
Chapter 7
Approximations of Variational Inequalities

This chapter is devoted to the discrete approximation of abstract elliptic and
implicit evolutionary quasi-variational inequalities. We restrict ourselves to present
convergence results for internal approximations in space of elliptic quasi-variational
inequalities together with a backward difference scheme in time of implicit evo-
lutionary quasi-variational inequalities. For more details we refer the reader to
Glowinski, Lions and Trémolières [6], Glowinski [5], and the bibliography of these
works. Here, following the works of Capatina and Cocu [7] and Capatina, Cocou
and Raous [1], numerical analysis is carried out on general problems. Also, a
general error estimate is derived. The results obtained in this chapter, representing
generalizations of the approximations of variational inequalities of the first and
second kinds, can be applied to a large variety of static and quasistatic contact
problems, including unilateral and bilateral contact or normal compliance conditions
with friction. In particular, static and quasistatic unilateral contact problems with
nonlocal Coulomb friction in linear elasticity will be considered in Chaps. 8 and 9.

7.1 Internal Approximation of Elliptic Variational
Inequalities

In this section one considers the internal approximation of the following abstract
quasi-variational inequality.

Problem .Pa/: Find u 2 K such that

hAu; v � ui C j.u; v/ � j.u; u/ � hf; v � ui 8v 2 K; (7.1)

where .V; k � k) is a real reflexive Banach space with .V �; k � k�/ its dual and h�; �i
the duality product between V � and V . We denote by K a nonempty closed convex
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116 7 Approximations of Variational Inequalities

subset of V and let f 2 V � be given. One supposes that the operator A W V �! V �
is Lipschitz continuous and strongly monotone, i.e.

9M > 0 such that kAu � Avk� � Mku � vk 8u; v 2 V ; (7.2)

9 ˛ > 0 such that hAu � Av; u � vi � ˛ku � vk2 8u; v 2 V : (7.3)

In addition, we assume that the function j.�; �/ W V � V �! .�1; C1� satisfies
the conditions of Theorem 4.16, so

8u 2 V; j.u; �/ W V ! .�1; C1� is a proper convex l.s.c. function, (7.4)

� 9k < ˛ such that jj.u1; v1/ C j.u2; v2/ � j.u1; v2/ � j.u2; v1/j
� kku1 � u2k kv1 � v2k 8u1; u2; v1; v2 2 K :

(7.5)

From the existence and uniqueness proof of Theorem 4.16, the following
algorithm of Bensoussan–Lions type for the numerical approximation of Problem
.Pa/ follows: let u0 2 K be arbitrary and

un D Sun�1 ; n � 1 (7.6)

where S W K ! K is the mapping which associates with every w 2 K the unique
solution Sw 2 K of the following variational inequality of the second kind:

hA.Sw/; v � .Sw/i C j.w; v/ � j.w; .Sw// � hf; v � .Sw/i 8v 2 K :

The hypothesis k < ˛ implies (see p. 50) that the quasi-variational inequal-
ity (7.1) has a unique solution u D Su and

un ! u strongly in V as n ! 1 : (7.7)

We shall consider an internal approximation of Problem .Pa/.
Let h be a parameter which converges to zero. Let us consider a family fVhgh of

closed subspaces of V (in applications, we often take Vh to be finite dimensional),
and a family fKhgh of nonempty convex closed subsets of Vh which approximates
K in the following sense (see, e.g., [6]):

�
.i/ 8v 2 K; 9rhv 2 Kh such that rhv ! v strongly in V ;

.i i/ 8vh 2 Kh with vh * v weakly in V , then v 2 K :
(7.8)

Often one uses approximations Ah; fh, and jh for A; f and j , usually obtained
by a process of numerical integration. Nevertheless, since the use of approximations
Ah and fh does not bring any major change comparatively with the use of A and f ,
here we only consider an approximate of the function j.�; �/ by a family fjhgh of
functions which, for every u 2 V , satisfies the following conditions (see also [5]):
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8h; jh.u; �/ W Vh ! .�1; C1� is a convex l.s.c. function, (7.9)
8<
:

the family fjh.u; �/gh is uniformly proper, i.e.
9� D �.u/ 2 V �; 9� D �.u/ 2 R such that
jh.u; vh/ � h�; vhi C � 8vh 2 Vh; 8h;

(7.10)

lim inf
h!0

jh.u; vh/ � j.u; v/ 8vh 2 Vh such that vh * v weakly in V ; (7.11)

lim
h!0

jh.u; rhv/ D j.u; v/ 8v 2 K : (7.12)

In addition, we suppose that, for every h, jh satisfies

jjh.u1
h; v2

h/ C jh.u2
h; v1

h/ � jh.u1
h; v1

h/ � jh.u2
h; v2

h/j
� kku1

h � u2
hk kv1

h � v2
hk 8u1

h; u2
h; v1

h; v2
h 2 Kh :

(7.13)

Under the previous assumptions, one formulates the following discrete problem.

