartphones but switching from one TVM
to another one should be forbidden because a user cannot be at two TVMs
at once. To express this in a process model, all device changes are by default
forbidden in our approach and must explicitly be allowed for parts of a process
models. This can be done by specifying Device Change Definitions (DCDs),
which consists of two DSEs identifying the source and target of a device change
as well as a flag, which declares if the change is allowed or not. At runtime, a
DCD applies if the device assigned to the currently active part of the process
fits the DSE of the source devices. If this is case, it is possible to change to any
device matching the target DSE, unless another DCD applies, which forbids this
device change. Similar to DSEs, DCDs can be attached to entire sub parts of a
process definition. To define the aforementioned device changes for our example,
we need to define two DCDs. At first, we need a DCD, which consists of an
empty DSEs for the source and target devices. Consequently, this DCD always
applies and allows changing to any device. Additionally, we need to define a
DCD, which forbids changing from one TVM to another. Thus, this DCD must
be marked as forbidden and the DSEs for the source and target devices must
describe devices of the type TVM. Both DCDs must be attached to the whole
process definition, since they should affect all tasks.

By stating the device requirements and by specifying DCDs, it is possible
to define when and where it should be possible to change a device. In order to
define device changes for active tasks, the device change must be allowed by
the DCDs attached to the corresponding part of the process and the tasks must
either be restartable or transferable. We implemented our approach as a BPMN
extension and extended the process engine Activiti7 to support our approach.
Therefore, we added a component to manage information about available devices
based on the device ontology (see Section 2) and added a parser for our BPMN
extension. The engine executes a CDA centrally and assigns tasks to devices,
whose properties match to the device requirements. Additionally, we developed

7 www.activiti.org

http://www.activiti.org

Use Your Best Device! Enabling Device Changes at Runtime 363

a client-side component for the Android platform8 and as a Node.js9 web server
usable on Windows or Linux. The client-side component informs the engine
about device information and handles the client part of a device change, e.g.
invoking methods to reset or suspend running tasks.

4 Related Work

One area of related work is concerned with the distributed execution of business
processes. Approaches like [9] and [10] split a process into multiple sub parts and
use a planing phase at the beginning of the execution to assign these parts to dif-
ferent devices. Afterwards, only limited replanning is possible. Such approaches
are not suitable for executing process-driven CDAs, since the device assignments
are not flexible enough. The approach of Zaplata et al. [11] distributes the ex-
ecution of business processes by transferring process instances. Their approach
is complementary to our approach because they enable the transferal of pro-
cess instances but do not consider transferring active tasks. Combining both
approaches would lead to an even more flexible execution of business processes.
Montagut et al. [7] also developed an approach to distribute the execution of
business processes. Similar to our approach they allow specifying device require-
ments. They define roles, which a device must have, in order to be capable of
executing a task. During the execution of a process, a centralized service is used
to determine devices having the appropriate roles to execute parts of a process.
Unlike our approach, they do not allow device changes for active tasks nor does
their approach allow the restriction of device changes. In [8], Pryss et al. present
an approach, where a central process engine can delegate parts of a process to
mobile devices. These parts can be managed independently by mobile devices
and the execution can be migrated from one mobile device to another via a
centralized mediator. However, their approach is based on their own process
description and is less expressive considering the definition of device changes.

Context-based middleware approaches like [6] collect context information and
enable the reaction on context changes. Devices running a part of process can
be seen as part of a process’ context. However, we believe that not all actions,
i.e. device changes, can be inferred by observing the context. Users’ needs or
preferences are often not measurable. Thus, changing from one device to another
cannot always be determined by context information. Instead we must provide
users the possibility to change between devices according to their needs. This
especially includes the case of device changes for active tasks.

Chakraborty et al. [2] describe an approach to combine business processes and
collaboration tools, e.g. instant messengers. They can reach users on different
devices by exploiting knowledge about context information to select the best
suitable communication channel. However, their approach offers only limited
interaction with users and does not cover the migration of tasks.

8 www.android.com
9 www.nodejs.org

http://www.android.com
http://www.nodejs.org

364 D. Bokermann, C. Gerth, and G. Engels

Ghiani et al. [4] developed an infrastructure to migrate existing web applica-
tions from one device to another and keep the current state. We are convinced
that cross-device interaction must be considered at design time, otherwise an ap-
plication cannot consider the functionality offered by different types of devices.
Nevertheless, a migration platform like the one presented in [4] would also be
beneficial for our approach as well.

In [1], an ontology to describe devices is presented, which could be used as
initial device ontology for our approach. However, information about a device’s
user, peripheral equipment, or non-functional aspects, like mobility, is missing.

5 Conclusion and Future Work

In this paper, we presented an approach to enrich process models with deploy-
ment information to model and enable process-driven CDAs. For this purpose,
we created an ontology to describe device types and their properties at design
time. This ontology is later on used to manage information about concrete de-
vices at runtime. Based on the ontology, we introduced a mechanism to specify
device requirements for arbitrary parts of a process and we explained how to
specify device changes. Furthermore, we implemented our approach by adapting
an existing process engine, and thereby, we enable users to change devices

In the future, we want to further improve the specification of devices changes,
e.g. by allowing to define that a process part requires the same or a different
device as another part of the process. Currently, the schema describing the in-
ternal state of transferable tasks must be developed manually. For this reason,
we plan to further assist developers in creating such a schema. Moreover, we will
address handling exceptions introduced by enabling device changes.

References

1. Bandara, A., Payne, T.R., de Roure, D., Clemo, G.: An Ontological Framework
for Semantic Description of Devices (Poster). In: ISWC 2004 (2004)

2. Chakraborty, D., Lei, H.: Pervasive Enablement of Business Processes. In: PerCom
2004, pp. 87–100. IEEE (2004)

3. Dearman, D., Pierce, J.S.: ”It’s on my other computer!”: Computing with Multiple
Devices. In: CHI 2008, pp. 767–776. ACM (2008)

4. Ghiani, G., Paternò, F., Santoro, C.: Push and Pull of Web User Interfaces in
Multi-device Environments. In: AVI 2012, pp. 10–17. ACM (2012)

5. Karlson, A.K., Iqbal, S.T., Meyers, B., Ramos, G., Lee, K., Tang, J.C.: Mobile
Taskflow in Context: A Screenshot Study of Smartphone Usage. In: CHI 2010,
pp. 2009–2018. ACM (2010)

6. Kunze, C.P., Zaplata, S., Lamersdorf, W.: Mobile Process Description and Execu-
tion. In: Eliassen, F., Montresor, A. (eds.) DAIS 2006. LNCS, vol. 4025, pp. 32–47.
Springer, Heidelberg (2006)

7. Montagut, F., Molva, R.: Enabling Pervasive Execution of Workflows. In: Collab-
orateCom 2005, pp. 10–20. IEEE (2005)

Use Your Best Device! Enabling Device Changes at Runtime 365

8. Pryss, R., Tiedeken, J., Kreher, U., Reichert, M.: Towards Flexible Process Support
on Mobile Devices. In: Ng, K.W. (ed.) CAiSE Forum 2010. LNBIP, vol. 72, pp.
150–165. Springer, Heidelberg (2010)

9. Sen, R., Hackmann, G., Haitjema, M., Roman, G.C., Gill, C.D.: Coordinating
Workflow Allocation and Execution in Mobile Environments. In: Murphy, A.L.,
Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 249–267. Springer,
Heidelberg (2007)

10. Sen, R., Roman, G.C., Gill, C.D.: CiAN: A Workflow Engine for MANETs. In: Lea,
D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 280–295.
Springer, Heidelberg (2008)

11. Zaplata, S., Hamann, K., Kottke, K., Lamersdorf, W.: Flexible Execution of Dis-
tributed Business Processes based on Process Instance Migration. Journal of Sys-
tems Integration (JSI) 1(3), 3–16 (2010)

Specifying Flexible Human Behavior
in Interaction-Intensive Process Environments

Christoph Dorn1, Schahram Dustdar1, and Leon J. Osterweil2

1 Distributed Systems Group, Vienna University of Technology
{dorn,dustdar}@dsg.tuwien.ac.at

2 Department of Computer Science, University of Massachusetts Amherst
ljo@cs.umass.edu

Abstract. Fast changing business environments characterized by unpredictable
variations call for flexible process-aware systems. The BPM community addressed
this challenge through various approaches but little focus has been on how to
specify (respectively constrain) flexible human involvement: how human pro-
cess participants may collaborate on a task, how they may obtain a joint decision
that drives the process, or how they may communicate out-of-band for clarifying
task-vital information. Experience has shown that pure process languages are not
necessarily the most appropriate technique for specifying such flexible behavior.
Hence selecting appropriate modeling languages and strategies needs thorough
investigation. To this end, this paper juxtaposes the capabilities of representa-
tive human-centric specification languages hADL and Little-JIL and demonstrate
their joint applicability for modeling interaction-intensive processes.

1 Introduction

Over the past 15 years, process flexibility [15] has been consistently identified as a key
aspect for addressing the challenges arising from fast changing business requirements
and unpredictable runtime situations. Existing research approaches predominately ad-
dress flexibility at the process, artifact, and resource level. Little focus has been given to
flexible human involvement. Flexible human involvement gains particular importance
in interaction-intensive environments. Typical processes occur frequently in the health-
care domain or when jointly creating knowledge. These environments exhibit close col-
laboration among participants, ad-hoc communication, and dynamic decision making
while maintaining regions of rigid control-flow constraints. Traditional approaches to
process and workflow specification assume a single executing entity per task or activity.
Any communication among participants remains implicit, respectively remains outside
the specification’s scope. CSCW and groupware approaches, on the other hand, offer
extensive flexibility but lack sophisticated process support.

We propose a middle ground between these two “extreme” ends of the human inter-
action spectrum. Specifically, we suggest refining process tasks with human interaction
patterns and vice versa. For example, a health-care process could specify that a partic-
ular flow-decision may be discussed in a chat room with the head-nurse as moderator.
In the opposite direction, authors working on a joint report (i.e., a shared artifact pat-
tern) may incorporate a process specifying steps to safeguard report quality, intellec-
tual property protection, and data anonymity. Experience has shown that pure process

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 366–373, 2014.
c© Springer International Publishing Switzerland 2014

Specifying Flexible Human Behavior in Interaction-Intensive Process Environments 367

languages are not necessarily the most appropriate technique for specifying human in-
teraction patterns. Imagine modeling collection, filtering, distribution, and floor control
in a chat room merely in terms of task sequences. Utilizing only process modeling el-
ements quickly becomes tedious, while from a process point of view only the decision
outcome (made by the chat room participants) is ultimately of true relevance. Hence
interaction-intensive processes require dedicated specification of user behavior beyond
current process-centric approaches.

In this paper we consider two mechanisms: (a) the process-centric language Little-
JIL [7], and (b) the structure-centric human Architecture Description Language (hADL)
[9] (Sec. 3). Along these lines, we attempt to obtain better insights into jointly utilizing
Little-JIL and hADL. Although there is strong support for using either language inde-
pendently [14,10,9] our hypothesis is that applying both languages in combination will
provide more intuitive results in interaction-intensive environments (Sec. 4).

2 Related Work

Work on process flexibility typically focus on adding, removing, replacing process frag-
ments, extending loops, and reconfiguring control dependencies on the process type
level and process instance level [16]. Schonenberg et al. [15] provide a taxonomy
whereby they distinguish among flexibility by design, by deviation, by underspecifi-
cation, and by change. FLOWer [1] and similar case-based approaches (often denoted
as activity-based or ad-hoc work-flows [11]) excel at undoing, repeating, skipping, and
including activities. Our work is highly complementary as we specifically focus on the
process participants’ collaboration flexibility which none of these approaches appro-
priately address. Further investigations into applying our approach to for example case
management or business artifacts are highly appealing.

Recently, the BPM community started exploring the convergence of BPM technol-
ogy and social media. Brambilla et al. present design patterns for integrating of social
network features in BPMN [6]. A social network user may engage in task-centric ac-
tions such as voting, commenting, reading a message, or joining a task. Böhringer uti-
lizes tagging, activity streams, and micro-blogging for merging ad-hoc activities into
case management [5]. Dengler et al. utilize collaborative software such as Wikis and
social networks for coordinating process activities [8]. At best, contemporary Social
BPM approaches model collaboration as individual social network user actions; neither
the actual collaborative activities nor their structure are explicitly specified. Our work,
in contrast, focuses on modeling the actual collaboration among users (well beyond
workflow coordinated tasks) in detail. We, thereby, treat the workflow and collaboration
structure as equal models.

Also the software engineering community identified the need for combining pro-
cess technology and collaboration support. Paulo Barthelmess provides an in-depth re-
view of approaches to collaboration and coordination support [3]. Languages and tools
primarily target coordination and collaboration via file-centric development artifacts
and tasks. Serendipity [12] utilizes events, filters, and actions as the main coordina-
tion means among participants. SPADE [2] supports the integration and invocation of
collaboration tools, but remains unaware what collaboration type and structure such ex-
ternal tools implement. Oz [4] builds upon a rule-based language for specifying which

368 C. Dorn, S. Dustdar, and L.J. Osterweil

users are allocated as task executors. Overall, modeling collaboration structures is crude
and imprecise, often requiring tedious composition from low-level events. Any tightly
integrated collaboration tools provide limited, fixed set of a/synchronous mechanisms
that remain outside the process specification’s modeling scope. Independent of research
domain, we can claim that no process specification approach makes the distinction
among collaboration connector and human component, nor provides dedicated decision
support (e.g., voting) or information streams (e.g., subscriptions).

3 Specifying Human Flexible Behavior

The overall process specification needs to balance analyzability and flexibility. Orthog-
onal, the specification needs to differentiate between the three types of human involve-
ment: communication, coordination, and work (co-)execution.

The human Architecture Description Language (hADL) [9] describes according
to what structure humans interact to achieve a common (sub)goal such as discussing
and subsequently jointly deciding upon resource usage (Fig. 2). hADL distinguishes be-
tween HumanComponents (light green rectangles) and CollaborationConnectors (dark
green rectangles) to emphasize the difference between the primary collaborating users
(e.g., a decision maker) and non-essential, replaceable users that coordinate the collab-
oration (e.g., a discussion moderator). A CollaborationConnector is thus responsible for
the efficient and effective interaction among HumanComponents. Users typically em-
ploy diverse means of interaction that range from emails, to chat rooms, shared wiki
pages, and Q&A forums, to vote collection. These means implement vastly different
interaction semantics: a message is sent and received, a shared artifact can be edited,
a vote can be cast. CollaborationObjects (rounded rectangles) abstract from concrete
interaction tools and capture the semantic differences in subtypes; e.g., Message (yel-
low), Stream (light orange), or SharedArtifact (dark orange). HumanActions (tool icon)
specify what capabilities a component or connector requires to fulfill his/her role, e.g.,
read a discussion thread or cast a vote. Complementary, a CollaborationObject sig-
nals its offered capabilities in the form of ObjectActions (gear-wheel icon). Both action
types distinguish further between Create, Read, Update, and Delete (CRUD) privileges.
Ultimately, Links connect ObjectActions and HumanActions to wire up HumanCom-
ponents, CollaborationConnectors, and CollaborationObjects into a collaboration struc-
ture. The Pattern provides a container for complex, hierarchical CollaborationObjects
and interaction patterns composed from the elementary hADL elements. Element types,
action CRUD privileges, as well as link cardinalities have no graphical representation
and are edited as textual properties. The main motivation for hADL as a dedicated lan-
guage is the separation between (i) CollaborationConnector and HumanComponent as
well as (ii) the distinct CollaborationObjects. Languages such as UML are too vague
to unambiguously model these differences. Even with extensions, they might tempt de-
signers into modeling hADL aspects with non-hADL elements or contradict hADL’s
constraints and thus jeopardize rigorous analysis.

Little-JIL [7] is a visual language, depicting processes as hierarchies of steps (Fig. 1).
An edge between a parent and child steps carries specifications of the arguments be-
ing passed between the two and an optional annotation specifying the number of child

Specifying Flexible Human Behavior in Interaction-Intensive Process Environments 369

step instances. Little-JIL incorporates four different step execution sequencing specifi-
cations: sequential (→), which specifies that substeps are to executed sequentially from
left to right; parallel (=), which specifies fork-and-join for its substeps; choice (—�),
which specifies that only one of the step’s substeps is to be executed, with the choice
being made by the parent step; and try (−→×), which specifies that the step’s substeps are
to be executed in left-to-right order until one of them succeeds by failing to throw an
exception. Exception handling is a particularly strong and important feature of Little-
JIL. Exceptions may be thrown by a step’s prerequisite check or postrequisite check or
by the execution agent. Every step can contain one or more exception handlers, each of
which may itself be an entire step hierarchy. A step’s interface specification incorpo-
rates information about whether any arguments are an input, an output, or both, and the
types of resources needed in order to perform the task associated with that step. One
resource is always designated as the steps agent, namely the resource responsible for
the performance of the step, may it be human(s), software, or hardware. This allows for
linking Little-JIL steps to hADLs model elements, in a way that allows the two specifi-
cations to be orthogonal. Expressive, extensible, orthogonal resource specification and
management [14] is thus one of the main reasons for choosing Little-JIL over workflow
languages such as BPEL or YAWL. The way in which Little-JIL supports implementa-
tion of abstraction, based upon semantics rigorously defined using finite state machines,
also facilitates clear specification of both activities and communication, as well as their
relations to each other. These give the use of Little-JIL important advantages over other
languages such as BPEL, BPMN, and YAWL.

Little-JIL vs. hADL
We analyze the spectrum between rigor and flexibility for multiple aspects as hADL
and Little-JIL differ in their focus on where they enable precision, respectively under-
specification.

Control flow describes the order relation among multiple actions, specifically in-
teraction, coordination, and work execution steps. hADL assumes no single, dedicated
control flow that determines the order of all human actions in a collaboration pattern.
Instead, hADL enables specification of object lifecycle actions (CRUD) and who may
trigger them. In contrast, Little-JIL offers primitives for rigorously determining the
sequence and trigger conditions of steps.

Concurrency dependencies describe the active, simultaneous involvement of multi-
ple users in the system. hADL assumes user behavior concurrent by default, only action
sequences determined by an object’s lifecycle imply order (i.e., first create, then read).
Hence, actions such as multiple users reading a (shared) message or updating a shared
artifact are expected to occur in no particular order with no synchronization mecha-
nism involved. Little-JIL provides the “parallel step” primitive for marking a set of sub-
steps explicitly as concurrently executable. Instantiating multiple identical substeps is
achieved by annotation a step’s edge with a fixed integer, a predicate, or a specification
based upon the number of available resources.

Temporal, Cardinal, and Structural constraints provide additional refinement
primitives that govern acceptable behaviors. hADL focuses primarily on minimal and
maximal interaction cardinality, e.g., whether one or many users may update an artifact,
the minimal number of reviewers of a report object, whether a user may create a single

370 C. Dorn, S. Dustdar, and L.J. Osterweil

or multiple task request objects. Little-JIL provides cardinality constraints for specify-
ing the lower and upper bounds for repeatedly executing a particular step. Temporal
constraints determine the maximum duration a step may take for completion. Resource
constraints allow the precise selection of agents (filtered by properties), for example,
expressing that the same agent must (or may not) execute a particular set of steps.

Communication primitives describe the various means and their properties for es-
tablishing unstructured communication among participants. hADL employs the Col-
laborationObject element (and its subtypes such as Message, Artifact, or Stream) for
specifying the nature of communication and which communication role a particular
user plays. CollaborationObjects thus may describe synchronous one-to-one video com-
munication as well as asynchronous multiuser information exchange via a blackboard.
Little-JIL facilitates communication among agents only via explicit data passing
between steps.

Coordination primitives describe the available means for managing work depen-
dencies among participants. hADL distinguishes between work-centric HumanCompo-
nents and coordination-centric CollaborationConnectors. Little-JIL relies on the
process engine as the sole coordinator of human involvement (in contrast to hADL
where multiple CollaborationConnectors are not uncommon). The process description
serves as the sole coordination basis. Step output and resource availability determine
the flow through the process, however from a human participant’s point of view, there
is no distinction between coordinating steps and work executing steps.

Execution primitives outline the basic language elements for specifying human be-
havior. In hADL, a HumanComponent’s actions describes all capabilities required to
fulfill the collaborative work task. A HumanComponent thereby makes use of actions
made available by potentially multiple collaboration objects. Such an object may serve
as work input/output, but also for coordination or communication. Little-JIL unambigu-
ously specifies human work in the process’ step definitions. Step definitions precisely
define all required input data, and exactly what output is expected, respectively what
exceptions may occur. Exception handling is a significant aspect of a Little-JIL pro-
cess specification in contrast to hADL where exceptions have to be modeled as regular
collaboration objects.

4 A Hospital Patient Handling Use Case

We evaluate to what degree the above outlined capabilities of hADL and Little-JIL man-
ifest as synergies. We follow a simple strategy: a designer chooses the language(s) that
support specifying the kind of details about which she would like to reason upon and un-
derstand. Where control is desired, she tends towards process specification in Little-JIL.
Where flexibility and human initiative needs to be emphasized and understood, there she
opts for hADL. In this use case, we analyze the potential for human flexibility in an ex-
emplary emergency department (ED) process (see also [14]). Efficient and effective ED
processes rely on optimal resource allocation. This includes determining the optimal
number of personnel such as Physicians, Nurses, Triage Nurses, or Clerks, their activi-
ties, and constraints on the combination of activities and personnel. Typically, a hospital
determines a-priori the various thresholds which remain unchanged during operation.

Specifying Flexible Human Behavior in Interaction-Intensive Process Environments 371

Whether a threshold is adequate, however, is highly dependent on the dynamic chang-
ing ED context and highlights the potential benefit for ad-hoc involving actual humans
in the dynamic resource allocation decisions. We model the main ED process (Fig. 1) in
Little-JIL and the flexible collaboration structures (Fig. 2) in hADL. The EDProcessS-
cope step assumes registered patients need first placement in a bed. The NurseOverload-
Handler becomes active when available nurses are unable to carry out PutPatientInBed
and resource allocation rules yet keep triage nurses from substituting. In this situation,
how triage nurses may volunteer upon coordination with the ED supervisor is left for
specification in hADL. In case no triage nurse volunteers or the supervisor declines the
substitution, the AssignBedScope step executes a blocking PutPatientInBed step. If a
bed is unavailable, a nurse may initiate a swap or, upon failure, will simply wait for
a bed blocking. After successful bed placement and subsequent AssessAndTreatScope,
the EvalLoad step determines a switch from FinalAssessmentSame to FinalAssessment-
Diff strategy or vice versa in order to maintain short patient Length-of-Stay (LOS).
How the ad-hoc, collaborative decisions come about are generally outside Little-JIL’s
scope but rather specified in hADL. The integration among Little-JIL and hADL occurs
through a step’s executing agent; here EvaluateLoadAgent and NurseOverloadHandler.
These agents may be human or software entities.

