
Chapter 9
Quasistatic Problems

This chapter deals with the study of quasistatic contact problems with a nonlocal
Coulomb friction law. We first consider that the unilateral contact is modeled by
the Signorini conditions. In this case, a variational formulation (see [7]) involves
two inequalities with the simultaneous presence of the displacement field and of
the velocity field. More precisely, the friction law generates an inequality with the
velocity field as test function while the Signorini conditions lead to an inequality
with the displacement field as test function. Applying Theorem 4.19 (p. 77), a known
existence result (see [7]) is provided. We then prove, following the work [5],
convergence results for a space finite element approximation and an implicit time
discretization scheme of this problem. The last section is devoted, as in the work [6],
to the study of a boundary control problem related to a quasistatic bilateral contact
problem with nonlocal Coulomb friction.

Concerning the study of quasistatic contact problems in elasticity, we mention
the existence and/or uniqueness results obtained, in the case of a normal compliance
law, by Andersson [3] and Klarbring et al. [9], and, in the case of a local or nonlocal
Coulomb law with unilateral contact, by Cocu et al. [7], Andersson [4], Cocou
and Roca [8], Rocca [14]. For the study of quasistatic bilateral contact problems
involving viscoelastic or viscoplastic materials, we refer to Shillor and Sofonea [15],
Shillor et al. [16] and Amassad [1].

9.1 Classical and Variational Formulations

The quasistatic evolutionary of an elastic body in unilateral contact with a rigid
foundation is considered. We suppose that the volume forces f D f .x; t / and the
surface tractions g D g.x; t / are applied so slowly that the inertial forces may be
neglected.
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192 9 Quasistatic Problems

With the notation adopted in Sect. 8.1, the classical formulation of the quasistatic
problem is obtained, as in the static case, by considering the equilibrium equations,
the constitutive equation, the kinematic relation, the boundary conditions, and the
initial condition.

Problem .Q/: Find a displacement field u D u.x; t / W � � Œ0; T � ! R
d such that

� div � D f in � � .0; T / ; (9.1)

� D � .u/ D A � ; � D 1

2
.ru C ruT / in � � .0; T / ; (9.2)

u D 0 on �0 � .0; T / ; (9.3)

� � � D g on �1 � .0; T / ; (9.4)

u� � 0 ; �� � 0 ; u��� D 0 on �2 � .0; T / ; (9.5)

j� � j � �j�� j and

� j� � j < �jR�� j ) Pu� D 0

j� � j D �jR�� j ) 9	 � 0 ; Pu� D �	� �

on �2 � .0; T / ;

(9.6)

u.0/ D u0 in � : (9.7)

where A D .aijkh/ is the fourth order tensor of elasticity with the elasticity
coefficients satisfying the symmetry and ellipticity conditions:

aijkh D ajihk D akhij ; 81 � i; j; k; h � d ;

9 ˛ > 0 tel que aijkh
ij 
kh � ˛j�j2 ; 8� D .
ij / 2 R
d2

: (9.8)

In order to derive a variational formulation of the problem (9.1)–(9.7), we
suppose that

f 2 W 1;2.0; T I .L2.�//d / ;

g 2 W 1;2.0; T I .L2.�1//d / ;

aijkl 2 L1.�/; i; j; k; l D 1; : : : ; d;

� 2 L1.�2/; � � 0 a.e. on �2

R W H �1=2.�2/ ! L2.�2/ is a linear continuous operator. (9.9)

We shall use the notation

V D fv 2 .H 1.�//d I v D 0 a.e. on �0g ;

K D fv 2 V I v� � 0 a.e. on �2g ;

a.u; v/ D
Z
�

� .u/�.v/ dx 8u; v 2 V : (9.10)
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Let F 2 W 1;2.0; T IV / where, for all t 2 Œ0; T �, F .t/ is the element of V
defined by

.F .t/; v/ D
Z
�

f .t/ � v dx C
Z
�1

g.t/ � v ds 8v 2 V ; (9.11)

where we have denoted by .�; �/ the inner product over the space V .
We also put

W D fw 2 V I div � .w/ 2 .L2.�//d g : (9.12)

For simplicity, we denote by h�; �i the duality pairing between .H �1=2.�2//d and
.H 1=2.�2//d or between H �1=2.�2/ and H 1=2.�2/. Then, as we have precise in
Sect. 8.1, we have

h� .w/ � �; vi D
Z
�

� .w/�.Nv/ dx C
Z
�

div � .w/Nv dx 8w 2 W ; 8v 2 .H 1=2.�2//d

where Nv 2 .H 1.�//d satisfies Nv D v almost everywhere on �2.
Therefore, we define the normal component of the stress tensor ��.w/ 2

H �1=2.�2/ by

h��.w/; vi D
Z
�

� .w/�.Nv/ dx C
Z
�

div � .w/Nv dx 8w 2 W ; 8v 2 H 1=2.�2/

where Nv 2 .H 1.�//d satisfies Nv� D 0 and Nv� D v a.e. on �2.
It is easy to verify that, for any w 2 W , the above definitions of � .w/ � � and

��.w/ are independent on the choice of Nv.
For all‚ 2 V , we introduce the functional Qj‚ W K .‚/ � V ! R defined by

Qj‚.u; v/ D
Z
�2

�jR��.u/j jvt j ds 8u 2 K .‚/ 8v 2 V ; (9.13)

where

K .‚/ D fw 2 K I a.w; / D .‚; / ; 8 2 V such that  D 0 a.e. on �2g :

A variational formulation of this problem (see [7]) involves two inequalities and
the simultaneous presence of the displacement field and of the velocity field. More
precisely, the friction law generates an inequality with the velocity field as test
function while the Signorini conditions lead to an inequality with the displacement
field as test function. So, we shall consider the following weak formulation of
Problem .Q/.
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Problem .Q/: Find u 2 W 1;2.0; T IV / such that

8̂̂
<
ˆ̂:

u.0/ D u0 ; u.t/ 2 K 8t 2 Œ0; T �

a.u.t/; v � Pu.t// C QjF .t/.u.t/; v/ � QjF .t/.u.t/; Pu.t//

� .F .t/; v � Pu.t// C h��.u.t//; v� � Pu�.t/i 8 v 2 V a.e. t 2 .0; T /

h��.u.t//; z� � u�.t/i � 0 8 z 2 K ; 8 t 2 . 0; T / :
(9.14)

Remark 9.1. If u verifies the first inequality of Problem .Q/, then u.t/ 2 K .F .t//,
8t 2 Œ0; T �.

We suppose that the initial displacement u0 2 K satisfies the following
compatibility condition

a.u0; v/ C QjF .0/.u0; v/ � .F .0/; v/ 8 v 2 K : (9.15)

In order to show that the classical formulation .Q/ and the variational formula-
tion .Q/ are equivalent, we first prove the following result.

Lemma 9.1. Let Qu 2 K \ W be a regular function. Then, the following two
conditions are equivalent:

Qu� � 0 ; ��. Qu/ � 0 ; Qu� ��. Qu/ D 0 on �2 (9.16)

h��. Qu/; z� � Qu�i � 0 8z 2 K : (9.17)

Proof. If the unilateral contact conditions (9.16) hold, then we have

h��. Qu/; z� � Qu�i D h��. Qu/; z�i � h��. Qu/; Qu�i D h��. Qu/; z�i � 0 8z 2 K :

Conversely, if (9.17) is satisfied, then, by taking z D 0 and z D 2u, we obtain

h��. Qu/; Qu�i D 0 ; (9.18)

and hence, by the inequality (9.17), we get

h��. Qu/; z�i � 0 8z 2 K : (9.19)

Finally, from the relations (9.18), (9.19) and the definition ofK , we conclude the
proof. ut

Following the standard procedure, we derive the next result.

Theorem 9.1. The mechanical problem .Q/ is formally equivalent to the weak
formulation .Q/ in the following sense:

(i) If u is a sufficiently smooth function which verifies the mechanical problem
(9.1)–(9.7), then u is a solution of the variational problem (9.14).
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(ii) If u is a regular solution of the variational problem (9.14), then u verifies
(9.1)–(9.7) in the distributional sense.

Proof. For simplicity, we shall omit the variable t .

(i) Multiplying Eq. (9.1) by v � Pu with v 2 V and integrating by parts over �, we
obtain

a.u; v � Pu/ �
Z
�

� � �.v � Pu/ ds D
Z
�

f .v � Pu/ dx 8v 2 V ;

and so, by using (9.3) and (9.4), we get

a.u; v�Pu/�
Z
�2

.��.v��Pu�/C� � .v� �Pu� // ds D .F ; v�Pu/ 8v 2 V : (9.20)

Hence, for v D  C Pu with  2 V such that  D 0 a.e. on �2, we deduce that
u 2 K .F /.

On the other hand, the Coulomb friction law (9.6) implies

QjF .u; v/� QjF .u; Pu/C
Z

�2

� � .v� � Pu� / ds � 0 8v smooth function : (9.21)

Indeed, let us denote E D �jR�� j.jv� j � j Pu� j/ C � � .v� � Pu� /.
If j� � j < �jR�� j, then Pu� D 0, and hence

E � �j� � j jv� j C �jR�� j jv� j � 0 :

If j� � j D �jR�� j, then we have Pu� D �	� � , and so

E D � � v� C j� � j jv� j � 0 :

Combining (9.20) and (9.21), we deduce that u verifies the first inequality
of (9.14).

The second inequality of (9.14) is obtained from (9.5) and Lemma 9.1 for
Qu D u.

(ii) If we take v D Pu ˙' in the first inequality of Problem .Q/, with ' 2 .D.�//d

and we apply Green’s formula (8.7), then we obtain (9.1) in the distributional
sense.

It is immediate, from Lemma 9.1 and the second inequality of (9.14), that
the Signorini contact conditions (9.5) are satisfied.

In order to obtain (9.4), we multiply the relation (9.1) by v � Pu with v 2 V ,
and so, by integrating by parts and using the first inequality of (9.14), we obtain

QjF .u; v/ � QjF .u; Pu/ C
Z
�

.� � �/.v � Pu/ ds �
Z
�1

g.v � Pu/ ds

� h��.u/; v� � Pu�i 8v 2 V : (9.22)
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By choosing v D Pu ˙ ' with ' 2 .C 1.�//d and supp ' � �1, we deduce

Z
�1

..� � �/ � g/ � ' ds D 0;

that is the relation (9.4). Thus, the relation (9.22) becomes

QjF .u; v/ � QjF .u; Pu/ C
Z

�2

� � .v� � Pu� / ds � 0 8v 2 V : (9.23)

We now take v 2 V such that v� D ˙ı' with ı 2 RC, ' 2 .C 1.�//d and
supp ' � �2. As � � v� D ˙ı� �'� D ˙ı� �', we obtain

ı

Z
�2

.�jR�� j j'j ˙ � �'/ ds �
Z

�2

.�jR�� j j Pu� j C � � Pu� / ds � 0 8ı � 0

which gives

8̂̂
ˆ̂<
ˆ̂̂̂:

Z
�2

.˙� �'C �jR�� j j'j/ ds � 0

Z
�2

.� � Pu� C �jR�� j j Pu� j/ ds � 0

or, equivalently to

j� � j � �jR�� j (9.24)

and

� � Pu� C �jR�� j j Pu� j � 0 : (9.25)

It is easy to see that the relations (9.25) and (9.24) give

� � Pu� C �jR�� j j Pu� j D 0 : (9.26)

Indeed, if j� � j < �jR�� j, then, supposing that Pu� ¤ 0, it follows that
0 > � � Pu� C j� � j j Pu� j � 0, which is a contradiction. It follows that Pu� D 0.