Problem .Pa/h : Find uh 2 Kh such that

hAuh; vh � uhi C jh.uh; vh/ � jh.uh; uh/ � hf; vh � uhi 8vh 2 Kh : (7.14)

Arguing as in the proof of Theorem 4.16, it follows that the mapping Sh W Kh !
Kh defined, for every wh 2 Kh, as the unique element Shwh 2 Kh which verifies

hA.Shwh/; vh�ShwhiCjh.wh; vh/�jh.wh; Shwh/ � hf; vh � Shwhi 8vh 2 Kh ;

is a contraction:

kShw1 � Shw2k � k

˛
kw1 � w2k 8w1; w2 2 Kh : (7.15)

Hence, the following existence and uniqueness result holds.

Proposition 7.1. The discrete quasi-variational inequality (7.14) has a unique
solution uh D Shuh 2 Kh.

As in the continuous case, we approximate the discrete solution uh by the
sequence fun

hgn�1 defined by

un
h D Shun�1

h ; n � 1

where u0
h 2 Kh is given such that the sequence fu0

hgh is bounded. Obviously, we
have

kun
h � uhk D kShun�1

h � Shuhk �
�

k

˛

�n

ku0
h � uhk : (7.16)

Thus, in order to prove that the sequence fun
hgn is uniformly bounded in h, it is

enough to prove the following result.
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Lemma 7.1. The sequence fuhgh of the solutions of the quasi-variational
inequality (7.14) is bounded.

Proof. Let v 2 K and rhv 2 Kh such that rhv ! v strongly in V as h ! 0. Taking
vh D rhv in (7.14), we obtain

˛kuh � rhvk2 � hAuh � A.rhv/; uh � rhvi � hA.rhv/; rhv � uhi
C.jh.uh; rhv/ � jh.uh; uh/ C jh.u; uh/ � jh.u; rhv//

�jh.u; uh/ C jh.u; rhv/ � hf; rhv � uhi :

(7.17)

From (7.12) we have

jjh.u; rhv/j � C1;

and, since the sequence frhvgh is bounded, from (7.2), we get

kA.rhv/k� � C2

with C1 and C2 positive constants independent of h. Therefore, from (7.17), (7.10)
and (7.13), we obtain

˛kuh � rhvk2 � k�k�kuhk � j�j � hAuh � A.rhv/; uh � rhvi C jh.u; uh/

� C2krhv � uhk C kkuh � uk krhv � uhk C C1 C kf k�krhv � uhk;
(7.18)

hence
�

˛ � k � k�1 C �2 C �3

2

�
kuh � rhvk2 � k�k�

2�3

C krhvk k�k�

C k

2�1

krhv � uk2 C .C2 C kf k�/2

2�2

C C1 C j�j � C

(7.19)

where �1; �2; �3 > 0 are chosen such that ˛ � k � k�1 C �2 C �3

2
> 0 (for instance,

�1 D ˛ � k

3k
; �2 D 5

6
.˛ � k/; �3 D 5

12
.˛ � k/) and C is a positive constant

independent of h. Therefore, according to the choice of frhvgh, we conclude that the
sequence fuh � rhvgh is bounded, and so, the sequence fuhgh is. ut

Now, from (7.16), the above lemma and the boundedness of fu0
hgh, it follows that

kun
h � uhk � C qn (7.20)

with q D k

˛
< 1 and C a positive constant independent of n and h, i.e. fun

hgn is

uniformly bounded in h. Hence, for all � > 0, there exists N D N� such that

kun
h � uhk � � 8n � N� ; 8h > 0 : (7.21)

We recall that, for any n � 1, un, respectively un
h, are defined as the unique

solutions of the following problems:
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Problem .Pa/n: Find un 2 K such that

hAun; v � uni C j.un�1; v/ � j.un�1; un/ � hf; v � uni 8v 2 K ; (7.22)

respectively,

Problem .Pa/h;n: Find un
h 2 Kh such that

hAun
h; vh � un

hi Cjh.un�1
h ; vh/ �jh.un�1

h ; un
h/ � hf; vh � un

hi 8vh 2 Kh : (7.23)

This means that Problem .Pa/n is an iterative approximation of Problem .Pa/, while
Problem .Pa/h;n is an iterative approximation of Problem .Pa/h.