The hADL model (see Fig. 2) focuses on the coordination among Physicians, Su-
pervisor, TriageNurses, and process steps agents when to switch assessment strate-
gies, and when to volunteer for role substitution. The NurseOverloadHandler directs
NurseLoadAlerts messages to the TaskAllocator connector. The connector in turn cre-
ates a VolunteerSelection artifact, invites TriageNurses, observes who indicates their
availability, waits for Supervisor confirmation and only then returns a ResourceSubstitu-
tionConfig message to the process. Similarly, the StrategySwitcher connector observes
resource status and patient LOS, collects Physicians’ opinions on whether to switch,
considers a Supervisor’s overruling, and notifies the EvaluateLoadAgent step instances
asynchronously on the agreed StrategyChange via a message stream. The connector

Fig. 1. Describing the adaptive ED process (excerpt) with Little-JIL

372 C. Dorn, S. Dustdar, and L.J. Osterweil

Fig. 2. Modeling collaboration structures in hADL

also manages a GroupChatStream that enables Physicians and Supervisor(s) to discuss
strategy switching in an asynchronous and distributed manner. The sole purpose of the
TaskAllocator connector and StrategySwitcher connector is coordinating collaboration
among humans and integrating the collaboration with the process. Either connector
might be implemented in software or by a dedicated user, e.g., a head nurse. The re-
sulting decoupling ensures that process participants neither need to care about how to
communicate with all relevant collaborators, nor do collaborators have to be physically
collocated. Decoupling also provides the opportunity for establishing collaborations in
parallel to multiple process instances.

Previous research [14,10,9] demonstrated the independent applicability of Little-JIL
and hADL. Relying on a single language only, however, risks stretching it beyond its
comfort zone. Modeling detailed processes in hADL quickly becomes tedious while
still not completely achieving Little-JIL’s rigor. Likewise, Little-JIL could describe the
unstructured interaction occurring in a chat room but would need to do so at an ex-
tremely fine-grained level.

We believe that having to apprehend two languages neither puts an overly large nor
unacceptable cognitive burden on the process designer. In software engineering, design-
ers are equally expected to master the similarly diverse UML (or SysML) diagram types
such as sequence diagrams vs. class diagrams.

5 Conclusions and Outlook

This paper1 presented an approach for specifying human behavior in interaction-
intensive process environments through the joint use of the Little-JIL and hADL. We
outlined their differences as well as synergies and demonstrated their applicability in a

1 This research was partially supported by the EU FP7 SmartSociety project (600854), the
U.S. NSF under Award Nos. IIS-1239334 and CNS-1258588 and the NIST under grant
60NANB13D165.

Specifying Flexible Human Behavior in Interaction-Intensive Process Environments 373

use case. The combination of both languages avoids stretching one language beyond its
comfort zone. Our approach will ultimately lead to more precisely specified human in-
volvement and thereby enable better analysis of human actions as well as better support
of their interaction needs. Our future investigation will focus on deployment issues such
as instantiating collaboration patterns from a process engine and vice versa, observing
collaborations, and detecting deviations from the initial model.

References

1. van der Aalst, W.M.P., Weske, M.: Case handling: A new paradigm for business process
support. Data Knowl. Eng. 53(2), 129–162 (2005)

2. Bandinelli, S., Di Nitto, E., Fuggetta, A.: Supporting cooperation in the spade-1 environment.
IEEE Trans. Softw. Eng. 22(12), 841–865 (1996)

3. Barthelmess, P.: Collaboration and coordination in process-centered software development
environments: a review of the literature. Inf. and Soft. Tech. 45(13), 911–928 (2003)

4. Ben-Shaul, I., Skopp, P., Heineman, G., Tong, A., Popovich, S., Valetto, G.: Integrating
groupware and process technologies in the oz environment. In: Proc. Int. Software Process
Workshop, pp. 114–116 (October 1994)

5. Böhringer, M.: Emergent case management for ad-hoc processes: A solution based on mi-
croblogging and activity streams. In: zur Muehlen and Su [13], pp. 384–395

6. Brambilla, M., Fraternali, P., Vaca, C.: BPMN and design patterns for engineering social
BPM solutions. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I.
LNBIP, vol. 99, pp. 219–230. Springer, Heidelberg (2012)

7. Cass, A.G., Lerner, B.S., Sutton Jr., S.M., McCall, E.K., Wise, A.E., Osterweil, L.J.: Little-
jil/juliette: a process definition language and interpreter. In: ICSE, pp. 754–757. ACM (2000)

8. Dengler, F., Koschmider, A., Oberweis, A., Zhang, H.: Social software for coordination of
collaborative process activities. In: zur Muehlen and Su [13], pp. 396–407

9. Dorn, C., Taylor, R.N.: Architecture-driven modeling of adaptive collaboration structures
in large-scale social web applications. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.)
WISE 2012. LNCS, vol. 7651, pp. 143–156. Springer, Heidelberg (2012)

10. Dorn, C., Taylor, R.N.: Coupling software architecture and human architecture for
collaboration-aware system adaptation. In: ICSE, pp. 53–62. IEEE / ACM (2013)

11. Dustdar, S.: Caramba Process-Aware Collaboration System Supporting Ad hoc and Collab-
orative Processes in Vrtual Teams. Distributed Parallel Databases 15(1), 45–66 (2004)

12. Grundy, J., Hosking, J.: Serendipity: Integrated environment support for process modelling,
enactment and work coordination. Automated Software Engineering 5(1), 27–60 (1998)

13. Jones, N.D., Muchnick, S.S.: Business Process Management Workshops - BPM 2010 Inter-
national Workshops and Education Track, Revised Selected Papers. LNBIP, vol. 66. Springer,
Heidelberg (1978)

14. Raunak, M.S., Osterweil, L.J.: Resource management for complex, dynamic environments.
IEEE Trans. Software Eng. 39(3), 384–402 (2013)

15. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., Aalst, W.: Process flexibility: A survey
of contemporary approaches. In: Dietz, J., Albani, A., Barjis, J. (eds.) Advances in Enterprise
Engineering I, LNBIP, vol. 10, pp. 16–30. Springer Berlin Heidelberg (2008)

16. Weber, B., Rinderle, S., Reichert, M.: Change patterns and change support features in
process-aware information systems. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE
2007 and WES 2007. LNCS, vol. 4495, pp. 574–588. Springer, Heidelberg (2007)

Separating Execution and Data Management:
A Key to Business-Process-as-a-Service (BPaaS)

Yutian Sun1,�, Jianwen Su1,�, and Jian Yang2

1 Department of Computer Science, UC Santa Barbara, USA
2 Department of Computing, Maquaire University, Australia

Abstract. In most business process management (BPM) systems, the interleav-
ing nature of data management and business process (BP) execution makes it hard
for providing “Business-Process-as-a-Service” (BPaaS) due to the enormous ef-
fort required on maintaining both the engines as well as the data for the clients. In
this paper we formulate a concept of a self-guided artifact, which extends artifact-
centric BP models by capturing all needed data for a BP throughout its execution.
Taking advantage of self-guided artifacts, the SeGA framework is presented to
support the separation of data and BP execution.

1 Introduction

The need for business process management (BPM) is ubiquitous as business processes
(BPs) or workflows exist in all types of organizations including governments, healthcare,
and business. In a traditional setting, to develop a BPM (software) system,
required expertise includes application specific knowledge and software development
experiences. The development team not only formulates concrete BP models, identifies
data and other resources including human, but also decides on computing hardware and
software. After a BPM system is installed, in addition to routine maintenance, the system
is often required to change in order to adapt to the changes in the environment, regula-
tions and policies, market competitions, etc. Changes are hard technically and cost wise
to many organizations. For example, soon after installing its BPM system, the Housing
Management Bureau in city of Hangzhou, China decided to design another system due
to the changed policies, environment, and requirements [9]. Such incidents caused the
State Council of China1 to urge provincial and lower governments to use/purchase more
services available in the market to streamline administration, an essential aspect of this
call is to shift towards the “Business-Process-as-a-Service” (BPaaS) paradigm.

Cost effective BPaaS is challenging to achieve. Multi-tenancy for BPM systems is
an obvious option for effective BPaaS, but is technically hard to realize. A primary
reason is that existing BP design methodologies lack coherent plans for data design. BP
execution needs at least the following five types of data: (i) business data for the process
logic, (ii) BP models, (iii) execution states (and histories), (iv) correlations among BP
instances, and (v) resources and their states (e.g, room reserved). Without coherent
data design, current BPM systems handle and manage data in ad hoc manners, data for

� Supported in part by a grant from Bosch.
1 http://www.gov.cn/zwgk/2012-07/20/content_2187242.htm

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 374–382, 2014.
c© Springer International Publishing Switzerland 2014

http://www.gov.cn/zwgk/2012-07/20/content_2187242.htm

Separating Execution and Data Management 375

BP execution is scattered across databases, auxiliary data stores managed by the BPM
systems, and even in files (e.g., BP schemas). It is important to note that artifact-centric
BPM systems are similar since their BP models [2,6,9] only focus on data of type (i)
but are agnostic of types (ii) to (v).

A fundamental principle needed to support BPaaS is the independence of data man-
agement and execution management. The principle entails that a BP execution engine
should be free of managing any data while the manager of data needed for BP execu-
tions should not interfere with decisions on BP execution. A technical challenge here
is to develop BPM systems that adhere to this principle. In [1], the authors studied how
data auditing can be done for BPaaS, where data and execution management are inter-
leaved. In this paper, we observe that the data auditing problem of [1] can be easily
solved if data and execution are independently managed.

Rather than developing a new BPM system, in this paper we use “self-guided arti-
facts” (sg-artifacts) to show that existing systems can be “wrapped” and “mediated” to
achieve execution independence. Sg-artifacts extend artifact-centric BP models by cap-
turing all five types of data for a BP throughout its execution. Effectively, sg-artifacts
make BP engines free of data management.

Technically, we formulate sg-artifacts based on the two artifact systems: Barcelona
[5] and EZ-Flow [9]. We not only define sg-artifacts, but also specify correspondence
between sg-artifact contents and (effectively) system snapshots in both systems. This
paper extends the work in [8], where an earlier SeGA prototype to support process
collaboration was reported but the concept of sg-artifact was not clearly formulated.

This paper is related to [4] that focuses on how to hide the business logic of out-
sourced GSM BPs [6] while still providing the BP services to clients. A generic
solution for BP execution analysis with a process data warehouse model and ETL gen-
eration mechanism was presented in [3]. In paper [7], a mapping language is proposed
for connecting the process data with the data in the persistent store.

Technical contributions of the paper are: (1) while the concept of sg-artifact was in-
troduced in [8], we formulate sg-artifacts for Barcelona and EZ-Flow that include the
mappings to snapshots, i.e., translations between sg-artifacts and Barcelona/EZ-Flow,
and (2) a framework called SeGA is developed based on the SeGA tool of [8]. This
framework takes advantage of sg-artifacts, supports the separation of data and BP exe-
cution for the two targeted systems, and is a sound platform for BPaaS.

This paper is organized as follows. Section 2 motivates the need for separating data
and execution in order to enable BPaaS. Section 3 reviews Barcelona and EZ-Flow, for-
mulates sg-artifacts including translations from/to Barcelona and EZ-Flow, and outlines
the SeGA framework. Section 4 concludes the paper.

2 Motivations

The success of cloud computing has fueled the desire to provide BP execution as service
or BPaaS. Consider as an example real estate property management in China. There are
roughly 10 to 50 Housing Management Bureaus (HMBs) in each of about 30 provinces
for managing titles, permits, licenses etc. Each HMB currently runs/maintains its own
BPM system. BPaaS could potentially bring huge savings to HMBs in managing and
maintaining BPM systems and is a great business opportunity in the software market.

376 Y. Sun, J. Su, and J. Yang

�
�
�
�
� �
�
�
�
�

Service ProviderHangzhou HMB

Enterprise
Data Store 1

Yiwu HMB

BP Engine 1

BP Engine 2

Enterprise
Data Store 2

Local 1

Local 2

Fig. 1. Running Clients’ BP Engines

Ent. DS 1
& Local 1

�
�
�
�
�

Ent. DS 2
& Local 2

�
�
�
�
�

Service ProviderHangzhou HMB

Yiwu HMB

BP Virtual

Engine

Fig. 2. Shared BP Virtual Engine

Virtualization (i.e., VMs) is a key technology for cloud computing that frees clients
from owning and maintaining computing hardware and operating systems. In Fig. 1,
a service provider uses VMs to run BPM systems for many HMBs as services. For
the large city Hangzhou, its HMB manages its business data in the enterprise database.
the service provider can then run and manage the BPM system, including the data store
“Local 1” containing data specific to Hangzhou HMB’s BP execution. Almost all current
BPM systems also manage data related to the processes running in the systems locally
within the systems. For the small city Yiwu, the situation is similar except that the
provider also manages Yiwu’s enterprise data. BPM systems are semantically rich, each
BP engine only suits in its local context, its local data store is a main part of the reason.
As a result, one BP engine cannot be used to serve multiple HMBs. Thus each HMB’s
BP engine needs to be managed individually, the total effort of maintenance of all BPM
systems for HMB clients is not reduced much excepted that it is simply shifted to the
service provider. For example, when the core execution engine is to be upgraded, each
installation must be upgraded individually in a seemingly repetitive manner.

Fig. 2 shows a much improved situation. In this case, only one BP virtual engine is
running, each HMB’s enterprise business data and engine-specific local data are pack-
aged and stored in an extended data store and maintained either by the client (e.g.,
Hangzhou) or by the service provider (e.g., Yiwu). Both the data and process definition
are provided to the virtual engine when it needs to schedule tasks; upon completion, all
data is again packaged and stored accordingly for the client. This is far more efficient
and scalable as the number of clients grows.

Achieving Fig. 2 turns out to be technically challenging. In order to understand how
to separate data from BP execution, we present a concrete example below.

Example 1. Consider a BP model in Hangzhou HMB (HHMB). This BP concerns ap-
proval for “Early-sell permits” submitted by developers to allow some apartments in
the buildings under construction to be put on the market. Permit approval involves two
collaborating BPs carried out by different departments. The primary BP “Early-sell
Approval Flow” (EAF) accepts applications from developers, performs reviews in sev-
eral aspects, processes fee payment, and issues approval certificates. One aspect of the
review concerns reserved space for building maintenance functions (total area, acces-
sibility, etc.) and is done by the other BP “Maintenance Space Check” (MSC). An EAF

instance launches a MSC instance for all apartments in the EAF instance and located
in the same building. If multiple buildings are involved in the EAF instance, one MSC

instance for each building will be launched.

Separating Execution and Data Management 377

During the execution of an EAF instance, there are at least five types of data in-
volved: (i) the data about the applicant, the apartments, etc., (ii) the EAF model itself,
(iii) the current execution status, e.g., the initial review of the applicant is completed and
two MSC instances have been spawned, (iv) correlation information of the EAF and two
MSC instances, and (v) the building records (owned by Hangzhou’s Land Management
Bureau) have been checked out for possible update by the EAF instance (an approved
apartment will be marked on the building records). Among the above types of data, only
business data of type (i) is managed in the HHMB enterprise database, while all others
are stored within the HHMB’s BPM system. If this BPM system is also to manage exe-
cutions of BPs from other HMBs, problems will rise since data of types (ii) to (v) from
all HMBs are mixed together. HHMB uses a proprietary BPM software but the situation
is similar for YAWL and jBPM; the conclusion easily applies to YAWL and jBPM.

A major overhaul of storage and management of data of types (ii) through (v) seems
necessary in order to support multi-tenancy. In this paper, we formulate a technique
“sg-artifact” to cleanly separate all types of data from the execution management of a
BPM system. Based on sg-artifacts, a framework called “SeGA” was developed, SeGA
easily allows a single BPM system to serve BP executions from multiple clients.

3 Self-guided Artifacts

Our goal is to develop techniques for separating data from execution in order to sup-
port multi-tenancy and BPaaS. We start with introduction of wrappers for data used
in BPs called “self-guided artifacts” (or “sg-artifacts”) to contain all needed data for
execution. We focus on two artifact models, Barcelona [5] (i.e., the execution engine
name for GSM [6]) and EZ-Flow [9]. Then we introduce sg-artifacts and how to wrap
Barcelona/EZ-Flow into sg-artifacts. Finally, a framework to support sg-artifacts, called
“SeGA”, is presented. Note that activity-centric BPs and artifact-centric BPs only dif-
ferent in modeling data of type (i) (see Section 2), this technique can be easily extended
to other BP models/systems.

GSM and EZ-Flow Artifacts
An artifact stores all business information related to the BP using pairs of attributes
and values. An event type is with an event name and a sequence of distinct attributes
as payload. Each event type also contains the special attribute “ID” to hold an artifact
identifier (that uniquely identifies each artifact instance). An event is an instance of an
event type that can be either incoming or outgoing to denote it is to be sent or received.

We now briefly review GSM [5] with an example. Continue with Example 1; Fig. 3
shows the lifecycle of a GSM process for MSC that prescribes how the process should
be executed. The lifecycle starts from stage “Requirements Check”. It is opened once
the condition in the diamond-shaped guard is satisfied. The guard tests if a “Request
Maintenance Check” event arrives. Once the stage is activated, some sub-stages can
open. For example, if HHMB decides to revise the maintenance apartments plan, sub-
stage “Partial Apts Check” can be activated. During the execution, outgoing events
can be sent out to request execution of actual tasks outside environment (e.g., human-
performed). Once the requirement is checked, the circle-shaped milestone with name

378 Y. Sun, J. Su, and J. Yang

Result
Reported

Details
Checked

Part Info
Collected

Partial
Apts Check

Docs
Archived

All Info
Collected

All Apts
Check

Requirements Check
Agmnt ReachedDeveloper

Negotiation Terms Disagreed

Report
Written

Generate
Report

Report Result
Report
Sent

Send Report
to Office

Archive

Docs

Fig. 3. A GSM Artifact Lifecycle Model of MSC

MSC ID = 101

 Corr. Info.: EAF_ID = A1

 Apt_List
 No = 1; checkPassed = T

 No = 2; checkPassed = F
 Milestone
 Terms Disagreed = T

 Docs Archived = F

Fig. 4. A MSC Instance

“Details Checked” will automatically close the associated stage. The instance finishes
when milestone “Docs Archived” is achieved.

The formal models of GSM artifact schemas and lifecycles are given in [6]. A GSM
schema always contains an attribute “ID” to hold the identifier of an artifact instance.

A GSM artifact instance records the status of a single run of a GSM artifact at some
time point. Fig. 4 shows a MSC artifact instance for the BP described in Fig. 3. Consider
the instance with ID = 101. It has two maintenance apartments, in which the one la-
beled “No. 2” failed to pass the maintenance check. The milestone “Term Disagreed” is
achieved to denote that the negotiation with the developer fails at the current moment.
There is an attribute called “EAF ID” in MSC to denote the correlated EAF business pro-
cesses mentioned in Example 1.

An artifact instance represents a running BP instance (with all data values). Artifact
instances can depend on each other through the IDs of instances stored as attribute
values of other instances. Quite often, if some attributes of an instance change during
execution, other instances referencing this instance may possibly change as well. The
BP engine should keep track of all dependency relationships.

Based on GSM semantics [6], the Barcelona engine [5] was developed. The commu-
nication between the environment and Barcelona is done through events. The incoming
events (sent by a task or a user) are handled sequentially. For each event, a “B-step”
will be performed to update the correlated artifact instance stored in a DB2 database
according to the schema. Some depending artifacts may also change during the same
B-step. Once it is done, the engine will process the next event.

The EZ-Flow model is similar to GSM, details can be found in [9].

Self-guided Artifacts
A “self-guided artifact” captures a complete set of data for a BP model so that its in-
stances are independent from execution engine; this is a key enabler for multi-tenancy
and BPaaS. In particular, each self-guided artifact instance incorporates both artifact
instance (including its snapshot) and its process model that this instance will follow.

Conventional BP modeling languages allow specification of tasks and control flow
(BPMN, Activity Diagrams, YAWL, etc.), leaving data modeling to some later stage
and/or at a lower conceptual level. Artifact-centric models [2,6] integrate logical data
models for business data (i.e., type (i)) and activity/task models. Even current artifact
systems still capture context, status, and resource data in an ad hoc manner. For exam-
ple, Barcelona [5] stores artifact dependency and the execution state directly in its local
database. In this paper, we advocate a fundamental principle for BPM systems:

Execution independence refers to the freedom of making changes to the process exe-
cution engine while leaving conceptual BP models unchanged.

Separating Execution and Data Management 379

A necessary ingredient to support execution independence is the ability to capture all
five types of data in conceptual BP models, including (i) business data for BP execution,
(ii) BP schemas, (iii) current execution states (and histories), (iv) correlations among BP
instances, and (v) resources and their states.

In database management systems, “physical data independence” was a key enabler
for the development of transaction models (concurrency, crash recovery) independently
from query optimization. Analogously, execution independence could allow the man-
agement/modification of execution and data to be dealt with separately.

We now define the central notion of “self-guided artifacts”. Essentially, a self-guided
artifact (instance) is a GSM (EZ-Flow) artifact augmented with state and runtime de-
pendency information, and with the artifact schema. (Resource data is not included
since neither models represent resources.)

Definition: A self-guided (or sg-) artifact schema is a tuple (A, ID,Att, Sta), where A
is a (unique) name, ID is the ID attribute, Att is a set of data attributes, and Sta is a
set of state attributes. Given an sg-artifact schema (A, ID,Att, Sta), a self-guided (sg-)
artifact instance Σ of A is a tuple (ν,L,M,Dep) where ν assigns values to attributes in
{ID}∪Att∪Sta such that ν(ID) is a unique ID, L is either “GSM” or “EZ” representing a
modeling language (GSM or EZ-Flow),M is an artifact schema in the languageL, and
Dep is a set of dependencies whose representation depends on the languageL.

A sg-artifact schema is an abstraction of running instances of both GSM and EZ-
Flow artifacts. Each sg-artifact instance captures data attribute values, status and de-
pendencies, and (its own copy of) schema or BP model. The inclusion of the schema
frees the engine from storing BP models.

To achieve execution independence for GSM (EZ) artifacts, all data concerning BP
including data and states are extracted from Barcelona (EZ-Flow) and stored as sg-
artifact instances. When Barcelona performs a B-step (EZ-Flow performs a transition),
it updates all affected artifact instances. Thus, it is necessary to establish a 1-1 mapping
from GSM (EZ) instances to sg-artifact instances so that the fact of sg-artifacts storing
the system data/status is transparent to Barcelona (EZ-Flow). We discuss below a few
technical notions for the mappings for GSM and EZ-Flow separately.

In Barcelona, once an event comes, it will first affect one GSM instance; during the
same B-step, the effect may also ripple to the other depending instances. For each GSM
instance, a dependency closure can be computed to record all the instances that might
be affected during the execution.

Given a sg-artifact instance Σ′ = (ν,L,M,Dep), the key notion relating a GSM in-
stance Σ and sg-artifacts is given by mapping (i) the ID, data, and status attributes/values
through ν, (ii) L = “GSM”, (iii)M to be the schema of Σ, and (iv) Dep the dependency
closure of Σ.

The mapping not only keeps the original ID, data and status attributes, but also in-
cludes the execution language and the schema. For the dependency closure, though it
can be derived from the data attribute values, it is necessary to raise it as the first-class
citizen in order to explicitly denote the relationship with other instances.

Given a sg-artifact instance Σ′ that is mapped from a GSM instance Σ, it is straight-
forward to recover Σ by simply mapping each attribute-value pair from Σ′ to Σ.

380 Y. Sun, J. Su, and J. Yang

Schema

Snapshot

Incoming
events

SeGA Dispatcher

Barcelona
Engine

. . .Outgoing
events

SeGA
Mediator

BP Service Interface

. . .
. . .

SG-Artifacts
Repository k

SeGA Dispatcher

SG-Artifacts
Repository 1

Fig. 5. The SeGA Framework

The mapping from EZ-Flow (schema/instances) to sg-artifact (schema/instances) can
be achieved similarly; the logical description of the mapping is omitted.

The SeGA Framework
A sg-artifact instance captures all necessary data for execution, and allows a BP engine
to operate without knowing the context of instances. The “SeGA” framework wraps BP
engines into “stateless” services to support BPaaS and how sg-artifacts can interact with
the provided services. Based on SeGA, a prototype was developed and reported in [8].

