
Chapter 6
Dual Formulations of Quasi-Variational
Inequalities

The aim of this chapter is to derive dual formulations for quasi-variational inequali-
ties. First, we present a brief background on convex analysis and, then, we recall the
main ideas of the Mosco, Capuzzo-Dolcetta, and Matzeu (M–CD–M) duality theory
[3] in its form adapted by Telega [14] for implicit variational inequalities.

As we saw in Lemma 4.2, for A symmetric (i.e., hAu; vi D hu; Avi; 8u; v 2 V ),
a variational inequality of the form (4.22) is equivalent to the minimization of the
functional J defined by

J.v/ D 1

2
hAv; vi C j.v/ � hf; vi:

Generally speaking, the duality theory allows to associate with a minimization
problem

inf
v2K J.v/; (6.1)

called primal problem, a maximization one, called dual problem, and to study the
relationships between the two problems.

A large number of duality theories have been developed. The main idea in any
duality theory is that a proper convex l.s.c. function is the upper envelope of its
affine minorants, and so, we can write

J.v/ D sup
�2ƒ

L .v; �/:

for various choices of L , called the Lagrangian function, and of the set ƒ of
Lagrange multipliers �. Hence, the primal problem (6.1) can be written as

inf
v2K sup

�2ƒ
L .v; �/: (6.2)

© Springer International Publishing Switzerland 2014
A. Capatina, Variational Inequalities and Frictional Contact Problems,
Advances in Mechanics and Mathematics 31, DOI 10.1007/978-3-319-10163-7__6

101



102 6 Dual Formulations

The dual problem is defined by

sup
�2ƒ

inf
v2K L .v; �/: (6.3)

The oldest of the theories of duality is that based on the classical theorems of
minimax of Fan [7] and Sion [13]. They studied the existence of saddle points for
the Lagrangian function L (a saddle point for L is an element .v�; ��/ 2 K � ƒ
such that L .v�; �/ � L .v�; ��/ � L .v; ��/; 8v 2 K; 8� 2 ƒ) and they give
criteria (see also [5]) which ensure that sup

�2ƒ
inf
v2K L .v; �/ D inf

v2K sup
�2ƒ

L .v; �/.

Another theory has been developed by Fenchel [6] and Rockafellar [11]. In their
theory, the minimization problem is approached by a family of perturbed problems
and the dual problem is defined by means of the conjugate functions. More details
can be found in Rockafellar [12], Céa [4], Ekeland and Temam [5].

The duality theory has many applications in mechanics, numerical analysis,
control theory, game theory, or economics. In addition, the so-called primal–dual
algorithms are often used in solving the primal problem. Nevertheless, classical
duality approaches do not apply to quasi-variational inequalities since they cannot
be formulated as extremum problems. For this reason, within this chapter we do not
want to develop classical duality methods, our intention is only to recall some results
of the M–CD–M [3] duality theory for the so-called implicit variational problems. In
Sect. 8.5, we will use this theory to derive the so-called condensed dual formulation
for a frictional contact problem.

6.1 Convex Analysis Background

We recall some definitions and standard results which will be useful in the
subsequent paragraph. Let V be a reflexive Banach space with its dual V � (we
note that almost all the results remain valid if V and V � are two topological vector
spaces which are in duality; see, for instance, [1, 5, 8, 10]). We denote by h�; �iV ��V
the duality pairing between V � and V .

Let f W V �! R be a function.
Let us recall that the effective domain of f , the epigraph of f and, for any a 2 R,

the level sets are defined by

dom f D fv 2 V W f .v/ < 1g;
epi f D f.v; a/ 2 V � R W f .v/ � ag;

and, respectively,

Ea.f / D fv 2 V W f .v/ � ag:
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The function f is said to be proper if dom f ¤ Ø and f .v/ > �1;8v 2 V .
The convexity and the lower semicontinuity of functions can be characterized in

the following way.

Proposition 6.1. Let f W V �! R be a function. Then the following statements
are equivalent:

(i) the function f is convex and l.s.c. on V ;
(ii) the set epi f is a convex and closed subset of V � R.