In order to obtain the convergence of the sequence fuhgh to u, as h ! 0, we
introduce an auxiliary sequence of problems. So, for w0

h 2 Kh given such that the
sequence fw0

hgh is bounded, we denote by wn
h 2 Kh the solution, that there exists

and is unique, of the following problem.

Problem .Pa/n;h: Find wn
h 2 Kh such that

hAwn
h; vh�wn

hiCjh.un�1; vh/�jh.un�1; wn
h/ � hf; vh�wn

hi 8vh 2 Kh ; (7.24)

where the sequence fungn � K is defined by (7.6). We note that Problem .Pa/n;h is
an internal approximation of Problem .Pa/n.

We have the following convergence result.

Proposition 7.2. The sequence fwn
hgh, defined by (7.24), approximates the solution

un of (7.22) in the sense

wn
h ! un strongly in V as h ! 0:

Moreover, we have

lim
h!0

jh.un�1; wn
h/ D j.un�1; un/:

Proof. Let v 2 K be arbitrarily chosen. Taking vh D rhv in (7.24), it results

hAwn
h; wn

hiCjh.un�1; wn
h/ � hAwn

h; rhviCjh.un�1; rhv/�hf; rhv � wn
hi : (7.25)

By using the hypotheses (7.3), (7.2), (7.10), and (7.12), one gets

˛kwn
hk2 � k�k�kwn

hkCj�jCMkwn
hkkrhvkCC Ckf k�.krhvkCkwn

hk/ � C1kwn
hk C C2

with C; C1, and C2 positive constants independent of h. Hence, the sequence
fwn

hgh is bounded and we can extract a subsequence fwn
hp

gp such that wn
hp

* wn

weakly in V , with wn 2 K (from (7.8)2). Now, from (7.25), by using (7.3), (7.11),
and (7.12), we obtain
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hAwn; wni C j.un�1; wn/ � lim inf
hp!0

.hAwn
hp

; wn
hp

i C jh.un�1; wn
hp

//

� hAwn; vi C j.un�1; v/ � hf; v � wni 8v 2 K :

This implies wn D un, where un is the unique solution of the variational
inequality (7.22). Therefore, wn

h * un weakly in V as h ! 0.
Finally, from (7.25) and using the hypotheses (7.11) and (7.12), we have

j.un�1; un/ � lim inf
h!0

jh.un�1; wn
h/ � lim inf

h!0
.˛kwn

h � unk2 C jh.un�1; wn
h//

� lim sup
h!0

.˛kwn
h � unk2 C jh.un�1; wn

h//

� lim
h!0

.hAwn
h; rhvi C jh.un�1; rhv/ � hf; rhv � wn

hi � hAwn
h; uni � hAun; wn

hi
ChAun; uni/ D hAun; v � uni C j.un�1; v/ � hf; v � uni 8v 2 K :

The proof is completed by taking v D un. ut
We are now prepared to prove the main result of this section.

Theorem 7.1. We suppose that (7.2)–(7.13) hold. Let u and uh be the unique
solutions of (7.1) and, respectively, (7.14). Then, we have

uh ! u strongly in V as h ! 0 : (7.26)

Proof. We observe that we have

kuh � uk � kuh � un
hk C kun

h � unk C kun � uk 8n � 0 : (7.27)

First, from (7.7) and (7.21), it results that, for � > 0 given, there exists N� > 0

such that

kun
h � uhk C kun � uk � �

2
8n � N� : (7.28)

In order to estimate the second term in the right-hand side of (7.27), we deduce,
form the definitions of un

h and wn
h, that

˛kun
h � wn

hk2 � hAwn
h � Aun

h; wn
h � un

hi
� jh.un�1; un

h/ C jh.un�1
h ; wn

h/ � jh.un�1; wn
h/ � jh.un�1

h ; un
h/ ;

from which, using (7.13), we deduce

kun
h � wn

hk < kun�1
h � un�1k : (7.29)

Now, by choosing w0
h D u0

h, we shall prove by recurrence, that

kun
h � unk �

nX
iD0

kwi
h � ui k 8n � 0 : (7.30)
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Indeed, for n D 0 the result is obvious. If we suppose that (7.30) holds for n � 1,
then, from (7.29), we get

kun
h � unk � kun

h � wn
hk C kwn

h � unk � kun�1
h � un�1k C kwn

h � unk �
nX

iD0

kwi
h � ui k :

It follows that the relation (7.30) holds for every n � 0.
Choosing n D N� in (7.27) and taking into account (7.30) and (7.28), we obtain

kuh � uk � �

2
C

N�X
iD0

kwi
h � ui k : (7.31)

But, from Proposition 7.2, it follows that, for every i , there exists H i
� > 0 such

that

kwi
h � ui k � �

2.N� C 1/
8h � H i

� : (7.32)

Concluding, from (7.31) and (7.32), for � > 0 given, there exists H� D N�

min
iD0

H i
�

such that

kuh � uk � � 8h � H� ;

hence uh ! u strongly in V as h ! 0. ut

7.2 Abstract Error Estimate

The purpose of this section is to obtain a priori error estimate for the approxima-
tion (7.14) of the quasi-variational inequality (7.1). This estimate generalizes the
estimates obtained by Cea [2, 3] and Falk [4] for the approximation of variational
equations and, respectively, variational inequalities of the first kind.