Fig. 5 shows the architecture of the SeGA framework (or simply SeGA), which con-
sists of a SeGA dispatcher and a SeGA mediator. When an external event arrives, the
dispatcher fetches the relevant sg-artifact instances from a sg-artifact repository, sepa-
rates the schema from each sg-artifact instance, maps it back to the original form (GSM
or EZ-Flow), and sends the external event, schema, and the original artifact instance
to the mediator. When the mediator receives the event, schema, and the instance, it
deposits the artifact schema in the appropriate location where the Barcelona/EZ-Flow
engine can access, and passes the control over to the Barcelona/EZ-Flow engine by for-
warding the event. When the Barcelona/EZ-Flow engine receives the incoming event,
it executes the next step and updates the artifact instances according to the schema de-
posited by the mediator; and outgoing events may also be sent directly from the engine
if there exists task invocation during the execution. Once it completes, the mediator
fetches the updated artifact instances, together with their schemas and states, and sends
them back to the dispatcher. The dispatcher then maps the instances and schemas back
to sg-artifacts and stores into the corresponding repository.

SeGA can be used to support BPaaS. The dispatcher would reside at the service
consumer, where a repository of sg-artifacts is maintained. The mediator is located at
the service provider who runs a BP engine (or multiple engines). The dispatcher and
mediator communicate through service invocations such as WSDL or REST, and work
in pairs so that the service provider can use its BP engines to execute BP received from
the service consumer in the form of data.

The SeGA framework takes advantage of the execution independence that separates
data and execution management. From the engine’s perspective, it provides business-
process-as-a-service but does not maintain any data. This allows the provider to serve
a large number of consumers. From the consumer’s view, all BP data are maintained at
its site; beyond that, there is no need to manage BP execution.

SeGA requires the dispatcher/service consumer to have a sg-artifact repository so
that the dispatcher can fetch (sg-artifact) instances. In general, an enterprise stores the
data in a enterprise persistent data store (e.g., a relational database) rather than storing

Separating Execution and Data Management 381

data for each individual BP model. A general approach of a data mapping to bridge the
relationships between sg-artifact instances and databases was developed in [7]. As an
advantage of [7], one can design artifact storage and map the artifact data to the exist-
ing database(s). The mapping in [7] can propagate updates on artifact instances to the
database and vice versa. Together with the mapping framework, the SeGA framework
provides an effective way of elevating a BPM system for multi-tenancy and BPaaS.

Design Methodology to BPM Systems
Our study on SeGA leads to two suggestions for the future BPM system development.
First, existing BPM systems can be extended so that data in the process manager is ex-
tracted and packaged with the business data into sg-artifacts. Although we only explored
two systems, the same method is applicable to other systems including jBPM and possi-
bly YAWL. Second, more generally it is most desirable to develop future BPM systems
that support the independence principle. In this regard, we envision that a BPM system
consists of three layers, a modeling layer to accept/analyze the data and BP design, and
map to sg-artifacts; a SeGA layer to manage sg-artifacts and interact with the engine at
runtime; an execution layer to manage executions with no local data. Such new style
BPM systems will provide a tremendous support for BPaaS and process collaboration.

4 Conclusions

The demand for BPaaS is coming. We have seen various vertical BPaaSs in for example
HR and procurement. Clearly BPaaS is not just about providing APIs and interfaces
for configuration and graphical analysis. The challenges lie in the capability to handle
massive scaling, the service must be able to support multiple languages and execution
environments, as well as massive customers and processes. We argue that the separation
of the data from the execution engine is a good way to achieve this demanded scaling.

References

1. Accorsi, R.: Business Process as a Service: Chances for remote auditing. In: Proc. IEEE 35th
Annual COMPSAC Workshops, pp. 398–403 (2011)

2. Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J.: Towards formal analysis of artifact-
centric business process models. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

3. Casati, F., Castellanos, M., Dayal, U., Salazar, N.: A generic solution for warehousing business
process data. In: Proc. 33rd Int. Conf. on Very Large Data Bases (VLDB), pp. 1128–1137
(2007)

4. Eshuis, R., Hull, R., Sun, Y., Vaculı́n, R.: Splitting GSM schemas: A framework for outsourc-
ing of declarative artifact systems. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS,
vol. 8094, pp. 259–274. Springer, Heidelberg (2013)

5. Heath III, F(T.), Boaz, D., Gupta, M., Vaculı́n, R., Sun, Y., Hull, R., Limonad, L.: Barcelona:
A design and runtime environment for declarative artifact-centric BPM. In: Basu, S., Pautasso,
C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 705–709. Springer, Heidelberg
(2013)

382 Y. Sun, J. Su, and J. Yang

6. Hull, R., et al.: Business artifacts with guard-stage-milestone lifecycles: Managing artifact
interactions with conditions and events. In: Proc. 5th ACM Int. Conf. on Distributed Event-
Based System (DEBS), pp. 51–62 (2011)

7. Sun, Y., Su, J., Wu, B., Yang, J.: Modeling data for business processes. In: Proc. 30th Int.
Conf. on Data Engineering (ICDE), pp. 1048–1059 (2014)

8. Sun, Y., Xu, W., Su, J., Yang, J.: SeGA: A mediator for artifact-centric business processes. In:
Proc. 20th Int. Conf. on Cooperative Information Systems (CoopIS), pp. 658–661 (2012)

9. Xu, W., Su, J., Yan, Z., Yang, J., Zhang, L.: An artifact-centric approach to dynamic modifi-
cation of workflow execution. In: Proc. 19th Int. Conf. on Cooperative Information Systems
(CoopIS), pp. 256–273 (2011)

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 383–391, 2014.
© Springer International Publishing Switzerland 2014

Assessing the Need for Visibility of Business Processes –
A Process Visibility Fit Framework

Enrico Graupner1,2, Martin Berner1,3, Alexander Maedche1,
and Harshavardhan Jegadeesan3

1 University of Mannheim, Institute for Enterprise Systems, Mannheim, Germany
{graupner,berner,maedche}@es.uni-mannheim.de

2 Commerz Business Consulting GmbH, Frankfurt (Main), Germany
enrico.graupner@commerzbank.com

3 SAP AG, Walldorf, Germany
{martin.berner,harshavardhan.jegadeesan}@sap.com

Abstract. Real-time visibility of relevant information during process execution
becomes increasingly feasible leveraging advanced information technologies.
However, it remains vague where organizations should exploit the new, but also
cost-intensive opportunities. Theoretically grounded in the Information
Processing View (IPV) this paper proposes a decision framework that identifies
business processes which need technology investments enabling real-time visi-
bility. The framework considers both, visibility requirements of processes as
well as visibility capabilities of information technology.

Keywords: Process Visibility, Information Processing View, Process-centric
Business Intelligence & Analytics.

1 Introduction

For a long time data analysis and provisioning has not or has only been loosely
coupled to process execution. Traditional Business Intelligence and Analytics (BI&A)
has been data-centric, based on historical data and focused on strategic decision sup-
port [1]. Accordingly, latest analytical data was not set into its process context and
was not usable for daily decisions. Currently, BI&A moves to resolve these limita-
tions and can create visibility into processes that has never existed before [2]: First,
BI&A becomes increasingly process-aware and creates visibility by setting data into
the process context. This is driven by the complementary increase of process-
orientation in enterprises. Second, the shift from managerial task support towards
operational decision support marks an additional important movement in BI&A. Or-
ganizations perform better if they provide frontline workers with analytical informa-
tion that increases the visibility of problems and opportunities in daily business [3].
Third, new big data technologies deal with datasets and sources which exceed the
abilities of typical databases in terms of capturing, storing, managing, and analyzing
[4]. This enables to overcome the technological challenge of correlating millions of

384 E. Graupner et al.

events to its underlying processes and the creation of visibility into processes as they
are happening [5].

Previously described novelties in BI&A and the associated speed of technological
advance are challenging for organizations. Lacking experience with new BI&A trends
towards process-centric, operational and big data-based decision support makes it
difficult to identify potential areas of use and assess the value added. Considering
limited IT budgets, organizations need to establish a careful assessment where busi-
ness processes benefit from advanced analytics. This leads to the research question:

Which factors determine the need for visibility in business processes?

Even if the processes are identified for which visibility is highly required, it
remains vague which technological capabilities are relevant to create it in particular.
Accordingly, our paper has a second research question:

Which technological capabilities have to be established to cope with the visibility
need of business processes?

2 The Concept of Process Visibility

The concept of visibility is well-established in supply chain management (SCM) re-
search. It is an outcome of information sharing for important activities and processes
between supply chain partners [6, 7]. Visibility is essential for appropriate perform-
ance and its degree depends on the level to which information is relevant, trustworthy,
and timely [7]. Also lean production literature stresses the importance of visual con-
trols and making abnormalities visible: “The most important spur to perfection is
transparency, the fact that in a lean system everyone […] can see everything” [8].
Research generalizes the visibility concept of SCM and the lean transparency concept
to a broader business process context [9, 10]. Table 1 outlines our conceptual frame of
process visibility which is derived from a comprehensive review of literature [11].

Table 1. Morphological Box of Process Visibility

Characteristic Attribute Value

Focus [12] Process design Process redesign Process execution

Management Level [12] Operational Tactical Strategic

Integration Level [12, 13] Instance Model / Multiple In-
stances

Meta Model

Process Phase [12] Definition/
Modeling

Implementation Monitoring/
Controlling

Continuous
Improvement

Kind of Process [12, 13] Business Technical

Time Relevance [12, 13] Real-time (live) Historical (ex-post)

Range of Users [12] Small Middle Broad

Data Sources [12] Internal (intra-organizational) External (inter-organizational)

 Assessing the Need for Visibility of Business Processes 385

Based on these foundations, our paper understands process visibility as the sharing,
analysis, and access of process information in an operational decision making context
in real-time [2]. Thus, the concept exceeds the aspect of visualization and creates end-
to-end information visibility about process instances.

3 Process Visibility Requirements

This paper introduces the example of airport hub operations to illustrate the need for
process visibility. The example origins from the participation of one of the co-authors
in the planning phase of process-centric BI&A implementation project in 2013. In-
sights were gained from workshops, interviews, and on-site observations in the
project. Various activities are involved in the process (Fig. 1) to ensure that approxi-
mately 60 airplanes are handled successfully every night. In particular, the hub opera-
tions manager needs to know the number of shipments in different phases across the
value stream as well as high-level traffic lighting that shows which shipments are in
danger of delaying outbound planes. In addition, real-time metrics (such as time taken
for loading a plane) are needed to dynamically allot people and collaborate with
colleagues to solve problems as they arise.

Fig. 1. High-level phases of an airport hub operations process

To enable a more systematic assessment of the need for process visibility, we de-
rive an evaluation schema based on a theoretical foundation: The Information
Processing View (IPV) [14, 15] describes information processing as “the gathering of
data, the transformation of data into information, and the communication and storage
of information in the organization” [16]. The creation of visibility requires these in-
formation processing activities and therefore we adopt the IPV as an appropriate theo-
retical foundation for our research. Extant information systems research has applied
the IPV in the domain of SCM and outsourcing relationships on the organizational
level. To the best of our knowledge we are the first to establish IPV on the process
level. We use the process as unit of analysis - and thus choose the unit that informa-
tion technology affects directly and at which its impacts are best observable [17].

Information processing requirements describe the amount of information that must
be collected, processed, and disseminated for achieving a certain level of performance
[18]. In IPV-related literature the complexity of the task environment, the interde-
pendence of the task environment, and the strategic importance of the outsourced
process are identified as determinants for information requirements [18, 19]. In the
following, we transform these three determinants to a process-specific perspective.

First, process intricacy relates to complexity of the task. To define complexity, this
paper adopts the characteristics of big data – namely volume, velocity, and variety
[20]. We argue that business processes become more complex, the larger the number

386 E. Graupner et al.

of process instances and events that need to be correlated, the faster the required
throughput and decision speed, and the higher the diversity of systems, data types,
and sources. Accordingly, this paper defines process intricacy as the complexity of a
process in terms of volume, velocity, and variety.

Second, process interdependence is the degree to which processes and their inher-
ent steps interact. According to the IPV, high inter-unit task dependencies are associ-
ated with frequent and unexpected changes in the task environment resulting in high
uncertainty [15]. Considering an end-to-end process perspective, dependencies may
consist between single process steps as well as across various processes. From an
organizational perspective, dependencies between multiple organizational units can
arise including a wide range of involved application systems.

Third, process importance is the degree to which a process impacts the competi-
tiveness of organizations [19]. In IPV research, high criticality calls for extensive
monitoring to cope with uncertainty. Porter’s [21] differentiation between core and
support processes may provide an initial orientation: Core processes contribute to the
value creation and are therefore typically highly important for a firm’s competitive-
ness. However, support processes can also influence a firm’s competitiveness; for
example when process compliance is crucial due to regulatory liabilities.

In summary, processes are distinguished along a continuum of their process visibil-
ity requirements (Table 2). To assess for which processes the BI&A trends are partic-
ularly useful, the next section outlines complementary technological capabilities.

Table 2. Process Visibility Requirements

Dimension Description Evaluation for Airport Hub Operations

Process
Intricacy

Degree to which a proc-
ess is complex in terms
of volume, velocity, and
variety

High
• Volume: 300,000 shipments per night creating 18 million

streaming events
• Velocity: 50,000 streaming events per minute
• Variety: transactional shipment data as well as stream events

Process
Interde-
pendence

Degree to which proc-
esses and their inherent
steps, participants,
organizations, and tech-
nical systems interact

High
• Interrelations: Many highly interacting sub processes span-

ning across various systems like shipment scanners, air traffic
system, ground operations, warehouse management systems

• Dependencies: Various sources, e.g. flight schedule delays
and damaged goods

Process
Impor-
tance

Degree to which a proc-
ess affects the competi-
tiveness of organizations

High
• Criticality: Liabilities if express shipments are delayed. Fur-

thermore loss of reputation and business

4 Technological Capabilities for Process Visibility

There are multiple BI&A system categories which cover relevant aspects of process
visibility. Business Activity Monitoring (BAM), Business Process Intelligence (BPI),
and Operational Business Intelligence (OpBI) label such decision support technolo-
gies that have been established for more than a decade. However, none of these tradi-
tional BI&A system categories can deal with all challenges of process visibility such

 Assessing the Need for Visibility of Business Processes 387

as the rapidly increasing amount of data as well as real-time and process-centric in-
formation provisioning [2]. In response, analysts predict that the boundaries of
existing analytical software packages are vanishing by combining them with new
technologies: Gartner introduces Intelligent Business Operations as generic term for
real-time usage of BI&A technologies enhanced with complementary software pack-
ages like Complex Event Processing (CEP), Business Rules Management, and BPM
[22]. TDWI uses the term Real-time Operational Intelligence for “an emerging class
of analytics that provides visibility into business processes, events, and operations as
they are happening” [5]. Correspondingly, software vendors increasingly offer
process-centric BI&A solutions for the operational level and incorporate big data
technologies [2]. In summary, technological advance offers new opportunities to
make processes visible. The remainder of the section structures these technologies
from the perspective of our theoretical basis.

Table 3. Process Visibility Capabilities

Dimension Description Evaluation for Airport Hub Operations

Process
Information
Gathering

Amount of relevant, accurate,
timely and concise data that is
compiled about a process.

Medium
• Events was recorded at different stages of the proc-

ess but data not consolidated
• Correlation of large data amount to its process con-

text: Low
Process
Information
Analysis

Interpretation and synthesizing of
process information for decision-
making.

Low
• Flexibility at query execution time: Low
• Sophisticated predictions based on Big Data: None
• Process-awareness: Low

Process
Information
Dissemina-
tion

Availability of actionable infor-
mation for process participants to
support operational decisions and
trigger required actions while
process execution.

Low
• Real-time information availability: Low
• Actionable insights on operational level based on

data: Low

Informed by the definition of information processing that refers to the gathering of

data, transformation into information and communication of the information [16], we
derive the following process visibility capabilities which are of technological nature:
Process information gathering, process information analysis, and process information
dissemination. Table 3 describes the capabilities and illustrates these for our example.

First, the degree to which technologies enable process information gathering re-
flects the amount of data that is compiled about a process from different sources. Data
become information if relevant, accurate, timely and concise [15]. Process informa-
tion must be gathered from large data sets by correlating millions of events to its
business process context. Information becomes process-ware by leveraging knowl-
edge of the process structure and setting data into relation with process steps.

Second, process information analysis refers to the interpretation and synthesizing
of necessary information for decision making [15]. It ranges from concise process
performance indicators to advanced predictive and prescriptive capabilities. The latter
are supported by new database technologies which allow full flexibility at query

388 E. Graupner et al.

execution time, whereas classical BI&A technology requires the preparation and op-
timization of potential queries already at design time [23].

Third, the degree to which technologies enable process information dissemination
is defined as the access of actionable information for process participants to support
operational decision making and trigger required actions in a timely manner. “[T]he
best information will be wasted if it is not routed to the people in the organization
who need it to perform their jobs” [24]. An easily understandable information presen-
tation is required to derive appropriate actions quickly.

Based on the current trends in BI&A and theoretically grounded in the IPV, we
captured information processing capabilities. The next section brings together these
capabilities with the corresponding requirements and introduces the concept of fit.

5 The Process Visibility Fit

Based on the IPV we argue that low or high information processing requirements as
well as low or high capabilities are not good or bad per se. The fit between both is
important for appropriate process visibility (Fig. 2). This paper considers fit as the
deviation between process visibility capabilities and requirements.

Fig. 2. The Process Visibility Fit Framework

The fit between requirements and capabilities can follow four distinct configura-
tions (Fig. 3). Two refer to a match between requirements and capabilities. The match
can either be achieved if both dimensions are low or high. The process visibility is
appropriate in both cases. In contrast, two other configurations reflect a mismatch:
The requirements might be higher than the available capabilities. As a consequence,
flaws in decision making might occur. Furthermore, the requirements can be lower
than the existing capabilities (process visibility overload). Inefficient management of
resources and decreased operational efficiency are possible consequences.

In our Airport Hub Operations example, high process visibility requirements (Table
2) and low capabilities (Table 3) exist. Consequently, the visibility fit framework identi-
fies a process visibility gap. The negative impact of the visibility gap is confirmed in
practice: Hub managers lack transparency into the process and cannot identify important
and time-critical shipments in the technical systems. Accordingly, resource bottlenecks

Process
Visibility

Capabilities

Process
Visibility

Requirements

Process
Intricacy

Process
Interdependence

Process
Importance

Process
Visibility

Fit

Process
Information
Gathering

Process
Information

Analysis

Process
 Information

Dissemination

 Assessing the Need for Visibility of Business Processes 389

and problem areas are not anticipated and are not addressed proactively. To increase the
process visibility capabilities, SAP Operational Process Intelligence, a solution based on
in-memory HANA technology is currently evaluated in a pilot implementation at the
logistics service provider.

Fig. 3. Process Visibility Fit as Requirements and Capabilities Match

6 Conclusion

The vast majority of data in organizations is used without considering its process
context. This paper identifies process visibility as an emerging theme that is driven by
the BI&A trends towards process-centric, big data-based, and real-time decision sup-
port. Theoretically grounded in the Information Processing View we develop a deci-
sion framework to assess the appropriate degree of visibility for business processes.
The framework considers the specific process under investigation and assesses its
process visibility requirements, process visibility capabilities as well as the fit be-
tween both. Throughout the paper, we illustrate the applicability of the framework
with a real world example from the logistics service industry and establish more
specific determinants for both, requirements and capabilities.

This paper is subject to specific limitations: First, it assesses information
processing capabilities solely from a technological perspective. Future research has to
include complementary organizational capabilities that are needed to adequately
deploy the technical capabilities. Second, this is a conceptual paper that lacks com-
prehensive empirical evidence, as we only introduce one exemplary process from a
logistic service provider to assess the model. Future research has to establish a broad-
er empirical basis to validate the framework. In this regard, design science research
can be informed by the framework. Furthermore, empirical studies might identify
additional dimensions for process visibility requirements and capabilities beyond
those which were derived from IPV-related research.

Despite these limitations, we believe that this paper makes relevant contributions to
theory and practice: From a theoretical perspective, this paper contributes to the body
of knowledge related to the IPV. Whereas the IPV considered capabilities generally
as referring to the organizational structure, we adopted a technological perspective.

lo
w
 REGULAR PROCESS VISIBILITY

 Requirement-Capability-Fit

PROCESS VISIBILITY OVERLOAD

Requirement-Capability-Misfit

PROCESS VISIBILTY GAP

Requirement-Capability-Misfit

ENHANCED PROCESS VISIBILITY

 Requirement-Capability-Fit

P
ro

ce
ss

 V
is

ib
ili

ty

R
e q

ui
re

m
en

ts

hi
gh

low high

Process Visibility Capabilities

390 E. Graupner et al.

Furthermore, we transform the IPV to the process level and thus assess process visi-
bility requirements and capabilities where they are best observable. Another contribu-
tion is the conceptualization of process visibility for operational decision making.
From a practical perspective, we provide a framework to identify processes that demand
high visibility and outline which corresponding technologies can be used to generate it.
Practitioners can use the framework to guide associated investment decisions.

References

1. Bucher, T., Gericke, A., Sigg, S.: Process-centric Business Intelligence. Bus. Process Ma-
nag. J. 15, 408–429 (2009)

2. Graupner, E., Berner, M., Maedche, A., Jegadeesan, H.: Business Intelligence & Analytics
for Processes – A Visibility Requirements Evaluation. In: MKWI Proceedings.
pp. 154–166 (2014)

3. Lock, M.: Operational Intelligence: Boosting Performance with “Right-Time” Business In-
sight,
http://resources.idgenterprise.com/original/
AST-0009180_0172-6528-RA-OperationalBI-MDL-NSP-03.pdf

4. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers Hung, A.:
Big Data: The Next Frontier for Innovation, Competition, and Productivity. McKinsey
Global Institute, San Francisco (2011)

5. Russom, P.: Operational Intelligence: Real-Time Business Analytics from Big Data.
TDWI Checkl. Rep. 1–8 (2013)

6. Wang, E.T.G., Wei, H.-L.: Interorganizational Governance Value Creation: Coordinating
for Information Visibility and Flexibility in Supply Chains. Decis. Sci. 38, 647–674 (2007)

7. Barratt, M., Oke, A.: Antecedents of Supply Chain Visibility in Retail Supply Chains: A
Resource-Based Theory Perspective. J. Oper. Manag. 25, 1217–1233 (2007)

8. Womack, J.P., Jones, D.T.: Lean Thinking: Banish Waste and Create Wealth in Your Cor-
poration. Free Press, New York (2003)

9. Klotz, L., Horman, M., Bi, H.H., Bechtel, J.: The Impact of Process Mapping on Transpa-
rency. Int. J. Product. Perform. Manag. 57, 623–636 (2008)

10. Berner, M., Graupner, E., Maedche, A., Mueller, B.: Process Visibility – Towards a Con-
ceptualization and Research Themes. In: Proceedings of 33th ICIS, pp. 1–13 (2012)

11. Urbitsch, E.: Process Visibility Capabilities - A Conceptualization and Operationalization
(Master Thesis). University of Mannheim (2014)

12. Felden, C., Chamoni, P., Linden, M.: From Process Execution towards a Business Process
Intelligence. In: Proceedings of 13th Conference on BIS, pp. 195–206 (2010)

13. Zur Muehlen, M.: Process-driven Management Information Systems - Combining Data
Warehouses and Workflow Technology. In: Proceedings of 4th ICECR, pp. 550–566
(2001)

14. Galbraith, J.R.: Designing Complex Organizations. Addison-Wesley, Reading (1973)
15. Tushman, M.L., Nadler, D.A.: Information Processing as an Integrating Concept in Orga-

nizational Design. Acad. Manag. Rev. 3, 613–624 (1978)
16. Egelhoff, W.: Strategy and Structure in Multinational Corporations: An Information-

Processing Approach. Adm. Sci. Q. 27, 435–458 (1982)
17. Melville, N., Kraemer, K., Gurbaxani, V.: Information Technology and Organizational

Performance: An Integrative Model of IT Business Value. MIS Q. 28, 283–322 (2004)

 Assessing the Need for Visibility of Business Processes 391

18. Mani, D., Barua, A., Whinston, A.: An Empirical Analysis of the Impact of Information
Capabilities Design on Business Process Outsourcing Performance. MIS Q. 34, 39–62
(2010)

19. Mani, D., Barua, A., Whinston, A.B.: Successfully Governing Business Process Outsourc-
ing Relationships. MIS Q. Exec. 5, 15–29 (2006)

20. Russom, P.: Big Data Analytics,
ftp://ftp.software.ibm.com/software/tw/
Defining_Big_Data_through_3V_v.pdf

21. Porter, M.E.: Competitive Advantage. Free Press, New York (1985)
22. Gartner: Gartner Says Intelligent Business Operations Is the Next Step for BPM Programs,

http://www.gartner.com/it/page.jsp?id=1943514
23. Grondelle, J.: Leveraging Big Data Analytics in Business Processes. Be Inf. 1–5 (2013)
24. Davenport, T.H., Beers, M.C.: Managing Information about Processes. J. Manag. Inf.