Proof. For convexity, we only use its definition for functions and sets.
If f is l.s.c., then it is easy to show that epi f is closed in V � R. Conversely,

if the set epi f is closed in V � R, then, for any a 2 R, the level sets Ea.f / are
closed in V and so, the sets fv 2 V W f .v/ > ag are open, i.e. the function f is
l.s.c. on V . ut
Definition 6.1. The function f � W V � �! R defined by

f �.v�/ D sup
v2V

fhv�; viV ��V � f .v/g;

is called the Fenchel conjugate (sometimes also called convex conjugate, conjugate
function, or polar function) to f .

In the particular case V D R, f � is the Young conjugate function to f .
An elementary property is the following Young inequality

f .v/C f �.v�/ � hv�; viV ��V 8v 2 V; 8v� 2 V �: (6.4)

Remark 6.1. Let C � V be a set such that 0 2 C . Then

I �
C .v

�/ D sup
v2C

fhv�; viV ��V g D IC�.v�/

where C � D fv� 2 V � W hv�; viV ��V � 0; 8v 2 C g is the polar cone of C and IA
is the indicator function of the set A.

We give below a separation theorem (see, e.g., [8]) which will be frequently used
in the sequel.

Theorem 6.1. Let M be a convex closed subset of V and let be v0 2 V such that
v0 … M . Then there exists v� 2 V �, v� ¤ 0, strictly separating M and v0, i.e. there
exists c 2 R such that

hv�; v0iV ��V > c � hv�; viV ��V 8v 2 M:

Proposition 6.2. Let f W V �! R be a function. Then

1) The conjugate function f � is convex l.s.c. on V �.
2) If f is proper convex l.s.c. on V , then f � is proper.
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Proof. 1) Let u�, v� 2 V and t 2 Œ0; 1�. We have

f �..1�t /u�Ctv�/ D sup
v2V

f.1�t /.hu�; viV ��V �f .v//Ct .hv�; viV ��V �f .v//g

� .1 � t /f �.u�/C tf �.v�/;

i.e. f � is convex.
In order to prove that f � is l.s.c., let be the sequence fu�

ngn � V � and let be
u� 2 V � such that u�

n ! u� strongly in V �. Applying Young’s inequality (6.4),
we get

f �.u�
n/ � hu�

n ; viV ��V � f .v/ 8v 2 V;

and hence

lim inf
n!1 f �.u�

n/ � hu�; viV ��V � f .v/ 8v 2 V:

This yields

lim inf
n!1 f �.u�

n/ � f �.u�/:

2) As f is proper, there exists v0 2 V such that f .v0/ < 1. Hence, Young’s
inequality (6.4) yields

f �.v�/ � hv�; v0iV ��V � f .v0/ > �1 8v� 2 V �:

Let d > 0. Since .v0; f .v0/�d/ … epi f and epi f is convex closed in V �R,
by the Separation Theorem 6.1, it follows that there exist v�

0 2 V �, v�
0 ¤ 0, and

˛ 2 R such that

hv�
0 ; v0iV ��V C ˛.f .v0/ � d/ > hv�

0 ; viV ��V C ˛a 8.v; a/ 2 epi f: (6.5)

It is easy to prove that ˛ < 0. Indeed, if we suppose that ˛ > 0, then, for any
.v; a/ 2 epi f , we can take .v; aCn/ 2 epi f in (6.5), for any n > 0. Thus the right-
hand side of (6.5) tends to C1 which is in contradiction with the relation (6.5). If
˛ D 0, then we obtain hv�

0 ; v0iV ��V > hv�
0 ; viV ��V ; 8v 2 V which contradicts

v0 2 V .

Therefore, if we put v�
1 D � 1

˛
v�
0 in (6.5), in particular we deduce that

hv�
1 ; v0iV ��V � f .v0/C d > hv�

1 ; viV ��V � f .v/ 8v 2 V;
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and so, as v0 2 dom .f /, we get

C1 > hv�
1 ; v0iV ��V � f .v0/C d > sup

v2V
fhv�

1 ; viV ��V � f .v/g D f �.v�
1 /;

and hence, f � is proper. ut
Definition 6.2. Let f � W V � ! R be the conjugate function to f . Then the
function f �� W V ! R defined by

f ��.v/ D sup
v�2V �

fhv�; viV ��V � f �.v�/g;

is called the biconjugate function to f .