Theorem 7.2. Let u and uh be the unique solutions of the quasi-variational
inequality (7.1) and, respectively, (7.14).

We suppose that (7.2)–(7.13) hold. Moreover, we assume that there exists a
Hilbert space .H; k � kH / and a Banach space .U; k � kU / such that V ,! H dense,
V � U and

Au � f 2 H ; (7.33)

jjh.u; vh/ � j.u; v/j � C1kvh � vkU 8vh 2 Kh ; 8v 2 K ; (7.34)
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where C1 is a positive constant independent of h. Then, there exists a positive
constant C , independent of h, such that the estimate

kuh � uk � C

�
inf

vh2Kh

�ku � vhk2 C kAu � f kH ku � vhkH C C1ku � vhkU

�

C inf
v2K

.kAu � f kH kuh � vkH C C1kuh � vkU /

� 1=2

(7.35)

holds.

Proof. From (7.1) and (7.14), we get

hAuh � Au; uh � ui � hAu � f; v � uh C vh � ui C hAuh � Au; vh � ui
Cjh.uh; vh/ � jh.uh; uh/ C j.u; v/ � j.u; u/ 8v 2 K 8vh 2 Kh :

(7.36)

Evaluating each term in the right-hand side, we have

hAu � f; v � uh C vh � ui � kAu � f kH .kv � uhkH C kvh � ukH / ; (7.37)

hAuh � Au; vh � ui � Mkuh � uk kvh � uk (7.38)

and

jh.uh; vh/ � jh.uh; uh/ C j.u; v/ � j.u; u/

� jjh.uh; vh/ � jh.uh; uh/ C jh.u; uh/ � jh.u; vh/j C jjh.u; vh/ � j.u; u/j
Cjj.u; v/ � jh.u; uh/j � kkuh � uk kvh � uhk C C1.kvh � ukU C kv � uhkU /

� kkuh � uk2 C kkuh � uk kvh � uk C C1.kvh � ukU C kv � uhkU / :
(7.39)

By using (7.37)–(7.39) in (7.36), with (7.3), it follows

.˛ � k/kuh � uk2 � .M C k/kuh � uk kvh � uk C kAu � f kH .kv � uhkH

Ckvh � ukH / C C1.kvh � ukU C kv � uhkU / 8v 2 K ; 8vh 2 Kh ;
(7.40)

which, by Young’inequality : ab � �a2

2
C b2

2�
for � D ˛ � k

M C k
; a D kuh � uk and

b D kvh � uk, implies

˛ � k

2
kuh � uk2 � M C k

2.˛ � k/
kvh � uk2 C kAu � f kH .kv � uhkH

Ckvh � ukH / C C1.kvh � ukU C kv � uhkU / 8v 2 K ; 8vh 2 Kh ;

(7.41)

i.e. (7.35). ut



7.2 Abstract Error Estimate 123

Remark 7.1. If Kh � K, then the term

inf
v2K

.kAu � f kH kuh � vkH C C1kuh � vkU / ;

which is expected to have the highest weight in (7.35), vanishes, thus one obtains

kuh � uk � C

�
inf

vh2Kh

�ku � vhk2 C kAu � f kH ku � vhkH C C1ku � vhkU

�� 1=2

:

This means that an optimal error estimate kuh � uk depends of the distance
between the exact solution u and the finite dimensional subspace Vh of V .
Hence, the more suitable construction of the space Vh is, the better order of the
error estimate will be. As we shall see on concrete examples in Sect. 8.6, the
order of approximation essentially depends on the chosen type of finite element
approximation for the space V .

Remark 7.2. If j.�; �/ � 0, therefore, by taking C1 D 0, we deduce

kuh � uk � C

�
inf

vh2Kh

�ku � vhk2 C kAu � f kH ku � vhkH

�

CkAu � f kH inf
v2K

kuh � vkH

� 1=2

;

so, the estimate obtained by Falk [4] for the internal approximation of variational
inequalities of first kind with A a linear and continuous operator.

Remark 7.3. If j.�; ; �/ � 0 and K D V , then, by taking Kh D Vh, from (7.35),
we get

kuh � uk � C inf
vh2Vh

ku � vhk

so, the result given by Céa [3] for the operator equation Au D f with A a linear and
continuous operator.