If j� � j D �jR�� j, then it follows that 0 D � � Pu� C j� � j j Pu� j, and so, there
exists 	 > 0 such that Pu� D �	� � . Therefore, the friction conditions (9.6)
are satisfied and, by taking into account that u.0/ D u0 et u.t/ 2 K for all
t 2 Œ0; T �, we conclude the proof. ut

Using an implicit time discretization scheme (as in Sect. 4.3, p. 69), we obtain
the following sequence f.Q/i

ngiD0;1;:::;n�1 of incremental formulations.
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Problem .Q/i
n: Find uiC1 2 K iC1 such that

8<
:

a.uiC1; v � @ui / C QjF iC1 .uiC1; v/ � QjF iC1 .uiC1; @ui /

� .F iC1; v � @ui / C h��.uiC1/; v� � @ui
�i 8 v 2 V ;

h��.uiC1/; z� � uiC1
� i � 0 8 z 2 K

(9.27)

where K iC1 D K .F iC1/ and u0 D u0. By setting w D v�t C ui , we deduce that
the problem .Q/i

n is equivalent to the following problem . QQ/i
n.

Problem . QQ/i
n: Find uiC1 2 K iC1 such that

8<
:

a.uiC1; w � uiC1/ C QjF iC1 .uiC1; w � ui / � QjF iC1 .uiC1; uiC1 � ui /

� .F iC1; w � uiC1/ C h��.uiC1/; w� � uiC1
� i 8 w 2 V ;

h��.uiC1/; z� � uiC1
� i � 0 8 z 2 K :

(9.28)

In order to obtain an existence result for the problem .Q/ (by applying The-
orem 4.19), we first prove the following equivalence result which states that the
hypothesis (4.105) of Theorem 4.19 is satisfied.

Theorem 9.2. For all i 2 f0; : : : ; n � 1g, the problem . QQ/i
n is equivalent to the

problem . QR/i
n defined below.

Problem . QR/i
n: Find uiC1 2 K iC1 such that

a.uiC1; w � uiC1/ C QjF iC1 .uiC1; w � ui / � QjF iC1 .uiC1; uiC1 � ui /

� .F iC1; w � uiC1/ 8 w 2 K : (9.29)

To help the reader acquire a better understanding of the proof of Theorem 9.2, we
divide it into two steps, Propositions 9.1 and 9.2 below. For this reason we introduce
the following mechanical problem.

Problem .Q/i
n: Find a displacement field uiC1 W � ! R

d such that

� div � .uiC1/ D f iC1 in � ; (9.30)

uiC1 D 0 on �0 ; (9.31)

� .uiC1/ � � D giC1 on �1 ; (9.32)

uiC1
� � 0 ; ��.uiC1/ � 0 ; u���.uiC1/ D 0 on �2 ; (9.33)

8<
:

j� � .uiC1/j � �jR��.uiC1/j and
j� � .uiC1/j < �jR��.uiC1/j ) uiC1

� D ui
�

j� � .uiC1/j D �jR��.uiC1/j ) 9	 � 0 ; uiC1
� � ui

� D �	� � .uiC1/

on �2 :

(9.34)
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Lemma 9.2. Let ‚ 2 V and d 2 K be given and let Qu 2 K .‚/ be a regular
function such that

Qj‚. Qu; w � d/ � Qj‚. Qu; Qu � d/ C
Z
�2

� � . Qu/.w� � Qu� / ds � 0 8w 2 K : (9.35)

Then Qu verifies (in the distributional sense)

8<
:

j� � . Qu/j � �jR��. Qu/j and
j� � . Qu/j < �jR��. Qu/j ) Qu� D d �

j� � . Qu/j D �jR��. Qu/j ) 9	 � 0 ; Qu� � d � D �	� � . Qu/

on �2 : (9.36)

Proof. If we take w D d C ı'� in (9.35), with ' 2 .C 1.�//d , supp ' � �2 and
ı > 0, we obtain

Z
�2

�jR.��. Qu//j.jw� � d � j � j Qu� � d � j/ C � � . Qu/.w� � Qu� / ds

D ı

Z
�2

.�jR.��. Qu//j j'� j C � � . Qu/'/ ds

�
Z
�2

.�jR.��. Qu//j j Qu� � d � j C � � . Qu/. Qu� � d � // ds � 0 8ı > 0 ;

which gives, as j'j � j'� j,
Z
�2

.�jR.��. Qu//j j'j C � � . Qu/'/ ds � 0 8' 2 .C 1.�//d ; supp ' � �2 ;

(9.37)
and

Z
�2

.�jR.��. Qu//j j Qu� � d � j C � � . Qu/. Qu� � d � // ds � 0 : (9.38)

Putting ' D ˙' in (9.37), it results

Z
�2

j� � . Qu/j j'j ds �
Z
�2

�jR.��. Qu//jj'j ds 8' 2 .C 1.�//d ; supp ' � �2 ;

i.e.

j� � . Qu/j � �jR.��. Qu//j : (9.39)



9.1 Classical and Variational Formulations 199

Therefore, (9.38) implies

0 � �jR.��. Qu//j j Qu� �d � jC� � . Qu/. Qu� �d � / � .�jR.��. Qu//j�j� � . Qu/j/ j Qu� �d � j � 0

that is

�jR.��. Qu//j j Qu� � d � j C � � . Qu/. Qu� � d � / D 0 : (9.40)

If j� � . Qu/j < �jR.��. Qu//j, then, supposing Qu� ¤ d � , (9.40) gives

0 D �jR.��. Qu//j j Qu� �d � jC� � . Qu/. Qu� �d � / > j� � . Qu/j j Qu� �d � jC� � . Qu/. Qu� �d � / � 0 ;

and so, we must have Qu� D d �

If j� � . Qu/j D �jR.��. Qu//j, then (9.40) implies

j� � . Qu/j j Qu� � d � j C � � . Qu/. Qu� � d � / D 0

and thus, there exists 	 � 0 such that Qu� � d � D �	� � . Qu/. ut
Lemma 9.3. Let ‚ 2 V and d 2 K be given. Let Qu 2 K .‚/ be a sufficiently
smooth function which verifies (9.36). Then

Qj‚. Qu; w � d/ � Qj‚. Qu; Qu � d/ C
Z
�2

� � . Qu/.w� � Qu� / ds � 0 8w smooth function :

(9.41)

Proof. Let w be a smooth function.
If j� � . Qu/j < �jR.��. Qu//j and Qu� D d � , then one has

Qj‚. Qu; w � d/ � Qj‚. Qu; Qu � d/ C
Z
�2

� � . Qu/.w� � d � / ds

D
Z
�2

.�jR.��. Qu//j jw� � d � j C � � . Qu/.w� � d � // ds

�
Z
�2

.�jR.��. Qu//j � j� � . Qu/j/ jw� � d � j ds � 0

If j� � . Qu/j D �jR.��. Qu//j and Qu� � d � D �	� � . Qu/, then one gets

Qj‚. Qu; w � d/ � Qj‚. Qu; Qu � d/ C
Z
�2

� � . Qu/.w� � Qu� / ds

D
Z
�2

j� � . Qu/j jw� � d � j C � � . Qu/.w� � d � / ds � 0 ;

which completes the proof of Lemma. ut
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Proposition 9.1. The problem . QQ/i
n is formally equivalent (in the sense considered

in Theorem 9.1) to the mechanical problem .Q/i
n.

Proof. Let uiC1 be a regular solution of . QQ/i
n. If we chose, in the first inequality

of (9.28), w D uiC1 ˙' with ' 2 .D.�//d and we apply the Green’s formula, then
we obtain (9.30).

From the second inequality of (9.28) and Lemma 9.1 for Qu D uiC1, we
deduce (9.33).

Multiplying (9.30) by w � uiC1 for w 2 V , integrating by parts and using against
the Green’s formula and the first inequality of (9.28), we get

QjF iC1 .uiC1; w � ui / � QjF iC1 .uiC1; uiC1 � ui / C
Z
�2

� � .uiC1/.w� � uiC1
� / ds

C
Z
�1

.� .uiC1/ � � � giC1/.w � uiC1/ ds � 0 8w 2 V ;

(9.42)

and thus, by taking w D uiC1 ˙ ' with ' 2 .C 1.�//d and supp ' � �1, one
obtains (9.32). Therefore, the relation (9.42) implies

QjF iC1 .uiC1; w � ui / � QjF iC1 .uiC1; uiC1 � ui /

C
Z
�2

� � .uiC1/.w� � uiC1
� / ds � 0 8w 2 V : (9.43)

Therefore, by Lemma 9.2 for ‚ D F iC1, d D ui and Qu D uiC1 2 K .F iC1/,
it follows that the conditions (9.34) are satisfied. As uiC1 2 K � V , it yields the
condition (9.31) holds which completes the proof.

Conversely, let uiC1 be a sufficiently smooth solution of the mechanical prob-
lem .Q/i

n. Then, by applying Lemma 9.1 for Qu D uiC1, it follows that uiC1 satisfies
the second inequality of (9.28).

Next, from (9.34), by Lemma 9.3 for ‚ D F iC1, d D ui and Qu D uiC1, we
obtain

QjF iC1 .uiC1; w � ui / � QjF iC1 .uiC1; uiC1 � ui /

C
Z
�2

� � .uiC1/.w� � uiC1
� / ds � 0 8w 2 V : (9.44)

On the other hand, multiplying (9.30) by w � uiC1 with w 2 V , integrating by
parts and using (9.32), we deduce

a.uiC1; w � uiC1/ D .F iC1; w � uiC1/ C
Z
�2

� � .uiC1/.w� � uiC1
� / ds

C h��.uiC1/; w� � uiC1
� i 8 w 2 V : (9.45)
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Combining (9.44) and (9.45), we obtain the first inequality of (9.28) which
completes the proof. ut
Proposition 9.2. The problem . QR/i

n is formally equivalent to the mechanical
problem .Q/i

n.