Syst. 12, 57–80 (1995)

The Automated Discovery of Hybrid Processes

Fabrizio Maria Maggi1, Tijs Slaats2,3, and Hajo A. Reijers4,5

1 University of Tartu, Estonia
2 IT University of Copenhagen, Denmark

3 Exformatics A/S, Lautrupsgade 13, 2100 Copenhagen, Denmark
4 Eindhoven University of Technology, The Netherlands

5 Perceptive Software, The Netherlands
f.m.maggi@ut.ee, tslaats@itu.dk, h.a.reijers@tue.nl

Abstract. The declarative-procedural dichotomy is highly relevant when choos-
ing the most suitable process modeling language to represent a discovered pro-
cess. Less-structured processes with a high level of variability can be described in
a more compact way using a declarative language. By contrast, procedural pro-
cess modeling languages seem more suitable to describe structured and stable
processes. However, in various cases, a process may incorporate parts that are
better captured in a declarative fashion, while other parts are more suitable to
be described procedurally. In this paper, we present a technique for discovering
from an event log a so-called hybrid process model. A hybrid process model is
hierarchical, where each of its sub-processes may be specified in a declarative
or procedural fashion. We have implemented the proposed approach as a plug-in
of the ProM platform. To evaluate the approach, we used our plug-in to mine a
real-life log from a financial context.

1 Introduction

Process models are an important aid to capture how business operations are organized.
One direction to simplify the tasks of creating, maintaining, and reading such mod-
els involves the use of declarative techniques for process modeling. In contrast to the
procedural approach, which is dominant for modeling business processes, a declarative
approach leaves implicit in what exact sequences activities must be carried out. Instead,
the emphasis is on the constraints that must be respected in carrying out the process –
any behavior that respects these goes. In contexts where activities can be executed in
highly different combinations, a declarative approach arguably produces simpler rep-
resentations of the involved process logic. Examples of concrete declarative modeling
techniques are Declare, DCR Graphs [3], and SCIFF.

In [10], we reported that a hybrid process modeling technique was considered by
practitioners as more attractive than a completely declarative or procedural one. Hy-
brid, in this context, refers to the potential use of both procedural and declarative model
elements in the same model. The rationale is that the two types of modeling paradigms
allow for a natural fit with different types of process behavior. In places where the pro-
cess is highly flexible, a declarative modeling approach leads to a compact and simple
description of such a “pocket of flexibility” [11]. Instead of describing all the differ-
ent types of feasible behavior, the focus is then on ruling out what is not allowed (if

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 392–399, 2014.
c© Springer International Publishing Switzerland 2014

The Automated Discovery of Hybrid Processes 393

anything). By contrast, for parts of the process that are highly structured, a procedural
description may be the way to go: It is then simpler to describe what is allowed than
what is to be ruled out. For processes that both incorporate structured and unstructured
pockets, a hybrid model delivers a compact and simple description.

This paper should be seen as a direct follow-up to our earlier work. Specifically, we
developed a technique to automatically generate a hybrid model from an event log. This
is a novel contribution, since existing techniques can only generate a process model
that is either procedural or declarative. By contrast, our technique flexibly alternates
between employing a procedural or declarative mining approach in accordance with the
nature of the traces it processes. By doing so we are able to avoid the “spaghetti”-like
process models that are commonly generated by traditional process mining techniques.

Against this background, the paper is structured as follows. In Section 2, we will
outline the notion of a hybrid model and pinpoint its semantics. Section 3 describes
our core contribution, the discovery approach. We will will evaluate this approach in
Section 4 on a real-life log. After a discussion of related work, we conclude this paper
with a reflection on the presented work and future steps in Section 6.

2 Semantics of a Hybrid Model

Our interest in this paper is with hybrid models where the procedural and declarative
parts are contained in separate sub-processes. In this sense, there is a resemblance with
the pockets of flexibility concept [11]. A hybrid process consists of a procedural or
declarative top-level process, which may contain a number of atomic activities as well
as sub-processes. Each sub-process can be either procedural or declarative and may
contain sub-processes of its own. Our approach is applicable to any combination of
procedural and declarative languages, but in this paper we will apply Petri nets for
our procedural models and Declare [9] for our declarative models. Sub-processes are
considered atomic, meaning that once a sub-processes is started the control is passed
from the parent process to that sub-process. No other activities can be executed until
the sub-process has completed. A sub-process can only complete while it is accepting.
When exactly it is accepting depends on the language used. In the case of a Petri net
this means reaching a final marking, while for a Declare model it means having no
violated constraints. For the language of a hybrid model we consider the start and com-
pletion of sub-processes as silent transitions, which means that there will be no start-
and complete-events for the sub-processes in the log. This underlines the fact that the
sub-processes are really just a tool for improving the understanding of the process and
not a part of the actual enactment of the process.

3 Discovering Hybrid Process Models

Fig. 1 gives an overview of our approach. In the following paragraphs we describe our
approach step by step.

Distinguishing Structured and Unstructured Events. We start by separating the events
of the log into two distinct sets: one containing those events that occur in a structured

394 F.M. Maggi, T. Slaats, and H.A. Reijers

Fig. 1. Overview of our approach

context and one containing those events that occur in an unstructured context. To dis-
tinguish structured from unstructured events we use a novel technique, which we refer
to as context analysis. Our first step is to determine for each event the number of unique
predecessors and successors to that event. We then consider an event with a large num-
ber of both predecessors and successors to be unstructured (according to a user-defined
threshold, in our experimentation we used 4), while an event with a small number of
predecessors or a small number of successors is considered to be structured. The rea-
soning behind these cases is as follows: if an event has a high number of predecessors
and a high number of successors, then there are few rules constraining when exactly the
event can occur. We then consider it likely to fit well into a declarative model. Similarly,
if an event has only a small number of predecessors and a small number of successors,
then it is probably more easily modeled procedurally, for example, as a sequence or a
choice from a low number of options. In the case that an event has a small number of
predecessors, but a large number of successors, we consider it likely that the event is
either the last element in a structured sequence, which is followed by an unstructured
sequence, or that the event is followed by a choice from a large number of options. In
both cases it makes sense to consider this as a structured event and model it procedu-
rally. Similarly, in the case that an event has a small number of successors, but a large
number of predecessors we consider it likely that the event is either the first element in
an structured sequence, which was preceded by an unstructured sequence, or that the
event joins a choice from a large number of options. In both cases it seems fitting to
consider this as a structured event and model it procedurally.

Dividing the Log into Structured and Unstructured Sequences. The context analysis
gives us two sets: one that contains structured events and one that contains unstructured
events. In the following step, we use these events to identify structured and unstructured
sequences by parsing the log and starting a new sequence whenever an event does not
belong to the same set as its preceding event. After this step, our approach splits into two
branches, one handling the structured sub-logs and the other handling the unstructured
sub-logs.

Finding and Mining procedural Sub-processes. By grouping together each structured
event with all the direct successors and all the direct predecessors, we obtain a set of
disjoint clusters of the structured sequences. We then mine procedural sub-processes for

The Automated Discovery of Hybrid Processes 395

each of these clusters. Finally, we abstract the main log by replacing each sequence with
the identifier of the sub-process that it belongs to. It should be noted that the clusters
of procedural sequences that are discovered could be further split up using existing
clustering techniques. This did not seem necessary on basis of the examples we used in
our experimentation with the technique.

Finding and Mining Declarative Sub-processes. For finding declarative sub-processes,
we first use an indirect association rule mining algorithm on the set of unstructured
sequences to find declarative patterns. Recall that an indirect association rule can be
used to find events that rarely occur together, yet there are other “mediator events” with
which they appear relatively frequently. We use this type of algorithms since it gives us
the opportunity to not only discover Declare constraints that express positive relations,
but also constraints like, for example, not coexistence constraints, which are more likely
to be satisfied when the events involved do not occur together in the same trace. In a
second stage, we use a mining algorithm for standard association rules on the remaining
sequences. These rules reflect relationships that exist between events that often co-occur
in common transactions. For this reason, these rules allow us to group together events
that are very likely connected with each other through positive relations in Declare. The
patterns are abstracted in the main log, and any remaining event that is at this point not
identified as belonging to a declarative pattern is left as an atomic event.

Mining the Top-level Process. When we are done finding (but not necessarily mining)
procedural and declarative sub-processes and have all sub-processes abstracted in the
main log, we can then either choose to apply the approach iteratively on the abstracted
log, starting from the first step where we distinguish structured and unstructured activ-
ities based on their context, or we can choose to finalize the approach by mining the
main log. In the latter case, we compute the average string edit distance for all traces in
the abstract main log and in case of a high similarity among the traces (>50%) we mine
the log procedurally using a procedural miner. In case of a lower similarity, we mine it
using a declarative miner. The use of the string edit distance is a simple way to distin-
guish between structured and unstructured logs. We validated this approach based on
experiments on synthetic logs. The results of these experiments have shown that traces
in structured logs are more similar to each other with respect to traces in an unstructured
log. Of course, more sophisticated techniques can be used for discriminating between
them.

Creating a Hybrid Process Model. When all mining tasks have finished, we can com-
bine the resulting process models into a single hybrid model, based on which abstract
activities in the top-level model correspond to which sub-process. The exact method
will depend on the miners used and the languages that they use to generate models.
In our implementation, we simply generated separate Petri nets and Declare models.
However, to improve usability, a tool that supports the visualization and management
of such hybrid models would be needed (for example, to graphically represent a De-
clare sub-process within a top-level Petri net model). At this point, this is left for future
work.

396 F.M. Maggi, T. Slaats, and H.A. Reijers

(a) Alpha Miner (b) Heuristic Miner

(c) ILP Miner

Fig. 2. Procedural Models

4 Evaluation

To evaluate our approach, we have implemented it as a plug-in of the process mining
tool ProM.1 For the evaluation, we turned to the real-life event log, which was made
available as part of the BPI Challenge 2012.2 The process represented in the event log
is an application process for a personal loan within a global financing organization. The
log itself contains some 262.200 events in 13.087 cases.

Our evaluation took on the following form. We set out to compare a model that would
result from a traditional mining approach on the selected log with a hybrid model that
is generated as proposed in this paper. We will refer to these as the procedural and the
hybrid models. The aim then is to compare these models specifically with respect to
the understandability of the generated models. We decided to create three procedural
models of the event log by using the Alpha, Heuristic, and ILP miner, respectively. The
resulting procedural models are shown in Fig. 2.

We created the hybrid model by using the Declare miner on the clusters of unstruc-
tured sequences, while using the Heuristic miner on the clusters of structured sequences.
Since the root model in this case also could be classified as structured, it was mined with
the Heuristic miner as well. The hybrid model can be seen in Fig. 3. In this figure, the
procedural root net is shown, as well as links to its sub-nets. Note that two sub-nets are
of a declarative nature (D1.1 and D2.1); the other sub-nets are procedural.

To make sure that a comparison with respect to the simplicity of the various models
is fair, we first reflect on their fitness [13]. This expresses how well the model is able
to “replay” the observed behavior in the log. The values are provided in Table 1. As
can be seen, the fitness values for the procedural models range from 0.01 for the ILP

1 http://www.promtools.org/prom6/HybridMiner
2 http://dx.doi.org/10.4121/
uuid:3926db30-f712-4394-aebc-75976070e91f

http://www.promtools.org/prom6/HybridMiner
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

The Automated Discovery of Hybrid Processes 397

Fig. 3. Hybrid Model

miner to 0.58 for the Alpha miner. For the hybrid model, the fitness values are provided
for each of the sub-nets. These values vary from 0.69 to 1.00 (perfect fitness). Without
an integrated fitness measure available for hierarchical nets, we propose to take the
minimum value as a conservative approximation for the fitness of the hybrid net. On
this basis, the replay fitness of the hybrid net can be seen to be at least as good as
that of the procedural models. Also, it is not particularly “flower-like", which can be a
drawback of aiming at a well-fitting model [13].

A visual inspection of the models seems to indicate that the hybrid model is vastly
simpler than the procedural models. All procedural models can be characterized as
“spaghetti-like”. The hybrid model, by contrast, is composed of 9 different sub-nets,
each of which having a fairly simple structure. Arguably the most difficult of these
sub-nets are P1.2 and D1.1, which are the largest procedural and declarative sub-nets,
respectively. While the modularity of the hybrid model to some extent seems to help the
understanding of the process, the overall lack of visual clutter is apparent. The proposed
approach, therefore, seems to have the potential to automatically generate behaviorally
accurate process models that are simple to read.

Table 1. Fitness values for the generated models

Procedural Hybrid
Alpha Heuristic ILP

Root P1.1 P1.2 P1.3 P1.4 P2.1 P2.2 D1.1 D1.2
0.58 0.40 0.01 1.00 0.84 0.73 0.69 0.81 1.00 0.86 1.00 1.00

398 F.M. Maggi, T. Slaats, and H.A. Reijers

5 Related Work

Several approaches in the literature focus on the discovery of declarative process mod-
els [1,4,2,5,6,7,8]. The algorithms proposed in [4,2,6,8] are tailored to discover Declare
specifications. In particular, the technique proposed in [4,2] is based on a two-step ap-
proach. First, the input event log is parsed to generate a knowledge base containing in-
formation useful to discover a Declare model. Then, in a second phase, the knowledge
base is queried to find the set of constraints that hold on the input log. The work pro-
posed in [6] is based on an Apriori algorithm for association rule mining and has been
used in this paper for the discovery of the declarative sub-processes of a hybrid model.
The approaches proposed in [1,5] are more general and allow for the specification of
rules that go beyond the traditional Declare templates. However, these approaches can
be hardly used in real-life settings since they are based on supervised learning tech-
niques thus requiring negative examples that are difficult to be derived from real data.
In the work proposed in [7], a first-order variant of LTL is used to specify a set of data-
aware patterns. Such extended patterns are used as the target language for a process
discovery algorithm to produce data-aware Declare constraints from raw event logs.

A recent implementation of a hybrid process modeling technique is made available in
CPN Tools 4.0 [15]. Different than what is proposed in the paper at hand, a hybrid CPN
net allows for the use of procedural and declarative modeling elements within the same
sub-process. Already at an earlier stage, modeling approaches have been proposed that
embrace “pockets of flexibility”. Specifically, in [11] it is proposed to define at build-
time in a workflow process pockets in a way that is highly similar to a declarative style
to match their highly flexible behavior; at runtime one has to pick a specific proce-
dural instantiation of the workflow that fits the definition. Two other approaches that
combine procedural and declarative elements worth noting are Flexibility-as-a-Service
(FAAS) [14] and the Guard-Stage-Milestone model [12]. It should be noted that for
none of these approaches automated discovery techniques exist.

6 Conclusion

In this paper, we presented an automated discovery technique for hybrid process mod-
els. By analyzing the traces that are available in an event log and clustering them to-
gether according to their structure (or lack thereof), we are able to mine the structured
and less structured pockets within a process with procedural and declarative mining al-
gorithms, respectively. The result is a hierarchical process model with both procedural
and declarative sub-processes. Our evaluation on a real-life event log suggests that the
proposed technique is indeed capable of producing a much simpler representation of a
process than traditional, purely procedural approaches can.

The proposed approach could be improved along theoretical, technical, and empiri-
cal angles. On a theoretical side, there is a need to establish proper metrics that tie to the
established quality dimensions of fitness, precision, generalization and simplicity [13]
for hybrid, hierarchical process models. At this point, it is not entirely clear how a qual-
ity measure for a subprocess propagates to the quality of the overall model. Establishing
this will pave the way for a more thorough insight into the strengths and weaknesses
of the proposed discovery technique. Technically, a step ahead would be to allow for

The Automated Discovery of Hybrid Processes 399

duplicate events, i.e. the same event can be part of a procedural as well as a declarative
sub-process. We did not allow for this at this point, but this could be done by identifying
“recurrent" predecessors/successors even if these appear only in a certain percentage of
cases. From an empirical angle, end users need to be confronted with hybrid models for
a thorough evaluation of their usefulness and ease of use.

As to stimulate the uptake of hybrid process models, a number of other developments
are called for as well. As we pointed out in our earlier work [10], modeling guidelines
and tool support will be essential to allow for the manual creation and maintenance
of hybrid process models. We are currently experimenting with such guidelines and
our initial insights are that modelers with an intermediate experience with procedural
modeling approaches do not find the composition of hybrid models all that difficult. We
hope to report on more substantial insights in the near future.

References
1. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive

logic programming techniques for declarative process mining. ToPNoC (2009)
2. Di Ciccio, C., Mecella, M.: A two-step fast algorithm for the automated discovery of declar-

ative workflows. In: CIDM (2013)
3. Debois, S., Hildebrandt, T., Slaats, T.: Hierarchical declarative modelling with refinement

and sub-processes. In: BPM (2014)
4. Di Ciccio, C., Mecella, M.: Mining constraints for artful processes. In: BIS (2012)
5. Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic programming to

process mining. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS
(LNAI), vol. 4894, pp. 132–146. Springer, Heidelberg (2008)

6. Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of understandable
declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S.,
Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012)

7. Maggi, F.M., Dumas, M., García-Bañuelos, L., Montali, M.: Discovering data-aware declar-
ative process models from event logs. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013.
LNCS, vol. 8094, pp. 81–96. Springer, Heidelberg (2013)

8. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-guided discovery of declarative pro-
cess models. In: CIDM, pp. 192–199 (2011)

9. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: Full Support for Loosely-
Structured Processes. In: EDOC 2007, pp. 287–298 (2007)

10. Reijers, H.A., Slaats, T., Stahl, C.: Declarative modeling–an academic dream or the future for
BPM? In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 307–322.
Springer, Heidelberg (2013)

11. Sadiq, S.W., Orlowska, M.E., Sadiq, W.: Specification and validation of process constraints
for flexible workflows. Information Systems 30(5), 349–378 (2005)

12. Vaculín, R., Hull, R., Heath, T., Cochran, C., Nigam, A., Sukaviriya, P.: Declarative business
artifact centric modeling of decision and knowledge intensive business processes. In: EDOC,
pp. 151–160 (2011)

13. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Busi-
ness Processes, pp. 1–352. Springer (2011)

14. van der Aalst, W.M.P., Adams, M., ter Hofstede, A.H.M., Pesic, M., Schonenberg, H.: Flex-
ibility as a service. In: Chen, L., Liu, C., Liu, Q., Deng, K. (eds.) DASFAA 2009. LNCS,
vol. 5667, pp. 319–333. Springer, Heidelberg (2009)

15. Westergaard, M., Slaats, T.: Mixing paradigms for more comprehensible models. In: Daniel,
F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 283–290. Springer, Heidel-
berg (2013)

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 400–407, 2014.
© Springer International Publishing Switzerland 2014

Declarative Process Mining: Reducing Discovered Models
Complexity by Pre-Processing Event Logs

Pedro H. Piccoli Richetti, Fernanda Araujo Baião*
1, and Flávia Maria Santoro*

Department of Applied Informatics,
Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil

{pedro.richetti,fernanda.baiao,flavia.santoro}@uniriotec.br

Abstract. The discovery of declarative process models by mining event logs
aims to represent flexible or unstructured processes, making them visible to
business and improving their manageability. Although promising, the declara-
tive perspective may still produce models that are hard to understand, both due
to their size and to the high number of restrictions of the process activities. This
work presents an approach to reduce declarative model complexity by aggregat-
ing activities according to inclusion and hierarchy semantic relations. The ap-
proach was evaluated through a case study with an artificial event log and its
results showed complexity reduction on the resulting hierarchical model.

Keywords: process mining, declarative modeling.

1 Introduction

Process mining techniques allow knowledge extraction from events stored by infor-
mation systems. They are also an important connection between data mining and
business process management. The interest on this topic has grown due to the ad-
vancement on computers technology and processes management, so even more events
can be registered and more details about business process are available, and to the
need for improving and supporting business processes in a competitive and rapidly
changing environment [11].

Despite its benefits, process mining has some disadvantages. One of them is that
discovered models tend to be large and complex, especially on flexible scenarios
where process execution involves multiple alternatives. Because traditional tech-
niques used on discovery try to model every possible process behavior, they result in
a spaghetti-like model with an information overload that reduces model comprehensi-
bility. Traditional imperative models are appropriate to represent well-structured
models, because they provide better support for analysis and execution direction. On
the other side of the continuum are the unstructured processes, where flexibility is
needed to drive changes or deviations on the activities flow. van der Aalst et al. [12]

* Fernanda Araujo Baião and Flávia Maria Santoro are partially funded by the CNPq brazilian

research council, respectively under the projects 309069/2013-0 and 307377/2011-3.

 Declarative Process Mining 401

show how a declarative approach enables a better balance between flexibility and
support. However, declarative process mining techniques may produce models with a
high quantity of constraints, which may be incomprehensible for humans, as showed
by Bose et al. [2].

In this work, we address the problem of high complexity of declarative models
generated by automatic process mining. Our proposed approach reduces the model
complexity by automatically generating process hierarchies in pre-processing time, in
which proposed subprocesses aggregate activities according to semantic relations.

The rest of this work is structured as follows. Section 2 presents theoretical back-
ground and related work about declarative process modeling and mining, and about
complexity reduction through activities abstraction. Section 3 explains the method to
abstract activities through semantic relations. Section 4 presents the first ideas to-
wards the proposal for preprocessing and mining event logs applying activity abstrac-
tion. Section 5 describes the case study, and its results are discussed in Section 6.
Section 7 concludes the paper and points to future work.

2 Background and Related Work

A declarative approach focuses on the logic that governs interactions between the
actions of a process, describing what can be done, restricting only the undesired beha-
vior [14]. An example of declarative modeling language is Declare [12], which is
grounded on constraint templates modelled in linear temporal logic (LTL). A set of
Declare constraints is presented in [8]. An implementation for declarative process
mining is the DeclareMiner [8], available as a ProM2 plugin.

Haisjackl et al. [4] showed that the combination of constraints in a process model
might generate new hidden dependencies, which are complex and difficult to be iden-
tified by humans. Reijers et al. [9] said that the increasing number of restrictions ne-
gatively impacts on the model quality.