From Young’s inequality (6.4), we always have f ��.v/ � sup
v�2V �

fhv�; viV ��V �
hv�; viV ��V C f .v/g D f .v/, i.e.

f ��.v/ � f .v/ 8v 2 V: (6.6)

The following statement gives conditions which ensure the equality between a
function and its biconjugate.

Theorem 6.2 (Fenchel–Moreau Duality Theorem). Let f W V ! R be a proper
function. Then, f is l.s.c. and convex if and only if f �� D f .

Proof. Suppose that f is l.s.c. and convex. By Proposition 6.2, it follows that f � is
a proper l.s.c. convex function, and so, f �� is a proper l.s.c. convex function.

As we always have f ��.v/ � f .v/, suppose that there exists v0 2 V such
that f ��.v0/ < f .v0/. Thus .v0; f ��.v0// …epi .f /. Applying the Separation
Theorem 6.1, it follows that there exist v�

0 2 V �, v�
0 ¤ 0, and ˛ 2 R such that

hv�
0 ; v0iV ��V C f̨ ��.v0/ > hv�

0 /; viV ��V C ˛a 8.v; a/ 2 epi f:

Proceeding as in the proof of Proposition 6.2 we conclude that ˛ < 0. If we put

v�
1 D � 1

˛
v�
0 , then we deduce

hv�
1 ; v0iV ��V � f ��.v0/ > sup

.v;a/2epi f
fhv�

1 /; viV ��V � ag

� sup
v2V

fhv�
1 /; viV ��V � f .v/g D f �.v�

1 /

which contradicts the definition of f ��.v0/.
Conversely, if f D f �� then, by Proposition 6.2, it follows that f , as the

conjugate to f �, is l.s.c. convex on V . ut
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Remark 6.2. If f W V ! R is a convex l.s.c. function which takes the value �1,
then f is identically equal to �1. Therefore it is natural to consider convex l.s.c.
functions f W V ! .�1;C1�.

Definition 6.3. Let f W V ! .�1;C1� be a proper function and u 2dom .f /.
An element u� 2 V � is said to be subgradient of f at u (according to e.g., [9]) if

f .v/ � f .u/ � hu�; v � uiV ��V ; 8v 2 V:

The set of all subgradients of f at u is called the subdifferential of f at u and is
denoted by @f .u/,

@f .u/ D fu� 2 V � I f .v/ � f .u/ � hu�; v � uiV ��V ; 8v 2 V g:

So, the subdifferential of f is the multivalued mapping @f W V ! 2V
�

which
associates with every u 2 V the subset @f .u/ of V �.

The function f is said to be subdifferentiable at u, respectively, on V , if
@f .u/ ¤ Ø, respectively, @f .u/ ¤ Ø; 8u 2 V .

The next result follows immediately from the definitions.

Theorem 6.3. Let f W V ! .�1;C1� be a proper function. Then, the following
two conditions are equivalent:

(1) f .u/ D min
v2V f .v/,

(2) 0 2 @f .u/
Theorem 6.4. Let f W V ! .�1;C1� be a function. Then the following two
conditions are equivalent:

(1) f .u/C f �.u�/ D hu�; ui,
(2) u� 2 @f .u/.

Moreover, any of the above conditions implies
(3) u 2 @f �.u�/.

In addition, if f is proper l.s.c. and convex, then the three above conditions are
equivalent.