Proof. If uiC1 is a regular solution of . QR/i
n, then, with a similar proof as for

Proposition 9.1, one obtains (9.30). Therefore, from (9.30) and (9.29), one gets

QjF iC1 .uiC1; w � ui / � QjF iC1 .uiC1; uiC1 � ui / C
Z
�2

� .uiC1/ � �.w � uiC1/ ds

C
Z
�1

.� .uiC1/ � � � giC1/.w � uiC1/ ds � 0 8w 2 K ; (9.46)

from which, by taking w D uiC1 ˙ ' with ' 2 .C 1.�//d and supp ' � �1, one
deduces (9.32). Thus, the relation (9.46) becomes

QjF iC1 .uiC1; w � ui / � QjF iC1 .uiC1; uiC1 � ui /

C
Z
�2

.��.uiC1/.w� � uiC1
� / C � � .uiC1/.w� � uiC1

� // ds � 0 8w 2 K : (9.47)

By choosing w D ı'��C uiC1
� with ' 2 .C 1.�//d , '� � 0 on �2 and ı > 0, it

follows

ı

Z
�2

��.uiC1/ '� ds �
Z
�2

��.uiC1/ uiC1
� ds 8ı > 0

which gives

8̂̂
ˆ̂<
ˆ̂̂̂:

Z
�2

��.uiC1/ '� ds � 0 8' 2 V ; '� � 0 on �2 ;

Z
�2

��.uiC1/ uiC1
� ds � 0 ;

(9.48)

and, as uiC1 2 K , we obtain (9.33).
Now, if we choose in (9.47), w D uiC1

n � C v with v 2 K arbitrary, we obtain

QjF iC1 .uiC1; v�ui /� QjF iC1 .uiC1; uiC1�ui /C
Z
�2

� � .uiC1/.v� �uiC1
� / ds � 0 8v 2 K

which gives, together with Lemma 9.2, for‚ D F iC1; d D ui and Qu D uiC1 , the
conditions (9.34).
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Conversely, if uiC1 is a sufficiently smooth function which verifies .Q/i
n, then,

from Lemmas 9.3 and 9.1, we obtain

QjF iC1 .uiC1; w � ui / � QjF iC1 .uiC1; uiC1 � ui /

C
Z
�2

� � .uiC1/.w� � uiC1
� / ds � 0 8w 2 K (9.49)

and Z
�2

� �.uiC1/.w� � uiC1
� / ds � 0 8w 2 K : (9.50)

Next, by arguing as in the proof of Proposition 9.1, we conclude that uiC1 is a
solution of . QR/i

n which completes the proof. ut

Proof of Theorem 9.2. Using Propositions 9.1 and 9.2, the assertion follows.
However, we remark that if uiC1 is a solution of . QQ/i

n, then, obviously, uiC1 is
a solution of . QR/i

n. Hence, in order to prove the condition (4.105), it would have
been enough to prove that . QR/i

n ) .Q/i
n ) . QQ/i

n. ut
In the sequel we shall use the similar definitions to (4.118) (p. 72), i.e.

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

un.0/ D Oun.0/ D u0;

F n.0/ D F .0/ D F 0 ;

un.t/ D uiC1

Oun.t/ D ui C .t � ti /@ui

F n.t/ D F iC1

9=
; 8 i 2 f0; 1; : : : ; n � 1g 8 t 2 .ti ; tiC1� ;

(9.51)

Therefore, un 2 L2.0; T IV / and Oun 2 W 1;2.0; T IV / satisfy, for all t 2 Œ0; T �, the
following incremental problem.
Problem .Q/n: Find un 2 K.F n.t// such that

8̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂:

a

�
un.t/; v � d

dt
Oun.t/

�
C QjF n.t/.un.t/; v/

� QjF n.t/

�
un.t/;

d

dt
Oun.t/

�
�

�
F n.t/; v � d

dt
Oun.t/

�

C
�
��.un.t//; v� � d

dt
Oun�.t/

�
8 v 2 V ;

h��.un.t//; z� � un�.t/i � 0 8 z 2 K :

(9.52)

We have the following convergence and existence result.

Theorem 9.3. Suppose the hypotheses (9.8) and (9.9) hold and that meas �0 > 0.
Then, there exists a constant �1 > 0 such that for any � 2 L1.�2/ with � � 0

a.e. on �2 and k�kL1.�2/ < �1, the problem .Q/ has at least one solution. More
precisely, there exists a subsequence f.unk

; Nunk
gk such that
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unk
.t/ ! u.t/ strongly in V 8 t 2 Œ 0; T � ;

Ounk
! u strongly in L2.0; T IV / ;

d

dt
Ounk

* Pu weakly in L2.0; T IV /

as k ! 1, where u is a solution of the problem .Q/.

Proof. By putting

j.‚; v; w/ D Qj‚.v; w/ � .‚; w/ 8‚ 2 V ; 8v 2 K .‚/ ; 8w 2 V ; (9.53)

it follows that

jj.‚1; v1; w2/ C j.‚2; v2; w1/ � j.‚1; v1; w1/ � j.‚2; v2; w2/j

D
ˇ̌̌
ˇ̌̌Z
�2

�.jR��.v1/j � jR��.v2/j/.jw1� j � jw2� j/ ds C .‚1 �‚2; w1 � w2/

ˇ̌̌
ˇ̌̌

� C1k�kL1.�2/

Z
�2

jR��.v1/ � R��.v2/j jw1 � w2j ds C k‚1 �‚2k kw1 � w2k
� C2k�kL1.�2/.k‚1 �‚2k C kv1 � v2k/kw1 � w2k

8 wi 2 V ; 8vi 2 K .‚i / ; 8wi 2 V ; i D 1; 2 ;
(9.54)

where C1, C2 are positive constants and k � k denotes the norm over V .
In order to apply Theorem 4.19, we put

b.‚; v; w/ D h��.v/; w�i 8‚ 2 V ; 8v 2 K .‚/ ; 8w 2 V ; (9.55)

H D L2.�2/ ;

ˇ.‚; v/ D �jR��.v/j 8‚ 2 V ; 8v 2 K .‚/ :

Therefore, the problem .Q/ can be written under the form (4.107) (p. 68) and the
problem . QQ/i

n can be written under the form (4.103) (p. 68), i.e.

8̂̂
<
ˆ̂:

uiC1 2 K .F iC1/

a.uiC1; w � uiC1/ C j.F iC1; uiC1; w � ui / � j.F iC1; uiC1; uiC1 � ui /

� b.F iC1; uiC1; w � uiC1/ 8 w 2 V ;

b.F iC1; uiC1; z � uiC1/ � 0 8 z 2 K :
(9.56)

The hypothesis (4.105) is satisfied due to Theorem 9.2. The other hypothe-
ses (4.83)–(4.90), (4.96)–(4.98), (4.100), and (4.101) of Theorem 4.19 are easy to
prove, and so, the assertion follows. ut
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9.2 Discrete Approximation

This section deals with the discretization of the problem .Q/ written under the form

8̂̂
<
ˆ̂:

u.0/ D u0 ; u.t/ 2 K .F .t// 8 t 2 Œ 0; T �;

a.u.t/; v � Pu.t// C j.F .t/; u.t/; v/ � j.F .t/; u.t/; Pu.t//

� b.f .t/; u.t/; v � Pu.t// 8 v 2 V a.e. in .0; T /;

b.F .t/; u.t/; z � u.t// � 0 8 z 2 K ; 8 t 2 Œ 0; T � ;

(9.57)

with j and b defined by (9.53), respectively, (9.55).
We shall prove a convergence result for a method based on an internal approxi-

mation in space and a backward difference scheme in time.
Let Th D .Tj /j 2Jh

be a family of regular triangulations of � such that

� D
[

j 2Jh

T j ;

Ti \ Tj D Ø 8i; j 2 Jh ; i ¤ j :

We define the following sets

V h D fvh 2 .C 0.�//d I vh=Tj 2 .P1.Tj //d ; 8j 2 Jh ; vh D 0 on �0g ;

K h D fvh 2 V h I vh� � 0 on �2g
Sh D f�h 2 L2.�2/ I �h=�2;j 2 P0.�2;j / 8j 2 Jh such that �2;j ¤ Øg

where Pk.!/ denotes the space of polynomials of degree lower or equal to k on !

and �2;j D �2 \ T j .
As in Sect. 7.3, p. 128, we consider the following semi-discrete problem.

Problem .Qh/: Find uh 2 W 1;2.0; T IV h/ such that

8̂̂
ˆ̂<
ˆ̂̂̂:

uh.0/ D u0h; uh.t/ 2 K h.F .t// 8 t 2 Œ 0; T �;

a.uh.t/; vh � Puh.t// C j.F .t/; uh.t/; vh/ � j.F .t/; uh.t/; Puh.t//

� b.F .t/; uh.t/; vh � Puh.t// 8 vh 2 V h ; a.e. t 2 .0; T / ;

b.F .t/; uh.t/; zh � uh.t// � 0 8 zh 2 K h; 8 t 2 Œ 0; T � :

(9.58)

and, for i 2 f0; 1; � � � ; n � 1g, the following full discretization of Problem .Q/.

Problem .Rh/i
n: Find uiC1

h 2 K iC1
h such that

�
a.uiC1

h ; wh � uiC1
h / C j.F iC1; uiC1

h ; wh � ui
h/

�j.F iC1; uiC1
h ; uiC1

h � ui
h/ � 0 8 wh 2 K h:

(9.59)

We also suppose that u0
h D u0h satisfies the compatibility condition

�
u0h 2 K h.F .0// ;

a.u0h; v/ C j.F .0/; u0h; v/ � 0 8v 2 K h :



9.2 Discrete Approximation 205

Theorems 7.5 (p. 128) and 7.6 (p. 131) give convergence and existence results
for these problems.

In order to solve the problem .Rh/i
n, we suppose that � is constant and we choose

as a regularization mapping R, the projection on the finite dimensional space Sh0 for
a given h0 (see [10]). Thus within finite element approximation, the regularization
can be considered as a natural consequence of the discretization.

In the sequel, for simplicity, we shall omit the index h. We shall denote the
solution uiC1 of .Rh/i

n by uiC1
n , for i 2 f0; 1; �; n � 1g. We also remark that, from

the definition of the set K iC1 and Remark 9.1, it follows that for the solution uiC1

we have

j.F iC1; uiC1
n ; v/ D �

Z
�2

�R��.uiC1
n / jvt j ds 8v 2 V :

Let us denote

j.uiC1
n ; v/ D �

Z
�2

�R��.uiC1
n / jvt j ds 8v 2 V :

Therefore, the problem to solve can be written as

8<
:

uiC1
n 2 K iC1 ;

a.uiC1
n ; w � uiC1

n / C j.uiC1
n ; w � ui

n/ � j.uiC1
n ; uiC1

n � ui
n/

� .F iC1; w � ui
n/ 8 w 2 K :

(9.60)

It is easy to see that the solution uiC1
n 2 K iC1 of (9.60) is the fixed point of the

mapping T W S ! S defined by T .r/ D uiC1
n .r/, for all r 2 S , where uiC1

n .r/ is
the unique solution of the following variational inequality:

8<
:

uiC1
n .r/ 2 K iC1 ;

a.uiC1
n .r/; w � uiC1

n .r// C '.r; w � ui
n.r// � '.r; uiC1

n .r/ � ui
n/

� .F iC1; w � uiC1
n .r// 8 w 2 K :

(9.61)

where

'.r; w/ D �
Z
�2

�R��.r/jw� j ds 8w 2 V :

This problem is equivalent, for r 2 S given, to the following minimization
problem under constraints:

F .uiC1
n .r// D min

v2K F .v/
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where

F .v/ D 1

2
a.v; v/ C '.r; v � ui

n.r// � .F iC1; v/ 8v 2 V :

This problem is very similar to a static problem except from the fact that the
known solution ui

n of the previous step appears in the friction term. The influence of
the loading history, due to the velocity formulation of the friction, is characterized
by this extra term. The convex K remains unchanged from one step to the next. This
minimization problem can be solved by a Gauss–Seidel method with projection.
This method is robust and very easy to implement on this kind of problem when
dealing with the non-differentiable part relating to the friction term. Details on the
convergence of the algorithm by using an Aitken acceleration procedure can be
found in [5] or [13].