Finally, the following form of the error estimate is obvious.

Theorem 7.3. We suppose that the hypotheses of Theorem 7.2 are satisfied but with
the condition (7.33) replaced by

hAu � f; vi � C2kvkU 8v 2 V : (7.42)

Therefore, we have the estimate

kuh � uk � C

�
inf

vh2Kh

�ku � vhk2 C .C1 C C2/ku � vhkU

�

C.C1 C C2/ inf
v2K

kuh � vkU

� 1=2 (7.43)

with C a positive constant independent of h.
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7.3 Discrete Approximation of Implicit Evolutionary
Inequalities

This section is concerned with the numerical analysis of a class of abstract implicit
evolutionary variational inequalities. Convergence results are proved using a method
based on a semi-discrete internal approximation and an implicit time discretization
scheme.

More precisely, for f 2 W 1;2.0; T I V / given, one considers the problem (4.107)
(p. 68), i.e.
Problem .Qa/: Find u 2 W 1;2.0; T I V / such that

8̂̂
<
ˆ̂:

u.0/ D u0 ; u.t/ 2 K.f .t// 8 t 2 Œ 0; T �;

a.u.t/; v � Pu.t// C j.f .t/; u.t/; v/ � j.f .t/; u.t/; Pu.t//

� b.f .t/; u.t/; v � Pu.t// 8 v 2 V a.e. in �0; T Œ;

b.f .t/; u.t/; z � u.t// � 0 8 z 2 K; 8 t 2 Œ 0; T � ;

(7.44)

where .V; .�; �// is a real Hilbert space with the associated norm k � k and K � V is
a closed convex cone with its vertex at 0.

We suppose that a.�; �/, j.�; �; �/, b.�; �; �/ and K.g/ satisfy the hypotheses
(4.83)–(4.90), (4.96)–(4.98), (4.100), (4.101), and (4.105). We recall that
u0 2 K.f .0// is the unique solution of the following elliptic variational inequality

a.u0; w � u0/ C j.f .0/; u0; w/ � j.f .0/; u0; u0/ � 0 8 w 2 K: (7.45)

In order to obtain the discretization of Problem .Qa/, we first consider a semi-
discrete approximation of it. For a positive parameter h converging to 0, let fVhgh

be a family of finite dimensional subspaces of V and let fKhgh be a family of closed
convex cones with their vertices at 0 such that Kh � Vh and .Kh/h is an internal
approximation of K in the sense specified in Sect. 7.1, i.e.

�
.i/ 8v 2 K; 9rhv 2 Kh such that rhv ! v strongly in V ;

.i i/ 8vh 2 Kh avec vh * v weakly in V , then v 2 K :
(7.46)

For any h > 0, let fKh.g/gg2V be a family of nonempty convex subsets of Kh

such that 0 2 Kh.0/. We put DKh
D f.g; vh/ 2 V � Kh I vh 2 Kh.g/g and we

assume the following conditions hold:

8.gn; vhn/ 2 DKh
such that

gn ! g strongly in V ; vhn * vh weakly in V

�
H) .g; vh/ 2 DKh

(7.47)

8.g; vh/ 2 DKh
such that vh * v weakly in V H) .g; v/ 2 DK (7.48)
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We assume that the functional j W DK � V ! R is approximated by a family
fjhgh of functionals jh W DKh

� Vh ! R satisfying

8g 2 C.Œ0; T �I V / ; 8vh * v weakly in W 1;2.0; T; V / such that
.g.t/; vh.t// 2 DKh

; 8t 2 Œ0; T �

�

) lim inf
h!0

sZ
0

jh.g.t/; vh.t/; Pvh.t// dt �
sZ

0

j.g.t/; v.t/; Pv.t// dt ; 8s 2 Œ0; T � ;

(7.49)
and

8.g; vh/ 2 DKh
; 8wh 2 Vh such that

vh * v weakly in V ;

wh ! w strongly in V

9=
; ) lim

h!0
jh.g; vh; wh/ D j.g; v; w/:

(7.50)

Furthermore, we suppose that, for all h, the following conditions are fulfilled:

8.g; vh/ 2 DKh
; jh.g; vh; �/ W Vh ! R is a sub-additive and

positively homogeneous functional,
(7.51)

jh.0; 0; wh/ D 0 8wh 2 Vh (7.52)

jjh.g1; v1h; w1h/ C jh.g2; v2h; w2h/ � jh.g1; v1h; w2h/ � jh.g2; v2h; w1h/j
� k2.kg1 � g2k C kˇh.g1; v1h/ � ˇh.g2; v2h/kH /kw1h � w2hk
8.gi ; vih/ 2 DKh

; 8wih 2 Vh; i D 1; 2
(7.53)

where the operator ˇh W DKh
! H is such that

kˇh.g1; v1h/ � ˇh.g2; v2h/kH � k1.kg1 � g2k C kv1h � v2hk/

8.g1; v1h/; .g2; v2h/ 2 DKh
;

(7.54)

with k1, k2 the positive constants from (4.86), (4.90) such that k1k2 < ˛ (i.e.,
condition (4.101) from p. 65).