Proof. “.1/ ) .2/” By using the hypothesis (1) and Young’s inequality (6.4), we
obtain

hu�; uiV ��V � f .u/ D f �.u�/ � hu�; viV ��V � f .v/ 8v 2 V;

i.e. the condition (2).
“.2/ ) .1/” If u� 2 @f .u/, then

hu�; uiV ��V � f .u/ � hu�; viV ��V � f .v/ 8v 2 V
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and so,

hu�; uiV ��V � f .u/ � sup
8v2V

fhu�; viV ��V � f .v/g D f �.u�/:

Therefore, by Young’s inequality (6.4), the assertion follows.
“.1/ ) .3/” By the definition of f � and the hypothesis (1), we have

f �.v�/ � f �.u�/ D sup
8v2V

fhv�; viV ��V � f .v/g C f .u/ � hu�; uiV ��V

� hv�; uiV ��V � f .u/C f .u/ � hu�; uiV ��V
D hv� � u�; uiV ��V 8v� 2 V �;

i.e. u 2 @f �.u�/.
Suppose now that f W V ! .�1;C1� is a proper l.s.c. convex function.
“.3/ ) .1/” If u 2 @f �.u�/, then we have

hu�; uiV ��V � f �.u�/ � hv�; uiV ��V � f �.v�/ 8v� 2 V �;

which implies

hu�; uiV ��V � f �.u�/ � sup
8v�2V �

fhv�; uiV ��V � f �.v�/g D f ��.u/;

As Theorem 6.2 provides f ��.u/ D f .u/, by Young’s inequality (6.4), we conclude
that f �.u�/C f .u/ D hu�; uiV ��V . ut

Let f1; f2 W V ! .�1;C1� be two proper functions.

Definition 6.4. The infimal convolution of functions f1 and f2, denoted by f1rf2,
is the function defined by

.f1rf2/.u/ D inf
v2V ff1.v/C f2.u � v/g D inf

v1Cv2Du
v1; v22V

ff1.v1/C f2.v2/g 8u 2 V:

Definition 6.5. We say that the infimal convolution f1rf2 is exact at u if there
exists v 2 V such that .f1rf2/.u/ D f1.v/C f2.u � v/ or, equivalent, if there exist
v1, v2 2 V such that v1 C v2 D u and .f1rf2/.u/ D f1.v1/C f2.v2/.

Proposition 6.3. Let f1; f2 W V ! .�1;C1� be proper functions. Then

(1) .f1rf2/� D f �
1 C f �

2 ;

(2) If f1rf2 is exact at u, i.e. there exists u1; u2 2 V such that u1 C u2 D u and
.f1rf2/.u/ D f1.u1/C f2.u2/, then @.f1rf2/.u/ D @f .u1/ \ @f2.u2/.

(3) If f1; f2 are convex, then f1rf2 is convex.
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Proof. (1) By definitions, we have

.f1rf2/�.u�/ D sup
v2V

fhu�; viV ��V � inf
u2V ff1.u/C f2.v � u/gg

D sup
v2V

fhu�; viV ��V C sup
u2V

f�f1.u/ � f2.v � u/gg

D sup
u;v2V

fhu�; viV ��V � f1.u/ � f2.v � u/g

D sup
u2V

fhu�; uiV ��V �f1.u/C sup
v2V

fhu�; v�uiV ��V �f2.v�u/gg

D sup
u2V

fhu�; uiV ��V � f1.u/g C f �
2 .u

�/ D f �
1 .u

�/C f �
2 .u

�/:

(2) Theorem 6.4, the relation (1) and the hypothesis yield that we have the following
sequence of equivalent assertions

u� 2 @.f1rf2/.u/
” .f1rf2/�.u�/C .f1rf2/.u/ D hu�; uiV ��V
” f �

1 .u
�/C f �

2 .u
�/C f1.u1/C f2.u2/ D hu�; u1iV ��V C hu�; u2iV ��V

As from the Young inequality (6.4) we have

f �
1 .u

�/C f1.u1/ � hu�; u1iV ��V ;
f �
2 .u

�/C f2.u2/ � hu�; u2iV ��V ;

it follows that we must have f �
i .u

�/ C fi .ui / D hu�; ui iV ��V , for i D 1; 2.
Again Theorem 6.4 provides u� 2 @fi .ui /, for i D 1; 2, i.e. u� 2 @f1.u1/ \
@f2.u2/.