9.3 Optimal Control of a Frictional Bilateral
Contact Problem

We consider a mathematical model describing the quasistatic process of bilateral
contact with friction between an elastic body and a rigid foundation. Our goal is to
study a related optimal control problem which allows us to obtain a given profile
of displacements on the contact boundary, by acting with a control on another part
of the boundary of the body. Using penalization and regularization techniques, we
derive the necessary conditions of optimality.

As far as we know, there are few results concerning the optimal control of
quasistatic frictional contact problems. We mention here the work of Amassad et
al. [2] which treats a quasistatic bilateral contact problem with given friction, and
so, an optimal control problem governed by a variational inequality which has, in
addition, a unique solution.

9.3.1 Setting of the Problem

Let us consider a linearly elastic body occupying a bounded domain � � R
d ; d D

2; 3, with a Lipschitz boundary � D �0 [ �1 [ �2, where �0; �1; �2 are open and
disjoint parts of � , with meas .�0/ > 0.

The body is subjected to the action of volume forces of density f given in
� � .0; T / and surface tractions of density g applied on �1 � .0; T /, where .0; T /

is the time interval of interest. The body is clamped on �0 � .0; T / and, so, the
displacement vector u vanishes here. On �2 � .0; T /, the body is in bilateral contact
with a rigid foundation, i.e. there is no loss of contact between the body and the
foundation. We suppose that the contact on �2 is with friction modeled by a nonlocal
variant of Coulomb’s law. We suppose that f and g are acting slow enough to allow
us to neglect the inertial terms.
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The classical formulation of this mechanical problem, with the notation of
Sect. 8.1, is:
Problem .S /: Find a displacement vector u D u.x; t / W �� Œ0; T � ! R

d such that

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂:

� div � D f in � � .0; T / ;

� D � .u/ D A � ;

u D 0 on �0 � .0; T / ;

� � � D g on �1 � .0; T / ;8̂̂
<
ˆ̂:

u� D 0 ;

j� � j � �jR�� j
j� � j < �jR�� j ) Pu� D 0

j� � j D �jR�� j ) 9	 � 0 ; Pu� D �	� �

on �2 � .0; T / ;

u.0/ D u0 in � :

(9.62)

with A D .aijkh/ satisfying the conditions (9.8).
In order to write a variational formulation for the problem .S /, we define the

following Hilbert spaces:

V D fv 2 ŒH 1.�/�d I v D 0 a.e. on �0 I v� D 0 a.e. on �2g ;

W D fv 2 V I div � .v/ 2 .L2.�//d g ;

endowed with the inner products

.u; v/V D
Z
�

�ij .u/�ij .v/ dx 8u; v 2 V ;

.u; v/W D .u; v/V C .div � .u/; div � .v//.L2.�//d 8u; v 2 W :

We make the following regularity assumptions on the data

8̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂:

f 2 W 1;2.0; T I .L2.�//d / ;

g 2 W 1;2.0; T I .L2.�1//d / ;

aijkl 2 L1.�/; i; j; k; l D 1; : : : ; d ;

� 2 L1.�2/; � � 0 a.e. on �2 ;

R W H �1=2.�2/ ! L2.�2/ is a linear compact operator ;

u0 2 V ;

(9.63)

where H �1=2.�2/ is the dual space of H 1=2.�2/ D fv 2 H 1=2.�/ I v D
0 a.e. on �n�2g.

Let F 2 W 1;2.0; T IV /, where, for all t 2 Œ0; T �, F .t/ is the element of V
defined by (9.11) and let the symmetric, V -elliptic, continuous bilinear form a W
V � V ! R defined by (9.10)3. We also denote by j W W � V ! R the functional
defined by
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j.u; v/ D
Z
�2

�jR��.u/j jv� j ds 8u 2 W 8v 2 V : (9.64)

The weak formulation of problem .S /, in terms of displacements, is the
following quasi-variational inequality.

Problem .S/: Find u 2 W 1;2.0; T IV / such that

8<
:

a.u.t/; v � Pu.t// C j.u.t/; v/ � j.u.t/; Pu.t// � .F .t/; v � Pu.t//V
8 v 2 V ; a.e. t 2 .0; T /;

u.0/ D u0:

We suppose that the initial displacement u0 2 V satisfies the following
compatibility condition

a.u0; v/ C j.u0; v/ � .F .0/; v/V 8 v 2 V : (9.65)

We have the following existence result.

Theorem 9.4. There exists �1 > 0 such that for all � 2 L1.�2/ with � � 0

a.e. on �2 and k�kL1.�2/ � �1, the problem .S/ has at least one solution u 2
W 1;2.0; T IV /.

Proof. In order to apply Theorem 4.19, we put

K D K.‚/ D W 8‚ 2 V ;

DK D W � V ;

H D L2.�2/ ; ˇ.‚; v/ D �jR��.v/j 8‚ 2 V ; 8v 2 W ;

j.‚; v; w/ D j.v; w/ � .‚; w/V 8‚; w 2 V ; 8v 2 W ;

b.‚; v; w/ D 0 8‚; w 2 V ; 8v 2 W :

It is easy to verify that the hypotheses (4.83)–(4.90), (4.96)–(4.98), and (4.100)
are satisfied. In addition, both the problems . QQa/ and . QRa/, p. 68, become the
following problem

�
u 2 W
a.u; v � u/ C j.u; v � d/ � j.u; u � d/ � .F ; v � u/ 8v 2 V ;

and so, the hypothesis (4.105) is satisfied. As for �1 sufficiently small the hypoth-
esis (4.101) is verified, the existence of a solution of the problem .S/ follows from
Theorem 4.19. ut

In the sequel we shall suppose that k�kL1.�2/ � �1 with �1 > 0 sufficiently
small such that the problem .S/ has at least one solution.

The following results will be frequently used.
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Lemma 9.4. The functional j , defined by (9.64), has the properties:

j.w; v/ � 0 8w 2 W ; 8v 2 V ; (9.66)

j.w; v1/ � j.w; v2/ � j.w; v1 � v2/ 8w 2 W ; 8v1; v2 2 V (9.67)

j.w; 0/ D 0 8w 2 W : (9.68)

Moreover, for all s 2 Œ0; T �, we have

8̂̂
<
ˆ̂:

lim inf
n!1

sZ
0

j.wn.t/; vn.t// dt �
sZ

0

j.w.t/; v.t// dt ;

8wn * w weakly in L2.0; T IW / ; 8vn * v weakly in L2.0; T IV / ;
(9.69)

and

8̂̂
<
ˆ̂:

lim
n!1

sZ
0

j.wn.t/; vn/ dt D
sZ

0

j.w.t/; v/ dt ;

8wn * w weakly in L2.0; T IW / ; 8vn * v weakly in V :

(9.70)

Proof. The properties (9.66), (9.67), and (9.68) are obvious.
In order to prove (9.69), we write

ˇ̌̌
ˇ̌̌

sZ
0

.j.wn.t/; vn.t// � j.w.t/; vn.t/// dt

ˇ̌̌
ˇ̌̌

D
ˇ̌̌
ˇ̌̌

sZ
0

Z
�2

�.jR��.wn.t//j � jR��.w.t//j/j.vn/� .t/j ds dt

ˇ̌̌
ˇ̌̌

�
sZ

0

Z
�2

� jR��.wn.t/ � w.t//j j.vn/� .t/j ds dt

�
sZ

0

k�kL1.�2/kR��.wn.t/ � w.t//kL2.�2/ k.vn/� .t/k.L2.�2//d dt

� C�1kR��.wn � w/kL2.0;T IL2.�2// kvnkL2.0;T;V / � C1kR��.wn � w/kL2.0;T IL2.�2// ;

and hence, as the operator R is compact, it follows that

lim
n!1

sZ
0

.j.wn.t/; vn.t// � j.w.t/; vn.t/// dt D 0 8s 2 Œ0:T � : (9.71)
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On the other hand, for any w 2 L2.0; T IW /, the mapping v 7�!
sZ

0

j.w.t/; v.t// dt is convex l.s.c. on L2.0; T IV /, thus

lim inf
n!1

sZ
0

j.w.t/; vn.t// dt �
sZ

0

j.w.t/; v.t// dt : (9.72)

By combining the relations (9.71) and (9.72), we get:

lim inf
n!1

sZ
0

j.wn.t/; vn.t// dt � lim
n!1

sZ
0

.j.wn.t/; vn.t// � j.w.t/; vn.t/// dt

C lim inf
n!1

sZ
0

j.w.t/; vn.t// dt �
sZ

0

j.w.t/; v.t// dt :

Next, we have

ˇ̌̌
ˇ̌̌

sZ
0

j.wn.t/; vn/ dt �
sZ

0

j.w.t/; v/ dt

ˇ̌̌
ˇ̌̌

�
ˇ̌̌
ˇ̌̌

sZ
0

j.wn.t/; vn/ dt �
sZ

0

j.wn.t/; v/ dt

ˇ̌̌
ˇ̌̌ C

ˇ̌̌
ˇ̌̌

sZ
0

j.wn.t/; v/ dt �
sZ

0

j.w.t/; v/ dt

ˇ̌̌
ˇ̌̌

� C1kvn � vk.L2.�2//d C C2kR��.w� � w/kL2.0;T IL2.�2//

and hence, from the compactness of the trace map from V into .L2.�2//d , the proof
is completed. ut

Now, we are interested in finding the surface tractions g acting on �1 so that
the resulting displacement on the contact boundary �2 is as close as possible to
a given profile ud , while the norm of these surface forces remains small enough.
The mathematical formulation of this problem is a state-control boundary optimal
control problem where the state is solution of the implicit evolutionary quasi-
variational inequality .S/.

We introduce the following control and, respectively, observation spaces:

Hg D W 1;2.0; T I .L2.�1//d / ;

Hu D L2.0; T I .L2.�2//d /
(9.73)

and we define, for ˇ > 0 and ud 2 Hu given, the cost functional J W Hg �
W 1;2.0; T I V/ ! RC by:

J.g; u/ D 1

2
ku � ud k2

Hu
C ˇ

2
kgk2

Hg
: (9.74)
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Due to the lack of uniqueness of solution for the quasi-variational inequality .S/,
the cost functional J , instead of depending, as usual, only on the “real” control g,
depends also on the state u. For this reason, it is convenient to rewrite the variational
problem .S/, for g 2 Hg, in the following form.