Abstraction is seen as an effective approach to represent readable models, showing
aggregated activities and hiding irrelevant details [10]. While on imperative models
every process fragment ranging from a single entry and a single exit (SESE) can be
grouped as a subprocess [13], on declarative models this structure is not informative
enough, because the activities’ sequence is not rigid. Hierarchies may be used to per-
form aggregation, thus reducing the mental effort to understand a model [14].

Zugal et al. [14] examined the effects of hierarchy on declarative models. As a re-
sult, they confirmed that structural grouping of activities is inadequate and, for dec-
larative models, it should consider a common objective of the grouped activities. The
transformation of hierarchical structures back to flat models is not always possible
without changing the process structure and, possibly, its semantics. This possible loss
can be compensated by the expressiveness enhancement [14].

Li et al. [7] proposed an approach to search for sequential patterns on event logs
and replace them with abstract activities. For declarative models, sequential patterns

2 The tool is available at http://www.processmining.org

402 P.H.P. Richetti, F.A. Baião1, and F.M. Santoro

identification is not enough to infer groups of activities. Baier et al. [1] presented a
method to construct abstraction layers in process models by matching events and
activities. Their clustering schema is based on timestamps to calculate minimal dis-
tances. On a declarative perspective, this approach is not very adequate because there
are constraints that cannot be identified by looking for minimal temporal distances.

Bose et al. [16] demonstrated how to discover hierarchical process models based
on pattern abstractions by preprocessing an event log and applying Fuzzy Miner to
discover maps that represent process models with abstractions. They defined a tax-
onomy for abstractions that considers loops and conserved regions relative to
sequences in event log traces, but no semantic concerns are considered to build
hierarchies.

None of the above-mentioned approaches addresses abstraction techniques on dec-
larative process models to reduce their complexity. Thus, the contribution of this pa-
per is showing how to automatically generate subprocesses by looking for semantic
relations from activities labels of an unstructured business process. The generated
subprocesses are incorporated into the event log prior to the process mining phase.
The expected result is to produce a less complex declarative model.

3 A Method to Abstract Activities through Semantic Relations

Inspired by the semantic approach of Leopold et al. [6] to name imperative process
models and fragments, our approach applies natural language processing to identify
common objectives between activity labels, and then abstracts these activities into
hierarchies. Wordnet3 was chosen to search for the hypernyms and holonyms seman-
tic relations between the words in activity labels; differently from [6], we aim to
search for common objectives that can be used to gather activities in a subprocess.

Algorithm 1 groups activities that have actions and objects related to abstract
common senses. We keep track of how strongly a word is semantically related to its
abstract concept according to the Lin metric, since its results are similar to human
judgment [3]. The next step is to define how to adequately group activities into a sub-
process. Algorithm 2 proposes a strategy for grouping based on a graph representa-
tion. A prototype for executing Algorithms 1 and 2 was implemented in Java lan-
guage. Auxiliary Python NLTK3.04 scripts were used for the part-of-speech tagging
step. PERL WordNet:SenseRelate::WordToSet5 scripts were used to get the most
adequate sense from a list of words to be disambiguated in a given context and Word-
net:Similarity6 scripts provided the semantic similarity relatedness calculus.

3 WordNet is available at http://wordnet.princeton.edu/
4 The toolkit is available at http://www.nltk.org/
5 Refer to http://search.cpan.org/~tpederse/
 WordNet-SenseRelate-WordToSet-0.04/
6 Refer to http://search.cpan.org/~tpederse/WordNet-Similarity-2.05/

 Declarative Process Mining 403

4 Preprocessing and Mining Event Logs with Activity
Abstractions

Bose et al. [15] stated that “Spaghettiness” of process models can be reduced by first
mining common constructs or functionalities, abstract them and then discovering
process models on the abstracted log. Given a list of activity groups found by Algo-
rithm 2, each group may be represented by a complex activity that substitutes all oc-
currences of its grouped activities in an event log. For example, given the following
trace from a flat model: {a,b,c,d,c,a,d,b}. Suppose we identify a subprocess e group-
ing the activities a and c. Substituting the activities by their subprocess, the modified
trace will be: {e,b,e,d,e,e,d,b}. This preprocessed log can be used as input to existing
declarative process mining algorithms.

After preprocessing, the declarative mining algorithm will be able to identify inte-
ractions only in the top-level process. To discover the constraints within a subprocess,
the activities belonging to it should be filtered from the original event log and pre-
sented to the declarative mining algorithm. Removing all the other activities will imp-
ly in analyzing only the behavior of the subprocess activities.

Currently, our implemented approach is able to deal with only one layer of subpro-
cesses, but this can be extended to handle deeper levels. However, the growth of level
numbers may increase the fragmentation of the model and consequently increase the
model complexity [14].

5 Case Study

The main objective of this case study was to observe if a declarative process model,
discovered after replacing activities by subprocess directly on the event log, is less
complex. The declarative process model “How to prepare oneself and materials for
teaching pupils” was chosen from literature [4]. It has a flat and a hierarchical ver-
sion, both manually designed.

The process was modeled and simulated in CPNTools7, generating 5,000 traces.
Using this event log, a list of unique activity labels of the process was used as input
for Algorithm 1. After executing the first algorithm, a set of activity pairs with their
respective average semantic similarity value was produced. Together with the pre-
vious output set, a semantic similarity threshold was defined to run Algorithm 2. This
threshold is used to filter out pairs with low similarity values. In a user guided fa-
shion, a 0.40 threshold value was chosen. The remaining pairs of activities are candi-
dates to generate the subprocesses through Algorithm 2 execution.

Algorithm 2 provided two subprocesses as output: “Prepare and give lessons” con-
taining the activities “Prepare lesson in detail”, “Give lessons” and “Read about topic
in more detail”; and “Decide and prepare teaching” containing: “Prepare teaching
sequence” and “Decide on teaching method”. The event log was modified by substi-
tuting every occurrence of an activity by its complex activity representing each

7 The tool is available at http://cpntools.org/

404 P.H.P. Richetti, F.A. Baião1, and F.M. Santoro

suggested subprocess. Then, the preprocessed event log was imported into ProM and
the DeclareMiner plugin was used to discover a hierarchical declarative process mod-
el (Fig. 1b). The plugin parameters were set to “Min. Support” = 50 and “alpha” = 50,
no additional filters were applied after the discovery. To compare the results, the un-
modified event log was also mined to discover a flat process model (Fig. 1a). In order
to mine each subprocess behavior, the original event log was preprocessed once more
to extract only the subprocess activities. The preprocessing and mining steps should
be carried out for each subprocess. All plugin settings were the same used for the
hierarchical model. Table 1 summarizes the results for these mined process models.

6 Evaluation

To evaluate the results from both flat and hierarchical models, some metrics related to
model complexity applicable to declarative models were calculated based on La Rosa
et al. [5]. In addition, the number of constraints was used as a metric because it influ-
ences the complexity of declarative models, as stated in [9].

 Algorithm 1: Identify semantic related activities
 Input: List of unique activity labels A, number of levels to search in Wordnet’s hypernymy and

holonymy tree k
 Output: Set of activity pairs with their respective average similarity measure R

1 Initialize R with ∅
2 foreach activity label a in A do
3 Apply part-of-speech tagging to identify all verbs V and all nouns N in a
4 foreach verb v in V do
5 Identify all hypernyms for v until reach the kth level starting from v
6 foreach noun n in N do
7

Identify all hypernyms and holonyms for n until reach the kth level starting
from n

8 Generate a set Pa with pairs of activities pa(activity label a1, activity label a2) from the
combination 2

9 foreach activity label pair pa in Pa do
10

Generate a set V1,2 with pairs of verbs pv(v1,v2) from the combination of each verb
v1 in V1 from a1 and each verb v2 in V2 from a2

11 foreach pair pv in V1,2 do
12 Match all common hypernyms Hv between v1 and v2
13

Invoke WordNet::SenseRelate::WordToSet algorithm to define the most
adequate hypernymy hv from Hv, using A as context

14 Calculate Lin’s semantic relatedness metric between v1 and hv and v2 and hv
15

Generate a set N1,2 with pairs of nouns pn(n1,n2) from the combination of each noun n1 in
N1 from a1 and each noun n2 in N2 from a2

16 foreach pair pn in N1,2 do
17 Match all common hypernyms and holonyms Hn between n1 and n2
18

Invoke WordNet::SenseRelate::WordToSet algorithm to define the most
adequate hypernymy or holonymy hn from Hn, using A as context

19 Calculate Lin’s semantic relatedness metric between n1 and hn and n2 and hn
20

Calculate average semantic relatedness value s considering all nouns in N1, N2 and
verbs in V1, V2 to their most adequate hypernymy or holonymy

21 Add pa and its s value to R
22 return R

 Declarative Process Mining 405

Considering that the input event log was the same, the reduction on the total num-
ber of activities (8 in flat model to 5 in hierarchical model), together with the lower
number of constraints on the second model, positively contribute for reducing the
overall complexity and make it easier to understand the process with abstractions.
When looking at the subprocesses, the fewer number of activities tends to make them
easier to understand when compared to the full flat model. Even merging the metrics
for the hierarchical model and its subprocesses, the constraint/activity ratio remained
lower than in the flat model.

Fig. 1. Mined Declare models from the (a) flat and the (b) preprocessed event logs

We are aware that natural language processing may introduce some bias on identi-
fying the grammatical types of words. Not always an activity label is written as a
complete sentence, which may reduce the POS tagging accuracy. The predefined
search level in the hypernymy and holonymy tree results is not considering common
concepts that are beyond this limit. However, choosing a broader limit may bring
uninteresting or too vague common synsets that will not help to increase semantic
relatedness.

 Algorithm 2: Group semantic related activity labels
 Input: List of unique activity labels A, Set of activity pairs with their respective average similarity

measure R, semantic similarity threshold t
 Output: Set of activity labels groups S

1 Initialize S with ∅
2 Remove all activity pairs from R with average similarity measure below t
3 Create a undirected weighted graph G(V,E) where each vertex v is an activity label from A and

each edge e relates to a pair from R whose weight is the average similarity measure of the pair
4 while G has edges do
5 Generate all possible vertex groups P where in a group each vertex relates to each other
6 foreach group p in P do
7 Sum the weight of all edges of p
8 Identify the vertex group h with the highest weight sum
9 Add h to S

10 Remove all vertex in h from G
11 return S

a) b)

406 P.H.P. Richetti, F.A. Baião1, and F.M. Santoro

The resulting mined model could be compared to the a priori theoretical model
presented in [4]. The hierarchical a priori model has only one subprocess, called
“Prepare lessons”, with three activities. Our automatic proposal discovered the sub-
process “Decide and prepare teaching”, that contains two common activities with the
manually identified “Prepare lessons” subprocess (“Prepare teaching sequence” and
“Decide on teaching method”). The “Prepare and give lessons” subprocess, which did
not exist in the theoretical model, was found in our approach due to the affinity be-
tween its activities names (“Prepare lesson in detail”, “Read about topic in more de-
tail” and “Give lessons”). On manual modeling, other reasons besides the semantics
can lead to activity aggregation, such as the execution sequence, or a deliberate deci-
sion based on personal judgment of the process modeler. The proposed automated
method was able to produce less complex and easier to understand models.

Table 1. Complexity related metrics from the discovered process models

7 Conclusion and Future Work

Although there may be some semantic modifications relating to model constraints
when using hierarchy, it is expected that the complexity reduction benefits may com-
pensate this loss of information. The case study firstly evaluated the proposed method
and evidenced its feasibility and promising results when inferring relationships be-
tween activities by looking its semantics. Further experiments will be conducted on
more process models of different domains with diverse labeling quality, as well as on
real life event logs, to assess its success and limitations on other scenarios.

Further improvements will consider the evaluation of quality dimensions [11] on
the resulting hierarchical model, because the simplification may diminish quality, e.g.,
reduce precision or fitness of a model. Complimentary semantic relations such as
Least Common Subsumer are also being evaluated.

This work has the purpose to help domain non experts and beginner practitioners to
better understand declarative process models by automatically suggesting subpro-
cesses to make the models less complex and more legible. When there is no previous
knowledge about the model to be discovered, the proposed method may show impor-
tant views of a process model that can be comprehended and then revised or applied
in process improvement.

References

1. Baier, T., Mendling, J.: Bridging abstraction layers in process mining by automated match-
ing of events and activities. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS,
vol. 8094, pp. 17–32. Springer, Heidelberg (2013)

Flat
Hierarchical

only

Subprocess
"Decide and

Prepare Teaching"

Subprocess
"Prepare and
Give Lessons"

Hierarchical +
subprocesses

No. of Activities 8 5 2 3 10
No. of Constraints 45 18 5 9 32

No. of Different Constraints 9 8 5 8 10
No. of Subprocessess 0 2 0 0 2

Contraint/Activity Ratio 5.63 3.60 2.50 3.00 3.20

 Declarative Process Mining 407

2. Bose, R.P.J.C., Maggi, F.M., van der Aalst, W.M.P.: Enhancing Declare Maps Based on
Event Correlations. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS,
vol. 8094, pp. 97–112. Springer, Heidelberg (2013)

3. Lin, D.: An information-theoretic definition of similarity. In: ICML 1998 Proceedings of
the Fifteenth International Conference on Machine Learning, vol. 98, pp. 296–304 (1998)

4. Haisjackl, C., Zugal, S., Soffer, P., Hadar, I., Reichert, M., Pinggera, J., Weber, B.: Mak-
ing Sense of Declarative Process Models: Common Strategies and Typical Pitfalls. In:
Nurcan, S., Proper, H.A., Soffer, P., Krogstie, J., Schmidt, R., Halpin, T., Bider, I. (eds.)
BPMDS 2013 and EMMSAD 2013. LNBIP, vol. 147, pp. 2–17. Springer, Heidelberg
(2013)

5. La Rosa, M., Wohed, P., Mendling, J., ter Hofstede, A.H.M., Reijers, H.A., Van der Aalst,
W.M.P.: Managing Process Model Complexity Via Abstract Syntax Modifications. IEEE
Transactions Industrial Informatics 7, 614–629 (2011)

6. Leopold, H., Mendling, J., Reijers, H., Rosa, M.: Simplifying process model abstraction:
Techniques for generating model names. Information Systems 39, 134–151 (2014)

7. Li, J., Bose, R.P.J.C., van der Aalst, W.M.P.: Mining Context-Dependent and Interactive
Business Process Maps Using Execution Patterns. In: Muehlen, M.Z., Su, J. (eds.) BPM
2010 Workshops. LNBIP, vol. 66, pp. 109–121. Springer, Heidelberg (2011)

8. Maggi, F.M., Mooij, A.J., van der Aalst, W.M.P.: User-Guided Discovery of Declarative
Process Models. In: IEEE Symposium on Computational Intelligence and Data Mining,
pp. 192–199. IEEE Computer Society (2011)

9. Reijers, H.A., Slaats, T., Stahl, C.: Declarative Modeling–An Academic Dream or the Fu-
ture for BPM? In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094,
pp. 307–322. Springer, Heidelberg (2013)

10. Smirnov, S., Reijers, H.A., Weske, M.: A Semantic Approach for Business Process Model
Abstraction. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741,
pp. 497–511. Springer, Heidelberg (2011)

11. van der Aalst, W., et al.: Process Mining Manifesto. In: Daniel, F., Barkaoui, K., Dustdar,
S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg
(2012)

12. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing be-
tween flexibility and support. Computer Science - Research and Development 23, 99–113
(2009)

13. Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring large process model re-
positories. Computers in Industry 62, 467–486 (2011)

14. Zugal, S., Soffer, P., Haisjackl, C., Pinggera, J., Reichert, M., Weber, B.: Investigating ex-
pressiveness and understandability of hierarchy in declarative business process models.
Software & Systems Modeling, 1–23 (2013)

15. Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Abstractions in Process Mining: A
Taxonomy of Patterns. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009.
LNCS, vol. 5701, pp. 159–175. Springer, Heidelberg (2009)

16. Bose, R.P.J.C., Verbeek, E.H.M.W., van der Aalst, W.M.P.: Discovering Hierarchical
Process Models Using ProM. In: Nurcan, S. (ed.) CAiSE Forum 2011. LNBIP, vol. 107,
pp. 33–48. Springer, Heidelberg (2012)

SECPI: Searching for Explanations

for Clustered Process Instances

Jochen De Weerdt and Seppe vanden Broucke

KU Leuven, Research Centre for Management Informatics (LIRIS)
Naamsestraat 69, B-3000 Leuven, Belgium

jochen.deweerdt@kuleuven.be

Abstract. This paper presents SECPI (Search for Explanations of
Clusters of Process Instances), a technique that assists users with under-
standing a trace clustering solution by finding aminimal set of control-flow
characteristics whose absence would prevent a process instance from re-
maining in its current cluster. As such, the shortcoming of current trace
clustering techniques regarding the provision of insight into the computa-
tion of a particular partitioning is addressed by learning concise individual
rules that clearly explain why a certain instance is part of a cluster.

Keywords: process discovery, trace clustering, user comprehension,
instance-level explanations, support vector machines.

1 Introduction

Partitioning event logs into multiple groups of process instances is a convenient
recipe for addressing the challenge of dealing with complex event logs, i.e. logs
presenting a large amount of distinct process behaviour. In the literature, several
trace clustering techniques have been described [1–9] that are capable of intelli-
gently splitting up an event log into multiple groups of instances so that process
discovery techniques can be applied to subsets of behaviour, with more accu-
rate and comprehensible discovered models as a result. However, the application
potential of trace clustering techniques is somewhat hampered by the low level
of human comprehension. Concretely, there exist two major problems regarding
trace clustering solutions. First of all, it is a non-trivial question to find out what
the driving elements are that determine a clustering technique to split up the
event log in a particular way. This is because most trace clustering techniques
operate at a higher level of abstraction which makes that, for instance, the con-
cept of distance between traces is not very insightful as a means to describing
a clustering solution. Secondly, end users would like to be able to understand
the differentiating characteristics between multiple clusters of process instances,
preferably from a domain perspective, i.e. relying on control-flow characteristics
that are present in the context of the process at hand.

A posteriori comprehension of a clustering solution plays a vital role for the
usefulness of separating an event log into multiple subgroups. More specifically,

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 408–415, 2014.
c© Springer International Publishing Switzerland 2014

Explaining Clustered Process Instances 409

process analysts should be able to understand which factors determine the de-
lineation of the discovered clusters in order to be able to give an interpretation
to the solution. Currently available trace clustering techniques often lack the
capability to provide insight into how a certain clustering solution is composed.
Therefore, this paper presents a new technique which allows to find explana-
tions that describe which control-flow characteristics of a certain process in-
stance make that this instance pertains to a certain cluster. In the remainder of
this paper, it is argued that instance-level explanations can overcome drawbacks
of potential alternative explanation techniques, such as for example the visual
analysis of the underlying process models. The novel technique, implemented
as the SVMExplainer-plugin in ProM1, is inspired by the work of Martens and
Provost [10], who put forward an approach for explaining text document classi-
fications. In the context of document classification, one is often confronted with
limited comprehensibility of the predictive model, even despite using so-called
white box techniques such as decision trees or logistic regression, which is mainly
due to the high dimensionality. Similarly, such high dimensionality comes into
play when characterising process instances by means of binary vectors represent-
ing control-flow characteristics.

Against this background, the main contribution of this paper is SECPI (Search
for Explanations of Clusters of Process Instances), an algorithm that is capable
of finding a minimal set of control-flow characteristics for a process instance,
such that if these characteristics were not present, the process instance would
not remain within its current cluster. Furthermore, the implementation allows to
visualise explanations in the respective process models so that users can easily
observe what characteristics make that a process instance belongs to a certain
cluster.

2 Trace Clustering

Trace clustering is an interesting approach to deal with the problem that many
event logs contain an extensive amount of distinct behaviour (i.e. process vari-
ants), because it allows the user to split up a log so that multiple distinct models
can be learnt to describe the underlying business process.

2.1 State of the Art

In general, two distinct groups of trace clustering approaches can be discerned
with on the one hand techniques that heavily rely on the principle of distance-
based clustering, and on the other hand techniques that incorporate a model-
driven approach. The first group consists of techniques such as presented in [1, 2,
4, 5, 9], which basically transform an input event log into a propositional format
so as to apply well-known clustering techniques from the data mining domain.
The technique presented in [4] is slightly different as the similarity between pro-
cess instances is determined based on string edit operations, while the recently

1 http://www.promtools.org/prom6/

410 J. De Weerdt and S. vanden Broucke

presented technique in [9] adds a complexity-based procedure to determine the
optimal number of clusters based on (approximate) clone detection. The latter
group of trace clustering techniques [3, 6, 7] is different in the sense that they
are model-driven by relying either on Markov models or Heuristic nets [7]. We
refer to the latter paper for a more detailed description and analysis of trace
clustering approaches.

2.2 Problem Statement

As indicated in the introduction, the problem with existing trace clustering tech-
niques is that they provide little to no insight into the actual reasoning of parti-
tioning an event log in a particular way. From a model learning perspective, the
clustering bias of a trace clustering technique determines how a solution is con-
structed. Clustering techniques described in the process mining literature employ
a wide variety of clustering biases. On the one hand, a subset of techniques re-
lies on the concept of distance as a measure of instance similarity. Model-driven
techniques on the other hand rely on maximum likelihood or fitness optimisa-
tion. Observe that the ex-post, aggregated fitness of the underlying models is an
often employed quality measure for trace clustering solutions, see [4, 7].

For distance-based clustering, typical data mining techniques such as k-means
or hierarchical clustering are applied. As such, the distance itself is a potential
candidate for explaining a clustering result. For instance, one could visualise the
instances in a networked graph or make use of comparative statistical analysis
of the underlying variables that determine the inter- and intra-cluster distances.
However, a projection of process instances onto process features will typically
generate a large amount of variables (e.g. the combined number of 2- and 3-
grams for a set of 20 labels is 8 400), which seriously complicates such an ap-
proach. To this, it should be added that due to the large amount of variables,
distance-based techniques suffer from the curse of dimensionality problem [11].
As described in [12], conventional proximity metrics in high-dimensional space
may not be qualitatively meaningful. Therefore, it is argued that the value of
the distance concept for assisting users with understanding a trace clustering so-
lution is low. As for model-driven techniques, the natural explanation method is
a visual analysis of the resulting cluster models. However, this not only requires
a high level of expertise, but is also impacted by the trade-off between recall,
precision and generalisation as made by process discovery techniques.

3 Instance-Level Explanations with SECPI

3.1 Approach

This paper describes a completely new analysis approach for explaining the
differences between clusters of process instances. The basic idea is shown in Fig-
ure 1. Instead of providing a global explanation, concise if-then rules are learnt
for each individual instance, with a conjunction of control-flow characteristics

Explaining Clustered Process Instances 411

(e.g. “sometimes directly follows”-relations) forming the antecedent and the clus-
ter switch as consequence. As such, an explanation is a rule that stipulates which
characteristics are the determining factors that make that a certain instance per-
tains to its current cluster. The goal of our technique is thus to learn accurate
yet concise explanations.

Process model (dependency graph) of

the predicted cluster (Cluster
2
)

PI
02

Explanation 1

Explanation 2

Explanation 3

Explanation k

...

Event log

Trace clustering SVM Explainer

Process model (dependency graph) of

the current cluster (Cluster
1
)

Start A

B

C

D

EndE

Start A

C

B

D

EndE

Explanation 1 for PI
02
: IF SometimesDirectlyFollows(C,E) = 0 THEN Cluster2

PI
01

PI
02

PI
03

PI
04

PI
05

PI
06 PI

n

C
lu
s
t
e
r

1

C
lu
s
t
e
r

2

C
lu
s
t
e
r

n

PI
01

⎯⎯⎯⎯⎯⎯⎯
PI

02
⎯⎯⎯⎯⎯⎯⎯

PI
03

⎯⎯⎯⎯⎯⎯⎯

PI
04

⎯⎯⎯⎯⎯⎯⎯
PI

05
⎯⎯⎯⎯⎯⎯⎯

PI
06

⎯⎯⎯⎯⎯⎯⎯
...