(3) As f1; f2 are convex, it follows that epi f1 and epi f2 are convex sets in V �R.
We prove that

epi .f1rf2/ D epi .f1/C epi .f2/;

from which the assertion follows. Indeed, we have

.u; a/ 2 epi .f1rf2/
” inf

v1Cv2Du
v1; v22V

ff1.v1/C f2.v2/g � a

” 9u1; u2 2 V; u1 C u1 D u s.t. f1.u1/C f2.u2/ � a

” f1.u1/ � a1; f2.u2/ � a2; u1 C u2 D u; a1 C a2 D a

” .u1; a1/ 2 epi f1; .u2; a2/ 2 epi f2; u1 C u2 D u; a1 C a2 D a

” .u; a/ D .u1; a1/C .u2; a2/ 2 epi f1 C epi f2:

ut
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We now recall the Fenchel’s duality theorem. The proof is available in [9], so we
omit here.

Theorem 6.5 (Fenchel’s Duality Theorem). Let f;�g W V ! .�1;C1� be two
proper convex l.s.c. functions. Suppose that there exists u0 2 dom.f / \ dom.�g/
such that f or g is continuous at u0. Then

inf
v2V ff .v/ � g.v/g D max

v�2V �

fg�.v�/ � f �.v�/g; (6.7)

where g� is the concave conjugate function to g, i.e.

g�.v�/ D inf
v2V fhv�; viV ��V � g.v/g:

Proposition 6.4. Let f1; f2 W V ! .�1;C1� be two proper convex l.s.c.
functions. If there exists u0 2 dom.f1/\ dom.f2/ such that f1 or f2 is continuous
at u0, then

.f1Cf2/�.u�/D.f �
1 rf �

2 /.u
�/Df �

1 .u
�
1 /Cf �

2 .u
�
2 / 8u�2V � with u�

1Cu�
2Du�

i.e. f �
1 rf �

2 is exact on V �.

Proof. Let u� 2 V �. We apply Fenchel’s Duality Theorem 6.5 for

f .v/ D f2.v/; g.v/ D hu�; viV ��V � f1.v/ 8v 2 V:

It is easy to verify that

inf
v2V ff .v/ � g.v/g D � sup

v2V
fhu�; viV ��V � .f1 C f2/.v/g D �.f �

1 C f �
2 /.u

�/

and

max
v�2V �

fg�.v�/ � f �.v�/g D � min
v�2V �

ff �
1 .u

� � v�/C f �
2 .v

�/g

D �f �
1 .u

�
1 / � f �

2 .u
�
2 /; u�

1 C u�
2 D u�:

On the other hand, from the definition of the infinimal convolution, we have

min
v�2V �

ff �
1 .u

� � v�/C f �
2 .v

�/g D .f �
1 rf �

2 /.u
�/:

Therefore, by (6.7), we get .f �
1 C f �

2 /.u
�/ D .f �

1 rf �
2 /.u

�/ D f �
1 .u

�
1 /C f �

2 .u
�
2 /,

8u� 2 V �, and u�
1 C u�

2 D u�, which completes the proof. ut
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Theorem 6.6. Let f1; f2 W V ! .�1;C1� be two proper convex l.s.c. functions.
Suppose that there exists u0 2 dom.f1/\dom.f2/ such that f1 is continuous at u0.
Then

@.f1 C f2/.u/ D @f1.u/C @f2.u/ 8u 2 V:

Proof. Let u 2 V .
We first prove that @.f1 C f2/.u/ � @f1.u/ C @f2.u/. Let u� 2 @.f1 C f2/.u/.