Problem .S/g : Find u 2 W 1;2.0; T I V/ such that

8<
:

a.u.t/; v � Pu.t// C j.u.t/; v/ � j.u.t/; Pu.t// � .F g.t/; v � Pu.t//V
8 v 2 V ; a.e. t 2 .0; T /

u.0/ D u0 ;

where

.F g.t/; v/V D
Z
�

f .t/ � v dx C
Z
�1

g.t/ � v ds 8v 2 V :

We formulate now the control problem as follows:

Problem .CS/: Find .g�; u�/ 2 Vad such that

J.g�; u�/ D min
.g;u/2Vad

J.g; u/ ;

where

Vad D f.g; u/ 2 Hg � W 1;2.0; T I V/ I u is a solution of .S/g g:

Remark 9.2. Let us assume that there exist .g�; u�/ 2 Vad such that J.g�; u�/ D
min

.g;u/2Vad

J.g; u/ and a function gd 2 Hg such that .gd ; ud / 2 Vad . Then,

J.g�; u�/ D 1

2
ku� � ud k2

Hu
C ˇ

2
kg�k2

Hg
� J.gd ; ud / D ˇ

2
kgd k2

Hg

and, hence,

ku� � ud k2
Hu

� ˇ.kgd k2
Hg

� kg�k2
Hg

/ :

Therefore, for ˇ arbitrarily small, we may hope to obtain, on the contact boundary,
a displacement field u as closed as we want to the desired value ud .

As one can see, although the functional J has good properties on Hg �
W 1;2.0; T I V/, the existence of a solution of the control problem .CS/ cannot
be obtained directly, since the correspondence control 7! state is a multivalued
mapping. In order to overcome this difficulty, we approximate the optimal control
problem .CS/ by a family of penalized optimal control problems, governed by a
variational inequality.
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We start by introducing a new control space:

Hw D L2.0; T IW / :

Now, for .g; w/ 2 Hg �Hw, we consider the variational inequality which models
the problem .S / in the case of Tresca friction.

Problem .S/g;w: Find u 2 W 1;2.0; T I V/ such that

8<
:

a.u.t/; v � Pu.t// C j.w.t/; v/ � j.w.t/; Pu.t// � .F g.t/; v � Pu.t//V
8 v 2 V ; a.e. t 2 .0; T /

u.0/ D u0 :

Using the same techniques as in [7] or Sect. 4.3 and taking into account the
positivity of j , one can prove the following existence result.

Proposition 9.3. For .g; w/ 2 Hg � Hw given, there exists a unique solution ug;w

of Problem .S/g;w. Moreover, we have

kPug;wkL2.0;T IV / � C.k PF gkL2.0;T IV / C kwkL2.0;T IV // ;

with C a positive constant.

In the sequel, for .g; w/ 2 Hg � Hw given, we will denote by ug;w the unique
solution of Problem .S/g;w.

Let us fix � > 0. We introduce the penalized functional J� W Hg � Hw ! RC by

J�.g; w/ D J.g; ug;w/ C 1

2�
kug;w � wk2

Hw
(9.75)

and we consider the control problem

Problem .CS/�: Find .g�
� ; w�

� / 2 Hg � Hw such that

J�.g
�
� ; w�

� / D minfJ�.g; w/ I .g; w/ 2 Hg � Hwg :

The following result establishes the existence of an optimal solution for this
penalized control problem.

Proposition 9.4. Let (9.63) and (9.65) hold. Then, for all � > 0, there exists a
solution .g�

� ; w�
� / of problem .CS/� .

Proof. Let f.gn
� ; wn

� /gn � Hg � Hw be a minimizing sequence for the functional J� .
Then, from the definition (9.75) of J� , we deduce

lim
n!1 J�.g

n
� ; wn

� / D inffJ�.g; w/ ; .g; w/ 2 Hg � Hwg 2 Œ0; C1/ ; (9.76)
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which implies that the sequence fgn
� gn is bounded in Hg. Obviously, the sequence

fF n
� gn defined by

.F n
� .t/; v/V D

Z
�

f .t/ � v dx C
Z
�1

gn
� .t/ � v ds (9.77)

is also bounded in W 1;2.0; T I V/.
Thus, there exists .g�

� ;F �
� / 2 Hg � W 1;2.0; T I V/ such that, passing to a

subsequence still denoted in the same way, we have

gn
� * g�

� weakly in Hg ; (9.78)

F n
� * F �

� weakly in W 1;2.0; T I V/ ; (9.79)

where

.F �
� .t/; v/V D

Z
�

f .t/ � v dx C
Z
�1

g�
� .t/ � v ds :

Let un
� D ug

n
� ;wn

� . Taking v D 0 in .S/g
n
� ;wn

� , integrating by parts on Œ0; s� with
s 2 Œ0; T � and taking into account the properties (9.66), (9.68) of the functional j ,
we have

sZ
0

a.un
� .t/; Pun

� .t// dt �
sZ

0

.F n
� .t/; Pun

� .t//V dt : (9.80)

By using the V -ellipticity of a.�; �/, we obviously obtain

sZ
0

a.un
� .t/; Pun

� .t// dt D 1

2

sZ
0

d

dt
a.un

� .t/; un
� .t// dt

D a.un
� .s/; un

� .s// � a.u0; u0/

2
� ˛kun

� .s/k2
V � a.u0; u0/

2
:

(9.81)

On the other hand, we haveˇ̌̌
ˇ̌̌

sZ
0

.F n
� .t/; Pun

� .t//V dt

ˇ̌̌
ˇ̌̌ D

ˇ̌̌
ˇ̌̌

sZ
0

d

dt
.F n

� .t/; un
� .t//V dt �

sZ
0

. PF n

� .t/; un
� .t//V dt

ˇ̌̌
ˇ̌̌

� C

0
@j.F n

� .s/; un
� .s//V � .F n

� .0/; un
� .0//V j C

sZ
0

k PF n

� .t/k2
V dt C

sZ
0

kun
� .t/k2

V dt

1
A

� C

�kF n
� .s/k2

V

2ı
C ıkun

� .s/k2
V

2
C kF n

� .0/k2
V

2
C kun

� .0/k2
V

2

C
sZ

0

k PF n

� .t/k2
V dt C

sZ
0

kun
� .t/k2

V dt

1
A :
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By choosing 0 < ı <
˛

C
in the last relation, from (9.80), (9.81) and Young’s

inequality, we get

kun
� .s/k2

V � C

0
@ku0k2

V C kF n
� .s/k2

V C kF n
� .0/k2

V C
sZ

0

k PF n

� .t/k2
V dt

C
sZ

0

kun
� .t/k2

V dt

1
A ;

and hence, by using Gronwall’s inequality and the boundedness of fF n
� gn, it

follows that

kun
� .s/k2

V � C
�
1 C kF n

� .0/k2
V C k PF n

� kL2.0;T IV /

�
� C 8s 2 Œ0; T � : (9.82)

Therefore, the sequence fun
� gn is bounded in L1.0; T IV /. In addition, from

.S/g
n
� ;wn

� , we have

kun
� k2

Hw
D kun

� k2
L2.0;T IV /

C k div � .un
� /k2

L2.0;T I.L2.�//d /

D kun
� k2

L2.0;T IV /
C kf k2

L2.0;T I.L2.�//d /
� C ;

which, from the definition of J� and the boundedness (9.76) of J� , implies that the
sequence fwn

� gn is bounded in Hw.
Now, from Proposition 9.3, we obtain

kPun
� kL2.0;T IV / � C : (9.83)

Thus, we deduce that there exist the elements u�
� 2 W 1;2.0; T IV / and w�

� 2 Hw

and the subsequences, still denoted by fun
� gn and fwn

� gn, such that

wn
� * w�

� weakly in Hw ; (9.84)
�

un
� * u�

� weakly � in L1.0; T IV / ;

Pun
� * Pu�

� weakly in L2.0; T IV /:
(9.85)

Using the embedding W 1;2.0; T IV / ,! C.Œ0; T �IV /, we also have

un
� .t/ * u�

� .t/ weakly in V 8t 2 Œ0; T � : (9.86)

Now, we shall prove the strong convergence of un
� to u in L2.0; T IV /. Putting

v D 0 and v D 2 Pun
� .t/ in .S/g

n
� ;wn

� , one obtains:

a.un
� .t/; v/ C j.wn

� .t/; v/ � .F n
� .t/; v/V 8 v 2 V ; a.e. t 2 .0; T / ;

Taking v D �v, it follows that

a.un
� .t/; v/ � j.wn

� .t/; v/ � .F n
� .t/; v/V 8 v 2 V ; a.e. t 2 .0; T / : (9.87)
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Passing to the limit with n ! 1 in this inequality and taking into account the
convergences (9.85), (9.84), and (9.79), we obtain

a.u�
� .t/; v/ � j.w�

� .t/; v/ � .F �
� .t/; v/V 8 v 2 V ; a.e. t 2 .0; T / : (9.88)

Setting v D un
� .t/ � u�

� .t/ in (9.87) and v D u�
� .t/ � un

� .t/ in (9.88), we get

˛kun
� .t/ � u�

� .t/k2
V � a.un

� .t/ � u�
� .t/; un

� .t/ � u�
� .t//

� C k�kL1.�2/

	kR��.wn
� .t//kL2.�2/ C kR��.w�

� .t//kL2.�2/


 kun
� .t/ � u�

� .t/k.L2.�2//d

Ckgn
� .t/ � g�

� .t/k.L2.�1//d kun
� .t/ � u�

� .t/k.L2.�1//d � C kun
� .t/ � u�

� .t/k.L2.�//d ;

which, with (9.86) and the compactness of the trace map from V to .L2.�//d ,
implies

un
� .t/ ! u�

� .t/ strongly in V 8t 2 Œ0; T � : (9.89)

Hence, by Lebesgue’s Theorem 3.4, we obtain the strong convergence:

un
� ! u�

� strongly in L2.0; T IV / : (9.90)

We shall prove that u�
� D ug

�
� ;w�

� and, from the uniqueness of the solution, we
shall conclude that the convergences (9.78), (9.84), (9.85), and (9.89) hold true for
the whole sequences.