PI
n

⎯⎯⎯⎯⎯⎯⎯

Fig. 1. Overview of SECPI: for each process instance (PI) in the event log, one or
more explanations are learnt and ranked according to their length. An explanation is
a simple if-then rule with a conjunction of characteristics (as few as possible) which
should not be present (i.e. set to zero) in order for the instance to rather belong to a
different cluster. The SECPI-plugin in ProM is capable of visually reflecting these key
determinants of cluster membership in the respective process models, as illustrated on
the right hand side.

Constructing the Data Set: First, process instances are converted into
feature vectors. The implementation supports several attribute templates (e.g.
activity presence, always/sometimes weak order relations), however our ini-
tial experiments show that the “sometimes directly follows”-attribute tem-
plate provides solid explanatory power from a control-flow perspective. The
SometimesDirectly Follows(a, b) attribute for two activities a and b evaluates
to true when these two activities both occur in the instance (potentially mul-
tiple times) and follow each other directly at least once, and to false otherwise
(never follow each other directly or do not both occur). Note that it is out of
scope of this study to investigate the optimal configuration of the featurisation
step. The data set is completed by adding the appropriate cluster label to each
instance. As such, a labeled data set is obtained to which supervised data mining
techniques can be applied.

Deriving Explanations from a Support Vector Machine (SVM) Clas-
sifier: As stated earlier, our approach is inspired by [10] in which an algorithm
is proposed to find explanations for document classifications. The most impor-
tant similarity is the use of an SVM-based classifier as the base model from which
explanations are derived. As for document classification, SVMs are ideally suited
in our context because the use of multiple or complex attribute templates will
quickly lead to massive dimensionality. By employing the well-known liblinear

412 J. De Weerdt and S. vanden Broucke

library for large-scale linear classification based on linear kernel SVMs, our ap-
proach can support data with millions of instances and features. For more details
about SVMs, we refer to [13].

The main contribution of this paper consists in adapting the approach in [10]
to the context of trace clustering with some key modifications. First, support for
multi-class prediction has been developed because in our context it is highly plau-
sible to have more than two clusters. Second, we configure the algorithm in such
a way that explanations can be restricted to behaviour present in a process in-
stance (only swaps from 1 to 0 are considered). Third, several performance optimi-
sations have been introduced: we avoid considering attributes with no variability
(always 0 or 1), prevent repeat checking of same attribute combinations, and con-
sequently avoid to expand on attribute combinations that have been considered
before. These improvements are explained in more detail below.

3.2 Algorithm SECPI

Algorithm 1 provides a formalised overview of the workings of the SECPI algo-
rithm. As inputs, an instance to be explained (a process trace in a cluster) is
given, defined as a sequence of binary attributes (generated using the attribute
templates as discussed above). Next, a classifier is assumed to be trained over
the data set which is able to, for a given feature vector, return a predicted class
label and associated score (i.e. probability). Finally, three configuration options
have to be set: iterations denotes the depth to search for explanations for the
given instance. Increasing this value increases the run time but leads to more
(albeit longer) explanations. The zero to one parameter denotes whether 0 to
1 attribute value swaps should be allowed. Since the instance attributes denote
characteristics of the instance which are present (such as the direct following of
two activities, for instance), it is recommended to set this parameter to False, as
explanations denoting that a trace would not appear in its cluster when it did not
present a specific characteristic are generally easier to interpret than explana-
tions denoting that a trace should have a certain characteristic (as the question
is then asked where and how exactly this characteristic would manifest itself
within the trace). Additionally, since the multitude of all attributes for a trace
are set to 0, the list of retrieved rules will be shorter and better fine-tuned to the
actual behaviour as seen in the process instance. Finally, require support denotes
whether attribute value swaps should be taken into account for attributes which
are always set to 0 or 1 (i.e. no variability). Again, it is recommended to set
this to a True value, as providing explanations which require behaviour which
is nowhere seen in the log are most likely less useable than those which do only
incorporate seen behaviour.

As output, a set of explanatory rules is returned, formalised as a set of sets
of attribute indices. Each set of indices represents a candidate explanation, and
should be interpreted as follows: “this process instance would leave its current
cluster when all the following attributes would be inverted” – or, in case where
zero to one is set to False: “when it would not exhibit the behaviour as repre-
sented by these attributes”. To construct this set of explanations, the algorithm

Explaining Clustered Process Instances 413

Algorithm 1. Formalisation of the SECPI algorithm (as explained in Sect. 4.1)
Input: I := 〈Ii ∈ {0, 1}, i = 1, 2, . . . , |I|〉 % Process instance I ∈ event log L containing k clusters
Input: C : L �→ {1, 2, . . . , k} % Trained classifier with scoring function fC
Input: iterations := 30, zero to one := False, require support := True % Configuration
Output: Set of explanatory rules R

1: function SECPI(I, C, iterations, zero to one, require support)
2: c := C(I) % Predicted cluster
3: p := fC(I) % Corresponding probability
4: R := {} % Set of instance explanations (set of sets)
5: E := {} % Combinations to expand on (set of sets)

6: % Search for single attribute explanations
7: for all i := 1→ |I| do
8: if IsAllowedSwap(I, i) then
9: I′ := SwapAttributes(I, {i})

10: c′ := C(I′) % New cluster label
11: p′ := fC(I′) % New probability
12: if c′ �= c then R := R ∪ {i}
13: else E := E ∪ {i} end if
14: end if
15: end for

16: % Iteratively search for multi attribute explanations
17: for all iteration := 1→ iterations do
18: combo := argmaxA∈E(p− fC(SwapAttributes(I, A))) % Best combination

19: combos′ := {}
20: for all i := 1→ |I| do % Expand combination
21: combo′ := combo∪ {i}
22: if combo �= combo′∧ IsAllowedSwap(I, i)∧ ¬IsSubsumed(R, combo′) then
23: combos′ := combos′ ∪ {combo′}
24: end if
25: end for
26: for all combo′ ∈ combos′ do
27: I′ := SwapAttributes(I, combo′)
28: c′ := C(I′) % New cluster label
29: p′ := fC(I′) % New probability
30: if c′ �= c then R := R ∪ combo′

31: else E := E ∪ combo′ end if
32: E := E \ combo % Don’t check this combination again
33: end for
34: end for
35: return R
36: end function

37: function IsSubsumed(R, A)
38: % Check whether attributes with indices ∈ A are subsumed by explanation in R
39: for all E ∈ R do
40: if E ∈ A then return True end if
41: end for
42: return False
43: end function

44: function IsAllowedSwap(I, a)
45: % Check whether attribute with index a in instance I may be swapped
46: a′ := abs(Ia − 1)
47: if ¬zero to one ∧ Ia = 0 then return False end if
48: if require support ∧ �J ∈ L : Ja = a′ then return False end if
49: return True
50: end function

51: function SwapAttributes(I, A)
52: % Swap attributes with indices ∈ A in instance I
53: I′ := 〈I′i ∈ {0, 1}, i = 1, 2, . . . , |I| : I′i = if i /∈ A then Ii else abs(Ii − 1)〉
54: return I′
55: end function

414 J. De Weerdt and S. vanden Broucke

applies a heuristic, best-first search procedure with pruning. First, each candi-
date single attribute is evaluated (lines 7 to 15) to see whether rules composed
of only one attribute can be found. If swapping an attribute’s value does not
lead to a class change, a combination of indices (in this case a single index) is
added to E to be expanded in the next step.

Next, a number of iterations is performed (lines 17 to 34) as set by the iterations
parameter. A best-first candidate selection from all currently available combina-
tions to expand on is chosen, based on the classifier’s scoring function (line 18).
The goal is to first explore the set of attribute indices for which swapping their
values moves the instance farthest away from its current class label (i.e. cluster).
Expansions on this combination are created by creating a new set of combinations
combos′ by adding each allowed attribute to the set of combo (lines 20 to 25). Ex-
pansions which are equal to combo (i.e. the added attribute was already used in
combo) or which are subsumed by an already existing explanation (the expansion
contains all attribute indices of an existing explanation and thus adds no value)
are not considered. Once all expansions are built, they are evaluated to see if they
lead to a class change (lines 26 to 33). Expanded combinations are removed from
E to prevent them being chosen again in the next iteration (line 32).

As a classification model, we use a combination of k (the number of clusters)
SVM models to allow for multi-class classification with SVMs. To retrieve the
predicted class label and score, we apply a winner-takes-all strategy as follows.
An SVM model is built per cluster to predict whether an instance is in-cluster
(label: 1) or out-of-cluster (label: 0). To predict the label and probability of an
instance, the probability that the instance is out or in their respective cluster
is evaluated for all SVMs (with probability pk if predicted in-cluster and 1− pk
if predicted out-of-cluster). The SVM model with the highest probability deter-
mines the label (and its corresponding probability). Note that other classifiers
(such as decision tree or rule based classifiers) could, in theory, also be applied
in the SECPI algorithm as long as a scoring function can be defined, and in
fact could also return small-sized instance explanations – as is our goal – even
though their model itself (in terms of number of rules or decision tree nodes for
example) can still be large. However, the construction of such models becomes
unwieldy when dealing with high dimensional data sets, so that SVMs remain a
better suitable classifier for use within our proposed technique.

4 Conclusion

In this paper, SECPI (Search for Explanations of Clusters of Process Instances),
a new technique assisting users with understanding trace clustering results was
presented. The need for such a technique stems from the observation that typical
trace clustering techniques do not provide sufficient insight into how a clustering
solution is composed. In future work, we foresee to expand on a number of closely
related topics. First, we plan to inspect the impact of the attribute templates
used as they play a crucial role in representing the (control-flow) domain. Also,
we aim at investigating the incorporation of non control-flow-based attributes.

Explaining Clustered Process Instances 415

Second, aggregation of instance-level explanations is a worthwhile research track
as well. The current implementation already supports the investigation of shared
explanations amongst groups of instances, which is a preliminary approach to
bring our explanation technique to the global level. However, we plan to investi-
gate more intelligent rule clustering and visualisation techniques for this purpose.
Finally, we will focus on practical use cases in which SECPI might prove bene-
ficial. User-driven discovery of process model collections from event data is one
such area where it can support the feedback mechanism. Furthermore, SECPI is
also perfectly capable of relating exogenously defined clusters, e.g. high versus
low cost instances, to process-specific control-flow characteristics, a feature often
desired in business process improvement cycles.

References

1. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models
by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)

2. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process min-
ing. In: Ardagna, D., Mecella, M., Yang, J. (eds.) Business Process Management
Workshops. LNBIP, vol. 17, pp. 109–120. Springer, Heidelberg (2009)

3. Ferreira, D.R., Zacarias, M., Malheiros, M., Ferreira, P.: Approaching process min-
ing with sequence clustering: Experiments and findings. In: Alonso, G., Dadam,
P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 360–374. Springer, Hei-
delberg (2007)

4. Bose, R.P.J.C., van der Aalst, W.M.P.: Context aware trace clustering: Towards
improving process mining results. In: SDM, SIAM, pp. 401–412. SIAM (2009)

5. Bose, R.P.J.C., van der Aalst,W.M.P.: Trace clustering based on conserved patterns:
Towards achieving better process models. In: Rinderle-Ma, S., Sadiq, S., Leymann,
F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 170–181. Springer, Heidelberg (2010)

6. Folino, F., Greco, G., Guzzo, A., Pontieri, L.: Mining usage scenarios in busi-
ness processes: Outlier-aware discovery and run-time prediction. Data Knowl.
Eng. 70(12), 1005–1029 (2011)

7. De Weerdt, J., Vanden Broucke, S.K.L.M., Vanthienen, J., Baesens, B.: Ac-
tive trace clustering for improved process discovery. IEEE Trans. Knowl. Data
Eng. 25(12), 2708–2720 (2013)

8. Song, M., Yang, H., Siadat, S., Pechenizkiy, M.: A comparative study of dimen-
sionality reduction techniques to enhance trace clustering performances. Expert
Systems with Applications 40(9), 3722–3737 (2013)

9. Ekanayake, C.C., Dumas, M., Garćıa-Bañuelos, L., La Rosa, M.: Slice, mine and
dice: Complexity-aware automated discovery of business process models. In: Daniel,
F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 49–64. Springer,
Heidelberg (2013)

10. Martens, D., Provost, F.: Explaining data-driven document classifications.
MISQ 38(1), 73–99 (2014)

11. Bellman, R.E.: Adaptive control processes - A guided tour. Princeton University
Press (1961)

12. Aggarwal, C., Hinneburg, A., Keim, D.: On the surprising behavior of distance
metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) ICDT
2001. LNCS, vol. 1973, pp. 420–434. Springer, Heidelberg (2000)

13. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition.
Data Min. Knowl. Discov. 2(2), 121–167 (1998)

Business Monitoring Framework

for Process Discovery with Real-Life Logs

Mari Abe and Michiharu Kudo

IBM Research – Tokyo
5-6-52 Toyosu, Koto-ku, Tokyo, Japan

{maria,kudo}@jp.ibm.com

Abstract. Business analysis with processes extracted from real-life
system logs has recently become important for improving business per-
formance. Since business users desire to see the current situations of busi-
ness with visualized process models from various perspective, we need an
analysis platform that supports changes of viewpoint. We have developed
a runtime monitoring framework for log analysis. Our framework can si-
multaneously extract process instances and derive appropriate metrics in
a single pass through the logs. We tested our proposed framework with a
real-life system log. The results for twenty days of data show synthesized
process models along with an analysis axis. They were synthesized from
the metric-annotated process instances generated by our framework.

1 Introduction

Process mining plays an important role in the business analysis of real-life logs
generated from enterprise applications. The actual situation of an enterprise is
visualized and analyzed based on extracted workflows to detect best practices.
When consulting on the actual business situations of enterprises, analysis meth-
ods that include defining metrics for the analysis axes, extracting workflows
based on the metrics, and analyzing them is practically a norm.

Our previous work describes business process analysis and associated client
engagements [1,2] where we presented a technical approach with practical ap-
plication scenarios. The most iterative and time-consuming work was the de-
termination of metrics to discover processes that customers recognize the real
processes of their business. Then they desire to see the discovered processes
from different view points of the metrics as new analysis axes. For example, af-
ter customers recognize the processes of their business, they desire to compare
the weekday processes with the weekend processes to find the causes of delays.
Another example is customers want to compare purchasing processes for various
product types with a duration within 10 minutes against over 10 minutes for the
marketing strategies.

To change analysis axes according to the changes of the customer’s require-
ments, we need to analyze the logs to extract the workflows again. It is an
issue on the analysis method with process discovery that the analysis cycle is
time-consuming and it causes belated results since a module of reading log and

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 416–423, 2014.
c© Springer International Publishing Switzerland 2014

Business Monitoring Framework for Process Discovery with Real-Life Logs 417

extracting workflow must be reimplemented according to the metrics changed.
This implies a need for a process discovery technology that can quickly extract
workflows while reducing the time spent reading the logs so that the extracted
results can be used even as the requirements of the customers are changing.

In this paper, we introduce a monitoring framework for process discovery. It si-
multaneously extracts the process instances and metrics of a single pass through
the logs. We define the abstraction level of the monitoring context based on
inclusion relationships of the correlation key definitions and present the moni-
toring algorithm based on the abstraction level. Instances of monitoring contexts
are linked at runtime and that allows us to build process models. We tested our
proposed approach with real-life logs and showed the process models that were
synthesized with different values of an analysis axis.

2 Related Work

There are many proposed approaches for data warehousing that can analyze pro-
cess logs [3,4]. Aalst [5] proposes “process cubes” that enable analyzing process
logs by storing the results into data cubes that allow domain experts to exe-
cute online analytical processing (OLAP) operations such as drill-down, roll-up,
and other operations for understanding the executed processes. We deal with
real-life event logs from existing applications, so we are not limited to logs that
are generated from particular workflow engines. Therefore, each event that we
analyze is not always directly linked to a particular activity. An example of logs
includes access history of external pages outside of the business flow. These logs
can still be using as important as process logs if the domain experts want to
see the causes of business performance degradation. Our advantage over these
approaches is we expand the universe of inputs of the event base to event logs of
legacy applications by leveraging our reverse engineering approach with business
monitoring technology.

Liu et al. [6] propose complex event processing systems that support OLAP
operations for multi-dimensional pattern analysis over event streams. Their solu-
tion improves computational efficiency for multi-dimensional event patterns by
sharing the results among queries using a unified query plan. The difference in
their approach is pattern-based event filtering versus our model-based filtering
for event streams. However, optimization methods should also be beneficial for
our method for efficient handling of events in real time.

Schiefer et al. [7] propose a solution for managing the performance data of
business processes. Their system is intended for process-driven decision support
and continuously improving business processes. It is important to drive decision
support by analyzing both the process logs and other logs linked to processes.

The concepts and architectures of real-time business monitoring have been
proposed for and applied to real customers [8,9]. The framework itself is a generic
approach for an enterprise to improve its capabilities of sensing and responding
to business situations. In our previous work [10], a model-driven mechanism
of creating business monitoring applications was proposed. However, there are

418 M. Abe and M. Kudo

difficulties with such a purely top-down approach to build applications for en-
terprises that already have legacy applications for process management. We are
now working on a novel approach for enhancing monitoring applications for ag-
ile business analysis with process discovery that can lead to a process model
reflecting the actual behavior of users as recorded in the system logs. This re-
engineering approach helps manage the lifecycle of business processes from the
top-down to bottom-up and bridges the gap between business monitoring and
process discovery.

3 Process Discovery from Real-Life Logs

Most real-life system logs are generated for system diagnoses including problem
determination when there are abnormal situations such as server failures. The
logs were not originally designed for reuse to create any secondary value. The
characteristics of such logs make process discovery difficult to apply to real-life
systems and our prior work [1,2,11] has attempted to address these problems.
Fig. 1 is an extract from an example log for an insurance application that does
premium calculations. Before discovering a process in the log, we must determine
which parameters are correlated so we can extract tasks (activities) and process
instances. In this example, a pair of parameters “pageid” for transaction type
“response” and “sourcepageid” for “request” can be correlated to associate with
the task. The column “user ID” can be used as a correlation key to extract a
process. The semantics of these logs should be given by domain experts for our
system of process discovery before the analysis.

To determine the metrics, we should select a column of the logs or some
parameters that will eventually become our metrics or sources of metrics. In
this example, the duration of each task can be derived using subtraction with

pageid=“logon_page”...sample.server.com2013-08-20T08:30:50user3response

pageid=“logon_page”...sample.server.com2013-08-20T08:30:35user2response

logonsample.server.com2013-08-20T08:30:35user3request

logonsample.server.com2013-08-20T08:30:33user2request

sourcepageid=“insurance_option_page, product=“l ife
insurance”, premium=“$50”, period=“10 years”

submit_productsample.server.com2013-08-20T08:31:50user1request

sourcepageid=“simulation_result_page”savesample.server.com2013_12-20T08:32:00user1request

pageid=“simulation_result_page”, msg=“need
physical check-up”

sample.server.com2013-08-20T08:31:51user1response

sourcepageid=“calc_premium_page”,
birthday=“1965/01/01”, gender=“male”

submit_conditionsample.server.com2013-08-20T08:30:48user1request

pageid=“calc_premium_page”...sample.server.com2013-08-20T08:30:34user1response

pageid=“insurance_option_page”, msg=“input options
next”

sample.server.com2013-08-20T08:30:49user1response

sample.server.com

Host

calc_premium2013-08-20T08:30:33user1request

ParametersRequest URLTimestampUser IDEvent type

pageid=“logon_page”...sample.server.com2013-08-20T08:30:50user3response

pageid=“logon_page”...sample.server.com2013-08-20T08:30:35user2response

logonsample.server.com2013-08-20T08:30:35user3request

logonsample.server.com2013-08-20T08:30:33user2request

sourcepageid=“insurance_option_page, product=“l ife
insurance”, premium=“$50”, period=“10 years”

submit_productsample.server.com2013-08-20T08:31:50user1request

sourcepageid=“simulation_result_page”savesample.server.com2013_12-20T08:32:00user1request

pageid=“simulation_result_page”, msg=“need
physical check-up”

sample.server.com2013-08-20T08:31:51user1response

sourcepageid=“calc_premium_page”,
birthday=“1965/01/01”, gender=“male”

submit_conditionsample.server.com2013-08-20T08:30:48user1request

pageid=“calc_premium_page”...sample.server.com2013-08-20T08:30:34user1response

pageid=“insurance_option_page”, msg=“input options
next”

sample.server.com2013-08-20T08:30:49user1response

sample.server.com

Host

calc_premium2013-08-20T08:30:33user1request

ParametersRequest URLTimestampUser IDEvent type

1

line #

2

3

4

5

6

7

8

9

10

11

Fig. 1. Example of input logs for insurance application

Business Monitoring Framework for Process Discovery with Real-Life Logs 419

the timestamps of the response and request correlated by “pageid” and “sour-
cepageid” e.g. the duration is 14 seconds for “calc premium page” as calculated
from the timestamps of Lines 3 and 6. Lines 1, 2, 4, and 5 are ignored if the
users focus on the process of premium calculations. Similar metrics can be de-
rived from other parameters. For example, “birthday” and “gender” are input
to the insurance application on the “calc premium page” (Line 6) and “msg” is
output to the “insurance option page” (Line 7). Process execution flow of the
example is shown in Fig 2. The duration for each page is the metric for each
task (14, 61, and 9 seconds). The input data and output data are also metrics
for each task.

Monitoring business metrics in real time requires an event monitor runtime
and event subscriber called a monitoring context [8,9,10,12]. We propose moni-
toring contexts and a runtime that allow extracting metrics and process instances
simultaneously in a single pass through the logs described in the following sub-
sections. Our approach offers two improvements over the existing approaches:
(1) Associations of parent-child of the instances of the monitoring contexts are
determined dynamically based on inclusion relationships of correlation key def-
initions and (2) The lifecycle of the instances of the monitoring contexts of the
parents and children can be handled independently

calc_premium_page
(from Line 3, 6)

insurance_option_page
(from Line 7, 9)

simulation_result_page
(from Line 10, 11)

14 sec 61 sec 9 sec

Output data:
msg=“input options next.”

Input data:
product=“life insurance”
premium=“$50”
period=“10 years”

Input data:
birthday=“1965/01/01”
gender=“male”

Output data:
msg=“need physical check-up”

...

Fig. 2. A process instance for the insurance application of “user1”

3.1 Definition of Monitoring Context

We define “monitoring context” here for monitoring the events and calculating
the metrics. Let E be an event sequence {e1, · · · en}. An event e is a tuple
e = 〈typee, A〉 where typee is a type of the event and A is a set of attributes
for the event. An attribute is a tuple a = 〈typea, name, value〉 where typea is a
type of the attribute, name is a name of the attribute and value is its value.

Let X be a set of variables, including array variables. Let F be a set of
functions for computing the values of X . Each value of variable x is derived
from a function f : t1 × t2 · · · × tn → typex, where typex is a type for x. A
metric is a specific variable that domain experts define with f and that will
be used to query a process model in our method. A monitoring context mc is a
tuple mc = 〈Ei,K,Eo, Ce, X, F 〉 and an instance of mc is identified by a unique
identifier. Each element of mc is defined as follows:

420 M. Abe and M. Kudo

– Ei is a set of types of events occurred in E that can be monitored (inbound
events). Ei does not necessarily include all of the types of events occurring
in E. The attributes of an event are mapped to X with F .