Applying Theorem 6.4 and Proposition 6.4, we get

hu�; uiV ��V D .f1 C f2/.u/C .f1 C f2/
�.u�/

D f1.u/C f �
1 .u

�
1 /C f2.u/C f �

2 .u
�
2 / with u�

1 C u�
2 D u�:(6.8)

Since from the Young inequality we have

f1.u/C f �
1 .u

�
1 / � hu�

1 ; uiV ��V ;
f2.u/C f �

2 .u
�
2 / � hu�

2 ; uiV ��V ;

the relation (6.8) implies

f1.u/C f �
1 .u

�
1 / D hu�

1 ; uiV ��V ;
f2.u/C f �

2 .u
�
2 / D hu�

2 ; uiV ��V ;

and so, again by Theorem 6.4, u�
1 2 @f1.u/ and u�

2 2 @f2.u/ with u�
1 C u�

2 D u�, i.e.
u� 2 @f1.u/C @f2.u/.

The reverse @f1.u/C @f2.u/ � @.f1 C f2/.u/ holds without any hypotheses on
f1 or f2. Indeed, if u� 2 @f1.u/ C @f2.u/, then there exist u�

1 ; u
�
2 2 V � such that

u� D u�
1 C u�

2 , u�
1 2 @f1.u/ and u�

2 2 @f2.u/, i.e.

f1.v/ � f1.u/ � hu�
1 ; v � uiV ��V 8v 2 V;

f2.v/ � f2.u/ � hu�
2 ; v � uiV ��V 8v 2 V:

By adding them, we have

.f1 C f2/.v/ � .f1 C f2/.u/ � hu�; v � uiV ��V 8v 2 V;

which means u� 2 @.f1 C f2/.u/. ut

6.2 M–CD–M Theory of Duality

We present here the main ideas for obtaining a dual formulation in the sense of
M–CD–M (see [3, 14]) of an abstract problem.
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Let .V; V �; h�; �iV ��V / and .Y; Y �; h�; �iY ��Y / be two reflexive Banach spaces
with their duals and their duality pairings. We consider the following primal
problem:

�
Find u 2 V such that
'.Lu; u/C  .u; u/ � '.Lu; v/C  .u; v/ 8v 2 V (6.9)

where the operator L W V ! Y and the functions ' W Y � V ! .�1;C1� and
 W V � V ! R satisfy the following hypotheses:

L is a linear continuous operator, (6.10)

8u 2 V; '.Lu; �/ is proper convex l.s.c. (6.11)

8u 2 V;  .u; �/ is convex and  .u; u/ is continuous (6.12)

8̂̂
<
ˆ̂:

8u 2 V; the mapping v 7!  .u; v/ has a Gâteaux derivative D2 .u; v/
with respect to the second variable at v D u such that, for any
v� 2 V �; the set fu 2 V I D2 .u; u/ D v�g contains at most one
element denoted by .D2 /

�1.v�/:
(6.13)

We recall that the Gâteaux derivative with respect to the second variable of  .u; �/
at v is defined by

hD2 .u; v/;wiV ��V D lim
t!0C

 .u; v C tw/ �  .u; v/
t

:

The dual problem of (6.9) is constructed by means of Fenchel conjugates of '�
and  � with respect to the second variable, defined by

'� W Y � V � ! .�1;C1�; '�.Lu; v�/ D sup
v2V

�hv�; viV ��V � '.Lu; v/
�
;

 � W V � V � ! .�1;C1�;  �.u; v�/ D sup
v2V

�hv�; viV ��V �  .u; v/� :

We also denote, for all u 2 V , the subdifferentials of  .u; �/ and '�.Lu; �/ with
respect to the second variable by @2 .u; �/, and respectively, by @2'�.Lu; �/, where

@2 .u; z/ D fv� 2 V I  .u; v/ �  .u; z/ � hv�; v � ziV ��V ; 8v 2 V g 8z 2 V;
@2'

�.Lu; z�/ D fv 2 V I '�.Lu; v�/ � '�.Lu; z�/

� hv� � z�; viV ��V ; 8v� 2 V �g 8z� 2 V �:
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With the above notation, the dual problem of (6.9) is

8<
:

Find .u; u�/ 2 V � V � such that
�u� 2 @2 .u; u/
u 2 @2'�.Lu; u�/

(6.14)

or, equivalently

8<
:

Find .u; u�/ 2 V � V � such that
 .u; v/ �  .u; u/ � h�u�; v � uiV ��V 8v 2 V;
'�.Lu; v�/ � '�.Lu; u�/ � hv� � u�; uiV ��V 8v� 2 V �:

(6.15)

The relationship between the primal problem and the dual problem is given by
the next result (see, e.g., [2, 15]).