For s 2 Œ0; T �, from the convergences (9.85), (9.90), (9.84), (9.79) and the
properties (9.69), (9.70), we have

lim
n!1

sZ
0

a.un
� .t/; Pun

� .t// dt D
sZ

0

a.u�
� .t/; Pu�

� .t// dt ; (9.91)

lim
n!1

sZ
0

a.un
� .t/; v.t// dt D

sZ
0

a.u�
� .t/; v.t// dt 8v 2 L2.0; T IV / ; (9.92)

lim
n!1

sZ
0

.F n
� .t/; v.t//V dt D

sZ
0

.F �
� .t/; v.t//V dt 8v 2 L2.0; T IV / ; (9.93)

lim
n!1

sZ
0

j.wn
� .t/; v.t// dt D

sZ
0

j.w�
� .t/; v.t// dt 8v 2 L2.0; T IV / ; (9.94)

lim inf
n!1

sZ
0

j.wn
� .t/; Pun

� .t// dt �
sZ

0

j.w�
� .t/; Pu�

� .t// dt : (9.95)
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Next, since we can write

sZ
0

.F n
� .t/; Pun

� .t//V dt D .F n
� .s/; un

� .s//V �.F n
� .0/; u0/V dt�

sZ
0

. PF n

� .t/; un
� .t//V dt ;

it follows that

lim
n!1

sZ
0

.F n
� .t/; Pun

� .t//V dt D
sZ

0

.F �
� .t/; Pu�

� .t//V dt : (9.96)

Now, by passing to the limit in .S/g
n
� ;wn

� with n ! 1, one obtains

sZ
0

a.u�
� .t/; v.t/ � Pu�

� .t// dt C
sZ

0

j.w�
� .t/; v.t// dt �

sZ
0

j.w�
� .t/; Pu�

� .t// dt

�
sZ

0

.F �
� .t/; v.t/ � Pu�

� .t//V dt 8 v 2 L2.0; T IV / ; 8s 2 Œ0; T � :

(9.97)

Then, as usually, taking v 2 L2.0; T IV / defined by

v.t/ D
�

z for t 2 Œs; s C h� ;

Pu�
� .t/ otherwise ;

with an arbitrary z 2 V and h > 0 such that s C h � T , one obtains

sChZ
s

a.u�
� .t/; z � Pu�

� .t// dt C
sChZ
s

j.w�
� .t/; z/ dt �

sChZ
s

j.w�
� .t/; Pu�

� .t// dt

�
sChZ
s

.F �
� .t/; z � Pu�

� .t//V dt 8z 2 V ; 8s 2 Œ0; T / ;

(9.98)

which leads us, by passing to the limit with h ! 0, to the following inequality

a.u�
� .t/; z � Pu�

� .t// C j.w�
� .t/; z/ � j.w�

� .t/; Pu�
� .t//

� .F �
� .t/; z � Pu�

� .t//V 8z 2 V a.e. t 2 .0; T / :
(9.99)

Moreover, the pointwise convergence (9.89) and the initial condition un
� .0/ D u0

give us u�
� .0/ D u0 and, so, u�

� D ug
�
� ;w�

� , i.e. u�
� is the unique solution of problem

.S/g�
� ;wn

� .
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In order to end the proof of our existence result, let us notice that, from .S/g
n
� ;wn

�

and (9.99), it follows that

kun
� � u�

� kHw D kun
� � u�

� kL2.0;T IV /;

which obviously, from (9.90), gives

un
� ! u�

� strongly in Hw :

Therefore, since the norm is weakly lower semicontinuous, from the conver-
gence (9.84), we get

lim inf
n!1

1

2�
kwn

� � un
� k2

Hw
� 1

2�
kw�

� � u�
� k2

Hw
: (9.100)

Finally, by using the convergences (9.90), (9.78) and the relation (9.100), we
have

inffJ�.g; w/ I .g; w/ 2 Hg � Hwg
D lim

n!1 J�.g
n
� ; wn

� / � lim inf
n!1 J�.g

n
� ; wn

� / � J�.g
�
� ; w�

� /

and hence, we conclude

J�.g
�
� ; w�

� / D minfJ�.g; w/ I .g; w/ 2 Hg � Hwg :

ut
Lemma 9.5. If .g�

� ; w�
� / is an optimal control for .CS/� and u�

� D ug
�
� ;w�

� , then

lim
�!0

kw�
� � u�

� kHw D 0: (9.101)

Proof. Indeed, if . Qg; Qu/ 2 Vad , then Qu 2 Hw, Qu D uQg;Qu and, hence,

J�.g
�
� ; w�

� / � J�. Qg; Qu/ D J. Qg; Qu/ : (9.102)

Consequently, from the definition of J� , we get

kw�
� � u�

� k2
Hw

� 2�J�.g
�
� ; w�

� / � 2�J. Qg; Qu/ ;

which implies (9.101). ut
We are now in the position to prove the main result of this section, the existence

of a solution to the optimal control problem .CS/.
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Theorem 9.5. For � > 0, let .g�
� ; w�

� / 2 Hg � Hw be an optimal control of .CS/�

and u�
� D ug

�
� ;w�

� . Then, there exist the elements u� 2 W 1;2.0; T I V/ and g� 2 Hg

such that

g�
� ! g� weakly in Hg ;

w�
� * u� strongly in Hw ;

u�
� * u� weakly in W 1;2.0; T I V/ ;

u�
� ! u� strongly in L2.0; T IV / :

(9.103)

Moreover, .g�; u�/ 2 Vad and

lim
�!0

J�.g
�
� ; w�

� / D J.g�; u�/ D min
.g;u/2Vad

J.g; u/ : (9.104)

Proof. From the definition and the boundedness (9.102) of J�.g
�
� ; w�

� /, it follows
that the sequence fg�

� g� is bounded in Hg. Therefore, there exists g� 2 Hg such
that, up to a subsequence, we have

g�
� * g� weakly in Hg : (9.105)

So,

F �
� * F � weakly in W 1;2.0; T;V / ; (9.106)

where

.F �
� .t/; v/V D

Z
�

f .t/ � v dx C
Z
�1

g�
� .t/ � v ds (9.107)

and

.F �.t/; v/V D
Z
�

f .t/ � v dx C
Z
�1

g�.t/ � v ds :

Using the same arguments as in the proof of Proposition 9.4, we deduce

8̂̂
<
ˆ̂:

u�
� * u� weakly � in L1.0; T IV / ;

Pu�
� * Pu� weakly in L2.0; T IV / ;

u�
� ! u� strongly in L2.0; T IV / ;

w�
� * w� weakly in Hw ;

(9.108)

with u� 2 W 1;2.0; T I V/ and w� 2 Hw.
Passing to the limit with � ! 0 in the integral form of .S/g�

� ;wn
� , we deduce that

u� D ug
�;w�

. As

ku�
� � u�kHw D ku�

� � u�kL2.0;T IV / ;
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we have

u�
� ! u� strongly in Hw ;

and thus, from (9.101), we get (9.103)2, w� D u� and .g�; u�/ 2 Vad .
Next, from the definition of J� , we have

1

2�
kw�

� � u�
� k2

Hw
D J�.g

�
� ; w�

� / � J.g�
� ; u�

� /

� J�.g
�; u�/ � J.g�

� ; u�
� / D J.g�; u�/ � J.g�

� ; u�
� / ;

so,

0 � lim sup
�!0

1

2�
kw�

� � u�
� k2

Hw
� J.g�; u�/ � lim inf

�!0
J.g�

� ; u�
� / � 0 ;

i.e.

lim
�!0

1

�
kw�

� � u�
� k2

Hw
D 0 : (9.109)

Finally, it is easy to see that

J.g�; u�/ � lim inf
�!0

J�.g
�
� ; w�

� / � lim sup
�!0

J�.g
�
� ; w�

� / � lim sup
�!0

J�.g
�; u�/

D J.g�; u�/

and

J�.g
�
� ; w�

� / � J�. Qg; Qu/ D J. Qg; Qu/ 8. Qg; Qu/ 2 Vad ;

which give us

J.g�; u�/ D lim
�!0

J�.g
�
� ; w�

� / � J. Qg; Qu/ 8. Qg; Qu/ 2 Vad :

So, .g�; u�/ is an optimal control for the cost functional J and the minimal value
of J� converges to the minimal value of J . ut

9.3.2 Regularized Problems and Optimality Conditions

Until now, we have reduced our optimal control problem to one governed by a
variational inequality of the second kind. Unfortunately, the problem .CS/� , despite
the fact that it is simpler than the initial one, still involves a non-differentiable
functional J� . Therefore, to attain our main goal, the obtaining of the optimality
conditions, we shall consider a family of regularized problems associated with
.S/g;w, defined, for 
 > 0, by
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Problem .S/g;w

 : Find u 2 W 1;2.0; T I V/ such that

8<
:


. Pu.t/; v � Pu.t//V C a.u.t/; v � Pu.t// C j 
.w.t/; v/ � j 
.w.t/; Pu.t//

� .F g.t/; v � Pu.t//V 8 v 2 V ; a.e. t 2 .0; T / ;

u.0/ D u0 ;

where, for w 2 W , fj 
.w; �/g
 is a family of convex functionals j 
.w; �/ W V ! RC,
of class C 2, i.e. the gradients with respect to the second variable, r2j 
.w; �/ W V !
V � and r2

2 j 
.w; �/ W V ! L .V ;V �/, are continuous. In addition, we suppose that
the following conditions hold true:

j 
.w; 0/ D 0 8w 2 W ; (9.110)

jj 
.w; v/ � j.w; v/j � C
kwkV 8w 2 W ; 8v 2 V (9.111)

8̂̂
<
ˆ̂:

lim
n!1

TZ
0

hr2j 
.wn.t/; un.t//; vi dt D
TZ

0

hr2j 
.w.t/; u.t//; vi dt

8.wn; un/ * .w; u/ weakly in Hw � L2.0; T IV / ; 8v 2 V ;

(9.112)

where C is a constant independent of v and h�; �i denotes the duality pair between
V � and V .

Remark 9.3. We can choose

j 
.w; v/ D
Z
�2

�jR��.w/j �
.v� / ds 8.w; v/ 2 W � V ; (9.113)

where the function �
 W Rp ! R is an approximation (see [12] or [1]) of the function
j � j W Rp ! R, satisfying the following properties:

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

�
 is a convex, nonnegative function of class C 2 ;

�
.0/ D 0 ;ˇ̌
�
.u/ � jujˇ̌ � C0
 ;ˇ̌̌
� 0


.u/ � v
ˇ̌̌

� C1jvj ;ˇ̌̌
� 00


 .u/.v � q/
ˇ̌̌

� C2.
/jvj jqj ;

(9.114)

with C0, C1, and C2.
/ positive constants.
Then, after some computations, it follows that

hr2j 
.w; u/; vi D
Z
�2

�jR.��.w//j� 0

.u� / � v� ds ;

hr2
2 j 
.w; u/v; qi D

Z
�2

�jR.��.w//j� 00

 .u� /.v� � q� / ds :
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For instance, if we take

�
.v/ D

8̂̂
<
ˆ̂:

jvj2



�
1 � jvj

3


�
if jvj � 
 ;




� jvj



� 1

3

�
if jvj � 
 ;

(9.115)

then � 0

 and � 00


 are defined by (8.156) and (8.157) (p. 182), and if we choose

�
.v/ D
p


2 C jvj2 � 
 ; (9.116)

then one has:

� 0

.u/ D up


2 C ju.x/j2 ;

and

� 00

 .u/.v/ D 1p


2 C ju.x/j2
�

v � .u � v/u

2 C ju.x/j2

�
:

It is easy to see that, in both cases, the functional j
, defined by (9.113), satisfies
the properties (9.110)–(9.112) and, in addition, we have

� jr2j 
.w; u/ � vj � C1kvk 8u; v 2 V ;

jhr2
2 j 
.w; u/ � v; qij � C2kvk kqk 8u; v; q 2 V ;

with C1 D C1.w/ > 0 and C2 D C2.w; 
/ > 0.

Obviously, the regularized problem .S/g;w

 can be equivalently written as the

following variational equality.

Problem .S /
g;w

 : Find u 2 W 1;2.0; T IV / such that

8<
:


. Pu.t/; v/V C a.u.t/; v/ C hr2j 
.w.t/; Pu.t//; vi
D .F g.t/; v/V ; 8 v 2 V ; a.e. t 2 .0; T / ;

u.0/ D u0 :

We have the following existence and uniqueness result.