– K is a set of variables derived from a set of mappings of Ei to uniquely
identify an instance of mc (correlation keys). If there is no mc instance
correlated with an inbound event and the event can be mapped to K, then
an instance of mc is created and starts monitoring.

– Eo is a type for an event that can be generated from mc (outbound events).
A generated event can be an input of other mcs.

– Ce is a set of conditions c that determines whether or not monitoring should
be terminated. Each c is a specific f where the type of the variable derived
from f is boolean. If all of the cs of an mc are set to true, then an instance
of Eo is emitted to other mcs and monitoring is terminated.

We define the abstraction level of the monitoring contexts based on the rela-
tionships of the correlation keys. The mc that has K is denoted by mcK . An
abstraction level of a monitoring context L(mc) is a positive integer and satisfies
L(mcK0) > L(mcK1) if K1 ⊃ K0. It is a necessary condition for a monitoring
context to generate hierarchical structures. Consider a process instance for the
insurance application of “user1” (Fig. 2). The correlation key definitions of this
task are “pageID” and “userID” while that of the process-instance is “userID”.
A set of correlation key definitions of task Kt and of process instance Kpi satisfy
Kt ⊃ Kpi where userID, pageID ∈ Kt, and pageID ∈ Kpi. These constraints
also imply L(mcKt) < L(mcKpi).

3.2 Algorithm of Monitoring Framework

A monitoring context manager mgr manages the lifecycle of the instances of mc.
It has a list of mcs for each abstraction level and knows how to serialize the mc
instances when the instances terminate. The function “PROCESSEVENT” of
mgr is the main flow of the event processing. We show the algorithm of “PRO-
CESSEVENT” in Algorithm 1, which simply calls the “DOCORRELATION”
and “DOEVENTPROCESSING” functions.

The mgr gets the correlating mc instance list by calling a function “GET-
CORRELATINGMC” in Line 6. In Lines 16 to 25 if this function, mgr gets
the list of instances of mcs that is a higher level of abstraction than the event
source. If the event source is a component for reading logs, then the list includes
the lowest level of the instances of mcs, such as the instances of mc for mining
tasks. If there are no instances of mcs listed, then mgr tries to instantiate mc
from the event. A newly instantiated mc is registered in the mgr based on its
abstraction level (from Lines 7 to 15). The next mgr has to do is to process
the event. In the function DOEVENTPROCESSING from Lines 26 to 30, mgr
simply calls processEvent of mc in the correlated list to update the variables of
an instance of mc. If all of the variables of the instance of mc are set and the
terminal condition Ce is true, then the instance emits an outbound event that
includes the metrics. Then the instance recursively calls PROCESSEVENT of
mgr.

Business Monitoring Framework for Process Discovery with Real-Life Logs 421

Algorithm 1. event processing flow of mgr
1: function processEvent(e) � e is an object of BusinessEvent
2: correlating list ← doCorrelation(e)
3: doEventProcessing(correlationg list, e)
4: end function
5: function doCorrelation(e)
6: list ←getCorrelatingMC(e)
7: if list = empty then
8: instantiate MonitoringContext m from e
9: if m �= null then
10: register m based on abstraction level
11: list.add(m)
12: end if
13: end if
14: return list
15: end function
16: function getCorrelatingMC(e)
17: m0← e.getEventSource()
18: list0 ← getList(m0) � get monitoring contexts by abstraction level of m0
19: for m in list0 do
20: if m.correlate(e) then
21: list.add(m)
22: end if
23: end for
24: return list
25: end function
26: function doEventProcessing(correlating list, e)
27: for m in correlating list do
28: m.processEvent(e)
29: end for
30: end function

4 Experiment with Real-Life Logs

We tested our proposed framework on real-life system logs and verified the useful-
ness of the proposed approach. Table 1 shows some statistics for our experiment.
We tested the logs from 20 successive days of an application server. The number
of lines in the logs was 685,318.

The metrics for each task included four metrics, the task durations, the names
of products, the numbers of help pages accessed, and the status of the forms cre-
ated (either new or update). The metrics for a process instance included fifteen
metrics such as a list of pages, counts of help pages accessed, the status of process
started (either new or update) derived from mc for task, the status of process
termination (either save or cancel), and so on. The number of instances of mc for
the task was 260,568 and the total of process instance was 25,781. There were
instances for a task that were not linked with any instances for process instance
because they did not match the conditions for process start. Our framework

Table 1. Summary of the test data of the real-life logs and the results of the experiment

Test data Result of experiment
Period of # of lines of # of task # of proc inst # of instances # of instances of

logs logs metrics metrics of mc for task mc for proc inst
20 days 685,318 4 15 260,568 25,781

422 M. Abe and M. Kudo

Fig. 3. The generated process models with different values of analysis axis

serialized the results into an MXML[13] file with metric annotations and an
XSLT [14] file to extract the process instances.

Fig. 3 shows synthesized process models generated from our process discovery
tool [2]. Each box indicates a page access as a task and the process flow starts
from top to bottom. The help page are not included in the models as tasks
because it is not a part of the business flow, but they appeared in the original
logs. The left side is a process model in which the number of help page access
is less than three. The right side is a model in which the number of help page
access equals or is more than three. The difference is that users on the left are
struggling with the process while users on the right are not. This result become
one of data sources for domain experts to verify whether or not the help pages
are effective.

5 Conclusion

In this paper, we proposed a monitoring framework for process discovery that si-
multaneously extracted the process instances and metrics of a single pass through
the logs. We defined the abstraction level of the monitoring context based on
inclusion relationships of the correlation key definitions and presented the moni-
toring algorithm based on the abstraction level. Instances of monitoring contexts
were linked at runtime and that allows us to build process models. With the re-
sults, users could get process models from different metrics without reading huge
log again. We tested our proposed framework with a real-life system log of twenty
days and the results become one of data sources for domain experts to verify
whether or not their system is used effectively.

References

1. Kudo, M.: Operational Work Pattern Discovery Based On Human Behavior Anal-
ysis. In: Service Research and Innovation Institute Global Conference (2014)

Business Monitoring Framework for Process Discovery with Real-Life Logs 423

2. Kudo, M., Ishida, A., Sato, N.: Businesss Process Discovery by using Process Skele-
tonization. In: International Symposium on Data-Driven Process Discovery and
Analysis (2013)

3. Kueng, P., Wettstein, T., List, B.: A Holistic Process Performance Analysis
Through a Performance Data Warehouse. In: Proceedings of the Seventh Americas
Conference on Information Systems (AMCIS 2001), pp. 349–356 (2001)

4. Mansmann, S., Neumuth, T., Scholl, M.H.: OLAP Technology for Business Process
Intelligence: Challenges and Solutions. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.)
DaWaK 2007. LNCS, vol. 4654, pp. 111–122. Springer, Heidelberg (2007)

5. van der Aalst, W.M.P.: Process Cubes: Slicing, Dicing, Rolling Up
and Drilling Down Event Data for Process Mining. In: Song, M., Wynn,
M.T., Liu, J. (eds.) AP-BPM 2013. LNBIP, vol. 159, pp. 1–22. Springer,
Heidelberg (2013)

6. Liu, M., Rundensteiner, E.A., Greenfield, K.: E-Cube: Multi-Dimensional Event
Sequence Analysis Using Hierarchical Pattern Query Sharing. In: Proceedings of
the 2011 ACM SIGMOD International Conference on Management of Data (SIG-
MOD 2011), pp. 889–900 (2011)

7. Schiefer, J., Jeng, J., Kapoor, S., Chowdhary, P.: Process Information Factory:
A Data Management Approach for Enhancing Business Process Intelligence. In:
Proceedings of the IEEE International Conference on E-Commerce Technology
(CEC 2004), pp. 162–169 (2004)

8. Liu, R., Vacuĺın, R., Shan, Z., Nigam, A., Wu, F.: Business Artifact-Centric Mod-
eling for Real-Time Performance Monitoring. In: Rinderle-Ma, S., Toumani, F.,
Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 265–280. Springer, Heidelberg
(2011)

9. Chowdhary, P., Bhaskaran, K., Caswell, N., Chang, H., Chao, T., Chen, S., Dikun,
M., Lei, H., Jeng, J., Kapoor, S., Lang, C., Mihaila, G., Stanoi, I., Zeng, L.: Model
Driven Development for Business Performance Management. IBM Systems Jour-
nal 45, 735–749 (2006)

10. Abe, M., Jeng, J., Koyanagi, T.: Authoring Tool for Business Performance Moni-
toring and Control. In: Proceedings of IEEE International Conference on Service-
Oriented Computing and Applications, SOCA 2007 (2007)

11. Kudo, M., Nogayama, T., Ishida, A., Abe, M.: Business Process Analysis and Real-
world Application Scenarios. In: International Symposium on Data-Driven Process
Discovery and Analysis (2013)

12. Momm, C., Gebhart, M., Abeck, S.: A Model-Driven Approach for Monitoring
Business Performance in Web Service Compositions. In: Fourth International Con-
ference on Internet and Web Applications and Services, pp. 343–350 (2009)

13. Process Mining Group, Math and CS department, Eindhoven University of Tech-
nology.: Mining eXtensible Markup Language, MXML (2003),
http://www.processmining.org/logs/mxml

14. W3C Recommendation: XSL Transformations (XSLT) Version 2.0 (2007),
http://www.w3.org/TR/xslt20/

http://www.processmining.org/logs/mxml
http://www.w3.org/TR/xslt20/

Predictive Task Monitoring

for Business Processes�

Cristina Cabanillas1, Claudio Di Ciccio1,
Jan Mendling1, and Anne Baumgrass2

1 Institute for Information Business at Vienna
University of Economics and Business, Austria

{cristina.cabanillas,claudio.di.ciccio,jan.mendling}@wu.ac.at
2 Hasso Plattner Institute at the University of Potsdam, Germany

anne.baumgrass@hpi.uni-potsdam.de

Abstract. Information sources providing real-time status of physical
objects have drastically increased in recent times. So far, research in
business process monitoring has mainly focused on checking the comple-
tion of tasks. However, the availability of real-time information allows
for a more detailed tracking of individual business tasks. This paper
describes a framework for controlling the safe execution of tasks and sig-
nalling possible misbehaviours at runtime. It outlines a real use case on
smart logistics and the preliminary results of its application.

Keywords: Process Modelling, Process Monitoring, Support Vector
Machines, Prediction, Event Processing.

1 Introduction

Increasing availability of event data from mobile and sensor devices provides
various opportunities for improving business operations. Technologies such as
the Global Positioning System (GPS) or Radio-Frequency Identification (RFID)
have been designed to provide for a better geographical traceability of vehicles
and physical objects. The generated data can be integrated with information
systems to support process monitoring, and with other knowledge repositories
to support decision making. In this line, Business Process Management Systems
(BPMSs) can be extended from reactive towards predictive process execution.

Although some approaches contribute to the conceptual integration of event
processing and processes at design time [1,10,11] and alerting at run time when
undesired behaviours occur [15], only a few aim to leverage the predictive capa-
bilities associated with event processing [18]. Moreover, these are restricted to
events stemming directly from the execution within the BPMS, missing misbe-
haviour patterns on the level of singular tasks associated with external events.

In this paper, we address this research gap by developing a technique for
defining rich alert patterns associated with specific task types for predictive

� The research leading to these results has received funding from the European Union’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement 318275
(GET Service).

S. Sadiq, P. Soffer, and H. Völzer (Eds.): BPM 2014, LNCS 8659, pp. 424–432, 2014.
c© Springer International Publishing Switzerland 2014

Predictive Task Monitoring for Business Processes 425

event monitoring in a BPMS. The feasibility of the framework is demonstrated
by the help of a prototypical implementation on the basis of a real scenario on
smart logistics with the task of transporting airfreight and alerting a diversion
of the flight, which sets the basis to use it in different application scenarios.

The paper is structured as follows. Section 2 uses the case of airfreight trans-
portation for identifying general challenges and requirements for a predictive
system. Section 3 introduces the framework architecture. Section 4 defines an
extension for task specifications in business processes, as basis for execution
monitoring and prediction. Section 5 details the usage of supervised learning for
realising predictive monitoring. Section 6 evaluates its feasibility. Section 7 dis-
cusses related work. Finally, Section 8 concludes the paper and envisions future
research.

2 Predictive Monitoring of Continuous Tasks in Processes

Monitoring has mainly focused on identifying when tasks start and end. However,
in various domains there are plenty of events recorded that can be utilised for the
monitoring of a singular task, e.g., the task in charge of the shipment of goods
in logistics chains. This type of tasks can be seen as continuous or dynamic, in
contrast to static tasks such as signing a document or loading a container onto
a truck. They require constant monitoring, as otherwise deviations from the
expected behaviour might be detected too late, with undesirable consequences.

Let us describe part of a multimodal transport chain defined in the context
of the EU-FP7 GET Service project. An aeroplane takes goods from the JFK
International Airport (USA) to Amsterdam Airport Schiphol (NL), where they
are transferred to a truck sent by a Logistics Service Provider (LSP) and trans-
ported to a destination in Utrecht (NL). The main goal of the LSP is to deliver
the goods on time, for which the connection point in Amsterdam is especially
critical. If the aeroplane has to divert and lands at a different airport (e.g., due to
a thunderstorm near Amsterdam), the LSP has to cancel (or re-route) the truck
that was sent to Schiphol, and in parallel reserve another vehicle to pick up the
cargo at the new location. In order for these corrective actions to be effective, it
is crucial that the LSP is aware of the aeroplane diversion as soon as possible,
which implies constantly monitoring the task in charge of air transport.

Thus, the monitoring of dynamic tasks has implications that can be described
in the form of challenges and, hence, requirements (RQ) for a predictive system:

RQ1 Define monitoring points and expected behaviour. The process model must
be configured before enactment to introduce not only the monitoring points, but
also the attributes to be considered, as well as the values desired for them.

RQ2 Capture and process the information required for monitoring. This infor-
mation comes from different event and data sources. For instance, in the previous
example, positioning information of the aeroplane can be obtained by connecting
to data providers such as Flighradar24 or Flightstats. In case of road transport,
it could be obtained from a GPS on-board device. In these cases, monitoring
needs information external to the BPMS.

426 C. Cabanillas et al.

RQ3 Normalise the information captured. Relying on data sources implies that
the information may arrive in different formats. Consequently, it must be first
normalised in order to be jointly processed and generate valuable information.

RQ4 Process event and data information. Then, all the data must be processed
and computed against the desired values configured in the executable model.

RQ5 Identify and notify problems. It is necessary to learn how to identify prob-
lems or abnormal behaviour as soon as they occur, and trigger proper alerts. Such
an alerting mechanism can range from a yes/no notification indicating whether
the behaviour is acceptable or not, to the detection of degrees of deviations, or
root-cause analysis providing details of the problem.

RQ6 Develop automatic support. Support to deal with the previous challenges
must be implemented and integrated into existing BPMSs.

3 Framework

Next, we describe the main components of a framework to monitor task execution
and signal potential misbehaviours, addressing the aforementioned requirements.
First, in a modelling tool, processes are modelled and tasks are annotated with
predefined monitorable attributes (RQ1). Our approach for task annotation is
described in Section 4. Second, a process engine calls external services to exe-
cute certain types of tasks, thus capturing the required data published by these
sources (RQ2). This is available in engines such as Activiti. Third, a Complex
Event Processing (CEP) system [10] is responsible for normalising events from
different event sources, aggregating them to meaningful business events, and
correlating them to task instances (RQ3). It must be capable of computing exe-
cution information against the specification set in the process model, too (RQ4),
e.g., [3]. Fourth, a deviation prediction system aims at evaluating whether the
task execution evolves as expected or deviates, and at informing proper partic-
ipants (RQ5). Our approach to deal with this issue is explained in Section 5.
The implementation of such a framework leads to the fulfilment of RQ6.

4 Definition of Monitorable tasks

In order to enable monitoring (RQ1), we propose to extend each task that needs
to be monitored in a process model (hereinafter referred to as monitorable tasks)
with a list of data attributes T = Tc ∪ Tm ∪ Tf divided into three groups: (i)
constrained attributes Tc, for which each attribute tc has an expected initial t̄Ic
and final t̄Fc parameter, along with a threshold α; (ii) monitored attributes Tm,
for which neither an initial nor a final parameter is meant to be provided, yet
are monitored; and (iii) free attributes Tf , not monitored.

Constrained attributes are a subclass of monitored attributes, which are a spe-
cialisation of free attributes. Constrained attributes and monitored attributes
can be continuously monitored if and only if they belong to numeric types, or

Predictive Task Monitoring for Business Processes 427

tuples of numeric types. In the latter case, the tuples must specify points that be-
long to an Euclidean space, e.g., longitude-latitude pairs. If the aforementioned
conditions do not hold, continuous monitoring cannot be guaranteed. However,
the initial and final parameters of constrained attributes can be confronted with
the actual values, at the beginning and the end of the execution. We assume that
the event sources (resp. external services) and their definition of event types are
known. For instance, we know which values of an event indicate the position
(e.g., longitude and latitude) and can use those to define rules.

5 Predictive Monitoring as a Classification Problem

Monitoring the execution of a task and checking its correct evolution corresponds
to searching for possible anomalies in its behaviour. The current status of the
execution is derived from the analysis of the task-related events. The gathered
data are thus classified as safe or anomalous, i.e., whether they possibly lead to a
successful completion or not. Such classification is based on a supervised learning
model. To this extent, our approach adopts Support Vector Machines (SVMs).

SVMs [19,7] classify an input object on the basis of its position in a numeric
hyperspace. The hyperspace dimensions depend on the objects’ features that
the analyst specifies as relevant for the classification. A decision hyperplane is
adopted by SVMs to separate the hyperspace into two regions, thus dividing the
objects into the classes to be assigned. SVMs are supervised learning models in
that they learn how to define the decision hyperplane on the basis of previous
data. The objective of the SVM is therefore to determine the decision hyperplane
which is capable of correctly classifying an input object. The learning phase of
the SVM is conducted on the basis of labelled input, i.e., a set of input objects
that were already classified in advance. SVMs build the hyperplane according
to specific parameters, defining the degree of acceptance of outliers (ν) and how
fitting the hyperplane has to be with respect to the pre-classified objects (γ).
The learning phase is thus associated with an evaluation phase, where the SVM
is trained using different combinations of such parameters (grid search). The
best tuning is calibrated on the basis of key factors that the analyst decides.

The training phase of SVMs is usually the most expensive in terms of com-
putational effort, whereas the run-time classification is known to be fast. This
is due to the compact representation of the hyperplane by means of its so-called
support vectors, which are typically sparse. In fact, we opted for SVMs be-
cause not only are they a widely used tool for classification problems explicitly
addressing the anomaly detection, but they also allow for a fast classification
at run-time, which is a key factor in our scenario (RQ5). In our approach, a
different specialised classifier is adopted for each monitorable task template.

5.1 Event Dynamic Feature Extraction

Our input objects for the classification are events and the evolution of a task
execution is reflected in the history of events. SVMs classify single objects in

428 C. Cabanillas et al.

a fixed-dimension space. Therefore, we adopted the following sub-sampling ap-
proach, aiming at representing the evolution of every monitored attribute as a
scalar dimensionless value. In particular, this value corresponds to a normalised
variation along a time interval. Each value represents one coordinate of the point
in the feature hyperspace. The number of dimensions is thus fixed. Hence, the
resulting point represents the dynamic change, and can be processed by the clas-
sifier, thus bridging the static analysis of single points in a feature space and the
dynamicity of the task execution environment.

Let τ and τ ′ be two points in time, where τ ′ > τ , and tc(τ) (resp. tm(τ)) the
current value at time τ of a constrained attribute (resp. a monitored attribute).
τ and τ ′ define an interval Iτ > 0 during which the events are collected: τ ′ =
τ+Iτ . We define a new variable for monitored attribute, named interval progress
(ΔP�tm), as follows:

ΔP�tm =
Δ (tm(τ), tm(τ ′))

avg {tm(τ), . . . , tm(τ ′)}
The feature representing the rate of change of the monitored attribute is com-
puted in terms of the increment during the time interval, Δ (tm(τ), tm(τ ′)),
scaled by the average value during the interval, avg {tm(τ), . . . , tm(τ ′)}. We spec-
ify here that Δ(·, ·) abstracts from the calculations needed to compute it. In the
simplest case, it merely represents the subtraction between the passed values.
Note, however, if the variables refer, e.g., to geographic coordinates, the incre-
ment has to be computed as a geodesic distance.

Constrained attributes are provided with initial and final values. The monitor-
ing can thus be done on the basis of two more increments, with respect to (i) the
final value, Δ

(
t̄Fc , tc(·)

)
, and (ii) the initial value, Δ

(
t̄Ic , tc(·)

)
. Therefore, we

define two new variables for constrained attributes, named progress from start

(ΔP |�tc) and progress to end (ΔP�|tc), as follows:

ΔP |�tc =
Δ
(
t̄Fc , tc(τ

′)
)−Δ

(
t̄Fc , tc(τ)

)
Δ (t̄Ic , t̄

F
c)

ΔP�|tc =
Δ
(
t̄Ic , tc(τ

′)
)−Δ

(
t̄Ic , tc(τ)

)
Δ (t̄Ic , t̄

F
c)

This reflects a perspective on the entire execution, as opposed to the
interval progress, which considers an interval-focused view. The classification is
hence made after events have been collected for Iτ time units. As a consequence,
the anomaly refers to a single interval in time, whereas our approach aims at
signalling whether the whole task is going to be disrupted. Consequently, there
could be the need to wait more than one anomaly detection, before raising an
alert. We indicate the number of consecutive anomaly detections as r.

The approach described so far covers not only the evolution of values for which
a constraint was imposed at design time, but also for unconstrained monitorable
attributes. This results in a more comprehensive observation of the evolution of
task enactment.

Predictive Task Monitoring for Business Processes 429

5.2 Training the Classifier

Training data are gathered in our approach from a repository of event logs, in
the form of stored sequences of events. Logs are pre-labelled as compliant or non-
compliant according to the initial and final values for the constrained attributes:
if and only if they are within the specified threshold for the activity, logs are
considered as compliant.

The training of the SVM must be done not only based on its own parameters
(ν and γ), but also with regards to the interval length Iτ and the number of
sequential anomaly detections to accumulate before raising an alert, r. Section 6
exemplifies this joint training with a real use case.

As said, the objective of the training phase is to find the best tuning of
parameters, in order to attain the best performance. In our case, the key drivers
are accuracy and time-to-predict. Accuracy is assessed by Precision P = tp

tp+fp ,

Recall R = tp
tp+fn and F-score F = 2 · P·RP+R [14]. Respectively, true positives (tp)

and false positives (fp) represent correct and incorrect classifications for tasks
that are not respecting the constraints; true negatives (tn) and false negatives
(fn) represent correct and incorrect classifications for tasks that are completing
their execution according to the expected behaviour. Precision indicates the
fraction of predicted anomalies that belong to the log of a misbehaving task.
Recall denotes the fraction of misbehaviours that is classified as such. Finally,
F-score is the harmonic mean of Precision and Recall measures. The time-to-
predict (the second key driver in our approach), is computed as Iτ · r.

6 Evaluation

To study the effectiveness of our approach, we consider a real case study based
on the monitorable task of airfreight transportation, as the one described in Sec-
tion 2. In particular, we focus on alerting diversions, i.e., the signal to be raised
when the aeroplane is going to land in an unplanned airport. This translates to
the condition of violating the final coordinates of aeroplane coordinates, having
the aeroplane position outside the landing airport.