From the properties of a; jh and Kh and proceeding as in the continuous case,
it follows that, for any g 2 V; dh 2 Kh; wh 2 Kh.g/; the elliptic variational
inequality

�
Find uh 2 Kh such that
a.uh; vh � uh/ C jh.g; wh; vh � dh/ � jh.g; wh; uh � dh/ � 0 8 vh 2 Kh

(7.55)

has a unique solution uh D uh.g; dh; wh/. Hence, we can define the mapping

Sh
g;dh

W Kh.g/ ! Kh by Sh
g;dh

.wh/ D uh (7.56)

and, as in Remark 4.8, one obtains that it is a contraction.
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We suppose that, for all g 2 V and dh 2 Kh

Sh
g;dh

.Kh.g// � Kh.g/: (7.57)

Let u0h be the unique fixed point of the mapping Sh
f .0/;0, so

�
u0h 2 Kh.f .0// ;

a.u0h; wh � u0h/ C jh.f .0/; u0h; wh/ � jh.f .0/; u0h; u0h/ � 0 8 wh 2 Kh:
(7.58)

From Theorem 7.1, it follows that

u0h ! u0 strongly in V ; (7.59)

as h ! 0, u0 being the unique solution of (7.45).
Now, for all g 2 V and dh 2 Kh , we introduce the following two auxiliary

problems.

Problem . QQa
h/: Find uh 2 Kh.g/ such that

8<
:

a.uh; vh � uh/ C jh.g; uh; vh � dh/ � jh.g; uh; uh � dh/

� b.g; uh; vh � uh/ 8 vh 2 Vh;

b.g; uh; zh � uh/ � 0 8 zh 2 Kh;

(7.60)

and

Problem . QRa
h/: Find uh 2 Kh.g/ such that

a.uh; vh � uh/ C jh.g; uh; vh � dh/ � jh.g; uh; uh � dh/ � 0 8 vh 2 Kh: (7.61)

We will suppose that

If uh is a solution of . QRa
h/, then uh is a solution of . QQa

h/. (7.62)

Remark 7.4. It is obvious that, if uh satisfies . QQa
h/, then uh satisfies also . QRa

h/.

Let us consider the following semi-discrete problem.

Problem .Qa
h/: Find uh 2 W 1;2.0; T I Vh/ such that

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

uh.0/ D u0h; uh.t/ 2 Kh.f .t// 8 t 2 Œ 0; T �;

a.uh.t/; vh � Puh.t// C jh.f .t/; uh.t/; vh/ � jh.f .t/; uh.t/; Puh.t//

� b.f .t/; uh.t/; vh � Puh.t// 8 vh 2 Vh a.e. in � 0; T Œ;

b.f .t/; uh.t/; zh � uh.t// � 0 8 zh 2 Kh 8 t 2 Œ 0; T � :

(7.63)
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The full discretization of .Qa
h/ is obtained by using a backward difference scheme

as in Sect. 4.3 for .Qa/: for u0
h D u0h and i 2 f0; 1; : : : ; n � 1g, we define uiC1

h as
the unique solution of the following problem.

Problem .Qa
h/i

n: Find uiC1
h 2 KiC1

h such that

8̂̂
<̂
ˆ̂̂:

a.uiC1
h ; vh � @ui

h/ C jh.f iC1; uiC1
h ; vh/ � jh.f iC1; uiC1

h ; @ui
h/

� b.f iC1; uiC1
h ; vh � @ui

h/ 8 vh 2 Vh ;

b.f iC1; uiC1
h ; zh � uiC1

h / � 0 8 zh 2 Kh ;

(7.64)

where KiC1
h D Kh.f iC1/:

By (7.62) and Remark 7.4, it is easy to see that Problem .Qa
h/i

n is equivalent to
the following quasi-variational inequality.