Proposition 9.5. Let .g; w/ 2 Hg � Hw and 
 > 0. Then, there exists a unique
solution ug;w


 2 W 1;2.0; T I V/ of Problem .S /
g;w

 .

Proof. Arguing as in [2], one can prove the following main steps of the proof.

(1) For any ˛ 2 W 1;2.0; T IV /, the problem
8<
:

vg;w

˛ 2 W 1;2.0; T IV /


.vg;w

˛ .t/; v/V C hr2j 
.w.t/; vg;w


˛ .t//; vi D .F g.t/; v/

�a.˛.t/; v/ 8 v 2 V ; 8t 2 .0; T / ;

(9.117)

has a unique solution vg;w

˛ 2 W 1;2.0; T IV /.
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(2) Let ug;w

˛ W Œ0; T � ! V be the function defined by

ug;w

˛ .t/ D

tZ
0

vg;w

˛ .s/ ds C u0 : (9.118)

Then ug;w

˛ 2 W 2;2.0; T IV / and ug;w


˛ .0/ D u0.
(3) We denote by ƒ
 W W 1;2.0; T IV / ! W 1;2.0; T IV / the mapping defined by

ƒ
.˛/.t/ D ug;w

˛ .t/ 8˛ 2 W 1;2.0; T IV / ; 8t 2 Œ0; T � : (9.119)

One can prove that the map ƒ
 has a unique fixed point ˛�. Therefore, the
function ug;w


˛� defined by (9.118), is a solution of Problem .S /
g;w

 . Finally, by

using Gronwall’ inequality and the properties (9.110)–(9.112) of the function
j
, from the formulation .S /

g;w

 , the uniqueness follows. ut

The regularized problem .S/g;w

 approximates the penalized problem .S/g;w in

the following sense.

Proposition 9.6. Let .g; w/ 2 Hg � Hw. For 
 > 0, let ug;w

 be the unique solution

of problem .S/g;w

 . Then

ug;w

 ! ug;w strongly in L1.0; T IV / ;

Pug;w

 * Pug;w weakly in L2.0; T IV / ;

(9.120)

ug;w being the unique solution of .S/g;w. Moreover, there exists a constant C > 0,
independent of 
, such that

kug;w

 � ug;wkL1.0;T IV / � C

p



�
1 C kPug;wk2

L2.0;T IV /

�
: (9.121)

Proof. Using the property (9.111) of j 
 and taking v D Pug;w

 in .S/g;w and v D Pug;w

in .S/g;w

 , we get




sZ
0

kPug;w

 .t/k2

V dt C ˛

2
kug;w.s/ � ug;w


 .s/k2
V

�
sZ

0

jj 
.w.t/; Pug;w.t// � j.w.t/; Pug;w.t//j dt

C
sZ

0

jj.w.t/; Pug;w

 .t// � j 
.w.t/; Pug;w


 .t//j dt C 


sZ
0

. Pug;w

 .t/; Pug;w.t//V dt

� C


sZ
0

kw.t/kV dt C 


sZ
0

kPug;w

 .t/kV kPug;w.t/kV dt

� 


0
@C0 C �

2

sZ
0

kPug;w

 .t/k2

V dt C 1

2�

sZ
0

kPug;w.t/k2
V dt

1
A ; 8s 2 Œ0; T � ;
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which implies, for � > 0 conveniently chosen, that

kPug;w

 k2

L2.0;T IV /
� C.1 C kPug;wk2

L2.0;T IV /
/ (9.122)

and

kug;w.s/ � ug;w

 .s/k2

V � C
.1 C kPug;wk2
L2.0;T IV /

/ 8s 2 Œ0; T � :

ut
Now, we formulate an optimal control problem, governed by the regularized

problem .S/g;w

 , in which the cost functional is defined similarly to J� , the only

difference being that the state is, in this case, the solution of an equation. More
precisely, we introduce the regularized functional:

J�
.g; w/ DJ.g; ug;w

 / C 1

2�
kw � ug;w


 k2
Hw

D1

2
kug;w


 � ud k2
Hu

C ˇ

2
kgk2

Hg
C 1

2�
kw � ug;w


 k2
Hw

; (9.123)

ug;w

 being the unique solution of the regularized problem .S/g;w


 or, equivalently,
of the variational equation .S /

g;w

 .

For any 
 > 0, we consider the corresponding regularized optimal control
problem.

Problem .CS/�
: Find .g�
�
; w�

�
/ 2 Hg � Hw such that

J�
.g�
�
; w�

�
/ D minfJ�
.g; w/ I .g; w/ 2 Hg � Hwg:

Theorem 9.6. For 
 > 0, there exists a solution .g�
�
; w�

�
/ of Problem .CS/�
.

Proof. Let f.gn
�
; wn

�
/gn be a minimizing sequence for the functional J�
. From the
definition of J�
, it follows that there exists g�

�
 2 Hg such that, up to a subsequence,
we have

gn
�
 * g�

�
 weakly in Hg : (9.124)

Let un
�
 D ug

n
�
;wn

�
 . Putting v D Pun
�
.t/ in .S /

gn
�
;wn

�


 and taking into account

that (9.110) implies

hr2j 
.w; u/; ui � 0 ; 8.w; u/ 2 W � V ; (9.125)

we get




sZ
0

kPun
�
.t/k2

V dt C ˛

2
kun

�
.s/k2
V � 1

2
a.u0; u0/ C

sZ
0

.F n
�
.t/; Pun

�
.t//V dt

� C C �

2

sZ
0

kPun
�
.t/k2

V dt C 1

2�

sZ
0

kF n
�
.t/k2

V dt ;
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where

.F n
�
.t/; v/V D

Z
�

f .t/ � v dx C
Z
�1

gn
�
.t/ � v ds : (9.126)

Thus, with (9.124), it follows that

kun
�
.s/k2

V � C 8s 2 Œ0; T � ;

kun
�
k2

L1.0;T IV / � C ;

kPun
�
k2

L2.0;T IV /
� C
 ;

(9.127)

with C and C
 positive constants. So, up to a subsequence, we have

8̂<
:̂

un
�
 * u�

�
 weakly � in L1.0; T IV / ;

un
�
.t/ * u�

�
.t/ weakly in V 8t 2 Œ0; T � ;

Pun
�
 * Pu�

�
 weakly in L2.0; T IV / :

(9.128)

Therefore, since

kun
�
k2

Hw
D kun

�
k2
L2.0;T IV /

C k
 Pun
�
 � f k2

L2.0;T I.L2.�//d /
;

we conclude that the sequence fun
�
gn is also bounded in Hw and, from the definition

and the boundedness of fJ�
.gn
�
; wn

�
/gn, it follows that the sequence fwn
�
gn is

bounded in Hw. So, up to a subsequence, we have

wn
�
 * w�

�
 weakly in Hw ; (9.129)

with w�
�
 2 Hw.

Now, passing to the limit with n ! 1 in .S /
gn

�
;wn
�



 and using the conver-
gences (9.124), (9.129), (9.128), and (9.112), we obtain that u�

�
 D ug
�
�
;w�

�
 . From
the uniqueness of the solution, we deduce that all the above convergences hold on
the whole sequences.

Next, from .S/g
n
�
;wn

�
 and .S/g
�
�
;w�

�
 , we obtain

.un
�
 �u�

�
; '/Hw D .un
�
 �u�

�
; '/L2.0;T IV / C
. Pun
�
 � Pu�

�
; '/L2.0;T I.L2.�//d / 8' 2 Hw ;

which, together with (9.128)1;3, implies

un
�
 * u�

�
 weakly in Hw :
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Therefore, by using the convergence (9.129), one gets

lim inf
n!1

1

2�
kwn

�
 � un
�
k2

Hw
� 1

2�
kw�

�
 � u�
�
k2

Hw
: (9.130)

Finally, using the weakly lower semi-continuity of J�
 and (9.130), one deduces

inffJ�
.g; w/ I .g; w/ 2 Hg � Hwg
D lim

n!1 J�
.gn
�
; wn

�
/ � lim inf
n!1 J�
.gn

�
; wn
�
/ � J�
.g�

�
; w�
�
/

and so, we conclude

J�
.g�
�
; w�

�
/ D minfJ�
.g; w/ I .g; w/ 2 H g �H wg :

ut
The following property of the solution of the regularized problem .S/g;w


 will
allow us to prove an important result of this section, stated in Theorem 9.7, which
gives the asymptotic behavior of the regularized optimal controls of problem .CS/�
.

Proposition 9.7. Let f.gn; wn/gn � Hg � Hw be such that

.gn; wn/ * .g; w/ weakly in Hg � Hw :

Then,

ugn;wn

 ! ug;w


 weakly in W 1;2.0; T IV / ;

ugn;wn

 being the unique solution of .S/gn;wn


 and ug;w

 the unique solution of .S/g;w


 .

Proof. Let un D uwn;gn

 . Taking v D Pun in .S /

gn;wn

 and using the positivity (9.125),

we deduce, for all s 2 Œ0; T �, that




sZ
0

kPun.t/k2
V dt C ˛

2
kun.s/k2

V � 1

2�

sZ
0

kF gn.t/k2
V C �

2

sZ
0

k Pun.t/k2
V dt C C ;

which, for � > 0 conveniently chosen, implies

kun.s/k2
V � C.1 C kF gnk2

L2.0;T IV /
/ 8s 2 Œ0; T � ;

kPunk2
L2.0;T IV /

� C
.1 C kF gnk2
L2.0;T IV /

/ :

Thus, there exists u 2 W 1;2.0; T IV / such that, up to a subsequence, we have

un ! u weakly � in L1.0; T IV / ;

un ! u weakly in W 1;2.0; T IV / : (9.131)
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Finally, by passing to the limit in .S /
gn;wn

 , with n ! 1, and using (9.131),

(9.112) and the hypotheses on fgngn and fwngn, we get u D ug;w

 . ut

Now, we state the following convergence result.

Theorem 9.7. Let .g�
�
; w�

�
/ be a solution of problem .CS/�
 and u�
�
 D u

g�
�
;w�

�


 .

Then,

8̂<
:̂
g�

�
 * g�
� weakly in Hg ;

w�
�
 * w�

� weakly in Hw ;

u�
�
 * u�

� weakly in W 1;2.0; T IV / ;

(9.132)

where u�
� D ug

�
� ;w�

� . Moreover, .g�
� ; w�

� / is an optimal control for J� and

lim

!0

J�
.g�
�
; w�

�
/ D J�.g
�
� ; w�

� / D min
.g;w/2Hg�Hw

J�.g; w/ :

Proof. Let . Qg; Qu/ 2 Vad . Obviously, Qu D uQg;Qu and, from Proposition 9.6, we have

uQg;Qu

 ! Qu strongly in L1.0; T IV / ;

PuQg;Qu

 * PQu weakly in L2.0; T IV / :

Therefore, we obtain

lim

!0

J�
. Qg; Qu/ D lim

!0

�
1

2
kuQg;Qu


 �ud k2
Hu

C 1

2�
kuQg;Qu


 �Quk2
Hw

C ˇ

2
k Qgk2

Hg

�
D J. Qg; Qu/ :

Since

J�
.g�
�
; w�

�
/ � J�
. Qg; Qu/ ;

it follows that the sequence fJ�
.g�
�
; w�

�
/g
 is bounded. Hence, the sequence
fg�

�
g
 is bounded inH g .