Theorem 6.7. Suppose the hypotheses (6.10)–(6.12) are satisfied.

(i) If u is a solution of the primal problem (6.9), then there exists u� 2 V � such
that .u; u�/ is a solution of the dual problem (6.14).

(ii) If .u; u�/ is a solution of the dual problem (6.14), then u is a solution of the
primal problem (6.9).

In addition, the following extremality conditions hold:

�
'.Lu; u/C '�.Lu; u�/ D hu�; uiV ��V ;
 .u; u/C  �.u;�u�/ D �hu�; uiV ��V :

(6.16)

Proof. (i) Let u be a solution of (6.9) and f .v/ D '.Lu; v/ C  .u; v/. It follows
that

f .u/ � f .v/ 8v 2 V;

and so, by using Theorems 6.3, 6.4 and Proposition 6.4, we get

0 2 @f .u/ ” u 2 @f �.0/ D @.f �
1 rf �

2 /.0/; (6.17)

where f1.v/ D '.Lu; v/ and f2.v/ D  .u; v/.
On the other hand, from Proposition 6.4, the infimal convolution f �

1 rf �
2 is

exact at 0. Hence, by Proposition 6.32, we deduce that @.f �
1 rf �

2 / is exact at 0,
i.e. there exists u� 2 V � such that

@.f �
1 rf �

2 /.0/ D @f �
1 .u

�/ \ @f �
2 .�u�/: (6.18)

Now, the relations (6.17) and (6.18) yield that there exists u� 2 V � such that
u 2 @2'

�.Lu; u�/ \ @2 
�.u;�u�/. We conclude, by Theorem 6.4, that u 2

@2'
�.Lu; u�/ and �u� 2 @2 .u; u/, i.e. .u; u�/ is a solution of (6.14).
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(ii) If .u; u�/ is a solution of (6.14), then, from Theorem 6.4, we obtain

u 2 @2'�.Lu; u�/ \ @2 �.u;�u�/

and, proceeding as in the first part (i), the assertion follows.
Finally, as

�u� 2 @2 .u; u/ and u 2 @2'�.Lu; u�/;

Theorem 6.4 provides the extremality conditions (6.16).
ut

The first variable u from the solution .u; u�/ of the dual problem (6.14) is
eliminated by using the assumption (6.13).

Theorem 6.8 (M–CD–M Theorem). Let the hypotheses (6.10)–(6.13) be satisfied.
Then, u is a solution of the primal problem (6.9) if and only if u� D �D2 .u; u/ is
a solution of the following dual problem

8<
:

Find u� 2 V � such that
'�.L.D2 /

�1.�u�/; v�/ � '�.L.D2 /
�1.�u�/; u�/

� hv� � u�; .D2 /
�1.�u�/iV ��V 8v� 2 V �:

(6.19)

Moreover, the extremality conditions (6.16) hold.

Proof. We first remark that the hypothesis (6.13) implies

� u� D D2 .u; u/ ” u D .D2 /
�1.�u�/: (6.20)

Now, if u is a solution of the primal problem (6.9), then, by Theorem 6.7, one
has u 2 @2'�.Lu; u�/, and hence, by the characterization (6.20), one obtains

.D2 /
�1.�u�/ 2 @2'�.L.D2 /

�1.�u�/; u�/:

Therefore, from the definition of the subdifferential of  with respect to the second
variable, we conclude that u� solves (6.19).

Conversely, if u� D �D2 .u; u/ is a solution of the dual problem (6.19), then
.D2 /

�1.�u�/ 2 @2'�.L.D2 /
�1.�u�/; u�/ which, together with (6.20), gives

�
u 2 @2'�.Lu; u�/;
�u� D D2 .u; u/ D @2 .u; u/;

that is .u; u�/ is a solution of (6.14). Finally, from Theorem 6.7, we conclude the
proof. ut
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