Problem .Ra
h/i

n : Find uiC1
h 2 KiC1

h such that

8<
:

a.uiC1
h ; wh � uiC1

h / C jh.f iC1; uiC1
h ; wh � ui

h/

�jh.f iC1; uiC1
h ; uiC1

h � ui
h/ � 0 8 wh 2 Kh:

(7.65)

From (4.83), (4.86), (4.90), (4.101), and (7.57), it follows that the mapping

Sh

f iC1;ui
h

W KiC1
h ! KiC1

h ;

defined by (7.56), is a contraction, so that .Ra
h/i

n has a unique solution.
We now define, as in the continuous case, the functions

8<
:

uhn.0/ D Ouhn.0/ D u0h ;

uhn.t/ D uiC1
h

Ouhn.t/ D ui
h C .t � ti /@ui

h

�
8 i 2 f0; 1; : : : ; n � 1g 8 t 2 .ti ; tiC1� :

(7.66)

Then, the functions uhn 2 L2.0; T I Vh/ and Ouhn 2 W 1;2.0; T I Vh/ satisfy the
following problem.

Problem .Qa
h/n: Find uhn.t/ 2 K.fn.t// such that

8̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂:

a

�
uhn.t/; vh � d

dt
Ouhn.t/

�
C jh.fn.t/; uhn.t/; vh/

�jh

�
fn.t/; uhn.t/;

d

dt
Ouhn.t/

�
� b

�
fn.t/; uhn.t/; vh � d

dt
Ouhn.t/

�

8 vh 2 Vh;

b.fn.t/; uhn.t/; zh � uhn.t// � 0 8 zh 2 Kh :

(7.67)
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Moreover, we have the analogues of Lemmas 4.12 and 4.13. Hence, we conclude,
as in Theorem 4.19, that the following convergence and existence result holds.

Theorem 7.4. Assume that the hypotheses (4.83)–(4.90), (4.96)–(4.98),(4.100),
(4.101), (4.105), (7.46), (7.57), and (7.62) hold. Then, the problem .Qa

h/ has at
least one solution. In addition, there exists a subsequence of f.uhn; Ouhn/gn2N � , still
denoted by f.uhn; Ouhn/gn2N � , such that

uhn.t/ ! uh.t/ in V 8 t 2 Œ 0; T � as n ! 1 ; (7.68)

Ouhn ! uh in W 1;2.0; T I V / as n ! 1 ; (7.69)

where uh 2 W 1;2.0; T I Vh/ is a solution of .Qa
h/.

We now proceed to find a priori estimates for the solutions of uh of .Qa
h/ which

are limits of subsequences of fuhngn.

Lemma 7.2. For h > 0, let uh be the solution of .Qa
h/ given by Lemma 7.4. Then,

kuh.t/k � C0kf kC.Œ0;T �IV / 8 t 2 Œ 0; T � ; (7.70)

kuh.s/ � uh.t/k � C0

tZ
s

k Pf .�/k d� 8 s; t 2 Œ 0; T �; s < t; (7.71)

kuhkW 1;2.0;T IV / � C0

q
T kf k2

C.Œ0;T �IV / C k Pf k2
L2.0;T IV /

; (7.72)

where C0 is the constant, independent of h, given by the relation (4.116).

Proof. Using the same arguments as in the proof of Lemma 4.12, we obtain the
estimates

kuhn.t/k � C0kf kC.Œ0;T �IV / 8 t 2 Œ 0; T �;

kuhn.s/ � uhn.t/k � C0

minftC�t; T gZ
s

k Pf .�/k d� 8 s; t 2 Œ 0; T �; s < t;

kOuhnk2
W 1;2.0;T IV /

� C 2
0 .T kf k2

C.Œ0;T �IV / C k Pf k2
L2.0;T IV /

/ :

Combining these results with (7.68), (7.69) and taking into account that the norm
is weakly lower semicontinuous, the estimates (7.70)–(7.72) follow. ut

Now, we have in position to prove the following convergence result.

Theorem 7.5. Under the assumptions (4.83)–(4.90), (4.96)–(4.98), (4.100),
(4.101), (4.105), (7.46), (7.57), and (7.62), there exists a subsequence of fuhgh,
still denoted by fuhgh, such that
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uh.t/ ! u.t/ strongly in V 8 t 2 Œ 0; T � as h ! 0 ; (7.73)

Puh * Pu weakly in L2.0; T I V / as h ! 0 ; (7.74)

where u 2 W 1;2.0; T I V / is a solution of .Qa/.