Next, putting v D 0 in .S/g
�
�
;w�

�
 , integrating by parts on Œ0; s� with s 2 Œ0; T � and
taking into account the positivity and the property (9.110) of j
, we get




sZ
0

kPu�
�
.t/k2 dt C

sZ
0

a.u�
�
.t/; Pu�

�
.t// dt �
sZ

0

.F �
�
.t/; Pu�

�
.t//V dt ; (9.133)

where

.F �
�
.t/; v/V D

Z
�

f .t/ � v dx C
Z
�1

g�
�
.t/ � v ds :
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Proceeding like in the proof of Proposition 9.4, we deduce that the sequence
f.u�

�
; 
 Pu�
�
/g
 is bounded in L1.0; T IV / � L2.0; T IV /.

Thus, since

ku�
�
k2

Hw
D ku�

�
k2
L2.0;T IV /

C k
 Pu�
�
 � f k2

L2.0;T I.L2.�//d /
;

it follows that the sequence fu�
�
g
 is also bounded in Hw. From the definition of J�


and the boundedness of the sequence fJ�
.g�
�
; w�

�
/g
, it follows that the sequence
fw�

�
g
 is bounded in Hw. Thus, there exist the elements g�
� 2 Hg and w�

� 2 Hw and
the subsequences, still denoted by fg�

�
g
 and fw�
�
g
, such that

g�
�
 * g�

� weakly in Hg ;

w�
�
 * w�

� weakly in Hw : (9.134)

Applying Propositions 9.6 and 9.7, we deduce

u�
�
 * u�

� weakly in W 1;2.0; T I V/ ; (9.135)

where u�
� D ug

�
� ;w�

� . An easy computation gives

u�
�
 * u�

� weakly in Hw : (9.136)

Let . Ng�; Nw�/ be a solution of problem .CS/� , Nu� D u Ng� ; Nw� and Nu�
 D u Ng� ; Nw�

 . From

Proposition 9.6, we get

Nu�
 ! Nu� strongly in L1.0; T IV / ;

PNu�
 ! PNu� weakly in L2.0; T IV / ; (9.137)

which, using .S/ Ng� ; Nw�

 and .S/ Ng� ; Nw� , give

Nu�
 * Nu� strongly in Hw : (9.138)

Therefore, the convergences (9.134)–(9.138) lead us

J�.g
�
� ; w�

� / � lim inf

!0

J�
.g�
�
; w�

�
/ � lim sup

!0

J�
.g�
�
; w�

�
/

� lim sup

!0

J�
. Ng�; Nw�/ D lim

!0

J�
. Ng�; Nw�/ D J�. Ng�; Nw�/ � J�.g
�
� ; w�

� / ;

(9.139)

i.e.

lim

!0

J�
.g�
�
; w�

�
/ D J�.g
�
� ; w�

� / D minfJ�.g; w/ I .g; w/ 2 Hg � Hwg :

ut
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Finally, coupling the results proven in Theorems 9.7 and 9.5, we conclude that the
regularized optimal problems represent a good approximation for the initial control
problem.

Corollary 9.1. Let � ; 
 > 0 and fg�
�
; w�

�
g�
 be the sequence of solutions for
problems .CS/�
. Then, there exists .g�; u�/ 2 Vad , such that, up to a subsequence,
for � ; 
 ! 0, we have

8̂<
:̂
g�

�
 * g� weakly in Hg ;

w�
�
 * u� weakly in Hw ;

u�
�
 * u� weakly in W 1;2.0; T IV / ;

(9.140)

where u�
�
 D ug

�
�
;w�

�
 . Moreover,

lim
�;
!0

J.g�
�
; w�

�
/ D J.g�; u�/ D min
.g;u/2Vad

J.g; u/ : (9.141)

In the sequel, we are concerned with the obtaining of the optimality conditions
for the problem .CS/�
, which means to derive the equations characterizing an
optimal control from the fact that the differential of J�
 vanishes at an extremum.
We shall use the following result due to Lions [11].

Theorem 9.8. Let B be a Banach space and X, Y two reflexive Banach spaces.
We consider two functions of class C 1, F W B � X �! Y, and J W B � X �! R.

We suppose that, for all h 2 B,

(i) there exists a unique solution uh 2 X of equation F .h; uh/ D 0;

(ii) the operator
@F

@u
.h; uh/ W X �! Y is an isomorphism.

Then, the function J W B �! R, defined by J.h/ D J .h; uh/, is differentiable
and

dJ

dh
.h/.ıh/ D @J

@h
.h; uh/.ıh/ �

�
qh;

@F

@h
.h; uh/.ıh/

�
Y �;Y

8 ıh 2 B;

(9.142)

where the adjoint state qh 2 Y� is the unique solution of

��
@F

@u
.h; uh/

��
� qh; v

�
X�;X

D @J

@u
.h; uh/.v/ 8v 2 X: (9.143)

First, let us remark that, for .g; w/ 2 Hg � Hw, the regularized problem .S/g;w



has a unique solution ug;w

 2 W 1;2.0; T IV / satisfying ug;w


 .0/ D u0. Then, ug;w

 D

u0 C Qug;w

 , where Qug;w


 2 W 1;2.0; T IV / satisfies
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8̂<
:̂


.PQug;w

 .t/; v/V C a. Qug;w


 .t/ C u0; v/ C hr2j 
.w.t/; PQug;w

 .t//; vi

D .F .t/; v/V 8 v 2 V ; a.e. t 2 .0; T / ;

Qug;w

 .0/ D 0 :

(9.144)

In order to apply Theorem 9.8, we take

B D Hg � Hw ;

X D fv 2 W 1;2.0; T IV / \ L2.0; T IW / I v.0/ D 0g ;

Y D L2.0; T IV �/ ;

F W B � X ! Y ;

hF .g; w; u/; vi D
TZ

0


. Pu.t/; v.t//V dt C
TZ

0

a.u.t/ C u0; v.t// dt

Chr2j 
.w.t/; Pu.t//; v.t/i dt �
TZ

0

.f .t/; v.t//.L2.�//d dt

�
TZ

0

.g.t/; v.t//.L2.�1//d dt 8 v 2 L2.0; T IV / ;

J W B � X ! R ;

J .g; w; u/ D 1

2
ku C u0 � ud k2

Hu
C ˇ

2
kgk2

Hg
C 1

2�
ku C u0 � wk2

Hw
:

We remark that

J .g; w; Qug;w

 / D J�
.g; w/ 8.g; w/ 2 Hg � Hw :

In the sequel, to simplify the notation, we shall omit to write explicitly the indices
�, 
, g, and w.

We state now the main result of this section.

Theorem 9.9. Let .g�; w�/ 2 Hg �Hw be a solution of the optimal control problem
.CS/�
. Then, there exist the unique elements u� 2 X and q� 2 Y� such that

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂:




TZ
0

. Pu�.t/; v.t//V dt C
TZ

0

a.u�.t/ C u0; v.t// dt

C
TZ

0

hr2j.w�.t/; Pu�.t//; v.t/i dt D
TZ

0

.f .t/; v.t//.L2.�//d dt

C
TZ

0

.g�.t/; v.t//.L2.�1//d dt 8 v 2 L2.0; T IV / ;

(9.145)
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8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂:

TZ
0


.Pv.t/; q�.t//V dt C
TZ

0

a.v.t/; q�.t// dt

C
TZ

0

hr2
2 j.w�.t/; Pu�.t//Pv.t/ � r2j.v.t/; Pu�.t//; q�.t/i dt

D
TZ

0

.u�.t/ C u0 � ud ; v.t//.L2.�2//d dt 8v 2 X

(9.146)

and

ˇ.g�;g/Hg D .q�;g/L2.0;T I.L2.�1//p/ 8g 2 Hg : (9.147)

Proof. Let u� be the unique solution of (9.144) corresponding to .g�; w�/. Some
easy computations give:

@J

@w
.g�; w�; u�/.w/ D 1

�
.u� C u0 � w�; w/Hw 8w 2 Hw ;

@J

@g
.g�; w�; u�/.g/ D ˇ.g�;g/Hg 8g 2 Hg ;

@J

@u
.g�; w�; u�/.u/ D .u� C u0 � ud ; u/Hu C 1

�
.u� C u0 � w�; u/Hw u 2 X ;

�
@F

@w
.g�; w�; u�/.w/; v

�
D

TZ
0

hr2j.w.t/; Pu�.t//; v.t/i dt 8.w; v/ 2 Hw � L2.0; T IV / ;

�
@F

@g
.g�; w�; u�/.g/; v

�
D �

TZ
0

.g.t/; v.t//.L2.�1/d dt 8g 2 Hg 8v 2 L2.0; T IV / ;

�
@F

@u
.g�; w�; u�/.u/; v

�
D 


TZ
0

. Pu.t/; v.t//V dt C
TZ

0

a.u.t/; v.t// dt

C
TZ

0

hr2
2 j.w.t/; Pu�.t// Pu.t/; v.t/i dt 8u 2 X ; 8v 2 L2.0; T IV / :

Thus, the operator
@F

@u
.g�; w�; u�/ W X ! Y is an isomorphism.

Using Theorem 9.8, the adjoint state q� 2 Y� is defined as being the unique
solution of the following equation:

��
@F

@u
.g�; w�; u�/

��
� q�; v

�
D @J

@u
.g�; w�; u�/.v/ 8v 2 X :
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Therefore, we have

TZ
0




.Pv.t/; q�.t// C a.v.t/; q�.t// C hr2

2 j.w�.t/; Pu�.t//.Pv.t/; q�.t/i� dt

D
TZ

0

�
.u�.t/ C u0 � ud ; v.t//.L2.�2//d C 1

�
.uh


 C u0 � w.t/; v.t//W

�
dt 8v 2 X:

Next, since h� D .g�; w�/ is a solution of the optimal control problem .CS/�
,
using Theorem 9.8, we obtain

dJ

dh
.h�/.h/D@J

@h
.h�; u�/.h/�

�
q�;

@F

@h
.h�; u�/.h/

�
D0 8hD.g; w/ 2 Hg � Hw ;

which gives

TZ
0

1

�
.u�.t/ C u0 � w�.t/; w.t//W dt C ˇ.g�;g/Hg D

TZ
0

hq�.t/; r2j.w.t/; Pu�.t//i dt

�.q�;g/L2.0;T I.L2.�1//d / 8.g; w/ 2 Hg � Hw :

Taking g D 0, we deduce

TZ
0

1

�
.u�.t/Cu0�w�.t/; v.t//W dt D

TZ
0

hq�.t/; r2j.v.t/. Pu�.t//i dt 8v 2 L2.0; T IW /

and, so, we obtain (9.146) and (9.147). ut
The asymptotic analysis (Corollary 9.1) of smoother problems .CS/�
 provides

that the sequence of optimal regularized controls fg�
�
; u�

�
g�
 converges to an
optimal control .g�; u�/ of the initial problem .CS/. Therefore, the system (9.145)–
(9.147) can be useful in the numerical analysis of an optimal control.
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