In order to train the classifier, we collected 119 logs of events reporting flight
data in the U.S. during May 2013 (98 regular flights, 21 diverted). Data were
gathered from Flightstats, a data provider for air traffic information. Specifi-
cally, we automatically labelled as anomalous those traces ending in positions
far from the expected destination. The remaining were compliant to the execu-
tion. The constrained attributes were aeroplane position (geographical coordi-
nates), and the monitored attributes were the aeroplane altitude and aeroplane
speed. Therefore, the classification was based on: (i) change rates in gained dis-
tance from the take-off airport (progress from start) and to the landing airport
(progress to end), and (ii) interval-variations in (a) covered distance, (b) speed,
and (c) altitude (interval progress) For the implementation, we adopted Esper
as the CEP system and the Scikit-learn Python library’s SVM as the automated
classifier.

430 C. Cabanillas et al.

We performed a grid search in order to optimise the parameters described
in Section 5. The ranges for parameter tuning were: (i) Iτ ∈ {3, . . . , 30} min;
(ii) r ∈ {1, . . . , 15}; (iii) ν ∈ {0.01, . . . , 0.25}; (iv) γ ∈ {2−10, 2−9, . . . , 23}. The
best combination turned out to be based on 7-minute-long intervals, with 3
consecutive anomalies considered as eligible for an alert. The best performing ν
and γ parameters, in this configuration, were resp. 0.01 and 0.5. Remarkably,
the most accurate tuning was also among the most rapid in terms of time to
predict (21 minutes). Test data consisted of 192 logs from Flightstats differing
from the training set (170 regular flights, 22 diverted). The best F-score was
obtained again with the 7-minute-long-intervals configuration: 87.8%.

The advantage for the process stakeholders is reflected by the possibility to
be aware of a possible process disruption ahead of time. As explained in Sec-
tion 2, this leads to increased possibilities to recover the process and, possibly,
to tangible savings. Therefore, we analysed (i) the difference in time between
the planned arrival and the diversion alert raising, and (ii) the difference in time
between the actual landing (in an unexpected location) and the alert raising.
These measures assess the time gained by the LSP to reorganise the road trans-
port, originally assigned to pick up cargo at the planned arrival airport. The
response time gained for the predicted diversions, indicates that the approach
is on average able to raise an alert 104 minutes before the originally scheduled
landing time, and 64 minutes before the actual landing time. This is a significant
gain in comparison to the case where LSPs have to wait for a notification of the
diversion, which sometimes occurs up to two hours past the actual landing time.

7 Related Work

To the best of our knowledge, there is not any framework for predictive task
monitoring in business processes. However, some of the requirements described
in Section 2 have been (partially) addressed. Regarding RQ1, a set of patterns
describing relations and dependencies of events in processes that have to be
captured in process models to observe the overall process context have been in-
troduced [4]. Some approaches have also focused on the representation of CEP
in business processes [9,11]. Continuous activities are typically defined in the
logistics domain [6,12,16]. The approaches dealing with process monitoring usu-
ally aim at checking run-time compliance against rules [2,5,17,20]. They capture
(RQ2) and process (RQ4) events related to the process, but external sources
are disregarded and, thus, RQ3 too. Unlike in our approach, rule violations are
detected and notified when they occur but predictive capabilities are missing
(RQ5). Further results in the application of CEP for Business Activity Mon-
itoring (BAM) [13,8] present similar features as those related to compliance.
Consequently, the existing automatic support referred by RQ6 is partial.

8 Conclusion

In this paper, we presented a framework for monitoring the progress of task
execution and predicting potential problems. To implement such a framework,

Predictive Task Monitoring for Business Processes 431

an approach to configure monitorable tasks and a supervised learning model
to detect behavioural deviations were introduced. Tests conducted on real data
showed evidence of accuracy and timeliness in the misbehaviour detection.

We aim to extend our evaluation using different task types and event informa-
tion, and to investigate the automatic definition and adjustment of the thresholds
for safe task execution to improve the classification and alerting mechanisms.

References

1. Appel, S., Frischbier, S., Freudenreich, T., Buchmann, A.: Event Stream Processing
Units in Business Processes. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013.
LNCS, vol. 8094, pp. 187–202. Springer, Heidelberg (2013)

2. Awad, A., Decker, G., Weske, M.: Efficient Compliance Checking Using BPMN-Q
and Temporal Logic. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008.
LNCS, vol. 5240, pp. 326–341. Springer, Heidelberg (2008)

3. Backmann, M., Baumgrass, A., Herzberg, N., Meyer, A., Weske, M.: Model-Driven
Event Query Generation for Business Process Monitoring. In: Lomuscio, A.R.,
Nepal, S., Patrizi, F., Benatallah, B., Brandić, I. (eds.) ICSOC 2013. LNCS,
vol. 8377, pp. 406–418. Springer, Heidelberg (2014)

4. Barros, A., Decker, G., Grosskopf, A.: Complex Events in Business Processes. In:
Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 29–40. Springer, Heidelberg
(2007)

5. Birukou, A., et al.: An Integrated Solution for Runtime Compliance Governance
in SOA. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010.
LNCS, vol. 6470, pp. 706–707. Springer, Heidelberg (2010)

6. Cabanillas, C., Baumgrass, A., Mendling, J., Rogetzer, P., Bellovoda, B.: Towards
the Enhancement of Business Process Monitoring for Complex Logistics Chains.
In: Lohmann, N., et al. (eds.) BPM 2013 Workshops. LNBIP, vol. 171, pp. 305–317.
Springer, Heidelberg (2013)

7. Cortes, C., Vapnik, V.: Support-Vector Networks. Machine Learning 20(3),
273–297 (1995)

8. Dahanayake, A., Welke, R., Cavalheiro, G.: Improving the Understanding of BAM
Technology for Real-Time Decision Support. IJBIS 7(1) (December 2011)

9. Decker, G., Großkopf, A., Barros, A.P.: A Graphical Notation for Modeling Com-
plex Events in Business Processes. In: EDOC, pp. 27–36. IEEE Computer Society
(2007)

10. Herzberg, N., Meyer, A., Weske, M.: An Event Processing Platform for Business
Process Management. In: Gasevic, D., Hatala, M., Nezhad, H.R.M., Reichert, M.
(eds.) EDOC, pp. 107–116. IEEE (2013)

11. Kunz, S., Fickinger, T., Prescher, J., Spengler, K.: Managing Complex Event Pro-
cesses with Business Process Modeling Notation. In: Mendling, J., Weidlich, M.,
Weske, M. (eds.) BPMN 2010. LNBIP, vol. 67, pp. 78–90. Springer, Heidelberg
(2010)

12. Liao, F., Wang, J.L., Yang, G.-H.: Reliable Robust Flight Tracking Control: an
LMI Approach. IEEE Trans. Control Systems Technology 10(1), 76–89 (2002)

13. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Process-
ing in Distributed Enterprise Systems. Addison-Wesley (2001)

14. Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)

432 C. Cabanillas et al.

15. Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst, W.M.P.: Moni-
toring Business Constraints with the Event Calculus. ACM TIST 5(1) (2013)

16. Pang, L.X., Chawla, S., Liu, W., Zheng, Y.: On Detection of Emerging Anomalous
Traffic Patterns Using GPS Data. Data & Knowledge Engineering (2013)

17. Thullner, R., Rozsnyai, S., Schiefer, J., Obweger, H., Suntinger, M.: Proactive
Business Process Compliance Monitoring with Event-Based Systems. In: EDOC
Workshops. EDOCW 2011, pp. 429–437. IEEE Computer Society, Washington,
DC (2011)

18. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time Prediction Based on
Process Mining. Inf. Syst. 36(2) (2011)

19. Vapnik, V.: Estimation of Dependences Based on Empirical Data. Springer (1982)
20. Weidlich, M., Ziekow, H., Mendling, J., Günther, O., Weske, M., Desai, N.: Event-

Based Monitoring of Process Execution Violations. In: Rinderle-Ma, S., Toumani,
F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 182–198. Springer, Heidelberg
(2011)

Author Index

Abe, Mari 416
Allmann, Christian 301
Armas-Cervantes, Abel 267

Baião, Fernanda Araujo 400
Baldan, Paolo 267
Baumgrass, Anne 424
Becker, Michael 301
Berner, Martin 383
Blair, Gordon 134
Böhm, Klemens 301
Bokermann, Dennis 357
Brull, Enric 168

Cabanillas, Cristina 424
Carmona, Josep 67
Casati, Fabio 51
Conforti, Raffaele 101

Daniel, Florian 51
Dasgupta, Gaargi Banerjee 317
Debois, Søren 18
Dees, Marcus 250
De Giacomo, Giuseppe 1
de Leoni, Massimiliano 250
De Masellis, Riccardo 1
De Weerdt, Jochen 408
Di Ciccio, Claudio 34, 424
Dorn, Christoph 366
Dumas, Marlon 101, 267
Dustdar, Schahram 349, 366

Engels, Gregor 357

Fahland, Dirk 283

Gal, Avigdor 200
Garćıa-Bañuelos, Luciano 101, 267
Garćıa-López, Pedro 168
Gerth, Christian 357
Ghose, Aditya 317
Gilani, Wasif 134
Grasso, Marco 1
Graupner, Enrico 383

Hildebrandt, Thomas 18

Jegadeesan, Harshavardhan 383

Kasneci, Gjergji 234
Klinkmüller, Christopher 84
Kudo, Michiharu 416

Lama, Manuel 118
Lanz, Andreas 217
La Rosa, Marcello 101
Lehnert, Martin 151
Leopold, Henrik 84
Linhart, Alexander 151
Lohmann, Niels 283
Ludwig, André 84

Maedche, Alexander 383
Maggi, Fabrizio Maria 1, 34, 392
Mandelbaum, Avishai 200
Mendling, Jan 34, 84, 424
Mısır, Mustafa 67
Molka, Thomas 134
Mondéjar, Rubén 168
Montali, Marco 1
Mrasek, Richard 301
Mucientes, Manuel 118
Mülle, Jutta 301
Murguzur, Aitor 349

Osterweil, Leon J. 366

Pairot, Carles 168

Radloff, Michael 184
Rashid, Awais 134
Redlich, David 134
Reichert, Manfred 217
Reijers, Hajo A. 392
Ribeiro, Joel 67
Richetti, Pedro H. Piccoli 400
Rodŕıguez, Carlos 51
Rogge-Solti, Andreas 234
Röglinger, Maximilian 151
Rulle, Andreas 333

434 Author Index

Santoro, Flávia Maria 400

Schleicher, Johannes M. 349

Schultz, Martin 184

Sebag, Michele 67

Senderovich, Arik 200

Siegeris, Juliane 333

Sindhgatta, Renuka 317

Slaats, Tijs 18, 392

Su, Jianwen 374

Sun, Yutian 374

Trujillo, Salvador 349
Truong, Hong-Linh 349

vanden Broucke, Seppe 408
van der Aalst, Wil M.P. 250
Vázquez-Barreiros, Borja 118

Weber, Ingo 84
Weidlich, Matthias 200

Yang, Jian 374

	Preface
	Organization
	Table of Contents
	Declarative Processes
	Monitoring Business MetaconstraintsBased on LTL and LDL for Finite Traces
	1 Introduction
	2 LTLf and LDLf
	3 LDLf Automaton
	4 Run-time Monitoring
	5 Runtime Monitors in LDLf
	6 Monitoring Declare Constraints and Metaconstraints
	7 Implementation
	8 Conclusion
	References

	Hierarchical Declarative Modelling withRefinement and Sub-processes
	1 Introduction
	1.1 Related Work

	2 DCR Graphs
	3 Hierarchy and Refinement
	3.1 Refinement
	3.2 Subprocesses

	4 Foundations
	4.1 Composition and Interfaces
	4.2 Hi-DCR graphs

	5 Implementation
	6 Conclusion
	6.1 Future Work

	References

	Discovering Target-Branched Declare Constraints
	1 Introduction
	2 Background on Mining Declarative Process Models
	3 Target-Branched Declare
	3.1 Set-Dominance
	3.2 Support Monotone Non-decrement w.r.t. Set-Dominance

	4 Discovery
	4.1 The Knowledge Base
	4.2 Building the Knowledge Base
	4.3 Querying the Knowledge Base
	4.4 Pruning the Returned Constraints

	5 Experiments and Evaluation
	5.1 Evaluation Based on Simulation
	5.2 Evaluation Based on Real Data

	6 Related Work
	7 Conclusion
	References

	User-Centered Process Approaches
	Crowd-Based Miningof Reusable Process Model Patterns
	1 Introduction
	2 Background and Problem Statement
	2.1 Reference Process Models: Data Mashups
	2.2 Crowdsourcing
	2.3 Problem Statement and Hypotheses

	3 Crowd-Based Pattern Mining
	3.1 Requirements
	3.2 Approach
	3.3 Algorithm
	3.4 Task design

	4 Evaluation and Comparison
	4.1 Evaluation Metrics
	4.2 Experiment Design and Dataset
	4.3 Results and Interpretation

	5 Discussion and Analogy with BPM
	6 Related Work
	7 Conclusion
	References

	A Recommender System for Process Discovery
	1 Introduction
	2 Related Work
	2.1 Evaluation of Process Discovery Algorithms
	2.2 Collaborative Filtering
	2.3 Information Retrieval

	3 OverallFramework
	3.1 Features
	3.2 Techniques
	3.3 Measures
	3.4 Recommending the Top-

	4 Implementation
	4.1 Evaluation Framework
	4.2 Recommender System

	5 Experiments
	6 Parameters Setting
	7 Conclusions and Future Work
	References

	Listen to Me: Improving Process ModelMatching through User Feedback
	1 Introduction
	2 Foundations: Problem Illustration and Related Work
	2.1 Problem Illustration
	2.2 Related Work

	3 Information for User Feedback Analysis
	3.1 Indicator Definitions
	3.2 Applicability Assessment

	4 Word Similarity Adaptation
	5 Evaluation
	6 Conclusions and Future Work
	References

	Process Discovery
	Beyond Tasks and Gateways: Discovering BPMN Models with Subprocesses, Boundary Events and Activity Markers
	1 Introduction
	2 Background and RelatedWork
	2.1 Automated Discovery of Flat Process Models
	2.2 Automated Discovery of Hierarchical Process Models

	3 Identifying Subprocesses
	4 Identifying Boundary Events, Event Subprocesses and Markers
	5 Validation
	5.1 Datasets
	5.2 Setup
	5.3 Results

	6 Conclusion
	References

	A Genetic Algorithm for ProcessDiscovery Guided by Completeness,Precision and Simplicity
	1 Introduction
	2 ProDiGen: Process Discovery through a Genetic Algorithm
	2.1 Initialization
	2.2 Evaluation
	2.3 Selection
	2.4 Crossover
	2.5 Mutation
	2.6 Replacement
	2.7 Reinitialization

	3 Experimentation
	3.1 Logs
	3.2 Metrics
	3.3 Results

	4 Conclusions
	References

	Constructs CompetitionMiner: ProcessControl-Flow Discovery of BP-Domain Constructs
	1 Introduction
	2 Process Models and Event Logs
	3 State of the Art
	4 Constructs Competition Miner
	4.1 Footprint
	4.2 Suitability of Supported BP-Constructs
	4.3 Competition Algorithm

	5 Evaluation
	6 Conclusion
	References

	Integrative BPM
	Chopping Down Trees vs. Sharpening the Axe – Balancing the Development of BPM Capabilities with Process Improvement
	1 Introduction
	2 Theoretical Background and Requirements
	2.1 Business Process Management and Process Performance Measurement
	2.2 Project Portfolio Selection
	2.3 Value-Based Management

	3 Decision Model
	3.1 General Setting and Basic Assumptions
	3.2 Project Archetypes and Their Effects
	3.3 Integrating the Project Effects into the Objective Function

	4 Evaluation
	4.1 Feature Comparison
	4.2 Demonstration Example

	5 Conclusion and Outlook
	References

	Implicit BPM: A Business Process Platformfor Transparent Workflow Weaving
	1 Introduction
	2 Background
	2.1 BPM Integration
	2.2 Implicit Techniques

	3 Workflow Weaving
	3.1 Use Case
	models,
	controllers,
	view
	before, instead
	of,
	after.
	instead of
	After
	before
	After
	after
	3.2 MVC Pattern
	3.3 Crosscutting Interfaces
	3.4 DSL
	start
	trigger
	find or save)
	render
	perform

	4 Implicit BPM Approach
	4.1 Architecture
	4.2 Platform Life Cycle

	5 Related Work
	6 Conclusions
	References

	Modeling Concepts for Internal Controls in Business Processes – An Empirically Grounded Extension of BPMN
	1 Introduction
	2 Related Research and Empirical Results
	3 Research Approach
	4 BPMN+C – A BPMN Extension for Internal Controls
	4.1 Requirements for the PML Extension BPMN+C
	4.2 BPMN Meta-model Extension
	4.3 BPMN Notation Extension
	4.4 Application Example

	5 Evaluation
	5.1 Experimental Design
	5.2 Results of the Experiment

	6 Discussion
	7 Conclusion and Further Research
	References

	Resource and Time Management in BPM
	Mining Resource Scheduling Protocols
	1 Introduction
	2 Background
	3 Service Logs and the Protocol Mining Problem
	3.1 Service Logs
	3.2 Problem Statement

	4 Discovery of Resource Scheduling Protocols
	4.1 Mining Queueing Information from Service Logs
	4.2 DataMining Classifiers
	4.3 Queueing Heuristics

	5 Evaluation
	6 Related Work
	7 Conclusion
	References

	Dealing with Changes of Time-Aware Processes
	1 Introduction
	2 Related Work
	3 BasicNotions
	3.1 Time-Aware Processes
	3.2 Temporal Consistency of Time-Aware Processes

	4 Change Operations for Time-Aware Processes
	4.1 Basic Change Operations
	4.2 Applying Change Operations to Time-Aware Processes

	5 Analyzing the Effects of Change Operations
	6 Proof of Concept
	7 Conclusion
	References

	Temporal Anomaly Detection in Business Processes
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Anomaly Detection in Business Processes
	4.1 Detection of Outliers
	4.2 Detection of Measurement Errors

	5 Evaluation
	6 Conclusion
	References

	Process Analytics
	A General Framework for Correlating Business Process Characteristics
	1 Introduction
	2 The Framework
	3 Evaluation with a Real-Life Case Study
	4 Conclusion
	References

	Behavioral Comparison of Process ModelsBased on Canonically Reduced Event Structures
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Petri Nets
	3.2 Deterministic and Branching Processes
	3.3 Event Structures

	4 Comparison of Process Models
	4.1 Canonicity
	4.2 Finite Representation of Cyclic Behavior
	4.3 Comparison

	5 Conclusions and Future Work
	References

	Where Did I Go Wrong?
	1 Introduction
	2 Preliminaries
	2.1 Petri Nets
	2.2 Model Checking

	3 Representing Paths by Made Choices
	3.1 The Problem: Long Paths = Big Problems
	3.2 The Solution: Don’t Report the Obvious
	3.3 Experimental Results

	4 Further Reduction: Remove Spurious Conflicts
	4.1 Motivation and Formalization
	4.2 Experimental Results

	5 Combining Paths and Concurrency
	5.1 Motivation and Formalization
	5.2 Translating Paths into Distributed Runs
	5.3 Applying the Conflict Reduction to Distributed Runs

	6 Cropping Distributed Runs
	7 Concluding Remarks
	7.1 Summary
	7.2 RelatedWork
	7.3 FutureWork

	References

	Industry Papers
	User-Friendly Property Specification andProcess Verification – A Case Study withVehicle-Commissioning Processes
	1 Introduction
	2 Scenario and Requirements
	3 Notation
	4 Property Specification
	4.1 Properties and Property Patterns for Commissioning Processes
	4.2 Database of Context Knowledge
	4.3 Pattern Instances

	5 Verification
	5.1 Data Reconciliation
	5.2 Model Checking

	6 Implementation
	7 Empirical Evaluation
	7.1 Functional Evaluation
	7.2 Expert Interviews

	8 Related Work
	9 Conclusions
	References

	Analysis of Operational Data for ExpertiseAware Staffing
	1 Introduction
	2 IT Incident Management Process
	2.1 Concepts in the Service System
	2.2 Service System Model for Staffing

	3 Data Setting and Parameters
	3.1 Setting
	3.2 Model Parameters
	3.3 Implementation

	4 Empirical Study: Service Time Analysis and Impact on Staffing Solution
	4.1 Impact of Work Complexity on Service Time
	4.2 Impact of Work Complexity and Expertise of Worker on Service Time
	4.3 Impact of Work Complexity, Priority and Expertise of Worker
	on Service Time
	4.4 Observations and Dispatching Recommendations

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References

	From a Family of State-Centric PAIS to a Configurable and Parameterized Business Process Architecture
	1 Overview
	2 Introduction of the Product Data MDM Use Case2
	3 Modeling of an SCP in BPMN
	4 Configuration and Parameterization of the Business Process Architecture
	5 Related Work
	6 BPM Use Cases
	7 Conclusion
	References

	Short Papers: Process Enabled Environments
	DRain: An Engine for Quality-of-Result DrivenProcess-Based Data Analytics
	1 Introduction
	1.1 Motivation, Contributions and Paper Structure

	2 Related Work
	3 DRain Building Blocks
	3.1 Modeling
	3.2 Selection, Execution, Processing and Configuration

	4 Evaluation
	5 Conclusion and Future Work
	References

	Use Your Best Device!Enabling Device Changes at Runtime
	1 Introduction
	2 Device Modeling
	3 Enabling Device Changes
	4 Related Work
	5 Conclusion and Future Work
	References

	Specifying Flexible Human Behavior in Interaction-Intensive Process Environments
	1 Introduction
	2 Related Work
	3 Specifying Human Flexible Behavior
	4 A Hospital Patient Handling Use Case
	5 Conclusions and Outlook
	References

	Separating Execution and Data Management: A Key to Business-Process-as-a-Service (BPaaS)
	1 Introduction
	2 Motivations
	3 Self-guided Artifacts
	4 Conclusions
	References

	Assessing the Need for Visibility of Business Processes – A Process Visibility Fit Framework
	1 Introduction
	2 The Concept of Process Visibility
	3 Process Visibility Requirements
	4 Technological Capabilities for Process Visibility
	5 The Process Visibility Fit
	6 Conclusion
	References

	Short Papers: Discovery and Monitoring
	The Automated Discovery of Hybrid Processes
	1 Introduction
	2 Semantics of a Hybrid Model
	3 Discovering Hybrid Process Models
	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Declarative Process Mining: Reducing Discovered Models Complexity by Pre-Processing Event Logs
	1 Introduction
	2 Background and Related Work
	3 A Method to Abstract Activities through Semantic Relations
	4 Preprocessing and Mining Event Logs with Activity Abstractions
	5 Case Study
	6 Evaluation
	7 Conclusion and Future Work
	References

	SECPI: Searching for Explanationsfor Clustered Process Instances
	1 Introduction
	2 Trace Clustering
	2.1 State of the Art
	2.2 Problem Statement

	3 Instance-Level Explanations with SECPI
	3.1 Approach
	3.2 Algorithm SECPI

	4 Conclusion
	References

	Business Monitoring Frameworkfor Process Discovery with Real-Life Logs
	1 Introduction
	2 Related Work
	3 Process Discovery from Real-Life Logs
	3.1 Definition of Monitoring Context
	3.2 Algorithm of Monitoring Framework

	4 Experiment with Real-Life Logs
	5 Conclusion
	References

	Predictive Task Monitoringfor Business Processes
	1 Introduction
	2 Predictive Monitoring of Continuous Tasks in Processes
	3 Framework
	4 Definition of Monitorable tasks
	5 Predictive Monitoring as a Classification Problem
	5.1 Event Dynamic Feature Extraction
	5.2 Training the Classifier

	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	Author Index