Proof. From Lemma 7.2, it follows that there exists a subsequence of fuhgh and an
element u 2 W 1;2.0; T I V / such that

uh.t/ ! u.t/ strongly in V 8 t 2 Œ 0; T � ; (7.75)

uh * u weakly in W 1;2.0; T I V / :: (7.76)

Moreover, from (7.75) and (7.59), we get

lim inf
h!0

sZ
0

a.uh.t/; Puh.t// dt � 1

2
.lim inf

h!0
a.uh.s/; uh.s// � lim

h!0
a.u0h; u0h//

� 1

2
.a.u.s/; u.s// � a.u0; u0// D

sZ
0

a.u.t/; Pu.t// dt 8 s 2 Œ 0; T �:

(7.77)

On the other hand, from the hypothesis (7.49), we have

lim inf
h!0

sZ
0

jh.f .t/; uh.t/; Puh.t// dt �
sZ

0

j.f .t/; u.t/; Pu.t// dt : (7.78)

Next, we prove that u satisfies (7.44). In order to pass to the limit in .Qa
h/, we will

make a convenable choice of vh in Vh. Let �h W L2.0; T I V / ! L2.0; T I Vh/ be the
projection operator defined by a.�hv; wh/ D a.v; wh/ 8v 2 L2.0; T I V / ; 8wh 2 Vh.
Obviously, the operator �h is well defined and �hv.t/ ! v.t/ in V a.e. on Œ 0; T �,
hence, by (7.49) and (4.97), it follows that, for all s 2 Œ0; T �, we have

lim
h!0

sZ
0

jh.f .t/; uh.t/; �hv.t// dt D
sZ

0

j.f .t/; u.t/; v.t// dt 8v 2 L2.0; T I V /

and

lim
h!0

sZ
0

b.f .t/; uh.t/; �hv.t// dt D
sZ

0

b.f .t/; u.t/; v.t// dt 8v 2 L2.0; T I V / :
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Since b.f .t/; uh.t/; Puh.t// D 0 a.e. on Œ 0; T �, by integrating .Qa
h/ over Œ 0; s �

for vh D �h Pu and passing to the limit, we obtain that u satisfies the first inequality
of (7.44).

Now, we prove the strong convergence (7.73). Using the same argument as in the
proof of Theorem 4.19, by taking v D 0, v D 2Pu in (7.44), vh D 0, vh D 2Puh.t/ in
.Qa

h/ and using (7.77), (7.78), for all s 2 Œ 0; T �, we have

lim inf
h!0

sZ
0

a.uh.t/; Puh.t// dt D
sZ

0

a.u.t/; Pu.t// dt; (7.79)

lim inf
h!0

sZ
0

jh.f .t/; uh.t/; Puh.t// dt D
sZ

0

j.f .t/; u.t/; Pu.t// dt: (7.80)

and, by taking vh D �h Pu.t/ in .Qa
h/, we obtain

lim sup
h!0

sZ
0

a.uh.t/; Puh.t// dt �
sZ

0

a.u.t/; Pu.t// dt 8 s 2 Œ 0; T �: (7.81)

From (7.79) and (7.81), it follows

lim
h!0

sZ
0

a.uh.t/; Puh.t// dt D
sZ

0

a.u.t/; Pu.t// dt;

or

lim
h!0

.a.uh.s/; uh.s// � a.uh.0/; uh.0/// D a.u.s/; u.s// � a.u0; u0/ :

We recall that uh.0/ D u0h and u0h �! u0 strongly in V . Hence, we conclude

lim
h!0

a.uh.s/; uh.s// D a.u.s/; u.s// 8s 2 Œ0; T �

which, with the ellipticity of a, implies the strong convergence (7.73).
Finally, we prove that u satisfies the second inequality of (7.44). From .Qa

h/,
as jh.f .t/; uh.t/; �/ is sub-additive, we deduce that, for all t 2 Œ 0; T �, we have

a.uh.t/; vh � uh.t// C jh.f .t/; uh.t/; vh � uh.t// � 0 8 vh 2 Kh: (7.82)

Let v 2 K be arbitrarily chosen. Then, from (7.46), there exists rhv 2 Kh such
that rhv ! v strongly in V . By passing to the limit in (7.82) for vh D rhv and
using (7.73) and (7.50), we get that u satisfies

a.u.t/; v � u.t// C j.f .t/; u.t/; v � u.t// � 0 8v 2 K
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which, by the hypothesis (4.105), implies that u satisfies the second inequality
of (7.44). From (7.73) and (7.48), it results that u 2 K.f / which completes the
proof. ut

Using Theorems 7.4 and 7.5, we conclude with the following main approxima-
tion result.

Theorem 7.6. Under the assumptions of Theorem 7.5, the sequence fuhnghn of all
solutions of complete discrete Problem .Qa

h/n has a subsequence, still denoted by
fuhnghn, such that

uhn.t/ ! u.t/ strongly in V 8 t 2 Œ 0; T � as h ! 0 ; n ! 1 ; (7.83)

Puhn * Pu weakly in L2.0; T I V / as h ! 0 ; n ! 1; (7.84)

where u 2 W 1;2.0; T I V / is a solution of Problem .Qa/.
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